refactor: put in common all consumer code
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 void consumer_stream_copy_ro_channel_values(struct lttng_consumer_stream *stream,
545 struct lttng_consumer_channel *channel)
546 {
547 stream->channel_ro_tracefile_size = channel->tracefile_size;
548 memcpy(stream->channel_ro_pathname, channel->pathname, PATH_MAX);
549 }
550
551 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
552 uint64_t stream_key,
553 enum lttng_consumer_stream_state state,
554 const char *channel_name,
555 uid_t uid,
556 gid_t gid,
557 uint64_t relayd_id,
558 uint64_t session_id,
559 int cpu,
560 int *alloc_ret,
561 enum consumer_channel_type type,
562 unsigned int monitor)
563 {
564 int ret;
565 struct lttng_consumer_stream *stream;
566
567 stream = zmalloc(sizeof(*stream));
568 if (stream == NULL) {
569 PERROR("malloc struct lttng_consumer_stream");
570 ret = -ENOMEM;
571 goto end;
572 }
573
574 rcu_read_lock();
575
576 stream->key = stream_key;
577 stream->out_fd = -1;
578 stream->out_fd_offset = 0;
579 stream->output_written = 0;
580 stream->state = state;
581 stream->uid = uid;
582 stream->gid = gid;
583 stream->net_seq_idx = relayd_id;
584 stream->session_id = session_id;
585 stream->monitor = monitor;
586 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
587 stream->index_file = NULL;
588 stream->last_sequence_number = -1ULL;
589 pthread_mutex_init(&stream->lock, NULL);
590 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
591
592 /* If channel is the metadata, flag this stream as metadata. */
593 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
594 stream->metadata_flag = 1;
595 /* Metadata is flat out. */
596 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
597 /* Live rendez-vous point. */
598 pthread_cond_init(&stream->metadata_rdv, NULL);
599 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
600 } else {
601 /* Format stream name to <channel_name>_<cpu_number> */
602 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
603 channel_name, cpu);
604 if (ret < 0) {
605 PERROR("snprintf stream name");
606 goto error;
607 }
608 }
609
610 /* Key is always the wait_fd for streams. */
611 lttng_ht_node_init_u64(&stream->node, stream->key);
612
613 /* Init node per channel id key */
614 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
615
616 /* Init session id node with the stream session id */
617 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
618
619 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
620 " relayd_id %" PRIu64 ", session_id %" PRIu64,
621 stream->name, stream->key, channel_key,
622 stream->net_seq_idx, stream->session_id);
623
624 rcu_read_unlock();
625 return stream;
626
627 error:
628 rcu_read_unlock();
629 free(stream);
630 end:
631 if (alloc_ret) {
632 *alloc_ret = ret;
633 }
634 return NULL;
635 }
636
637 /*
638 * Add a stream to the global list protected by a mutex.
639 */
640 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
641 {
642 struct lttng_ht *ht = data_ht;
643 int ret = 0;
644
645 assert(stream);
646 assert(ht);
647
648 DBG3("Adding consumer stream %" PRIu64, stream->key);
649
650 pthread_mutex_lock(&consumer_data.lock);
651 pthread_mutex_lock(&stream->chan->lock);
652 pthread_mutex_lock(&stream->chan->timer_lock);
653 pthread_mutex_lock(&stream->lock);
654 rcu_read_lock();
655
656 /* Steal stream identifier to avoid having streams with the same key */
657 steal_stream_key(stream->key, ht);
658
659 lttng_ht_add_unique_u64(ht, &stream->node);
660
661 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
662 &stream->node_channel_id);
663
664 /*
665 * Add stream to the stream_list_ht of the consumer data. No need to steal
666 * the key since the HT does not use it and we allow to add redundant keys
667 * into this table.
668 */
669 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
670
671 /*
672 * When nb_init_stream_left reaches 0, we don't need to trigger any action
673 * in terms of destroying the associated channel, because the action that
674 * causes the count to become 0 also causes a stream to be added. The
675 * channel deletion will thus be triggered by the following removal of this
676 * stream.
677 */
678 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
679 /* Increment refcount before decrementing nb_init_stream_left */
680 cmm_smp_wmb();
681 uatomic_dec(&stream->chan->nb_init_stream_left);
682 }
683
684 /* Update consumer data once the node is inserted. */
685 consumer_data.stream_count++;
686 consumer_data.need_update = 1;
687
688 rcu_read_unlock();
689 pthread_mutex_unlock(&stream->lock);
690 pthread_mutex_unlock(&stream->chan->timer_lock);
691 pthread_mutex_unlock(&stream->chan->lock);
692 pthread_mutex_unlock(&consumer_data.lock);
693
694 return ret;
695 }
696
697 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
698 {
699 consumer_del_stream(stream, data_ht);
700 }
701
702 /*
703 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
704 * be acquired before calling this.
705 */
706 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
707 {
708 int ret = 0;
709 struct lttng_ht_node_u64 *node;
710 struct lttng_ht_iter iter;
711
712 assert(relayd);
713
714 lttng_ht_lookup(consumer_data.relayd_ht,
715 &relayd->net_seq_idx, &iter);
716 node = lttng_ht_iter_get_node_u64(&iter);
717 if (node != NULL) {
718 goto end;
719 }
720 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
721
722 end:
723 return ret;
724 }
725
726 /*
727 * Allocate and return a consumer relayd socket.
728 */
729 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
730 uint64_t net_seq_idx)
731 {
732 struct consumer_relayd_sock_pair *obj = NULL;
733
734 /* net sequence index of -1 is a failure */
735 if (net_seq_idx == (uint64_t) -1ULL) {
736 goto error;
737 }
738
739 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
740 if (obj == NULL) {
741 PERROR("zmalloc relayd sock");
742 goto error;
743 }
744
745 obj->net_seq_idx = net_seq_idx;
746 obj->refcount = 0;
747 obj->destroy_flag = 0;
748 obj->control_sock.sock.fd = -1;
749 obj->data_sock.sock.fd = -1;
750 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
751 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
752
753 error:
754 return obj;
755 }
756
757 /*
758 * Find a relayd socket pair in the global consumer data.
759 *
760 * Return the object if found else NULL.
761 * RCU read-side lock must be held across this call and while using the
762 * returned object.
763 */
764 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
765 {
766 struct lttng_ht_iter iter;
767 struct lttng_ht_node_u64 *node;
768 struct consumer_relayd_sock_pair *relayd = NULL;
769
770 /* Negative keys are lookup failures */
771 if (key == (uint64_t) -1ULL) {
772 goto error;
773 }
774
775 lttng_ht_lookup(consumer_data.relayd_ht, &key,
776 &iter);
777 node = lttng_ht_iter_get_node_u64(&iter);
778 if (node != NULL) {
779 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
780 }
781
782 error:
783 return relayd;
784 }
785
786 /*
787 * Find a relayd and send the stream
788 *
789 * Returns 0 on success, < 0 on error
790 */
791 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
792 char *path)
793 {
794 int ret = 0;
795 struct consumer_relayd_sock_pair *relayd;
796
797 assert(stream);
798 assert(stream->net_seq_idx != -1ULL);
799 assert(path);
800
801 /* The stream is not metadata. Get relayd reference if exists. */
802 rcu_read_lock();
803 relayd = consumer_find_relayd(stream->net_seq_idx);
804 if (relayd != NULL) {
805 /* Add stream on the relayd */
806 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
807 ret = relayd_add_stream(&relayd->control_sock, stream->name,
808 path, &stream->relayd_stream_id,
809 stream->chan->tracefile_size, stream->chan->tracefile_count);
810 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
811 if (ret < 0) {
812 goto end;
813 }
814
815 uatomic_inc(&relayd->refcount);
816 stream->sent_to_relayd = 1;
817 } else {
818 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
819 stream->key, stream->net_seq_idx);
820 ret = -1;
821 goto end;
822 }
823
824 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
825 stream->name, stream->key, stream->net_seq_idx);
826
827 end:
828 rcu_read_unlock();
829 return ret;
830 }
831
832 /*
833 * Find a relayd and send the streams sent message
834 *
835 * Returns 0 on success, < 0 on error
836 */
837 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
838 {
839 int ret = 0;
840 struct consumer_relayd_sock_pair *relayd;
841
842 assert(net_seq_idx != -1ULL);
843
844 /* The stream is not metadata. Get relayd reference if exists. */
845 rcu_read_lock();
846 relayd = consumer_find_relayd(net_seq_idx);
847 if (relayd != NULL) {
848 /* Add stream on the relayd */
849 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
850 ret = relayd_streams_sent(&relayd->control_sock);
851 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
852 if (ret < 0) {
853 goto end;
854 }
855 } else {
856 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
857 net_seq_idx);
858 ret = -1;
859 goto end;
860 }
861
862 ret = 0;
863 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
864
865 end:
866 rcu_read_unlock();
867 return ret;
868 }
869
870 /*
871 * Find a relayd and close the stream
872 */
873 void close_relayd_stream(struct lttng_consumer_stream *stream)
874 {
875 struct consumer_relayd_sock_pair *relayd;
876
877 /* The stream is not metadata. Get relayd reference if exists. */
878 rcu_read_lock();
879 relayd = consumer_find_relayd(stream->net_seq_idx);
880 if (relayd) {
881 consumer_stream_relayd_close(stream, relayd);
882 }
883 rcu_read_unlock();
884 }
885
886 /*
887 * Handle stream for relayd transmission if the stream applies for network
888 * streaming where the net sequence index is set.
889 *
890 * Return destination file descriptor or negative value on error.
891 */
892 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
893 size_t data_size, unsigned long padding,
894 struct consumer_relayd_sock_pair *relayd)
895 {
896 int outfd = -1, ret;
897 struct lttcomm_relayd_data_hdr data_hdr;
898
899 /* Safety net */
900 assert(stream);
901 assert(relayd);
902
903 /* Reset data header */
904 memset(&data_hdr, 0, sizeof(data_hdr));
905
906 if (stream->metadata_flag) {
907 /* Caller MUST acquire the relayd control socket lock */
908 ret = relayd_send_metadata(&relayd->control_sock, data_size);
909 if (ret < 0) {
910 goto error;
911 }
912
913 /* Metadata are always sent on the control socket. */
914 outfd = relayd->control_sock.sock.fd;
915 } else {
916 /* Set header with stream information */
917 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
918 data_hdr.data_size = htobe32(data_size);
919 data_hdr.padding_size = htobe32(padding);
920 /*
921 * Note that net_seq_num below is assigned with the *current* value of
922 * next_net_seq_num and only after that the next_net_seq_num will be
923 * increment. This is why when issuing a command on the relayd using
924 * this next value, 1 should always be substracted in order to compare
925 * the last seen sequence number on the relayd side to the last sent.
926 */
927 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
928 /* Other fields are zeroed previously */
929
930 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
931 sizeof(data_hdr));
932 if (ret < 0) {
933 goto error;
934 }
935
936 ++stream->next_net_seq_num;
937
938 /* Set to go on data socket */
939 outfd = relayd->data_sock.sock.fd;
940 }
941
942 error:
943 return outfd;
944 }
945
946 /*
947 * Allocate and return a new lttng_consumer_channel object using the given key
948 * to initialize the hash table node.
949 *
950 * On error, return NULL.
951 */
952 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
953 uint64_t session_id,
954 const char *pathname,
955 const char *name,
956 uid_t uid,
957 gid_t gid,
958 uint64_t relayd_id,
959 enum lttng_event_output output,
960 uint64_t tracefile_size,
961 uint64_t tracefile_count,
962 uint64_t session_id_per_pid,
963 unsigned int monitor,
964 unsigned int live_timer_interval,
965 const char *root_shm_path,
966 const char *shm_path)
967 {
968 struct lttng_consumer_channel *channel;
969
970 channel = zmalloc(sizeof(*channel));
971 if (channel == NULL) {
972 PERROR("malloc struct lttng_consumer_channel");
973 goto end;
974 }
975
976 channel->key = key;
977 channel->refcount = 0;
978 channel->session_id = session_id;
979 channel->session_id_per_pid = session_id_per_pid;
980 channel->uid = uid;
981 channel->gid = gid;
982 channel->relayd_id = relayd_id;
983 channel->tracefile_size = tracefile_size;
984 channel->tracefile_count = tracefile_count;
985 channel->monitor = monitor;
986 channel->live_timer_interval = live_timer_interval;
987 pthread_mutex_init(&channel->lock, NULL);
988 pthread_mutex_init(&channel->timer_lock, NULL);
989
990 switch (output) {
991 case LTTNG_EVENT_SPLICE:
992 channel->output = CONSUMER_CHANNEL_SPLICE;
993 break;
994 case LTTNG_EVENT_MMAP:
995 channel->output = CONSUMER_CHANNEL_MMAP;
996 break;
997 default:
998 assert(0);
999 free(channel);
1000 channel = NULL;
1001 goto end;
1002 }
1003
1004 /*
1005 * In monitor mode, the streams associated with the channel will be put in
1006 * a special list ONLY owned by this channel. So, the refcount is set to 1
1007 * here meaning that the channel itself has streams that are referenced.
1008 *
1009 * On a channel deletion, once the channel is no longer visible, the
1010 * refcount is decremented and checked for a zero value to delete it. With
1011 * streams in no monitor mode, it will now be safe to destroy the channel.
