sched/preempt, mm/fault: Decouple preemption from the page fault logic
[deliverable/linux.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
a3b6714e
DW
61
62#include <asm/processor.h>
36d57ac4 63
d50dde5a
DF
64#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66/*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
aab03e05
DF
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
109 */
110struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126};
127
c87e2837 128struct futex_pi_state;
286100a6 129struct robust_list_head;
bddd87c7 130struct bio_list;
5ad4e53b 131struct fs_struct;
cdd6c482 132struct perf_event_context;
73c10101 133struct blk_plug;
c4ad8f98 134struct filename;
1da177e4 135
615d6e87
DB
136#define VMACACHE_BITS 2
137#define VMACACHE_SIZE (1U << VMACACHE_BITS)
138#define VMACACHE_MASK (VMACACHE_SIZE - 1)
139
1da177e4
LT
140/*
141 * These are the constant used to fake the fixed-point load-average
142 * counting. Some notes:
143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
144 * a load-average precision of 10 bits integer + 11 bits fractional
145 * - if you want to count load-averages more often, you need more
146 * precision, or rounding will get you. With 2-second counting freq,
147 * the EXP_n values would be 1981, 2034 and 2043 if still using only
148 * 11 bit fractions.
149 */
150extern unsigned long avenrun[]; /* Load averages */
2d02494f 151extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
152
153#define FSHIFT 11 /* nr of bits of precision */
154#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 155#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
156#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
157#define EXP_5 2014 /* 1/exp(5sec/5min) */
158#define EXP_15 2037 /* 1/exp(5sec/15min) */
159
160#define CALC_LOAD(load,exp,n) \
161 load *= exp; \
162 load += n*(FIXED_1-exp); \
163 load >>= FSHIFT;
164
165extern unsigned long total_forks;
166extern int nr_threads;
1da177e4
LT
167DECLARE_PER_CPU(unsigned long, process_counts);
168extern int nr_processes(void);
169extern unsigned long nr_running(void);
2ee507c4 170extern bool single_task_running(void);
1da177e4 171extern unsigned long nr_iowait(void);
8c215bd3 172extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 173extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 174
0f004f5a 175extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
176
177#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 178extern void update_cpu_load_nohz(void);
3289bdb4
PZ
179#else
180static inline void update_cpu_load_nohz(void) { }
181#endif
1da177e4 182
7e49fcce
SR
183extern unsigned long get_parent_ip(unsigned long addr);
184
b637a328
PM
185extern void dump_cpu_task(int cpu);
186
43ae34cb
IM
187struct seq_file;
188struct cfs_rq;
4cf86d77 189struct task_group;
43ae34cb
IM
190#ifdef CONFIG_SCHED_DEBUG
191extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
192extern void proc_sched_set_task(struct task_struct *p);
193extern void
5cef9eca 194print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7
TG
220#define TASK_PARKED 512
221#define TASK_STATE_MAX 1024
f021a3c2 222
ad0f614e 223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
73342151 224
e1781538
PZ
225extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
227
228/* Convenience macros for the sake of set_task_state */
229#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 232
92a1f4bc
MW
233/* Convenience macros for the sake of wake_up */
234#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 235#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
236
237/* get_task_state() */
238#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 239 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 240 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 241
f021a3c2
MW
242#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
243#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 244#define task_is_stopped_or_traced(task) \
f021a3c2 245 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 246#define task_contributes_to_load(task) \
e3c8ca83 247 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
376fede8 248 (task->flags & PF_FROZEN) == 0)
1da177e4 249
8eb23b9f
PZ
250#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
251
252#define __set_task_state(tsk, state_value) \
253 do { \
254 (tsk)->task_state_change = _THIS_IP_; \
255 (tsk)->state = (state_value); \
256 } while (0)
257#define set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 set_mb((tsk)->state, (state_value)); \
261 } while (0)
262
263/*
264 * set_current_state() includes a barrier so that the write of current->state
265 * is correctly serialised wrt the caller's subsequent test of whether to
266 * actually sleep:
267 *
268 * set_current_state(TASK_UNINTERRUPTIBLE);
269 * if (do_i_need_to_sleep())
270 * schedule();
271 *
272 * If the caller does not need such serialisation then use __set_current_state()
273 */
274#define __set_current_state(state_value) \
275 do { \
276 current->task_state_change = _THIS_IP_; \
277 current->state = (state_value); \
278 } while (0)
279#define set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 set_mb(current->state, (state_value)); \
283 } while (0)
284
285#else
286
1da177e4
LT
287#define __set_task_state(tsk, state_value) \
288 do { (tsk)->state = (state_value); } while (0)
289#define set_task_state(tsk, state_value) \
290 set_mb((tsk)->state, (state_value))
291
498d0c57
AM
292/*
293 * set_current_state() includes a barrier so that the write of current->state
294 * is correctly serialised wrt the caller's subsequent test of whether to
295 * actually sleep:
296 *
297 * set_current_state(TASK_UNINTERRUPTIBLE);
298 * if (do_i_need_to_sleep())
299 * schedule();
300 *
301 * If the caller does not need such serialisation then use __set_current_state()
302 */
8eb23b9f 303#define __set_current_state(state_value) \
1da177e4 304 do { current->state = (state_value); } while (0)
8eb23b9f 305#define set_current_state(state_value) \
1da177e4
LT
306 set_mb(current->state, (state_value))
307
8eb23b9f
PZ
308#endif
309
1da177e4
LT
310/* Task command name length */
311#define TASK_COMM_LEN 16
312
1da177e4
LT
313#include <linux/spinlock.h>
314
315/*
316 * This serializes "schedule()" and also protects
317 * the run-queue from deletions/modifications (but
318 * _adding_ to the beginning of the run-queue has
319 * a separate lock).
320 */
321extern rwlock_t tasklist_lock;
322extern spinlock_t mmlist_lock;
323
36c8b586 324struct task_struct;
1da177e4 325
db1466b3
PM
326#ifdef CONFIG_PROVE_RCU
327extern int lockdep_tasklist_lock_is_held(void);
328#endif /* #ifdef CONFIG_PROVE_RCU */
329
1da177e4
LT
330extern void sched_init(void);
331extern void sched_init_smp(void);
2d07b255 332extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 333extern void init_idle(struct task_struct *idle, int cpu);
1df21055 334extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 335
3fa0818b
RR
336extern cpumask_var_t cpu_isolated_map;
337
89f19f04 338extern int runqueue_is_locked(int cpu);
017730c1 339
3451d024 340#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 341extern void nohz_balance_enter_idle(int cpu);
69e1e811 342extern void set_cpu_sd_state_idle(void);
6201b4d6 343extern int get_nohz_timer_target(int pinned);
46cb4b7c 344#else
c1cc017c 345static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 346static inline void set_cpu_sd_state_idle(void) { }
6201b4d6
VK
347static inline int get_nohz_timer_target(int pinned)
348{
349 return smp_processor_id();
350}
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
8446f1d3
IM
389static inline void touch_softlockup_watchdog(void)
390{
391}
d6ad3e28
JW
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
04c9167f
JF
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
004417a6
PZ
398static inline void lockup_detector_init(void)
399{
400}
8446f1d3
IM
401#endif
402
8b414521
MT
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
1da177e4
LT
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
1da177e4
LT
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 421extern signed long schedule_timeout(signed long timeout);
64ed93a2 422extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 423extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 424extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 425asmlinkage void schedule(void);
c5491ea7 426extern void schedule_preempt_disabled(void);
1da177e4 427
9cff8ade
N
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
ab516013 435struct nsproxy;
acce292c 436struct user_namespace;
1da177e4 437
efc1a3b1
DH
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
efc1a3b1
DH
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
1da177e4 450
d049f74f
KC
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
6c5d5238 455/* mm flags */
f8af4da3 456
7288e118 457/* for SUID_DUMP_* above */
3cb4a0bb 458#define MMF_DUMPABLE_BITS 2
f8af4da3 459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 460
942be387
ON
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
3cb4a0bb
KH
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
82df3973 483#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 486
3cb4a0bb 487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 488#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
e575f111 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
f8af4da3
HD
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 504
9f68f672
ON
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 507
f8af4da3 508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 509
1da177e4
LT
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
b8fceee1 514 wait_queue_head_t signalfd_wqh;
1da177e4
LT
515};
516
0e464814 517struct pacct_struct {
f6ec29a4
KK
518 int ac_flag;
519 long ac_exitcode;
0e464814 520 unsigned long ac_mem;
77787bfb
KK
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
0e464814
KK
523};
524
42c4ab41
SG
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
8356b5f9
SG
528 u32 error;
529 u32 incr_error;
42c4ab41
SG
530};
531
d37f761d
FW
532/**
533 * struct cputime - snaphsot of system and user cputime
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
536 *
537 * Gathers a generic snapshot of user and system time.
538 */
539struct cputime {
540 cputime_t utime;
541 cputime_t stime;
542};
543
f06febc9
FM
544/**
545 * struct task_cputime - collected CPU time counts
546 * @utime: time spent in user mode, in &cputime_t units
547 * @stime: time spent in kernel mode, in &cputime_t units
548 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 549 *
d37f761d
FW
550 * This is an extension of struct cputime that includes the total runtime
551 * spent by the task from the scheduler point of view.
552 *
553 * As a result, this structure groups together three kinds of CPU time
554 * that are tracked for threads and thread groups. Most things considering
f06febc9
FM
555 * CPU time want to group these counts together and treat all three
556 * of them in parallel.
557 */
558struct task_cputime {
559 cputime_t utime;
560 cputime_t stime;
561 unsigned long long sum_exec_runtime;
562};
563/* Alternate field names when used to cache expirations. */
564#define prof_exp stime
565#define virt_exp utime
566#define sched_exp sum_exec_runtime
567
4cd4c1b4
PZ
568#define INIT_CPUTIME \
569 (struct task_cputime) { \
64861634
MS
570 .utime = 0, \
571 .stime = 0, \
4cd4c1b4
PZ
572 .sum_exec_runtime = 0, \
573 }
574
971e8a98
JL
575/*
576 * This is the atomic variant of task_cputime, which can be used for
577 * storing and updating task_cputime statistics without locking.
578 */
579struct task_cputime_atomic {
580 atomic64_t utime;
581 atomic64_t stime;
582 atomic64_t sum_exec_runtime;
583};
584
585#define INIT_CPUTIME_ATOMIC \
586 (struct task_cputime_atomic) { \
587 .utime = ATOMIC64_INIT(0), \
588 .stime = ATOMIC64_INIT(0), \
589 .sum_exec_runtime = ATOMIC64_INIT(0), \
590 }
591
a233f112
PZ
592#ifdef CONFIG_PREEMPT_COUNT
593#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
594#else
595#define PREEMPT_DISABLED PREEMPT_ENABLED
596#endif
597
c99e6efe
PZ
598/*
599 * Disable preemption until the scheduler is running.
600 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
601 *
602 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
603 * before the scheduler is active -- see should_resched().
c99e6efe 604 */
a233f112 605#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 606
f06febc9 607/**
4cd4c1b4 608 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 609 * @cputime_atomic: atomic thread group interval timers.
4cd4c1b4
PZ
610 * @running: non-zero when there are timers running and
611 * @cputime receives updates.
f06febc9
FM
612 *
613 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 614 * used for thread group CPU timer calculations.
f06febc9 615 */
4cd4c1b4 616struct thread_group_cputimer {
71107445 617 struct task_cputime_atomic cputime_atomic;
4cd4c1b4 618 int running;
f06febc9 619};
f06febc9 620
4714d1d3 621#include <linux/rwsem.h>
5091faa4
MG
622struct autogroup;
623
1da177e4 624/*
e815f0a8 625 * NOTE! "signal_struct" does not have its own
1da177e4
LT
626 * locking, because a shared signal_struct always
627 * implies a shared sighand_struct, so locking
628 * sighand_struct is always a proper superset of
629 * the locking of signal_struct.
