Fix: cleanup inactive FDs in the consumer polling thread
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /*
71 * Flag to inform the polling thread to quit when all fd hung up. Updated by
72 * the consumer_thread_receive_fds when it notices that all fds has hung up.
73 * Also updated by the signal handler (consumer_should_exit()). Read by the
74 * polling threads.
75 */
76 volatile int consumer_quit;
77
78 /*
79 * Global hash table containing respectively metadata and data streams. The
80 * stream element in this ht should only be updated by the metadata poll thread
81 * for the metadata and the data poll thread for the data.
82 */
83 static struct lttng_ht *metadata_ht;
84 static struct lttng_ht *data_ht;
85
86 /*
87 * Notify a thread lttng pipe to poll back again. This usually means that some
88 * global state has changed so we just send back the thread in a poll wait
89 * call.
90 */
91 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
92 {
93 struct lttng_consumer_stream *null_stream = NULL;
94
95 assert(pipe);
96
97 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
98 }
99
100 static void notify_health_quit_pipe(int *pipe)
101 {
102 ssize_t ret;
103
104 ret = lttng_write(pipe[1], "4", 1);
105 if (ret < 1) {
106 PERROR("write consumer health quit");
107 }
108 }
109
110 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
111 struct lttng_consumer_channel *chan,
112 uint64_t key,
113 enum consumer_channel_action action)
114 {
115 struct consumer_channel_msg msg;
116 ssize_t ret;
117
118 memset(&msg, 0, sizeof(msg));
119
120 msg.action = action;
121 msg.chan = chan;
122 msg.key = key;
123 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
124 if (ret < sizeof(msg)) {
125 PERROR("notify_channel_pipe write error");
126 }
127 }
128
129 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
130 uint64_t key)
131 {
132 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
133 }
134
135 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
136 struct lttng_consumer_channel **chan,
137 uint64_t *key,
138 enum consumer_channel_action *action)
139 {
140 struct consumer_channel_msg msg;
141 ssize_t ret;
142
143 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
144 if (ret < sizeof(msg)) {
145 ret = -1;
146 goto error;
147 }
148 *action = msg.action;
149 *chan = msg.chan;
150 *key = msg.key;
151 error:
152 return (int) ret;
153 }
154
155 /*
156 * Cleanup the stream list of a channel. Those streams are not yet globally
157 * visible
158 */
159 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
160 {
161 struct lttng_consumer_stream *stream, *stmp;
162
163 assert(channel);
164
165 /* Delete streams that might have been left in the stream list. */
166 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
167 send_node) {
168 cds_list_del(&stream->send_node);
169 /*
170 * Once a stream is added to this list, the buffers were created so we
171 * have a guarantee that this call will succeed. Setting the monitor
172 * mode to 0 so we don't lock nor try to delete the stream from the
173 * global hash table.
174 */
175 stream->monitor = 0;
176 consumer_stream_destroy(stream, NULL);
177 }
178 }
179
180 /*
181 * Find a stream. The consumer_data.lock must be locked during this
182 * call.
183 */
184 static struct lttng_consumer_stream *find_stream(uint64_t key,
185 struct lttng_ht *ht)
186 {
187 struct lttng_ht_iter iter;
188 struct lttng_ht_node_u64 *node;
189 struct lttng_consumer_stream *stream = NULL;
190
191 assert(ht);
192
193 /* -1ULL keys are lookup failures */
194 if (key == (uint64_t) -1ULL) {
195 return NULL;
196 }
197
198 rcu_read_lock();
199
200 lttng_ht_lookup(ht, &key, &iter);
201 node = lttng_ht_iter_get_node_u64(&iter);
202 if (node != NULL) {
203 stream = caa_container_of(node, struct lttng_consumer_stream, node);
204 }
205
206 rcu_read_unlock();
207
208 return stream;
209 }
210
211 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
212 {
213 struct lttng_consumer_stream *stream;
214
215 rcu_read_lock();
216 stream = find_stream(key, ht);
217 if (stream) {
218 stream->key = (uint64_t) -1ULL;
219 /*
220 * We don't want the lookup to match, but we still need
221 * to iterate on this stream when iterating over the hash table. Just
222 * change the node key.
223 */
224 stream->node.key = (uint64_t) -1ULL;
225 }
226 rcu_read_unlock();
227 }
228
229 /*
230 * Return a channel object for the given key.
231 *
232 * RCU read side lock MUST be acquired before calling this function and
233 * protects the channel ptr.
234 */
235 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
236 {
237 struct lttng_ht_iter iter;
238 struct lttng_ht_node_u64 *node;
239 struct lttng_consumer_channel *channel = NULL;
240
241 /* -1ULL keys are lookup failures */
242 if (key == (uint64_t) -1ULL) {
243 return NULL;
244 }
245
246 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
247 node = lttng_ht_iter_get_node_u64(&iter);
248 if (node != NULL) {
249 channel = caa_container_of(node, struct lttng_consumer_channel, node);
250 }
251
252 return channel;
253 }
254
255 /*
256 * There is a possibility that the consumer does not have enough time between
257 * the close of the channel on the session daemon and the cleanup in here thus
258 * once we have a channel add with an existing key, we know for sure that this
259 * channel will eventually get cleaned up by all streams being closed.
260 *
261 * This function just nullifies the already existing channel key.
262 */
263 static void steal_channel_key(uint64_t key)
264 {
265 struct lttng_consumer_channel *channel;
266
267 rcu_read_lock();
268 channel = consumer_find_channel(key);
269 if (channel) {
270 channel->key = (uint64_t) -1ULL;
271 /*
272 * We don't want the lookup to match, but we still need to iterate on
273 * this channel when iterating over the hash table. Just change the
274 * node key.
275 */
276 channel->node.key = (uint64_t) -1ULL;
277 }
278 rcu_read_unlock();
279 }
280
281 static void free_channel_rcu(struct rcu_head *head)
282 {
283 struct lttng_ht_node_u64 *node =
284 caa_container_of(head, struct lttng_ht_node_u64, head);
285 struct lttng_consumer_channel *channel =
286 caa_container_of(node, struct lttng_consumer_channel, node);
287
288 switch (consumer_data.type) {
289 case LTTNG_CONSUMER_KERNEL:
290 break;
291 case LTTNG_CONSUMER32_UST:
292 case LTTNG_CONSUMER64_UST:
293 lttng_ustconsumer_free_channel(channel);
294 break;
295 default:
296 ERR("Unknown consumer_data type");
297 abort();
298 }
299 free(channel);
300 }
301
302 /*
303 * RCU protected relayd socket pair free.
304 */
305 static void free_relayd_rcu(struct rcu_head *head)
306 {
307 struct lttng_ht_node_u64 *node =
308 caa_container_of(head, struct lttng_ht_node_u64, head);
309 struct consumer_relayd_sock_pair *relayd =
310 caa_container_of(node, struct consumer_relayd_sock_pair, node);
311
312 /*
313 * Close all sockets. This is done in the call RCU since we don't want the
314 * socket fds to be reassigned thus potentially creating bad state of the
315 * relayd object.
316 *
317 * We do not have to lock the control socket mutex here since at this stage
318 * there is no one referencing to this relayd object.
319 */
320 (void) relayd_close(&relayd->control_sock);
321 (void) relayd_close(&relayd->data_sock);
322
323 free(relayd);
324 }
325
326 /*
327 * Destroy and free relayd socket pair object.
328 */
329 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
330 {
331 int ret;
332 struct lttng_ht_iter iter;
333
334 if (relayd == NULL) {
335 return;
336 }
337
338 DBG("Consumer destroy and close relayd socket pair");
339
340 iter.iter.node = &relayd->node.node;
341 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
342 if (ret != 0) {
343 /* We assume the relayd is being or is destroyed */
344 return;
345 }
346
347 /* RCU free() call */
348 call_rcu(&relayd->node.head, free_relayd_rcu);
349 }
350
351 /*
352 * Remove a channel from the global list protected by a mutex. This function is
353 * also responsible for freeing its data structures.
354 */
355 void consumer_del_channel(struct lttng_consumer_channel *channel)
356 {
357 int ret;
358 struct lttng_ht_iter iter;
359
360 DBG("Consumer delete channel key %" PRIu64, channel->key);
361
362 pthread_mutex_lock(&consumer_data.lock);
363 pthread_mutex_lock(&channel->lock);
364
365 /* Destroy streams that might have been left in the stream list. */
366 clean_channel_stream_list(channel);
367
368 if (channel->live_timer_enabled == 1) {
369 consumer_timer_live_stop(channel);
370 }
371
372 switch (consumer_data.type) {
373 case LTTNG_CONSUMER_KERNEL:
374 break;
375 case LTTNG_CONSUMER32_UST:
376 case LTTNG_CONSUMER64_UST:
377 lttng_ustconsumer_del_channel(channel);
378 break;
379 default:
380 ERR("Unknown consumer_data type");
381 assert(0);
382 goto end;
383 }
384
385 rcu_read_lock();
386 iter.iter.node = &channel->node.node;
387 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
388 assert(!ret);
389 rcu_read_unlock();
390
391 call_rcu(&channel->node.head, free_channel_rcu);
392 end:
393 pthread_mutex_unlock(&channel->lock);
394 pthread_mutex_unlock(&consumer_data.lock);
395 }
396
397 /*
398 * Iterate over the relayd hash table and destroy each element. Finally,
399 * destroy the whole hash table.
400 */
401 static void cleanup_relayd_ht(void)
402 {
403 struct lttng_ht_iter iter;
404 struct consumer_relayd_sock_pair *relayd;
405
406 rcu_read_lock();
407
408 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
409 node.node) {
410 consumer_destroy_relayd(relayd);
411 }
412
413 rcu_read_unlock();
414
415 lttng_ht_destroy(consumer_data.relayd_ht);
416 }
417
418 /*
419 * Update the end point status of all streams having the given network sequence
420 * index (relayd index).
421 *
422 * It's atomically set without having the stream mutex locked which is fine
423 * because we handle the write/read race with a pipe wakeup for each thread.
424 */
425 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
426 enum consumer_endpoint_status status)
427 {
428 struct lttng_ht_iter iter;
429 struct lttng_consumer_stream *stream;
430
431 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
432
433 rcu_read_lock();
434
435 /* Let's begin with metadata */
436 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
437 if (stream->net_seq_idx == net_seq_idx) {
438 uatomic_set(&stream->endpoint_status, status);
439 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
440 }
441 }
442
443 /* Follow up by the data streams */
444 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
445 if (stream->net_seq_idx == net_seq_idx) {
446 uatomic_set(&stream->endpoint_status, status);
447 DBG("Delete flag set to data stream %d", stream->wait_fd);
448 }
449 }
450 rcu_read_unlock();
451 }
452
453 /*
454 * Cleanup a relayd object by flagging every associated streams for deletion,
455 * destroying the object meaning removing it from the relayd hash table,
456 * closing the sockets and freeing the memory in a RCU call.
457 *
458 * If a local data context is available, notify the threads that the streams'
459 * state have changed.
460 */
461 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
462 struct lttng_consumer_local_data *ctx)
463 {
464 uint64_t netidx;
465
466 assert(relayd);
467
468 DBG("Cleaning up relayd sockets");
469
470 /* Save the net sequence index before destroying the object */
471 netidx = relayd->net_seq_idx;
472
473 /*
474 * Delete the relayd from the relayd hash table, close the sockets and free
475 * the object in a RCU call.
476 */
477 consumer_destroy_relayd(relayd);
478
479 /* Set inactive endpoint to all streams */
480 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
481
482 /*
483 * With a local data context, notify the threads that the streams' state
484 * have changed. The write() action on the pipe acts as an "implicit"
485 * memory barrier ordering the updates of the end point status from the
486 * read of this status which happens AFTER receiving this notify.
