cpusets: Remove an unused variable
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
db7e527d 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
029632fb 82#include "sched.h"
391e43da 83#include "../workqueue_sched.h"
6e0534f2 84
a8d154b0 85#define CREATE_TRACE_POINTS
ad8d75ff 86#include <trace/events/sched.h>
a8d154b0 87
029632fb 88void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 89{
58088ad0
PT
90 unsigned long delta;
91 ktime_t soft, hard, now;
d0b27fa7 92
58088ad0
PT
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
d0b27fa7 99
58088ad0
PT
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106}
107
029632fb
PZ
108DEFINE_MUTEX(sched_domains_mutex);
109DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 110
fe44d621 111static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 112
029632fb 113void update_rq_clock(struct rq *rq)
3e51f33f 114{
fe44d621 115 s64 delta;
305e6835 116
61eadef6 117 if (rq->skip_clock_update > 0)
f26f9aff 118 return;
aa483808 119
fe44d621
PZ
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
3e51f33f
PZ
123}
124
bf5c91ba
IM
125/*
126 * Debugging: various feature bits
127 */
f00b45c1 128
f00b45c1
PZ
129#define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
bf5c91ba 132const_debug unsigned int sysctl_sched_features =
391e43da 133#include "features.h"
f00b45c1
PZ
134 0;
135
136#undef SCHED_FEAT
137
138#ifdef CONFIG_SCHED_DEBUG
139#define SCHED_FEAT(name, enabled) \
140 #name ,
141
983ed7a6 142static __read_mostly char *sched_feat_names[] = {
391e43da 143#include "features.h"
f00b45c1
PZ
144 NULL
145};
146
147#undef SCHED_FEAT
148
34f3a814 149static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 150{
f00b45c1
PZ
151 int i;
152
f8b6d1cc 153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 157 }
34f3a814 158 seq_puts(m, "\n");
f00b45c1 159
34f3a814 160 return 0;
f00b45c1
PZ
161}
162
f8b6d1cc
PZ
163#ifdef HAVE_JUMP_LABEL
164
165#define jump_label_key__true jump_label_key_enabled
166#define jump_label_key__false jump_label_key_disabled
167
168#define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172#include "features.h"
173};
174
175#undef SCHED_FEAT
176
177static void sched_feat_disable(int i)
178{
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181}
182
183static void sched_feat_enable(int i)
184{
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187}
188#else
189static void sched_feat_disable(int i) { };
190static void sched_feat_enable(int i) { };
191#endif /* HAVE_JUMP_LABEL */
192
f00b45c1
PZ
193static ssize_t
194sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196{
197 char buf[64];
7740191c 198 char *cmp;
f00b45c1
PZ
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
7740191c 209 cmp = strstrip(buf);
f00b45c1 210
524429c3 211 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
212 neg = 1;
213 cmp += 3;
214 }
215
f8b6d1cc 216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 218 if (neg) {
f00b45c1 219 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
220 sched_feat_disable(i);
221 } else {
f00b45c1 222 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
223 sched_feat_enable(i);
224 }
f00b45c1
PZ
225 break;
226 }
227 }
228
f8b6d1cc 229 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
230 return -EINVAL;
231
42994724 232 *ppos += cnt;
f00b45c1
PZ
233
234 return cnt;
235}
236
34f3a814
LZ
237static int sched_feat_open(struct inode *inode, struct file *filp)
238{
239 return single_open(filp, sched_feat_show, NULL);
240}
241
828c0950 242static const struct file_operations sched_feat_fops = {
34f3a814
LZ
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
f00b45c1
PZ
248};
249
250static __init int sched_init_debug(void)
251{
f00b45c1
PZ
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256}
257late_initcall(sched_init_debug);
f8b6d1cc 258#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 259
b82d9fdd
PZ
260/*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
e9e9250b
PZ
266/*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
fa85ae24 274/*
9f0c1e56 275 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
276 * default: 1s
277 */
9f0c1e56 278unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 279
029632fb 280__read_mostly int scheduler_running;
6892b75e 281
9f0c1e56
PZ
282/*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286int sysctl_sched_rt_runtime = 950000;
fa85ae24 287
fa85ae24 288
1da177e4 289
0970d299 290/*
0122ec5b 291 * __task_rq_lock - lock the rq @p resides on.
b29739f9 292 */
70b97a7f 293static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
294 __acquires(rq->lock)
295{
0970d299
PZ
296 struct rq *rq;
297
0122ec5b
PZ
298 lockdep_assert_held(&p->pi_lock);
299
3a5c359a 300 for (;;) {
0970d299 301 rq = task_rq(p);
05fa785c 302 raw_spin_lock(&rq->lock);
65cc8e48 303 if (likely(rq == task_rq(p)))
3a5c359a 304 return rq;
05fa785c 305 raw_spin_unlock(&rq->lock);
b29739f9 306 }
b29739f9
IM
307}
308
1da177e4 309/*
0122ec5b 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 311 */
70b97a7f 312static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 313 __acquires(p->pi_lock)
1da177e4
LT
314 __acquires(rq->lock)
315{
70b97a7f 316 struct rq *rq;
1da177e4 317
3a5c359a 318 for (;;) {
0122ec5b 319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
65cc8e48 322 if (likely(rq == task_rq(p)))
3a5c359a 323 return rq;
0122ec5b
PZ
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 326 }
1da177e4
LT
327}
328
a9957449 329static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
330 __releases(rq->lock)
331{
05fa785c 332 raw_spin_unlock(&rq->lock);
b29739f9
IM
333}
334
0122ec5b
PZ
335static inline void
336task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 337 __releases(rq->lock)
0122ec5b 338 __releases(p->pi_lock)
1da177e4 339{
0122ec5b
PZ
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
342}
343
1da177e4 344/*
cc2a73b5 345 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 346 */
a9957449 347static struct rq *this_rq_lock(void)
1da177e4
LT
348 __acquires(rq->lock)
349{
70b97a7f 350 struct rq *rq;
1da177e4
LT
351
352 local_irq_disable();
353 rq = this_rq();
05fa785c 354 raw_spin_lock(&rq->lock);
1da177e4
LT
355
356 return rq;
357}
358
8f4d37ec
PZ
359#ifdef CONFIG_SCHED_HRTICK
360/*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
8f4d37ec 370
8f4d37ec
PZ
371static void hrtick_clear(struct rq *rq)
372{
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375}
376
8f4d37ec
PZ
377/*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381static enum hrtimer_restart hrtick(struct hrtimer *timer)
382{
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
05fa785c 387 raw_spin_lock(&rq->lock);
3e51f33f 388 update_rq_clock(rq);
8f4d37ec 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 390 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
391
392 return HRTIMER_NORESTART;
393}
394
95e904c7 395#ifdef CONFIG_SMP
31656519
PZ
396/*
397 * called from hardirq (IPI) context
398 */
399static void __hrtick_start(void *arg)
b328ca18 400{
31656519 401 struct rq *rq = arg;
b328ca18 402
05fa785c 403 raw_spin_lock(&rq->lock);
31656519
PZ
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
05fa785c 406 raw_spin_unlock(&rq->lock);
b328ca18
PZ
407}
408
31656519
PZ
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
029632fb 414void hrtick_start(struct rq *rq, u64 delay)
b328ca18 415{
31656519
PZ
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 418
cc584b21 419 hrtimer_set_expires(timer, time);
31656519
PZ
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
6e275637 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
425 rq->hrtick_csd_pending = 1;
426 }
b328ca18
PZ
427}
428
429static int
430hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431{
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
31656519 441 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446}
447
fa748203 448static __init void init_hrtick(void)
b328ca18
PZ
449{
450 hotcpu_notifier(hotplug_hrtick, 0);
451}
31656519
PZ
452#else
453/*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
029632fb 458void hrtick_start(struct rq *rq, u64 delay)
31656519 459{
7f1e2ca9 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 461 HRTIMER_MODE_REL_PINNED, 0);
31656519 462}
b328ca18 463
006c75f1 464static inline void init_hrtick(void)
8f4d37ec 465{
8f4d37ec 466}
31656519 467#endif /* CONFIG_SMP */
8f4d37ec 468
31656519 469static void init_rq_hrtick(struct rq *rq)
8f4d37ec 470{
31656519
PZ
471#ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
8f4d37ec 473
31656519
PZ
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477#endif
8f4d37ec 478
31656519
PZ
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
8f4d37ec 481}
006c75f1 482#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
483static inline void hrtick_clear(struct rq *rq)
484{
485}
486
8f4d37ec
PZ
487static inline void init_rq_hrtick(struct rq *rq)
488{
489}
490
b328ca18
PZ
491static inline void init_hrtick(void)
492{
493}
006c75f1 494#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 495
c24d20db
IM
496/*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503#ifdef CONFIG_SMP
504
505#ifndef tsk_is_polling
506#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507#endif
508
029632fb 509void resched_task(struct task_struct *p)
c24d20db
IM
510{
511 int cpu;
512
05fa785c 513 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 514
5ed0cec0 515 if (test_tsk_need_resched(p))
c24d20db
IM
516 return;
517
5ed0cec0 518 set_tsk_need_resched(p);
c24d20db
IM
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528}
529
029632fb 530void resched_cpu(int cpu)
c24d20db
IM
531{
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
05fa785c 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
536 return;
537 resched_task(cpu_curr(cpu));
05fa785c 538 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 539}
06d8308c
TG
540
541#ifdef CONFIG_NO_HZ
83cd4fe2
VP
542/*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550int get_nohz_timer_target(void)
551{
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
057f3fad 556 rcu_read_lock();
83cd4fe2 557 for_each_domain(cpu, sd) {
057f3fad
PZ
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
83cd4fe2 564 }
057f3fad
PZ
565unlock:
566 rcu_read_unlock();
83cd4fe2
VP
567 return cpu;
568}
06d8308c
TG
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579void wake_up_idle_cpu(int cpu)
580{
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
45bf76df 595
45bf76df 596 /*
06d8308c
TG
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
45bf76df 600 */
5ed0cec0 601 set_tsk_need_resched(rq->idle);
45bf76df 602
06d8308c
TG
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
45bf76df
IM
607}
608
ca38062e 609static inline bool got_nohz_idle_kick(void)
45bf76df 610{
1c792db7
SS
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
613}
614
ca38062e 615#else /* CONFIG_NO_HZ */
45bf76df 616
ca38062e 617static inline bool got_nohz_idle_kick(void)
2069dd75 618{
ca38062e 619 return false;
2069dd75
PZ
620}
621
6d6bc0ad 622#endif /* CONFIG_NO_HZ */
d842de87 623
029632fb 624void sched_avg_update(struct rq *rq)
18d95a28 625{
e9e9250b
PZ
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
18d95a28
PZ
638}
639
6d6bc0ad 640#else /* !CONFIG_SMP */
029632fb 641void resched_task(struct task_struct *p)
18d95a28 642{
05fa785c 643 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 644 set_tsk_need_resched(p);
18d95a28 645}
6d6bc0ad 646#endif /* CONFIG_SMP */
18d95a28 647
a790de99
PT
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 650/*
8277434e
PT
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 655 */
029632fb 656int walk_tg_tree_from(struct task_group *from,
8277434e 657 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
658{
659 struct task_group *parent, *child;
eb755805 660 int ret;
c09595f6 661
8277434e
PT
662 parent = from;
663
c09595f6 664down:
eb755805
PZ
665 ret = (*down)(parent, data);
666 if (ret)
8277434e 667 goto out;
c09595f6
PZ
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672up:
673 continue;
674 }
eb755805 675 ret = (*up)(parent, data);
8277434e
PT
676 if (ret || parent == from)
677 goto out;
c09595f6
PZ
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
8277434e 683out:
eb755805 684 return ret;
c09595f6
PZ
685}
686
029632fb 687int tg_nop(struct task_group *tg, void *data)
eb755805 688{
e2b245f8 689 return 0;
eb755805 690}
18d95a28
PZ
691#endif
692
029632fb 693void update_cpu_load(struct rq *this_rq);
9c217245 694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
5da9a0fb 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb
PZ
1269
1270 /* Look for allowed, online CPU in same node. */
2baab4e9
PZ
1271 for_each_cpu_mask(dest_cpu, *nodemask) {
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1277 return dest_cpu;
2baab4e9 1278 }
5da9a0fb 1279
2baab4e9
PZ
1280 for (;;) {
1281 /* Any allowed, online CPU? */
1282 for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) {
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
5da9a0fb
PZ
1319 }
1320
1321 return dest_cpu;
1322}
1323
e2912009 1324/*
013fdb80 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1326 */
970b13ba 1327static inline
7608dec2 1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1329{
7608dec2 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
fa17b507 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1343 !cpu_online(cpu)))
5da9a0fb 1344 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1345
1346 return cpu;
970b13ba 1347}
09a40af5
MG
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353}
970b13ba
PZ
1354#endif
1355
d7c01d27 1356static void
b84cb5df 1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1358{
d7c01d27 1359#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1360 struct rq *rq = this_rq();
1361
d7c01d27
PZ
1362#ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1372 rcu_read_lock();
d7c01d27
PZ
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
057f3fad 1379 rcu_read_unlock();
d7c01d27 1380 }
f339b9dc
PZ
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
d7c01d27
PZ
1385#endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
9ed3811a 1388 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1389
1390 if (wake_flags & WF_SYNC)
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1392
d7c01d27
PZ
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
9ed3811a 1398 activate_task(rq, p, en_flags);
fd2f4419 1399 p->on_rq = 1;
c2f7115e
PZ
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1404}
1405
23f41eeb
PZ
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
89363381 1409static void
23f41eeb 1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1411{
89363381 1412 trace_sched_wakeup(p, true);
9ed3811a
TH
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
e69c6341 1420 if (rq->idle_stamp) {
9ed3811a
TH
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430#endif
1431}
1432
c05fbafb
PZ
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439#endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464}
1465
317f3941 1466#ifdef CONFIG_SMP
fa14ff4a 1467static void sched_ttwu_pending(void)
317f3941
PZ
1468{
1469 struct rq *rq = this_rq();
fa14ff4a
PZ
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
317f3941
PZ
1472
1473 raw_spin_lock(&rq->lock);
1474
fa14ff4a
PZ
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
317f3941
PZ
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
ca38062e 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
fa14ff4a 1503 sched_ttwu_pending();
ca38062e
SS
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
6eb57e0d
SS
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
ca38062e 1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1511 }
c5d753a5 1512 irq_exit();
317f3941
PZ
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
fa14ff4a 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1518 smp_send_reschedule(cpu);
1519}
d6aa8f85
PZ
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1539
39be3501 1540bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1541{
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
d6aa8f85 1544#endif /* CONFIG_SMP */
317f3941 1545
c05fbafb
PZ
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549
17d9f311 1550#if defined(CONFIG_SMP)
39be3501 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556#endif
1557
c05fbafb
PZ
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1561}
1562
1563/**
1da177e4 1564 * try_to_wake_up - wake up a thread
9ed3811a 1565 * @p: the thread to be awakened
1da177e4 1566 * @state: the mask of task states that can be woken
9ed3811a 1567 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
9ed3811a
TH
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1da177e4 1577 */
e4a52bcb
PZ
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1580{
1da177e4 1581 unsigned long flags;
c05fbafb 1582 int cpu, success = 0;
2398f2c6 1583
04e2f174 1584 smp_wmb();
013fdb80 1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1586 if (!(p->state & state))
1da177e4
LT
1587 goto out;
1588
c05fbafb 1589 success = 1; /* we're going to change ->state */
1da177e4 1590 cpu = task_cpu(p);
1da177e4 1591
c05fbafb
PZ
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1da177e4 1594
1da177e4 1595#ifdef CONFIG_SMP
e9c84311 1596 /*
c05fbafb
PZ
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
e9c84311 1599 */
e4a52bcb
PZ
1600 while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
d6aa8f85
PZ
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
e4a52bcb 1608 */
d6aa8f85 1609 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1610 goto stat;
d6aa8f85 1611#else
e4a52bcb 1612 cpu_relax();
d6aa8f85 1613#endif
371fd7e7 1614 }
0970d299 1615 /*
e4a52bcb 1616 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1617 */
e4a52bcb 1618 smp_rmb();
1da177e4 1619
a8e4f2ea 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1621 p->state = TASK_WAKING;
e7693a36 1622
e4a52bcb 1623 if (p->sched_class->task_waking)
74f8e4b2 1624 p->sched_class->task_waking(p);
efbbd05a 1625
7608dec2 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
e4a52bcb 1629 set_task_cpu(p, cpu);
f339b9dc 1630 }
1da177e4 1631#endif /* CONFIG_SMP */
1da177e4 1632
c05fbafb
PZ
1633 ttwu_queue(p, cpu);
1634stat:
b84cb5df 1635 ttwu_stat(p, cpu, wake_flags);
1da177e4 1636out:
013fdb80 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1638
1639 return success;
1640}
1641
21aa9af0
TH
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
2acca55e 1646 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1648 * the current task.
21aa9af0
TH
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652 struct rq *rq = task_rq(p);
21aa9af0
TH
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
7ad5b3a5 1687int wake_up_process(struct task_struct *p)
1da177e4 1688{
d9514f6c 1689 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
dd41f596
IM
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
3e51e3ed 1730void sched_fork(struct task_struct *p)
dd41f596 1731{
0122ec5b 1732 unsigned long flags;
dd41f596
IM
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
06b83b5f 1736 /*
0017d735 1737 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
0017d735 1741 p->state = TASK_RUNNING;
dd41f596 1742
c350a04e
MG
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
b9dc29e7
MG
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1752 if (task_has_rt_policy(p)) {
b9dc29e7 1753 p->policy = SCHED_NORMAL;
6c697bdf 1754 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
6c697bdf 1761
b9dc29e7
MG
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
ca94c442 1768
2ddbf952
HS
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
b29739f9 1771
cd29fe6f
PZ
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
86951599
PZ
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
0122ec5b 1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1783 set_task_cpu(p, cpu);
0122ec5b 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1785
52f17b6c 1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1787 if (likely(sched_info_on()))
52f17b6c 1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1789#endif
3ca7a440
PZ
1790#if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
4866cde0 1792#endif
bdd4e85d 1793#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1794 /* Want to start with kernel preemption disabled. */
a1261f54 1795 task_thread_info(p)->preempt_count = 1;
1da177e4 1796#endif
806c09a7 1797#ifdef CONFIG_SMP
917b627d 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1799#endif
917b627d 1800
476d139c 1801 put_cpu();
1da177e4
LT
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
3e51e3ed 1811void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1812{
1813 unsigned long flags;
dd41f596 1814 struct rq *rq;
fabf318e 1815
ab2515c4 1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1817#ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
fabf318e 1822 */
ab2515c4 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1824#endif
1825
ab2515c4 1826 rq = __task_rq_lock(p);
cd29fe6f 1827 activate_task(rq, p, 0);
fd2f4419 1828 p->on_rq = 1;
89363381 1829 trace_sched_wakeup_new(p, true);
a7558e01 1830 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1831#ifdef CONFIG_SMP
efbbd05a
PZ
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
9a897c5a 1834#endif
0122ec5b 1835 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1836}
1837
e107be36
AK
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
80dd99b3 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1842 * @notifier: notifier struct to register
e107be36
AK
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1852 * @notifier: notifier struct to unregister
e107be36
AK
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858 hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874{
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880}
1881
6d6bc0ad 1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891{
1892}
1893
6d6bc0ad 1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1895
4866cde0
NP
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
421cee29 1899 * @prev: the current task that is being switched out
4866cde0
NP
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
e107be36
AK
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
4866cde0 1912{
fe4b04fa
PZ
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
e107be36 1915 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
fe4b04fa 1918 trace_sched_switch(prev, next);
4866cde0
NP
1919}
1920
1da177e4
LT
1921/**
1922 * finish_task_switch - clean up after a task-switch
344babaa 1923 * @rq: runqueue associated with task-switch
1da177e4
LT
1924 * @prev: the thread we just switched away from.
1925 *
4866cde0
NP
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1932 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
a9957449 1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1937 __releases(rq->lock)
1938{
1da177e4 1939 struct mm_struct *mm = rq->prev_mm;
55a101f8 1940 long prev_state;
1da177e4
LT
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
c394cc9f 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
c394cc9f 1949 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
55a101f8 1955 prev_state = prev->state;
4866cde0 1956 finish_arch_switch(prev);
8381f65d
JI
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1960 perf_event_task_sched_in(prev, current);
8381f65d
JI
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1964 finish_lock_switch(rq, prev);
e8fa1362 1965
e107be36 1966 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1967 if (mm)
1968 mmdrop(mm);
c394cc9f 1969 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1970 /*
1971 * Remove function-return probe instances associated with this
1972 * task and put them back on the free list.
9761eea8 1973 */
c6fd91f0 1974 kprobe_flush_task(prev);
1da177e4 1975 put_task_struct(prev);
c6fd91f0 1976 }
1da177e4
LT
1977}
1978
3f029d3c
GH
1979#ifdef CONFIG_SMP
1980
1981/* assumes rq->lock is held */
1982static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1983{
1984 if (prev->sched_class->pre_schedule)
1985 prev->sched_class->pre_schedule(rq, prev);
1986}
1987
1988/* rq->lock is NOT held, but preemption is disabled */
1989static inline void post_schedule(struct rq *rq)
1990{
1991 if (rq->post_schedule) {
1992 unsigned long flags;
1993
05fa785c 1994 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1995 if (rq->curr->sched_class->post_schedule)
1996 rq->curr->sched_class->post_schedule(rq);
05fa785c 1997 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1998
1999 rq->post_schedule = 0;
2000 }
2001}
2002
2003#else
da19ab51 2004
3f029d3c
GH
2005static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2006{
2007}
2008
2009static inline void post_schedule(struct rq *rq)
2010{
1da177e4
LT
2011}
2012
3f029d3c
GH
2013#endif
2014
1da177e4
LT
2015/**
2016 * schedule_tail - first thing a freshly forked thread must call.
2017 * @prev: the thread we just switched away from.
2018 */
36c8b586 2019asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2020 __releases(rq->lock)
2021{
70b97a7f
IM
2022 struct rq *rq = this_rq();
2023
4866cde0 2024 finish_task_switch(rq, prev);
da19ab51 2025
3f029d3c
GH
2026 /*
2027 * FIXME: do we need to worry about rq being invalidated by the
2028 * task_switch?
2029 */
2030 post_schedule(rq);
70b97a7f 2031
4866cde0
NP
2032#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2033 /* In this case, finish_task_switch does not reenable preemption */
2034 preempt_enable();
2035#endif
1da177e4 2036 if (current->set_child_tid)
b488893a 2037 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2038}
2039
2040/*
2041 * context_switch - switch to the new MM and the new
2042 * thread's register state.
2043 */
dd41f596 2044static inline void
70b97a7f 2045context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2046 struct task_struct *next)
1da177e4 2047{
dd41f596 2048 struct mm_struct *mm, *oldmm;
1da177e4 2049
e107be36 2050 prepare_task_switch(rq, prev, next);
fe4b04fa 2051
dd41f596
IM
2052 mm = next->mm;
2053 oldmm = prev->active_mm;
9226d125
ZA
2054 /*
2055 * For paravirt, this is coupled with an exit in switch_to to
2056 * combine the page table reload and the switch backend into
2057 * one hypercall.
2058 */
224101ed 2059 arch_start_context_switch(prev);
9226d125 2060
31915ab4 2061 if (!mm) {
1da177e4
LT
2062 next->active_mm = oldmm;
2063 atomic_inc(&oldmm->mm_count);
2064 enter_lazy_tlb(oldmm, next);
2065 } else
2066 switch_mm(oldmm, mm, next);
2067
31915ab4 2068 if (!prev->mm) {
1da177e4 2069 prev->active_mm = NULL;
1da177e4
LT
2070 rq->prev_mm = oldmm;
2071 }
3a5f5e48
IM
2072 /*
2073 * Since the runqueue lock will be released by the next
2074 * task (which is an invalid locking op but in the case
2075 * of the scheduler it's an obvious special-case), so we
2076 * do an early lockdep release here:
2077 */
2078#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2079 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2080#endif
1da177e4
LT
2081
2082 /* Here we just switch the register state and the stack. */
2083 switch_to(prev, next, prev);
2084
dd41f596
IM
2085 barrier();
2086 /*
2087 * this_rq must be evaluated again because prev may have moved
2088 * CPUs since it called schedule(), thus the 'rq' on its stack
2089 * frame will be invalid.
2090 */
2091 finish_task_switch(this_rq(), prev);
1da177e4
LT
2092}
2093
2094/*
2095 * nr_running, nr_uninterruptible and nr_context_switches:
2096 *
2097 * externally visible scheduler statistics: current number of runnable
2098 * threads, current number of uninterruptible-sleeping threads, total
2099 * number of context switches performed since bootup.
2100 */
2101unsigned long nr_running(void)
2102{
2103 unsigned long i, sum = 0;
2104
2105 for_each_online_cpu(i)
2106 sum += cpu_rq(i)->nr_running;
2107
2108 return sum;
f711f609 2109}
1da177e4
LT
2110
2111unsigned long nr_uninterruptible(void)
f711f609 2112{
1da177e4 2113 unsigned long i, sum = 0;
f711f609 2114
0a945022 2115 for_each_possible_cpu(i)
1da177e4 2116 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2117
2118 /*
1da177e4
LT
2119 * Since we read the counters lockless, it might be slightly
2120 * inaccurate. Do not allow it to go below zero though:
f711f609 2121 */
1da177e4
LT
2122 if (unlikely((long)sum < 0))
2123 sum = 0;
f711f609 2124
1da177e4 2125 return sum;
f711f609 2126}
f711f609 2127
1da177e4 2128unsigned long long nr_context_switches(void)
46cb4b7c 2129{
cc94abfc
SR
2130 int i;
2131 unsigned long long sum = 0;
46cb4b7c 2132
0a945022 2133 for_each_possible_cpu(i)
1da177e4 2134 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2135
1da177e4
LT
2136 return sum;
2137}
483b4ee6 2138
1da177e4
LT
2139unsigned long nr_iowait(void)
2140{
2141 unsigned long i, sum = 0;
483b4ee6 2142
0a945022 2143 for_each_possible_cpu(i)
1da177e4 2144 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2145
1da177e4
LT
2146 return sum;
2147}
483b4ee6 2148
8c215bd3 2149unsigned long nr_iowait_cpu(int cpu)
69d25870 2150{
8c215bd3 2151 struct rq *this = cpu_rq(cpu);
69d25870
AV
2152 return atomic_read(&this->nr_iowait);
2153}
46cb4b7c 2154
69d25870
AV
2155unsigned long this_cpu_load(void)
2156{
2157 struct rq *this = this_rq();
2158 return this->cpu_load[0];
2159}
e790fb0b 2160
46cb4b7c 2161
dce48a84
TG
2162/* Variables and functions for calc_load */
2163static atomic_long_t calc_load_tasks;
2164static unsigned long calc_load_update;
2165unsigned long avenrun[3];
2166EXPORT_SYMBOL(avenrun);
46cb4b7c 2167
74f5187a
PZ
2168static long calc_load_fold_active(struct rq *this_rq)
2169{
2170 long nr_active, delta = 0;
2171
2172 nr_active = this_rq->nr_running;
2173 nr_active += (long) this_rq->nr_uninterruptible;
2174
2175 if (nr_active != this_rq->calc_load_active) {
2176 delta = nr_active - this_rq->calc_load_active;
2177 this_rq->calc_load_active = nr_active;
2178 }
2179
2180 return delta;
2181}
2182
0f004f5a
PZ
2183static unsigned long
2184calc_load(unsigned long load, unsigned long exp, unsigned long active)
2185{
2186 load *= exp;
2187 load += active * (FIXED_1 - exp);
2188 load += 1UL << (FSHIFT - 1);
2189 return load >> FSHIFT;
2190}
2191
74f5187a
PZ
2192#ifdef CONFIG_NO_HZ
2193/*
2194 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2195 *
2196 * When making the ILB scale, we should try to pull this in as well.
