sched/x86/smp: Do not enable IRQs over calibrate_delay()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
db7e527d 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
029632fb 82#include "sched.h"
391e43da 83#include "../workqueue_sched.h"
6e0534f2 84
a8d154b0 85#define CREATE_TRACE_POINTS
ad8d75ff 86#include <trace/events/sched.h>
a8d154b0 87
029632fb 88void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 89{
58088ad0
PT
90 unsigned long delta;
91 ktime_t soft, hard, now;
d0b27fa7 92
58088ad0
PT
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
d0b27fa7 99
58088ad0
PT
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106}
107
029632fb
PZ
108DEFINE_MUTEX(sched_domains_mutex);
109DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 110
fe44d621 111static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 112
029632fb 113void update_rq_clock(struct rq *rq)
3e51f33f 114{
fe44d621 115 s64 delta;
305e6835 116
61eadef6 117 if (rq->skip_clock_update > 0)
f26f9aff 118 return;
aa483808 119
fe44d621
PZ
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
3e51f33f
PZ
123}
124
bf5c91ba
IM
125/*
126 * Debugging: various feature bits
127 */
f00b45c1 128
f00b45c1
PZ
129#define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
bf5c91ba 132const_debug unsigned int sysctl_sched_features =
391e43da 133#include "features.h"
f00b45c1
PZ
134 0;
135
136#undef SCHED_FEAT
137
138#ifdef CONFIG_SCHED_DEBUG
139#define SCHED_FEAT(name, enabled) \
140 #name ,
141
983ed7a6 142static __read_mostly char *sched_feat_names[] = {
391e43da 143#include "features.h"
f00b45c1
PZ
144 NULL
145};
146
147#undef SCHED_FEAT
148
34f3a814 149static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 150{
f00b45c1
PZ
151 int i;
152
f8b6d1cc 153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 157 }
34f3a814 158 seq_puts(m, "\n");
f00b45c1 159
34f3a814 160 return 0;
f00b45c1
PZ
161}
162
f8b6d1cc
PZ
163#ifdef HAVE_JUMP_LABEL
164
165#define jump_label_key__true jump_label_key_enabled
166#define jump_label_key__false jump_label_key_disabled
167
168#define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172#include "features.h"
173};
174
175#undef SCHED_FEAT
176
177static void sched_feat_disable(int i)
178{
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181}
182
183static void sched_feat_enable(int i)
184{
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187}
188#else
189static void sched_feat_disable(int i) { };
190static void sched_feat_enable(int i) { };
191#endif /* HAVE_JUMP_LABEL */
192
f00b45c1
PZ
193static ssize_t
194sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196{
197 char buf[64];
7740191c 198 char *cmp;
f00b45c1
PZ
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
7740191c 209 cmp = strstrip(buf);
f00b45c1 210
524429c3 211 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
212 neg = 1;
213 cmp += 3;
214 }
215
f8b6d1cc 216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 218 if (neg) {
f00b45c1 219 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
220 sched_feat_disable(i);
221 } else {
f00b45c1 222 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
223 sched_feat_enable(i);
224 }
f00b45c1
PZ
225 break;
226 }
227 }
228
f8b6d1cc 229 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
230 return -EINVAL;
231
42994724 232 *ppos += cnt;
f00b45c1
PZ
233
234 return cnt;
235}
236
34f3a814
LZ
237static int sched_feat_open(struct inode *inode, struct file *filp)
238{
239 return single_open(filp, sched_feat_show, NULL);
240}
241
828c0950 242static const struct file_operations sched_feat_fops = {
34f3a814
LZ
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
f00b45c1
PZ
248};
249
250static __init int sched_init_debug(void)
251{
f00b45c1
PZ
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256}
257late_initcall(sched_init_debug);
f8b6d1cc 258#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 259
b82d9fdd
PZ
260/*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
e9e9250b
PZ
266/*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
fa85ae24 274/*
9f0c1e56 275 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
276 * default: 1s
277 */
9f0c1e56 278unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 279
029632fb 280__read_mostly int scheduler_running;
6892b75e 281
9f0c1e56
PZ
282/*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286int sysctl_sched_rt_runtime = 950000;
fa85ae24 287
fa85ae24 288
1da177e4 289
0970d299 290/*
0122ec5b 291 * __task_rq_lock - lock the rq @p resides on.
b29739f9 292 */
70b97a7f 293static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
294 __acquires(rq->lock)
295{
0970d299
PZ
296 struct rq *rq;
297
0122ec5b
PZ
298 lockdep_assert_held(&p->pi_lock);
299
3a5c359a 300 for (;;) {
0970d299 301 rq = task_rq(p);
05fa785c 302 raw_spin_lock(&rq->lock);
65cc8e48 303 if (likely(rq == task_rq(p)))
3a5c359a 304 return rq;
05fa785c 305 raw_spin_unlock(&rq->lock);
b29739f9 306 }
b29739f9
IM
307}
308
1da177e4 309/*
0122ec5b 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 311 */
70b97a7f 312static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 313 __acquires(p->pi_lock)
1da177e4
LT
314 __acquires(rq->lock)
315{
70b97a7f 316 struct rq *rq;
1da177e4 317
3a5c359a 318 for (;;) {
0122ec5b 319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
65cc8e48 322 if (likely(rq == task_rq(p)))
3a5c359a 323 return rq;
0122ec5b
PZ
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 326 }
1da177e4
LT
327}
328
a9957449 329static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
330 __releases(rq->lock)
331{
05fa785c 332 raw_spin_unlock(&rq->lock);
b29739f9
IM
333}
334
0122ec5b
PZ
335static inline void
336task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 337 __releases(rq->lock)
0122ec5b 338 __releases(p->pi_lock)
1da177e4 339{
0122ec5b
PZ
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
342}
343
1da177e4 344/*
cc2a73b5 345 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 346 */
a9957449 347static struct rq *this_rq_lock(void)
1da177e4
LT
348 __acquires(rq->lock)
349{
70b97a7f 350 struct rq *rq;
1da177e4
LT
351
352 local_irq_disable();
353 rq = this_rq();
05fa785c 354 raw_spin_lock(&rq->lock);
1da177e4
LT
355
356 return rq;
357}
358
8f4d37ec
PZ
359#ifdef CONFIG_SCHED_HRTICK
360/*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
8f4d37ec 370
8f4d37ec
PZ
371static void hrtick_clear(struct rq *rq)
372{
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375}
376
8f4d37ec
PZ
377/*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381static enum hrtimer_restart hrtick(struct hrtimer *timer)
382{
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
05fa785c 387 raw_spin_lock(&rq->lock);
3e51f33f 388 update_rq_clock(rq);
8f4d37ec 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 390 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
391
392 return HRTIMER_NORESTART;
393}
394
95e904c7 395#ifdef CONFIG_SMP
31656519
PZ
396/*
397 * called from hardirq (IPI) context
398 */
399static void __hrtick_start(void *arg)
b328ca18 400{
31656519 401 struct rq *rq = arg;
b328ca18 402
05fa785c 403 raw_spin_lock(&rq->lock);
31656519
PZ
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
05fa785c 406 raw_spin_unlock(&rq->lock);
b328ca18
PZ
407}
408
31656519
PZ
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
029632fb 414void hrtick_start(struct rq *rq, u64 delay)
b328ca18 415{
31656519
PZ
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 418
cc584b21 419 hrtimer_set_expires(timer, time);
31656519
PZ
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
6e275637 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
425 rq->hrtick_csd_pending = 1;
426 }
b328ca18
PZ
427}
428
429static int
430hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431{
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
31656519 441 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446}
447
fa748203 448static __init void init_hrtick(void)
b328ca18
PZ
449{
450 hotcpu_notifier(hotplug_hrtick, 0);
451}
31656519
PZ
452#else
453/*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
029632fb 458void hrtick_start(struct rq *rq, u64 delay)
31656519 459{
7f1e2ca9 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 461 HRTIMER_MODE_REL_PINNED, 0);
31656519 462}
b328ca18 463
006c75f1 464static inline void init_hrtick(void)
8f4d37ec 465{
8f4d37ec 466}
31656519 467#endif /* CONFIG_SMP */
8f4d37ec 468
31656519 469static void init_rq_hrtick(struct rq *rq)
8f4d37ec 470{
31656519
PZ
471#ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
8f4d37ec 473
31656519
PZ
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477#endif
8f4d37ec 478
31656519
PZ
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
8f4d37ec 481}
006c75f1 482#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
483static inline void hrtick_clear(struct rq *rq)
484{
485}
486
8f4d37ec
PZ
487static inline void init_rq_hrtick(struct rq *rq)
488{
489}
490
b328ca18
PZ
491static inline void init_hrtick(void)
492{
493}
006c75f1 494#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 495
c24d20db
IM
496/*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503#ifdef CONFIG_SMP
504
505#ifndef tsk_is_polling
506#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507#endif
508
029632fb 509void resched_task(struct task_struct *p)
c24d20db
IM
510{
511 int cpu;
512
05fa785c 513 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 514
5ed0cec0 515 if (test_tsk_need_resched(p))
c24d20db
IM
516 return;
517
5ed0cec0 518 set_tsk_need_resched(p);
c24d20db
IM
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528}
529
029632fb 530void resched_cpu(int cpu)
c24d20db
IM
531{
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
05fa785c 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
536 return;
537 resched_task(cpu_curr(cpu));
05fa785c 538 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 539}
06d8308c
TG
540
541#ifdef CONFIG_NO_HZ
83cd4fe2
VP
542/*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550int get_nohz_timer_target(void)
551{
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
057f3fad 556 rcu_read_lock();
83cd4fe2 557 for_each_domain(cpu, sd) {
057f3fad
PZ
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
83cd4fe2 564 }
057f3fad
PZ
565unlock:
566 rcu_read_unlock();
83cd4fe2
VP
567 return cpu;
568}
06d8308c
TG
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579void wake_up_idle_cpu(int cpu)
580{
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
45bf76df 595
45bf76df 596 /*
06d8308c
TG
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
45bf76df 600 */
5ed0cec0 601 set_tsk_need_resched(rq->idle);
45bf76df 602
06d8308c
TG
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
45bf76df
IM
607}
608
ca38062e 609static inline bool got_nohz_idle_kick(void)
45bf76df 610{
1c792db7
SS
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
613}
614
ca38062e 615#else /* CONFIG_NO_HZ */
45bf76df 616
ca38062e 617static inline bool got_nohz_idle_kick(void)
2069dd75 618{
ca38062e 619 return false;
2069dd75
PZ
620}
621
6d6bc0ad 622#endif /* CONFIG_NO_HZ */
d842de87 623
029632fb 624void sched_avg_update(struct rq *rq)
18d95a28 625{
e9e9250b
PZ
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
18d95a28
PZ
638}
639
6d6bc0ad 640#else /* !CONFIG_SMP */
029632fb 641void resched_task(struct task_struct *p)
18d95a28 642{
05fa785c 643 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 644 set_tsk_need_resched(p);
18d95a28 645}
6d6bc0ad 646#endif /* CONFIG_SMP */
18d95a28 647
a790de99
PT
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 650/*
8277434e
PT
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 655 */
029632fb 656int walk_tg_tree_from(struct task_group *from,
8277434e 657 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
658{
659 struct task_group *parent, *child;
eb755805 660 int ret;
c09595f6 661
8277434e
PT
662 parent = from;
663
c09595f6 664down:
eb755805
PZ
665 ret = (*down)(parent, data);
666 if (ret)
8277434e 667 goto out;
c09595f6
PZ
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672up:
673 continue;
674 }
eb755805 675 ret = (*up)(parent, data);
8277434e
PT
676 if (ret || parent == from)
677 goto out;
c09595f6
PZ
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
8277434e 683out:
eb755805 684 return ret;
c09595f6
PZ
685}
686
029632fb 687int tg_nop(struct task_group *tg, void *data)
eb755805 688{
e2b245f8 689 return 0;
eb755805 690}
18d95a28
PZ
691#endif
692
029632fb 693void update_cpu_load(struct rq *this_rq);
9c217245 694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266 int dest_cpu;
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1272 return dest_cpu;
1273
1274 /* Any allowed, online CPU? */
fa17b507 1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1276 if (dest_cpu < nr_cpu_ids)
1277 return dest_cpu;
1278
1279 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1280 dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 /*
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1284 * leave kernel.
1285 */
1286 if (p->mm && printk_ratelimit()) {
3ccf3e83 1287 printk_sched("process %d (%s) no longer affine to cpu%d\n",
48c5ccae 1288 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1289 }
1290
1291 return dest_cpu;
1292}
1293
e2912009 1294/*
013fdb80 1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1296 */
970b13ba 1297static inline
7608dec2 1298int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1299{
7608dec2 1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1301
1302 /*
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 * cpu.
1306 *
1307 * Since this is common to all placement strategies, this lives here.
1308 *
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1311 */
fa17b507 1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1313 !cpu_online(cpu)))
5da9a0fb 1314 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1315
1316 return cpu;
970b13ba 1317}
09a40af5
MG
1318
1319static void update_avg(u64 *avg, u64 sample)
1320{
1321 s64 diff = sample - *avg;
1322 *avg += diff >> 3;
1323}
970b13ba
PZ
1324#endif
1325
d7c01d27 1326static void
b84cb5df 1327ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1328{
d7c01d27 1329#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1330 struct rq *rq = this_rq();
1331
d7c01d27
PZ
1332#ifdef CONFIG_SMP
1333 int this_cpu = smp_processor_id();
1334
1335 if (cpu == this_cpu) {
1336 schedstat_inc(rq, ttwu_local);
1337 schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 } else {
1339 struct sched_domain *sd;
1340
1341 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1342 rcu_read_lock();
d7c01d27
PZ
1343 for_each_domain(this_cpu, sd) {
1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 schedstat_inc(sd, ttwu_wake_remote);
1346 break;
1347 }
1348 }
057f3fad 1349 rcu_read_unlock();
d7c01d27 1350 }
f339b9dc
PZ
1351
1352 if (wake_flags & WF_MIGRATED)
1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354
d7c01d27
PZ
1355#endif /* CONFIG_SMP */
1356
1357 schedstat_inc(rq, ttwu_count);
9ed3811a 1358 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1359
1360 if (wake_flags & WF_SYNC)
9ed3811a 1361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1362
d7c01d27
PZ
1363#endif /* CONFIG_SCHEDSTATS */
1364}
1365
1366static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367{
9ed3811a 1368 activate_task(rq, p, en_flags);
fd2f4419 1369 p->on_rq = 1;
c2f7115e
PZ
1370
1371 /* if a worker is waking up, notify workqueue */
1372 if (p->flags & PF_WQ_WORKER)
1373 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1374}
1375
23f41eeb
PZ
1376/*
1377 * Mark the task runnable and perform wakeup-preemption.
1378 */
89363381 1379static void
23f41eeb 1380ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1381{
89363381 1382 trace_sched_wakeup(p, true);
9ed3811a
TH
1383 check_preempt_curr(rq, p, wake_flags);
1384
1385 p->state = TASK_RUNNING;
1386#ifdef CONFIG_SMP
1387 if (p->sched_class->task_woken)
1388 p->sched_class->task_woken(rq, p);
1389
e69c6341 1390 if (rq->idle_stamp) {
9ed3811a
TH
1391 u64 delta = rq->clock - rq->idle_stamp;
1392 u64 max = 2*sysctl_sched_migration_cost;
1393
1394 if (delta > max)
1395 rq->avg_idle = max;
1396 else
1397 update_avg(&rq->avg_idle, delta);
1398 rq->idle_stamp = 0;
1399 }
1400#endif
1401}
1402
c05fbafb
PZ
1403static void
1404ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405{
1406#ifdef CONFIG_SMP
1407 if (p->sched_contributes_to_load)
1408 rq->nr_uninterruptible--;
1409#endif
1410
1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 ttwu_do_wakeup(rq, p, wake_flags);
1413}
1414
1415/*
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1420 */
1421static int ttwu_remote(struct task_struct *p, int wake_flags)
1422{
1423 struct rq *rq;
1424 int ret = 0;
1425
1426 rq = __task_rq_lock(p);
1427 if (p->on_rq) {
1428 ttwu_do_wakeup(rq, p, wake_flags);
1429 ret = 1;
1430 }
1431 __task_rq_unlock(rq);
1432
1433 return ret;
1434}
1435
317f3941 1436#ifdef CONFIG_SMP
fa14ff4a 1437static void sched_ttwu_pending(void)
317f3941
PZ
1438{
1439 struct rq *rq = this_rq();
fa14ff4a
PZ
1440 struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 struct task_struct *p;
317f3941
PZ
1442
1443 raw_spin_lock(&rq->lock);
1444
fa14ff4a
PZ
1445 while (llist) {
1446 p = llist_entry(llist, struct task_struct, wake_entry);
1447 llist = llist_next(llist);
317f3941
PZ
1448 ttwu_do_activate(rq, p, 0);
1449 }
1450
1451 raw_spin_unlock(&rq->lock);
1452}
1453
1454void scheduler_ipi(void)
1455{
ca38062e 1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1457 return;
1458
1459 /*
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1463 * we do call them.
1464 *
1465 * Some archs already do call them, luckily irq_enter/exit nest
1466 * properly.
1467 *
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1471 */
1472 irq_enter();
fa14ff4a 1473 sched_ttwu_pending();
ca38062e
SS
1474
1475 /*
1476 * Check if someone kicked us for doing the nohz idle load balance.
1477 */
6eb57e0d
SS
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance = 1;
ca38062e 1480 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1481 }
c5d753a5 1482 irq_exit();
317f3941
PZ
1483}
1484
1485static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486{
fa14ff4a 1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1488 smp_send_reschedule(cpu);
1489}
d6aa8f85
PZ
1490
1491#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493{
1494 struct rq *rq;
1495 int ret = 0;
1496
1497 rq = __task_rq_lock(p);
1498 if (p->on_cpu) {
1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 ttwu_do_wakeup(rq, p, wake_flags);
1501 ret = 1;
1502 }
1503 __task_rq_unlock(rq);
1504
1505 return ret;
1506
1507}
1508#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1509
39be3501 1510bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1511{
1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513}
d6aa8f85 1514#endif /* CONFIG_SMP */
317f3941 1515
c05fbafb
PZ
1516static void ttwu_queue(struct task_struct *p, int cpu)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519
17d9f311 1520#if defined(CONFIG_SMP)
39be3501 1521 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1523 ttwu_queue_remote(p, cpu);
1524 return;
1525 }
1526#endif
1527
c05fbafb
PZ
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1531}
1532
1533/**
1da177e4 1534 * try_to_wake_up - wake up a thread
9ed3811a 1535 * @p: the thread to be awakened
1da177e4 1536 * @state: the mask of task states that can be woken
9ed3811a 1537 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
9ed3811a
TH
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1da177e4 1547 */
e4a52bcb
PZ
1548static int
1549try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1550{
1da177e4 1551 unsigned long flags;
c05fbafb 1552 int cpu, success = 0;
2398f2c6 1553
04e2f174 1554 smp_wmb();
013fdb80 1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1556 if (!(p->state & state))
1da177e4
LT
1557 goto out;
1558
c05fbafb 1559 success = 1; /* we're going to change ->state */
1da177e4 1560 cpu = task_cpu(p);
1da177e4 1561
c05fbafb
PZ
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1da177e4 1564
1da177e4 1565#ifdef CONFIG_SMP
e9c84311 1566 /*
c05fbafb
PZ
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
e9c84311 1569 */
e4a52bcb
PZ
1570 while (p->on_cpu) {
1571#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 /*
d6aa8f85
PZ
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
e4a52bcb 1578 */
d6aa8f85 1579 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1580 goto stat;
d6aa8f85 1581#else
e4a52bcb 1582 cpu_relax();
d6aa8f85 1583#endif
371fd7e7 1584 }
0970d299 1585 /*
e4a52bcb 1586 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1587 */
e4a52bcb 1588 smp_rmb();
1da177e4 1589
a8e4f2ea 1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1591 p->state = TASK_WAKING;
e7693a36 1592
e4a52bcb 1593 if (p->sched_class->task_waking)
74f8e4b2 1594 p->sched_class->task_waking(p);
efbbd05a 1595
7608dec2 1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
e4a52bcb 1599 set_task_cpu(p, cpu);
f339b9dc 1600 }
1da177e4 1601#endif /* CONFIG_SMP */
1da177e4 1602
c05fbafb
PZ
1603 ttwu_queue(p, cpu);
1604stat:
b84cb5df 1605 ttwu_stat(p, cpu, wake_flags);
1da177e4 1606out:
013fdb80 1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1608
1609 return success;
1610}
1611
21aa9af0
TH
1612/**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
2acca55e 1616 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1618 * the current task.
21aa9af0
TH
1619 */
1620static void try_to_wake_up_local(struct task_struct *p)
1621{
1622 struct rq *rq = task_rq(p);
21aa9af0
TH
1623
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1627
2acca55e
PZ
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1632 }
1633
21aa9af0 1634 if (!(p->state & TASK_NORMAL))
2acca55e 1635 goto out;
21aa9af0 1636
fd2f4419 1637 if (!p->on_rq)
d7c01d27
PZ
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
23f41eeb 1640 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1641 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1642out:
1643 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1644}
1645
50fa610a
DH
1646/**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
7ad5b3a5 1657int wake_up_process(struct task_struct *p)
1da177e4 1658{
d9514f6c 1659 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1660}
1da177e4
LT
1661EXPORT_SYMBOL(wake_up_process);
1662
7ad5b3a5 1663int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1664{
1665 return try_to_wake_up(p, state, 0);
1666}
1667
1da177e4
LT
1668/*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
dd41f596
IM
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674static void __sched_fork(struct task_struct *p)
1675{
fd2f4419
PZ
1676 p->on_rq = 0;
1677
1678 p->se.on_rq = 0;
dd41f596
IM
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
f6cf891c 1681 p->se.prev_sum_exec_runtime = 0;
6c594c21 1682 p->se.nr_migrations = 0;
da7a735e 1683 p->se.vruntime = 0;
fd2f4419 1684 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1685
1686#ifdef CONFIG_SCHEDSTATS
41acab88 1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1688#endif
476d139c 1689
fa717060 1690 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1691
e107be36
AK
1692#ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694#endif
dd41f596
IM
1695}
1696
1697/*
1698 * fork()/clone()-time setup:
1699 */
3e51e3ed 1700void sched_fork(struct task_struct *p)
dd41f596 1701{
0122ec5b 1702 unsigned long flags;
dd41f596
IM
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
06b83b5f 1706 /*
0017d735 1707 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1710 */
0017d735 1711 p->state = TASK_RUNNING;
dd41f596 1712
c350a04e
MG
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child.
1715 */
1716 p->prio = current->normal_prio;
1717
b9dc29e7
MG
1718 /*
1719 * Revert to default priority/policy on fork if requested.
1720 */
1721 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1722 if (task_has_rt_policy(p)) {
b9dc29e7 1723 p->policy = SCHED_NORMAL;
6c697bdf 1724 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1728
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
6c697bdf 1731
b9dc29e7
MG
1732 /*
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1735 */
1736 p->sched_reset_on_fork = 0;
1737 }
ca94c442 1738
2ddbf952
HS
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
b29739f9 1741
cd29fe6f
PZ
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1744
86951599
PZ
1745 /*
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1749 *
1750 * Silence PROVE_RCU.
1751 */
0122ec5b 1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1753 set_task_cpu(p, cpu);
0122ec5b 1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1755
52f17b6c 1756#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1757 if (likely(sched_info_on()))
52f17b6c 1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1759#endif
3ca7a440
PZ
1760#if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
4866cde0 1762#endif
bdd4e85d 1763#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1764 /* Want to start with kernel preemption disabled. */
a1261f54 1765 task_thread_info(p)->preempt_count = 1;
1da177e4 1766#endif
806c09a7 1767#ifdef CONFIG_SMP
917b627d 1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1769#endif
917b627d 1770
476d139c 1771 put_cpu();
1da177e4
LT
1772}
1773
1774/*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
3e51e3ed 1781void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1782{
1783 unsigned long flags;
dd41f596 1784 struct rq *rq;
fabf318e 1785
ab2515c4 1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1787#ifdef CONFIG_SMP
1788 /*
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
fabf318e 1792 */
ab2515c4 1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1794#endif
1795
ab2515c4 1796 rq = __task_rq_lock(p);
cd29fe6f 1797 activate_task(rq, p, 0);
fd2f4419 1798 p->on_rq = 1;
89363381 1799 trace_sched_wakeup_new(p, true);
a7558e01 1800 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1801#ifdef CONFIG_SMP
efbbd05a
PZ
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
9a897c5a 1804#endif
0122ec5b 1805 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1806}
1807
e107be36
AK
1808#ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810/**
80dd99b3 1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1812 * @notifier: notifier struct to register
e107be36
AK
1813 */
1814void preempt_notifier_register(struct preempt_notifier *notifier)
1815{
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817}
1818EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820/**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1822 * @notifier: notifier struct to unregister
e107be36
AK
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827{
1828 hlist_del(&notifier->link);
1829}
1830EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833{
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1836
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839}
1840
1841static void
1842fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1844{
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1847
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1850}
1851
6d6bc0ad 1852#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1853
1854static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855{
1856}
1857
1858static void
1859fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1861{
1862}
1863
6d6bc0ad 1864#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1865
4866cde0
NP
1866/**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
421cee29 1869 * @prev: the current task that is being switched out
4866cde0
NP
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
e107be36
AK
1879static inline void
1880prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
4866cde0 1882{
fe4b04fa
PZ
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
e107be36 1885 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
fe4b04fa 1888 trace_sched_switch(prev, next);
4866cde0
NP
1889}
1890
1da177e4
LT
1891/**
1892 * finish_task_switch - clean up after a task-switch
344babaa 1893 * @rq: runqueue associated with task-switch
1da177e4
LT
1894 * @prev: the thread we just switched away from.
1895 *
4866cde0
NP
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1902 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
a9957449 1906static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1907 __releases(rq->lock)
1908{
1da177e4 1909 struct mm_struct *mm = rq->prev_mm;
55a101f8 1910 long prev_state;
1da177e4
LT
1911
1912 rq->prev_mm = NULL;
1913
1914 /*
1915 * A task struct has one reference for the use as "current".
c394cc9f 1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
c394cc9f 1919 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1924 */
55a101f8 1925 prev_state = prev->state;
4866cde0 1926 finish_arch_switch(prev);
8381f65d
JI
1927#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1930 perf_event_task_sched_in(prev, current);
8381f65d
JI
1931#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1934 finish_lock_switch(rq, prev);
e8fa1362 1935
e107be36 1936 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1937 if (mm)
1938 mmdrop(mm);
c394cc9f 1939 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1940 /*
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
9761eea8 1943 */
c6fd91f0 1944 kprobe_flush_task(prev);
1da177e4 1945 put_task_struct(prev);
c6fd91f0 1946 }
1da177e4
LT
1947}
1948
3f029d3c
GH
1949#ifdef CONFIG_SMP
1950
1951/* assumes rq->lock is held */
1952static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953{
1954 if (prev->sched_class->pre_schedule)
1955 prev->sched_class->pre_schedule(rq, prev);
1956}
1957
1958/* rq->lock is NOT held, but preemption is disabled */
1959static inline void post_schedule(struct rq *rq)
1960{
1961 if (rq->post_schedule) {
1962 unsigned long flags;
1963
05fa785c 1964 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1965 if (rq->curr->sched_class->post_schedule)
1966 rq->curr->sched_class->post_schedule(rq);
05fa785c 1967 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1968
1969 rq->post_schedule = 0;
1970 }
1971}
1972
1973#else
da19ab51 1974
3f029d3c
GH
1975static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void post_schedule(struct rq *rq)
1980{
1da177e4
LT
1981}
1982
3f029d3c
GH
1983#endif
1984
1da177e4
LT
1985/**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
36c8b586 1989asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1990 __releases(rq->lock)
1991{
70b97a7f
IM
1992 struct rq *rq = this_rq();
1993
4866cde0 1994 finish_task_switch(rq, prev);
da19ab51 1995
3f029d3c
GH
1996 /*
1997 * FIXME: do we need to worry about rq being invalidated by the
1998 * task_switch?
