Fix: mark consumer channels as logically deleted during deletion
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/time.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer/consumer-timer.h>
47 #include <common/consumer/consumer.h>
48 #include <common/consumer/consumer-stream.h>
49 #include <common/consumer/consumer-testpoint.h>
50 #include <common/align.h>
51 #include <common/consumer/consumer-metadata-cache.h>
52 #include <common/trace-chunk.h>
53 #include <common/trace-chunk-registry.h>
54 #include <common/string-utils/format.h>
55 #include <common/dynamic-array.h>
56
57 struct lttng_consumer_global_data consumer_data = {
58 .stream_count = 0,
59 .need_update = 1,
60 .type = LTTNG_CONSUMER_UNKNOWN,
61 };
62
63 enum consumer_channel_action {
64 CONSUMER_CHANNEL_ADD,
65 CONSUMER_CHANNEL_DEL,
66 CONSUMER_CHANNEL_QUIT,
67 };
68
69 struct consumer_channel_msg {
70 enum consumer_channel_action action;
71 struct lttng_consumer_channel *chan; /* add */
72 uint64_t key; /* del */
73 };
74
75 /* Flag used to temporarily pause data consumption from testpoints. */
76 int data_consumption_paused;
77
78 /*
79 * Flag to inform the polling thread to quit when all fd hung up. Updated by
80 * the consumer_thread_receive_fds when it notices that all fds has hung up.
81 * Also updated by the signal handler (consumer_should_exit()). Read by the
82 * polling threads.
83 */
84 int consumer_quit;
85
86 /*
87 * Global hash table containing respectively metadata and data streams. The
88 * stream element in this ht should only be updated by the metadata poll thread
89 * for the metadata and the data poll thread for the data.
90 */
91 static struct lttng_ht *metadata_ht;
92 static struct lttng_ht *data_ht;
93
94 /*
95 * Notify a thread lttng pipe to poll back again. This usually means that some
96 * global state has changed so we just send back the thread in a poll wait
97 * call.
98 */
99 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
100 {
101 struct lttng_consumer_stream *null_stream = NULL;
102
103 assert(pipe);
104
105 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
106 }
107
108 static void notify_health_quit_pipe(int *pipe)
109 {
110 ssize_t ret;
111
112 ret = lttng_write(pipe[1], "4", 1);
113 if (ret < 1) {
114 PERROR("write consumer health quit");
115 }
116 }
117
118 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel *chan,
120 uint64_t key,
121 enum consumer_channel_action action)
122 {
123 struct consumer_channel_msg msg;
124 ssize_t ret;
125
126 memset(&msg, 0, sizeof(msg));
127
128 msg.action = action;
129 msg.chan = chan;
130 msg.key = key;
131 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
132 if (ret < sizeof(msg)) {
133 PERROR("notify_channel_pipe write error");
134 }
135 }
136
137 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
138 uint64_t key)
139 {
140 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
141 }
142
143 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
144 struct lttng_consumer_channel **chan,
145 uint64_t *key,
146 enum consumer_channel_action *action)
147 {
148 struct consumer_channel_msg msg;
149 ssize_t ret;
150
151 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
152 if (ret < sizeof(msg)) {
153 ret = -1;
154 goto error;
155 }
156 *action = msg.action;
157 *chan = msg.chan;
158 *key = msg.key;
159 error:
160 return (int) ret;
161 }
162
163 /*
164 * Cleanup the stream list of a channel. Those streams are not yet globally
165 * visible
166 */
167 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
168 {
169 struct lttng_consumer_stream *stream, *stmp;
170
171 assert(channel);
172
173 /* Delete streams that might have been left in the stream list. */
174 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
175 send_node) {
176 cds_list_del(&stream->send_node);
177 /*
178 * Once a stream is added to this list, the buffers were created so we
179 * have a guarantee that this call will succeed. Setting the monitor
180 * mode to 0 so we don't lock nor try to delete the stream from the
181 * global hash table.
182 */
183 stream->monitor = 0;
184 consumer_stream_destroy(stream, NULL);
185 }
186 }
187
188 /*
189 * Find a stream. The consumer_data.lock must be locked during this
190 * call.
191 */
192 static struct lttng_consumer_stream *find_stream(uint64_t key,
193 struct lttng_ht *ht)
194 {
195 struct lttng_ht_iter iter;
196 struct lttng_ht_node_u64 *node;
197 struct lttng_consumer_stream *stream = NULL;
198
199 assert(ht);
200
201 /* -1ULL keys are lookup failures */
202 if (key == (uint64_t) -1ULL) {
203 return NULL;
204 }
205
206 rcu_read_lock();
207
208 lttng_ht_lookup(ht, &key, &iter);
209 node = lttng_ht_iter_get_node_u64(&iter);
210 if (node != NULL) {
211 stream = caa_container_of(node, struct lttng_consumer_stream, node);
212 }
213
214 rcu_read_unlock();
215
216 return stream;
217 }
218
219 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
220 {
221 struct lttng_consumer_stream *stream;
222
223 rcu_read_lock();
224 stream = find_stream(key, ht);
225 if (stream) {
226 stream->key = (uint64_t) -1ULL;
227 /*
228 * We don't want the lookup to match, but we still need
229 * to iterate on this stream when iterating over the hash table. Just
230 * change the node key.
231 */
232 stream->node.key = (uint64_t) -1ULL;
233 }
234 rcu_read_unlock();
235 }
236
237 /*
238 * Return a channel object for the given key.
239 *
240 * RCU read side lock MUST be acquired before calling this function and
241 * protects the channel ptr.
242 */
243 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
244 {
245 struct lttng_ht_iter iter;
246 struct lttng_ht_node_u64 *node;
247 struct lttng_consumer_channel *channel = NULL;
248
249 /* -1ULL keys are lookup failures */
250 if (key == (uint64_t) -1ULL) {
251 return NULL;
252 }
253
254 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
255 node = lttng_ht_iter_get_node_u64(&iter);
256 if (node != NULL) {
257 channel = caa_container_of(node, struct lttng_consumer_channel, node);
258 }
259
260 return channel;
261 }
262
263 /*
264 * There is a possibility that the consumer does not have enough time between
265 * the close of the channel on the session daemon and the cleanup in here thus
266 * once we have a channel add with an existing key, we know for sure that this
267 * channel will eventually get cleaned up by all streams being closed.
268 *
269 * This function just nullifies the already existing channel key.
270 */
271 static void steal_channel_key(uint64_t key)
272 {
273 struct lttng_consumer_channel *channel;
274
275 rcu_read_lock();
276 channel = consumer_find_channel(key);
277 if (channel) {
278 channel->key = (uint64_t) -1ULL;
279 /*
280 * We don't want the lookup to match, but we still need to iterate on
281 * this channel when iterating over the hash table. Just change the
282 * node key.
283 */
284 channel->node.key = (uint64_t) -1ULL;
285 }
286 rcu_read_unlock();
287 }
288
289 static void free_channel_rcu(struct rcu_head *head)
290 {
291 struct lttng_ht_node_u64 *node =
292 caa_container_of(head, struct lttng_ht_node_u64, head);
293 struct lttng_consumer_channel *channel =
294 caa_container_of(node, struct lttng_consumer_channel, node);
295
296 switch (consumer_data.type) {
297 case LTTNG_CONSUMER_KERNEL:
298 break;
299 case LTTNG_CONSUMER32_UST:
300 case LTTNG_CONSUMER64_UST:
301 lttng_ustconsumer_free_channel(channel);
302 break;
303 default:
304 ERR("Unknown consumer_data type");
305 abort();
306 }
307 free(channel);
308 }
309
310 /*
311 * RCU protected relayd socket pair free.
312 */
313 static void free_relayd_rcu(struct rcu_head *head)
314 {
315 struct lttng_ht_node_u64 *node =
316 caa_container_of(head, struct lttng_ht_node_u64, head);
317 struct consumer_relayd_sock_pair *relayd =
318 caa_container_of(node, struct consumer_relayd_sock_pair, node);
319
320 /*
321 * Close all sockets. This is done in the call RCU since we don't want the
322 * socket fds to be reassigned thus potentially creating bad state of the
323 * relayd object.
324 *
325 * We do not have to lock the control socket mutex here since at this stage
326 * there is no one referencing to this relayd object.
327 */
328 (void) relayd_close(&relayd->control_sock);
329 (void) relayd_close(&relayd->data_sock);
330
331 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
332 free(relayd);
333 }
334
335 /*
336 * Destroy and free relayd socket pair object.
337 */
338 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
339 {
340 int ret;
341 struct lttng_ht_iter iter;
342
343 if (relayd == NULL) {
344 return;
345 }
346
347 DBG("Consumer destroy and close relayd socket pair");
348
349 iter.iter.node = &relayd->node.node;
350 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
351 if (ret != 0) {
352 /* We assume the relayd is being or is destroyed */
353 return;
354 }
355
356 /* RCU free() call */
357 call_rcu(&relayd->node.head, free_relayd_rcu);
358 }
359
360 /*
361 * Remove a channel from the global list protected by a mutex. This function is
362 * also responsible for freeing its data structures.
363 */
364 void consumer_del_channel(struct lttng_consumer_channel *channel)
365 {
366 struct lttng_ht_iter iter;
367
368 DBG("Consumer delete channel key %" PRIu64, channel->key);
369
370 pthread_mutex_lock(&consumer_data.lock);
371 pthread_mutex_lock(&channel->lock);
372
373 /* Destroy streams that might have been left in the stream list. */
374 clean_channel_stream_list(channel);
375
376 if (channel->live_timer_enabled == 1) {
377 consumer_timer_live_stop(channel);
378 }
379 if (channel->monitor_timer_enabled == 1) {
380 consumer_timer_monitor_stop(channel);
381 }
382
383 switch (consumer_data.type) {
384 case LTTNG_CONSUMER_KERNEL:
385 break;
386 case LTTNG_CONSUMER32_UST:
387 case LTTNG_CONSUMER64_UST:
388 lttng_ustconsumer_del_channel(channel);
389 break;
390 default:
391 ERR("Unknown consumer_data type");
392 assert(0);
393 goto end;
394 }
395
396 lttng_trace_chunk_put(channel->trace_chunk);
397 channel->trace_chunk = NULL;
398
399 if (channel->is_published) {
400 int ret;
401
402 rcu_read_lock();
403 iter.iter.node = &channel->node.node;
404 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
405 assert(!ret);
406
407 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
408 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht,
409 &iter);
410 assert(!ret);
411 rcu_read_unlock();
412 }
413
414 channel->is_deleted = true;
415 call_rcu(&channel->node.head, free_channel_rcu);
416 end:
417 pthread_mutex_unlock(&channel->lock);
418 pthread_mutex_unlock(&consumer_data.lock);
419 }
420
421 /*
422 * Iterate over the relayd hash table and destroy each element. Finally,
423 * destroy the whole hash table.
424 */
425 static void cleanup_relayd_ht(void)
426 {
427 struct lttng_ht_iter iter;
428 struct consumer_relayd_sock_pair *relayd;
429
430 rcu_read_lock();
431
432 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
433 node.node) {
434 consumer_destroy_relayd(relayd);
435 }
436
437 rcu_read_unlock();
438
439 lttng_ht_destroy(consumer_data.relayd_ht);
440 }
441
442 /*
443 * Update the end point status of all streams having the given network sequence
444 * index (relayd index).
445 *
446 * It's atomically set without having the stream mutex locked which is fine
447 * because we handle the write/read race with a pipe wakeup for each thread.
448 */
449 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
450 enum consumer_endpoint_status status)
451 {
452 struct lttng_ht_iter iter;
453 struct lttng_consumer_stream *stream;
454
455 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
456
457 rcu_read_lock();
458
459 /* Let's begin with metadata */
460 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
461 if (stream->net_seq_idx == net_seq_idx) {
462 uatomic_set(&stream->endpoint_status, status);
463 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
464 }
465 }
466
467 /* Follow up by the data streams */
468 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
469 if (stream->net_seq_idx == net_seq_idx) {
470 uatomic_set(&stream->endpoint_status, status);
471 DBG("Delete flag set to data stream %d", stream->wait_fd);
472 }
473 }
474 rcu_read_unlock();
475 }
476
477 /*
478 * Cleanup a relayd object by flagging every associated streams for deletion,
479 * destroying the object meaning removing it from the relayd hash table,
480 * closing the sockets and freeing the memory in a RCU call.
481 *
482 * If a local data context is available, notify the threads that the streams'
483 * state have changed.
484 */
485 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
486 {
487 uint64_t netidx;
488
489 assert(relayd);
490
491 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
492
493 /* Save the net sequence index before destroying the object */
494 netidx = relayd->net_seq_idx;
495
496 /*
497 * Delete the relayd from the relayd hash table, close the sockets and free
498 * the object in a RCU call.
499 */
500 consumer_destroy_relayd(relayd);
501
502 /* Set inactive endpoint to all streams */
503 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
504
505 /*
506 * With a local data context, notify the threads that the streams' state
507 * have changed. The write() action on the pipe acts as an "implicit"
508 * memory barrier ordering the updates of the end point status from the
509 * read of this status which happens AFTER receiving this notify.
510 */
511 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
512 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
513 }
514
515 /*
516 * Flag a relayd socket pair for destruction. Destroy it if the refcount
517 * reaches zero.
518 *
519 * RCU read side lock MUST be aquired before calling this function.
520 */
521 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
522 {
523 assert(relayd);
524
525 /* Set destroy flag for this object */
526 uatomic_set(&relayd->destroy_flag, 1);
527
528 /* Destroy the relayd if refcount is 0 */
529 if (uatomic_read(&relayd->refcount) == 0) {
530 consumer_destroy_relayd(relayd);
531 }
532 }
533
534 /*
535 * Completly destroy stream from every visiable data structure and the given
536 * hash table if one.
537 *
538 * One this call returns, the stream object is not longer usable nor visible.
539 */
540 void consumer_del_stream(struct lttng_consumer_stream *stream,
541 struct lttng_ht *ht)
542 {
543 consumer_stream_destroy(stream, ht);
544 }
545
546 /*
547 * XXX naming of del vs destroy is all mixed up.
548 */
549 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
550 {
551 consumer_stream_destroy(stream, data_ht);
552 }
553
554 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
555 {
556 consumer_stream_destroy(stream, metadata_ht);
557 }
558
559 void consumer_stream_update_channel_attributes(
560 struct lttng_consumer_stream *stream,
561 struct lttng_consumer_channel *channel)
562 {
563 stream->channel_read_only_attributes.tracefile_size =
564 channel->tracefile_size;
565 }
566
567 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
568 uint64_t stream_key,
569 const char *channel_name,
570 uint64_t relayd_id,
571 uint64_t session_id,
572 struct lttng_trace_chunk *trace_chunk,
573 int cpu,
574 int *alloc_ret,
575 enum consumer_channel_type type,
576 unsigned int monitor)
577 {
578 int ret;
579 struct lttng_consumer_stream *stream;
580
581 stream = zmalloc(sizeof(*stream));
582 if (stream == NULL) {
583 PERROR("malloc struct lttng_consumer_stream");
584 ret = -ENOMEM;
585 goto end;
586 }
587
588 if (trace_chunk && !lttng_trace_chunk_get(trace_chunk)) {
589 ERR("Failed to acquire trace chunk reference during the creation of a stream");
590 ret = -1;
591 goto error;
592 }
593
594 rcu_read_lock();
595 stream->key = stream_key;
596 stream->trace_chunk = trace_chunk;
597 stream->out_fd = -1;
598 stream->out_fd_offset = 0;
599 stream->output_written = 0;
600 stream->net_seq_idx = relayd_id;
601 stream->session_id = session_id;
602 stream->monitor = monitor;
603 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
604 stream->index_file = NULL;
605 stream->last_sequence_number = -1ULL;
606 pthread_mutex_init(&stream->lock, NULL);
607 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
608
609 /* If channel is the metadata, flag this stream as metadata. */
610 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
611 stream->metadata_flag = 1;
612 /* Metadata is flat out. */
613 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
614 /* Live rendez-vous point. */
615 pthread_cond_init(&stream->metadata_rdv, NULL);
616 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
617 } else {
618 /* Format stream name to <channel_name>_<cpu_number> */
619 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
620 channel_name, cpu);
621 if (ret < 0) {
622 PERROR("snprintf stream name");
623 goto error;
624 }
625 }
626
627 /* Key is always the wait_fd for streams. */
628 lttng_ht_node_init_u64(&stream->node, stream->key);
629
630 /* Init node per channel id key */
631 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
632
633 /* Init session id node with the stream session id */
634 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
635
636 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
637 " relayd_id %" PRIu64 ", session_id %" PRIu64,
638 stream->name, stream->key, channel_key,
639 stream->net_seq_idx, stream->session_id);
640
641 rcu_read_unlock();
642 return stream;
643
644 error:
645 rcu_read_unlock();
646 lttng_trace_chunk_put(stream->trace_chunk);
647 free(stream);
648 end:
649 if (alloc_ret) {
650 *alloc_ret = ret;
651 }
652 return NULL;
653 }
654
655 /*
656 * Add a stream to the global list protected by a mutex.
657 */
658 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
659 {
660 struct lttng_ht *ht = data_ht;
661
662 assert(stream);
663 assert(ht);
664
665 DBG3("Adding consumer stream %" PRIu64, stream->key);
666
667 pthread_mutex_lock(&consumer_data.lock);
668 pthread_mutex_lock(&stream->chan->lock);
669 pthread_mutex_lock(&stream->chan->timer_lock);
670 pthread_mutex_lock(&stream->lock);
671 rcu_read_lock();
672
673 /* Steal stream identifier to avoid having streams with the same key */
674 steal_stream_key(stream->key, ht);
675
676 lttng_ht_add_unique_u64(ht, &stream->node);
677
678 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
679 &stream->node_channel_id);
680
681 /*
682 * Add stream to the stream_list_ht of the consumer data. No need to steal
683 * the key since the HT does not use it and we allow to add redundant keys
684 * into this table.
