consumerd: Implement clear stream/session commands
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
327 free(relayd);
328 }
329
330 /*
331 * Destroy and free relayd socket pair object.
332 */
333 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
334 {
335 int ret;
336 struct lttng_ht_iter iter;
337
338 if (relayd == NULL) {
339 return;
340 }
341
342 DBG("Consumer destroy and close relayd socket pair");
343
344 iter.iter.node = &relayd->node.node;
345 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
346 if (ret != 0) {
347 /* We assume the relayd is being or is destroyed */
348 return;
349 }
350
351 /* RCU free() call */
352 call_rcu(&relayd->node.head, free_relayd_rcu);
353 }
354
355 /*
356 * Remove a channel from the global list protected by a mutex. This function is
357 * also responsible for freeing its data structures.
358 */
359 void consumer_del_channel(struct lttng_consumer_channel *channel)
360 {
361 int ret;
362 struct lttng_ht_iter iter;
363
364 DBG("Consumer delete channel key %" PRIu64, channel->key);
365
366 pthread_mutex_lock(&consumer_data.lock);
367 pthread_mutex_lock(&channel->lock);
368
369 /* Destroy streams that might have been left in the stream list. */
370 clean_channel_stream_list(channel);
371
372 if (channel->live_timer_enabled == 1) {
373 consumer_timer_live_stop(channel);
374 }
375 if (channel->monitor_timer_enabled == 1) {
376 consumer_timer_monitor_stop(channel);
377 }
378
379 switch (consumer_data.type) {
380 case LTTNG_CONSUMER_KERNEL:
381 break;
382 case LTTNG_CONSUMER32_UST:
383 case LTTNG_CONSUMER64_UST:
384 lttng_ustconsumer_del_channel(channel);
385 break;
386 default:
387 ERR("Unknown consumer_data type");
388 assert(0);
389 goto end;
390 }
391
392 rcu_read_lock();
393 iter.iter.node = &channel->node.node;
394 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
395 assert(!ret);
396 rcu_read_unlock();
397
398 call_rcu(&channel->node.head, free_channel_rcu);
399 end:
400 pthread_mutex_unlock(&channel->lock);
401 pthread_mutex_unlock(&consumer_data.lock);
402 }
403
404 /*
405 * Iterate over the relayd hash table and destroy each element. Finally,
406 * destroy the whole hash table.
407 */
408 static void cleanup_relayd_ht(void)
409 {
410 struct lttng_ht_iter iter;
411 struct consumer_relayd_sock_pair *relayd;
412
413 rcu_read_lock();
414
415 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
416 node.node) {
417 consumer_destroy_relayd(relayd);
418 }
419
420 rcu_read_unlock();
421
422 lttng_ht_destroy(consumer_data.relayd_ht);
423 }
424
425 /*
426 * Update the end point status of all streams having the given network sequence
427 * index (relayd index).
428 *
429 * It's atomically set without having the stream mutex locked which is fine
430 * because we handle the write/read race with a pipe wakeup for each thread.
431 */
432 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
433 enum consumer_endpoint_status status)
434 {
435 struct lttng_ht_iter iter;
436 struct lttng_consumer_stream *stream;
437
438 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
439
440 rcu_read_lock();
441
442 /* Let's begin with metadata */
443 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
444 if (stream->net_seq_idx == net_seq_idx) {
445 uatomic_set(&stream->endpoint_status, status);
446 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
447 }
448 }
449
450 /* Follow up by the data streams */
451 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
452 if (stream->net_seq_idx == net_seq_idx) {
453 uatomic_set(&stream->endpoint_status, status);
454 DBG("Delete flag set to data stream %d", stream->wait_fd);
455 }
456 }
457 rcu_read_unlock();
458 }
459
460 /*
461 * Cleanup a relayd object by flagging every associated streams for deletion,
462 * destroying the object meaning removing it from the relayd hash table,
463 * closing the sockets and freeing the memory in a RCU call.
464 *
465 * If a local data context is available, notify the threads that the streams'
466 * state have changed.
467 */
468 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
495 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
496 }
497
498 /*
499 * Flag a relayd socket pair for destruction. Destroy it if the refcount
500 * reaches zero.
501 *
502 * RCU read side lock MUST be aquired before calling this function.
503 */
504 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
505 {
506 assert(relayd);
507
508 /* Set destroy flag for this object */
509 uatomic_set(&relayd->destroy_flag, 1);
510
511 /* Destroy the relayd if refcount is 0 */
512 if (uatomic_read(&relayd->refcount) == 0) {
513 consumer_destroy_relayd(relayd);
514 }
515 }
516
517 /*
518 * Completly destroy stream from every visiable data structure and the given
519 * hash table if one.
520 *
521 * One this call returns, the stream object is not longer usable nor visible.
522 */
523 void consumer_del_stream(struct lttng_consumer_stream *stream,
524 struct lttng_ht *ht)
525 {
526 consumer_stream_destroy(stream, ht);
527 }
528
529 /*
530 * XXX naming of del vs destroy is all mixed up.
531 */
532 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
533 {
534 consumer_stream_destroy(stream, data_ht);
535 }
536
537 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
538 {
539 consumer_stream_destroy(stream, metadata_ht);
540 }
541
542 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
543 uint64_t stream_key,
544 enum lttng_consumer_stream_state state,
545 const char *channel_name,
546 uid_t uid,
547 gid_t gid,
548 uint64_t relayd_id,
549 uint64_t session_id,
550 int cpu,
551 int *alloc_ret,
552 enum consumer_channel_type type,
553 unsigned int monitor)
554 {
555 int ret;
556 struct lttng_consumer_stream *stream;
557
558 stream = zmalloc(sizeof(*stream));
559 if (stream == NULL) {
560 PERROR("malloc struct lttng_consumer_stream");
561 ret = -ENOMEM;
562 goto end;
563 }
564
565 rcu_read_lock();
566
567 stream->key = stream_key;
568 stream->out_fd = -1;
569 stream->out_fd_offset = 0;
570 stream->output_written = 0;
571 stream->state = state;
572 stream->uid = uid;
573 stream->gid = gid;
574 stream->net_seq_idx = relayd_id;
575 stream->session_id = session_id;
576 stream->monitor = monitor;
577 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
578 stream->index_file = NULL;
579 stream->last_sequence_number = -1ULL;
580 pthread_mutex_init(&stream->lock, NULL);
581 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
582
583 /* If channel is the metadata, flag this stream as metadata. */
584 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
585 stream->metadata_flag = 1;
586 /* Metadata is flat out. */
587 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
588 /* Live rendez-vous point. */
589 pthread_cond_init(&stream->metadata_rdv, NULL);
590 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
591 } else {
592 /* Format stream name to <channel_name>_<cpu_number> */
593 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
594 channel_name, cpu);
595 if (ret < 0) {
596 PERROR("snprintf stream name");
597 goto error;
598 }
599 }
600
601 /* Key is always the wait_fd for streams. */
602 lttng_ht_node_init_u64(&stream->node, stream->key);
603
604 /* Init node per channel id key */
605 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
606
607 /* Init session id node with the stream session id */
608 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
609
610 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
611 " relayd_id %" PRIu64 ", session_id %" PRIu64,
612 stream->name, stream->key, channel_key,
613 stream->net_seq_idx, stream->session_id);
614
615 rcu_read_unlock();
616 return stream;
617
618 error:
619 rcu_read_unlock();
620 free(stream);
621 end:
622 if (alloc_ret) {
623 *alloc_ret = ret;
624 }
625 return NULL;
626 }
627
628 /*
629 * Add a stream to the global list protected by a mutex.
630 */
631 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
632 {
633 struct lttng_ht *ht = data_ht;
634 int ret = 0;
635
636 assert(stream);
637 assert(ht);
638
639 DBG3("Adding consumer stream %" PRIu64, stream->key);
640
641 pthread_mutex_lock(&consumer_data.lock);
642 pthread_mutex_lock(&stream->chan->lock);
643 pthread_mutex_lock(&stream->chan->timer_lock);
644 pthread_mutex_lock(&stream->lock);
645 rcu_read_lock();
646
647 /* Steal stream identifier to avoid having streams with the same key */
648 steal_stream_key(stream->key, ht);
649
650 lttng_ht_add_unique_u64(ht, &stream->node);
651
652 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
653 &stream->node_channel_id);
654
655 /*
656 * Add stream to the stream_list_ht of the consumer data. No need to steal
657 * the key since the HT does not use it and we allow to add redundant keys
658 * into this table.
659 */
660 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
661
662 /*
663 * When nb_init_stream_left reaches 0, we don't need to trigger any action
664 * in terms of destroying the associated channel, because the action that
665 * causes the count to become 0 also causes a stream to be added. The
666 * channel deletion will thus be triggered by the following removal of this
667 * stream.
668 */
669 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
670 /* Increment refcount before decrementing nb_init_stream_left */
671 cmm_smp_wmb();
672 uatomic_dec(&stream->chan->nb_init_stream_left);
673 }
674
675 /* Update consumer data once the node is inserted. */
676 consumer_data.stream_count++;
677 consumer_data.need_update = 1;
678
679 rcu_read_unlock();
680 pthread_mutex_unlock(&stream->lock);
681 pthread_mutex_unlock(&stream->chan->timer_lock);
682 pthread_mutex_unlock(&stream->chan->lock);
683 pthread_mutex_unlock(&consumer_data.lock);
684
685 return ret;
686 }
687
688 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
689 {
690 consumer_del_stream(stream, data_ht);
691 }
692
693 /*
694 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
695 * be acquired before calling this.
696 */
697 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
698 {
699 int ret = 0;
700 struct lttng_ht_node_u64 *node;
701 struct lttng_ht_iter iter;
702
703 assert(relayd);
704
705 lttng_ht_lookup(consumer_data.relayd_ht,
706 &relayd->net_seq_idx, &iter);
707 node = lttng_ht_iter_get_node_u64(&iter);
708 if (node != NULL) {
709 goto end;
710 }
711 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
712
713 end:
714 return ret;
715 }
716
717 /*
718 * Allocate and return a consumer relayd socket.
719 */
720 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
721 uint64_t net_seq_idx)
722 {
723 struct consumer_relayd_sock_pair *obj = NULL;
724
725 /* net sequence index of -1 is a failure */
726 if (net_seq_idx == (uint64_t) -1ULL) {
727 goto error;
728 }
729
730 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
731 if (obj == NULL) {
732 PERROR("zmalloc relayd sock");
733 goto error;
734 }
735
736 obj->net_seq_idx = net_seq_idx;
737 obj->refcount = 0;
738 obj->destroy_flag = 0;
739 obj->control_sock.sock.fd = -1;
740 obj->data_sock.sock.fd = -1;
741 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
742 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
743
744 error:
745 return obj;
746 }
747
748 /*
749 * Find a relayd socket pair in the global consumer data.
750 *
751 * Return the object if found else NULL.
752 * RCU read-side lock must be held across this call and while using the
753 * returned object.
754 */
755 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
756 {
757 struct lttng_ht_iter iter;
758 struct lttng_ht_node_u64 *node;
759 struct consumer_relayd_sock_pair *relayd = NULL;
760
761 /* Negative keys are lookup failures */
762 if (key == (uint64_t) -1ULL) {
763 goto error;
764 }
765
766 lttng_ht_lookup(consumer_data.relayd_ht, &key,
767 &iter);
768 node = lttng_ht_iter_get_node_u64(&iter);
769 if (node != NULL) {
770 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
771 }
772
773 error:
774 return relayd;
775 }
776
777 /*
778 * Find a relayd and send the stream
779 *
780 * Returns 0 on success, < 0 on error
781 */
782 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
783 char *path)
784 {
785 int ret = 0;
786 struct consumer_relayd_sock_pair *relayd;
787
788 assert(stream);
789 assert(stream->net_seq_idx != -1ULL);
790 assert(path);
791
792 /* The stream is not metadata. Get relayd reference if exists. */
793 rcu_read_lock();
794 relayd = consumer_find_relayd(stream->net_seq_idx);
795 if (relayd != NULL) {
796 /* Add stream on the relayd */
797 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
798 ret = relayd_add_stream(&relayd->control_sock, stream->name,
799 path, &stream->relayd_stream_id,
800 stream->chan->tracefile_size, stream->chan->tracefile_count);
801 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
802 if (ret < 0) {
803 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
804 lttng_consumer_cleanup_relayd(relayd);
805 goto end;
806 }
807
808 uatomic_inc(&relayd->refcount);
809 stream->sent_to_relayd = 1;
810 } else {
811 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
812 stream->key, stream->net_seq_idx);
813 ret = -1;
814 goto end;
815 }
816
817 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
818 stream->name, stream->key, stream->net_seq_idx);
819
820 end:
821 rcu_read_unlock();
822 return ret;
823 }
824
825 /*
826 * Find a relayd and send the streams sent message
827 *
828 * Returns 0 on success, < 0 on error
829 */
830 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
831 {
832 int ret = 0;
833 struct consumer_relayd_sock_pair *relayd;
834
835 assert(net_seq_idx != -1ULL);
836
837 /* The stream is not metadata. Get relayd reference if exists. */
838 rcu_read_lock();
839 relayd = consumer_find_relayd(net_seq_idx);
840 if (relayd != NULL) {
841 /* Add stream on the relayd */
842 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
843 ret = relayd_streams_sent(&relayd->control_sock);
844 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
845 if (ret < 0) {
846 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
847 lttng_consumer_cleanup_relayd(relayd);
848 goto end;
849 }
850 } else {
851 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
852 net_seq_idx);
853 ret = -1;
854 goto end;
855 }
856
857 ret = 0;
858 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
859
860 end:
861 rcu_read_unlock();
862 return ret;
863 }
864
865 /*
866 * Find a relayd and close the stream
867 */
868 void close_relayd_stream(struct lttng_consumer_stream *stream)
869 {
870 struct consumer_relayd_sock_pair *relayd;
871
872 /* The stream is not metadata. Get relayd reference if exists. */
873 rcu_read_lock();
874 relayd = consumer_find_relayd(stream->net_seq_idx);
875 if (relayd) {
876 consumer_stream_relayd_close(stream, relayd);
877 }
878 rcu_read_unlock();
879 }
880
881 /*
882 * Handle stream for relayd transmission if the stream applies for network
883 * streaming where the net sequence index is set.