1999 */
2000 post_schedule(rq);
70b97a7f 2001
4866cde0
NP
2002#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2004 preempt_enable();
2005#endif
1da177e4 2006 if (current->set_child_tid)
b488893a 2007 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2008}
2009
2010/*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
dd41f596 2014static inline void
70b97a7f 2015context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2016 struct task_struct *next)
1da177e4 2017{
dd41f596 2018 struct mm_struct *mm, *oldmm;
1da177e4 2019
e107be36 2020 prepare_task_switch(rq, prev, next);
fe4b04fa 2021
dd41f596
IM
2022 mm = next->mm;
2023 oldmm = prev->active_mm;
9226d125
ZA
2024 /*
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2027 * one hypercall.
2028 */
224101ed 2029 arch_start_context_switch(prev);
9226d125 2030
31915ab4 2031 if (!mm) {
1da177e4
LT
2032 next->active_mm = oldmm;
2033 atomic_inc(&oldmm->mm_count);
2034 enter_lazy_tlb(oldmm, next);
2035 } else
2036 switch_mm(oldmm, mm, next);
2037
31915ab4 2038 if (!prev->mm) {
1da177e4 2039 prev->active_mm = NULL;
1da177e4
LT
2040 rq->prev_mm = oldmm;
2041 }
3a5f5e48
IM
2042 /*
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2047 */
2048#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2050#endif
1da177e4
LT
2051
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev, next, prev);
2054
dd41f596
IM
2055 barrier();
2056 /*
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2060 */
2061 finish_task_switch(this_rq(), prev);
1da177e4
LT
2062}
2063
2064/*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071unsigned long nr_running(void)
2072{
2073 unsigned long i, sum = 0;
2074
2075 for_each_online_cpu(i)
2076 sum += cpu_rq(i)->nr_running;
2077
2078 return sum;
f711f609 2079}
1da177e4
LT
2080
2081unsigned long nr_uninterruptible(void)
f711f609 2082{
1da177e4 2083 unsigned long i, sum = 0;
f711f609 2084
0a945022 2085 for_each_possible_cpu(i)
1da177e4 2086 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2087
2088 /*
1da177e4
LT
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
f711f609 2091 */
1da177e4
LT
2092 if (unlikely((long)sum < 0))
2093 sum = 0;
f711f609 2094
1da177e4 2095 return sum;
f711f609 2096}
f711f609 2097
1da177e4 2098unsigned long long nr_context_switches(void)
46cb4b7c 2099{
cc94abfc
SR
2100 int i;
2101 unsigned long long sum = 0;
46cb4b7c 2102
0a945022 2103 for_each_possible_cpu(i)
1da177e4 2104 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2105
1da177e4
LT
2106 return sum;
2107}
483b4ee6 2108
1da177e4
LT
2109unsigned long nr_iowait(void)
2110{
2111 unsigned long i, sum = 0;
483b4ee6 2112
0a945022 2113 for_each_possible_cpu(i)
1da177e4 2114 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2115
1da177e4
LT
2116 return sum;
2117}
483b4ee6 2118
8c215bd3 2119unsigned long nr_iowait_cpu(int cpu)
69d25870 2120{
8c215bd3 2121 struct rq *this = cpu_rq(cpu);
69d25870
AV
2122 return atomic_read(&this->nr_iowait);
2123}
46cb4b7c 2124
69d25870
AV
2125unsigned long this_cpu_load(void)
2126{
2127 struct rq *this = this_rq();
2128 return this->cpu_load[0];
2129}
e790fb0b 2130
46cb4b7c 2131
dce48a84
TG
2132/* Variables and functions for calc_load */
2133static atomic_long_t calc_load_tasks;
2134static unsigned long calc_load_update;
2135unsigned long avenrun[3];
2136EXPORT_SYMBOL(avenrun);
46cb4b7c 2137
74f5187a
PZ
2138static long calc_load_fold_active(struct rq *this_rq)
2139{
2140 long nr_active, delta = 0;
2141
2142 nr_active = this_rq->nr_running;
2143 nr_active += (long) this_rq->nr_uninterruptible;
2144
2145 if (nr_active != this_rq->calc_load_active) {
2146 delta = nr_active - this_rq->calc_load_active;
2147 this_rq->calc_load_active = nr_active;
2148 }
2149
2150 return delta;
2151}
2152
0f004f5a
PZ
2153static unsigned long
2154calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155{
2156 load *= exp;
2157 load += active * (FIXED_1 - exp);
2158 load += 1UL << (FSHIFT - 1);
2159 return load >> FSHIFT;
2160}
2161
74f5187a
PZ
2162#ifdef CONFIG_NO_HZ
2163/*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168static atomic_long_t calc_load_tasks_idle;
2169
029632fb 2170void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2171{
2172 long delta;
2173
2174 delta = calc_load_fold_active(this_rq);
2175 if (delta)
2176 atomic_long_add(delta, &calc_load_tasks_idle);
2177}
2178
2179static long calc_load_fold_idle(void)
2180{
2181 long delta = 0;
2182
2183 /*
2184 * Its got a race, we don't care...
2185 */
2186 if (atomic_long_read(&calc_load_tasks_idle))
2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189 return delta;
2190}
0f004f5a
PZ
2191
2192/**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207static unsigned long
2208fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209{
2210 unsigned long result = 1UL << frac_bits;
2211
2212 if (n) for (;;) {
2213 if (n & 1) {
2214 result *= x;
2215 result += 1UL << (frac_bits - 1);
2216 result >>= frac_bits;
2217 }
2218 n >>= 1;
2219 if (!n)
2220 break;
2221 x *= x;
2222 x += 1UL << (frac_bits - 1);
2223 x >>= frac_bits;
2224 }
2225
2226 return result;
2227}
2228
2229/*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 * ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 * n 1 - x^(n+1)
2249 * S_n := \Sum x^i = -------------
2250 * i=0 1 - x
2251 */
2252static unsigned long
2253calc_load_n(unsigned long load, unsigned long exp,
2254 unsigned long active, unsigned int n)
2255{
2256
2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258}
2259
2260/*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
c308b56b 2269static void calc_global_nohz(void)
0f004f5a
PZ
2270{
2271 long delta, active, n;
2272
0f004f5a
PZ
2273 /*
2274 * If we crossed a calc_load_update boundary, make sure to fold
2275 * any pending idle changes, the respective CPUs might have
2276 * missed the tick driven calc_load_account_active() update
2277 * due to NO_HZ.
2278 */
2279 delta = calc_load_fold_idle();
2280 if (delta)
2281 atomic_long_add(delta, &calc_load_tasks);
2282
2283 /*
c308b56b 2284 * It could be the one fold was all it took, we done!
0f004f5a 2285 */
c308b56b
PZ
2286 if (time_before(jiffies, calc_load_update + 10))
2287 return;
0f004f5a 2288
c308b56b
PZ
2289 /*
2290 * Catch-up, fold however many we are behind still
2291 */
2292 delta = jiffies - calc_load_update - 10;
2293 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2294
c308b56b
PZ
2295 active = atomic_long_read(&calc_load_tasks);
2296 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2297
c308b56b
PZ
2298 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2299 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2300 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2301
c308b56b 2302 calc_load_update += n * LOAD_FREQ;
0f004f5a 2303}
74f5187a 2304#else
029632fb 2305void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2306{
2307}
2308
2309static inline long calc_load_fold_idle(void)
2310{
2311 return 0;
2312}
0f004f5a 2313
c308b56b 2314static void calc_global_nohz(void)
0f004f5a
PZ
2315{
2316}
74f5187a
PZ
2317#endif
2318
2d02494f
TG
2319/**
2320 * get_avenrun - get the load average array
2321 * @loads: pointer to dest load array
2322 * @offset: offset to add
2323 * @shift: shift count to shift the result left
2324 *
2325 * These values are estimates at best, so no need for locking.
2326 */
2327void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2328{
2329 loads[0] = (avenrun[0] + offset) << shift;
2330 loads[1] = (avenrun[1] + offset) << shift;
2331 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2332}
46cb4b7c 2333
46cb4b7c 2334/*
dce48a84
TG
2335 * calc_load - update the avenrun load estimates 10 ticks after the
2336 * CPUs have updated calc_load_tasks.
7835b98b 2337 */
0f004f5a 2338void calc_global_load(unsigned long ticks)
7835b98b 2339{
dce48a84 2340 long active;
1da177e4 2341
0f004f5a 2342 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2343 return;
1da177e4 2344
dce48a84
TG
2345 active = atomic_long_read(&calc_load_tasks);
2346 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2347
dce48a84
TG
2348 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2349 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2350 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2351
dce48a84 2352 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2353
2354 /*
2355 * Account one period with whatever state we found before
2356 * folding in the nohz state and ageing the entire idle period.
2357 *
2358 * This avoids loosing a sample when we go idle between
2359 * calc_load_account_active() (10 ticks ago) and now and thus
2360 * under-accounting.
2361 */
2362 calc_global_nohz();
dce48a84 2363}
1da177e4 2364
dce48a84 2365/*
74f5187a
PZ
2366 * Called from update_cpu_load() to periodically update this CPU's
2367 * active count.
dce48a84
TG
2368 */
2369static void calc_load_account_active(struct rq *this_rq)
2370{
74f5187a 2371 long delta;
08c183f3 2372
74f5187a
PZ
2373 if (time_before(jiffies, this_rq->calc_load_update))
2374 return;
783609c6 2375
74f5187a
PZ
2376 delta = calc_load_fold_active(this_rq);
2377 delta += calc_load_fold_idle();
2378 if (delta)
dce48a84 2379 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2380
2381 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2382}
2383
fdf3e95d
VP
2384/*
2385 * The exact cpuload at various idx values, calculated at every tick would be
2386 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2387 *
2388 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2389 * on nth tick when cpu may be busy, then we have:
2390 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2391 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2392 *
2393 * decay_load_missed() below does efficient calculation of
2394 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2395 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2396 *
2397 * The calculation is approximated on a 128 point scale.
2398 * degrade_zero_ticks is the number of ticks after which load at any
2399 * particular idx is approximated to be zero.
2400 * degrade_factor is a precomputed table, a row for each load idx.
2401 * Each column corresponds to degradation factor for a power of two ticks,
2402 * based on 128 point scale.
2403 * Example:
2404 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2405 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2406 *
2407 * With this power of 2 load factors, we can degrade the load n times
2408 * by looking at 1 bits in n and doing as many mult/shift instead of
2409 * n mult/shifts needed by the exact degradation.
2410 */
2411#define DEGRADE_SHIFT 7
2412static const unsigned char
2413 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2414static const unsigned char
2415 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2416 {0, 0, 0, 0, 0, 0, 0, 0},
2417 {64, 32, 8, 0, 0, 0, 0, 0},
2418 {96, 72, 40, 12, 1, 0, 0},
2419 {112, 98, 75, 43, 15, 1, 0},
2420 {120, 112, 98, 76, 45, 16, 2} };
2421
2422/*
2423 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2424 * would be when CPU is idle and so we just decay the old load without
2425 * adding any new load.
2426 */
2427static unsigned long
2428decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2429{
2430 int j = 0;
2431
2432 if (!missed_updates)
2433 return load;
2434
2435 if (missed_updates >= degrade_zero_ticks[idx])
2436 return 0;
2437
2438 if (idx == 1)
2439 return load >> missed_updates;
2440
2441 while (missed_updates) {
2442 if (missed_updates % 2)
2443 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2444
2445 missed_updates >>= 1;
2446 j++;
2447 }
2448 return load;
2449}
2450
46cb4b7c 2451/*
dd41f596 2452 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2453 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2454 * every tick. We fix it up based on jiffies.
46cb4b7c 2455 */
029632fb 2456void update_cpu_load(struct rq *this_rq)
46cb4b7c 2457{
495eca49 2458 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2459 unsigned long curr_jiffies = jiffies;
2460 unsigned long pending_updates;
dd41f596 2461 int i, scale;
46cb4b7c 2462
dd41f596 2463 this_rq->nr_load_updates++;
46cb4b7c 2464
fdf3e95d
VP
2465 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2466 if (curr_jiffies == this_rq->last_load_update_tick)
2467 return;
2468
2469 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2470 this_rq->last_load_update_tick = curr_jiffies;
2471
dd41f596 2472 /* Update our load: */
fdf3e95d
VP
2473 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2474 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2475 unsigned long old_load, new_load;
7d1e6a9b 2476
dd41f596 2477 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2478
dd41f596 2479 old_load = this_rq->cpu_load[i];
fdf3e95d 2480 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2481 new_load = this_load;
a25707f3
IM
2482 /*
2483 * Round up the averaging division if load is increasing. This
2484 * prevents us from getting stuck on 9 if the load is 10, for
2485 * example.
2486 */
2487 if (new_load > old_load)
fdf3e95d
VP
2488 new_load += scale - 1;
2489
2490 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2491 }
da2b71ed
SS
2492
2493 sched_avg_update(this_rq);
fdf3e95d
VP
2494}
2495
2496static void update_cpu_load_active(struct rq *this_rq)
2497{
2498 update_cpu_load(this_rq);
46cb4b7c 2499
74f5187a 2500 calc_load_account_active(this_rq);
46cb4b7c
SS
2501}
2502
dd41f596 2503#ifdef CONFIG_SMP
8a0be9ef 2504
46cb4b7c 2505/*
38022906
PZ
2506 * sched_exec - execve() is a valuable balancing opportunity, because at
2507 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2508 */
38022906 2509void sched_exec(void)
46cb4b7c 2510{
38022906 2511 struct task_struct *p = current;
1da177e4 2512 unsigned long flags;
0017d735 2513 int dest_cpu;
46cb4b7c 2514
8f42ced9 2515 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2516 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2517 if (dest_cpu == smp_processor_id())
2518 goto unlock;
38022906 2519
8f42ced9 2520 if (likely(cpu_active(dest_cpu))) {
969c7921 2521 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2522
8f42ced9
PZ
2523 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2524 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2525 return;
2526 }
0017d735 2527unlock:
8f42ced9 2528 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2529}
dd41f596 2530
1da177e4
LT
2531#endif
2532
1da177e4 2533DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2534DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2535
2536EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2537EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2538
2539/*
c5f8d995 2540 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2541 * @p in case that task is currently running.
c5f8d995
HS
2542 *
2543 * Called with task_rq_lock() held on @rq.
1da177e4 2544 */
c5f8d995
HS
2545static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2546{
2547 u64 ns = 0;
2548
2549 if (task_current(rq, p)) {
2550 update_rq_clock(rq);
305e6835 2551 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2552 if ((s64)ns < 0)
2553 ns = 0;
2554 }
2555
2556 return ns;
2557}
2558
bb34d92f 2559unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2560{
1da177e4 2561 unsigned long flags;
41b86e9c 2562 struct rq *rq;
bb34d92f 2563 u64 ns = 0;
48f24c4d 2564
41b86e9c 2565 rq = task_rq_lock(p, &flags);
c5f8d995 2566 ns = do_task_delta_exec(p, rq);
0122ec5b 2567 task_rq_unlock(rq, p, &flags);
1508487e 2568
c5f8d995
HS
2569 return ns;
2570}
f06febc9 2571
c5f8d995
HS
2572/*
2573 * Return accounted runtime for the task.
2574 * In case the task is currently running, return the runtime plus current's
2575 * pending runtime that have not been accounted yet.
2576 */
2577unsigned long long task_sched_runtime(struct task_struct *p)
2578{
2579 unsigned long flags;
2580 struct rq *rq;
2581 u64 ns = 0;
2582
2583 rq = task_rq_lock(p, &flags);
2584 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2585 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2586
2587 return ns;
2588}
48f24c4d 2589
54c707e9
GC
2590#ifdef CONFIG_CGROUP_CPUACCT
2591struct cgroup_subsys cpuacct_subsys;
2592struct cpuacct root_cpuacct;
2593#endif
2594
be726ffd
GC
2595static inline void task_group_account_field(struct task_struct *p, int index,
2596 u64 tmp)
54c707e9
GC
2597{
2598#ifdef CONFIG_CGROUP_CPUACCT
2599 struct kernel_cpustat *kcpustat;
2600 struct cpuacct *ca;
2601#endif
2602 /*
2603 * Since all updates are sure to touch the root cgroup, we
2604 * get ourselves ahead and touch it first. If the root cgroup
2605 * is the only cgroup, then nothing else should be necessary.
2606 *
2607 */
2608 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2609
2610#ifdef CONFIG_CGROUP_CPUACCT
2611 if (unlikely(!cpuacct_subsys.active))
2612 return;
2613
2614 rcu_read_lock();
2615 ca = task_ca(p);
2616 while (ca && (ca != &root_cpuacct)) {
2617 kcpustat = this_cpu_ptr(ca->cpustat);
2618 kcpustat->cpustat[index] += tmp;
2619 ca = parent_ca(ca);
2620 }
2621 rcu_read_unlock();
2622#endif
2623}
2624
2625
1da177e4
LT
2626/*
2627 * Account user cpu time to a process.
2628 * @p: the process that the cpu time gets accounted to
1da177e4 2629 * @cputime: the cpu time spent in user space since the last update
457533a7 2630 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2631 */
457533a7
MS
2632void account_user_time(struct task_struct *p, cputime_t cputime,
2633 cputime_t cputime_scaled)
1da177e4 2634{
3292beb3 2635 int index;
1da177e4 2636
457533a7 2637 /* Add user time to process. */
64861634
MS
2638 p->utime += cputime;
2639 p->utimescaled += cputime_scaled;
f06febc9 2640 account_group_user_time(p, cputime);
1da177e4 2641
3292beb3 2642 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2643
1da177e4 2644 /* Add user time to cpustat. */
612ef28a 2645 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2646
49b5cf34
JL
2647 /* Account for user time used */
2648 acct_update_integrals(p);
1da177e4
LT
2649}
2650
94886b84
LV
2651/*
2652 * Account guest cpu time to a process.
2653 * @p: the process that the cpu time gets accounted to
2654 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2655 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2656 */
457533a7
MS
2657static void account_guest_time(struct task_struct *p, cputime_t cputime,
2658 cputime_t cputime_scaled)
94886b84 2659{
3292beb3 2660 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2661
457533a7 2662 /* Add guest time to process. */
64861634
MS
2663 p->utime += cputime;
2664 p->utimescaled += cputime_scaled;
f06febc9 2665 account_group_user_time(p, cputime);
64861634 2666 p->gtime += cputime;
94886b84 2667
457533a7 2668 /* Add guest time to cpustat. */
ce0e7b28 2669 if (TASK_NICE(p) > 0) {
612ef28a
MS
2670 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2671 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2672 } else {
612ef28a
MS
2673 cpustat[CPUTIME_USER] += (__force u64) cputime;
2674 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2675 }
94886b84
LV
2676}
2677
70a89a66
VP
2678/*
2679 * Account system cpu time to a process and desired cpustat field
2680 * @p: the process that the cpu time gets accounted to
2681 * @cputime: the cpu time spent in kernel space since the last update
2682 * @cputime_scaled: cputime scaled by cpu frequency
2683 * @target_cputime64: pointer to cpustat field that has to be updated
2684 */
2685static inline
2686void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2687 cputime_t cputime_scaled, int index)
70a89a66 2688{
70a89a66 2689 /* Add system time to process. */
64861634
MS
2690 p->stime += cputime;
2691 p->stimescaled += cputime_scaled;
70a89a66
VP
2692 account_group_system_time(p, cputime);
2693
2694 /* Add system time to cpustat. */
612ef28a 2695 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2696
2697 /* Account for system time used */
2698 acct_update_integrals(p);
2699}
2700
1da177e4
LT
2701/*
2702 * Account system cpu time to a process.
2703 * @p: the process that the cpu time gets accounted to
2704 * @hardirq_offset: the offset to subtract from hardirq_count()
2705 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2706 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2707 */
2708void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2709 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2710{
3292beb3 2711 int index;
1da177e4 2712
983ed7a6 2713 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2714 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2715 return;
2716 }
94886b84 2717
1da177e4 2718 if (hardirq_count() - hardirq_offset)
3292beb3 2719 index = CPUTIME_IRQ;
75e1056f 2720 else if (in_serving_softirq())
3292beb3 2721 index = CPUTIME_SOFTIRQ;
1da177e4 2722 else
3292beb3 2723 index = CPUTIME_SYSTEM;
ef12fefa 2724
3292beb3 2725 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2726}
2727
c66f08be 2728/*
1da177e4 2729 * Account for involuntary wait time.
544b4a1f 2730 * @cputime: the cpu time spent in involuntary wait
c66f08be 2731 */
79741dd3 2732void account_steal_time(cputime_t cputime)
c66f08be 2733{
3292beb3 2734 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2735
612ef28a 2736 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2737}
2738
1da177e4 2739/*
79741dd3
MS
2740 * Account for idle time.
2741 * @cputime: the cpu time spent in idle wait
1da177e4 2742 */
79741dd3 2743void account_idle_time(cputime_t cputime)
1da177e4 2744{
3292beb3 2745 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2746 struct rq *rq = this_rq();
1da177e4 2747
79741dd3 2748 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2749 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2750 else
612ef28a 2751 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2752}
2753
e6e6685a
GC
2754static __always_inline bool steal_account_process_tick(void)
2755{
2756#ifdef CONFIG_PARAVIRT
2757 if (static_branch(&paravirt_steal_enabled)) {
2758 u64 steal, st = 0;
2759
2760 steal = paravirt_steal_clock(smp_processor_id());
2761 steal -= this_rq()->prev_steal_time;
2762
2763 st = steal_ticks(steal);
2764 this_rq()->prev_steal_time += st * TICK_NSEC;
2765
2766 account_steal_time(st);
2767 return st;
2768 }
2769#endif
2770 return false;
2771}
2772
79741dd3
MS
2773#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2774
abb74cef
VP
2775#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2776/*
2777 * Account a tick to a process and cpustat
2778 * @p: the process that the cpu time gets accounted to
2779 * @user_tick: is the tick from userspace
2780 * @rq: the pointer to rq
2781 *
2782 * Tick demultiplexing follows the order
2783 * - pending hardirq update
2784 * - pending softirq update
2785 * - user_time
2786 * - idle_time
2787 * - system time
2788 * - check for guest_time
2789 * - else account as system_time
2790 *
2791 * Check for hardirq is done both for system and user time as there is
2792 * no timer going off while we are on hardirq and hence we may never get an
2793 * opportunity to update it solely in system time.
2794 * p->stime and friends are only updated on system time and not on irq
2795 * softirq as those do not count in task exec_runtime any more.
2796 */
2797static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2798 struct rq *rq)
2799{
2800 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2801 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2802
e6e6685a
GC
2803 if (steal_account_process_tick())
2804 return;
2805
abb74cef 2806 if (irqtime_account_hi_update()) {
612ef28a 2807 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2808 } else if (irqtime_account_si_update()) {
612ef28a 2809 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2810 } else if (this_cpu_ksoftirqd() == p) {
2811 /*
2812 * ksoftirqd time do not get accounted in cpu_softirq_time.
2813 * So, we have to handle it separately here.
2814 * Also, p->stime needs to be updated for ksoftirqd.
2815 */
2816 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2817 CPUTIME_SOFTIRQ);
abb74cef
VP
2818 } else if (user_tick) {
2819 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2820 } else if (p == rq->idle) {
2821 account_idle_time(cputime_one_jiffy);
2822 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2823 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2824 } else {
2825 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2826 CPUTIME_SYSTEM);
abb74cef
VP
2827 }
2828}
2829
2830static void irqtime_account_idle_ticks(int ticks)
2831{
2832 int i;
2833 struct rq *rq = this_rq();
2834
2835 for (i = 0; i < ticks; i++)
2836 irqtime_account_process_tick(current, 0, rq);
2837}
544b4a1f 2838#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2839static void irqtime_account_idle_ticks(int ticks) {}
2840static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2841 struct rq *rq) {}
544b4a1f 2842#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2843
2844/*
2845 * Account a single tick of cpu time.
2846 * @p: the process that the cpu time gets accounted to
2847 * @user_tick: indicates if the tick is a user or a system tick
2848 */
2849void account_process_tick(struct task_struct *p, int user_tick)
2850{
a42548a1 2851 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2852 struct rq *rq = this_rq();
2853
abb74cef
VP
2854 if (sched_clock_irqtime) {
2855 irqtime_account_process_tick(p, user_tick, rq);
2856 return;
2857 }
2858
e6e6685a
GC
2859 if (steal_account_process_tick())
2860 return;
2861
79741dd3 2862 if (user_tick)
a42548a1 2863 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2864 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2865 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2866 one_jiffy_scaled);
2867 else
a42548a1 2868 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2869}
2870
2871/*
2872 * Account multiple ticks of steal time.
2873 * @p: the process from which the cpu time has been stolen
2874 * @ticks: number of stolen ticks
2875 */
2876void account_steal_ticks(unsigned long ticks)
2877{
2878 account_steal_time(jiffies_to_cputime(ticks));
2879}
2880
2881/*
2882 * Account multiple ticks of idle time.
2883 * @ticks: number of stolen ticks
2884 */
2885void account_idle_ticks(unsigned long ticks)
2886{
abb74cef
VP
2887
2888 if (sched_clock_irqtime) {
2889 irqtime_account_idle_ticks(ticks);
2890 return;
2891 }
2892
79741dd3 2893 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2894}
2895
79741dd3
MS
2896#endif
2897
49048622
BS
2898/*
2899 * Use precise platform statistics if available:
2900 */
2901#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2902void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2903{
d99ca3b9
HS
2904 *ut = p->utime;
2905 *st = p->stime;
49048622
BS
2906}
2907
0cf55e1e 2908void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2909{
0cf55e1e
HS
2910 struct task_cputime cputime;
2911
2912 thread_group_cputime(p, &cputime);
2913
2914 *ut = cputime.utime;
2915 *st = cputime.stime;
49048622
BS
2916}
2917#else
761b1d26
HS
2918
2919#ifndef nsecs_to_cputime
b7b20df9 2920# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2921#endif
2922
d180c5bc 2923void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2924{
64861634 2925 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2926
2927 /*
2928 * Use CFS's precise accounting:
2929 */
d180c5bc 2930 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2931
2932 if (total) {
64861634 2933 u64 temp = (__force u64) rtime;
d180c5bc 2934
64861634
MS
2935 temp *= (__force u64) utime;
2936 do_div(temp, (__force u32) total);
2937 utime = (__force cputime_t) temp;
d180c5bc
HS
2938 } else
2939 utime = rtime;
49048622 2940
d180c5bc
HS
2941 /*
2942 * Compare with previous values, to keep monotonicity:
2943 */
761b1d26 2944 p->prev_utime = max(p->prev_utime, utime);
64861634 2945 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2946
d99ca3b9
HS
2947 *ut = p->prev_utime;
2948 *st = p->prev_stime;
49048622
BS
2949}
2950
0cf55e1e
HS
2951/*
2952 * Must be called with siglock held.