487 */
488 if (ctx) {
489 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
490 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
491 }
492 }
493
494 /*
495 * Flag a relayd socket pair for destruction. Destroy it if the refcount
496 * reaches zero.
497 *
498 * RCU read side lock MUST be aquired before calling this function.
499 */
500 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
501 {
502 assert(relayd);
503
504 /* Set destroy flag for this object */
505 uatomic_set(&relayd->destroy_flag, 1);
506
507 /* Destroy the relayd if refcount is 0 */
508 if (uatomic_read(&relayd->refcount) == 0) {
509 consumer_destroy_relayd(relayd);
510 }
511 }
512
513 /*
514 * Completly destroy stream from every visiable data structure and the given
515 * hash table if one.
516 *
517 * One this call returns, the stream object is not longer usable nor visible.
518 */
519 void consumer_del_stream(struct lttng_consumer_stream *stream,
520 struct lttng_ht *ht)
521 {
522 consumer_stream_destroy(stream, ht);
523 }
524
525 /*
526 * XXX naming of del vs destroy is all mixed up.
527 */
528 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
529 {
530 consumer_stream_destroy(stream, data_ht);
531 }
532
533 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
534 {
535 consumer_stream_destroy(stream, metadata_ht);
536 }
537
538 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
539 uint64_t stream_key,
540 enum lttng_consumer_stream_state state,
541 const char *channel_name,
542 uid_t uid,
543 gid_t gid,
544 uint64_t relayd_id,
545 uint64_t session_id,
546 int cpu,
547 int *alloc_ret,
548 enum consumer_channel_type type,
549 unsigned int monitor)
550 {
551 int ret;
552 struct lttng_consumer_stream *stream;
553
554 stream = zmalloc(sizeof(*stream));
555 if (stream == NULL) {
556 PERROR("malloc struct lttng_consumer_stream");
557 ret = -ENOMEM;
558 goto end;
559 }
560
561 rcu_read_lock();
562
563 stream->key = stream_key;
564 stream->out_fd = -1;
565 stream->out_fd_offset = 0;
566 stream->output_written = 0;
567 stream->state = state;
568 stream->uid = uid;
569 stream->gid = gid;
570 stream->net_seq_idx = relayd_id;
571 stream->session_id = session_id;
572 stream->monitor = monitor;
573 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
574 stream->index_file = NULL;
575 stream->last_sequence_number = -1ULL;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht, int *nb_inactive_fd)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 *nb_inactive_fd = 0;
1087 rcu_read_lock();
1088 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1089 /*
1090 * Only active streams with an active end point can be added to the
1091 * poll set and local stream storage of the thread.
1092 *
1093 * There is a potential race here for endpoint_status to be updated
1094 * just after the check. However, this is OK since the stream(s) will
1095 * be deleted once the thread is notified that the end point state has
1096 * changed where this function will be called back again.
1097 *
1098 * We track the number of inactive FDs because they still need to be
1099 * closed by the polling thread after a wakeup on the data_pipe or
1100 * metadata_pipe.
1101 */
1102 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1103 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1104 (*nb_inactive_fd)++;
1105 continue;
1106 }
1107 /*
1108 * This clobbers way too much the debug output. Uncomment that if you
1109 * need it for debugging purposes.
1110 *
1111 * DBG("Active FD %d", stream->wait_fd);
1112 */
1113 (*pollfd)[i].fd = stream->wait_fd;
1114 (*pollfd)[i].events = POLLIN | POLLPRI;
1115 local_stream[i] = stream;
1116 i++;
1117 }
1118 rcu_read_unlock();
1119
1120 /*
1121 * Insert the consumer_data_pipe at the end of the array and don't
1122 * increment i so nb_fd is the number of real FD.
1123 */
1124 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1125 (*pollfd)[i].events = POLLIN | POLLPRI;
1126
1127 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1128 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1129 return i;
1130 }
1131
1132 /*
1133 * Poll on the should_quit pipe and the command socket return -1 on
1134 * error, 1 if should exit, 0 if data is available on the command socket
1135 */
1136 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1137 {
1138 int num_rdy;
1139
1140 restart:
1141 num_rdy = poll(consumer_sockpoll, 2, -1);
1142 if (num_rdy == -1) {
1143 /*
1144 * Restart interrupted system call.
1145 */
1146 if (errno == EINTR) {
1147 goto restart;
1148 }
1149 PERROR("Poll error");
1150 return -1;
1151 }
1152 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1153 DBG("consumer_should_quit wake up");
1154 return 1;
1155 }
1156 return 0;
1157 }
1158
1159 /*
1160 * Set the error socket.
1161 */
1162 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1163 int sock)
1164 {
1165 ctx->consumer_error_socket = sock;
1166 }
1167
1168 /*
1169 * Set the command socket path.
1170 */
1171 void lttng_consumer_set_command_sock_path(
1172 struct lttng_consumer_local_data *ctx, char *sock)
1173 {
1174 ctx->consumer_command_sock_path = sock;
1175 }
1176
1177 /*
1178 * Send return code to the session daemon.
1179 * If the socket is not defined, we return 0, it is not a fatal error
1180 */
1181 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1182 {
1183 if (ctx->consumer_error_socket > 0) {
1184 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1185 sizeof(enum lttcomm_sessiond_command));
1186 }
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * Close all the tracefiles and stream fds and MUST be called when all
1193 * instances are destroyed i.e. when all threads were joined and are ended.
1194 */
1195 void lttng_consumer_cleanup(void)
1196 {
1197 struct lttng_ht_iter iter;
1198 struct lttng_consumer_channel *channel;
1199
1200 rcu_read_lock();
1201
1202 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1203 node.node) {
1204 consumer_del_channel(channel);
1205 }
1206
1207 rcu_read_unlock();
1208
1209 lttng_ht_destroy(consumer_data.channel_ht);
1210
1211 cleanup_relayd_ht();
1212
1213 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1214
1215 /*
1216 * This HT contains streams that are freed by either the metadata thread or
1217 * the data thread so we do *nothing* on the hash table and simply destroy
1218 * it.
1219 */
1220 lttng_ht_destroy(consumer_data.stream_list_ht);
1221 }
1222
1223 /*
1224 * Called from signal handler.
1225 */
1226 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1227 {
1228 ssize_t ret;
1229
1230 consumer_quit = 1;
1231 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1232 if (ret < 1) {
1233 PERROR("write consumer quit");
1234 }
1235
1236 DBG("Consumer flag that it should quit");
1237 }
1238
1239
1240 /*
1241 * Flush pending writes to trace output disk file.
1242 */
1243 static
1244 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1245 off_t orig_offset)
1246 {
1247 int ret;
1248 int outfd = stream->out_fd;
1249
1250 /*
1251 * This does a blocking write-and-wait on any page that belongs to the
1252 * subbuffer prior to the one we just wrote.
1253 * Don't care about error values, as these are just hints and ways to
1254 * limit the amount of page cache used.
1255 */
1256 if (orig_offset < stream->max_sb_size) {
1257 return;
1258 }
1259 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1260 stream->max_sb_size,
1261 SYNC_FILE_RANGE_WAIT_BEFORE
1262 | SYNC_FILE_RANGE_WRITE
1263 | SYNC_FILE_RANGE_WAIT_AFTER);
1264 /*
1265 * Give hints to the kernel about how we access the file:
1266 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1267 * we write it.
1268 *
1269 * We need to call fadvise again after the file grows because the
1270 * kernel does not seem to apply fadvise to non-existing parts of the
1271 * file.
1272 *
1273 * Call fadvise _after_ having waited for the page writeback to
1274 * complete because the dirty page writeback semantic is not well
1275 * defined. So it can be expected to lead to lower throughput in
1276 * streaming.
1277 */
1278 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1279 stream->max_sb_size, POSIX_FADV_DONTNEED);
1280 if (ret && ret != -ENOSYS) {
1281 errno = ret;
1282 PERROR("posix_fadvise on fd %i", outfd);
1283 }
1284 }
1285
1286 /*
1287 * Initialise the necessary environnement :
1288 * - create a new context
1289 * - create the poll_pipe
1290 * - create the should_quit pipe (for signal handler)
1291 * - create the thread pipe (for splice)
1292 *
1293 * Takes a function pointer as argument, this function is called when data is
1294 * available on a buffer. This function is responsible to do the
1295 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1296 * buffer configuration and then kernctl_put_next_subbuf at the end.
1297 *
1298 * Returns a pointer to the new context or NULL on error.
1299 */
1300 struct lttng_consumer_local_data *lttng_consumer_create(
1301 enum lttng_consumer_type type,
1302 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1303 struct lttng_consumer_local_data *ctx),
1304 int (*recv_channel)(struct lttng_consumer_channel *channel),
1305 int (*recv_stream)(struct lttng_consumer_stream *stream),
1306 int (*update_stream)(uint64_t stream_key, uint32_t state))
1307 {
1308 int ret;
1309 struct lttng_consumer_local_data *ctx;
1310
1311 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1312 consumer_data.type == type);
1313 consumer_data.type = type;
1314
1315 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1316 if (ctx == NULL) {
1317 PERROR("allocating context");
1318 goto error;
1319 }
1320
1321 ctx->consumer_error_socket = -1;
1322 ctx->consumer_metadata_socket = -1;
1323 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1324 /* assign the callbacks */
1325 ctx->on_buffer_ready = buffer_ready;
1326 ctx->on_recv_channel = recv_channel;
1327 ctx->on_recv_stream = recv_stream;
1328 ctx->on_update_stream = update_stream;
1329
1330 ctx->consumer_data_pipe = lttng_pipe_open(0);
1331 if (!ctx->consumer_data_pipe) {
1332 goto error_poll_pipe;
1333 }
1334
1335 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1336 if (!ctx->consumer_wakeup_pipe) {
1337 goto error_wakeup_pipe;
1338 }
1339
1340 ret = pipe(ctx->consumer_should_quit);
1341 if (ret < 0) {
1342 PERROR("Error creating recv pipe");
1343 goto error_quit_pipe;
1344 }
1345
1346 ret = pipe(ctx->consumer_channel_pipe);
1347 if (ret < 0) {
1348 PERROR("Error creating channel pipe");
1349 goto error_channel_pipe;
1350 }
1351
1352 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1353 if (!ctx->consumer_metadata_pipe) {
1354 goto error_metadata_pipe;
1355 }
1356
1357 return ctx;
1358
1359 error_metadata_pipe:
1360 utils_close_pipe(ctx->consumer_channel_pipe);
1361 error_channel_pipe:
1362 utils_close_pipe(ctx->consumer_should_quit);
1363 error_quit_pipe:
1364 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1365 error_wakeup_pipe:
1366 lttng_pipe_destroy(ctx->consumer_data_pipe);
1367 error_poll_pipe:
1368 free(ctx);
1369 error:
1370 return NULL;
1371 }
1372
1373 /*
1374 * Iterate over all streams of the hashtable and free them properly.
1375 */
1376 static void destroy_data_stream_ht(struct lttng_ht *ht)
1377 {
1378 struct lttng_ht_iter iter;
1379 struct lttng_consumer_stream *stream;
1380
1381 if (ht == NULL) {
1382 return;
1383 }
1384
1385 rcu_read_lock();
1386 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1387 /*
1388 * Ignore return value since we are currently cleaning up so any error
1389 * can't be handled.
1390 */
1391 (void) consumer_del_stream(stream, ht);
1392 }
1393 rcu_read_unlock();
1394
1395 lttng_ht_destroy(ht);
1396 }
1397
1398 /*
1399 * Iterate over all streams of the metadata hashtable and free them
1400 * properly.
1401 */
1402 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1403 {
1404 struct lttng_ht_iter iter;
1405 struct lttng_consumer_stream *stream;
1406
1407 if (ht == NULL) {
1408 return;
1409 }
1410
1411 rcu_read_lock();
1412 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1413 /*
1414 * Ignore return value since we are currently cleaning up so any error
1415 * can't be handled.