2197 */
2198static atomic_long_t calc_load_tasks_idle;
2199
029632fb 2200void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2201{
2202 long delta;
2203
2204 delta = calc_load_fold_active(this_rq);
2205 if (delta)
2206 atomic_long_add(delta, &calc_load_tasks_idle);
2207}
2208
2209static long calc_load_fold_idle(void)
2210{
2211 long delta = 0;
2212
2213 /*
2214 * Its got a race, we don't care...
2215 */
2216 if (atomic_long_read(&calc_load_tasks_idle))
2217 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2218
2219 return delta;
2220}
0f004f5a
PZ
2221
2222/**
2223 * fixed_power_int - compute: x^n, in O(log n) time
2224 *
2225 * @x: base of the power
2226 * @frac_bits: fractional bits of @x
2227 * @n: power to raise @x to.
2228 *
2229 * By exploiting the relation between the definition of the natural power
2230 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2231 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2232 * (where: n_i \elem {0, 1}, the binary vector representing n),
2233 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2234 * of course trivially computable in O(log_2 n), the length of our binary
2235 * vector.
2236 */
2237static unsigned long
2238fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2239{
2240 unsigned long result = 1UL << frac_bits;
2241
2242 if (n) for (;;) {
2243 if (n & 1) {
2244 result *= x;
2245 result += 1UL << (frac_bits - 1);
2246 result >>= frac_bits;
2247 }
2248 n >>= 1;
2249 if (!n)
2250 break;
2251 x *= x;
2252 x += 1UL << (frac_bits - 1);
2253 x >>= frac_bits;
2254 }
2255
2256 return result;
2257}
2258
2259/*
2260 * a1 = a0 * e + a * (1 - e)
2261 *
2262 * a2 = a1 * e + a * (1 - e)
2263 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2264 * = a0 * e^2 + a * (1 - e) * (1 + e)
2265 *
2266 * a3 = a2 * e + a * (1 - e)
2267 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2268 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2269 *
2270 * ...
2271 *
2272 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2273 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2274 * = a0 * e^n + a * (1 - e^n)
2275 *
2276 * [1] application of the geometric series:
2277 *
2278 * n 1 - x^(n+1)
2279 * S_n := \Sum x^i = -------------
2280 * i=0 1 - x
2281 */
2282static unsigned long
2283calc_load_n(unsigned long load, unsigned long exp,
2284 unsigned long active, unsigned int n)
2285{
2286
2287 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2288}
2289
2290/*
2291 * NO_HZ can leave us missing all per-cpu ticks calling
2292 * calc_load_account_active(), but since an idle CPU folds its delta into
2293 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2294 * in the pending idle delta if our idle period crossed a load cycle boundary.
2295 *
2296 * Once we've updated the global active value, we need to apply the exponential
2297 * weights adjusted to the number of cycles missed.
2298 */
c308b56b 2299static void calc_global_nohz(void)
0f004f5a
PZ
2300{
2301 long delta, active, n;
2302
0f004f5a
PZ
2303 /*
2304 * If we crossed a calc_load_update boundary, make sure to fold
2305 * any pending idle changes, the respective CPUs might have
2306 * missed the tick driven calc_load_account_active() update
2307 * due to NO_HZ.
2308 */
2309 delta = calc_load_fold_idle();
2310 if (delta)
2311 atomic_long_add(delta, &calc_load_tasks);
2312
2313 /*
c308b56b 2314 * It could be the one fold was all it took, we done!
0f004f5a 2315 */
c308b56b
PZ
2316 if (time_before(jiffies, calc_load_update + 10))
2317 return;
0f004f5a 2318
c308b56b
PZ
2319 /*
2320 * Catch-up, fold however many we are behind still
2321 */
2322 delta = jiffies - calc_load_update - 10;
2323 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2324
c308b56b
PZ
2325 active = atomic_long_read(&calc_load_tasks);
2326 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2327
c308b56b
PZ
2328 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2329 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2330 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2331
c308b56b 2332 calc_load_update += n * LOAD_FREQ;
0f004f5a 2333}
74f5187a 2334#else
029632fb 2335void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2336{
2337}
2338
2339static inline long calc_load_fold_idle(void)
2340{
2341 return 0;
2342}
0f004f5a 2343
c308b56b 2344static void calc_global_nohz(void)
0f004f5a
PZ
2345{
2346}
74f5187a
PZ
2347#endif
2348
2d02494f
TG
2349/**
2350 * get_avenrun - get the load average array
2351 * @loads: pointer to dest load array
2352 * @offset: offset to add
2353 * @shift: shift count to shift the result left
2354 *
2355 * These values are estimates at best, so no need for locking.
2356 */
2357void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2358{
2359 loads[0] = (avenrun[0] + offset) << shift;
2360 loads[1] = (avenrun[1] + offset) << shift;
2361 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2362}
46cb4b7c 2363
46cb4b7c 2364/*
dce48a84
TG
2365 * calc_load - update the avenrun load estimates 10 ticks after the
2366 * CPUs have updated calc_load_tasks.
7835b98b 2367 */
0f004f5a 2368void calc_global_load(unsigned long ticks)
7835b98b 2369{
dce48a84 2370 long active;
1da177e4 2371
0f004f5a 2372 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2373 return;
1da177e4 2374
dce48a84
TG
2375 active = atomic_long_read(&calc_load_tasks);
2376 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2377
dce48a84
TG
2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2381
dce48a84 2382 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2383
2384 /*
2385 * Account one period with whatever state we found before
2386 * folding in the nohz state and ageing the entire idle period.
2387 *
2388 * This avoids loosing a sample when we go idle between
2389 * calc_load_account_active() (10 ticks ago) and now and thus
2390 * under-accounting.
2391 */
2392 calc_global_nohz();
dce48a84 2393}
1da177e4 2394
dce48a84 2395/*
74f5187a
PZ
2396 * Called from update_cpu_load() to periodically update this CPU's
2397 * active count.
dce48a84
TG
2398 */
2399static void calc_load_account_active(struct rq *this_rq)
2400{
74f5187a 2401 long delta;
08c183f3 2402
74f5187a
PZ
2403 if (time_before(jiffies, this_rq->calc_load_update))
2404 return;
783609c6 2405
74f5187a
PZ
2406 delta = calc_load_fold_active(this_rq);
2407 delta += calc_load_fold_idle();
2408 if (delta)
dce48a84 2409 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2410
2411 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2412}
2413
fdf3e95d
VP
2414/*
2415 * The exact cpuload at various idx values, calculated at every tick would be
2416 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2417 *
2418 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2419 * on nth tick when cpu may be busy, then we have:
2420 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2421 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2422 *
2423 * decay_load_missed() below does efficient calculation of
2424 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2425 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2426 *
2427 * The calculation is approximated on a 128 point scale.
2428 * degrade_zero_ticks is the number of ticks after which load at any
2429 * particular idx is approximated to be zero.
2430 * degrade_factor is a precomputed table, a row for each load idx.
2431 * Each column corresponds to degradation factor for a power of two ticks,
2432 * based on 128 point scale.
2433 * Example:
2434 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2435 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2436 *
2437 * With this power of 2 load factors, we can degrade the load n times
2438 * by looking at 1 bits in n and doing as many mult/shift instead of
2439 * n mult/shifts needed by the exact degradation.
2440 */
2441#define DEGRADE_SHIFT 7
2442static const unsigned char
2443 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2444static const unsigned char
2445 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2446 {0, 0, 0, 0, 0, 0, 0, 0},
2447 {64, 32, 8, 0, 0, 0, 0, 0},
2448 {96, 72, 40, 12, 1, 0, 0},
2449 {112, 98, 75, 43, 15, 1, 0},
2450 {120, 112, 98, 76, 45, 16, 2} };
2451
2452/*
2453 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2454 * would be when CPU is idle and so we just decay the old load without
2455 * adding any new load.
2456 */
2457static unsigned long
2458decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2459{
2460 int j = 0;
2461
2462 if (!missed_updates)
2463 return load;
2464
2465 if (missed_updates >= degrade_zero_ticks[idx])
2466 return 0;
2467
2468 if (idx == 1)
2469 return load >> missed_updates;
2470
2471 while (missed_updates) {
2472 if (missed_updates % 2)
2473 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2474
2475 missed_updates >>= 1;
2476 j++;
2477 }
2478 return load;
2479}
2480
46cb4b7c 2481/*
dd41f596 2482 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2483 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2484 * every tick. We fix it up based on jiffies.
46cb4b7c 2485 */
029632fb 2486void update_cpu_load(struct rq *this_rq)
46cb4b7c 2487{
495eca49 2488 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2489 unsigned long curr_jiffies = jiffies;
2490 unsigned long pending_updates;
dd41f596 2491 int i, scale;
46cb4b7c 2492
dd41f596 2493 this_rq->nr_load_updates++;
46cb4b7c 2494
fdf3e95d
VP
2495 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2496 if (curr_jiffies == this_rq->last_load_update_tick)
2497 return;
2498
2499 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2500 this_rq->last_load_update_tick = curr_jiffies;
2501
dd41f596 2502 /* Update our load: */
fdf3e95d
VP
2503 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2504 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2505 unsigned long old_load, new_load;
7d1e6a9b 2506
dd41f596 2507 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2508
dd41f596 2509 old_load = this_rq->cpu_load[i];
fdf3e95d 2510 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2511 new_load = this_load;
a25707f3
IM
2512 /*
2513 * Round up the averaging division if load is increasing. This
2514 * prevents us from getting stuck on 9 if the load is 10, for
2515 * example.
2516 */
2517 if (new_load > old_load)
fdf3e95d
VP
2518 new_load += scale - 1;
2519
2520 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2521 }
da2b71ed
SS
2522
2523 sched_avg_update(this_rq);
fdf3e95d
VP
2524}
2525
2526static void update_cpu_load_active(struct rq *this_rq)
2527{
2528 update_cpu_load(this_rq);
46cb4b7c 2529
74f5187a 2530 calc_load_account_active(this_rq);
46cb4b7c
SS
2531}
2532
dd41f596 2533#ifdef CONFIG_SMP
8a0be9ef 2534
46cb4b7c 2535/*
38022906
PZ
2536 * sched_exec - execve() is a valuable balancing opportunity, because at
2537 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2538 */
38022906 2539void sched_exec(void)
46cb4b7c 2540{
38022906 2541 struct task_struct *p = current;
1da177e4 2542 unsigned long flags;
0017d735 2543 int dest_cpu;
46cb4b7c 2544
8f42ced9 2545 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2546 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2547 if (dest_cpu == smp_processor_id())
2548 goto unlock;
38022906 2549
8f42ced9 2550 if (likely(cpu_active(dest_cpu))) {
969c7921 2551 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2552
8f42ced9
PZ
2553 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2554 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2555 return;
2556 }
0017d735 2557unlock:
8f42ced9 2558 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2559}
dd41f596 2560
1da177e4
LT
2561#endif
2562
1da177e4 2563DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2564DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2565
2566EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2567EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2568
2569/*
c5f8d995 2570 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2571 * @p in case that task is currently running.
c5f8d995
HS
2572 *
2573 * Called with task_rq_lock() held on @rq.
1da177e4 2574 */
c5f8d995
HS
2575static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2576{
2577 u64 ns = 0;
2578
2579 if (task_current(rq, p)) {
2580 update_rq_clock(rq);
305e6835 2581 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2582 if ((s64)ns < 0)
2583 ns = 0;
2584 }
2585
2586 return ns;
2587}
2588
bb34d92f 2589unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2590{
1da177e4 2591 unsigned long flags;
41b86e9c 2592 struct rq *rq;
bb34d92f 2593 u64 ns = 0;
48f24c4d 2594
41b86e9c 2595 rq = task_rq_lock(p, &flags);
c5f8d995 2596 ns = do_task_delta_exec(p, rq);
0122ec5b 2597 task_rq_unlock(rq, p, &flags);
1508487e 2598
c5f8d995
HS
2599 return ns;
2600}
f06febc9 2601
c5f8d995
HS
2602/*
2603 * Return accounted runtime for the task.
2604 * In case the task is currently running, return the runtime plus current's
2605 * pending runtime that have not been accounted yet.
2606 */
2607unsigned long long task_sched_runtime(struct task_struct *p)
2608{
2609 unsigned long flags;
2610 struct rq *rq;
2611 u64 ns = 0;
2612
2613 rq = task_rq_lock(p, &flags);
2614 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2615 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2616
2617 return ns;
2618}
48f24c4d 2619
54c707e9
GC
2620#ifdef CONFIG_CGROUP_CPUACCT
2621struct cgroup_subsys cpuacct_subsys;
2622struct cpuacct root_cpuacct;
2623#endif
2624
be726ffd
GC
2625static inline void task_group_account_field(struct task_struct *p, int index,
2626 u64 tmp)
54c707e9
GC
2627{
2628#ifdef CONFIG_CGROUP_CPUACCT
2629 struct kernel_cpustat *kcpustat;
2630 struct cpuacct *ca;
2631#endif
2632 /*
2633 * Since all updates are sure to touch the root cgroup, we
2634 * get ourselves ahead and touch it first. If the root cgroup
2635 * is the only cgroup, then nothing else should be necessary.
2636 *
2637 */
2638 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2639
2640#ifdef CONFIG_CGROUP_CPUACCT
2641 if (unlikely(!cpuacct_subsys.active))
2642 return;
2643
2644 rcu_read_lock();
2645 ca = task_ca(p);
2646 while (ca && (ca != &root_cpuacct)) {
2647 kcpustat = this_cpu_ptr(ca->cpustat);
2648 kcpustat->cpustat[index] += tmp;
2649 ca = parent_ca(ca);
2650 }
2651 rcu_read_unlock();
2652#endif
2653}
2654
2655
1da177e4
LT
2656/*
2657 * Account user cpu time to a process.
2658 * @p: the process that the cpu time gets accounted to
1da177e4 2659 * @cputime: the cpu time spent in user space since the last update
457533a7 2660 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2661 */
457533a7
MS
2662void account_user_time(struct task_struct *p, cputime_t cputime,
2663 cputime_t cputime_scaled)
1da177e4 2664{
3292beb3 2665 int index;
1da177e4 2666
457533a7 2667 /* Add user time to process. */
64861634
MS
2668 p->utime += cputime;
2669 p->utimescaled += cputime_scaled;
f06febc9 2670 account_group_user_time(p, cputime);
1da177e4 2671
3292beb3 2672 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2673
1da177e4 2674 /* Add user time to cpustat. */
612ef28a 2675 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2676
49b5cf34
JL
2677 /* Account for user time used */
2678 acct_update_integrals(p);
1da177e4
LT
2679}
2680
94886b84
LV
2681/*
2682 * Account guest cpu time to a process.
2683 * @p: the process that the cpu time gets accounted to
2684 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2685 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2686 */
457533a7
MS
2687static void account_guest_time(struct task_struct *p, cputime_t cputime,
2688 cputime_t cputime_scaled)
94886b84 2689{
3292beb3 2690 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2691
457533a7 2692 /* Add guest time to process. */
64861634
MS
2693 p->utime += cputime;
2694 p->utimescaled += cputime_scaled;
f06febc9 2695 account_group_user_time(p, cputime);
64861634 2696 p->gtime += cputime;
94886b84 2697
457533a7 2698 /* Add guest time to cpustat. */
ce0e7b28 2699 if (TASK_NICE(p) > 0) {
612ef28a
MS
2700 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2701 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2702 } else {
612ef28a
MS
2703 cpustat[CPUTIME_USER] += (__force u64) cputime;
2704 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2705 }
94886b84
LV
2706}
2707
70a89a66
VP
2708/*
2709 * Account system cpu time to a process and desired cpustat field
2710 * @p: the process that the cpu time gets accounted to
2711 * @cputime: the cpu time spent in kernel space since the last update
2712 * @cputime_scaled: cputime scaled by cpu frequency
2713 * @target_cputime64: pointer to cpustat field that has to be updated
2714 */
2715static inline
2716void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2717 cputime_t cputime_scaled, int index)
70a89a66 2718{
70a89a66 2719 /* Add system time to process. */
64861634
MS
2720 p->stime += cputime;
2721 p->stimescaled += cputime_scaled;
70a89a66
VP
2722 account_group_system_time(p, cputime);
2723
2724 /* Add system time to cpustat. */
612ef28a 2725 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2726
2727 /* Account for system time used */
2728 acct_update_integrals(p);
2729}
2730
1da177e4
LT
2731/*
2732 * Account system cpu time to a process.
2733 * @p: the process that the cpu time gets accounted to
2734 * @hardirq_offset: the offset to subtract from hardirq_count()
2735 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2736 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2737 */
2738void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2739 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2740{
3292beb3 2741 int index;
1da177e4 2742
983ed7a6 2743 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2744 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2745 return;
2746 }
94886b84 2747
1da177e4 2748 if (hardirq_count() - hardirq_offset)
3292beb3 2749 index = CPUTIME_IRQ;
75e1056f 2750 else if (in_serving_softirq())
3292beb3 2751 index = CPUTIME_SOFTIRQ;
1da177e4 2752 else
3292beb3 2753 index = CPUTIME_SYSTEM;
ef12fefa 2754
3292beb3 2755 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2756}
2757
c66f08be 2758/*
1da177e4 2759 * Account for involuntary wait time.
544b4a1f 2760 * @cputime: the cpu time spent in involuntary wait
c66f08be 2761 */
79741dd3 2762void account_steal_time(cputime_t cputime)
c66f08be 2763{
3292beb3 2764 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2765
612ef28a 2766 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2767}
2768
1da177e4 2769/*
79741dd3
MS
2770 * Account for idle time.
2771 * @cputime: the cpu time spent in idle wait
1da177e4 2772 */
79741dd3 2773void account_idle_time(cputime_t cputime)
1da177e4 2774{
3292beb3 2775 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2776 struct rq *rq = this_rq();
1da177e4 2777
79741dd3 2778 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2779 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2780 else
612ef28a 2781 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2782}
2783
e6e6685a
GC
2784static __always_inline bool steal_account_process_tick(void)
2785{
2786#ifdef CONFIG_PARAVIRT
2787 if (static_branch(&paravirt_steal_enabled)) {
2788 u64 steal, st = 0;
2789
2790 steal = paravirt_steal_clock(smp_processor_id());
2791 steal -= this_rq()->prev_steal_time;
2792
2793 st = steal_ticks(steal);
2794 this_rq()->prev_steal_time += st * TICK_NSEC;
2795
2796 account_steal_time(st);
2797 return st;
2798 }
2799#endif
2800 return false;
2801}
2802
79741dd3
MS
2803#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2804
abb74cef
VP
2805#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2806/*
2807 * Account a tick to a process and cpustat
2808 * @p: the process that the cpu time gets accounted to
2809 * @user_tick: is the tick from userspace
2810 * @rq: the pointer to rq
2811 *
2812 * Tick demultiplexing follows the order
2813 * - pending hardirq update
2814 * - pending softirq update
2815 * - user_time
2816 * - idle_time
2817 * - system time
2818 * - check for guest_time
2819 * - else account as system_time
2820 *
2821 * Check for hardirq is done both for system and user time as there is
2822 * no timer going off while we are on hardirq and hence we may never get an
2823 * opportunity to update it solely in system time.
2824 * p->stime and friends are only updated on system time and not on irq
2825 * softirq as those do not count in task exec_runtime any more.
2826 */
2827static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2828 struct rq *rq)
2829{
2830 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2831 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2832
e6e6685a
GC
2833 if (steal_account_process_tick())
2834 return;
2835
abb74cef 2836 if (irqtime_account_hi_update()) {
612ef28a 2837 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2838 } else if (irqtime_account_si_update()) {
612ef28a 2839 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2840 } else if (this_cpu_ksoftirqd() == p) {
2841 /*
2842 * ksoftirqd time do not get accounted in cpu_softirq_time.
2843 * So, we have to handle it separately here.
2844 * Also, p->stime needs to be updated for ksoftirqd.
2845 */
2846 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2847 CPUTIME_SOFTIRQ);
abb74cef
VP
2848 } else if (user_tick) {
2849 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2850 } else if (p == rq->idle) {
2851 account_idle_time(cputime_one_jiffy);
2852 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2853 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2854 } else {
2855 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2856 CPUTIME_SYSTEM);
abb74cef
VP
2857 }
2858}
2859
2860static void irqtime_account_idle_ticks(int ticks)
2861{
2862 int i;
2863 struct rq *rq = this_rq();
2864
2865 for (i = 0; i < ticks; i++)
2866 irqtime_account_process_tick(current, 0, rq);
2867}
544b4a1f 2868#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2869static void irqtime_account_idle_ticks(int ticks) {}
2870static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2871 struct rq *rq) {}
544b4a1f 2872#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2873
2874/*
2875 * Account a single tick of cpu time.
2876 * @p: the process that the cpu time gets accounted to
2877 * @user_tick: indicates if the tick is a user or a system tick
2878 */
2879void account_process_tick(struct task_struct *p, int user_tick)
2880{
a42548a1 2881 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2882 struct rq *rq = this_rq();
2883
abb74cef
VP
2884 if (sched_clock_irqtime) {
2885 irqtime_account_process_tick(p, user_tick, rq);
2886 return;
2887 }
2888
e6e6685a
GC
2889 if (steal_account_process_tick())
2890 return;
2891
79741dd3 2892 if (user_tick)
a42548a1 2893 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2894 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2895 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2896 one_jiffy_scaled);
2897 else
a42548a1 2898 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2899}
2900
2901/*
2902 * Account multiple ticks of steal time.
2903 * @p: the process from which the cpu time has been stolen
2904 * @ticks: number of stolen ticks
2905 */
2906void account_steal_ticks(unsigned long ticks)
2907{
2908 account_steal_time(jiffies_to_cputime(ticks));
2909}
2910
2911/*
2912 * Account multiple ticks of idle time.
2913 * @ticks: number of stolen ticks
2914 */
2915void account_idle_ticks(unsigned long ticks)
2916{
abb74cef
VP
2917
2918 if (sched_clock_irqtime) {
2919 irqtime_account_idle_ticks(ticks);
2920 return;
2921 }
2922
79741dd3 2923 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2924}
2925
79741dd3
MS
2926#endif
2927
49048622
BS
2928/*
2929 * Use precise platform statistics if available:
2930 */
2931#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2932void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2933{
d99ca3b9
HS
2934 *ut = p->utime;
2935 *st = p->stime;
49048622
BS
2936}
2937
0cf55e1e 2938void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2939{
0cf55e1e
HS
2940 struct task_cputime cputime;
2941
2942 thread_group_cputime(p, &cputime);
2943
2944 *ut = cputime.utime;
2945 *st = cputime.stime;
49048622
BS
2946}
2947#else
761b1d26
HS
2948
2949#ifndef nsecs_to_cputime
b7b20df9 2950# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2951#endif
2952
d180c5bc 2953void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2954{
64861634 2955 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2956
2957 /*
2958 * Use CFS's precise accounting:
2959 */
d180c5bc 2960 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2961
2962 if (total) {
64861634 2963 u64 temp = (__force u64) rtime;
d180c5bc 2964
64861634
MS
2965 temp *= (__force u64) utime;
2966 do_div(temp, (__force u32) total);
2967 utime = (__force cputime_t) temp;
d180c5bc
HS
2968 } else
2969 utime = rtime;
49048622 2970
d180c5bc
HS
2971 /*
2972 * Compare with previous values, to keep monotonicity:
2973 */
761b1d26 2974 p->prev_utime = max(p->prev_utime, utime);
64861634 2975 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2976
d99ca3b9
HS
2977 *ut = p->prev_utime;
2978 *st = p->prev_stime;
49048622
BS
2979}
2980
0cf55e1e
HS
2981/*
2982 * Must be called with siglock held.
2983 */
2984void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2985{
0cf55e1e
HS
2986 struct signal_struct *sig = p->signal;
2987 struct task_cputime cputime;
2988 cputime_t rtime, utime, total;
49048622 2989
0cf55e1e 2990 thread_group_cputime(p, &cputime);
49048622 2991
64861634 2992 total = cputime.utime + cputime.stime;
0cf55e1e 2993 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2994
0cf55e1e 2995 if (total) {
64861634 2996 u64 temp = (__force u64) rtime;
49048622 2997
64861634
MS
2998 temp *= (__force u64) cputime.utime;
2999 do_div(temp, (__force u32) total);
3000 utime = (__force cputime_t) temp;
0cf55e1e
HS
3001 } else
3002 utime = rtime;
3003
3004 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3005 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3006
3007 *ut = sig->prev_utime;
3008 *st = sig->prev_stime;
49048622 3009}
49048622 3010#endif
49048622 3011
7835b98b
CL
3012/*
3013 * This function gets called by the timer code, with HZ frequency.
3014 * We call it with interrupts disabled.