2953 */
2954void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2955{
0cf55e1e
HS
2956 struct signal_struct *sig = p->signal;
2957 struct task_cputime cputime;
2958 cputime_t rtime, utime, total;
49048622 2959
0cf55e1e 2960 thread_group_cputime(p, &cputime);
49048622 2961
64861634 2962 total = cputime.utime + cputime.stime;
0cf55e1e 2963 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2964
0cf55e1e 2965 if (total) {
64861634 2966 u64 temp = (__force u64) rtime;
49048622 2967
64861634
MS
2968 temp *= (__force u64) cputime.utime;
2969 do_div(temp, (__force u32) total);
2970 utime = (__force cputime_t) temp;
0cf55e1e
HS
2971 } else
2972 utime = rtime;
2973
2974 sig->prev_utime = max(sig->prev_utime, utime);
64861634 2975 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
2976
2977 *ut = sig->prev_utime;
2978 *st = sig->prev_stime;
49048622 2979}
49048622 2980#endif
49048622 2981
7835b98b
CL
2982/*
2983 * This function gets called by the timer code, with HZ frequency.
2984 * We call it with interrupts disabled.
7835b98b
CL
2985 */
2986void scheduler_tick(void)
2987{
7835b98b
CL
2988 int cpu = smp_processor_id();
2989 struct rq *rq = cpu_rq(cpu);
dd41f596 2990 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2991
2992 sched_clock_tick();
dd41f596 2993
05fa785c 2994 raw_spin_lock(&rq->lock);
3e51f33f 2995 update_rq_clock(rq);
fdf3e95d 2996 update_cpu_load_active(rq);
fa85ae24 2997 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2998 raw_spin_unlock(&rq->lock);
7835b98b 2999
e9d2b064 3000 perf_event_task_tick();
e220d2dc 3001
e418e1c2 3002#ifdef CONFIG_SMP
6eb57e0d 3003 rq->idle_balance = idle_cpu(cpu);
dd41f596 3004 trigger_load_balance(rq, cpu);
e418e1c2 3005#endif
1da177e4
LT
3006}
3007
132380a0 3008notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3009{
3010 if (in_lock_functions(addr)) {
3011 addr = CALLER_ADDR2;
3012 if (in_lock_functions(addr))
3013 addr = CALLER_ADDR3;
3014 }
3015 return addr;
3016}
1da177e4 3017
7e49fcce
SR
3018#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3019 defined(CONFIG_PREEMPT_TRACER))
3020
43627582 3021void __kprobes add_preempt_count(int val)
1da177e4 3022{
6cd8a4bb 3023#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3024 /*
3025 * Underflow?
3026 */
9a11b49a
IM
3027 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3028 return;
6cd8a4bb 3029#endif
1da177e4 3030 preempt_count() += val;
6cd8a4bb 3031#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3032 /*
3033 * Spinlock count overflowing soon?
3034 */
33859f7f
MOS
3035 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3036 PREEMPT_MASK - 10);
6cd8a4bb
SR
3037#endif
3038 if (preempt_count() == val)
3039 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3040}
3041EXPORT_SYMBOL(add_preempt_count);
3042
43627582 3043void __kprobes sub_preempt_count(int val)
1da177e4 3044{
6cd8a4bb 3045#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3046 /*
3047 * Underflow?
3048 */
01e3eb82 3049 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3050 return;
1da177e4
LT
3051 /*
3052 * Is the spinlock portion underflowing?
3053 */
9a11b49a
IM
3054 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3055 !(preempt_count() & PREEMPT_MASK)))
3056 return;
6cd8a4bb 3057#endif
9a11b49a 3058
6cd8a4bb
SR
3059 if (preempt_count() == val)
3060 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3061 preempt_count() -= val;
3062}
3063EXPORT_SYMBOL(sub_preempt_count);
3064
3065#endif
3066
3067/*
dd41f596 3068 * Print scheduling while atomic bug:
1da177e4 3069 */
dd41f596 3070static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3071{
838225b4
SS
3072 struct pt_regs *regs = get_irq_regs();
3073
664dfa65
DJ
3074 if (oops_in_progress)
3075 return;
3076
3df0fc5b
PZ
3077 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3078 prev->comm, prev->pid, preempt_count());
838225b4 3079
dd41f596 3080 debug_show_held_locks(prev);
e21f5b15 3081 print_modules();
dd41f596
IM
3082 if (irqs_disabled())
3083 print_irqtrace_events(prev);
838225b4
SS
3084
3085 if (regs)
3086 show_regs(regs);
3087 else
3088 dump_stack();
dd41f596 3089}
1da177e4 3090
dd41f596
IM
3091/*
3092 * Various schedule()-time debugging checks and statistics:
3093 */
3094static inline void schedule_debug(struct task_struct *prev)
3095{
1da177e4 3096 /*
41a2d6cf 3097 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3098 * schedule() atomically, we ignore that path for now.
3099 * Otherwise, whine if we are scheduling when we should not be.
3100 */
3f33a7ce 3101 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3102 __schedule_bug(prev);
b3fbab05 3103 rcu_sleep_check();
dd41f596 3104
1da177e4
LT
3105 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3106
2d72376b 3107 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3108}
3109
6cecd084 3110static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3111{
61eadef6 3112 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3113 update_rq_clock(rq);
6cecd084 3114 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3115}
3116
dd41f596
IM
3117/*
3118 * Pick up the highest-prio task:
3119 */
3120static inline struct task_struct *
b67802ea 3121pick_next_task(struct rq *rq)
dd41f596 3122{
5522d5d5 3123 const struct sched_class *class;
dd41f596 3124 struct task_struct *p;
1da177e4
LT
3125
3126 /*
dd41f596
IM
3127 * Optimization: we know that if all tasks are in
3128 * the fair class we can call that function directly:
1da177e4 3129 */
953bfcd1 3130 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3131 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3132 if (likely(p))
3133 return p;
1da177e4
LT
3134 }
3135
34f971f6 3136 for_each_class(class) {
fb8d4724 3137 p = class->pick_next_task(rq);
dd41f596
IM
3138 if (p)
3139 return p;
dd41f596 3140 }
34f971f6
PZ
3141
3142 BUG(); /* the idle class will always have a runnable task */
dd41f596 3143}
1da177e4 3144
dd41f596 3145/*
c259e01a 3146 * __schedule() is the main scheduler function.
dd41f596 3147 */
c259e01a 3148static void __sched __schedule(void)
dd41f596
IM
3149{
3150 struct task_struct *prev, *next;
67ca7bde 3151 unsigned long *switch_count;
dd41f596 3152 struct rq *rq;
31656519 3153 int cpu;
dd41f596 3154
ff743345
PZ
3155need_resched:
3156 preempt_disable();
dd41f596
IM
3157 cpu = smp_processor_id();
3158 rq = cpu_rq(cpu);
25502a6c 3159 rcu_note_context_switch(cpu);
dd41f596 3160 prev = rq->curr;
dd41f596 3161
dd41f596 3162 schedule_debug(prev);
1da177e4 3163
31656519 3164 if (sched_feat(HRTICK))
f333fdc9 3165 hrtick_clear(rq);
8f4d37ec 3166
05fa785c 3167 raw_spin_lock_irq(&rq->lock);
1da177e4 3168
246d86b5 3169 switch_count = &prev->nivcsw;
1da177e4 3170 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3171 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3172 prev->state = TASK_RUNNING;
21aa9af0 3173 } else {
2acca55e
PZ
3174 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3175 prev->on_rq = 0;
3176
21aa9af0 3177 /*
2acca55e
PZ
3178 * If a worker went to sleep, notify and ask workqueue
3179 * whether it wants to wake up a task to maintain
3180 * concurrency.
21aa9af0
TH
3181 */
3182 if (prev->flags & PF_WQ_WORKER) {
3183 struct task_struct *to_wakeup;
3184
3185 to_wakeup = wq_worker_sleeping(prev, cpu);
3186 if (to_wakeup)
3187 try_to_wake_up_local(to_wakeup);
3188 }
21aa9af0 3189 }
dd41f596 3190 switch_count = &prev->nvcsw;
1da177e4
LT
3191 }
3192
3f029d3c 3193 pre_schedule(rq, prev);
f65eda4f 3194
dd41f596 3195 if (unlikely(!rq->nr_running))
1da177e4 3196 idle_balance(cpu, rq);
1da177e4 3197
df1c99d4 3198 put_prev_task(rq, prev);
b67802ea 3199 next = pick_next_task(rq);
f26f9aff
MG
3200 clear_tsk_need_resched(prev);
3201 rq->skip_clock_update = 0;
1da177e4 3202
1da177e4 3203 if (likely(prev != next)) {
1da177e4
LT
3204 rq->nr_switches++;
3205 rq->curr = next;
3206 ++*switch_count;
3207
dd41f596 3208 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3209 /*
246d86b5
ON
3210 * The context switch have flipped the stack from under us
3211 * and restored the local variables which were saved when
3212 * this task called schedule() in the past. prev == current
3213 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3214 */
3215 cpu = smp_processor_id();
3216 rq = cpu_rq(cpu);
1da177e4 3217 } else
05fa785c 3218 raw_spin_unlock_irq(&rq->lock);
1da177e4 3219
3f029d3c 3220 post_schedule(rq);
1da177e4 3221
ba74c144 3222 sched_preempt_enable_no_resched();
ff743345 3223 if (need_resched())
1da177e4
LT
3224 goto need_resched;
3225}
c259e01a 3226
9c40cef2
TG
3227static inline void sched_submit_work(struct task_struct *tsk)
3228{
3c7d5184 3229 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3230 return;
3231 /*
3232 * If we are going to sleep and we have plugged IO queued,
3233 * make sure to submit it to avoid deadlocks.
3234 */
3235 if (blk_needs_flush_plug(tsk))
3236 blk_schedule_flush_plug(tsk);
3237}
3238
6ebbe7a0 3239asmlinkage void __sched schedule(void)
c259e01a 3240{
9c40cef2
TG
3241 struct task_struct *tsk = current;
3242
3243 sched_submit_work(tsk);
c259e01a
TG
3244 __schedule();
3245}
1da177e4
LT
3246EXPORT_SYMBOL(schedule);
3247
c5491ea7
TG
3248/**
3249 * schedule_preempt_disabled - called with preemption disabled
3250 *
3251 * Returns with preemption disabled. Note: preempt_count must be 1
3252 */
3253void __sched schedule_preempt_disabled(void)
3254{
ba74c144 3255 sched_preempt_enable_no_resched();
c5491ea7
TG
3256 schedule();
3257 preempt_disable();
3258}
3259
c08f7829 3260#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3261
c6eb3dda
PZ
3262static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3263{
c6eb3dda 3264 if (lock->owner != owner)
307bf980 3265 return false;
0d66bf6d
PZ
3266
3267 /*
c6eb3dda
PZ
3268 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3269 * lock->owner still matches owner, if that fails, owner might
3270 * point to free()d memory, if it still matches, the rcu_read_lock()
3271 * ensures the memory stays valid.
0d66bf6d 3272 */
c6eb3dda 3273 barrier();
0d66bf6d 3274
307bf980 3275 return owner->on_cpu;
c6eb3dda 3276}
0d66bf6d 3277
c6eb3dda
PZ
3278/*
3279 * Look out! "owner" is an entirely speculative pointer
3280 * access and not reliable.
3281 */
3282int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3283{
3284 if (!sched_feat(OWNER_SPIN))
3285 return 0;
0d66bf6d 3286
307bf980 3287 rcu_read_lock();
c6eb3dda
PZ
3288 while (owner_running(lock, owner)) {
3289 if (need_resched())
307bf980 3290 break;
0d66bf6d 3291
335d7afb 3292 arch_mutex_cpu_relax();
0d66bf6d 3293 }
307bf980 3294 rcu_read_unlock();
4b402210 3295
c6eb3dda 3296 /*
307bf980
TG
3297 * We break out the loop above on need_resched() and when the
3298 * owner changed, which is a sign for heavy contention. Return
3299 * success only when lock->owner is NULL.
c6eb3dda 3300 */
307bf980 3301 return lock->owner == NULL;
0d66bf6d
PZ
3302}
3303#endif
3304
1da177e4
LT
3305#ifdef CONFIG_PREEMPT
3306/*
2ed6e34f 3307 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3308 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3309 * occur there and call schedule directly.
3310 */
d1f74e20 3311asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3312{
3313 struct thread_info *ti = current_thread_info();
6478d880 3314
1da177e4
LT
3315 /*
3316 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3317 * we do not want to preempt the current task. Just return..
1da177e4 3318 */
beed33a8 3319 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3320 return;
3321
3a5c359a 3322 do {
d1f74e20 3323 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3324 __schedule();
d1f74e20 3325 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3326
3a5c359a
AK
3327 /*
3328 * Check again in case we missed a preemption opportunity
3329 * between schedule and now.
3330 */
3331 barrier();
5ed0cec0 3332 } while (need_resched());
1da177e4 3333}
1da177e4
LT
3334EXPORT_SYMBOL(preempt_schedule);
3335
3336/*
2ed6e34f 3337 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3338 * off of irq context.
3339 * Note, that this is called and return with irqs disabled. This will
3340 * protect us against recursive calling from irq.
3341 */
3342asmlinkage void __sched preempt_schedule_irq(void)
3343{
3344 struct thread_info *ti = current_thread_info();
6478d880 3345
2ed6e34f 3346 /* Catch callers which need to be fixed */
1da177e4
LT
3347 BUG_ON(ti->preempt_count || !irqs_disabled());
3348
3a5c359a
AK
3349 do {
3350 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3351 local_irq_enable();
c259e01a 3352 __schedule();
3a5c359a 3353 local_irq_disable();
3a5c359a 3354 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3355
3a5c359a
AK
3356 /*
3357 * Check again in case we missed a preemption opportunity
3358 * between schedule and now.
3359 */
3360 barrier();
5ed0cec0 3361 } while (need_resched());
1da177e4
LT
3362}
3363
3364#endif /* CONFIG_PREEMPT */
3365
63859d4f 3366int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3367 void *key)
1da177e4 3368{
63859d4f 3369 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3370}
1da177e4
LT
3371EXPORT_SYMBOL(default_wake_function);
3372
3373/*
41a2d6cf
IM
3374 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3375 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3376 * number) then we wake all the non-exclusive tasks and one exclusive task.
3377 *
3378 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3379 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3380 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3381 */
78ddb08f 3382static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3383 int nr_exclusive, int wake_flags, void *key)
1da177e4 3384{
2e45874c 3385 wait_queue_t *curr, *next;
1da177e4 3386
2e45874c 3387 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3388 unsigned flags = curr->flags;
3389
63859d4f 3390 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3391 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3392 break;
3393 }
3394}
3395
3396/**
3397 * __wake_up - wake up threads blocked on a waitqueue.
3398 * @q: the waitqueue
3399 * @mode: which threads
3400 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3401 * @key: is directly passed to the wakeup function
50fa610a
DH
3402 *
3403 * It may be assumed that this function implies a write memory barrier before
3404 * changing the task state if and only if any tasks are woken up.
1da177e4 3405 */
7ad5b3a5 3406void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3407 int nr_exclusive, void *key)
1da177e4
LT
3408{
3409 unsigned long flags;
3410
3411 spin_lock_irqsave(&q->lock, flags);
3412 __wake_up_common(q, mode, nr_exclusive, 0, key);
3413 spin_unlock_irqrestore(&q->lock, flags);
3414}
1da177e4
LT
3415EXPORT_SYMBOL(__wake_up);
3416
3417/*
3418 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3419 */
63b20011 3420void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3421{
63b20011 3422 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3423}
22c43c81 3424EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3425
4ede816a
DL
3426void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3427{
3428 __wake_up_common(q, mode, 1, 0, key);
3429}
bf294b41 3430EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3431
1da177e4 3432/**
4ede816a 3433 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3434 * @q: the waitqueue
3435 * @mode: which threads
3436 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3437 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3438 *
3439 * The sync wakeup differs that the waker knows that it will schedule
3440 * away soon, so while the target thread will be woken up, it will not
3441 * be migrated to another CPU - ie. the two threads are 'synchronized'
3442 * with each other. This can prevent needless bouncing between CPUs.
3443 *
3444 * On UP it can prevent extra preemption.
50fa610a
DH
3445 *
3446 * It may be assumed that this function implies a write memory barrier before
3447 * changing the task state if and only if any tasks are woken up.
1da177e4 3448 */
4ede816a
DL
3449void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3450 int nr_exclusive, void *key)
1da177e4
LT
3451{
3452 unsigned long flags;
7d478721 3453 int wake_flags = WF_SYNC;
1da177e4
LT
3454
3455 if (unlikely(!q))
3456 return;
3457
3458 if (unlikely(!nr_exclusive))
7d478721 3459 wake_flags = 0;
1da177e4
LT
3460
3461 spin_lock_irqsave(&q->lock, flags);
7d478721 3462 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3463 spin_unlock_irqrestore(&q->lock, flags);
3464}
4ede816a
DL
3465EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3466
3467/*
3468 * __wake_up_sync - see __wake_up_sync_key()
3469 */
3470void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3471{
3472 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3473}
1da177e4
LT
3474EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3475
65eb3dc6
KD
3476/**
3477 * complete: - signals a single thread waiting on this completion
3478 * @x: holds the state of this particular completion
3479 *
3480 * This will wake up a single thread waiting on this completion. Threads will be
3481 * awakened in the same order in which they were queued.
3482 *
3483 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3484 *
3485 * It may be assumed that this function implies a write memory barrier before
3486 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3487 */
b15136e9 3488void complete(struct completion *x)
1da177e4
LT
3489{
3490 unsigned long flags;
3491
3492 spin_lock_irqsave(&x->wait.lock, flags);
3493 x->done++;
d9514f6c 3494 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3495 spin_unlock_irqrestore(&x->wait.lock, flags);
3496}
3497EXPORT_SYMBOL(complete);
3498
65eb3dc6
KD
3499/**
3500 * complete_all: - signals all threads waiting on this completion
3501 * @x: holds the state of this particular completion
3502 *
3503 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3504 *
3505 * It may be assumed that this function implies a write memory barrier before
3506 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3507 */
b15136e9 3508void complete_all(struct completion *x)
1da177e4
LT
3509{
3510 unsigned long flags;
3511
3512 spin_lock_irqsave(&x->wait.lock, flags);
3513 x->done += UINT_MAX/2;
d9514f6c 3514 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3515 spin_unlock_irqrestore(&x->wait.lock, flags);
3516}
3517EXPORT_SYMBOL(complete_all);
3518
8cbbe86d
AK
3519static inline long __sched
3520do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3521{
1da177e4
LT
3522 if (!x->done) {
3523 DECLARE_WAITQUEUE(wait, current);
3524
a93d2f17 3525 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3526 do {
94d3d824 3527 if (signal_pending_state(state, current)) {
ea71a546
ON
3528 timeout = -ERESTARTSYS;
3529 break;
8cbbe86d
AK
3530 }
3531 __set_current_state(state);
1da177e4
LT
3532 spin_unlock_irq(&x->wait.lock);
3533 timeout = schedule_timeout(timeout);
3534 spin_lock_irq(&x->wait.lock);
ea71a546 3535 } while (!x->done && timeout);
1da177e4 3536 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3537 if (!x->done)
3538 return timeout;
1da177e4
LT
3539 }
3540 x->done--;
ea71a546 3541 return timeout ?: 1;
1da177e4 3542}
1da177e4 3543
8cbbe86d
AK
3544static long __sched
3545wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3546{
1da177e4
LT
3547 might_sleep();
3548
3549 spin_lock_irq(&x->wait.lock);
8cbbe86d 3550 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3551 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3552 return timeout;
3553}
1da177e4 3554
65eb3dc6
KD
3555/**
3556 * wait_for_completion: - waits for completion of a task
3557 * @x: holds the state of this particular completion
3558 *
3559 * This waits to be signaled for completion of a specific task. It is NOT
3560 * interruptible and there is no timeout.
3561 *
3562 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3563 * and interrupt capability. Also see complete().
3564 */
b15136e9 3565void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3566{
3567 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3568}
8cbbe86d 3569EXPORT_SYMBOL(wait_for_completion);
1da177e4 3570
65eb3dc6
KD
3571/**
3572 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3573 * @x: holds the state of this particular completion
3574 * @timeout: timeout value in jiffies
3575 *
3576 * This waits for either a completion of a specific task to be signaled or for a
3577 * specified timeout to expire. The timeout is in jiffies. It is not
3578 * interruptible.
c6dc7f05
BF
3579 *
3580 * The return value is 0 if timed out, and positive (at least 1, or number of
3581 * jiffies left till timeout) if completed.
65eb3dc6 3582 */
b15136e9 3583unsigned long __sched
8cbbe86d 3584wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3585{
8cbbe86d 3586 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3587}
8cbbe86d 3588EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3589
65eb3dc6
KD
3590/**
3591 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3592 * @x: holds the state of this particular completion
3593 *
3594 * This waits for completion of a specific task to be signaled. It is
3595 * interruptible.
c6dc7f05
BF
3596 *
3597 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3598 */
8cbbe86d 3599int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3600{
51e97990
AK
3601 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3602 if (t == -ERESTARTSYS)
3603 return t;
3604 return 0;
0fec171c 3605}
8cbbe86d 3606EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3607
65eb3dc6
KD
3608/**
3609 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3610 * @x: holds the state of this particular completion
3611 * @timeout: timeout value in jiffies
3612 *
3613 * This waits for either a completion of a specific task to be signaled or for a
3614 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3615 *
3616 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3617 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3618 */
6bf41237 3619long __sched
8cbbe86d
AK
3620wait_for_completion_interruptible_timeout(struct completion *x,
3621 unsigned long timeout)
0fec171c 3622{
8cbbe86d 3623 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3624}
8cbbe86d 3625EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3626
65eb3dc6
KD
3627/**
3628 * wait_for_completion_killable: - waits for completion of a task (killable)
3629 * @x: holds the state of this particular completion
3630 *
3631 * This waits to be signaled for completion of a specific task. It can be
3632 * interrupted by a kill signal.
c6dc7f05
BF
3633 *
3634 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3635 */
009e577e
MW
3636int __sched wait_for_completion_killable(struct completion *x)
3637{
3638 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3639 if (t == -ERESTARTSYS)
3640 return t;
3641 return 0;
3642}
3643EXPORT_SYMBOL(wait_for_completion_killable);
3644
0aa12fb4
SW
3645/**
3646 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3647 * @x: holds the state of this particular completion
3648 * @timeout: timeout value in jiffies
3649 *
3650 * This waits for either a completion of a specific task to be
3651 * signaled or for a specified timeout to expire. It can be
3652 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3653 *
3654 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3655 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3656 */
6bf41237 3657long __sched
0aa12fb4
SW
3658wait_for_completion_killable_timeout(struct completion *x,
3659 unsigned long timeout)
3660{
3661 return wait_for_common(x, timeout, TASK_KILLABLE);
3662}
3663EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3664
be4de352
DC
3665/**
3666 * try_wait_for_completion - try to decrement a completion without blocking
3667 * @x: completion structure
3668 *
3669 * Returns: 0 if a decrement cannot be done without blocking
3670 * 1 if a decrement succeeded.
3671 *
3672 * If a completion is being used as a counting completion,
3673 * attempt to decrement the counter without blocking. This
3674 * enables us to avoid waiting if the resource the completion
3675 * is protecting is not available.
3676 */
3677bool try_wait_for_completion(struct completion *x)
3678{
7539a3b3 3679 unsigned long flags;
be4de352
DC
3680 int ret = 1;
3681
7539a3b3 3682 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3683 if (!x->done)
3684 ret = 0;
3685 else
3686 x->done--;
7539a3b3 3687 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3688 return ret;
3689}
3690EXPORT_SYMBOL(try_wait_for_completion);
3691
3692/**
3693 * completion_done - Test to see if a completion has any waiters
3694 * @x: completion structure
3695 *
3696 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3697 * 1 if there are no waiters.
3698 *
3699 */
3700bool completion_done(struct completion *x)
3701{
7539a3b3 3702 unsigned long flags;
be4de352
DC
3703 int ret = 1;
3704
7539a3b3 3705 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3706 if (!x->done)
3707 ret = 0;
7539a3b3 3708 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3709 return ret;
3710}
3711EXPORT_SYMBOL(completion_done);
3712
8cbbe86d
AK
3713static long __sched
3714sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3715{
0fec171c
IM
3716 unsigned long flags;
3717 wait_queue_t wait;
3718
3719 init_waitqueue_entry(&wait, current);
1da177e4 3720
8cbbe86d 3721 __set_current_state(state);
1da177e4 3722
8cbbe86d
AK
3723 spin_lock_irqsave(&q->lock, flags);
3724 __add_wait_queue(q, &wait);
3725 spin_unlock(&q->lock);
3726 timeout = schedule_timeout(timeout);
3727 spin_lock_irq(&q->lock);
3728 __remove_wait_queue(q, &wait);
3729 spin_unlock_irqrestore(&q->lock, flags);
3730
3731 return timeout;
3732}
3733
3734void __sched interruptible_sleep_on(wait_queue_head_t *q)
3735{
3736 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3737}
1da177e4
LT
3738EXPORT_SYMBOL(interruptible_sleep_on);
3739
0fec171c 3740long __sched
95cdf3b7 3741interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3742{
8cbbe86d 3743 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3744}
1da177e4
LT
3745EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3746
0fec171c 3747void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3748{
8cbbe86d 3749 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3750}
1da177e4
LT
3751EXPORT_SYMBOL(sleep_on);
3752
0fec171c 3753long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3754{
8cbbe86d 3755 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3756}
1da177e4
LT
3757EXPORT_SYMBOL(sleep_on_timeout);
3758
b29739f9
IM
3759#ifdef CONFIG_RT_MUTEXES
3760
3761/*
3762 * rt_mutex_setprio - set the current priority of a task
3763 * @p: task
3764 * @prio: prio value (kernel-internal form)
3765 *
3766 * This function changes the 'effective' priority of a task. It does
3767 * not touch ->normal_prio like __setscheduler().
3768 *
3769 * Used by the rt_mutex code to implement priority inheritance logic.