1416 */
1417 (void) consumer_del_metadata_stream(stream, ht);
1418 }
1419 rcu_read_unlock();
1420
1421 lttng_ht_destroy(ht);
1422 }
1423
1424 /*
1425 * Close all fds associated with the instance and free the context.
1426 */
1427 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1428 {
1429 int ret;
1430
1431 DBG("Consumer destroying it. Closing everything.");
1432
1433 if (!ctx) {
1434 return;
1435 }
1436
1437 destroy_data_stream_ht(data_ht);
1438 destroy_metadata_stream_ht(metadata_ht);
1439
1440 ret = close(ctx->consumer_error_socket);
1441 if (ret) {
1442 PERROR("close");
1443 }
1444 ret = close(ctx->consumer_metadata_socket);
1445 if (ret) {
1446 PERROR("close");
1447 }
1448 utils_close_pipe(ctx->consumer_channel_pipe);
1449 lttng_pipe_destroy(ctx->consumer_data_pipe);
1450 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1451 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1452 utils_close_pipe(ctx->consumer_should_quit);
1453
1454 unlink(ctx->consumer_command_sock_path);
1455 free(ctx);
1456 }
1457
1458 /*
1459 * Write the metadata stream id on the specified file descriptor.
1460 */
1461 static int write_relayd_metadata_id(int fd,
1462 struct lttng_consumer_stream *stream,
1463 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1464 {
1465 ssize_t ret;
1466 struct lttcomm_relayd_metadata_payload hdr;
1467
1468 hdr.stream_id = htobe64(stream->relayd_stream_id);
1469 hdr.padding_size = htobe32(padding);
1470 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1471 if (ret < sizeof(hdr)) {
1472 /*
1473 * This error means that the fd's end is closed so ignore the PERROR
1474 * not to clubber the error output since this can happen in a normal
1475 * code path.
1476 */
1477 if (errno != EPIPE) {
1478 PERROR("write metadata stream id");
1479 }
1480 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1481 /*
1482 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1483 * handle writting the missing part so report that as an error and
1484 * don't lie to the caller.
1485 */
1486 ret = -1;
1487 goto end;
1488 }
1489 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1490 stream->relayd_stream_id, padding);
1491
1492 end:
1493 return (int) ret;
1494 }
1495
1496 /*
1497 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1498 * core function for writing trace buffers to either the local filesystem or
1499 * the network.
1500 *
1501 * It must be called with the stream lock held.
1502 *
1503 * Careful review MUST be put if any changes occur!
1504 *
1505 * Returns the number of bytes written
1506 */
1507 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1508 struct lttng_consumer_local_data *ctx,
1509 struct lttng_consumer_stream *stream, unsigned long len,
1510 unsigned long padding,
1511 struct ctf_packet_index *index)
1512 {
1513 unsigned long mmap_offset;
1514 void *mmap_base;
1515 ssize_t ret = 0;
1516 off_t orig_offset = stream->out_fd_offset;
1517 /* Default is on the disk */
1518 int outfd = stream->out_fd;
1519 struct consumer_relayd_sock_pair *relayd = NULL;
1520 unsigned int relayd_hang_up = 0;
1521
1522 /* RCU lock for the relayd pointer */
1523 rcu_read_lock();
1524
1525 /* Flag that the current stream if set for network streaming. */
1526 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1527 relayd = consumer_find_relayd(stream->net_seq_idx);
1528 if (relayd == NULL) {
1529 ret = -EPIPE;
1530 goto end;
1531 }
1532 }
1533
1534 /* get the offset inside the fd to mmap */
1535 switch (consumer_data.type) {
1536 case LTTNG_CONSUMER_KERNEL:
1537 mmap_base = stream->mmap_base;
1538 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1539 if (ret < 0) {
1540 PERROR("tracer ctl get_mmap_read_offset");
1541 goto end;
1542 }
1543 break;
1544 case LTTNG_CONSUMER32_UST:
1545 case LTTNG_CONSUMER64_UST:
1546 mmap_base = lttng_ustctl_get_mmap_base(stream);
1547 if (!mmap_base) {
1548 ERR("read mmap get mmap base for stream %s", stream->name);
1549 ret = -EPERM;
1550 goto end;
1551 }
1552 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1553 if (ret != 0) {
1554 PERROR("tracer ctl get_mmap_read_offset");
1555 ret = -EINVAL;
1556 goto end;
1557 }
1558 break;
1559 default:
1560 ERR("Unknown consumer_data type");
1561 assert(0);
1562 }
1563
1564 /* Handle stream on the relayd if the output is on the network */
1565 if (relayd) {
1566 unsigned long netlen = len;
1567
1568 /*
1569 * Lock the control socket for the complete duration of the function
1570 * since from this point on we will use the socket.
1571 */
1572 if (stream->metadata_flag) {
1573 /* Metadata requires the control socket. */
1574 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1575 if (stream->reset_metadata_flag) {
1576 ret = relayd_reset_metadata(&relayd->control_sock,
1577 stream->relayd_stream_id,
1578 stream->metadata_version);
1579 if (ret < 0) {
1580 relayd_hang_up = 1;
1581 goto write_error;
1582 }
1583 stream->reset_metadata_flag = 0;
1584 }
1585 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1586 }
1587
1588 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1589 if (ret < 0) {
1590 relayd_hang_up = 1;
1591 goto write_error;
1592 }
1593 /* Use the returned socket. */
1594 outfd = ret;
1595
1596 /* Write metadata stream id before payload */
1597 if (stream->metadata_flag) {
1598 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1599 if (ret < 0) {
1600 relayd_hang_up = 1;
1601 goto write_error;
1602 }
1603 }
1604 } else {
1605 /* No streaming, we have to set the len with the full padding */
1606 len += padding;
1607
1608 if (stream->metadata_flag && stream->reset_metadata_flag) {
1609 ret = utils_truncate_stream_file(stream->out_fd, 0);
1610 if (ret < 0) {
1611 ERR("Reset metadata file");
1612 goto end;
1613 }
1614 stream->reset_metadata_flag = 0;
1615 }
1616
1617 /*
1618 * Check if we need to change the tracefile before writing the packet.
1619 */
1620 if (stream->chan->tracefile_size > 0 &&
1621 (stream->tracefile_size_current + len) >
1622 stream->chan->tracefile_size) {
1623 ret = utils_rotate_stream_file(stream->chan->pathname,
1624 stream->name, stream->chan->tracefile_size,
1625 stream->chan->tracefile_count, stream->uid, stream->gid,
1626 stream->out_fd, &(stream->tracefile_count_current),
1627 &stream->out_fd);
1628 if (ret < 0) {
1629 ERR("Rotating output file");
1630 goto end;
1631 }
1632 outfd = stream->out_fd;
1633
1634 if (stream->index_file) {
1635 lttng_index_file_put(stream->index_file);
1636 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1637 stream->name, stream->uid, stream->gid,
1638 stream->chan->tracefile_size,
1639 stream->tracefile_count_current,
1640 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1641 if (!stream->index_file) {
1642 goto end;
1643 }
1644 }
1645
1646 /* Reset current size because we just perform a rotation. */
1647 stream->tracefile_size_current = 0;
1648 stream->out_fd_offset = 0;
1649 orig_offset = 0;
1650 }
1651 stream->tracefile_size_current += len;
1652 if (index) {
1653 index->offset = htobe64(stream->out_fd_offset);
1654 }
1655 }
1656
1657 /*
1658 * This call guarantee that len or less is returned. It's impossible to
1659 * receive a ret value that is bigger than len.
1660 */
1661 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1662 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1663 if (ret < 0 || ((size_t) ret != len)) {
1664 /*
1665 * Report error to caller if nothing was written else at least send the
1666 * amount written.
1667 */
1668 if (ret < 0) {
1669 ret = -errno;
1670 }
1671 relayd_hang_up = 1;
1672
1673 /* Socket operation failed. We consider the relayd dead */
1674 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1675 /*
1676 * This is possible if the fd is closed on the other side
1677 * (outfd) or any write problem. It can be verbose a bit for a
1678 * normal execution if for instance the relayd is stopped
1679 * abruptly. This can happen so set this to a DBG statement.
1680 */
1681 DBG("Consumer mmap write detected relayd hang up");
1682 } else {
1683 /* Unhandled error, print it and stop function right now. */
1684 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1685 }
1686 goto write_error;
1687 }
1688 stream->output_written += ret;
1689
1690 /* This call is useless on a socket so better save a syscall. */
1691 if (!relayd) {
1692 /* This won't block, but will start writeout asynchronously */
1693 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1694 SYNC_FILE_RANGE_WRITE);
1695 stream->out_fd_offset += len;
1696 lttng_consumer_sync_trace_file(stream, orig_offset);
1697 }
1698
1699 write_error:
1700 /*
1701 * This is a special case that the relayd has closed its socket. Let's
1702 * cleanup the relayd object and all associated streams.
1703 */
1704 if (relayd && relayd_hang_up) {
1705 cleanup_relayd(relayd, ctx);
1706 }
1707
1708 end:
1709 /* Unlock only if ctrl socket used */
1710 if (relayd && stream->metadata_flag) {
1711 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1712 }
1713
1714 rcu_read_unlock();
1715 return ret;
1716 }
1717
1718 /*
1719 * Splice the data from the ring buffer to the tracefile.
1720 *
1721 * It must be called with the stream lock held.
1722 *
1723 * Returns the number of bytes spliced.
1724 */
1725 ssize_t lttng_consumer_on_read_subbuffer_splice(
1726 struct lttng_consumer_local_data *ctx,
1727 struct lttng_consumer_stream *stream, unsigned long len,
1728 unsigned long padding,
1729 struct ctf_packet_index *index)
1730 {
1731 ssize_t ret = 0, written = 0, ret_splice = 0;
1732 loff_t offset = 0;
1733 off_t orig_offset = stream->out_fd_offset;
1734 int fd = stream->wait_fd;
1735 /* Default is on the disk */
1736 int outfd = stream->out_fd;
1737 struct consumer_relayd_sock_pair *relayd = NULL;
1738 int *splice_pipe;
1739 unsigned int relayd_hang_up = 0;
1740
1741 switch (consumer_data.type) {
1742 case LTTNG_CONSUMER_KERNEL:
1743 break;
1744 case LTTNG_CONSUMER32_UST:
1745 case LTTNG_CONSUMER64_UST:
1746 /* Not supported for user space tracing */
1747 return -ENOSYS;
1748 default:
1749 ERR("Unknown consumer_data type");
1750 assert(0);
1751 }
1752
1753 /* RCU lock for the relayd pointer */
1754 rcu_read_lock();
1755
1756 /* Flag that the current stream if set for network streaming. */
1757 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1758 relayd = consumer_find_relayd(stream->net_seq_idx);
1759 if (relayd == NULL) {
1760 written = -ret;
1761 goto end;
1762 }
1763 }
1764 splice_pipe = stream->splice_pipe;
1765
1766 /* Write metadata stream id before payload */
1767 if (relayd) {
1768 unsigned long total_len = len;
1769
1770 if (stream->metadata_flag) {
1771 /*
1772 * Lock the control socket for the complete duration of the function
1773 * since from this point on we will use the socket.
