Fix: relayd control socket mutex is not destroyed
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
327 free(relayd);
328 }
329
330 /*
331 * Destroy and free relayd socket pair object.
332 */
333 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
334 {
335 int ret;
336 struct lttng_ht_iter iter;
337
338 if (relayd == NULL) {
339 return;
340 }
341
342 DBG("Consumer destroy and close relayd socket pair");
343
344 iter.iter.node = &relayd->node.node;
345 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
346 if (ret != 0) {
347 /* We assume the relayd is being or is destroyed */
348 return;
349 }
350
351 /* RCU free() call */
352 call_rcu(&relayd->node.head, free_relayd_rcu);
353 }
354
355 /*
356 * Remove a channel from the global list protected by a mutex. This function is
357 * also responsible for freeing its data structures.
358 */
359 void consumer_del_channel(struct lttng_consumer_channel *channel)
360 {
361 int ret;
362 struct lttng_ht_iter iter;
363
364 DBG("Consumer delete channel key %" PRIu64, channel->key);
365
366 pthread_mutex_lock(&consumer_data.lock);
367 pthread_mutex_lock(&channel->lock);
368
369 /* Destroy streams that might have been left in the stream list. */
370 clean_channel_stream_list(channel);
371
372 if (channel->live_timer_enabled == 1) {
373 consumer_timer_live_stop(channel);
374 }
375 if (channel->monitor_timer_enabled == 1) {
376 consumer_timer_monitor_stop(channel);
377 }
378
379 switch (consumer_data.type) {
380 case LTTNG_CONSUMER_KERNEL:
381 break;
382 case LTTNG_CONSUMER32_UST:
383 case LTTNG_CONSUMER64_UST:
384 lttng_ustconsumer_del_channel(channel);
385 break;
386 default:
387 ERR("Unknown consumer_data type");
388 assert(0);
389 goto end;
390 }
391
392 rcu_read_lock();
393 iter.iter.node = &channel->node.node;
394 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
395 assert(!ret);
396 rcu_read_unlock();
397
398 call_rcu(&channel->node.head, free_channel_rcu);
399 end:
400 pthread_mutex_unlock(&channel->lock);
401 pthread_mutex_unlock(&consumer_data.lock);
402 }
403
404 /*
405 * Iterate over the relayd hash table and destroy each element. Finally,
406 * destroy the whole hash table.
407 */
408 static void cleanup_relayd_ht(void)
409 {
410 struct lttng_ht_iter iter;
411 struct consumer_relayd_sock_pair *relayd;
412
413 rcu_read_lock();
414
415 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
416 node.node) {
417 consumer_destroy_relayd(relayd);
418 }
419
420 rcu_read_unlock();
421
422 lttng_ht_destroy(consumer_data.relayd_ht);
423 }
424
425 /*
426 * Update the end point status of all streams having the given network sequence
427 * index (relayd index).
428 *
429 * It's atomically set without having the stream mutex locked which is fine
430 * because we handle the write/read race with a pipe wakeup for each thread.
431 */
432 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
433 enum consumer_endpoint_status status)
434 {
435 struct lttng_ht_iter iter;
436 struct lttng_consumer_stream *stream;
437
438 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
439
440 rcu_read_lock();
441
442 /* Let's begin with metadata */
443 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
444 if (stream->net_seq_idx == net_seq_idx) {
445 uatomic_set(&stream->endpoint_status, status);
446 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
447 }
448 }
449
450 /* Follow up by the data streams */
451 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
452 if (stream->net_seq_idx == net_seq_idx) {
453 uatomic_set(&stream->endpoint_status, status);
454 DBG("Delete flag set to data stream %d", stream->wait_fd);
455 }
456 }
457 rcu_read_unlock();
458 }
459
460 /*
461 * Cleanup a relayd object by flagging every associated streams for deletion,
462 * destroying the object meaning removing it from the relayd hash table,
463 * closing the sockets and freeing the memory in a RCU call.
464 *
465 * If a local data context is available, notify the threads that the streams'
466 * state have changed.
467 */
468 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
469 struct lttng_consumer_local_data *ctx)
470 {
471 uint64_t netidx;
472
473 assert(relayd);
474
475 DBG("Cleaning up relayd sockets");
476
477 /* Save the net sequence index before destroying the object */
478 netidx = relayd->net_seq_idx;
479
480 /*
481 * Delete the relayd from the relayd hash table, close the sockets and free
482 * the object in a RCU call.
483 */
484 consumer_destroy_relayd(relayd);
485
486 /* Set inactive endpoint to all streams */
487 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
488
489 /*
490 * With a local data context, notify the threads that the streams' state
491 * have changed. The write() action on the pipe acts as an "implicit"
492 * memory barrier ordering the updates of the end point status from the
493 * read of this status which happens AFTER receiving this notify.
494 */
495 if (ctx) {
496 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
497 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
498 }
499 }
500
501 /*
502 * Flag a relayd socket pair for destruction. Destroy it if the refcount
503 * reaches zero.
504 *
505 * RCU read side lock MUST be aquired before calling this function.
506 */
507 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
508 {
509 assert(relayd);
510
511 /* Set destroy flag for this object */
512 uatomic_set(&relayd->destroy_flag, 1);
513
514 /* Destroy the relayd if refcount is 0 */
515 if (uatomic_read(&relayd->refcount) == 0) {
516 consumer_destroy_relayd(relayd);
517 }
518 }
519
520 /*
521 * Completly destroy stream from every visiable data structure and the given
522 * hash table if one.
523 *
524 * One this call returns, the stream object is not longer usable nor visible.
525 */
526 void consumer_del_stream(struct lttng_consumer_stream *stream,
527 struct lttng_ht *ht)
528 {
529 consumer_stream_destroy(stream, ht);
530 }
531
532 /*
533 * XXX naming of del vs destroy is all mixed up.
534 */
535 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
536 {
537 consumer_stream_destroy(stream, data_ht);
538 }
539
540 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
541 {
542 consumer_stream_destroy(stream, metadata_ht);
543 }
544
545 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
546 uint64_t stream_key,
547 enum lttng_consumer_stream_state state,
548 const char *channel_name,
549 uid_t uid,
550 gid_t gid,
551 uint64_t relayd_id,
552 uint64_t session_id,
553 int cpu,
554 int *alloc_ret,
555 enum consumer_channel_type type,
556 unsigned int monitor)
557 {
558 int ret;
559 struct lttng_consumer_stream *stream;
560
561 stream = zmalloc(sizeof(*stream));
562 if (stream == NULL) {
563 PERROR("malloc struct lttng_consumer_stream");
564 ret = -ENOMEM;
565 goto end;
566 }
567
568 rcu_read_lock();
569
570 stream->key = stream_key;
571 stream->out_fd = -1;
572 stream->out_fd_offset = 0;
573 stream->output_written = 0;
574 stream->state = state;
575 stream->uid = uid;
576 stream->gid = gid;
577 stream->net_seq_idx = relayd_id;
578 stream->session_id = session_id;
579 stream->monitor = monitor;
580 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
581 stream->index_file = NULL;
582 stream->last_sequence_number = -1ULL;
583 pthread_mutex_init(&stream->lock, NULL);
584 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
585
586 /* If channel is the metadata, flag this stream as metadata. */
587 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
588 stream->metadata_flag = 1;
589 /* Metadata is flat out. */
590 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
591 /* Live rendez-vous point. */
592 pthread_cond_init(&stream->metadata_rdv, NULL);
593 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
594 } else {
595 /* Format stream name to <channel_name>_<cpu_number> */
596 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
597 channel_name, cpu);
598 if (ret < 0) {
599 PERROR("snprintf stream name");
600 goto error;
601 }
602 }
603
604 /* Key is always the wait_fd for streams. */
605 lttng_ht_node_init_u64(&stream->node, stream->key);
606
607 /* Init node per channel id key */
608 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
609
610 /* Init session id node with the stream session id */
611 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
612
613 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
614 " relayd_id %" PRIu64 ", session_id %" PRIu64,
615 stream->name, stream->key, channel_key,
616 stream->net_seq_idx, stream->session_id);
617
618 rcu_read_unlock();
619 return stream;
620
621 error:
622 rcu_read_unlock();
623 free(stream);
624 end:
625 if (alloc_ret) {
626 *alloc_ret = ret;
627 }
628 return NULL;
629 }
630
631 /*
632 * Add a stream to the global list protected by a mutex.
633 */
634 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
635 {
636 struct lttng_ht *ht = data_ht;
637 int ret = 0;
638
639 assert(stream);
640 assert(ht);
641
642 DBG3("Adding consumer stream %" PRIu64, stream->key);
643
644 pthread_mutex_lock(&consumer_data.lock);
645 pthread_mutex_lock(&stream->chan->lock);
646 pthread_mutex_lock(&stream->chan->timer_lock);
647 pthread_mutex_lock(&stream->lock);
648 rcu_read_lock();
649
650 /* Steal stream identifier to avoid having streams with the same key */
651 steal_stream_key(stream->key, ht);
652
653 lttng_ht_add_unique_u64(ht, &stream->node);
654
655 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
656 &stream->node_channel_id);
657
658 /*
659 * Add stream to the stream_list_ht of the consumer data. No need to steal
660 * the key since the HT does not use it and we allow to add redundant keys
661 * into this table.
662 */
663 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
664
665 /*
666 * When nb_init_stream_left reaches 0, we don't need to trigger any action
667 * in terms of destroying the associated channel, because the action that
668 * causes the count to become 0 also causes a stream to be added. The
669 * channel deletion will thus be triggered by the following removal of this
670 * stream.
671 */
672 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
673 /* Increment refcount before decrementing nb_init_stream_left */
674 cmm_smp_wmb();
675 uatomic_dec(&stream->chan->nb_init_stream_left);
676 }
677
678 /* Update consumer data once the node is inserted. */
679 consumer_data.stream_count++;
680 consumer_data.need_update = 1;
681
682 rcu_read_unlock();
683 pthread_mutex_unlock(&stream->lock);
684 pthread_mutex_unlock(&stream->chan->timer_lock);
685 pthread_mutex_unlock(&stream->chan->lock);
686 pthread_mutex_unlock(&consumer_data.lock);
687
688 return ret;
689 }
690
691 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
692 {
693 consumer_del_stream(stream, data_ht);
694 }
695
696 /*
697 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
698 * be acquired before calling this.
699 */
700 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
701 {
702 int ret = 0;
703 struct lttng_ht_node_u64 *node;
704 struct lttng_ht_iter iter;
705
706 assert(relayd);
707
708 lttng_ht_lookup(consumer_data.relayd_ht,
709 &relayd->net_seq_idx, &iter);
710 node = lttng_ht_iter_get_node_u64(&iter);
711 if (node != NULL) {
712 goto end;
713 }
714 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
715
716 end:
717 return ret;
718 }
719
720 /*
721 * Allocate and return a consumer relayd socket.
722 */
723 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
724 uint64_t net_seq_idx)
725 {
726 struct consumer_relayd_sock_pair *obj = NULL;
727
728 /* net sequence index of -1 is a failure */
729 if (net_seq_idx == (uint64_t) -1ULL) {
730 goto error;
731 }
732
733 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
734 if (obj == NULL) {
735 PERROR("zmalloc relayd sock");
736 goto error;
737 }
738
739 obj->net_seq_idx = net_seq_idx;
740 obj->refcount = 0;
741 obj->destroy_flag = 0;
742 obj->control_sock.sock.fd = -1;
743 obj->data_sock.sock.fd = -1;
744 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
745 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
746
747 error:
748 return obj;
749 }
750
751 /*
752 * Find a relayd socket pair in the global consumer data.
753 *
754 * Return the object if found else NULL.
755 * RCU read-side lock must be held across this call and while using the
756 * returned object.
