sched: Deal with non-atomic min_vruntime reads on 32bits
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
c6c4927b
RR
423 cpumask_var_t span;
424 cpumask_var_t online;
637f5085 425
0eab9146 426 /*
637f5085
GH
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
c6c4927b 430 cpumask_var_t rto_mask;
0eab9146 431 atomic_t rto_count;
6e0534f2 432 struct cpupri cpupri;
57d885fe
GH
433};
434
dc938520
GH
435/*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
57d885fe
GH
439static struct root_domain def_root_domain;
440
ed2d372c 441#endif /* CONFIG_SMP */
57d885fe 442
1da177e4
LT
443/*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
70b97a7f 450struct rq {
d8016491 451 /* runqueue lock: */
05fa785c 452 raw_spinlock_t lock;
1da177e4
LT
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
6aa645ea
IM
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 461 unsigned long last_load_update_tick;
46cb4b7c 462#ifdef CONFIG_NO_HZ
39c0cbe2 463 u64 nohz_stamp;
83cd4fe2 464 unsigned char nohz_balance_kick;
46cb4b7c 465#endif
a64692a3
MG
466 unsigned int skip_clock_update;
467
d8016491
IM
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
6aa645ea
IM
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
6f505b16 474 struct rt_rq rt;
6f505b16 475
6aa645ea 476#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
479#endif
480#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 481 struct list_head leaf_rt_rq_list;
1da177e4 482#endif
1da177e4
LT
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
34f971f6 492 struct task_struct *curr, *idle, *stop;
c9819f45 493 unsigned long next_balance;
1da177e4 494 struct mm_struct *prev_mm;
6aa645ea 495
3e51f33f 496 u64 clock;
305e6835 497 u64 clock_task;
6aa645ea 498
1da177e4
LT
499 atomic_t nr_iowait;
500
501#ifdef CONFIG_SMP
0eab9146 502 struct root_domain *rd;
1da177e4
LT
503 struct sched_domain *sd;
504
e51fd5e2
PZ
505 unsigned long cpu_power;
506
a0a522ce 507 unsigned char idle_at_tick;
1da177e4 508 /* For active balancing */
3f029d3c 509 int post_schedule;
1da177e4
LT
510 int active_balance;
511 int push_cpu;
969c7921 512 struct cpu_stop_work active_balance_work;
d8016491
IM
513 /* cpu of this runqueue: */
514 int cpu;
1f11eb6a 515 int online;
1da177e4 516
a8a51d5e 517 unsigned long avg_load_per_task;
1da177e4 518
e9e9250b
PZ
519 u64 rt_avg;
520 u64 age_stamp;
1b9508f6
MG
521 u64 idle_stamp;
522 u64 avg_idle;
1da177e4
LT
523#endif
524
aa483808
VP
525#ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527#endif
528
dce48a84
TG
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
8f4d37ec 533#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
534#ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537#endif
8f4d37ec
PZ
538 struct hrtimer hrtick_timer;
539#endif
540
1da177e4
LT
541#ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
9c2c4802
KC
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
546
547 /* sys_sched_yield() stats */
480b9434 548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
5091faa4 608 struct task_group *tg;
dc61b1d6
PZ
609 struct cgroup_subsys_state *css;
610
611 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
612 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
613 tg = container_of(css, struct task_group, css);
614
615 return autogroup_task_group(p, tg);
dc61b1d6
PZ
616}
617
618/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
620{
621#ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
624#endif
625
626#ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
629#endif
630}
631
632#else /* CONFIG_CGROUP_SCHED */
633
634static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635static inline struct task_group *task_group(struct task_struct *p)
636{
637 return NULL;
638}
639
640#endif /* CONFIG_CGROUP_SCHED */
641
fe44d621 642static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 643
fe44d621 644static void update_rq_clock(struct rq *rq)
3e51f33f 645{
fe44d621 646 s64 delta;
305e6835 647
f26f9aff
MG
648 if (rq->skip_clock_update)
649 return;
aa483808 650
fe44d621
PZ
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
652 rq->clock += delta;
653 update_rq_clock_task(rq, delta);
3e51f33f
PZ
654}
655
bf5c91ba
IM
656/*
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
658 */
659#ifdef CONFIG_SCHED_DEBUG
660# define const_debug __read_mostly
661#else
662# define const_debug static const
663#endif
664
017730c1 665/**
1fd06bb1 666 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 667 * @cpu: the processor in question.