884 *
885 * Return destination file descriptor or negative value on error.
886 */
887 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
888 size_t data_size, unsigned long padding,
889 struct consumer_relayd_sock_pair *relayd)
890 {
891 int outfd = -1, ret;
892 struct lttcomm_relayd_data_hdr data_hdr;
893
894 /* Safety net */
895 assert(stream);
896 assert(relayd);
897
898 /* Reset data header */
899 memset(&data_hdr, 0, sizeof(data_hdr));
900
901 if (stream->metadata_flag) {
902 /* Caller MUST acquire the relayd control socket lock */
903 ret = relayd_send_metadata(&relayd->control_sock, data_size);
904 if (ret < 0) {
905 goto error;
906 }
907
908 /* Metadata are always sent on the control socket. */
909 outfd = relayd->control_sock.sock.fd;
910 } else {
911 /* Set header with stream information */
912 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
913 data_hdr.data_size = htobe32(data_size);
914 data_hdr.padding_size = htobe32(padding);
915 /*
916 * Note that net_seq_num below is assigned with the *current* value of
917 * next_net_seq_num and only after that the next_net_seq_num will be
918 * increment. This is why when issuing a command on the relayd using
919 * this next value, 1 should always be substracted in order to compare
920 * the last seen sequence number on the relayd side to the last sent.
921 */
922 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
923 /* Other fields are zeroed previously */
924
925 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
926 sizeof(data_hdr));
927 if (ret < 0) {
928 goto error;
929 }
930
931 ++stream->next_net_seq_num;
932
933 /* Set to go on data socket */
934 outfd = relayd->data_sock.sock.fd;
935 }
936
937 error:
938 return outfd;
939 }
940
941 /*
942 * Allocate and return a new lttng_consumer_channel object using the given key
943 * to initialize the hash table node.
944 *
945 * On error, return NULL.
946 */
947 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
948 uint64_t session_id,
949 const char *pathname,
950 const char *name,
951 uid_t uid,
952 gid_t gid,
953 uint64_t relayd_id,
954 enum lttng_event_output output,
955 uint64_t tracefile_size,
956 uint64_t tracefile_count,
957 uint64_t session_id_per_pid,
958 unsigned int monitor,
959 unsigned int live_timer_interval,
960 const char *root_shm_path,
961 const char *shm_path)
962 {
963 struct lttng_consumer_channel *channel;
964
965 channel = zmalloc(sizeof(*channel));
966 if (channel == NULL) {
967 PERROR("malloc struct lttng_consumer_channel");
968 goto end;
969 }
970
971 channel->key = key;
972 channel->refcount = 0;
973 channel->session_id = session_id;
974 channel->session_id_per_pid = session_id_per_pid;
975 channel->uid = uid;
976 channel->gid = gid;
977 channel->relayd_id = relayd_id;
978 channel->tracefile_size = tracefile_size;
979 channel->tracefile_count = tracefile_count;
980 channel->monitor = monitor;
981 channel->live_timer_interval = live_timer_interval;
982 pthread_mutex_init(&channel->lock, NULL);
983 pthread_mutex_init(&channel->timer_lock, NULL);
984
985 switch (output) {
986 case LTTNG_EVENT_SPLICE:
987 channel->output = CONSUMER_CHANNEL_SPLICE;
988 break;
989 case LTTNG_EVENT_MMAP:
990 channel->output = CONSUMER_CHANNEL_MMAP;
991 break;
992 default:
993 assert(0);
994 free(channel);
995 channel = NULL;
996 goto end;
997 }
998
999 /*
1000 * In monitor mode, the streams associated with the channel will be put in
1001 * a special list ONLY owned by this channel. So, the refcount is set to 1
1002 * here meaning that the channel itself has streams that are referenced.
1003 *
1004 * On a channel deletion, once the channel is no longer visible, the
1005 * refcount is decremented and checked for a zero value to delete it. With
1006 * streams in no monitor mode, it will now be safe to destroy the channel.
1007 */
1008 if (!channel->monitor) {
1009 channel->refcount = 1;
1010 }
1011
1012 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1013 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1014
1015 strncpy(channel->name, name, sizeof(channel->name));
1016 channel->name[sizeof(channel->name) - 1] = '\0';
1017
1018 if (root_shm_path) {
1019 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1020 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1021 }
1022 if (shm_path) {
1023 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1024 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1025 }
1026
1027 lttng_ht_node_init_u64(&channel->node, channel->key);
1028
1029 channel->wait_fd = -1;
1030
1031 CDS_INIT_LIST_HEAD(&channel->streams.head);
1032
1033 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1034
1035 end:
1036 return channel;
1037 }
1038
1039 /*
1040 * Add a channel to the global list protected by a mutex.
1041 *
1042 * Always return 0 indicating success.
1043 */
1044 int consumer_add_channel(struct lttng_consumer_channel *channel,
1045 struct lttng_consumer_local_data *ctx)
1046 {
1047 pthread_mutex_lock(&consumer_data.lock);
1048 pthread_mutex_lock(&channel->lock);
1049 pthread_mutex_lock(&channel->timer_lock);
1050
1051 /*
1052 * This gives us a guarantee that the channel we are about to add to the
1053 * channel hash table will be unique. See this function comment on the why
1054 * we need to steel the channel key at this stage.
1055 */
1056 steal_channel_key(channel->key);
1057
1058 rcu_read_lock();
1059 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1060 rcu_read_unlock();
1061
1062 pthread_mutex_unlock(&channel->timer_lock);
1063 pthread_mutex_unlock(&channel->lock);
1064 pthread_mutex_unlock(&consumer_data.lock);
1065
1066 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1067 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1068 }
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * Allocate the pollfd structure and the local view of the out fds to avoid
1075 * doing a lookup in the linked list and concurrency issues when writing is
1076 * needed. Called with consumer_data.lock held.
1077 *
1078 * Returns the number of fds in the structures.
1079 */
1080 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1081 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1082 struct lttng_ht *ht, int *nb_inactive_fd)
1083 {
1084 int i = 0;
1085 struct lttng_ht_iter iter;
1086 struct lttng_consumer_stream *stream;
1087
1088 assert(ctx);
1089 assert(ht);
1090 assert(pollfd);
1091 assert(local_stream);
1092
1093 DBG("Updating poll fd array");
1094 *nb_inactive_fd = 0;
1095 rcu_read_lock();
1096 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1097 /*
1098 * Only active streams with an active end point can be added to the
1099 * poll set and local stream storage of the thread.
1100 *
1101 * There is a potential race here for endpoint_status to be updated
1102 * just after the check. However, this is OK since the stream(s) will
1103 * be deleted once the thread is notified that the end point state has
1104 * changed where this function will be called back again.
1105 *
1106 * We track the number of inactive FDs because they still need to be
1107 * closed by the polling thread after a wakeup on the data_pipe or
1108 * metadata_pipe.
1109 */
1110 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1111 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1112 (*nb_inactive_fd)++;
1113 continue;
1114 }
1115 /*
1116 * This clobbers way too much the debug output. Uncomment that if you
1117 * need it for debugging purposes.
1118 *
1119 * DBG("Active FD %d", stream->wait_fd);
1120 */
1121 (*pollfd)[i].fd = stream->wait_fd;
1122 (*pollfd)[i].events = POLLIN | POLLPRI;
1123 local_stream[i] = stream;
1124 i++;
1125 }
1126 rcu_read_unlock();
1127
1128 /*
1129 * Insert the consumer_data_pipe at the end of the array and don't
1130 * increment i so nb_fd is the number of real FD.
1131 */
1132 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1133 (*pollfd)[i].events = POLLIN | POLLPRI;
1134
1135 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1136 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1137 return i;
1138 }
1139
1140 /*
1141 * Poll on the should_quit pipe and the command socket return -1 on
1142 * error, 1 if should exit, 0 if data is available on the command socket
1143 */
1144 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1145 {
1146 int num_rdy;
1147
1148 restart:
1149 num_rdy = poll(consumer_sockpoll, 2, -1);
1150 if (num_rdy == -1) {
1151 /*
1152 * Restart interrupted system call.
1153 */
1154 if (errno == EINTR) {
1155 goto restart;
1156 }
1157 PERROR("Poll error");
1158 return -1;
1159 }
1160 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1161 DBG("consumer_should_quit wake up");
1162 return 1;
1163 }
1164 return 0;
1165 }
1166
1167 /*
1168 * Set the error socket.
1169 */
1170 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1171 int sock)
1172 {
1173 ctx->consumer_error_socket = sock;
1174 }
1175
1176 /*
1177 * Set the command socket path.
1178 */
1179 void lttng_consumer_set_command_sock_path(
1180 struct lttng_consumer_local_data *ctx, char *sock)
1181 {
1182 ctx->consumer_command_sock_path = sock;
1183 }
1184
1185 /*
1186 * Send return code to the session daemon.
1187 * If the socket is not defined, we return 0, it is not a fatal error
1188 */
1189 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1190 {
1191 if (ctx->consumer_error_socket > 0) {
1192 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1193 sizeof(enum lttcomm_sessiond_command));
1194 }
1195
1196 return 0;
1197 }
1198
1199 /*
1200 * Close all the tracefiles and stream fds and MUST be called when all
1201 * instances are destroyed i.e. when all threads were joined and are ended.
1202 */
1203 void lttng_consumer_cleanup(void)
1204 {
1205 struct lttng_ht_iter iter;
1206 struct lttng_consumer_channel *channel;
1207
1208 rcu_read_lock();
1209
1210 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1211 node.node) {
1212 consumer_del_channel(channel);
1213 }
1214
1215 rcu_read_unlock();
1216
1217 lttng_ht_destroy(consumer_data.channel_ht);
1218
1219 cleanup_relayd_ht();
1220
1221 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1222
1223 /*
1224 * This HT contains streams that are freed by either the metadata thread or
1225 * the data thread so we do *nothing* on the hash table and simply destroy
1226 * it.
1227 */
1228 lttng_ht_destroy(consumer_data.stream_list_ht);
1229 }
1230
1231 /*
1232 * Called from signal handler.
1233 */
1234 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1235 {
1236 ssize_t ret;
1237
1238 CMM_STORE_SHARED(consumer_quit, 1);
1239 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1240 if (ret < 1) {
1241 PERROR("write consumer quit");
1242 }
1243
1244 DBG("Consumer flag that it should quit");
1245 }
1246
1247
1248 /*
1249 * Flush pending writes to trace output disk file.
1250 */
1251 static
1252 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1253 off_t orig_offset)
1254 {
1255 int ret;
1256 int outfd = stream->out_fd;
1257
1258 /*
1259 * This does a blocking write-and-wait on any page that belongs to the
1260 * subbuffer prior to the one we just wrote.
1261 * Don't care about error values, as these are just hints and ways to
1262 * limit the amount of page cache used.
1263 */
1264 if (orig_offset < stream->max_sb_size) {
1265 return;
1266 }
1267 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1268 stream->max_sb_size,
1269 SYNC_FILE_RANGE_WAIT_BEFORE
1270 | SYNC_FILE_RANGE_WRITE
1271 | SYNC_FILE_RANGE_WAIT_AFTER);
1272 /*
1273 * Give hints to the kernel about how we access the file:
1274 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1275 * we write it.
1276 *
1277 * We need to call fadvise again after the file grows because the
1278 * kernel does not seem to apply fadvise to non-existing parts of the
1279 * file.
1280 *
1281 * Call fadvise _after_ having waited for the page writeback to
1282 * complete because the dirty page writeback semantic is not well
1283 * defined. So it can be expected to lead to lower throughput in
1284 * streaming.
1285 */
1286 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1287 stream->max_sb_size, POSIX_FADV_DONTNEED);
1288 if (ret && ret != -ENOSYS) {
1289 errno = ret;
1290 PERROR("posix_fadvise on fd %i", outfd);
1291 }
1292 }
1293
1294 /*
1295 * Initialise the necessary environnement :
1296 * - create a new context
1297 * - create the poll_pipe
1298 * - create the should_quit pipe (for signal handler)
1299 * - create the thread pipe (for splice)
1300 *
1301 * Takes a function pointer as argument, this function is called when data is
1302 * available on a buffer. This function is responsible to do the
1303 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1304 * buffer configuration and then kernctl_put_next_subbuf at the end.
1305 *
1306 * Returns a pointer to the new context or NULL on error.
1307 */
1308 struct lttng_consumer_local_data *lttng_consumer_create(
1309 enum lttng_consumer_type type,
1310 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1311 struct lttng_consumer_local_data *ctx),
1312 int (*recv_channel)(struct lttng_consumer_channel *channel),
1313 int (*recv_stream)(struct lttng_consumer_stream *stream),
1314 int (*update_stream)(uint64_t stream_key, uint32_t state))
1315 {
1316 int ret;
1317 struct lttng_consumer_local_data *ctx;
1318
1319 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1320 consumer_data.type == type);
1321 consumer_data.type = type;
1322
1323 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1324 if (ctx == NULL) {
1325 PERROR("allocating context");
1326 goto error;
1327 }
1328
1329 ctx->consumer_error_socket = -1;
1330 ctx->consumer_metadata_socket = -1;
1331 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1332 /* assign the callbacks */
1333 ctx->on_buffer_ready = buffer_ready;
1334 ctx->on_recv_channel = recv_channel;
1335 ctx->on_recv_stream = recv_stream;
1336 ctx->on_update_stream = update_stream;
1337
1338 ctx->consumer_data_pipe = lttng_pipe_open(0);
1339 if (!ctx->consumer_data_pipe) {
1340 goto error_poll_pipe;
1341 }
1342
1343 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1344 if (!ctx->consumer_wakeup_pipe) {
1345 goto error_wakeup_pipe;
1346 }
1347
1348 ret = pipe(ctx->consumer_should_quit);
1349 if (ret < 0) {
1350 PERROR("Error creating recv pipe");
1351 goto error_quit_pipe;
1352 }
1353
1354 ret = pipe(ctx->consumer_channel_pipe);
1355 if (ret < 0) {
1356 PERROR("Error creating channel pipe");
1357 goto error_channel_pipe;
1358 }
1359
1360 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1361 if (!ctx->consumer_metadata_pipe) {
1362 goto error_metadata_pipe;
1363 }
1364
1365 ctx->channel_monitor_pipe = -1;
1366
1367 return ctx;
1368
1369 error_metadata_pipe:
1370 utils_close_pipe(ctx->consumer_channel_pipe);
1371 error_channel_pipe:
1372 utils_close_pipe(ctx->consumer_should_quit);
1373 error_quit_pipe:
1374 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1375 error_wakeup_pipe:
1376 lttng_pipe_destroy(ctx->consumer_data_pipe);
1377 error_poll_pipe:
1378 free(ctx);
1379 error:
1380 return NULL;
1381 }
1382
1383 /*
1384 * Iterate over all streams of the hashtable and free them properly.