1012 */
1013 if (!channel->monitor) {
1014 channel->refcount = 1;
1015 }
1016
1017 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1018 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1019
1020 strncpy(channel->name, name, sizeof(channel->name));
1021 channel->name[sizeof(channel->name) - 1] = '\0';
1022
1023 if (root_shm_path) {
1024 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1025 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1026 }
1027 if (shm_path) {
1028 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1029 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1030 }
1031
1032 lttng_ht_node_init_u64(&channel->node, channel->key);
1033
1034 channel->wait_fd = -1;
1035
1036 CDS_INIT_LIST_HEAD(&channel->streams.head);
1037
1038 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1039
1040 end:
1041 return channel;
1042 }
1043
1044 /*
1045 * Add a channel to the global list protected by a mutex.
1046 *
1047 * Always return 0 indicating success.
1048 */
1049 int consumer_add_channel(struct lttng_consumer_channel *channel,
1050 struct lttng_consumer_local_data *ctx)
1051 {
1052 pthread_mutex_lock(&consumer_data.lock);
1053 pthread_mutex_lock(&channel->lock);
1054 pthread_mutex_lock(&channel->timer_lock);
1055
1056 /*
1057 * This gives us a guarantee that the channel we are about to add to the
1058 * channel hash table will be unique. See this function comment on the why
1059 * we need to steel the channel key at this stage.
1060 */
1061 steal_channel_key(channel->key);
1062
1063 rcu_read_lock();
1064 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1065 rcu_read_unlock();
1066
1067 pthread_mutex_unlock(&channel->timer_lock);
1068 pthread_mutex_unlock(&channel->lock);
1069 pthread_mutex_unlock(&consumer_data.lock);
1070
1071 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1072 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1073 }
1074
1075 return 0;
1076 }
1077
1078 /*
1079 * Allocate the pollfd structure and the local view of the out fds to avoid
1080 * doing a lookup in the linked list and concurrency issues when writing is
1081 * needed. Called with consumer_data.lock held.
1082 *
1083 * Returns the number of fds in the structures.
1084 */
1085 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1086 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1087 struct lttng_ht *ht)
1088 {
1089 int i = 0;
1090 struct lttng_ht_iter iter;
1091 struct lttng_consumer_stream *stream;
1092
1093 assert(ctx);
1094 assert(ht);
1095 assert(pollfd);
1096 assert(local_stream);
1097
1098 DBG("Updating poll fd array");
1099 rcu_read_lock();
1100 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1101 /*
1102 * Only active streams with an active end point can be added to the
1103 * poll set and local stream storage of the thread.
1104 *
1105 * There is a potential race here for endpoint_status to be updated
1106 * just after the check. However, this is OK since the stream(s) will
1107 * be deleted once the thread is notified that the end point state has
1108 * changed where this function will be called back again.
1109 */
1110 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1111 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1112 continue;
1113 }
1114 /*
1115 * This clobbers way too much the debug output. Uncomment that if you
1116 * need it for debugging purposes.
1117 *
1118 * DBG("Active FD %d", stream->wait_fd);
1119 */
1120 (*pollfd)[i].fd = stream->wait_fd;
1121 (*pollfd)[i].events = POLLIN | POLLPRI;
1122 local_stream[i] = stream;
1123 i++;
1124 }
1125 rcu_read_unlock();
1126
1127 /*
1128 * Insert the consumer_data_pipe at the end of the array and don't
1129 * increment i so nb_fd is the number of real FD.
1130 */
1131 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1132 (*pollfd)[i].events = POLLIN | POLLPRI;
1133
1134 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1135 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1136 return i;
1137 }
1138
1139 /*
1140 * Poll on the should_quit pipe and the command socket return -1 on
1141 * error, 1 if should exit, 0 if data is available on the command socket
1142 */
1143 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1144 {
1145 int num_rdy;
1146
1147 restart:
1148 num_rdy = poll(consumer_sockpoll, 2, -1);
1149 if (num_rdy == -1) {
1150 /*
1151 * Restart interrupted system call.
1152 */
1153 if (errno == EINTR) {
1154 goto restart;
1155 }
1156 PERROR("Poll error");
1157 return -1;
1158 }
1159 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1160 DBG("consumer_should_quit wake up");
1161 return 1;
1162 }
1163 return 0;
1164 }
1165
1166 /*
1167 * Set the error socket.
1168 */
1169 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1170 int sock)
1171 {
1172 ctx->consumer_error_socket = sock;
1173 }
1174
1175 /*
1176 * Set the command socket path.
1177 */
1178 void lttng_consumer_set_command_sock_path(
1179 struct lttng_consumer_local_data *ctx, char *sock)
1180 {
1181 ctx->consumer_command_sock_path = sock;
1182 }
1183
1184 /*
1185 * Send return code to the session daemon.
1186 * If the socket is not defined, we return 0, it is not a fatal error
1187 */
1188 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1189 {
1190 if (ctx->consumer_error_socket > 0) {
1191 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1192 sizeof(enum lttcomm_sessiond_command));
1193 }
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Close all the tracefiles and stream fds and MUST be called when all
1200 * instances are destroyed i.e. when all threads were joined and are ended.
1201 */
1202 void lttng_consumer_cleanup(void)
1203 {
1204 struct lttng_ht_iter iter;
1205 struct lttng_consumer_channel *channel;
1206
1207 rcu_read_lock();
1208
1209 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1210 node.node) {
1211 consumer_del_channel(channel);
1212 }
1213
1214 rcu_read_unlock();
1215
1216 lttng_ht_destroy(consumer_data.channel_ht);
1217
1218 cleanup_relayd_ht();
1219
1220 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1221
1222 /*
1223 * This HT contains streams that are freed by either the metadata thread or
1224 * the data thread so we do *nothing* on the hash table and simply destroy
1225 * it.
1226 */
1227 lttng_ht_destroy(consumer_data.stream_list_ht);
1228 }
1229
1230 /*
1231 * Called from signal handler.
1232 */
1233 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1234 {
1235 ssize_t ret;
1236
1237 CMM_STORE_SHARED(consumer_quit, 1);
1238 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1239 if (ret < 1) {
1240 PERROR("write consumer quit");
1241 }
1242
1243 DBG("Consumer flag that it should quit");
1244 }
1245
1246
1247 /*
1248 * Flush pending writes to trace output disk file.
1249 */
1250 static
1251 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1252 off_t orig_offset)
1253 {
1254 int ret;
1255 int outfd = stream->out_fd;
1256
1257 /*
1258 * This does a blocking write-and-wait on any page that belongs to the
1259 * subbuffer prior to the one we just wrote.
1260 * Don't care about error values, as these are just hints and ways to
1261 * limit the amount of page cache used.
1262 */
1263 if (orig_offset < stream->max_sb_size) {
1264 return;
1265 }
1266 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1267 stream->max_sb_size,
1268 SYNC_FILE_RANGE_WAIT_BEFORE
1269 | SYNC_FILE_RANGE_WRITE
1270 | SYNC_FILE_RANGE_WAIT_AFTER);
1271 /*
1272 * Give hints to the kernel about how we access the file:
1273 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1274 * we write it.
1275 *
1276 * We need to call fadvise again after the file grows because the
1277 * kernel does not seem to apply fadvise to non-existing parts of the
1278 * file.
1279 *
1280 * Call fadvise _after_ having waited for the page writeback to
1281 * complete because the dirty page writeback semantic is not well
1282 * defined. So it can be expected to lead to lower throughput in
1283 * streaming.
1284 */
1285 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1286 stream->max_sb_size, POSIX_FADV_DONTNEED);
1287 if (ret && ret != -ENOSYS) {
1288 errno = ret;
1289 PERROR("posix_fadvise on fd %i", outfd);
1290 }
1291 }
1292
1293 /*
1294 * Initialise the necessary environnement :
1295 * - create a new context
1296 * - create the poll_pipe
1297 * - create the should_quit pipe (for signal handler)
1298 * - create the thread pipe (for splice)
1299 *
1300 * Takes a function pointer as argument, this function is called when data is
1301 * available on a buffer. This function is responsible to do the
1302 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1303 * buffer configuration and then kernctl_put_next_subbuf at the end.
1304 *
1305 * Returns a pointer to the new context or NULL on error.
1306 */
1307 struct lttng_consumer_local_data *lttng_consumer_create(
1308 enum lttng_consumer_type type,
1309 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1310 struct lttng_consumer_local_data *ctx),
1311 int (*recv_channel)(struct lttng_consumer_channel *channel),
1312 int (*recv_stream)(struct lttng_consumer_stream *stream),
1313 int (*update_stream)(uint64_t stream_key, uint32_t state))
1314 {
1315 int ret;
1316 struct lttng_consumer_local_data *ctx;
1317
1318 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1319 consumer_data.type == type);
1320 consumer_data.type = type;
1321
1322 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1323 if (ctx == NULL) {
1324 PERROR("allocating context");
1325 goto error;
1326 }
1327
1328 ctx->consumer_error_socket = -1;
1329 ctx->consumer_metadata_socket = -1;
1330 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1331 /* assign the callbacks */
1332 ctx->on_buffer_ready = buffer_ready;
1333 ctx->on_recv_channel = recv_channel;
1334 ctx->on_recv_stream = recv_stream;
1335 ctx->on_update_stream = update_stream;
1336
1337 ctx->consumer_data_pipe = lttng_pipe_open(0);
1338 if (!ctx->consumer_data_pipe) {
1339 goto error_poll_pipe;
1340 }
1341
1342 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1343 if (!ctx->consumer_wakeup_pipe) {
1344 goto error_wakeup_pipe;
1345 }
1346
1347 ret = pipe(ctx->consumer_should_quit);
1348 if (ret < 0) {
1349 PERROR("Error creating recv pipe");
1350 goto error_quit_pipe;
1351 }
1352
1353 ret = pipe(ctx->consumer_channel_pipe);
1354 if (ret < 0) {
1355 PERROR("Error creating channel pipe");
1356 goto error_channel_pipe;
1357 }
1358
1359 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1360 if (!ctx->consumer_metadata_pipe) {
1361 goto error_metadata_pipe;
1362 }
1363
1364 ctx->channel_monitor_pipe = -1;
1365
1366 return ctx;
1367
1368 error_metadata_pipe:
1369 utils_close_pipe(ctx->consumer_channel_pipe);
1370 error_channel_pipe:
1371 utils_close_pipe(ctx->consumer_should_quit);
1372 error_quit_pipe:
1373 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1374 error_wakeup_pipe:
1375 lttng_pipe_destroy(ctx->consumer_data_pipe);
1376 error_poll_pipe:
1377 free(ctx);
1378 error:
1379 return NULL;
1380 }
1381
1382 /*
1383 * Iterate over all streams of the hashtable and free them properly.
1384 */
1385 static void destroy_data_stream_ht(struct lttng_ht *ht)
1386 {
1387 struct lttng_ht_iter iter;
1388 struct lttng_consumer_stream *stream;
1389
1390 if (ht == NULL) {
1391 return;
1392 }
1393
1394 rcu_read_lock();
1395 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1396 /*
1397 * Ignore return value since we are currently cleaning up so any error
1398 * can't be handled.
1399 */
1400 (void) consumer_del_stream(stream, ht);
1401 }
1402 rcu_read_unlock();
1403
1404 lttng_ht_destroy(ht);
1405 }
1406
1407 /*
1408 * Iterate over all streams of the metadata hashtable and free them
1409 * properly.
1410 */
1411 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1412 {
1413 struct lttng_ht_iter iter;
1414 struct lttng_consumer_stream *stream;
1415
1416 if (ht == NULL) {
1417 return;
1418 }
1419
1420 rcu_read_lock();
1421 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1422 /*
1423 * Ignore return value since we are currently cleaning up so any error
1424 * can't be handled.
1425 */
1426 (void) consumer_del_metadata_stream(stream, ht);
1427 }
1428 rcu_read_unlock();
1429
1430 lttng_ht_destroy(ht);
1431 }
1432
1433 /*
1434 * Close all fds associated with the instance and free the context.
1435 */
1436 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1437 {
1438 int ret;
1439
1440 DBG("Consumer destroying it. Closing everything.");
1441
1442 if (!ctx) {
1443 return;
1444 }
1445
1446 destroy_data_stream_ht(data_ht);
1447 destroy_metadata_stream_ht(metadata_ht);
1448
1449 ret = close(ctx->consumer_error_socket);
1450 if (ret) {
1451 PERROR("close");
1452 }
1453 ret = close(ctx->consumer_metadata_socket);
1454 if (ret) {
1455 PERROR("close");
1456 }
1457 utils_close_pipe(ctx->consumer_channel_pipe);
1458 lttng_pipe_destroy(ctx->consumer_data_pipe);
1459 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1460 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1461 utils_close_pipe(ctx->consumer_should_quit);
1462
1463 unlink(ctx->consumer_command_sock_path);
1464 free(ctx);
1465 }
1466
1467 /*
1468 * Write the metadata stream id on the specified file descriptor.
1469 */
1470 static int write_relayd_metadata_id(int fd,
1471 struct lttng_consumer_stream *stream,
1472 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1473 {
1474 ssize_t ret;
1475 struct lttcomm_relayd_metadata_payload hdr;
1476
1477 hdr.stream_id = htobe64(stream->relayd_stream_id);
1478 hdr.padding_size = htobe32(padding);
1479 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1480 if (ret < sizeof(hdr)) {
1481 /*
1482 * This error means that the fd's end is closed so ignore the PERROR
1483 * not to clubber the error output since this can happen in a normal
1484 * code path.