017730c1 668 *
017730c1
IM
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
671 */
89f19f04 672int runqueue_is_locked(int cpu)
017730c1 673{
05fa785c 674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
675}
676
bf5c91ba
IM
677/*
678 * Debugging: various feature bits
679 */
f00b45c1
PZ
680
681#define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
683
bf5c91ba 684enum {
f00b45c1 685#include "sched_features.h"
bf5c91ba
IM
686};
687
f00b45c1
PZ
688#undef SCHED_FEAT
689
690#define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
692
bf5c91ba 693const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
694#include "sched_features.h"
695 0;
696
697#undef SCHED_FEAT
698
699#ifdef CONFIG_SCHED_DEBUG
700#define SCHED_FEAT(name, enabled) \
701 #name ,
702
983ed7a6 703static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
704#include "sched_features.h"
705 NULL
706};
707
708#undef SCHED_FEAT
709
34f3a814 710static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 711{
f00b45c1
PZ
712 int i;
713
714 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
715 if (!(sysctl_sched_features & (1UL << i)))
716 seq_puts(m, "NO_");
717 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 718 }
34f3a814 719 seq_puts(m, "\n");
f00b45c1 720
34f3a814 721 return 0;
f00b45c1
PZ
722}
723
724static ssize_t
725sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
727{
728 char buf[64];
7740191c 729 char *cmp;
f00b45c1
PZ
730 int neg = 0;
731 int i;
732
733 if (cnt > 63)
734 cnt = 63;
735
736 if (copy_from_user(&buf, ubuf, cnt))
737 return -EFAULT;
738
739 buf[cnt] = 0;
7740191c 740 cmp = strstrip(buf);
f00b45c1 741
524429c3 742 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
743 neg = 1;
744 cmp += 3;
745 }
746
747 for (i = 0; sched_feat_names[i]; i++) {
7740191c 748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
749 if (neg)
750 sysctl_sched_features &= ~(1UL << i);
751 else
752 sysctl_sched_features |= (1UL << i);
753 break;
754 }
755 }
756
757 if (!sched_feat_names[i])
758 return -EINVAL;
759
42994724 760 *ppos += cnt;
f00b45c1
PZ
761
762 return cnt;
763}
764
34f3a814
LZ
765static int sched_feat_open(struct inode *inode, struct file *filp)
766{
767 return single_open(filp, sched_feat_show, NULL);
768}
769
828c0950 770static const struct file_operations sched_feat_fops = {
34f3a814
LZ
771 .open = sched_feat_open,
772 .write = sched_feat_write,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = single_release,
f00b45c1
PZ
776};
777
778static __init int sched_init_debug(void)
779{
f00b45c1
PZ
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
781 &sched_feat_fops);
782
783 return 0;
784}
785late_initcall(sched_init_debug);
786
787#endif
788
789#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 790
b82d9fdd
PZ
791/*
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
794 */
795const_debug unsigned int sysctl_sched_nr_migrate = 32;
796
e9e9250b
PZ
797/*
798 * period over which we average the RT time consumption, measured
799 * in ms.
800 *
801 * default: 1s
802 */
803const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
804
fa85ae24 805/*
9f0c1e56 806 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
807 * default: 1s
808 */
9f0c1e56 809unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 810
6892b75e
IM
811static __read_mostly int scheduler_running;
812
9f0c1e56
PZ
813/*
814 * part of the period that we allow rt tasks to run in us.