630 */
631struct signal_struct {
ea6d290c 632 atomic_t sigcnt;
1da177e4 633 atomic_t live;
b3ac022c 634 int nr_threads;
0c740d0a 635 struct list_head thread_head;
1da177e4
LT
636
637 wait_queue_head_t wait_chldexit; /* for wait4() */
638
639 /* current thread group signal load-balancing target: */
36c8b586 640 struct task_struct *curr_target;
1da177e4
LT
641
642 /* shared signal handling: */
643 struct sigpending shared_pending;
644
645 /* thread group exit support */
646 int group_exit_code;
647 /* overloaded:
648 * - notify group_exit_task when ->count is equal to notify_count
649 * - everyone except group_exit_task is stopped during signal delivery
650 * of fatal signals, group_exit_task processes the signal.
651 */
1da177e4 652 int notify_count;
07dd20e0 653 struct task_struct *group_exit_task;
1da177e4
LT
654
655 /* thread group stop support, overloads group_exit_code too */
656 int group_stop_count;
657 unsigned int flags; /* see SIGNAL_* flags below */
658
ebec18a6
LP
659 /*
660 * PR_SET_CHILD_SUBREAPER marks a process, like a service
661 * manager, to re-parent orphan (double-forking) child processes
662 * to this process instead of 'init'. The service manager is
663 * able to receive SIGCHLD signals and is able to investigate
664 * the process until it calls wait(). All children of this
665 * process will inherit a flag if they should look for a
666 * child_subreaper process at exit.
667 */
668 unsigned int is_child_subreaper:1;
669 unsigned int has_child_subreaper:1;
670
1da177e4 671 /* POSIX.1b Interval Timers */
5ed67f05
PE
672 int posix_timer_id;
673 struct list_head posix_timers;
1da177e4
LT
674
675 /* ITIMER_REAL timer for the process */
2ff678b8 676 struct hrtimer real_timer;
fea9d175 677 struct pid *leader_pid;
2ff678b8 678 ktime_t it_real_incr;
1da177e4 679
42c4ab41
SG
680 /*
681 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
682 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
683 * values are defined to 0 and 1 respectively
684 */
685 struct cpu_itimer it[2];
1da177e4 686
f06febc9 687 /*
4cd4c1b4
PZ
688 * Thread group totals for process CPU timers.
689 * See thread_group_cputimer(), et al, for details.
f06febc9 690 */
4cd4c1b4 691 struct thread_group_cputimer cputimer;
f06febc9
FM
692
693 /* Earliest-expiration cache. */
694 struct task_cputime cputime_expires;
695
696 struct list_head cpu_timers[3];
697
ab521dc0 698 struct pid *tty_old_pgrp;
1ec320af 699
1da177e4
LT
700 /* boolean value for session group leader */
701 int leader;
702
703 struct tty_struct *tty; /* NULL if no tty */
704
5091faa4
MG
705#ifdef CONFIG_SCHED_AUTOGROUP
706 struct autogroup *autogroup;
707#endif
1da177e4
LT
708 /*
709 * Cumulative resource counters for dead threads in the group,
710 * and for reaped dead child processes forked by this group.
711 * Live threads maintain their own counters and add to these
712 * in __exit_signal, except for the group leader.
713 */
e78c3496 714 seqlock_t stats_lock;
32bd671d 715 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
716 cputime_t gtime;
717 cputime_t cgtime;
9fbc42ea 718#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 719 struct cputime prev_cputime;
0cf55e1e 720#endif
1da177e4
LT
721 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
722 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 723 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 724 unsigned long maxrss, cmaxrss;
940389b8 725 struct task_io_accounting ioac;
1da177e4 726
32bd671d
PZ
727 /*
728 * Cumulative ns of schedule CPU time fo dead threads in the
729 * group, not including a zombie group leader, (This only differs
730 * from jiffies_to_ns(utime + stime) if sched_clock uses something
731 * other than jiffies.)
732 */
733 unsigned long long sum_sched_runtime;
734
1da177e4
LT
735 /*
736 * We don't bother to synchronize most readers of this at all,
737 * because there is no reader checking a limit that actually needs
738 * to get both rlim_cur and rlim_max atomically, and either one
739 * alone is a single word that can safely be read normally.
740 * getrlimit/setrlimit use task_lock(current->group_leader) to
741 * protect this instead of the siglock, because they really
742 * have no need to disable irqs.
743 */
744 struct rlimit rlim[RLIM_NLIMITS];
745
0e464814
KK
746#ifdef CONFIG_BSD_PROCESS_ACCT
747 struct pacct_struct pacct; /* per-process accounting information */
748#endif
ad4ecbcb 749#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
750 struct taskstats *stats;
751#endif
522ed776
MT
752#ifdef CONFIG_AUDIT
753 unsigned audit_tty;
46e959ea 754 unsigned audit_tty_log_passwd;
522ed776
MT
755 struct tty_audit_buf *tty_audit_buf;
756#endif
4714d1d3
BB
757#ifdef CONFIG_CGROUPS
758 /*
77e4ef99
TH
759 * group_rwsem prevents new tasks from entering the threadgroup and
760 * member tasks from exiting,a more specifically, setting of
761 * PF_EXITING. fork and exit paths are protected with this rwsem
762 * using threadgroup_change_begin/end(). Users which require
763 * threadgroup to remain stable should use threadgroup_[un]lock()
764 * which also takes care of exec path. Currently, cgroup is the
765 * only user.
4714d1d3 766 */
257058ae 767 struct rw_semaphore group_rwsem;
4714d1d3 768#endif
28b83c51 769
e1e12d2f 770 oom_flags_t oom_flags;
a9c58b90
DR
771 short oom_score_adj; /* OOM kill score adjustment */
772 short oom_score_adj_min; /* OOM kill score adjustment min value.
773 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
774
775 struct mutex cred_guard_mutex; /* guard against foreign influences on
776 * credential calculations
777 * (notably. ptrace) */
1da177e4
LT
778};
779
780/*
781 * Bits in flags field of signal_struct.
782 */
783#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
784#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
785#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 786#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
787/*
788 * Pending notifications to parent.
789 */
790#define SIGNAL_CLD_STOPPED 0x00000010
791#define SIGNAL_CLD_CONTINUED 0x00000020
792#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 793
fae5fa44
ON
794#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
795
ed5d2cac
ON
796/* If true, all threads except ->group_exit_task have pending SIGKILL */
797static inline int signal_group_exit(const struct signal_struct *sig)
798{
799 return (sig->flags & SIGNAL_GROUP_EXIT) ||
800 (sig->group_exit_task != NULL);
801}
802
1da177e4
LT
803/*
804 * Some day this will be a full-fledged user tracking system..
805 */
806struct user_struct {
807 atomic_t __count; /* reference count */
808 atomic_t processes; /* How many processes does this user have? */
1da177e4 809 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 810#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
811 atomic_t inotify_watches; /* How many inotify watches does this user have? */
812 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
813#endif
4afeff85
EP
814#ifdef CONFIG_FANOTIFY
815 atomic_t fanotify_listeners;
816#endif
7ef9964e 817#ifdef CONFIG_EPOLL
52bd19f7 818 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 819#endif
970a8645 820#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
821 /* protected by mq_lock */
822 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 823#endif
1da177e4
LT
824 unsigned long locked_shm; /* How many pages of mlocked shm ? */
825
826#ifdef CONFIG_KEYS
827 struct key *uid_keyring; /* UID specific keyring */
828 struct key *session_keyring; /* UID's default session keyring */
829#endif
830
831 /* Hash table maintenance information */
735de223 832 struct hlist_node uidhash_node;
7b44ab97 833 kuid_t uid;
24e377a8 834
cdd6c482 835#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
836 atomic_long_t locked_vm;
837#endif
1da177e4
LT
838};
839
eb41d946 840extern int uids_sysfs_init(void);
5cb350ba 841
7b44ab97 842extern struct user_struct *find_user(kuid_t);
1da177e4
LT
843
844extern struct user_struct root_user;
845#define INIT_USER (&root_user)
846
b6dff3ec 847
1da177e4
LT
848struct backing_dev_info;
849struct reclaim_state;
850
52f17b6c 851#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
852struct sched_info {
853 /* cumulative counters */
2d72376b 854 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 855 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
856
857 /* timestamps */
172ba844
BS
858 unsigned long long last_arrival,/* when we last ran on a cpu */
859 last_queued; /* when we were last queued to run */
1da177e4 860};
52f17b6c 861#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
1da177e4 862
ca74e92b
SN
863#ifdef CONFIG_TASK_DELAY_ACCT
864struct task_delay_info {
865 spinlock_t lock;
866 unsigned int flags; /* Private per-task flags */
867
868 /* For each stat XXX, add following, aligned appropriately
869 *
870 * struct timespec XXX_start, XXX_end;
871 * u64 XXX_delay;
872 * u32 XXX_count;
873 *
874 * Atomicity of updates to XXX_delay, XXX_count protected by
875 * single lock above (split into XXX_lock if contention is an issue).
876 */
0ff92245
SN
877
878 /*
879 * XXX_count is incremented on every XXX operation, the delay
880 * associated with the operation is added to XXX_delay.
881 * XXX_delay contains the accumulated delay time in nanoseconds.
882 */
9667a23d 883 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
884 u64 blkio_delay; /* wait for sync block io completion */
885 u64 swapin_delay; /* wait for swapin block io completion */
886 u32 blkio_count; /* total count of the number of sync block */
887 /* io operations performed */
888 u32 swapin_count; /* total count of the number of swapin block */
889 /* io operations performed */
873b4771 890
9667a23d 891 u64 freepages_start;
873b4771
KK
892 u64 freepages_delay; /* wait for memory reclaim */
893 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 894};
52f17b6c
CS
895#endif /* CONFIG_TASK_DELAY_ACCT */
896
897static inline int sched_info_on(void)
898{
899#ifdef CONFIG_SCHEDSTATS
900 return 1;
901#elif defined(CONFIG_TASK_DELAY_ACCT)
902 extern int delayacct_on;
903 return delayacct_on;
904#else
905 return 0;
ca74e92b 906#endif
52f17b6c 907}
ca74e92b 908
d15bcfdb
IM
909enum cpu_idle_type {
910 CPU_IDLE,
911 CPU_NOT_IDLE,
912 CPU_NEWLY_IDLE,
913 CPU_MAX_IDLE_TYPES
1da177e4
LT
914};
915
1399fa78 916/*
ca8ce3d0 917 * Increase resolution of cpu_capacity calculations
1399fa78 918 */
ca8ce3d0
NP
919#define SCHED_CAPACITY_SHIFT 10
920#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 921
76751049
PZ
922/*
923 * Wake-queues are lists of tasks with a pending wakeup, whose
924 * callers have already marked the task as woken internally,
925 * and can thus carry on. A common use case is being able to
926 * do the wakeups once the corresponding user lock as been
927 * released.
928 *
929 * We hold reference to each task in the list across the wakeup,
930 * thus guaranteeing that the memory is still valid by the time
931 * the actual wakeups are performed in wake_up_q().
932 *
933 * One per task suffices, because there's never a need for a task to be
934 * in two wake queues simultaneously; it is forbidden to abandon a task
935 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
936 * already in a wake queue, the wakeup will happen soon and the second
937 * waker can just skip it.
938 *
939 * The WAKE_Q macro declares and initializes the list head.
940 * wake_up_q() does NOT reinitialize the list; it's expected to be
941 * called near the end of a function, where the fact that the queue is
942 * not used again will be easy to see by inspection.
943 *
944 * Note that this can cause spurious wakeups. schedule() callers
945 * must ensure the call is done inside a loop, confirming that the
946 * wakeup condition has in fact occurred.