3770 */
36c8b586 3771void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3772{
83b699ed 3773 int oldprio, on_rq, running;
70b97a7f 3774 struct rq *rq;
83ab0aa0 3775 const struct sched_class *prev_class;
b29739f9
IM
3776
3777 BUG_ON(prio < 0 || prio > MAX_PRIO);
3778
0122ec5b 3779 rq = __task_rq_lock(p);
b29739f9 3780
1c4dd99b
TG
3781 /*
3782 * Idle task boosting is a nono in general. There is one
3783 * exception, when PREEMPT_RT and NOHZ is active:
3784 *
3785 * The idle task calls get_next_timer_interrupt() and holds
3786 * the timer wheel base->lock on the CPU and another CPU wants
3787 * to access the timer (probably to cancel it). We can safely
3788 * ignore the boosting request, as the idle CPU runs this code
3789 * with interrupts disabled and will complete the lock
3790 * protected section without being interrupted. So there is no
3791 * real need to boost.
3792 */
3793 if (unlikely(p == rq->idle)) {
3794 WARN_ON(p != rq->curr);
3795 WARN_ON(p->pi_blocked_on);
3796 goto out_unlock;
3797 }
3798
a8027073 3799 trace_sched_pi_setprio(p, prio);
d5f9f942 3800 oldprio = p->prio;
83ab0aa0 3801 prev_class = p->sched_class;
fd2f4419 3802 on_rq = p->on_rq;
051a1d1a 3803 running = task_current(rq, p);
0e1f3483 3804 if (on_rq)
69be72c1 3805 dequeue_task(rq, p, 0);
0e1f3483
HS
3806 if (running)
3807 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3808
3809 if (rt_prio(prio))
3810 p->sched_class = &rt_sched_class;
3811 else
3812 p->sched_class = &fair_sched_class;
3813
b29739f9
IM
3814 p->prio = prio;
3815
0e1f3483
HS
3816 if (running)
3817 p->sched_class->set_curr_task(rq);
da7a735e 3818 if (on_rq)
371fd7e7 3819 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3820
da7a735e 3821 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3822out_unlock:
0122ec5b 3823 __task_rq_unlock(rq);
b29739f9 3824}
b29739f9 3825#endif
36c8b586 3826void set_user_nice(struct task_struct *p, long nice)
1da177e4 3827{
dd41f596 3828 int old_prio, delta, on_rq;
1da177e4 3829 unsigned long flags;
70b97a7f 3830 struct rq *rq;
1da177e4
LT
3831
3832 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3833 return;
3834 /*
3835 * We have to be careful, if called from sys_setpriority(),
3836 * the task might be in the middle of scheduling on another CPU.
3837 */
3838 rq = task_rq_lock(p, &flags);
3839 /*
3840 * The RT priorities are set via sched_setscheduler(), but we still
3841 * allow the 'normal' nice value to be set - but as expected
3842 * it wont have any effect on scheduling until the task is
dd41f596 3843 * SCHED_FIFO/SCHED_RR:
1da177e4 3844 */
e05606d3 3845 if (task_has_rt_policy(p)) {
1da177e4
LT
3846 p->static_prio = NICE_TO_PRIO(nice);
3847 goto out_unlock;
3848 }
fd2f4419 3849 on_rq = p->on_rq;
c09595f6 3850 if (on_rq)
69be72c1 3851 dequeue_task(rq, p, 0);
1da177e4 3852
1da177e4 3853 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3854 set_load_weight(p);
b29739f9
IM
3855 old_prio = p->prio;
3856 p->prio = effective_prio(p);
3857 delta = p->prio - old_prio;
1da177e4 3858
dd41f596 3859 if (on_rq) {
371fd7e7 3860 enqueue_task(rq, p, 0);
1da177e4 3861 /*
d5f9f942
AM
3862 * If the task increased its priority or is running and
3863 * lowered its priority, then reschedule its CPU:
1da177e4 3864 */
d5f9f942 3865 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3866 resched_task(rq->curr);
3867 }
3868out_unlock:
0122ec5b 3869 task_rq_unlock(rq, p, &flags);
1da177e4 3870}
1da177e4
LT
3871EXPORT_SYMBOL(set_user_nice);
3872
e43379f1
MM
3873/*
3874 * can_nice - check if a task can reduce its nice value
3875 * @p: task
3876 * @nice: nice value
3877 */
36c8b586 3878int can_nice(const struct task_struct *p, const int nice)
e43379f1 3879{
024f4747
MM
3880 /* convert nice value [19,-20] to rlimit style value [1,40] */
3881 int nice_rlim = 20 - nice;
48f24c4d 3882
78d7d407 3883 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3884 capable(CAP_SYS_NICE));
3885}
3886
1da177e4
LT
3887#ifdef __ARCH_WANT_SYS_NICE
3888
3889/*
3890 * sys_nice - change the priority of the current process.
3891 * @increment: priority increment
3892 *
3893 * sys_setpriority is a more generic, but much slower function that
3894 * does similar things.
3895 */
5add95d4 3896SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3897{
48f24c4d 3898 long nice, retval;
1da177e4
LT
3899
3900 /*
3901 * Setpriority might change our priority at the same moment.
3902 * We don't have to worry. Conceptually one call occurs first
3903 * and we have a single winner.
3904 */
e43379f1
MM
3905 if (increment < -40)
3906 increment = -40;
1da177e4
LT
3907 if (increment > 40)
3908 increment = 40;
3909
2b8f836f 3910 nice = TASK_NICE(current) + increment;
1da177e4
LT
3911 if (nice < -20)
3912 nice = -20;
3913 if (nice > 19)
3914 nice = 19;
3915
e43379f1
MM
3916 if (increment < 0 && !can_nice(current, nice))
3917 return -EPERM;
3918
1da177e4
LT
3919 retval = security_task_setnice(current, nice);
3920 if (retval)
3921 return retval;
3922
3923 set_user_nice(current, nice);
3924 return 0;
3925}
3926
3927#endif
3928
3929/**
3930 * task_prio - return the priority value of a given task.
3931 * @p: the task in question.
3932 *
3933 * This is the priority value as seen by users in /proc.
3934 * RT tasks are offset by -200. Normal tasks are centered
3935 * around 0, value goes from -16 to +15.
3936 */
36c8b586 3937int task_prio(const struct task_struct *p)
1da177e4
LT
3938{
3939 return p->prio - MAX_RT_PRIO;
3940}
3941
3942/**
3943 * task_nice - return the nice value of a given task.
3944 * @p: the task in question.
3945 */
36c8b586 3946int task_nice(const struct task_struct *p)
1da177e4
LT
3947{
3948 return TASK_NICE(p);
3949}
150d8bed 3950EXPORT_SYMBOL(task_nice);
1da177e4
LT
3951
3952/**
3953 * idle_cpu - is a given cpu idle currently?
3954 * @cpu: the processor in question.
3955 */
3956int idle_cpu(int cpu)
3957{
908a3283
TG
3958 struct rq *rq = cpu_rq(cpu);
3959
3960 if (rq->curr != rq->idle)
3961 return 0;
3962
3963 if (rq->nr_running)
3964 return 0;
3965
3966#ifdef CONFIG_SMP
3967 if (!llist_empty(&rq->wake_list))
3968 return 0;
3969#endif
3970
3971 return 1;
1da177e4
LT
3972}
3973
1da177e4
LT
3974/**
3975 * idle_task - return the idle task for a given cpu.
3976 * @cpu: the processor in question.
3977 */
36c8b586 3978struct task_struct *idle_task(int cpu)
1da177e4
LT
3979{
3980 return cpu_rq(cpu)->idle;
3981}
3982
3983/**
3984 * find_process_by_pid - find a process with a matching PID value.
3985 * @pid: the pid in question.
3986 */
a9957449 3987static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3988{
228ebcbe 3989 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3990}
3991
3992/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3993static void
3994__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3995{
1da177e4
LT
3996 p->policy = policy;
3997 p->rt_priority = prio;
b29739f9
IM
3998 p->normal_prio = normal_prio(p);
3999 /* we are holding p->pi_lock already */
4000 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4001 if (rt_prio(p->prio))
4002 p->sched_class = &rt_sched_class;
4003 else
4004 p->sched_class = &fair_sched_class;
2dd73a4f 4005 set_load_weight(p);
1da177e4
LT
4006}
4007
c69e8d9c
DH
4008/*
4009 * check the target process has a UID that matches the current process's
4010 */
4011static bool check_same_owner(struct task_struct *p)
4012{
4013 const struct cred *cred = current_cred(), *pcred;
4014 bool match;
4015
4016 rcu_read_lock();
4017 pcred = __task_cred(p);
b0e77598
SH
4018 if (cred->user->user_ns == pcred->user->user_ns)
4019 match = (cred->euid == pcred->euid ||
4020 cred->euid == pcred->uid);
4021 else
4022 match = false;
c69e8d9c
DH
4023 rcu_read_unlock();
4024 return match;
4025}
4026
961ccddd 4027static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4028 const struct sched_param *param, bool user)
1da177e4 4029{
83b699ed 4030 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4031 unsigned long flags;
83ab0aa0 4032 const struct sched_class *prev_class;
70b97a7f 4033 struct rq *rq;
ca94c442 4034 int reset_on_fork;
1da177e4 4035
66e5393a
SR
4036 /* may grab non-irq protected spin_locks */
4037 BUG_ON(in_interrupt());
1da177e4
LT
4038recheck:
4039 /* double check policy once rq lock held */
ca94c442
LP
4040 if (policy < 0) {
4041 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4042 policy = oldpolicy = p->policy;
ca94c442
LP
4043 } else {
4044 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4045 policy &= ~SCHED_RESET_ON_FORK;
4046
4047 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4048 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4049 policy != SCHED_IDLE)
4050 return -EINVAL;
4051 }
4052
1da177e4
LT
4053 /*
4054 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4055 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4056 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4057 */
4058 if (param->sched_priority < 0 ||
95cdf3b7 4059 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4060 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4061 return -EINVAL;
e05606d3 4062 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4063 return -EINVAL;
4064
37e4ab3f
OC
4065 /*
4066 * Allow unprivileged RT tasks to decrease priority:
4067 */
961ccddd 4068 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4069 if (rt_policy(policy)) {
a44702e8
ON
4070 unsigned long rlim_rtprio =
4071 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4072
4073 /* can't set/change the rt policy */
4074 if (policy != p->policy && !rlim_rtprio)
4075 return -EPERM;
4076
4077 /* can't increase priority */
4078 if (param->sched_priority > p->rt_priority &&
4079 param->sched_priority > rlim_rtprio)
4080 return -EPERM;
4081 }
c02aa73b 4082
dd41f596 4083 /*
c02aa73b
DH
4084 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4085 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4086 */
c02aa73b
DH
4087 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4088 if (!can_nice(p, TASK_NICE(p)))
4089 return -EPERM;
4090 }
5fe1d75f 4091
37e4ab3f 4092 /* can't change other user's priorities */
c69e8d9c 4093 if (!check_same_owner(p))
37e4ab3f 4094 return -EPERM;
ca94c442
LP
4095
4096 /* Normal users shall not reset the sched_reset_on_fork flag */
4097 if (p->sched_reset_on_fork && !reset_on_fork)
4098 return -EPERM;
37e4ab3f 4099 }
1da177e4 4100
725aad24 4101 if (user) {
b0ae1981 4102 retval = security_task_setscheduler(p);
725aad24
JF
4103 if (retval)
4104 return retval;
4105 }
4106
b29739f9
IM
4107 /*
4108 * make sure no PI-waiters arrive (or leave) while we are
4109 * changing the priority of the task:
0122ec5b 4110 *
25985edc 4111 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4112 * runqueue lock must be held.
4113 */
0122ec5b 4114 rq = task_rq_lock(p, &flags);
dc61b1d6 4115
34f971f6
PZ
4116 /*
4117 * Changing the policy of the stop threads its a very bad idea
4118 */
4119 if (p == rq->stop) {
0122ec5b 4120 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4121 return -EINVAL;
4122 }
4123
a51e9198
DF
4124 /*
4125 * If not changing anything there's no need to proceed further:
4126 */
4127 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4128 param->sched_priority == p->rt_priority))) {
4129
4130 __task_rq_unlock(rq);
4131 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4132 return 0;
4133 }
4134
dc61b1d6
PZ
4135#ifdef CONFIG_RT_GROUP_SCHED
4136 if (user) {
4137 /*
4138 * Do not allow realtime tasks into groups that have no runtime
4139 * assigned.
4140 */
4141 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4142 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4143 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4144 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4145 return -EPERM;
4146 }
4147 }
4148#endif
4149
1da177e4
LT
4150 /* recheck policy now with rq lock held */
4151 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4152 policy = oldpolicy = -1;
0122ec5b 4153 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4154 goto recheck;
4155 }
fd2f4419 4156 on_rq = p->on_rq;
051a1d1a 4157 running = task_current(rq, p);
0e1f3483 4158 if (on_rq)
4ca9b72b 4159 dequeue_task(rq, p, 0);
0e1f3483
HS
4160 if (running)
4161 p->sched_class->put_prev_task(rq, p);
f6b53205 4162
ca94c442
LP
4163 p->sched_reset_on_fork = reset_on_fork;
4164
1da177e4 4165 oldprio = p->prio;
83ab0aa0 4166 prev_class = p->sched_class;
dd41f596 4167 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4168
0e1f3483
HS
4169 if (running)
4170 p->sched_class->set_curr_task(rq);
da7a735e 4171 if (on_rq)
4ca9b72b 4172 enqueue_task(rq, p, 0);
cb469845 4173
da7a735e 4174 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4175 task_rq_unlock(rq, p, &flags);
b29739f9 4176
95e02ca9
TG
4177 rt_mutex_adjust_pi(p);
4178
1da177e4
LT
4179 return 0;
4180}
961ccddd
RR
4181
4182/**
4183 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4184 * @p: the task in question.
4185 * @policy: new policy.
4186 * @param: structure containing the new RT priority.
4187 *
4188 * NOTE that the task may be already dead.
4189 */
4190int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4191 const struct sched_param *param)
961ccddd
RR
4192{
4193 return __sched_setscheduler(p, policy, param, true);
4194}
1da177e4
LT
4195EXPORT_SYMBOL_GPL(sched_setscheduler);
4196
961ccddd
RR
4197/**
4198 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4199 * @p: the task in question.
4200 * @policy: new policy.
4201 * @param: structure containing the new RT priority.
4202 *
4203 * Just like sched_setscheduler, only don't bother checking if the
4204 * current context has permission. For example, this is needed in
4205 * stop_machine(): we create temporary high priority worker threads,
4206 * but our caller might not have that capability.
4207 */
4208int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4209 const struct sched_param *param)
961ccddd
RR
4210{
4211 return __sched_setscheduler(p, policy, param, false);
4212}
4213
95cdf3b7
IM
4214static int
4215do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4216{
1da177e4
LT
4217 struct sched_param lparam;
4218 struct task_struct *p;
36c8b586 4219 int retval;
1da177e4
LT
4220
4221 if (!param || pid < 0)
4222 return -EINVAL;
4223 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4224 return -EFAULT;
5fe1d75f
ON
4225
4226 rcu_read_lock();
4227 retval = -ESRCH;
1da177e4 4228 p = find_process_by_pid(pid);
5fe1d75f
ON
4229 if (p != NULL)
4230 retval = sched_setscheduler(p, policy, &lparam);
4231 rcu_read_unlock();
36c8b586 4232
1da177e4
LT
4233 return retval;
4234}
4235
4236/**
4237 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4238 * @pid: the pid in question.
4239 * @policy: new policy.
4240 * @param: structure containing the new RT priority.
4241 */
5add95d4
HC
4242SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4243 struct sched_param __user *, param)
1da177e4 4244{
c21761f1
JB
4245 /* negative values for policy are not valid */
4246 if (policy < 0)
4247 return -EINVAL;
4248
1da177e4
LT
4249 return do_sched_setscheduler(pid, policy, param);
4250}
4251
4252/**
4253 * sys_sched_setparam - set/change the RT priority of a thread
4254 * @pid: the pid in question.
4255 * @param: structure containing the new RT priority.
4256 */
5add95d4 4257SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4258{
4259 return do_sched_setscheduler(pid, -1, param);
4260}
4261
4262/**
4263 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4264 * @pid: the pid in question.
4265 */
5add95d4 4266SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4267{
36c8b586 4268 struct task_struct *p;
3a5c359a 4269 int retval;
1da177e4
LT
4270
4271 if (pid < 0)
3a5c359a 4272 return -EINVAL;
1da177e4
LT
4273
4274 retval = -ESRCH;
5fe85be0 4275 rcu_read_lock();
1da177e4
LT
4276 p = find_process_by_pid(pid);
4277 if (p) {
4278 retval = security_task_getscheduler(p);
4279 if (!retval)
ca94c442
LP
4280 retval = p->policy
4281 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4282 }
5fe85be0 4283 rcu_read_unlock();
1da177e4
LT
4284 return retval;
4285}
4286
4287/**
ca94c442 4288 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4289 * @pid: the pid in question.
4290 * @param: structure containing the RT priority.
4291 */
5add95d4 4292SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4293{
4294 struct sched_param lp;
36c8b586 4295 struct task_struct *p;
3a5c359a 4296 int retval;
1da177e4
LT
4297
4298 if (!param || pid < 0)
3a5c359a 4299 return -EINVAL;
1da177e4 4300
5fe85be0 4301 rcu_read_lock();
1da177e4
LT
4302 p = find_process_by_pid(pid);
4303 retval = -ESRCH;
4304 if (!p)
4305 goto out_unlock;
4306
4307 retval = security_task_getscheduler(p);
4308 if (retval)
4309 goto out_unlock;
4310
4311 lp.sched_priority = p->rt_priority;
5fe85be0 4312 rcu_read_unlock();
1da177e4
LT
4313
4314 /*
4315 * This one might sleep, we cannot do it with a spinlock held ...
4316 */
4317 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4318
1da177e4
LT
4319 return retval;
4320
4321out_unlock:
5fe85be0 4322 rcu_read_unlock();
1da177e4
LT
4323 return retval;
4324}
4325
96f874e2 4326long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4327{
5a16f3d3 4328 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4329 struct task_struct *p;
4330 int retval;
1da177e4 4331
95402b38 4332 get_online_cpus();
23f5d142 4333 rcu_read_lock();
1da177e4
LT
4334
4335 p = find_process_by_pid(pid);
4336 if (!p) {
23f5d142 4337 rcu_read_unlock();
95402b38 4338 put_online_cpus();
1da177e4
LT
4339 return -ESRCH;
4340 }
4341
23f5d142 4342 /* Prevent p going away */
1da177e4 4343 get_task_struct(p);
23f5d142 4344 rcu_read_unlock();
1da177e4 4345
5a16f3d3
RR
4346 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4347 retval = -ENOMEM;
4348 goto out_put_task;
4349 }
4350 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4351 retval = -ENOMEM;
4352 goto out_free_cpus_allowed;
4353 }
1da177e4 4354 retval = -EPERM;
f1c84dae 4355 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4356 goto out_unlock;
4357
b0ae1981 4358 retval = security_task_setscheduler(p);
e7834f8f
DQ
4359 if (retval)
4360 goto out_unlock;
4361
5a16f3d3
RR
4362 cpuset_cpus_allowed(p, cpus_allowed);
4363 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4364again:
5a16f3d3 4365 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4366
8707d8b8 4367 if (!retval) {
5a16f3d3
RR
4368 cpuset_cpus_allowed(p, cpus_allowed);
4369 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4370 /*
4371 * We must have raced with a concurrent cpuset
4372 * update. Just reset the cpus_allowed to the
4373 * cpuset's cpus_allowed
4374 */
5a16f3d3 4375 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4376 goto again;
4377 }
4378 }
1da177e4 4379out_unlock:
5a16f3d3
RR
4380 free_cpumask_var(new_mask);
4381out_free_cpus_allowed:
4382 free_cpumask_var(cpus_allowed);
4383out_put_task:
1da177e4 4384 put_task_struct(p);
95402b38 4385 put_online_cpus();
1da177e4
LT
4386 return retval;
4387}
4388
4389static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4390 struct cpumask *new_mask)
1da177e4 4391{
96f874e2
RR
4392 if (len < cpumask_size())
4393 cpumask_clear(new_mask);
4394 else if (len > cpumask_size())
4395 len = cpumask_size();
4396
1da177e4
LT
4397 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4398}
4399
4400/**
4401 * sys_sched_setaffinity - set the cpu affinity of a process
4402 * @pid: pid of the process
4403 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4404 * @user_mask_ptr: user-space pointer to the new cpu mask
4405 */
5add95d4
HC
4406SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4407 unsigned long __user *, user_mask_ptr)
1da177e4 4408{
5a16f3d3 4409 cpumask_var_t new_mask;
1da177e4
LT
4410 int retval;
4411
5a16f3d3
RR
4412 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4413 return -ENOMEM;
1da177e4 4414
5a16f3d3
RR
4415 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4416 if (retval == 0)
4417 retval = sched_setaffinity(pid, new_mask);
4418 free_cpumask_var(new_mask);
4419 return retval;
1da177e4
LT
4420}
4421
96f874e2 4422long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4423{
36c8b586 4424 struct task_struct *p;
31605683 4425 unsigned long flags;
1da177e4 4426 int retval;
1da177e4 4427
95402b38 4428 get_online_cpus();
23f5d142 4429 rcu_read_lock();
1da177e4
LT
4430
4431 retval = -ESRCH;
4432 p = find_process_by_pid(pid);
4433 if (!p)
4434 goto out_unlock;
4435
e7834f8f
DQ
4436 retval = security_task_getscheduler(p);
4437 if (retval)
4438 goto out_unlock;
4439
013fdb80 4440 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4441 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4442 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4443
4444out_unlock:
23f5d142 4445 rcu_read_unlock();
95402b38 4446 put_online_cpus();
1da177e4 4447
9531b62f 4448 return retval;
1da177e4
LT
4449}
4450
4451/**
4452 * sys_sched_getaffinity - get the cpu affinity of a process
4453 * @pid: pid of the process
4454 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4455 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4456 */
5add95d4
HC
4457SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4458 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4459{
4460 int ret;
f17c8607 4461 cpumask_var_t mask;
1da177e4 4462
84fba5ec 4463 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4464 return -EINVAL;
4465 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4466 return -EINVAL;
4467
f17c8607
RR
4468 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4469 return -ENOMEM;
1da177e4 4470
f17c8607
RR
4471 ret = sched_getaffinity(pid, mask);
4472 if (ret == 0) {
8bc037fb 4473 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4474
4475 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4476 ret = -EFAULT;
4477 else
cd3d8031 4478 ret = retlen;
f17c8607
RR
4479 }
4480 free_cpumask_var(mask);
1da177e4 4481
f17c8607 4482 return ret;
1da177e4
LT
4483}
4484
4485/**
4486 * sys_sched_yield - yield the current processor to other threads.
4487 *
dd41f596
IM
4488 * This function yields the current CPU to other tasks. If there are no
4489 * other threads running on this CPU then this function will return.
1da177e4 4490 */
5add95d4 4491SYSCALL_DEFINE0(sched_yield)
1da177e4 4492{
70b97a7f 4493 struct rq *rq = this_rq_lock();
1da177e4 4494
2d72376b 4495 schedstat_inc(rq, yld_count);
4530d7ab 4496 current->sched_class->yield_task(rq);
1da177e4
LT
4497
4498 /*
4499 * Since we are going to call schedule() anyway, there's
4500 * no need to preempt or enable interrupts:
4501 */
4502 __release(rq->lock);
8a25d5de 4503 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4504 do_raw_spin_unlock(&rq->lock);
ba74c144 4505 sched_preempt_enable_no_resched();
1da177e4
LT
4506
4507 schedule();
4508
4509 return 0;
4510}
4511
d86ee480
PZ
4512static inline int should_resched(void)
4513{
4514 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4515}
4516
e7b38404 4517static void __cond_resched(void)
1da177e4 4518{
e7aaaa69 4519 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4520 __schedule();
e7aaaa69 4521 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4522}
4523
02b67cc3 4524int __sched _cond_resched(void)
1da177e4 4525{
d86ee480 4526 if (should_resched()) {
1da177e4
LT
4527 __cond_resched();
4528 return 1;
4529 }
4530 return 0;
4531}
02b67cc3 4532EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4533
4534/*
613afbf8 4535 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4536 * call schedule, and on return reacquire the lock.
4537 *
41a2d6cf 4538 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4539 * operations here to prevent schedule() from being called twice (once via
4540 * spin_unlock(), once by hand).
4541 */
613afbf8 4542int __cond_resched_lock(spinlock_t *lock)
1da177e4 4543{
d86ee480 4544 int resched = should_resched();
6df3cecb
JK
4545 int ret = 0;
4546
f607c668
PZ
4547 lockdep_assert_held(lock);
4548
95c354fe 4549 if (spin_needbreak(lock) || resched) {
1da177e4 4550 spin_unlock(lock);
d86ee480 4551 if (resched)
95c354fe
NP
4552 __cond_resched();
4553 else
4554 cpu_relax();
6df3cecb 4555 ret = 1;
1da177e4 4556 spin_lock(lock);
1da177e4 4557 }
6df3cecb 4558 return ret;
1da177e4 4559}
613afbf8 4560EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4561
613afbf8 4562int __sched __cond_resched_softirq(void)
1da177e4
LT
4563{
4564 BUG_ON(!in_softirq());
4565
d86ee480 4566 if (should_resched()) {
98d82567 4567 local_bh_enable();
1da177e4
LT
4568 __cond_resched();
4569 local_bh_disable();
4570 return 1;
4571 }
4572 return 0;
4573}
613afbf8 4574EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4575
1da177e4
LT
4576/**
4577 * yield - yield the current processor to other threads.
4578 *
8e3fabfd
PZ
4579 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4580 *
4581 * The scheduler is at all times free to pick the calling task as the most
4582 * eligible task to run, if removing the yield() call from your code breaks
4583 * it, its already broken.
4584 *
4585 * Typical broken usage is:
4586 *
4587 * while (!event)
4588 * yield();
4589 *
4590 * where one assumes that yield() will let 'the other' process run that will
4591 * make event true. If the current task is a SCHED_FIFO task that will never
4592 * happen. Never use yield() as a progress guarantee!!
4593 *
4594 * If you want to use yield() to wait for something, use wait_event().
4595 * If you want to use yield() to be 'nice' for others, use cond_resched().
4596 * If you still want to use yield(), do not!
1da177e4
LT
4597 */
4598void __sched yield(void)
4599{
4600 set_current_state(TASK_RUNNING);
4601 sys_sched_yield();
4602}
1da177e4
LT
4603EXPORT_SYMBOL(yield);
4604
d95f4122
MG
4605/**
4606 * yield_to - yield the current processor to another thread in
4607 * your thread group, or accelerate that thread toward the
4608 * processor it's on.
16addf95
RD
4609 * @p: target task
4610 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4611 *
4612 * It's the caller's job to ensure that the target task struct
4613 * can't go away on us before we can do any checks.
4614 *
4615 * Returns true if we indeed boosted the target task.