1774 */
1775 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1776
1777 if (stream->reset_metadata_flag) {
1778 ret = relayd_reset_metadata(&relayd->control_sock,
1779 stream->relayd_stream_id,
1780 stream->metadata_version);
1781 if (ret < 0) {
1782 relayd_hang_up = 1;
1783 goto write_error;
1784 }
1785 stream->reset_metadata_flag = 0;
1786 }
1787 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1788 padding);
1789 if (ret < 0) {
1790 written = ret;
1791 relayd_hang_up = 1;
1792 goto write_error;
1793 }
1794
1795 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1796 }
1797
1798 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1799 if (ret < 0) {
1800 written = ret;
1801 relayd_hang_up = 1;
1802 goto write_error;
1803 }
1804 /* Use the returned socket. */
1805 outfd = ret;
1806 } else {
1807 /* No streaming, we have to set the len with the full padding */
1808 len += padding;
1809
1810 if (stream->metadata_flag && stream->reset_metadata_flag) {
1811 ret = utils_truncate_stream_file(stream->out_fd, 0);
1812 if (ret < 0) {
1813 ERR("Reset metadata file");
1814 goto end;
1815 }
1816 stream->reset_metadata_flag = 0;
1817 }
1818 /*
1819 * Check if we need to change the tracefile before writing the packet.
1820 */
1821 if (stream->chan->tracefile_size > 0 &&
1822 (stream->tracefile_size_current + len) >
1823 stream->chan->tracefile_size) {
1824 ret = utils_rotate_stream_file(stream->chan->pathname,
1825 stream->name, stream->chan->tracefile_size,
1826 stream->chan->tracefile_count, stream->uid, stream->gid,
1827 stream->out_fd, &(stream->tracefile_count_current),
1828 &stream->out_fd);
1829 if (ret < 0) {
1830 written = ret;
1831 ERR("Rotating output file");
1832 goto end;
1833 }
1834 outfd = stream->out_fd;
1835
1836 if (stream->index_file) {
1837 lttng_index_file_put(stream->index_file);
1838 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1839 stream->name, stream->uid, stream->gid,
1840 stream->chan->tracefile_size,
1841 stream->tracefile_count_current,
1842 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1843 if (!stream->index_file) {
1844 goto end;
1845 }
1846 }
1847
1848 /* Reset current size because we just perform a rotation. */
1849 stream->tracefile_size_current = 0;
1850 stream->out_fd_offset = 0;
1851 orig_offset = 0;
1852 }
1853 stream->tracefile_size_current += len;
1854 index->offset = htobe64(stream->out_fd_offset);
1855 }
1856
1857 while (len > 0) {
1858 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1859 (unsigned long)offset, len, fd, splice_pipe[1]);
1860 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1861 SPLICE_F_MOVE | SPLICE_F_MORE);
1862 DBG("splice chan to pipe, ret %zd", ret_splice);
1863 if (ret_splice < 0) {
1864 ret = errno;
1865 written = -ret;
1866 PERROR("Error in relay splice");
1867 goto splice_error;
1868 }
1869
1870 /* Handle stream on the relayd if the output is on the network */
1871 if (relayd && stream->metadata_flag) {
1872 size_t metadata_payload_size =
1873 sizeof(struct lttcomm_relayd_metadata_payload);
1874
1875 /* Update counter to fit the spliced data */
1876 ret_splice += metadata_payload_size;
1877 len += metadata_payload_size;
1878 /*
1879 * We do this so the return value can match the len passed as
1880 * argument to this function.
1881 */
1882 written -= metadata_payload_size;
1883 }
1884
1885 /* Splice data out */
1886 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1887 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1888 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1889 outfd, ret_splice);
1890 if (ret_splice < 0) {
1891 ret = errno;
1892 written = -ret;
1893 relayd_hang_up = 1;
1894 goto write_error;
1895 } else if (ret_splice > len) {
1896 /*
1897 * We don't expect this code path to be executed but you never know
1898 * so this is an extra protection agains a buggy splice().
1899 */
1900 ret = errno;
1901 written += ret_splice;
1902 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1903 len);
1904 goto splice_error;
1905 } else {
1906 /* All good, update current len and continue. */
1907 len -= ret_splice;
1908 }
1909
1910 /* This call is useless on a socket so better save a syscall. */
1911 if (!relayd) {
1912 /* This won't block, but will start writeout asynchronously */
1913 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1914 SYNC_FILE_RANGE_WRITE);
1915 stream->out_fd_offset += ret_splice;
1916 }
1917 stream->output_written += ret_splice;
1918 written += ret_splice;
1919 }
1920 if (!relayd) {
1921 lttng_consumer_sync_trace_file(stream, orig_offset);
1922 }
1923 goto end;
1924
1925 write_error:
1926 /*
1927 * This is a special case that the relayd has closed its socket. Let's
1928 * cleanup the relayd object and all associated streams.
1929 */
1930 if (relayd && relayd_hang_up) {
1931 cleanup_relayd(relayd, ctx);
1932 /* Skip splice error so the consumer does not fail */
1933 goto end;
1934 }
1935
1936 splice_error:
1937 /* send the appropriate error description to sessiond */
1938 switch (ret) {
1939 case EINVAL:
1940 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1941 break;
1942 case ENOMEM:
1943 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1944 break;
1945 case ESPIPE:
1946 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1947 break;
1948 }
1949
1950 end:
1951 if (relayd && stream->metadata_flag) {
1952 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1953 }
1954
1955 rcu_read_unlock();
1956 return written;
1957 }
1958
1959 /*
1960 * Take a snapshot for a specific fd
1961 *
1962 * Returns 0 on success, < 0 on error
1963 */
1964 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1965 {
1966 switch (consumer_data.type) {
1967 case LTTNG_CONSUMER_KERNEL:
1968 return lttng_kconsumer_take_snapshot(stream);
1969 case LTTNG_CONSUMER32_UST:
1970 case LTTNG_CONSUMER64_UST:
1971 return lttng_ustconsumer_take_snapshot(stream);
1972 default:
1973 ERR("Unknown consumer_data type");
1974 assert(0);
1975 return -ENOSYS;
1976 }
1977 }
1978
1979 /*
1980 * Get the produced position
1981 *
1982 * Returns 0 on success, < 0 on error
1983 */
1984 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1985 unsigned long *pos)
1986 {
1987 switch (consumer_data.type) {
1988 case LTTNG_CONSUMER_KERNEL:
1989 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1990 case LTTNG_CONSUMER32_UST:
1991 case LTTNG_CONSUMER64_UST:
1992 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1993 default:
1994 ERR("Unknown consumer_data type");
1995 assert(0);
1996 return -ENOSYS;
1997 }
1998 }
1999
2000 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2001 int sock, struct pollfd *consumer_sockpoll)
2002 {
2003 switch (consumer_data.type) {
2004 case LTTNG_CONSUMER_KERNEL:
2005 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2006 case LTTNG_CONSUMER32_UST:
2007 case LTTNG_CONSUMER64_UST:
2008 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2009 default:
2010 ERR("Unknown consumer_data type");
2011 assert(0);
2012 return -ENOSYS;
2013 }
2014 }
2015
2016 void lttng_consumer_close_all_metadata(void)
2017 {
2018 switch (consumer_data.type) {
2019 case LTTNG_CONSUMER_KERNEL:
2020 /*
2021 * The Kernel consumer has a different metadata scheme so we don't
2022 * close anything because the stream will be closed by the session
2023 * daemon.
2024 */
2025 break;
2026 case LTTNG_CONSUMER32_UST:
2027 case LTTNG_CONSUMER64_UST:
2028 /*
2029 * Close all metadata streams. The metadata hash table is passed and
2030 * this call iterates over it by closing all wakeup fd. This is safe
2031 * because at this point we are sure that the metadata producer is
2032 * either dead or blocked.
2033 */
2034 lttng_ustconsumer_close_all_metadata(metadata_ht);
2035 break;
2036 default:
2037 ERR("Unknown consumer_data type");
2038 assert(0);
2039 }
2040 }
2041
2042 /*
2043 * Clean up a metadata stream and free its memory.
2044 */
2045 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2046 struct lttng_ht *ht)
2047 {
2048 struct lttng_consumer_channel *free_chan = NULL;
2049
2050 assert(stream);
2051 /*
2052 * This call should NEVER receive regular stream. It must always be
2053 * metadata stream and this is crucial for data structure synchronization.
2054 */
2055 assert(stream->metadata_flag);
2056
2057 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2058
2059 pthread_mutex_lock(&consumer_data.lock);
2060 pthread_mutex_lock(&stream->chan->lock);
2061 pthread_mutex_lock(&stream->lock);
2062 if (stream->chan->metadata_cache) {
2063 /* Only applicable to userspace consumers. */
2064 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2065 }
2066
2067 /* Remove any reference to that stream. */
2068 consumer_stream_delete(stream, ht);
2069
2070 /* Close down everything including the relayd if one. */
2071 consumer_stream_close(stream);
2072 /* Destroy tracer buffers of the stream. */
2073 consumer_stream_destroy_buffers(stream);
2074
2075 /* Atomically decrement channel refcount since other threads can use it. */
2076 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2077 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2078 /* Go for channel deletion! */
2079 free_chan = stream->chan;
2080 }
2081
2082 /*
2083 * Nullify the stream reference so it is not used after deletion. The
2084 * channel lock MUST be acquired before being able to check for a NULL
2085 * pointer value.
2086 */
2087 stream->chan->metadata_stream = NULL;
2088
2089 if (stream->chan->metadata_cache) {
2090 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2091 }
2092 pthread_mutex_unlock(&stream->lock);
2093 pthread_mutex_unlock(&stream->chan->lock);
2094 pthread_mutex_unlock(&consumer_data.lock);
2095
2096 if (free_chan) {
2097 consumer_del_channel(free_chan);
2098 }
2099
2100 consumer_stream_free(stream);
2101 }
2102
2103 /*
2104 * Action done with the metadata stream when adding it to the consumer internal
2105 * data structures to handle it.
2106 */
2107 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2108 {
2109 struct lttng_ht *ht = metadata_ht;
2110 int ret = 0;
2111 struct lttng_ht_iter iter;
2112 struct lttng_ht_node_u64 *node;
2113
2114 assert(stream);
2115 assert(ht);
2116
2117 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2118
2119 pthread_mutex_lock(&consumer_data.lock);
2120 pthread_mutex_lock(&stream->chan->lock);
2121 pthread_mutex_lock(&stream->chan->timer_lock);
2122 pthread_mutex_lock(&stream->lock);
2123
2124 /*
2125 * From here, refcounts are updated so be _careful_ when returning an error
2126 * after this point.
2127 */
2128
2129 rcu_read_lock();
2130
2131 /*
2132 * Lookup the stream just to make sure it does not exist in our internal
2133 * state. This should NEVER happen.
2134 */
2135 lttng_ht_lookup(ht, &stream->key, &iter);
2136 node = lttng_ht_iter_get_node_u64(&iter);
2137 assert(!node);
2138
2139 /*
2140 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2141 * in terms of destroying the associated channel, because the action that
2142 * causes the count to become 0 also causes a stream to be added. The
2143 * channel deletion will thus be triggered by the following removal of this
2144 * stream.
2145 */
2146 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2147 /* Increment refcount before decrementing nb_init_stream_left */
2148 cmm_smp_wmb();
2149 uatomic_dec(&stream->chan->nb_init_stream_left);
2150 }
2151
2152 lttng_ht_add_unique_u64(ht, &stream->node);
2153
2154 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2155 &stream->node_channel_id);
2156
2157 /*
2158 * Add stream to the stream_list_ht of the consumer data. No need to steal
2159 * the key since the HT does not use it and we allow to add redundant keys
2160 * into this table.
2161 */
2162 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2163
2164 rcu_read_unlock();
2165
2166 pthread_mutex_unlock(&stream->lock);
2167 pthread_mutex_unlock(&stream->chan->lock);
2168 pthread_mutex_unlock(&stream->chan->timer_lock);
2169 pthread_mutex_unlock(&consumer_data.lock);
2170 return ret;
2171 }
2172
2173 /*
2174 * Delete data stream that are flagged for deletion (endpoint_status).