685 */
686 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
687
688 /*
689 * When nb_init_stream_left reaches 0, we don't need to trigger any action
690 * in terms of destroying the associated channel, because the action that
691 * causes the count to become 0 also causes a stream to be added. The
692 * channel deletion will thus be triggered by the following removal of this
693 * stream.
694 */
695 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
696 /* Increment refcount before decrementing nb_init_stream_left */
697 cmm_smp_wmb();
698 uatomic_dec(&stream->chan->nb_init_stream_left);
699 }
700
701 /* Update consumer data once the node is inserted. */
702 consumer_data.stream_count++;
703 consumer_data.need_update = 1;
704
705 rcu_read_unlock();
706 pthread_mutex_unlock(&stream->lock);
707 pthread_mutex_unlock(&stream->chan->timer_lock);
708 pthread_mutex_unlock(&stream->chan->lock);
709 pthread_mutex_unlock(&consumer_data.lock);
710 }
711
712 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
713 {
714 consumer_del_stream(stream, data_ht);
715 }
716
717 /*
718 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
719 * be acquired before calling this.
720 */
721 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
722 {
723 int ret = 0;
724 struct lttng_ht_node_u64 *node;
725 struct lttng_ht_iter iter;
726
727 assert(relayd);
728
729 lttng_ht_lookup(consumer_data.relayd_ht,
730 &relayd->net_seq_idx, &iter);
731 node = lttng_ht_iter_get_node_u64(&iter);
732 if (node != NULL) {
733 goto end;
734 }
735 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
736
737 end:
738 return ret;
739 }
740
741 /*
742 * Allocate and return a consumer relayd socket.
743 */
744 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
745 uint64_t net_seq_idx)
746 {
747 struct consumer_relayd_sock_pair *obj = NULL;
748
749 /* net sequence index of -1 is a failure */
750 if (net_seq_idx == (uint64_t) -1ULL) {
751 goto error;
752 }
753
754 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
755 if (obj == NULL) {
756 PERROR("zmalloc relayd sock");
757 goto error;
758 }
759
760 obj->net_seq_idx = net_seq_idx;
761 obj->refcount = 0;
762 obj->destroy_flag = 0;
763 obj->control_sock.sock.fd = -1;
764 obj->data_sock.sock.fd = -1;
765 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
766 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
767
768 error:
769 return obj;
770 }
771
772 /*
773 * Find a relayd socket pair in the global consumer data.
774 *
775 * Return the object if found else NULL.
776 * RCU read-side lock must be held across this call and while using the
777 * returned object.
778 */
779 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
780 {
781 struct lttng_ht_iter iter;
782 struct lttng_ht_node_u64 *node;
783 struct consumer_relayd_sock_pair *relayd = NULL;
784
785 /* Negative keys are lookup failures */
786 if (key == (uint64_t) -1ULL) {
787 goto error;
788 }
789
790 lttng_ht_lookup(consumer_data.relayd_ht, &key,
791 &iter);
792 node = lttng_ht_iter_get_node_u64(&iter);
793 if (node != NULL) {
794 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
795 }
796
797 error:
798 return relayd;
799 }
800
801 /*
802 * Find a relayd and send the stream
803 *
804 * Returns 0 on success, < 0 on error
805 */
806 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
807 char *path)
808 {
809 int ret = 0;
810 struct consumer_relayd_sock_pair *relayd;
811
812 assert(stream);
813 assert(stream->net_seq_idx != -1ULL);
814 assert(path);
815
816 /* The stream is not metadata. Get relayd reference if exists. */
817 rcu_read_lock();
818 relayd = consumer_find_relayd(stream->net_seq_idx);
819 if (relayd != NULL) {
820 /* Add stream on the relayd */
821 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
822 ret = relayd_add_stream(&relayd->control_sock, stream->name,
823 path, &stream->relayd_stream_id,
824 stream->chan->tracefile_size,
825 stream->chan->tracefile_count,
826 stream->trace_chunk);
827 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
828 if (ret < 0) {
829 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
830 lttng_consumer_cleanup_relayd(relayd);
831 goto end;
832 }
833
834 uatomic_inc(&relayd->refcount);
835 stream->sent_to_relayd = 1;
836 } else {
837 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
838 stream->key, stream->net_seq_idx);
839 ret = -1;
840 goto end;
841 }
842
843 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
844 stream->name, stream->key, stream->net_seq_idx);
845
846 end:
847 rcu_read_unlock();
848 return ret;
849 }
850
851 /*
852 * Find a relayd and send the streams sent message
853 *
854 * Returns 0 on success, < 0 on error
855 */
856 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
857 {
858 int ret = 0;
859 struct consumer_relayd_sock_pair *relayd;
860
861 assert(net_seq_idx != -1ULL);
862
863 /* The stream is not metadata. Get relayd reference if exists. */
864 rcu_read_lock();
865 relayd = consumer_find_relayd(net_seq_idx);
866 if (relayd != NULL) {
867 /* Add stream on the relayd */
868 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
869 ret = relayd_streams_sent(&relayd->control_sock);
870 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
871 if (ret < 0) {
872 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
873 lttng_consumer_cleanup_relayd(relayd);
874 goto end;
875 }
876 } else {
877 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
878 net_seq_idx);
879 ret = -1;
880 goto end;
881 }
882
883 ret = 0;
884 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
885
886 end:
887 rcu_read_unlock();
888 return ret;
889 }
890
891 /*
892 * Find a relayd and close the stream
893 */
894 void close_relayd_stream(struct lttng_consumer_stream *stream)
895 {
896 struct consumer_relayd_sock_pair *relayd;
897
898 /* The stream is not metadata. Get relayd reference if exists. */
899 rcu_read_lock();
900 relayd = consumer_find_relayd(stream->net_seq_idx);
901 if (relayd) {
902 consumer_stream_relayd_close(stream, relayd);
903 }
904 rcu_read_unlock();
905 }
906
907 /*
908 * Handle stream for relayd transmission if the stream applies for network
909 * streaming where the net sequence index is set.
910 *
911 * Return destination file descriptor or negative value on error.
912 */
913 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
914 size_t data_size, unsigned long padding,
915 struct consumer_relayd_sock_pair *relayd)
916 {
917 int outfd = -1, ret;
918 struct lttcomm_relayd_data_hdr data_hdr;
919
920 /* Safety net */
921 assert(stream);
922 assert(relayd);
923
924 /* Reset data header */
925 memset(&data_hdr, 0, sizeof(data_hdr));
926
927 if (stream->metadata_flag) {
928 /* Caller MUST acquire the relayd control socket lock */
929 ret = relayd_send_metadata(&relayd->control_sock, data_size);
930 if (ret < 0) {
931 goto error;
932 }
933
934 /* Metadata are always sent on the control socket. */
935 outfd = relayd->control_sock.sock.fd;
936 } else {
937 /* Set header with stream information */
938 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
939 data_hdr.data_size = htobe32(data_size);
940 data_hdr.padding_size = htobe32(padding);
941
942 /*
943 * Note that net_seq_num below is assigned with the *current* value of
944 * next_net_seq_num and only after that the next_net_seq_num will be
945 * increment. This is why when issuing a command on the relayd using
946 * this next value, 1 should always be substracted in order to compare
947 * the last seen sequence number on the relayd side to the last sent.
948 */
949 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
950 /* Other fields are zeroed previously */
951
952 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
953 sizeof(data_hdr));
954 if (ret < 0) {
955 goto error;
956 }
957
958 ++stream->next_net_seq_num;
959
960 /* Set to go on data socket */
961 outfd = relayd->data_sock.sock.fd;
962 }
963
964 error:
965 return outfd;
966 }
967
968 /*
969 * Trigger a dump of the metadata content. Following/during the succesful
970 * completion of this call, the metadata poll thread will start receiving
971 * metadata packets to consume.
972 *
973 * The caller must hold the channel and stream locks.
974 */
975 static
976 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
977 {
978 int ret;
979
980 ASSERT_LOCKED(stream->chan->lock);
981 ASSERT_LOCKED(stream->lock);
982 assert(stream->metadata_flag);
983 assert(stream->chan->trace_chunk);
984
985 switch (consumer_data.type) {
986 case LTTNG_CONSUMER_KERNEL:
987 /*
988 * Reset the position of what has been read from the
989 * metadata cache to 0 so we can dump it again.
990 */
991 ret = kernctl_metadata_cache_dump(stream->wait_fd);
992 break;
993 case LTTNG_CONSUMER32_UST:
994 case LTTNG_CONSUMER64_UST:
995 /*
996 * Reset the position pushed from the metadata cache so it
997 * will write from the beginning on the next push.
998 */
999 stream->ust_metadata_pushed = 0;
1000 ret = consumer_metadata_wakeup_pipe(stream->chan);
1001 break;
1002 default:
1003 ERR("Unknown consumer_data type");
1004 abort();
1005 }
1006 if (ret < 0) {
1007 ERR("Failed to dump the metadata cache");
1008 }
1009 return ret;
1010 }
1011
1012 static
1013 int lttng_consumer_channel_set_trace_chunk(
1014 struct lttng_consumer_channel *channel,
1015 struct lttng_trace_chunk *new_trace_chunk)
1016 {
1017 int ret = 0;
1018 const bool is_local_trace = channel->relayd_id == -1ULL;
1019 bool update_stream_trace_chunk;
1020 struct cds_lfht_iter iter;
1021 struct lttng_consumer_stream *stream;
1022 unsigned long channel_hash;
1023
1024 pthread_mutex_lock(&channel->lock);
1025 if (channel->is_deleted) {
1026 /*
1027 * The channel has been logically deleted and should no longer
1028 * be used. It has released its reference to its current trace
1029 * chunk and should not acquire a new one.
1030 *
1031 * Return success as there is nothing for the caller to do.
1032 */
1033 goto end;
1034 }
1035 /*
1036 * A stream can transition to a state where it and its channel
1037 * no longer belong to a trace chunk. For instance, this happens when
1038 * a session is rotated while it is inactive. After the rotation
1039 * of an inactive session completes, the channel and its streams no
1040 * longer belong to a trace chunk.
1041 *
1042 * However, if a session is stopped, rotated, and started again,
1043 * the session daemon will create a new chunk and send it to its peers.
1044 * In that case, the streams' transition to a new chunk can be performed
1045 * immediately.
1046 *
1047 * This trace chunk transition could also be performed lazily when
1048 * a buffer is consumed. However, creating the files here allows the
1049 * consumer daemon to report any creation error to the session daemon
1050 * and cause the start of the tracing session to fail.
1051 */
1052 update_stream_trace_chunk = !channel->trace_chunk && new_trace_chunk;
1053
1054 /*
1055 * The acquisition of the reference cannot fail (barring
1056 * a severe internal error) since a reference to the published
1057 * chunk is already held by the caller.
1058 */
1059 if (new_trace_chunk) {
1060 const bool acquired_reference = lttng_trace_chunk_get(
1061 new_trace_chunk);
1062
1063 assert(acquired_reference);
1064 }
1065
1066 lttng_trace_chunk_put(channel->trace_chunk);
1067 channel->trace_chunk = new_trace_chunk;
1068 if (!is_local_trace || !new_trace_chunk) {
1069 /* Not an error. */
1070 goto end;
1071 }
1072
1073 if (!update_stream_trace_chunk) {
1074 goto end;
1075 }
1076
1077 channel_hash = consumer_data.stream_per_chan_id_ht->hash_fct(
1078 &channel->key, lttng_ht_seed);
1079 rcu_read_lock();
1080 cds_lfht_for_each_entry_duplicate(consumer_data.stream_per_chan_id_ht->ht,
1081 channel_hash,
1082 consumer_data.stream_per_chan_id_ht->match_fct,
1083 &channel->key, &iter, stream, node_channel_id.node) {
1084 bool acquired_reference, should_regenerate_metadata = false;
1085
1086 acquired_reference = lttng_trace_chunk_get(channel->trace_chunk);
1087 assert(acquired_reference);
1088
1089 pthread_mutex_lock(&stream->lock);
1090
1091 /*
1092 * On a transition from "no-chunk" to a new chunk, a metadata
1093 * stream's content must be entirely dumped. This must occcur
1094 * _after_ the creation of the metadata stream's output files
1095 * as the consumption thread (not necessarily the one executing
1096 * this) may start to consume during the call to
1097 * consumer_metadata_stream_dump().
1098 */
1099 should_regenerate_metadata =
1100 stream->metadata_flag &&
1101 !stream->trace_chunk && channel->trace_chunk;
1102 stream->trace_chunk = channel->trace_chunk;
1103 ret = consumer_stream_create_output_files(stream, true);
1104 if (ret) {
1105 pthread_mutex_unlock(&stream->lock);
1106 goto end_rcu_unlock;
1107 }
1108 if (should_regenerate_metadata) {
1109 ret = consumer_metadata_stream_dump(stream);
1110 }
1111 pthread_mutex_unlock(&stream->lock);
1112 if (ret) {
1113 goto end_rcu_unlock;
1114 }
1115 }
1116 end_rcu_unlock:
1117 rcu_read_unlock();
1118 end:
1119 pthread_mutex_unlock(&channel->lock);
1120 return ret;
1121 }
1122
1123 /*
1124 * Allocate and return a new lttng_consumer_channel object using the given key
1125 * to initialize the hash table node.
1126 *
1127 * On error, return NULL.
1128 */
1129 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1130 uint64_t session_id,
1131 const uint64_t *chunk_id,
1132 const char *pathname,
1133 const char *name,
1134 uint64_t relayd_id,
1135 enum lttng_event_output output,
1136 uint64_t tracefile_size,
1137 uint64_t tracefile_count,
1138 uint64_t session_id_per_pid,
1139 unsigned int monitor,
1140 unsigned int live_timer_interval,
1141 const char *root_shm_path,
1142 const char *shm_path)
1143 {
1144 struct lttng_consumer_channel *channel = NULL;
1145 struct lttng_trace_chunk *trace_chunk = NULL;
1146
1147 if (chunk_id) {
1148 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1149 consumer_data.chunk_registry, session_id,
1150 *chunk_id);
1151 if (!trace_chunk) {
1152 ERR("Failed to find trace chunk reference during creation of channel");
1153 goto end;
1154 }
1155 }
1156
1157 channel = zmalloc(sizeof(*channel));
1158 if (channel == NULL) {
1159 PERROR("malloc struct lttng_consumer_channel");
1160 goto end;
1161 }
1162
1163 channel->key = key;
1164 channel->refcount = 0;
1165 channel->session_id = session_id;
1166 channel->session_id_per_pid = session_id_per_pid;
1167 channel->relayd_id = relayd_id;
1168 channel->tracefile_size = tracefile_size;
1169 channel->tracefile_count = tracefile_count;
1170 channel->monitor = monitor;
1171 channel->live_timer_interval = live_timer_interval;
1172 pthread_mutex_init(&channel->lock, NULL);
1173 pthread_mutex_init(&channel->timer_lock, NULL);
1174
1175 switch (output) {
1176 case LTTNG_EVENT_SPLICE:
1177 channel->output = CONSUMER_CHANNEL_SPLICE;
1178 break;
1179 case LTTNG_EVENT_MMAP:
1180 channel->output = CONSUMER_CHANNEL_MMAP;
1181 break;
1182 default:
1183 assert(0);
1184 free(channel);
1185 channel = NULL;
1186 goto end;
1187 }
1188
1189 /*
1190 * In monitor mode, the streams associated with the channel will be put in
1191 * a special list ONLY owned by this channel. So, the refcount is set to 1
1192 * here meaning that the channel itself has streams that are referenced.
1193 *
1194 * On a channel deletion, once the channel is no longer visible, the
1195 * refcount is decremented and checked for a zero value to delete it. With
1196 * streams in no monitor mode, it will now be safe to destroy the channel.
1197 */
1198 if (!channel->monitor) {
1199 channel->refcount = 1;
1200 }
1201
1202 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1203 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1204
1205 strncpy(channel->name, name, sizeof(channel->name));
1206 channel->name[sizeof(channel->name) - 1] = '\0';
1207
1208 if (root_shm_path) {
1209 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1210 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1211 }
1212 if (shm_path) {
1213 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1214 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1215 }
1216
1217 lttng_ht_node_init_u64(&channel->node, channel->key);
1218 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1219 channel->session_id);
1220
1221 channel->wait_fd = -1;
1222 CDS_INIT_LIST_HEAD(&channel->streams.head);
1223
1224 if (trace_chunk) {
1225 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1226 trace_chunk);
1227 if (ret) {
1228 goto error;
1229 }
1230 }
1231
1232 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1233
1234 end:
1235 lttng_trace_chunk_put(trace_chunk);
1236 return channel;
1237 error:
1238 consumer_del_channel(channel);
1239 channel = NULL;
1240 goto end;
1241 }
1242
1243 /*
1244 * Add a channel to the global list protected by a mutex.
1245 *
1246 * Always return 0 indicating success.
1247 */
1248 int consumer_add_channel(struct lttng_consumer_channel *channel,
1249 struct lttng_consumer_local_data *ctx)
1250 {
1251 pthread_mutex_lock(&consumer_data.lock);
1252 pthread_mutex_lock(&channel->lock);
1253 pthread_mutex_lock(&channel->timer_lock);
1254
1255 /*
1256 * This gives us a guarantee that the channel we are about to add to the
1257 * channel hash table will be unique. See this function comment on the why
1258 * we need to steel the channel key at this stage.