757 */
758 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
759 {
760 struct lttng_ht_iter iter;
761 struct lttng_ht_node_u64 *node;
762 struct consumer_relayd_sock_pair *relayd = NULL;
763
764 /* Negative keys are lookup failures */
765 if (key == (uint64_t) -1ULL) {
766 goto error;
767 }
768
769 lttng_ht_lookup(consumer_data.relayd_ht, &key,
770 &iter);
771 node = lttng_ht_iter_get_node_u64(&iter);
772 if (node != NULL) {
773 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
774 }
775
776 error:
777 return relayd;
778 }
779
780 /*
781 * Find a relayd and send the stream
782 *
783 * Returns 0 on success, < 0 on error
784 */
785 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
786 char *path)
787 {
788 int ret = 0;
789 struct consumer_relayd_sock_pair *relayd;
790
791 assert(stream);
792 assert(stream->net_seq_idx != -1ULL);
793 assert(path);
794
795 /* The stream is not metadata. Get relayd reference if exists. */
796 rcu_read_lock();
797 relayd = consumer_find_relayd(stream->net_seq_idx);
798 if (relayd != NULL) {
799 /* Add stream on the relayd */
800 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
801 ret = relayd_add_stream(&relayd->control_sock, stream->name,
802 path, &stream->relayd_stream_id,
803 stream->chan->tracefile_size, stream->chan->tracefile_count);
804 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
805 if (ret < 0) {
806 goto end;
807 }
808
809 uatomic_inc(&relayd->refcount);
810 stream->sent_to_relayd = 1;
811 } else {
812 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
813 stream->key, stream->net_seq_idx);
814 ret = -1;
815 goto end;
816 }
817
818 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
819 stream->name, stream->key, stream->net_seq_idx);
820
821 end:
822 rcu_read_unlock();
823 return ret;
824 }
825
826 /*
827 * Find a relayd and send the streams sent message
828 *
829 * Returns 0 on success, < 0 on error
830 */
831 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
832 {
833 int ret = 0;
834 struct consumer_relayd_sock_pair *relayd;
835
836 assert(net_seq_idx != -1ULL);
837
838 /* The stream is not metadata. Get relayd reference if exists. */
839 rcu_read_lock();
840 relayd = consumer_find_relayd(net_seq_idx);
841 if (relayd != NULL) {
842 /* Add stream on the relayd */
843 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
844 ret = relayd_streams_sent(&relayd->control_sock);
845 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
846 if (ret < 0) {
847 goto end;
848 }
849 } else {
850 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
851 net_seq_idx);
852 ret = -1;
853 goto end;
854 }
855
856 ret = 0;
857 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
858
859 end:
860 rcu_read_unlock();
861 return ret;
862 }
863
864 /*
865 * Find a relayd and close the stream
866 */
867 void close_relayd_stream(struct lttng_consumer_stream *stream)
868 {
869 struct consumer_relayd_sock_pair *relayd;
870
871 /* The stream is not metadata. Get relayd reference if exists. */
872 rcu_read_lock();
873 relayd = consumer_find_relayd(stream->net_seq_idx);
874 if (relayd) {
875 consumer_stream_relayd_close(stream, relayd);
876 }
877 rcu_read_unlock();
878 }
879
880 /*
881 * Handle stream for relayd transmission if the stream applies for network
882 * streaming where the net sequence index is set.
883 *
884 * Return destination file descriptor or negative value on error.
885 */
886 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
887 size_t data_size, unsigned long padding,
888 struct consumer_relayd_sock_pair *relayd)
889 {
890 int outfd = -1, ret;
891 struct lttcomm_relayd_data_hdr data_hdr;
892
893 /* Safety net */
894 assert(stream);
895 assert(relayd);
896
897 /* Reset data header */
898 memset(&data_hdr, 0, sizeof(data_hdr));
899
900 if (stream->metadata_flag) {
901 /* Caller MUST acquire the relayd control socket lock */
902 ret = relayd_send_metadata(&relayd->control_sock, data_size);
903 if (ret < 0) {
904 goto error;
905 }
906
907 /* Metadata are always sent on the control socket. */
908 outfd = relayd->control_sock.sock.fd;
909 } else {
910 /* Set header with stream information */
911 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
912 data_hdr.data_size = htobe32(data_size);
913 data_hdr.padding_size = htobe32(padding);
914 /*
915 * Note that net_seq_num below is assigned with the *current* value of
916 * next_net_seq_num and only after that the next_net_seq_num will be
917 * increment. This is why when issuing a command on the relayd using
918 * this next value, 1 should always be substracted in order to compare
919 * the last seen sequence number on the relayd side to the last sent.
920 */
921 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
922 /* Other fields are zeroed previously */
923
924 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
925 sizeof(data_hdr));
926 if (ret < 0) {
927 goto error;
928 }
929
930 ++stream->next_net_seq_num;
931
932 /* Set to go on data socket */
933 outfd = relayd->data_sock.sock.fd;
934 }
935
936 error:
937 return outfd;
938 }
939
940 /*
941 * Allocate and return a new lttng_consumer_channel object using the given key
942 * to initialize the hash table node.
943 *
944 * On error, return NULL.
945 */
946 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
947 uint64_t session_id,
948 const char *pathname,
949 const char *name,
950 uid_t uid,
951 gid_t gid,
952 uint64_t relayd_id,
953 enum lttng_event_output output,
954 uint64_t tracefile_size,
955 uint64_t tracefile_count,
956 uint64_t session_id_per_pid,
957 unsigned int monitor,
958 unsigned int live_timer_interval,
959 const char *root_shm_path,
960 const char *shm_path)
961 {
962 struct lttng_consumer_channel *channel;
963
964 channel = zmalloc(sizeof(*channel));
965 if (channel == NULL) {
966 PERROR("malloc struct lttng_consumer_channel");
967 goto end;
968 }
969
970 channel->key = key;
971 channel->refcount = 0;
972 channel->session_id = session_id;
973 channel->session_id_per_pid = session_id_per_pid;
974 channel->uid = uid;
975 channel->gid = gid;
976 channel->relayd_id = relayd_id;
977 channel->tracefile_size = tracefile_size;
978 channel->tracefile_count = tracefile_count;
979 channel->monitor = monitor;
980 channel->live_timer_interval = live_timer_interval;
981 pthread_mutex_init(&channel->lock, NULL);
982 pthread_mutex_init(&channel->timer_lock, NULL);
983
984 switch (output) {
985 case LTTNG_EVENT_SPLICE:
986 channel->output = CONSUMER_CHANNEL_SPLICE;
987 break;
988 case LTTNG_EVENT_MMAP:
989 channel->output = CONSUMER_CHANNEL_MMAP;
990 break;
991 default:
992 assert(0);
993 free(channel);
994 channel = NULL;
995 goto end;
996 }
997
998 /*
999 * In monitor mode, the streams associated with the channel will be put in
1000 * a special list ONLY owned by this channel. So, the refcount is set to 1
1001 * here meaning that the channel itself has streams that are referenced.
1002 *
1003 * On a channel deletion, once the channel is no longer visible, the
1004 * refcount is decremented and checked for a zero value to delete it. With
1005 * streams in no monitor mode, it will now be safe to destroy the channel.
1006 */
1007 if (!channel->monitor) {
1008 channel->refcount = 1;
1009 }
1010
1011 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1012 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1013
1014 strncpy(channel->name, name, sizeof(channel->name));
1015 channel->name[sizeof(channel->name) - 1] = '\0';
1016
1017 if (root_shm_path) {
1018 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1019 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1020 }
1021 if (shm_path) {
1022 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1023 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1024 }
1025
1026 lttng_ht_node_init_u64(&channel->node, channel->key);
1027
1028 channel->wait_fd = -1;
1029
1030 CDS_INIT_LIST_HEAD(&channel->streams.head);
1031
1032 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1033
1034 end:
1035 return channel;
1036 }
1037
1038 /*
1039 * Add a channel to the global list protected by a mutex.
1040 *
1041 * Always return 0 indicating success.
1042 */
1043 int consumer_add_channel(struct lttng_consumer_channel *channel,
1044 struct lttng_consumer_local_data *ctx)
1045 {
1046 pthread_mutex_lock(&consumer_data.lock);
1047 pthread_mutex_lock(&channel->lock);
1048 pthread_mutex_lock(&channel->timer_lock);
1049
1050 /*
1051 * This gives us a guarantee that the channel we are about to add to the
1052 * channel hash table will be unique. See this function comment on the why
1053 * we need to steel the channel key at this stage.
1054 */
1055 steal_channel_key(channel->key);
1056
1057 rcu_read_lock();
1058 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1059 rcu_read_unlock();
1060
1061 pthread_mutex_unlock(&channel->timer_lock);
1062 pthread_mutex_unlock(&channel->lock);
1063 pthread_mutex_unlock(&consumer_data.lock);
1064
1065 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1066 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1067 }
1068
1069 return 0;
1070 }
1071
1072 /*
1073 * Allocate the pollfd structure and the local view of the out fds to avoid
1074 * doing a lookup in the linked list and concurrency issues when writing is
1075 * needed. Called with consumer_data.lock held.
1076 *
1077 * Returns the number of fds in the structures.
1078 */
1079 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1080 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1081 struct lttng_ht *ht, int *nb_inactive_fd)
1082 {
1083 int i = 0;
1084 struct lttng_ht_iter iter;
1085 struct lttng_consumer_stream *stream;
1086
1087 assert(ctx);
1088 assert(ht);
1089 assert(pollfd);
1090 assert(local_stream);
1091
1092 DBG("Updating poll fd array");
1093 *nb_inactive_fd = 0;
1094 rcu_read_lock();
1095 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1096 /*
1097 * Only active streams with an active end point can be added to the
1098 * poll set and local stream storage of the thread.
1099 *
1100 * There is a potential race here for endpoint_status to be updated
1101 * just after the check. However, this is OK since the stream(s) will
1102 * be deleted once the thread is notified that the end point state has
1103 * changed where this function will be called back again.
1104 *
1105 * We track the number of inactive FDs because they still need to be
1106 * closed by the polling thread after a wakeup on the data_pipe or
1107 * metadata_pipe.
1108 */
1109 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1110 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1111 (*nb_inactive_fd)++;
1112 continue;
1113 }
1114 /*
1115 * This clobbers way too much the debug output. Uncomment that if you
1116 * need it for debugging purposes.
1117 *
1118 * DBG("Active FD %d", stream->wait_fd);
1119 */
1120 (*pollfd)[i].fd = stream->wait_fd;
1121 (*pollfd)[i].events = POLLIN | POLLPRI;
1122 local_stream[i] = stream;
1123 i++;
1124 }
1125 rcu_read_unlock();
1126
1127 /*
1128 * Insert the consumer_data_pipe at the end of the array and don't
1129 * increment i so nb_fd is the number of real FD.
1130 */
1131 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1132 (*pollfd)[i].events = POLLIN | POLLPRI;
1133
1134 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1135 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1136 return i;
1137 }
1138
1139 /*
1140 * Poll on the should_quit pipe and the command socket return -1 on
1141 * error, 1 if should exit, 0 if data is available on the command socket
1142 */
1143 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1144 {
1145 int num_rdy;
1146
1147 restart:
1148 num_rdy = poll(consumer_sockpoll, 2, -1);
1149 if (num_rdy == -1) {
1150 /*
1151 * Restart interrupted system call.
1152 */
1153 if (errno == EINTR) {
1154 goto restart;
1155 }
1156 PERROR("Poll error");
1157 return -1;
1158 }
1159 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1160 DBG("consumer_should_quit wake up");
1161 return 1;
1162 }
1163 return 0;
1164 }
1165
1166 /*
1167 * Set the error socket.
1168 */
1169 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1170 int sock)
1171 {
1172 ctx->consumer_error_socket = sock;
1173 }
1174
1175 /*
1176 * Set the command socket path.
1177 */
1178 void lttng_consumer_set_command_sock_path(
1179 struct lttng_consumer_local_data *ctx, char *sock)
1180 {
1181 ctx->consumer_command_sock_path = sock;
1182 }
1183
1184 /*
1185 * Send return code to the session daemon.
1186 * If the socket is not defined, we return 0, it is not a fatal error
1187 */
1188 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1189 {
1190 if (ctx->consumer_error_socket > 0) {
1191 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1192 sizeof(enum lttcomm_sessiond_command));
1193 }
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Close all the tracefiles and stream fds and MUST be called when all
1200 * instances are destroyed i.e. when all threads were joined and are ended.
1201 */
1202 void lttng_consumer_cleanup(void)
1203 {
1204 struct lttng_ht_iter iter;
1205 struct lttng_consumer_channel *channel;
1206
1207 rcu_read_lock();
1208
1209 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1210 node.node) {
1211 consumer_del_channel(channel);
1212 }
1213
1214 rcu_read_unlock();
1215
1216 lttng_ht_destroy(consumer_data.channel_ht);
1217
1218 cleanup_relayd_ht();
1219
1220 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1221
1222 /*
1223 * This HT contains streams that are freed by either the metadata thread or
1224 * the data thread so we do *nothing* on the hash table and simply destroy
1225 * it.
1226 */
1227 lttng_ht_destroy(consumer_data.stream_list_ht);
1228 }
1229
1230 /*
1231 * Called from signal handler.
1232 */
1233 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1234 {
1235 ssize_t ret;
1236
1237 CMM_STORE_SHARED(consumer_quit, 1);
1238 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1239 if (ret < 1) {
1240 PERROR("write consumer quit");
1241 }
1242
1243 DBG("Consumer flag that it should quit");
1244 }
1245
1246
1247 /*
1248 * Flush pending writes to trace output disk file.