4616 */
4617bool __sched yield_to(struct task_struct *p, bool preempt)
4618{
4619 struct task_struct *curr = current;
4620 struct rq *rq, *p_rq;
4621 unsigned long flags;
4622 bool yielded = 0;
4623
4624 local_irq_save(flags);
4625 rq = this_rq();
4626
4627again:
4628 p_rq = task_rq(p);
4629 double_rq_lock(rq, p_rq);
4630 while (task_rq(p) != p_rq) {
4631 double_rq_unlock(rq, p_rq);
4632 goto again;
4633 }
4634
4635 if (!curr->sched_class->yield_to_task)
4636 goto out;
4637
4638 if (curr->sched_class != p->sched_class)
4639 goto out;
4640
4641 if (task_running(p_rq, p) || p->state)
4642 goto out;
4643
4644 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4645 if (yielded) {
d95f4122 4646 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4647 /*
4648 * Make p's CPU reschedule; pick_next_entity takes care of
4649 * fairness.
4650 */
4651 if (preempt && rq != p_rq)
4652 resched_task(p_rq->curr);
916671c0
MG
4653 } else {
4654 /*
4655 * We might have set it in task_yield_fair(), but are
4656 * not going to schedule(), so don't want to skip
4657 * the next update.
4658 */
4659 rq->skip_clock_update = 0;
6d1cafd8 4660 }
d95f4122
MG
4661
4662out:
4663 double_rq_unlock(rq, p_rq);
4664 local_irq_restore(flags);
4665
4666 if (yielded)
4667 schedule();
4668
4669 return yielded;
4670}
4671EXPORT_SYMBOL_GPL(yield_to);
4672
1da177e4 4673/*
41a2d6cf 4674 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4675 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4676 */
4677void __sched io_schedule(void)
4678{
54d35f29 4679 struct rq *rq = raw_rq();
1da177e4 4680
0ff92245 4681 delayacct_blkio_start();
1da177e4 4682 atomic_inc(&rq->nr_iowait);
73c10101 4683 blk_flush_plug(current);
8f0dfc34 4684 current->in_iowait = 1;
1da177e4 4685 schedule();
8f0dfc34 4686 current->in_iowait = 0;
1da177e4 4687 atomic_dec(&rq->nr_iowait);
0ff92245 4688 delayacct_blkio_end();
1da177e4 4689}
1da177e4
LT
4690EXPORT_SYMBOL(io_schedule);
4691
4692long __sched io_schedule_timeout(long timeout)
4693{
54d35f29 4694 struct rq *rq = raw_rq();
1da177e4
LT
4695 long ret;
4696
0ff92245 4697 delayacct_blkio_start();
1da177e4 4698 atomic_inc(&rq->nr_iowait);
73c10101 4699 blk_flush_plug(current);
8f0dfc34 4700 current->in_iowait = 1;
1da177e4 4701 ret = schedule_timeout(timeout);
8f0dfc34 4702 current->in_iowait = 0;
1da177e4 4703 atomic_dec(&rq->nr_iowait);
0ff92245 4704 delayacct_blkio_end();
1da177e4
LT
4705 return ret;
4706}
4707
4708/**
4709 * sys_sched_get_priority_max - return maximum RT priority.
4710 * @policy: scheduling class.
4711 *
4712 * this syscall returns the maximum rt_priority that can be used
4713 * by a given scheduling class.
4714 */
5add95d4 4715SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4716{
4717 int ret = -EINVAL;
4718
4719 switch (policy) {
4720 case SCHED_FIFO:
4721 case SCHED_RR:
4722 ret = MAX_USER_RT_PRIO-1;
4723 break;
4724 case SCHED_NORMAL:
b0a9499c 4725 case SCHED_BATCH:
dd41f596 4726 case SCHED_IDLE:
1da177e4
LT
4727 ret = 0;
4728 break;
4729 }
4730 return ret;
4731}
4732
4733/**
4734 * sys_sched_get_priority_min - return minimum RT priority.
4735 * @policy: scheduling class.
4736 *
4737 * this syscall returns the minimum rt_priority that can be used
4738 * by a given scheduling class.
4739 */
5add95d4 4740SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4741{
4742 int ret = -EINVAL;
4743
4744 switch (policy) {
4745 case SCHED_FIFO:
4746 case SCHED_RR:
4747 ret = 1;
4748 break;
4749 case SCHED_NORMAL:
b0a9499c 4750 case SCHED_BATCH:
dd41f596 4751 case SCHED_IDLE:
1da177e4
LT
4752 ret = 0;
4753 }
4754 return ret;
4755}
4756
4757/**
4758 * sys_sched_rr_get_interval - return the default timeslice of a process.
4759 * @pid: pid of the process.
4760 * @interval: userspace pointer to the timeslice value.
4761 *
4762 * this syscall writes the default timeslice value of a given process
4763 * into the user-space timespec buffer. A value of '0' means infinity.
4764 */
17da2bd9 4765SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4766 struct timespec __user *, interval)
1da177e4 4767{
36c8b586 4768 struct task_struct *p;
a4ec24b4 4769 unsigned int time_slice;
dba091b9
TG
4770 unsigned long flags;
4771 struct rq *rq;
3a5c359a 4772 int retval;
1da177e4 4773 struct timespec t;
1da177e4
LT
4774
4775 if (pid < 0)
3a5c359a 4776 return -EINVAL;
1da177e4
LT
4777
4778 retval = -ESRCH;
1a551ae7 4779 rcu_read_lock();
1da177e4
LT
4780 p = find_process_by_pid(pid);
4781 if (!p)
4782 goto out_unlock;
4783
4784 retval = security_task_getscheduler(p);
4785 if (retval)
4786 goto out_unlock;
4787
dba091b9
TG
4788 rq = task_rq_lock(p, &flags);
4789 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4790 task_rq_unlock(rq, p, &flags);
a4ec24b4 4791
1a551ae7 4792 rcu_read_unlock();
a4ec24b4 4793 jiffies_to_timespec(time_slice, &t);
1da177e4 4794 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4795 return retval;
3a5c359a 4796
1da177e4 4797out_unlock:
1a551ae7 4798 rcu_read_unlock();
1da177e4
LT
4799 return retval;
4800}
4801
7c731e0a 4802static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4803
82a1fcb9 4804void sched_show_task(struct task_struct *p)
1da177e4 4805{
1da177e4 4806 unsigned long free = 0;
36c8b586 4807 unsigned state;
1da177e4 4808
1da177e4 4809 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4810 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4811 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4812#if BITS_PER_LONG == 32
1da177e4 4813 if (state == TASK_RUNNING)
3df0fc5b 4814 printk(KERN_CONT " running ");
1da177e4 4815 else
3df0fc5b 4816 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4817#else
4818 if (state == TASK_RUNNING)
3df0fc5b 4819 printk(KERN_CONT " running task ");
1da177e4 4820 else
3df0fc5b 4821 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4822#endif
4823#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4824 free = stack_not_used(p);
1da177e4 4825#endif
3df0fc5b 4826 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4827 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4828 (unsigned long)task_thread_info(p)->flags);
1da177e4 4829
5fb5e6de 4830 show_stack(p, NULL);
1da177e4
LT
4831}
4832
e59e2ae2 4833void show_state_filter(unsigned long state_filter)
1da177e4 4834{
36c8b586 4835 struct task_struct *g, *p;
1da177e4 4836
4bd77321 4837#if BITS_PER_LONG == 32
3df0fc5b
PZ
4838 printk(KERN_INFO
4839 " task PC stack pid father\n");
1da177e4 4840#else
3df0fc5b
PZ
4841 printk(KERN_INFO
4842 " task PC stack pid father\n");
1da177e4 4843#endif
510f5acc 4844 rcu_read_lock();
1da177e4
LT
4845 do_each_thread(g, p) {
4846 /*
4847 * reset the NMI-timeout, listing all files on a slow
25985edc 4848 * console might take a lot of time:
1da177e4
LT
4849 */
4850 touch_nmi_watchdog();
39bc89fd 4851 if (!state_filter || (p->state & state_filter))
82a1fcb9 4852 sched_show_task(p);
1da177e4
LT
4853 } while_each_thread(g, p);
4854
04c9167f
JF
4855 touch_all_softlockup_watchdogs();
4856
dd41f596
IM
4857#ifdef CONFIG_SCHED_DEBUG
4858 sysrq_sched_debug_show();
4859#endif
510f5acc 4860 rcu_read_unlock();
e59e2ae2
IM
4861 /*
4862 * Only show locks if all tasks are dumped:
4863 */
93335a21 4864 if (!state_filter)
e59e2ae2 4865 debug_show_all_locks();
1da177e4
LT
4866}
4867
1df21055
IM
4868void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4869{
dd41f596 4870 idle->sched_class = &idle_sched_class;
1df21055
IM
4871}
4872
f340c0d1
IM
4873/**
4874 * init_idle - set up an idle thread for a given CPU
4875 * @idle: task in question
4876 * @cpu: cpu the idle task belongs to
4877 *
4878 * NOTE: this function does not set the idle thread's NEED_RESCHED
4879 * flag, to make booting more robust.
4880 */
5c1e1767 4881void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4882{
70b97a7f 4883 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4884 unsigned long flags;
4885
05fa785c 4886 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4887
dd41f596 4888 __sched_fork(idle);
06b83b5f 4889 idle->state = TASK_RUNNING;
dd41f596
IM
4890 idle->se.exec_start = sched_clock();
4891
1e1b6c51 4892 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4893 /*
4894 * We're having a chicken and egg problem, even though we are
4895 * holding rq->lock, the cpu isn't yet set to this cpu so the
4896 * lockdep check in task_group() will fail.
4897 *
4898 * Similar case to sched_fork(). / Alternatively we could
4899 * use task_rq_lock() here and obtain the other rq->lock.
4900 *
4901 * Silence PROVE_RCU
4902 */
4903 rcu_read_lock();
dd41f596 4904 __set_task_cpu(idle, cpu);
6506cf6c 4905 rcu_read_unlock();
1da177e4 4906
1da177e4 4907 rq->curr = rq->idle = idle;
3ca7a440
PZ
4908#if defined(CONFIG_SMP)
4909 idle->on_cpu = 1;
4866cde0 4910#endif
05fa785c 4911 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4912
4913 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4914 task_thread_info(idle)->preempt_count = 0;
55cd5340 4915
dd41f596
IM
4916 /*
4917 * The idle tasks have their own, simple scheduling class:
4918 */
4919 idle->sched_class = &idle_sched_class;
868baf07 4920 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4921#if defined(CONFIG_SMP)
4922 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4923#endif
19978ca6
IM
4924}
4925
1da177e4 4926#ifdef CONFIG_SMP
1e1b6c51
KM
4927void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4928{
4929 if (p->sched_class && p->sched_class->set_cpus_allowed)
4930 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4931
4932 cpumask_copy(&p->cpus_allowed, new_mask);
4933 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4934}
4935
1da177e4
LT
4936/*
4937 * This is how migration works:
4938 *
969c7921
TH
4939 * 1) we invoke migration_cpu_stop() on the target CPU using
4940 * stop_one_cpu().
4941 * 2) stopper starts to run (implicitly forcing the migrated thread
4942 * off the CPU)
4943 * 3) it checks whether the migrated task is still in the wrong runqueue.
4944 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4945 * it and puts it into the right queue.
969c7921
TH
4946 * 5) stopper completes and stop_one_cpu() returns and the migration
4947 * is done.
1da177e4
LT
4948 */
4949
4950/*
4951 * Change a given task's CPU affinity. Migrate the thread to a
4952 * proper CPU and schedule it away if the CPU it's executing on
4953 * is removed from the allowed bitmask.
4954 *
4955 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4956 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4957 * call is not atomic; no spinlocks may be held.
4958 */
96f874e2 4959int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4960{
4961 unsigned long flags;
70b97a7f 4962 struct rq *rq;
969c7921 4963 unsigned int dest_cpu;
48f24c4d 4964 int ret = 0;
1da177e4
LT
4965
4966 rq = task_rq_lock(p, &flags);
e2912009 4967
db44fc01
YZ
4968 if (cpumask_equal(&p->cpus_allowed, new_mask))
4969 goto out;
4970
6ad4c188 4971 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4972 ret = -EINVAL;
4973 goto out;
4974 }
4975
db44fc01 4976 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4977 ret = -EINVAL;
4978 goto out;
4979 }
4980
1e1b6c51 4981 do_set_cpus_allowed(p, new_mask);
73fe6aae 4982
1da177e4 4983 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4984 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4985 goto out;
4986
969c7921 4987 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4988 if (p->on_rq) {
969c7921 4989 struct migration_arg arg = { p, dest_cpu };
1da177e4 4990 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4991 task_rq_unlock(rq, p, &flags);
969c7921 4992 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4993 tlb_migrate_finish(p->mm);
4994 return 0;
4995 }
4996out:
0122ec5b 4997 task_rq_unlock(rq, p, &flags);
48f24c4d 4998
1da177e4
LT
4999 return ret;
5000}
cd8ba7cd 5001EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5002
5003/*
41a2d6cf 5004 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5005 * this because either it can't run here any more (set_cpus_allowed()
5006 * away from this CPU, or CPU going down), or because we're
5007 * attempting to rebalance this task on exec (sched_exec).
5008 *
5009 * So we race with normal scheduler movements, but that's OK, as long
5010 * as the task is no longer on this CPU.
efc30814
KK
5011 *
5012 * Returns non-zero if task was successfully migrated.
1da177e4 5013 */
efc30814 5014static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5015{
70b97a7f 5016 struct rq *rq_dest, *rq_src;
e2912009 5017 int ret = 0;
1da177e4 5018
e761b772 5019 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5020 return ret;
1da177e4
LT
5021
5022 rq_src = cpu_rq(src_cpu);
5023 rq_dest = cpu_rq(dest_cpu);
5024
0122ec5b 5025 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5026 double_rq_lock(rq_src, rq_dest);
5027 /* Already moved. */
5028 if (task_cpu(p) != src_cpu)
b1e38734 5029 goto done;
1da177e4 5030 /* Affinity changed (again). */
fa17b507 5031 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5032 goto fail;
1da177e4 5033
e2912009
PZ
5034 /*
5035 * If we're not on a rq, the next wake-up will ensure we're
5036 * placed properly.
5037 */
fd2f4419 5038 if (p->on_rq) {
4ca9b72b 5039 dequeue_task(rq_src, p, 0);
e2912009 5040 set_task_cpu(p, dest_cpu);
4ca9b72b 5041 enqueue_task(rq_dest, p, 0);
15afe09b 5042 check_preempt_curr(rq_dest, p, 0);
1da177e4 5043 }
b1e38734 5044done:
efc30814 5045 ret = 1;
b1e38734 5046fail:
1da177e4 5047 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5048 raw_spin_unlock(&p->pi_lock);
efc30814 5049 return ret;
1da177e4
LT
5050}
5051
5052/*
969c7921
TH
5053 * migration_cpu_stop - this will be executed by a highprio stopper thread
5054 * and performs thread migration by bumping thread off CPU then
5055 * 'pushing' onto another runqueue.
1da177e4 5056 */
969c7921 5057static int migration_cpu_stop(void *data)
1da177e4 5058{
969c7921 5059 struct migration_arg *arg = data;
f7b4cddc 5060
969c7921
TH
5061 /*
5062 * The original target cpu might have gone down and we might
5063 * be on another cpu but it doesn't matter.
5064 */
f7b4cddc 5065 local_irq_disable();
969c7921 5066 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5067 local_irq_enable();
1da177e4 5068 return 0;
f7b4cddc
ON
5069}
5070
1da177e4 5071#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5072
054b9108 5073/*
48c5ccae
PZ
5074 * Ensures that the idle task is using init_mm right before its cpu goes
5075 * offline.
054b9108 5076 */
48c5ccae 5077void idle_task_exit(void)
1da177e4 5078{
48c5ccae 5079 struct mm_struct *mm = current->active_mm;
e76bd8d9 5080
48c5ccae 5081 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5082
48c5ccae
PZ
5083 if (mm != &init_mm)
5084 switch_mm(mm, &init_mm, current);
5085 mmdrop(mm);
1da177e4
LT
5086}
5087
5088/*
5089 * While a dead CPU has no uninterruptible tasks queued at this point,
5090 * it might still have a nonzero ->nr_uninterruptible counter, because
5091 * for performance reasons the counter is not stricly tracking tasks to
5092 * their home CPUs. So we just add the counter to another CPU's counter,
5093 * to keep the global sum constant after CPU-down:
5094 */
70b97a7f 5095static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5096{
6ad4c188 5097 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5098
1da177e4
LT
5099 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5100 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5101}
5102
dd41f596 5103/*
48c5ccae 5104 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5105 */
48c5ccae 5106static void calc_global_load_remove(struct rq *rq)
1da177e4 5107{
48c5ccae
PZ
5108 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5109 rq->calc_load_active = 0;
1da177e4
LT
5110}
5111
48f24c4d 5112/*
48c5ccae
PZ
5113 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5114 * try_to_wake_up()->select_task_rq().
5115 *
5116 * Called with rq->lock held even though we'er in stop_machine() and
5117 * there's no concurrency possible, we hold the required locks anyway
5118 * because of lock validation efforts.
1da177e4 5119 */
48c5ccae 5120static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5121{
70b97a7f 5122 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5123 struct task_struct *next, *stop = rq->stop;
5124 int dest_cpu;
1da177e4
LT
5125
5126 /*
48c5ccae
PZ
5127 * Fudge the rq selection such that the below task selection loop
5128 * doesn't get stuck on the currently eligible stop task.
5129 *
5130 * We're currently inside stop_machine() and the rq is either stuck
5131 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5132 * either way we should never end up calling schedule() until we're
5133 * done here.
1da177e4 5134 */
48c5ccae 5135 rq->stop = NULL;
48f24c4d 5136
8cb120d3
PT
5137 /* Ensure any throttled groups are reachable by pick_next_task */
5138 unthrottle_offline_cfs_rqs(rq);
5139
dd41f596 5140 for ( ; ; ) {
48c5ccae
PZ
5141 /*
5142 * There's this thread running, bail when that's the only
5143 * remaining thread.
5144 */
5145 if (rq->nr_running == 1)
dd41f596 5146 break;
48c5ccae 5147
b67802ea 5148 next = pick_next_task(rq);
48c5ccae 5149 BUG_ON(!next);
79c53799 5150 next->sched_class->put_prev_task(rq, next);
e692ab53 5151
48c5ccae
PZ
5152 /* Find suitable destination for @next, with force if needed. */
5153 dest_cpu = select_fallback_rq(dead_cpu, next);
5154 raw_spin_unlock(&rq->lock);
5155
5156 __migrate_task(next, dead_cpu, dest_cpu);
5157
5158 raw_spin_lock(&rq->lock);
1da177e4 5159 }
dce48a84 5160
48c5ccae 5161 rq->stop = stop;
dce48a84 5162}
48c5ccae 5163
1da177e4
LT
5164#endif /* CONFIG_HOTPLUG_CPU */
5165
e692ab53
NP
5166#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5167
5168static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5169 {
5170 .procname = "sched_domain",
c57baf1e 5171 .mode = 0555,
e0361851 5172 },
56992309 5173 {}
e692ab53
NP
5174};
5175
5176static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5177 {
5178 .procname = "kernel",
c57baf1e 5179 .mode = 0555,
e0361851
AD
5180 .child = sd_ctl_dir,
5181 },
56992309 5182 {}
e692ab53
NP
5183};
5184
5185static struct ctl_table *sd_alloc_ctl_entry(int n)
5186{
5187 struct ctl_table *entry =
5cf9f062 5188 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5189
e692ab53
NP
5190 return entry;
5191}
5192
6382bc90
MM
5193static void sd_free_ctl_entry(struct ctl_table **tablep)
5194{
cd790076 5195 struct ctl_table *entry;
6382bc90 5196
cd790076
MM
5197 /*
5198 * In the intermediate directories, both the child directory and
5199 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5200 * will always be set. In the lowest directory the names are
cd790076
MM
5201 * static strings and all have proc handlers.
5202 */
5203 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5204 if (entry->child)
5205 sd_free_ctl_entry(&entry->child);
cd790076
MM
5206 if (entry->proc_handler == NULL)
5207 kfree(entry->procname);
5208 }
6382bc90
MM
5209
5210 kfree(*tablep);
5211 *tablep = NULL;
5212}
5213
e692ab53 5214static void
e0361851 5215set_table_entry(struct ctl_table *entry,
e692ab53 5216 const char *procname, void *data, int maxlen,
36fcb589 5217 umode_t mode, proc_handler *proc_handler)
e692ab53 5218{
e692ab53
NP
5219 entry->procname = procname;
5220 entry->data = data;
5221 entry->maxlen = maxlen;
5222 entry->mode = mode;
5223 entry->proc_handler = proc_handler;
5224}
5225
5226static struct ctl_table *
5227sd_alloc_ctl_domain_table(struct sched_domain *sd)
5228{
a5d8c348 5229 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5230
ad1cdc1d
MM
5231 if (table == NULL)
5232 return NULL;
5233
e0361851 5234 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5235 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5236 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5237 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5238 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5239 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5240 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5241 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5242 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5243 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5244 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5245 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5246 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5247 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5248 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5249 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5250 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5251 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5252 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5253 &sd->cache_nice_tries,
5254 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5255 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5256 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5257 set_table_entry(&table[11], "name", sd->name,
5258 CORENAME_MAX_SIZE, 0444, proc_dostring);
5259 /* &table[12] is terminator */
e692ab53
NP
5260
5261 return table;
5262}
5263
9a4e7159 5264static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5265{
5266 struct ctl_table *entry, *table;
5267 struct sched_domain *sd;
5268 int domain_num = 0, i;
5269 char buf[32];
5270
5271 for_each_domain(cpu, sd)
5272 domain_num++;
5273 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5274 if (table == NULL)
5275 return NULL;
e692ab53
NP
5276
5277 i = 0;
5278 for_each_domain(cpu, sd) {
5279 snprintf(buf, 32, "domain%d", i);
e692ab53 5280 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5281 entry->mode = 0555;
e692ab53
NP
5282 entry->child = sd_alloc_ctl_domain_table(sd);
5283 entry++;
5284 i++;
5285 }
5286 return table;
5287}
5288
5289static struct ctl_table_header *sd_sysctl_header;
6382bc90 5290static void register_sched_domain_sysctl(void)
e692ab53 5291{
6ad4c188 5292 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5293 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5294 char buf[32];
5295
7378547f
MM
5296 WARN_ON(sd_ctl_dir[0].child);
5297 sd_ctl_dir[0].child = entry;
5298
ad1cdc1d
MM
5299 if (entry == NULL)
5300 return;
5301
6ad4c188 5302 for_each_possible_cpu(i) {
e692ab53 5303 snprintf(buf, 32, "cpu%d", i);
e692ab53 5304 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5305 entry->mode = 0555;
e692ab53 5306 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5307 entry++;
e692ab53 5308 }
7378547f
MM
5309
5310 WARN_ON(sd_sysctl_header);
e692ab53
NP
5311 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5312}
6382bc90 5313
7378547f 5314/* may be called multiple times per register */
6382bc90
MM
5315static void unregister_sched_domain_sysctl(void)
5316{
7378547f
MM
5317 if (sd_sysctl_header)
5318 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5319 sd_sysctl_header = NULL;
7378547f
MM
5320 if (sd_ctl_dir[0].child)
5321 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5322}
e692ab53 5323#else
6382bc90
MM
5324static void register_sched_domain_sysctl(void)
5325{
5326}
5327static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5328{
5329}
5330#endif
5331
1f11eb6a
GH
5332static void set_rq_online(struct rq *rq)
5333{
5334 if (!rq->online) {
5335 const struct sched_class *class;
5336
c6c4927b 5337 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5338 rq->online = 1;
5339
5340 for_each_class(class) {
5341 if (class->rq_online)
5342 class->rq_online(rq);
5343 }
5344 }
5345}
5346
5347static void set_rq_offline(struct rq *rq)
5348{
5349 if (rq->online) {
5350 const struct sched_class *class;
5351
5352 for_each_class(class) {
5353 if (class->rq_offline)
5354 class->rq_offline(rq);
5355 }
5356
c6c4927b 5357 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5358 rq->online = 0;
5359 }
5360}
5361
1da177e4
LT
5362/*
5363 * migration_call - callback that gets triggered when a CPU is added.
5364 * Here we can start up the necessary migration thread for the new CPU.
5365 */
48f24c4d
IM
5366static int __cpuinit
5367migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5368{
48f24c4d 5369 int cpu = (long)hcpu;
1da177e4 5370 unsigned long flags;
969c7921 5371 struct rq *rq = cpu_rq(cpu);
1da177e4 5372
48c5ccae 5373 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5374
1da177e4 5375 case CPU_UP_PREPARE:
a468d389 5376 rq->calc_load_update = calc_load_update;
1da177e4 5377 break;
48f24c4d 5378
1da177e4 5379 case CPU_ONLINE:
1f94ef59 5380 /* Update our root-domain */
05fa785c 5381 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5382 if (rq->rd) {
c6c4927b 5383 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5384
5385 set_rq_online(rq);
1f94ef59 5386 }
05fa785c 5387 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5388 break;
48f24c4d 5389
1da177e4 5390#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5391 case CPU_DYING:
317f3941 5392 sched_ttwu_pending();
57d885fe 5393 /* Update our root-domain */
05fa785c 5394 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5395 if (rq->rd) {
c6c4927b 5396 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5397 set_rq_offline(rq);
57d885fe 5398 }
48c5ccae
PZ
5399 migrate_tasks(cpu);
5400 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5401 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5402
5403 migrate_nr_uninterruptible(rq);
5404 calc_global_load_remove(rq);
57d885fe 5405 break;
1da177e4
LT
5406#endif
5407 }
49c022e6
PZ
5408
5409 update_max_interval();
5410
1da177e4
LT
5411 return NOTIFY_OK;
5412}
5413
f38b0820
PM
5414/*
5415 * Register at high priority so that task migration (migrate_all_tasks)
5416 * happens before everything else. This has to be lower priority than
cdd6c482 5417 * the notifier in the perf_event subsystem, though.