1259 */
1260 steal_channel_key(channel->key);
1261
1262 rcu_read_lock();
1263 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1264 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1265 &channel->channels_by_session_id_ht_node);
1266 rcu_read_unlock();
1267 channel->is_published = true;
1268
1269 pthread_mutex_unlock(&channel->timer_lock);
1270 pthread_mutex_unlock(&channel->lock);
1271 pthread_mutex_unlock(&consumer_data.lock);
1272
1273 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1274 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1275 }
1276
1277 return 0;
1278 }
1279
1280 /*
1281 * Allocate the pollfd structure and the local view of the out fds to avoid
1282 * doing a lookup in the linked list and concurrency issues when writing is
1283 * needed. Called with consumer_data.lock held.
1284 *
1285 * Returns the number of fds in the structures.
1286 */
1287 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1288 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1289 struct lttng_ht *ht, int *nb_inactive_fd)
1290 {
1291 int i = 0;
1292 struct lttng_ht_iter iter;
1293 struct lttng_consumer_stream *stream;
1294
1295 assert(ctx);
1296 assert(ht);
1297 assert(pollfd);
1298 assert(local_stream);
1299
1300 DBG("Updating poll fd array");
1301 *nb_inactive_fd = 0;
1302 rcu_read_lock();
1303 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1304 /*
1305 * Only active streams with an active end point can be added to the
1306 * poll set and local stream storage of the thread.
1307 *
1308 * There is a potential race here for endpoint_status to be updated
1309 * just after the check. However, this is OK since the stream(s) will
1310 * be deleted once the thread is notified that the end point state has
1311 * changed where this function will be called back again.
1312 *
1313 * We track the number of inactive FDs because they still need to be
1314 * closed by the polling thread after a wakeup on the data_pipe or
1315 * metadata_pipe.
1316 */
1317 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1318 (*nb_inactive_fd)++;
1319 continue;
1320 }
1321 /*
1322 * This clobbers way too much the debug output. Uncomment that if you
1323 * need it for debugging purposes.
1324 */
1325 (*pollfd)[i].fd = stream->wait_fd;
1326 (*pollfd)[i].events = POLLIN | POLLPRI;
1327 local_stream[i] = stream;
1328 i++;
1329 }
1330 rcu_read_unlock();
1331
1332 /*
1333 * Insert the consumer_data_pipe at the end of the array and don't
1334 * increment i so nb_fd is the number of real FD.
1335 */
1336 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1337 (*pollfd)[i].events = POLLIN | POLLPRI;
1338
1339 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1340 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1341 return i;
1342 }
1343
1344 /*
1345 * Poll on the should_quit pipe and the command socket return -1 on
1346 * error, 1 if should exit, 0 if data is available on the command socket
1347 */
1348 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1349 {
1350 int num_rdy;
1351
1352 restart:
1353 num_rdy = poll(consumer_sockpoll, 2, -1);
1354 if (num_rdy == -1) {
1355 /*
1356 * Restart interrupted system call.
1357 */
1358 if (errno == EINTR) {
1359 goto restart;
1360 }
1361 PERROR("Poll error");
1362 return -1;
1363 }
1364 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1365 DBG("consumer_should_quit wake up");
1366 return 1;
1367 }
1368 return 0;
1369 }
1370
1371 /*
1372 * Set the error socket.
1373 */
1374 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1375 int sock)
1376 {
1377 ctx->consumer_error_socket = sock;
1378 }
1379
1380 /*
1381 * Set the command socket path.
1382 */
1383 void lttng_consumer_set_command_sock_path(
1384 struct lttng_consumer_local_data *ctx, char *sock)
1385 {
1386 ctx->consumer_command_sock_path = sock;
1387 }
1388
1389 /*
1390 * Send return code to the session daemon.
1391 * If the socket is not defined, we return 0, it is not a fatal error
1392 */
1393 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1394 {
1395 if (ctx->consumer_error_socket > 0) {
1396 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1397 sizeof(enum lttcomm_sessiond_command));
1398 }
1399
1400 return 0;
1401 }
1402
1403 /*
1404 * Close all the tracefiles and stream fds and MUST be called when all
1405 * instances are destroyed i.e. when all threads were joined and are ended.
1406 */
1407 void lttng_consumer_cleanup(void)
1408 {
1409 struct lttng_ht_iter iter;
1410 struct lttng_consumer_channel *channel;
1411
1412 rcu_read_lock();
1413
1414 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1415 node.node) {
1416 consumer_del_channel(channel);
1417 }
1418
1419 rcu_read_unlock();
1420
1421 lttng_ht_destroy(consumer_data.channel_ht);
1422 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1423
1424 cleanup_relayd_ht();
1425
1426 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1427
1428 /*
1429 * This HT contains streams that are freed by either the metadata thread or
1430 * the data thread so we do *nothing* on the hash table and simply destroy
1431 * it.
1432 */
1433 lttng_ht_destroy(consumer_data.stream_list_ht);
1434
1435 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1436 }
1437
1438 /*
1439 * Called from signal handler.
1440 */
1441 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1442 {
1443 ssize_t ret;
1444
1445 CMM_STORE_SHARED(consumer_quit, 1);
1446 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1447 if (ret < 1) {
1448 PERROR("write consumer quit");
1449 }
1450
1451 DBG("Consumer flag that it should quit");
1452 }
1453
1454
1455 /*
1456 * Flush pending writes to trace output disk file.
1457 */
1458 static
1459 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1460 off_t orig_offset)
1461 {
1462 int ret;
1463 int outfd = stream->out_fd;
1464
1465 /*
1466 * This does a blocking write-and-wait on any page that belongs to the
1467 * subbuffer prior to the one we just wrote.
1468 * Don't care about error values, as these are just hints and ways to
1469 * limit the amount of page cache used.
1470 */
1471 if (orig_offset < stream->max_sb_size) {
1472 return;
1473 }
1474 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1475 stream->max_sb_size,
1476 SYNC_FILE_RANGE_WAIT_BEFORE
1477 | SYNC_FILE_RANGE_WRITE
1478 | SYNC_FILE_RANGE_WAIT_AFTER);
1479 /*
1480 * Give hints to the kernel about how we access the file:
1481 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1482 * we write it.
1483 *
1484 * We need to call fadvise again after the file grows because the
1485 * kernel does not seem to apply fadvise to non-existing parts of the
1486 * file.
1487 *
1488 * Call fadvise _after_ having waited for the page writeback to
1489 * complete because the dirty page writeback semantic is not well
1490 * defined. So it can be expected to lead to lower throughput in
1491 * streaming.
1492 */
1493 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1494 stream->max_sb_size, POSIX_FADV_DONTNEED);
1495 if (ret && ret != -ENOSYS) {
1496 errno = ret;
1497 PERROR("posix_fadvise on fd %i", outfd);
1498 }
1499 }
1500
1501 /*
1502 * Initialise the necessary environnement :
1503 * - create a new context
1504 * - create the poll_pipe
1505 * - create the should_quit pipe (for signal handler)
1506 * - create the thread pipe (for splice)
1507 *
1508 * Takes a function pointer as argument, this function is called when data is
1509 * available on a buffer. This function is responsible to do the
1510 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1511 * buffer configuration and then kernctl_put_next_subbuf at the end.
1512 *
1513 * Returns a pointer to the new context or NULL on error.
1514 */
1515 struct lttng_consumer_local_data *lttng_consumer_create(
1516 enum lttng_consumer_type type,
1517 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1518 struct lttng_consumer_local_data *ctx),
1519 int (*recv_channel)(struct lttng_consumer_channel *channel),
1520 int (*recv_stream)(struct lttng_consumer_stream *stream),
1521 int (*update_stream)(uint64_t stream_key, uint32_t state))
1522 {
1523 int ret;
1524 struct lttng_consumer_local_data *ctx;
1525
1526 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1527 consumer_data.type == type);
1528 consumer_data.type = type;
1529
1530 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1531 if (ctx == NULL) {
1532 PERROR("allocating context");
1533 goto error;
1534 }
1535
1536 ctx->consumer_error_socket = -1;
1537 ctx->consumer_metadata_socket = -1;
1538 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1539 /* assign the callbacks */
1540 ctx->on_buffer_ready = buffer_ready;
1541 ctx->on_recv_channel = recv_channel;
1542 ctx->on_recv_stream = recv_stream;
1543 ctx->on_update_stream = update_stream;
1544
1545 ctx->consumer_data_pipe = lttng_pipe_open(0);
1546 if (!ctx->consumer_data_pipe) {
1547 goto error_poll_pipe;
1548 }
1549
1550 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1551 if (!ctx->consumer_wakeup_pipe) {
1552 goto error_wakeup_pipe;
1553 }
1554
1555 ret = pipe(ctx->consumer_should_quit);
1556 if (ret < 0) {
1557 PERROR("Error creating recv pipe");
1558 goto error_quit_pipe;
1559 }
1560
1561 ret = pipe(ctx->consumer_channel_pipe);
1562 if (ret < 0) {
1563 PERROR("Error creating channel pipe");
1564 goto error_channel_pipe;
1565 }
1566
1567 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1568 if (!ctx->consumer_metadata_pipe) {
1569 goto error_metadata_pipe;
1570 }
1571
1572 ctx->channel_monitor_pipe = -1;
1573
1574 return ctx;
1575
1576 error_metadata_pipe:
1577 utils_close_pipe(ctx->consumer_channel_pipe);
1578 error_channel_pipe:
1579 utils_close_pipe(ctx->consumer_should_quit);
1580 error_quit_pipe:
1581 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1582 error_wakeup_pipe:
1583 lttng_pipe_destroy(ctx->consumer_data_pipe);
1584 error_poll_pipe:
1585 free(ctx);
1586 error:
1587 return NULL;
1588 }
1589
1590 /*
1591 * Iterate over all streams of the hashtable and free them properly.
1592 */
1593 static void destroy_data_stream_ht(struct lttng_ht *ht)
1594 {
1595 struct lttng_ht_iter iter;
1596 struct lttng_consumer_stream *stream;
1597
1598 if (ht == NULL) {
1599 return;
1600 }
1601
1602 rcu_read_lock();
1603 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1604 /*
1605 * Ignore return value since we are currently cleaning up so any error
1606 * can't be handled.
1607 */
1608 (void) consumer_del_stream(stream, ht);
1609 }
1610 rcu_read_unlock();
1611
1612 lttng_ht_destroy(ht);
1613 }
1614
1615 /*
1616 * Iterate over all streams of the metadata hashtable and free them
1617 * properly.
1618 */
1619 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1620 {
1621 struct lttng_ht_iter iter;
1622 struct lttng_consumer_stream *stream;
1623
1624 if (ht == NULL) {
1625 return;
1626 }
1627
1628 rcu_read_lock();
1629 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1630 /*
1631 * Ignore return value since we are currently cleaning up so any error
1632 * can't be handled.
1633 */
1634 (void) consumer_del_metadata_stream(stream, ht);
1635 }
1636 rcu_read_unlock();
1637
1638 lttng_ht_destroy(ht);
1639 }
1640
1641 /*
1642 * Close all fds associated with the instance and free the context.
1643 */
1644 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1645 {
1646 int ret;
1647
1648 DBG("Consumer destroying it. Closing everything.");
1649
1650 if (!ctx) {
1651 return;
1652 }
1653
1654 destroy_data_stream_ht(data_ht);
1655 destroy_metadata_stream_ht(metadata_ht);
1656
1657 ret = close(ctx->consumer_error_socket);
1658 if (ret) {
1659 PERROR("close");
1660 }
1661 ret = close(ctx->consumer_metadata_socket);
1662 if (ret) {
1663 PERROR("close");
1664 }
1665 utils_close_pipe(ctx->consumer_channel_pipe);
1666 lttng_pipe_destroy(ctx->consumer_data_pipe);
1667 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1668 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1669 utils_close_pipe(ctx->consumer_should_quit);
1670
1671 unlink(ctx->consumer_command_sock_path);
1672 free(ctx);
1673 }
1674
1675 /*
1676 * Write the metadata stream id on the specified file descriptor.
1677 */
1678 static int write_relayd_metadata_id(int fd,
1679 struct lttng_consumer_stream *stream,
1680 unsigned long padding)
1681 {
1682 ssize_t ret;
1683 struct lttcomm_relayd_metadata_payload hdr;
1684
1685 hdr.stream_id = htobe64(stream->relayd_stream_id);
1686 hdr.padding_size = htobe32(padding);
1687 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1688 if (ret < sizeof(hdr)) {
1689 /*
1690 * This error means that the fd's end is closed so ignore the PERROR
1691 * not to clubber the error output since this can happen in a normal
1692 * code path.
1693 */
1694 if (errno != EPIPE) {
1695 PERROR("write metadata stream id");
1696 }
1697 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1698 /*
1699 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1700 * handle writting the missing part so report that as an error and
1701 * don't lie to the caller.
1702 */
1703 ret = -1;
1704 goto end;
1705 }
1706 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1707 stream->relayd_stream_id, padding);
1708
1709 end:
1710 return (int) ret;
1711 }
1712
1713 /*
1714 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1715 * core function for writing trace buffers to either the local filesystem or
1716 * the network.
1717 *
1718 * It must be called with the stream and the channel lock held.
1719 *
1720 * Careful review MUST be put if any changes occur!
1721 *
1722 * Returns the number of bytes written
1723 */
1724 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1725 struct lttng_consumer_local_data *ctx,
1726 struct lttng_consumer_stream *stream, unsigned long len,
1727 unsigned long padding,
1728 struct ctf_packet_index *index)
1729 {
1730 unsigned long mmap_offset;
1731 void *mmap_base;
1732 ssize_t ret = 0;
1733 off_t orig_offset = stream->out_fd_offset;
1734 /* Default is on the disk */
1735 int outfd = stream->out_fd;
1736 struct consumer_relayd_sock_pair *relayd = NULL;
1737 unsigned int relayd_hang_up = 0;
1738
1739 /* RCU lock for the relayd pointer */
1740 rcu_read_lock();
1741 assert(stream->net_seq_idx != (uint64_t) -1ULL ||
1742 stream->trace_chunk);
1743
1744 /* Flag that the current stream if set for network streaming. */
1745 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1746 relayd = consumer_find_relayd(stream->net_seq_idx);
1747 if (relayd == NULL) {
1748 ret = -EPIPE;
1749 goto end;
1750 }
1751 }
1752
1753 /* get the offset inside the fd to mmap */
1754 switch (consumer_data.type) {
1755 case LTTNG_CONSUMER_KERNEL:
1756 mmap_base = stream->mmap_base;
1757 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1758 if (ret < 0) {
1759 PERROR("tracer ctl get_mmap_read_offset");
1760 goto end;
1761 }
1762 break;
1763 case LTTNG_CONSUMER32_UST:
1764 case LTTNG_CONSUMER64_UST:
1765 mmap_base = lttng_ustctl_get_mmap_base(stream);
1766 if (!mmap_base) {
1767 ERR("read mmap get mmap base for stream %s", stream->name);
1768 ret = -EPERM;
1769 goto end;
1770 }
1771 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1772 if (ret != 0) {
1773 PERROR("tracer ctl get_mmap_read_offset");
1774 ret = -EINVAL;
1775 goto end;
1776 }
1777 break;
1778 default:
1779 ERR("Unknown consumer_data type");
1780 assert(0);
1781 }
1782
1783 /* Handle stream on the relayd if the output is on the network */
1784 if (relayd) {
1785 unsigned long netlen = len;
1786
1787 /*
1788 * Lock the control socket for the complete duration of the function
1789 * since from this point on we will use the socket.
1790 */
1791 if (stream->metadata_flag) {
1792 /* Metadata requires the control socket. */
1793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1794 if (stream->reset_metadata_flag) {
1795 ret = relayd_reset_metadata(&relayd->control_sock,
1796 stream->relayd_stream_id,
1797 stream->metadata_version);
1798 if (ret < 0) {
1799 relayd_hang_up = 1;
1800 goto write_error;
1801 }
1802 stream->reset_metadata_flag = 0;
1803 }
1804 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1805 }
1806
1807 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1808 if (ret < 0) {
1809 relayd_hang_up = 1;
1810 goto write_error;
1811 }
1812 /* Use the returned socket. */
1813 outfd = ret;
1814
1815 /* Write metadata stream id before payload */
1816 if (stream->metadata_flag) {
1817 ret = write_relayd_metadata_id(outfd, stream, padding);
1818 if (ret < 0) {
1819 relayd_hang_up = 1;
1820 goto write_error;
1821 }
1822 }
1823 } else {
1824 /* No streaming, we have to set the len with the full padding */
1825 len += padding;
1826
1827 if (stream->metadata_flag && stream->reset_metadata_flag) {
1828 ret = utils_truncate_stream_file(stream->out_fd, 0);
1829 if (ret < 0) {
1830 ERR("Reset metadata file");
1831 goto end;
1832 }
1833 stream->reset_metadata_flag = 0;
1834 }
1835
1836 /*
1837 * Check if we need to change the tracefile before writing the packet.
1838 */
1839 if (stream->chan->tracefile_size > 0 &&
1840 (stream->tracefile_size_current + len) >
1841 stream->chan->tracefile_size) {
1842 ret = consumer_stream_rotate_output_files(stream);
1843 if (ret) {
1844 goto end;
1845 }
1846 outfd = stream->out_fd;
1847 orig_offset = 0;
1848 }
1849 stream->tracefile_size_current += len;
1850 if (index) {
1851 index->offset = htobe64(stream->out_fd_offset);
1852 }
1853 }
1854
1855 /*
1856 * This call guarantee that len or less is returned. It's impossible to
1857 * receive a ret value that is bigger than len.