1249 */
1250 static
1251 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1252 off_t orig_offset)
1253 {
1254 int ret;
1255 int outfd = stream->out_fd;
1256
1257 /*
1258 * This does a blocking write-and-wait on any page that belongs to the
1259 * subbuffer prior to the one we just wrote.
1260 * Don't care about error values, as these are just hints and ways to
1261 * limit the amount of page cache used.
1262 */
1263 if (orig_offset < stream->max_sb_size) {
1264 return;
1265 }
1266 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1267 stream->max_sb_size,
1268 SYNC_FILE_RANGE_WAIT_BEFORE
1269 | SYNC_FILE_RANGE_WRITE
1270 | SYNC_FILE_RANGE_WAIT_AFTER);
1271 /*
1272 * Give hints to the kernel about how we access the file:
1273 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1274 * we write it.
1275 *
1276 * We need to call fadvise again after the file grows because the
1277 * kernel does not seem to apply fadvise to non-existing parts of the
1278 * file.
1279 *
1280 * Call fadvise _after_ having waited for the page writeback to
1281 * complete because the dirty page writeback semantic is not well
1282 * defined. So it can be expected to lead to lower throughput in
1283 * streaming.
1284 */
1285 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1286 stream->max_sb_size, POSIX_FADV_DONTNEED);
1287 if (ret && ret != -ENOSYS) {
1288 errno = ret;
1289 PERROR("posix_fadvise on fd %i", outfd);
1290 }
1291 }
1292
1293 /*
1294 * Initialise the necessary environnement :
1295 * - create a new context
1296 * - create the poll_pipe
1297 * - create the should_quit pipe (for signal handler)
1298 * - create the thread pipe (for splice)
1299 *
1300 * Takes a function pointer as argument, this function is called when data is
1301 * available on a buffer. This function is responsible to do the
1302 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1303 * buffer configuration and then kernctl_put_next_subbuf at the end.
1304 *
1305 * Returns a pointer to the new context or NULL on error.
1306 */
1307 struct lttng_consumer_local_data *lttng_consumer_create(
1308 enum lttng_consumer_type type,
1309 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1310 struct lttng_consumer_local_data *ctx),
1311 int (*recv_channel)(struct lttng_consumer_channel *channel),
1312 int (*recv_stream)(struct lttng_consumer_stream *stream),
1313 int (*update_stream)(uint64_t stream_key, uint32_t state))
1314 {
1315 int ret;
1316 struct lttng_consumer_local_data *ctx;
1317
1318 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1319 consumer_data.type == type);
1320 consumer_data.type = type;
1321
1322 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1323 if (ctx == NULL) {
1324 PERROR("allocating context");
1325 goto error;
1326 }
1327
1328 ctx->consumer_error_socket = -1;
1329 ctx->consumer_metadata_socket = -1;
1330 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1331 /* assign the callbacks */
1332 ctx->on_buffer_ready = buffer_ready;
1333 ctx->on_recv_channel = recv_channel;
1334 ctx->on_recv_stream = recv_stream;
1335 ctx->on_update_stream = update_stream;
1336
1337 ctx->consumer_data_pipe = lttng_pipe_open(0);
1338 if (!ctx->consumer_data_pipe) {
1339 goto error_poll_pipe;
1340 }
1341
1342 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1343 if (!ctx->consumer_wakeup_pipe) {
1344 goto error_wakeup_pipe;
1345 }
1346
1347 ret = pipe(ctx->consumer_should_quit);
1348 if (ret < 0) {
1349 PERROR("Error creating recv pipe");
1350 goto error_quit_pipe;
1351 }
1352
1353 ret = pipe(ctx->consumer_channel_pipe);
1354 if (ret < 0) {
1355 PERROR("Error creating channel pipe");
1356 goto error_channel_pipe;
1357 }
1358
1359 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1360 if (!ctx->consumer_metadata_pipe) {
1361 goto error_metadata_pipe;
1362 }
1363
1364 ctx->channel_monitor_pipe = -1;
1365
1366 return ctx;
1367
1368 error_metadata_pipe:
1369 utils_close_pipe(ctx->consumer_channel_pipe);
1370 error_channel_pipe:
1371 utils_close_pipe(ctx->consumer_should_quit);
1372 error_quit_pipe:
1373 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1374 error_wakeup_pipe:
1375 lttng_pipe_destroy(ctx->consumer_data_pipe);
1376 error_poll_pipe:
1377 free(ctx);
1378 error:
1379 return NULL;
1380 }
1381
1382 /*
1383 * Iterate over all streams of the hashtable and free them properly.
1384 */
1385 static void destroy_data_stream_ht(struct lttng_ht *ht)
1386 {
1387 struct lttng_ht_iter iter;
1388 struct lttng_consumer_stream *stream;
1389
1390 if (ht == NULL) {
1391 return;
1392 }
1393
1394 rcu_read_lock();
1395 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1396 /*
1397 * Ignore return value since we are currently cleaning up so any error
1398 * can't be handled.
1399 */
1400 (void) consumer_del_stream(stream, ht);
1401 }
1402 rcu_read_unlock();
1403
1404 lttng_ht_destroy(ht);
1405 }
1406
1407 /*
1408 * Iterate over all streams of the metadata hashtable and free them
1409 * properly.
1410 */
1411 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1412 {
1413 struct lttng_ht_iter iter;
1414 struct lttng_consumer_stream *stream;
1415
1416 if (ht == NULL) {
1417 return;
1418 }
1419
1420 rcu_read_lock();
1421 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1422 /*
1423 * Ignore return value since we are currently cleaning up so any error
1424 * can't be handled.
1425 */
1426 (void) consumer_del_metadata_stream(stream, ht);
1427 }
1428 rcu_read_unlock();
1429
1430 lttng_ht_destroy(ht);
1431 }
1432
1433 /*
1434 * Close all fds associated with the instance and free the context.
1435 */
1436 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1437 {
1438 int ret;
1439
1440 DBG("Consumer destroying it. Closing everything.");
1441
1442 if (!ctx) {
1443 return;
1444 }
1445
1446 destroy_data_stream_ht(data_ht);
1447 destroy_metadata_stream_ht(metadata_ht);
1448
1449 ret = close(ctx->consumer_error_socket);
1450 if (ret) {
1451 PERROR("close");
1452 }
1453 ret = close(ctx->consumer_metadata_socket);
1454 if (ret) {
1455 PERROR("close");
1456 }
1457 utils_close_pipe(ctx->consumer_channel_pipe);
1458 lttng_pipe_destroy(ctx->consumer_data_pipe);
1459 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1460 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1461 utils_close_pipe(ctx->consumer_should_quit);
1462
1463 unlink(ctx->consumer_command_sock_path);
1464 free(ctx);
1465 }
1466
1467 /*
1468 * Write the metadata stream id on the specified file descriptor.
1469 */
1470 static int write_relayd_metadata_id(int fd,
1471 struct lttng_consumer_stream *stream,
1472 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1473 {
1474 ssize_t ret;
1475 struct lttcomm_relayd_metadata_payload hdr;
1476
1477 hdr.stream_id = htobe64(stream->relayd_stream_id);
1478 hdr.padding_size = htobe32(padding);
1479 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1480 if (ret < sizeof(hdr)) {
1481 /*
1482 * This error means that the fd's end is closed so ignore the PERROR
1483 * not to clubber the error output since this can happen in a normal
1484 * code path.
1485 */
1486 if (errno != EPIPE) {
1487 PERROR("write metadata stream id");
1488 }
1489 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1490 /*
1491 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1492 * handle writting the missing part so report that as an error and
1493 * don't lie to the caller.
1494 */
1495 ret = -1;
1496 goto end;
1497 }
1498 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1499 stream->relayd_stream_id, padding);
1500
1501 end:
1502 return (int) ret;
1503 }
1504
1505 /*
1506 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1507 * core function for writing trace buffers to either the local filesystem or
1508 * the network.
1509 *
1510 * It must be called with the stream lock held.
1511 *
1512 * Careful review MUST be put if any changes occur!
1513 *
1514 * Returns the number of bytes written
1515 */
1516 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1517 struct lttng_consumer_local_data *ctx,
1518 struct lttng_consumer_stream *stream, unsigned long len,
1519 unsigned long padding,
1520 struct ctf_packet_index *index)
1521 {
1522 unsigned long mmap_offset;
1523 void *mmap_base;
1524 ssize_t ret = 0;
1525 off_t orig_offset = stream->out_fd_offset;
1526 /* Default is on the disk */
1527 int outfd = stream->out_fd;
1528 struct consumer_relayd_sock_pair *relayd = NULL;
1529 unsigned int relayd_hang_up = 0;
1530
1531 /* RCU lock for the relayd pointer */
1532 rcu_read_lock();
1533
1534 /* Flag that the current stream if set for network streaming. */
1535 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1536 relayd = consumer_find_relayd(stream->net_seq_idx);
1537 if (relayd == NULL) {
1538 ret = -EPIPE;
1539 goto end;
1540 }
1541 }
1542
1543 /* get the offset inside the fd to mmap */
1544 switch (consumer_data.type) {
1545 case LTTNG_CONSUMER_KERNEL:
1546 mmap_base = stream->mmap_base;
1547 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1548 if (ret < 0) {
1549 PERROR("tracer ctl get_mmap_read_offset");
1550 goto end;
1551 }
1552 break;
1553 case LTTNG_CONSUMER32_UST:
1554 case LTTNG_CONSUMER64_UST:
1555 mmap_base = lttng_ustctl_get_mmap_base(stream);
1556 if (!mmap_base) {
1557 ERR("read mmap get mmap base for stream %s", stream->name);
1558 ret = -EPERM;
1559 goto end;
1560 }
1561 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1562 if (ret != 0) {
1563 PERROR("tracer ctl get_mmap_read_offset");
1564 ret = -EINVAL;
1565 goto end;
1566 }
1567 break;
1568 default:
1569 ERR("Unknown consumer_data type");
1570 assert(0);
1571 }
1572
1573 /* Handle stream on the relayd if the output is on the network */
1574 if (relayd) {
1575 unsigned long netlen = len;
1576
1577 /*
1578 * Lock the control socket for the complete duration of the function
1579 * since from this point on we will use the socket.
1580 */
1581 if (stream->metadata_flag) {
1582 /* Metadata requires the control socket. */
1583 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1584 if (stream->reset_metadata_flag) {
1585 ret = relayd_reset_metadata(&relayd->control_sock,
1586 stream->relayd_stream_id,
1587 stream->metadata_version);
1588 if (ret < 0) {
1589 relayd_hang_up = 1;
1590 goto write_error;
1591 }
1592 stream->reset_metadata_flag = 0;
1593 }
1594 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1595 }
1596
1597 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1598 if (ret < 0) {
1599 relayd_hang_up = 1;
1600 goto write_error;
1601 }
1602 /* Use the returned socket. */
1603 outfd = ret;
1604
1605 /* Write metadata stream id before payload */
1606 if (stream->metadata_flag) {
1607 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1608 if (ret < 0) {
1609 relayd_hang_up = 1;
1610 goto write_error;
1611 }
1612 }
1613 } else {
1614 /* No streaming, we have to set the len with the full padding */
1615 len += padding;
1616
1617 if (stream->metadata_flag && stream->reset_metadata_flag) {
1618 ret = utils_truncate_stream_file(stream->out_fd, 0);
1619 if (ret < 0) {
1620 ERR("Reset metadata file");
1621 goto end;
1622 }
1623 stream->reset_metadata_flag = 0;
1624 }
1625
1626 /*
1627 * Check if we need to change the tracefile before writing the packet.
1628 */
1629 if (stream->chan->tracefile_size > 0 &&
1630 (stream->tracefile_size_current + len) >
1631 stream->chan->tracefile_size) {
1632 ret = utils_rotate_stream_file(stream->chan->pathname,
1633 stream->name, stream->chan->tracefile_size,
1634 stream->chan->tracefile_count, stream->uid, stream->gid,
1635 stream->out_fd, &(stream->tracefile_count_current),
1636 &stream->out_fd);
1637 if (ret < 0) {
1638 ERR("Rotating output file");
1639 goto end;
1640 }
1641 outfd = stream->out_fd;
1642
1643 if (stream->index_file) {
1644 lttng_index_file_put(stream->index_file);
1645 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1646 stream->name, stream->uid, stream->gid,
1647 stream->chan->tracefile_size,
1648 stream->tracefile_count_current,
1649 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1650 if (!stream->index_file) {
1651 goto end;
1652 }
1653 }
1654
1655 /* Reset current size because we just perform a rotation. */
1656 stream->tracefile_size_current = 0;
1657 stream->out_fd_offset = 0;
1658 orig_offset = 0;
1659 }
1660 stream->tracefile_size_current += len;
1661 if (index) {
1662 index->offset = htobe64(stream->out_fd_offset);
1663 }
1664 }
1665
1666 /*
1667 * This call guarantee that len or less is returned. It's impossible to
1668 * receive a ret value that is bigger than len.