947 */
948struct wake_q_node {
949 struct wake_q_node *next;
950};
951
952struct wake_q_head {
953 struct wake_q_node *first;
954 struct wake_q_node **lastp;
955};
956
957#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
958
959#define WAKE_Q(name) \
960 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
961
962extern void wake_q_add(struct wake_q_head *head,
963 struct task_struct *task);
964extern void wake_up_q(struct wake_q_head *head);
965
1399fa78
NR
966/*
967 * sched-domains (multiprocessor balancing) declarations:
968 */
2dd73a4f 969#ifdef CONFIG_SMP
b5d978e0
PZ
970#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
971#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
972#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
973#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 974#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 975#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 976#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 977#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
978#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
979#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 980#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 981#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 982#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 983#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 984
143e1e28 985#ifdef CONFIG_SCHED_SMT
b6220ad6 986static inline int cpu_smt_flags(void)
143e1e28 987{
5d4dfddd 988 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
989}
990#endif
991
992#ifdef CONFIG_SCHED_MC
b6220ad6 993static inline int cpu_core_flags(void)
143e1e28
VG
994{
995 return SD_SHARE_PKG_RESOURCES;
996}
997#endif
998
999#ifdef CONFIG_NUMA
b6220ad6 1000static inline int cpu_numa_flags(void)
143e1e28
VG
1001{
1002 return SD_NUMA;
1003}
1004#endif
532cb4c4 1005
1d3504fc
HS
1006struct sched_domain_attr {
1007 int relax_domain_level;
1008};
1009
1010#define SD_ATTR_INIT (struct sched_domain_attr) { \
1011 .relax_domain_level = -1, \
1012}
1013
60495e77
PZ
1014extern int sched_domain_level_max;
1015
5e6521ea
LZ
1016struct sched_group;
1017
1da177e4
LT
1018struct sched_domain {
1019 /* These fields must be setup */
1020 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1021 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1022 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1023 unsigned long min_interval; /* Minimum balance interval ms */
1024 unsigned long max_interval; /* Maximum balance interval ms */
1025 unsigned int busy_factor; /* less balancing by factor if busy */
1026 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1027 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1028 unsigned int busy_idx;
1029 unsigned int idle_idx;
1030 unsigned int newidle_idx;
1031 unsigned int wake_idx;
147cbb4b 1032 unsigned int forkexec_idx;
a52bfd73 1033 unsigned int smt_gain;
25f55d9d
VG
1034
1035 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1036 int flags; /* See SD_* */
60495e77 1037 int level;
1da177e4
LT
1038
1039 /* Runtime fields. */
1040 unsigned long last_balance; /* init to jiffies. units in jiffies */
1041 unsigned int balance_interval; /* initialise to 1. units in ms. */
1042 unsigned int nr_balance_failed; /* initialise to 0 */
1043
f48627e6 1044 /* idle_balance() stats */
9bd721c5 1045 u64 max_newidle_lb_cost;
f48627e6 1046 unsigned long next_decay_max_lb_cost;
2398f2c6 1047
1da177e4
LT
1048#ifdef CONFIG_SCHEDSTATS
1049 /* load_balance() stats */
480b9434
KC
1050 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1051 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1052 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1053 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1054 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1055 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1056 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1057 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1058
1059 /* Active load balancing */
480b9434
KC
1060 unsigned int alb_count;
1061 unsigned int alb_failed;
1062 unsigned int alb_pushed;
1da177e4 1063
68767a0a 1064 /* SD_BALANCE_EXEC stats */
480b9434
KC
1065 unsigned int sbe_count;
1066 unsigned int sbe_balanced;
1067 unsigned int sbe_pushed;
1da177e4 1068
68767a0a 1069 /* SD_BALANCE_FORK stats */
480b9434
KC
1070 unsigned int sbf_count;
1071 unsigned int sbf_balanced;
1072 unsigned int sbf_pushed;
68767a0a 1073
1da177e4 1074 /* try_to_wake_up() stats */
480b9434
KC
1075 unsigned int ttwu_wake_remote;
1076 unsigned int ttwu_move_affine;
1077 unsigned int ttwu_move_balance;
1da177e4 1078#endif
a5d8c348
IM
1079#ifdef CONFIG_SCHED_DEBUG
1080 char *name;
1081#endif
dce840a0
PZ
1082 union {
1083 void *private; /* used during construction */
1084 struct rcu_head rcu; /* used during destruction */
1085 };
6c99e9ad 1086
669c55e9 1087 unsigned int span_weight;
4200efd9
IM
1088 /*
1089 * Span of all CPUs in this domain.
1090 *
1091 * NOTE: this field is variable length. (Allocated dynamically
1092 * by attaching extra space to the end of the structure,
1093 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1094 */
1095 unsigned long span[0];
1da177e4
LT
1096};
1097
758b2cdc
RR
1098static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1099{
6c99e9ad 1100 return to_cpumask(sd->span);
758b2cdc
RR
1101}
1102
acc3f5d7 1103extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1104 struct sched_domain_attr *dattr_new);
029190c5 1105
acc3f5d7
RR
1106/* Allocate an array of sched domains, for partition_sched_domains(). */
1107cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1108void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1109
39be3501
PZ
1110bool cpus_share_cache(int this_cpu, int that_cpu);
1111
143e1e28 1112typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1113typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1114
1115#define SDTL_OVERLAP 0x01
1116
1117struct sd_data {
1118 struct sched_domain **__percpu sd;
1119 struct sched_group **__percpu sg;
63b2ca30 1120 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1121};
1122
1123struct sched_domain_topology_level {
1124 sched_domain_mask_f mask;
1125 sched_domain_flags_f sd_flags;
1126 int flags;
1127 int numa_level;
1128 struct sd_data data;
1129#ifdef CONFIG_SCHED_DEBUG
1130 char *name;
1131#endif
1132};
1133
1134extern struct sched_domain_topology_level *sched_domain_topology;
1135
1136extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1137extern void wake_up_if_idle(int cpu);
143e1e28
VG
1138
1139#ifdef CONFIG_SCHED_DEBUG
1140# define SD_INIT_NAME(type) .name = #type
1141#else
1142# define SD_INIT_NAME(type)
1143#endif
1144
1b427c15 1145#else /* CONFIG_SMP */
1da177e4 1146
1b427c15 1147struct sched_domain_attr;
d02c7a8c 1148
1b427c15 1149static inline void
acc3f5d7 1150partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1151 struct sched_domain_attr *dattr_new)
1152{
d02c7a8c 1153}
39be3501
PZ
1154
1155static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1156{
1157 return true;
1158}
1159
1b427c15 1160#endif /* !CONFIG_SMP */
1da177e4 1161
47fe38fc 1162
1da177e4 1163struct io_context; /* See blkdev.h */
1da177e4 1164
1da177e4 1165
383f2835 1166#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1167extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1168#else
1169static inline void prefetch_stack(struct task_struct *t) { }
1170#endif
1da177e4
LT
1171
1172struct audit_context; /* See audit.c */
1173struct mempolicy;
b92ce558 1174struct pipe_inode_info;
4865ecf1 1175struct uts_namespace;
1da177e4 1176
20b8a59f 1177struct load_weight {
9dbdb155
PZ
1178 unsigned long weight;
1179 u32 inv_weight;
20b8a59f
IM
1180};
1181
9d85f21c 1182struct sched_avg {
36ee28e4
VG
1183 u64 last_runnable_update;
1184 s64 decay_count;
1185 /*
1186 * utilization_avg_contrib describes the amount of time that a
1187 * sched_entity is running on a CPU. It is based on running_avg_sum
1188 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1189 * load_avg_contrib described the amount of time that a sched_entity
1190 * is runnable on a rq. It is based on both runnable_avg_sum and the
1191 * weight of the task.
1192 */
1193 unsigned long load_avg_contrib, utilization_avg_contrib;
9d85f21c
PT
1194 /*
1195 * These sums represent an infinite geometric series and so are bound
239003ea 1196 * above by 1024/(1-y). Thus we only need a u32 to store them for all
9d85f21c 1197 * choices of y < 1-2^(-32)*1024.
36ee28e4
VG
1198 * running_avg_sum reflects the time that the sched_entity is
1199 * effectively running on the CPU.
1200 * runnable_avg_sum represents the amount of time a sched_entity is on
1201 * a runqueue which includes the running time that is monitored by
1202 * running_avg_sum.
9d85f21c 1203 */
36ee28e4 1204 u32 runnable_avg_sum, avg_period, running_avg_sum;
9d85f21c
PT
1205};
1206
94c18227 1207#ifdef CONFIG_SCHEDSTATS
41acab88 1208struct sched_statistics {
20b8a59f 1209 u64 wait_start;
94c18227 1210 u64 wait_max;
6d082592
AV
1211 u64 wait_count;
1212 u64 wait_sum;
8f0dfc34
AV
1213 u64 iowait_count;
1214 u64 iowait_sum;
94c18227 1215
20b8a59f 1216 u64 sleep_start;
20b8a59f 1217 u64 sleep_max;
94c18227
IM
1218 s64 sum_sleep_runtime;
1219
1220 u64 block_start;
20b8a59f
IM
1221 u64 block_max;
1222 u64 exec_max;
eba1ed4b 1223 u64 slice_max;
cc367732 1224
cc367732
IM
1225 u64 nr_migrations_cold;
1226 u64 nr_failed_migrations_affine;
1227 u64 nr_failed_migrations_running;
1228 u64 nr_failed_migrations_hot;
1229 u64 nr_forced_migrations;
cc367732
IM
1230
1231 u64 nr_wakeups;
1232 u64 nr_wakeups_sync;
1233 u64 nr_wakeups_migrate;
1234 u64 nr_wakeups_local;
1235 u64 nr_wakeups_remote;
1236 u64 nr_wakeups_affine;
1237 u64 nr_wakeups_affine_attempts;
1238 u64 nr_wakeups_passive;
1239 u64 nr_wakeups_idle;
41acab88
LDM
1240};
1241#endif
1242
1243struct sched_entity {
1244 struct load_weight load; /* for load-balancing */
1245 struct rb_node run_node;
1246 struct list_head group_node;
1247 unsigned int on_rq;
1248
1249 u64 exec_start;
1250 u64 sum_exec_runtime;
1251 u64 vruntime;
1252 u64 prev_sum_exec_runtime;
1253
41acab88
LDM
1254 u64 nr_migrations;
1255
41acab88
LDM
1256#ifdef CONFIG_SCHEDSTATS
1257 struct sched_statistics statistics;
94c18227
IM
1258#endif
1259
20b8a59f 1260#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1261 int depth;
20b8a59f
IM
1262 struct sched_entity *parent;
1263 /* rq on which this entity is (to be) queued: */
1264 struct cfs_rq *cfs_rq;
1265 /* rq "owned" by this entity/group: */
1266 struct cfs_rq *my_q;
1267#endif
8bd75c77 1268
141965c7 1269#ifdef CONFIG_SMP
f4e26b12 1270 /* Per-entity load-tracking */
9d85f21c
PT
1271 struct sched_avg avg;
1272#endif
20b8a59f 1273};
70b97a7f 1274
fa717060
PZ
1275struct sched_rt_entity {
1276 struct list_head run_list;
78f2c7db 1277 unsigned long timeout;
57d2aa00 1278 unsigned long watchdog_stamp;
bee367ed 1279 unsigned int time_slice;
6f505b16 1280
58d6c2d7 1281 struct sched_rt_entity *back;
052f1dc7 1282#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1283 struct sched_rt_entity *parent;
1284 /* rq on which this entity is (to be) queued: */
1285 struct rt_rq *rt_rq;
1286 /* rq "owned" by this entity/group: */
1287 struct rt_rq *my_q;
1288#endif
fa717060
PZ
1289};
1290
aab03e05
DF
1291struct sched_dl_entity {
1292 struct rb_node rb_node;
1293
1294 /*
1295 * Original scheduling parameters. Copied here from sched_attr
4027d080 1296 * during sched_setattr(), they will remain the same until
1297 * the next sched_setattr().
aab03e05
DF
1298 */
1299 u64 dl_runtime; /* maximum runtime for each instance */
1300 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1301 u64 dl_period; /* separation of two instances (period) */
332ac17e 1302 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1303
1304 /*
1305 * Actual scheduling parameters. Initialized with the values above,
1306 * they are continously updated during task execution. Note that
1307 * the remaining runtime could be < 0 in case we are in overrun.
1308 */
1309 s64 runtime; /* remaining runtime for this instance */
1310 u64 deadline; /* absolute deadline for this instance */
1311 unsigned int flags; /* specifying the scheduler behaviour */
1312
1313 /*
1314 * Some bool flags:
1315 *
1316 * @dl_throttled tells if we exhausted the runtime. If so, the
1317 * task has to wait for a replenishment to be performed at the
1318 * next firing of dl_timer.