1da177e4 5418 */
26c2143b 5419static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5420 .notifier_call = migration_call,
50a323b7 5421 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5422};
5423
3a101d05
TH
5424static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5425 unsigned long action, void *hcpu)
5426{
5427 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5428 case CPU_STARTING:
3a101d05
TH
5429 case CPU_DOWN_FAILED:
5430 set_cpu_active((long)hcpu, true);
5431 return NOTIFY_OK;
5432 default:
5433 return NOTIFY_DONE;
5434 }
5435}
5436
5437static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5438 unsigned long action, void *hcpu)
5439{
5440 switch (action & ~CPU_TASKS_FROZEN) {
5441 case CPU_DOWN_PREPARE:
5442 set_cpu_active((long)hcpu, false);
5443 return NOTIFY_OK;
5444 default:
5445 return NOTIFY_DONE;
5446 }
5447}
5448
7babe8db 5449static int __init migration_init(void)
1da177e4
LT
5450{
5451 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5452 int err;
48f24c4d 5453
3a101d05 5454 /* Initialize migration for the boot CPU */
07dccf33
AM
5455 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5456 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5457 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5458 register_cpu_notifier(&migration_notifier);
7babe8db 5459
3a101d05
TH
5460 /* Register cpu active notifiers */
5461 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5462 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5463
a004cd42 5464 return 0;
1da177e4 5465}
7babe8db 5466early_initcall(migration_init);
1da177e4
LT
5467#endif
5468
5469#ifdef CONFIG_SMP
476f3534 5470
4cb98839
PZ
5471static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5472
3e9830dc 5473#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5474
f6630114
MT
5475static __read_mostly int sched_domain_debug_enabled;
5476
5477static int __init sched_domain_debug_setup(char *str)
5478{
5479 sched_domain_debug_enabled = 1;
5480
5481 return 0;
5482}
5483early_param("sched_debug", sched_domain_debug_setup);
5484
7c16ec58 5485static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5486 struct cpumask *groupmask)
1da177e4 5487{
4dcf6aff 5488 struct sched_group *group = sd->groups;
434d53b0 5489 char str[256];
1da177e4 5490
968ea6d8 5491 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5492 cpumask_clear(groupmask);
4dcf6aff
IM
5493
5494 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5495
5496 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5497 printk("does not load-balance\n");
4dcf6aff 5498 if (sd->parent)
3df0fc5b
PZ
5499 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5500 " has parent");
4dcf6aff 5501 return -1;
41c7ce9a
NP
5502 }
5503
3df0fc5b 5504 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5505
758b2cdc 5506 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5507 printk(KERN_ERR "ERROR: domain->span does not contain "
5508 "CPU%d\n", cpu);
4dcf6aff 5509 }
758b2cdc 5510 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5511 printk(KERN_ERR "ERROR: domain->groups does not contain"
5512 " CPU%d\n", cpu);
4dcf6aff 5513 }
1da177e4 5514
4dcf6aff 5515 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5516 do {
4dcf6aff 5517 if (!group) {
3df0fc5b
PZ
5518 printk("\n");
5519 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5520 break;
5521 }
5522
9c3f75cb 5523 if (!group->sgp->power) {
3df0fc5b
PZ
5524 printk(KERN_CONT "\n");
5525 printk(KERN_ERR "ERROR: domain->cpu_power not "
5526 "set\n");
4dcf6aff
IM
5527 break;
5528 }
1da177e4 5529
758b2cdc 5530 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5531 printk(KERN_CONT "\n");
5532 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5533 break;
5534 }
1da177e4 5535
758b2cdc 5536 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5537 printk(KERN_CONT "\n");
5538 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5539 break;
5540 }
1da177e4 5541
758b2cdc 5542 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5543
968ea6d8 5544 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5545
3df0fc5b 5546 printk(KERN_CONT " %s", str);
9c3f75cb 5547 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5548 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5549 group->sgp->power);
381512cf 5550 }
1da177e4 5551
4dcf6aff
IM
5552 group = group->next;
5553 } while (group != sd->groups);
3df0fc5b 5554 printk(KERN_CONT "\n");
1da177e4 5555
758b2cdc 5556 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5557 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5558
758b2cdc
RR
5559 if (sd->parent &&
5560 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5561 printk(KERN_ERR "ERROR: parent span is not a superset "
5562 "of domain->span\n");
4dcf6aff
IM
5563 return 0;
5564}
1da177e4 5565
4dcf6aff
IM
5566static void sched_domain_debug(struct sched_domain *sd, int cpu)
5567{
5568 int level = 0;
1da177e4 5569
f6630114
MT
5570 if (!sched_domain_debug_enabled)
5571 return;
5572
4dcf6aff
IM
5573 if (!sd) {
5574 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5575 return;
5576 }
1da177e4 5577
4dcf6aff
IM
5578 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5579
5580 for (;;) {
4cb98839 5581 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5582 break;
1da177e4
LT
5583 level++;
5584 sd = sd->parent;
33859f7f 5585 if (!sd)
4dcf6aff
IM
5586 break;
5587 }
1da177e4 5588}
6d6bc0ad 5589#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5590# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5591#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5592
1a20ff27 5593static int sd_degenerate(struct sched_domain *sd)
245af2c7 5594{
758b2cdc 5595 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5596 return 1;
5597
5598 /* Following flags need at least 2 groups */
5599 if (sd->flags & (SD_LOAD_BALANCE |
5600 SD_BALANCE_NEWIDLE |
5601 SD_BALANCE_FORK |
89c4710e
SS
5602 SD_BALANCE_EXEC |
5603 SD_SHARE_CPUPOWER |
5604 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5605 if (sd->groups != sd->groups->next)
5606 return 0;
5607 }
5608
5609 /* Following flags don't use groups */
c88d5910 5610 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5611 return 0;
5612
5613 return 1;
5614}
5615
48f24c4d
IM
5616static int
5617sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5618{
5619 unsigned long cflags = sd->flags, pflags = parent->flags;
5620
5621 if (sd_degenerate(parent))
5622 return 1;
5623
758b2cdc 5624 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5625 return 0;
5626
245af2c7
SS
5627 /* Flags needing groups don't count if only 1 group in parent */
5628 if (parent->groups == parent->groups->next) {
5629 pflags &= ~(SD_LOAD_BALANCE |
5630 SD_BALANCE_NEWIDLE |
5631 SD_BALANCE_FORK |
89c4710e
SS
5632 SD_BALANCE_EXEC |
5633 SD_SHARE_CPUPOWER |
5634 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5635 if (nr_node_ids == 1)
5636 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5637 }
5638 if (~cflags & pflags)
5639 return 0;
5640
5641 return 1;
5642}
5643
dce840a0 5644static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5645{
dce840a0 5646 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5647
68e74568 5648 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5649 free_cpumask_var(rd->rto_mask);
5650 free_cpumask_var(rd->online);
5651 free_cpumask_var(rd->span);
5652 kfree(rd);
5653}
5654
57d885fe
GH
5655static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5656{
a0490fa3 5657 struct root_domain *old_rd = NULL;
57d885fe 5658 unsigned long flags;
57d885fe 5659
05fa785c 5660 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5661
5662 if (rq->rd) {
a0490fa3 5663 old_rd = rq->rd;
57d885fe 5664
c6c4927b 5665 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5666 set_rq_offline(rq);
57d885fe 5667
c6c4927b 5668 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5669
a0490fa3
IM
5670 /*
5671 * If we dont want to free the old_rt yet then
5672 * set old_rd to NULL to skip the freeing later
5673 * in this function:
5674 */
5675 if (!atomic_dec_and_test(&old_rd->refcount))
5676 old_rd = NULL;
57d885fe
GH
5677 }
5678
5679 atomic_inc(&rd->refcount);
5680 rq->rd = rd;
5681
c6c4927b 5682 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5683 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5684 set_rq_online(rq);
57d885fe 5685
05fa785c 5686 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5687
5688 if (old_rd)
dce840a0 5689 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5690}
5691
68c38fc3 5692static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5693{
5694 memset(rd, 0, sizeof(*rd));
5695
68c38fc3 5696 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5697 goto out;
68c38fc3 5698 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5699 goto free_span;
68c38fc3 5700 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5701 goto free_online;
6e0534f2 5702
68c38fc3 5703 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5704 goto free_rto_mask;
c6c4927b 5705 return 0;
6e0534f2 5706
68e74568
RR
5707free_rto_mask:
5708 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5709free_online:
5710 free_cpumask_var(rd->online);
5711free_span:
5712 free_cpumask_var(rd->span);
0c910d28 5713out:
c6c4927b 5714 return -ENOMEM;
57d885fe
GH
5715}
5716
029632fb
PZ
5717/*
5718 * By default the system creates a single root-domain with all cpus as
5719 * members (mimicking the global state we have today).
5720 */
5721struct root_domain def_root_domain;
5722
57d885fe
GH
5723static void init_defrootdomain(void)
5724{
68c38fc3 5725 init_rootdomain(&def_root_domain);
c6c4927b 5726
57d885fe
GH
5727 atomic_set(&def_root_domain.refcount, 1);
5728}
5729
dc938520 5730static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5731{
5732 struct root_domain *rd;
5733
5734 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5735 if (!rd)
5736 return NULL;
5737
68c38fc3 5738 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5739 kfree(rd);
5740 return NULL;
5741 }
57d885fe
GH
5742
5743 return rd;
5744}
5745
e3589f6c
PZ
5746static void free_sched_groups(struct sched_group *sg, int free_sgp)
5747{
5748 struct sched_group *tmp, *first;
5749
5750 if (!sg)
5751 return;
5752
5753 first = sg;
5754 do {
5755 tmp = sg->next;
5756
5757 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5758 kfree(sg->sgp);
5759
5760 kfree(sg);
5761 sg = tmp;
5762 } while (sg != first);
5763}
5764
dce840a0
PZ
5765static void free_sched_domain(struct rcu_head *rcu)
5766{
5767 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5768
5769 /*
5770 * If its an overlapping domain it has private groups, iterate and
5771 * nuke them all.
5772 */
5773 if (sd->flags & SD_OVERLAP) {
5774 free_sched_groups(sd->groups, 1);
5775 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5776 kfree(sd->groups->sgp);
dce840a0 5777 kfree(sd->groups);
9c3f75cb 5778 }
dce840a0
PZ
5779 kfree(sd);
5780}
5781
5782static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5783{
5784 call_rcu(&sd->rcu, free_sched_domain);
5785}
5786
5787static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5788{
5789 for (; sd; sd = sd->parent)
5790 destroy_sched_domain(sd, cpu);
5791}
5792
518cd623
PZ
5793/*
5794 * Keep a special pointer to the highest sched_domain that has
5795 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5796 * allows us to avoid some pointer chasing select_idle_sibling().
5797 *
5798 * Also keep a unique ID per domain (we use the first cpu number in
5799 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5800 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5801 */
5802DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5803DEFINE_PER_CPU(int, sd_llc_id);
5804
5805static void update_top_cache_domain(int cpu)
5806{
5807 struct sched_domain *sd;
5808 int id = cpu;
5809
5810 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5811 if (sd)
5812 id = cpumask_first(sched_domain_span(sd));
5813
5814 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5815 per_cpu(sd_llc_id, cpu) = id;
5816}
5817
1da177e4 5818/*
0eab9146 5819 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5820 * hold the hotplug lock.
5821 */
0eab9146
IM
5822static void
5823cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5824{
70b97a7f 5825 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5826 struct sched_domain *tmp;
5827
5828 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5829 for (tmp = sd; tmp; ) {
245af2c7
SS
5830 struct sched_domain *parent = tmp->parent;
5831 if (!parent)
5832 break;
f29c9b1c 5833
1a848870 5834 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5835 tmp->parent = parent->parent;
1a848870
SS
5836 if (parent->parent)
5837 parent->parent->child = tmp;
dce840a0 5838 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5839 } else
5840 tmp = tmp->parent;
245af2c7
SS
5841 }
5842
1a848870 5843 if (sd && sd_degenerate(sd)) {
dce840a0 5844 tmp = sd;
245af2c7 5845 sd = sd->parent;
dce840a0 5846 destroy_sched_domain(tmp, cpu);
1a848870
SS
5847 if (sd)
5848 sd->child = NULL;
5849 }
1da177e4 5850
4cb98839 5851 sched_domain_debug(sd, cpu);
1da177e4 5852
57d885fe 5853 rq_attach_root(rq, rd);
dce840a0 5854 tmp = rq->sd;
674311d5 5855 rcu_assign_pointer(rq->sd, sd);
dce840a0 5856 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5857
5858 update_top_cache_domain(cpu);
1da177e4
LT
5859}
5860
5861/* cpus with isolated domains */
dcc30a35 5862static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5863
5864/* Setup the mask of cpus configured for isolated domains */
5865static int __init isolated_cpu_setup(char *str)
5866{
bdddd296 5867 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5868 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5869 return 1;
5870}
5871
8927f494 5872__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5873
9c1cfda2 5874#ifdef CONFIG_NUMA
198e2f18 5875
9c1cfda2
JH
5876/**
5877 * find_next_best_node - find the next node to include in a sched_domain
5878 * @node: node whose sched_domain we're building
5879 * @used_nodes: nodes already in the sched_domain
5880 *
41a2d6cf 5881 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5882 * finds the closest node not already in the @used_nodes map.
5883 *
5884 * Should use nodemask_t.
5885 */
c5f59f08 5886static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5887{
7142d17e 5888 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5889
5890 min_val = INT_MAX;
5891
076ac2af 5892 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5893 /* Start at @node */
076ac2af 5894 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5895
5896 if (!nr_cpus_node(n))
5897 continue;
5898
5899 /* Skip already used nodes */
c5f59f08 5900 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5901 continue;
5902
5903 /* Simple min distance search */
5904 val = node_distance(node, n);
5905
5906 if (val < min_val) {
5907 min_val = val;
5908 best_node = n;
5909 }
5910 }
5911
7142d17e
HD
5912 if (best_node != -1)
5913 node_set(best_node, *used_nodes);
9c1cfda2
JH
5914 return best_node;
5915}
5916
5917/**
5918 * sched_domain_node_span - get a cpumask for a node's sched_domain
5919 * @node: node whose cpumask we're constructing
73486722 5920 * @span: resulting cpumask
9c1cfda2 5921 *
41a2d6cf 5922 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5923 * should be one that prevents unnecessary balancing, but also spreads tasks
5924 * out optimally.
5925 */
96f874e2 5926static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5927{
c5f59f08 5928 nodemask_t used_nodes;
48f24c4d 5929 int i;
9c1cfda2 5930
6ca09dfc 5931 cpumask_clear(span);
c5f59f08 5932 nodes_clear(used_nodes);
9c1cfda2 5933
6ca09dfc 5934 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5935 node_set(node, used_nodes);
9c1cfda2
JH
5936
5937 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5938 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5939 if (next_node < 0)
5940 break;
6ca09dfc 5941 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5942 }
9c1cfda2 5943}
d3081f52
PZ
5944
5945static const struct cpumask *cpu_node_mask(int cpu)
5946{
5947 lockdep_assert_held(&sched_domains_mutex);
5948
5949 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5950
5951 return sched_domains_tmpmask;
5952}
2c402dc3
PZ
5953
5954static const struct cpumask *cpu_allnodes_mask(int cpu)
5955{
5956 return cpu_possible_mask;
5957}
6d6bc0ad 5958#endif /* CONFIG_NUMA */
9c1cfda2 5959
d3081f52
PZ
5960static const struct cpumask *cpu_cpu_mask(int cpu)
5961{
5962 return cpumask_of_node(cpu_to_node(cpu));
5963}
5964
5c45bf27 5965int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5966
dce840a0
PZ
5967struct sd_data {
5968 struct sched_domain **__percpu sd;
5969 struct sched_group **__percpu sg;
9c3f75cb 5970 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5971};
5972
49a02c51 5973struct s_data {
21d42ccf 5974 struct sched_domain ** __percpu sd;
49a02c51
AH
5975 struct root_domain *rd;
5976};
5977
2109b99e 5978enum s_alloc {
2109b99e 5979 sa_rootdomain,
21d42ccf 5980 sa_sd,
dce840a0 5981 sa_sd_storage,
2109b99e
AH
5982 sa_none,
5983};
5984
54ab4ff4
PZ
5985struct sched_domain_topology_level;
5986
5987typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5988typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5989
e3589f6c
PZ
5990#define SDTL_OVERLAP 0x01
5991
eb7a74e6 5992struct sched_domain_topology_level {
2c402dc3
PZ
5993 sched_domain_init_f init;
5994 sched_domain_mask_f mask;
e3589f6c 5995 int flags;
54ab4ff4 5996 struct sd_data data;
eb7a74e6
PZ
5997};
5998
e3589f6c
PZ
5999static int
6000build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6001{
6002 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6003 const struct cpumask *span = sched_domain_span(sd);
6004 struct cpumask *covered = sched_domains_tmpmask;
6005 struct sd_data *sdd = sd->private;
6006 struct sched_domain *child;
6007 int i;
6008
6009 cpumask_clear(covered);
6010
6011 for_each_cpu(i, span) {
6012 struct cpumask *sg_span;
6013
6014 if (cpumask_test_cpu(i, covered))
6015 continue;
6016
6017 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6018 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6019
6020 if (!sg)
6021 goto fail;
6022
6023 sg_span = sched_group_cpus(sg);
6024
6025 child = *per_cpu_ptr(sdd->sd, i);
6026 if (child->child) {
6027 child = child->child;
6028 cpumask_copy(sg_span, sched_domain_span(child));
6029 } else
6030 cpumask_set_cpu(i, sg_span);
6031
6032 cpumask_or(covered, covered, sg_span);
6033
6034 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6035 atomic_inc(&sg->sgp->ref);
6036
6037 if (cpumask_test_cpu(cpu, sg_span))
6038 groups = sg;
6039
6040 if (!first)
6041 first = sg;
6042 if (last)
6043 last->next = sg;
6044 last = sg;
6045 last->next = first;
6046 }
6047 sd->groups = groups;
6048
6049 return 0;
6050
6051fail:
6052 free_sched_groups(first, 0);
6053
6054 return -ENOMEM;
6055}
6056
dce840a0 6057static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6058{
dce840a0
PZ
6059 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6060 struct sched_domain *child = sd->child;
1da177e4 6061
dce840a0
PZ
6062 if (child)
6063 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6064
9c3f75cb 6065 if (sg) {
dce840a0 6066 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6067 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6068 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6069 }
dce840a0
PZ
6070
6071 return cpu;
1e9f28fa 6072}
1e9f28fa 6073
01a08546 6074/*
dce840a0
PZ
6075 * build_sched_groups will build a circular linked list of the groups
6076 * covered by the given span, and will set each group's ->cpumask correctly,
6077 * and ->cpu_power to 0.
e3589f6c
PZ
6078 *
6079 * Assumes the sched_domain tree is fully constructed
01a08546 6080 */
e3589f6c
PZ
6081static int
6082build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6083{
dce840a0
PZ
6084 struct sched_group *first = NULL, *last = NULL;
6085 struct sd_data *sdd = sd->private;
6086 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6087 struct cpumask *covered;
dce840a0 6088 int i;
9c1cfda2 6089
e3589f6c
PZ
6090 get_group(cpu, sdd, &sd->groups);
6091 atomic_inc(&sd->groups->ref);
6092
6093 if (cpu != cpumask_first(sched_domain_span(sd)))
6094 return 0;
6095
f96225fd
PZ
6096 lockdep_assert_held(&sched_domains_mutex);
6097 covered = sched_domains_tmpmask;
6098
dce840a0 6099 cpumask_clear(covered);
6711cab4 6100
dce840a0
PZ
6101 for_each_cpu(i, span) {
6102 struct sched_group *sg;
6103 int group = get_group(i, sdd, &sg);
6104 int j;
6711cab4 6105
dce840a0
PZ
6106 if (cpumask_test_cpu(i, covered))
6107 continue;
6711cab4 6108
dce840a0 6109 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6110 sg->sgp->power = 0;
0601a88d 6111
dce840a0
PZ
6112 for_each_cpu(j, span) {
6113 if (get_group(j, sdd, NULL) != group)
6114 continue;
0601a88d 6115
dce840a0
PZ
6116 cpumask_set_cpu(j, covered);
6117 cpumask_set_cpu(j, sched_group_cpus(sg));
6118 }
0601a88d 6119
dce840a0
PZ
6120 if (!first)
6121 first = sg;
6122 if (last)
6123 last->next = sg;
6124 last = sg;
6125 }
6126 last->next = first;
e3589f6c
PZ
6127
6128 return 0;
0601a88d 6129}
51888ca2 6130
89c4710e
SS
6131/*
6132 * Initialize sched groups cpu_power.
6133 *
6134 * cpu_power indicates the capacity of sched group, which is used while
6135 * distributing the load between different sched groups in a sched domain.
6136 * Typically cpu_power for all the groups in a sched domain will be same unless
6137 * there are asymmetries in the topology. If there are asymmetries, group
6138 * having more cpu_power will pickup more load compared to the group having
6139 * less cpu_power.
89c4710e
SS
6140 */
6141static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6142{
e3589f6c 6143 struct sched_group *sg = sd->groups;
89c4710e 6144
e3589f6c
PZ
6145 WARN_ON(!sd || !sg);
6146
6147 do {
6148 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6149 sg = sg->next;
6150 } while (sg != sd->groups);
89c4710e 6151
e3589f6c
PZ
6152 if (cpu != group_first_cpu(sg))
6153 return;
aae6d3dd 6154
d274cb30 6155 update_group_power(sd, cpu);
69e1e811 6156 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6157}
6158
029632fb
PZ
6159int __weak arch_sd_sibling_asym_packing(void)
6160{
6161 return 0*SD_ASYM_PACKING;
89c4710e
SS
6162}
6163
7c16ec58
MT
6164/*
6165 * Initializers for schedule domains
6166 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6167 */
6168
a5d8c348
IM
6169#ifdef CONFIG_SCHED_DEBUG
6170# define SD_INIT_NAME(sd, type) sd->name = #type
6171#else
6172# define SD_INIT_NAME(sd, type) do { } while (0)
6173#endif
6174
54ab4ff4
PZ
6175#define SD_INIT_FUNC(type) \
6176static noinline struct sched_domain * \
6177sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6178{ \
6179 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6180 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6181 SD_INIT_NAME(sd, type); \
6182 sd->private = &tl->data; \
6183 return sd; \
7c16ec58
MT
6184}
6185
6186SD_INIT_FUNC(CPU)
6187#ifdef CONFIG_NUMA
6188 SD_INIT_FUNC(ALLNODES)
6189 SD_INIT_FUNC(NODE)
6190#endif
6191#ifdef CONFIG_SCHED_SMT
6192 SD_INIT_FUNC(SIBLING)
6193#endif
6194#ifdef CONFIG_SCHED_MC
6195 SD_INIT_FUNC(MC)
6196#endif
01a08546
HC
6197#ifdef CONFIG_SCHED_BOOK
6198 SD_INIT_FUNC(BOOK)
6199#endif
7c16ec58 6200
1d3504fc 6201static int default_relax_domain_level = -1;
60495e77 6202int sched_domain_level_max;
1d3504fc
HS
6203
6204static int __init setup_relax_domain_level(char *str)
6205{
30e0e178
LZ
6206 unsigned long val;
6207
6208 val = simple_strtoul(str, NULL, 0);
60495e77 6209 if (val < sched_domain_level_max)
30e0e178
LZ
6210 default_relax_domain_level = val;
6211
1d3504fc
HS
6212 return 1;
6213}
6214__setup("relax_domain_level=", setup_relax_domain_level);
6215
6216static void set_domain_attribute(struct sched_domain *sd,
6217 struct sched_domain_attr *attr)
6218{
6219 int request;
6220
6221 if (!attr || attr->relax_domain_level < 0) {
6222 if (default_relax_domain_level < 0)
6223 return;
6224 else
6225 request = default_relax_domain_level;
6226 } else
6227 request = attr->relax_domain_level;
6228 if (request < sd->level) {
6229 /* turn off idle balance on this domain */
c88d5910 6230 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6231 } else {
6232 /* turn on idle balance on this domain */
c88d5910 6233 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6234 }
6235}
6236
54ab4ff4
PZ
6237static void __sdt_free(const struct cpumask *cpu_map);
6238static int __sdt_alloc(const struct cpumask *cpu_map);
6239
2109b99e
AH
6240static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6241 const struct cpumask *cpu_map)
6242{
6243 switch (what) {
2109b99e 6244 case sa_rootdomain:
822ff793
PZ
6245 if (!atomic_read(&d->rd->refcount))
6246 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6247 case sa_sd:
6248 free_percpu(d->sd); /* fall through */
dce840a0 6249 case sa_sd_storage:
54ab4ff4 6250 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6251 case sa_none:
6252 break;
6253 }
6254}
3404c8d9 6255
2109b99e
AH
6256static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6257 const struct cpumask *cpu_map)
6258{
dce840a0
PZ
6259 memset(d, 0, sizeof(*d));
6260
54ab4ff4
PZ
6261 if (__sdt_alloc(cpu_map))
6262 return sa_sd_storage;
dce840a0
PZ
6263 d->sd = alloc_percpu(struct sched_domain *);
6264 if (!d->sd)
6265 return sa_sd_storage;
2109b99e 6266 d->rd = alloc_rootdomain();
dce840a0 6267 if (!d->rd)
21d42ccf 6268 return sa_sd;
2109b99e
AH
6269 return sa_rootdomain;
6270}
57d885fe 6271
dce840a0
PZ
6272/*
6273 * NULL the sd_data elements we've used to build the sched_domain and
6274 * sched_group structure so that the subsequent __free_domain_allocs()
6275 * will not free the data we're using.
6276 */
6277static void claim_allocations(int cpu, struct sched_domain *sd)
6278{
6279 struct sd_data *sdd = sd->private;
dce840a0
PZ
6280
6281 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6282 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6283
e3589f6c 6284 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6285 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6286
6287 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6288 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6289}
6290
2c402dc3
PZ
6291#ifdef CONFIG_SCHED_SMT
6292static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6293{
2c402dc3 6294 return topology_thread_cpumask(cpu);
3bd65a80 6295}
2c402dc3 6296#endif
7f4588f3 6297
d069b916
PZ
6298/*
6299 * Topology list, bottom-up.