1669 */
1670 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1671 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1672 if (ret < 0 || ((size_t) ret != len)) {
1673 /*
1674 * Report error to caller if nothing was written else at least send the
1675 * amount written.
1676 */
1677 if (ret < 0) {
1678 ret = -errno;
1679 }
1680 relayd_hang_up = 1;
1681
1682 /* Socket operation failed. We consider the relayd dead */
1683 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1684 /*
1685 * This is possible if the fd is closed on the other side
1686 * (outfd) or any write problem. It can be verbose a bit for a
1687 * normal execution if for instance the relayd is stopped
1688 * abruptly. This can happen so set this to a DBG statement.
1689 */
1690 DBG("Consumer mmap write detected relayd hang up");
1691 } else {
1692 /* Unhandled error, print it and stop function right now. */
1693 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1694 }
1695 goto write_error;
1696 }
1697 stream->output_written += ret;
1698
1699 /* This call is useless on a socket so better save a syscall. */
1700 if (!relayd) {
1701 /* This won't block, but will start writeout asynchronously */
1702 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1703 SYNC_FILE_RANGE_WRITE);
1704 stream->out_fd_offset += len;
1705 lttng_consumer_sync_trace_file(stream, orig_offset);
1706 }
1707
1708 write_error:
1709 /*
1710 * This is a special case that the relayd has closed its socket. Let's
1711 * cleanup the relayd object and all associated streams.
1712 */
1713 if (relayd && relayd_hang_up) {
1714 cleanup_relayd(relayd, ctx);
1715 }
1716
1717 end:
1718 /* Unlock only if ctrl socket used */
1719 if (relayd && stream->metadata_flag) {
1720 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1721 }
1722
1723 rcu_read_unlock();
1724 return ret;
1725 }
1726
1727 /*
1728 * Splice the data from the ring buffer to the tracefile.
1729 *
1730 * It must be called with the stream lock held.
1731 *
1732 * Returns the number of bytes spliced.
1733 */
1734 ssize_t lttng_consumer_on_read_subbuffer_splice(
1735 struct lttng_consumer_local_data *ctx,
1736 struct lttng_consumer_stream *stream, unsigned long len,
1737 unsigned long padding,
1738 struct ctf_packet_index *index)
1739 {
1740 ssize_t ret = 0, written = 0, ret_splice = 0;
1741 loff_t offset = 0;
1742 off_t orig_offset = stream->out_fd_offset;
1743 int fd = stream->wait_fd;
1744 /* Default is on the disk */
1745 int outfd = stream->out_fd;
1746 struct consumer_relayd_sock_pair *relayd = NULL;
1747 int *splice_pipe;
1748 unsigned int relayd_hang_up = 0;
1749
1750 switch (consumer_data.type) {
1751 case LTTNG_CONSUMER_KERNEL:
1752 break;
1753 case LTTNG_CONSUMER32_UST:
1754 case LTTNG_CONSUMER64_UST:
1755 /* Not supported for user space tracing */
1756 return -ENOSYS;
1757 default:
1758 ERR("Unknown consumer_data type");
1759 assert(0);
1760 }
1761
1762 /* RCU lock for the relayd pointer */
1763 rcu_read_lock();
1764
1765 /* Flag that the current stream if set for network streaming. */
1766 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1767 relayd = consumer_find_relayd(stream->net_seq_idx);
1768 if (relayd == NULL) {
1769 written = -ret;
1770 goto end;
1771 }
1772 }
1773 splice_pipe = stream->splice_pipe;
1774
1775 /* Write metadata stream id before payload */
1776 if (relayd) {
1777 unsigned long total_len = len;
1778
1779 if (stream->metadata_flag) {
1780 /*
1781 * Lock the control socket for the complete duration of the function
1782 * since from this point on we will use the socket.
1783 */
1784 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1785
1786 if (stream->reset_metadata_flag) {
1787 ret = relayd_reset_metadata(&relayd->control_sock,
1788 stream->relayd_stream_id,
1789 stream->metadata_version);
1790 if (ret < 0) {
1791 relayd_hang_up = 1;
1792 goto write_error;
1793 }
1794 stream->reset_metadata_flag = 0;
1795 }
1796 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1797 padding);
1798 if (ret < 0) {
1799 written = ret;
1800 relayd_hang_up = 1;
1801 goto write_error;
1802 }
1803
1804 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1805 }
1806
1807 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1808 if (ret < 0) {
1809 written = ret;
1810 relayd_hang_up = 1;
1811 goto write_error;
1812 }
1813 /* Use the returned socket. */
1814 outfd = ret;
1815 } else {
1816 /* No streaming, we have to set the len with the full padding */
1817 len += padding;
1818
1819 if (stream->metadata_flag && stream->reset_metadata_flag) {
1820 ret = utils_truncate_stream_file(stream->out_fd, 0);
1821 if (ret < 0) {
1822 ERR("Reset metadata file");
1823 goto end;
1824 }
1825 stream->reset_metadata_flag = 0;
1826 }
1827 /*
1828 * Check if we need to change the tracefile before writing the packet.
1829 */
1830 if (stream->chan->tracefile_size > 0 &&
1831 (stream->tracefile_size_current + len) >
1832 stream->chan->tracefile_size) {
1833 ret = utils_rotate_stream_file(stream->chan->pathname,
1834 stream->name, stream->chan->tracefile_size,
1835 stream->chan->tracefile_count, stream->uid, stream->gid,
1836 stream->out_fd, &(stream->tracefile_count_current),
1837 &stream->out_fd);
1838 if (ret < 0) {
1839 written = ret;
1840 ERR("Rotating output file");
1841 goto end;
1842 }
1843 outfd = stream->out_fd;
1844
1845 if (stream->index_file) {
1846 lttng_index_file_put(stream->index_file);
1847 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1848 stream->name, stream->uid, stream->gid,
1849 stream->chan->tracefile_size,
1850 stream->tracefile_count_current,
1851 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1852 if (!stream->index_file) {
1853 goto end;
1854 }
1855 }
1856
1857 /* Reset current size because we just perform a rotation. */
1858 stream->tracefile_size_current = 0;
1859 stream->out_fd_offset = 0;
1860 orig_offset = 0;
1861 }
1862 stream->tracefile_size_current += len;
1863 index->offset = htobe64(stream->out_fd_offset);
1864 }
1865
1866 while (len > 0) {
1867 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1868 (unsigned long)offset, len, fd, splice_pipe[1]);
1869 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1870 SPLICE_F_MOVE | SPLICE_F_MORE);
1871 DBG("splice chan to pipe, ret %zd", ret_splice);
1872 if (ret_splice < 0) {
1873 ret = errno;
1874 written = -ret;
1875 PERROR("Error in relay splice");
1876 goto splice_error;
1877 }
1878
1879 /* Handle stream on the relayd if the output is on the network */
1880 if (relayd && stream->metadata_flag) {
1881 size_t metadata_payload_size =
1882 sizeof(struct lttcomm_relayd_metadata_payload);
1883
1884 /* Update counter to fit the spliced data */
1885 ret_splice += metadata_payload_size;
1886 len += metadata_payload_size;
1887 /*
1888 * We do this so the return value can match the len passed as
1889 * argument to this function.
1890 */
1891 written -= metadata_payload_size;
1892 }
1893
1894 /* Splice data out */
1895 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1896 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1897 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1898 outfd, ret_splice);
1899 if (ret_splice < 0) {
1900 ret = errno;
1901 written = -ret;
1902 relayd_hang_up = 1;
1903 goto write_error;
1904 } else if (ret_splice > len) {
1905 /*
1906 * We don't expect this code path to be executed but you never know
1907 * so this is an extra protection agains a buggy splice().
1908 */
1909 ret = errno;
1910 written += ret_splice;
1911 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1912 len);
1913 goto splice_error;
1914 } else {
1915 /* All good, update current len and continue. */
1916 len -= ret_splice;
1917 }
1918
1919 /* This call is useless on a socket so better save a syscall. */
1920 if (!relayd) {
1921 /* This won't block, but will start writeout asynchronously */
1922 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1923 SYNC_FILE_RANGE_WRITE);
1924 stream->out_fd_offset += ret_splice;
1925 }
1926 stream->output_written += ret_splice;
1927 written += ret_splice;
1928 }
1929 if (!relayd) {
1930 lttng_consumer_sync_trace_file(stream, orig_offset);
1931 }
1932 goto end;
1933
1934 write_error:
1935 /*
1936 * This is a special case that the relayd has closed its socket. Let's
1937 * cleanup the relayd object and all associated streams.
1938 */
1939 if (relayd && relayd_hang_up) {
1940 cleanup_relayd(relayd, ctx);
1941 /* Skip splice error so the consumer does not fail */
1942 goto end;
1943 }
1944
1945 splice_error:
1946 /* send the appropriate error description to sessiond */
1947 switch (ret) {
1948 case EINVAL:
1949 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1950 break;
1951 case ENOMEM:
1952 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1953 break;
1954 case ESPIPE:
1955 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1956 break;
1957 }
1958
1959 end:
1960 if (relayd && stream->metadata_flag) {
1961 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1962 }
1963
1964 rcu_read_unlock();
1965 return written;
1966 }
1967
1968 /*
1969 * Take a snapshot for a specific fd
1970 *
1971 * Returns 0 on success, < 0 on error
1972 */
1973 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1974 {
1975 switch (consumer_data.type) {
1976 case LTTNG_CONSUMER_KERNEL:
1977 return lttng_kconsumer_take_snapshot(stream);
1978 case LTTNG_CONSUMER32_UST:
1979 case LTTNG_CONSUMER64_UST:
1980 return lttng_ustconsumer_take_snapshot(stream);
1981 default:
1982 ERR("Unknown consumer_data type");
1983 assert(0);
1984 return -ENOSYS;
1985 }
1986 }
1987
1988 /*
1989 * Get the produced position
1990 *
1991 * Returns 0 on success, < 0 on error
1992 */
1993 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1994 unsigned long *pos)
1995 {
1996 switch (consumer_data.type) {
1997 case LTTNG_CONSUMER_KERNEL:
1998 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1999 case LTTNG_CONSUMER32_UST:
2000 case LTTNG_CONSUMER64_UST:
2001 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2002 default:
2003 ERR("Unknown consumer_data type");
2004 assert(0);
2005 return -ENOSYS;
2006 }
2007 }
2008
2009 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2010 int sock, struct pollfd *consumer_sockpoll)
2011 {
2012 switch (consumer_data.type) {
2013 case LTTNG_CONSUMER_KERNEL:
2014 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2015 case LTTNG_CONSUMER32_UST:
2016 case LTTNG_CONSUMER64_UST:
2017 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2018 default:
2019 ERR("Unknown consumer_data type");
2020 assert(0);
2021 return -ENOSYS;
2022 }
2023 }
2024
2025 void lttng_consumer_close_all_metadata(void)
2026 {
2027 switch (consumer_data.type) {
2028 case LTTNG_CONSUMER_KERNEL:
2029 /*
2030 * The Kernel consumer has a different metadata scheme so we don't
2031 * close anything because the stream will be closed by the session
2032 * daemon.
2033 */
2034 break;
2035 case LTTNG_CONSUMER32_UST:
2036 case LTTNG_CONSUMER64_UST:
2037 /*
2038 * Close all metadata streams. The metadata hash table is passed and
2039 * this call iterates over it by closing all wakeup fd. This is safe
2040 * because at this point we are sure that the metadata producer is
2041 * either dead or blocked.
2042 */
2043 lttng_ustconsumer_close_all_metadata(metadata_ht);
2044 break;
2045 default:
2046 ERR("Unknown consumer_data type");
2047 assert(0);
2048 }
2049 }
2050
2051 /*
2052 * Clean up a metadata stream and free its memory.
2053 */
2054 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2055 struct lttng_ht *ht)
2056 {
2057 struct lttng_consumer_channel *free_chan = NULL;
2058
2059 assert(stream);
2060 /*
2061 * This call should NEVER receive regular stream. It must always be
2062 * metadata stream and this is crucial for data structure synchronization.