2175 */
2176 static void validate_endpoint_status_data_stream(void)
2177 {
2178 struct lttng_ht_iter iter;
2179 struct lttng_consumer_stream *stream;
2180
2181 DBG("Consumer delete flagged data stream");
2182
2183 rcu_read_lock();
2184 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2185 /* Validate delete flag of the stream */
2186 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2187 continue;
2188 }
2189 /* Delete it right now */
2190 consumer_del_stream(stream, data_ht);
2191 }
2192 rcu_read_unlock();
2193 }
2194
2195 /*
2196 * Delete metadata stream that are flagged for deletion (endpoint_status).
2197 */
2198 static void validate_endpoint_status_metadata_stream(
2199 struct lttng_poll_event *pollset)
2200 {
2201 struct lttng_ht_iter iter;
2202 struct lttng_consumer_stream *stream;
2203
2204 DBG("Consumer delete flagged metadata stream");
2205
2206 assert(pollset);
2207
2208 rcu_read_lock();
2209 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2210 /* Validate delete flag of the stream */
2211 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2212 continue;
2213 }
2214 /*
2215 * Remove from pollset so the metadata thread can continue without
2216 * blocking on a deleted stream.
2217 */
2218 lttng_poll_del(pollset, stream->wait_fd);
2219
2220 /* Delete it right now */
2221 consumer_del_metadata_stream(stream, metadata_ht);
2222 }
2223 rcu_read_unlock();
2224 }
2225
2226 /*
2227 * Thread polls on metadata file descriptor and write them on disk or on the
2228 * network.
2229 */
2230 void *consumer_thread_metadata_poll(void *data)
2231 {
2232 int ret, i, pollfd, err = -1;
2233 uint32_t revents, nb_fd;
2234 struct lttng_consumer_stream *stream = NULL;
2235 struct lttng_ht_iter iter;
2236 struct lttng_ht_node_u64 *node;
2237 struct lttng_poll_event events;
2238 struct lttng_consumer_local_data *ctx = data;
2239 ssize_t len;
2240
2241 rcu_register_thread();
2242
2243 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2244
2245 if (testpoint(consumerd_thread_metadata)) {
2246 goto error_testpoint;
2247 }
2248
2249 health_code_update();
2250
2251 DBG("Thread metadata poll started");
2252
2253 /* Size is set to 1 for the consumer_metadata pipe */
2254 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2255 if (ret < 0) {
2256 ERR("Poll set creation failed");
2257 goto end_poll;
2258 }
2259
2260 ret = lttng_poll_add(&events,
2261 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2262 if (ret < 0) {
2263 goto end;
2264 }
2265
2266 /* Main loop */
2267 DBG("Metadata main loop started");
2268
2269 while (1) {
2270 restart:
2271 health_code_update();
2272 health_poll_entry();
2273 DBG("Metadata poll wait");
2274 ret = lttng_poll_wait(&events, -1);
2275 DBG("Metadata poll return from wait with %d fd(s)",
2276 LTTNG_POLL_GETNB(&events));
2277 health_poll_exit();
2278 DBG("Metadata event caught in thread");
2279 if (ret < 0) {
2280 if (errno == EINTR) {
2281 ERR("Poll EINTR caught");
2282 goto restart;
2283 }
2284 if (LTTNG_POLL_GETNB(&events) == 0) {
2285 err = 0; /* All is OK */
2286 }
2287 goto end;
2288 }
2289
2290 nb_fd = ret;
2291
2292 /* From here, the event is a metadata wait fd */
2293 for (i = 0; i < nb_fd; i++) {
2294 health_code_update();
2295
2296 revents = LTTNG_POLL_GETEV(&events, i);
2297 pollfd = LTTNG_POLL_GETFD(&events, i);
2298
2299 if (!revents) {
2300 /* No activity for this FD (poll implementation). */
2301 continue;
2302 }
2303
2304 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2305 if (revents & LPOLLIN) {
2306 ssize_t pipe_len;
2307
2308 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2309 &stream, sizeof(stream));
2310 if (pipe_len < sizeof(stream)) {
2311 if (pipe_len < 0) {
2312 PERROR("read metadata stream");
2313 }
2314 /*
2315 * Remove the pipe from the poll set and continue the loop
2316 * since their might be data to consume.
2317 */
2318 lttng_poll_del(&events,
2319 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2320 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2321 continue;
2322 }
2323
2324 /* A NULL stream means that the state has changed. */
2325 if (stream == NULL) {
2326 /* Check for deleted streams. */
2327 validate_endpoint_status_metadata_stream(&events);
2328 goto restart;
2329 }
2330
2331 DBG("Adding metadata stream %d to poll set",
2332 stream->wait_fd);
2333
2334 /* Add metadata stream to the global poll events list */
2335 lttng_poll_add(&events, stream->wait_fd,
2336 LPOLLIN | LPOLLPRI | LPOLLHUP);
2337 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2338 DBG("Metadata thread pipe hung up");
2339 /*
2340 * Remove the pipe from the poll set and continue the loop
2341 * since their might be data to consume.
2342 */
2343 lttng_poll_del(&events,
2344 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2345 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2346 continue;
2347 } else {
2348 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2349 goto end;
2350 }
2351
2352 /* Handle other stream */
2353 continue;
2354 }
2355
2356 rcu_read_lock();
2357 {
2358 uint64_t tmp_id = (uint64_t) pollfd;
2359
2360 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2361 }
2362 node = lttng_ht_iter_get_node_u64(&iter);
2363 assert(node);
2364
2365 stream = caa_container_of(node, struct lttng_consumer_stream,
2366 node);
2367
2368 if (revents & (LPOLLIN | LPOLLPRI)) {
2369 /* Get the data out of the metadata file descriptor */
2370 DBG("Metadata available on fd %d", pollfd);
2371 assert(stream->wait_fd == pollfd);
2372
2373 do {
2374 health_code_update();
2375
2376 len = ctx->on_buffer_ready(stream, ctx);
2377 /*
2378 * We don't check the return value here since if we get
2379 * a negative len, it means an error occurred thus we
2380 * simply remove it from the poll set and free the
2381 * stream.
2382 */
2383 } while (len > 0);
2384
2385 /* It's ok to have an unavailable sub-buffer */
2386 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2387 /* Clean up stream from consumer and free it. */
2388 lttng_poll_del(&events, stream->wait_fd);
2389 consumer_del_metadata_stream(stream, metadata_ht);
2390 }
2391 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2392 DBG("Metadata fd %d is hup|err.", pollfd);
2393 if (!stream->hangup_flush_done
2394 && (consumer_data.type == LTTNG_CONSUMER32_UST
2395 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2396 DBG("Attempting to flush and consume the UST buffers");
2397 lttng_ustconsumer_on_stream_hangup(stream);
2398
2399 /* We just flushed the stream now read it. */
2400 do {
2401 health_code_update();
2402
2403 len = ctx->on_buffer_ready(stream, ctx);
2404 /*
2405 * We don't check the return value here since if we get
2406 * a negative len, it means an error occurred thus we
2407 * simply remove it from the poll set and free the
2408 * stream.
2409 */
2410 } while (len > 0);
2411 }
2412
2413 lttng_poll_del(&events, stream->wait_fd);
2414 /*
2415 * This call update the channel states, closes file descriptors
2416 * and securely free the stream.
2417 */
2418 consumer_del_metadata_stream(stream, metadata_ht);
2419 } else {
2420 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2421 rcu_read_unlock();
2422 goto end;
2423 }
2424 /* Release RCU lock for the stream looked up */
2425 rcu_read_unlock();
2426 }
2427 }
2428
2429 /* All is OK */
2430 err = 0;
2431 end:
2432 DBG("Metadata poll thread exiting");
2433
2434 lttng_poll_clean(&events);
2435 end_poll:
2436 error_testpoint:
2437 if (err) {
2438 health_error();
2439 ERR("Health error occurred in %s", __func__);
2440 }
2441 health_unregister(health_consumerd);
2442 rcu_unregister_thread();
2443 return NULL;
2444 }
2445
2446 /*
2447 * This thread polls the fds in the set to consume the data and write
2448 * it to tracefile if necessary.
2449 */
2450 void *consumer_thread_data_poll(void *data)
2451 {
2452 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2453 struct pollfd *pollfd = NULL;
2454 /* local view of the streams */
2455 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2456 /* local view of consumer_data.fds_count */
2457 int nb_fd = 0;
2458 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2459 int nb_inactive_fd = 0;
2460 struct lttng_consumer_local_data *ctx = data;
2461 ssize_t len;
2462
2463 rcu_register_thread();
2464
2465 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2466
2467 if (testpoint(consumerd_thread_data)) {
2468 goto error_testpoint;
2469 }
2470
2471 health_code_update();
2472
2473 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2474 if (local_stream == NULL) {
2475 PERROR("local_stream malloc");
2476 goto end;
2477 }
2478
2479 while (1) {
2480 health_code_update();
2481
2482 high_prio = 0;
2483 num_hup = 0;
2484
2485 /*
2486 * the fds set has been updated, we need to update our
2487 * local array as well
2488 */
2489 pthread_mutex_lock(&consumer_data.lock);
2490 if (consumer_data.need_update) {
2491 free(pollfd);
2492 pollfd = NULL;
2493
2494 free(local_stream);
2495 local_stream = NULL;
2496
2497 /*
2498 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2499 * wake up pipe.
2500 */
2501 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2502 if (pollfd == NULL) {
2503 PERROR("pollfd malloc");
2504 pthread_mutex_unlock(&consumer_data.lock);
2505 goto end;
2506 }
2507
2508 local_stream = zmalloc((consumer_data.stream_count + 2) *
2509 sizeof(struct lttng_consumer_stream *));
2510 if (local_stream == NULL) {
2511 PERROR("local_stream malloc");
2512 pthread_mutex_unlock(&consumer_data.lock);
2513 goto end;
2514 }
2515 ret = update_poll_array(ctx, &pollfd, local_stream,
2516 data_ht, &nb_inactive_fd);
2517 if (ret < 0) {
2518 ERR("Error in allocating pollfd or local_outfds");
2519 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2520 pthread_mutex_unlock(&consumer_data.lock);
2521 goto end;
2522 }
2523 nb_fd = ret;
2524 consumer_data.need_update = 0;
2525 }
2526 pthread_mutex_unlock(&consumer_data.lock);
2527
2528 /* No FDs and consumer_quit, consumer_cleanup the thread */
2529 if (nb_fd == 0 && consumer_quit == 1 && nb_inactive_fd == 0) {
2530 err = 0; /* All is OK */
2531 goto end;
2532 }
2533 /* poll on the array of fds */
2534 restart:
2535 DBG("polling on %d fd", nb_fd + 2);
2536 health_poll_entry();
2537 num_rdy = poll(pollfd, nb_fd + 2, -1);
2538 health_poll_exit();
2539 DBG("poll num_rdy : %d", num_rdy);
2540 if (num_rdy == -1) {
2541 /*
2542 * Restart interrupted system call.
2543 */
2544 if (errno == EINTR) {
2545 goto restart;
2546 }
2547 PERROR("Poll error");
2548 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2549 goto end;
2550 } else if (num_rdy == 0) {
2551 DBG("Polling thread timed out");
2552 goto end;
2553 }
2554
2555 /*
2556 * If the consumer_data_pipe triggered poll go directly to the
2557 * beginning of the loop to update the array. We want to prioritize
2558 * array update over low-priority reads.
2559 */
2560 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2561 ssize_t pipe_readlen;
2562
2563 DBG("consumer_data_pipe wake up");
2564 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2565 &new_stream, sizeof(new_stream));
2566 if (pipe_readlen < sizeof(new_stream)) {
2567 PERROR("Consumer data pipe");
2568 /* Continue so we can at least handle the current stream(s). */
2569 continue;
2570 }
2571
2572 /*
2573 * If the stream is NULL, just ignore it. It's also possible that
2574 * the sessiond poll thread changed the consumer_quit state and is
2575 * waking us up to test it.