815 * default: 0.95s
816 */
817int sysctl_sched_rt_runtime = 950000;
fa85ae24 818
d0b27fa7
PZ
819static inline u64 global_rt_period(void)
820{
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
822}
823
824static inline u64 global_rt_runtime(void)
825{
e26873bb 826 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
827 return RUNTIME_INF;
828
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
830}
fa85ae24 831
1da177e4 832#ifndef prepare_arch_switch
4866cde0
NP
833# define prepare_arch_switch(next) do { } while (0)
834#endif
835#ifndef finish_arch_switch
836# define finish_arch_switch(prev) do { } while (0)
837#endif
838
051a1d1a
DA
839static inline int task_current(struct rq *rq, struct task_struct *p)
840{
841 return rq->curr == p;
842}
843
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 845{
3ca7a440
PZ
846#ifdef CONFIG_SMP
847 return p->on_cpu;
848#else
051a1d1a 849 return task_current(rq, p);
3ca7a440 850#endif
4866cde0
NP
851}
852
3ca7a440 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 855{
3ca7a440
PZ
856#ifdef CONFIG_SMP
857 /*
858 * We can optimise this out completely for !SMP, because the
859 * SMP rebalancing from interrupt is the only thing that cares
860 * here.
861 */
862 next->on_cpu = 1;
863#endif
4866cde0
NP
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
3ca7a440
PZ
868#ifdef CONFIG_SMP
869 /*
870 * After ->on_cpu is cleared, the task can be moved to a different CPU.
871 * We must ensure this doesn't happen until the switch is completely
872 * finished.
873 */
874 smp_wmb();
875 prev->on_cpu = 0;
876#endif
da04c035
IM
877#ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
880#endif
8a25d5de
IM
881 /*
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
884 * prev into current:
885 */
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
887
05fa785c 888 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
889}
890
891#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
3ca7a440 900 next->on_cpu = 1;
4866cde0
NP
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
3ca7a440 913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
3ca7a440 918 prev->on_cpu = 0;
4866cde0
NP
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
65cc8e48
PZ
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
0970d299
PZ
929 */
930static inline int task_is_waking(struct task_struct *p)
931{
0017d735 932 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
933}
934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
0970d299
PZ
942 struct rq *rq;
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4
LT
953/*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 955 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
956 * explicitly disabling preemption.
957 */
70b97a7f 958static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
959 __acquires(rq->lock)
960{
70b97a7f 961 struct rq *rq;
1da177e4 962
3a5c359a
AK
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
05fa785c 966 raw_spin_lock(&rq->lock);
65cc8e48 967 if (likely(rq == task_rq(p)))
3a5c359a 968 return rq;
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
70b97a7f 979static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217}
06d8308c
TG
1218/*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228void wake_up_idle_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
5ed0cec0 1250 set_tsk_need_resched(rq->idle);
06d8308c
TG
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256}
39c0cbe2 1257
6d6bc0ad 1258#endif /* CONFIG_NO_HZ */
06d8308c 1259
e9e9250b
PZ
1260static u64 sched_avg_period(void)
1261{
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1263}
1264
1265static void sched_avg_update(struct rq *rq)
1266{
1267 s64 period = sched_avg_period();
1268
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1270 /*
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1274 */
1275 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1276 rq->age_stamp += period;
1277 rq->rt_avg /= 2;
1278 }
1279}
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1285}
1286
6d6bc0ad 1287#else /* !CONFIG_SMP */
31656519 1288static void resched_task(struct task_struct *p)
c24d20db 1289{
05fa785c 1290 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1291 set_tsk_need_resched(p);
c24d20db 1292}
e9e9250b
PZ
1293
1294static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1295{
1296}
da2b71ed
SS
1297
1298static void sched_avg_update(struct rq *rq)
1299{
1300}
6d6bc0ad 1301#endif /* CONFIG_SMP */
c24d20db 1302
45bf76df
IM
1303#if BITS_PER_LONG == 32
1304# define WMULT_CONST (~0UL)
1305#else
1306# define WMULT_CONST (1UL << 32)
1307#endif
1308
1309#define WMULT_SHIFT 32
1310
194081eb
IM
1311/*
1312 * Shift right and round:
1313 */
cf2ab469 1314#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1315
a7be37ac
PZ
1316/*
1317 * delta *= weight / lw
1318 */
cb1c4fc9 1319static unsigned long
45bf76df
IM