2063 */
2064 assert(stream->metadata_flag);
2065
2066 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2067
2068 pthread_mutex_lock(&consumer_data.lock);
2069 pthread_mutex_lock(&stream->chan->lock);
2070 pthread_mutex_lock(&stream->lock);
2071 if (stream->chan->metadata_cache) {
2072 /* Only applicable to userspace consumers. */
2073 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2074 }
2075
2076 /* Remove any reference to that stream. */
2077 consumer_stream_delete(stream, ht);
2078
2079 /* Close down everything including the relayd if one. */
2080 consumer_stream_close(stream);
2081 /* Destroy tracer buffers of the stream. */
2082 consumer_stream_destroy_buffers(stream);
2083
2084 /* Atomically decrement channel refcount since other threads can use it. */
2085 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2086 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2087 /* Go for channel deletion! */
2088 free_chan = stream->chan;
2089 }
2090
2091 /*
2092 * Nullify the stream reference so it is not used after deletion. The
2093 * channel lock MUST be acquired before being able to check for a NULL
2094 * pointer value.
2095 */
2096 stream->chan->metadata_stream = NULL;
2097
2098 if (stream->chan->metadata_cache) {
2099 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2100 }
2101 pthread_mutex_unlock(&stream->lock);
2102 pthread_mutex_unlock(&stream->chan->lock);
2103 pthread_mutex_unlock(&consumer_data.lock);
2104
2105 if (free_chan) {
2106 consumer_del_channel(free_chan);
2107 }
2108
2109 consumer_stream_free(stream);
2110 }
2111
2112 /*
2113 * Action done with the metadata stream when adding it to the consumer internal
2114 * data structures to handle it.
2115 */
2116 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2117 {
2118 struct lttng_ht *ht = metadata_ht;
2119 int ret = 0;
2120 struct lttng_ht_iter iter;
2121 struct lttng_ht_node_u64 *node;
2122
2123 assert(stream);
2124 assert(ht);
2125
2126 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2127
2128 pthread_mutex_lock(&consumer_data.lock);
2129 pthread_mutex_lock(&stream->chan->lock);
2130 pthread_mutex_lock(&stream->chan->timer_lock);
2131 pthread_mutex_lock(&stream->lock);
2132
2133 /*
2134 * From here, refcounts are updated so be _careful_ when returning an error
2135 * after this point.
2136 */
2137
2138 rcu_read_lock();
2139
2140 /*
2141 * Lookup the stream just to make sure it does not exist in our internal
2142 * state. This should NEVER happen.
2143 */
2144 lttng_ht_lookup(ht, &stream->key, &iter);
2145 node = lttng_ht_iter_get_node_u64(&iter);
2146 assert(!node);
2147
2148 /*
2149 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2150 * in terms of destroying the associated channel, because the action that
2151 * causes the count to become 0 also causes a stream to be added. The
2152 * channel deletion will thus be triggered by the following removal of this
2153 * stream.
2154 */
2155 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2156 /* Increment refcount before decrementing nb_init_stream_left */
2157 cmm_smp_wmb();
2158 uatomic_dec(&stream->chan->nb_init_stream_left);
2159 }
2160
2161 lttng_ht_add_unique_u64(ht, &stream->node);
2162
2163 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2164 &stream->node_channel_id);
2165
2166 /*
2167 * Add stream to the stream_list_ht of the consumer data. No need to steal
2168 * the key since the HT does not use it and we allow to add redundant keys
2169 * into this table.
2170 */
2171 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2172
2173 rcu_read_unlock();
2174
2175 pthread_mutex_unlock(&stream->lock);
2176 pthread_mutex_unlock(&stream->chan->lock);
2177 pthread_mutex_unlock(&stream->chan->timer_lock);
2178 pthread_mutex_unlock(&consumer_data.lock);
2179 return ret;
2180 }
2181
2182 /*
2183 * Delete data stream that are flagged for deletion (endpoint_status).
2184 */
2185 static void validate_endpoint_status_data_stream(void)
2186 {
2187 struct lttng_ht_iter iter;
2188 struct lttng_consumer_stream *stream;
2189
2190 DBG("Consumer delete flagged data stream");
2191
2192 rcu_read_lock();
2193 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2194 /* Validate delete flag of the stream */
2195 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2196 continue;
2197 }
2198 /* Delete it right now */
2199 consumer_del_stream(stream, data_ht);
2200 }
2201 rcu_read_unlock();
2202 }
2203
2204 /*
2205 * Delete metadata stream that are flagged for deletion (endpoint_status).
2206 */
2207 static void validate_endpoint_status_metadata_stream(
2208 struct lttng_poll_event *pollset)
2209 {
2210 struct lttng_ht_iter iter;
2211 struct lttng_consumer_stream *stream;
2212
2213 DBG("Consumer delete flagged metadata stream");
2214
2215 assert(pollset);
2216
2217 rcu_read_lock();
2218 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2219 /* Validate delete flag of the stream */
2220 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2221 continue;
2222 }
2223 /*
2224 * Remove from pollset so the metadata thread can continue without
2225 * blocking on a deleted stream.
2226 */
2227 lttng_poll_del(pollset, stream->wait_fd);
2228
2229 /* Delete it right now */
2230 consumer_del_metadata_stream(stream, metadata_ht);
2231 }
2232 rcu_read_unlock();
2233 }
2234
2235 /*
2236 * Thread polls on metadata file descriptor and write them on disk or on the
2237 * network.
2238 */
2239 void *consumer_thread_metadata_poll(void *data)
2240 {
2241 int ret, i, pollfd, err = -1;
2242 uint32_t revents, nb_fd;
2243 struct lttng_consumer_stream *stream = NULL;
2244 struct lttng_ht_iter iter;
2245 struct lttng_ht_node_u64 *node;
2246 struct lttng_poll_event events;
2247 struct lttng_consumer_local_data *ctx = data;
2248 ssize_t len;
2249
2250 rcu_register_thread();
2251
2252 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2253
2254 if (testpoint(consumerd_thread_metadata)) {
2255 goto error_testpoint;
2256 }
2257
2258 health_code_update();
2259
2260 DBG("Thread metadata poll started");
2261
2262 /* Size is set to 1 for the consumer_metadata pipe */
2263 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2264 if (ret < 0) {
2265 ERR("Poll set creation failed");
2266 goto end_poll;
2267 }
2268
2269 ret = lttng_poll_add(&events,
2270 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2271 if (ret < 0) {
2272 goto end;
2273 }
2274
2275 /* Main loop */
2276 DBG("Metadata main loop started");
2277
2278 while (1) {
2279 restart:
2280 health_code_update();
2281 health_poll_entry();
2282 DBG("Metadata poll wait");
2283 ret = lttng_poll_wait(&events, -1);
2284 DBG("Metadata poll return from wait with %d fd(s)",
2285 LTTNG_POLL_GETNB(&events));
2286 health_poll_exit();
2287 DBG("Metadata event caught in thread");
2288 if (ret < 0) {
2289 if (errno == EINTR) {
2290 ERR("Poll EINTR caught");
2291 goto restart;
2292 }
2293 if (LTTNG_POLL_GETNB(&events) == 0) {
2294 err = 0; /* All is OK */
2295 }
2296 goto end;
2297 }
2298
2299 nb_fd = ret;
2300
2301 /* From here, the event is a metadata wait fd */
2302 for (i = 0; i < nb_fd; i++) {
2303 health_code_update();
2304
2305 revents = LTTNG_POLL_GETEV(&events, i);
2306 pollfd = LTTNG_POLL_GETFD(&events, i);
2307
2308 if (!revents) {
2309 /* No activity for this FD (poll implementation). */
2310 continue;
2311 }
2312
2313 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2314 if (revents & LPOLLIN) {
2315 ssize_t pipe_len;
2316
2317 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2318 &stream, sizeof(stream));
2319 if (pipe_len < sizeof(stream)) {
2320 if (pipe_len < 0) {
2321 PERROR("read metadata stream");
2322 }
2323 /*
2324 * Remove the pipe from the poll set and continue the loop
2325 * since their might be data to consume.
2326 */
2327 lttng_poll_del(&events,
2328 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2329 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2330 continue;
2331 }
2332
2333 /* A NULL stream means that the state has changed. */
2334 if (stream == NULL) {
2335 /* Check for deleted streams. */
2336 validate_endpoint_status_metadata_stream(&events);
2337 goto restart;
2338 }
2339
2340 DBG("Adding metadata stream %d to poll set",
2341 stream->wait_fd);
2342
2343 /* Add metadata stream to the global poll events list */
2344 lttng_poll_add(&events, stream->wait_fd,
2345 LPOLLIN | LPOLLPRI | LPOLLHUP);
2346 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2347 DBG("Metadata thread pipe hung up");
2348 /*
2349 * Remove the pipe from the poll set and continue the loop
2350 * since their might be data to consume.
2351 */
2352 lttng_poll_del(&events,
2353 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2354 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2355 continue;
2356 } else {
2357 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2358 goto end;
2359 }
2360
2361 /* Handle other stream */
2362 continue;
2363 }
2364
2365 rcu_read_lock();
2366 {
2367 uint64_t tmp_id = (uint64_t) pollfd;
2368
2369 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2370 }
2371 node = lttng_ht_iter_get_node_u64(&iter);
2372 assert(node);
2373
2374 stream = caa_container_of(node, struct lttng_consumer_stream,
2375 node);
2376
2377 if (revents & (LPOLLIN | LPOLLPRI)) {
2378 /* Get the data out of the metadata file descriptor */
2379 DBG("Metadata available on fd %d", pollfd);
2380 assert(stream->wait_fd == pollfd);
2381
2382 do {
2383 health_code_update();
2384
2385 len = ctx->on_buffer_ready(stream, ctx);
2386 /*
2387 * We don't check the return value here since if we get
2388 * a negative len, it means an error occurred thus we
2389 * simply remove it from the poll set and free the
2390 * stream.
2391 */
2392 } while (len > 0);
2393
2394 /* It's ok to have an unavailable sub-buffer */
2395 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2396 /* Clean up stream from consumer and free it. */
2397 lttng_poll_del(&events, stream->wait_fd);
2398 consumer_del_metadata_stream(stream, metadata_ht);
2399 }
2400 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2401 DBG("Metadata fd %d is hup|err.", pollfd);
2402 if (!stream->hangup_flush_done
2403 && (consumer_data.type == LTTNG_CONSUMER32_UST
2404 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2405 DBG("Attempting to flush and consume the UST buffers");
2406 lttng_ustconsumer_on_stream_hangup(stream);
2407
2408 /* We just flushed the stream now read it. */
2409 do {
2410 health_code_update();
2411
2412 len = ctx->on_buffer_ready(stream, ctx);
2413 /*
2414 * We don't check the return value here since if we get
2415 * a negative len, it means an error occurred thus we
2416 * simply remove it from the poll set and free the
2417 * stream.
2418 */
2419 } while (len > 0);
2420 }
2421
2422 lttng_poll_del(&events, stream->wait_fd);
2423 /*
2424 * This call update the channel states, closes file descriptors
2425 * and securely free the stream.
2426 */
2427 consumer_del_metadata_stream(stream, metadata_ht);
2428 } else {
2429 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2430 rcu_read_unlock();
2431 goto end;
2432 }
2433 /* Release RCU lock for the stream looked up */
2434 rcu_read_unlock();
2435 }
2436 }
2437
2438 /* All is OK */
2439 err = 0;
2440 end:
2441 DBG("Metadata poll thread exiting");
2442
2443 lttng_poll_clean(&events);
2444 end_poll:
2445 error_testpoint:
2446 if (err) {
2447 health_error();
2448 ERR("Health error occurred in %s", __func__);
2449 }
2450 health_unregister(health_consumerd);
2451 rcu_unregister_thread();
2452 return NULL;
2453 }
2454
2455 /*
2456 * This thread polls the fds in the set to consume the data and write
2457 * it to tracefile if necessary.
2458 */
2459 void *consumer_thread_data_poll(void *data)
2460 {
2461 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2462 struct pollfd *pollfd = NULL;
2463 /* local view of the streams */
2464 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2465 /* local view of consumer_data.fds_count */
2466 int nb_fd = 0;
2467 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2468 int nb_inactive_fd = 0;
2469 struct lttng_consumer_local_data *ctx = data;
2470 ssize_t len;
2471
2472 rcu_register_thread();
2473
2474 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2475
2476 if (testpoint(consumerd_thread_data)) {
2477 goto error_testpoint;
2478 }
2479
2480 health_code_update();
2481
2482 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2483 if (local_stream == NULL) {
2484 PERROR("local_stream malloc");
2485 goto end;
2486 }
2487
2488 while (1) {
2489 health_code_update();
2490
2491 high_prio = 0;
2492 num_hup = 0;
2493
2494 /*
2495 * the fds set has been updated, we need to update our
2496 * local array as well
2497 */
2498 pthread_mutex_lock(&consumer_data.lock);
2499 if (consumer_data.need_update) {
2500 free(pollfd);
2501 pollfd = NULL;
2502
2503 free(local_stream);
2504 local_stream = NULL;
2505
2506 /*
2507 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2508 * wake up pipe.