1385 */
1386 static void destroy_data_stream_ht(struct lttng_ht *ht)
1387 {
1388 struct lttng_ht_iter iter;
1389 struct lttng_consumer_stream *stream;
1390
1391 if (ht == NULL) {
1392 return;
1393 }
1394
1395 rcu_read_lock();
1396 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1397 /*
1398 * Ignore return value since we are currently cleaning up so any error
1399 * can't be handled.
1400 */
1401 (void) consumer_del_stream(stream, ht);
1402 }
1403 rcu_read_unlock();
1404
1405 lttng_ht_destroy(ht);
1406 }
1407
1408 /*
1409 * Iterate over all streams of the metadata hashtable and free them
1410 * properly.
1411 */
1412 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1413 {
1414 struct lttng_ht_iter iter;
1415 struct lttng_consumer_stream *stream;
1416
1417 if (ht == NULL) {
1418 return;
1419 }
1420
1421 rcu_read_lock();
1422 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1423 /*
1424 * Ignore return value since we are currently cleaning up so any error
1425 * can't be handled.
1426 */
1427 (void) consumer_del_metadata_stream(stream, ht);
1428 }
1429 rcu_read_unlock();
1430
1431 lttng_ht_destroy(ht);
1432 }
1433
1434 /*
1435 * Close all fds associated with the instance and free the context.
1436 */
1437 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1438 {
1439 int ret;
1440
1441 DBG("Consumer destroying it. Closing everything.");
1442
1443 if (!ctx) {
1444 return;
1445 }
1446
1447 destroy_data_stream_ht(data_ht);
1448 destroy_metadata_stream_ht(metadata_ht);
1449
1450 ret = close(ctx->consumer_error_socket);
1451 if (ret) {
1452 PERROR("close");
1453 }
1454 ret = close(ctx->consumer_metadata_socket);
1455 if (ret) {
1456 PERROR("close");
1457 }
1458 utils_close_pipe(ctx->consumer_channel_pipe);
1459 lttng_pipe_destroy(ctx->consumer_data_pipe);
1460 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1461 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1462 utils_close_pipe(ctx->consumer_should_quit);
1463
1464 unlink(ctx->consumer_command_sock_path);
1465 free(ctx);
1466 }
1467
1468 /*
1469 * Write the metadata stream id on the specified file descriptor.
1470 */
1471 static int write_relayd_metadata_id(int fd,
1472 struct lttng_consumer_stream *stream,
1473 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1474 {
1475 ssize_t ret;
1476 struct lttcomm_relayd_metadata_payload hdr;
1477
1478 hdr.stream_id = htobe64(stream->relayd_stream_id);
1479 hdr.padding_size = htobe32(padding);
1480 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1481 if (ret < sizeof(hdr)) {
1482 /*
1483 * This error means that the fd's end is closed so ignore the PERROR
1484 * not to clubber the error output since this can happen in a normal
1485 * code path.
1486 */
1487 if (errno != EPIPE) {
1488 PERROR("write metadata stream id");
1489 }
1490 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1491 /*
1492 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1493 * handle writting the missing part so report that as an error and
1494 * don't lie to the caller.
1495 */
1496 ret = -1;
1497 goto end;
1498 }
1499 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1500 stream->relayd_stream_id, padding);
1501
1502 end:
1503 return (int) ret;
1504 }
1505
1506 /*
1507 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1508 * core function for writing trace buffers to either the local filesystem or
1509 * the network.
1510 *
1511 * It must be called with the stream lock held.
1512 *
1513 * Careful review MUST be put if any changes occur!
1514 *
1515 * Returns the number of bytes written
1516 */
1517 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1518 struct lttng_consumer_local_data *ctx,
1519 struct lttng_consumer_stream *stream, unsigned long len,
1520 unsigned long padding,
1521 struct ctf_packet_index *index)
1522 {
1523 unsigned long mmap_offset;
1524 void *mmap_base;
1525 ssize_t ret = 0;
1526 off_t orig_offset = stream->out_fd_offset;
1527 /* Default is on the disk */
1528 int outfd = stream->out_fd;
1529 struct consumer_relayd_sock_pair *relayd = NULL;
1530 unsigned int relayd_hang_up = 0;
1531
1532 /* RCU lock for the relayd pointer */
1533 rcu_read_lock();
1534
1535 /* Flag that the current stream if set for network streaming. */
1536 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1537 relayd = consumer_find_relayd(stream->net_seq_idx);
1538 if (relayd == NULL) {
1539 ret = -EPIPE;
1540 goto end;
1541 }
1542 }
1543
1544 /* get the offset inside the fd to mmap */
1545 switch (consumer_data.type) {
1546 case LTTNG_CONSUMER_KERNEL:
1547 mmap_base = stream->mmap_base;
1548 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1549 if (ret < 0) {
1550 PERROR("tracer ctl get_mmap_read_offset");
1551 goto end;
1552 }
1553 break;
1554 case LTTNG_CONSUMER32_UST:
1555 case LTTNG_CONSUMER64_UST:
1556 mmap_base = lttng_ustctl_get_mmap_base(stream);
1557 if (!mmap_base) {
1558 ERR("read mmap get mmap base for stream %s", stream->name);
1559 ret = -EPERM;
1560 goto end;
1561 }
1562 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1563 if (ret != 0) {
1564 PERROR("tracer ctl get_mmap_read_offset");
1565 ret = -EINVAL;
1566 goto end;
1567 }
1568 break;
1569 default:
1570 ERR("Unknown consumer_data type");
1571 assert(0);
1572 }
1573
1574 /* Handle stream on the relayd if the output is on the network */
1575 if (relayd) {
1576 unsigned long netlen = len;
1577
1578 /*
1579 * Lock the control socket for the complete duration of the function
1580 * since from this point on we will use the socket.
1581 */
1582 if (stream->metadata_flag) {
1583 /* Metadata requires the control socket. */
1584 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1585 if (stream->reset_metadata_flag) {
1586 ret = relayd_reset_metadata(&relayd->control_sock,
1587 stream->relayd_stream_id,
1588 stream->metadata_version);
1589 if (ret < 0) {
1590 relayd_hang_up = 1;
1591 goto write_error;
1592 }
1593 stream->reset_metadata_flag = 0;
1594 }
1595 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1596 }
1597
1598 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1599 if (ret < 0) {
1600 relayd_hang_up = 1;
1601 goto write_error;
1602 }
1603 /* Use the returned socket. */
1604 outfd = ret;
1605
1606 /* Write metadata stream id before payload */
1607 if (stream->metadata_flag) {
1608 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1609 if (ret < 0) {
1610 relayd_hang_up = 1;
1611 goto write_error;
1612 }
1613 }
1614 } else {
1615 /* No streaming, we have to set the len with the full padding */
1616 len += padding;
1617
1618 if (stream->metadata_flag && stream->reset_metadata_flag) {
1619 ret = utils_truncate_stream_file(stream->out_fd, 0);
1620 if (ret < 0) {
1621 ERR("Reset metadata file");
1622 goto end;
1623 }
1624 stream->reset_metadata_flag = 0;
1625 }
1626
1627 /*
1628 * Check if we need to change the tracefile before writing the packet.
1629 */
1630 if (stream->chan->tracefile_size > 0 &&
1631 (stream->tracefile_size_current + len) >
1632 stream->chan->tracefile_size) {
1633 ret = utils_rotate_stream_file(stream->chan->pathname,
1634 stream->name, stream->chan->tracefile_size,
1635 stream->chan->tracefile_count, stream->uid, stream->gid,
1636 stream->out_fd, &(stream->tracefile_count_current),
1637 &stream->out_fd);
1638 if (ret < 0) {
1639 ERR("Rotating output file");
1640 goto end;
1641 }
1642 outfd = stream->out_fd;
1643
1644 if (stream->index_file) {
1645 lttng_index_file_put(stream->index_file);
1646 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1647 stream->name, stream->uid, stream->gid,
1648 stream->chan->tracefile_size,
1649 stream->tracefile_count_current,
1650 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1651 if (!stream->index_file) {
1652 goto end;
1653 }
1654 }
1655
1656 /* Reset current size because we just perform a rotation. */
1657 stream->tracefile_size_current = 0;
1658 stream->out_fd_offset = 0;
1659 orig_offset = 0;
1660 }
1661 stream->tracefile_size_current += len;
1662 if (index) {
1663 index->offset = htobe64(stream->out_fd_offset);
1664 }
1665 }
1666
1667 /*
1668 * This call guarantee that len or less is returned. It's impossible to
1669 * receive a ret value that is bigger than len.
1670 */
1671 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1672 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1673 if (ret < 0 || ((size_t) ret != len)) {
1674 /*
1675 * Report error to caller if nothing was written else at least send the
1676 * amount written.
1677 */
1678 if (ret < 0) {
1679 ret = -errno;
1680 }
1681 relayd_hang_up = 1;
1682
1683 /* Socket operation failed. We consider the relayd dead */
1684 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1685 /*
1686 * This is possible if the fd is closed on the other side
1687 * (outfd) or any write problem. It can be verbose a bit for a
1688 * normal execution if for instance the relayd is stopped
1689 * abruptly. This can happen so set this to a DBG statement.
1690 */
1691 DBG("Consumer mmap write detected relayd hang up");
1692 } else {
1693 /* Unhandled error, print it and stop function right now. */
1694 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1695 }
1696 goto write_error;
1697 }
1698 stream->output_written += ret;
1699
1700 /* This call is useless on a socket so better save a syscall. */
1701 if (!relayd) {
1702 /* This won't block, but will start writeout asynchronously */
1703 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1704 SYNC_FILE_RANGE_WRITE);
1705 stream->out_fd_offset += len;
1706 lttng_consumer_sync_trace_file(stream, orig_offset);
1707 }
1708
1709 write_error:
1710 /*
1711 * This is a special case that the relayd has closed its socket. Let's
1712 * cleanup the relayd object and all associated streams.
1713 */
1714 if (relayd && relayd_hang_up) {
1715 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1716 lttng_consumer_cleanup_relayd(relayd);
1717 }
1718
1719 end:
1720 /* Unlock only if ctrl socket used */
1721 if (relayd && stream->metadata_flag) {
1722 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1723 }
1724
1725 rcu_read_unlock();
1726 return ret;
1727 }
1728
1729 /*
1730 * Splice the data from the ring buffer to the tracefile.
1731 *
1732 * It must be called with the stream lock held.
1733 *
1734 * Returns the number of bytes spliced.
1735 */
1736 ssize_t lttng_consumer_on_read_subbuffer_splice(
1737 struct lttng_consumer_local_data *ctx,
1738 struct lttng_consumer_stream *stream, unsigned long len,
1739 unsigned long padding,
1740 struct ctf_packet_index *index)
1741 {
1742 ssize_t ret = 0, written = 0, ret_splice = 0;
1743 loff_t offset = 0;
1744 off_t orig_offset = stream->out_fd_offset;
1745 int fd = stream->wait_fd;
1746 /* Default is on the disk */
1747 int outfd = stream->out_fd;
1748 struct consumer_relayd_sock_pair *relayd = NULL;
1749 int *splice_pipe;
1750 unsigned int relayd_hang_up = 0;
1751
1752 switch (consumer_data.type) {
1753 case LTTNG_CONSUMER_KERNEL:
1754 break;
1755 case LTTNG_CONSUMER32_UST:
1756 case LTTNG_CONSUMER64_UST:
1757 /* Not supported for user space tracing */
1758 return -ENOSYS;
1759 default:
1760 ERR("Unknown consumer_data type");
1761 assert(0);
1762 }
1763
1764 /* RCU lock for the relayd pointer */
1765 rcu_read_lock();
1766
1767 /* Flag that the current stream if set for network streaming. */
1768 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1769 relayd = consumer_find_relayd(stream->net_seq_idx);
1770 if (relayd == NULL) {
1771 written = -ret;
1772 goto end;
1773 }
1774 }
1775 splice_pipe = stream->splice_pipe;
1776
1777 /* Write metadata stream id before payload */
1778 if (relayd) {
1779 unsigned long total_len = len;
1780
1781 if (stream->metadata_flag) {
1782 /*
1783 * Lock the control socket for the complete duration of the function
1784 * since from this point on we will use the socket.