1485 */
1486 if (errno != EPIPE) {
1487 PERROR("write metadata stream id");
1488 }
1489 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1490 /*
1491 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1492 * handle writting the missing part so report that as an error and
1493 * don't lie to the caller.
1494 */
1495 ret = -1;
1496 goto end;
1497 }
1498 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1499 stream->relayd_stream_id, padding);
1500
1501 end:
1502 return (int) ret;
1503 }
1504
1505 /*
1506 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1507 * core function for writing trace buffers to either the local filesystem or
1508 * the network.
1509 *
1510 * It must be called with the stream lock held.
1511 *
1512 * Careful review MUST be put if any changes occur!
1513 *
1514 * Returns the number of bytes written
1515 */
1516 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1517 struct lttng_consumer_local_data *ctx,
1518 struct lttng_consumer_stream *stream, unsigned long len,
1519 unsigned long padding,
1520 struct ctf_packet_index *index)
1521 {
1522 unsigned long mmap_offset;
1523 void *mmap_base;
1524 ssize_t ret = 0;
1525 off_t orig_offset = stream->out_fd_offset;
1526 /* Default is on the disk */
1527 int outfd = stream->out_fd;
1528 struct consumer_relayd_sock_pair *relayd = NULL;
1529 unsigned int relayd_hang_up = 0;
1530
1531 /* RCU lock for the relayd pointer */
1532 rcu_read_lock();
1533
1534 /* Flag that the current stream if set for network streaming. */
1535 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1536 relayd = consumer_find_relayd(stream->net_seq_idx);
1537 if (relayd == NULL) {
1538 ret = -EPIPE;
1539 goto end;
1540 }
1541 }
1542
1543 /* get the offset inside the fd to mmap */
1544 switch (consumer_data.type) {
1545 case LTTNG_CONSUMER_KERNEL:
1546 mmap_base = stream->mmap_base;
1547 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1548 if (ret < 0) {
1549 PERROR("tracer ctl get_mmap_read_offset");
1550 goto end;
1551 }
1552 break;
1553 case LTTNG_CONSUMER32_UST:
1554 case LTTNG_CONSUMER64_UST:
1555 mmap_base = lttng_ustctl_get_mmap_base(stream);
1556 if (!mmap_base) {
1557 ERR("read mmap get mmap base for stream %s", stream->name);
1558 ret = -EPERM;
1559 goto end;
1560 }
1561 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1562 if (ret != 0) {
1563 PERROR("tracer ctl get_mmap_read_offset");
1564 ret = -EINVAL;
1565 goto end;
1566 }
1567 break;
1568 default:
1569 ERR("Unknown consumer_data type");
1570 assert(0);
1571 }
1572
1573 /* Handle stream on the relayd if the output is on the network */
1574 if (relayd) {
1575 unsigned long netlen = len;
1576
1577 /*
1578 * Lock the control socket for the complete duration of the function
1579 * since from this point on we will use the socket.
1580 */
1581 if (stream->metadata_flag) {
1582 /* Metadata requires the control socket. */
1583 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1584 if (stream->reset_metadata_flag) {
1585 ret = relayd_reset_metadata(&relayd->control_sock,
1586 stream->relayd_stream_id,
1587 stream->metadata_version);
1588 if (ret < 0) {
1589 relayd_hang_up = 1;
1590 goto write_error;
1591 }
1592 stream->reset_metadata_flag = 0;
1593 }
1594 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1595 }
1596
1597 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1598 if (ret < 0) {
1599 relayd_hang_up = 1;
1600 goto write_error;
1601 }
1602 /* Use the returned socket. */
1603 outfd = ret;
1604
1605 /* Write metadata stream id before payload */
1606 if (stream->metadata_flag) {
1607 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1608 if (ret < 0) {
1609 relayd_hang_up = 1;
1610 goto write_error;
1611 }
1612 }
1613 } else {
1614 /* No streaming, we have to set the len with the full padding */
1615 len += padding;
1616
1617 if (stream->metadata_flag && stream->reset_metadata_flag) {
1618 ret = utils_truncate_stream_file(stream->out_fd, 0);
1619 if (ret < 0) {
1620 ERR("Reset metadata file");
1621 goto end;
1622 }
1623 stream->reset_metadata_flag = 0;
1624 }
1625
1626 /*
1627 * Check if we need to change the tracefile before writing the packet.
1628 */
1629 if (stream->chan->tracefile_size > 0 &&
1630 (stream->tracefile_size_current + len) >
1631 stream->chan->tracefile_size) {
1632 ret = utils_rotate_stream_file(stream->chan->pathname,
1633 stream->name, stream->chan->tracefile_size,
1634 stream->chan->tracefile_count, stream->uid, stream->gid,
1635 stream->out_fd, &(stream->tracefile_count_current),
1636 &stream->out_fd);
1637 if (ret < 0) {
1638 ERR("Rotating output file");
1639 goto end;
1640 }
1641 outfd = stream->out_fd;
1642
1643 if (stream->index_file) {
1644 lttng_index_file_put(stream->index_file);
1645 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1646 stream->name, stream->uid, stream->gid,
1647 stream->chan->tracefile_size,
1648 stream->tracefile_count_current,
1649 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1650 if (!stream->index_file) {
1651 goto end;
1652 }
1653 }
1654
1655 /* Reset current size because we just perform a rotation. */
1656 stream->tracefile_size_current = 0;
1657 stream->out_fd_offset = 0;
1658 orig_offset = 0;
1659 }
1660 stream->tracefile_size_current += len;
1661 if (index) {
1662 index->offset = htobe64(stream->out_fd_offset);
1663 }
1664 }
1665
1666 /*
1667 * This call guarantee that len or less is returned. It's impossible to
1668 * receive a ret value that is bigger than len.
1669 */
1670 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1671 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1672 if (ret < 0 || ((size_t) ret != len)) {
1673 /*
1674 * Report error to caller if nothing was written else at least send the
1675 * amount written.
1676 */
1677 if (ret < 0) {
1678 ret = -errno;
1679 }
1680 relayd_hang_up = 1;
1681
1682 /* Socket operation failed. We consider the relayd dead */
1683 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1684 /*
1685 * This is possible if the fd is closed on the other side
1686 * (outfd) or any write problem. It can be verbose a bit for a
1687 * normal execution if for instance the relayd is stopped
1688 * abruptly. This can happen so set this to a DBG statement.
1689 */
1690 DBG("Consumer mmap write detected relayd hang up");
1691 } else {
1692 /* Unhandled error, print it and stop function right now. */
1693 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1694 }
1695 goto write_error;
1696 }
1697 stream->output_written += ret;
1698
1699 /* This call is useless on a socket so better save a syscall. */
1700 if (!relayd) {
1701 /* This won't block, but will start writeout asynchronously */
1702 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1703 SYNC_FILE_RANGE_WRITE);
1704 stream->out_fd_offset += len;
1705 lttng_consumer_sync_trace_file(stream, orig_offset);
1706 }
1707
1708 write_error:
1709 /*
1710 * This is a special case that the relayd has closed its socket. Let's
1711 * cleanup the relayd object and all associated streams.
1712 */
1713 if (relayd && relayd_hang_up) {
1714 cleanup_relayd(relayd, ctx);
1715 }
1716
1717 end:
1718 /* Unlock only if ctrl socket used */
1719 if (relayd && stream->metadata_flag) {
1720 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1721 }
1722
1723 rcu_read_unlock();
1724 return ret;
1725 }
1726
1727 /*
1728 * Splice the data from the ring buffer to the tracefile.
1729 *
1730 * It must be called with the stream lock held.
1731 *
1732 * Returns the number of bytes spliced.
1733 */
1734 ssize_t lttng_consumer_on_read_subbuffer_splice(
1735 struct lttng_consumer_local_data *ctx,
1736 struct lttng_consumer_stream *stream, unsigned long len,
1737 unsigned long padding,
1738 struct ctf_packet_index *index)
1739 {
1740 ssize_t ret = 0, written = 0, ret_splice = 0;
1741 loff_t offset = 0;
1742 off_t orig_offset = stream->out_fd_offset;
1743 int fd = stream->wait_fd;
1744 /* Default is on the disk */
1745 int outfd = stream->out_fd;
1746 struct consumer_relayd_sock_pair *relayd = NULL;
1747 int *splice_pipe;
1748 unsigned int relayd_hang_up = 0;
1749
1750 switch (consumer_data.type) {
1751 case LTTNG_CONSUMER_KERNEL:
1752 break;
1753 case LTTNG_CONSUMER32_UST:
1754 case LTTNG_CONSUMER64_UST:
1755 /* Not supported for user space tracing */
1756 return -ENOSYS;
1757 default:
1758 ERR("Unknown consumer_data type");
1759 assert(0);
1760 }
1761
1762 /* RCU lock for the relayd pointer */
1763 rcu_read_lock();
1764
1765 /* Flag that the current stream if set for network streaming. */
1766 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1767 relayd = consumer_find_relayd(stream->net_seq_idx);
1768 if (relayd == NULL) {
1769 written = -ret;
1770 goto end;
1771 }
1772 }
1773 splice_pipe = stream->splice_pipe;
1774
1775 /* Write metadata stream id before payload */
1776 if (relayd) {
1777 unsigned long total_len = len;
1778
1779 if (stream->metadata_flag) {
1780 /*
1781 * Lock the control socket for the complete duration of the function
1782 * since from this point on we will use the socket.
1783 */
1784 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1785
1786 if (stream->reset_metadata_flag) {
1787 ret = relayd_reset_metadata(&relayd->control_sock,
1788 stream->relayd_stream_id,
1789 stream->metadata_version);
1790 if (ret < 0) {
1791 relayd_hang_up = 1;
1792 goto write_error;
1793 }
1794 stream->reset_metadata_flag = 0;
1795 }
1796 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1797 padding);
1798 if (ret < 0) {
1799 written = ret;
1800 relayd_hang_up = 1;
1801 goto write_error;
1802 }
1803
1804 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1805 }
1806
1807 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1808 if (ret < 0) {
1809 written = ret;
1810 relayd_hang_up = 1;
1811 goto write_error;
1812 }
1813 /* Use the returned socket. */
1814 outfd = ret;
1815 } else {
1816 /* No streaming, we have to set the len with the full padding */
1817 len += padding;
1818
1819 if (stream->metadata_flag && stream->reset_metadata_flag) {
1820 ret = utils_truncate_stream_file(stream->out_fd, 0);
1821 if (ret < 0) {
1822 ERR("Reset metadata file");
1823 goto end;
1824 }
1825 stream->reset_metadata_flag = 0;
1826 }
1827 /*
1828 * Check if we need to change the tracefile before writing the packet.
1829 */
1830 if (stream->chan->tracefile_size > 0 &&
1831 (stream->tracefile_size_current + len) >
1832 stream->chan->tracefile_size) {
1833 ret = utils_rotate_stream_file(stream->chan->pathname,
1834 stream->name, stream->chan->tracefile_size,
1835 stream->chan->tracefile_count, stream->uid, stream->gid,
1836 stream->out_fd, &(stream->tracefile_count_current),
1837 &stream->out_fd);
1838 if (ret < 0) {
1839 written = ret;
1840 ERR("Rotating output file");
1841 goto end;
1842 }
1843 outfd = stream->out_fd;
1844
1845 if (stream->index_file) {
1846 lttng_index_file_put(stream->index_file);
1847 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1848 stream->name, stream->uid, stream->gid,
1849 stream->chan->tracefile_size,
1850 stream->tracefile_count_current,
1851 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1852 if (!stream->index_file) {
1853 goto end;
1854 }
1855 }
1856
1857 /* Reset current size because we just perform a rotation. */
1858 stream->tracefile_size_current = 0;
1859 stream->out_fd_offset = 0;
1860 orig_offset = 0;
1861 }
1862 stream->tracefile_size_current += len;
1863 index->offset = htobe64(stream->out_fd_offset);
1864 }
1865
1866 while (len > 0) {
1867 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1868 (unsigned long)offset, len, fd, splice_pipe[1]);
1869 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1870 SPLICE_F_MOVE | SPLICE_F_MORE);
1871 DBG("splice chan to pipe, ret %zd", ret_splice);
1872 if (ret_splice < 0) {
1873 ret = errno;
1874 written = -ret;
1875 PERROR("Error in relay splice");
1876 goto splice_error;
1877 }
1878
1879 /* Handle stream on the relayd if the output is on the network */
1880 if (relayd && stream->metadata_flag) {
1881 size_t metadata_payload_size =
1882 sizeof(struct lttcomm_relayd_metadata_payload);
1883
1884 /* Update counter to fit the spliced data */
1885 ret_splice += metadata_payload_size;
1886 len += metadata_payload_size;
1887 /*
1888 * We do this so the return value can match the len passed as
1889 * argument to this function.
1890 */
1891 written -= metadata_payload_size;
1892 }
1893
1894 /* Splice data out */
1895 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1896 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1897 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1898 outfd, ret_splice);
1899 if (ret_splice < 0) {
1900 ret = errno;
1901 written = -ret;
1902 relayd_hang_up = 1;
1903 goto write_error;
1904 } else if (ret_splice > len) {
1905 /*
1906 * We don't expect this code path to be executed but you never know
1907 * so this is an extra protection agains a buggy splice().