1858 */
1859 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1860 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1861 if (ret < 0 || ((size_t) ret != len)) {
1862 /*
1863 * Report error to caller if nothing was written else at least send the
1864 * amount written.
1865 */
1866 if (ret < 0) {
1867 ret = -errno;
1868 }
1869 relayd_hang_up = 1;
1870
1871 /* Socket operation failed. We consider the relayd dead */
1872 if (errno == EPIPE) {
1873 /*
1874 * This is possible if the fd is closed on the other side
1875 * (outfd) or any write problem. It can be verbose a bit for a
1876 * normal execution if for instance the relayd is stopped
1877 * abruptly. This can happen so set this to a DBG statement.
1878 */
1879 DBG("Consumer mmap write detected relayd hang up");
1880 } else {
1881 /* Unhandled error, print it and stop function right now. */
1882 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1883 }
1884 goto write_error;
1885 }
1886 stream->output_written += ret;
1887
1888 /* This call is useless on a socket so better save a syscall. */
1889 if (!relayd) {
1890 /* This won't block, but will start writeout asynchronously */
1891 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1892 SYNC_FILE_RANGE_WRITE);
1893 stream->out_fd_offset += len;
1894 lttng_consumer_sync_trace_file(stream, orig_offset);
1895 }
1896
1897 write_error:
1898 /*
1899 * This is a special case that the relayd has closed its socket. Let's
1900 * cleanup the relayd object and all associated streams.
1901 */
1902 if (relayd && relayd_hang_up) {
1903 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1904 lttng_consumer_cleanup_relayd(relayd);
1905 }
1906
1907 end:
1908 /* Unlock only if ctrl socket used */
1909 if (relayd && stream->metadata_flag) {
1910 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1911 }
1912
1913 rcu_read_unlock();
1914 return ret;
1915 }
1916
1917 /*
1918 * Splice the data from the ring buffer to the tracefile.
1919 *
1920 * It must be called with the stream lock held.
1921 *
1922 * Returns the number of bytes spliced.
1923 */
1924 ssize_t lttng_consumer_on_read_subbuffer_splice(
1925 struct lttng_consumer_local_data *ctx,
1926 struct lttng_consumer_stream *stream, unsigned long len,
1927 unsigned long padding,
1928 struct ctf_packet_index *index)
1929 {
1930 ssize_t ret = 0, written = 0, ret_splice = 0;
1931 loff_t offset = 0;
1932 off_t orig_offset = stream->out_fd_offset;
1933 int fd = stream->wait_fd;
1934 /* Default is on the disk */
1935 int outfd = stream->out_fd;
1936 struct consumer_relayd_sock_pair *relayd = NULL;
1937 int *splice_pipe;
1938 unsigned int relayd_hang_up = 0;
1939
1940 switch (consumer_data.type) {
1941 case LTTNG_CONSUMER_KERNEL:
1942 break;
1943 case LTTNG_CONSUMER32_UST:
1944 case LTTNG_CONSUMER64_UST:
1945 /* Not supported for user space tracing */
1946 return -ENOSYS;
1947 default:
1948 ERR("Unknown consumer_data type");
1949 assert(0);
1950 }
1951
1952 /* RCU lock for the relayd pointer */
1953 rcu_read_lock();
1954
1955 /* Flag that the current stream if set for network streaming. */
1956 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1957 relayd = consumer_find_relayd(stream->net_seq_idx);
1958 if (relayd == NULL) {
1959 written = -ret;
1960 goto end;
1961 }
1962 }
1963 splice_pipe = stream->splice_pipe;
1964
1965 /* Write metadata stream id before payload */
1966 if (relayd) {
1967 unsigned long total_len = len;
1968
1969 if (stream->metadata_flag) {
1970 /*
1971 * Lock the control socket for the complete duration of the function
1972 * since from this point on we will use the socket.
1973 */
1974 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1975
1976 if (stream->reset_metadata_flag) {
1977 ret = relayd_reset_metadata(&relayd->control_sock,
1978 stream->relayd_stream_id,
1979 stream->metadata_version);
1980 if (ret < 0) {
1981 relayd_hang_up = 1;
1982 goto write_error;
1983 }
1984 stream->reset_metadata_flag = 0;
1985 }
1986 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1987 padding);
1988 if (ret < 0) {
1989 written = ret;
1990 relayd_hang_up = 1;
1991 goto write_error;
1992 }
1993
1994 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1995 }
1996
1997 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1998 if (ret < 0) {
1999 written = ret;
2000 relayd_hang_up = 1;
2001 goto write_error;
2002 }
2003 /* Use the returned socket. */
2004 outfd = ret;
2005 } else {
2006 /* No streaming, we have to set the len with the full padding */
2007 len += padding;
2008
2009 if (stream->metadata_flag && stream->reset_metadata_flag) {
2010 ret = utils_truncate_stream_file(stream->out_fd, 0);
2011 if (ret < 0) {
2012 ERR("Reset metadata file");
2013 goto end;
2014 }
2015 stream->reset_metadata_flag = 0;
2016 }
2017 /*
2018 * Check if we need to change the tracefile before writing the packet.
2019 */
2020 if (stream->chan->tracefile_size > 0 &&
2021 (stream->tracefile_size_current + len) >
2022 stream->chan->tracefile_size) {
2023 ret = consumer_stream_rotate_output_files(stream);
2024 if (ret < 0) {
2025 written = ret;
2026 goto end;
2027 }
2028 outfd = stream->out_fd;
2029 orig_offset = 0;
2030 }
2031 stream->tracefile_size_current += len;
2032 index->offset = htobe64(stream->out_fd_offset);
2033 }
2034
2035 while (len > 0) {
2036 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
2037 (unsigned long)offset, len, fd, splice_pipe[1]);
2038 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
2039 SPLICE_F_MOVE | SPLICE_F_MORE);
2040 DBG("splice chan to pipe, ret %zd", ret_splice);
2041 if (ret_splice < 0) {
2042 ret = errno;
2043 written = -ret;
2044 PERROR("Error in relay splice");
2045 goto splice_error;
2046 }
2047
2048 /* Handle stream on the relayd if the output is on the network */
2049 if (relayd && stream->metadata_flag) {
2050 size_t metadata_payload_size =
2051 sizeof(struct lttcomm_relayd_metadata_payload);
2052
2053 /* Update counter to fit the spliced data */
2054 ret_splice += metadata_payload_size;
2055 len += metadata_payload_size;
2056 /*
2057 * We do this so the return value can match the len passed as
2058 * argument to this function.
2059 */
2060 written -= metadata_payload_size;
2061 }
2062
2063 /* Splice data out */
2064 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
2065 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
2066 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
2067 outfd, ret_splice);
2068 if (ret_splice < 0) {
2069 ret = errno;
2070 written = -ret;
2071 relayd_hang_up = 1;
2072 goto write_error;
2073 } else if (ret_splice > len) {
2074 /*
2075 * We don't expect this code path to be executed but you never know
2076 * so this is an extra protection agains a buggy splice().
2077 */
2078 ret = errno;
2079 written += ret_splice;
2080 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
2081 len);
2082 goto splice_error;
2083 } else {
2084 /* All good, update current len and continue. */
2085 len -= ret_splice;
2086 }
2087
2088 /* This call is useless on a socket so better save a syscall. */
2089 if (!relayd) {
2090 /* This won't block, but will start writeout asynchronously */
2091 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
2092 SYNC_FILE_RANGE_WRITE);
2093 stream->out_fd_offset += ret_splice;
2094 }
2095 stream->output_written += ret_splice;
2096 written += ret_splice;
2097 }
2098 if (!relayd) {
2099 lttng_consumer_sync_trace_file(stream, orig_offset);
2100 }
2101 goto end;
2102
2103 write_error:
2104 /*
2105 * This is a special case that the relayd has closed its socket. Let's
2106 * cleanup the relayd object and all associated streams.
2107 */
2108 if (relayd && relayd_hang_up) {
2109 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
2110 lttng_consumer_cleanup_relayd(relayd);
2111 /* Skip splice error so the consumer does not fail */
2112 goto end;
2113 }
2114
2115 splice_error:
2116 /* send the appropriate error description to sessiond */
2117 switch (ret) {
2118 case EINVAL:
2119 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
2120 break;
2121 case ENOMEM:
2122 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
2123 break;
2124 case ESPIPE:
2125 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
2126 break;
2127 }
2128
2129 end:
2130 if (relayd && stream->metadata_flag) {
2131 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2132 }
2133
2134 rcu_read_unlock();
2135 return written;
2136 }
2137
2138 /*
2139 * Sample the snapshot positions for a specific fd
2140 *
2141 * Returns 0 on success, < 0 on error
2142 */
2143 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2144 {
2145 switch (consumer_data.type) {
2146 case LTTNG_CONSUMER_KERNEL:
2147 return lttng_kconsumer_sample_snapshot_positions(stream);
2148 case LTTNG_CONSUMER32_UST:
2149 case LTTNG_CONSUMER64_UST:
2150 return lttng_ustconsumer_sample_snapshot_positions(stream);
2151 default:
2152 ERR("Unknown consumer_data type");
2153 assert(0);
2154 return -ENOSYS;
2155 }
2156 }
2157 /*
2158 * Take a snapshot for a specific fd
2159 *
2160 * Returns 0 on success, < 0 on error
2161 */
2162 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2163 {
2164 switch (consumer_data.type) {
2165 case LTTNG_CONSUMER_KERNEL:
2166 return lttng_kconsumer_take_snapshot(stream);
2167 case LTTNG_CONSUMER32_UST:
2168 case LTTNG_CONSUMER64_UST:
2169 return lttng_ustconsumer_take_snapshot(stream);
2170 default:
2171 ERR("Unknown consumer_data type");
2172 assert(0);
2173 return -ENOSYS;
2174 }
2175 }
2176
2177 /*
2178 * Get the produced position
2179 *
2180 * Returns 0 on success, < 0 on error
2181 */
2182 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2183 unsigned long *pos)
2184 {
2185 switch (consumer_data.type) {
2186 case LTTNG_CONSUMER_KERNEL:
2187 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2188 case LTTNG_CONSUMER32_UST:
2189 case LTTNG_CONSUMER64_UST:
2190 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2191 default:
2192 ERR("Unknown consumer_data type");
2193 assert(0);
2194 return -ENOSYS;
2195 }
2196 }
2197
2198 /*
2199 * Get the consumed position (free-running counter position in bytes).
2200 *
2201 * Returns 0 on success, < 0 on error
2202 */
2203 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2204 unsigned long *pos)
2205 {
2206 switch (consumer_data.type) {
2207 case LTTNG_CONSUMER_KERNEL:
2208 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2209 case LTTNG_CONSUMER32_UST:
2210 case LTTNG_CONSUMER64_UST:
2211 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2212 default:
2213 ERR("Unknown consumer_data type");
2214 assert(0);
2215 return -ENOSYS;
2216 }
2217 }
2218
2219 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2220 int sock, struct pollfd *consumer_sockpoll)
2221 {
2222 switch (consumer_data.type) {
2223 case LTTNG_CONSUMER_KERNEL:
2224 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2225 case LTTNG_CONSUMER32_UST:
2226 case LTTNG_CONSUMER64_UST:
2227 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2228 default:
2229 ERR("Unknown consumer_data type");
2230 assert(0);
2231 return -ENOSYS;
2232 }
2233 }
2234
2235 void lttng_consumer_close_all_metadata(void)
2236 {
2237 switch (consumer_data.type) {
2238 case LTTNG_CONSUMER_KERNEL:
2239 /*
2240 * The Kernel consumer has a different metadata scheme so we don't
2241 * close anything because the stream will be closed by the session
2242 * daemon.
2243 */
2244 break;
2245 case LTTNG_CONSUMER32_UST:
2246 case LTTNG_CONSUMER64_UST:
2247 /*
2248 * Close all metadata streams. The metadata hash table is passed and
2249 * this call iterates over it by closing all wakeup fd. This is safe
2250 * because at this point we are sure that the metadata producer is
2251 * either dead or blocked.
2252 */
2253 lttng_ustconsumer_close_all_metadata(metadata_ht);
2254 break;
2255 default:
2256 ERR("Unknown consumer_data type");
2257 assert(0);
2258 }
2259 }
2260
2261 /*
2262 * Clean up a metadata stream and free its memory.
2263 */
2264 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2265 struct lttng_ht *ht)
2266 {
2267 struct lttng_consumer_channel *free_chan = NULL;
2268
2269 assert(stream);
2270 /*
2271 * This call should NEVER receive regular stream. It must always be
2272 * metadata stream and this is crucial for data structure synchronization.
2273 */
2274 assert(stream->metadata_flag);
2275
2276 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2277
2278 pthread_mutex_lock(&consumer_data.lock);
2279 pthread_mutex_lock(&stream->chan->lock);
2280 pthread_mutex_lock(&stream->lock);
2281 if (stream->chan->metadata_cache) {
2282 /* Only applicable to userspace consumers. */
2283 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2284 }
2285
2286 /* Remove any reference to that stream. */
2287 consumer_stream_delete(stream, ht);
2288
2289 /* Close down everything including the relayd if one. */
2290 consumer_stream_close(stream);
2291 /* Destroy tracer buffers of the stream. */
2292 consumer_stream_destroy_buffers(stream);
2293
2294 /* Atomically decrement channel refcount since other threads can use it. */
2295 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2296 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2297 /* Go for channel deletion! */
2298 free_chan = stream->chan;
2299 }
2300
2301 /*
2302 * Nullify the stream reference so it is not used after deletion. The
2303 * channel lock MUST be acquired before being able to check for a NULL
2304 * pointer value.
2305 */
2306 stream->chan->metadata_stream = NULL;
2307
2308 if (stream->chan->metadata_cache) {
2309 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2310 }
2311 pthread_mutex_unlock(&stream->lock);
2312 pthread_mutex_unlock(&stream->chan->lock);
2313 pthread_mutex_unlock(&consumer_data.lock);
2314
2315 if (free_chan) {
2316 consumer_del_channel(free_chan);
2317 }
2318
2319 lttng_trace_chunk_put(stream->trace_chunk);
2320 stream->trace_chunk = NULL;
2321 consumer_stream_free(stream);
2322 }
2323
2324 /*
2325 * Action done with the metadata stream when adding it to the consumer internal
2326 * data structures to handle it.
2327 */
2328 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2329 {
2330 struct lttng_ht *ht = metadata_ht;
2331 struct lttng_ht_iter iter;
2332 struct lttng_ht_node_u64 *node;
2333
2334 assert(stream);
2335 assert(ht);
2336
2337 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2338
2339 pthread_mutex_lock(&consumer_data.lock);
2340 pthread_mutex_lock(&stream->chan->lock);
2341 pthread_mutex_lock(&stream->chan->timer_lock);
2342 pthread_mutex_lock(&stream->lock);
2343
2344 /*
2345 * From here, refcounts are updated so be _careful_ when returning an error
2346 * after this point.
2347 */
2348
2349 rcu_read_lock();
2350
2351 /*
2352 * Lookup the stream just to make sure it does not exist in our internal
2353 * state. This should NEVER happen.
2354 */
2355 lttng_ht_lookup(ht, &stream->key, &iter);
2356 node = lttng_ht_iter_get_node_u64(&iter);
2357 assert(!node);
2358
2359 /*
2360 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2361 * in terms of destroying the associated channel, because the action that
2362 * causes the count to become 0 also causes a stream to be added. The
2363 * channel deletion will thus be triggered by the following removal of this
2364 * stream.
2365 */
2366 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2367 /* Increment refcount before decrementing nb_init_stream_left */
2368 cmm_smp_wmb();
2369 uatomic_dec(&stream->chan->nb_init_stream_left);
2370 }
2371
2372 lttng_ht_add_unique_u64(ht, &stream->node);
2373
2374 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2375 &stream->node_channel_id);
2376
2377 /*
2378 * Add stream to the stream_list_ht of the consumer data. No need to steal
2379 * the key since the HT does not use it and we allow to add redundant keys
2380 * into this table.
2381 */
2382 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2383
2384 rcu_read_unlock();
2385
2386 pthread_mutex_unlock(&stream->lock);
2387 pthread_mutex_unlock(&stream->chan->lock);
2388 pthread_mutex_unlock(&stream->chan->timer_lock);
2389 pthread_mutex_unlock(&consumer_data.lock);
2390 }
2391
2392 /*
2393 * Delete data stream that are flagged for deletion (endpoint_status).
2394 */
2395 static void validate_endpoint_status_data_stream(void)
2396 {
2397 struct lttng_ht_iter iter;
2398 struct lttng_consumer_stream *stream;
2399
2400 DBG("Consumer delete flagged data stream");
2401
2402 rcu_read_lock();
2403 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2404 /* Validate delete flag of the stream */
2405 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2406 continue;
2407 }
2408 /* Delete it right now */
2409 consumer_del_stream(stream, data_ht);
2410 }
2411 rcu_read_unlock();
2412 }
2413
2414 /*
2415 * Delete metadata stream that are flagged for deletion (endpoint_status).
2416 */
2417 static void validate_endpoint_status_metadata_stream(
2418 struct lttng_poll_event *pollset)
2419 {
2420 struct lttng_ht_iter iter;
2421 struct lttng_consumer_stream *stream;
2422
2423 DBG("Consumer delete flagged metadata stream");
2424
2425 assert(pollset);
2426
2427 rcu_read_lock();
2428 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2429 /* Validate delete flag of the stream */
2430 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2431 continue;
2432 }
2433 /*
2434 * Remove from pollset so the metadata thread can continue without
2435 * blocking on a deleted stream.