7835b98b
CL
3015 */
3016void scheduler_tick(void)
3017{
7835b98b
CL
3018 int cpu = smp_processor_id();
3019 struct rq *rq = cpu_rq(cpu);
dd41f596 3020 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3021
3022 sched_clock_tick();
dd41f596 3023
05fa785c 3024 raw_spin_lock(&rq->lock);
3e51f33f 3025 update_rq_clock(rq);
fdf3e95d 3026 update_cpu_load_active(rq);
fa85ae24 3027 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3028 raw_spin_unlock(&rq->lock);
7835b98b 3029
e9d2b064 3030 perf_event_task_tick();
e220d2dc 3031
e418e1c2 3032#ifdef CONFIG_SMP
6eb57e0d 3033 rq->idle_balance = idle_cpu(cpu);
dd41f596 3034 trigger_load_balance(rq, cpu);
e418e1c2 3035#endif
1da177e4
LT
3036}
3037
132380a0 3038notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3039{
3040 if (in_lock_functions(addr)) {
3041 addr = CALLER_ADDR2;
3042 if (in_lock_functions(addr))
3043 addr = CALLER_ADDR3;
3044 }
3045 return addr;
3046}
1da177e4 3047
7e49fcce
SR
3048#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3049 defined(CONFIG_PREEMPT_TRACER))
3050
43627582 3051void __kprobes add_preempt_count(int val)
1da177e4 3052{
6cd8a4bb 3053#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3054 /*
3055 * Underflow?
3056 */
9a11b49a
IM
3057 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3058 return;
6cd8a4bb 3059#endif
1da177e4 3060 preempt_count() += val;
6cd8a4bb 3061#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3062 /*
3063 * Spinlock count overflowing soon?
3064 */
33859f7f
MOS
3065 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3066 PREEMPT_MASK - 10);
6cd8a4bb
SR
3067#endif
3068 if (preempt_count() == val)
3069 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3070}
3071EXPORT_SYMBOL(add_preempt_count);
3072
43627582 3073void __kprobes sub_preempt_count(int val)
1da177e4 3074{
6cd8a4bb 3075#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3076 /*
3077 * Underflow?
3078 */
01e3eb82 3079 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3080 return;
1da177e4
LT
3081 /*
3082 * Is the spinlock portion underflowing?
3083 */
9a11b49a
IM
3084 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3085 !(preempt_count() & PREEMPT_MASK)))
3086 return;
6cd8a4bb 3087#endif
9a11b49a 3088
6cd8a4bb
SR
3089 if (preempt_count() == val)
3090 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3091 preempt_count() -= val;
3092}
3093EXPORT_SYMBOL(sub_preempt_count);
3094
3095#endif
3096
3097/*
dd41f596 3098 * Print scheduling while atomic bug:
1da177e4 3099 */
dd41f596 3100static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3101{
838225b4
SS
3102 struct pt_regs *regs = get_irq_regs();
3103
664dfa65
DJ
3104 if (oops_in_progress)
3105 return;
3106
3df0fc5b
PZ
3107 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3108 prev->comm, prev->pid, preempt_count());
838225b4 3109
dd41f596 3110 debug_show_held_locks(prev);
e21f5b15 3111 print_modules();
dd41f596
IM
3112 if (irqs_disabled())
3113 print_irqtrace_events(prev);
838225b4
SS
3114
3115 if (regs)
3116 show_regs(regs);
3117 else
3118 dump_stack();
dd41f596 3119}
1da177e4 3120
dd41f596
IM
3121/*
3122 * Various schedule()-time debugging checks and statistics:
3123 */
3124static inline void schedule_debug(struct task_struct *prev)
3125{
1da177e4 3126 /*
41a2d6cf 3127 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3128 * schedule() atomically, we ignore that path for now.
3129 * Otherwise, whine if we are scheduling when we should not be.
3130 */
3f33a7ce 3131 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3132 __schedule_bug(prev);
b3fbab05 3133 rcu_sleep_check();
dd41f596 3134
1da177e4
LT
3135 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3136
2d72376b 3137 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3138}
3139
6cecd084 3140static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3141{
61eadef6 3142 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3143 update_rq_clock(rq);
6cecd084 3144 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3145}
3146
dd41f596
IM
3147/*
3148 * Pick up the highest-prio task:
3149 */
3150static inline struct task_struct *
b67802ea 3151pick_next_task(struct rq *rq)
dd41f596 3152{
5522d5d5 3153 const struct sched_class *class;
dd41f596 3154 struct task_struct *p;
1da177e4
LT
3155
3156 /*
dd41f596
IM
3157 * Optimization: we know that if all tasks are in
3158 * the fair class we can call that function directly:
1da177e4 3159 */
953bfcd1 3160 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3161 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3162 if (likely(p))
3163 return p;
1da177e4
LT
3164 }
3165
34f971f6 3166 for_each_class(class) {
fb8d4724 3167 p = class->pick_next_task(rq);
dd41f596
IM
3168 if (p)
3169 return p;
dd41f596 3170 }
34f971f6
PZ
3171
3172 BUG(); /* the idle class will always have a runnable task */
dd41f596 3173}
1da177e4 3174
dd41f596 3175/*
c259e01a 3176 * __schedule() is the main scheduler function.
dd41f596 3177 */
c259e01a 3178static void __sched __schedule(void)
dd41f596
IM
3179{
3180 struct task_struct *prev, *next;
67ca7bde 3181 unsigned long *switch_count;
dd41f596 3182 struct rq *rq;
31656519 3183 int cpu;
dd41f596 3184
ff743345
PZ
3185need_resched:
3186 preempt_disable();
dd41f596
IM
3187 cpu = smp_processor_id();
3188 rq = cpu_rq(cpu);
25502a6c 3189 rcu_note_context_switch(cpu);
dd41f596 3190 prev = rq->curr;
dd41f596 3191
dd41f596 3192 schedule_debug(prev);
1da177e4 3193
31656519 3194 if (sched_feat(HRTICK))
f333fdc9 3195 hrtick_clear(rq);
8f4d37ec 3196
05fa785c 3197 raw_spin_lock_irq(&rq->lock);
1da177e4 3198
246d86b5 3199 switch_count = &prev->nivcsw;
1da177e4 3200 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3201 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3202 prev->state = TASK_RUNNING;
21aa9af0 3203 } else {
2acca55e
PZ
3204 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3205 prev->on_rq = 0;
3206
21aa9af0 3207 /*
2acca55e
PZ
3208 * If a worker went to sleep, notify and ask workqueue
3209 * whether it wants to wake up a task to maintain
3210 * concurrency.
21aa9af0
TH
3211 */
3212 if (prev->flags & PF_WQ_WORKER) {
3213 struct task_struct *to_wakeup;
3214
3215 to_wakeup = wq_worker_sleeping(prev, cpu);
3216 if (to_wakeup)
3217 try_to_wake_up_local(to_wakeup);
3218 }
21aa9af0 3219 }
dd41f596 3220 switch_count = &prev->nvcsw;
1da177e4
LT
3221 }
3222
3f029d3c 3223 pre_schedule(rq, prev);
f65eda4f 3224
dd41f596 3225 if (unlikely(!rq->nr_running))
1da177e4 3226 idle_balance(cpu, rq);
1da177e4 3227
df1c99d4 3228 put_prev_task(rq, prev);
b67802ea 3229 next = pick_next_task(rq);
f26f9aff
MG
3230 clear_tsk_need_resched(prev);
3231 rq->skip_clock_update = 0;
1da177e4 3232
1da177e4 3233 if (likely(prev != next)) {
1da177e4
LT
3234 rq->nr_switches++;
3235 rq->curr = next;
3236 ++*switch_count;
3237
dd41f596 3238 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3239 /*
246d86b5
ON
3240 * The context switch have flipped the stack from under us
3241 * and restored the local variables which were saved when
3242 * this task called schedule() in the past. prev == current
3243 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3244 */
3245 cpu = smp_processor_id();
3246 rq = cpu_rq(cpu);
1da177e4 3247 } else
05fa785c 3248 raw_spin_unlock_irq(&rq->lock);
1da177e4 3249
3f029d3c 3250 post_schedule(rq);
1da177e4 3251
ba74c144 3252 sched_preempt_enable_no_resched();
ff743345 3253 if (need_resched())
1da177e4
LT
3254 goto need_resched;
3255}
c259e01a 3256
9c40cef2
TG
3257static inline void sched_submit_work(struct task_struct *tsk)
3258{
3c7d5184 3259 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3260 return;
3261 /*
3262 * If we are going to sleep and we have plugged IO queued,
3263 * make sure to submit it to avoid deadlocks.
3264 */
3265 if (blk_needs_flush_plug(tsk))
3266 blk_schedule_flush_plug(tsk);
3267}
3268
6ebbe7a0 3269asmlinkage void __sched schedule(void)
c259e01a 3270{
9c40cef2
TG
3271 struct task_struct *tsk = current;
3272
3273 sched_submit_work(tsk);
c259e01a
TG
3274 __schedule();
3275}
1da177e4
LT
3276EXPORT_SYMBOL(schedule);
3277
c5491ea7
TG
3278/**
3279 * schedule_preempt_disabled - called with preemption disabled
3280 *
3281 * Returns with preemption disabled. Note: preempt_count must be 1
3282 */
3283void __sched schedule_preempt_disabled(void)
3284{
ba74c144 3285 sched_preempt_enable_no_resched();
c5491ea7
TG
3286 schedule();
3287 preempt_disable();
3288}
3289
c08f7829 3290#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3291
c6eb3dda
PZ
3292static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3293{
c6eb3dda 3294 if (lock->owner != owner)
307bf980 3295 return false;
0d66bf6d
PZ
3296
3297 /*
c6eb3dda
PZ
3298 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3299 * lock->owner still matches owner, if that fails, owner might
3300 * point to free()d memory, if it still matches, the rcu_read_lock()
3301 * ensures the memory stays valid.
0d66bf6d 3302 */
c6eb3dda 3303 barrier();
0d66bf6d 3304
307bf980 3305 return owner->on_cpu;
c6eb3dda 3306}
0d66bf6d 3307
c6eb3dda
PZ
3308/*
3309 * Look out! "owner" is an entirely speculative pointer
3310 * access and not reliable.
3311 */
3312int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3313{
3314 if (!sched_feat(OWNER_SPIN))
3315 return 0;
0d66bf6d 3316
307bf980 3317 rcu_read_lock();
c6eb3dda
PZ
3318 while (owner_running(lock, owner)) {
3319 if (need_resched())
307bf980 3320 break;
0d66bf6d 3321
335d7afb 3322 arch_mutex_cpu_relax();
0d66bf6d 3323 }
307bf980 3324 rcu_read_unlock();
4b402210 3325
c6eb3dda 3326 /*
307bf980
TG
3327 * We break out the loop above on need_resched() and when the
3328 * owner changed, which is a sign for heavy contention. Return
3329 * success only when lock->owner is NULL.
c6eb3dda 3330 */
307bf980 3331 return lock->owner == NULL;
0d66bf6d
PZ
3332}
3333#endif
3334
1da177e4
LT
3335#ifdef CONFIG_PREEMPT
3336/*
2ed6e34f 3337 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3338 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3339 * occur there and call schedule directly.
3340 */
d1f74e20 3341asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3342{
3343 struct thread_info *ti = current_thread_info();
6478d880 3344
1da177e4
LT
3345 /*
3346 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3347 * we do not want to preempt the current task. Just return..
1da177e4 3348 */
beed33a8 3349 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3350 return;
3351
3a5c359a 3352 do {
d1f74e20 3353 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3354 __schedule();
d1f74e20 3355 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3356
3a5c359a
AK
3357 /*
3358 * Check again in case we missed a preemption opportunity
3359 * between schedule and now.
3360 */
3361 barrier();
5ed0cec0 3362 } while (need_resched());
1da177e4 3363}
1da177e4
LT
3364EXPORT_SYMBOL(preempt_schedule);
3365
3366/*
2ed6e34f 3367 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3368 * off of irq context.
3369 * Note, that this is called and return with irqs disabled. This will
3370 * protect us against recursive calling from irq.
3371 */
3372asmlinkage void __sched preempt_schedule_irq(void)
3373{
3374 struct thread_info *ti = current_thread_info();
6478d880 3375
2ed6e34f 3376 /* Catch callers which need to be fixed */
1da177e4
LT
3377 BUG_ON(ti->preempt_count || !irqs_disabled());
3378
3a5c359a
AK
3379 do {
3380 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3381 local_irq_enable();
c259e01a 3382 __schedule();
3a5c359a 3383 local_irq_disable();
3a5c359a 3384 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3385
3a5c359a
AK
3386 /*
3387 * Check again in case we missed a preemption opportunity
3388 * between schedule and now.
3389 */
3390 barrier();
5ed0cec0 3391 } while (need_resched());
1da177e4
LT
3392}
3393
3394#endif /* CONFIG_PREEMPT */
3395
63859d4f 3396int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3397 void *key)
1da177e4 3398{
63859d4f 3399 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3400}
1da177e4
LT
3401EXPORT_SYMBOL(default_wake_function);
3402
3403/*
41a2d6cf
IM
3404 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3405 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3406 * number) then we wake all the non-exclusive tasks and one exclusive task.
3407 *
3408 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3409 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3410 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3411 */
78ddb08f 3412static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3413 int nr_exclusive, int wake_flags, void *key)
1da177e4 3414{
2e45874c 3415 wait_queue_t *curr, *next;
1da177e4 3416
2e45874c 3417 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3418 unsigned flags = curr->flags;
3419
63859d4f 3420 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3421 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3422 break;
3423 }
3424}
3425
3426/**
3427 * __wake_up - wake up threads blocked on a waitqueue.
3428 * @q: the waitqueue
3429 * @mode: which threads
3430 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3431 * @key: is directly passed to the wakeup function
50fa610a
DH
3432 *
3433 * It may be assumed that this function implies a write memory barrier before
3434 * changing the task state if and only if any tasks are woken up.
1da177e4 3435 */
7ad5b3a5 3436void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3437 int nr_exclusive, void *key)
1da177e4
LT
3438{
3439 unsigned long flags;
3440
3441 spin_lock_irqsave(&q->lock, flags);
3442 __wake_up_common(q, mode, nr_exclusive, 0, key);
3443 spin_unlock_irqrestore(&q->lock, flags);
3444}
1da177e4
LT
3445EXPORT_SYMBOL(__wake_up);
3446
3447/*
3448 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3449 */
63b20011 3450void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3451{
63b20011 3452 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3453}
22c43c81 3454EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3455
4ede816a
DL
3456void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3457{
3458 __wake_up_common(q, mode, 1, 0, key);
3459}
bf294b41 3460EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3461
1da177e4 3462/**
4ede816a 3463 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3464 * @q: the waitqueue
3465 * @mode: which threads
3466 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3467 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3468 *
3469 * The sync wakeup differs that the waker knows that it will schedule
3470 * away soon, so while the target thread will be woken up, it will not
3471 * be migrated to another CPU - ie. the two threads are 'synchronized'
3472 * with each other. This can prevent needless bouncing between CPUs.
3473 *
3474 * On UP it can prevent extra preemption.
50fa610a
DH
3475 *
3476 * It may be assumed that this function implies a write memory barrier before
3477 * changing the task state if and only if any tasks are woken up.
1da177e4 3478 */
4ede816a
DL
3479void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3480 int nr_exclusive, void *key)
1da177e4
LT
3481{
3482 unsigned long flags;
7d478721 3483 int wake_flags = WF_SYNC;
1da177e4
LT
3484
3485 if (unlikely(!q))
3486 return;
3487
3488 if (unlikely(!nr_exclusive))
7d478721 3489 wake_flags = 0;
1da177e4
LT
3490
3491 spin_lock_irqsave(&q->lock, flags);
7d478721 3492 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3493 spin_unlock_irqrestore(&q->lock, flags);
3494}
4ede816a
DL
3495EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3496
3497/*
3498 * __wake_up_sync - see __wake_up_sync_key()
3499 */
3500void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3501{
3502 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3503}
1da177e4
LT
3504EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3505
65eb3dc6
KD
3506/**
3507 * complete: - signals a single thread waiting on this completion
3508 * @x: holds the state of this particular completion
3509 *
3510 * This will wake up a single thread waiting on this completion. Threads will be
3511 * awakened in the same order in which they were queued.
3512 *
3513 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3514 *
3515 * It may be assumed that this function implies a write memory barrier before
3516 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3517 */
b15136e9 3518void complete(struct completion *x)
1da177e4
LT
3519{
3520 unsigned long flags;
3521
3522 spin_lock_irqsave(&x->wait.lock, flags);
3523 x->done++;
d9514f6c 3524 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3525 spin_unlock_irqrestore(&x->wait.lock, flags);
3526}
3527EXPORT_SYMBOL(complete);
3528
65eb3dc6
KD
3529/**
3530 * complete_all: - signals all threads waiting on this completion
3531 * @x: holds the state of this particular completion
3532 *
3533 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3534 *
3535 * It may be assumed that this function implies a write memory barrier before
3536 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3537 */
b15136e9 3538void complete_all(struct completion *x)
1da177e4
LT
3539{
3540 unsigned long flags;
3541
3542 spin_lock_irqsave(&x->wait.lock, flags);
3543 x->done += UINT_MAX/2;
d9514f6c 3544 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3545 spin_unlock_irqrestore(&x->wait.lock, flags);
3546}
3547EXPORT_SYMBOL(complete_all);
3548
8cbbe86d
AK
3549static inline long __sched
3550do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3551{
1da177e4
LT
3552 if (!x->done) {
3553 DECLARE_WAITQUEUE(wait, current);
3554
a93d2f17 3555 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3556 do {
94d3d824 3557 if (signal_pending_state(state, current)) {
ea71a546
ON
3558 timeout = -ERESTARTSYS;
3559 break;
8cbbe86d
AK
3560 }
3561 __set_current_state(state);
1da177e4
LT
3562 spin_unlock_irq(&x->wait.lock);
3563 timeout = schedule_timeout(timeout);
3564 spin_lock_irq(&x->wait.lock);
ea71a546 3565 } while (!x->done && timeout);
1da177e4 3566 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3567 if (!x->done)
3568 return timeout;
1da177e4
LT
3569 }
3570 x->done--;
ea71a546 3571 return timeout ?: 1;
1da177e4 3572}
1da177e4 3573
8cbbe86d
AK
3574static long __sched
3575wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3576{
1da177e4
LT
3577 might_sleep();
3578
3579 spin_lock_irq(&x->wait.lock);
8cbbe86d 3580 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3581 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3582 return timeout;
3583}
1da177e4 3584
65eb3dc6
KD
3585/**
3586 * wait_for_completion: - waits for completion of a task
3587 * @x: holds the state of this particular completion
3588 *
3589 * This waits to be signaled for completion of a specific task. It is NOT
3590 * interruptible and there is no timeout.
3591 *
3592 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3593 * and interrupt capability. Also see complete().
3594 */
b15136e9 3595void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3596{
3597 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3598}
8cbbe86d 3599EXPORT_SYMBOL(wait_for_completion);
1da177e4 3600
65eb3dc6
KD
3601/**
3602 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3603 * @x: holds the state of this particular completion
3604 * @timeout: timeout value in jiffies
3605 *
3606 * This waits for either a completion of a specific task to be signaled or for a
3607 * specified timeout to expire. The timeout is in jiffies. It is not
3608 * interruptible.
c6dc7f05
BF
3609 *
3610 * The return value is 0 if timed out, and positive (at least 1, or number of
3611 * jiffies left till timeout) if completed.
65eb3dc6 3612 */
b15136e9 3613unsigned long __sched
8cbbe86d 3614wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3615{
8cbbe86d 3616 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3617}
8cbbe86d 3618EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3619
65eb3dc6
KD
3620/**
3621 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3622 * @x: holds the state of this particular completion
3623 *
3624 * This waits for completion of a specific task to be signaled. It is
3625 * interruptible.
c6dc7f05
BF
3626 *
3627 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3628 */
8cbbe86d 3629int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3630{
51e97990
AK
3631 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3632 if (t == -ERESTARTSYS)
3633 return t;
3634 return 0;
0fec171c 3635}
8cbbe86d 3636EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3637
65eb3dc6
KD
3638/**
3639 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3640 * @x: holds the state of this particular completion
3641 * @timeout: timeout value in jiffies
3642 *
3643 * This waits for either a completion of a specific task to be signaled or for a
3644 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3645 *
3646 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3647 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3648 */
6bf41237 3649long __sched
8cbbe86d
AK
3650wait_for_completion_interruptible_timeout(struct completion *x,
3651 unsigned long timeout)
0fec171c 3652{
8cbbe86d 3653 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3654}
8cbbe86d 3655EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3656
65eb3dc6
KD
3657/**
3658 * wait_for_completion_killable: - waits for completion of a task (killable)
3659 * @x: holds the state of this particular completion
3660 *
3661 * This waits to be signaled for completion of a specific task. It can be
3662 * interrupted by a kill signal.
c6dc7f05
BF
3663 *
3664 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3665 */
009e577e
MW
3666int __sched wait_for_completion_killable(struct completion *x)
3667{
3668 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3669 if (t == -ERESTARTSYS)
3670 return t;
3671 return 0;
3672}
3673EXPORT_SYMBOL(wait_for_completion_killable);
3674
0aa12fb4
SW
3675/**
3676 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3677 * @x: holds the state of this particular completion
3678 * @timeout: timeout value in jiffies
3679 *
3680 * This waits for either a completion of a specific task to be
3681 * signaled or for a specified timeout to expire. It can be
3682 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3683 *
3684 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3685 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3686 */
6bf41237 3687long __sched
0aa12fb4
SW
3688wait_for_completion_killable_timeout(struct completion *x,
3689 unsigned long timeout)
3690{
3691 return wait_for_common(x, timeout, TASK_KILLABLE);
3692}
3693EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3694
be4de352
DC
3695/**
3696 * try_wait_for_completion - try to decrement a completion without blocking
3697 * @x: completion structure
3698 *
3699 * Returns: 0 if a decrement cannot be done without blocking
3700 * 1 if a decrement succeeded.
3701 *
3702 * If a completion is being used as a counting completion,
3703 * attempt to decrement the counter without blocking. This
3704 * enables us to avoid waiting if the resource the completion
3705 * is protecting is not available.
3706 */
3707bool try_wait_for_completion(struct completion *x)
3708{
7539a3b3 3709 unsigned long flags;
be4de352
DC
3710 int ret = 1;
3711
7539a3b3 3712 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3713 if (!x->done)
3714 ret = 0;
3715 else
3716 x->done--;
7539a3b3 3717 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3718 return ret;
3719}
3720EXPORT_SYMBOL(try_wait_for_completion);
3721
3722/**
3723 * completion_done - Test to see if a completion has any waiters
3724 * @x: completion structure
3725 *
3726 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3727 * 1 if there are no waiters.
3728 *
3729 */
3730bool completion_done(struct completion *x)
3731{
7539a3b3 3732 unsigned long flags;
be4de352
DC
3733 int ret = 1;
3734
7539a3b3 3735 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3736 if (!x->done)
3737 ret = 0;
7539a3b3 3738 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3739 return ret;
3740}
3741EXPORT_SYMBOL(completion_done);
3742
8cbbe86d
AK
3743static long __sched
3744sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3745{
0fec171c
IM
3746 unsigned long flags;
3747 wait_queue_t wait;
3748
3749 init_waitqueue_entry(&wait, current);
1da177e4 3750
8cbbe86d 3751 __set_current_state(state);
1da177e4 3752
8cbbe86d
AK
3753 spin_lock_irqsave(&q->lock, flags);
3754 __add_wait_queue(q, &wait);
3755 spin_unlock(&q->lock);
3756 timeout = schedule_timeout(timeout);
3757 spin_lock_irq(&q->lock);
3758 __remove_wait_queue(q, &wait);
3759 spin_unlock_irqrestore(&q->lock, flags);
3760
3761 return timeout;
3762}
3763
3764void __sched interruptible_sleep_on(wait_queue_head_t *q)
3765{
3766 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3767}
1da177e4
LT
3768EXPORT_SYMBOL(interruptible_sleep_on);
3769
0fec171c 3770long __sched
95cdf3b7 3771interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3772{
8cbbe86d 3773 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3774}
1da177e4
LT
3775EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3776
0fec171c 3777void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3778{
8cbbe86d 3779 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3780}
1da177e4
LT
3781EXPORT_SYMBOL(sleep_on);
3782
0fec171c 3783long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3784{
8cbbe86d 3785 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3786}
1da177e4
LT
3787EXPORT_SYMBOL(sleep_on_timeout);
3788
b29739f9
IM
3789#ifdef CONFIG_RT_MUTEXES
3790
3791/*
3792 * rt_mutex_setprio - set the current priority of a task
3793 * @p: task
3794 * @prio: prio value (kernel-internal form)
3795 *
3796 * This function changes the 'effective' priority of a task. It does
3797 * not touch ->normal_prio like __setscheduler().
3798 *
3799 * Used by the rt_mutex code to implement priority inheritance logic.
3800 */
36c8b586 3801void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3802{
83b699ed 3803 int oldprio, on_rq, running;
70b97a7f 3804 struct rq *rq;
83ab0aa0 3805 const struct sched_class *prev_class;
b29739f9
IM
3806
3807 BUG_ON(prio < 0 || prio > MAX_PRIO);
3808
0122ec5b 3809 rq = __task_rq_lock(p);
b29739f9 3810
1c4dd99b
TG
3811 /*
3812 * Idle task boosting is a nono in general. There is one
3813 * exception, when PREEMPT_RT and NOHZ is active:
3814 *
3815 * The idle task calls get_next_timer_interrupt() and holds
3816 * the timer wheel base->lock on the CPU and another CPU wants
3817 * to access the timer (probably to cancel it). We can safely
3818 * ignore the boosting request, as the idle CPU runs this code
3819 * with interrupts disabled and will complete the lock
3820 * protected section without being interrupted. So there is no
3821 * real need to boost.
3822 */
3823 if (unlikely(p == rq->idle)) {
3824 WARN_ON(p != rq->curr);
3825 WARN_ON(p->pi_blocked_on);
3826 goto out_unlock;
3827 }
3828
a8027073 3829 trace_sched_pi_setprio(p, prio);
d5f9f942 3830 oldprio = p->prio;
83ab0aa0 3831 prev_class = p->sched_class;
fd2f4419 3832 on_rq = p->on_rq;
051a1d1a 3833 running = task_current(rq, p);
0e1f3483 3834 if (on_rq)
69be72c1 3835 dequeue_task(rq, p, 0);
0e1f3483
HS
3836 if (running)
3837 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3838
3839 if (rt_prio(prio))
3840 p->sched_class = &rt_sched_class;
3841 else
3842 p->sched_class = &fair_sched_class;
3843
b29739f9
IM
3844 p->prio = prio;
3845
0e1f3483
HS
3846 if (running)
3847 p->sched_class->set_curr_task(rq);
da7a735e 3848 if (on_rq)
371fd7e7 3849 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3850
da7a735e 3851 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3852out_unlock:
0122ec5b 3853 __task_rq_unlock(rq);
b29739f9 3854}
b29739f9 3855#endif
36c8b586 3856void set_user_nice(struct task_struct *p, long nice)
1da177e4 3857{
dd41f596 3858 int old_prio, delta, on_rq;
1da177e4 3859 unsigned long flags;
70b97a7f 3860 struct rq *rq;
1da177e4
LT
3861
3862 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3863 return;
3864 /*
3865 * We have to be careful, if called from sys_setpriority(),
3866 * the task might be in the middle of scheduling on another CPU.