1785 */
1786 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1787
1788 if (stream->reset_metadata_flag) {
1789 ret = relayd_reset_metadata(&relayd->control_sock,
1790 stream->relayd_stream_id,
1791 stream->metadata_version);
1792 if (ret < 0) {
1793 relayd_hang_up = 1;
1794 goto write_error;
1795 }
1796 stream->reset_metadata_flag = 0;
1797 }
1798 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1799 padding);
1800 if (ret < 0) {
1801 written = ret;
1802 relayd_hang_up = 1;
1803 goto write_error;
1804 }
1805
1806 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1807 }
1808
1809 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1810 if (ret < 0) {
1811 written = ret;
1812 relayd_hang_up = 1;
1813 goto write_error;
1814 }
1815 /* Use the returned socket. */
1816 outfd = ret;
1817 } else {
1818 /* No streaming, we have to set the len with the full padding */
1819 len += padding;
1820
1821 if (stream->metadata_flag && stream->reset_metadata_flag) {
1822 ret = utils_truncate_stream_file(stream->out_fd, 0);
1823 if (ret < 0) {
1824 ERR("Reset metadata file");
1825 goto end;
1826 }
1827 stream->reset_metadata_flag = 0;
1828 }
1829 /*
1830 * Check if we need to change the tracefile before writing the packet.
1831 */
1832 if (stream->chan->tracefile_size > 0 &&
1833 (stream->tracefile_size_current + len) >
1834 stream->chan->tracefile_size) {
1835 ret = utils_rotate_stream_file(stream->chan->pathname,
1836 stream->name, stream->chan->tracefile_size,
1837 stream->chan->tracefile_count, stream->uid, stream->gid,
1838 stream->out_fd, &(stream->tracefile_count_current),
1839 &stream->out_fd);
1840 if (ret < 0) {
1841 written = ret;
1842 ERR("Rotating output file");
1843 goto end;
1844 }
1845 outfd = stream->out_fd;
1846
1847 if (stream->index_file) {
1848 lttng_index_file_put(stream->index_file);
1849 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1850 stream->name, stream->uid, stream->gid,
1851 stream->chan->tracefile_size,
1852 stream->tracefile_count_current,
1853 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1854 if (!stream->index_file) {
1855 goto end;
1856 }
1857 }
1858
1859 /* Reset current size because we just perform a rotation. */
1860 stream->tracefile_size_current = 0;
1861 stream->out_fd_offset = 0;
1862 orig_offset = 0;
1863 }
1864 stream->tracefile_size_current += len;
1865 index->offset = htobe64(stream->out_fd_offset);
1866 }
1867
1868 while (len > 0) {
1869 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1870 (unsigned long)offset, len, fd, splice_pipe[1]);
1871 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1872 SPLICE_F_MOVE | SPLICE_F_MORE);
1873 DBG("splice chan to pipe, ret %zd", ret_splice);
1874 if (ret_splice < 0) {
1875 ret = errno;
1876 written = -ret;
1877 PERROR("Error in relay splice");
1878 goto splice_error;
1879 }
1880
1881 /* Handle stream on the relayd if the output is on the network */
1882 if (relayd && stream->metadata_flag) {
1883 size_t metadata_payload_size =
1884 sizeof(struct lttcomm_relayd_metadata_payload);
1885
1886 /* Update counter to fit the spliced data */
1887 ret_splice += metadata_payload_size;
1888 len += metadata_payload_size;
1889 /*
1890 * We do this so the return value can match the len passed as
1891 * argument to this function.
1892 */
1893 written -= metadata_payload_size;
1894 }
1895
1896 /* Splice data out */
1897 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1898 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1899 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1900 outfd, ret_splice);
1901 if (ret_splice < 0) {
1902 ret = errno;
1903 written = -ret;
1904 relayd_hang_up = 1;
1905 goto write_error;
1906 } else if (ret_splice > len) {
1907 /*
1908 * We don't expect this code path to be executed but you never know
1909 * so this is an extra protection agains a buggy splice().
1910 */
1911 ret = errno;
1912 written += ret_splice;
1913 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1914 len);
1915 goto splice_error;
1916 } else {
1917 /* All good, update current len and continue. */
1918 len -= ret_splice;
1919 }
1920
1921 /* This call is useless on a socket so better save a syscall. */
1922 if (!relayd) {
1923 /* This won't block, but will start writeout asynchronously */
1924 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1925 SYNC_FILE_RANGE_WRITE);
1926 stream->out_fd_offset += ret_splice;
1927 }
1928 stream->output_written += ret_splice;
1929 written += ret_splice;
1930 }
1931 if (!relayd) {
1932 lttng_consumer_sync_trace_file(stream, orig_offset);
1933 }
1934 goto end;
1935
1936 write_error:
1937 /*
1938 * This is a special case that the relayd has closed its socket. Let's
1939 * cleanup the relayd object and all associated streams.
1940 */
1941 if (relayd && relayd_hang_up) {
1942 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1943 lttng_consumer_cleanup_relayd(relayd);
1944 /* Skip splice error so the consumer does not fail */
1945 goto end;
1946 }
1947
1948 splice_error:
1949 /* send the appropriate error description to sessiond */
1950 switch (ret) {
1951 case EINVAL:
1952 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1953 break;
1954 case ENOMEM:
1955 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1956 break;
1957 case ESPIPE:
1958 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1959 break;
1960 }
1961
1962 end:
1963 if (relayd && stream->metadata_flag) {
1964 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1965 }
1966
1967 rcu_read_unlock();
1968 return written;
1969 }
1970
1971 /*
1972 * Take a snapshot for a specific fd
1973 *
1974 * Returns 0 on success, < 0 on error
1975 */
1976 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1977 {
1978 switch (consumer_data.type) {
1979 case LTTNG_CONSUMER_KERNEL:
1980 return lttng_kconsumer_take_snapshot(stream);
1981 case LTTNG_CONSUMER32_UST:
1982 case LTTNG_CONSUMER64_UST:
1983 return lttng_ustconsumer_take_snapshot(stream);
1984 default:
1985 ERR("Unknown consumer_data type");
1986 assert(0);
1987 return -ENOSYS;
1988 }
1989 }
1990
1991 /*
1992 * Get the produced position
1993 *
1994 * Returns 0 on success, < 0 on error
1995 */
1996 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1997 unsigned long *pos)
1998 {
1999 switch (consumer_data.type) {
2000 case LTTNG_CONSUMER_KERNEL:
2001 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2002 case LTTNG_CONSUMER32_UST:
2003 case LTTNG_CONSUMER64_UST:
2004 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2005 default:
2006 ERR("Unknown consumer_data type");
2007 assert(0);
2008 return -ENOSYS;
2009 }
2010 }
2011
2012 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2013 int sock, struct pollfd *consumer_sockpoll)
2014 {
2015 switch (consumer_data.type) {
2016 case LTTNG_CONSUMER_KERNEL:
2017 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2018 case LTTNG_CONSUMER32_UST:
2019 case LTTNG_CONSUMER64_UST:
2020 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2021 default:
2022 ERR("Unknown consumer_data type");
2023 assert(0);
2024 return -ENOSYS;
2025 }
2026 }
2027
2028 void lttng_consumer_close_all_metadata(void)
2029 {
2030 switch (consumer_data.type) {
2031 case LTTNG_CONSUMER_KERNEL:
2032 /*
2033 * The Kernel consumer has a different metadata scheme so we don't
2034 * close anything because the stream will be closed by the session
2035 * daemon.
2036 */
2037 break;
2038 case LTTNG_CONSUMER32_UST:
2039 case LTTNG_CONSUMER64_UST:
2040 /*
2041 * Close all metadata streams. The metadata hash table is passed and
2042 * this call iterates over it by closing all wakeup fd. This is safe
2043 * because at this point we are sure that the metadata producer is
2044 * either dead or blocked.
2045 */
2046 lttng_ustconsumer_close_all_metadata(metadata_ht);
2047 break;
2048 default:
2049 ERR("Unknown consumer_data type");
2050 assert(0);
2051 }
2052 }
2053
2054 /*
2055 * Clean up a metadata stream and free its memory.
2056 */
2057 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2058 struct lttng_ht *ht)
2059 {
2060 struct lttng_consumer_channel *free_chan = NULL;
2061
2062 assert(stream);
2063 /*
2064 * This call should NEVER receive regular stream. It must always be
2065 * metadata stream and this is crucial for data structure synchronization.
2066 */
2067 assert(stream->metadata_flag);
2068
2069 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2070
2071 pthread_mutex_lock(&consumer_data.lock);
2072 pthread_mutex_lock(&stream->chan->lock);
2073 pthread_mutex_lock(&stream->lock);
2074 if (stream->chan->metadata_cache) {
2075 /* Only applicable to userspace consumers. */
2076 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2077 }
2078
2079 /* Remove any reference to that stream. */
2080 consumer_stream_delete(stream, ht);
2081
2082 /* Close down everything including the relayd if one. */
2083 consumer_stream_close(stream);
2084 /* Destroy tracer buffers of the stream. */
2085 consumer_stream_destroy_buffers(stream);
2086
2087 /* Atomically decrement channel refcount since other threads can use it. */
2088 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2089 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2090 /* Go for channel deletion! */
2091 free_chan = stream->chan;
2092 }
2093
2094 /*
2095 * Nullify the stream reference so it is not used after deletion. The
2096 * channel lock MUST be acquired before being able to check for a NULL
2097 * pointer value.
2098 */
2099 stream->chan->metadata_stream = NULL;
2100
2101 if (stream->chan->metadata_cache) {
2102 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2103 }
2104 pthread_mutex_unlock(&stream->lock);
2105 pthread_mutex_unlock(&stream->chan->lock);
2106 pthread_mutex_unlock(&consumer_data.lock);
2107
2108 if (free_chan) {
2109 consumer_del_channel(free_chan);
2110 }
2111
2112 consumer_stream_free(stream);
2113 }
2114
2115 /*
2116 * Action done with the metadata stream when adding it to the consumer internal
2117 * data structures to handle it.
2118 */
2119 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2120 {
2121 struct lttng_ht *ht = metadata_ht;
2122 int ret = 0;
2123 struct lttng_ht_iter iter;
2124 struct lttng_ht_node_u64 *node;
2125
2126 assert(stream);
2127 assert(ht);
2128
2129 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2130
2131 pthread_mutex_lock(&consumer_data.lock);
2132 pthread_mutex_lock(&stream->chan->lock);
2133 pthread_mutex_lock(&stream->chan->timer_lock);
2134 pthread_mutex_lock(&stream->lock);
2135
2136 /*
2137 * From here, refcounts are updated so be _careful_ when returning an error
2138 * after this point.
2139 */
2140
2141 rcu_read_lock();
2142
2143 /*
2144 * Lookup the stream just to make sure it does not exist in our internal
2145 * state. This should NEVER happen.
2146 */
2147 lttng_ht_lookup(ht, &stream->key, &iter);
2148 node = lttng_ht_iter_get_node_u64(&iter);
2149 assert(!node);
2150
2151 /*
2152 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2153 * in terms of destroying the associated channel, because the action that
2154 * causes the count to become 0 also causes a stream to be added. The
2155 * channel deletion will thus be triggered by the following removal of this
2156 * stream.
2157 */
2158 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2159 /* Increment refcount before decrementing nb_init_stream_left */
2160 cmm_smp_wmb();
2161 uatomic_dec(&stream->chan->nb_init_stream_left);
2162 }
2163
2164 lttng_ht_add_unique_u64(ht, &stream->node);
2165
2166 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2167 &stream->node_channel_id);
2168
2169 /*
2170 * Add stream to the stream_list_ht of the consumer data. No need to steal
2171 * the key since the HT does not use it and we allow to add redundant keys
2172 * into this table.
2173 */
2174 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2175
2176 rcu_read_unlock();
2177
2178 pthread_mutex_unlock(&stream->lock);
2179 pthread_mutex_unlock(&stream->chan->lock);
2180 pthread_mutex_unlock(&stream->chan->timer_lock);
2181 pthread_mutex_unlock(&consumer_data.lock);
2182 return ret;
2183 }
2184
2185 /*
2186 * Delete data stream that are flagged for deletion (endpoint_status).
2187 */
2188 static void validate_endpoint_status_data_stream(void)
2189 {
2190 struct lttng_ht_iter iter;
2191 struct lttng_consumer_stream *stream;
2192
2193 DBG("Consumer delete flagged data stream");
2194
2195 rcu_read_lock();
2196 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2197 /* Validate delete flag of the stream */
2198 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2199 continue;
2200 }
2201 /* Delete it right now */
2202 consumer_del_stream(stream, data_ht);
2203 }
2204 rcu_read_unlock();
2205 }
2206
2207 /*
2208 * Delete metadata stream that are flagged for deletion (endpoint_status).
2209 */
2210 static void validate_endpoint_status_metadata_stream(
2211 struct lttng_poll_event *pollset)
2212 {
2213 struct lttng_ht_iter iter;
2214 struct lttng_consumer_stream *stream;
2215
2216 DBG("Consumer delete flagged metadata stream");
2217
2218 assert(pollset);
2219
2220 rcu_read_lock();
2221 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2222 /* Validate delete flag of the stream */
2223 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2224 continue;
2225 }
2226 /*
2227 * Remove from pollset so the metadata thread can continue without
2228 * blocking on a deleted stream.
2229 */
2230 lttng_poll_del(pollset, stream->wait_fd);
2231
2232 /* Delete it right now */
2233 consumer_del_metadata_stream(stream, metadata_ht);
2234 }
2235 rcu_read_unlock();
2236 }
2237
2238 /*
2239 * Thread polls on metadata file descriptor and write them on disk or on the
2240 * network.