1908 */
1909 ret = errno;
1910 written += ret_splice;
1911 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1912 len);
1913 goto splice_error;
1914 } else {
1915 /* All good, update current len and continue. */
1916 len -= ret_splice;
1917 }
1918
1919 /* This call is useless on a socket so better save a syscall. */
1920 if (!relayd) {
1921 /* This won't block, but will start writeout asynchronously */
1922 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1923 SYNC_FILE_RANGE_WRITE);
1924 stream->out_fd_offset += ret_splice;
1925 }
1926 stream->output_written += ret_splice;
1927 written += ret_splice;
1928 }
1929 if (!relayd) {
1930 lttng_consumer_sync_trace_file(stream, orig_offset);
1931 }
1932 goto end;
1933
1934 write_error:
1935 /*
1936 * This is a special case that the relayd has closed its socket. Let's
1937 * cleanup the relayd object and all associated streams.
1938 */
1939 if (relayd && relayd_hang_up) {
1940 cleanup_relayd(relayd, ctx);
1941 /* Skip splice error so the consumer does not fail */
1942 goto end;
1943 }
1944
1945 splice_error:
1946 /* send the appropriate error description to sessiond */
1947 switch (ret) {
1948 case EINVAL:
1949 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1950 break;
1951 case ENOMEM:
1952 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1953 break;
1954 case ESPIPE:
1955 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1956 break;
1957 }
1958
1959 end:
1960 if (relayd && stream->metadata_flag) {
1961 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1962 }
1963
1964 rcu_read_unlock();
1965 return written;
1966 }
1967
1968 /*
1969 * Sample the snapshot positions for a specific fd
1970 *
1971 * Returns 0 on success, < 0 on error
1972 */
1973 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
1974 {
1975 switch (consumer_data.type) {
1976 case LTTNG_CONSUMER_KERNEL:
1977 return lttng_kconsumer_sample_snapshot_positions(stream);
1978 case LTTNG_CONSUMER32_UST:
1979 case LTTNG_CONSUMER64_UST:
1980 return lttng_ustconsumer_sample_snapshot_positions(stream);
1981 default:
1982 ERR("Unknown consumer_data type");
1983 assert(0);
1984 return -ENOSYS;
1985 }
1986 }
1987 /*
1988 * Take a snapshot for a specific fd
1989 *
1990 * Returns 0 on success, < 0 on error
1991 */
1992 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1993 {
1994 switch (consumer_data.type) {
1995 case LTTNG_CONSUMER_KERNEL:
1996 return lttng_kconsumer_take_snapshot(stream);
1997 case LTTNG_CONSUMER32_UST:
1998 case LTTNG_CONSUMER64_UST:
1999 return lttng_ustconsumer_take_snapshot(stream);
2000 default:
2001 ERR("Unknown consumer_data type");
2002 assert(0);
2003 return -ENOSYS;
2004 }
2005 }
2006
2007 /*
2008 * Get the produced position
2009 *
2010 * Returns 0 on success, < 0 on error
2011 */
2012 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2013 unsigned long *pos)
2014 {
2015 switch (consumer_data.type) {
2016 case LTTNG_CONSUMER_KERNEL:
2017 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2018 case LTTNG_CONSUMER32_UST:
2019 case LTTNG_CONSUMER64_UST:
2020 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2021 default:
2022 ERR("Unknown consumer_data type");
2023 assert(0);
2024 return -ENOSYS;
2025 }
2026 }
2027
2028 /*
2029 * Get the consumed position
2030 *
2031 * Returns 0 on success, < 0 on error
2032 */
2033 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2034 unsigned long *pos)
2035 {
2036 switch (consumer_data.type) {
2037 case LTTNG_CONSUMER_KERNEL:
2038 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2039 case LTTNG_CONSUMER32_UST:
2040 case LTTNG_CONSUMER64_UST:
2041 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2042 default:
2043 ERR("Unknown consumer_data type");
2044 assert(0);
2045 return -ENOSYS;
2046 }
2047 }
2048
2049 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2050 int sock, struct pollfd *consumer_sockpoll)
2051 {
2052 switch (consumer_data.type) {
2053 case LTTNG_CONSUMER_KERNEL:
2054 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2055 case LTTNG_CONSUMER32_UST:
2056 case LTTNG_CONSUMER64_UST:
2057 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2058 default:
2059 ERR("Unknown consumer_data type");
2060 assert(0);
2061 return -ENOSYS;
2062 }
2063 }
2064
2065 void lttng_consumer_close_all_metadata(void)
2066 {
2067 switch (consumer_data.type) {
2068 case LTTNG_CONSUMER_KERNEL:
2069 /*
2070 * The Kernel consumer has a different metadata scheme so we don't
2071 * close anything because the stream will be closed by the session
2072 * daemon.
2073 */
2074 break;
2075 case LTTNG_CONSUMER32_UST:
2076 case LTTNG_CONSUMER64_UST:
2077 /*
2078 * Close all metadata streams. The metadata hash table is passed and
2079 * this call iterates over it by closing all wakeup fd. This is safe
2080 * because at this point we are sure that the metadata producer is
2081 * either dead or blocked.
2082 */
2083 lttng_ustconsumer_close_all_metadata(metadata_ht);
2084 break;
2085 default:
2086 ERR("Unknown consumer_data type");
2087 assert(0);
2088 }
2089 }
2090
2091 /*
2092 * Clean up a metadata stream and free its memory.
2093 */
2094 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2095 struct lttng_ht *ht)
2096 {
2097 struct lttng_consumer_channel *free_chan = NULL;
2098
2099 assert(stream);
2100 /*
2101 * This call should NEVER receive regular stream. It must always be
2102 * metadata stream and this is crucial for data structure synchronization.
2103 */
2104 assert(stream->metadata_flag);
2105
2106 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2107
2108 pthread_mutex_lock(&consumer_data.lock);
2109 pthread_mutex_lock(&stream->chan->lock);
2110 pthread_mutex_lock(&stream->lock);
2111 if (stream->chan->metadata_cache) {
2112 /* Only applicable to userspace consumers. */
2113 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2114 }
2115
2116 /* Remove any reference to that stream. */
2117 consumer_stream_delete(stream, ht);
2118
2119 /* Close down everything including the relayd if one. */
2120 consumer_stream_close(stream);
2121 /* Destroy tracer buffers of the stream. */
2122 consumer_stream_destroy_buffers(stream);
2123
2124 /* Atomically decrement channel refcount since other threads can use it. */
2125 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2126 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2127 /* Go for channel deletion! */
2128 free_chan = stream->chan;
2129 }
2130
2131 /*
2132 * Nullify the stream reference so it is not used after deletion. The
2133 * channel lock MUST be acquired before being able to check for a NULL
2134 * pointer value.
2135 */
2136 stream->chan->metadata_stream = NULL;
2137
2138 if (stream->chan->metadata_cache) {
2139 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2140 }
2141 pthread_mutex_unlock(&stream->lock);
2142 pthread_mutex_unlock(&stream->chan->lock);
2143 pthread_mutex_unlock(&consumer_data.lock);
2144
2145 if (free_chan) {
2146 consumer_del_channel(free_chan);
2147 }
2148
2149 consumer_stream_free(stream);
2150 }
2151
2152 /*
2153 * Action done with the metadata stream when adding it to the consumer internal
2154 * data structures to handle it.
2155 */
2156 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2157 {
2158 struct lttng_ht *ht = metadata_ht;
2159 int ret = 0;
2160 struct lttng_ht_iter iter;
2161 struct lttng_ht_node_u64 *node;
2162
2163 assert(stream);
2164 assert(ht);
2165
2166 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2167
2168 pthread_mutex_lock(&consumer_data.lock);
2169 pthread_mutex_lock(&stream->chan->lock);
2170 pthread_mutex_lock(&stream->chan->timer_lock);
2171 pthread_mutex_lock(&stream->lock);
2172
2173 /*
2174 * From here, refcounts are updated so be _careful_ when returning an error
2175 * after this point.
2176 */
2177
2178 rcu_read_lock();
2179
2180 /*
2181 * Lookup the stream just to make sure it does not exist in our internal
2182 * state. This should NEVER happen.
2183 */
2184 lttng_ht_lookup(ht, &stream->key, &iter);
2185 node = lttng_ht_iter_get_node_u64(&iter);
2186 assert(!node);
2187
2188 /*
2189 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2190 * in terms of destroying the associated channel, because the action that
2191 * causes the count to become 0 also causes a stream to be added. The
2192 * channel deletion will thus be triggered by the following removal of this
2193 * stream.
2194 */
2195 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2196 /* Increment refcount before decrementing nb_init_stream_left */
2197 cmm_smp_wmb();
2198 uatomic_dec(&stream->chan->nb_init_stream_left);
2199 }
2200
2201 lttng_ht_add_unique_u64(ht, &stream->node);
2202
2203 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2204 &stream->node_channel_id);
2205
2206 /*
2207 * Add stream to the stream_list_ht of the consumer data. No need to steal
2208 * the key since the HT does not use it and we allow to add redundant keys
2209 * into this table.
2210 */
2211 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2212
2213 rcu_read_unlock();
2214
2215 pthread_mutex_unlock(&stream->lock);
2216 pthread_mutex_unlock(&stream->chan->lock);
2217 pthread_mutex_unlock(&stream->chan->timer_lock);
2218 pthread_mutex_unlock(&consumer_data.lock);
2219 return ret;
2220 }
2221
2222 /*
2223 * Delete data stream that are flagged for deletion (endpoint_status).
2224 */
2225 static void validate_endpoint_status_data_stream(void)
2226 {
2227 struct lttng_ht_iter iter;
2228 struct lttng_consumer_stream *stream;
2229
2230 DBG("Consumer delete flagged data stream");
2231
2232 rcu_read_lock();
2233 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2234 /* Validate delete flag of the stream */
2235 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2236 continue;
2237 }
2238 /* Delete it right now */
2239 consumer_del_stream(stream, data_ht);
2240 }
2241 rcu_read_unlock();
2242 }
2243
2244 /*
2245 * Delete metadata stream that are flagged for deletion (endpoint_status).
2246 */
2247 static void validate_endpoint_status_metadata_stream(
2248 struct lttng_poll_event *pollset)
2249 {
2250 struct lttng_ht_iter iter;
2251 struct lttng_consumer_stream *stream;
2252
2253 DBG("Consumer delete flagged metadata stream");
2254
2255 assert(pollset);
2256
2257 rcu_read_lock();
2258 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2259 /* Validate delete flag of the stream */
2260 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2261 continue;
2262 }
2263 /*
2264 * Remove from pollset so the metadata thread can continue without
2265 * blocking on a deleted stream.
2266 */
2267 lttng_poll_del(pollset, stream->wait_fd);
2268
2269 /* Delete it right now */
2270 consumer_del_metadata_stream(stream, metadata_ht);
2271 }
2272 rcu_read_unlock();
2273 }
2274
2275 /*
2276 * Thread polls on metadata file descriptor and write them on disk or on the
2277 * network.
2278 */
2279 void *consumer_thread_metadata_poll(void *data)
2280 {
2281 int ret, i, pollfd, err = -1;
2282 uint32_t revents, nb_fd;
2283 struct lttng_consumer_stream *stream = NULL;
2284 struct lttng_ht_iter iter;
2285 struct lttng_ht_node_u64 *node;
2286 struct lttng_poll_event events;
2287 struct lttng_consumer_local_data *ctx = data;
2288 ssize_t len;
2289
2290 rcu_register_thread();
2291
2292 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2293
2294 if (testpoint(consumerd_thread_metadata)) {
2295 goto error_testpoint;
2296 }
2297
2298 health_code_update();
2299
2300 DBG("Thread metadata poll started");
2301
2302 /* Size is set to 1 for the consumer_metadata pipe */
2303 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2304 if (ret < 0) {
2305 ERR("Poll set creation failed");
2306 goto end_poll;
2307 }
2308
2309 ret = lttng_poll_add(&events,
2310 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2311 if (ret < 0) {
2312 goto end;
2313 }
2314
2315 /* Main loop */
2316 DBG("Metadata main loop started");
2317
2318 while (1) {
2319 restart:
2320 health_code_update();
2321 health_poll_entry();
2322 DBG("Metadata poll wait");
2323 ret = lttng_poll_wait(&events, -1);
2324 DBG("Metadata poll return from wait with %d fd(s)",
2325 LTTNG_POLL_GETNB(&events));
2326 health_poll_exit();
2327 DBG("Metadata event caught in thread");
2328 if (ret < 0) {
2329 if (errno == EINTR) {
2330 ERR("Poll EINTR caught");
2331 goto restart;
2332 }
2333 if (LTTNG_POLL_GETNB(&events) == 0) {
2334 err = 0; /* All is OK */
2335 }
2336 goto end;
2337 }
2338
2339 nb_fd = ret;
2340
2341 /* From here, the event is a metadata wait fd */
2342 for (i = 0; i < nb_fd; i++) {
2343 health_code_update();
2344
2345 revents = LTTNG_POLL_GETEV(&events, i);
2346 pollfd = LTTNG_POLL_GETFD(&events, i);
2347
2348 if (!revents) {
2349 /* No activity for this FD (poll implementation). */
2350 continue;
2351 }
2352
2353 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2354 if (revents & LPOLLIN) {
2355 ssize_t pipe_len;
2356
2357 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2358 &stream, sizeof(stream));
2359 if (pipe_len < sizeof(stream)) {
2360 if (pipe_len < 0) {
2361 PERROR("read metadata stream");
2362 }
2363 /*
2364 * Remove the pipe from the poll set and continue the loop
2365 * since their might be data to consume.