1320calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1322{
1323 u64 tmp;
1324
7a232e03
LJ
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1327 lw->inv_weight = 1;
1328 else
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1330 / (lw->weight+1);
1331 }
45bf76df
IM
1332
1333 tmp = (u64)delta_exec * weight;
1334 /*
1335 * Check whether we'd overflow the 64-bit multiplication:
1336 */
194081eb 1337 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1339 WMULT_SHIFT/2);
1340 else
cf2ab469 1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1342
ecf691da 1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1344}
1345
1091985b 1346static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1347{
1348 lw->weight += inc;
e89996ae 1349 lw->inv_weight = 0;
45bf76df
IM
1350}
1351
1091985b 1352static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1353{
1354 lw->weight -= dec;
e89996ae 1355 lw->inv_weight = 0;
45bf76df
IM
1356}
1357
2069dd75
PZ
1358static inline void update_load_set(struct load_weight *lw, unsigned long w)
1359{
1360 lw->weight = w;
1361 lw->inv_weight = 0;
1362}
1363
2dd73a4f
PW
1364/*
1365 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1366 * of tasks with abnormal "nice" values across CPUs the contribution that
1367 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1368 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1369 * scaled version of the new time slice allocation that they receive on time
1370 * slice expiry etc.
1371 */
1372
cce7ade8
PZ
1373#define WEIGHT_IDLEPRIO 3
1374#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1375
1376/*
1377 * Nice levels are multiplicative, with a gentle 10% change for every
1378 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1379 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1380 * that remained on nice 0.
1381 *
1382 * The "10% effect" is relative and cumulative: from _any_ nice level,
1383 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1384 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1385 * If a task goes up by ~10% and another task goes down by ~10% then
1386 * the relative distance between them is ~25%.)
dd41f596
IM
1387 */
1388static const int prio_to_weight[40] = {
254753dc
IM
1389 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1390 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1391 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1392 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1393 /* 0 */ 1024, 820, 655, 526, 423,
1394 /* 5 */ 335, 272, 215, 172, 137,
1395 /* 10 */ 110, 87, 70, 56, 45,
1396 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1397};
1398
5714d2de
IM
1399/*
1400 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1401 *
1402 * In cases where the weight does not change often, we can use the
1403 * precalculated inverse to speed up arithmetics by turning divisions
1404 * into multiplications:
1405 */
dd41f596 1406static const u32 prio_to_wmult[40] = {
254753dc
IM
1407 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1408 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1409 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1410 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1411 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1412 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1413 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1414 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1415};
2dd73a4f 1416
ef12fefa
BR
1417/* Time spent by the tasks of the cpu accounting group executing in ... */
1418enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423};
1424
d842de87
SV
1425#ifdef CONFIG_CGROUP_CPUACCT
1426static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1427static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1429#else
1430static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1431static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1433#endif
1434
18d95a28
PZ
1435static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_add(&rq->load, load);
1438}
1439
1440static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_sub(&rq->load, load);
1443}
1444
7940ca36 1445#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1446typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
eb755805 1452static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1453{
1454 struct task_group *parent, *child;
eb755805 1455 int ret;
c09595f6
PZ
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
eb755805
PZ
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467up:
1468 continue;
1469 }
eb755805
PZ
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
c09595f6
PZ
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
eb755805 1478out_unlock:
c09595f6 1479 rcu_read_unlock();
eb755805
PZ
1480
1481 return ret;
c09595f6
PZ
1482}
1483
eb755805
PZ
1484static int tg_nop(struct task_group *tg, void *data)
1485{
1486 return 0;
c09595f6 1487}