2576 */
2577 if (new_stream == NULL) {
2578 validate_endpoint_status_data_stream();
2579 continue;
2580 }
2581
2582 /* Continue to update the local streams and handle prio ones */
2583 continue;
2584 }
2585
2586 /* Handle wakeup pipe. */
2587 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2588 char dummy;
2589 ssize_t pipe_readlen;
2590
2591 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2592 sizeof(dummy));
2593 if (pipe_readlen < 0) {
2594 PERROR("Consumer data wakeup pipe");
2595 }
2596 /* We've been awakened to handle stream(s). */
2597 ctx->has_wakeup = 0;
2598 }
2599
2600 /* Take care of high priority channels first. */
2601 for (i = 0; i < nb_fd; i++) {
2602 health_code_update();
2603
2604 if (local_stream[i] == NULL) {
2605 continue;
2606 }
2607 if (pollfd[i].revents & POLLPRI) {
2608 DBG("Urgent read on fd %d", pollfd[i].fd);
2609 high_prio = 1;
2610 len = ctx->on_buffer_ready(local_stream[i], ctx);
2611 /* it's ok to have an unavailable sub-buffer */
2612 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2613 /* Clean the stream and free it. */
2614 consumer_del_stream(local_stream[i], data_ht);
2615 local_stream[i] = NULL;
2616 } else if (len > 0) {
2617 local_stream[i]->data_read = 1;
2618 }
2619 }
2620 }
2621
2622 /*
2623 * If we read high prio channel in this loop, try again
2624 * for more high prio data.
2625 */
2626 if (high_prio) {
2627 continue;
2628 }
2629
2630 /* Take care of low priority channels. */
2631 for (i = 0; i < nb_fd; i++) {
2632 health_code_update();
2633
2634 if (local_stream[i] == NULL) {
2635 continue;
2636 }
2637 if ((pollfd[i].revents & POLLIN) ||
2638 local_stream[i]->hangup_flush_done ||
2639 local_stream[i]->has_data) {
2640 DBG("Normal read on fd %d", pollfd[i].fd);
2641 len = ctx->on_buffer_ready(local_stream[i], ctx);
2642 /* it's ok to have an unavailable sub-buffer */
2643 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2644 /* Clean the stream and free it. */
2645 consumer_del_stream(local_stream[i], data_ht);
2646 local_stream[i] = NULL;
2647 } else if (len > 0) {
2648 local_stream[i]->data_read = 1;
2649 }
2650 }
2651 }
2652
2653 /* Handle hangup and errors */
2654 for (i = 0; i < nb_fd; i++) {
2655 health_code_update();
2656
2657 if (local_stream[i] == NULL) {
2658 continue;
2659 }
2660 if (!local_stream[i]->hangup_flush_done
2661 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2662 && (consumer_data.type == LTTNG_CONSUMER32_UST
2663 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2664 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2665 pollfd[i].fd);
2666 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2667 /* Attempt read again, for the data we just flushed. */
2668 local_stream[i]->data_read = 1;
2669 }
2670 /*
2671 * If the poll flag is HUP/ERR/NVAL and we have
2672 * read no data in this pass, we can remove the
2673 * stream from its hash table.
2674 */
2675 if ((pollfd[i].revents & POLLHUP)) {
2676 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2677 if (!local_stream[i]->data_read) {
2678 consumer_del_stream(local_stream[i], data_ht);
2679 local_stream[i] = NULL;
2680 num_hup++;
2681 }
2682 } else if (pollfd[i].revents & POLLERR) {
2683 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2684 if (!local_stream[i]->data_read) {
2685 consumer_del_stream(local_stream[i], data_ht);
2686 local_stream[i] = NULL;
2687 num_hup++;
2688 }
2689 } else if (pollfd[i].revents & POLLNVAL) {
2690 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2691 if (!local_stream[i]->data_read) {
2692 consumer_del_stream(local_stream[i], data_ht);
2693 local_stream[i] = NULL;
2694 num_hup++;
2695 }
2696 }
2697 if (local_stream[i] != NULL) {
2698 local_stream[i]->data_read = 0;
2699 }
2700 }
2701 }
2702 /* All is OK */
2703 err = 0;
2704 end:
2705 DBG("polling thread exiting");
2706 free(pollfd);
2707 free(local_stream);
2708
2709 /*
2710 * Close the write side of the pipe so epoll_wait() in
2711 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2712 * read side of the pipe. If we close them both, epoll_wait strangely does
2713 * not return and could create a endless wait period if the pipe is the
2714 * only tracked fd in the poll set. The thread will take care of closing
2715 * the read side.
2716 */
2717 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2718
2719 error_testpoint:
2720 if (err) {
2721 health_error();
2722 ERR("Health error occurred in %s", __func__);
2723 }
2724 health_unregister(health_consumerd);
2725
2726 rcu_unregister_thread();
2727 return NULL;
2728 }
2729
2730 /*
2731 * Close wake-up end of each stream belonging to the channel. This will
2732 * allow the poll() on the stream read-side to detect when the
2733 * write-side (application) finally closes them.
2734 */
2735 static
2736 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2737 {
2738 struct lttng_ht *ht;
2739 struct lttng_consumer_stream *stream;
2740 struct lttng_ht_iter iter;
2741
2742 ht = consumer_data.stream_per_chan_id_ht;
2743
2744 rcu_read_lock();
2745 cds_lfht_for_each_entry_duplicate(ht->ht,
2746 ht->hash_fct(&channel->key, lttng_ht_seed),
2747 ht->match_fct, &channel->key,
2748 &iter.iter, stream, node_channel_id.node) {
2749 /*
2750 * Protect against teardown with mutex.
2751 */
2752 pthread_mutex_lock(&stream->lock);
2753 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2754 goto next;
2755 }
2756 switch (consumer_data.type) {
2757 case LTTNG_CONSUMER_KERNEL:
2758 break;
2759 case LTTNG_CONSUMER32_UST:
2760 case LTTNG_CONSUMER64_UST:
2761 if (stream->metadata_flag) {
2762 /* Safe and protected by the stream lock. */
2763 lttng_ustconsumer_close_metadata(stream->chan);
2764 } else {
2765 /*
2766 * Note: a mutex is taken internally within
2767 * liblttng-ust-ctl to protect timer wakeup_fd
2768 * use from concurrent close.
2769 */
2770 lttng_ustconsumer_close_stream_wakeup(stream);
2771 }
2772 break;
2773 default:
2774 ERR("Unknown consumer_data type");
2775 assert(0);
2776 }
2777 next:
2778 pthread_mutex_unlock(&stream->lock);
2779 }
2780 rcu_read_unlock();
2781 }
2782
2783 static void destroy_channel_ht(struct lttng_ht *ht)
2784 {
2785 struct lttng_ht_iter iter;
2786 struct lttng_consumer_channel *channel;
2787 int ret;
2788
2789 if (ht == NULL) {
2790 return;
2791 }
2792
2793 rcu_read_lock();
2794 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2795 ret = lttng_ht_del(ht, &iter);
2796 assert(ret != 0);
2797 }
2798 rcu_read_unlock();
2799
2800 lttng_ht_destroy(ht);
2801 }
2802
2803 /*
2804 * This thread polls the channel fds to detect when they are being
2805 * closed. It closes all related streams if the channel is detected as
2806 * closed. It is currently only used as a shim layer for UST because the
2807 * consumerd needs to keep the per-stream wakeup end of pipes open for
2808 * periodical flush.
2809 */
2810 void *consumer_thread_channel_poll(void *data)
2811 {
2812 int ret, i, pollfd, err = -1;
2813 uint32_t revents, nb_fd;
2814 struct lttng_consumer_channel *chan = NULL;
2815 struct lttng_ht_iter iter;
2816 struct lttng_ht_node_u64 *node;
2817 struct lttng_poll_event events;
2818 struct lttng_consumer_local_data *ctx = data;
2819 struct lttng_ht *channel_ht;
2820
2821 rcu_register_thread();
2822
2823 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2824
2825 if (testpoint(consumerd_thread_channel)) {
2826 goto error_testpoint;
2827 }
2828
2829 health_code_update();
2830
2831 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2832 if (!channel_ht) {
2833 /* ENOMEM at this point. Better to bail out. */
2834 goto end_ht;
2835 }
2836
2837 DBG("Thread channel poll started");
2838
2839 /* Size is set to 1 for the consumer_channel pipe */
2840 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2841 if (ret < 0) {
2842 ERR("Poll set creation failed");
2843 goto end_poll;
2844 }
2845
2846 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2847 if (ret < 0) {
2848 goto end;
2849 }
2850
2851 /* Main loop */
2852 DBG("Channel main loop started");
2853
2854 while (1) {
2855 restart:
2856 health_code_update();
2857 DBG("Channel poll wait");
2858 health_poll_entry();
2859 ret = lttng_poll_wait(&events, -1);
2860 DBG("Channel poll return from wait with %d fd(s)",
2861 LTTNG_POLL_GETNB(&events));
2862 health_poll_exit();
2863 DBG("Channel event caught in thread");
2864 if (ret < 0) {
2865 if (errno == EINTR) {
2866 ERR("Poll EINTR caught");
2867 goto restart;
2868 }
2869 if (LTTNG_POLL_GETNB(&events) == 0) {
2870 err = 0; /* All is OK */
2871 }
2872 goto end;
2873 }
2874
2875 nb_fd = ret;
2876
2877 /* From here, the event is a channel wait fd */
2878 for (i = 0; i < nb_fd; i++) {
2879 health_code_update();
2880
2881 revents = LTTNG_POLL_GETEV(&events, i);
2882 pollfd = LTTNG_POLL_GETFD(&events, i);
2883
2884 if (!revents) {
2885 /* No activity for this FD (poll implementation). */
2886 continue;
2887 }
2888
2889 if (pollfd == ctx->consumer_channel_pipe[0]) {
2890 if (revents & LPOLLIN) {
2891 enum consumer_channel_action action;
2892 uint64_t key;
2893
2894 ret = read_channel_pipe(ctx, &chan, &key, &action);
2895 if (ret <= 0) {
2896 if (ret < 0) {
2897 ERR("Error reading channel pipe");
2898 }
2899 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2900 continue;
2901 }
2902
2903 switch (action) {
2904 case CONSUMER_CHANNEL_ADD:
2905 DBG("Adding channel %d to poll set",
2906 chan->wait_fd);
2907
2908 lttng_ht_node_init_u64(&chan->wait_fd_node,
2909 chan->wait_fd);
2910 rcu_read_lock();
2911 lttng_ht_add_unique_u64(channel_ht,
2912 &chan->wait_fd_node);
2913 rcu_read_unlock();
2914 /* Add channel to the global poll events list */
2915 lttng_poll_add(&events, chan->wait_fd,
2916 LPOLLERR | LPOLLHUP);
2917 break;
2918 case CONSUMER_CHANNEL_DEL:
2919 {
2920 /*
2921 * This command should never be called if the channel
2922 * has streams monitored by either the data or metadata
2923 * thread. The consumer only notify this thread with a
2924 * channel del. command if it receives a destroy
2925 * channel command from the session daemon that send it
2926 * if a command prior to the GET_CHANNEL failed.