2436 */
2437 lttng_poll_del(pollset, stream->wait_fd);
2438
2439 /* Delete it right now */
2440 consumer_del_metadata_stream(stream, metadata_ht);
2441 }
2442 rcu_read_unlock();
2443 }
2444
2445 /*
2446 * Thread polls on metadata file descriptor and write them on disk or on the
2447 * network.
2448 */
2449 void *consumer_thread_metadata_poll(void *data)
2450 {
2451 int ret, i, pollfd, err = -1;
2452 uint32_t revents, nb_fd;
2453 struct lttng_consumer_stream *stream = NULL;
2454 struct lttng_ht_iter iter;
2455 struct lttng_ht_node_u64 *node;
2456 struct lttng_poll_event events;
2457 struct lttng_consumer_local_data *ctx = data;
2458 ssize_t len;
2459
2460 rcu_register_thread();
2461
2462 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2463
2464 if (testpoint(consumerd_thread_metadata)) {
2465 goto error_testpoint;
2466 }
2467
2468 health_code_update();
2469
2470 DBG("Thread metadata poll started");
2471
2472 /* Size is set to 1 for the consumer_metadata pipe */
2473 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2474 if (ret < 0) {
2475 ERR("Poll set creation failed");
2476 goto end_poll;
2477 }
2478
2479 ret = lttng_poll_add(&events,
2480 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2481 if (ret < 0) {
2482 goto end;
2483 }
2484
2485 /* Main loop */
2486 DBG("Metadata main loop started");
2487
2488 while (1) {
2489 restart:
2490 health_code_update();
2491 health_poll_entry();
2492 DBG("Metadata poll wait");
2493 ret = lttng_poll_wait(&events, -1);
2494 DBG("Metadata poll return from wait with %d fd(s)",
2495 LTTNG_POLL_GETNB(&events));
2496 health_poll_exit();
2497 DBG("Metadata event caught in thread");
2498 if (ret < 0) {
2499 if (errno == EINTR) {
2500 ERR("Poll EINTR caught");
2501 goto restart;
2502 }
2503 if (LTTNG_POLL_GETNB(&events) == 0) {
2504 err = 0; /* All is OK */
2505 }
2506 goto end;
2507 }
2508
2509 nb_fd = ret;
2510
2511 /* From here, the event is a metadata wait fd */
2512 for (i = 0; i < nb_fd; i++) {
2513 health_code_update();
2514
2515 revents = LTTNG_POLL_GETEV(&events, i);
2516 pollfd = LTTNG_POLL_GETFD(&events, i);
2517
2518 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2519 if (revents & LPOLLIN) {
2520 ssize_t pipe_len;
2521
2522 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2523 &stream, sizeof(stream));
2524 if (pipe_len < sizeof(stream)) {
2525 if (pipe_len < 0) {
2526 PERROR("read metadata stream");
2527 }
2528 /*
2529 * Remove the pipe from the poll set and continue the loop
2530 * since their might be data to consume.
2531 */
2532 lttng_poll_del(&events,
2533 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2534 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2535 continue;
2536 }
2537
2538 /* A NULL stream means that the state has changed. */
2539 if (stream == NULL) {
2540 /* Check for deleted streams. */
2541 validate_endpoint_status_metadata_stream(&events);
2542 goto restart;
2543 }
2544
2545 DBG("Adding metadata stream %d to poll set",
2546 stream->wait_fd);
2547
2548 /* Add metadata stream to the global poll events list */
2549 lttng_poll_add(&events, stream->wait_fd,
2550 LPOLLIN | LPOLLPRI | LPOLLHUP);
2551 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2552 DBG("Metadata thread pipe hung up");
2553 /*
2554 * Remove the pipe from the poll set and continue the loop
2555 * since their might be data to consume.
2556 */
2557 lttng_poll_del(&events,
2558 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2559 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2560 continue;
2561 } else {
2562 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2563 goto end;
2564 }
2565
2566 /* Handle other stream */
2567 continue;
2568 }
2569
2570 rcu_read_lock();
2571 {
2572 uint64_t tmp_id = (uint64_t) pollfd;
2573
2574 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2575 }
2576 node = lttng_ht_iter_get_node_u64(&iter);
2577 assert(node);
2578
2579 stream = caa_container_of(node, struct lttng_consumer_stream,
2580 node);
2581
2582 if (revents & (LPOLLIN | LPOLLPRI)) {
2583 /* Get the data out of the metadata file descriptor */
2584 DBG("Metadata available on fd %d", pollfd);
2585 assert(stream->wait_fd == pollfd);
2586
2587 do {
2588 health_code_update();
2589
2590 len = ctx->on_buffer_ready(stream, ctx);
2591 /*
2592 * We don't check the return value here since if we get
2593 * a negative len, it means an error occurred thus we
2594 * simply remove it from the poll set and free the
2595 * stream.
2596 */
2597 } while (len > 0);
2598
2599 /* It's ok to have an unavailable sub-buffer */
2600 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2601 /* Clean up stream from consumer and free it. */
2602 lttng_poll_del(&events, stream->wait_fd);
2603 consumer_del_metadata_stream(stream, metadata_ht);
2604 }
2605 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2606 DBG("Metadata fd %d is hup|err.", pollfd);
2607 if (!stream->hangup_flush_done
2608 && (consumer_data.type == LTTNG_CONSUMER32_UST
2609 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2610 DBG("Attempting to flush and consume the UST buffers");
2611 lttng_ustconsumer_on_stream_hangup(stream);
2612
2613 /* We just flushed the stream now read it. */
2614 do {
2615 health_code_update();
2616
2617 len = ctx->on_buffer_ready(stream, ctx);
2618 /*
2619 * We don't check the return value here since if we get
2620 * a negative len, it means an error occurred thus we
2621 * simply remove it from the poll set and free the
2622 * stream.
2623 */
2624 } while (len > 0);
2625 }
2626
2627 lttng_poll_del(&events, stream->wait_fd);
2628 /*
2629 * This call update the channel states, closes file descriptors
2630 * and securely free the stream.
2631 */
2632 consumer_del_metadata_stream(stream, metadata_ht);
2633 } else {
2634 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2635 rcu_read_unlock();
2636 goto end;
2637 }
2638 /* Release RCU lock for the stream looked up */
2639 rcu_read_unlock();
2640 }
2641 }
2642
2643 /* All is OK */
2644 err = 0;
2645 end:
2646 DBG("Metadata poll thread exiting");
2647
2648 lttng_poll_clean(&events);
2649 end_poll:
2650 error_testpoint:
2651 if (err) {
2652 health_error();
2653 ERR("Health error occurred in %s", __func__);
2654 }
2655 health_unregister(health_consumerd);
2656 rcu_unregister_thread();
2657 return NULL;
2658 }
2659
2660 /*
2661 * This thread polls the fds in the set to consume the data and write
2662 * it to tracefile if necessary.
2663 */
2664 void *consumer_thread_data_poll(void *data)
2665 {
2666 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2667 struct pollfd *pollfd = NULL;
2668 /* local view of the streams */
2669 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2670 /* local view of consumer_data.fds_count */
2671 int nb_fd = 0;
2672 /* 2 for the consumer_data_pipe and wake up pipe */
2673 const int nb_pipes_fd = 2;
2674 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2675 int nb_inactive_fd = 0;
2676 struct lttng_consumer_local_data *ctx = data;
2677 ssize_t len;
2678
2679 rcu_register_thread();
2680
2681 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2682
2683 if (testpoint(consumerd_thread_data)) {
2684 goto error_testpoint;
2685 }
2686
2687 health_code_update();
2688
2689 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2690 if (local_stream == NULL) {
2691 PERROR("local_stream malloc");
2692 goto end;
2693 }
2694
2695 while (1) {
2696 health_code_update();
2697
2698 high_prio = 0;
2699 num_hup = 0;
2700
2701 /*
2702 * the fds set has been updated, we need to update our
2703 * local array as well
2704 */
2705 pthread_mutex_lock(&consumer_data.lock);
2706 if (consumer_data.need_update) {
2707 free(pollfd);
2708 pollfd = NULL;
2709
2710 free(local_stream);
2711 local_stream = NULL;
2712
2713 /* Allocate for all fds */
2714 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2715 if (pollfd == NULL) {
2716 PERROR("pollfd malloc");
2717 pthread_mutex_unlock(&consumer_data.lock);
2718 goto end;
2719 }
2720
2721 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2722 sizeof(struct lttng_consumer_stream *));
2723 if (local_stream == NULL) {
2724 PERROR("local_stream malloc");
2725 pthread_mutex_unlock(&consumer_data.lock);
2726 goto end;
2727 }
2728 ret = update_poll_array(ctx, &pollfd, local_stream,
2729 data_ht, &nb_inactive_fd);
2730 if (ret < 0) {
2731 ERR("Error in allocating pollfd or local_outfds");
2732 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2733 pthread_mutex_unlock(&consumer_data.lock);
2734 goto end;
2735 }
2736 nb_fd = ret;
2737 consumer_data.need_update = 0;
2738 }
2739 pthread_mutex_unlock(&consumer_data.lock);
2740
2741 /* No FDs and consumer_quit, consumer_cleanup the thread */
2742 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2743 CMM_LOAD_SHARED(consumer_quit) == 1) {
2744 err = 0; /* All is OK */
2745 goto end;
2746 }
2747 /* poll on the array of fds */
2748 restart:
2749 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2750 if (testpoint(consumerd_thread_data_poll)) {
2751 goto end;
2752 }
2753 health_poll_entry();
2754 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2755 health_poll_exit();
2756 DBG("poll num_rdy : %d", num_rdy);
2757 if (num_rdy == -1) {
2758 /*
2759 * Restart interrupted system call.
2760 */
2761 if (errno == EINTR) {
2762 goto restart;
2763 }
2764 PERROR("Poll error");
2765 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2766 goto end;
2767 } else if (num_rdy == 0) {
2768 DBG("Polling thread timed out");
2769 goto end;
2770 }
2771
2772 if (caa_unlikely(data_consumption_paused)) {
2773 DBG("Data consumption paused, sleeping...");
2774 sleep(1);
2775 goto restart;
2776 }
2777
2778 /*
2779 * If the consumer_data_pipe triggered poll go directly to the
2780 * beginning of the loop to update the array. We want to prioritize
2781 * array update over low-priority reads.
2782 */
2783 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2784 ssize_t pipe_readlen;
2785
2786 DBG("consumer_data_pipe wake up");
2787 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2788 &new_stream, sizeof(new_stream));
2789 if (pipe_readlen < sizeof(new_stream)) {
2790 PERROR("Consumer data pipe");
2791 /* Continue so we can at least handle the current stream(s). */
2792 continue;
2793 }
2794
2795 /*
2796 * If the stream is NULL, just ignore it. It's also possible that
2797 * the sessiond poll thread changed the consumer_quit state and is
2798 * waking us up to test it.
2799 */
2800 if (new_stream == NULL) {
2801 validate_endpoint_status_data_stream();
2802 continue;
2803 }
2804
2805 /* Continue to update the local streams and handle prio ones */
2806 continue;
2807 }
2808
2809 /* Handle wakeup pipe. */
2810 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2811 char dummy;
2812 ssize_t pipe_readlen;
2813
2814 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2815 sizeof(dummy));
2816 if (pipe_readlen < 0) {
2817 PERROR("Consumer data wakeup pipe");
2818 }
2819 /* We've been awakened to handle stream(s). */
2820 ctx->has_wakeup = 0;
2821 }
2822
2823 /* Take care of high priority channels first. */
2824 for (i = 0; i < nb_fd; i++) {
2825 health_code_update();
2826
2827 if (local_stream[i] == NULL) {
2828 continue;
2829 }
2830 if (pollfd[i].revents & POLLPRI) {
2831 DBG("Urgent read on fd %d", pollfd[i].fd);
2832 high_prio = 1;
2833 len = ctx->on_buffer_ready(local_stream[i], ctx);
2834 /* it's ok to have an unavailable sub-buffer */
2835 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2836 /* Clean the stream and free it. */
2837 consumer_del_stream(local_stream[i], data_ht);
2838 local_stream[i] = NULL;
2839 } else if (len > 0) {
2840 local_stream[i]->data_read = 1;
2841 }
2842 }
2843 }
2844
2845 /*
2846 * If we read high prio channel in this loop, try again
2847 * for more high prio data.
2848 */
2849 if (high_prio) {
2850 continue;
2851 }
2852
2853 /* Take care of low priority channels. */
2854 for (i = 0; i < nb_fd; i++) {
2855 health_code_update();
2856
2857 if (local_stream[i] == NULL) {
2858 continue;
2859 }
2860 if ((pollfd[i].revents & POLLIN) ||
2861 local_stream[i]->hangup_flush_done ||
2862 local_stream[i]->has_data) {
2863 DBG("Normal read on fd %d", pollfd[i].fd);
2864 len = ctx->on_buffer_ready(local_stream[i], ctx);
2865 /* it's ok to have an unavailable sub-buffer */
2866 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2867 /* Clean the stream and free it. */
2868 consumer_del_stream(local_stream[i], data_ht);
2869 local_stream[i] = NULL;
2870 } else if (len > 0) {
2871 local_stream[i]->data_read = 1;
2872 }
2873 }
2874 }
2875
2876 /* Handle hangup and errors */
2877 for (i = 0; i < nb_fd; i++) {
2878 health_code_update();
2879
2880 if (local_stream[i] == NULL) {
2881 continue;
2882 }
2883 if (!local_stream[i]->hangup_flush_done
2884 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2885 && (consumer_data.type == LTTNG_CONSUMER32_UST
2886 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2887 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2888 pollfd[i].fd);
2889 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2890 /* Attempt read again, for the data we just flushed. */
2891 local_stream[i]->data_read = 1;
2892 }
2893 /*
2894 * If the poll flag is HUP/ERR/NVAL and we have
2895 * read no data in this pass, we can remove the
2896 * stream from its hash table.
2897 */
2898 if ((pollfd[i].revents & POLLHUP)) {
2899 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2900 if (!local_stream[i]->data_read) {
2901 consumer_del_stream(local_stream[i], data_ht);
2902 local_stream[i] = NULL;
2903 num_hup++;
2904 }
2905 } else if (pollfd[i].revents & POLLERR) {
2906 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2907 if (!local_stream[i]->data_read) {
2908 consumer_del_stream(local_stream[i], data_ht);
2909 local_stream[i] = NULL;
2910 num_hup++;
2911 }
2912 } else if (pollfd[i].revents & POLLNVAL) {
2913 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2914 if (!local_stream[i]->data_read) {
2915 consumer_del_stream(local_stream[i], data_ht);
2916 local_stream[i] = NULL;
2917 num_hup++;
2918 }
2919 }
2920 if (local_stream[i] != NULL) {
2921 local_stream[i]->data_read = 0;
2922 }
2923 }
2924 }
2925 /* All is OK */
2926 err = 0;
2927 end:
2928 DBG("polling thread exiting");
2929 free(pollfd);
2930 free(local_stream);
2931
2932 /*
2933 * Close the write side of the pipe so epoll_wait() in
2934 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2935 * read side of the pipe. If we close them both, epoll_wait strangely does
2936 * not return and could create a endless wait period if the pipe is the
2937 * only tracked fd in the poll set. The thread will take care of closing
2938 * the read side.
2939 */
2940 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2941
2942 error_testpoint:
2943 if (err) {
2944 health_error();
2945 ERR("Health error occurred in %s", __func__);
2946 }
2947 health_unregister(health_consumerd);
2948
2949 rcu_unregister_thread();
2950 return NULL;
2951 }
2952
2953 /*
2954 * Close wake-up end of each stream belonging to the channel. This will
2955 * allow the poll() on the stream read-side to detect when the
2956 * write-side (application) finally closes them.
2957 */
2958 static
2959 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2960 {
2961 struct lttng_ht *ht;
2962 struct lttng_consumer_stream *stream;
2963 struct lttng_ht_iter iter;
2964
2965 ht = consumer_data.stream_per_chan_id_ht;
2966
2967 rcu_read_lock();
2968 cds_lfht_for_each_entry_duplicate(ht->ht,
2969 ht->hash_fct(&channel->key, lttng_ht_seed),
2970 ht->match_fct, &channel->key,
2971 &iter.iter, stream, node_channel_id.node) {
2972 /*
2973 * Protect against teardown with mutex.
2974 */
2975 pthread_mutex_lock(&stream->lock);
2976 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2977 goto next;
2978 }
2979 switch (consumer_data.type) {
2980 case LTTNG_CONSUMER_KERNEL:
2981 break;
2982 case LTTNG_CONSUMER32_UST:
2983 case LTTNG_CONSUMER64_UST:
2984 if (stream->metadata_flag) {
2985 /* Safe and protected by the stream lock. */
2986 lttng_ustconsumer_close_metadata(stream->chan);
2987 } else {
2988 /*
2989 * Note: a mutex is taken internally within
2990 * liblttng-ust-ctl to protect timer wakeup_fd
2991 * use from concurrent close.