1319 *
1320 * @dl_new tells if a new instance arrived. If so we must
1321 * start executing it with full runtime and reset its absolute
1322 * deadline;
2d3d891d
DF
1323 *
1324 * @dl_boosted tells if we are boosted due to DI. If so we are
1325 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1326 * exit the critical section);
1327 *
1328 * @dl_yielded tells if task gave up the cpu before consuming
1329 * all its available runtime during the last job.
aab03e05 1330 */
5bfd126e 1331 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1332
1333 /*
1334 * Bandwidth enforcement timer. Each -deadline task has its
1335 * own bandwidth to be enforced, thus we need one timer per task.
1336 */
1337 struct hrtimer dl_timer;
1338};
8bd75c77 1339
1d082fd0
PM
1340union rcu_special {
1341 struct {
1342 bool blocked;
1343 bool need_qs;
1344 } b;
1345 short s;
1346};
86848966
PM
1347struct rcu_node;
1348
8dc85d54
PZ
1349enum perf_event_task_context {
1350 perf_invalid_context = -1,
1351 perf_hw_context = 0,
89a1e187 1352 perf_sw_context,
8dc85d54
PZ
1353 perf_nr_task_contexts,
1354};
1355
1da177e4
LT
1356struct task_struct {
1357 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1358 void *stack;
1da177e4 1359 atomic_t usage;
97dc32cd
WC
1360 unsigned int flags; /* per process flags, defined below */
1361 unsigned int ptrace;
1da177e4 1362
2dd73a4f 1363#ifdef CONFIG_SMP
fa14ff4a 1364 struct llist_node wake_entry;
3ca7a440 1365 int on_cpu;
62470419
MW
1366 struct task_struct *last_wakee;
1367 unsigned long wakee_flips;
1368 unsigned long wakee_flip_decay_ts;
ac66f547
PZ
1369
1370 int wake_cpu;
2dd73a4f 1371#endif
fd2f4419 1372 int on_rq;
50e645a8 1373
b29739f9 1374 int prio, static_prio, normal_prio;
c7aceaba 1375 unsigned int rt_priority;
5522d5d5 1376 const struct sched_class *sched_class;
20b8a59f 1377 struct sched_entity se;
fa717060 1378 struct sched_rt_entity rt;
8323f26c
PZ
1379#ifdef CONFIG_CGROUP_SCHED
1380 struct task_group *sched_task_group;
1381#endif
aab03e05 1382 struct sched_dl_entity dl;
1da177e4 1383
e107be36
AK
1384#ifdef CONFIG_PREEMPT_NOTIFIERS
1385 /* list of struct preempt_notifier: */
1386 struct hlist_head preempt_notifiers;
1387#endif
1388
6c5c9341 1389#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1390 unsigned int btrace_seq;
6c5c9341 1391#endif
1da177e4 1392
97dc32cd 1393 unsigned int policy;
29baa747 1394 int nr_cpus_allowed;
1da177e4 1395 cpumask_t cpus_allowed;
1da177e4 1396
a57eb940 1397#ifdef CONFIG_PREEMPT_RCU
e260be67 1398 int rcu_read_lock_nesting;
1d082fd0 1399 union rcu_special rcu_read_unlock_special;
f41d911f 1400 struct list_head rcu_node_entry;
a57eb940 1401 struct rcu_node *rcu_blocked_node;
28f6569a 1402#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1403#ifdef CONFIG_TASKS_RCU
1404 unsigned long rcu_tasks_nvcsw;
1405 bool rcu_tasks_holdout;
1406 struct list_head rcu_tasks_holdout_list;
176f8f7a 1407 int rcu_tasks_idle_cpu;
8315f422 1408#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1409
52f17b6c 1410#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
1411 struct sched_info sched_info;
1412#endif
1413
1414 struct list_head tasks;
806c09a7 1415#ifdef CONFIG_SMP
917b627d 1416 struct plist_node pushable_tasks;
1baca4ce 1417 struct rb_node pushable_dl_tasks;
806c09a7 1418#endif
1da177e4
LT
1419
1420 struct mm_struct *mm, *active_mm;
4471a675
JK
1421#ifdef CONFIG_COMPAT_BRK
1422 unsigned brk_randomized:1;
1423#endif
615d6e87
DB
1424 /* per-thread vma caching */
1425 u32 vmacache_seqnum;
1426 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1427#if defined(SPLIT_RSS_COUNTING)
1428 struct task_rss_stat rss_stat;
1429#endif
1da177e4 1430/* task state */
97dc32cd 1431 int exit_state;
1da177e4
LT
1432 int exit_code, exit_signal;
1433 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1434 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1435
1436 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1437 unsigned int personality;
9b89f6ba 1438
f9ce1f1c
KT
1439 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1440 * execve */
8f0dfc34
AV
1441 unsigned in_iowait:1;
1442
ca94c442
LP
1443 /* Revert to default priority/policy when forking */
1444 unsigned sched_reset_on_fork:1;
a8e4f2ea 1445 unsigned sched_contributes_to_load:1;
ca94c442 1446
6f185c29
VD
1447#ifdef CONFIG_MEMCG_KMEM
1448 unsigned memcg_kmem_skip_account:1;
1449#endif
1450
1d4457f9
KC
1451 unsigned long atomic_flags; /* Flags needing atomic access. */
1452
f56141e3
AL
1453 struct restart_block restart_block;
1454
1da177e4
LT
1455 pid_t pid;
1456 pid_t tgid;
0a425405 1457
1314562a 1458#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1459 /* Canary value for the -fstack-protector gcc feature */
1460 unsigned long stack_canary;
1314562a 1461#endif
4d1d61a6 1462 /*
1da177e4 1463 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1464 * older sibling, respectively. (p->father can be replaced with
f470021a 1465 * p->real_parent->pid)
1da177e4 1466 */
abd63bc3
KC
1467 struct task_struct __rcu *real_parent; /* real parent process */
1468 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1469 /*
f470021a 1470 * children/sibling forms the list of my natural children
1da177e4
LT
1471 */
1472 struct list_head children; /* list of my children */
1473 struct list_head sibling; /* linkage in my parent's children list */
1474 struct task_struct *group_leader; /* threadgroup leader */
1475
f470021a
RM
1476 /*
1477 * ptraced is the list of tasks this task is using ptrace on.
1478 * This includes both natural children and PTRACE_ATTACH targets.
1479 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1480 */
1481 struct list_head ptraced;
1482 struct list_head ptrace_entry;
1483
1da177e4 1484 /* PID/PID hash table linkage. */
92476d7f 1485 struct pid_link pids[PIDTYPE_MAX];
47e65328 1486 struct list_head thread_group;
0c740d0a 1487 struct list_head thread_node;
1da177e4
LT
1488
1489 struct completion *vfork_done; /* for vfork() */
1490 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1491 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1492
c66f08be 1493 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1494 cputime_t gtime;
9fbc42ea 1495#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 1496 struct cputime prev_cputime;
6a61671b
FW
1497#endif
1498#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1499 seqlock_t vtime_seqlock;
1500 unsigned long long vtime_snap;
1501 enum {
1502 VTIME_SLEEPING = 0,
1503 VTIME_USER,
1504 VTIME_SYS,
1505 } vtime_snap_whence;
d99ca3b9 1506#endif
1da177e4 1507 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1508 u64 start_time; /* monotonic time in nsec */
57e0be04 1509 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1510/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1511 unsigned long min_flt, maj_flt;
1512
f06febc9 1513 struct task_cputime cputime_expires;
1da177e4
LT
1514 struct list_head cpu_timers[3];
1515
1516/* process credentials */
1b0ba1c9 1517 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1518 * credentials (COW) */
1b0ba1c9 1519 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1520 * credentials (COW) */
36772092
PBG
1521 char comm[TASK_COMM_LEN]; /* executable name excluding path
1522 - access with [gs]et_task_comm (which lock
1523 it with task_lock())
221af7f8 1524 - initialized normally by setup_new_exec */
1da177e4
LT
1525/* file system info */
1526 int link_count, total_link_count;
3d5b6fcc 1527#ifdef CONFIG_SYSVIPC
1da177e4
LT
1528/* ipc stuff */
1529 struct sysv_sem sysvsem;
ab602f79 1530 struct sysv_shm sysvshm;
3d5b6fcc 1531#endif
e162b39a 1532#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1533/* hung task detection */
82a1fcb9
IM
1534 unsigned long last_switch_count;
1535#endif
1da177e4
LT
1536/* CPU-specific state of this task */
1537 struct thread_struct thread;
1538/* filesystem information */
1539 struct fs_struct *fs;
1540/* open file information */
1541 struct files_struct *files;
1651e14e 1542/* namespaces */
ab516013 1543 struct nsproxy *nsproxy;
1da177e4
LT
1544/* signal handlers */
1545 struct signal_struct *signal;
1546 struct sighand_struct *sighand;
1547
1548 sigset_t blocked, real_blocked;
f3de272b 1549 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1550 struct sigpending pending;
1551
1552 unsigned long sas_ss_sp;
1553 size_t sas_ss_size;
1554 int (*notifier)(void *priv);
1555 void *notifier_data;
1556 sigset_t *notifier_mask;
67d12145 1557 struct callback_head *task_works;
e73f8959 1558
1da177e4 1559 struct audit_context *audit_context;
bfef93a5 1560#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1561 kuid_t loginuid;
4746ec5b 1562 unsigned int sessionid;
bfef93a5 1563#endif
932ecebb 1564 struct seccomp seccomp;
1da177e4
LT
1565
1566/* Thread group tracking */
1567 u32 parent_exec_id;
1568 u32 self_exec_id;
58568d2a
MX
1569/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1570 * mempolicy */
1da177e4 1571 spinlock_t alloc_lock;
1da177e4 1572
b29739f9 1573 /* Protection of the PI data structures: */
1d615482 1574 raw_spinlock_t pi_lock;
b29739f9 1575
76751049
PZ
1576 struct wake_q_node wake_q;
1577
23f78d4a
IM
1578#ifdef CONFIG_RT_MUTEXES
1579 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1580 struct rb_root pi_waiters;
1581 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1582 /* Deadlock detection and priority inheritance handling */
1583 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1584#endif
1585
408894ee
IM
1586#ifdef CONFIG_DEBUG_MUTEXES
1587 /* mutex deadlock detection */
1588 struct mutex_waiter *blocked_on;
1589#endif
de30a2b3
IM
1590#ifdef CONFIG_TRACE_IRQFLAGS
1591 unsigned int irq_events;
de30a2b3 1592 unsigned long hardirq_enable_ip;
de30a2b3 1593 unsigned long hardirq_disable_ip;
fa1452e8 1594 unsigned int hardirq_enable_event;
de30a2b3 1595 unsigned int hardirq_disable_event;
fa1452e8
HS
1596 int hardirqs_enabled;
1597 int hardirq_context;
de30a2b3 1598 unsigned long softirq_disable_ip;
de30a2b3 1599 unsigned long softirq_enable_ip;
fa1452e8 1600 unsigned int softirq_disable_event;
de30a2b3 1601 unsigned int softirq_enable_event;
fa1452e8 1602 int softirqs_enabled;
de30a2b3
IM
1603 int softirq_context;
1604#endif
fbb9ce95 1605#ifdef CONFIG_LOCKDEP
bdb9441e 1606# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1607 u64 curr_chain_key;
1608 int lockdep_depth;
fbb9ce95 1609 unsigned int lockdep_recursion;
c7aceaba 1610 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1611 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1612#endif
408894ee 1613
1da177e4
LT
1614/* journalling filesystem info */
1615 void *journal_info;
1616
d89d8796 1617/* stacked block device info */
bddd87c7 1618 struct bio_list *bio_list;
d89d8796 1619
73c10101
JA
1620#ifdef CONFIG_BLOCK
1621/* stack plugging */
1622 struct blk_plug *plug;
1623#endif
1624
1da177e4
LT
1625/* VM state */
1626 struct reclaim_state *reclaim_state;
1627
1da177e4
LT
1628 struct backing_dev_info *backing_dev_info;
1629
1630 struct io_context *io_context;
1631
1632 unsigned long ptrace_message;
1633 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1634 struct task_io_accounting ioac;
8f0ab514 1635#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1636 u64 acct_rss_mem1; /* accumulated rss usage */
1637 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1638 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1639#endif
1640#ifdef CONFIG_CPUSETS
58568d2a 1641 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1642 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1643 int cpuset_mem_spread_rotor;
6adef3eb 1644 int cpuset_slab_spread_rotor;
1da177e4 1645#endif
ddbcc7e8 1646#ifdef CONFIG_CGROUPS
817929ec 1647 /* Control Group info protected by css_set_lock */
2c392b8c 1648 struct css_set __rcu *cgroups;
817929ec
PM
1649 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1650 struct list_head cg_list;
ddbcc7e8 1651#endif
42b2dd0a 1652#ifdef CONFIG_FUTEX
0771dfef 1653 struct robust_list_head __user *robust_list;
34f192c6
IM
1654#ifdef CONFIG_COMPAT
1655 struct compat_robust_list_head __user *compat_robust_list;
1656#endif
c87e2837
IM
1657 struct list_head pi_state_list;
1658 struct futex_pi_state *pi_state_cache;
c7aceaba 1659#endif
cdd6c482 1660#ifdef CONFIG_PERF_EVENTS
8dc85d54 1661 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1662 struct mutex perf_event_mutex;
1663 struct list_head perf_event_list;
a63eaf34 1664#endif
8f47b187
TG
1665#ifdef CONFIG_DEBUG_PREEMPT
1666 unsigned long preempt_disable_ip;
1667#endif
c7aceaba 1668#ifdef CONFIG_NUMA
58568d2a 1669 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1670 short il_next;
207205a2 1671 short pref_node_fork;
42b2dd0a 1672#endif
cbee9f88
PZ
1673#ifdef CONFIG_NUMA_BALANCING
1674 int numa_scan_seq;
cbee9f88 1675 unsigned int numa_scan_period;
598f0ec0 1676 unsigned int numa_scan_period_max;
de1c9ce6 1677 int numa_preferred_nid;
6b9a7460 1678 unsigned long numa_migrate_retry;
cbee9f88 1679 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1680 u64 last_task_numa_placement;
1681 u64 last_sum_exec_runtime;
cbee9f88 1682 struct callback_head numa_work;
f809ca9a 1683
8c8a743c
PZ
1684 struct list_head numa_entry;
1685 struct numa_group *numa_group;
1686
745d6147 1687 /*
44dba3d5
IM
1688 * numa_faults is an array split into four regions:
1689 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1690 * in this precise order.