6300 */
2c402dc3 6301static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6302#ifdef CONFIG_SCHED_SMT
6303 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6304#endif
1e9f28fa 6305#ifdef CONFIG_SCHED_MC
2c402dc3 6306 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6307#endif
d069b916
PZ
6308#ifdef CONFIG_SCHED_BOOK
6309 { sd_init_BOOK, cpu_book_mask, },
6310#endif
6311 { sd_init_CPU, cpu_cpu_mask, },
6312#ifdef CONFIG_NUMA
e3589f6c 6313 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6314 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6315#endif
eb7a74e6
PZ
6316 { NULL, },
6317};
6318
6319static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6320
54ab4ff4
PZ
6321static int __sdt_alloc(const struct cpumask *cpu_map)
6322{
6323 struct sched_domain_topology_level *tl;
6324 int j;
6325
6326 for (tl = sched_domain_topology; tl->init; tl++) {
6327 struct sd_data *sdd = &tl->data;
6328
6329 sdd->sd = alloc_percpu(struct sched_domain *);
6330 if (!sdd->sd)
6331 return -ENOMEM;
6332
6333 sdd->sg = alloc_percpu(struct sched_group *);
6334 if (!sdd->sg)
6335 return -ENOMEM;
6336
9c3f75cb
PZ
6337 sdd->sgp = alloc_percpu(struct sched_group_power *);
6338 if (!sdd->sgp)
6339 return -ENOMEM;
6340
54ab4ff4
PZ
6341 for_each_cpu(j, cpu_map) {
6342 struct sched_domain *sd;
6343 struct sched_group *sg;
9c3f75cb 6344 struct sched_group_power *sgp;
54ab4ff4
PZ
6345
6346 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6347 GFP_KERNEL, cpu_to_node(j));
6348 if (!sd)
6349 return -ENOMEM;
6350
6351 *per_cpu_ptr(sdd->sd, j) = sd;
6352
6353 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6354 GFP_KERNEL, cpu_to_node(j));
6355 if (!sg)
6356 return -ENOMEM;
6357
6358 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6359
6360 sgp = kzalloc_node(sizeof(struct sched_group_power),
6361 GFP_KERNEL, cpu_to_node(j));
6362 if (!sgp)
6363 return -ENOMEM;
6364
6365 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6366 }
6367 }
6368
6369 return 0;
6370}
6371
6372static void __sdt_free(const struct cpumask *cpu_map)
6373{
6374 struct sched_domain_topology_level *tl;
6375 int j;
6376
6377 for (tl = sched_domain_topology; tl->init; tl++) {
6378 struct sd_data *sdd = &tl->data;
6379
6380 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6381 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6382 if (sd && (sd->flags & SD_OVERLAP))
6383 free_sched_groups(sd->groups, 0);
feff8fa0 6384 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6385 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6386 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6387 }
6388 free_percpu(sdd->sd);
6389 free_percpu(sdd->sg);
9c3f75cb 6390 free_percpu(sdd->sgp);
54ab4ff4
PZ
6391 }
6392}
6393
2c402dc3
PZ
6394struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6395 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6396 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6397 int cpu)
6398{
54ab4ff4 6399 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6400 if (!sd)
d069b916 6401 return child;
2c402dc3
PZ
6402
6403 set_domain_attribute(sd, attr);
6404 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6405 if (child) {
6406 sd->level = child->level + 1;
6407 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6408 child->parent = sd;
60495e77 6409 }
d069b916 6410 sd->child = child;
2c402dc3
PZ
6411
6412 return sd;
6413}
6414
2109b99e
AH
6415/*
6416 * Build sched domains for a given set of cpus and attach the sched domains
6417 * to the individual cpus
6418 */
dce840a0
PZ
6419static int build_sched_domains(const struct cpumask *cpu_map,
6420 struct sched_domain_attr *attr)
2109b99e
AH
6421{
6422 enum s_alloc alloc_state = sa_none;
dce840a0 6423 struct sched_domain *sd;
2109b99e 6424 struct s_data d;
822ff793 6425 int i, ret = -ENOMEM;
9c1cfda2 6426
2109b99e
AH
6427 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6428 if (alloc_state != sa_rootdomain)
6429 goto error;
9c1cfda2 6430
dce840a0 6431 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6432 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6433 struct sched_domain_topology_level *tl;
6434
3bd65a80 6435 sd = NULL;
e3589f6c 6436 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6437 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6438 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6439 sd->flags |= SD_OVERLAP;
d110235d
PZ
6440 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6441 break;
e3589f6c 6442 }
d274cb30 6443
d069b916
PZ
6444 while (sd->child)
6445 sd = sd->child;
6446
21d42ccf 6447 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6448 }
6449
6450 /* Build the groups for the domains */
6451 for_each_cpu(i, cpu_map) {
6452 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6453 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6454 if (sd->flags & SD_OVERLAP) {
6455 if (build_overlap_sched_groups(sd, i))
6456 goto error;
6457 } else {
6458 if (build_sched_groups(sd, i))
6459 goto error;
6460 }
1cf51902 6461 }
a06dadbe 6462 }
9c1cfda2 6463
1da177e4 6464 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6465 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6466 if (!cpumask_test_cpu(i, cpu_map))
6467 continue;
9c1cfda2 6468
dce840a0
PZ
6469 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6470 claim_allocations(i, sd);
cd4ea6ae 6471 init_sched_groups_power(i, sd);
dce840a0 6472 }
f712c0c7 6473 }
9c1cfda2 6474
1da177e4 6475 /* Attach the domains */
dce840a0 6476 rcu_read_lock();
abcd083a 6477 for_each_cpu(i, cpu_map) {
21d42ccf 6478 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6479 cpu_attach_domain(sd, d.rd, i);
1da177e4 6480 }
dce840a0 6481 rcu_read_unlock();
51888ca2 6482
822ff793 6483 ret = 0;
51888ca2 6484error:
2109b99e 6485 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6486 return ret;
1da177e4 6487}
029190c5 6488
acc3f5d7 6489static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6490static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6491static struct sched_domain_attr *dattr_cur;
6492 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6493
6494/*
6495 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6496 * cpumask) fails, then fallback to a single sched domain,
6497 * as determined by the single cpumask fallback_doms.
029190c5 6498 */
4212823f 6499static cpumask_var_t fallback_doms;
029190c5 6500
ee79d1bd
HC
6501/*
6502 * arch_update_cpu_topology lets virtualized architectures update the
6503 * cpu core maps. It is supposed to return 1 if the topology changed
6504 * or 0 if it stayed the same.
6505 */
6506int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6507{
ee79d1bd 6508 return 0;
22e52b07
HC
6509}
6510
acc3f5d7
RR
6511cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6512{
6513 int i;
6514 cpumask_var_t *doms;
6515
6516 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6517 if (!doms)
6518 return NULL;
6519 for (i = 0; i < ndoms; i++) {
6520 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6521 free_sched_domains(doms, i);
6522 return NULL;
6523 }
6524 }
6525 return doms;
6526}
6527
6528void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6529{
6530 unsigned int i;
6531 for (i = 0; i < ndoms; i++)
6532 free_cpumask_var(doms[i]);
6533 kfree(doms);
6534}
6535
1a20ff27 6536/*
41a2d6cf 6537 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6538 * For now this just excludes isolated cpus, but could be used to
6539 * exclude other special cases in the future.
1a20ff27 6540 */
c4a8849a 6541static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6542{
7378547f
MM
6543 int err;
6544
22e52b07 6545 arch_update_cpu_topology();
029190c5 6546 ndoms_cur = 1;
acc3f5d7 6547 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6548 if (!doms_cur)
acc3f5d7
RR
6549 doms_cur = &fallback_doms;
6550 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6551 dattr_cur = NULL;
dce840a0 6552 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6553 register_sched_domain_sysctl();
7378547f
MM
6554
6555 return err;
1a20ff27
DG
6556}
6557
1a20ff27
DG
6558/*
6559 * Detach sched domains from a group of cpus specified in cpu_map
6560 * These cpus will now be attached to the NULL domain
6561 */
96f874e2 6562static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6563{
6564 int i;
6565
dce840a0 6566 rcu_read_lock();
abcd083a 6567 for_each_cpu(i, cpu_map)
57d885fe 6568 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6569 rcu_read_unlock();
1a20ff27
DG
6570}
6571
1d3504fc
HS
6572/* handle null as "default" */
6573static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6574 struct sched_domain_attr *new, int idx_new)
6575{
6576 struct sched_domain_attr tmp;
6577
6578 /* fast path */
6579 if (!new && !cur)
6580 return 1;
6581
6582 tmp = SD_ATTR_INIT;
6583 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6584 new ? (new + idx_new) : &tmp,
6585 sizeof(struct sched_domain_attr));
6586}
6587
029190c5
PJ
6588/*
6589 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6590 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6591 * doms_new[] to the current sched domain partitioning, doms_cur[].
6592 * It destroys each deleted domain and builds each new domain.
6593 *
acc3f5d7 6594 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6595 * The masks don't intersect (don't overlap.) We should setup one
6596 * sched domain for each mask. CPUs not in any of the cpumasks will
6597 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6598 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6599 * it as it is.
6600 *
acc3f5d7
RR
6601 * The passed in 'doms_new' should be allocated using
6602 * alloc_sched_domains. This routine takes ownership of it and will
6603 * free_sched_domains it when done with it. If the caller failed the
6604 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6605 * and partition_sched_domains() will fallback to the single partition
6606 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6607 *
96f874e2 6608 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6609 * ndoms_new == 0 is a special case for destroying existing domains,
6610 * and it will not create the default domain.
dfb512ec 6611 *
029190c5
PJ
6612 * Call with hotplug lock held
6613 */
acc3f5d7 6614void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6615 struct sched_domain_attr *dattr_new)
029190c5 6616{
dfb512ec 6617 int i, j, n;
d65bd5ec 6618 int new_topology;
029190c5 6619
712555ee 6620 mutex_lock(&sched_domains_mutex);
a1835615 6621
7378547f
MM
6622 /* always unregister in case we don't destroy any domains */
6623 unregister_sched_domain_sysctl();
6624
d65bd5ec
HC
6625 /* Let architecture update cpu core mappings. */
6626 new_topology = arch_update_cpu_topology();
6627
dfb512ec 6628 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6629
6630 /* Destroy deleted domains */
6631 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6632 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6633 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6634 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6635 goto match1;
6636 }
6637 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6638 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6639match1:
6640 ;
6641 }
6642
e761b772
MK
6643 if (doms_new == NULL) {
6644 ndoms_cur = 0;
acc3f5d7 6645 doms_new = &fallback_doms;
6ad4c188 6646 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6647 WARN_ON_ONCE(dattr_new);
e761b772
MK
6648 }
6649
029190c5
PJ
6650 /* Build new domains */
6651 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6652 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6653 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6654 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6655 goto match2;
6656 }
6657 /* no match - add a new doms_new */
dce840a0 6658 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6659match2:
6660 ;
6661 }
6662
6663 /* Remember the new sched domains */
acc3f5d7
RR
6664 if (doms_cur != &fallback_doms)
6665 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6666 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6667 doms_cur = doms_new;
1d3504fc 6668 dattr_cur = dattr_new;
029190c5 6669 ndoms_cur = ndoms_new;
7378547f
MM
6670
6671 register_sched_domain_sysctl();
a1835615 6672
712555ee 6673 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6674}
6675
5c45bf27 6676#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6677static void reinit_sched_domains(void)
5c45bf27 6678{
95402b38 6679 get_online_cpus();
dfb512ec
MK
6680
6681 /* Destroy domains first to force the rebuild */
6682 partition_sched_domains(0, NULL, NULL);
6683
e761b772 6684 rebuild_sched_domains();
95402b38 6685 put_online_cpus();
5c45bf27
SS
6686}
6687
6688static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6689{
afb8a9b7 6690 unsigned int level = 0;
5c45bf27 6691
afb8a9b7
GS
6692 if (sscanf(buf, "%u", &level) != 1)
6693 return -EINVAL;
6694
6695 /*
6696 * level is always be positive so don't check for
6697 * level < POWERSAVINGS_BALANCE_NONE which is 0
6698 * What happens on 0 or 1 byte write,
6699 * need to check for count as well?
6700 */
6701
6702 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6703 return -EINVAL;
6704
6705 if (smt)
afb8a9b7 6706 sched_smt_power_savings = level;
5c45bf27 6707 else
afb8a9b7 6708 sched_mc_power_savings = level;
5c45bf27 6709
c4a8849a 6710 reinit_sched_domains();
5c45bf27 6711
c70f22d2 6712 return count;
5c45bf27
SS
6713}
6714
5c45bf27 6715#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6716static ssize_t sched_mc_power_savings_show(struct device *dev,
6717 struct device_attribute *attr,
6718 char *buf)
5c45bf27 6719{
8a25a2fd 6720 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6721}
8a25a2fd
KS
6722static ssize_t sched_mc_power_savings_store(struct device *dev,
6723 struct device_attribute *attr,
48f24c4d 6724 const char *buf, size_t count)
5c45bf27
SS
6725{
6726 return sched_power_savings_store(buf, count, 0);
6727}
8a25a2fd
KS
6728static DEVICE_ATTR(sched_mc_power_savings, 0644,
6729 sched_mc_power_savings_show,
6730 sched_mc_power_savings_store);
5c45bf27
SS
6731#endif
6732
6733#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6734static ssize_t sched_smt_power_savings_show(struct device *dev,
6735 struct device_attribute *attr,
6736 char *buf)
5c45bf27 6737{
8a25a2fd 6738 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6739}
8a25a2fd
KS
6740static ssize_t sched_smt_power_savings_store(struct device *dev,
6741 struct device_attribute *attr,
48f24c4d 6742 const char *buf, size_t count)
5c45bf27
SS
6743{
6744 return sched_power_savings_store(buf, count, 1);
6745}
8a25a2fd 6746static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6747 sched_smt_power_savings_show,
6707de00
AB
6748 sched_smt_power_savings_store);
6749#endif
6750
8a25a2fd 6751int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6752{
6753 int err = 0;
6754
6755#ifdef CONFIG_SCHED_SMT
6756 if (smt_capable())
8a25a2fd 6757 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6758#endif
6759#ifdef CONFIG_SCHED_MC
6760 if (!err && mc_capable())
8a25a2fd 6761 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6762#endif
6763 return err;
6764}
6d6bc0ad 6765#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6766
1da177e4 6767/*
3a101d05
TH
6768 * Update cpusets according to cpu_active mask. If cpusets are
6769 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6770 * around partition_sched_domains().
1da177e4 6771 */
0b2e918a
TH
6772static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6773 void *hcpu)
e761b772 6774{
3a101d05 6775 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6776 case CPU_ONLINE:
6ad4c188 6777 case CPU_DOWN_FAILED:
3a101d05 6778 cpuset_update_active_cpus();
e761b772 6779 return NOTIFY_OK;
3a101d05
TH
6780 default:
6781 return NOTIFY_DONE;
6782 }
6783}
e761b772 6784
0b2e918a
TH
6785static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6786 void *hcpu)
3a101d05
TH
6787{
6788 switch (action & ~CPU_TASKS_FROZEN) {
6789 case CPU_DOWN_PREPARE:
6790 cpuset_update_active_cpus();
6791 return NOTIFY_OK;
e761b772
MK
6792 default:
6793 return NOTIFY_DONE;
6794 }
6795}
e761b772 6796
1da177e4
LT
6797void __init sched_init_smp(void)
6798{
dcc30a35
RR
6799 cpumask_var_t non_isolated_cpus;
6800
6801 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6802 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6803
95402b38 6804 get_online_cpus();
712555ee 6805 mutex_lock(&sched_domains_mutex);
c4a8849a 6806 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6807 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6808 if (cpumask_empty(non_isolated_cpus))
6809 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6810 mutex_unlock(&sched_domains_mutex);
95402b38 6811 put_online_cpus();
e761b772 6812
3a101d05
TH
6813 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6814 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6815
6816 /* RT runtime code needs to handle some hotplug events */
6817 hotcpu_notifier(update_runtime, 0);
6818
b328ca18 6819 init_hrtick();
5c1e1767
NP
6820
6821 /* Move init over to a non-isolated CPU */
dcc30a35 6822 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6823 BUG();
19978ca6 6824 sched_init_granularity();
dcc30a35 6825 free_cpumask_var(non_isolated_cpus);
4212823f 6826
0e3900e6 6827 init_sched_rt_class();
1da177e4
LT
6828}
6829#else
6830void __init sched_init_smp(void)
6831{
19978ca6 6832 sched_init_granularity();
1da177e4
LT
6833}
6834#endif /* CONFIG_SMP */
6835
cd1bb94b
AB
6836const_debug unsigned int sysctl_timer_migration = 1;
6837
1da177e4
LT
6838int in_sched_functions(unsigned long addr)
6839{
1da177e4
LT
6840 return in_lock_functions(addr) ||
6841 (addr >= (unsigned long)__sched_text_start
6842 && addr < (unsigned long)__sched_text_end);
6843}
6844
029632fb
PZ
6845#ifdef CONFIG_CGROUP_SCHED
6846struct task_group root_task_group;
052f1dc7 6847#endif
6f505b16 6848
029632fb 6849DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6850
1da177e4
LT
6851void __init sched_init(void)
6852{
dd41f596 6853 int i, j;
434d53b0
MT
6854 unsigned long alloc_size = 0, ptr;
6855
6856#ifdef CONFIG_FAIR_GROUP_SCHED
6857 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6858#endif
6859#ifdef CONFIG_RT_GROUP_SCHED
6860 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6861#endif
df7c8e84 6862#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6863 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6864#endif
434d53b0 6865 if (alloc_size) {
36b7b6d4 6866 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6867
6868#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6869 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6870 ptr += nr_cpu_ids * sizeof(void **);
6871
07e06b01 6872 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6873 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6874
6d6bc0ad 6875#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6876#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6877 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6878 ptr += nr_cpu_ids * sizeof(void **);
6879
07e06b01 6880 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6881 ptr += nr_cpu_ids * sizeof(void **);
6882
6d6bc0ad 6883#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6884#ifdef CONFIG_CPUMASK_OFFSTACK
6885 for_each_possible_cpu(i) {
6886 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6887 ptr += cpumask_size();
6888 }
6889#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6890 }
dd41f596 6891
57d885fe
GH
6892#ifdef CONFIG_SMP
6893 init_defrootdomain();
6894#endif
6895
d0b27fa7
PZ
6896 init_rt_bandwidth(&def_rt_bandwidth,
6897 global_rt_period(), global_rt_runtime());
6898
6899#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6900 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6901 global_rt_period(), global_rt_runtime());
6d6bc0ad 6902#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6903
7c941438 6904#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6905 list_add(&root_task_group.list, &task_groups);
6906 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6907 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6908 autogroup_init(&init_task);
54c707e9 6909
7c941438 6910#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6911
54c707e9
GC
6912#ifdef CONFIG_CGROUP_CPUACCT
6913 root_cpuacct.cpustat = &kernel_cpustat;
6914 root_cpuacct.cpuusage = alloc_percpu(u64);
6915 /* Too early, not expected to fail */
6916 BUG_ON(!root_cpuacct.cpuusage);
6917#endif
0a945022 6918 for_each_possible_cpu(i) {
70b97a7f 6919 struct rq *rq;
1da177e4
LT
6920
6921 rq = cpu_rq(i);
05fa785c 6922 raw_spin_lock_init(&rq->lock);
7897986b 6923 rq->nr_running = 0;
dce48a84
TG
6924 rq->calc_load_active = 0;
6925 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6926 init_cfs_rq(&rq->cfs);
6f505b16 6927 init_rt_rq(&rq->rt, rq);
dd41f596 6928#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6929 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6930 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6931 /*
07e06b01 6932 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6933 *
6934 * In case of task-groups formed thr' the cgroup filesystem, it
6935 * gets 100% of the cpu resources in the system. This overall
6936 * system cpu resource is divided among the tasks of
07e06b01 6937 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6938 * based on each entity's (task or task-group's) weight
6939 * (se->load.weight).
6940 *
07e06b01 6941 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6942 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6943 * then A0's share of the cpu resource is:
6944 *
0d905bca 6945 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6946 *
07e06b01
YZ
6947 * We achieve this by letting root_task_group's tasks sit
6948 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6949 */
ab84d31e 6950 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6951 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6952#endif /* CONFIG_FAIR_GROUP_SCHED */
6953
6954 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6955#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6956 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6957 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6958#endif
1da177e4 6959
dd41f596
IM
6960 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6961 rq->cpu_load[j] = 0;
fdf3e95d
VP
6962
6963 rq->last_load_update_tick = jiffies;
6964
1da177e4 6965#ifdef CONFIG_SMP
41c7ce9a 6966 rq->sd = NULL;
57d885fe 6967 rq->rd = NULL;
1399fa78 6968 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6969 rq->post_schedule = 0;
1da177e4 6970 rq->active_balance = 0;
dd41f596 6971 rq->next_balance = jiffies;
1da177e4 6972 rq->push_cpu = 0;
0a2966b4 6973 rq->cpu = i;
1f11eb6a 6974 rq->online = 0;
eae0c9df
MG
6975 rq->idle_stamp = 0;
6976 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6977
6978 INIT_LIST_HEAD(&rq->cfs_tasks);
6979
dc938520 6980 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6981#ifdef CONFIG_NO_HZ
1c792db7 6982 rq->nohz_flags = 0;
83cd4fe2 6983#endif
1da177e4 6984#endif
8f4d37ec 6985 init_rq_hrtick(rq);
1da177e4 6986 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6987 }
6988
2dd73a4f 6989 set_load_weight(&init_task);
b50f60ce 6990
e107be36
AK
6991#ifdef CONFIG_PREEMPT_NOTIFIERS
6992 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6993#endif
6994
b50f60ce 6995#ifdef CONFIG_RT_MUTEXES
732375c6 6996 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6997#endif
6998
1da177e4
LT
6999 /*
7000 * The boot idle thread does lazy MMU switching as well:
7001 */
7002 atomic_inc(&init_mm.mm_count);
7003 enter_lazy_tlb(&init_mm, current);
7004
7005 /*
7006 * Make us the idle thread. Technically, schedule() should not be
7007 * called from this thread, however somewhere below it might be,
7008 * but because we are the idle thread, we just pick up running again
7009 * when this runqueue becomes "idle".
7010 */
7011 init_idle(current, smp_processor_id());
dce48a84
TG
7012
7013 calc_load_update = jiffies + LOAD_FREQ;
7014
dd41f596
IM
7015 /*
7016 * During early bootup we pretend to be a normal task:
7017 */
7018 current->sched_class = &fair_sched_class;
6892b75e 7019
bf4d83f6 7020#ifdef CONFIG_SMP
4cb98839 7021 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7022 /* May be allocated at isolcpus cmdline parse time */
7023 if (cpu_isolated_map == NULL)
7024 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
7025#endif
7026 init_sched_fair_class();
6a7b3dc3 7027
6892b75e 7028 scheduler_running = 1;
1da177e4
LT
7029}
7030
d902db1e 7031#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7032static inline int preempt_count_equals(int preempt_offset)
7033{
234da7bc 7034 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7035
4ba8216c 7036 return (nested == preempt_offset);
e4aafea2
FW
7037}
7038
d894837f 7039void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7040{
1da177e4
LT
7041 static unsigned long prev_jiffy; /* ratelimiting */
7042
b3fbab05 7043 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7044 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7045 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7046 return;
7047 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7048 return;
7049 prev_jiffy = jiffies;
7050
3df0fc5b
PZ
7051 printk(KERN_ERR
7052 "BUG: sleeping function called from invalid context at %s:%d\n",
7053 file, line);
7054 printk(KERN_ERR
7055 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7056 in_atomic(), irqs_disabled(),
7057 current->pid, current->comm);
aef745fc
IM
7058
7059 debug_show_held_locks(current);
7060 if (irqs_disabled())
7061 print_irqtrace_events(current);
7062 dump_stack();
1da177e4
LT
7063}
7064EXPORT_SYMBOL(__might_sleep);
7065#endif
7066
7067#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7068static void normalize_task(struct rq *rq, struct task_struct *p)
7069{
da7a735e
PZ
7070 const struct sched_class *prev_class = p->sched_class;
7071 int old_prio = p->prio;
3a5e4dc1 7072 int on_rq;
3e51f33f 7073
fd2f4419 7074 on_rq = p->on_rq;
3a5e4dc1 7075 if (on_rq)
4ca9b72b 7076 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7077 __setscheduler(rq, p, SCHED_NORMAL, 0);
7078 if (on_rq) {
4ca9b72b 7079 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7080 resched_task(rq->curr);
7081 }
da7a735e
PZ
7082
7083 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7084}
7085
1da177e4
LT
7086void normalize_rt_tasks(void)
7087{
a0f98a1c 7088 struct task_struct *g, *p;
1da177e4 7089 unsigned long flags;
70b97a7f 7090 struct rq *rq;
1da177e4 7091
4cf5d77a 7092 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7093 do_each_thread(g, p) {
178be793
IM
7094 /*
7095 * Only normalize user tasks:
7096 */
7097 if (!p->mm)
7098 continue;
7099
6cfb0d5d 7100 p->se.exec_start = 0;
6cfb0d5d 7101#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7102 p->se.statistics.wait_start = 0;
7103 p->se.statistics.sleep_start = 0;
7104 p->se.statistics.block_start = 0;
6cfb0d5d 7105#endif
dd41f596
IM
7106
7107 if (!rt_task(p)) {
7108 /*
7109 * Renice negative nice level userspace
7110 * tasks back to 0:
7111 */
7112 if (TASK_NICE(p) < 0 && p->mm)
7113 set_user_nice(p, 0);
1da177e4 7114 continue;
dd41f596 7115 }
1da177e4 7116
1d615482 7117 raw_spin_lock(&p->pi_lock);
b29739f9 7118 rq = __task_rq_lock(p);
1da177e4 7119
178be793 7120 normalize_task(rq, p);
3a5e4dc1 7121
b29739f9 7122 __task_rq_unlock(rq);
1d615482 7123 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7124 } while_each_thread(g, p);
7125
4cf5d77a 7126 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7127}
7128
7129#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7130
67fc4e0c 7131#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7132/*
67fc4e0c 7133 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7134 *
7135 * They can only be called when the whole system has been
7136 * stopped - every CPU needs to be quiescent, and no scheduling
7137 * activity can take place. Using them for anything else would
7138 * be a serious bug, and as a result, they aren't even visible
7139 * under any other configuration.
7140 */
7141
7142/**
7143 * curr_task - return the current task for a given cpu.
7144 * @cpu: the processor in question.
7145 *
7146 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7147 */
36c8b586 7148struct task_struct *curr_task(int cpu)
1df5c10a
LT
7149{
7150 return cpu_curr(cpu);
7151}
7152
67fc4e0c
JW
7153#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7154
7155#ifdef CONFIG_IA64
1df5c10a
LT
7156/**
7157 * set_curr_task - set the current task for a given cpu.
7158 * @cpu: the processor in question.
7159 * @p: the task pointer to set.
7160 *
7161 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7162 * are serviced on a separate stack. It allows the architecture to switch the
7163 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7164 * must be called with all CPU's synchronized, and interrupts disabled, the
7165 * and caller must save the original value of the current task (see
7166 * curr_task() above) and restore that value before reenabling interrupts and
7167 * re-starting the system.
7168 *
7169 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7170 */
36c8b586 7171void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7172{
7173 cpu_curr(cpu) = p;
7174}
7175
7176#endif
29f59db3 7177
7c941438 7178#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7179/* task_group_lock serializes the addition/removal of task groups */
7180static DEFINE_SPINLOCK(task_group_lock);
7181
bccbe08a
PZ
7182static void free_sched_group(struct task_group *tg)
7183{
7184 free_fair_sched_group(tg);
7185 free_rt_sched_group(tg);
e9aa1dd1 7186 autogroup_free(tg);
bccbe08a
PZ
7187 kfree(tg);
7188}
7189
7190/* allocate runqueue etc for a new task group */
ec7dc8ac 7191struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7192{
7193 struct task_group *tg;
7194 unsigned long flags;
bccbe08a
PZ
7195
7196 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7197 if (!tg)
7198 return ERR_PTR(-ENOMEM);
7199
ec7dc8ac 7200 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7201 goto err;
7202
ec7dc8ac 7203 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7204 goto err;
7205
8ed36996 7206 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7207 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7208
7209 WARN_ON(!parent); /* root should already exist */
7210
7211 tg->parent = parent;
f473aa5e 7212 INIT_LIST_HEAD(&tg->children);
09f2724a 7213 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7214 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7215
9b5b7751 7216 return tg;
29f59db3
SV
7217
7218err:
6f505b16 7219 free_sched_group(tg);
29f59db3
SV
7220 return ERR_PTR(-ENOMEM);
7221}
7222
9b5b7751 7223/* rcu callback to free various structures associated with a task group */
6f505b16 7224static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7225{
29f59db3 7226 /* now it should be safe to free those cfs_rqs */
6f505b16 7227 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7228}
7229
9b5b7751 7230/* Destroy runqueue etc associated with a task group */
4cf86d77 7231void sched_destroy_group(struct task_group *tg)
29f59db3 7232{
8ed36996 7233 unsigned long flags;
9b5b7751 7234 int i;
29f59db3 7235
3d4b47b4
PZ
7236 /* end participation in shares distribution */
7237 for_each_possible_cpu(i)
bccbe08a 7238 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7239
7240 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7241 list_del_rcu(&tg->list);
f473aa5e 7242 list_del_rcu(&tg->siblings);
8ed36996 7243 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7244
9b5b7751 7245 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7246 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7247}
7248
9b5b7751 7249/* change task's runqueue when it moves between groups.