2992 */
2993 lttng_ustconsumer_close_stream_wakeup(stream);
2994 }
2995 break;
2996 default:
2997 ERR("Unknown consumer_data type");
2998 assert(0);
2999 }
3000 next:
3001 pthread_mutex_unlock(&stream->lock);
3002 }
3003 rcu_read_unlock();
3004 }
3005
3006 static void destroy_channel_ht(struct lttng_ht *ht)
3007 {
3008 struct lttng_ht_iter iter;
3009 struct lttng_consumer_channel *channel;
3010 int ret;
3011
3012 if (ht == NULL) {
3013 return;
3014 }
3015
3016 rcu_read_lock();
3017 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
3018 ret = lttng_ht_del(ht, &iter);
3019 assert(ret != 0);
3020 }
3021 rcu_read_unlock();
3022
3023 lttng_ht_destroy(ht);
3024 }
3025
3026 /*
3027 * This thread polls the channel fds to detect when they are being
3028 * closed. It closes all related streams if the channel is detected as
3029 * closed. It is currently only used as a shim layer for UST because the
3030 * consumerd needs to keep the per-stream wakeup end of pipes open for
3031 * periodical flush.
3032 */
3033 void *consumer_thread_channel_poll(void *data)
3034 {
3035 int ret, i, pollfd, err = -1;
3036 uint32_t revents, nb_fd;
3037 struct lttng_consumer_channel *chan = NULL;
3038 struct lttng_ht_iter iter;
3039 struct lttng_ht_node_u64 *node;
3040 struct lttng_poll_event events;
3041 struct lttng_consumer_local_data *ctx = data;
3042 struct lttng_ht *channel_ht;
3043
3044 rcu_register_thread();
3045
3046 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
3047
3048 if (testpoint(consumerd_thread_channel)) {
3049 goto error_testpoint;
3050 }
3051
3052 health_code_update();
3053
3054 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3055 if (!channel_ht) {
3056 /* ENOMEM at this point. Better to bail out. */
3057 goto end_ht;
3058 }
3059
3060 DBG("Thread channel poll started");
3061
3062 /* Size is set to 1 for the consumer_channel pipe */
3063 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
3064 if (ret < 0) {
3065 ERR("Poll set creation failed");
3066 goto end_poll;
3067 }
3068
3069 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
3070 if (ret < 0) {
3071 goto end;
3072 }
3073
3074 /* Main loop */
3075 DBG("Channel main loop started");
3076
3077 while (1) {
3078 restart:
3079 health_code_update();
3080 DBG("Channel poll wait");
3081 health_poll_entry();
3082 ret = lttng_poll_wait(&events, -1);
3083 DBG("Channel poll return from wait with %d fd(s)",
3084 LTTNG_POLL_GETNB(&events));
3085 health_poll_exit();
3086 DBG("Channel event caught in thread");
3087 if (ret < 0) {
3088 if (errno == EINTR) {
3089 ERR("Poll EINTR caught");
3090 goto restart;
3091 }
3092 if (LTTNG_POLL_GETNB(&events) == 0) {
3093 err = 0; /* All is OK */
3094 }
3095 goto end;
3096 }
3097
3098 nb_fd = ret;
3099
3100 /* From here, the event is a channel wait fd */
3101 for (i = 0; i < nb_fd; i++) {
3102 health_code_update();
3103
3104 revents = LTTNG_POLL_GETEV(&events, i);
3105 pollfd = LTTNG_POLL_GETFD(&events, i);
3106
3107 if (pollfd == ctx->consumer_channel_pipe[0]) {
3108 if (revents & LPOLLIN) {
3109 enum consumer_channel_action action;
3110 uint64_t key;
3111
3112 ret = read_channel_pipe(ctx, &chan, &key, &action);
3113 if (ret <= 0) {
3114 if (ret < 0) {
3115 ERR("Error reading channel pipe");
3116 }
3117 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3118 continue;
3119 }
3120
3121 switch (action) {
3122 case CONSUMER_CHANNEL_ADD:
3123 DBG("Adding channel %d to poll set",
3124 chan->wait_fd);
3125
3126 lttng_ht_node_init_u64(&chan->wait_fd_node,
3127 chan->wait_fd);
3128 rcu_read_lock();
3129 lttng_ht_add_unique_u64(channel_ht,
3130 &chan->wait_fd_node);
3131 rcu_read_unlock();
3132 /* Add channel to the global poll events list */
3133 lttng_poll_add(&events, chan->wait_fd,
3134 LPOLLERR | LPOLLHUP);
3135 break;
3136 case CONSUMER_CHANNEL_DEL:
3137 {
3138 /*
3139 * This command should never be called if the channel
3140 * has streams monitored by either the data or metadata
3141 * thread. The consumer only notify this thread with a
3142 * channel del. command if it receives a destroy
3143 * channel command from the session daemon that send it
3144 * if a command prior to the GET_CHANNEL failed.
3145 */
3146
3147 rcu_read_lock();
3148 chan = consumer_find_channel(key);
3149 if (!chan) {
3150 rcu_read_unlock();
3151 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3152 break;
3153 }
3154 lttng_poll_del(&events, chan->wait_fd);
3155 iter.iter.node = &chan->wait_fd_node.node;
3156 ret = lttng_ht_del(channel_ht, &iter);
3157 assert(ret == 0);
3158
3159 switch (consumer_data.type) {
3160 case LTTNG_CONSUMER_KERNEL:
3161 break;
3162 case LTTNG_CONSUMER32_UST:
3163 case LTTNG_CONSUMER64_UST:
3164 health_code_update();
3165 /* Destroy streams that might have been left in the stream list. */
3166 clean_channel_stream_list(chan);
3167 break;
3168 default:
3169 ERR("Unknown consumer_data type");
3170 assert(0);
3171 }
3172
3173 /*
3174 * Release our own refcount. Force channel deletion even if
3175 * streams were not initialized.
3176 */
3177 if (!uatomic_sub_return(&chan->refcount, 1)) {
3178 consumer_del_channel(chan);
3179 }
3180 rcu_read_unlock();
3181 goto restart;
3182 }
3183 case CONSUMER_CHANNEL_QUIT:
3184 /*
3185 * Remove the pipe from the poll set and continue the loop
3186 * since their might be data to consume.
3187 */
3188 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3189 continue;
3190 default:
3191 ERR("Unknown action");
3192 break;
3193 }
3194 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3195 DBG("Channel thread pipe hung up");
3196 /*
3197 * Remove the pipe from the poll set and continue the loop
3198 * since their might be data to consume.
3199 */
3200 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3201 continue;
3202 } else {
3203 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3204 goto end;
3205 }
3206
3207 /* Handle other stream */
3208 continue;
3209 }
3210
3211 rcu_read_lock();
3212 {
3213 uint64_t tmp_id = (uint64_t) pollfd;
3214
3215 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3216 }
3217 node = lttng_ht_iter_get_node_u64(&iter);
3218 assert(node);
3219
3220 chan = caa_container_of(node, struct lttng_consumer_channel,
3221 wait_fd_node);
3222
3223 /* Check for error event */
3224 if (revents & (LPOLLERR | LPOLLHUP)) {
3225 DBG("Channel fd %d is hup|err.", pollfd);
3226
3227 lttng_poll_del(&events, chan->wait_fd);
3228 ret = lttng_ht_del(channel_ht, &iter);
3229 assert(ret == 0);
3230
3231 /*
3232 * This will close the wait fd for each stream associated to
3233 * this channel AND monitored by the data/metadata thread thus
3234 * will be clean by the right thread.
3235 */
3236 consumer_close_channel_streams(chan);
3237
3238 /* Release our own refcount */
3239 if (!uatomic_sub_return(&chan->refcount, 1)
3240 && !uatomic_read(&chan->nb_init_stream_left)) {
3241 consumer_del_channel(chan);
3242 }
3243 } else {
3244 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3245 rcu_read_unlock();
3246 goto end;
3247 }
3248
3249 /* Release RCU lock for the channel looked up */
3250 rcu_read_unlock();
3251 }
3252 }
3253
3254 /* All is OK */
3255 err = 0;
3256 end:
3257 lttng_poll_clean(&events);
3258 end_poll:
3259 destroy_channel_ht(channel_ht);
3260 end_ht:
3261 error_testpoint:
3262 DBG("Channel poll thread exiting");
3263 if (err) {
3264 health_error();
3265 ERR("Health error occurred in %s", __func__);
3266 }
3267 health_unregister(health_consumerd);
3268 rcu_unregister_thread();
3269 return NULL;
3270 }
3271
3272 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3273 struct pollfd *sockpoll, int client_socket)
3274 {
3275 int ret;
3276
3277 assert(ctx);
3278 assert(sockpoll);
3279
3280 ret = lttng_consumer_poll_socket(sockpoll);
3281 if (ret) {
3282 goto error;
3283 }
3284 DBG("Metadata connection on client_socket");
3285
3286 /* Blocking call, waiting for transmission */
3287 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3288 if (ctx->consumer_metadata_socket < 0) {
3289 WARN("On accept metadata");
3290 ret = -1;
3291 goto error;
3292 }
3293 ret = 0;
3294
3295 error:
3296 return ret;
3297 }
3298
3299 /*
3300 * This thread listens on the consumerd socket and receives the file
3301 * descriptors from the session daemon.
3302 */
3303 void *consumer_thread_sessiond_poll(void *data)
3304 {
3305 int sock = -1, client_socket, ret, err = -1;
3306 /*
3307 * structure to poll for incoming data on communication socket avoids
3308 * making blocking sockets.
3309 */
3310 struct pollfd consumer_sockpoll[2];
3311 struct lttng_consumer_local_data *ctx = data;
3312
3313 rcu_register_thread();
3314
3315 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3316
3317 if (testpoint(consumerd_thread_sessiond)) {
3318 goto error_testpoint;
3319 }
3320
3321 health_code_update();
3322
3323 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3324 unlink(ctx->consumer_command_sock_path);
3325 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3326 if (client_socket < 0) {
3327 ERR("Cannot create command socket");
3328 goto end;
3329 }
3330
3331 ret = lttcomm_listen_unix_sock(client_socket);
3332 if (ret < 0) {
3333 goto end;
3334 }
3335
3336 DBG("Sending ready command to lttng-sessiond");
3337 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3338 /* return < 0 on error, but == 0 is not fatal */
3339 if (ret < 0) {
3340 ERR("Error sending ready command to lttng-sessiond");
3341 goto end;
3342 }
3343
3344 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3345 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3346 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3347 consumer_sockpoll[1].fd = client_socket;
3348 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3349
3350 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3351 if (ret) {
3352 if (ret > 0) {
3353 /* should exit */
3354 err = 0;
3355 }
3356 goto end;
3357 }
3358 DBG("Connection on client_socket");
3359
3360 /* Blocking call, waiting for transmission */
3361 sock = lttcomm_accept_unix_sock(client_socket);
3362 if (sock < 0) {
3363 WARN("On accept");
3364 goto end;
3365 }
3366
3367 /*
3368 * Setup metadata socket which is the second socket connection on the
3369 * command unix socket.
3370 */
3371 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3372 if (ret) {
3373 if (ret > 0) {
3374 /* should exit */
3375 err = 0;
3376 }
3377 goto end;
3378 }
3379
3380 /* This socket is not useful anymore. */
3381 ret = close(client_socket);
3382 if (ret < 0) {
3383 PERROR("close client_socket");
3384 }
3385 client_socket = -1;
3386
3387 /* update the polling structure to poll on the established socket */
3388 consumer_sockpoll[1].fd = sock;
3389 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3390
3391 while (1) {
3392 health_code_update();
3393
3394 health_poll_entry();
3395 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3396 health_poll_exit();
3397 if (ret) {
3398 if (ret > 0) {
3399 /* should exit */
3400 err = 0;
3401 }
3402 goto end;
3403 }
3404 DBG("Incoming command on sock");
3405 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3406 if (ret <= 0) {
3407 /*
3408 * This could simply be a session daemon quitting. Don't output
3409 * ERR() here.
3410 */
3411 DBG("Communication interrupted on command socket");
3412 err = 0;
3413 goto end;
3414 }
3415 if (CMM_LOAD_SHARED(consumer_quit)) {
3416 DBG("consumer_thread_receive_fds received quit from signal");
3417 err = 0; /* All is OK */
3418 goto end;
3419 }
3420 DBG("received command on sock");
3421 }
3422 /* All is OK */
3423 err = 0;
3424
3425 end:
3426 DBG("Consumer thread sessiond poll exiting");
3427
3428 /*
3429 * Close metadata streams since the producer is the session daemon which
3430 * just died.
3431 *
3432 * NOTE: for now, this only applies to the UST tracer.
3433 */
3434 lttng_consumer_close_all_metadata();
3435
3436 /*
3437 * when all fds have hung up, the polling thread
3438 * can exit cleanly
3439 */
3440 CMM_STORE_SHARED(consumer_quit, 1);
3441
3442 /*
3443 * Notify the data poll thread to poll back again and test the
3444 * consumer_quit state that we just set so to quit gracefully.
3445 */
3446 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3447
3448 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3449
3450 notify_health_quit_pipe(health_quit_pipe);
3451
3452 /* Cleaning up possibly open sockets. */
3453 if (sock >= 0) {
3454 ret = close(sock);
3455 if (ret < 0) {
3456 PERROR("close sock sessiond poll");
3457 }
3458 }
3459 if (client_socket >= 0) {
3460 ret = close(client_socket);
3461 if (ret < 0) {
3462 PERROR("close client_socket sessiond poll");
3463 }
3464 }
3465
3466 error_testpoint:
3467 if (err) {
3468 health_error();
3469 ERR("Health error occurred in %s", __func__);
3470 }
3471 health_unregister(health_consumerd);
3472
3473 rcu_unregister_thread();
3474 return NULL;
3475 }
3476
3477 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3478 struct lttng_consumer_local_data *ctx)
3479 {
3480 ssize_t ret;
3481
3482 pthread_mutex_lock(&stream->chan->lock);
3483 pthread_mutex_lock(&stream->lock);
3484 if (stream->metadata_flag) {
3485 pthread_mutex_lock(&stream->metadata_rdv_lock);
3486 }
3487
3488 switch (consumer_data.type) {
3489 case LTTNG_CONSUMER_KERNEL:
3490 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3491 break;
3492 case LTTNG_CONSUMER32_UST:
3493 case LTTNG_CONSUMER64_UST:
3494 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3495 break;
3496 default:
3497 ERR("Unknown consumer_data type");
3498 assert(0);
3499 ret = -ENOSYS;
3500 break;
3501 }
3502
3503 if (stream->metadata_flag) {
3504 pthread_cond_broadcast(&stream->metadata_rdv);
3505 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3506 }
3507 pthread_mutex_unlock(&stream->lock);
3508 pthread_mutex_unlock(&stream->chan->lock);
3509
3510 return ret;
3511 }
3512
3513 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3514 {
3515 switch (consumer_data.type) {
3516 case LTTNG_CONSUMER_KERNEL:
3517 return lttng_kconsumer_on_recv_stream(stream);
3518 case LTTNG_CONSUMER32_UST:
3519 case LTTNG_CONSUMER64_UST:
3520 return lttng_ustconsumer_on_recv_stream(stream);
3521 default:
3522 ERR("Unknown consumer_data type");
3523 assert(0);
3524 return -ENOSYS;
3525 }
3526 }
3527
3528 /*
3529 * Allocate and set consumer data hash tables.
3530 */
3531 int lttng_consumer_init(void)
3532 {
3533 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3534 if (!consumer_data.channel_ht) {
3535 goto error;
3536 }
3537
3538 consumer_data.channels_by_session_id_ht =
3539 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3540 if (!consumer_data.channels_by_session_id_ht) {
3541 goto error;
3542 }
3543
3544 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3545 if (!consumer_data.relayd_ht) {
3546 goto error;
3547 }
3548
3549 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3550 if (!consumer_data.stream_list_ht) {
3551 goto error;
3552 }
3553
3554 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3555 if (!consumer_data.stream_per_chan_id_ht) {
3556 goto error;
3557 }
3558
3559 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3560 if (!data_ht) {
3561 goto error;
3562 }
3563
3564 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3565 if (!metadata_ht) {
3566 goto error;
3567 }
3568
3569 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3570 if (!consumer_data.chunk_registry) {
3571 goto error;
3572 }
3573
3574 return 0;
3575
3576 error:
3577 return -1;
3578 }
3579
3580 /*
3581 * Process the ADD_RELAYD command receive by a consumer.
3582 *
3583 * This will create a relayd socket pair and add it to the relayd hash table.
3584 * The caller MUST acquire a RCU read side lock before calling it.
3585 */
3586 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3587 struct lttng_consumer_local_data *ctx, int sock,
3588 struct pollfd *consumer_sockpoll,
3589 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3590 uint64_t relayd_session_id)
3591 {
3592 int fd = -1, ret = -1, relayd_created = 0;
3593 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3594 struct consumer_relayd_sock_pair *relayd = NULL;
3595
3596 assert(ctx);
3597 assert(relayd_sock);
3598
3599 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3600
3601 /* Get relayd reference if exists. */
3602 relayd = consumer_find_relayd(net_seq_idx);
3603 if (relayd == NULL) {
3604 assert(sock_type == LTTNG_STREAM_CONTROL);
3605 /* Not found. Allocate one. */
3606 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3607 if (relayd == NULL) {
3608 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3609 goto error;
3610 } else {
3611 relayd->sessiond_session_id = sessiond_id;
3612 relayd_created = 1;
3613 }
3614
3615 /*
3616 * This code path MUST continue to the consumer send status message to
3617 * we can notify the session daemon and continue our work without
3618 * killing everything.
3619 */
3620 } else {
3621 /*
3622 * relayd key should never be found for control socket.