1691 *
1692 * faults_memory: Exponential decaying average of faults on a per-node
1693 * basis. Scheduling placement decisions are made based on these
1694 * counts. The values remain static for the duration of a PTE scan.
1695 * faults_cpu: Track the nodes the process was running on when a NUMA
1696 * hinting fault was incurred.
1697 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1698 * during the current scan window. When the scan completes, the counts
1699 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1700 */
44dba3d5 1701 unsigned long *numa_faults;
83e1d2cd 1702 unsigned long total_numa_faults;
745d6147 1703
04bb2f94
RR
1704 /*
1705 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1706 * scan window were remote/local or failed to migrate. The task scan
1707 * period is adapted based on the locality of the faults with different
1708 * weights depending on whether they were shared or private faults
04bb2f94 1709 */
074c2381 1710 unsigned long numa_faults_locality[3];
04bb2f94 1711
b32e86b4 1712 unsigned long numa_pages_migrated;
cbee9f88
PZ
1713#endif /* CONFIG_NUMA_BALANCING */
1714
e56d0903 1715 struct rcu_head rcu;
b92ce558
JA
1716
1717 /*
1718 * cache last used pipe for splice
1719 */
1720 struct pipe_inode_info *splice_pipe;
5640f768
ED
1721
1722 struct page_frag task_frag;
1723
ca74e92b
SN
1724#ifdef CONFIG_TASK_DELAY_ACCT
1725 struct task_delay_info *delays;
f4f154fd
AM
1726#endif
1727#ifdef CONFIG_FAULT_INJECTION
1728 int make_it_fail;
ca74e92b 1729#endif
9d823e8f
WF
1730 /*
1731 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1732 * balance_dirty_pages() for some dirty throttling pause
1733 */
1734 int nr_dirtied;
1735 int nr_dirtied_pause;
83712358 1736 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1737
9745512c
AV
1738#ifdef CONFIG_LATENCYTOP
1739 int latency_record_count;
1740 struct latency_record latency_record[LT_SAVECOUNT];
1741#endif
6976675d
AV
1742 /*
1743 * time slack values; these are used to round up poll() and
1744 * select() etc timeout values. These are in nanoseconds.
1745 */
1746 unsigned long timer_slack_ns;
1747 unsigned long default_timer_slack_ns;
f8d570a4 1748
0b24becc
AR
1749#ifdef CONFIG_KASAN
1750 unsigned int kasan_depth;
1751#endif
fb52607a 1752#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1753 /* Index of current stored address in ret_stack */
f201ae23
FW
1754 int curr_ret_stack;
1755 /* Stack of return addresses for return function tracing */
1756 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1757 /* time stamp for last schedule */
1758 unsigned long long ftrace_timestamp;
f201ae23
FW
1759 /*
1760 * Number of functions that haven't been traced
1761 * because of depth overrun.
1762 */
1763 atomic_t trace_overrun;
380c4b14
FW
1764 /* Pause for the tracing */
1765 atomic_t tracing_graph_pause;
f201ae23 1766#endif
ea4e2bc4
SR
1767#ifdef CONFIG_TRACING
1768 /* state flags for use by tracers */
1769 unsigned long trace;
b1cff0ad 1770 /* bitmask and counter of trace recursion */
261842b7
SR
1771 unsigned long trace_recursion;
1772#endif /* CONFIG_TRACING */
6f185c29 1773#ifdef CONFIG_MEMCG
519e5247 1774 struct memcg_oom_info {
49426420
JW
1775 struct mem_cgroup *memcg;
1776 gfp_t gfp_mask;
1777 int order;
519e5247
JW
1778 unsigned int may_oom:1;
1779 } memcg_oom;
569b846d 1780#endif
0326f5a9
SD
1781#ifdef CONFIG_UPROBES
1782 struct uprobe_task *utask;
0326f5a9 1783#endif
cafe5635
KO
1784#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1785 unsigned int sequential_io;
1786 unsigned int sequential_io_avg;
1787#endif
8eb23b9f
PZ
1788#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1789 unsigned long task_state_change;
1790#endif
8bcbde54 1791 int pagefault_disabled;
1da177e4
LT
1792};
1793
76e6eee0 1794/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1795#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1796
6688cc05
PZ
1797#define TNF_MIGRATED 0x01
1798#define TNF_NO_GROUP 0x02
dabe1d99 1799#define TNF_SHARED 0x04
04bb2f94 1800#define TNF_FAULT_LOCAL 0x08
074c2381 1801#define TNF_MIGRATE_FAIL 0x10
6688cc05 1802
cbee9f88 1803#ifdef CONFIG_NUMA_BALANCING
6688cc05 1804extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1805extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1806extern void set_numabalancing_state(bool enabled);
82727018 1807extern void task_numa_free(struct task_struct *p);
10f39042
RR
1808extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1809 int src_nid, int dst_cpu);
cbee9f88 1810#else
ac8e895b 1811static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1812 int flags)
cbee9f88
PZ
1813{
1814}
e29cf08b
MG
1815static inline pid_t task_numa_group_id(struct task_struct *p)
1816{
1817 return 0;
1818}
1a687c2e
MG
1819static inline void set_numabalancing_state(bool enabled)
1820{
1821}
82727018
RR
1822static inline void task_numa_free(struct task_struct *p)
1823{
1824}
10f39042
RR
1825static inline bool should_numa_migrate_memory(struct task_struct *p,
1826 struct page *page, int src_nid, int dst_cpu)
1827{
1828 return true;
1829}
cbee9f88
PZ
1830#endif
1831
e868171a 1832static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1833{
1834 return task->pids[PIDTYPE_PID].pid;
1835}
1836
e868171a 1837static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1838{
1839 return task->group_leader->pids[PIDTYPE_PID].pid;
1840}
1841
6dda81f4
ON
1842/*
1843 * Without tasklist or rcu lock it is not safe to dereference
1844 * the result of task_pgrp/task_session even if task == current,
1845 * we can race with another thread doing sys_setsid/sys_setpgid.
1846 */
e868171a 1847static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1848{
1849 return task->group_leader->pids[PIDTYPE_PGID].pid;
1850}
1851
e868171a 1852static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1853{
1854 return task->group_leader->pids[PIDTYPE_SID].pid;
1855}
1856
7af57294
PE
1857struct pid_namespace;
1858
1859/*
1860 * the helpers to get the task's different pids as they are seen
1861 * from various namespaces
1862 *
1863 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1864 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1865 * current.
7af57294
PE
1866 * task_xid_nr_ns() : id seen from the ns specified;
1867 *
1868 * set_task_vxid() : assigns a virtual id to a task;
1869 *
7af57294
PE
1870 * see also pid_nr() etc in include/linux/pid.h
1871 */
52ee2dfd
ON
1872pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1873 struct pid_namespace *ns);
7af57294 1874
e868171a 1875static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1876{
1877 return tsk->pid;
1878}
1879
52ee2dfd
ON
1880static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1881 struct pid_namespace *ns)
1882{
1883 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1884}
7af57294
PE
1885
1886static inline pid_t task_pid_vnr(struct task_struct *tsk)
1887{
52ee2dfd 1888 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1889}
1890
1891
e868171a 1892static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1893{
1894 return tsk->tgid;
1895}
1896
2f2a3a46 1897pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1898
1899static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1900{
1901 return pid_vnr(task_tgid(tsk));
1902}
1903
1904
80e0b6e8 1905static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1906static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1907{
1908 pid_t pid = 0;
1909
1910 rcu_read_lock();
1911 if (pid_alive(tsk))
1912 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1913 rcu_read_unlock();
1914
1915 return pid;
1916}
1917
1918static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1919{
1920 return task_ppid_nr_ns(tsk, &init_pid_ns);
1921}
1922
52ee2dfd
ON
1923static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1924 struct pid_namespace *ns)
7af57294 1925{
52ee2dfd 1926 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1927}
1928
7af57294
PE
1929static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1930{
52ee2dfd 1931 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1932}
1933
1934
52ee2dfd
ON
1935static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1936 struct pid_namespace *ns)
7af57294 1937{
52ee2dfd 1938 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1939}
1940
7af57294
PE
1941static inline pid_t task_session_vnr(struct task_struct *tsk)
1942{
52ee2dfd 1943 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1944}
1945
1b0f7ffd
ON
1946/* obsolete, do not use */
1947static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1948{
1949 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1950}
7af57294 1951
1da177e4
LT
1952/**
1953 * pid_alive - check that a task structure is not stale
1954 * @p: Task structure to be checked.
1955 *
1956 * Test if a process is not yet dead (at most zombie state)
1957 * If pid_alive fails, then pointers within the task structure
1958 * can be stale and must not be dereferenced.
e69f6186
YB
1959 *
1960 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1961 */
ad36d282 1962static inline int pid_alive(const struct task_struct *p)
1da177e4 1963{
92476d7f 1964 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1965}
1966
f400e198 1967/**
b460cbc5 1968 * is_global_init - check if a task structure is init
3260259f
H
1969 * @tsk: Task structure to be checked.