eb755805
PZ
1488#endif
1489
1490#ifdef CONFIG_SMP
f5f08f39
PZ
1491/* Used instead of source_load when we know the type == 0 */
1492static unsigned long weighted_cpuload(const int cpu)
1493{
1494 return cpu_rq(cpu)->load.weight;
1495}
1496
1497/*
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1500 *
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1503 */
1504static unsigned long source_load(int cpu, int type)
1505{
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return min(rq->cpu_load[type-1], total);
1513}
1514
1515/*
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1518 */
1519static unsigned long target_load(int cpu, int type)
1520{
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1523
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1526
1527 return max(rq->cpu_load[type-1], total);
1528}
1529
ae154be1
PZ
1530static unsigned long power_of(int cpu)
1531{
e51fd5e2 1532 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1533}
1534
eb755805
PZ
1535static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1536
1537static unsigned long cpu_avg_load_per_task(int cpu)
1538{
1539 struct rq *rq = cpu_rq(cpu);
af6d596f 1540 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1541
4cd42620
SR
1542 if (nr_running)
1543 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1544 else
1545 rq->avg_load_per_task = 0;
eb755805
PZ
1546
1547 return rq->avg_load_per_task;
1548}
1549
1550#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1551
c09595f6 1552/*
c8cba857
PZ
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
c09595f6 1556 */
eb755805 1557static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1558{
c8cba857 1559 unsigned long load;
eb755805 1560 long cpu = (long)data;
c09595f6 1561
c8cba857
PZ
1562 if (!tg->parent) {
1563 load = cpu_rq(cpu)->load.weight;
1564 } else {
1565 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1566 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 }
c09595f6 1569
c8cba857 1570 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1571
eb755805 1572 return 0;
c09595f6
PZ
1573}
1574
eb755805 1575static void update_h_load(long cpu)
c09595f6 1576{
eb755805 1577 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1578}
1579
18d95a28
PZ
1580#endif
1581
8f45e2b5
GH
1582#ifdef CONFIG_PREEMPT
1583
b78bb868
PZ
1584static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1585
70574a99 1586/*
8f45e2b5
GH
1587 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1588 * way at the expense of forcing extra atomic operations in all
1589 * invocations. This assures that the double_lock is acquired using the
1590 * same underlying policy as the spinlock_t on this architecture, which
1591 * reduces latency compared to the unfair variant below. However, it
1592 * also adds more overhead and therefore may reduce throughput.
70574a99 1593 */
8f45e2b5
GH
1594static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1595 __releases(this_rq->lock)
1596 __acquires(busiest->lock)
1597 __acquires(this_rq->lock)
1598{
05fa785c 1599 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1600 double_rq_lock(this_rq, busiest);
1601
1602 return 1;
1603}
1604
1605#else
1606/*
1607 * Unfair double_lock_balance: Optimizes throughput at the expense of
1608 * latency by eliminating extra atomic operations when the locks are
1609 * already in proper order on entry. This favors lower cpu-ids and will
1610 * grant the double lock to lower cpus over higher ids under contention,
1611 * regardless of entry order into the function.
1612 */
1613static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1617{
1618 int ret = 0;
1619
05fa785c 1620 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1621 if (busiest < this_rq) {
05fa785c
TG
1622 raw_spin_unlock(&this_rq->lock);
1623 raw_spin_lock(&busiest->lock);
1624 raw_spin_lock_nested(&this_rq->lock,
1625 SINGLE_DEPTH_NESTING);
70574a99
AD
1626 ret = 1;
1627 } else
05fa785c
TG
1628 raw_spin_lock_nested(&busiest->lock,
1629 SINGLE_DEPTH_NESTING);
70574a99
AD
1630 }
1631 return ret;
1632}
1633
8f45e2b5
GH
1634#endif /* CONFIG_PREEMPT */
1635
1636/*
1637 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1638 */
1639static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1640{
1641 if (unlikely(!irqs_disabled())) {
1642 /* printk() doesn't work good under rq->lock */
05fa785c 1643 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1644 BUG_ON(1);
1645 }
1646
1647 return _double_lock_balance(this_rq, busiest);
1648}
1649
70574a99
AD
1650static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1651 __releases(busiest->lock)
1652{
05fa785c 1653 raw_spin_unlock(&busiest->lock);
70574a99
AD
1654 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1655}
1e3c88bd
PZ
1656
1657/*
1658 * double_rq_lock - safely lock two runqueues
1659 *
1660 * Note this does not disable interrupts like task_rq_lock,
1661 * you need to do so manually before calling.