2241 */
2242 void *consumer_thread_metadata_poll(void *data)
2243 {
2244 int ret, i, pollfd, err = -1;
2245 uint32_t revents, nb_fd;
2246 struct lttng_consumer_stream *stream = NULL;
2247 struct lttng_ht_iter iter;
2248 struct lttng_ht_node_u64 *node;
2249 struct lttng_poll_event events;
2250 struct lttng_consumer_local_data *ctx = data;
2251 ssize_t len;
2252
2253 rcu_register_thread();
2254
2255 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2256
2257 if (testpoint(consumerd_thread_metadata)) {
2258 goto error_testpoint;
2259 }
2260
2261 health_code_update();
2262
2263 DBG("Thread metadata poll started");
2264
2265 /* Size is set to 1 for the consumer_metadata pipe */
2266 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2267 if (ret < 0) {
2268 ERR("Poll set creation failed");
2269 goto end_poll;
2270 }
2271
2272 ret = lttng_poll_add(&events,
2273 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2274 if (ret < 0) {
2275 goto end;
2276 }
2277
2278 /* Main loop */
2279 DBG("Metadata main loop started");
2280
2281 while (1) {
2282 restart:
2283 health_code_update();
2284 health_poll_entry();
2285 DBG("Metadata poll wait");
2286 ret = lttng_poll_wait(&events, -1);
2287 DBG("Metadata poll return from wait with %d fd(s)",
2288 LTTNG_POLL_GETNB(&events));
2289 health_poll_exit();
2290 DBG("Metadata event caught in thread");
2291 if (ret < 0) {
2292 if (errno == EINTR) {
2293 ERR("Poll EINTR caught");
2294 goto restart;
2295 }
2296 if (LTTNG_POLL_GETNB(&events) == 0) {
2297 err = 0; /* All is OK */
2298 }
2299 goto end;
2300 }
2301
2302 nb_fd = ret;
2303
2304 /* From here, the event is a metadata wait fd */
2305 for (i = 0; i < nb_fd; i++) {
2306 health_code_update();
2307
2308 revents = LTTNG_POLL_GETEV(&events, i);
2309 pollfd = LTTNG_POLL_GETFD(&events, i);
2310
2311 if (!revents) {
2312 /* No activity for this FD (poll implementation). */
2313 continue;
2314 }
2315
2316 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2317 if (revents & LPOLLIN) {
2318 ssize_t pipe_len;
2319
2320 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2321 &stream, sizeof(stream));
2322 if (pipe_len < sizeof(stream)) {
2323 if (pipe_len < 0) {
2324 PERROR("read metadata stream");
2325 }
2326 /*
2327 * Remove the pipe from the poll set and continue the loop
2328 * since their might be data to consume.
2329 */
2330 lttng_poll_del(&events,
2331 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2332 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2333 continue;
2334 }
2335
2336 /* A NULL stream means that the state has changed. */
2337 if (stream == NULL) {
2338 /* Check for deleted streams. */
2339 validate_endpoint_status_metadata_stream(&events);
2340 goto restart;
2341 }
2342
2343 DBG("Adding metadata stream %d to poll set",
2344 stream->wait_fd);
2345
2346 /* Add metadata stream to the global poll events list */
2347 lttng_poll_add(&events, stream->wait_fd,
2348 LPOLLIN | LPOLLPRI | LPOLLHUP);
2349 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2350 DBG("Metadata thread pipe hung up");
2351 /*
2352 * Remove the pipe from the poll set and continue the loop
2353 * since their might be data to consume.
2354 */
2355 lttng_poll_del(&events,
2356 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2357 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2358 continue;
2359 } else {
2360 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2361 goto end;
2362 }
2363
2364 /* Handle other stream */
2365 continue;
2366 }
2367
2368 rcu_read_lock();
2369 {
2370 uint64_t tmp_id = (uint64_t) pollfd;
2371
2372 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2373 }
2374 node = lttng_ht_iter_get_node_u64(&iter);
2375 assert(node);
2376
2377 stream = caa_container_of(node, struct lttng_consumer_stream,
2378 node);
2379
2380 if (revents & (LPOLLIN | LPOLLPRI)) {
2381 /* Get the data out of the metadata file descriptor */
2382 DBG("Metadata available on fd %d", pollfd);
2383 assert(stream->wait_fd == pollfd);
2384
2385 do {
2386 health_code_update();
2387
2388 len = ctx->on_buffer_ready(stream, ctx);
2389 /*
2390 * We don't check the return value here since if we get
2391 * a negative len, it means an error occurred thus we
2392 * simply remove it from the poll set and free the
2393 * stream.
2394 */
2395 } while (len > 0);
2396
2397 /* It's ok to have an unavailable sub-buffer */
2398 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2399 /* Clean up stream from consumer and free it. */
2400 lttng_poll_del(&events, stream->wait_fd);
2401 consumer_del_metadata_stream(stream, metadata_ht);
2402 }
2403 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2404 DBG("Metadata fd %d is hup|err.", pollfd);
2405 if (!stream->hangup_flush_done
2406 && (consumer_data.type == LTTNG_CONSUMER32_UST
2407 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2408 DBG("Attempting to flush and consume the UST buffers");
2409 lttng_ustconsumer_on_stream_hangup(stream);
2410
2411 /* We just flushed the stream now read it. */
2412 do {
2413 health_code_update();
2414
2415 len = ctx->on_buffer_ready(stream, ctx);
2416 /*
2417 * We don't check the return value here since if we get
2418 * a negative len, it means an error occurred thus we
2419 * simply remove it from the poll set and free the
2420 * stream.
2421 */
2422 } while (len > 0);
2423 }
2424
2425 lttng_poll_del(&events, stream->wait_fd);
2426 /*
2427 * This call update the channel states, closes file descriptors
2428 * and securely free the stream.
2429 */
2430 consumer_del_metadata_stream(stream, metadata_ht);
2431 } else {
2432 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2433 rcu_read_unlock();
2434 goto end;
2435 }
2436 /* Release RCU lock for the stream looked up */
2437 rcu_read_unlock();
2438 }
2439 }
2440
2441 /* All is OK */
2442 err = 0;
2443 end:
2444 DBG("Metadata poll thread exiting");
2445
2446 lttng_poll_clean(&events);
2447 end_poll:
2448 error_testpoint:
2449 if (err) {
2450 health_error();
2451 ERR("Health error occurred in %s", __func__);
2452 }
2453 health_unregister(health_consumerd);
2454 rcu_unregister_thread();
2455 return NULL;
2456 }
2457
2458 /*
2459 * This thread polls the fds in the set to consume the data and write
2460 * it to tracefile if necessary.
2461 */
2462 void *consumer_thread_data_poll(void *data)
2463 {
2464 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2465 struct pollfd *pollfd = NULL;
2466 /* local view of the streams */
2467 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2468 /* local view of consumer_data.fds_count */
2469 int nb_fd = 0;
2470 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2471 int nb_inactive_fd = 0;
2472 struct lttng_consumer_local_data *ctx = data;
2473 ssize_t len;
2474
2475 rcu_register_thread();
2476
2477 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2478
2479 if (testpoint(consumerd_thread_data)) {
2480 goto error_testpoint;
2481 }
2482
2483 health_code_update();
2484
2485 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2486 if (local_stream == NULL) {
2487 PERROR("local_stream malloc");
2488 goto end;
2489 }
2490
2491 while (1) {
2492 health_code_update();
2493
2494 high_prio = 0;
2495 num_hup = 0;
2496
2497 /*
2498 * the fds set has been updated, we need to update our
2499 * local array as well
2500 */
2501 pthread_mutex_lock(&consumer_data.lock);
2502 if (consumer_data.need_update) {
2503 free(pollfd);
2504 pollfd = NULL;
2505
2506 free(local_stream);
2507 local_stream = NULL;
2508
2509 /*
2510 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2511 * wake up pipe.
2512 */
2513 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2514 if (pollfd == NULL) {
2515 PERROR("pollfd malloc");
2516 pthread_mutex_unlock(&consumer_data.lock);
2517 goto end;
2518 }
2519
2520 local_stream = zmalloc((consumer_data.stream_count + 2) *
2521 sizeof(struct lttng_consumer_stream *));
2522 if (local_stream == NULL) {
2523 PERROR("local_stream malloc");
2524 pthread_mutex_unlock(&consumer_data.lock);
2525 goto end;
2526 }
2527 ret = update_poll_array(ctx, &pollfd, local_stream,
2528 data_ht, &nb_inactive_fd);
2529 if (ret < 0) {
2530 ERR("Error in allocating pollfd or local_outfds");
2531 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2532 pthread_mutex_unlock(&consumer_data.lock);
2533 goto end;
2534 }
2535 nb_fd = ret;
2536 consumer_data.need_update = 0;
2537 }
2538 pthread_mutex_unlock(&consumer_data.lock);
2539
2540 /* No FDs and consumer_quit, consumer_cleanup the thread */
2541 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2542 CMM_LOAD_SHARED(consumer_quit) == 1) {
2543 err = 0; /* All is OK */
2544 goto end;
2545 }
2546 /* poll on the array of fds */
2547 restart:
2548 DBG("polling on %d fd", nb_fd + 2);
2549 if (testpoint(consumerd_thread_data_poll)) {
2550 goto end;
2551 }
2552 health_poll_entry();
2553 num_rdy = poll(pollfd, nb_fd + 2, -1);
2554 health_poll_exit();
2555 DBG("poll num_rdy : %d", num_rdy);
2556 if (num_rdy == -1) {
2557 /*
2558 * Restart interrupted system call.
2559 */
2560 if (errno == EINTR) {
2561 goto restart;
2562 }
2563 PERROR("Poll error");
2564 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2565 goto end;
2566 } else if (num_rdy == 0) {
2567 DBG("Polling thread timed out");
2568 goto end;
2569 }
2570
2571 if (caa_unlikely(data_consumption_paused)) {
2572 DBG("Data consumption paused, sleeping...");
2573 sleep(1);
2574 goto restart;
2575 }
2576
2577 /*
2578 * If the consumer_data_pipe triggered poll go directly to the
2579 * beginning of the loop to update the array. We want to prioritize
2580 * array update over low-priority reads.
2581 */
2582 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2583 ssize_t pipe_readlen;
2584
2585 DBG("consumer_data_pipe wake up");
2586 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2587 &new_stream, sizeof(new_stream));
2588 if (pipe_readlen < sizeof(new_stream)) {
2589 PERROR("Consumer data pipe");
2590 /* Continue so we can at least handle the current stream(s). */
2591 continue;
2592 }
2593
2594 /*
2595 * If the stream is NULL, just ignore it. It's also possible that
2596 * the sessiond poll thread changed the consumer_quit state and is
2597 * waking us up to test it.
2598 */
2599 if (new_stream == NULL) {
2600 validate_endpoint_status_data_stream();
2601 continue;
2602 }
2603
2604 /* Continue to update the local streams and handle prio ones */
2605 continue;
2606 }
2607
2608 /* Handle wakeup pipe. */
2609 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2610 char dummy;
2611 ssize_t pipe_readlen;
2612
2613 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2614 sizeof(dummy));
2615 if (pipe_readlen < 0) {
2616 PERROR("Consumer data wakeup pipe");
2617 }
2618 /* We've been awakened to handle stream(s). */
2619 ctx->has_wakeup = 0;
2620 }
2621
2622 /* Take care of high priority channels first. */
2623 for (i = 0; i < nb_fd; i++) {
2624 health_code_update();
2625
2626 if (local_stream[i] == NULL) {
2627 continue;
2628 }
2629 if (pollfd[i].revents & POLLPRI) {
2630 DBG("Urgent read on fd %d", pollfd[i].fd);
2631 high_prio = 1;
2632 len = ctx->on_buffer_ready(local_stream[i], ctx);
2633 /* it's ok to have an unavailable sub-buffer */
2634 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2635 /* Clean the stream and free it. */
2636 consumer_del_stream(local_stream[i], data_ht);
2637 local_stream[i] = NULL;
2638 } else if (len > 0) {
2639 local_stream[i]->data_read = 1;
2640 }
2641 }
2642 }
2643
2644 /*
2645 * If we read high prio channel in this loop, try again
2646 * for more high prio data.
2647 */
2648 if (high_prio) {
2649 continue;
2650 }
2651
2652 /* Take care of low priority channels. */
2653 for (i = 0; i < nb_fd; i++) {
2654 health_code_update();
2655
2656 if (local_stream[i] == NULL) {
2657 continue;
2658 }
2659 if ((pollfd[i].revents & POLLIN) ||
2660 local_stream[i]->hangup_flush_done ||
2661 local_stream[i]->has_data) {
2662 DBG("Normal read on fd %d", pollfd[i].fd);
2663 len = ctx->on_buffer_ready(local_stream[i], ctx);
2664 /* it's ok to have an unavailable sub-buffer */
2665 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2666 /* Clean the stream and free it. */
2667 consumer_del_stream(local_stream[i], data_ht);
2668 local_stream[i] = NULL;
2669 } else if (len > 0) {
2670 local_stream[i]->data_read = 1;
2671 }
2672 }
2673 }
2674
2675 /* Handle hangup and errors */
2676 for (i = 0; i < nb_fd; i++) {
2677 health_code_update();
2678
2679 if (local_stream[i] == NULL) {
2680 continue;
2681 }
2682 if (!local_stream[i]->hangup_flush_done
2683 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2684 && (consumer_data.type == LTTNG_CONSUMER32_UST
2685 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2686 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2687 pollfd[i].fd);
2688 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2689 /* Attempt read again, for the data we just flushed. */
2690 local_stream[i]->data_read = 1;
2691 }
2692 /*
2693 * If the poll flag is HUP/ERR/NVAL and we have
2694 * read no data in this pass, we can remove the
2695 * stream from its hash table.
2696 */
2697 if ((pollfd[i].revents & POLLHUP)) {
2698 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2699 if (!local_stream[i]->data_read) {
2700 consumer_del_stream(local_stream[i], data_ht);
2701 local_stream[i] = NULL;
2702 num_hup++;
2703 }
2704 } else if (pollfd[i].revents & POLLERR) {
2705 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2706 if (!local_stream[i]->data_read) {
2707 consumer_del_stream(local_stream[i], data_ht);
2708 local_stream[i] = NULL;
2709 num_hup++;
2710 }
2711 } else if (pollfd[i].revents & POLLNVAL) {
2712 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2713 if (!local_stream[i]->data_read) {
2714 consumer_del_stream(local_stream[i], data_ht);
2715 local_stream[i] = NULL;
2716 num_hup++;
2717 }
2718 }
2719 if (local_stream[i] != NULL) {
2720 local_stream[i]->data_read = 0;
2721 }
2722 }
2723 }
2724 /* All is OK */
2725 err = 0;
2726 end:
2727 DBG("polling thread exiting");
2728 free(pollfd);
2729 free(local_stream);
2730
2731 /*
2732 * Close the write side of the pipe so epoll_wait() in
2733 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2734 * read side of the pipe. If we close them both, epoll_wait strangely does
2735 * not return and could create a endless wait period if the pipe is the
2736 * only tracked fd in the poll set. The thread will take care of closing
2737 * the read side.