1970 *
1971 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1972 *
1973 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1974 */
e868171a 1975static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1976{
1977 return tsk->pid == 1;
1978}
b460cbc5 1979
9ec52099
CLG
1980extern struct pid *cad_pid;
1981
1da177e4 1982extern void free_task(struct task_struct *tsk);
1da177e4 1983#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 1984
158d9ebd 1985extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
1986
1987static inline void put_task_struct(struct task_struct *t)
1988{
1989 if (atomic_dec_and_test(&t->usage))
8c7904a0 1990 __put_task_struct(t);
e56d0903 1991}
1da177e4 1992
6a61671b
FW
1993#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1994extern void task_cputime(struct task_struct *t,
1995 cputime_t *utime, cputime_t *stime);
1996extern void task_cputime_scaled(struct task_struct *t,
1997 cputime_t *utimescaled, cputime_t *stimescaled);
1998extern cputime_t task_gtime(struct task_struct *t);
1999#else
6fac4829
FW
2000static inline void task_cputime(struct task_struct *t,
2001 cputime_t *utime, cputime_t *stime)
2002{
2003 if (utime)
2004 *utime = t->utime;
2005 if (stime)
2006 *stime = t->stime;
2007}
2008
2009static inline void task_cputime_scaled(struct task_struct *t,
2010 cputime_t *utimescaled,
2011 cputime_t *stimescaled)
2012{
2013 if (utimescaled)
2014 *utimescaled = t->utimescaled;
2015 if (stimescaled)
2016 *stimescaled = t->stimescaled;
2017}
6a61671b
FW
2018
2019static inline cputime_t task_gtime(struct task_struct *t)
2020{
2021 return t->gtime;
2022}
2023#endif
e80d0a1a
FW
2024extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2025extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2026
1da177e4
LT
2027/*
2028 * Per process flags
2029 */
1da177e4 2030#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2031#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2032#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2033#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2034#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2035#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2036#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2037#define PF_DUMPCORE 0x00000200 /* dumped core */
2038#define PF_SIGNALED 0x00000400 /* killed by a signal */
2039#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2040#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2041#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2042#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2043#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2044#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2045#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2046#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2047#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2048#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2049#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2050#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2051#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2052#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2053#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2054#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2055#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2056#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2057
2058/*
2059 * Only the _current_ task can read/write to tsk->flags, but other
2060 * tasks can access tsk->flags in readonly mode for example
2061 * with tsk_used_math (like during threaded core dumping).
2062 * There is however an exception to this rule during ptrace
2063 * or during fork: the ptracer task is allowed to write to the
2064 * child->flags of its traced child (same goes for fork, the parent
2065 * can write to the child->flags), because we're guaranteed the
2066 * child is not running and in turn not changing child->flags
2067 * at the same time the parent does it.
2068 */
2069#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2070#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2071#define clear_used_math() clear_stopped_child_used_math(current)
2072#define set_used_math() set_stopped_child_used_math(current)
2073#define conditional_stopped_child_used_math(condition, child) \
2074 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2075#define conditional_used_math(condition) \
2076 conditional_stopped_child_used_math(condition, current)
2077#define copy_to_stopped_child_used_math(child) \
2078 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2079/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2080#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2081#define used_math() tsk_used_math(current)
2082
934f3072
JB
2083/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2084 * __GFP_FS is also cleared as it implies __GFP_IO.
2085 */
21caf2fc
ML
2086static inline gfp_t memalloc_noio_flags(gfp_t flags)
2087{
2088 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2089 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2090 return flags;
2091}
2092
2093static inline unsigned int memalloc_noio_save(void)
2094{
2095 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2096 current->flags |= PF_MEMALLOC_NOIO;
2097 return flags;
2098}
2099
2100static inline void memalloc_noio_restore(unsigned int flags)
2101{
2102 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2103}
2104
1d4457f9 2105/* Per-process atomic flags. */
a2b86f77 2106#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2107#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2108#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2109
1d4457f9 2110
e0e5070b
ZL
2111#define TASK_PFA_TEST(name, func) \
2112 static inline bool task_##func(struct task_struct *p) \
2113 { return test_bit(PFA_##name, &p->atomic_flags); }
2114#define TASK_PFA_SET(name, func) \
2115 static inline void task_set_##func(struct task_struct *p) \
2116 { set_bit(PFA_##name, &p->atomic_flags); }
2117#define TASK_PFA_CLEAR(name, func) \
2118 static inline void task_clear_##func(struct task_struct *p) \
2119 { clear_bit(PFA_##name, &p->atomic_flags); }
2120
2121TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2122TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2123
2ad654bc
ZL
2124TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2125TASK_PFA_SET(SPREAD_PAGE, spread_page)
2126TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2127
2128TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2129TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2130TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2131
e5c1902e 2132/*
a8f072c1 2133 * task->jobctl flags
e5c1902e 2134 */
a8f072c1 2135#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2136
a8f072c1
TH
2137#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2138#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2139#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2140#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2141#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2142#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2143#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2144
b76808e6
PD
2145#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2146#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2147#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2148#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2149#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2150#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2151#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2152
fb1d910c 2153#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2154#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2155
7dd3db54 2156extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2157 unsigned long mask);
73ddff2b 2158extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2159extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2160 unsigned long mask);
39efa3ef 2161
f41d911f
PM
2162static inline void rcu_copy_process(struct task_struct *p)
2163{
8315f422 2164#ifdef CONFIG_PREEMPT_RCU
f41d911f 2165 p->rcu_read_lock_nesting = 0;
1d082fd0 2166 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2167 p->rcu_blocked_node = NULL;
f41d911f 2168 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2169#endif /* #ifdef CONFIG_PREEMPT_RCU */
2170#ifdef CONFIG_TASKS_RCU
2171 p->rcu_tasks_holdout = false;
2172 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2173 p->rcu_tasks_idle_cpu = -1;
8315f422 2174#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2175}
2176
907aed48
MG
2177static inline void tsk_restore_flags(struct task_struct *task,
2178 unsigned long orig_flags, unsigned long flags)
2179{
2180 task->flags &= ~flags;
2181 task->flags |= orig_flags & flags;
2182}
2183
f82f8042
JL
2184extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2185 const struct cpumask *trial);
7f51412a
JL
2186extern int task_can_attach(struct task_struct *p,
2187 const struct cpumask *cs_cpus_allowed);
1da177e4 2188#ifdef CONFIG_SMP
1e1b6c51
KM
2189extern void do_set_cpus_allowed(struct task_struct *p,
2190 const struct cpumask *new_mask);
2191
cd8ba7cd 2192extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2193 const struct cpumask *new_mask);
1da177e4 2194#else
1e1b6c51
KM
2195static inline void do_set_cpus_allowed(struct task_struct *p,
2196 const struct cpumask *new_mask)
2197{
2198}
cd8ba7cd 2199static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2200 const struct cpumask *new_mask)
1da177e4 2201{
96f874e2 2202 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2203 return -EINVAL;
2204 return 0;
2205}
2206#endif
e0ad9556 2207
3451d024 2208#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2209void calc_load_enter_idle(void);
2210void calc_load_exit_idle(void);
2211#else
2212static inline void calc_load_enter_idle(void) { }
2213static inline void calc_load_exit_idle(void) { }
3451d024 2214#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2215
e0ad9556 2216#ifndef CONFIG_CPUMASK_OFFSTACK
cd8ba7cd
MT
2217static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2218{
2219 return set_cpus_allowed_ptr(p, &new_mask);
2220}
e0ad9556 2221#endif
1da177e4 2222
b342501c 2223/*
c676329a
PZ
2224 * Do not use outside of architecture code which knows its limitations.
2225 *
2226 * sched_clock() has no promise of monotonicity or bounded drift between
2227 * CPUs, use (which you should not) requires disabling IRQs.
2228 *
2229 * Please use one of the three interfaces below.
b342501c 2230 */
1bbfa6f2 2231extern unsigned long long notrace sched_clock(void);
c676329a 2232/*
489a71b0 2233 * See the comment in kernel/sched/clock.c
c676329a
PZ
2234 */
2235extern u64 cpu_clock(int cpu);
2236extern u64 local_clock(void);
545a2bf7 2237extern u64 running_clock(void);
c676329a
PZ
2238extern u64 sched_clock_cpu(int cpu);
2239
e436d800 2240
c1955a3d 2241extern void sched_clock_init(void);
3e51f33f 2242
c1955a3d 2243#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2244static inline void sched_clock_tick(void)
2245{
2246}
2247
2248static inline void sched_clock_idle_sleep_event(void)
2249{
2250}
2251
2252static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2253{
2254}
2255#else
c676329a
PZ
2256/*
2257 * Architectures can set this to 1 if they have specified
2258 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2259 * but then during bootup it turns out that sched_clock()
2260 * is reliable after all:
2261 */
35af99e6
PZ
2262extern int sched_clock_stable(void);
2263extern void set_sched_clock_stable(void);
2264extern void clear_sched_clock_stable(void);
c676329a 2265
3e51f33f
PZ
2266extern void sched_clock_tick(void);
2267extern void sched_clock_idle_sleep_event(void);
2268extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2269#endif
2270
b52bfee4
VP
2271#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2272/*
2273 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2274 * The reason for this explicit opt-in is not to have perf penalty with
2275 * slow sched_clocks.
2276 */
2277extern void enable_sched_clock_irqtime(void);
2278extern void disable_sched_clock_irqtime(void);
2279#else
2280static inline void enable_sched_clock_irqtime(void) {}
2281static inline void disable_sched_clock_irqtime(void) {}
2282#endif
2283
36c8b586 2284extern unsigned long long
41b86e9c 2285task_sched_runtime(struct task_struct *task);
1da177e4
LT
2286
2287/* sched_exec is called by processes performing an exec */
2288#ifdef CONFIG_SMP
2289extern void sched_exec(void);
2290#else
2291#define sched_exec() {}
2292#endif
2293
2aa44d05
IM
2294extern void sched_clock_idle_sleep_event(void);
2295extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2296
1da177e4
LT
2297#ifdef CONFIG_HOTPLUG_CPU
2298extern void idle_task_exit(void);
2299#else
2300static inline void idle_task_exit(void) {}
2301#endif
2302
3451d024 2303#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2304extern void wake_up_nohz_cpu(int cpu);
06d8308c 2305#else
1c20091e 2306static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2307#endif
2308
ce831b38
FW
2309#ifdef CONFIG_NO_HZ_FULL
2310extern bool sched_can_stop_tick(void);
265f22a9 2311extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2312#else
2313static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2314#endif
2315
5091faa4 2316#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2317extern void sched_autogroup_create_attach(struct task_struct *p);
2318extern void sched_autogroup_detach(struct task_struct *p);
2319extern void sched_autogroup_fork(struct signal_struct *sig);
2320extern void sched_autogroup_exit(struct signal_struct *sig);
2321#ifdef CONFIG_PROC_FS
2322extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2323extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2324#endif
2325#else
2326static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2327static inline void sched_autogroup_detach(struct task_struct *p) { }
2328static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2329static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2330#endif
2331
fa93384f 2332extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2333extern void set_user_nice(struct task_struct *p, long nice);
2334extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2335/**
2336 * task_nice - return the nice value of a given task.
2337 * @p: the task in question.
2338 *
2339 * Return: The nice value [ -20 ... 0 ... 19 ].