1662 */
1663static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1664 __acquires(rq1->lock)
1665 __acquires(rq2->lock)
1666{
1667 BUG_ON(!irqs_disabled());
1668 if (rq1 == rq2) {
1669 raw_spin_lock(&rq1->lock);
1670 __acquire(rq2->lock); /* Fake it out ;) */
1671 } else {
1672 if (rq1 < rq2) {
1673 raw_spin_lock(&rq1->lock);
1674 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1675 } else {
1676 raw_spin_lock(&rq2->lock);
1677 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1678 }
1679 }
1e3c88bd
PZ
1680}
1681
1682/*
1683 * double_rq_unlock - safely unlock two runqueues
1684 *
1685 * Note this does not restore interrupts like task_rq_unlock,
1686 * you need to do so manually after calling.
1687 */
1688static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1689 __releases(rq1->lock)
1690 __releases(rq2->lock)
1691{
1692 raw_spin_unlock(&rq1->lock);
1693 if (rq1 != rq2)
1694 raw_spin_unlock(&rq2->lock);
1695 else
1696 __release(rq2->lock);
1697}
1698
d95f4122
MG
1699#else /* CONFIG_SMP */
1700
1701/*
1702 * double_rq_lock - safely lock two runqueues
1703 *
1704 * Note this does not disable interrupts like task_rq_lock,
1705 * you need to do so manually before calling.
1706 */
1707static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1708 __acquires(rq1->lock)
1709 __acquires(rq2->lock)
1710{
1711 BUG_ON(!irqs_disabled());
1712 BUG_ON(rq1 != rq2);
1713 raw_spin_lock(&rq1->lock);
1714 __acquire(rq2->lock); /* Fake it out ;) */
1715}
1716
1717/*
1718 * double_rq_unlock - safely unlock two runqueues
1719 *
1720 * Note this does not restore interrupts like task_rq_unlock,
1721 * you need to do so manually after calling.
1722 */
1723static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1724 __releases(rq1->lock)
1725 __releases(rq2->lock)
1726{
1727 BUG_ON(rq1 != rq2);
1728 raw_spin_unlock(&rq1->lock);
1729 __release(rq2->lock);
1730}
1731
18d95a28
PZ
1732#endif
1733
74f5187a 1734static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1735static void update_sysctl(void);
acb4a848 1736static int get_update_sysctl_factor(void);
fdf3e95d 1737static void update_cpu_load(struct rq *this_rq);
dce48a84 1738
cd29fe6f
PZ
1739static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1740{
1741 set_task_rq(p, cpu);
1742#ifdef CONFIG_SMP
1743 /*
1744 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1745 * successfuly executed on another CPU. We must ensure that updates of
1746 * per-task data have been completed by this moment.