2738 */
2739 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2740
2741 error_testpoint:
2742 if (err) {
2743 health_error();
2744 ERR("Health error occurred in %s", __func__);
2745 }
2746 health_unregister(health_consumerd);
2747
2748 rcu_unregister_thread();
2749 return NULL;
2750 }
2751
2752 /*
2753 * Close wake-up end of each stream belonging to the channel. This will
2754 * allow the poll() on the stream read-side to detect when the
2755 * write-side (application) finally closes them.
2756 */
2757 static
2758 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2759 {
2760 struct lttng_ht *ht;
2761 struct lttng_consumer_stream *stream;
2762 struct lttng_ht_iter iter;
2763
2764 ht = consumer_data.stream_per_chan_id_ht;
2765
2766 rcu_read_lock();
2767 cds_lfht_for_each_entry_duplicate(ht->ht,
2768 ht->hash_fct(&channel->key, lttng_ht_seed),
2769 ht->match_fct, &channel->key,
2770 &iter.iter, stream, node_channel_id.node) {
2771 /*
2772 * Protect against teardown with mutex.
2773 */
2774 pthread_mutex_lock(&stream->lock);
2775 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2776 goto next;
2777 }
2778 switch (consumer_data.type) {
2779 case LTTNG_CONSUMER_KERNEL:
2780 break;
2781 case LTTNG_CONSUMER32_UST:
2782 case LTTNG_CONSUMER64_UST:
2783 if (stream->metadata_flag) {
2784 /* Safe and protected by the stream lock. */
2785 lttng_ustconsumer_close_metadata(stream->chan);
2786 } else {
2787 /*
2788 * Note: a mutex is taken internally within
2789 * liblttng-ust-ctl to protect timer wakeup_fd
2790 * use from concurrent close.
2791 */
2792 lttng_ustconsumer_close_stream_wakeup(stream);
2793 }
2794 break;
2795 default:
2796 ERR("Unknown consumer_data type");
2797 assert(0);
2798 }
2799 next:
2800 pthread_mutex_unlock(&stream->lock);
2801 }
2802 rcu_read_unlock();
2803 }
2804
2805 static void destroy_channel_ht(struct lttng_ht *ht)
2806 {
2807 struct lttng_ht_iter iter;
2808 struct lttng_consumer_channel *channel;
2809 int ret;
2810
2811 if (ht == NULL) {
2812 return;
2813 }
2814
2815 rcu_read_lock();
2816 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2817 ret = lttng_ht_del(ht, &iter);
2818 assert(ret != 0);
2819 }
2820 rcu_read_unlock();
2821
2822 lttng_ht_destroy(ht);
2823 }
2824
2825 /*
2826 * This thread polls the channel fds to detect when they are being
2827 * closed. It closes all related streams if the channel is detected as
2828 * closed. It is currently only used as a shim layer for UST because the
2829 * consumerd needs to keep the per-stream wakeup end of pipes open for
2830 * periodical flush.
2831 */
2832 void *consumer_thread_channel_poll(void *data)
2833 {
2834 int ret, i, pollfd, err = -1;
2835 uint32_t revents, nb_fd;
2836 struct lttng_consumer_channel *chan = NULL;
2837 struct lttng_ht_iter iter;
2838 struct lttng_ht_node_u64 *node;
2839 struct lttng_poll_event events;
2840 struct lttng_consumer_local_data *ctx = data;
2841 struct lttng_ht *channel_ht;
2842
2843 rcu_register_thread();
2844
2845 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2846
2847 if (testpoint(consumerd_thread_channel)) {
2848 goto error_testpoint;
2849 }
2850
2851 health_code_update();
2852
2853 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2854 if (!channel_ht) {
2855 /* ENOMEM at this point. Better to bail out. */
2856 goto end_ht;
2857 }
2858
2859 DBG("Thread channel poll started");
2860
2861 /* Size is set to 1 for the consumer_channel pipe */
2862 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2863 if (ret < 0) {
2864 ERR("Poll set creation failed");
2865 goto end_poll;
2866 }
2867
2868 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2869 if (ret < 0) {
2870 goto end;
2871 }
2872
2873 /* Main loop */
2874 DBG("Channel main loop started");
2875
2876 while (1) {
2877 restart:
2878 health_code_update();
2879 DBG("Channel poll wait");
2880 health_poll_entry();
2881 ret = lttng_poll_wait(&events, -1);
2882 DBG("Channel poll return from wait with %d fd(s)",
2883 LTTNG_POLL_GETNB(&events));
2884 health_poll_exit();
2885 DBG("Channel event caught in thread");
2886 if (ret < 0) {
2887 if (errno == EINTR) {
2888 ERR("Poll EINTR caught");
2889 goto restart;
2890 }
2891 if (LTTNG_POLL_GETNB(&events) == 0) {
2892 err = 0; /* All is OK */
2893 }
2894 goto end;
2895 }
2896
2897 nb_fd = ret;
2898
2899 /* From here, the event is a channel wait fd */
2900 for (i = 0; i < nb_fd; i++) {
2901 health_code_update();
2902
2903 revents = LTTNG_POLL_GETEV(&events, i);
2904 pollfd = LTTNG_POLL_GETFD(&events, i);
2905
2906 if (!revents) {
2907 /* No activity for this FD (poll implementation). */
2908 continue;
2909 }
2910
2911 if (pollfd == ctx->consumer_channel_pipe[0]) {
2912 if (revents & LPOLLIN) {
2913 enum consumer_channel_action action;
2914 uint64_t key;
2915
2916 ret = read_channel_pipe(ctx, &chan, &key, &action);
2917 if (ret <= 0) {
2918 if (ret < 0) {
2919 ERR("Error reading channel pipe");
2920 }
2921 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2922 continue;
2923 }
2924
2925 switch (action) {
2926 case CONSUMER_CHANNEL_ADD:
2927 DBG("Adding channel %d to poll set",
2928 chan->wait_fd);
2929
2930 lttng_ht_node_init_u64(&chan->wait_fd_node,
2931 chan->wait_fd);
2932 rcu_read_lock();
2933 lttng_ht_add_unique_u64(channel_ht,
2934 &chan->wait_fd_node);
2935 rcu_read_unlock();
2936 /* Add channel to the global poll events list */
2937 lttng_poll_add(&events, chan->wait_fd,
2938 LPOLLERR | LPOLLHUP);
2939 break;
2940 case CONSUMER_CHANNEL_DEL:
2941 {
2942 /*
2943 * This command should never be called if the channel
2944 * has streams monitored by either the data or metadata
2945 * thread. The consumer only notify this thread with a
2946 * channel del. command if it receives a destroy
2947 * channel command from the session daemon that send it
2948 * if a command prior to the GET_CHANNEL failed.
2949 */
2950
2951 rcu_read_lock();
2952 chan = consumer_find_channel(key);
2953 if (!chan) {
2954 rcu_read_unlock();
2955 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2956 break;
2957 }
2958 lttng_poll_del(&events, chan->wait_fd);
2959 iter.iter.node = &chan->wait_fd_node.node;
2960 ret = lttng_ht_del(channel_ht, &iter);
2961 assert(ret == 0);
2962
2963 switch (consumer_data.type) {
2964 case LTTNG_CONSUMER_KERNEL:
2965 break;
2966 case LTTNG_CONSUMER32_UST:
2967 case LTTNG_CONSUMER64_UST:
2968 health_code_update();
2969 /* Destroy streams that might have been left in the stream list. */
2970 clean_channel_stream_list(chan);
2971 break;
2972 default:
2973 ERR("Unknown consumer_data type");
2974 assert(0);
2975 }
2976
2977 /*
2978 * Release our own refcount. Force channel deletion even if
2979 * streams were not initialized.
2980 */
2981 if (!uatomic_sub_return(&chan->refcount, 1)) {
2982 consumer_del_channel(chan);
2983 }
2984 rcu_read_unlock();
2985 goto restart;
2986 }
2987 case CONSUMER_CHANNEL_QUIT:
2988 /*
2989 * Remove the pipe from the poll set and continue the loop
2990 * since their might be data to consume.
2991 */
2992 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2993 continue;
2994 default:
2995 ERR("Unknown action");
2996 break;
2997 }
2998 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2999 DBG("Channel thread pipe hung up");
3000 /*
3001 * Remove the pipe from the poll set and continue the loop
3002 * since their might be data to consume.
3003 */
3004 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3005 continue;
3006 } else {
3007 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3008 goto end;
3009 }
3010
3011 /* Handle other stream */
3012 continue;
3013 }
3014
3015 rcu_read_lock();
3016 {
3017 uint64_t tmp_id = (uint64_t) pollfd;
3018
3019 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3020 }
3021 node = lttng_ht_iter_get_node_u64(&iter);
3022 assert(node);
3023
3024 chan = caa_container_of(node, struct lttng_consumer_channel,
3025 wait_fd_node);
3026
3027 /* Check for error event */
3028 if (revents & (LPOLLERR | LPOLLHUP)) {
3029 DBG("Channel fd %d is hup|err.", pollfd);
3030
3031 lttng_poll_del(&events, chan->wait_fd);
3032 ret = lttng_ht_del(channel_ht, &iter);
3033 assert(ret == 0);
3034
3035 /*
3036 * This will close the wait fd for each stream associated to
3037 * this channel AND monitored by the data/metadata thread thus
3038 * will be clean by the right thread.
3039 */
3040 consumer_close_channel_streams(chan);
3041
3042 /* Release our own refcount */
3043 if (!uatomic_sub_return(&chan->refcount, 1)
3044 && !uatomic_read(&chan->nb_init_stream_left)) {
3045 consumer_del_channel(chan);
3046 }
3047 } else {
3048 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3049 rcu_read_unlock();
3050 goto end;
3051 }
3052
3053 /* Release RCU lock for the channel looked up */
3054 rcu_read_unlock();
3055 }
3056 }
3057
3058 /* All is OK */
3059 err = 0;
3060 end:
3061 lttng_poll_clean(&events);
3062 end_poll:
3063 destroy_channel_ht(channel_ht);
3064 end_ht:
3065 error_testpoint:
3066 DBG("Channel poll thread exiting");
3067 if (err) {
3068 health_error();
3069 ERR("Health error occurred in %s", __func__);
3070 }
3071 health_unregister(health_consumerd);
3072 rcu_unregister_thread();
3073 return NULL;
3074 }
3075
3076 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3077 struct pollfd *sockpoll, int client_socket)
3078 {
3079 int ret;
3080
3081 assert(ctx);
3082 assert(sockpoll);
3083
3084 ret = lttng_consumer_poll_socket(sockpoll);
3085 if (ret) {
3086 goto error;
3087 }
3088 DBG("Metadata connection on client_socket");
3089
3090 /* Blocking call, waiting for transmission */
3091 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3092 if (ctx->consumer_metadata_socket < 0) {
3093 WARN("On accept metadata");
3094 ret = -1;
3095 goto error;
3096 }
3097 ret = 0;
3098
3099 error:
3100 return ret;
3101 }
3102
3103 /*
3104 * This thread listens on the consumerd socket and receives the file
3105 * descriptors from the session daemon.
3106 */
3107 void *consumer_thread_sessiond_poll(void *data)
3108 {
3109 int sock = -1, client_socket, ret, err = -1;
3110 /*
3111 * structure to poll for incoming data on communication socket avoids
3112 * making blocking sockets.
3113 */
3114 struct pollfd consumer_sockpoll[2];
3115 struct lttng_consumer_local_data *ctx = data;
3116
3117 rcu_register_thread();
3118
3119 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3120
3121 if (testpoint(consumerd_thread_sessiond)) {
3122 goto error_testpoint;
3123 }
3124
3125 health_code_update();
3126
3127 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3128 unlink(ctx->consumer_command_sock_path);
3129 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3130 if (client_socket < 0) {
3131 ERR("Cannot create command socket");
3132 goto end;
3133 }
3134
3135 ret = lttcomm_listen_unix_sock(client_socket);
3136 if (ret < 0) {
3137 goto end;
3138 }
3139
3140 DBG("Sending ready command to lttng-sessiond");
3141 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3142 /* return < 0 on error, but == 0 is not fatal */
3143 if (ret < 0) {
3144 ERR("Error sending ready command to lttng-sessiond");
3145 goto end;
3146 }
3147
3148 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3149 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3150 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3151 consumer_sockpoll[1].fd = client_socket;
3152 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3153
3154 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3155 if (ret) {
3156 if (ret > 0) {
3157 /* should exit */
3158 err = 0;
3159 }
3160 goto end;
3161 }
3162 DBG("Connection on client_socket");
3163
3164 /* Blocking call, waiting for transmission */
3165 sock = lttcomm_accept_unix_sock(client_socket);
3166 if (sock < 0) {
3167 WARN("On accept");
3168 goto end;
3169 }
3170
3171 /*
3172 * Setup metadata socket which is the second socket connection on the
3173 * command unix socket.
3174 */
3175 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3176 if (ret) {
3177 if (ret > 0) {
3178 /* should exit */
3179 err = 0;
3180 }
3181 goto end;
3182 }
3183
3184 /* This socket is not useful anymore. */
3185 ret = close(client_socket);
3186 if (ret < 0) {
3187 PERROR("close client_socket");
3188 }
3189 client_socket = -1;
3190
3191 /* update the polling structure to poll on the established socket */
3192 consumer_sockpoll[1].fd = sock;
3193 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3194
3195 while (1) {
3196 health_code_update();
3197
3198 health_poll_entry();
3199 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3200 health_poll_exit();
3201 if (ret) {
3202 if (ret > 0) {
3203 /* should exit */
3204 err = 0;
3205 }
3206 goto end;
3207 }
3208 DBG("Incoming command on sock");
3209 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3210 if (ret <= 0) {
3211 /*
3212 * This could simply be a session daemon quitting. Don't output
3213 * ERR() here.