2340 */
2341static inline int task_nice(const struct task_struct *p)
2342{
2343 return PRIO_TO_NICE((p)->static_prio);
2344}
36c8b586
IM
2345extern int can_nice(const struct task_struct *p, const int nice);
2346extern int task_curr(const struct task_struct *p);
1da177e4 2347extern int idle_cpu(int cpu);
fe7de49f
KM
2348extern int sched_setscheduler(struct task_struct *, int,
2349 const struct sched_param *);
961ccddd 2350extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2351 const struct sched_param *);
d50dde5a
DF
2352extern int sched_setattr(struct task_struct *,
2353 const struct sched_attr *);
36c8b586 2354extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2355/**
2356 * is_idle_task - is the specified task an idle task?
fa757281 2357 * @p: the task in question.
e69f6186
YB
2358 *
2359 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2360 */
7061ca3b 2361static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2362{
2363 return p->pid == 0;
2364}
36c8b586
IM
2365extern struct task_struct *curr_task(int cpu);
2366extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2367
2368void yield(void);
2369
1da177e4
LT
2370union thread_union {
2371 struct thread_info thread_info;
2372 unsigned long stack[THREAD_SIZE/sizeof(long)];
2373};
2374
2375#ifndef __HAVE_ARCH_KSTACK_END
2376static inline int kstack_end(void *addr)
2377{
2378 /* Reliable end of stack detection:
2379 * Some APM bios versions misalign the stack
2380 */
2381 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2382}
2383#endif
2384
2385extern union thread_union init_thread_union;
2386extern struct task_struct init_task;
2387
2388extern struct mm_struct init_mm;
2389
198fe21b
PE
2390extern struct pid_namespace init_pid_ns;
2391
2392/*
2393 * find a task by one of its numerical ids
2394 *
198fe21b
PE
2395 * find_task_by_pid_ns():
2396 * finds a task by its pid in the specified namespace
228ebcbe
PE
2397 * find_task_by_vpid():
2398 * finds a task by its virtual pid
198fe21b 2399 *
e49859e7 2400 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2401 */
2402
228ebcbe
PE
2403extern struct task_struct *find_task_by_vpid(pid_t nr);
2404extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2405 struct pid_namespace *ns);
198fe21b 2406
1da177e4 2407/* per-UID process charging. */
7b44ab97 2408extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2409static inline struct user_struct *get_uid(struct user_struct *u)
2410{
2411 atomic_inc(&u->__count);
2412 return u;
2413}
2414extern void free_uid(struct user_struct *);
1da177e4
LT
2415
2416#include <asm/current.h>
2417
f0af911a 2418extern void xtime_update(unsigned long ticks);
1da177e4 2419
b3c97528
HH
2420extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2421extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2422extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2423#ifdef CONFIG_SMP
2424 extern void kick_process(struct task_struct *tsk);
2425#else
2426 static inline void kick_process(struct task_struct *tsk) { }
2427#endif
aab03e05 2428extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2429extern void sched_dead(struct task_struct *p);
1da177e4 2430
1da177e4
LT
2431extern void proc_caches_init(void);
2432extern void flush_signals(struct task_struct *);
3bcac026 2433extern void __flush_signals(struct task_struct *);
10ab825b 2434extern void ignore_signals(struct task_struct *);
1da177e4
LT
2435extern void flush_signal_handlers(struct task_struct *, int force_default);
2436extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2437
2438static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2439{
2440 unsigned long flags;
2441 int ret;
2442
2443 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2444 ret = dequeue_signal(tsk, mask, info);
2445 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2446
2447 return ret;
53c8f9f1 2448}
1da177e4
LT
2449
2450extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2451 sigset_t *mask);
2452extern void unblock_all_signals(void);
2453extern void release_task(struct task_struct * p);
2454extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2455extern int force_sigsegv(int, struct task_struct *);
2456extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2457extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2458extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2459extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2460 const struct cred *, u32);
c4b92fc1
EB
2461extern int kill_pgrp(struct pid *pid, int sig, int priv);
2462extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2463extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2464extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2465extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2466extern void force_sig(int, struct task_struct *);
1da177e4 2467extern int send_sig(int, struct task_struct *, int);
09faef11 2468extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2469extern struct sigqueue *sigqueue_alloc(void);
2470extern void sigqueue_free(struct sigqueue *);
ac5c2153 2471extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2472extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2473
51a7b448
AV
2474static inline void restore_saved_sigmask(void)
2475{
2476 if (test_and_clear_restore_sigmask())
77097ae5 2477 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2478}
2479
b7f9a11a
AV
2480static inline sigset_t *sigmask_to_save(void)
2481{
2482 sigset_t *res = &current->blocked;
2483 if (unlikely(test_restore_sigmask()))
2484 res = &current->saved_sigmask;
2485 return res;
2486}
2487
9ec52099
CLG
2488static inline int kill_cad_pid(int sig, int priv)
2489{
2490 return kill_pid(cad_pid, sig, priv);
2491}
2492
1da177e4
LT
2493/* These can be the second arg to send_sig_info/send_group_sig_info. */
2494#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2495#define SEND_SIG_PRIV ((struct siginfo *) 1)
2496#define SEND_SIG_FORCED ((struct siginfo *) 2)
2497
2a855dd0
SAS
2498/*
2499 * True if we are on the alternate signal stack.
2500 */
1da177e4
LT
2501static inline int on_sig_stack(unsigned long sp)
2502{
2a855dd0
SAS
2503#ifdef CONFIG_STACK_GROWSUP
2504 return sp >= current->sas_ss_sp &&
2505 sp - current->sas_ss_sp < current->sas_ss_size;
2506#else
2507 return sp > current->sas_ss_sp &&
2508 sp - current->sas_ss_sp <= current->sas_ss_size;
2509#endif
1da177e4
LT
2510}
2511
2512static inline int sas_ss_flags(unsigned long sp)
2513{
72f15c03
RW
2514 if (!current->sas_ss_size)
2515 return SS_DISABLE;
2516
2517 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2518}
2519
5a1b98d3
AV
2520static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2521{
2522 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2523#ifdef CONFIG_STACK_GROWSUP
2524 return current->sas_ss_sp;
2525#else
2526 return current->sas_ss_sp + current->sas_ss_size;
2527#endif
2528 return sp;
2529}
2530
1da177e4
LT
2531/*
2532 * Routines for handling mm_structs
2533 */
2534extern struct mm_struct * mm_alloc(void);
2535
2536/* mmdrop drops the mm and the page tables */
b3c97528 2537extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2538static inline void mmdrop(struct mm_struct * mm)
2539{
6fb43d7b 2540 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2541 __mmdrop(mm);
2542}
2543
2544/* mmput gets rid of the mappings and all user-space */
2545extern void mmput(struct mm_struct *);
2546/* Grab a reference to a task's mm, if it is not already going away */
2547extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2548/*
2549 * Grab a reference to a task's mm, if it is not already going away
2550 * and ptrace_may_access with the mode parameter passed to it
2551 * succeeds.
2552 */
2553extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2554/* Remove the current tasks stale references to the old mm_struct */
2555extern void mm_release(struct task_struct *, struct mm_struct *);
2556
6f2c55b8 2557extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2558 struct task_struct *);
1da177e4
LT
2559extern void flush_thread(void);
2560extern void exit_thread(void);
2561
1da177e4 2562extern void exit_files(struct task_struct *);
a7e5328a 2563extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2564
1da177e4 2565extern void exit_itimers(struct signal_struct *);
cbaffba1 2566extern void flush_itimer_signals(void);
1da177e4 2567
9402c95f 2568extern void do_group_exit(int);
1da177e4 2569
c4ad8f98 2570extern int do_execve(struct filename *,
d7627467 2571 const char __user * const __user *,
da3d4c5f 2572 const char __user * const __user *);
51f39a1f
DD
2573extern int do_execveat(int, struct filename *,
2574 const char __user * const __user *,
2575 const char __user * const __user *,
2576 int);
e80d6661 2577extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2578struct task_struct *fork_idle(int);
2aa3a7f8 2579extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2580
82b89778
AH
2581extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2582static inline void set_task_comm(struct task_struct *tsk, const char *from)
2583{
2584 __set_task_comm(tsk, from, false);
2585}
59714d65 2586extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2587
2588#ifdef CONFIG_SMP
317f3941 2589void scheduler_ipi(void);
85ba2d86 2590extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2591#else
184748cc 2592static inline void scheduler_ipi(void) { }
85ba2d86
RM
2593static inline unsigned long wait_task_inactive(struct task_struct *p,
2594 long match_state)
2595{
2596 return 1;
2597}
1da177e4
LT
2598#endif
2599
05725f7e
JP
2600#define next_task(p) \
2601 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2602
2603#define for_each_process(p) \
2604 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2605
5bb459bb 2606extern bool current_is_single_threaded(void);
d84f4f99 2607
1da177e4
LT
2608/*
2609 * Careful: do_each_thread/while_each_thread is a double loop so
2610 * 'break' will not work as expected - use goto instead.
2611 */
2612#define do_each_thread(g, t) \
2613 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2614
2615#define while_each_thread(g, t) \
2616 while ((t = next_thread(t)) != g)
2617
0c740d0a
ON
2618#define __for_each_thread(signal, t) \
2619 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2620
2621#define for_each_thread(p, t) \
2622 __for_each_thread((p)->signal, t)
2623
2624/* Careful: this is a double loop, 'break' won't work as expected. */
2625#define for_each_process_thread(p, t) \
2626 for_each_process(p) for_each_thread(p, t)
2627
7e49827c
ON
2628static inline int get_nr_threads(struct task_struct *tsk)
2629{
b3ac022c 2630 return tsk->signal->nr_threads;
7e49827c
ON
2631}
2632
087806b1
ON
2633static inline bool thread_group_leader(struct task_struct *p)
2634{
2635 return p->exit_signal >= 0;
2636}
1da177e4 2637
0804ef4b
EB
2638/* Do to the insanities of de_thread it is possible for a process
2639 * to have the pid of the thread group leader without actually being
2640 * the thread group leader. For iteration through the pids in proc
2641 * all we care about is that we have a task with the appropriate
2642 * pid, we don't actually care if we have the right task.
2643 */
e1403b8e 2644static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2645{
e1403b8e 2646 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2647}
2648
bac0abd6 2649static inline
e1403b8e 2650bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2651{
e1403b8e 2652 return p1->signal == p2->signal;
bac0abd6
PE
2653}
2654
36c8b586 2655static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2656{
05725f7e
JP
2657 return list_entry_rcu(p->thread_group.next,
2658 struct task_struct, thread_group);
47e65328
ON
2659}
2660
e868171a 2661static inline int thread_group_empty(struct task_struct *p)
1da177e4 2662{
47e65328 2663 return list_empty(&p->thread_group);
1da177e4
LT
2664}
2665
2666#define delay_group_leader(p) \
2667 (thread_group_leader(p) && !thread_group_empty(p))
2668
1da177e4 2669/*
260ea101 2670 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2671 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2672 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2673 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2674 *
2675 * Nests both inside and outside of read_lock(&tasklist_lock).
2676 * It must not be nested with write_lock_irq(&tasklist_lock),
2677 * neither inside nor outside.
2678 */
2679static inline void task_lock(struct task_struct *p)
2680{
2681 spin_lock(&p->alloc_lock);
2682}
2683
2684static inline void task_unlock(struct task_struct *p)
2685{
2686 spin_unlock(&p->alloc_lock);
2687}
2688
b8ed374e 2689extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2690 unsigned long *flags);
2691
9388dc30
AV
2692static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2693 unsigned long *flags)
2694{
2695 struct sighand_struct *ret;
2696
2697 ret = __lock_task_sighand(tsk, flags);
2698 (void)__cond_lock(&tsk->sighand->siglock, ret);
2699 return ret;
2700}
b8ed374e 2701
f63ee72e
ON
2702static inline void unlock_task_sighand(struct task_struct *tsk,
2703 unsigned long *flags)
2704{
2705 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2706}
2707
4714d1d3 2708#ifdef CONFIG_CGROUPS
257058ae 2709static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2710{
257058ae 2711 down_read(&tsk->signal->group_rwsem);
4714d1d3 2712}
257058ae 2713static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2714{
257058ae 2715 up_read(&tsk->signal->group_rwsem);
4714d1d3 2716}
77e4ef99
TH
2717
2718/**
2719 * threadgroup_lock - lock threadgroup
2720 * @tsk: member task of the threadgroup to lock
2721 *
2722 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2723 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
e56fb287
ON
2724 * change ->group_leader/pid. This is useful for cases where the threadgroup
2725 * needs to stay stable across blockable operations.
77e4ef99
TH
2726 *
2727 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2728 * synchronization. While held, no new task will be added to threadgroup
2729 * and no existing live task will have its PF_EXITING set.
2730 *
e56fb287
ON
2731 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2732 * sub-thread becomes a new leader.
77e4ef99 2733 */
257058ae 2734static inline void threadgroup_lock(struct task_struct *tsk)
4714d1d3 2735{
257058ae 2736 down_write(&tsk->signal->group_rwsem);
4714d1d3 2737}
77e4ef99
TH
2738
2739/**
2740 * threadgroup_unlock - unlock threadgroup
2741 * @tsk: member task of the threadgroup to unlock
2742 *
2743 * Reverse threadgroup_lock().