3867 */
3868 rq = task_rq_lock(p, &flags);
3869 /*
3870 * The RT priorities are set via sched_setscheduler(), but we still
3871 * allow the 'normal' nice value to be set - but as expected
3872 * it wont have any effect on scheduling until the task is
dd41f596 3873 * SCHED_FIFO/SCHED_RR:
1da177e4 3874 */
e05606d3 3875 if (task_has_rt_policy(p)) {
1da177e4
LT
3876 p->static_prio = NICE_TO_PRIO(nice);
3877 goto out_unlock;
3878 }
fd2f4419 3879 on_rq = p->on_rq;
c09595f6 3880 if (on_rq)
69be72c1 3881 dequeue_task(rq, p, 0);
1da177e4 3882
1da177e4 3883 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3884 set_load_weight(p);
b29739f9
IM
3885 old_prio = p->prio;
3886 p->prio = effective_prio(p);
3887 delta = p->prio - old_prio;
1da177e4 3888
dd41f596 3889 if (on_rq) {
371fd7e7 3890 enqueue_task(rq, p, 0);
1da177e4 3891 /*
d5f9f942
AM
3892 * If the task increased its priority or is running and
3893 * lowered its priority, then reschedule its CPU:
1da177e4 3894 */
d5f9f942 3895 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3896 resched_task(rq->curr);
3897 }
3898out_unlock:
0122ec5b 3899 task_rq_unlock(rq, p, &flags);
1da177e4 3900}
1da177e4
LT
3901EXPORT_SYMBOL(set_user_nice);
3902
e43379f1
MM
3903/*
3904 * can_nice - check if a task can reduce its nice value
3905 * @p: task
3906 * @nice: nice value
3907 */
36c8b586 3908int can_nice(const struct task_struct *p, const int nice)
e43379f1 3909{
024f4747
MM
3910 /* convert nice value [19,-20] to rlimit style value [1,40] */
3911 int nice_rlim = 20 - nice;
48f24c4d 3912
78d7d407 3913 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3914 capable(CAP_SYS_NICE));
3915}
3916
1da177e4
LT
3917#ifdef __ARCH_WANT_SYS_NICE
3918
3919/*
3920 * sys_nice - change the priority of the current process.
3921 * @increment: priority increment
3922 *
3923 * sys_setpriority is a more generic, but much slower function that
3924 * does similar things.
3925 */
5add95d4 3926SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3927{
48f24c4d 3928 long nice, retval;
1da177e4
LT
3929
3930 /*
3931 * Setpriority might change our priority at the same moment.
3932 * We don't have to worry. Conceptually one call occurs first
3933 * and we have a single winner.
3934 */
e43379f1
MM
3935 if (increment < -40)
3936 increment = -40;
1da177e4
LT
3937 if (increment > 40)
3938 increment = 40;
3939
2b8f836f 3940 nice = TASK_NICE(current) + increment;
1da177e4
LT
3941 if (nice < -20)
3942 nice = -20;
3943 if (nice > 19)
3944 nice = 19;
3945
e43379f1
MM
3946 if (increment < 0 && !can_nice(current, nice))
3947 return -EPERM;
3948
1da177e4
LT
3949 retval = security_task_setnice(current, nice);
3950 if (retval)
3951 return retval;
3952
3953 set_user_nice(current, nice);
3954 return 0;
3955}
3956
3957#endif
3958
3959/**
3960 * task_prio - return the priority value of a given task.
3961 * @p: the task in question.
3962 *
3963 * This is the priority value as seen by users in /proc.
3964 * RT tasks are offset by -200. Normal tasks are centered
3965 * around 0, value goes from -16 to +15.
3966 */
36c8b586 3967int task_prio(const struct task_struct *p)
1da177e4
LT
3968{
3969 return p->prio - MAX_RT_PRIO;
3970}
3971
3972/**
3973 * task_nice - return the nice value of a given task.
3974 * @p: the task in question.
3975 */
36c8b586 3976int task_nice(const struct task_struct *p)
1da177e4
LT
3977{
3978 return TASK_NICE(p);
3979}
150d8bed 3980EXPORT_SYMBOL(task_nice);
1da177e4
LT
3981
3982/**
3983 * idle_cpu - is a given cpu idle currently?
3984 * @cpu: the processor in question.
3985 */
3986int idle_cpu(int cpu)
3987{
908a3283
TG
3988 struct rq *rq = cpu_rq(cpu);
3989
3990 if (rq->curr != rq->idle)
3991 return 0;
3992
3993 if (rq->nr_running)
3994 return 0;
3995
3996#ifdef CONFIG_SMP
3997 if (!llist_empty(&rq->wake_list))
3998 return 0;
3999#endif
4000
4001 return 1;
1da177e4
LT
4002}
4003
1da177e4
LT
4004/**
4005 * idle_task - return the idle task for a given cpu.
4006 * @cpu: the processor in question.
4007 */
36c8b586 4008struct task_struct *idle_task(int cpu)
1da177e4
LT
4009{
4010 return cpu_rq(cpu)->idle;
4011}
4012
4013/**
4014 * find_process_by_pid - find a process with a matching PID value.
4015 * @pid: the pid in question.
4016 */
a9957449 4017static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4018{
228ebcbe 4019 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4020}
4021
4022/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4023static void
4024__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4025{
1da177e4
LT
4026 p->policy = policy;
4027 p->rt_priority = prio;
b29739f9
IM
4028 p->normal_prio = normal_prio(p);
4029 /* we are holding p->pi_lock already */
4030 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4031 if (rt_prio(p->prio))
4032 p->sched_class = &rt_sched_class;
4033 else
4034 p->sched_class = &fair_sched_class;
2dd73a4f 4035 set_load_weight(p);
1da177e4
LT
4036}
4037
c69e8d9c
DH
4038/*
4039 * check the target process has a UID that matches the current process's
4040 */
4041static bool check_same_owner(struct task_struct *p)
4042{
4043 const struct cred *cred = current_cred(), *pcred;
4044 bool match;
4045
4046 rcu_read_lock();
4047 pcred = __task_cred(p);
b0e77598
SH
4048 if (cred->user->user_ns == pcred->user->user_ns)
4049 match = (cred->euid == pcred->euid ||
4050 cred->euid == pcred->uid);
4051 else
4052 match = false;
c69e8d9c
DH
4053 rcu_read_unlock();
4054 return match;
4055}
4056
961ccddd 4057static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4058 const struct sched_param *param, bool user)
1da177e4 4059{
83b699ed 4060 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4061 unsigned long flags;
83ab0aa0 4062 const struct sched_class *prev_class;
70b97a7f 4063 struct rq *rq;
ca94c442 4064 int reset_on_fork;
1da177e4 4065
66e5393a
SR
4066 /* may grab non-irq protected spin_locks */
4067 BUG_ON(in_interrupt());
1da177e4
LT
4068recheck:
4069 /* double check policy once rq lock held */
ca94c442
LP
4070 if (policy < 0) {
4071 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4072 policy = oldpolicy = p->policy;
ca94c442
LP
4073 } else {
4074 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4075 policy &= ~SCHED_RESET_ON_FORK;
4076
4077 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4078 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4079 policy != SCHED_IDLE)
4080 return -EINVAL;
4081 }
4082
1da177e4
LT
4083 /*
4084 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4085 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4086 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4087 */
4088 if (param->sched_priority < 0 ||
95cdf3b7 4089 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4090 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4091 return -EINVAL;
e05606d3 4092 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4093 return -EINVAL;
4094
37e4ab3f
OC
4095 /*
4096 * Allow unprivileged RT tasks to decrease priority:
4097 */
961ccddd 4098 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4099 if (rt_policy(policy)) {
a44702e8
ON
4100 unsigned long rlim_rtprio =
4101 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4102
4103 /* can't set/change the rt policy */
4104 if (policy != p->policy && !rlim_rtprio)
4105 return -EPERM;
4106
4107 /* can't increase priority */
4108 if (param->sched_priority > p->rt_priority &&
4109 param->sched_priority > rlim_rtprio)
4110 return -EPERM;
4111 }
c02aa73b 4112
dd41f596 4113 /*
c02aa73b
DH
4114 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4115 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4116 */
c02aa73b
DH
4117 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4118 if (!can_nice(p, TASK_NICE(p)))
4119 return -EPERM;
4120 }
5fe1d75f 4121
37e4ab3f 4122 /* can't change other user's priorities */
c69e8d9c 4123 if (!check_same_owner(p))
37e4ab3f 4124 return -EPERM;
ca94c442
LP
4125
4126 /* Normal users shall not reset the sched_reset_on_fork flag */
4127 if (p->sched_reset_on_fork && !reset_on_fork)
4128 return -EPERM;
37e4ab3f 4129 }
1da177e4 4130
725aad24 4131 if (user) {
b0ae1981 4132 retval = security_task_setscheduler(p);
725aad24
JF
4133 if (retval)
4134 return retval;
4135 }
4136
b29739f9
IM
4137 /*
4138 * make sure no PI-waiters arrive (or leave) while we are
4139 * changing the priority of the task:
0122ec5b 4140 *
25985edc 4141 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4142 * runqueue lock must be held.
4143 */
0122ec5b 4144 rq = task_rq_lock(p, &flags);
dc61b1d6 4145
34f971f6
PZ
4146 /*
4147 * Changing the policy of the stop threads its a very bad idea
4148 */
4149 if (p == rq->stop) {
0122ec5b 4150 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4151 return -EINVAL;
4152 }
4153
a51e9198
DF
4154 /*
4155 * If not changing anything there's no need to proceed further:
4156 */
4157 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4158 param->sched_priority == p->rt_priority))) {
4159
4160 __task_rq_unlock(rq);
4161 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4162 return 0;
4163 }
4164
dc61b1d6
PZ
4165#ifdef CONFIG_RT_GROUP_SCHED
4166 if (user) {
4167 /*
4168 * Do not allow realtime tasks into groups that have no runtime
4169 * assigned.
4170 */
4171 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4172 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4173 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4174 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4175 return -EPERM;
4176 }
4177 }
4178#endif
4179
1da177e4
LT
4180 /* recheck policy now with rq lock held */
4181 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4182 policy = oldpolicy = -1;
0122ec5b 4183 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4184 goto recheck;
4185 }
fd2f4419 4186 on_rq = p->on_rq;
051a1d1a 4187 running = task_current(rq, p);
0e1f3483 4188 if (on_rq)
4ca9b72b 4189 dequeue_task(rq, p, 0);
0e1f3483
HS
4190 if (running)
4191 p->sched_class->put_prev_task(rq, p);
f6b53205 4192
ca94c442
LP
4193 p->sched_reset_on_fork = reset_on_fork;
4194
1da177e4 4195 oldprio = p->prio;
83ab0aa0 4196 prev_class = p->sched_class;
dd41f596 4197 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4198
0e1f3483
HS
4199 if (running)
4200 p->sched_class->set_curr_task(rq);
da7a735e 4201 if (on_rq)
4ca9b72b 4202 enqueue_task(rq, p, 0);
cb469845 4203
da7a735e 4204 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4205 task_rq_unlock(rq, p, &flags);
b29739f9 4206
95e02ca9
TG
4207 rt_mutex_adjust_pi(p);
4208
1da177e4
LT
4209 return 0;
4210}
961ccddd
RR
4211
4212/**
4213 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4214 * @p: the task in question.
4215 * @policy: new policy.
4216 * @param: structure containing the new RT priority.
4217 *
4218 * NOTE that the task may be already dead.
4219 */
4220int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4221 const struct sched_param *param)
961ccddd
RR
4222{
4223 return __sched_setscheduler(p, policy, param, true);
4224}
1da177e4
LT
4225EXPORT_SYMBOL_GPL(sched_setscheduler);
4226
961ccddd
RR
4227/**
4228 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4229 * @p: the task in question.
4230 * @policy: new policy.
4231 * @param: structure containing the new RT priority.
4232 *
4233 * Just like sched_setscheduler, only don't bother checking if the
4234 * current context has permission. For example, this is needed in
4235 * stop_machine(): we create temporary high priority worker threads,
4236 * but our caller might not have that capability.
4237 */
4238int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4239 const struct sched_param *param)
961ccddd
RR
4240{
4241 return __sched_setscheduler(p, policy, param, false);
4242}
4243
95cdf3b7
IM
4244static int
4245do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4246{
1da177e4
LT
4247 struct sched_param lparam;
4248 struct task_struct *p;
36c8b586 4249 int retval;
1da177e4
LT
4250
4251 if (!param || pid < 0)
4252 return -EINVAL;
4253 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4254 return -EFAULT;
5fe1d75f
ON
4255
4256 rcu_read_lock();
4257 retval = -ESRCH;
1da177e4 4258 p = find_process_by_pid(pid);
5fe1d75f
ON
4259 if (p != NULL)
4260 retval = sched_setscheduler(p, policy, &lparam);
4261 rcu_read_unlock();
36c8b586 4262
1da177e4
LT
4263 return retval;
4264}
4265
4266/**
4267 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4268 * @pid: the pid in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4271 */
5add95d4
HC
4272SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4273 struct sched_param __user *, param)
1da177e4 4274{
c21761f1
JB
4275 /* negative values for policy are not valid */
4276 if (policy < 0)
4277 return -EINVAL;
4278
1da177e4
LT
4279 return do_sched_setscheduler(pid, policy, param);
4280}
4281
4282/**
4283 * sys_sched_setparam - set/change the RT priority of a thread
4284 * @pid: the pid in question.
4285 * @param: structure containing the new RT priority.
4286 */
5add95d4 4287SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4288{
4289 return do_sched_setscheduler(pid, -1, param);
4290}
4291
4292/**
4293 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4294 * @pid: the pid in question.
4295 */
5add95d4 4296SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4297{
36c8b586 4298 struct task_struct *p;
3a5c359a 4299 int retval;
1da177e4
LT
4300
4301 if (pid < 0)
3a5c359a 4302 return -EINVAL;
1da177e4
LT
4303
4304 retval = -ESRCH;
5fe85be0 4305 rcu_read_lock();
1da177e4
LT
4306 p = find_process_by_pid(pid);
4307 if (p) {
4308 retval = security_task_getscheduler(p);
4309 if (!retval)
ca94c442
LP
4310 retval = p->policy
4311 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4312 }
5fe85be0 4313 rcu_read_unlock();
1da177e4
LT
4314 return retval;
4315}
4316
4317/**
ca94c442 4318 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4319 * @pid: the pid in question.
4320 * @param: structure containing the RT priority.
4321 */
5add95d4 4322SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4323{
4324 struct sched_param lp;
36c8b586 4325 struct task_struct *p;
3a5c359a 4326 int retval;
1da177e4
LT
4327
4328 if (!param || pid < 0)
3a5c359a 4329 return -EINVAL;
1da177e4 4330
5fe85be0 4331 rcu_read_lock();
1da177e4
LT
4332 p = find_process_by_pid(pid);
4333 retval = -ESRCH;
4334 if (!p)
4335 goto out_unlock;
4336
4337 retval = security_task_getscheduler(p);
4338 if (retval)
4339 goto out_unlock;
4340
4341 lp.sched_priority = p->rt_priority;
5fe85be0 4342 rcu_read_unlock();
1da177e4
LT
4343
4344 /*
4345 * This one might sleep, we cannot do it with a spinlock held ...
4346 */
4347 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4348
1da177e4
LT
4349 return retval;
4350
4351out_unlock:
5fe85be0 4352 rcu_read_unlock();
1da177e4
LT
4353 return retval;
4354}
4355
96f874e2 4356long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4357{
5a16f3d3 4358 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4359 struct task_struct *p;
4360 int retval;
1da177e4 4361
95402b38 4362 get_online_cpus();
23f5d142 4363 rcu_read_lock();
1da177e4
LT
4364
4365 p = find_process_by_pid(pid);
4366 if (!p) {
23f5d142 4367 rcu_read_unlock();
95402b38 4368 put_online_cpus();
1da177e4
LT
4369 return -ESRCH;
4370 }
4371
23f5d142 4372 /* Prevent p going away */
1da177e4 4373 get_task_struct(p);
23f5d142 4374 rcu_read_unlock();
1da177e4 4375
5a16f3d3
RR
4376 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4377 retval = -ENOMEM;
4378 goto out_put_task;
4379 }
4380 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4381 retval = -ENOMEM;
4382 goto out_free_cpus_allowed;
4383 }
1da177e4 4384 retval = -EPERM;
f1c84dae 4385 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4386 goto out_unlock;
4387
b0ae1981 4388 retval = security_task_setscheduler(p);
e7834f8f
DQ
4389 if (retval)
4390 goto out_unlock;
4391
5a16f3d3
RR
4392 cpuset_cpus_allowed(p, cpus_allowed);
4393 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4394again:
5a16f3d3 4395 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4396
8707d8b8 4397 if (!retval) {
5a16f3d3
RR
4398 cpuset_cpus_allowed(p, cpus_allowed);
4399 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4400 /*
4401 * We must have raced with a concurrent cpuset
4402 * update. Just reset the cpus_allowed to the
4403 * cpuset's cpus_allowed
4404 */
5a16f3d3 4405 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4406 goto again;
4407 }
4408 }
1da177e4 4409out_unlock:
5a16f3d3
RR
4410 free_cpumask_var(new_mask);
4411out_free_cpus_allowed:
4412 free_cpumask_var(cpus_allowed);
4413out_put_task:
1da177e4 4414 put_task_struct(p);
95402b38 4415 put_online_cpus();
1da177e4
LT
4416 return retval;
4417}
4418
4419static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4420 struct cpumask *new_mask)
1da177e4 4421{
96f874e2
RR
4422 if (len < cpumask_size())
4423 cpumask_clear(new_mask);
4424 else if (len > cpumask_size())
4425 len = cpumask_size();
4426
1da177e4
LT
4427 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4428}
4429
4430/**
4431 * sys_sched_setaffinity - set the cpu affinity of a process
4432 * @pid: pid of the process
4433 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4434 * @user_mask_ptr: user-space pointer to the new cpu mask
4435 */
5add95d4
HC
4436SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4437 unsigned long __user *, user_mask_ptr)
1da177e4 4438{
5a16f3d3 4439 cpumask_var_t new_mask;
1da177e4
LT
4440 int retval;
4441
5a16f3d3
RR
4442 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4443 return -ENOMEM;
1da177e4 4444
5a16f3d3
RR
4445 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4446 if (retval == 0)
4447 retval = sched_setaffinity(pid, new_mask);
4448 free_cpumask_var(new_mask);
4449 return retval;
1da177e4
LT
4450}
4451
96f874e2 4452long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4453{
36c8b586 4454 struct task_struct *p;
31605683 4455 unsigned long flags;
1da177e4 4456 int retval;
1da177e4 4457
95402b38 4458 get_online_cpus();
23f5d142 4459 rcu_read_lock();
1da177e4
LT
4460
4461 retval = -ESRCH;
4462 p = find_process_by_pid(pid);
4463 if (!p)
4464 goto out_unlock;
4465
e7834f8f
DQ
4466 retval = security_task_getscheduler(p);
4467 if (retval)
4468 goto out_unlock;
4469
013fdb80 4470 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4471 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4472 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4473
4474out_unlock:
23f5d142 4475 rcu_read_unlock();
95402b38 4476 put_online_cpus();
1da177e4 4477
9531b62f 4478 return retval;
1da177e4
LT
4479}
4480
4481/**
4482 * sys_sched_getaffinity - get the cpu affinity of a process
4483 * @pid: pid of the process
4484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4485 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4486 */
5add95d4
HC
4487SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4488 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4489{
4490 int ret;
f17c8607 4491 cpumask_var_t mask;
1da177e4 4492
84fba5ec 4493 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4494 return -EINVAL;
4495 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4496 return -EINVAL;
4497
f17c8607
RR
4498 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4499 return -ENOMEM;
1da177e4 4500
f17c8607
RR
4501 ret = sched_getaffinity(pid, mask);
4502 if (ret == 0) {
8bc037fb 4503 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4504
4505 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4506 ret = -EFAULT;
4507 else
cd3d8031 4508 ret = retlen;
f17c8607
RR
4509 }
4510 free_cpumask_var(mask);
1da177e4 4511
f17c8607 4512 return ret;
1da177e4
LT
4513}
4514
4515/**
4516 * sys_sched_yield - yield the current processor to other threads.
4517 *
dd41f596
IM
4518 * This function yields the current CPU to other tasks. If there are no
4519 * other threads running on this CPU then this function will return.
1da177e4 4520 */
5add95d4 4521SYSCALL_DEFINE0(sched_yield)
1da177e4 4522{
70b97a7f 4523 struct rq *rq = this_rq_lock();
1da177e4 4524
2d72376b 4525 schedstat_inc(rq, yld_count);
4530d7ab 4526 current->sched_class->yield_task(rq);
1da177e4
LT
4527
4528 /*
4529 * Since we are going to call schedule() anyway, there's
4530 * no need to preempt or enable interrupts:
4531 */
4532 __release(rq->lock);
8a25d5de 4533 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4534 do_raw_spin_unlock(&rq->lock);
ba74c144 4535 sched_preempt_enable_no_resched();
1da177e4
LT
4536
4537 schedule();
4538
4539 return 0;
4540}
4541
d86ee480
PZ
4542static inline int should_resched(void)
4543{
4544 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4545}
4546
e7b38404 4547static void __cond_resched(void)
1da177e4 4548{
e7aaaa69 4549 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4550 __schedule();
e7aaaa69 4551 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4552}
4553
02b67cc3 4554int __sched _cond_resched(void)
1da177e4 4555{
d86ee480 4556 if (should_resched()) {
1da177e4
LT
4557 __cond_resched();
4558 return 1;
4559 }
4560 return 0;
4561}
02b67cc3 4562EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4563
4564/*
613afbf8 4565 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4566 * call schedule, and on return reacquire the lock.
4567 *
41a2d6cf 4568 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4569 * operations here to prevent schedule() from being called twice (once via
4570 * spin_unlock(), once by hand).
4571 */
613afbf8 4572int __cond_resched_lock(spinlock_t *lock)
1da177e4 4573{
d86ee480 4574 int resched = should_resched();
6df3cecb
JK
4575 int ret = 0;
4576
f607c668
PZ
4577 lockdep_assert_held(lock);
4578
95c354fe 4579 if (spin_needbreak(lock) || resched) {
1da177e4 4580 spin_unlock(lock);
d86ee480 4581 if (resched)
95c354fe
NP
4582 __cond_resched();
4583 else
4584 cpu_relax();
6df3cecb 4585 ret = 1;
1da177e4 4586 spin_lock(lock);
1da177e4 4587 }
6df3cecb 4588 return ret;
1da177e4 4589}
613afbf8 4590EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4591
613afbf8 4592int __sched __cond_resched_softirq(void)
1da177e4
LT
4593{
4594 BUG_ON(!in_softirq());
4595
d86ee480 4596 if (should_resched()) {
98d82567 4597 local_bh_enable();
1da177e4
LT
4598 __cond_resched();
4599 local_bh_disable();
4600 return 1;
4601 }
4602 return 0;
4603}
613afbf8 4604EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4605
1da177e4
LT
4606/**
4607 * yield - yield the current processor to other threads.
4608 *
8e3fabfd
PZ
4609 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4610 *
4611 * The scheduler is at all times free to pick the calling task as the most
4612 * eligible task to run, if removing the yield() call from your code breaks
4613 * it, its already broken.
4614 *
4615 * Typical broken usage is:
4616 *
4617 * while (!event)
4618 * yield();
4619 *
4620 * where one assumes that yield() will let 'the other' process run that will
4621 * make event true. If the current task is a SCHED_FIFO task that will never
4622 * happen. Never use yield() as a progress guarantee!!
4623 *
4624 * If you want to use yield() to wait for something, use wait_event().
4625 * If you want to use yield() to be 'nice' for others, use cond_resched().
4626 * If you still want to use yield(), do not!
1da177e4
LT
4627 */
4628void __sched yield(void)
4629{
4630 set_current_state(TASK_RUNNING);
4631 sys_sched_yield();
4632}
1da177e4
LT
4633EXPORT_SYMBOL(yield);
4634
d95f4122
MG
4635/**
4636 * yield_to - yield the current processor to another thread in
4637 * your thread group, or accelerate that thread toward the
4638 * processor it's on.
16addf95
RD
4639 * @p: target task
4640 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4641 *
4642 * It's the caller's job to ensure that the target task struct
4643 * can't go away on us before we can do any checks.
4644 *
4645 * Returns true if we indeed boosted the target task.
4646 */
4647bool __sched yield_to(struct task_struct *p, bool preempt)
4648{
4649 struct task_struct *curr = current;
4650 struct rq *rq, *p_rq;
4651 unsigned long flags;
4652 bool yielded = 0;
4653
4654 local_irq_save(flags);
4655 rq = this_rq();
4656
4657again:
4658 p_rq = task_rq(p);
4659 double_rq_lock(rq, p_rq);
4660 while (task_rq(p) != p_rq) {
4661 double_rq_unlock(rq, p_rq);
4662 goto again;
4663 }
4664
4665 if (!curr->sched_class->yield_to_task)
4666 goto out;
4667
4668 if (curr->sched_class != p->sched_class)
4669 goto out;
4670
4671 if (task_running(p_rq, p) || p->state)
4672 goto out;
4673
4674 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4675 if (yielded) {
d95f4122 4676 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4677 /*
4678 * Make p's CPU reschedule; pick_next_entity takes care of
4679 * fairness.
4680 */
4681 if (preempt && rq != p_rq)
4682 resched_task(p_rq->curr);
916671c0
MG
4683 } else {
4684 /*
4685 * We might have set it in task_yield_fair(), but are
4686 * not going to schedule(), so don't want to skip
4687 * the next update.