3623 */
3624 assert(sock_type != LTTNG_STREAM_CONTROL);
3625 }
3626
3627 /* First send a status message before receiving the fds. */
3628 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3629 if (ret < 0) {
3630 /* Somehow, the session daemon is not responding anymore. */
3631 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3632 goto error_nosignal;
3633 }
3634
3635 /* Poll on consumer socket. */
3636 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3637 if (ret) {
3638 /* Needing to exit in the middle of a command: error. */
3639 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3640 goto error_nosignal;
3641 }
3642
3643 /* Get relayd socket from session daemon */
3644 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3645 if (ret != sizeof(fd)) {
3646 fd = -1; /* Just in case it gets set with an invalid value. */
3647
3648 /*
3649 * Failing to receive FDs might indicate a major problem such as
3650 * reaching a fd limit during the receive where the kernel returns a
3651 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3652 * don't take any chances and stop everything.
3653 *
3654 * XXX: Feature request #558 will fix that and avoid this possible
3655 * issue when reaching the fd limit.
3656 */
3657 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3658 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3659 goto error;
3660 }
3661
3662 /* Copy socket information and received FD */
3663 switch (sock_type) {
3664 case LTTNG_STREAM_CONTROL:
3665 /* Copy received lttcomm socket */
3666 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3667 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3668 /* Handle create_sock error. */
3669 if (ret < 0) {
3670 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3671 goto error;
3672 }
3673 /*
3674 * Close the socket created internally by
3675 * lttcomm_create_sock, so we can replace it by the one
3676 * received from sessiond.
3677 */
3678 if (close(relayd->control_sock.sock.fd)) {
3679 PERROR("close");
3680 }
3681
3682 /* Assign new file descriptor */
3683 relayd->control_sock.sock.fd = fd;
3684 /* Assign version values. */
3685 relayd->control_sock.major = relayd_sock->major;
3686 relayd->control_sock.minor = relayd_sock->minor;
3687
3688 relayd->relayd_session_id = relayd_session_id;
3689
3690 break;
3691 case LTTNG_STREAM_DATA:
3692 /* Copy received lttcomm socket */
3693 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3694 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3695 /* Handle create_sock error. */
3696 if (ret < 0) {
3697 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3698 goto error;
3699 }
3700 /*
3701 * Close the socket created internally by
3702 * lttcomm_create_sock, so we can replace it by the one
3703 * received from sessiond.
3704 */
3705 if (close(relayd->data_sock.sock.fd)) {
3706 PERROR("close");
3707 }
3708
3709 /* Assign new file descriptor */
3710 relayd->data_sock.sock.fd = fd;
3711 /* Assign version values. */
3712 relayd->data_sock.major = relayd_sock->major;
3713 relayd->data_sock.minor = relayd_sock->minor;
3714 break;
3715 default:
3716 ERR("Unknown relayd socket type (%d)", sock_type);
3717 ret_code = LTTCOMM_CONSUMERD_FATAL;
3718 goto error;
3719 }
3720
3721 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3722 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3723 relayd->net_seq_idx, fd);
3724 /*
3725 * We gave the ownership of the fd to the relayd structure. Set the
3726 * fd to -1 so we don't call close() on it in the error path below.
3727 */
3728 fd = -1;
3729
3730 /* We successfully added the socket. Send status back. */
3731 ret = consumer_send_status_msg(sock, ret_code);
3732 if (ret < 0) {
3733 /* Somehow, the session daemon is not responding anymore. */
3734 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3735 goto error_nosignal;
3736 }
3737
3738 /*
3739 * Add relayd socket pair to consumer data hashtable. If object already
3740 * exists or on error, the function gracefully returns.
3741 */
3742 relayd->ctx = ctx;
3743 add_relayd(relayd);
3744
3745 /* All good! */
3746 return;
3747
3748 error:
3749 if (consumer_send_status_msg(sock, ret_code) < 0) {
3750 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3751 }
3752
3753 error_nosignal:
3754 /* Close received socket if valid. */
3755 if (fd >= 0) {
3756 if (close(fd)) {
3757 PERROR("close received socket");
3758 }
3759 }
3760
3761 if (relayd_created) {
3762 free(relayd);
3763 }
3764 }
3765
3766 /*
3767 * Search for a relayd associated to the session id and return the reference.
3768 *
3769 * A rcu read side lock MUST be acquire before calling this function and locked
3770 * until the relayd object is no longer necessary.
3771 */
3772 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3773 {
3774 struct lttng_ht_iter iter;
3775 struct consumer_relayd_sock_pair *relayd = NULL;
3776
3777 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3778 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3779 node.node) {
3780 /*
3781 * Check by sessiond id which is unique here where the relayd session
3782 * id might not be when having multiple relayd.
3783 */
3784 if (relayd->sessiond_session_id == id) {
3785 /* Found the relayd. There can be only one per id. */
3786 goto found;
3787 }
3788 }
3789
3790 return NULL;
3791
3792 found:
3793 return relayd;
3794 }
3795
3796 /*
3797 * Check if for a given session id there is still data needed to be extract
3798 * from the buffers.
3799 *
3800 * Return 1 if data is pending or else 0 meaning ready to be read.
3801 */
3802 int consumer_data_pending(uint64_t id)
3803 {
3804 int ret;
3805 struct lttng_ht_iter iter;
3806 struct lttng_ht *ht;
3807 struct lttng_consumer_stream *stream;
3808 struct consumer_relayd_sock_pair *relayd = NULL;
3809 int (*data_pending)(struct lttng_consumer_stream *);
3810
3811 DBG("Consumer data pending command on session id %" PRIu64, id);
3812
3813 rcu_read_lock();
3814 pthread_mutex_lock(&consumer_data.lock);
3815
3816 switch (consumer_data.type) {
3817 case LTTNG_CONSUMER_KERNEL:
3818 data_pending = lttng_kconsumer_data_pending;
3819 break;
3820 case LTTNG_CONSUMER32_UST:
3821 case LTTNG_CONSUMER64_UST:
3822 data_pending = lttng_ustconsumer_data_pending;
3823 break;
3824 default:
3825 ERR("Unknown consumer data type");
3826 assert(0);
3827 }
3828
3829 /* Ease our life a bit */
3830 ht = consumer_data.stream_list_ht;
3831
3832 cds_lfht_for_each_entry_duplicate(ht->ht,
3833 ht->hash_fct(&id, lttng_ht_seed),
3834 ht->match_fct, &id,
3835 &iter.iter, stream, node_session_id.node) {
3836 pthread_mutex_lock(&stream->lock);
3837
3838 /*
3839 * A removed node from the hash table indicates that the stream has
3840 * been deleted thus having a guarantee that the buffers are closed
3841 * on the consumer side. However, data can still be transmitted
3842 * over the network so don't skip the relayd check.
3843 */
3844 ret = cds_lfht_is_node_deleted(&stream->node.node);
3845 if (!ret) {
3846 /* Check the stream if there is data in the buffers. */
3847 ret = data_pending(stream);
3848 if (ret == 1) {
3849 pthread_mutex_unlock(&stream->lock);
3850 goto data_pending;
3851 }
3852 }
3853
3854 pthread_mutex_unlock(&stream->lock);
3855 }
3856
3857 relayd = find_relayd_by_session_id(id);
3858 if (relayd) {
3859 unsigned int is_data_inflight = 0;
3860
3861 /* Send init command for data pending. */
3862 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3863 ret = relayd_begin_data_pending(&relayd->control_sock,
3864 relayd->relayd_session_id);
3865 if (ret < 0) {
3866 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3867 /* Communication error thus the relayd so no data pending. */
3868 goto data_not_pending;
3869 }
3870
3871 cds_lfht_for_each_entry_duplicate(ht->ht,
3872 ht->hash_fct(&id, lttng_ht_seed),
3873 ht->match_fct, &id,
3874 &iter.iter, stream, node_session_id.node) {
3875 if (stream->metadata_flag) {
3876 ret = relayd_quiescent_control(&relayd->control_sock,
3877 stream->relayd_stream_id);
3878 } else {
3879 ret = relayd_data_pending(&relayd->control_sock,
3880 stream->relayd_stream_id,
3881 stream->next_net_seq_num - 1);
3882 }
3883
3884 if (ret == 1) {
3885 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3886 goto data_pending;
3887 } else if (ret < 0) {
3888 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3889 lttng_consumer_cleanup_relayd(relayd);
3890 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3891 goto data_not_pending;
3892 }
3893 }
3894
3895 /* Send end command for data pending. */
3896 ret = relayd_end_data_pending(&relayd->control_sock,
3897 relayd->relayd_session_id, &is_data_inflight);
3898 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3899 if (ret < 0) {
3900 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3901 lttng_consumer_cleanup_relayd(relayd);
3902 goto data_not_pending;
3903 }
3904 if (is_data_inflight) {
3905 goto data_pending;
3906 }
3907 }
3908
3909 /*
3910 * Finding _no_ node in the hash table and no inflight data means that the
3911 * stream(s) have been removed thus data is guaranteed to be available for
3912 * analysis from the trace files.
3913 */
3914
3915 data_not_pending:
3916 /* Data is available to be read by a viewer. */
3917 pthread_mutex_unlock(&consumer_data.lock);
3918 rcu_read_unlock();
3919 return 0;
3920
3921 data_pending:
3922 /* Data is still being extracted from buffers. */
3923 pthread_mutex_unlock(&consumer_data.lock);
3924 rcu_read_unlock();
3925 return 1;
3926 }
3927
3928 /*
3929 * Send a ret code status message to the sessiond daemon.
3930 *
3931 * Return the sendmsg() return value.
3932 */
3933 int consumer_send_status_msg(int sock, int ret_code)
3934 {
3935 struct lttcomm_consumer_status_msg msg;
3936
3937 memset(&msg, 0, sizeof(msg));
3938 msg.ret_code = ret_code;
3939
3940 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3941 }
3942
3943 /*
3944 * Send a channel status message to the sessiond daemon.
3945 *
3946 * Return the sendmsg() return value.
3947 */
3948 int consumer_send_status_channel(int sock,
3949 struct lttng_consumer_channel *channel)
3950 {
3951 struct lttcomm_consumer_status_channel msg;
3952
3953 assert(sock >= 0);
3954
3955 memset(&msg, 0, sizeof(msg));
3956 if (!channel) {
3957 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3958 } else {
3959 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3960 msg.key = channel->key;
3961 msg.stream_count = channel->streams.count;
3962 }
3963
3964 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3965 }
3966
3967 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3968 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3969 uint64_t max_sb_size)
3970 {
3971 unsigned long start_pos;
3972
3973 if (!nb_packets_per_stream) {
3974 return consumed_pos; /* Grab everything */
3975 }
3976 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3977 start_pos -= max_sb_size * nb_packets_per_stream;
3978 if ((long) (start_pos - consumed_pos) < 0) {
3979 return consumed_pos; /* Grab everything */
3980 }
3981 return start_pos;
3982 }
3983
3984 static
3985 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3986 {
3987 int ret = 0;
3988
3989 switch (consumer_data.type) {
3990 case LTTNG_CONSUMER_KERNEL:
3991 ret = kernctl_buffer_flush(stream->wait_fd);
3992 if (ret < 0) {
3993 ERR("Failed to flush kernel stream");
3994 goto end;
3995 }
3996 break;
3997 case LTTNG_CONSUMER32_UST:
3998 case LTTNG_CONSUMER64_UST:
3999 lttng_ustctl_flush_buffer(stream, producer_active);
4000 break;
4001 default:
4002 ERR("Unknown consumer_data type");
4003 abort();
4004 }
4005
4006 end:
4007 return ret;
4008 }
4009
4010 /*
4011 * Sample the rotate position for all the streams of a channel. If a stream
4012 * is already at the rotate position (produced == consumed), we flag it as
4013 * ready for rotation. The rotation of ready streams occurs after we have
4014 * replied to the session daemon that we have finished sampling the positions.
4015 * Must be called with RCU read-side lock held to ensure existence of channel.
4016 *
4017 * Returns 0 on success, < 0 on error
4018 */
4019 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
4020 uint64_t key, uint64_t relayd_id, uint32_t metadata,
4021 struct lttng_consumer_local_data *ctx)
4022 {
4023 int ret;
4024 struct lttng_consumer_stream *stream;
4025 struct lttng_ht_iter iter;
4026 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4027 struct lttng_dynamic_array stream_rotation_positions;
4028 uint64_t next_chunk_id, stream_count = 0;
4029 enum lttng_trace_chunk_status chunk_status;
4030 const bool is_local_trace = relayd_id == -1ULL;
4031 struct consumer_relayd_sock_pair *relayd = NULL;
4032 bool rotating_to_new_chunk = true;
4033
4034 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4035
4036 lttng_dynamic_array_init(&stream_rotation_positions,
4037 sizeof(struct relayd_stream_rotation_position), NULL);
4038
4039 rcu_read_lock();
4040
4041 pthread_mutex_lock(&channel->lock);
4042 assert(channel->trace_chunk);
4043 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
4044 &next_chunk_id);
4045 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4046 ret = -1;
4047 goto end_unlock_channel;
4048 }
4049
4050 cds_lfht_for_each_entry_duplicate(ht->ht,
4051 ht->hash_fct(&channel->key, lttng_ht_seed),
4052 ht->match_fct, &channel->key, &iter.iter,
4053 stream, node_channel_id.node) {
4054 unsigned long consumed_pos;
4055
4056 health_code_update();
4057
4058 /*
4059 * Lock stream because we are about to change its state.
4060 */
4061 pthread_mutex_lock(&stream->lock);
4062
4063 if (stream->trace_chunk == stream->chan->trace_chunk) {
4064 rotating_to_new_chunk = false;
4065 }
4066
4067 ret = lttng_consumer_sample_snapshot_positions(stream);
4068 if (ret < 0) {
4069 ERR("Failed to sample snapshot position during channel rotation");
4070 goto end_unlock_stream;
4071 }
4072
4073 ret = lttng_consumer_get_produced_snapshot(stream,
4074 &stream->rotate_position);
4075 if (ret < 0) {
4076 ERR("Failed to sample produced position during channel rotation");
4077 goto end_unlock_stream;
4078 }
4079
4080 lttng_consumer_get_consumed_snapshot(stream,
4081 &consumed_pos);
4082 if (consumed_pos == stream->rotate_position) {
4083 stream->rotate_ready = true;
4084 }
4085
4086 /*
4087 * Active flush; has no effect if the production position
4088 * is at a packet boundary.
4089 */
4090 ret = consumer_flush_buffer(stream, 1);
4091 if (ret < 0) {
4092 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4093 stream->key);
4094 goto end_unlock_stream;
4095 }
4096
4097 if (!is_local_trace) {
4098 /*
4099 * The relay daemon control protocol expects a rotation
4100 * position as "the sequence number of the first packet
4101 * _after_ the current trace chunk.
4102 *
4103 * At the moment when the positions of the buffers are
4104 * sampled, the production position does not necessarily
4105 * sit at a packet boundary. The 'active' flush
4106 * operation above will push the production position to
4107 * the next packet boundary _if_ it is not already
4108 * sitting at such a boundary.
4109 *
4110 * Assuming a current production position that is not
4111 * on the bound of a packet, the 'target' sequence
4112 * number is
4113 * (consumed_pos / subbuffer_size) + 1
4114 * Note the '+ 1' to ensure the current packet is
4115 * part of the current trace chunk.
4116 *
4117 * However, if the production position is already at
4118 * a packet boundary, the '+ 1' is not necessary as the
4119 * last packet of the current chunk is already
4120 * 'complete'.
4121 */
4122 const struct relayd_stream_rotation_position position = {
4123 .stream_id = stream->relayd_stream_id,
4124 .rotate_at_seq_num = (stream->rotate_position / stream->max_sb_size) +
4125 !!(stream->rotate_position % stream->max_sb_size),
4126 };
4127
4128 ret = lttng_dynamic_array_add_element(
4129 &stream_rotation_positions,
4130 &position);
4131 if (ret) {
4132 ERR("Failed to allocate stream rotation position");
4133 goto end_unlock_stream;
4134 }
4135 stream_count++;
4136 }
4137 pthread_mutex_unlock(&stream->lock);
4138 }
4139 stream = NULL;
4140 pthread_mutex_unlock(&channel->lock);
4141
4142 if (is_local_trace) {
4143 ret = 0;
4144 goto end;
4145 }
4146
4147 relayd = consumer_find_relayd(relayd_id);
4148 if (!relayd) {
4149 ERR("Failed to find relayd %" PRIu64, relayd_id);
4150 ret = -1;
4151 goto end;
4152 }
4153
4154 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4155 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4156 rotating_to_new_chunk ? &next_chunk_id : NULL,
4157 (const struct relayd_stream_rotation_position *)
4158 stream_rotation_positions.buffer.data);
4159 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4160 if (ret < 0) {
4161 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4162 relayd->net_seq_idx);
4163 lttng_consumer_cleanup_relayd(relayd);
4164 goto end;
4165 }
4166
4167 ret = 0;
4168 goto end;
4169
4170 end_unlock_stream:
4171 pthread_mutex_unlock(&stream->lock);
4172 end_unlock_channel:
4173 pthread_mutex_unlock(&channel->lock);
4174 end:
4175 rcu_read_unlock();
4176 lttng_dynamic_array_reset(&stream_rotation_positions);
4177 return ret;
4178 }
4179
4180 /*
4181 * Check if a stream is ready to be rotated after extracting it.
4182 *
4183 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4184 * error. Stream lock must be held.
4185 */
4186 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4187 {
4188 int ret;
4189 unsigned long consumed_pos;
4190
4191 if (!stream->rotate_position && !stream->rotate_ready) {
4192 ret = 0;
4193 goto end;
4194 }
4195
4196 if (stream->rotate_ready) {
4197 ret = 1;
4198 goto end;
4199 }
4200
4201 /*
4202 * If we don't have the rotate_ready flag, check the consumed position
4203 * to determine if we need to rotate.