2744 */
257058ae 2745static inline void threadgroup_unlock(struct task_struct *tsk)
4714d1d3 2746{
257058ae 2747 up_write(&tsk->signal->group_rwsem);
4714d1d3
BB
2748}
2749#else
257058ae
TH
2750static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2751static inline void threadgroup_change_end(struct task_struct *tsk) {}
2752static inline void threadgroup_lock(struct task_struct *tsk) {}
2753static inline void threadgroup_unlock(struct task_struct *tsk) {}
4714d1d3
BB
2754#endif
2755
f037360f
AV
2756#ifndef __HAVE_THREAD_FUNCTIONS
2757
f7e4217b
RZ
2758#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2759#define task_stack_page(task) ((task)->stack)
a1261f54 2760
10ebffde
AV
2761static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2762{
2763 *task_thread_info(p) = *task_thread_info(org);
2764 task_thread_info(p)->task = p;
2765}
2766
6a40281a
CE
2767/*
2768 * Return the address of the last usable long on the stack.
2769 *
2770 * When the stack grows down, this is just above the thread
2771 * info struct. Going any lower will corrupt the threadinfo.
2772 *
2773 * When the stack grows up, this is the highest address.
2774 * Beyond that position, we corrupt data on the next page.
2775 */
10ebffde
AV
2776static inline unsigned long *end_of_stack(struct task_struct *p)
2777{
6a40281a
CE
2778#ifdef CONFIG_STACK_GROWSUP
2779 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2780#else
f7e4217b 2781 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2782#endif
10ebffde
AV
2783}
2784
f037360f 2785#endif
a70857e4
AT
2786#define task_stack_end_corrupted(task) \
2787 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2788
8b05c7e6
FT
2789static inline int object_is_on_stack(void *obj)
2790{
2791 void *stack = task_stack_page(current);
2792
2793 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2794}
2795
8c9843e5
BH
2796extern void thread_info_cache_init(void);
2797
7c9f8861
ES
2798#ifdef CONFIG_DEBUG_STACK_USAGE
2799static inline unsigned long stack_not_used(struct task_struct *p)
2800{
2801 unsigned long *n = end_of_stack(p);
2802
2803 do { /* Skip over canary */
2804 n++;
2805 } while (!*n);
2806
2807 return (unsigned long)n - (unsigned long)end_of_stack(p);
2808}
2809#endif
d4311ff1 2810extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2811
1da177e4
LT
2812/* set thread flags in other task's structures
2813 * - see asm/thread_info.h for TIF_xxxx flags available
2814 */
2815static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2816{
a1261f54 2817 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2818}
2819
2820static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2821{
a1261f54 2822 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2823}
2824
2825static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2826{
a1261f54 2827 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2828}
2829
2830static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2831{
a1261f54 2832 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2833}
2834
2835static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2836{
a1261f54 2837 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2838}
2839
2840static inline void set_tsk_need_resched(struct task_struct *tsk)
2841{
2842 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2843}
2844
2845static inline void clear_tsk_need_resched(struct task_struct *tsk)
2846{
2847 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2848}
2849
8ae121ac
GH
2850static inline int test_tsk_need_resched(struct task_struct *tsk)
2851{
2852 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2853}
2854
690cc3ff
EB
2855static inline int restart_syscall(void)
2856{
2857 set_tsk_thread_flag(current, TIF_SIGPENDING);
2858 return -ERESTARTNOINTR;
2859}
2860
1da177e4
LT
2861static inline int signal_pending(struct task_struct *p)
2862{
2863 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2864}
f776d12d 2865
d9588725
RM
2866static inline int __fatal_signal_pending(struct task_struct *p)
2867{
2868 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2869}
f776d12d
MW
2870
2871static inline int fatal_signal_pending(struct task_struct *p)
2872{
2873 return signal_pending(p) && __fatal_signal_pending(p);
2874}
2875
16882c1e
ON
2876static inline int signal_pending_state(long state, struct task_struct *p)
2877{
2878 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2879 return 0;
2880 if (!signal_pending(p))
2881 return 0;
2882
16882c1e
ON
2883 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2884}
2885
1da177e4
LT
2886/*
2887 * cond_resched() and cond_resched_lock(): latency reduction via
2888 * explicit rescheduling in places that are safe. The return
2889 * value indicates whether a reschedule was done in fact.
2890 * cond_resched_lock() will drop the spinlock before scheduling,
2891 * cond_resched_softirq() will enable bhs before scheduling.
2892 */
c3921ab7 2893extern int _cond_resched(void);
6f80bd98 2894
613afbf8 2895#define cond_resched() ({ \
3427445a 2896 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2897 _cond_resched(); \
2898})
6f80bd98 2899
613afbf8
FW
2900extern int __cond_resched_lock(spinlock_t *lock);
2901
bdd4e85d 2902#ifdef CONFIG_PREEMPT_COUNT
716a4234 2903#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
02b67cc3 2904#else
716a4234 2905#define PREEMPT_LOCK_OFFSET 0
02b67cc3 2906#endif
716a4234 2907
613afbf8 2908#define cond_resched_lock(lock) ({ \
3427445a 2909 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2910 __cond_resched_lock(lock); \
2911})
2912
2913extern int __cond_resched_softirq(void);
2914
75e1056f 2915#define cond_resched_softirq() ({ \
3427445a 2916 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2917 __cond_resched_softirq(); \
613afbf8 2918})
1da177e4 2919
f6f3c437
SH
2920static inline void cond_resched_rcu(void)
2921{
2922#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2923 rcu_read_unlock();
2924 cond_resched();
2925 rcu_read_lock();
2926#endif
2927}
2928
1da177e4
LT
2929/*
2930 * Does a critical section need to be broken due to another
95c354fe
NP
2931 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2932 * but a general need for low latency)
1da177e4 2933 */
95c354fe 2934static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2935{
95c354fe
NP
2936#ifdef CONFIG_PREEMPT
2937 return spin_is_contended(lock);
2938#else
1da177e4 2939 return 0;
95c354fe 2940#endif
1da177e4
LT
2941}
2942
ee761f62
TG
2943/*
2944 * Idle thread specific functions to determine the need_resched
69dd0f84 2945 * polling state.
ee761f62 2946 */
69dd0f84 2947#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2948static inline int tsk_is_polling(struct task_struct *p)
2949{
2950 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2951}
ea811747
PZ
2952
2953static inline void __current_set_polling(void)
3a98f871
TG
2954{
2955 set_thread_flag(TIF_POLLING_NRFLAG);
2956}
2957
ea811747
PZ
2958static inline bool __must_check current_set_polling_and_test(void)
2959{
2960 __current_set_polling();
2961
2962 /*
2963 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2964 * paired by resched_curr()
ea811747 2965 */
4e857c58 2966 smp_mb__after_atomic();
ea811747
PZ
2967
2968 return unlikely(tif_need_resched());
2969}
2970
2971static inline void __current_clr_polling(void)
3a98f871
TG
2972{
2973 clear_thread_flag(TIF_POLLING_NRFLAG);
2974}
ea811747
PZ
2975
2976static inline bool __must_check current_clr_polling_and_test(void)
2977{
2978 __current_clr_polling();
2979
2980 /*
2981 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2982 * paired by resched_curr()
ea811747 2983 */
4e857c58 2984 smp_mb__after_atomic();
ea811747
PZ
2985
2986 return unlikely(tif_need_resched());
2987}
2988
ee761f62
TG
2989#else
2990static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2991static inline void __current_set_polling(void) { }
2992static inline void __current_clr_polling(void) { }
2993
2994static inline bool __must_check current_set_polling_and_test(void)
2995{
2996 return unlikely(tif_need_resched());
2997}
2998static inline bool __must_check current_clr_polling_and_test(void)
2999{
3000 return unlikely(tif_need_resched());
3001}
ee761f62
TG
3002#endif
3003
8cb75e0c
PZ
3004static inline void current_clr_polling(void)
3005{
3006 __current_clr_polling();
3007
3008 /*
3009 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3010 * Once the bit is cleared, we'll get IPIs with every new
3011 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3012 * fold.
3013 */
8875125e 3014 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3015
3016 preempt_fold_need_resched();
3017}
3018
75f93fed
PZ
3019static __always_inline bool need_resched(void)
3020{
3021 return unlikely(tif_need_resched());
3022}
3023
f06febc9
FM
3024/*
3025 * Thread group CPU time accounting.
3026 */
4cd4c1b4 3027void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3028void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3029
7bb44ade
RM
3030/*
3031 * Reevaluate whether the task has signals pending delivery.
3032 * Wake the task if so.
3033 * This is required every time the blocked sigset_t changes.
3034 * callers must hold sighand->siglock.
3035 */
3036extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3037extern void recalc_sigpending(void);
3038
910ffdb1
ON
3039extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3040
3041static inline void signal_wake_up(struct task_struct *t, bool resume)
3042{
3043 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3044}
3045static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3046{
3047 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3048}
1da177e4
LT
3049
3050/*
3051 * Wrappers for p->thread_info->cpu access. No-op on UP.
3052 */
3053#ifdef CONFIG_SMP
3054
3055static inline unsigned int task_cpu(const struct task_struct *p)
3056{
a1261f54 3057 return task_thread_info(p)->cpu;
1da177e4
LT
3058}
3059
b32e86b4
IM
3060static inline int task_node(const struct task_struct *p)
3061{
3062 return cpu_to_node(task_cpu(p));
3063}
3064
c65cc870 3065extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3066
3067#else
3068
3069static inline unsigned int task_cpu(const struct task_struct *p)
3070{
3071 return 0;
3072}
3073
3074static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3075{
3076}
3077
3078#endif /* CONFIG_SMP */
3079
96f874e2
RR
3080extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3081extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3082
7c941438 3083#ifdef CONFIG_CGROUP_SCHED
07e06b01 3084extern struct task_group root_task_group;
8323f26c 3085#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3086
54e99124
DG
3087extern int task_can_switch_user(struct user_struct *up,
3088 struct task_struct *tsk);
3089
4b98d11b
AD
3090#ifdef CONFIG_TASK_XACCT
3091static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3092{
940389b8 3093 tsk->ioac.rchar += amt;
4b98d11b
AD
3094}
3095
3096static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3097{
940389b8 3098 tsk->ioac.wchar += amt;
4b98d11b
AD
3099}
3100
3101static inline void inc_syscr(struct task_struct *tsk)
3102{
940389b8 3103 tsk->ioac.syscr++;
4b98d11b
AD
3104}
3105
3106static inline void inc_syscw(struct task_struct *tsk)
3107{
940389b8 3108 tsk->ioac.syscw++;
4b98d11b
AD
3109}
3110#else
3111static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3112{
3113}
3114
3115static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3116{
3117}
3118
3119static inline void inc_syscr(struct task_struct *tsk)
3120{
3121}
3122
3123static inline void inc_syscw(struct task_struct *tsk)
3124{
3125}
3126#endif
3127
82455257
DH
3128#ifndef TASK_SIZE_OF
3129#define TASK_SIZE_OF(tsk) TASK_SIZE
3130#endif
3131
f98bafa0 3132#ifdef CONFIG_MEMCG
cf475ad2 3133extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3134#else
3135static inline void mm_update_next_owner(struct mm_struct *mm)
3136{
3137}
f98bafa0 3138#endif /* CONFIG_MEMCG */
cf475ad2 3139
3e10e716
JS
3140static inline unsigned long task_rlimit(const struct task_struct *tsk,
3141 unsigned int limit)
3142{
316c1608 3143 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3144}
3145
3146static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3147 unsigned int limit)
3148{
316c1608 3149 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3150}
3151
3152static inline unsigned long rlimit(unsigned int limit)
3153{
3154 return task_rlimit(current, limit);
3155}
3156
3157static inline unsigned long rlimit_max(unsigned int limit)
3158{
3159 return task_rlimit_max(current, limit);
3160}
3161
1da177e4 3162#endif
This page took 2.03431 seconds and 5 git commands to generate.