1747 */
1748 smp_wmb();
1749 task_thread_info(p)->cpu = cpu;
1750#endif
1751}
dce48a84 1752
1e3c88bd 1753static const struct sched_class rt_sched_class;
dd41f596 1754
34f971f6 1755#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1756#define for_each_class(class) \
1757 for (class = sched_class_highest; class; class = class->next)
dd41f596 1758
1e3c88bd
PZ
1759#include "sched_stats.h"
1760
c09595f6 1761static void inc_nr_running(struct rq *rq)
9c217245
IM
1762{
1763 rq->nr_running++;
9c217245
IM
1764}
1765
c09595f6 1766static void dec_nr_running(struct rq *rq)
9c217245
IM
1767{
1768 rq->nr_running--;
9c217245
IM
1769}
1770
45bf76df
IM
1771static void set_load_weight(struct task_struct *p)
1772{
dd41f596
IM
1773 /*
1774 * SCHED_IDLE tasks get minimal weight:
1775 */
1776 if (p->policy == SCHED_IDLE) {
1777 p->se.load.weight = WEIGHT_IDLEPRIO;
1778 p->se.load.inv_weight = WMULT_IDLEPRIO;
1779 return;
1780 }
71f8bd46 1781
dd41f596
IM
1782 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1783 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1784}
1785
371fd7e7 1786static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1787{
a64692a3 1788 update_rq_clock(rq);
dd41f596 1789 sched_info_queued(p);
371fd7e7 1790 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1791}
1792
371fd7e7 1793static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1794{
a64692a3 1795 update_rq_clock(rq);
46ac22ba 1796 sched_info_dequeued(p);
371fd7e7 1797 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1798}
1799
1e3c88bd
PZ
1800/*
1801 * activate_task - move a task to the runqueue.
1802 */
371fd7e7 1803static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1804{
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible--;
1807
371fd7e7 1808 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1809 inc_nr_running(rq);
1810}
1811
1812/*
1813 * deactivate_task - remove a task from the runqueue.
1814 */
371fd7e7 1815static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1816{
1817 if (task_contributes_to_load(p))
1818 rq->nr_uninterruptible++;
1819
371fd7e7 1820 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1821 dec_nr_running(rq);
1822}
1823
b52bfee4
VP
1824#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1825
305e6835
VP
1826/*
1827 * There are no locks covering percpu hardirq/softirq time.
1828 * They are only modified in account_system_vtime, on corresponding CPU
1829 * with interrupts disabled. So, writes are safe.
1830 * They are read and saved off onto struct rq in update_rq_clock().
1831 * This may result in other CPU reading this CPU's irq time and can
1832 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1833 * or new value with a side effect of accounting a slice of irq time to wrong
1834 * task when irq is in progress while we read rq->clock. That is a worthy
1835 * compromise in place of having locks on each irq in account_system_time.
305e6835 1836 */
b52bfee4
VP
1837static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1838static DEFINE_PER_CPU(u64, cpu_softirq_time);
1839
1840static DEFINE_PER_CPU(u64, irq_start_time);
1841static int sched_clock_irqtime;
1842
1843void enable_sched_clock_irqtime(void)
1844{
1845 sched_clock_irqtime = 1;
1846}
1847
1848void disable_sched_clock_irqtime(void)
1849{
1850 sched_clock_irqtime = 0;
1851}
1852
8e92c201
PZ
1853#ifndef CONFIG_64BIT
1854static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1855
1856static inline void irq_time_write_begin(void)
1857{
1858 __this_cpu_inc(irq_time_seq.sequence);
1859 smp_wmb();
1860}
1861
1862static inline void irq_time_write_end(void)
1863{
1864 smp_wmb();
1865 __this_cpu_inc(irq_time_seq.sequence);
1866}
1867
1868static inline u64 irq_time_read(int cpu)
1869{
1870 u64 irq_time;
1871 unsigned seq;
1872
1873 do {
1874 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1875 irq_time = per_cpu(cpu_softirq_time, cpu) +
1876 per_cpu(cpu_hardirq_time, cpu);
1877 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1878
1879 return irq_time;
1880}
1881#else /* CONFIG_64BIT */
1882static inline void irq_time_write_begin(void)
1883{
1884}
1885
1886static inline void irq_time_write_end(void)
1887{
1888}
1889
1890static inline u64 irq_time_read(int cpu)
305e6835 1891{
305e6835
VP
1892 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1893}
8e92c201 1894#endif /* CONFIG_64BIT */
305e6835 1895
fe44d621
PZ
1896/*
1897 * Called before incrementing preempt_count on {soft,}irq_enter
1898 * and before decrementing preempt_count on {soft,}irq_exit.