2366 */
2367 lttng_poll_del(&events,
2368 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2369 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2370 continue;
2371 }
2372
2373 /* A NULL stream means that the state has changed. */
2374 if (stream == NULL) {
2375 /* Check for deleted streams. */
2376 validate_endpoint_status_metadata_stream(&events);
2377 goto restart;
2378 }
2379
2380 DBG("Adding metadata stream %d to poll set",
2381 stream->wait_fd);
2382
2383 /* Add metadata stream to the global poll events list */
2384 lttng_poll_add(&events, stream->wait_fd,
2385 LPOLLIN | LPOLLPRI | LPOLLHUP);
2386 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2387 DBG("Metadata thread pipe hung up");
2388 /*
2389 * Remove the pipe from the poll set and continue the loop
2390 * since their might be data to consume.
2391 */
2392 lttng_poll_del(&events,
2393 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2394 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2395 continue;
2396 } else {
2397 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2398 goto end;
2399 }
2400
2401 /* Handle other stream */
2402 continue;
2403 }
2404
2405 rcu_read_lock();
2406 {
2407 uint64_t tmp_id = (uint64_t) pollfd;
2408
2409 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2410 }
2411 node = lttng_ht_iter_get_node_u64(&iter);
2412 assert(node);
2413
2414 stream = caa_container_of(node, struct lttng_consumer_stream,
2415 node);
2416
2417 if (revents & (LPOLLIN | LPOLLPRI)) {
2418 /* Get the data out of the metadata file descriptor */
2419 DBG("Metadata available on fd %d", pollfd);
2420 assert(stream->wait_fd == pollfd);
2421
2422 do {
2423 health_code_update();
2424
2425 len = ctx->on_buffer_ready(stream, ctx);
2426 /*
2427 * We don't check the return value here since if we get
2428 * a negative len, it means an error occurred thus we
2429 * simply remove it from the poll set and free the
2430 * stream.
2431 */
2432 } while (len > 0);
2433
2434 /* It's ok to have an unavailable sub-buffer */
2435 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2436 /* Clean up stream from consumer and free it. */
2437 lttng_poll_del(&events, stream->wait_fd);
2438 consumer_del_metadata_stream(stream, metadata_ht);
2439 }
2440 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2441 DBG("Metadata fd %d is hup|err.", pollfd);
2442 if (!stream->hangup_flush_done
2443 && (consumer_data.type == LTTNG_CONSUMER32_UST
2444 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2445 DBG("Attempting to flush and consume the UST buffers");
2446 lttng_ustconsumer_on_stream_hangup(stream);
2447
2448 /* We just flushed the stream now read it. */
2449 do {
2450 health_code_update();
2451
2452 len = ctx->on_buffer_ready(stream, ctx);
2453 /*
2454 * We don't check the return value here since if we get
2455 * a negative len, it means an error occurred thus we
2456 * simply remove it from the poll set and free the
2457 * stream.
2458 */
2459 } while (len > 0);
2460 }
2461
2462 lttng_poll_del(&events, stream->wait_fd);
2463 /*
2464 * This call update the channel states, closes file descriptors
2465 * and securely free the stream.
2466 */
2467 consumer_del_metadata_stream(stream, metadata_ht);
2468 } else {
2469 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2470 rcu_read_unlock();
2471 goto end;
2472 }
2473 /* Release RCU lock for the stream looked up */
2474 rcu_read_unlock();
2475 }
2476 }
2477
2478 /* All is OK */
2479 err = 0;
2480 end:
2481 DBG("Metadata poll thread exiting");
2482
2483 lttng_poll_clean(&events);
2484 end_poll:
2485 error_testpoint:
2486 if (err) {
2487 health_error();
2488 ERR("Health error occurred in %s", __func__);
2489 }
2490 health_unregister(health_consumerd);
2491 rcu_unregister_thread();
2492 return NULL;
2493 }
2494
2495 /*
2496 * This thread polls the fds in the set to consume the data and write
2497 * it to tracefile if necessary.
2498 */
2499 void *consumer_thread_data_poll(void *data)
2500 {
2501 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2502 struct pollfd *pollfd = NULL;
2503 /* local view of the streams */
2504 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2505 /* local view of consumer_data.fds_count */
2506 int nb_fd = 0;
2507 struct lttng_consumer_local_data *ctx = data;
2508 ssize_t len;
2509
2510 rcu_register_thread();
2511
2512 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2513
2514 if (testpoint(consumerd_thread_data)) {
2515 goto error_testpoint;
2516 }
2517
2518 health_code_update();
2519
2520 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2521 if (local_stream == NULL) {
2522 PERROR("local_stream malloc");
2523 goto end;
2524 }
2525
2526 while (1) {
2527 health_code_update();
2528
2529 high_prio = 0;
2530 num_hup = 0;
2531
2532 /*
2533 * the fds set has been updated, we need to update our
2534 * local array as well
2535 */
2536 pthread_mutex_lock(&consumer_data.lock);
2537 if (consumer_data.need_update) {
2538 free(pollfd);
2539 pollfd = NULL;
2540
2541 free(local_stream);
2542 local_stream = NULL;
2543
2544 /*
2545 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2546 * wake up pipe.
2547 */
2548 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2549 if (pollfd == NULL) {
2550 PERROR("pollfd malloc");
2551 pthread_mutex_unlock(&consumer_data.lock);
2552 goto end;
2553 }
2554
2555 local_stream = zmalloc((consumer_data.stream_count + 2) *
2556 sizeof(struct lttng_consumer_stream *));
2557 if (local_stream == NULL) {
2558 PERROR("local_stream malloc");
2559 pthread_mutex_unlock(&consumer_data.lock);
2560 goto end;
2561 }
2562 ret = update_poll_array(ctx, &pollfd, local_stream,
2563 data_ht);
2564 if (ret < 0) {
2565 ERR("Error in allocating pollfd or local_outfds");
2566 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2567 pthread_mutex_unlock(&consumer_data.lock);
2568 goto end;
2569 }
2570 nb_fd = ret;
2571 consumer_data.need_update = 0;
2572 }
2573 pthread_mutex_unlock(&consumer_data.lock);
2574
2575 /* No FDs and consumer_quit, consumer_cleanup the thread */
2576 if (nb_fd == 0 && CMM_LOAD_SHARED(consumer_quit) == 1) {
2577 err = 0; /* All is OK */
2578 goto end;
2579 }
2580 /* poll on the array of fds */
2581 restart:
2582 DBG("polling on %d fd", nb_fd + 2);
2583 if (testpoint(consumerd_thread_data_poll)) {
2584 goto end;
2585 }
2586 health_poll_entry();
2587 num_rdy = poll(pollfd, nb_fd + 2, -1);
2588 health_poll_exit();
2589 DBG("poll num_rdy : %d", num_rdy);
2590 if (num_rdy == -1) {
2591 /*
2592 * Restart interrupted system call.
2593 */
2594 if (errno == EINTR) {
2595 goto restart;
2596 }
2597 PERROR("Poll error");
2598 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2599 goto end;
2600 } else if (num_rdy == 0) {
2601 DBG("Polling thread timed out");
2602 goto end;
2603 }
2604
2605 if (caa_unlikely(data_consumption_paused)) {
2606 DBG("Data consumption paused, sleeping...");
2607 sleep(1);
2608 goto restart;
2609 }
2610
2611 /*
2612 * If the consumer_data_pipe triggered poll go directly to the
2613 * beginning of the loop to update the array. We want to prioritize
2614 * array update over low-priority reads.
2615 */
2616 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2617 ssize_t pipe_readlen;
2618
2619 DBG("consumer_data_pipe wake up");
2620 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2621 &new_stream, sizeof(new_stream));
2622 if (pipe_readlen < sizeof(new_stream)) {
2623 PERROR("Consumer data pipe");
2624 /* Continue so we can at least handle the current stream(s). */
2625 continue;
2626 }
2627
2628 /*
2629 * If the stream is NULL, just ignore it. It's also possible that
2630 * the sessiond poll thread changed the consumer_quit state and is
2631 * waking us up to test it.
2632 */
2633 if (new_stream == NULL) {
2634 validate_endpoint_status_data_stream();
2635 continue;
2636 }
2637
2638 /* Continue to update the local streams and handle prio ones */
2639 continue;
2640 }
2641
2642 /* Handle wakeup pipe. */
2643 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2644 char dummy;
2645 ssize_t pipe_readlen;
2646
2647 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2648 sizeof(dummy));
2649 if (pipe_readlen < 0) {
2650 PERROR("Consumer data wakeup pipe");
2651 }
2652 /* We've been awakened to handle stream(s). */
2653 ctx->has_wakeup = 0;
2654 }
2655
2656 /* Take care of high priority channels first. */
2657 for (i = 0; i < nb_fd; i++) {
2658 health_code_update();
2659
2660 if (local_stream[i] == NULL) {
2661 continue;
2662 }
2663 if (pollfd[i].revents & POLLPRI) {
2664 DBG("Urgent read on fd %d", pollfd[i].fd);
2665 high_prio = 1;
2666 len = ctx->on_buffer_ready(local_stream[i], ctx);
2667 /* it's ok to have an unavailable sub-buffer */
2668 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2669 /* Clean the stream and free it. */
2670 consumer_del_stream(local_stream[i], data_ht);
2671 local_stream[i] = NULL;
2672 } else if (len > 0) {
2673 local_stream[i]->data_read = 1;
2674 }
2675 }
2676 }
2677
2678 /*
2679 * If we read high prio channel in this loop, try again
2680 * for more high prio data.
2681 */
2682 if (high_prio) {
2683 continue;
2684 }
2685
2686 /* Take care of low priority channels. */
2687 for (i = 0; i < nb_fd; i++) {
2688 health_code_update();
2689
2690 if (local_stream[i] == NULL) {
2691 continue;
2692 }
2693 if ((pollfd[i].revents & POLLIN) ||
2694 local_stream[i]->hangup_flush_done ||
2695 local_stream[i]->has_data) {
2696 DBG("Normal read on fd %d", pollfd[i].fd);
2697 len = ctx->on_buffer_ready(local_stream[i], ctx);
2698 /* it's ok to have an unavailable sub-buffer */
2699 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2700 /* Clean the stream and free it. */
2701 consumer_del_stream(local_stream[i], data_ht);
2702 local_stream[i] = NULL;
2703 } else if (len > 0) {
2704 local_stream[i]->data_read = 1;
2705 }
2706 }
2707 }
2708
2709 /* Handle hangup and errors */
2710 for (i = 0; i < nb_fd; i++) {
2711 health_code_update();
2712
2713 if (local_stream[i] == NULL) {
2714 continue;
2715 }
2716 if (!local_stream[i]->hangup_flush_done
2717 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2718 && (consumer_data.type == LTTNG_CONSUMER32_UST
2719 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2720 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2721 pollfd[i].fd);
2722 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2723 /* Attempt read again, for the data we just flushed. */
2724 local_stream[i]->data_read = 1;
2725 }
2726 /*
2727 * If the poll flag is HUP/ERR/NVAL and we have
2728 * read no data in this pass, we can remove the
2729 * stream from its hash table.
2730 */
2731 if ((pollfd[i].revents & POLLHUP)) {
2732 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2733 if (!local_stream[i]->data_read) {
2734 consumer_del_stream(local_stream[i], data_ht);
2735 local_stream[i] = NULL;
2736 num_hup++;
2737 }
2738 } else if (pollfd[i].revents & POLLERR) {
2739 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2740 if (!local_stream[i]->data_read) {
2741 consumer_del_stream(local_stream[i], data_ht);
2742 local_stream[i] = NULL;
2743 num_hup++;
2744 }
2745 } else if (pollfd[i].revents & POLLNVAL) {
2746 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2747 if (!local_stream[i]->data_read) {
2748 consumer_del_stream(local_stream[i], data_ht);
2749 local_stream[i] = NULL;
2750 num_hup++;
2751 }
2752 }
2753 if (local_stream[i] != NULL) {
2754 local_stream[i]->data_read = 0;
2755 }
2756 }
2757 }
2758 /* All is OK */
2759 err = 0;
2760 end:
2761 DBG("polling thread exiting");
2762 free(pollfd);
2763 free(local_stream);
2764
2765 /*
2766 * Close the write side of the pipe so epoll_wait() in
2767 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2768 * read side of the pipe. If we close them both, epoll_wait strangely does
2769 * not return and could create a endless wait period if the pipe is the
2770 * only tracked fd in the poll set. The thread will take care of closing
2771 * the read side.
2772 */
2773 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2774
2775 error_testpoint:
2776 if (err) {
2777 health_error();
2778 ERR("Health error occurred in %s", __func__);
2779 }
2780 health_unregister(health_consumerd);
2781
2782 rcu_unregister_thread();
2783 return NULL;
2784 }
2785
2786 /*
2787 * Close wake-up end of each stream belonging to the channel. This will
2788 * allow the poll() on the stream read-side to detect when the
2789 * write-side (application) finally closes them.