3a252015
IM
7250 * The caller of this function should have put the task in its new group
7251 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7252 * reflect its new group.
9b5b7751
SV
7253 */
7254void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7255{
7256 int on_rq, running;
7257 unsigned long flags;
7258 struct rq *rq;
7259
7260 rq = task_rq_lock(tsk, &flags);
7261
051a1d1a 7262 running = task_current(rq, tsk);
fd2f4419 7263 on_rq = tsk->on_rq;
29f59db3 7264
0e1f3483 7265 if (on_rq)
29f59db3 7266 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7267 if (unlikely(running))
7268 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7269
810b3817 7270#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7271 if (tsk->sched_class->task_move_group)
7272 tsk->sched_class->task_move_group(tsk, on_rq);
7273 else
810b3817 7274#endif
b2b5ce02 7275 set_task_rq(tsk, task_cpu(tsk));
810b3817 7276
0e1f3483
HS
7277 if (unlikely(running))
7278 tsk->sched_class->set_curr_task(rq);
7279 if (on_rq)
371fd7e7 7280 enqueue_task(rq, tsk, 0);
29f59db3 7281
0122ec5b 7282 task_rq_unlock(rq, tsk, &flags);
29f59db3 7283}
7c941438 7284#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7285
a790de99 7286#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7287static unsigned long to_ratio(u64 period, u64 runtime)
7288{
7289 if (runtime == RUNTIME_INF)
9a7e0b18 7290 return 1ULL << 20;
9f0c1e56 7291
9a7e0b18 7292 return div64_u64(runtime << 20, period);
9f0c1e56 7293}
a790de99
PT
7294#endif
7295
7296#ifdef CONFIG_RT_GROUP_SCHED
7297/*
7298 * Ensure that the real time constraints are schedulable.
7299 */
7300static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7301
9a7e0b18
PZ
7302/* Must be called with tasklist_lock held */
7303static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7304{
9a7e0b18 7305 struct task_struct *g, *p;
b40b2e8e 7306
9a7e0b18 7307 do_each_thread(g, p) {
029632fb 7308 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7309 return 1;
7310 } while_each_thread(g, p);
b40b2e8e 7311
9a7e0b18
PZ
7312 return 0;
7313}
b40b2e8e 7314
9a7e0b18
PZ
7315struct rt_schedulable_data {
7316 struct task_group *tg;
7317 u64 rt_period;
7318 u64 rt_runtime;
7319};
b40b2e8e 7320
a790de99 7321static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7322{
7323 struct rt_schedulable_data *d = data;
7324 struct task_group *child;
7325 unsigned long total, sum = 0;
7326 u64 period, runtime;
b40b2e8e 7327
9a7e0b18
PZ
7328 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7329 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7330
9a7e0b18
PZ
7331 if (tg == d->tg) {
7332 period = d->rt_period;
7333 runtime = d->rt_runtime;
b40b2e8e 7334 }
b40b2e8e 7335
4653f803
PZ
7336 /*
7337 * Cannot have more runtime than the period.
7338 */
7339 if (runtime > period && runtime != RUNTIME_INF)
7340 return -EINVAL;
6f505b16 7341
4653f803
PZ
7342 /*
7343 * Ensure we don't starve existing RT tasks.
7344 */
9a7e0b18
PZ
7345 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7346 return -EBUSY;
6f505b16 7347
9a7e0b18 7348 total = to_ratio(period, runtime);
6f505b16 7349
4653f803
PZ
7350 /*
7351 * Nobody can have more than the global setting allows.
7352 */
7353 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7354 return -EINVAL;
6f505b16 7355
4653f803
PZ
7356 /*
7357 * The sum of our children's runtime should not exceed our own.
7358 */
9a7e0b18
PZ
7359 list_for_each_entry_rcu(child, &tg->children, siblings) {
7360 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7361 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7362
9a7e0b18
PZ
7363 if (child == d->tg) {
7364 period = d->rt_period;
7365 runtime = d->rt_runtime;
7366 }
6f505b16 7367
9a7e0b18 7368 sum += to_ratio(period, runtime);
9f0c1e56 7369 }
6f505b16 7370
9a7e0b18
PZ
7371 if (sum > total)
7372 return -EINVAL;
7373
7374 return 0;
6f505b16
PZ
7375}
7376
9a7e0b18 7377static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7378{
8277434e
PT
7379 int ret;
7380
9a7e0b18
PZ
7381 struct rt_schedulable_data data = {
7382 .tg = tg,
7383 .rt_period = period,
7384 .rt_runtime = runtime,
7385 };
7386
8277434e
PT
7387 rcu_read_lock();
7388 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7389 rcu_read_unlock();
7390
7391 return ret;
521f1a24
DG
7392}
7393
ab84d31e 7394static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7395 u64 rt_period, u64 rt_runtime)
6f505b16 7396{
ac086bc2 7397 int i, err = 0;
9f0c1e56 7398
9f0c1e56 7399 mutex_lock(&rt_constraints_mutex);
521f1a24 7400 read_lock(&tasklist_lock);
9a7e0b18
PZ
7401 err = __rt_schedulable(tg, rt_period, rt_runtime);
7402 if (err)
9f0c1e56 7403 goto unlock;
ac086bc2 7404
0986b11b 7405 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7406 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7407 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7408
7409 for_each_possible_cpu(i) {
7410 struct rt_rq *rt_rq = tg->rt_rq[i];
7411
0986b11b 7412 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7413 rt_rq->rt_runtime = rt_runtime;
0986b11b 7414 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7415 }
0986b11b 7416 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7417unlock:
521f1a24 7418 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7419 mutex_unlock(&rt_constraints_mutex);
7420
7421 return err;
6f505b16
PZ
7422}
7423
d0b27fa7
PZ
7424int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7425{
7426 u64 rt_runtime, rt_period;
7427
7428 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7429 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7430 if (rt_runtime_us < 0)
7431 rt_runtime = RUNTIME_INF;
7432
ab84d31e 7433 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7434}
7435
9f0c1e56
PZ
7436long sched_group_rt_runtime(struct task_group *tg)
7437{
7438 u64 rt_runtime_us;
7439
d0b27fa7 7440 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7441 return -1;
7442
d0b27fa7 7443 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7444 do_div(rt_runtime_us, NSEC_PER_USEC);
7445 return rt_runtime_us;
7446}
d0b27fa7
PZ
7447
7448int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7449{
7450 u64 rt_runtime, rt_period;
7451
7452 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7453 rt_runtime = tg->rt_bandwidth.rt_runtime;
7454
619b0488
R
7455 if (rt_period == 0)
7456 return -EINVAL;
7457
ab84d31e 7458 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7459}
7460
7461long sched_group_rt_period(struct task_group *tg)
7462{
7463 u64 rt_period_us;
7464
7465 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7466 do_div(rt_period_us, NSEC_PER_USEC);
7467 return rt_period_us;
7468}
7469
7470static int sched_rt_global_constraints(void)
7471{
4653f803 7472 u64 runtime, period;
d0b27fa7
PZ
7473 int ret = 0;
7474
ec5d4989
HS
7475 if (sysctl_sched_rt_period <= 0)
7476 return -EINVAL;
7477
4653f803
PZ
7478 runtime = global_rt_runtime();
7479 period = global_rt_period();
7480
7481 /*
7482 * Sanity check on the sysctl variables.
7483 */
7484 if (runtime > period && runtime != RUNTIME_INF)
7485 return -EINVAL;
10b612f4 7486
d0b27fa7 7487 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7488 read_lock(&tasklist_lock);
4653f803 7489 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7490 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7491 mutex_unlock(&rt_constraints_mutex);
7492
7493 return ret;
7494}
54e99124
DG
7495
7496int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7497{
7498 /* Don't accept realtime tasks when there is no way for them to run */
7499 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7500 return 0;
7501
7502 return 1;
7503}
7504
6d6bc0ad 7505#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7506static int sched_rt_global_constraints(void)
7507{
ac086bc2
PZ
7508 unsigned long flags;
7509 int i;
7510
ec5d4989
HS
7511 if (sysctl_sched_rt_period <= 0)
7512 return -EINVAL;
7513
60aa605d
PZ
7514 /*
7515 * There's always some RT tasks in the root group
7516 * -- migration, kstopmachine etc..
7517 */
7518 if (sysctl_sched_rt_runtime == 0)
7519 return -EBUSY;
7520
0986b11b 7521 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7522 for_each_possible_cpu(i) {
7523 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7524
0986b11b 7525 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7526 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7527 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7528 }
0986b11b 7529 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7530
d0b27fa7
PZ
7531 return 0;
7532}
6d6bc0ad 7533#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7534
7535int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7536 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7537 loff_t *ppos)
7538{
7539 int ret;
7540 int old_period, old_runtime;
7541 static DEFINE_MUTEX(mutex);
7542
7543 mutex_lock(&mutex);
7544 old_period = sysctl_sched_rt_period;
7545 old_runtime = sysctl_sched_rt_runtime;
7546
8d65af78 7547 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7548
7549 if (!ret && write) {
7550 ret = sched_rt_global_constraints();
7551 if (ret) {
7552 sysctl_sched_rt_period = old_period;
7553 sysctl_sched_rt_runtime = old_runtime;
7554 } else {
7555 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7556 def_rt_bandwidth.rt_period =
7557 ns_to_ktime(global_rt_period());
7558 }
7559 }
7560 mutex_unlock(&mutex);
7561
7562 return ret;
7563}
68318b8e 7564
052f1dc7 7565#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7566
7567/* return corresponding task_group object of a cgroup */
2b01dfe3 7568static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7569{
2b01dfe3
PM
7570 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7571 struct task_group, css);
68318b8e
SV
7572}
7573
7574static struct cgroup_subsys_state *
2b01dfe3 7575cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7576{
ec7dc8ac 7577 struct task_group *tg, *parent;
68318b8e 7578
2b01dfe3 7579 if (!cgrp->parent) {
68318b8e 7580 /* This is early initialization for the top cgroup */
07e06b01 7581 return &root_task_group.css;
68318b8e
SV
7582 }
7583
ec7dc8ac
DG
7584 parent = cgroup_tg(cgrp->parent);
7585 tg = sched_create_group(parent);
68318b8e
SV
7586 if (IS_ERR(tg))
7587 return ERR_PTR(-ENOMEM);
7588
68318b8e
SV
7589 return &tg->css;
7590}
7591
41a2d6cf
IM
7592static void
7593cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7594{
2b01dfe3 7595 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7596
7597 sched_destroy_group(tg);
7598}
7599
bb9d97b6
TH
7600static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7601 struct cgroup_taskset *tset)
68318b8e 7602{
bb9d97b6
TH
7603 struct task_struct *task;
7604
7605 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7606#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7607 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7608 return -EINVAL;
b68aa230 7609#else
bb9d97b6
TH
7610 /* We don't support RT-tasks being in separate groups */
7611 if (task->sched_class != &fair_sched_class)
7612 return -EINVAL;
b68aa230 7613#endif
bb9d97b6 7614 }
be367d09
BB
7615 return 0;
7616}
68318b8e 7617
bb9d97b6
TH
7618static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7619 struct cgroup_taskset *tset)
68318b8e 7620{
bb9d97b6
TH
7621 struct task_struct *task;
7622
7623 cgroup_taskset_for_each(task, cgrp, tset)
7624 sched_move_task(task);
68318b8e
SV
7625}
7626
068c5cc5 7627static void
d41d5a01
PZ
7628cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7629 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7630{
7631 /*
7632 * cgroup_exit() is called in the copy_process() failure path.
7633 * Ignore this case since the task hasn't ran yet, this avoids
7634 * trying to poke a half freed task state from generic code.
7635 */
7636 if (!(task->flags & PF_EXITING))
7637 return;
7638
7639 sched_move_task(task);
7640}
7641
052f1dc7 7642#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7643static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7644 u64 shareval)
68318b8e 7645{
c8b28116 7646 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7647}
7648
f4c753b7 7649static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7650{
2b01dfe3 7651 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7652
c8b28116 7653 return (u64) scale_load_down(tg->shares);
68318b8e 7654}
ab84d31e
PT
7655
7656#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7657static DEFINE_MUTEX(cfs_constraints_mutex);
7658
ab84d31e
PT
7659const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7660const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7661
a790de99
PT
7662static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7663
ab84d31e
PT
7664static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7665{
56f570e5 7666 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7667 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7668
7669 if (tg == &root_task_group)
7670 return -EINVAL;
7671
7672 /*
7673 * Ensure we have at some amount of bandwidth every period. This is
7674 * to prevent reaching a state of large arrears when throttled via
7675 * entity_tick() resulting in prolonged exit starvation.
7676 */
7677 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7678 return -EINVAL;
7679
7680 /*
7681 * Likewise, bound things on the otherside by preventing insane quota
7682 * periods. This also allows us to normalize in computing quota
7683 * feasibility.
7684 */
7685 if (period > max_cfs_quota_period)
7686 return -EINVAL;
7687
a790de99
PT
7688 mutex_lock(&cfs_constraints_mutex);
7689 ret = __cfs_schedulable(tg, period, quota);
7690 if (ret)
7691 goto out_unlock;
7692
58088ad0 7693 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7694 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7695 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7696 raw_spin_lock_irq(&cfs_b->lock);
7697 cfs_b->period = ns_to_ktime(period);
7698 cfs_b->quota = quota;
58088ad0 7699
a9cf55b2 7700 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7701 /* restart the period timer (if active) to handle new period expiry */
7702 if (runtime_enabled && cfs_b->timer_active) {
7703 /* force a reprogram */
7704 cfs_b->timer_active = 0;
7705 __start_cfs_bandwidth(cfs_b);
7706 }
ab84d31e
PT
7707 raw_spin_unlock_irq(&cfs_b->lock);
7708
7709 for_each_possible_cpu(i) {
7710 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7711 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7712
7713 raw_spin_lock_irq(&rq->lock);
58088ad0 7714 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7715 cfs_rq->runtime_remaining = 0;
671fd9da 7716
029632fb 7717 if (cfs_rq->throttled)
671fd9da 7718 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7719 raw_spin_unlock_irq(&rq->lock);
7720 }
a790de99
PT
7721out_unlock:
7722 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7723
a790de99 7724 return ret;
ab84d31e
PT
7725}
7726
7727int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7728{
7729 u64 quota, period;
7730
029632fb 7731 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7732 if (cfs_quota_us < 0)
7733 quota = RUNTIME_INF;
7734 else
7735 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7736
7737 return tg_set_cfs_bandwidth(tg, period, quota);
7738}
7739
7740long tg_get_cfs_quota(struct task_group *tg)
7741{
7742 u64 quota_us;
7743
029632fb 7744 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7745 return -1;
7746
029632fb 7747 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7748 do_div(quota_us, NSEC_PER_USEC);
7749
7750 return quota_us;
7751}
7752
7753int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7754{
7755 u64 quota, period;
7756
7757 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7758 quota = tg->cfs_bandwidth.quota;
ab84d31e 7759
ab84d31e
PT
7760 return tg_set_cfs_bandwidth(tg, period, quota);
7761}
7762
7763long tg_get_cfs_period(struct task_group *tg)
7764{
7765 u64 cfs_period_us;
7766
029632fb 7767 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7768 do_div(cfs_period_us, NSEC_PER_USEC);
7769
7770 return cfs_period_us;
7771}
7772
7773static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7774{
7775 return tg_get_cfs_quota(cgroup_tg(cgrp));
7776}
7777
7778static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7779 s64 cfs_quota_us)
7780{
7781 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7782}
7783
7784static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7785{
7786 return tg_get_cfs_period(cgroup_tg(cgrp));
7787}
7788
7789static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7790 u64 cfs_period_us)
7791{
7792 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7793}
7794
a790de99
PT
7795struct cfs_schedulable_data {
7796 struct task_group *tg;
7797 u64 period, quota;
7798};
7799
7800/*
7801 * normalize group quota/period to be quota/max_period
7802 * note: units are usecs
7803 */
7804static u64 normalize_cfs_quota(struct task_group *tg,
7805 struct cfs_schedulable_data *d)
7806{
7807 u64 quota, period;
7808
7809 if (tg == d->tg) {
7810 period = d->period;
7811 quota = d->quota;
7812 } else {
7813 period = tg_get_cfs_period(tg);
7814 quota = tg_get_cfs_quota(tg);
7815 }
7816
7817 /* note: these should typically be equivalent */
7818 if (quota == RUNTIME_INF || quota == -1)
7819 return RUNTIME_INF;
7820
7821 return to_ratio(period, quota);
7822}
7823
7824static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7825{
7826 struct cfs_schedulable_data *d = data;
029632fb 7827 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7828 s64 quota = 0, parent_quota = -1;
7829
7830 if (!tg->parent) {
7831 quota = RUNTIME_INF;
7832 } else {
029632fb 7833 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7834
7835 quota = normalize_cfs_quota(tg, d);
7836 parent_quota = parent_b->hierarchal_quota;
7837
7838 /*
7839 * ensure max(child_quota) <= parent_quota, inherit when no
7840 * limit is set
7841 */
7842 if (quota == RUNTIME_INF)
7843 quota = parent_quota;
7844 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7845 return -EINVAL;
7846 }
7847 cfs_b->hierarchal_quota = quota;
7848
7849 return 0;
7850}
7851
7852static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7853{
8277434e 7854 int ret;
a790de99
PT
7855 struct cfs_schedulable_data data = {
7856 .tg = tg,
7857 .period = period,
7858 .quota = quota,
7859 };
7860
7861 if (quota != RUNTIME_INF) {
7862 do_div(data.period, NSEC_PER_USEC);
7863 do_div(data.quota, NSEC_PER_USEC);
7864 }
7865
8277434e
PT
7866 rcu_read_lock();
7867 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7868 rcu_read_unlock();
7869
7870 return ret;
a790de99 7871}
e8da1b18
NR
7872
7873static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7874 struct cgroup_map_cb *cb)
7875{
7876 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7878
7879 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7880 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7881 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7882
7883 return 0;
7884}
ab84d31e 7885#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7886#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7887
052f1dc7 7888#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7889static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7890 s64 val)
6f505b16 7891{
06ecb27c 7892 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7893}
7894
06ecb27c 7895static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7896{
06ecb27c 7897 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7898}
d0b27fa7
PZ
7899
7900static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7901 u64 rt_period_us)
7902{
7903 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7904}
7905
7906static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7907{
7908 return sched_group_rt_period(cgroup_tg(cgrp));
7909}
6d6bc0ad 7910#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7911
fe5c7cc2 7912static struct cftype cpu_files[] = {
052f1dc7 7913#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7914 {
7915 .name = "shares",
f4c753b7
PM
7916 .read_u64 = cpu_shares_read_u64,
7917 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7918 },
052f1dc7 7919#endif
ab84d31e
PT
7920#ifdef CONFIG_CFS_BANDWIDTH
7921 {
7922 .name = "cfs_quota_us",
7923 .read_s64 = cpu_cfs_quota_read_s64,
7924 .write_s64 = cpu_cfs_quota_write_s64,
7925 },
7926 {
7927 .name = "cfs_period_us",
7928 .read_u64 = cpu_cfs_period_read_u64,
7929 .write_u64 = cpu_cfs_period_write_u64,
7930 },
e8da1b18
NR
7931 {
7932 .name = "stat",
7933 .read_map = cpu_stats_show,
7934 },
ab84d31e 7935#endif
052f1dc7 7936#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7937 {
9f0c1e56 7938 .name = "rt_runtime_us",
06ecb27c
PM
7939 .read_s64 = cpu_rt_runtime_read,
7940 .write_s64 = cpu_rt_runtime_write,
6f505b16 7941 },
d0b27fa7
PZ
7942 {
7943 .name = "rt_period_us",
f4c753b7
PM
7944 .read_u64 = cpu_rt_period_read_uint,
7945 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7946 },
052f1dc7 7947#endif
68318b8e
SV
7948};
7949
7950static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7951{
fe5c7cc2 7952 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7953}
7954
7955struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7956 .name = "cpu",
7957 .create = cpu_cgroup_create,
7958 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7959 .can_attach = cpu_cgroup_can_attach,
7960 .attach = cpu_cgroup_attach,
068c5cc5 7961 .exit = cpu_cgroup_exit,
38605cae
IM
7962 .populate = cpu_cgroup_populate,
7963 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7964 .early_init = 1,
7965};
7966
052f1dc7 7967#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7968
7969#ifdef CONFIG_CGROUP_CPUACCT
7970
7971/*
7972 * CPU accounting code for task groups.
7973 *
7974 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7975 * (balbir@in.ibm.com).
7976 */
7977
d842de87
SV
7978/* create a new cpu accounting group */
7979static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7980 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7981{
54c707e9 7982 struct cpuacct *ca;
d842de87 7983
54c707e9
GC
7984 if (!cgrp->parent)
7985 return &root_cpuacct.css;
7986
7987 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7988 if (!ca)
ef12fefa 7989 goto out;
d842de87
SV
7990
7991 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7992 if (!ca->cpuusage)
7993 goto out_free_ca;
7994
54c707e9
GC
7995 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7996 if (!ca->cpustat)
7997 goto out_free_cpuusage;
934352f2 7998
d842de87 7999 return &ca->css;
ef12fefa 8000
54c707e9 8001out_free_cpuusage:
ef12fefa
BR
8002 free_percpu(ca->cpuusage);
8003out_free_ca:
8004 kfree(ca);
8005out:
8006 return ERR_PTR(-ENOMEM);
d842de87
SV
8007}
8008
8009/* destroy an existing cpu accounting group */
41a2d6cf 8010static void
32cd756a 8011cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8012{
32cd756a 8013 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8014
54c707e9 8015 free_percpu(ca->cpustat);
d842de87
SV
8016 free_percpu(ca->cpuusage);
8017 kfree(ca);
8018}
8019
720f5498
KC
8020static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8021{
b36128c8 8022 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8023 u64 data;
8024
8025#ifndef CONFIG_64BIT
8026 /*
8027 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8028 */
05fa785c 8029 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8030 data = *cpuusage;
05fa785c 8031 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8032#else
8033 data = *cpuusage;
8034#endif
8035
8036 return data;
8037}
8038
8039static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8040{
b36128c8 8041 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8042
8043#ifndef CONFIG_64BIT
8044 /*
8045 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8046 */
05fa785c 8047 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8048 *cpuusage = val;
05fa785c 8049 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8050#else
8051 *cpuusage = val;
8052#endif
8053}
8054
d842de87 8055/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8056static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8057{
32cd756a 8058 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8059 u64 totalcpuusage = 0;
8060 int i;
8061
720f5498
KC
8062 for_each_present_cpu(i)
8063 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8064
8065 return totalcpuusage;
8066}
8067
0297b803
DG
8068static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8069 u64 reset)
8070{
8071 struct cpuacct *ca = cgroup_ca(cgrp);
8072 int err = 0;
8073 int i;
8074
8075 if (reset) {
8076 err = -EINVAL;
8077 goto out;
8078 }
8079
720f5498
KC
8080 for_each_present_cpu(i)
8081 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8082
0297b803
DG
8083out:
8084 return err;
8085}
8086
e9515c3c
KC
8087static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8088 struct seq_file *m)
8089{
8090 struct cpuacct *ca = cgroup_ca(cgroup);
8091 u64 percpu;
8092 int i;
8093
8094 for_each_present_cpu(i) {
8095 percpu = cpuacct_cpuusage_read(ca, i);
8096 seq_printf(m, "%llu ", (unsigned long long) percpu);
8097 }
8098 seq_printf(m, "\n");
8099 return 0;
8100}
8101
ef12fefa
BR
8102static const char *cpuacct_stat_desc[] = {
8103 [CPUACCT_STAT_USER] = "user",
8104 [CPUACCT_STAT_SYSTEM] = "system",
8105};
8106
8107static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8108 struct cgroup_map_cb *cb)
ef12fefa
BR
8109{
8110 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8111 int cpu;
8112 s64 val = 0;
ef12fefa 8113
54c707e9
GC
8114 for_each_online_cpu(cpu) {
8115 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8116 val += kcpustat->cpustat[CPUTIME_USER];
8117 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8118 }
54c707e9
GC
8119 val = cputime64_to_clock_t(val);
8120 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8121
54c707e9
GC
8122 val = 0;
8123 for_each_online_cpu(cpu) {
8124 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8125 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8126 val += kcpustat->cpustat[CPUTIME_IRQ];
8127 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8128 }
54c707e9
GC
8129
8130 val = cputime64_to_clock_t(val);
8131 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8132
ef12fefa
BR
8133 return 0;
8134}
8135
d842de87
SV
8136static struct cftype files[] = {
8137 {
8138 .name = "usage",
f4c753b7
PM
8139 .read_u64 = cpuusage_read,
8140 .write_u64 = cpuusage_write,
d842de87 8141 },
e9515c3c
KC
8142 {
8143 .name = "usage_percpu",
8144 .read_seq_string = cpuacct_percpu_seq_read,
8145 },
ef12fefa
BR
8146 {
8147 .name = "stat",
8148 .read_map = cpuacct_stats_show,
8149 },
d842de87
SV
8150};
8151
32cd756a 8152static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8153{
32cd756a 8154 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8155}
8156
8157/*
8158 * charge this task's execution time to its accounting group.
8159 *
8160 * called with rq->lock held.
8161 */
029632fb 8162void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8163{
8164 struct cpuacct *ca;
934352f2 8165 int cpu;
d842de87 8166
c40c6f85 8167 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8168 return;
8169
934352f2 8170 cpu = task_cpu(tsk);
a18b83b7
BR
8171
8172 rcu_read_lock();
8173
d842de87 8174 ca = task_ca(tsk);
d842de87 8175
44252e42 8176 for (; ca; ca = parent_ca(ca)) {
b36128c8 8177 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8178 *cpuusage += cputime;
8179 }
a18b83b7
BR
8180
8181 rcu_read_unlock();
d842de87
SV
8182}
8183
8184struct cgroup_subsys cpuacct_subsys = {
8185 .name = "cpuacct",
8186 .create = cpuacct_create,
8187 .destroy = cpuacct_destroy,
8188 .populate = cpuacct_populate,
8189 .subsys_id = cpuacct_subsys_id,
8190};
8191#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.272666 seconds and 5 git commands to generate.