3214 */
3215 DBG("Communication interrupted on command socket");
3216 err = 0;
3217 goto end;
3218 }
3219 if (CMM_LOAD_SHARED(consumer_quit)) {
3220 DBG("consumer_thread_receive_fds received quit from signal");
3221 err = 0; /* All is OK */
3222 goto end;
3223 }
3224 DBG("received command on sock");
3225 }
3226 /* All is OK */
3227 err = 0;
3228
3229 end:
3230 DBG("Consumer thread sessiond poll exiting");
3231
3232 /*
3233 * Close metadata streams since the producer is the session daemon which
3234 * just died.
3235 *
3236 * NOTE: for now, this only applies to the UST tracer.
3237 */
3238 lttng_consumer_close_all_metadata();
3239
3240 /*
3241 * when all fds have hung up, the polling thread
3242 * can exit cleanly
3243 */
3244 CMM_STORE_SHARED(consumer_quit, 1);
3245
3246 /*
3247 * Notify the data poll thread to poll back again and test the
3248 * consumer_quit state that we just set so to quit gracefully.
3249 */
3250 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3251
3252 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3253
3254 notify_health_quit_pipe(health_quit_pipe);
3255
3256 /* Cleaning up possibly open sockets. */
3257 if (sock >= 0) {
3258 ret = close(sock);
3259 if (ret < 0) {
3260 PERROR("close sock sessiond poll");
3261 }
3262 }
3263 if (client_socket >= 0) {
3264 ret = close(client_socket);
3265 if (ret < 0) {
3266 PERROR("close client_socket sessiond poll");
3267 }
3268 }
3269
3270 error_testpoint:
3271 if (err) {
3272 health_error();
3273 ERR("Health error occurred in %s", __func__);
3274 }
3275 health_unregister(health_consumerd);
3276
3277 rcu_unregister_thread();
3278 return NULL;
3279 }
3280
3281 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3282 struct lttng_consumer_local_data *ctx)
3283 {
3284 ssize_t ret;
3285
3286 pthread_mutex_lock(&stream->lock);
3287 if (stream->metadata_flag) {
3288 pthread_mutex_lock(&stream->metadata_rdv_lock);
3289 }
3290
3291 switch (consumer_data.type) {
3292 case LTTNG_CONSUMER_KERNEL:
3293 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3294 break;
3295 case LTTNG_CONSUMER32_UST:
3296 case LTTNG_CONSUMER64_UST:
3297 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3298 break;
3299 default:
3300 ERR("Unknown consumer_data type");
3301 assert(0);
3302 ret = -ENOSYS;
3303 break;
3304 }
3305
3306 if (stream->metadata_flag) {
3307 pthread_cond_broadcast(&stream->metadata_rdv);
3308 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3309 }
3310 pthread_mutex_unlock(&stream->lock);
3311 return ret;
3312 }
3313
3314 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3315 {
3316 switch (consumer_data.type) {
3317 case LTTNG_CONSUMER_KERNEL:
3318 return lttng_kconsumer_on_recv_stream(stream);
3319 case LTTNG_CONSUMER32_UST:
3320 case LTTNG_CONSUMER64_UST:
3321 return lttng_ustconsumer_on_recv_stream(stream);
3322 default:
3323 ERR("Unknown consumer_data type");
3324 assert(0);
3325 return -ENOSYS;
3326 }
3327 }
3328
3329 /*
3330 * Allocate and set consumer data hash tables.
3331 */
3332 int lttng_consumer_init(void)
3333 {
3334 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3335 if (!consumer_data.channel_ht) {
3336 goto error;
3337 }
3338
3339 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3340 if (!consumer_data.relayd_ht) {
3341 goto error;
3342 }
3343
3344 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3345 if (!consumer_data.stream_list_ht) {
3346 goto error;
3347 }
3348
3349 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3350 if (!consumer_data.stream_per_chan_id_ht) {
3351 goto error;
3352 }
3353
3354 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3355 if (!data_ht) {
3356 goto error;
3357 }
3358
3359 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3360 if (!metadata_ht) {
3361 goto error;
3362 }
3363
3364 return 0;
3365
3366 error:
3367 return -1;
3368 }
3369
3370 /*
3371 * Process the ADD_RELAYD command receive by a consumer.
3372 *
3373 * This will create a relayd socket pair and add it to the relayd hash table.
3374 * The caller MUST acquire a RCU read side lock before calling it.
3375 */
3376 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3377 struct lttng_consumer_local_data *ctx, int sock,
3378 struct pollfd *consumer_sockpoll,
3379 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3380 uint64_t relayd_session_id)
3381 {
3382 int fd = -1, ret = -1, relayd_created = 0;
3383 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3384 struct consumer_relayd_sock_pair *relayd = NULL;
3385
3386 assert(ctx);
3387 assert(relayd_sock);
3388
3389 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3390
3391 /* Get relayd reference if exists. */
3392 relayd = consumer_find_relayd(net_seq_idx);
3393 if (relayd == NULL) {
3394 assert(sock_type == LTTNG_STREAM_CONTROL);
3395 /* Not found. Allocate one. */
3396 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3397 if (relayd == NULL) {
3398 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3399 goto error;
3400 } else {
3401 relayd->sessiond_session_id = sessiond_id;
3402 relayd_created = 1;
3403 }
3404
3405 /*
3406 * This code path MUST continue to the consumer send status message to
3407 * we can notify the session daemon and continue our work without
3408 * killing everything.
3409 */
3410 } else {
3411 /*
3412 * relayd key should never be found for control socket.
3413 */
3414 assert(sock_type != LTTNG_STREAM_CONTROL);
3415 }
3416
3417 /* First send a status message before receiving the fds. */
3418 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3419 if (ret < 0) {
3420 /* Somehow, the session daemon is not responding anymore. */
3421 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3422 goto error_nosignal;
3423 }
3424
3425 /* Poll on consumer socket. */
3426 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3427 if (ret) {
3428 /* Needing to exit in the middle of a command: error. */
3429 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3430 goto error_nosignal;
3431 }
3432
3433 /* Get relayd socket from session daemon */
3434 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3435 if (ret != sizeof(fd)) {
3436 fd = -1; /* Just in case it gets set with an invalid value. */
3437
3438 /*
3439 * Failing to receive FDs might indicate a major problem such as
3440 * reaching a fd limit during the receive where the kernel returns a
3441 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3442 * don't take any chances and stop everything.
3443 *
3444 * XXX: Feature request #558 will fix that and avoid this possible
3445 * issue when reaching the fd limit.
3446 */
3447 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3448 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3449 goto error;
3450 }
3451
3452 /* Copy socket information and received FD */
3453 switch (sock_type) {
3454 case LTTNG_STREAM_CONTROL:
3455 /* Copy received lttcomm socket */
3456 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3457 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3458 /* Handle create_sock error. */
3459 if (ret < 0) {
3460 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3461 goto error;
3462 }
3463 /*
3464 * Close the socket created internally by
3465 * lttcomm_create_sock, so we can replace it by the one
3466 * received from sessiond.
3467 */
3468 if (close(relayd->control_sock.sock.fd)) {
3469 PERROR("close");
3470 }
3471
3472 /* Assign new file descriptor */
3473 relayd->control_sock.sock.fd = fd;
3474 fd = -1; /* For error path */
3475 /* Assign version values. */
3476 relayd->control_sock.major = relayd_sock->major;
3477 relayd->control_sock.minor = relayd_sock->minor;
3478
3479 relayd->relayd_session_id = relayd_session_id;
3480
3481 break;
3482 case LTTNG_STREAM_DATA:
3483 /* Copy received lttcomm socket */
3484 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3485 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3486 /* Handle create_sock error. */
3487 if (ret < 0) {
3488 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3489 goto error;
3490 }
3491 /*
3492 * Close the socket created internally by
3493 * lttcomm_create_sock, so we can replace it by the one
3494 * received from sessiond.
3495 */
3496 if (close(relayd->data_sock.sock.fd)) {
3497 PERROR("close");
3498 }
3499
3500 /* Assign new file descriptor */
3501 relayd->data_sock.sock.fd = fd;
3502 fd = -1; /* for eventual error paths */
3503 /* Assign version values. */
3504 relayd->data_sock.major = relayd_sock->major;
3505 relayd->data_sock.minor = relayd_sock->minor;
3506 break;
3507 default:
3508 ERR("Unknown relayd socket type (%d)", sock_type);
3509 ret_code = LTTCOMM_CONSUMERD_FATAL;
3510 goto error;
3511 }
3512
3513 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3514 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3515 relayd->net_seq_idx, fd);
3516
3517 /* We successfully added the socket. Send status back. */
3518 ret = consumer_send_status_msg(sock, ret_code);
3519 if (ret < 0) {
3520 /* Somehow, the session daemon is not responding anymore. */
3521 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3522 goto error_nosignal;
3523 }
3524
3525 /*
3526 * Add relayd socket pair to consumer data hashtable. If object already
3527 * exists or on error, the function gracefully returns.
3528 */
3529 relayd->ctx = ctx;
3530 add_relayd(relayd);
3531
3532 /* All good! */
3533 return;
3534
3535 error:
3536 if (consumer_send_status_msg(sock, ret_code) < 0) {
3537 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3538 }
3539
3540 error_nosignal:
3541 /* Close received socket if valid. */
3542 if (fd >= 0) {
3543 if (close(fd)) {
3544 PERROR("close received socket");
3545 }
3546 }
3547
3548 if (relayd_created) {
3549 free(relayd);
3550 }
3551 }
3552
3553 /*
3554 * Search for a relayd associated to the session id and return the reference.
3555 *
3556 * A rcu read side lock MUST be acquire before calling this function and locked
3557 * until the relayd object is no longer necessary.
3558 */
3559 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3560 {
3561 struct lttng_ht_iter iter;
3562 struct consumer_relayd_sock_pair *relayd = NULL;
3563
3564 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3565 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3566 node.node) {
3567 /*
3568 * Check by sessiond id which is unique here where the relayd session
3569 * id might not be when having multiple relayd.
3570 */
3571 if (relayd->sessiond_session_id == id) {
3572 /* Found the relayd. There can be only one per id. */
3573 goto found;
3574 }
3575 }
3576
3577 return NULL;
3578
3579 found:
3580 return relayd;
3581 }
3582
3583 /*
3584 * Check if for a given session id there is still data needed to be extract
3585 * from the buffers.
3586 *
3587 * Return 1 if data is pending or else 0 meaning ready to be read.
3588 */
3589 int consumer_data_pending(uint64_t id)
3590 {
3591 int ret;
3592 struct lttng_ht_iter iter;
3593 struct lttng_ht *ht;
3594 struct lttng_consumer_stream *stream;
3595 struct consumer_relayd_sock_pair *relayd = NULL;
3596 int (*data_pending)(struct lttng_consumer_stream *);
3597
3598 DBG("Consumer data pending command on session id %" PRIu64, id);
3599
3600 rcu_read_lock();
3601 pthread_mutex_lock(&consumer_data.lock);
3602
3603 switch (consumer_data.type) {
3604 case LTTNG_CONSUMER_KERNEL:
3605 data_pending = lttng_kconsumer_data_pending;
3606 break;
3607 case LTTNG_CONSUMER32_UST:
3608 case LTTNG_CONSUMER64_UST:
3609 data_pending = lttng_ustconsumer_data_pending;
3610 break;
3611 default:
3612 ERR("Unknown consumer data type");
3613 assert(0);
3614 }
3615
3616 /* Ease our life a bit */
3617 ht = consumer_data.stream_list_ht;
3618
3619 cds_lfht_for_each_entry_duplicate(ht->ht,
3620 ht->hash_fct(&id, lttng_ht_seed),
3621 ht->match_fct, &id,
3622 &iter.iter, stream, node_session_id.node) {
3623 pthread_mutex_lock(&stream->lock);
3624
3625 /*
3626 * A removed node from the hash table indicates that the stream has
3627 * been deleted thus having a guarantee that the buffers are closed
3628 * on the consumer side. However, data can still be transmitted
3629 * over the network so don't skip the relayd check.
3630 */
3631 ret = cds_lfht_is_node_deleted(&stream->node.node);
3632 if (!ret) {
3633 /* Check the stream if there is data in the buffers. */
3634 ret = data_pending(stream);
3635 if (ret == 1) {
3636 pthread_mutex_unlock(&stream->lock);
3637 goto data_pending;
3638 }
3639 }
3640
3641 pthread_mutex_unlock(&stream->lock);
3642 }
3643
3644 relayd = find_relayd_by_session_id(id);
3645 if (relayd) {
3646 unsigned int is_data_inflight = 0;
3647
3648 /* Send init command for data pending. */
3649 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3650 ret = relayd_begin_data_pending(&relayd->control_sock,
3651 relayd->relayd_session_id);
3652 if (ret < 0) {
3653 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3654 /* Communication error thus the relayd so no data pending. */
3655 goto data_not_pending;
3656 }
3657
3658 cds_lfht_for_each_entry_duplicate(ht->ht,
3659 ht->hash_fct(&id, lttng_ht_seed),
3660 ht->match_fct, &id,
3661 &iter.iter, stream, node_session_id.node) {
3662 if (stream->metadata_flag) {
3663 ret = relayd_quiescent_control(&relayd->control_sock,
3664 stream->relayd_stream_id);
3665 } else {
3666 ret = relayd_data_pending(&relayd->control_sock,
3667 stream->relayd_stream_id,
3668 stream->next_net_seq_num - 1);
3669 }
3670
3671 if (ret == 1) {
3672 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3673 goto data_pending;
3674 } else if (ret < 0) {
3675 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3676 lttng_consumer_cleanup_relayd(relayd);
3677 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3678 goto data_not_pending;
3679 }
3680 }
3681
3682 /* Send end command for data pending. */
3683 ret = relayd_end_data_pending(&relayd->control_sock,
3684 relayd->relayd_session_id, &is_data_inflight);
3685 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3686 if (ret < 0) {
3687 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3688 lttng_consumer_cleanup_relayd(relayd);
3689 goto data_not_pending;
3690 }
3691 if (is_data_inflight) {
3692 goto data_pending;
3693 }
3694 }
3695
3696 /*
3697 * Finding _no_ node in the hash table and no inflight data means that the
3698 * stream(s) have been removed thus data is guaranteed to be available for
3699 * analysis from the trace files.