2927 */
2928
2929 rcu_read_lock();
2930 chan = consumer_find_channel(key);
2931 if (!chan) {
2932 rcu_read_unlock();
2933 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2934 break;
2935 }
2936 lttng_poll_del(&events, chan->wait_fd);
2937 iter.iter.node = &chan->wait_fd_node.node;
2938 ret = lttng_ht_del(channel_ht, &iter);
2939 assert(ret == 0);
2940
2941 switch (consumer_data.type) {
2942 case LTTNG_CONSUMER_KERNEL:
2943 break;
2944 case LTTNG_CONSUMER32_UST:
2945 case LTTNG_CONSUMER64_UST:
2946 health_code_update();
2947 /* Destroy streams that might have been left in the stream list. */
2948 clean_channel_stream_list(chan);
2949 break;
2950 default:
2951 ERR("Unknown consumer_data type");
2952 assert(0);
2953 }
2954
2955 /*
2956 * Release our own refcount. Force channel deletion even if
2957 * streams were not initialized.
2958 */
2959 if (!uatomic_sub_return(&chan->refcount, 1)) {
2960 consumer_del_channel(chan);
2961 }
2962 rcu_read_unlock();
2963 goto restart;
2964 }
2965 case CONSUMER_CHANNEL_QUIT:
2966 /*
2967 * Remove the pipe from the poll set and continue the loop
2968 * since their might be data to consume.
2969 */
2970 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2971 continue;
2972 default:
2973 ERR("Unknown action");
2974 break;
2975 }
2976 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2977 DBG("Channel thread pipe hung up");
2978 /*
2979 * Remove the pipe from the poll set and continue the loop
2980 * since their might be data to consume.
2981 */
2982 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2983 continue;
2984 } else {
2985 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2986 goto end;
2987 }
2988
2989 /* Handle other stream */
2990 continue;
2991 }
2992
2993 rcu_read_lock();
2994 {
2995 uint64_t tmp_id = (uint64_t) pollfd;
2996
2997 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2998 }
2999 node = lttng_ht_iter_get_node_u64(&iter);
3000 assert(node);
3001
3002 chan = caa_container_of(node, struct lttng_consumer_channel,
3003 wait_fd_node);
3004
3005 /* Check for error event */
3006 if (revents & (LPOLLERR | LPOLLHUP)) {
3007 DBG("Channel fd %d is hup|err.", pollfd);
3008
3009 lttng_poll_del(&events, chan->wait_fd);
3010 ret = lttng_ht_del(channel_ht, &iter);
3011 assert(ret == 0);
3012
3013 /*
3014 * This will close the wait fd for each stream associated to
3015 * this channel AND monitored by the data/metadata thread thus
3016 * will be clean by the right thread.
3017 */
3018 consumer_close_channel_streams(chan);
3019
3020 /* Release our own refcount */
3021 if (!uatomic_sub_return(&chan->refcount, 1)
3022 && !uatomic_read(&chan->nb_init_stream_left)) {
3023 consumer_del_channel(chan);
3024 }
3025 } else {
3026 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3027 rcu_read_unlock();
3028 goto end;
3029 }
3030
3031 /* Release RCU lock for the channel looked up */
3032 rcu_read_unlock();
3033 }
3034 }
3035
3036 /* All is OK */
3037 err = 0;
3038 end:
3039 lttng_poll_clean(&events);
3040 end_poll:
3041 destroy_channel_ht(channel_ht);
3042 end_ht:
3043 error_testpoint:
3044 DBG("Channel poll thread exiting");
3045 if (err) {
3046 health_error();
3047 ERR("Health error occurred in %s", __func__);
3048 }
3049 health_unregister(health_consumerd);
3050 rcu_unregister_thread();
3051 return NULL;
3052 }
3053
3054 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3055 struct pollfd *sockpoll, int client_socket)
3056 {
3057 int ret;
3058
3059 assert(ctx);
3060 assert(sockpoll);
3061
3062 ret = lttng_consumer_poll_socket(sockpoll);
3063 if (ret) {
3064 goto error;
3065 }
3066 DBG("Metadata connection on client_socket");
3067
3068 /* Blocking call, waiting for transmission */
3069 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3070 if (ctx->consumer_metadata_socket < 0) {
3071 WARN("On accept metadata");
3072 ret = -1;
3073 goto error;
3074 }
3075 ret = 0;
3076
3077 error:
3078 return ret;
3079 }
3080
3081 /*
3082 * This thread listens on the consumerd socket and receives the file
3083 * descriptors from the session daemon.
3084 */
3085 void *consumer_thread_sessiond_poll(void *data)
3086 {
3087 int sock = -1, client_socket, ret, err = -1;
3088 /*
3089 * structure to poll for incoming data on communication socket avoids
3090 * making blocking sockets.
3091 */
3092 struct pollfd consumer_sockpoll[2];
3093 struct lttng_consumer_local_data *ctx = data;
3094
3095 rcu_register_thread();
3096
3097 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3098
3099 if (testpoint(consumerd_thread_sessiond)) {
3100 goto error_testpoint;
3101 }
3102
3103 health_code_update();
3104
3105 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3106 unlink(ctx->consumer_command_sock_path);
3107 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3108 if (client_socket < 0) {
3109 ERR("Cannot create command socket");
3110 goto end;
3111 }
3112
3113 ret = lttcomm_listen_unix_sock(client_socket);
3114 if (ret < 0) {
3115 goto end;
3116 }
3117
3118 DBG("Sending ready command to lttng-sessiond");
3119 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3120 /* return < 0 on error, but == 0 is not fatal */
3121 if (ret < 0) {
3122 ERR("Error sending ready command to lttng-sessiond");
3123 goto end;
3124 }
3125
3126 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3127 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3128 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3129 consumer_sockpoll[1].fd = client_socket;
3130 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3131
3132 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3133 if (ret) {
3134 if (ret > 0) {
3135 /* should exit */
3136 err = 0;
3137 }
3138 goto end;
3139 }
3140 DBG("Connection on client_socket");
3141
3142 /* Blocking call, waiting for transmission */
3143 sock = lttcomm_accept_unix_sock(client_socket);
3144 if (sock < 0) {
3145 WARN("On accept");
3146 goto end;
3147 }
3148
3149 /*
3150 * Setup metadata socket which is the second socket connection on the
3151 * command unix socket.
3152 */
3153 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3154 if (ret) {
3155 if (ret > 0) {
3156 /* should exit */
3157 err = 0;
3158 }
3159 goto end;
3160 }
3161
3162 /* This socket is not useful anymore. */
3163 ret = close(client_socket);
3164 if (ret < 0) {
3165 PERROR("close client_socket");
3166 }
3167 client_socket = -1;
3168
3169 /* update the polling structure to poll on the established socket */
3170 consumer_sockpoll[1].fd = sock;
3171 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3172
3173 while (1) {
3174 health_code_update();
3175
3176 health_poll_entry();
3177 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3178 health_poll_exit();
3179 if (ret) {
3180 if (ret > 0) {
3181 /* should exit */
3182 err = 0;
3183 }
3184 goto end;
3185 }
3186 DBG("Incoming command on sock");
3187 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3188 if (ret <= 0) {
3189 /*
3190 * This could simply be a session daemon quitting. Don't output
3191 * ERR() here.
3192 */
3193 DBG("Communication interrupted on command socket");
3194 err = 0;
3195 goto end;
3196 }
3197 if (consumer_quit) {
3198 DBG("consumer_thread_receive_fds received quit from signal");
3199 err = 0; /* All is OK */
3200 goto end;
3201 }
3202 DBG("received command on sock");
3203 }
3204 /* All is OK */
3205 err = 0;
3206
3207 end:
3208 DBG("Consumer thread sessiond poll exiting");
3209
3210 /*
3211 * Close metadata streams since the producer is the session daemon which
3212 * just died.
3213 *
3214 * NOTE: for now, this only applies to the UST tracer.
3215 */
3216 lttng_consumer_close_all_metadata();
3217
3218 /*
3219 * when all fds have hung up, the polling thread
3220 * can exit cleanly
3221 */
3222 consumer_quit = 1;
3223
3224 /*
3225 * Notify the data poll thread to poll back again and test the
3226 * consumer_quit state that we just set so to quit gracefully.
3227 */
3228 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3229
3230 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3231
3232 notify_health_quit_pipe(health_quit_pipe);
3233
3234 /* Cleaning up possibly open sockets. */
3235 if (sock >= 0) {
3236 ret = close(sock);
3237 if (ret < 0) {
3238 PERROR("close sock sessiond poll");
3239 }
3240 }
3241 if (client_socket >= 0) {
3242 ret = close(client_socket);
3243 if (ret < 0) {
3244 PERROR("close client_socket sessiond poll");
3245 }
3246 }
3247
3248 error_testpoint:
3249 if (err) {
3250 health_error();
3251 ERR("Health error occurred in %s", __func__);
3252 }
3253 health_unregister(health_consumerd);
3254
3255 rcu_unregister_thread();
3256 return NULL;
3257 }
3258
3259 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3260 struct lttng_consumer_local_data *ctx)
3261 {
3262 ssize_t ret;
3263
3264 pthread_mutex_lock(&stream->lock);
3265 if (stream->metadata_flag) {
3266 pthread_mutex_lock(&stream->metadata_rdv_lock);
3267 }
3268
3269 switch (consumer_data.type) {
3270 case LTTNG_CONSUMER_KERNEL:
3271 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3272 break;
3273 case LTTNG_CONSUMER32_UST:
3274 case LTTNG_CONSUMER64_UST:
3275 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3276 break;
3277 default:
3278 ERR("Unknown consumer_data type");
3279 assert(0);
3280 ret = -ENOSYS;
3281 break;
3282 }
3283
3284 if (stream->metadata_flag) {
3285 pthread_cond_broadcast(&stream->metadata_rdv);
3286 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3287 }
3288 pthread_mutex_unlock(&stream->lock);
3289 return ret;
3290 }
3291
3292 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3293 {
3294 switch (consumer_data.type) {
3295 case LTTNG_CONSUMER_KERNEL:
3296 return lttng_kconsumer_on_recv_stream(stream);
3297 case LTTNG_CONSUMER32_UST:
3298 case LTTNG_CONSUMER64_UST:
3299 return lttng_ustconsumer_on_recv_stream(stream);
3300 default:
3301 ERR("Unknown consumer_data type");
3302 assert(0);
3303 return -ENOSYS;
3304 }
3305 }
3306
3307 /*
3308 * Allocate and set consumer data hash tables.
3309 */
3310 int lttng_consumer_init(void)
3311 {
3312 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3313 if (!consumer_data.channel_ht) {
3314 goto error;
3315 }
3316
3317 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3318 if (!consumer_data.relayd_ht) {
3319 goto error;
3320 }
3321
3322 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3323 if (!consumer_data.stream_list_ht) {
3324 goto error;
3325 }
3326
3327 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3328 if (!consumer_data.stream_per_chan_id_ht) {
3329 goto error;
3330 }
3331
3332 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3333 if (!data_ht) {
3334 goto error;
3335 }
3336
3337 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3338 if (!metadata_ht) {
3339 goto error;
3340 }
3341
3342 return 0;
3343
3344 error:
3345 return -1;
3346 }
3347
3348 /*
3349 * Process the ADD_RELAYD command receive by a consumer.
3350 *
3351 * This will create a relayd socket pair and add it to the relayd hash table.
3352 * The caller MUST acquire a RCU read side lock before calling it.
3353 */
3354 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3355 struct lttng_consumer_local_data *ctx, int sock,
3356 struct pollfd *consumer_sockpoll,
3357 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3358 uint64_t relayd_session_id)
3359 {
3360 int fd = -1, ret = -1, relayd_created = 0;
3361 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3362 struct consumer_relayd_sock_pair *relayd = NULL;
3363
3364 assert(ctx);
3365 assert(relayd_sock);
3366
3367 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3368
3369 /* Get relayd reference if exists. */
3370 relayd = consumer_find_relayd(net_seq_idx);
3371 if (relayd == NULL) {
3372 assert(sock_type == LTTNG_STREAM_CONTROL);
3373 /* Not found. Allocate one. */
3374 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3375 if (relayd == NULL) {
3376 ret = -ENOMEM;
3377 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3378 goto error;
3379 } else {
3380 relayd->sessiond_session_id = sessiond_id;
3381 relayd_created = 1;
3382 }
3383
3384 /*
3385 * This code path MUST continue to the consumer send status message to
3386 * we can notify the session daemon and continue our work without
3387 * killing everything.