2509 */
2510 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2511 if (pollfd == NULL) {
2512 PERROR("pollfd malloc");
2513 pthread_mutex_unlock(&consumer_data.lock);
2514 goto end;
2515 }
2516
2517 local_stream = zmalloc((consumer_data.stream_count + 2) *
2518 sizeof(struct lttng_consumer_stream *));
2519 if (local_stream == NULL) {
2520 PERROR("local_stream malloc");
2521 pthread_mutex_unlock(&consumer_data.lock);
2522 goto end;
2523 }
2524 ret = update_poll_array(ctx, &pollfd, local_stream,
2525 data_ht, &nb_inactive_fd);
2526 if (ret < 0) {
2527 ERR("Error in allocating pollfd or local_outfds");
2528 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2529 pthread_mutex_unlock(&consumer_data.lock);
2530 goto end;
2531 }
2532 nb_fd = ret;
2533 consumer_data.need_update = 0;
2534 }
2535 pthread_mutex_unlock(&consumer_data.lock);
2536
2537 /* No FDs and consumer_quit, consumer_cleanup the thread */
2538 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2539 CMM_LOAD_SHARED(consumer_quit) == 1) {
2540 err = 0; /* All is OK */
2541 goto end;
2542 }
2543 /* poll on the array of fds */
2544 restart:
2545 DBG("polling on %d fd", nb_fd + 2);
2546 if (testpoint(consumerd_thread_data_poll)) {
2547 goto end;
2548 }
2549 health_poll_entry();
2550 num_rdy = poll(pollfd, nb_fd + 2, -1);
2551 health_poll_exit();
2552 DBG("poll num_rdy : %d", num_rdy);
2553 if (num_rdy == -1) {
2554 /*
2555 * Restart interrupted system call.
2556 */
2557 if (errno == EINTR) {
2558 goto restart;
2559 }
2560 PERROR("Poll error");
2561 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2562 goto end;
2563 } else if (num_rdy == 0) {
2564 DBG("Polling thread timed out");
2565 goto end;
2566 }
2567
2568 if (caa_unlikely(data_consumption_paused)) {
2569 DBG("Data consumption paused, sleeping...");
2570 sleep(1);
2571 goto restart;
2572 }
2573
2574 /*
2575 * If the consumer_data_pipe triggered poll go directly to the
2576 * beginning of the loop to update the array. We want to prioritize
2577 * array update over low-priority reads.
2578 */
2579 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2580 ssize_t pipe_readlen;
2581
2582 DBG("consumer_data_pipe wake up");
2583 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2584 &new_stream, sizeof(new_stream));
2585 if (pipe_readlen < sizeof(new_stream)) {
2586 PERROR("Consumer data pipe");
2587 /* Continue so we can at least handle the current stream(s). */
2588 continue;
2589 }
2590
2591 /*
2592 * If the stream is NULL, just ignore it. It's also possible that
2593 * the sessiond poll thread changed the consumer_quit state and is
2594 * waking us up to test it.
2595 */
2596 if (new_stream == NULL) {
2597 validate_endpoint_status_data_stream();
2598 continue;
2599 }
2600
2601 /* Continue to update the local streams and handle prio ones */
2602 continue;
2603 }
2604
2605 /* Handle wakeup pipe. */
2606 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2607 char dummy;
2608 ssize_t pipe_readlen;
2609
2610 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2611 sizeof(dummy));
2612 if (pipe_readlen < 0) {
2613 PERROR("Consumer data wakeup pipe");
2614 }
2615 /* We've been awakened to handle stream(s). */
2616 ctx->has_wakeup = 0;
2617 }
2618
2619 /* Take care of high priority channels first. */
2620 for (i = 0; i < nb_fd; i++) {
2621 health_code_update();
2622
2623 if (local_stream[i] == NULL) {
2624 continue;
2625 }
2626 if (pollfd[i].revents & POLLPRI) {
2627 DBG("Urgent read on fd %d", pollfd[i].fd);
2628 high_prio = 1;
2629 len = ctx->on_buffer_ready(local_stream[i], ctx);
2630 /* it's ok to have an unavailable sub-buffer */
2631 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2632 /* Clean the stream and free it. */
2633 consumer_del_stream(local_stream[i], data_ht);
2634 local_stream[i] = NULL;
2635 } else if (len > 0) {
2636 local_stream[i]->data_read = 1;
2637 }
2638 }
2639 }
2640
2641 /*
2642 * If we read high prio channel in this loop, try again
2643 * for more high prio data.
2644 */
2645 if (high_prio) {
2646 continue;
2647 }
2648
2649 /* Take care of low priority channels. */
2650 for (i = 0; i < nb_fd; i++) {
2651 health_code_update();
2652
2653 if (local_stream[i] == NULL) {
2654 continue;
2655 }
2656 if ((pollfd[i].revents & POLLIN) ||
2657 local_stream[i]->hangup_flush_done ||
2658 local_stream[i]->has_data) {
2659 DBG("Normal read on fd %d", pollfd[i].fd);
2660 len = ctx->on_buffer_ready(local_stream[i], ctx);
2661 /* it's ok to have an unavailable sub-buffer */
2662 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2663 /* Clean the stream and free it. */
2664 consumer_del_stream(local_stream[i], data_ht);
2665 local_stream[i] = NULL;
2666 } else if (len > 0) {
2667 local_stream[i]->data_read = 1;
2668 }
2669 }
2670 }
2671
2672 /* Handle hangup and errors */
2673 for (i = 0; i < nb_fd; i++) {
2674 health_code_update();
2675
2676 if (local_stream[i] == NULL) {
2677 continue;
2678 }
2679 if (!local_stream[i]->hangup_flush_done
2680 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2681 && (consumer_data.type == LTTNG_CONSUMER32_UST
2682 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2683 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2684 pollfd[i].fd);
2685 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2686 /* Attempt read again, for the data we just flushed. */
2687 local_stream[i]->data_read = 1;
2688 }
2689 /*
2690 * If the poll flag is HUP/ERR/NVAL and we have
2691 * read no data in this pass, we can remove the
2692 * stream from its hash table.
2693 */
2694 if ((pollfd[i].revents & POLLHUP)) {
2695 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2696 if (!local_stream[i]->data_read) {
2697 consumer_del_stream(local_stream[i], data_ht);
2698 local_stream[i] = NULL;
2699 num_hup++;
2700 }
2701 } else if (pollfd[i].revents & POLLERR) {
2702 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2703 if (!local_stream[i]->data_read) {
2704 consumer_del_stream(local_stream[i], data_ht);
2705 local_stream[i] = NULL;
2706 num_hup++;
2707 }
2708 } else if (pollfd[i].revents & POLLNVAL) {
2709 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2710 if (!local_stream[i]->data_read) {
2711 consumer_del_stream(local_stream[i], data_ht);
2712 local_stream[i] = NULL;
2713 num_hup++;
2714 }
2715 }
2716 if (local_stream[i] != NULL) {
2717 local_stream[i]->data_read = 0;
2718 }
2719 }
2720 }
2721 /* All is OK */
2722 err = 0;
2723 end:
2724 DBG("polling thread exiting");
2725 free(pollfd);
2726 free(local_stream);
2727
2728 /*
2729 * Close the write side of the pipe so epoll_wait() in
2730 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2731 * read side of the pipe. If we close them both, epoll_wait strangely does
2732 * not return and could create a endless wait period if the pipe is the
2733 * only tracked fd in the poll set. The thread will take care of closing
2734 * the read side.
2735 */
2736 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2737
2738 error_testpoint:
2739 if (err) {
2740 health_error();
2741 ERR("Health error occurred in %s", __func__);
2742 }
2743 health_unregister(health_consumerd);
2744
2745 rcu_unregister_thread();
2746 return NULL;
2747 }
2748
2749 /*
2750 * Close wake-up end of each stream belonging to the channel. This will
2751 * allow the poll() on the stream read-side to detect when the
2752 * write-side (application) finally closes them.
2753 */
2754 static
2755 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2756 {
2757 struct lttng_ht *ht;
2758 struct lttng_consumer_stream *stream;
2759 struct lttng_ht_iter iter;
2760
2761 ht = consumer_data.stream_per_chan_id_ht;
2762
2763 rcu_read_lock();
2764 cds_lfht_for_each_entry_duplicate(ht->ht,
2765 ht->hash_fct(&channel->key, lttng_ht_seed),
2766 ht->match_fct, &channel->key,
2767 &iter.iter, stream, node_channel_id.node) {
2768 /*
2769 * Protect against teardown with mutex.
2770 */
2771 pthread_mutex_lock(&stream->lock);
2772 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2773 goto next;
2774 }
2775 switch (consumer_data.type) {
2776 case LTTNG_CONSUMER_KERNEL:
2777 break;
2778 case LTTNG_CONSUMER32_UST:
2779 case LTTNG_CONSUMER64_UST:
2780 if (stream->metadata_flag) {
2781 /* Safe and protected by the stream lock. */
2782 lttng_ustconsumer_close_metadata(stream->chan);
2783 } else {
2784 /*
2785 * Note: a mutex is taken internally within
2786 * liblttng-ust-ctl to protect timer wakeup_fd
2787 * use from concurrent close.
2788 */
2789 lttng_ustconsumer_close_stream_wakeup(stream);
2790 }
2791 break;
2792 default:
2793 ERR("Unknown consumer_data type");
2794 assert(0);
2795 }
2796 next:
2797 pthread_mutex_unlock(&stream->lock);
2798 }
2799 rcu_read_unlock();
2800 }
2801
2802 static void destroy_channel_ht(struct lttng_ht *ht)
2803 {
2804 struct lttng_ht_iter iter;
2805 struct lttng_consumer_channel *channel;
2806 int ret;
2807
2808 if (ht == NULL) {
2809 return;
2810 }
2811
2812 rcu_read_lock();
2813 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2814 ret = lttng_ht_del(ht, &iter);
2815 assert(ret != 0);
2816 }
2817 rcu_read_unlock();
2818
2819 lttng_ht_destroy(ht);
2820 }
2821
2822 /*
2823 * This thread polls the channel fds to detect when they are being
2824 * closed. It closes all related streams if the channel is detected as
2825 * closed. It is currently only used as a shim layer for UST because the
2826 * consumerd needs to keep the per-stream wakeup end of pipes open for
2827 * periodical flush.
2828 */
2829 void *consumer_thread_channel_poll(void *data)
2830 {
2831 int ret, i, pollfd, err = -1;
2832 uint32_t revents, nb_fd;
2833 struct lttng_consumer_channel *chan = NULL;
2834 struct lttng_ht_iter iter;
2835 struct lttng_ht_node_u64 *node;
2836 struct lttng_poll_event events;
2837 struct lttng_consumer_local_data *ctx = data;
2838 struct lttng_ht *channel_ht;
2839
2840 rcu_register_thread();
2841
2842 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2843
2844 if (testpoint(consumerd_thread_channel)) {
2845 goto error_testpoint;
2846 }
2847
2848 health_code_update();
2849
2850 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2851 if (!channel_ht) {
2852 /* ENOMEM at this point. Better to bail out. */
2853 goto end_ht;
2854 }
2855
2856 DBG("Thread channel poll started");
2857
2858 /* Size is set to 1 for the consumer_channel pipe */
2859 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2860 if (ret < 0) {
2861 ERR("Poll set creation failed");
2862 goto end_poll;
2863 }
2864
2865 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2866 if (ret < 0) {
2867 goto end;
2868 }
2869
2870 /* Main loop */
2871 DBG("Channel main loop started");
2872
2873 while (1) {
2874 restart:
2875 health_code_update();
2876 DBG("Channel poll wait");
2877 health_poll_entry();
2878 ret = lttng_poll_wait(&events, -1);
2879 DBG("Channel poll return from wait with %d fd(s)",
2880 LTTNG_POLL_GETNB(&events));
2881 health_poll_exit();
2882 DBG("Channel event caught in thread");
2883 if (ret < 0) {
2884 if (errno == EINTR) {
2885 ERR("Poll EINTR caught");
2886 goto restart;
2887 }
2888 if (LTTNG_POLL_GETNB(&events) == 0) {
2889 err = 0; /* All is OK */
2890 }
2891 goto end;
2892 }
2893
2894 nb_fd = ret;
2895
2896 /* From here, the event is a channel wait fd */
2897 for (i = 0; i < nb_fd; i++) {
2898 health_code_update();
2899
2900 revents = LTTNG_POLL_GETEV(&events, i);
2901 pollfd = LTTNG_POLL_GETFD(&events, i);
2902
2903 if (!revents) {
2904 /* No activity for this FD (poll implementation). */
2905 continue;
2906 }
2907
2908 if (pollfd == ctx->consumer_channel_pipe[0]) {
2909 if (revents & LPOLLIN) {
2910 enum consumer_channel_action action;
2911 uint64_t key;
2912
2913 ret = read_channel_pipe(ctx, &chan, &key, &action);
2914 if (ret <= 0) {
2915 if (ret < 0) {
2916 ERR("Error reading channel pipe");
2917 }
2918 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2919 continue;
2920 }
2921
2922 switch (action) {
2923 case CONSUMER_CHANNEL_ADD:
2924 DBG("Adding channel %d to poll set",
2925 chan->wait_fd);
2926
2927 lttng_ht_node_init_u64(&chan->wait_fd_node,
2928 chan->wait_fd);
2929 rcu_read_lock();
2930 lttng_ht_add_unique_u64(channel_ht,
2931 &chan->wait_fd_node);
2932 rcu_read_unlock();
2933 /* Add channel to the global poll events list */
2934 lttng_poll_add(&events, chan->wait_fd,
2935 LPOLLERR | LPOLLHUP);
2936 break;
2937 case CONSUMER_CHANNEL_DEL:
2938 {
2939 /*
2940 * This command should never be called if the channel
2941 * has streams monitored by either the data or metadata
2942 * thread. The consumer only notify this thread with a
2943 * channel del. command if it receives a destroy
2944 * channel command from the session daemon that send it
2945 * if a command prior to the GET_CHANNEL failed.