2790 */
2791 static
2792 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2793 {
2794 struct lttng_ht *ht;
2795 struct lttng_consumer_stream *stream;
2796 struct lttng_ht_iter iter;
2797
2798 ht = consumer_data.stream_per_chan_id_ht;
2799
2800 rcu_read_lock();
2801 cds_lfht_for_each_entry_duplicate(ht->ht,
2802 ht->hash_fct(&channel->key, lttng_ht_seed),
2803 ht->match_fct, &channel->key,
2804 &iter.iter, stream, node_channel_id.node) {
2805 /*
2806 * Protect against teardown with mutex.
2807 */
2808 pthread_mutex_lock(&stream->lock);
2809 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2810 goto next;
2811 }
2812 switch (consumer_data.type) {
2813 case LTTNG_CONSUMER_KERNEL:
2814 break;
2815 case LTTNG_CONSUMER32_UST:
2816 case LTTNG_CONSUMER64_UST:
2817 if (stream->metadata_flag) {
2818 /* Safe and protected by the stream lock. */
2819 lttng_ustconsumer_close_metadata(stream->chan);
2820 } else {
2821 /*
2822 * Note: a mutex is taken internally within
2823 * liblttng-ust-ctl to protect timer wakeup_fd
2824 * use from concurrent close.
2825 */
2826 lttng_ustconsumer_close_stream_wakeup(stream);
2827 }
2828 break;
2829 default:
2830 ERR("Unknown consumer_data type");
2831 assert(0);
2832 }
2833 next:
2834 pthread_mutex_unlock(&stream->lock);
2835 }
2836 rcu_read_unlock();
2837 }
2838
2839 static void destroy_channel_ht(struct lttng_ht *ht)
2840 {
2841 struct lttng_ht_iter iter;
2842 struct lttng_consumer_channel *channel;
2843 int ret;
2844
2845 if (ht == NULL) {
2846 return;
2847 }
2848
2849 rcu_read_lock();
2850 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2851 ret = lttng_ht_del(ht, &iter);
2852 assert(ret != 0);
2853 }
2854 rcu_read_unlock();
2855
2856 lttng_ht_destroy(ht);
2857 }
2858
2859 /*
2860 * This thread polls the channel fds to detect when they are being
2861 * closed. It closes all related streams if the channel is detected as
2862 * closed. It is currently only used as a shim layer for UST because the
2863 * consumerd needs to keep the per-stream wakeup end of pipes open for
2864 * periodical flush.
2865 */
2866 void *consumer_thread_channel_poll(void *data)
2867 {
2868 int ret, i, pollfd, err = -1;
2869 uint32_t revents, nb_fd;
2870 struct lttng_consumer_channel *chan = NULL;
2871 struct lttng_ht_iter iter;
2872 struct lttng_ht_node_u64 *node;
2873 struct lttng_poll_event events;
2874 struct lttng_consumer_local_data *ctx = data;
2875 struct lttng_ht *channel_ht;
2876
2877 rcu_register_thread();
2878
2879 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2880
2881 if (testpoint(consumerd_thread_channel)) {
2882 goto error_testpoint;
2883 }
2884
2885 health_code_update();
2886
2887 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2888 if (!channel_ht) {
2889 /* ENOMEM at this point. Better to bail out. */
2890 goto end_ht;
2891 }
2892
2893 DBG("Thread channel poll started");
2894
2895 /* Size is set to 1 for the consumer_channel pipe */
2896 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2897 if (ret < 0) {
2898 ERR("Poll set creation failed");
2899 goto end_poll;
2900 }
2901
2902 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2903 if (ret < 0) {
2904 goto end;
2905 }
2906
2907 /* Main loop */
2908 DBG("Channel main loop started");
2909
2910 while (1) {
2911 restart:
2912 health_code_update();
2913 DBG("Channel poll wait");
2914 health_poll_entry();
2915 ret = lttng_poll_wait(&events, -1);
2916 DBG("Channel poll return from wait with %d fd(s)",
2917 LTTNG_POLL_GETNB(&events));
2918 health_poll_exit();
2919 DBG("Channel event caught in thread");
2920 if (ret < 0) {
2921 if (errno == EINTR) {
2922 ERR("Poll EINTR caught");
2923 goto restart;
2924 }
2925 if (LTTNG_POLL_GETNB(&events) == 0) {
2926 err = 0; /* All is OK */
2927 }
2928 goto end;
2929 }
2930
2931 nb_fd = ret;
2932
2933 /* From here, the event is a channel wait fd */
2934 for (i = 0; i < nb_fd; i++) {
2935 health_code_update();
2936
2937 revents = LTTNG_POLL_GETEV(&events, i);
2938 pollfd = LTTNG_POLL_GETFD(&events, i);
2939
2940 if (!revents) {
2941 /* No activity for this FD (poll implementation). */
2942 continue;
2943 }
2944
2945 if (pollfd == ctx->consumer_channel_pipe[0]) {
2946 if (revents & LPOLLIN) {
2947 enum consumer_channel_action action;
2948 uint64_t key;
2949
2950 ret = read_channel_pipe(ctx, &chan, &key, &action);
2951 if (ret <= 0) {
2952 if (ret < 0) {
2953 ERR("Error reading channel pipe");
2954 }
2955 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2956 continue;
2957 }
2958
2959 switch (action) {
2960 case CONSUMER_CHANNEL_ADD:
2961 DBG("Adding channel %d to poll set",
2962 chan->wait_fd);
2963
2964 lttng_ht_node_init_u64(&chan->wait_fd_node,
2965 chan->wait_fd);
2966 rcu_read_lock();
2967 lttng_ht_add_unique_u64(channel_ht,
2968 &chan->wait_fd_node);
2969 rcu_read_unlock();
2970 /* Add channel to the global poll events list */
2971 lttng_poll_add(&events, chan->wait_fd,
2972 LPOLLERR | LPOLLHUP);
2973 break;
2974 case CONSUMER_CHANNEL_DEL:
2975 {
2976 /*
2977 * This command should never be called if the channel
2978 * has streams monitored by either the data or metadata
2979 * thread. The consumer only notify this thread with a
2980 * channel del. command if it receives a destroy
2981 * channel command from the session daemon that send it
2982 * if a command prior to the GET_CHANNEL failed.
2983 */
2984
2985 rcu_read_lock();
2986 chan = consumer_find_channel(key);
2987 if (!chan) {
2988 rcu_read_unlock();
2989 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2990 break;
2991 }
2992 lttng_poll_del(&events, chan->wait_fd);
2993 iter.iter.node = &chan->wait_fd_node.node;
2994 ret = lttng_ht_del(channel_ht, &iter);
2995 assert(ret == 0);
2996
2997 switch (consumer_data.type) {
2998 case LTTNG_CONSUMER_KERNEL:
2999 break;
3000 case LTTNG_CONSUMER32_UST:
3001 case LTTNG_CONSUMER64_UST:
3002 health_code_update();
3003 /* Destroy streams that might have been left in the stream list. */
3004 clean_channel_stream_list(chan);
3005 break;
3006 default:
3007 ERR("Unknown consumer_data type");
3008 assert(0);
3009 }
3010
3011 /*
3012 * Release our own refcount. Force channel deletion even if
3013 * streams were not initialized.
3014 */
3015 if (!uatomic_sub_return(&chan->refcount, 1)) {
3016 consumer_del_channel(chan);
3017 }
3018 rcu_read_unlock();
3019 goto restart;
3020 }
3021 case CONSUMER_CHANNEL_QUIT:
3022 /*
3023 * Remove the pipe from the poll set and continue the loop
3024 * since their might be data to consume.
3025 */
3026 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3027 continue;
3028 default:
3029 ERR("Unknown action");
3030 break;
3031 }
3032 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3033 DBG("Channel thread pipe hung up");
3034 /*
3035 * Remove the pipe from the poll set and continue the loop
3036 * since their might be data to consume.
3037 */
3038 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3039 continue;
3040 } else {
3041 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3042 goto end;
3043 }
3044
3045 /* Handle other stream */
3046 continue;
3047 }
3048
3049 rcu_read_lock();
3050 {
3051 uint64_t tmp_id = (uint64_t) pollfd;
3052
3053 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3054 }
3055 node = lttng_ht_iter_get_node_u64(&iter);
3056 assert(node);
3057
3058 chan = caa_container_of(node, struct lttng_consumer_channel,
3059 wait_fd_node);
3060
3061 /* Check for error event */
3062 if (revents & (LPOLLERR | LPOLLHUP)) {
3063 DBG("Channel fd %d is hup|err.", pollfd);
3064
3065 lttng_poll_del(&events, chan->wait_fd);
3066 ret = lttng_ht_del(channel_ht, &iter);
3067 assert(ret == 0);
3068
3069 /*
3070 * This will close the wait fd for each stream associated to
3071 * this channel AND monitored by the data/metadata thread thus
3072 * will be clean by the right thread.
3073 */
3074 consumer_close_channel_streams(chan);
3075
3076 /* Release our own refcount */
3077 if (!uatomic_sub_return(&chan->refcount, 1)
3078 && !uatomic_read(&chan->nb_init_stream_left)) {
3079 consumer_del_channel(chan);
3080 }
3081 } else {
3082 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3083 rcu_read_unlock();
3084 goto end;
3085 }
3086
3087 /* Release RCU lock for the channel looked up */
3088 rcu_read_unlock();
3089 }
3090 }
3091
3092 /* All is OK */
3093 err = 0;
3094 end:
3095 lttng_poll_clean(&events);
3096 end_poll:
3097 destroy_channel_ht(channel_ht);
3098 end_ht:
3099 error_testpoint:
3100 DBG("Channel poll thread exiting");
3101 if (err) {
3102 health_error();
3103 ERR("Health error occurred in %s", __func__);
3104 }
3105 health_unregister(health_consumerd);
3106 rcu_unregister_thread();
3107 return NULL;
3108 }
3109
3110 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3111 struct pollfd *sockpoll, int client_socket)
3112 {
3113 int ret;
3114
3115 assert(ctx);
3116 assert(sockpoll);
3117
3118 ret = lttng_consumer_poll_socket(sockpoll);
3119 if (ret) {
3120 goto error;
3121 }
3122 DBG("Metadata connection on client_socket");
3123
3124 /* Blocking call, waiting for transmission */
3125 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3126 if (ctx->consumer_metadata_socket < 0) {
3127 WARN("On accept metadata");
3128 ret = -1;
3129 goto error;
3130 }
3131 ret = 0;
3132
3133 error:
3134 return ret;
3135 }
3136
3137 /*
3138 * This thread listens on the consumerd socket and receives the file
3139 * descriptors from the session daemon.
3140 */
3141 void *consumer_thread_sessiond_poll(void *data)
3142 {
3143 int sock = -1, client_socket, ret, err = -1;
3144 /*
3145 * structure to poll for incoming data on communication socket avoids
3146 * making blocking sockets.
3147 */
3148 struct pollfd consumer_sockpoll[2];
3149 struct lttng_consumer_local_data *ctx = data;
3150
3151 rcu_register_thread();
3152
3153 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3154
3155 if (testpoint(consumerd_thread_sessiond)) {
3156 goto error_testpoint;
3157 }
3158
3159 health_code_update();
3160
3161 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3162 unlink(ctx->consumer_command_sock_path);
3163 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3164 if (client_socket < 0) {
3165 ERR("Cannot create command socket");
3166 goto end;
3167 }
3168
3169 ret = lttcomm_listen_unix_sock(client_socket);
3170 if (ret < 0) {
3171 goto end;
3172 }
3173
3174 DBG("Sending ready command to lttng-sessiond");
3175 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3176 /* return < 0 on error, but == 0 is not fatal */
3177 if (ret < 0) {
3178 ERR("Error sending ready command to lttng-sessiond");
3179 goto end;
3180 }
3181
3182 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3183 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3184 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3185 consumer_sockpoll[1].fd = client_socket;
3186 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3187
3188 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3189 if (ret) {
3190 if (ret > 0) {
3191 /* should exit */
3192 err = 0;
3193 }
3194 goto end;
3195 }
3196 DBG("Connection on client_socket");
3197
3198 /* Blocking call, waiting for transmission */
3199 sock = lttcomm_accept_unix_sock(client_socket);
3200 if (sock < 0) {
3201 WARN("On accept");
3202 goto end;
3203 }
3204
3205 /*
3206 * Setup metadata socket which is the second socket connection on the
3207 * command unix socket.
3208 */
3209 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3210 if (ret) {
3211 if (ret > 0) {
3212 /* should exit */
3213 err = 0;
3214 }
3215 goto end;
3216 }
3217
3218 /* This socket is not useful anymore. */
3219 ret = close(client_socket);
3220 if (ret < 0) {
3221 PERROR("close client_socket");
3222 }
3223 client_socket = -1;
3224
3225 /* update the polling structure to poll on the established socket */
3226 consumer_sockpoll[1].fd = sock;
3227 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3228
3229 while (1) {
3230 health_code_update();
3231
3232 health_poll_entry();
3233 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3234 health_poll_exit();
3235 if (ret) {
3236 if (ret > 0) {
3237 /* should exit */
3238 err = 0;
3239 }
3240 goto end;
3241 }
3242 DBG("Incoming command on sock");
3243 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3244 if (ret <= 0) {
3245 /*
3246 * This could simply be a session daemon quitting. Don't output
3247 * ERR() here.
3248 */
3249 DBG("Communication interrupted on command socket");
3250 err = 0;
3251 goto end;
3252 }
3253 if (CMM_LOAD_SHARED(consumer_quit)) {
3254 DBG("consumer_thread_receive_fds received quit from signal");
3255 err = 0; /* All is OK */
3256 goto end;
3257 }
3258 DBG("received command on sock");
3259 }
3260 /* All is OK */
3261 err = 0;
3262
3263 end:
3264 DBG("Consumer thread sessiond poll exiting");
3265
3266 /*
3267 * Close metadata streams since the producer is the session daemon which
3268 * just died.