4688 */
4689 rq->skip_clock_update = 0;
6d1cafd8 4690 }
d95f4122
MG
4691
4692out:
4693 double_rq_unlock(rq, p_rq);
4694 local_irq_restore(flags);
4695
4696 if (yielded)
4697 schedule();
4698
4699 return yielded;
4700}
4701EXPORT_SYMBOL_GPL(yield_to);
4702
1da177e4 4703/*
41a2d6cf 4704 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4705 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4706 */
4707void __sched io_schedule(void)
4708{
54d35f29 4709 struct rq *rq = raw_rq();
1da177e4 4710
0ff92245 4711 delayacct_blkio_start();
1da177e4 4712 atomic_inc(&rq->nr_iowait);
73c10101 4713 blk_flush_plug(current);
8f0dfc34 4714 current->in_iowait = 1;
1da177e4 4715 schedule();
8f0dfc34 4716 current->in_iowait = 0;
1da177e4 4717 atomic_dec(&rq->nr_iowait);
0ff92245 4718 delayacct_blkio_end();
1da177e4 4719}
1da177e4
LT
4720EXPORT_SYMBOL(io_schedule);
4721
4722long __sched io_schedule_timeout(long timeout)
4723{
54d35f29 4724 struct rq *rq = raw_rq();
1da177e4
LT
4725 long ret;
4726
0ff92245 4727 delayacct_blkio_start();
1da177e4 4728 atomic_inc(&rq->nr_iowait);
73c10101 4729 blk_flush_plug(current);
8f0dfc34 4730 current->in_iowait = 1;
1da177e4 4731 ret = schedule_timeout(timeout);
8f0dfc34 4732 current->in_iowait = 0;
1da177e4 4733 atomic_dec(&rq->nr_iowait);
0ff92245 4734 delayacct_blkio_end();
1da177e4
LT
4735 return ret;
4736}
4737
4738/**
4739 * sys_sched_get_priority_max - return maximum RT priority.
4740 * @policy: scheduling class.
4741 *
4742 * this syscall returns the maximum rt_priority that can be used
4743 * by a given scheduling class.
4744 */
5add95d4 4745SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4746{
4747 int ret = -EINVAL;
4748
4749 switch (policy) {
4750 case SCHED_FIFO:
4751 case SCHED_RR:
4752 ret = MAX_USER_RT_PRIO-1;
4753 break;
4754 case SCHED_NORMAL:
b0a9499c 4755 case SCHED_BATCH:
dd41f596 4756 case SCHED_IDLE:
1da177e4
LT
4757 ret = 0;
4758 break;
4759 }
4760 return ret;
4761}
4762
4763/**
4764 * sys_sched_get_priority_min - return minimum RT priority.
4765 * @policy: scheduling class.
4766 *
4767 * this syscall returns the minimum rt_priority that can be used
4768 * by a given scheduling class.
4769 */
5add95d4 4770SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4771{
4772 int ret = -EINVAL;
4773
4774 switch (policy) {
4775 case SCHED_FIFO:
4776 case SCHED_RR:
4777 ret = 1;
4778 break;
4779 case SCHED_NORMAL:
b0a9499c 4780 case SCHED_BATCH:
dd41f596 4781 case SCHED_IDLE:
1da177e4
LT
4782 ret = 0;
4783 }
4784 return ret;
4785}
4786
4787/**
4788 * sys_sched_rr_get_interval - return the default timeslice of a process.
4789 * @pid: pid of the process.
4790 * @interval: userspace pointer to the timeslice value.
4791 *
4792 * this syscall writes the default timeslice value of a given process
4793 * into the user-space timespec buffer. A value of '0' means infinity.
4794 */
17da2bd9 4795SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4796 struct timespec __user *, interval)
1da177e4 4797{
36c8b586 4798 struct task_struct *p;
a4ec24b4 4799 unsigned int time_slice;
dba091b9
TG
4800 unsigned long flags;
4801 struct rq *rq;
3a5c359a 4802 int retval;
1da177e4 4803 struct timespec t;
1da177e4
LT
4804
4805 if (pid < 0)
3a5c359a 4806 return -EINVAL;
1da177e4
LT
4807
4808 retval = -ESRCH;
1a551ae7 4809 rcu_read_lock();
1da177e4
LT
4810 p = find_process_by_pid(pid);
4811 if (!p)
4812 goto out_unlock;
4813
4814 retval = security_task_getscheduler(p);
4815 if (retval)
4816 goto out_unlock;
4817
dba091b9
TG
4818 rq = task_rq_lock(p, &flags);
4819 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4820 task_rq_unlock(rq, p, &flags);
a4ec24b4 4821
1a551ae7 4822 rcu_read_unlock();
a4ec24b4 4823 jiffies_to_timespec(time_slice, &t);
1da177e4 4824 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4825 return retval;
3a5c359a 4826
1da177e4 4827out_unlock:
1a551ae7 4828 rcu_read_unlock();
1da177e4
LT
4829 return retval;
4830}
4831
7c731e0a 4832static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4833
82a1fcb9 4834void sched_show_task(struct task_struct *p)
1da177e4 4835{
1da177e4 4836 unsigned long free = 0;
36c8b586 4837 unsigned state;
1da177e4 4838
1da177e4 4839 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4840 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4841 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4842#if BITS_PER_LONG == 32
1da177e4 4843 if (state == TASK_RUNNING)
3df0fc5b 4844 printk(KERN_CONT " running ");
1da177e4 4845 else
3df0fc5b 4846 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4847#else
4848 if (state == TASK_RUNNING)
3df0fc5b 4849 printk(KERN_CONT " running task ");
1da177e4 4850 else
3df0fc5b 4851 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4852#endif
4853#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4854 free = stack_not_used(p);
1da177e4 4855#endif
3df0fc5b 4856 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4857 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4858 (unsigned long)task_thread_info(p)->flags);
1da177e4 4859
5fb5e6de 4860 show_stack(p, NULL);
1da177e4
LT
4861}
4862
e59e2ae2 4863void show_state_filter(unsigned long state_filter)
1da177e4 4864{
36c8b586 4865 struct task_struct *g, *p;
1da177e4 4866
4bd77321 4867#if BITS_PER_LONG == 32
3df0fc5b
PZ
4868 printk(KERN_INFO
4869 " task PC stack pid father\n");
1da177e4 4870#else
3df0fc5b
PZ
4871 printk(KERN_INFO
4872 " task PC stack pid father\n");
1da177e4 4873#endif
510f5acc 4874 rcu_read_lock();
1da177e4
LT
4875 do_each_thread(g, p) {
4876 /*
4877 * reset the NMI-timeout, listing all files on a slow
25985edc 4878 * console might take a lot of time:
1da177e4
LT
4879 */
4880 touch_nmi_watchdog();
39bc89fd 4881 if (!state_filter || (p->state & state_filter))
82a1fcb9 4882 sched_show_task(p);
1da177e4
LT
4883 } while_each_thread(g, p);
4884
04c9167f
JF
4885 touch_all_softlockup_watchdogs();
4886
dd41f596
IM
4887#ifdef CONFIG_SCHED_DEBUG
4888 sysrq_sched_debug_show();
4889#endif
510f5acc 4890 rcu_read_unlock();
e59e2ae2
IM
4891 /*
4892 * Only show locks if all tasks are dumped:
4893 */
93335a21 4894 if (!state_filter)
e59e2ae2 4895 debug_show_all_locks();
1da177e4
LT
4896}
4897
1df21055
IM
4898void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4899{
dd41f596 4900 idle->sched_class = &idle_sched_class;
1df21055
IM
4901}
4902
f340c0d1
IM
4903/**
4904 * init_idle - set up an idle thread for a given CPU
4905 * @idle: task in question
4906 * @cpu: cpu the idle task belongs to
4907 *
4908 * NOTE: this function does not set the idle thread's NEED_RESCHED
4909 * flag, to make booting more robust.
4910 */
5c1e1767 4911void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4912{
70b97a7f 4913 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4914 unsigned long flags;
4915
05fa785c 4916 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4917
dd41f596 4918 __sched_fork(idle);
06b83b5f 4919 idle->state = TASK_RUNNING;
dd41f596
IM
4920 idle->se.exec_start = sched_clock();
4921
1e1b6c51 4922 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4923 /*
4924 * We're having a chicken and egg problem, even though we are
4925 * holding rq->lock, the cpu isn't yet set to this cpu so the
4926 * lockdep check in task_group() will fail.
4927 *
4928 * Similar case to sched_fork(). / Alternatively we could
4929 * use task_rq_lock() here and obtain the other rq->lock.
4930 *
4931 * Silence PROVE_RCU
4932 */
4933 rcu_read_lock();
dd41f596 4934 __set_task_cpu(idle, cpu);
6506cf6c 4935 rcu_read_unlock();
1da177e4 4936
1da177e4 4937 rq->curr = rq->idle = idle;
3ca7a440
PZ
4938#if defined(CONFIG_SMP)
4939 idle->on_cpu = 1;
4866cde0 4940#endif
05fa785c 4941 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4942
4943 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4944 task_thread_info(idle)->preempt_count = 0;
55cd5340 4945
dd41f596
IM
4946 /*
4947 * The idle tasks have their own, simple scheduling class:
4948 */
4949 idle->sched_class = &idle_sched_class;
868baf07 4950 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4951#if defined(CONFIG_SMP)
4952 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4953#endif
19978ca6
IM
4954}
4955
1da177e4 4956#ifdef CONFIG_SMP
1e1b6c51
KM
4957void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4958{
4959 if (p->sched_class && p->sched_class->set_cpus_allowed)
4960 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4961
4962 cpumask_copy(&p->cpus_allowed, new_mask);
4963 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4964}
4965
1da177e4
LT
4966/*
4967 * This is how migration works:
4968 *
969c7921
TH
4969 * 1) we invoke migration_cpu_stop() on the target CPU using
4970 * stop_one_cpu().
4971 * 2) stopper starts to run (implicitly forcing the migrated thread
4972 * off the CPU)
4973 * 3) it checks whether the migrated task is still in the wrong runqueue.
4974 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4975 * it and puts it into the right queue.
969c7921
TH
4976 * 5) stopper completes and stop_one_cpu() returns and the migration
4977 * is done.
1da177e4
LT
4978 */
4979
4980/*
4981 * Change a given task's CPU affinity. Migrate the thread to a
4982 * proper CPU and schedule it away if the CPU it's executing on
4983 * is removed from the allowed bitmask.
4984 *
4985 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4986 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4987 * call is not atomic; no spinlocks may be held.
4988 */
96f874e2 4989int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4990{
4991 unsigned long flags;
70b97a7f 4992 struct rq *rq;
969c7921 4993 unsigned int dest_cpu;
48f24c4d 4994 int ret = 0;
1da177e4
LT
4995
4996 rq = task_rq_lock(p, &flags);
e2912009 4997
db44fc01
YZ
4998 if (cpumask_equal(&p->cpus_allowed, new_mask))
4999 goto out;
5000
6ad4c188 5001 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5002 ret = -EINVAL;
5003 goto out;
5004 }
5005
db44fc01 5006 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5007 ret = -EINVAL;
5008 goto out;
5009 }
5010
1e1b6c51 5011 do_set_cpus_allowed(p, new_mask);
73fe6aae 5012
1da177e4 5013 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5014 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5015 goto out;
5016
969c7921 5017 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5018 if (p->on_rq) {
969c7921 5019 struct migration_arg arg = { p, dest_cpu };
1da177e4 5020 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5021 task_rq_unlock(rq, p, &flags);
969c7921 5022 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5023 tlb_migrate_finish(p->mm);
5024 return 0;
5025 }
5026out:
0122ec5b 5027 task_rq_unlock(rq, p, &flags);
48f24c4d 5028
1da177e4
LT
5029 return ret;
5030}
cd8ba7cd 5031EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5032
5033/*
41a2d6cf 5034 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5035 * this because either it can't run here any more (set_cpus_allowed()
5036 * away from this CPU, or CPU going down), or because we're
5037 * attempting to rebalance this task on exec (sched_exec).
5038 *
5039 * So we race with normal scheduler movements, but that's OK, as long
5040 * as the task is no longer on this CPU.
efc30814
KK
5041 *
5042 * Returns non-zero if task was successfully migrated.
1da177e4 5043 */
efc30814 5044static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5045{
70b97a7f 5046 struct rq *rq_dest, *rq_src;
e2912009 5047 int ret = 0;
1da177e4 5048
e761b772 5049 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5050 return ret;
1da177e4
LT
5051
5052 rq_src = cpu_rq(src_cpu);
5053 rq_dest = cpu_rq(dest_cpu);
5054
0122ec5b 5055 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5056 double_rq_lock(rq_src, rq_dest);
5057 /* Already moved. */
5058 if (task_cpu(p) != src_cpu)
b1e38734 5059 goto done;
1da177e4 5060 /* Affinity changed (again). */
fa17b507 5061 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5062 goto fail;
1da177e4 5063
e2912009
PZ
5064 /*
5065 * If we're not on a rq, the next wake-up will ensure we're
5066 * placed properly.
5067 */
fd2f4419 5068 if (p->on_rq) {
4ca9b72b 5069 dequeue_task(rq_src, p, 0);
e2912009 5070 set_task_cpu(p, dest_cpu);
4ca9b72b 5071 enqueue_task(rq_dest, p, 0);
15afe09b 5072 check_preempt_curr(rq_dest, p, 0);
1da177e4 5073 }
b1e38734 5074done:
efc30814 5075 ret = 1;
b1e38734 5076fail:
1da177e4 5077 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5078 raw_spin_unlock(&p->pi_lock);
efc30814 5079 return ret;
1da177e4
LT
5080}
5081
5082/*
969c7921
TH
5083 * migration_cpu_stop - this will be executed by a highprio stopper thread
5084 * and performs thread migration by bumping thread off CPU then
5085 * 'pushing' onto another runqueue.
1da177e4 5086 */
969c7921 5087static int migration_cpu_stop(void *data)
1da177e4 5088{
969c7921 5089 struct migration_arg *arg = data;
f7b4cddc 5090
969c7921
TH
5091 /*
5092 * The original target cpu might have gone down and we might
5093 * be on another cpu but it doesn't matter.
5094 */
f7b4cddc 5095 local_irq_disable();
969c7921 5096 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5097 local_irq_enable();
1da177e4 5098 return 0;
f7b4cddc
ON
5099}
5100
1da177e4 5101#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5102
054b9108 5103/*
48c5ccae
PZ
5104 * Ensures that the idle task is using init_mm right before its cpu goes
5105 * offline.
054b9108 5106 */
48c5ccae 5107void idle_task_exit(void)
1da177e4 5108{
48c5ccae 5109 struct mm_struct *mm = current->active_mm;
e76bd8d9 5110
48c5ccae 5111 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5112
48c5ccae
PZ
5113 if (mm != &init_mm)
5114 switch_mm(mm, &init_mm, current);
5115 mmdrop(mm);
1da177e4
LT
5116}
5117
5118/*
5119 * While a dead CPU has no uninterruptible tasks queued at this point,
5120 * it might still have a nonzero ->nr_uninterruptible counter, because
5121 * for performance reasons the counter is not stricly tracking tasks to
5122 * their home CPUs. So we just add the counter to another CPU's counter,
5123 * to keep the global sum constant after CPU-down:
5124 */
70b97a7f 5125static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5126{
6ad4c188 5127 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5128
1da177e4
LT
5129 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5130 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5131}
5132
dd41f596 5133/*
48c5ccae 5134 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5135 */
48c5ccae 5136static void calc_global_load_remove(struct rq *rq)
1da177e4 5137{
48c5ccae
PZ
5138 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5139 rq->calc_load_active = 0;
1da177e4
LT
5140}
5141
48f24c4d 5142/*
48c5ccae
PZ
5143 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5144 * try_to_wake_up()->select_task_rq().
5145 *
5146 * Called with rq->lock held even though we'er in stop_machine() and
5147 * there's no concurrency possible, we hold the required locks anyway
5148 * because of lock validation efforts.
1da177e4 5149 */
48c5ccae 5150static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5151{
70b97a7f 5152 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5153 struct task_struct *next, *stop = rq->stop;
5154 int dest_cpu;
1da177e4
LT
5155
5156 /*
48c5ccae
PZ
5157 * Fudge the rq selection such that the below task selection loop
5158 * doesn't get stuck on the currently eligible stop task.
5159 *
5160 * We're currently inside stop_machine() and the rq is either stuck
5161 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5162 * either way we should never end up calling schedule() until we're
5163 * done here.
1da177e4 5164 */
48c5ccae 5165 rq->stop = NULL;
48f24c4d 5166
8cb120d3
PT
5167 /* Ensure any throttled groups are reachable by pick_next_task */
5168 unthrottle_offline_cfs_rqs(rq);
5169
dd41f596 5170 for ( ; ; ) {
48c5ccae
PZ
5171 /*
5172 * There's this thread running, bail when that's the only
5173 * remaining thread.
5174 */
5175 if (rq->nr_running == 1)
dd41f596 5176 break;
48c5ccae 5177
b67802ea 5178 next = pick_next_task(rq);
48c5ccae 5179 BUG_ON(!next);
79c53799 5180 next->sched_class->put_prev_task(rq, next);
e692ab53 5181
48c5ccae
PZ
5182 /* Find suitable destination for @next, with force if needed. */
5183 dest_cpu = select_fallback_rq(dead_cpu, next);
5184 raw_spin_unlock(&rq->lock);
5185
5186 __migrate_task(next, dead_cpu, dest_cpu);
5187
5188 raw_spin_lock(&rq->lock);
1da177e4 5189 }
dce48a84 5190
48c5ccae 5191 rq->stop = stop;
dce48a84 5192}
48c5ccae 5193
1da177e4
LT
5194#endif /* CONFIG_HOTPLUG_CPU */
5195
e692ab53
NP
5196#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5197
5198static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5199 {
5200 .procname = "sched_domain",
c57baf1e 5201 .mode = 0555,
e0361851 5202 },
56992309 5203 {}
e692ab53
NP
5204};
5205
5206static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5207 {
5208 .procname = "kernel",
c57baf1e 5209 .mode = 0555,
e0361851
AD
5210 .child = sd_ctl_dir,
5211 },
56992309 5212 {}
e692ab53
NP
5213};
5214
5215static struct ctl_table *sd_alloc_ctl_entry(int n)
5216{
5217 struct ctl_table *entry =
5cf9f062 5218 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5219
e692ab53
NP
5220 return entry;
5221}
5222
6382bc90
MM
5223static void sd_free_ctl_entry(struct ctl_table **tablep)
5224{
cd790076 5225 struct ctl_table *entry;
6382bc90 5226
cd790076
MM
5227 /*
5228 * In the intermediate directories, both the child directory and
5229 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5230 * will always be set. In the lowest directory the names are
cd790076
MM
5231 * static strings and all have proc handlers.
5232 */
5233 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5234 if (entry->child)
5235 sd_free_ctl_entry(&entry->child);
cd790076
MM
5236 if (entry->proc_handler == NULL)
5237 kfree(entry->procname);
5238 }
6382bc90
MM
5239
5240 kfree(*tablep);
5241 *tablep = NULL;
5242}
5243
e692ab53 5244static void
e0361851 5245set_table_entry(struct ctl_table *entry,
e692ab53 5246 const char *procname, void *data, int maxlen,
36fcb589 5247 umode_t mode, proc_handler *proc_handler)
e692ab53 5248{
e692ab53
NP
5249 entry->procname = procname;
5250 entry->data = data;
5251 entry->maxlen = maxlen;
5252 entry->mode = mode;
5253 entry->proc_handler = proc_handler;
5254}
5255
5256static struct ctl_table *
5257sd_alloc_ctl_domain_table(struct sched_domain *sd)
5258{
a5d8c348 5259 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5260
ad1cdc1d
MM
5261 if (table == NULL)
5262 return NULL;
5263
e0361851 5264 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5265 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5266 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5267 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5268 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5269 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5270 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5271 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5272 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5273 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5274 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5275 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5276 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5277 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5278 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5279 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5280 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5281 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5282 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5283 &sd->cache_nice_tries,
5284 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5285 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5286 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5287 set_table_entry(&table[11], "name", sd->name,
5288 CORENAME_MAX_SIZE, 0444, proc_dostring);
5289 /* &table[12] is terminator */
e692ab53
NP
5290
5291 return table;
5292}
5293
9a4e7159 5294static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5295{
5296 struct ctl_table *entry, *table;
5297 struct sched_domain *sd;
5298 int domain_num = 0, i;
5299 char buf[32];
5300
5301 for_each_domain(cpu, sd)
5302 domain_num++;
5303 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5304 if (table == NULL)
5305 return NULL;
e692ab53
NP
5306
5307 i = 0;
5308 for_each_domain(cpu, sd) {
5309 snprintf(buf, 32, "domain%d", i);
e692ab53 5310 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5311 entry->mode = 0555;
e692ab53
NP
5312 entry->child = sd_alloc_ctl_domain_table(sd);
5313 entry++;
5314 i++;
5315 }
5316 return table;
5317}
5318
5319static struct ctl_table_header *sd_sysctl_header;
6382bc90 5320static void register_sched_domain_sysctl(void)
e692ab53 5321{
6ad4c188 5322 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5323 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5324 char buf[32];
5325
7378547f
MM
5326 WARN_ON(sd_ctl_dir[0].child);
5327 sd_ctl_dir[0].child = entry;
5328
ad1cdc1d
MM
5329 if (entry == NULL)
5330 return;
5331
6ad4c188 5332 for_each_possible_cpu(i) {
e692ab53 5333 snprintf(buf, 32, "cpu%d", i);
e692ab53 5334 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5335 entry->mode = 0555;
e692ab53 5336 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5337 entry++;
e692ab53 5338 }
7378547f
MM
5339
5340 WARN_ON(sd_sysctl_header);
e692ab53
NP
5341 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5342}
6382bc90 5343
7378547f 5344/* may be called multiple times per register */
6382bc90
MM
5345static void unregister_sched_domain_sysctl(void)
5346{
7378547f
MM
5347 if (sd_sysctl_header)
5348 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5349 sd_sysctl_header = NULL;
7378547f
MM
5350 if (sd_ctl_dir[0].child)
5351 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5352}
e692ab53 5353#else
6382bc90
MM
5354static void register_sched_domain_sysctl(void)
5355{
5356}
5357static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5358{
5359}
5360#endif
5361
1f11eb6a
GH
5362static void set_rq_online(struct rq *rq)
5363{
5364 if (!rq->online) {
5365 const struct sched_class *class;
5366
c6c4927b 5367 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5368 rq->online = 1;
5369
5370 for_each_class(class) {
5371 if (class->rq_online)
5372 class->rq_online(rq);
5373 }
5374 }
5375}
5376
5377static void set_rq_offline(struct rq *rq)
5378{
5379 if (rq->online) {
5380 const struct sched_class *class;
5381
5382 for_each_class(class) {
5383 if (class->rq_offline)
5384 class->rq_offline(rq);
5385 }
5386
c6c4927b 5387 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5388 rq->online = 0;
5389 }
5390}
5391
1da177e4
LT
5392/*
5393 * migration_call - callback that gets triggered when a CPU is added.
5394 * Here we can start up the necessary migration thread for the new CPU.
5395 */
48f24c4d
IM
5396static int __cpuinit
5397migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5398{
48f24c4d 5399 int cpu = (long)hcpu;
1da177e4 5400 unsigned long flags;
969c7921 5401 struct rq *rq = cpu_rq(cpu);
1da177e4 5402
48c5ccae 5403 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5404
1da177e4 5405 case CPU_UP_PREPARE:
a468d389 5406 rq->calc_load_update = calc_load_update;
1da177e4 5407 break;
48f24c4d 5408
1da177e4 5409 case CPU_ONLINE:
1f94ef59 5410 /* Update our root-domain */
05fa785c 5411 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5412 if (rq->rd) {
c6c4927b 5413 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5414
5415 set_rq_online(rq);
1f94ef59 5416 }
05fa785c 5417 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5418 break;
48f24c4d 5419
1da177e4 5420#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5421 case CPU_DYING:
317f3941 5422 sched_ttwu_pending();
57d885fe 5423 /* Update our root-domain */
05fa785c 5424 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5425 if (rq->rd) {
c6c4927b 5426 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5427 set_rq_offline(rq);
57d885fe 5428 }
48c5ccae
PZ
5429 migrate_tasks(cpu);
5430 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5431 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5432
5433 migrate_nr_uninterruptible(rq);
5434 calc_global_load_remove(rq);
57d885fe 5435 break;
1da177e4
LT
5436#endif
5437 }
49c022e6
PZ
5438
5439 update_max_interval();
5440
1da177e4
LT
5441 return NOTIFY_OK;
5442}
5443
f38b0820
PM
5444/*
5445 * Register at high priority so that task migration (migrate_all_tasks)
5446 * happens before everything else. This has to be lower priority than
cdd6c482 5447 * the notifier in the perf_event subsystem, though.