2946 */
2947
2948 rcu_read_lock();
2949 chan = consumer_find_channel(key);
2950 if (!chan) {
2951 rcu_read_unlock();
2952 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2953 break;
2954 }
2955 lttng_poll_del(&events, chan->wait_fd);
2956 iter.iter.node = &chan->wait_fd_node.node;
2957 ret = lttng_ht_del(channel_ht, &iter);
2958 assert(ret == 0);
2959
2960 switch (consumer_data.type) {
2961 case LTTNG_CONSUMER_KERNEL:
2962 break;
2963 case LTTNG_CONSUMER32_UST:
2964 case LTTNG_CONSUMER64_UST:
2965 health_code_update();
2966 /* Destroy streams that might have been left in the stream list. */
2967 clean_channel_stream_list(chan);
2968 break;
2969 default:
2970 ERR("Unknown consumer_data type");
2971 assert(0);
2972 }
2973
2974 /*
2975 * Release our own refcount. Force channel deletion even if
2976 * streams were not initialized.
2977 */
2978 if (!uatomic_sub_return(&chan->refcount, 1)) {
2979 consumer_del_channel(chan);
2980 }
2981 rcu_read_unlock();
2982 goto restart;
2983 }
2984 case CONSUMER_CHANNEL_QUIT:
2985 /*
2986 * Remove the pipe from the poll set and continue the loop
2987 * since their might be data to consume.
2988 */
2989 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2990 continue;
2991 default:
2992 ERR("Unknown action");
2993 break;
2994 }
2995 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2996 DBG("Channel thread pipe hung up");
2997 /*
2998 * Remove the pipe from the poll set and continue the loop
2999 * since their might be data to consume.
3000 */
3001 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3002 continue;
3003 } else {
3004 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3005 goto end;
3006 }
3007
3008 /* Handle other stream */
3009 continue;
3010 }
3011
3012 rcu_read_lock();
3013 {
3014 uint64_t tmp_id = (uint64_t) pollfd;
3015
3016 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3017 }
3018 node = lttng_ht_iter_get_node_u64(&iter);
3019 assert(node);
3020
3021 chan = caa_container_of(node, struct lttng_consumer_channel,
3022 wait_fd_node);
3023
3024 /* Check for error event */
3025 if (revents & (LPOLLERR | LPOLLHUP)) {
3026 DBG("Channel fd %d is hup|err.", pollfd);
3027
3028 lttng_poll_del(&events, chan->wait_fd);
3029 ret = lttng_ht_del(channel_ht, &iter);
3030 assert(ret == 0);
3031
3032 /*
3033 * This will close the wait fd for each stream associated to
3034 * this channel AND monitored by the data/metadata thread thus
3035 * will be clean by the right thread.
3036 */
3037 consumer_close_channel_streams(chan);
3038
3039 /* Release our own refcount */
3040 if (!uatomic_sub_return(&chan->refcount, 1)
3041 && !uatomic_read(&chan->nb_init_stream_left)) {
3042 consumer_del_channel(chan);
3043 }
3044 } else {
3045 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3046 rcu_read_unlock();
3047 goto end;
3048 }
3049
3050 /* Release RCU lock for the channel looked up */
3051 rcu_read_unlock();
3052 }
3053 }
3054
3055 /* All is OK */
3056 err = 0;
3057 end:
3058 lttng_poll_clean(&events);
3059 end_poll:
3060 destroy_channel_ht(channel_ht);
3061 end_ht:
3062 error_testpoint:
3063 DBG("Channel poll thread exiting");
3064 if (err) {
3065 health_error();
3066 ERR("Health error occurred in %s", __func__);
3067 }
3068 health_unregister(health_consumerd);
3069 rcu_unregister_thread();
3070 return NULL;
3071 }
3072
3073 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3074 struct pollfd *sockpoll, int client_socket)
3075 {
3076 int ret;
3077
3078 assert(ctx);
3079 assert(sockpoll);
3080
3081 ret = lttng_consumer_poll_socket(sockpoll);
3082 if (ret) {
3083 goto error;
3084 }
3085 DBG("Metadata connection on client_socket");
3086
3087 /* Blocking call, waiting for transmission */
3088 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3089 if (ctx->consumer_metadata_socket < 0) {
3090 WARN("On accept metadata");
3091 ret = -1;
3092 goto error;
3093 }
3094 ret = 0;
3095
3096 error:
3097 return ret;
3098 }
3099
3100 /*
3101 * This thread listens on the consumerd socket and receives the file
3102 * descriptors from the session daemon.
3103 */
3104 void *consumer_thread_sessiond_poll(void *data)
3105 {
3106 int sock = -1, client_socket, ret, err = -1;
3107 /*
3108 * structure to poll for incoming data on communication socket avoids
3109 * making blocking sockets.
3110 */
3111 struct pollfd consumer_sockpoll[2];
3112 struct lttng_consumer_local_data *ctx = data;
3113
3114 rcu_register_thread();
3115
3116 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3117
3118 if (testpoint(consumerd_thread_sessiond)) {
3119 goto error_testpoint;
3120 }
3121
3122 health_code_update();
3123
3124 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3125 unlink(ctx->consumer_command_sock_path);
3126 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3127 if (client_socket < 0) {
3128 ERR("Cannot create command socket");
3129 goto end;
3130 }
3131
3132 ret = lttcomm_listen_unix_sock(client_socket);
3133 if (ret < 0) {
3134 goto end;
3135 }
3136
3137 DBG("Sending ready command to lttng-sessiond");
3138 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3139 /* return < 0 on error, but == 0 is not fatal */
3140 if (ret < 0) {
3141 ERR("Error sending ready command to lttng-sessiond");
3142 goto end;
3143 }
3144
3145 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3146 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3147 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3148 consumer_sockpoll[1].fd = client_socket;
3149 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3150
3151 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3152 if (ret) {
3153 if (ret > 0) {
3154 /* should exit */
3155 err = 0;
3156 }
3157 goto end;
3158 }
3159 DBG("Connection on client_socket");
3160
3161 /* Blocking call, waiting for transmission */
3162 sock = lttcomm_accept_unix_sock(client_socket);
3163 if (sock < 0) {
3164 WARN("On accept");
3165 goto end;
3166 }
3167
3168 /*
3169 * Setup metadata socket which is the second socket connection on the
3170 * command unix socket.
3171 */
3172 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3173 if (ret) {
3174 if (ret > 0) {
3175 /* should exit */
3176 err = 0;
3177 }
3178 goto end;
3179 }
3180
3181 /* This socket is not useful anymore. */
3182 ret = close(client_socket);
3183 if (ret < 0) {
3184 PERROR("close client_socket");
3185 }
3186 client_socket = -1;
3187
3188 /* update the polling structure to poll on the established socket */
3189 consumer_sockpoll[1].fd = sock;
3190 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3191
3192 while (1) {
3193 health_code_update();
3194
3195 health_poll_entry();
3196 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3197 health_poll_exit();
3198 if (ret) {
3199 if (ret > 0) {
3200 /* should exit */
3201 err = 0;
3202 }
3203 goto end;
3204 }
3205 DBG("Incoming command on sock");
3206 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3207 if (ret <= 0) {
3208 /*
3209 * This could simply be a session daemon quitting. Don't output
3210 * ERR() here.
3211 */
3212 DBG("Communication interrupted on command socket");
3213 err = 0;
3214 goto end;
3215 }
3216 if (CMM_LOAD_SHARED(consumer_quit)) {
3217 DBG("consumer_thread_receive_fds received quit from signal");
3218 err = 0; /* All is OK */
3219 goto end;
3220 }
3221 DBG("received command on sock");
3222 }
3223 /* All is OK */
3224 err = 0;
3225
3226 end:
3227 DBG("Consumer thread sessiond poll exiting");
3228
3229 /*
3230 * Close metadata streams since the producer is the session daemon which
3231 * just died.
3232 *
3233 * NOTE: for now, this only applies to the UST tracer.
3234 */
3235 lttng_consumer_close_all_metadata();
3236
3237 /*
3238 * when all fds have hung up, the polling thread
3239 * can exit cleanly
3240 */
3241 CMM_STORE_SHARED(consumer_quit, 1);
3242
3243 /*
3244 * Notify the data poll thread to poll back again and test the
3245 * consumer_quit state that we just set so to quit gracefully.
3246 */
3247 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3248
3249 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3250
3251 notify_health_quit_pipe(health_quit_pipe);
3252
3253 /* Cleaning up possibly open sockets. */
3254 if (sock >= 0) {
3255 ret = close(sock);
3256 if (ret < 0) {
3257 PERROR("close sock sessiond poll");
3258 }
3259 }
3260 if (client_socket >= 0) {
3261 ret = close(client_socket);
3262 if (ret < 0) {
3263 PERROR("close client_socket sessiond poll");
3264 }
3265 }
3266
3267 error_testpoint:
3268 if (err) {
3269 health_error();
3270 ERR("Health error occurred in %s", __func__);
3271 }
3272 health_unregister(health_consumerd);
3273
3274 rcu_unregister_thread();
3275 return NULL;
3276 }
3277
3278 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3279 struct lttng_consumer_local_data *ctx)
3280 {
3281 ssize_t ret;
3282
3283 pthread_mutex_lock(&stream->lock);
3284 if (stream->metadata_flag) {
3285 pthread_mutex_lock(&stream->metadata_rdv_lock);
3286 }
3287
3288 switch (consumer_data.type) {
3289 case LTTNG_CONSUMER_KERNEL:
3290 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3291 break;
3292 case LTTNG_CONSUMER32_UST:
3293 case LTTNG_CONSUMER64_UST:
3294 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3295 break;
3296 default:
3297 ERR("Unknown consumer_data type");
3298 assert(0);
3299 ret = -ENOSYS;
3300 break;
3301 }
3302
3303 if (stream->metadata_flag) {
3304 pthread_cond_broadcast(&stream->metadata_rdv);
3305 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3306 }
3307 pthread_mutex_unlock(&stream->lock);
3308 return ret;
3309 }
3310
3311 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3312 {
3313 switch (consumer_data.type) {
3314 case LTTNG_CONSUMER_KERNEL:
3315 return lttng_kconsumer_on_recv_stream(stream);
3316 case LTTNG_CONSUMER32_UST:
3317 case LTTNG_CONSUMER64_UST:
3318 return lttng_ustconsumer_on_recv_stream(stream);
3319 default:
3320 ERR("Unknown consumer_data type");
3321 assert(0);
3322 return -ENOSYS;
3323 }
3324 }
3325
3326 /*
3327 * Allocate and set consumer data hash tables.
3328 */
3329 int lttng_consumer_init(void)
3330 {
3331 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3332 if (!consumer_data.channel_ht) {
3333 goto error;
3334 }
3335
3336 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3337 if (!consumer_data.relayd_ht) {
3338 goto error;
3339 }
3340
3341 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3342 if (!consumer_data.stream_list_ht) {
3343 goto error;
3344 }
3345
3346 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3347 if (!consumer_data.stream_per_chan_id_ht) {
3348 goto error;
3349 }
3350
3351 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3352 if (!data_ht) {
3353 goto error;
3354 }
3355
3356 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3357 if (!metadata_ht) {
3358 goto error;
3359 }
3360
3361 return 0;
3362
3363 error:
3364 return -1;
3365 }
3366
3367 /*
3368 * Process the ADD_RELAYD command receive by a consumer.