3388 */
3389 } else {
3390 /*
3391 * relayd key should never be found for control socket.
3392 */
3393 assert(sock_type != LTTNG_STREAM_CONTROL);
3394 }
3395
3396 /* First send a status message before receiving the fds. */
3397 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3398 if (ret < 0) {
3399 /* Somehow, the session daemon is not responding anymore. */
3400 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3401 goto error_nosignal;
3402 }
3403
3404 /* Poll on consumer socket. */
3405 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3406 if (ret) {
3407 /* Needing to exit in the middle of a command: error. */
3408 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3409 ret = -EINTR;
3410 goto error_nosignal;
3411 }
3412
3413 /* Get relayd socket from session daemon */
3414 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3415 if (ret != sizeof(fd)) {
3416 ret = -1;
3417 fd = -1; /* Just in case it gets set with an invalid value. */
3418
3419 /*
3420 * Failing to receive FDs might indicate a major problem such as
3421 * reaching a fd limit during the receive where the kernel returns a
3422 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3423 * don't take any chances and stop everything.
3424 *
3425 * XXX: Feature request #558 will fix that and avoid this possible
3426 * issue when reaching the fd limit.
3427 */
3428 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3429 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3430 goto error;
3431 }
3432
3433 /* Copy socket information and received FD */
3434 switch (sock_type) {
3435 case LTTNG_STREAM_CONTROL:
3436 /* Copy received lttcomm socket */
3437 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3438 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3439 /* Handle create_sock error. */
3440 if (ret < 0) {
3441 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3442 goto error;
3443 }
3444 /*
3445 * Close the socket created internally by
3446 * lttcomm_create_sock, so we can replace it by the one
3447 * received from sessiond.
3448 */
3449 if (close(relayd->control_sock.sock.fd)) {
3450 PERROR("close");
3451 }
3452
3453 /* Assign new file descriptor */
3454 relayd->control_sock.sock.fd = fd;
3455 fd = -1; /* For error path */
3456 /* Assign version values. */
3457 relayd->control_sock.major = relayd_sock->major;
3458 relayd->control_sock.minor = relayd_sock->minor;
3459
3460 relayd->relayd_session_id = relayd_session_id;
3461
3462 break;
3463 case LTTNG_STREAM_DATA:
3464 /* Copy received lttcomm socket */
3465 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3466 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3467 /* Handle create_sock error. */
3468 if (ret < 0) {
3469 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3470 goto error;
3471 }
3472 /*
3473 * Close the socket created internally by
3474 * lttcomm_create_sock, so we can replace it by the one
3475 * received from sessiond.
3476 */
3477 if (close(relayd->data_sock.sock.fd)) {
3478 PERROR("close");
3479 }
3480
3481 /* Assign new file descriptor */
3482 relayd->data_sock.sock.fd = fd;
3483 fd = -1; /* for eventual error paths */
3484 /* Assign version values. */
3485 relayd->data_sock.major = relayd_sock->major;
3486 relayd->data_sock.minor = relayd_sock->minor;
3487 break;
3488 default:
3489 ERR("Unknown relayd socket type (%d)", sock_type);
3490 ret = -1;
3491 ret_code = LTTCOMM_CONSUMERD_FATAL;
3492 goto error;
3493 }
3494
3495 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3496 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3497 relayd->net_seq_idx, fd);
3498
3499 /* We successfully added the socket. Send status back. */
3500 ret = consumer_send_status_msg(sock, ret_code);
3501 if (ret < 0) {
3502 /* Somehow, the session daemon is not responding anymore. */
3503 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3504 goto error_nosignal;
3505 }
3506
3507 /*
3508 * Add relayd socket pair to consumer data hashtable. If object already
3509 * exists or on error, the function gracefully returns.
3510 */
3511 add_relayd(relayd);
3512
3513 /* All good! */
3514 return 0;
3515
3516 error:
3517 if (consumer_send_status_msg(sock, ret_code) < 0) {
3518 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3519 }
3520
3521 error_nosignal:
3522 /* Close received socket if valid. */
3523 if (fd >= 0) {
3524 if (close(fd)) {
3525 PERROR("close received socket");
3526 }
3527 }
3528
3529 if (relayd_created) {
3530 free(relayd);
3531 }
3532
3533 return ret;
3534 }
3535
3536 /*
3537 * Try to lock the stream mutex.
3538 *
3539 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3540 */
3541 static int stream_try_lock(struct lttng_consumer_stream *stream)
3542 {
3543 int ret;
3544
3545 assert(stream);
3546
3547 /*
3548 * Try to lock the stream mutex. On failure, we know that the stream is
3549 * being used else where hence there is data still being extracted.
3550 */
3551 ret = pthread_mutex_trylock(&stream->lock);
3552 if (ret) {
3553 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3554 ret = 0;
3555 goto end;
3556 }
3557
3558 ret = 1;
3559
3560 end:
3561 return ret;
3562 }
3563
3564 /*
3565 * Search for a relayd associated to the session id and return the reference.
3566 *
3567 * A rcu read side lock MUST be acquire before calling this function and locked
3568 * until the relayd object is no longer necessary.
3569 */
3570 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3571 {
3572 struct lttng_ht_iter iter;
3573 struct consumer_relayd_sock_pair *relayd = NULL;
3574
3575 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3576 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3577 node.node) {
3578 /*
3579 * Check by sessiond id which is unique here where the relayd session
3580 * id might not be when having multiple relayd.
3581 */
3582 if (relayd->sessiond_session_id == id) {
3583 /* Found the relayd. There can be only one per id. */
3584 goto found;
3585 }
3586 }
3587
3588 return NULL;
3589
3590 found:
3591 return relayd;
3592 }
3593
3594 /*
3595 * Check if for a given session id there is still data needed to be extract
3596 * from the buffers.
3597 *
3598 * Return 1 if data is pending or else 0 meaning ready to be read.
3599 */
3600 int consumer_data_pending(uint64_t id)
3601 {
3602 int ret;
3603 struct lttng_ht_iter iter;
3604 struct lttng_ht *ht;
3605 struct lttng_consumer_stream *stream;
3606 struct consumer_relayd_sock_pair *relayd = NULL;
3607 int (*data_pending)(struct lttng_consumer_stream *);
3608
3609 DBG("Consumer data pending command on session id %" PRIu64, id);
3610
3611 rcu_read_lock();
3612 pthread_mutex_lock(&consumer_data.lock);
3613
3614 switch (consumer_data.type) {
3615 case LTTNG_CONSUMER_KERNEL:
3616 data_pending = lttng_kconsumer_data_pending;
3617 break;
3618 case LTTNG_CONSUMER32_UST:
3619 case LTTNG_CONSUMER64_UST:
3620 data_pending = lttng_ustconsumer_data_pending;
3621 break;
3622 default:
3623 ERR("Unknown consumer data type");
3624 assert(0);
3625 }
3626
3627 /* Ease our life a bit */
3628 ht = consumer_data.stream_list_ht;
3629
3630 relayd = find_relayd_by_session_id(id);
3631 if (relayd) {
3632 /* Send init command for data pending. */
3633 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3634 ret = relayd_begin_data_pending(&relayd->control_sock,
3635 relayd->relayd_session_id);
3636 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3637 if (ret < 0) {
3638 /* Communication error thus the relayd so no data pending. */
3639 goto data_not_pending;
3640 }
3641 }
3642
3643 cds_lfht_for_each_entry_duplicate(ht->ht,
3644 ht->hash_fct(&id, lttng_ht_seed),
3645 ht->match_fct, &id,
3646 &iter.iter, stream, node_session_id.node) {
3647 /* If this call fails, the stream is being used hence data pending. */
3648 ret = stream_try_lock(stream);
3649 if (!ret) {
3650 goto data_pending;
3651 }
3652
3653 /*
3654 * A removed node from the hash table indicates that the stream has
3655 * been deleted thus having a guarantee that the buffers are closed
3656 * on the consumer side. However, data can still be transmitted
3657 * over the network so don't skip the relayd check.
3658 */
3659 ret = cds_lfht_is_node_deleted(&stream->node.node);
3660 if (!ret) {
3661 /* Check the stream if there is data in the buffers. */
3662 ret = data_pending(stream);
3663 if (ret == 1) {
3664 pthread_mutex_unlock(&stream->lock);
3665 goto data_pending;
3666 }
3667 }
3668
3669 /* Relayd check */
3670 if (relayd) {
3671 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3672 if (stream->metadata_flag) {
3673 ret = relayd_quiescent_control(&relayd->control_sock,
3674 stream->relayd_stream_id);
3675 } else {
3676 ret = relayd_data_pending(&relayd->control_sock,
3677 stream->relayd_stream_id,
3678 stream->next_net_seq_num - 1);
3679 }
3680 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3681 if (ret == 1) {
3682 pthread_mutex_unlock(&stream->lock);
3683 goto data_pending;
3684 }
3685 }
3686 pthread_mutex_unlock(&stream->lock);
3687 }
3688
3689 if (relayd) {
3690 unsigned int is_data_inflight = 0;
3691
3692 /* Send init command for data pending. */
3693 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3694 ret = relayd_end_data_pending(&relayd->control_sock,
3695 relayd->relayd_session_id, &is_data_inflight);
3696 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3697 if (ret < 0) {
3698 goto data_not_pending;
3699 }
3700 if (is_data_inflight) {
3701 goto data_pending;
3702 }
3703 }
3704
3705 /*
3706 * Finding _no_ node in the hash table and no inflight data means that the
3707 * stream(s) have been removed thus data is guaranteed to be available for
3708 * analysis from the trace files.
3709 */
3710
3711 data_not_pending:
3712 /* Data is available to be read by a viewer. */
3713 pthread_mutex_unlock(&consumer_data.lock);
3714 rcu_read_unlock();
3715 return 0;
3716
3717 data_pending:
3718 /* Data is still being extracted from buffers. */
3719 pthread_mutex_unlock(&consumer_data.lock);
3720 rcu_read_unlock();
3721 return 1;
3722 }
3723
3724 /*
3725 * Send a ret code status message to the sessiond daemon.
3726 *
3727 * Return the sendmsg() return value.
3728 */
3729 int consumer_send_status_msg(int sock, int ret_code)
3730 {
3731 struct lttcomm_consumer_status_msg msg;
3732
3733 memset(&msg, 0, sizeof(msg));
3734 msg.ret_code = ret_code;
3735
3736 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3737 }
3738
3739 /*
3740 * Send a channel status message to the sessiond daemon.
3741 *
3742 * Return the sendmsg() return value.
3743 */
3744 int consumer_send_status_channel(int sock,
3745 struct lttng_consumer_channel *channel)
3746 {
3747 struct lttcomm_consumer_status_channel msg;
3748
3749 assert(sock >= 0);
3750
3751 memset(&msg, 0, sizeof(msg));
3752 if (!channel) {
3753 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3754 } else {
3755 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3756 msg.key = channel->key;
3757 msg.stream_count = channel->streams.count;
3758 }
3759
3760 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3761 }
3762
3763 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3764 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3765 uint64_t max_sb_size)
3766 {
3767 unsigned long start_pos;
3768
3769 if (!nb_packets_per_stream) {
3770 return consumed_pos; /* Grab everything */
3771 }
3772 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3773 start_pos -= max_sb_size * nb_packets_per_stream;
3774 if ((long) (start_pos - consumed_pos) < 0) {
3775 return consumed_pos; /* Grab everything */
3776 }
3777 return start_pos;
3778 }
This page took 0.183964 seconds and 6 git commands to generate.