1da177e4 5448 */
26c2143b 5449static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5450 .notifier_call = migration_call,
50a323b7 5451 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5452};
5453
3a101d05
TH
5454static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5455 unsigned long action, void *hcpu)
5456{
5457 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5458 case CPU_STARTING:
3a101d05
TH
5459 case CPU_DOWN_FAILED:
5460 set_cpu_active((long)hcpu, true);
5461 return NOTIFY_OK;
5462 default:
5463 return NOTIFY_DONE;
5464 }
5465}
5466
5467static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5468 unsigned long action, void *hcpu)
5469{
5470 switch (action & ~CPU_TASKS_FROZEN) {
5471 case CPU_DOWN_PREPARE:
5472 set_cpu_active((long)hcpu, false);
5473 return NOTIFY_OK;
5474 default:
5475 return NOTIFY_DONE;
5476 }
5477}
5478
7babe8db 5479static int __init migration_init(void)
1da177e4
LT
5480{
5481 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5482 int err;
48f24c4d 5483
3a101d05 5484 /* Initialize migration for the boot CPU */
07dccf33
AM
5485 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5486 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5487 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5488 register_cpu_notifier(&migration_notifier);
7babe8db 5489
3a101d05
TH
5490 /* Register cpu active notifiers */
5491 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5492 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5493
a004cd42 5494 return 0;
1da177e4 5495}
7babe8db 5496early_initcall(migration_init);
1da177e4
LT
5497#endif
5498
5499#ifdef CONFIG_SMP
476f3534 5500
4cb98839
PZ
5501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502
3e9830dc 5503#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5504
f6630114
MT
5505static __read_mostly int sched_domain_debug_enabled;
5506
5507static int __init sched_domain_debug_setup(char *str)
5508{
5509 sched_domain_debug_enabled = 1;
5510
5511 return 0;
5512}
5513early_param("sched_debug", sched_domain_debug_setup);
5514
7c16ec58 5515static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5516 struct cpumask *groupmask)
1da177e4 5517{
4dcf6aff 5518 struct sched_group *group = sd->groups;
434d53b0 5519 char str[256];
1da177e4 5520
968ea6d8 5521 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5522 cpumask_clear(groupmask);
4dcf6aff
IM
5523
5524 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5525
5526 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5527 printk("does not load-balance\n");
4dcf6aff 5528 if (sd->parent)
3df0fc5b
PZ
5529 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5530 " has parent");
4dcf6aff 5531 return -1;
41c7ce9a
NP
5532 }
5533
3df0fc5b 5534 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5535
758b2cdc 5536 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5537 printk(KERN_ERR "ERROR: domain->span does not contain "
5538 "CPU%d\n", cpu);
4dcf6aff 5539 }
758b2cdc 5540 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5541 printk(KERN_ERR "ERROR: domain->groups does not contain"
5542 " CPU%d\n", cpu);
4dcf6aff 5543 }
1da177e4 5544
4dcf6aff 5545 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5546 do {
4dcf6aff 5547 if (!group) {
3df0fc5b
PZ
5548 printk("\n");
5549 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5550 break;
5551 }
5552
9c3f75cb 5553 if (!group->sgp->power) {
3df0fc5b
PZ
5554 printk(KERN_CONT "\n");
5555 printk(KERN_ERR "ERROR: domain->cpu_power not "
5556 "set\n");
4dcf6aff
IM
5557 break;
5558 }
1da177e4 5559
758b2cdc 5560 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5561 printk(KERN_CONT "\n");
5562 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5563 break;
5564 }
1da177e4 5565
758b2cdc 5566 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5567 printk(KERN_CONT "\n");
5568 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5569 break;
5570 }
1da177e4 5571
758b2cdc 5572 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5573
968ea6d8 5574 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5575
3df0fc5b 5576 printk(KERN_CONT " %s", str);
9c3f75cb 5577 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5578 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5579 group->sgp->power);
381512cf 5580 }
1da177e4 5581
4dcf6aff
IM
5582 group = group->next;
5583 } while (group != sd->groups);
3df0fc5b 5584 printk(KERN_CONT "\n");
1da177e4 5585
758b2cdc 5586 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5587 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5588
758b2cdc
RR
5589 if (sd->parent &&
5590 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5591 printk(KERN_ERR "ERROR: parent span is not a superset "
5592 "of domain->span\n");
4dcf6aff
IM
5593 return 0;
5594}
1da177e4 5595
4dcf6aff
IM
5596static void sched_domain_debug(struct sched_domain *sd, int cpu)
5597{
5598 int level = 0;
1da177e4 5599
f6630114
MT
5600 if (!sched_domain_debug_enabled)
5601 return;
5602
4dcf6aff
IM
5603 if (!sd) {
5604 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5605 return;
5606 }
1da177e4 5607
4dcf6aff
IM
5608 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5609
5610 for (;;) {
4cb98839 5611 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5612 break;
1da177e4
LT
5613 level++;
5614 sd = sd->parent;
33859f7f 5615 if (!sd)
4dcf6aff
IM
5616 break;
5617 }
1da177e4 5618}
6d6bc0ad 5619#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5620# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5621#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5622
1a20ff27 5623static int sd_degenerate(struct sched_domain *sd)
245af2c7 5624{
758b2cdc 5625 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5626 return 1;
5627
5628 /* Following flags need at least 2 groups */
5629 if (sd->flags & (SD_LOAD_BALANCE |
5630 SD_BALANCE_NEWIDLE |
5631 SD_BALANCE_FORK |
89c4710e
SS
5632 SD_BALANCE_EXEC |
5633 SD_SHARE_CPUPOWER |
5634 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5635 if (sd->groups != sd->groups->next)
5636 return 0;
5637 }
5638
5639 /* Following flags don't use groups */
c88d5910 5640 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5641 return 0;
5642
5643 return 1;
5644}
5645
48f24c4d
IM
5646static int
5647sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5648{
5649 unsigned long cflags = sd->flags, pflags = parent->flags;
5650
5651 if (sd_degenerate(parent))
5652 return 1;
5653
758b2cdc 5654 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5655 return 0;
5656
245af2c7
SS
5657 /* Flags needing groups don't count if only 1 group in parent */
5658 if (parent->groups == parent->groups->next) {
5659 pflags &= ~(SD_LOAD_BALANCE |
5660 SD_BALANCE_NEWIDLE |
5661 SD_BALANCE_FORK |
89c4710e
SS
5662 SD_BALANCE_EXEC |
5663 SD_SHARE_CPUPOWER |
5664 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5665 if (nr_node_ids == 1)
5666 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5667 }
5668 if (~cflags & pflags)
5669 return 0;
5670
5671 return 1;
5672}
5673
dce840a0 5674static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5675{
dce840a0 5676 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5677
68e74568 5678 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5679 free_cpumask_var(rd->rto_mask);
5680 free_cpumask_var(rd->online);
5681 free_cpumask_var(rd->span);
5682 kfree(rd);
5683}
5684
57d885fe
GH
5685static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5686{
a0490fa3 5687 struct root_domain *old_rd = NULL;
57d885fe 5688 unsigned long flags;
57d885fe 5689
05fa785c 5690 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5691
5692 if (rq->rd) {
a0490fa3 5693 old_rd = rq->rd;
57d885fe 5694
c6c4927b 5695 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5696 set_rq_offline(rq);
57d885fe 5697
c6c4927b 5698 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5699
a0490fa3
IM
5700 /*
5701 * If we dont want to free the old_rt yet then
5702 * set old_rd to NULL to skip the freeing later
5703 * in this function:
5704 */
5705 if (!atomic_dec_and_test(&old_rd->refcount))
5706 old_rd = NULL;
57d885fe
GH
5707 }
5708
5709 atomic_inc(&rd->refcount);
5710 rq->rd = rd;
5711
c6c4927b 5712 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5713 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5714 set_rq_online(rq);
57d885fe 5715
05fa785c 5716 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5717
5718 if (old_rd)
dce840a0 5719 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5720}
5721
68c38fc3 5722static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5723{
5724 memset(rd, 0, sizeof(*rd));
5725
68c38fc3 5726 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5727 goto out;
68c38fc3 5728 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5729 goto free_span;
68c38fc3 5730 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5731 goto free_online;
6e0534f2 5732
68c38fc3 5733 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5734 goto free_rto_mask;
c6c4927b 5735 return 0;
6e0534f2 5736
68e74568
RR
5737free_rto_mask:
5738 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5739free_online:
5740 free_cpumask_var(rd->online);
5741free_span:
5742 free_cpumask_var(rd->span);
0c910d28 5743out:
c6c4927b 5744 return -ENOMEM;
57d885fe
GH
5745}
5746
029632fb
PZ
5747/*
5748 * By default the system creates a single root-domain with all cpus as
5749 * members (mimicking the global state we have today).
5750 */
5751struct root_domain def_root_domain;
5752
57d885fe
GH
5753static void init_defrootdomain(void)
5754{
68c38fc3 5755 init_rootdomain(&def_root_domain);
c6c4927b 5756
57d885fe
GH
5757 atomic_set(&def_root_domain.refcount, 1);
5758}
5759
dc938520 5760static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5761{
5762 struct root_domain *rd;
5763
5764 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5765 if (!rd)
5766 return NULL;
5767
68c38fc3 5768 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5769 kfree(rd);
5770 return NULL;
5771 }
57d885fe
GH
5772
5773 return rd;
5774}
5775
e3589f6c
PZ
5776static void free_sched_groups(struct sched_group *sg, int free_sgp)
5777{
5778 struct sched_group *tmp, *first;
5779
5780 if (!sg)
5781 return;
5782
5783 first = sg;
5784 do {
5785 tmp = sg->next;
5786
5787 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5788 kfree(sg->sgp);
5789
5790 kfree(sg);
5791 sg = tmp;
5792 } while (sg != first);
5793}
5794
dce840a0
PZ
5795static void free_sched_domain(struct rcu_head *rcu)
5796{
5797 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5798
5799 /*
5800 * If its an overlapping domain it has private groups, iterate and
5801 * nuke them all.
5802 */
5803 if (sd->flags & SD_OVERLAP) {
5804 free_sched_groups(sd->groups, 1);
5805 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5806 kfree(sd->groups->sgp);
dce840a0 5807 kfree(sd->groups);
9c3f75cb 5808 }
dce840a0
PZ
5809 kfree(sd);
5810}
5811
5812static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5813{
5814 call_rcu(&sd->rcu, free_sched_domain);
5815}
5816
5817static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5818{
5819 for (; sd; sd = sd->parent)
5820 destroy_sched_domain(sd, cpu);
5821}
5822
518cd623
PZ
5823/*
5824 * Keep a special pointer to the highest sched_domain that has
5825 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5826 * allows us to avoid some pointer chasing select_idle_sibling().
5827 *
5828 * Also keep a unique ID per domain (we use the first cpu number in
5829 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5830 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5831 */
5832DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5833DEFINE_PER_CPU(int, sd_llc_id);
5834
5835static void update_top_cache_domain(int cpu)
5836{
5837 struct sched_domain *sd;
5838 int id = cpu;
5839
5840 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5841 if (sd)
5842 id = cpumask_first(sched_domain_span(sd));
5843
5844 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5845 per_cpu(sd_llc_id, cpu) = id;
5846}
5847
1da177e4 5848/*
0eab9146 5849 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5850 * hold the hotplug lock.
5851 */
0eab9146
IM
5852static void
5853cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5854{
70b97a7f 5855 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5856 struct sched_domain *tmp;
5857
5858 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5859 for (tmp = sd; tmp; ) {
245af2c7
SS
5860 struct sched_domain *parent = tmp->parent;
5861 if (!parent)
5862 break;
f29c9b1c 5863
1a848870 5864 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5865 tmp->parent = parent->parent;
1a848870
SS
5866 if (parent->parent)
5867 parent->parent->child = tmp;
dce840a0 5868 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5869 } else
5870 tmp = tmp->parent;
245af2c7
SS
5871 }
5872
1a848870 5873 if (sd && sd_degenerate(sd)) {
dce840a0 5874 tmp = sd;
245af2c7 5875 sd = sd->parent;
dce840a0 5876 destroy_sched_domain(tmp, cpu);
1a848870
SS
5877 if (sd)
5878 sd->child = NULL;
5879 }
1da177e4 5880
4cb98839 5881 sched_domain_debug(sd, cpu);
1da177e4 5882
57d885fe 5883 rq_attach_root(rq, rd);
dce840a0 5884 tmp = rq->sd;
674311d5 5885 rcu_assign_pointer(rq->sd, sd);
dce840a0 5886 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5887
5888 update_top_cache_domain(cpu);
1da177e4
LT
5889}
5890
5891/* cpus with isolated domains */
dcc30a35 5892static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5893
5894/* Setup the mask of cpus configured for isolated domains */
5895static int __init isolated_cpu_setup(char *str)
5896{
bdddd296 5897 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5898 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5899 return 1;
5900}
5901
8927f494 5902__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5903
9c1cfda2 5904#ifdef CONFIG_NUMA
198e2f18 5905
9c1cfda2
JH
5906/**
5907 * find_next_best_node - find the next node to include in a sched_domain
5908 * @node: node whose sched_domain we're building
5909 * @used_nodes: nodes already in the sched_domain
5910 *
41a2d6cf 5911 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5912 * finds the closest node not already in the @used_nodes map.
5913 *
5914 * Should use nodemask_t.
5915 */
c5f59f08 5916static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5917{
7142d17e 5918 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5919
5920 min_val = INT_MAX;
5921
076ac2af 5922 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5923 /* Start at @node */
076ac2af 5924 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5925
5926 if (!nr_cpus_node(n))
5927 continue;
5928
5929 /* Skip already used nodes */
c5f59f08 5930 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5931 continue;
5932
5933 /* Simple min distance search */
5934 val = node_distance(node, n);
5935
5936 if (val < min_val) {
5937 min_val = val;
5938 best_node = n;
5939 }
5940 }
5941
7142d17e
HD
5942 if (best_node != -1)
5943 node_set(best_node, *used_nodes);
9c1cfda2
JH
5944 return best_node;
5945}
5946
5947/**
5948 * sched_domain_node_span - get a cpumask for a node's sched_domain
5949 * @node: node whose cpumask we're constructing
73486722 5950 * @span: resulting cpumask
9c1cfda2 5951 *
41a2d6cf 5952 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5953 * should be one that prevents unnecessary balancing, but also spreads tasks
5954 * out optimally.
5955 */
96f874e2 5956static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5957{
c5f59f08 5958 nodemask_t used_nodes;
48f24c4d 5959 int i;
9c1cfda2 5960
6ca09dfc 5961 cpumask_clear(span);
c5f59f08 5962 nodes_clear(used_nodes);
9c1cfda2 5963
6ca09dfc 5964 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5965 node_set(node, used_nodes);
9c1cfda2
JH
5966
5967 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5968 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5969 if (next_node < 0)
5970 break;
6ca09dfc 5971 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5972 }
9c1cfda2 5973}
d3081f52
PZ
5974
5975static const struct cpumask *cpu_node_mask(int cpu)
5976{
5977 lockdep_assert_held(&sched_domains_mutex);
5978
5979 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5980
5981 return sched_domains_tmpmask;
5982}
2c402dc3
PZ
5983
5984static const struct cpumask *cpu_allnodes_mask(int cpu)
5985{
5986 return cpu_possible_mask;
5987}
6d6bc0ad 5988#endif /* CONFIG_NUMA */
9c1cfda2 5989
d3081f52
PZ
5990static const struct cpumask *cpu_cpu_mask(int cpu)
5991{
5992 return cpumask_of_node(cpu_to_node(cpu));
5993}
5994
5c45bf27 5995int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5996
dce840a0
PZ
5997struct sd_data {
5998 struct sched_domain **__percpu sd;
5999 struct sched_group **__percpu sg;
9c3f75cb 6000 struct sched_group_power **__percpu sgp;
dce840a0
PZ
6001};
6002
49a02c51 6003struct s_data {
21d42ccf 6004 struct sched_domain ** __percpu sd;
49a02c51
AH
6005 struct root_domain *rd;
6006};
6007
2109b99e 6008enum s_alloc {
2109b99e 6009 sa_rootdomain,
21d42ccf 6010 sa_sd,
dce840a0 6011 sa_sd_storage,
2109b99e
AH
6012 sa_none,
6013};
6014
54ab4ff4
PZ
6015struct sched_domain_topology_level;
6016
6017typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6018typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6019
e3589f6c
PZ
6020#define SDTL_OVERLAP 0x01
6021
eb7a74e6 6022struct sched_domain_topology_level {
2c402dc3
PZ
6023 sched_domain_init_f init;
6024 sched_domain_mask_f mask;
e3589f6c 6025 int flags;
54ab4ff4 6026 struct sd_data data;
eb7a74e6
PZ
6027};
6028
e3589f6c
PZ
6029static int
6030build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6031{
6032 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6033 const struct cpumask *span = sched_domain_span(sd);
6034 struct cpumask *covered = sched_domains_tmpmask;
6035 struct sd_data *sdd = sd->private;
6036 struct sched_domain *child;
6037 int i;
6038
6039 cpumask_clear(covered);
6040
6041 for_each_cpu(i, span) {
6042 struct cpumask *sg_span;
6043
6044 if (cpumask_test_cpu(i, covered))
6045 continue;
6046
6047 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6048 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6049
6050 if (!sg)
6051 goto fail;
6052
6053 sg_span = sched_group_cpus(sg);
6054
6055 child = *per_cpu_ptr(sdd->sd, i);
6056 if (child->child) {
6057 child = child->child;
6058 cpumask_copy(sg_span, sched_domain_span(child));
6059 } else
6060 cpumask_set_cpu(i, sg_span);
6061
6062 cpumask_or(covered, covered, sg_span);
6063
6064 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6065 atomic_inc(&sg->sgp->ref);
6066
6067 if (cpumask_test_cpu(cpu, sg_span))
6068 groups = sg;
6069
6070 if (!first)
6071 first = sg;
6072 if (last)
6073 last->next = sg;
6074 last = sg;
6075 last->next = first;
6076 }
6077 sd->groups = groups;
6078
6079 return 0;
6080
6081fail:
6082 free_sched_groups(first, 0);
6083
6084 return -ENOMEM;
6085}
6086
dce840a0 6087static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6088{
dce840a0
PZ
6089 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6090 struct sched_domain *child = sd->child;
1da177e4 6091
dce840a0
PZ
6092 if (child)
6093 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6094
9c3f75cb 6095 if (sg) {
dce840a0 6096 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6097 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6098 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6099 }
dce840a0
PZ
6100
6101 return cpu;
1e9f28fa 6102}
1e9f28fa 6103
01a08546 6104/*
dce840a0
PZ
6105 * build_sched_groups will build a circular linked list of the groups
6106 * covered by the given span, and will set each group's ->cpumask correctly,
6107 * and ->cpu_power to 0.
e3589f6c
PZ
6108 *
6109 * Assumes the sched_domain tree is fully constructed
01a08546 6110 */
e3589f6c
PZ
6111static int
6112build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6113{
dce840a0
PZ
6114 struct sched_group *first = NULL, *last = NULL;
6115 struct sd_data *sdd = sd->private;
6116 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6117 struct cpumask *covered;
dce840a0 6118 int i;
9c1cfda2 6119
e3589f6c
PZ
6120 get_group(cpu, sdd, &sd->groups);
6121 atomic_inc(&sd->groups->ref);
6122
6123 if (cpu != cpumask_first(sched_domain_span(sd)))
6124 return 0;
6125
f96225fd
PZ
6126 lockdep_assert_held(&sched_domains_mutex);
6127 covered = sched_domains_tmpmask;
6128
dce840a0 6129 cpumask_clear(covered);
6711cab4 6130
dce840a0
PZ
6131 for_each_cpu(i, span) {
6132 struct sched_group *sg;
6133 int group = get_group(i, sdd, &sg);
6134 int j;
6711cab4 6135
dce840a0
PZ
6136 if (cpumask_test_cpu(i, covered))
6137 continue;
6711cab4 6138
dce840a0 6139 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6140 sg->sgp->power = 0;
0601a88d 6141
dce840a0
PZ
6142 for_each_cpu(j, span) {
6143 if (get_group(j, sdd, NULL) != group)
6144 continue;
0601a88d 6145
dce840a0
PZ
6146 cpumask_set_cpu(j, covered);
6147 cpumask_set_cpu(j, sched_group_cpus(sg));
6148 }
0601a88d 6149
dce840a0
PZ
6150 if (!first)
6151 first = sg;
6152 if (last)
6153 last->next = sg;
6154 last = sg;
6155 }
6156 last->next = first;
e3589f6c
PZ
6157
6158 return 0;
0601a88d 6159}
51888ca2 6160
89c4710e
SS
6161/*
6162 * Initialize sched groups cpu_power.
6163 *
6164 * cpu_power indicates the capacity of sched group, which is used while
6165 * distributing the load between different sched groups in a sched domain.
6166 * Typically cpu_power for all the groups in a sched domain will be same unless
6167 * there are asymmetries in the topology. If there are asymmetries, group
6168 * having more cpu_power will pickup more load compared to the group having
6169 * less cpu_power.
89c4710e
SS
6170 */
6171static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6172{
e3589f6c 6173 struct sched_group *sg = sd->groups;
89c4710e 6174
e3589f6c
PZ
6175 WARN_ON(!sd || !sg);
6176
6177 do {
6178 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6179 sg = sg->next;
6180 } while (sg != sd->groups);
89c4710e 6181
e3589f6c
PZ
6182 if (cpu != group_first_cpu(sg))
6183 return;
aae6d3dd 6184
d274cb30 6185 update_group_power(sd, cpu);
69e1e811 6186 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6187}
6188
029632fb
PZ
6189int __weak arch_sd_sibling_asym_packing(void)
6190{
6191 return 0*SD_ASYM_PACKING;
89c4710e
SS
6192}
6193
7c16ec58
MT
6194/*
6195 * Initializers for schedule domains
6196 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6197 */
6198
a5d8c348
IM
6199#ifdef CONFIG_SCHED_DEBUG
6200# define SD_INIT_NAME(sd, type) sd->name = #type
6201#else
6202# define SD_INIT_NAME(sd, type) do { } while (0)
6203#endif
6204
54ab4ff4
PZ
6205#define SD_INIT_FUNC(type) \
6206static noinline struct sched_domain * \
6207sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6208{ \
6209 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6210 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6211 SD_INIT_NAME(sd, type); \
6212 sd->private = &tl->data; \
6213 return sd; \
7c16ec58
MT
6214}
6215
6216SD_INIT_FUNC(CPU)
6217#ifdef CONFIG_NUMA
6218 SD_INIT_FUNC(ALLNODES)
6219 SD_INIT_FUNC(NODE)
6220#endif
6221#ifdef CONFIG_SCHED_SMT
6222 SD_INIT_FUNC(SIBLING)
6223#endif
6224#ifdef CONFIG_SCHED_MC
6225 SD_INIT_FUNC(MC)
6226#endif
01a08546
HC
6227#ifdef CONFIG_SCHED_BOOK
6228 SD_INIT_FUNC(BOOK)
6229#endif
7c16ec58 6230
1d3504fc 6231static int default_relax_domain_level = -1;
60495e77 6232int sched_domain_level_max;
1d3504fc
HS
6233
6234static int __init setup_relax_domain_level(char *str)
6235{
30e0e178
LZ
6236 unsigned long val;
6237
6238 val = simple_strtoul(str, NULL, 0);
60495e77 6239 if (val < sched_domain_level_max)
30e0e178
LZ
6240 default_relax_domain_level = val;
6241
1d3504fc
HS
6242 return 1;
6243}
6244__setup("relax_domain_level=", setup_relax_domain_level);
6245
6246static void set_domain_attribute(struct sched_domain *sd,
6247 struct sched_domain_attr *attr)
6248{
6249 int request;
6250
6251 if (!attr || attr->relax_domain_level < 0) {
6252 if (default_relax_domain_level < 0)
6253 return;
6254 else
6255 request = default_relax_domain_level;
6256 } else
6257 request = attr->relax_domain_level;
6258 if (request < sd->level) {
6259 /* turn off idle balance on this domain */
c88d5910 6260 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6261 } else {
6262 /* turn on idle balance on this domain */
c88d5910 6263 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6264 }
6265}
6266
54ab4ff4
PZ
6267static void __sdt_free(const struct cpumask *cpu_map);
6268static int __sdt_alloc(const struct cpumask *cpu_map);
6269
2109b99e
AH
6270static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6271 const struct cpumask *cpu_map)
6272{
6273 switch (what) {
2109b99e 6274 case sa_rootdomain:
822ff793
PZ
6275 if (!atomic_read(&d->rd->refcount))
6276 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6277 case sa_sd:
6278 free_percpu(d->sd); /* fall through */
dce840a0 6279 case sa_sd_storage:
54ab4ff4 6280 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6281 case sa_none:
6282 break;
6283 }
6284}
3404c8d9 6285
2109b99e
AH
6286static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6287 const struct cpumask *cpu_map)
6288{
dce840a0
PZ
6289 memset(d, 0, sizeof(*d));
6290
54ab4ff4
PZ
6291 if (__sdt_alloc(cpu_map))
6292 return sa_sd_storage;
dce840a0
PZ
6293 d->sd = alloc_percpu(struct sched_domain *);
6294 if (!d->sd)
6295 return sa_sd_storage;
2109b99e 6296 d->rd = alloc_rootdomain();
dce840a0 6297 if (!d->rd)
21d42ccf 6298 return sa_sd;
2109b99e
AH
6299 return sa_rootdomain;
6300}
57d885fe 6301
dce840a0
PZ
6302/*
6303 * NULL the sd_data elements we've used to build the sched_domain and
6304 * sched_group structure so that the subsequent __free_domain_allocs()
6305 * will not free the data we're using.
6306 */
6307static void claim_allocations(int cpu, struct sched_domain *sd)
6308{
6309 struct sd_data *sdd = sd->private;
dce840a0
PZ
6310
6311 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6312 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6313
e3589f6c 6314 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6315 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6316
6317 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6318 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6319}
6320
2c402dc3
PZ
6321#ifdef CONFIG_SCHED_SMT
6322static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6323{
2c402dc3 6324 return topology_thread_cpumask(cpu);
3bd65a80 6325}
2c402dc3 6326#endif
7f4588f3 6327
d069b916
PZ
6328/*
6329 * Topology list, bottom-up.