4204 */
4205 ret = lttng_consumer_sample_snapshot_positions(stream);
4206 if (ret < 0) {
4207 ERR("Taking snapshot positions");
4208 goto end;
4209 }
4210
4211 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
4212 if (ret < 0) {
4213 ERR("Consumed snapshot position");
4214 goto end;
4215 }
4216
4217 /* Rotate position not reached yet (with check for overflow). */
4218 if ((long) (consumed_pos - stream->rotate_position) < 0) {
4219 ret = 0;
4220 goto end;
4221 }
4222 ret = 1;
4223
4224 end:
4225 return ret;
4226 }
4227
4228 /*
4229 * Reset the state for a stream after a rotation occurred.
4230 */
4231 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4232 {
4233 stream->rotate_position = 0;
4234 stream->rotate_ready = false;
4235 }
4236
4237 /*
4238 * Perform the rotation a local stream file.
4239 */
4240 static
4241 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4242 struct lttng_consumer_stream *stream)
4243 {
4244 int ret = 0;
4245
4246 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4247 stream->key,
4248 stream->chan->key);
4249 stream->tracefile_size_current = 0;
4250 stream->tracefile_count_current = 0;
4251
4252 if (stream->out_fd >= 0) {
4253 ret = close(stream->out_fd);
4254 if (ret) {
4255 PERROR("Failed to close stream out_fd of channel \"%s\"",
4256 stream->chan->name);
4257 }
4258 stream->out_fd = -1;
4259 }
4260
4261 if (stream->index_file) {
4262 lttng_index_file_put(stream->index_file);
4263 stream->index_file = NULL;
4264 }
4265
4266 if (!stream->trace_chunk) {
4267 goto end;
4268 }
4269
4270 ret = consumer_stream_create_output_files(stream, true);
4271 end:
4272 return ret;
4273 }
4274
4275 /*
4276 * Performs the stream rotation for the rotate session feature if needed.
4277 * It must be called with the channel and stream locks held.
4278 *
4279 * Return 0 on success, a negative number of error.
4280 */
4281 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4282 struct lttng_consumer_stream *stream)
4283 {
4284 int ret;
4285
4286 DBG("Consumer rotate stream %" PRIu64, stream->key);
4287
4288 /*
4289 * Update the stream's 'current' chunk to the session's (channel)
4290 * now-current chunk.
4291 */
4292 lttng_trace_chunk_put(stream->trace_chunk);
4293 if (stream->chan->trace_chunk == stream->trace_chunk) {
4294 /*
4295 * A channel can be rotated and not have a "next" chunk
4296 * to transition to. In that case, the channel's "current chunk"
4297 * has not been closed yet, but it has not been updated to
4298 * a "next" trace chunk either. Hence, the stream, like its
4299 * parent channel, becomes part of no chunk and can't output
4300 * anything until a new trace chunk is created.
4301 */
4302 stream->trace_chunk = NULL;
4303 } else if (stream->chan->trace_chunk &&
4304 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4305 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4306 ret = -1;
4307 goto error;
4308 } else {
4309 /*
4310 * Update the stream's trace chunk to its parent channel's
4311 * current trace chunk.
4312 */
4313 stream->trace_chunk = stream->chan->trace_chunk;
4314 }
4315
4316 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4317 ret = rotate_local_stream(ctx, stream);
4318 if (ret < 0) {
4319 ERR("Failed to rotate stream, ret = %i", ret);
4320 goto error;
4321 }
4322 }
4323
4324 if (stream->metadata_flag && stream->trace_chunk) {
4325 /*
4326 * If the stream has transitioned to a new trace
4327 * chunk, the metadata should be re-dumped to the
4328 * newest chunk.
4329 *
4330 * However, it is possible for a stream to transition to
4331 * a "no-chunk" state. This can happen if a rotation
4332 * occurs on an inactive session. In such cases, the metadata
4333 * regeneration will happen when the next trace chunk is
4334 * created.
4335 */
4336 ret = consumer_metadata_stream_dump(stream);
4337 if (ret) {
4338 goto error;
4339 }
4340 }
4341 lttng_consumer_reset_stream_rotate_state(stream);
4342
4343 ret = 0;
4344
4345 error:
4346 return ret;
4347 }
4348
4349 /*
4350 * Rotate all the ready streams now.
4351 *
4352 * This is especially important for low throughput streams that have already
4353 * been consumed, we cannot wait for their next packet to perform the
4354 * rotation.
4355 * Need to be called with RCU read-side lock held to ensure existence of
4356 * channel.
4357 *
4358 * Returns 0 on success, < 0 on error
4359 */
4360 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4361 uint64_t key, struct lttng_consumer_local_data *ctx)
4362 {
4363 int ret;
4364 struct lttng_consumer_stream *stream;
4365 struct lttng_ht_iter iter;
4366 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4367
4368 rcu_read_lock();
4369
4370 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4371
4372 cds_lfht_for_each_entry_duplicate(ht->ht,
4373 ht->hash_fct(&channel->key, lttng_ht_seed),
4374 ht->match_fct, &channel->key, &iter.iter,
4375 stream, node_channel_id.node) {
4376 health_code_update();
4377
4378 pthread_mutex_lock(&stream->chan->lock);
4379 pthread_mutex_lock(&stream->lock);
4380
4381 if (!stream->rotate_ready) {
4382 pthread_mutex_unlock(&stream->lock);
4383 pthread_mutex_unlock(&stream->chan->lock);
4384 continue;
4385 }
4386 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4387
4388 ret = lttng_consumer_rotate_stream(ctx, stream);
4389 pthread_mutex_unlock(&stream->lock);
4390 pthread_mutex_unlock(&stream->chan->lock);
4391 if (ret) {
4392 goto end;
4393 }
4394 }
4395
4396 ret = 0;
4397
4398 end:
4399 rcu_read_unlock();
4400 return ret;
4401 }
4402
4403 enum lttcomm_return_code lttng_consumer_init_command(
4404 struct lttng_consumer_local_data *ctx,
4405 const lttng_uuid sessiond_uuid)
4406 {
4407 enum lttcomm_return_code ret;
4408 char uuid_str[UUID_STR_LEN];
4409
4410 if (ctx->sessiond_uuid.is_set) {
4411 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4412 goto end;
4413 }
4414
4415 ctx->sessiond_uuid.is_set = true;
4416 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4417 ret = LTTCOMM_CONSUMERD_SUCCESS;
4418 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4419 DBG("Received session daemon UUID: %s", uuid_str);
4420 end:
4421 return ret;
4422 }
4423
4424 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4425 const uint64_t *relayd_id, uint64_t session_id,
4426 uint64_t chunk_id,
4427 time_t chunk_creation_timestamp,
4428 const char *chunk_override_name,
4429 const struct lttng_credentials *credentials,
4430 struct lttng_directory_handle *chunk_directory_handle)
4431 {
4432 int ret;
4433 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4434 struct lttng_trace_chunk *created_chunk, *published_chunk;
4435 enum lttng_trace_chunk_status chunk_status;
4436 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4437 char creation_timestamp_buffer[ISO8601_STR_LEN];
4438 const char *relayd_id_str = "(none)";
4439 const char *creation_timestamp_str;
4440 struct lttng_ht_iter iter;
4441 struct lttng_consumer_channel *channel;
4442
4443 if (relayd_id) {
4444 /* Only used for logging purposes. */
4445 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4446 "%" PRIu64, *relayd_id);
4447 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4448 relayd_id_str = relayd_id_buffer;
4449 } else {
4450 relayd_id_str = "(formatting error)";
4451 }
4452 }
4453
4454 /* Local protocol error. */
4455 assert(chunk_creation_timestamp);
4456 ret = time_to_iso8601_str(chunk_creation_timestamp,
4457 creation_timestamp_buffer,
4458 sizeof(creation_timestamp_buffer));
4459 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4460 "(formatting error)";
4461
4462 DBG("Consumer create trace chunk command: relay_id = %s"
4463 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4464 ", chunk_override_name = %s"
4465 ", chunk_creation_timestamp = %s",
4466 relayd_id_str, session_id, chunk_id,
4467 chunk_override_name ? : "(none)",
4468 creation_timestamp_str);
4469
4470 /*
4471 * The trace chunk registry, as used by the consumer daemon, implicitly
4472 * owns the trace chunks. This is only needed in the consumer since
4473 * the consumer has no notion of a session beyond session IDs being
4474 * used to identify other objects.
4475 *
4476 * The lttng_trace_chunk_registry_publish() call below provides a
4477 * reference which is not released; it implicitly becomes the session
4478 * daemon's reference to the chunk in the consumer daemon.
4479 *
4480 * The lifetime of trace chunks in the consumer daemon is managed by
4481 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4482 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4483 */
4484 created_chunk = lttng_trace_chunk_create(chunk_id,
4485 chunk_creation_timestamp);
4486 if (!created_chunk) {
4487 ERR("Failed to create trace chunk");
4488 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4489 goto end;
4490 }
4491
4492 if (chunk_override_name) {
4493 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4494 chunk_override_name);
4495 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4496 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4497 goto end;
4498 }
4499 }
4500
4501 if (chunk_directory_handle) {
4502 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4503 credentials);
4504 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4505 ERR("Failed to set trace chunk credentials");
4506 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4507 goto end;
4508 }
4509 /*
4510 * The consumer daemon has no ownership of the chunk output
4511 * directory.
4512 */
4513 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4514 chunk_directory_handle);
4515 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4516 ERR("Failed to set trace chunk's directory handle");
4517 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4518 goto end;
4519 }
4520 }
4521
4522 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4523 consumer_data.chunk_registry, session_id,
4524 created_chunk);
4525 lttng_trace_chunk_put(created_chunk);
4526 created_chunk = NULL;
4527 if (!published_chunk) {
4528 ERR("Failed to publish trace chunk");
4529 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4530 goto end;
4531 }
4532
4533 rcu_read_lock();
4534 cds_lfht_for_each_entry_duplicate(consumer_data.channels_by_session_id_ht->ht,
4535 consumer_data.channels_by_session_id_ht->hash_fct(
4536 &session_id, lttng_ht_seed),
4537 consumer_data.channels_by_session_id_ht->match_fct,
4538 &session_id, &iter.iter, channel,
4539 channels_by_session_id_ht_node.node) {
4540 ret = lttng_consumer_channel_set_trace_chunk(channel,
4541 published_chunk);
4542 if (ret) {
4543 /*
4544 * Roll-back the creation of this chunk.
4545 *
4546 * This is important since the session daemon will
4547 * assume that the creation of this chunk failed and
4548 * will never ask for it to be closed, resulting
4549 * in a leak and an inconsistent state for some
4550 * channels.
4551 */
4552 enum lttcomm_return_code close_ret;
4553
4554 DBG("Failed to set new trace chunk on existing channels, rolling back");
4555 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4556 session_id, chunk_id,
4557 chunk_creation_timestamp, NULL);
4558 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4559 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4560 session_id, chunk_id);
4561 }
4562
4563 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4564 break;
4565 }
4566 }
4567
4568 if (relayd_id) {
4569 struct consumer_relayd_sock_pair *relayd;
4570
4571 relayd = consumer_find_relayd(*relayd_id);
4572 if (relayd) {
4573 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4574 ret = relayd_create_trace_chunk(
4575 &relayd->control_sock, published_chunk);
4576 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4577 } else {
4578 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4579 }
4580
4581 if (!relayd || ret) {
4582 enum lttcomm_return_code close_ret;
4583
4584 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4585 session_id,
4586 chunk_id,
4587 chunk_creation_timestamp,
4588 NULL);
4589 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4590 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4591 session_id,
4592 chunk_id);
4593 }
4594
4595 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4596 goto error;
4597 }
4598 }
4599 error:
4600 rcu_read_unlock();
4601 /* Release the reference returned by the "publish" operation. */
4602 lttng_trace_chunk_put(published_chunk);
4603 end:
4604 return ret_code;
4605 }
4606
4607 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4608 const uint64_t *relayd_id, uint64_t session_id,
4609 uint64_t chunk_id, time_t chunk_close_timestamp,
4610 const enum lttng_trace_chunk_command_type *close_command)
4611 {
4612 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4613 struct lttng_trace_chunk *chunk;
4614 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4615 const char *relayd_id_str = "(none)";
4616 const char *close_command_name = "none";
4617 struct lttng_ht_iter iter;
4618 struct lttng_consumer_channel *channel;
4619 enum lttng_trace_chunk_status chunk_status;
4620
4621 if (relayd_id) {
4622 int ret;
4623
4624 /* Only used for logging purposes. */
4625 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4626 "%" PRIu64, *relayd_id);
4627 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4628 relayd_id_str = relayd_id_buffer;
4629 } else {
4630 relayd_id_str = "(formatting error)";
4631 }
4632 }
4633 if (close_command) {
4634 close_command_name = lttng_trace_chunk_command_type_get_name(
4635 *close_command);
4636 }
4637
4638 DBG("Consumer close trace chunk command: relayd_id = %s"
4639 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4640 ", close command = %s",
4641 relayd_id_str, session_id, chunk_id,
4642 close_command_name);
4643
4644 chunk = lttng_trace_chunk_registry_find_chunk(
4645 consumer_data.chunk_registry, session_id, chunk_id);
4646 if (!chunk) {
4647 ERR("Failed to find chunk: session_id = %" PRIu64
4648 ", chunk_id = %" PRIu64,
4649 session_id, chunk_id);
4650 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4651 goto end;
4652 }
4653
4654 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4655 chunk_close_timestamp);
4656 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4657 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4658 goto end;
4659 }
4660
4661 if (close_command) {
4662 chunk_status = lttng_trace_chunk_set_close_command(
4663 chunk, *close_command);
4664 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4665 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4666 goto end;
4667 }
4668 }
4669
4670 /*
4671 * chunk is now invalid to access as we no longer hold a reference to
4672 * it; it is only kept around to compare it (by address) to the
4673 * current chunk found in the session's channels.
4674 */
4675 rcu_read_lock();
4676 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter,
4677 channel, node.node) {
4678 int ret;
4679
4680 /*
4681 * Only change the channel's chunk to NULL if it still
4682 * references the chunk being closed. The channel may
4683 * reference a newer channel in the case of a session
4684 * rotation. When a session rotation occurs, the "next"
4685 * chunk is created before the "current" chunk is closed.
4686 */
4687 if (channel->trace_chunk != chunk) {
4688 continue;
4689 }
4690 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4691 if (ret) {
4692 /*
4693 * Attempt to close the chunk on as many channels as
4694 * possible.
4695 */
4696 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4697 }
4698 }
4699
4700 if (relayd_id) {
4701 int ret;
4702 struct consumer_relayd_sock_pair *relayd;
4703
4704 relayd = consumer_find_relayd(*relayd_id);
4705 if (relayd) {
4706 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4707 ret = relayd_close_trace_chunk(
4708 &relayd->control_sock, chunk);
4709 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4710 } else {
4711 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
4712 *relayd_id);
4713 }
4714
4715 if (!relayd || ret) {
4716 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4717 goto error_unlock;
4718 }
4719 }
4720 error_unlock:
4721 rcu_read_unlock();
4722 end:
4723 /*
4724 * Release the reference returned by the "find" operation and
4725 * the session daemon's implicit reference to the chunk.
4726 */
4727 lttng_trace_chunk_put(chunk);
4728 lttng_trace_chunk_put(chunk);
4729
4730 return ret_code;
4731 }
4732
4733 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
4734 const uint64_t *relayd_id, uint64_t session_id,
4735 uint64_t chunk_id)
4736 {
4737 int ret;
4738 enum lttcomm_return_code ret_code;
4739 struct lttng_trace_chunk *chunk;
4740 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4741 const char *relayd_id_str = "(none)";
4742 const bool is_local_trace = !relayd_id;
4743 struct consumer_relayd_sock_pair *relayd = NULL;
4744 bool chunk_exists_remote;
4745
4746 if (relayd_id) {
4747 int ret;
4748
4749 /* Only used for logging purposes. */
4750 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4751 "%" PRIu64, *relayd_id);
4752 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4753 relayd_id_str = relayd_id_buffer;
4754 } else {
4755 relayd_id_str = "(formatting error)";
4756 }
4757 }
4758
4759 DBG("Consumer trace chunk exists command: relayd_id = %s"
4760 ", chunk_id = %" PRIu64, relayd_id_str,
4761 chunk_id);
4762 chunk = lttng_trace_chunk_registry_find_chunk(
4763 consumer_data.chunk_registry, session_id,
4764 chunk_id);
4765 DBG("Trace chunk %s locally", chunk ? "exists" : "does not exist");
4766 if (chunk) {
4767 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
4768 lttng_trace_chunk_put(chunk);
4769 goto end;
4770 } else if (is_local_trace) {
4771 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4772 goto end;
4773 }
4774
4775 rcu_read_lock();
4776 relayd = consumer_find_relayd(*relayd_id);
4777 if (!relayd) {
4778 ERR("Failed to find relayd %" PRIu64, *relayd_id);
4779 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
4780 goto end_rcu_unlock;
4781 }
4782 DBG("Looking up existence of trace chunk on relay daemon");
4783 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4784 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
4785 &chunk_exists_remote);
4786 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4787 if (ret < 0) {
4788 ERR("Failed to look-up the existence of trace chunk on relay daemon");
4789 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
4790 goto end_rcu_unlock;
4791 }
4792
4793 ret_code = chunk_exists_remote ?
4794 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
4795 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4796 DBG("Trace chunk %s on relay daemon",
4797 chunk_exists_remote ? "exists" : "does not exist");
4798
4799 end_rcu_unlock:
4800 rcu_read_unlock();
4801 end:
4802 return ret_code;
4803 }
This page took 0.222619 seconds and 6 git commands to generate.