3269 *
3270 * NOTE: for now, this only applies to the UST tracer.
3271 */
3272 lttng_consumer_close_all_metadata();
3273
3274 /*
3275 * when all fds have hung up, the polling thread
3276 * can exit cleanly
3277 */
3278 CMM_STORE_SHARED(consumer_quit, 1);
3279
3280 /*
3281 * Notify the data poll thread to poll back again and test the
3282 * consumer_quit state that we just set so to quit gracefully.
3283 */
3284 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3285
3286 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3287
3288 notify_health_quit_pipe(health_quit_pipe);
3289
3290 /* Cleaning up possibly open sockets. */
3291 if (sock >= 0) {
3292 ret = close(sock);
3293 if (ret < 0) {
3294 PERROR("close sock sessiond poll");
3295 }
3296 }
3297 if (client_socket >= 0) {
3298 ret = close(client_socket);
3299 if (ret < 0) {
3300 PERROR("close client_socket sessiond poll");
3301 }
3302 }
3303
3304 error_testpoint:
3305 if (err) {
3306 health_error();
3307 ERR("Health error occurred in %s", __func__);
3308 }
3309 health_unregister(health_consumerd);
3310
3311 rcu_unregister_thread();
3312 return NULL;
3313 }
3314
3315 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3316 struct lttng_consumer_local_data *ctx)
3317 {
3318 ssize_t ret;
3319
3320 pthread_mutex_lock(&stream->lock);
3321 if (stream->metadata_flag) {
3322 pthread_mutex_lock(&stream->metadata_rdv_lock);
3323 }
3324
3325 switch (consumer_data.type) {
3326 case LTTNG_CONSUMER_KERNEL:
3327 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3328 break;
3329 case LTTNG_CONSUMER32_UST:
3330 case LTTNG_CONSUMER64_UST:
3331 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3332 break;
3333 default:
3334 ERR("Unknown consumer_data type");
3335 assert(0);
3336 ret = -ENOSYS;
3337 break;
3338 }
3339
3340 if (stream->metadata_flag) {
3341 pthread_cond_broadcast(&stream->metadata_rdv);
3342 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3343 }
3344 pthread_mutex_unlock(&stream->lock);
3345 return ret;
3346 }
3347
3348 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3349 {
3350 switch (consumer_data.type) {
3351 case LTTNG_CONSUMER_KERNEL:
3352 return lttng_kconsumer_on_recv_stream(stream);
3353 case LTTNG_CONSUMER32_UST:
3354 case LTTNG_CONSUMER64_UST:
3355 return lttng_ustconsumer_on_recv_stream(stream);
3356 default:
3357 ERR("Unknown consumer_data type");
3358 assert(0);
3359 return -ENOSYS;
3360 }
3361 }
3362
3363 /*
3364 * Allocate and set consumer data hash tables.
3365 */
3366 int lttng_consumer_init(void)
3367 {
3368 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3369 if (!consumer_data.channel_ht) {
3370 goto error;
3371 }
3372
3373 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3374 if (!consumer_data.relayd_ht) {
3375 goto error;
3376 }
3377
3378 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3379 if (!consumer_data.stream_list_ht) {
3380 goto error;
3381 }
3382
3383 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3384 if (!consumer_data.stream_per_chan_id_ht) {
3385 goto error;
3386 }
3387
3388 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3389 if (!data_ht) {
3390 goto error;
3391 }
3392
3393 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3394 if (!metadata_ht) {
3395 goto error;
3396 }
3397
3398 return 0;
3399
3400 error:
3401 return -1;
3402 }
3403
3404 /*
3405 * Process the ADD_RELAYD command receive by a consumer.
3406 *
3407 * This will create a relayd socket pair and add it to the relayd hash table.
3408 * The caller MUST acquire a RCU read side lock before calling it.
3409 */
3410 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3411 struct lttng_consumer_local_data *ctx, int sock,
3412 struct pollfd *consumer_sockpoll,
3413 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3414 uint64_t relayd_session_id)
3415 {
3416 int fd = -1, ret = -1, relayd_created = 0;
3417 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3418 struct consumer_relayd_sock_pair *relayd = NULL;
3419
3420 assert(ctx);
3421 assert(relayd_sock);
3422
3423 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3424
3425 /* Get relayd reference if exists. */
3426 relayd = consumer_find_relayd(net_seq_idx);
3427 if (relayd == NULL) {
3428 assert(sock_type == LTTNG_STREAM_CONTROL);
3429 /* Not found. Allocate one. */
3430 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3431 if (relayd == NULL) {
3432 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3433 goto error;
3434 } else {
3435 relayd->sessiond_session_id = sessiond_id;
3436 relayd_created = 1;
3437 }
3438
3439 /*
3440 * This code path MUST continue to the consumer send status message to
3441 * we can notify the session daemon and continue our work without
3442 * killing everything.
3443 */
3444 } else {
3445 /*
3446 * relayd key should never be found for control socket.
3447 */
3448 assert(sock_type != LTTNG_STREAM_CONTROL);
3449 }
3450
3451 /* First send a status message before receiving the fds. */
3452 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3453 if (ret < 0) {
3454 /* Somehow, the session daemon is not responding anymore. */
3455 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3456 goto error_nosignal;
3457 }
3458
3459 /* Poll on consumer socket. */
3460 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3461 if (ret) {
3462 /* Needing to exit in the middle of a command: error. */
3463 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3464 goto error_nosignal;
3465 }
3466
3467 /* Get relayd socket from session daemon */
3468 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3469 if (ret != sizeof(fd)) {
3470 fd = -1; /* Just in case it gets set with an invalid value. */
3471
3472 /*
3473 * Failing to receive FDs might indicate a major problem such as
3474 * reaching a fd limit during the receive where the kernel returns a
3475 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3476 * don't take any chances and stop everything.
3477 *
3478 * XXX: Feature request #558 will fix that and avoid this possible
3479 * issue when reaching the fd limit.
3480 */
3481 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3482 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3483 goto error;
3484 }
3485
3486 /* Copy socket information and received FD */
3487 switch (sock_type) {
3488 case LTTNG_STREAM_CONTROL:
3489 /* Copy received lttcomm socket */
3490 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3491 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3492 /* Handle create_sock error. */
3493 if (ret < 0) {
3494 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3495 goto error;
3496 }
3497 /*
3498 * Close the socket created internally by
3499 * lttcomm_create_sock, so we can replace it by the one
3500 * received from sessiond.
3501 */
3502 if (close(relayd->control_sock.sock.fd)) {
3503 PERROR("close");
3504 }
3505
3506 /* Assign new file descriptor */
3507 relayd->control_sock.sock.fd = fd;
3508 fd = -1; /* For error path */
3509 /* Assign version values. */
3510 relayd->control_sock.major = relayd_sock->major;
3511 relayd->control_sock.minor = relayd_sock->minor;
3512
3513 relayd->relayd_session_id = relayd_session_id;
3514
3515 break;
3516 case LTTNG_STREAM_DATA:
3517 /* Copy received lttcomm socket */
3518 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3519 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3520 /* Handle create_sock error. */
3521 if (ret < 0) {
3522 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3523 goto error;
3524 }
3525 /*
3526 * Close the socket created internally by
3527 * lttcomm_create_sock, so we can replace it by the one
3528 * received from sessiond.
3529 */
3530 if (close(relayd->data_sock.sock.fd)) {
3531 PERROR("close");
3532 }
3533
3534 /* Assign new file descriptor */
3535 relayd->data_sock.sock.fd = fd;
3536 fd = -1; /* for eventual error paths */
3537 /* Assign version values. */
3538 relayd->data_sock.major = relayd_sock->major;
3539 relayd->data_sock.minor = relayd_sock->minor;
3540 break;
3541 default:
3542 ERR("Unknown relayd socket type (%d)", sock_type);
3543 ret_code = LTTCOMM_CONSUMERD_FATAL;
3544 goto error;
3545 }
3546
3547 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3548 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3549 relayd->net_seq_idx, fd);
3550
3551 /* We successfully added the socket. Send status back. */
3552 ret = consumer_send_status_msg(sock, ret_code);
3553 if (ret < 0) {
3554 /* Somehow, the session daemon is not responding anymore. */
3555 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3556 goto error_nosignal;
3557 }
3558
3559 /*
3560 * Add relayd socket pair to consumer data hashtable. If object already
3561 * exists or on error, the function gracefully returns.
3562 */
3563 add_relayd(relayd);
3564
3565 /* All good! */
3566 return;
3567
3568 error:
3569 if (consumer_send_status_msg(sock, ret_code) < 0) {
3570 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3571 }
3572
3573 error_nosignal:
3574 /* Close received socket if valid. */
3575 if (fd >= 0) {
3576 if (close(fd)) {
3577 PERROR("close received socket");
3578 }
3579 }
3580
3581 if (relayd_created) {
3582 free(relayd);
3583 }
3584 }
3585
3586 /*
3587 * Try to lock the stream mutex.
3588 *
3589 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3590 */
3591 static int stream_try_lock(struct lttng_consumer_stream *stream)
3592 {
3593 int ret;
3594
3595 assert(stream);
3596
3597 /*
3598 * Try to lock the stream mutex. On failure, we know that the stream is
3599 * being used else where hence there is data still being extracted.
3600 */
3601 ret = pthread_mutex_trylock(&stream->lock);
3602 if (ret) {
3603 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3604 ret = 0;
3605 goto end;
3606 }
3607
3608 ret = 1;
3609
3610 end:
3611 return ret;
3612 }
3613
3614 /*
3615 * Search for a relayd associated to the session id and return the reference.
3616 *
3617 * A rcu read side lock MUST be acquire before calling this function and locked
3618 * until the relayd object is no longer necessary.
3619 */
3620 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3621 {
3622 struct lttng_ht_iter iter;
3623 struct consumer_relayd_sock_pair *relayd = NULL;
3624
3625 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3626 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3627 node.node) {
3628 /*
3629 * Check by sessiond id which is unique here where the relayd session
3630 * id might not be when having multiple relayd.
3631 */
3632 if (relayd->sessiond_session_id == id) {
3633 /* Found the relayd. There can be only one per id. */
3634 goto found;
3635 }
3636 }
3637
3638 return NULL;
3639
3640 found:
3641 return relayd;
3642 }
3643
3644 /*
3645 * Check if for a given session id there is still data needed to be extract
3646 * from the buffers.
3647 *
3648 * Return 1 if data is pending or else 0 meaning ready to be read.
3649 */
3650 int consumer_data_pending(uint64_t id)
3651 {
3652 int ret;
3653 struct lttng_ht_iter iter;
3654 struct lttng_ht *ht;
3655 struct lttng_consumer_stream *stream;
3656 struct consumer_relayd_sock_pair *relayd = NULL;
3657 int (*data_pending)(struct lttng_consumer_stream *);
3658
3659 DBG("Consumer data pending command on session id %" PRIu64, id);
3660
3661 rcu_read_lock();
3662 pthread_mutex_lock(&consumer_data.lock);
3663
3664 switch (consumer_data.type) {
3665 case LTTNG_CONSUMER_KERNEL:
3666 data_pending = lttng_kconsumer_data_pending;
3667 break;
3668 case LTTNG_CONSUMER32_UST:
3669 case LTTNG_CONSUMER64_UST:
3670 data_pending = lttng_ustconsumer_data_pending;
3671 break;
3672 default:
3673 ERR("Unknown consumer data type");
3674 assert(0);
3675 }
3676
3677 /* Ease our life a bit */
3678 ht = consumer_data.stream_list_ht;
3679
3680 relayd = find_relayd_by_session_id(id);
3681 if (relayd) {
3682 /* Send init command for data pending. */
3683 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3684 ret = relayd_begin_data_pending(&relayd->control_sock,
3685 relayd->relayd_session_id);
3686 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3687 if (ret < 0) {
3688 /* Communication error thus the relayd so no data pending. */
3689 goto data_not_pending;
3690 }
3691 }
3692
3693 cds_lfht_for_each_entry_duplicate(ht->ht,
3694 ht->hash_fct(&id, lttng_ht_seed),
3695 ht->match_fct, &id,
3696 &iter.iter, stream, node_session_id.node) {
3697 /* If this call fails, the stream is being used hence data pending. */
3698 ret = stream_try_lock(stream);
3699 if (!ret) {
3700 goto data_pending;
3701 }
3702
3703 /*
3704 * A removed node from the hash table indicates that the stream has
3705 * been deleted thus having a guarantee that the buffers are closed
3706 * on the consumer side. However, data can still be transmitted
3707 * over the network so don't skip the relayd check.