3369 *
3370 * This will create a relayd socket pair and add it to the relayd hash table.
3371 * The caller MUST acquire a RCU read side lock before calling it.
3372 */
3373 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3374 struct lttng_consumer_local_data *ctx, int sock,
3375 struct pollfd *consumer_sockpoll,
3376 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3377 uint64_t relayd_session_id)
3378 {
3379 int fd = -1, ret = -1, relayd_created = 0;
3380 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3381 struct consumer_relayd_sock_pair *relayd = NULL;
3382
3383 assert(ctx);
3384 assert(relayd_sock);
3385
3386 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3387
3388 /* Get relayd reference if exists. */
3389 relayd = consumer_find_relayd(net_seq_idx);
3390 if (relayd == NULL) {
3391 assert(sock_type == LTTNG_STREAM_CONTROL);
3392 /* Not found. Allocate one. */
3393 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3394 if (relayd == NULL) {
3395 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3396 goto error;
3397 } else {
3398 relayd->sessiond_session_id = sessiond_id;
3399 relayd_created = 1;
3400 }
3401
3402 /*
3403 * This code path MUST continue to the consumer send status message to
3404 * we can notify the session daemon and continue our work without
3405 * killing everything.
3406 */
3407 } else {
3408 /*
3409 * relayd key should never be found for control socket.
3410 */
3411 assert(sock_type != LTTNG_STREAM_CONTROL);
3412 }
3413
3414 /* First send a status message before receiving the fds. */
3415 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3416 if (ret < 0) {
3417 /* Somehow, the session daemon is not responding anymore. */
3418 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3419 goto error_nosignal;
3420 }
3421
3422 /* Poll on consumer socket. */
3423 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3424 if (ret) {
3425 /* Needing to exit in the middle of a command: error. */
3426 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3427 goto error_nosignal;
3428 }
3429
3430 /* Get relayd socket from session daemon */
3431 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3432 if (ret != sizeof(fd)) {
3433 fd = -1; /* Just in case it gets set with an invalid value. */
3434
3435 /*
3436 * Failing to receive FDs might indicate a major problem such as
3437 * reaching a fd limit during the receive where the kernel returns a
3438 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3439 * don't take any chances and stop everything.
3440 *
3441 * XXX: Feature request #558 will fix that and avoid this possible
3442 * issue when reaching the fd limit.
3443 */
3444 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3445 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3446 goto error;
3447 }
3448
3449 /* Copy socket information and received FD */
3450 switch (sock_type) {
3451 case LTTNG_STREAM_CONTROL:
3452 /* Copy received lttcomm socket */
3453 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3454 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3455 /* Handle create_sock error. */
3456 if (ret < 0) {
3457 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3458 goto error;
3459 }
3460 /*
3461 * Close the socket created internally by
3462 * lttcomm_create_sock, so we can replace it by the one
3463 * received from sessiond.
3464 */
3465 if (close(relayd->control_sock.sock.fd)) {
3466 PERROR("close");
3467 }
3468
3469 /* Assign new file descriptor */
3470 relayd->control_sock.sock.fd = fd;
3471 fd = -1; /* For error path */
3472 /* Assign version values. */
3473 relayd->control_sock.major = relayd_sock->major;
3474 relayd->control_sock.minor = relayd_sock->minor;
3475
3476 relayd->relayd_session_id = relayd_session_id;
3477
3478 break;
3479 case LTTNG_STREAM_DATA:
3480 /* Copy received lttcomm socket */
3481 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3482 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3483 /* Handle create_sock error. */
3484 if (ret < 0) {
3485 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3486 goto error;
3487 }
3488 /*
3489 * Close the socket created internally by
3490 * lttcomm_create_sock, so we can replace it by the one
3491 * received from sessiond.
3492 */
3493 if (close(relayd->data_sock.sock.fd)) {
3494 PERROR("close");
3495 }
3496
3497 /* Assign new file descriptor */
3498 relayd->data_sock.sock.fd = fd;
3499 fd = -1; /* for eventual error paths */
3500 /* Assign version values. */
3501 relayd->data_sock.major = relayd_sock->major;
3502 relayd->data_sock.minor = relayd_sock->minor;
3503 break;
3504 default:
3505 ERR("Unknown relayd socket type (%d)", sock_type);
3506 ret_code = LTTCOMM_CONSUMERD_FATAL;
3507 goto error;
3508 }
3509
3510 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3511 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3512 relayd->net_seq_idx, fd);
3513
3514 /* We successfully added the socket. Send status back. */
3515 ret = consumer_send_status_msg(sock, ret_code);
3516 if (ret < 0) {
3517 /* Somehow, the session daemon is not responding anymore. */
3518 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3519 goto error_nosignal;
3520 }
3521
3522 /*
3523 * Add relayd socket pair to consumer data hashtable. If object already
3524 * exists or on error, the function gracefully returns.
3525 */
3526 add_relayd(relayd);
3527
3528 /* All good! */
3529 return;
3530
3531 error:
3532 if (consumer_send_status_msg(sock, ret_code) < 0) {
3533 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3534 }
3535
3536 error_nosignal:
3537 /* Close received socket if valid. */
3538 if (fd >= 0) {
3539 if (close(fd)) {
3540 PERROR("close received socket");
3541 }
3542 }
3543
3544 if (relayd_created) {
3545 free(relayd);
3546 }
3547 }
3548
3549 /*
3550 * Try to lock the stream mutex.
3551 *
3552 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3553 */
3554 static int stream_try_lock(struct lttng_consumer_stream *stream)
3555 {
3556 int ret;
3557
3558 assert(stream);
3559
3560 /*
3561 * Try to lock the stream mutex. On failure, we know that the stream is
3562 * being used else where hence there is data still being extracted.
3563 */
3564 ret = pthread_mutex_trylock(&stream->lock);
3565 if (ret) {
3566 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3567 ret = 0;
3568 goto end;
3569 }
3570
3571 ret = 1;
3572
3573 end:
3574 return ret;
3575 }
3576
3577 /*
3578 * Search for a relayd associated to the session id and return the reference.
3579 *
3580 * A rcu read side lock MUST be acquire before calling this function and locked
3581 * until the relayd object is no longer necessary.
3582 */
3583 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3584 {
3585 struct lttng_ht_iter iter;
3586 struct consumer_relayd_sock_pair *relayd = NULL;
3587
3588 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3589 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3590 node.node) {
3591 /*
3592 * Check by sessiond id which is unique here where the relayd session
3593 * id might not be when having multiple relayd.
3594 */
3595 if (relayd->sessiond_session_id == id) {
3596 /* Found the relayd. There can be only one per id. */
3597 goto found;
3598 }
3599 }
3600
3601 return NULL;
3602
3603 found:
3604 return relayd;
3605 }
3606
3607 /*
3608 * Check if for a given session id there is still data needed to be extract
3609 * from the buffers.
3610 *
3611 * Return 1 if data is pending or else 0 meaning ready to be read.
3612 */
3613 int consumer_data_pending(uint64_t id)
3614 {
3615 int ret;
3616 struct lttng_ht_iter iter;
3617 struct lttng_ht *ht;
3618 struct lttng_consumer_stream *stream;
3619 struct consumer_relayd_sock_pair *relayd = NULL;
3620 int (*data_pending)(struct lttng_consumer_stream *);
3621
3622 DBG("Consumer data pending command on session id %" PRIu64, id);
3623
3624 rcu_read_lock();
3625 pthread_mutex_lock(&consumer_data.lock);
3626
3627 switch (consumer_data.type) {
3628 case LTTNG_CONSUMER_KERNEL:
3629 data_pending = lttng_kconsumer_data_pending;
3630 break;
3631 case LTTNG_CONSUMER32_UST:
3632 case LTTNG_CONSUMER64_UST:
3633 data_pending = lttng_ustconsumer_data_pending;
3634 break;
3635 default:
3636 ERR("Unknown consumer data type");
3637 assert(0);
3638 }
3639
3640 /* Ease our life a bit */
3641 ht = consumer_data.stream_list_ht;
3642
3643 relayd = find_relayd_by_session_id(id);
3644 if (relayd) {
3645 /* Send init command for data pending. */
3646 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3647 ret = relayd_begin_data_pending(&relayd->control_sock,
3648 relayd->relayd_session_id);
3649 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3650 if (ret < 0) {
3651 /* Communication error thus the relayd so no data pending. */
3652 goto data_not_pending;
3653 }
3654 }
3655
3656 cds_lfht_for_each_entry_duplicate(ht->ht,
3657 ht->hash_fct(&id, lttng_ht_seed),
3658 ht->match_fct, &id,
3659 &iter.iter, stream, node_session_id.node) {
3660 /* If this call fails, the stream is being used hence data pending. */
3661 ret = stream_try_lock(stream);
3662 if (!ret) {
3663 goto data_pending;
3664 }
3665
3666 /*
3667 * A removed node from the hash table indicates that the stream has
3668 * been deleted thus having a guarantee that the buffers are closed
3669 * on the consumer side. However, data can still be transmitted
3670 * over the network so don't skip the relayd check.
3671 */
3672 ret = cds_lfht_is_node_deleted(&stream->node.node);
3673 if (!ret) {
3674 /* Check the stream if there is data in the buffers. */
3675 ret = data_pending(stream);
3676 if (ret == 1) {
3677 pthread_mutex_unlock(&stream->lock);
3678 goto data_pending;
3679 }
3680 }
3681
3682 /* Relayd check */
3683 if (relayd) {
3684 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3685 if (stream->metadata_flag) {
3686 ret = relayd_quiescent_control(&relayd->control_sock,
3687 stream->relayd_stream_id);
3688 } else {
3689 ret = relayd_data_pending(&relayd->control_sock,
3690 stream->relayd_stream_id,
3691 stream->next_net_seq_num - 1);
3692 }
3693 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3694 if (ret == 1) {
3695 pthread_mutex_unlock(&stream->lock);
3696 goto data_pending;
3697 }
3698 }
3699 pthread_mutex_unlock(&stream->lock);
3700 }
3701
3702 if (relayd) {
3703 unsigned int is_data_inflight = 0;
3704
3705 /* Send init command for data pending. */
3706 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3707 ret = relayd_end_data_pending(&relayd->control_sock,
3708 relayd->relayd_session_id, &is_data_inflight);
3709 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3710 if (ret < 0) {
3711 goto data_not_pending;
3712 }
3713 if (is_data_inflight) {
3714 goto data_pending;
3715 }
3716 }
3717
3718 /*
3719 * Finding _no_ node in the hash table and no inflight data means that the
3720 * stream(s) have been removed thus data is guaranteed to be available for
3721 * analysis from the trace files.
3722 */
3723
3724 data_not_pending:
3725 /* Data is available to be read by a viewer. */
3726 pthread_mutex_unlock(&consumer_data.lock);
3727 rcu_read_unlock();
3728 return 0;
3729
3730 data_pending:
3731 /* Data is still being extracted from buffers. */
3732 pthread_mutex_unlock(&consumer_data.lock);
3733 rcu_read_unlock();
3734 return 1;
3735 }
3736
3737 /*
3738 * Send a ret code status message to the sessiond daemon.
3739 *
3740 * Return the sendmsg() return value.
3741 */
3742 int consumer_send_status_msg(int sock, int ret_code)
3743 {
3744 struct lttcomm_consumer_status_msg msg;
3745
3746 memset(&msg, 0, sizeof(msg));
3747 msg.ret_code = ret_code;
3748
3749 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3750 }
3751
3752 /*
3753 * Send a channel status message to the sessiond daemon.
3754 *
3755 * Return the sendmsg() return value.
3756 */
3757 int consumer_send_status_channel(int sock,
3758 struct lttng_consumer_channel *channel)
3759 {
3760 struct lttcomm_consumer_status_channel msg;
3761
3762 assert(sock >= 0);
3763
3764 memset(&msg, 0, sizeof(msg));
3765 if (!channel) {
3766 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3767 } else {
3768 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3769 msg.key = channel->key;
3770 msg.stream_count = channel->streams.count;
3771 }
3772
3773 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3774 }
3775
3776 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3777 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3778 uint64_t max_sb_size)
3779 {
3780 unsigned long start_pos;
3781
3782 if (!nb_packets_per_stream) {
3783 return consumed_pos; /* Grab everything */
3784 }
3785 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3786 start_pos -= max_sb_size * nb_packets_per_stream;
3787 if ((long) (start_pos - consumed_pos) < 0) {
3788 return consumed_pos; /* Grab everything */
3789 }
3790 return start_pos;
3791 }
This page took 0.248978 seconds and 5 git commands to generate.