6330 */
2c402dc3 6331static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6332#ifdef CONFIG_SCHED_SMT
6333 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6334#endif
1e9f28fa 6335#ifdef CONFIG_SCHED_MC
2c402dc3 6336 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6337#endif
d069b916
PZ
6338#ifdef CONFIG_SCHED_BOOK
6339 { sd_init_BOOK, cpu_book_mask, },
6340#endif
6341 { sd_init_CPU, cpu_cpu_mask, },
6342#ifdef CONFIG_NUMA
e3589f6c 6343 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6344 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6345#endif
eb7a74e6
PZ
6346 { NULL, },
6347};
6348
6349static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6350
54ab4ff4
PZ
6351static int __sdt_alloc(const struct cpumask *cpu_map)
6352{
6353 struct sched_domain_topology_level *tl;
6354 int j;
6355
6356 for (tl = sched_domain_topology; tl->init; tl++) {
6357 struct sd_data *sdd = &tl->data;
6358
6359 sdd->sd = alloc_percpu(struct sched_domain *);
6360 if (!sdd->sd)
6361 return -ENOMEM;
6362
6363 sdd->sg = alloc_percpu(struct sched_group *);
6364 if (!sdd->sg)
6365 return -ENOMEM;
6366
9c3f75cb
PZ
6367 sdd->sgp = alloc_percpu(struct sched_group_power *);
6368 if (!sdd->sgp)
6369 return -ENOMEM;
6370
54ab4ff4
PZ
6371 for_each_cpu(j, cpu_map) {
6372 struct sched_domain *sd;
6373 struct sched_group *sg;
9c3f75cb 6374 struct sched_group_power *sgp;
54ab4ff4
PZ
6375
6376 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6377 GFP_KERNEL, cpu_to_node(j));
6378 if (!sd)
6379 return -ENOMEM;
6380
6381 *per_cpu_ptr(sdd->sd, j) = sd;
6382
6383 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6384 GFP_KERNEL, cpu_to_node(j));
6385 if (!sg)
6386 return -ENOMEM;
6387
6388 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6389
6390 sgp = kzalloc_node(sizeof(struct sched_group_power),
6391 GFP_KERNEL, cpu_to_node(j));
6392 if (!sgp)
6393 return -ENOMEM;
6394
6395 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6396 }
6397 }
6398
6399 return 0;
6400}
6401
6402static void __sdt_free(const struct cpumask *cpu_map)
6403{
6404 struct sched_domain_topology_level *tl;
6405 int j;
6406
6407 for (tl = sched_domain_topology; tl->init; tl++) {
6408 struct sd_data *sdd = &tl->data;
6409
6410 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6411 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6412 if (sd && (sd->flags & SD_OVERLAP))
6413 free_sched_groups(sd->groups, 0);
feff8fa0 6414 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6415 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6416 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6417 }
6418 free_percpu(sdd->sd);
6419 free_percpu(sdd->sg);
9c3f75cb 6420 free_percpu(sdd->sgp);
54ab4ff4
PZ
6421 }
6422}
6423
2c402dc3
PZ
6424struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6425 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6426 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6427 int cpu)
6428{
54ab4ff4 6429 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6430 if (!sd)
d069b916 6431 return child;
2c402dc3
PZ
6432
6433 set_domain_attribute(sd, attr);
6434 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6435 if (child) {
6436 sd->level = child->level + 1;
6437 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6438 child->parent = sd;
60495e77 6439 }
d069b916 6440 sd->child = child;
2c402dc3
PZ
6441
6442 return sd;
6443}
6444
2109b99e
AH
6445/*
6446 * Build sched domains for a given set of cpus and attach the sched domains
6447 * to the individual cpus
6448 */
dce840a0
PZ
6449static int build_sched_domains(const struct cpumask *cpu_map,
6450 struct sched_domain_attr *attr)
2109b99e
AH
6451{
6452 enum s_alloc alloc_state = sa_none;
dce840a0 6453 struct sched_domain *sd;
2109b99e 6454 struct s_data d;
822ff793 6455 int i, ret = -ENOMEM;
9c1cfda2 6456
2109b99e
AH
6457 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6458 if (alloc_state != sa_rootdomain)
6459 goto error;
9c1cfda2 6460
dce840a0 6461 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6462 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6463 struct sched_domain_topology_level *tl;
6464
3bd65a80 6465 sd = NULL;
e3589f6c 6466 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6467 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6468 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6469 sd->flags |= SD_OVERLAP;
d110235d
PZ
6470 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6471 break;
e3589f6c 6472 }
d274cb30 6473
d069b916
PZ
6474 while (sd->child)
6475 sd = sd->child;
6476
21d42ccf 6477 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6478 }
6479
6480 /* Build the groups for the domains */
6481 for_each_cpu(i, cpu_map) {
6482 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6483 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6484 if (sd->flags & SD_OVERLAP) {
6485 if (build_overlap_sched_groups(sd, i))
6486 goto error;
6487 } else {
6488 if (build_sched_groups(sd, i))
6489 goto error;
6490 }
1cf51902 6491 }
a06dadbe 6492 }
9c1cfda2 6493
1da177e4 6494 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6495 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6496 if (!cpumask_test_cpu(i, cpu_map))
6497 continue;
9c1cfda2 6498
dce840a0
PZ
6499 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6500 claim_allocations(i, sd);
cd4ea6ae 6501 init_sched_groups_power(i, sd);
dce840a0 6502 }
f712c0c7 6503 }
9c1cfda2 6504
1da177e4 6505 /* Attach the domains */
dce840a0 6506 rcu_read_lock();
abcd083a 6507 for_each_cpu(i, cpu_map) {
21d42ccf 6508 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6509 cpu_attach_domain(sd, d.rd, i);
1da177e4 6510 }
dce840a0 6511 rcu_read_unlock();
51888ca2 6512
822ff793 6513 ret = 0;
51888ca2 6514error:
2109b99e 6515 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6516 return ret;
1da177e4 6517}
029190c5 6518
acc3f5d7 6519static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6520static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6521static struct sched_domain_attr *dattr_cur;
6522 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6523
6524/*
6525 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6526 * cpumask) fails, then fallback to a single sched domain,
6527 * as determined by the single cpumask fallback_doms.
029190c5 6528 */
4212823f 6529static cpumask_var_t fallback_doms;
029190c5 6530
ee79d1bd
HC
6531/*
6532 * arch_update_cpu_topology lets virtualized architectures update the
6533 * cpu core maps. It is supposed to return 1 if the topology changed
6534 * or 0 if it stayed the same.
6535 */
6536int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6537{
ee79d1bd 6538 return 0;
22e52b07
HC
6539}
6540
acc3f5d7
RR
6541cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6542{
6543 int i;
6544 cpumask_var_t *doms;
6545
6546 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6547 if (!doms)
6548 return NULL;
6549 for (i = 0; i < ndoms; i++) {
6550 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6551 free_sched_domains(doms, i);
6552 return NULL;
6553 }
6554 }
6555 return doms;
6556}
6557
6558void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6559{
6560 unsigned int i;
6561 for (i = 0; i < ndoms; i++)
6562 free_cpumask_var(doms[i]);
6563 kfree(doms);
6564}
6565
1a20ff27 6566/*
41a2d6cf 6567 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6568 * For now this just excludes isolated cpus, but could be used to
6569 * exclude other special cases in the future.
1a20ff27 6570 */
c4a8849a 6571static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6572{
7378547f
MM
6573 int err;
6574
22e52b07 6575 arch_update_cpu_topology();
029190c5 6576 ndoms_cur = 1;
acc3f5d7 6577 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6578 if (!doms_cur)
acc3f5d7
RR
6579 doms_cur = &fallback_doms;
6580 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6581 dattr_cur = NULL;
dce840a0 6582 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6583 register_sched_domain_sysctl();
7378547f
MM
6584
6585 return err;
1a20ff27
DG
6586}
6587
1a20ff27
DG
6588/*
6589 * Detach sched domains from a group of cpus specified in cpu_map
6590 * These cpus will now be attached to the NULL domain
6591 */
96f874e2 6592static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6593{
6594 int i;
6595
dce840a0 6596 rcu_read_lock();
abcd083a 6597 for_each_cpu(i, cpu_map)
57d885fe 6598 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6599 rcu_read_unlock();
1a20ff27
DG
6600}
6601
1d3504fc
HS
6602/* handle null as "default" */
6603static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6604 struct sched_domain_attr *new, int idx_new)
6605{
6606 struct sched_domain_attr tmp;
6607
6608 /* fast path */
6609 if (!new && !cur)
6610 return 1;
6611
6612 tmp = SD_ATTR_INIT;
6613 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6614 new ? (new + idx_new) : &tmp,
6615 sizeof(struct sched_domain_attr));
6616}
6617
029190c5
PJ
6618/*
6619 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6620 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6621 * doms_new[] to the current sched domain partitioning, doms_cur[].
6622 * It destroys each deleted domain and builds each new domain.
6623 *
acc3f5d7 6624 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6625 * The masks don't intersect (don't overlap.) We should setup one
6626 * sched domain for each mask. CPUs not in any of the cpumasks will
6627 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6628 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6629 * it as it is.
6630 *
acc3f5d7
RR
6631 * The passed in 'doms_new' should be allocated using
6632 * alloc_sched_domains. This routine takes ownership of it and will
6633 * free_sched_domains it when done with it. If the caller failed the
6634 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6635 * and partition_sched_domains() will fallback to the single partition
6636 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6637 *
96f874e2 6638 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6639 * ndoms_new == 0 is a special case for destroying existing domains,
6640 * and it will not create the default domain.
dfb512ec 6641 *
029190c5
PJ
6642 * Call with hotplug lock held
6643 */
acc3f5d7 6644void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6645 struct sched_domain_attr *dattr_new)
029190c5 6646{
dfb512ec 6647 int i, j, n;
d65bd5ec 6648 int new_topology;
029190c5 6649
712555ee 6650 mutex_lock(&sched_domains_mutex);
a1835615 6651
7378547f
MM
6652 /* always unregister in case we don't destroy any domains */
6653 unregister_sched_domain_sysctl();
6654
d65bd5ec
HC
6655 /* Let architecture update cpu core mappings. */
6656 new_topology = arch_update_cpu_topology();
6657
dfb512ec 6658 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6659
6660 /* Destroy deleted domains */
6661 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6662 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6663 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6664 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6665 goto match1;
6666 }
6667 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6668 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6669match1:
6670 ;
6671 }
6672
e761b772
MK
6673 if (doms_new == NULL) {
6674 ndoms_cur = 0;
acc3f5d7 6675 doms_new = &fallback_doms;
6ad4c188 6676 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6677 WARN_ON_ONCE(dattr_new);
e761b772
MK
6678 }
6679
029190c5
PJ
6680 /* Build new domains */
6681 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6682 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6683 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6684 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6685 goto match2;
6686 }
6687 /* no match - add a new doms_new */
dce840a0 6688 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6689match2:
6690 ;
6691 }
6692
6693 /* Remember the new sched domains */
acc3f5d7
RR
6694 if (doms_cur != &fallback_doms)
6695 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6696 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6697 doms_cur = doms_new;
1d3504fc 6698 dattr_cur = dattr_new;
029190c5 6699 ndoms_cur = ndoms_new;
7378547f
MM
6700
6701 register_sched_domain_sysctl();
a1835615 6702
712555ee 6703 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6704}
6705
5c45bf27 6706#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6707static void reinit_sched_domains(void)
5c45bf27 6708{
95402b38 6709 get_online_cpus();
dfb512ec
MK
6710
6711 /* Destroy domains first to force the rebuild */
6712 partition_sched_domains(0, NULL, NULL);
6713
e761b772 6714 rebuild_sched_domains();
95402b38 6715 put_online_cpus();
5c45bf27
SS
6716}
6717
6718static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6719{
afb8a9b7 6720 unsigned int level = 0;
5c45bf27 6721
afb8a9b7
GS
6722 if (sscanf(buf, "%u", &level) != 1)
6723 return -EINVAL;
6724
6725 /*
6726 * level is always be positive so don't check for
6727 * level < POWERSAVINGS_BALANCE_NONE which is 0
6728 * What happens on 0 or 1 byte write,
6729 * need to check for count as well?
6730 */
6731
6732 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6733 return -EINVAL;
6734
6735 if (smt)
afb8a9b7 6736 sched_smt_power_savings = level;
5c45bf27 6737 else
afb8a9b7 6738 sched_mc_power_savings = level;
5c45bf27 6739
c4a8849a 6740 reinit_sched_domains();
5c45bf27 6741
c70f22d2 6742 return count;
5c45bf27
SS
6743}
6744
5c45bf27 6745#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6746static ssize_t sched_mc_power_savings_show(struct device *dev,
6747 struct device_attribute *attr,
6748 char *buf)
5c45bf27 6749{
8a25a2fd 6750 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6751}
8a25a2fd
KS
6752static ssize_t sched_mc_power_savings_store(struct device *dev,
6753 struct device_attribute *attr,
48f24c4d 6754 const char *buf, size_t count)
5c45bf27
SS
6755{
6756 return sched_power_savings_store(buf, count, 0);
6757}
8a25a2fd
KS
6758static DEVICE_ATTR(sched_mc_power_savings, 0644,
6759 sched_mc_power_savings_show,
6760 sched_mc_power_savings_store);
5c45bf27
SS
6761#endif
6762
6763#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6764static ssize_t sched_smt_power_savings_show(struct device *dev,
6765 struct device_attribute *attr,
6766 char *buf)
5c45bf27 6767{
8a25a2fd 6768 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6769}
8a25a2fd
KS
6770static ssize_t sched_smt_power_savings_store(struct device *dev,
6771 struct device_attribute *attr,
48f24c4d 6772 const char *buf, size_t count)
5c45bf27
SS
6773{
6774 return sched_power_savings_store(buf, count, 1);
6775}
8a25a2fd 6776static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6777 sched_smt_power_savings_show,
6707de00
AB
6778 sched_smt_power_savings_store);
6779#endif
6780
8a25a2fd 6781int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6782{
6783 int err = 0;
6784
6785#ifdef CONFIG_SCHED_SMT
6786 if (smt_capable())
8a25a2fd 6787 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6788#endif
6789#ifdef CONFIG_SCHED_MC
6790 if (!err && mc_capable())
8a25a2fd 6791 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6792#endif
6793 return err;
6794}
6d6bc0ad 6795#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6796
1da177e4 6797/*
3a101d05
TH
6798 * Update cpusets according to cpu_active mask. If cpusets are
6799 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6800 * around partition_sched_domains().
1da177e4 6801 */
0b2e918a
TH
6802static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6803 void *hcpu)
e761b772 6804{
3a101d05 6805 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6806 case CPU_ONLINE:
6ad4c188 6807 case CPU_DOWN_FAILED:
3a101d05 6808 cpuset_update_active_cpus();
e761b772 6809 return NOTIFY_OK;
3a101d05
TH
6810 default:
6811 return NOTIFY_DONE;
6812 }
6813}
e761b772 6814
0b2e918a
TH
6815static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6816 void *hcpu)
3a101d05
TH
6817{
6818 switch (action & ~CPU_TASKS_FROZEN) {
6819 case CPU_DOWN_PREPARE:
6820 cpuset_update_active_cpus();
6821 return NOTIFY_OK;
e761b772
MK
6822 default:
6823 return NOTIFY_DONE;
6824 }
6825}
e761b772 6826
1da177e4
LT
6827void __init sched_init_smp(void)
6828{
dcc30a35
RR
6829 cpumask_var_t non_isolated_cpus;
6830
6831 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6832 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6833
95402b38 6834 get_online_cpus();
712555ee 6835 mutex_lock(&sched_domains_mutex);
c4a8849a 6836 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6837 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6838 if (cpumask_empty(non_isolated_cpus))
6839 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6840 mutex_unlock(&sched_domains_mutex);
95402b38 6841 put_online_cpus();
e761b772 6842
3a101d05
TH
6843 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6844 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6845
6846 /* RT runtime code needs to handle some hotplug events */
6847 hotcpu_notifier(update_runtime, 0);
6848
b328ca18 6849 init_hrtick();
5c1e1767
NP
6850
6851 /* Move init over to a non-isolated CPU */
dcc30a35 6852 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6853 BUG();
19978ca6 6854 sched_init_granularity();
dcc30a35 6855 free_cpumask_var(non_isolated_cpus);
4212823f 6856
0e3900e6 6857 init_sched_rt_class();
1da177e4
LT
6858}
6859#else
6860void __init sched_init_smp(void)
6861{
19978ca6 6862 sched_init_granularity();
1da177e4
LT
6863}
6864#endif /* CONFIG_SMP */
6865
cd1bb94b
AB
6866const_debug unsigned int sysctl_timer_migration = 1;
6867
1da177e4
LT
6868int in_sched_functions(unsigned long addr)
6869{
1da177e4
LT
6870 return in_lock_functions(addr) ||
6871 (addr >= (unsigned long)__sched_text_start
6872 && addr < (unsigned long)__sched_text_end);
6873}
6874
029632fb
PZ
6875#ifdef CONFIG_CGROUP_SCHED
6876struct task_group root_task_group;
052f1dc7 6877#endif
6f505b16 6878
029632fb 6879DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6880
1da177e4
LT
6881void __init sched_init(void)
6882{
dd41f596 6883 int i, j;
434d53b0
MT
6884 unsigned long alloc_size = 0, ptr;
6885
6886#ifdef CONFIG_FAIR_GROUP_SCHED
6887 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6888#endif
6889#ifdef CONFIG_RT_GROUP_SCHED
6890 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6891#endif
df7c8e84 6892#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6893 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6894#endif
434d53b0 6895 if (alloc_size) {
36b7b6d4 6896 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6897
6898#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6899 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6900 ptr += nr_cpu_ids * sizeof(void **);
6901
07e06b01 6902 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6903 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6904
6d6bc0ad 6905#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6906#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6907 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6908 ptr += nr_cpu_ids * sizeof(void **);
6909
07e06b01 6910 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6911 ptr += nr_cpu_ids * sizeof(void **);
6912
6d6bc0ad 6913#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6914#ifdef CONFIG_CPUMASK_OFFSTACK
6915 for_each_possible_cpu(i) {
6916 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6917 ptr += cpumask_size();
6918 }
6919#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6920 }
dd41f596 6921
57d885fe
GH
6922#ifdef CONFIG_SMP
6923 init_defrootdomain();
6924#endif
6925
d0b27fa7
PZ
6926 init_rt_bandwidth(&def_rt_bandwidth,
6927 global_rt_period(), global_rt_runtime());
6928
6929#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6930 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6931 global_rt_period(), global_rt_runtime());
6d6bc0ad 6932#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6933
7c941438 6934#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6935 list_add(&root_task_group.list, &task_groups);
6936 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6937 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6938 autogroup_init(&init_task);
54c707e9 6939
7c941438 6940#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6941
54c707e9
GC
6942#ifdef CONFIG_CGROUP_CPUACCT
6943 root_cpuacct.cpustat = &kernel_cpustat;
6944 root_cpuacct.cpuusage = alloc_percpu(u64);
6945 /* Too early, not expected to fail */
6946 BUG_ON(!root_cpuacct.cpuusage);
6947#endif
0a945022 6948 for_each_possible_cpu(i) {
70b97a7f 6949 struct rq *rq;
1da177e4
LT
6950
6951 rq = cpu_rq(i);
05fa785c 6952 raw_spin_lock_init(&rq->lock);
7897986b 6953 rq->nr_running = 0;
dce48a84
TG
6954 rq->calc_load_active = 0;
6955 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6956 init_cfs_rq(&rq->cfs);
6f505b16 6957 init_rt_rq(&rq->rt, rq);
dd41f596 6958#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6959 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6960 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6961 /*
07e06b01 6962 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6963 *
6964 * In case of task-groups formed thr' the cgroup filesystem, it
6965 * gets 100% of the cpu resources in the system. This overall
6966 * system cpu resource is divided among the tasks of
07e06b01 6967 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6968 * based on each entity's (task or task-group's) weight
6969 * (se->load.weight).
6970 *
07e06b01 6971 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6972 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6973 * then A0's share of the cpu resource is:
6974 *
0d905bca 6975 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6976 *
07e06b01
YZ
6977 * We achieve this by letting root_task_group's tasks sit
6978 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6979 */
ab84d31e 6980 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6981 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6982#endif /* CONFIG_FAIR_GROUP_SCHED */
6983
6984 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6985#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6986 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6987 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6988#endif
1da177e4 6989
dd41f596
IM
6990 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6991 rq->cpu_load[j] = 0;
fdf3e95d
VP
6992
6993 rq->last_load_update_tick = jiffies;
6994
1da177e4 6995#ifdef CONFIG_SMP
41c7ce9a 6996 rq->sd = NULL;
57d885fe 6997 rq->rd = NULL;
1399fa78 6998 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6999 rq->post_schedule = 0;
1da177e4 7000 rq->active_balance = 0;
dd41f596 7001 rq->next_balance = jiffies;
1da177e4 7002 rq->push_cpu = 0;
0a2966b4 7003 rq->cpu = i;
1f11eb6a 7004 rq->online = 0;
eae0c9df
MG
7005 rq->idle_stamp = 0;
7006 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7007
7008 INIT_LIST_HEAD(&rq->cfs_tasks);
7009
dc938520 7010 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7011#ifdef CONFIG_NO_HZ
1c792db7 7012 rq->nohz_flags = 0;
83cd4fe2 7013#endif
1da177e4 7014#endif
8f4d37ec 7015 init_rq_hrtick(rq);
1da177e4 7016 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7017 }
7018
2dd73a4f 7019 set_load_weight(&init_task);
b50f60ce 7020
e107be36
AK
7021#ifdef CONFIG_PREEMPT_NOTIFIERS
7022 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7023#endif
7024
b50f60ce 7025#ifdef CONFIG_RT_MUTEXES
732375c6 7026 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7027#endif
7028
1da177e4
LT
7029 /*
7030 * The boot idle thread does lazy MMU switching as well:
7031 */
7032 atomic_inc(&init_mm.mm_count);
7033 enter_lazy_tlb(&init_mm, current);
7034
7035 /*
7036 * Make us the idle thread. Technically, schedule() should not be
7037 * called from this thread, however somewhere below it might be,
7038 * but because we are the idle thread, we just pick up running again
7039 * when this runqueue becomes "idle".
7040 */
7041 init_idle(current, smp_processor_id());
dce48a84
TG
7042
7043 calc_load_update = jiffies + LOAD_FREQ;
7044
dd41f596
IM
7045 /*
7046 * During early bootup we pretend to be a normal task:
7047 */
7048 current->sched_class = &fair_sched_class;
6892b75e 7049
bf4d83f6 7050#ifdef CONFIG_SMP
4cb98839 7051 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7052 /* May be allocated at isolcpus cmdline parse time */
7053 if (cpu_isolated_map == NULL)
7054 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
7055#endif
7056 init_sched_fair_class();
6a7b3dc3 7057
6892b75e 7058 scheduler_running = 1;
1da177e4
LT
7059}
7060
d902db1e 7061#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7062static inline int preempt_count_equals(int preempt_offset)
7063{
234da7bc 7064 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7065
4ba8216c 7066 return (nested == preempt_offset);
e4aafea2
FW
7067}
7068
d894837f 7069void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7070{
1da177e4
LT
7071 static unsigned long prev_jiffy; /* ratelimiting */
7072
b3fbab05 7073 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7074 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7075 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7076 return;
7077 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7078 return;
7079 prev_jiffy = jiffies;
7080
3df0fc5b
PZ
7081 printk(KERN_ERR
7082 "BUG: sleeping function called from invalid context at %s:%d\n",
7083 file, line);
7084 printk(KERN_ERR
7085 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7086 in_atomic(), irqs_disabled(),
7087 current->pid, current->comm);
aef745fc
IM
7088
7089 debug_show_held_locks(current);
7090 if (irqs_disabled())
7091 print_irqtrace_events(current);
7092 dump_stack();
1da177e4
LT
7093}
7094EXPORT_SYMBOL(__might_sleep);
7095#endif
7096
7097#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7098static void normalize_task(struct rq *rq, struct task_struct *p)
7099{
da7a735e
PZ
7100 const struct sched_class *prev_class = p->sched_class;
7101 int old_prio = p->prio;
3a5e4dc1 7102 int on_rq;
3e51f33f 7103
fd2f4419 7104 on_rq = p->on_rq;
3a5e4dc1 7105 if (on_rq)
4ca9b72b 7106 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7107 __setscheduler(rq, p, SCHED_NORMAL, 0);
7108 if (on_rq) {
4ca9b72b 7109 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7110 resched_task(rq->curr);
7111 }
da7a735e
PZ
7112
7113 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7114}
7115
1da177e4
LT
7116void normalize_rt_tasks(void)
7117{
a0f98a1c 7118 struct task_struct *g, *p;
1da177e4 7119 unsigned long flags;
70b97a7f 7120 struct rq *rq;
1da177e4 7121
4cf5d77a 7122 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7123 do_each_thread(g, p) {
178be793
IM
7124 /*
7125 * Only normalize user tasks:
7126 */
7127 if (!p->mm)
7128 continue;
7129
6cfb0d5d 7130 p->se.exec_start = 0;
6cfb0d5d 7131#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7132 p->se.statistics.wait_start = 0;
7133 p->se.statistics.sleep_start = 0;
7134 p->se.statistics.block_start = 0;
6cfb0d5d 7135#endif
dd41f596
IM
7136
7137 if (!rt_task(p)) {
7138 /*
7139 * Renice negative nice level userspace
7140 * tasks back to 0:
7141 */
7142 if (TASK_NICE(p) < 0 && p->mm)
7143 set_user_nice(p, 0);
1da177e4 7144 continue;
dd41f596 7145 }
1da177e4 7146
1d615482 7147 raw_spin_lock(&p->pi_lock);
b29739f9 7148 rq = __task_rq_lock(p);
1da177e4 7149
178be793 7150 normalize_task(rq, p);
3a5e4dc1 7151
b29739f9 7152 __task_rq_unlock(rq);
1d615482 7153 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7154 } while_each_thread(g, p);
7155
4cf5d77a 7156 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7157}
7158
7159#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7160
67fc4e0c 7161#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7162/*
67fc4e0c 7163 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7164 *
7165 * They can only be called when the whole system has been
7166 * stopped - every CPU needs to be quiescent, and no scheduling
7167 * activity can take place. Using them for anything else would
7168 * be a serious bug, and as a result, they aren't even visible
7169 * under any other configuration.
7170 */
7171
7172/**
7173 * curr_task - return the current task for a given cpu.
7174 * @cpu: the processor in question.
7175 *
7176 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7177 */
36c8b586 7178struct task_struct *curr_task(int cpu)
1df5c10a
LT
7179{
7180 return cpu_curr(cpu);
7181}
7182
67fc4e0c
JW
7183#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7184
7185#ifdef CONFIG_IA64
1df5c10a
LT
7186/**
7187 * set_curr_task - set the current task for a given cpu.
7188 * @cpu: the processor in question.
7189 * @p: the task pointer to set.
7190 *
7191 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7192 * are serviced on a separate stack. It allows the architecture to switch the
7193 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7194 * must be called with all CPU's synchronized, and interrupts disabled, the
7195 * and caller must save the original value of the current task (see
7196 * curr_task() above) and restore that value before reenabling interrupts and
7197 * re-starting the system.
7198 *
7199 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7200 */
36c8b586 7201void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7202{
7203 cpu_curr(cpu) = p;
7204}
7205
7206#endif
29f59db3 7207
7c941438 7208#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7209/* task_group_lock serializes the addition/removal of task groups */
7210static DEFINE_SPINLOCK(task_group_lock);
7211
bccbe08a
PZ
7212static void free_sched_group(struct task_group *tg)
7213{
7214 free_fair_sched_group(tg);
7215 free_rt_sched_group(tg);
e9aa1dd1 7216 autogroup_free(tg);
bccbe08a
PZ
7217 kfree(tg);
7218}
7219
7220/* allocate runqueue etc for a new task group */
ec7dc8ac 7221struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7222{
7223 struct task_group *tg;
7224 unsigned long flags;
bccbe08a
PZ
7225
7226 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7227 if (!tg)
7228 return ERR_PTR(-ENOMEM);
7229
ec7dc8ac 7230 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7231 goto err;
7232
ec7dc8ac 7233 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7234 goto err;
7235
8ed36996 7236 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7237 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7238
7239 WARN_ON(!parent); /* root should already exist */
7240
7241 tg->parent = parent;
f473aa5e 7242 INIT_LIST_HEAD(&tg->children);
09f2724a 7243 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7244 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7245
9b5b7751 7246 return tg;
29f59db3
SV
7247
7248err:
6f505b16 7249 free_sched_group(tg);
29f59db3
SV
7250 return ERR_PTR(-ENOMEM);
7251}
7252
9b5b7751 7253/* rcu callback to free various structures associated with a task group */
6f505b16 7254static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7255{
29f59db3 7256 /* now it should be safe to free those cfs_rqs */
6f505b16 7257 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7258}
7259
9b5b7751 7260/* Destroy runqueue etc associated with a task group */
4cf86d77 7261void sched_destroy_group(struct task_group *tg)
29f59db3 7262{
8ed36996 7263 unsigned long flags;
9b5b7751 7264 int i;
29f59db3 7265
3d4b47b4
PZ
7266 /* end participation in shares distribution */
7267 for_each_possible_cpu(i)
bccbe08a 7268 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7269
7270 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7271 list_del_rcu(&tg->list);
f473aa5e 7272 list_del_rcu(&tg->siblings);
8ed36996 7273 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7274
9b5b7751 7275 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7276 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7277}
7278
9b5b7751 7279/* change task's runqueue when it moves between groups.