3700 */
3701
3702 data_not_pending:
3703 /* Data is available to be read by a viewer. */
3704 pthread_mutex_unlock(&consumer_data.lock);
3705 rcu_read_unlock();
3706 return 0;
3707
3708 data_pending:
3709 /* Data is still being extracted from buffers. */
3710 pthread_mutex_unlock(&consumer_data.lock);
3711 rcu_read_unlock();
3712 return 1;
3713 }
3714
3715 /*
3716 * Send a ret code status message to the sessiond daemon.
3717 *
3718 * Return the sendmsg() return value.
3719 */
3720 int consumer_send_status_msg(int sock, int ret_code)
3721 {
3722 struct lttcomm_consumer_status_msg msg;
3723
3724 memset(&msg, 0, sizeof(msg));
3725 msg.ret_code = ret_code;
3726
3727 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3728 }
3729
3730 /*
3731 * Send a channel status message to the sessiond daemon.
3732 *
3733 * Return the sendmsg() return value.
3734 */
3735 int consumer_send_status_channel(int sock,
3736 struct lttng_consumer_channel *channel)
3737 {
3738 struct lttcomm_consumer_status_channel msg;
3739
3740 assert(sock >= 0);
3741
3742 memset(&msg, 0, sizeof(msg));
3743 if (!channel) {
3744 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3745 } else {
3746 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3747 msg.key = channel->key;
3748 msg.stream_count = channel->streams.count;
3749 }
3750
3751 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3752 }
3753
3754 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3755 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3756 uint64_t max_sb_size)
3757 {
3758 unsigned long start_pos;
3759
3760 if (!nb_packets_per_stream) {
3761 return consumed_pos; /* Grab everything */
3762 }
3763 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3764 start_pos -= max_sb_size * nb_packets_per_stream;
3765 if ((long) (start_pos - consumed_pos) < 0) {
3766 return consumed_pos; /* Grab everything */
3767 }
3768 return start_pos;
3769 }
3770
3771 static
3772 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3773 {
3774 int ret = 0;
3775
3776 switch (consumer_data.type) {
3777 case LTTNG_CONSUMER_KERNEL:
3778 ret = kernctl_buffer_flush(stream->wait_fd);
3779 if (ret < 0) {
3780 ERR("Failed to flush kernel stream");
3781 goto end;
3782 }
3783 break;
3784 case LTTNG_CONSUMER32_UST:
3785 case LTTNG_CONSUMER64_UST:
3786 lttng_ustconsumer_flush_buffer(stream, producer_active);
3787 break;
3788 default:
3789 ERR("Unknown consumer_data type");
3790 abort();
3791 }
3792
3793 end:
3794 return ret;
3795 }
3796
3797 static
3798 int consumer_clear_buffer(struct lttng_consumer_stream *stream)
3799 {
3800 int ret = 0;
3801
3802 switch (consumer_data.type) {
3803 case LTTNG_CONSUMER_KERNEL:
3804 ret = kernctl_buffer_clear(stream->wait_fd);
3805 if (ret < 0) {
3806 ERR("Failed to flush kernel stream");
3807 goto end;
3808 }
3809 break;
3810 case LTTNG_CONSUMER32_UST:
3811 case LTTNG_CONSUMER64_UST:
3812 lttng_ustconsumer_clear_buffer(stream);
3813 break;
3814 default:
3815 ERR("Unknown consumer_data type");
3816 abort();
3817 }
3818
3819 end:
3820 return ret;
3821 }
3822
3823 static
3824 int consumer_unlink_stream_files_rotation(struct lttng_consumer_stream *stream)
3825 {
3826 uint64_t tracefile_size = stream->chan->tracefile_size;
3827 uint64_t tracefile_count = stream->chan->tracefile_count;
3828 uint64_t count;
3829 int ret;
3830
3831 /*
3832 * If the channel is configured to have an open-ended number of tracefiles,
3833 * use the current tracefile count number as upper-bound.
3834 */
3835 if (!tracefile_count) {
3836 tracefile_count = stream->tracefile_count_current + 1;
3837 }
3838
3839 /*
3840 * Try to unlink each file and each index for this stream. They may not exist,
3841 * in which case ENOENT is fine.
3842 */
3843 for (count = 0; count < tracefile_count; count++) {
3844 ret = utils_unlink_stream_file(stream->chan->pathname, stream->name,
3845 tracefile_size, count, stream->uid, stream->gid, NULL);
3846 if (ret < 0 && errno != ENOENT) {
3847 return LTTCOMM_CONSUMERD_FATAL;
3848 }
3849 if (stream->index_file) {
3850 ret = lttng_index_file_unlink(stream->chan->pathname, stream->name,
3851 stream->uid, stream->gid, tracefile_size, count);
3852 if (ret < 0 && errno != ENOENT) {
3853 return LTTCOMM_CONSUMERD_FATAL;
3854 }
3855 }
3856 }
3857 return LTTCOMM_CONSUMERD_SUCCESS;
3858 }
3859
3860 static
3861 int consumer_unlink_stream_files(struct lttng_consumer_stream *stream)
3862 {
3863 uint64_t tracefile_size = stream->chan->tracefile_size;
3864 int ret;
3865
3866 /* No tracefile rotation, a single file to unlink and re-create. */
3867 ret = utils_unlink_stream_file(stream->chan->pathname, stream->name,
3868 tracefile_size, 0, stream->uid, stream->gid, 0);
3869 if (ret < 0 && errno != ENOENT) {
3870 return LTTCOMM_CONSUMERD_FATAL;
3871 }
3872 return LTTCOMM_CONSUMERD_SUCCESS;
3873 }
3874
3875 static
3876 int consumer_clear_stream_files(struct lttng_consumer_stream *stream)
3877 {
3878 int ret;
3879 uint64_t tracefile_size = stream->chan->tracefile_size;
3880
3881 /*
3882 * If stream is sent over to a relay daemon, there are no local files
3883 * to unlink.
3884 */
3885 if (stream->net_seq_idx != (uint64_t) -1ULL) {
3886 return LTTCOMM_CONSUMERD_SUCCESS;
3887 }
3888
3889 ret = close(stream->out_fd);
3890 if (ret < 0) {
3891 PERROR("Closing tracefile");
3892 return LTTCOMM_CONSUMERD_FATAL;
3893 }
3894 stream->out_fd = -1;
3895 stream->out_fd_offset = 0;
3896 stream->tracefile_size_current = 0;
3897
3898 /*
3899 * Re-creation of the index file takes care of clearing its
3900 * content for non-tracefile-rotation streams.
3901 * Rotation streams need to explicitly unlink each index file.
3902 * We put the stream file, but keep the stream->index_file value
3903 * as indication whether the stream has index (non-NULL) before
3904 * overwriting it with an index creation.
3905 */
3906 if (stream->index_file) {
3907 lttng_index_file_put(stream->index_file);
3908 }
3909
3910 if (tracefile_size > 0) {
3911 /* Tracefile rotation. */
3912 ret = consumer_unlink_stream_files_rotation(stream);
3913 } else {
3914 ret = consumer_unlink_stream_files(stream);
3915 }
3916 if (ret != LTTCOMM_CONSUMERD_SUCCESS) {
3917 return ret;
3918 }
3919
3920 /* Create new files. */
3921 ret = utils_create_stream_file(stream->chan->pathname, stream->name,
3922 tracefile_size, 0, stream->uid, stream->gid, 0);
3923 if (ret < 0) {
3924 return LTTCOMM_CONSUMERD_FATAL;
3925 }
3926 stream->out_fd = ret;
3927
3928 if (stream->index_file) {
3929 stream->index_file = lttng_index_file_create(stream->chan->pathname,
3930 stream->name, stream->uid, stream->gid, tracefile_size,
3931 0, CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
3932 if (!stream->index_file) {
3933 return LTTCOMM_CONSUMERD_FATAL;
3934 }
3935 }
3936
3937 return LTTCOMM_CONSUMERD_SUCCESS;
3938 }
3939
3940 static
3941 int consumer_clear_stream(struct lttng_consumer_stream *stream)
3942 {
3943 int ret;
3944
3945 ret = consumer_flush_buffer(stream, 1);
3946 if (ret < 0) {
3947 ERR("Failed to flush stream %" PRIu64 " during channel clear",
3948 stream->key);
3949 ret = LTTCOMM_CONSUMERD_FATAL;
3950 goto error;
3951 }
3952
3953 ret = consumer_clear_buffer(stream);
3954 if (ret < 0) {
3955 ERR("Failed to clear stream %" PRIu64 " during channel clear",
3956 stream->key);
3957 ret = LTTCOMM_CONSUMERD_FATAL;
3958 goto error;
3959 }
3960
3961 ret = consumer_clear_stream_files(stream);
3962 if (ret != LTTCOMM_CONSUMERD_SUCCESS) {
3963 ERR("Failed to clear stream %" PRIu64 " files during channel clear",
3964 stream->key);
3965 goto error;
3966 }
3967 ret = LTTCOMM_CONSUMERD_SUCCESS;
3968 error:
3969 return ret;
3970 }
3971
3972 static
3973 int consumer_clear_unmonitored_channel(struct lttng_consumer_channel *channel)
3974 {
3975 int ret;
3976 struct lttng_consumer_stream *stream;
3977
3978 rcu_read_lock();
3979 pthread_mutex_lock(&channel->lock);
3980 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
3981 health_code_update();
3982 pthread_mutex_lock(&stream->lock);
3983 ret = consumer_clear_stream(stream);
3984 if (ret) {
3985 goto error_unlock;
3986 }
3987 pthread_mutex_unlock(&stream->lock);
3988 }
3989 pthread_mutex_unlock(&channel->lock);
3990 rcu_read_unlock();
3991 return 0;
3992
3993 error_unlock:
3994 pthread_mutex_unlock(&stream->lock);
3995 pthread_mutex_unlock(&channel->lock);
3996 rcu_read_unlock();
3997 if (ret)
3998 goto error;
3999 ret = LTTCOMM_CONSUMERD_SUCCESS;
4000 error:
4001 return ret;
4002
4003 }
4004
4005 static
4006 int consumer_clear_monitored_channel(struct lttng_consumer_channel *channel)
4007 {
4008 struct lttng_ht *ht;
4009 struct lttng_consumer_stream *stream;
4010 struct lttng_ht_iter iter;
4011 int ret;
4012
4013 ht = consumer_data.stream_per_chan_id_ht;
4014
4015 rcu_read_lock();
4016 cds_lfht_for_each_entry_duplicate(ht->ht,
4017 ht->hash_fct(&channel->key, lttng_ht_seed),
4018 ht->match_fct, &channel->key,
4019 &iter.iter, stream, node_channel_id.node) {
4020 /*
4021 * Protect against teardown with mutex.
4022 */
4023 pthread_mutex_lock(&stream->lock);
4024 if (cds_lfht_is_node_deleted(&stream->node.node)) {
4025 goto next;
4026 }
4027 ret = consumer_clear_stream(stream);
4028 if (ret) {
4029 goto error_unlock;
4030 }
4031 next:
4032 pthread_mutex_unlock(&stream->lock);
4033 }
4034 rcu_read_unlock();
4035 return LTTCOMM_CONSUMERD_SUCCESS;
4036
4037 error_unlock:
4038 pthread_mutex_unlock(&stream->lock);
4039 rcu_read_unlock();
4040 return ret;
4041 }
4042
4043 int lttng_consumer_clear_channel(struct lttng_consumer_channel *channel)
4044 {
4045 int ret;
4046
4047 DBG("Consumer clear channel %" PRIu64, channel->key);
4048
4049 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
4050 /*
4051 * Nothing to do for the metadata channel/stream.
4052 * Snapshot mechanism already take care of the metadata
4053 * handling/generation, and monitored channels only need to
4054 * have their data stream cleared..
4055 */
4056 ret = LTTCOMM_CONSUMERD_SUCCESS;
4057 goto end;
4058 }
4059
4060 if (!channel->monitor) {
4061 ret = consumer_clear_unmonitored_channel(channel);
4062 } else {
4063 ret = consumer_clear_monitored_channel(channel);
4064 }
4065 end:
4066 return ret;
4067 }
4068
4069 int lttng_consumer_clear_session(uint64_t session_id)
4070 {
4071 struct lttng_ht_iter iter;
4072 struct lttng_consumer_stream *stream;
4073 int ret;
4074
4075 DBG("Consumer clear session %" PRIu64, session_id);
4076
4077 rcu_read_lock();
4078
4079 /* Find first stream match in data_ht. */
4080 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
4081 if (stream->chan->session_id == session_id) {
4082 struct consumer_relayd_sock_pair *relayd = NULL;
4083
4084 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4085 /*
4086 * Asking for a clear session on local session.
4087 * No relayd to contact, nothing to do.
4088 */
4089 break; /* Stop after first match. */
4090 }
4091 relayd = consumer_find_relayd(stream->net_seq_idx);
4092 if (relayd == NULL) {
4093 /*
4094 * relayd is shutting down.
4095 */
4096 ret = LTTCOMM_CONSUMERD_SUCCESS;
4097 goto end;
4098 }
4099 ret = relayd_clear_session(&relayd->control_sock);
4100 if (ret < 0) {
4101 ret = LTTCOMM_CONSUMERD_FATAL;
4102 goto end;
4103 }
4104 break; /* Stop after first match. */
4105
4106 }
4107 }
4108 ret = LTTCOMM_CONSUMERD_SUCCESS;
4109 end:
4110 rcu_read_unlock();
4111 return ret;
4112 }
This page took 0.160452 seconds and 5 git commands to generate.