3708 */
3709 ret = cds_lfht_is_node_deleted(&stream->node.node);
3710 if (!ret) {
3711 /* Check the stream if there is data in the buffers. */
3712 ret = data_pending(stream);
3713 if (ret == 1) {
3714 pthread_mutex_unlock(&stream->lock);
3715 goto data_pending;
3716 }
3717 }
3718
3719 /* Relayd check */
3720 if (relayd) {
3721 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3722 if (stream->metadata_flag) {
3723 ret = relayd_quiescent_control(&relayd->control_sock,
3724 stream->relayd_stream_id);
3725 } else {
3726 ret = relayd_data_pending(&relayd->control_sock,
3727 stream->relayd_stream_id,
3728 stream->next_net_seq_num - 1);
3729 }
3730 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3731 if (ret == 1) {
3732 pthread_mutex_unlock(&stream->lock);
3733 goto data_pending;
3734 }
3735 }
3736 pthread_mutex_unlock(&stream->lock);
3737 }
3738
3739 if (relayd) {
3740 unsigned int is_data_inflight = 0;
3741
3742 /* Send init command for data pending. */
3743 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3744 ret = relayd_end_data_pending(&relayd->control_sock,
3745 relayd->relayd_session_id, &is_data_inflight);
3746 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3747 if (ret < 0) {
3748 goto data_not_pending;
3749 }
3750 if (is_data_inflight) {
3751 goto data_pending;
3752 }
3753 }
3754
3755 /*
3756 * Finding _no_ node in the hash table and no inflight data means that the
3757 * stream(s) have been removed thus data is guaranteed to be available for
3758 * analysis from the trace files.
3759 */
3760
3761 data_not_pending:
3762 /* Data is available to be read by a viewer. */
3763 pthread_mutex_unlock(&consumer_data.lock);
3764 rcu_read_unlock();
3765 return 0;
3766
3767 data_pending:
3768 /* Data is still being extracted from buffers. */
3769 pthread_mutex_unlock(&consumer_data.lock);
3770 rcu_read_unlock();
3771 return 1;
3772 }
3773
3774 /*
3775 * Send a ret code status message to the sessiond daemon.
3776 *
3777 * Return the sendmsg() return value.
3778 */
3779 int consumer_send_status_msg(int sock, int ret_code)
3780 {
3781 struct lttcomm_consumer_status_msg msg;
3782
3783 memset(&msg, 0, sizeof(msg));
3784 msg.ret_code = ret_code;
3785
3786 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3787 }
3788
3789 /*
3790 * Send a channel status message to the sessiond daemon.
3791 *
3792 * Return the sendmsg() return value.
3793 */
3794 int consumer_send_status_channel(int sock,
3795 struct lttng_consumer_channel *channel)
3796 {
3797 struct lttcomm_consumer_status_channel msg;
3798
3799 assert(sock >= 0);
3800
3801 memset(&msg, 0, sizeof(msg));
3802 if (!channel) {
3803 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3804 } else {
3805 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3806 msg.key = channel->key;
3807 msg.stream_count = channel->streams.count;
3808 }
3809
3810 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3811 }
3812
3813 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3814 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3815 uint64_t max_sb_size)
3816 {
3817 unsigned long start_pos;
3818
3819 if (!nb_packets_per_stream) {
3820 return consumed_pos; /* Grab everything */
3821 }
3822 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3823 start_pos -= max_sb_size * nb_packets_per_stream;
3824 if ((long) (start_pos - consumed_pos) < 0) {
3825 return consumed_pos; /* Grab everything */
3826 }
3827 return start_pos;
3828 }
3829
3830 static
3831 int flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3832 {
3833 int ret = 0;
3834
3835 switch (consumer_data.type) {
3836 case LTTNG_CONSUMER_KERNEL:
3837 ret = kernctl_buffer_flush(stream->wait_fd);
3838 if (ret < 0) {
3839 ERR("Failed to flush kernel stream");
3840 goto end;
3841 }
3842 break;
3843 case LTTNG_CONSUMER32_UST:
3844 case LTTNG_CONSUMER64_UST:
3845 lttng_ustctl_flush_buffer(stream, producer_active);
3846 break;
3847 default:
3848 ERR("Unknown consumer_data type");
3849 abort();
3850 }
3851
3852 end:
3853 return ret;
3854 }
3855
3856 /*
3857 * Sample the rotate position for all the streams of a channel.
3858 *
3859 * Returns 0 on success, < 0 on error
3860 */
3861 int lttng_consumer_rotate_channel(uint64_t key, char *path,
3862 uint64_t relayd_id, uint32_t metadata,
3863 struct lttng_consumer_local_data *ctx)
3864 {
3865 int ret;
3866 struct lttng_consumer_channel *channel;
3867 struct lttng_consumer_stream *stream;
3868 struct lttng_ht_iter iter;
3869 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
3870
3871 DBG("Kernel consumer sample rotate position for channel %" PRIu64, key);
3872
3873 rcu_read_lock();
3874
3875 channel = consumer_find_channel(key);
3876 if (!channel) {
3877 ERR("No channel found for key %" PRIu64, key);
3878 ret = -1;
3879 goto end;
3880 }
3881 pthread_mutex_lock(&channel->lock);
3882 snprintf(channel->pathname, PATH_MAX, "%s", path);
3883
3884 cds_lfht_for_each_entry_duplicate(ht->ht,
3885 ht->hash_fct(&channel->key, lttng_ht_seed),
3886 ht->match_fct, &channel->key, &iter.iter,
3887 stream, node_channel_id.node) {
3888 health_code_update();
3889
3890 /*
3891 * Lock stream because we are about to change its state.
3892 */
3893 pthread_mutex_lock(&stream->lock);
3894 ret = lttng_consumer_sample_snapshot_positions(stream);
3895 if (ret < 0) {
3896 ERR("Taking kernel snapshot positions");
3897 goto end_unlock;
3898 } else {
3899 uint64_t consumed_pos;
3900
3901 ret = lttng_consumer_get_produced_snapshot(stream,
3902 &stream->rotate_position);
3903 if (ret < 0) {
3904 ERR("Produced kernel snapshot position");
3905 goto end_unlock;
3906 }
3907 fprintf(stderr, "Stream %lu should rotate after %lu to %s\n",
3908 stream->key, stream->rotate_position,
3909 channel->pathname);
3910 lttng_consumer_get_consumed_snapshot(stream,
3911 &consumed_pos);
3912 fprintf(stderr, "consumed %lu\n", consumed_pos);
3913 if (consumed_pos == stream->rotate_position) {
3914 stream->rotate_ready = 1;
3915 fprintf(stderr, "Stream %lu ready to rotate to %s\n",
3916 stream->key, channel->pathname);
3917 }
3918 }
3919 channel->nr_stream_rotate_pending++;
3920
3921 ret = flush_buffer(stream, 1);
3922 if (ret < 0) {
3923 ERR("Failed to flush stream");
3924 goto end_unlock;
3925 }
3926
3927 pthread_mutex_unlock(&stream->lock);
3928 }
3929
3930 ret = 0;
3931 goto end_unlock_channel;
3932
3933 end_unlock:
3934 pthread_mutex_unlock(&stream->lock);
3935 end_unlock_channel:
3936 pthread_mutex_unlock(&channel->lock);
3937 end:
3938 rcu_read_unlock();
3939 return ret;
3940 }
3941
3942 static
3943 int rotate_notify_sessiond(struct lttng_consumer_local_data *ctx,
3944 uint64_t key)
3945 {
3946 int ret;
3947
3948 do {
3949 ret = write(ctx->channel_rotate_pipe, &key, sizeof(key));
3950 } while (ret == -1 && errno == EINTR);
3951 if (ret == -1) {
3952 PERROR("write to the channel rotate pipe");
3953 } else {
3954 DBG("Sent channel rotation notification for channel key %"
3955 PRIu64, key);
3956 }
3957
3958 return ret;
3959 }
3960
3961 /*
3962 * Performs the stream rotation for the rotate session feature if needed.
3963 * It must be called with the stream and channel locks held.
3964 *
3965 * Return 0 on success, a negative number of error.
3966 */
3967 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
3968 struct lttng_consumer_stream *stream)
3969 {
3970 int ret;
3971 unsigned long consumed_pos;
3972
3973 if (!stream->rotate_position && !stream->rotate_ready) {
3974 ret = 0;
3975 goto end;
3976 }
3977
3978 /*
3979 * If we don't have the rotate_ready flag, check the consumed position
3980 * to determine if we need to rotate.
3981 */
3982 if (!stream->rotate_ready) {
3983 ret = lttng_consumer_sample_snapshot_positions(stream);
3984 if (ret < 0) {
3985 ERR("Taking kernel snapshot positions");
3986 goto error;
3987 }
3988
3989 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
3990 if (ret < 0) {
3991 ERR("Produced kernel snapshot position");
3992 goto error;
3993 }
3994
3995 fprintf(stderr, "packet %lu, pos %lu\n", stream->key, consumed_pos);
3996 /* Rotate position not reached yet. */
3997 if (consumed_pos < stream->rotate_position) {
3998 ret = 0;
3999 goto end;
4000 }
4001 fprintf(stderr, "Rotate position %lu (expected %lu) reached for stream %lu\n",
4002 consumed_pos, stream->rotate_position, stream->key);
4003 } else {
4004 fprintf(stderr, "Rotate position reached for stream %lu\n",
4005 stream->key);
4006 }
4007
4008 ret = close(stream->out_fd);
4009 if (ret < 0) {
4010 PERROR("Closing tracefile");
4011 goto error;
4012 }
4013
4014 fprintf(stderr, "Rotating stream %lu to %s/%s\n", stream->key,
4015 stream->chan->pathname, stream->name);
4016 ret = utils_create_stream_file(stream->chan->pathname, stream->name,
4017 stream->chan->tracefile_size, stream->tracefile_count_current,
4018 stream->uid, stream->gid, NULL);
4019 if (ret < 0) {
4020 goto error;
4021 }
4022 stream->out_fd = ret;
4023 stream->tracefile_size_current = 0;
4024
4025 if (!stream->metadata_flag) {
4026 struct lttng_index_file *index_file;
4027
4028 lttng_index_file_put(stream->index_file);
4029
4030 index_file = lttng_index_file_create(stream->chan->pathname,
4031 stream->name, stream->uid, stream->gid,
4032 stream->chan->tracefile_size,
4033 stream->tracefile_count_current,
4034 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
4035 if (!index_file) {
4036 goto error;
4037 }
4038 stream->index_file = index_file;
4039 stream->out_fd_offset = 0;
4040 } else {
4041 switch (consumer_data.type) {
4042 case LTTNG_CONSUMER_KERNEL:
4043 /*
4044 * Reset the position of what has been read from the metadata
4045 * cache to 0 so we can dump it again.
4046 */
4047 ret = kernctl_metadata_cache_dump(stream->wait_fd);
4048 if (ret < 0) {
4049 ERR("Failed to dump the metadata cache after rotation");
4050 goto error;
4051 }
4052 break;
4053 case LTTNG_CONSUMER32_UST:
4054 case LTTNG_CONSUMER64_UST:
4055 /*
4056 * Reset the position pushed from the metadata cache so it
4057 * will write from the beginning on the next push.
4058 */
4059 stream->ust_metadata_pushed = 0;
4060 /*
4061 * Wakeup the metadata thread so it dumps the metadata cache
4062 * to file again.
4063 * FIXME: post-pone that after we have released the stream lock.
4064 */
4065 consumer_metadata_wakeup_pipe(stream->chan);
4066 break;
4067 default:
4068 ERR("Unknown consumer_data type");
4069 abort();
4070 }
4071 }
4072
4073 stream->rotate_position = 0;
4074 stream->rotate_ready = 0;
4075
4076 if (--stream->chan->nr_stream_rotate_pending == 0) {
4077 rotate_notify_sessiond(ctx, stream->chan->key);
4078 fprintf(stderr, "SENT %lu\n", stream->chan->key);
4079 }
4080
4081 ret = 0;
4082 goto end;
4083
4084 error:
4085 ret = -1;
4086 end:
4087 return ret;
4088 }
4089
4090 /*
4091 * Rotate all the ready streams.
4092 *
4093 * This is especially important for low throughput streams that have already
4094 * been consumed, we cannot wait for their next packet to perform the
4095 * rotation.
4096 *
4097 * Returns 0 on success, < 0 on error
4098 */
4099 int lttng_consumer_rotate_ready_streams(uint64_t key,
4100 struct lttng_consumer_local_data *ctx)
4101 {
4102 int ret;
4103 struct lttng_consumer_channel *channel;
4104 struct lttng_consumer_stream *stream;
4105 struct lttng_ht_iter iter;
4106 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4107
4108 rcu_read_lock();
4109
4110 channel = consumer_find_channel(key);
4111 if (!channel) {
4112 ERR("No channel found for key %" PRIu64, key);
4113 ret = -1;
4114 goto end;
4115 }
4116 cds_lfht_for_each_entry_duplicate(ht->ht,
4117 ht->hash_fct(&channel->key, lttng_ht_seed),
4118 ht->match_fct, &channel->key, &iter.iter,
4119 stream, node_channel_id.node) {
4120 health_code_update();
4121
4122 /*
4123 * Lock stream because we are about to change its state.
4124 */
4125 pthread_mutex_lock(&stream->lock);
4126 if (stream->rotate_ready == 0) {
4127 pthread_mutex_unlock(&stream->lock);
4128 continue;
4129 }
4130 ret = lttng_consumer_rotate_stream(ctx, stream);
4131 if (ret < 0) {
4132 pthread_mutex_unlock(&stream->lock);
4133 ERR("Stream rotation error");
4134 goto end;
4135 }
4136
4137 pthread_mutex_unlock(&stream->lock);
4138 }
4139
4140 ret = 0;
4141
4142 end:
4143 rcu_read_unlock();
4144 return ret;
4145 }
This page took 0.118628 seconds and 5 git commands to generate.