3a252015
IM
7280 * The caller of this function should have put the task in its new group
7281 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7282 * reflect its new group.
9b5b7751
SV
7283 */
7284void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7285{
7286 int on_rq, running;
7287 unsigned long flags;
7288 struct rq *rq;
7289
7290 rq = task_rq_lock(tsk, &flags);
7291
051a1d1a 7292 running = task_current(rq, tsk);
fd2f4419 7293 on_rq = tsk->on_rq;
29f59db3 7294
0e1f3483 7295 if (on_rq)
29f59db3 7296 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7297 if (unlikely(running))
7298 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7299
810b3817 7300#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7301 if (tsk->sched_class->task_move_group)
7302 tsk->sched_class->task_move_group(tsk, on_rq);
7303 else
810b3817 7304#endif
b2b5ce02 7305 set_task_rq(tsk, task_cpu(tsk));
810b3817 7306
0e1f3483
HS
7307 if (unlikely(running))
7308 tsk->sched_class->set_curr_task(rq);
7309 if (on_rq)
371fd7e7 7310 enqueue_task(rq, tsk, 0);
29f59db3 7311
0122ec5b 7312 task_rq_unlock(rq, tsk, &flags);
29f59db3 7313}
7c941438 7314#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7315
a790de99 7316#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7317static unsigned long to_ratio(u64 period, u64 runtime)
7318{
7319 if (runtime == RUNTIME_INF)
9a7e0b18 7320 return 1ULL << 20;
9f0c1e56 7321
9a7e0b18 7322 return div64_u64(runtime << 20, period);
9f0c1e56 7323}
a790de99
PT
7324#endif
7325
7326#ifdef CONFIG_RT_GROUP_SCHED
7327/*
7328 * Ensure that the real time constraints are schedulable.
7329 */
7330static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7331
9a7e0b18
PZ
7332/* Must be called with tasklist_lock held */
7333static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7334{
9a7e0b18 7335 struct task_struct *g, *p;
b40b2e8e 7336
9a7e0b18 7337 do_each_thread(g, p) {
029632fb 7338 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7339 return 1;
7340 } while_each_thread(g, p);
b40b2e8e 7341
9a7e0b18
PZ
7342 return 0;
7343}
b40b2e8e 7344
9a7e0b18
PZ
7345struct rt_schedulable_data {
7346 struct task_group *tg;
7347 u64 rt_period;
7348 u64 rt_runtime;
7349};
b40b2e8e 7350
a790de99 7351static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7352{
7353 struct rt_schedulable_data *d = data;
7354 struct task_group *child;
7355 unsigned long total, sum = 0;
7356 u64 period, runtime;
b40b2e8e 7357
9a7e0b18
PZ
7358 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7359 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7360
9a7e0b18
PZ
7361 if (tg == d->tg) {
7362 period = d->rt_period;
7363 runtime = d->rt_runtime;
b40b2e8e 7364 }
b40b2e8e 7365
4653f803
PZ
7366 /*
7367 * Cannot have more runtime than the period.
7368 */
7369 if (runtime > period && runtime != RUNTIME_INF)
7370 return -EINVAL;
6f505b16 7371
4653f803
PZ
7372 /*
7373 * Ensure we don't starve existing RT tasks.
7374 */
9a7e0b18
PZ
7375 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7376 return -EBUSY;
6f505b16 7377
9a7e0b18 7378 total = to_ratio(period, runtime);
6f505b16 7379
4653f803
PZ
7380 /*
7381 * Nobody can have more than the global setting allows.
7382 */
7383 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7384 return -EINVAL;
6f505b16 7385
4653f803
PZ
7386 /*
7387 * The sum of our children's runtime should not exceed our own.
7388 */
9a7e0b18
PZ
7389 list_for_each_entry_rcu(child, &tg->children, siblings) {
7390 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7391 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7392
9a7e0b18
PZ
7393 if (child == d->tg) {
7394 period = d->rt_period;
7395 runtime = d->rt_runtime;
7396 }
6f505b16 7397
9a7e0b18 7398 sum += to_ratio(period, runtime);
9f0c1e56 7399 }
6f505b16 7400
9a7e0b18
PZ
7401 if (sum > total)
7402 return -EINVAL;
7403
7404 return 0;
6f505b16
PZ
7405}
7406
9a7e0b18 7407static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7408{
8277434e
PT
7409 int ret;
7410
9a7e0b18
PZ
7411 struct rt_schedulable_data data = {
7412 .tg = tg,
7413 .rt_period = period,
7414 .rt_runtime = runtime,
7415 };
7416
8277434e
PT
7417 rcu_read_lock();
7418 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7419 rcu_read_unlock();
7420
7421 return ret;
521f1a24
DG
7422}
7423
ab84d31e 7424static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7425 u64 rt_period, u64 rt_runtime)
6f505b16 7426{
ac086bc2 7427 int i, err = 0;
9f0c1e56 7428
9f0c1e56 7429 mutex_lock(&rt_constraints_mutex);
521f1a24 7430 read_lock(&tasklist_lock);
9a7e0b18
PZ
7431 err = __rt_schedulable(tg, rt_period, rt_runtime);
7432 if (err)
9f0c1e56 7433 goto unlock;
ac086bc2 7434
0986b11b 7435 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7436 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7437 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7438
7439 for_each_possible_cpu(i) {
7440 struct rt_rq *rt_rq = tg->rt_rq[i];
7441
0986b11b 7442 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7443 rt_rq->rt_runtime = rt_runtime;
0986b11b 7444 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7445 }
0986b11b 7446 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7447unlock:
521f1a24 7448 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7449 mutex_unlock(&rt_constraints_mutex);
7450
7451 return err;
6f505b16
PZ
7452}
7453
d0b27fa7
PZ
7454int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7455{
7456 u64 rt_runtime, rt_period;
7457
7458 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7459 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7460 if (rt_runtime_us < 0)
7461 rt_runtime = RUNTIME_INF;
7462
ab84d31e 7463 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7464}
7465
9f0c1e56
PZ
7466long sched_group_rt_runtime(struct task_group *tg)
7467{
7468 u64 rt_runtime_us;
7469
d0b27fa7 7470 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7471 return -1;
7472
d0b27fa7 7473 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7474 do_div(rt_runtime_us, NSEC_PER_USEC);
7475 return rt_runtime_us;
7476}
d0b27fa7
PZ
7477
7478int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7479{
7480 u64 rt_runtime, rt_period;
7481
7482 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7483 rt_runtime = tg->rt_bandwidth.rt_runtime;
7484
619b0488
R
7485 if (rt_period == 0)
7486 return -EINVAL;
7487
ab84d31e 7488 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7489}
7490
7491long sched_group_rt_period(struct task_group *tg)
7492{
7493 u64 rt_period_us;
7494
7495 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7496 do_div(rt_period_us, NSEC_PER_USEC);
7497 return rt_period_us;
7498}
7499
7500static int sched_rt_global_constraints(void)
7501{
4653f803 7502 u64 runtime, period;
d0b27fa7
PZ
7503 int ret = 0;
7504
ec5d4989
HS
7505 if (sysctl_sched_rt_period <= 0)
7506 return -EINVAL;
7507
4653f803
PZ
7508 runtime = global_rt_runtime();
7509 period = global_rt_period();
7510
7511 /*
7512 * Sanity check on the sysctl variables.
7513 */
7514 if (runtime > period && runtime != RUNTIME_INF)
7515 return -EINVAL;
10b612f4 7516
d0b27fa7 7517 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7518 read_lock(&tasklist_lock);
4653f803 7519 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7520 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7521 mutex_unlock(&rt_constraints_mutex);
7522
7523 return ret;
7524}
54e99124
DG
7525
7526int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7527{
7528 /* Don't accept realtime tasks when there is no way for them to run */
7529 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7530 return 0;
7531
7532 return 1;
7533}
7534
6d6bc0ad 7535#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7536static int sched_rt_global_constraints(void)
7537{
ac086bc2
PZ
7538 unsigned long flags;
7539 int i;
7540
ec5d4989
HS
7541 if (sysctl_sched_rt_period <= 0)
7542 return -EINVAL;
7543
60aa605d
PZ
7544 /*
7545 * There's always some RT tasks in the root group
7546 * -- migration, kstopmachine etc..
7547 */
7548 if (sysctl_sched_rt_runtime == 0)
7549 return -EBUSY;
7550
0986b11b 7551 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7552 for_each_possible_cpu(i) {
7553 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7554
0986b11b 7555 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7556 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7557 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7558 }
0986b11b 7559 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7560
d0b27fa7
PZ
7561 return 0;
7562}
6d6bc0ad 7563#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7564
7565int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7566 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7567 loff_t *ppos)
7568{
7569 int ret;
7570 int old_period, old_runtime;
7571 static DEFINE_MUTEX(mutex);
7572
7573 mutex_lock(&mutex);
7574 old_period = sysctl_sched_rt_period;
7575 old_runtime = sysctl_sched_rt_runtime;
7576
8d65af78 7577 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7578
7579 if (!ret && write) {
7580 ret = sched_rt_global_constraints();
7581 if (ret) {
7582 sysctl_sched_rt_period = old_period;
7583 sysctl_sched_rt_runtime = old_runtime;
7584 } else {
7585 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7586 def_rt_bandwidth.rt_period =
7587 ns_to_ktime(global_rt_period());
7588 }
7589 }
7590 mutex_unlock(&mutex);
7591
7592 return ret;
7593}
68318b8e 7594
052f1dc7 7595#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7596
7597/* return corresponding task_group object of a cgroup */
2b01dfe3 7598static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7599{
2b01dfe3
PM
7600 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7601 struct task_group, css);
68318b8e
SV
7602}
7603
7604static struct cgroup_subsys_state *
2b01dfe3 7605cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7606{
ec7dc8ac 7607 struct task_group *tg, *parent;
68318b8e 7608
2b01dfe3 7609 if (!cgrp->parent) {
68318b8e 7610 /* This is early initialization for the top cgroup */
07e06b01 7611 return &root_task_group.css;
68318b8e
SV
7612 }
7613
ec7dc8ac
DG
7614 parent = cgroup_tg(cgrp->parent);
7615 tg = sched_create_group(parent);
68318b8e
SV
7616 if (IS_ERR(tg))
7617 return ERR_PTR(-ENOMEM);
7618
68318b8e
SV
7619 return &tg->css;
7620}
7621
41a2d6cf
IM
7622static void
7623cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7624{
2b01dfe3 7625 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7626
7627 sched_destroy_group(tg);
7628}
7629
bb9d97b6
TH
7630static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7631 struct cgroup_taskset *tset)
68318b8e 7632{
bb9d97b6
TH
7633 struct task_struct *task;
7634
7635 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7636#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7637 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7638 return -EINVAL;
b68aa230 7639#else
bb9d97b6
TH
7640 /* We don't support RT-tasks being in separate groups */
7641 if (task->sched_class != &fair_sched_class)
7642 return -EINVAL;
b68aa230 7643#endif
bb9d97b6 7644 }
be367d09
BB
7645 return 0;
7646}
68318b8e 7647
bb9d97b6
TH
7648static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7649 struct cgroup_taskset *tset)
68318b8e 7650{
bb9d97b6
TH
7651 struct task_struct *task;
7652
7653 cgroup_taskset_for_each(task, cgrp, tset)
7654 sched_move_task(task);
68318b8e
SV
7655}
7656
068c5cc5 7657static void
d41d5a01
PZ
7658cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7659 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7660{
7661 /*
7662 * cgroup_exit() is called in the copy_process() failure path.
7663 * Ignore this case since the task hasn't ran yet, this avoids
7664 * trying to poke a half freed task state from generic code.
7665 */
7666 if (!(task->flags & PF_EXITING))
7667 return;
7668
7669 sched_move_task(task);
7670}
7671
052f1dc7 7672#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7673static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7674 u64 shareval)
68318b8e 7675{
c8b28116 7676 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7677}
7678
f4c753b7 7679static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7680{
2b01dfe3 7681 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7682
c8b28116 7683 return (u64) scale_load_down(tg->shares);
68318b8e 7684}
ab84d31e
PT
7685
7686#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7687static DEFINE_MUTEX(cfs_constraints_mutex);
7688
ab84d31e
PT
7689const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7690const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7691
a790de99
PT
7692static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7693
ab84d31e
PT
7694static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7695{
56f570e5 7696 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7697 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7698
7699 if (tg == &root_task_group)
7700 return -EINVAL;
7701
7702 /*
7703 * Ensure we have at some amount of bandwidth every period. This is
7704 * to prevent reaching a state of large arrears when throttled via
7705 * entity_tick() resulting in prolonged exit starvation.
7706 */
7707 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7708 return -EINVAL;
7709
7710 /*
7711 * Likewise, bound things on the otherside by preventing insane quota
7712 * periods. This also allows us to normalize in computing quota
7713 * feasibility.
7714 */
7715 if (period > max_cfs_quota_period)
7716 return -EINVAL;
7717
a790de99
PT
7718 mutex_lock(&cfs_constraints_mutex);
7719 ret = __cfs_schedulable(tg, period, quota);
7720 if (ret)
7721 goto out_unlock;
7722
58088ad0 7723 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7724 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7725 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7726 raw_spin_lock_irq(&cfs_b->lock);
7727 cfs_b->period = ns_to_ktime(period);
7728 cfs_b->quota = quota;
58088ad0 7729
a9cf55b2 7730 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7731 /* restart the period timer (if active) to handle new period expiry */
7732 if (runtime_enabled && cfs_b->timer_active) {
7733 /* force a reprogram */
7734 cfs_b->timer_active = 0;
7735 __start_cfs_bandwidth(cfs_b);
7736 }
ab84d31e
PT
7737 raw_spin_unlock_irq(&cfs_b->lock);
7738
7739 for_each_possible_cpu(i) {
7740 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7741 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7742
7743 raw_spin_lock_irq(&rq->lock);
58088ad0 7744 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7745 cfs_rq->runtime_remaining = 0;
671fd9da 7746
029632fb 7747 if (cfs_rq->throttled)
671fd9da 7748 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7749 raw_spin_unlock_irq(&rq->lock);
7750 }
a790de99
PT
7751out_unlock:
7752 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7753
a790de99 7754 return ret;
ab84d31e
PT
7755}
7756
7757int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7758{
7759 u64 quota, period;
7760
029632fb 7761 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7762 if (cfs_quota_us < 0)
7763 quota = RUNTIME_INF;
7764 else
7765 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7766
7767 return tg_set_cfs_bandwidth(tg, period, quota);
7768}
7769
7770long tg_get_cfs_quota(struct task_group *tg)
7771{
7772 u64 quota_us;
7773
029632fb 7774 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7775 return -1;
7776
029632fb 7777 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7778 do_div(quota_us, NSEC_PER_USEC);
7779
7780 return quota_us;
7781}
7782
7783int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7784{
7785 u64 quota, period;
7786
7787 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7788 quota = tg->cfs_bandwidth.quota;
ab84d31e 7789
ab84d31e
PT
7790 return tg_set_cfs_bandwidth(tg, period, quota);
7791}
7792
7793long tg_get_cfs_period(struct task_group *tg)
7794{
7795 u64 cfs_period_us;
7796
029632fb 7797 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7798 do_div(cfs_period_us, NSEC_PER_USEC);
7799
7800 return cfs_period_us;
7801}
7802
7803static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7804{
7805 return tg_get_cfs_quota(cgroup_tg(cgrp));
7806}
7807
7808static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7809 s64 cfs_quota_us)
7810{
7811 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7812}
7813
7814static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7815{
7816 return tg_get_cfs_period(cgroup_tg(cgrp));
7817}
7818
7819static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7820 u64 cfs_period_us)
7821{
7822 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7823}
7824
a790de99
PT
7825struct cfs_schedulable_data {
7826 struct task_group *tg;
7827 u64 period, quota;
7828};
7829
7830/*
7831 * normalize group quota/period to be quota/max_period
7832 * note: units are usecs
7833 */
7834static u64 normalize_cfs_quota(struct task_group *tg,
7835 struct cfs_schedulable_data *d)
7836{
7837 u64 quota, period;
7838
7839 if (tg == d->tg) {
7840 period = d->period;
7841 quota = d->quota;
7842 } else {
7843 period = tg_get_cfs_period(tg);
7844 quota = tg_get_cfs_quota(tg);
7845 }
7846
7847 /* note: these should typically be equivalent */
7848 if (quota == RUNTIME_INF || quota == -1)
7849 return RUNTIME_INF;
7850
7851 return to_ratio(period, quota);
7852}
7853
7854static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7855{
7856 struct cfs_schedulable_data *d = data;
029632fb 7857 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7858 s64 quota = 0, parent_quota = -1;
7859
7860 if (!tg->parent) {
7861 quota = RUNTIME_INF;
7862 } else {
029632fb 7863 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7864
7865 quota = normalize_cfs_quota(tg, d);
7866 parent_quota = parent_b->hierarchal_quota;
7867
7868 /*
7869 * ensure max(child_quota) <= parent_quota, inherit when no
7870 * limit is set
7871 */
7872 if (quota == RUNTIME_INF)
7873 quota = parent_quota;
7874 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7875 return -EINVAL;
7876 }
7877 cfs_b->hierarchal_quota = quota;
7878
7879 return 0;
7880}
7881
7882static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7883{
8277434e 7884 int ret;
a790de99
PT
7885 struct cfs_schedulable_data data = {
7886 .tg = tg,
7887 .period = period,
7888 .quota = quota,
7889 };
7890
7891 if (quota != RUNTIME_INF) {
7892 do_div(data.period, NSEC_PER_USEC);
7893 do_div(data.quota, NSEC_PER_USEC);
7894 }
7895
8277434e
PT
7896 rcu_read_lock();
7897 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7898 rcu_read_unlock();
7899
7900 return ret;
a790de99 7901}
e8da1b18
NR
7902
7903static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7904 struct cgroup_map_cb *cb)
7905{
7906 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7907 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7908
7909 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7910 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7911 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7912
7913 return 0;
7914}
ab84d31e 7915#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7916#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7917
052f1dc7 7918#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7919static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7920 s64 val)
6f505b16 7921{
06ecb27c 7922 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7923}
7924
06ecb27c 7925static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7926{
06ecb27c 7927 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7928}
d0b27fa7
PZ
7929
7930static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7931 u64 rt_period_us)
7932{
7933 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7934}
7935
7936static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7937{
7938 return sched_group_rt_period(cgroup_tg(cgrp));
7939}
6d6bc0ad 7940#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7941
fe5c7cc2 7942static struct cftype cpu_files[] = {
052f1dc7 7943#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7944 {
7945 .name = "shares",
f4c753b7
PM
7946 .read_u64 = cpu_shares_read_u64,
7947 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7948 },
052f1dc7 7949#endif
ab84d31e
PT
7950#ifdef CONFIG_CFS_BANDWIDTH
7951 {
7952 .name = "cfs_quota_us",
7953 .read_s64 = cpu_cfs_quota_read_s64,
7954 .write_s64 = cpu_cfs_quota_write_s64,
7955 },
7956 {
7957 .name = "cfs_period_us",
7958 .read_u64 = cpu_cfs_period_read_u64,
7959 .write_u64 = cpu_cfs_period_write_u64,
7960 },
e8da1b18
NR
7961 {
7962 .name = "stat",
7963 .read_map = cpu_stats_show,
7964 },
ab84d31e 7965#endif
052f1dc7 7966#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7967 {
9f0c1e56 7968 .name = "rt_runtime_us",
06ecb27c
PM
7969 .read_s64 = cpu_rt_runtime_read,
7970 .write_s64 = cpu_rt_runtime_write,
6f505b16 7971 },
d0b27fa7
PZ
7972 {
7973 .name = "rt_period_us",
f4c753b7
PM
7974 .read_u64 = cpu_rt_period_read_uint,
7975 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7976 },
052f1dc7 7977#endif
68318b8e
SV
7978};
7979
7980static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7981{
fe5c7cc2 7982 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7983}
7984
7985struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7986 .name = "cpu",
7987 .create = cpu_cgroup_create,
7988 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7989 .can_attach = cpu_cgroup_can_attach,
7990 .attach = cpu_cgroup_attach,
068c5cc5 7991 .exit = cpu_cgroup_exit,
38605cae
IM
7992 .populate = cpu_cgroup_populate,
7993 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7994 .early_init = 1,
7995};
7996
052f1dc7 7997#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7998
7999#ifdef CONFIG_CGROUP_CPUACCT
8000
8001/*
8002 * CPU accounting code for task groups.
8003 *
8004 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8005 * (balbir@in.ibm.com).
8006 */
8007
d842de87
SV
8008/* create a new cpu accounting group */
8009static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8010 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8011{
54c707e9 8012 struct cpuacct *ca;
d842de87 8013
54c707e9
GC
8014 if (!cgrp->parent)
8015 return &root_cpuacct.css;
8016
8017 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8018 if (!ca)
ef12fefa 8019 goto out;
d842de87
SV
8020
8021 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8022 if (!ca->cpuusage)
8023 goto out_free_ca;
8024
54c707e9
GC
8025 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8026 if (!ca->cpustat)
8027 goto out_free_cpuusage;
934352f2 8028
d842de87 8029 return &ca->css;
ef12fefa 8030
54c707e9 8031out_free_cpuusage:
ef12fefa
BR
8032 free_percpu(ca->cpuusage);
8033out_free_ca:
8034 kfree(ca);
8035out:
8036 return ERR_PTR(-ENOMEM);
d842de87
SV
8037}
8038
8039/* destroy an existing cpu accounting group */
41a2d6cf 8040static void
32cd756a 8041cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8042{
32cd756a 8043 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8044
54c707e9 8045 free_percpu(ca->cpustat);
d842de87
SV
8046 free_percpu(ca->cpuusage);
8047 kfree(ca);
8048}
8049
720f5498
KC
8050static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8051{
b36128c8 8052 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8053 u64 data;
8054
8055#ifndef CONFIG_64BIT
8056 /*
8057 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8058 */
05fa785c 8059 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8060 data = *cpuusage;
05fa785c 8061 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8062#else
8063 data = *cpuusage;
8064#endif
8065
8066 return data;
8067}
8068
8069static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8070{
b36128c8 8071 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8072
8073#ifndef CONFIG_64BIT
8074 /*
8075 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8076 */
05fa785c 8077 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8078 *cpuusage = val;
05fa785c 8079 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8080#else
8081 *cpuusage = val;
8082#endif
8083}
8084
d842de87 8085/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8086static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8087{
32cd756a 8088 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8089 u64 totalcpuusage = 0;
8090 int i;
8091
720f5498
KC
8092 for_each_present_cpu(i)
8093 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8094
8095 return totalcpuusage;
8096}
8097
0297b803
DG
8098static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8099 u64 reset)
8100{
8101 struct cpuacct *ca = cgroup_ca(cgrp);
8102 int err = 0;
8103 int i;
8104
8105 if (reset) {
8106 err = -EINVAL;
8107 goto out;
8108 }
8109
720f5498
KC
8110 for_each_present_cpu(i)
8111 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8112
0297b803
DG
8113out:
8114 return err;
8115}
8116
e9515c3c
KC
8117static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8118 struct seq_file *m)
8119{
8120 struct cpuacct *ca = cgroup_ca(cgroup);
8121 u64 percpu;
8122 int i;
8123
8124 for_each_present_cpu(i) {
8125 percpu = cpuacct_cpuusage_read(ca, i);
8126 seq_printf(m, "%llu ", (unsigned long long) percpu);
8127 }
8128 seq_printf(m, "\n");
8129 return 0;
8130}
8131
ef12fefa
BR
8132static const char *cpuacct_stat_desc[] = {
8133 [CPUACCT_STAT_USER] = "user",
8134 [CPUACCT_STAT_SYSTEM] = "system",
8135};
8136
8137static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8138 struct cgroup_map_cb *cb)
ef12fefa
BR
8139{
8140 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8141 int cpu;
8142 s64 val = 0;
ef12fefa 8143
54c707e9
GC
8144 for_each_online_cpu(cpu) {
8145 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8146 val += kcpustat->cpustat[CPUTIME_USER];
8147 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8148 }
54c707e9
GC
8149 val = cputime64_to_clock_t(val);
8150 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8151
54c707e9
GC
8152 val = 0;
8153 for_each_online_cpu(cpu) {
8154 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8155 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8156 val += kcpustat->cpustat[CPUTIME_IRQ];
8157 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8158 }
54c707e9
GC
8159
8160 val = cputime64_to_clock_t(val);
8161 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8162
ef12fefa
BR
8163 return 0;
8164}
8165
d842de87
SV
8166static struct cftype files[] = {
8167 {
8168 .name = "usage",
f4c753b7
PM
8169 .read_u64 = cpuusage_read,
8170 .write_u64 = cpuusage_write,
d842de87 8171 },
e9515c3c
KC
8172 {
8173 .name = "usage_percpu",
8174 .read_seq_string = cpuacct_percpu_seq_read,
8175 },
ef12fefa
BR
8176 {
8177 .name = "stat",
8178 .read_map = cpuacct_stats_show,
8179 },
d842de87
SV
8180};
8181
32cd756a 8182static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8183{
32cd756a 8184 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8185}
8186
8187/*
8188 * charge this task's execution time to its accounting group.
8189 *
8190 * called with rq->lock held.
8191 */
029632fb 8192void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8193{
8194 struct cpuacct *ca;
934352f2 8195 int cpu;
d842de87 8196
c40c6f85 8197 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8198 return;
8199
934352f2 8200 cpu = task_cpu(tsk);
a18b83b7
BR
8201
8202 rcu_read_lock();
8203
d842de87 8204 ca = task_ca(tsk);
d842de87 8205
44252e42 8206 for (; ca; ca = parent_ca(ca)) {
b36128c8 8207 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8208 *cpuusage += cputime;
8209 }
a18b83b7
BR
8210
8211 rcu_read_unlock();
d842de87
SV
8212}
8213
8214struct cgroup_subsys cpuacct_subsys = {
8215 .name = "cpuacct",
8216 .create = cpuacct_create,
8217 .destroy = cpuacct_destroy,
8218 .populate = cpuacct_populate,
8219 .subsys_id = cpuacct_subsys_id,
8220};
8221#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.289925 seconds and 5 git commands to generate.