1899 */
b52bfee4
VP
1900void account_system_vtime(struct task_struct *curr)
1901{
1902 unsigned long flags;
fe44d621 1903 s64 delta;
b52bfee4 1904 int cpu;
b52bfee4
VP
1905
1906 if (!sched_clock_irqtime)
1907 return;
1908
1909 local_irq_save(flags);
1910
b52bfee4 1911 cpu = smp_processor_id();
fe44d621
PZ
1912 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1913 __this_cpu_add(irq_start_time, delta);
1914
8e92c201 1915 irq_time_write_begin();
b52bfee4
VP
1916 /*
1917 * We do not account for softirq time from ksoftirqd here.
1918 * We want to continue accounting softirq time to ksoftirqd thread
1919 * in that case, so as not to confuse scheduler with a special task
1920 * that do not consume any time, but still wants to run.
1921 */
1922 if (hardirq_count())
fe44d621 1923 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1924 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1925 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1926
8e92c201 1927 irq_time_write_end();
b52bfee4
VP
1928 local_irq_restore(flags);
1929}
b7dadc38 1930EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1931
fe44d621 1932static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1933{
fe44d621
PZ
1934 s64 irq_delta;
1935
8e92c201 1936 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1937
1938 /*
1939 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1940 * this case when a previous update_rq_clock() happened inside a
1941 * {soft,}irq region.
1942 *
1943 * When this happens, we stop ->clock_task and only update the
1944 * prev_irq_time stamp to account for the part that fit, so that a next
1945 * update will consume the rest. This ensures ->clock_task is
1946 * monotonic.
1947 *
1948 * It does however cause some slight miss-attribution of {soft,}irq
1949 * time, a more accurate solution would be to update the irq_time using
1950 * the current rq->clock timestamp, except that would require using
1951 * atomic ops.
1952 */
1953 if (irq_delta > delta)
1954 irq_delta = delta;
1955
1956 rq->prev_irq_time += irq_delta;
1957 delta -= irq_delta;
1958 rq->clock_task += delta;
1959
1960 if (irq_delta && sched_feat(NONIRQ_POWER))
1961 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1962}
1963
abb74cef
VP
1964static int irqtime_account_hi_update(void)
1965{
1966 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1967 unsigned long flags;
1968 u64 latest_ns;
1969 int ret = 0;
1970
1971 local_irq_save(flags);
1972 latest_ns = this_cpu_read(cpu_hardirq_time);
1973 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1974 ret = 1;
1975 local_irq_restore(flags);
1976 return ret;
1977}
1978
1979static int irqtime_account_si_update(void)
1980{
1981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1982 unsigned long flags;
1983 u64 latest_ns;
1984 int ret = 0;
1985
1986 local_irq_save(flags);
1987 latest_ns = this_cpu_read(cpu_softirq_time);
1988 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1989 ret = 1;
1990 local_irq_restore(flags);
1991 return ret;
1992}
1993
fe44d621 1994#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1995
abb74cef
VP
1996#define sched_clock_irqtime (0)
1997
fe44d621 1998static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1999{
fe44d621 2000 rq->clock_task += delta;
305e6835
VP
2001}
2002
fe44d621 2003#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2004
1e3c88bd
PZ
2005#include "sched_idletask.c"
2006#include "sched_fair.c"
2007#include "sched_rt.c"
5091faa4 2008#include "sched_autogroup.c"
34f971f6 2009#include "sched_stoptask.c"
1e3c88bd
PZ
2010#ifdef CONFIG_SCHED_DEBUG
2011# include "sched_debug.c"
2012#endif
2013
34f971f6
PZ
2014void sched_set_stop_task(int cpu, struct task_struct *stop)
2015{
2016 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2017 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2018
2019 if (stop) {
2020 /*
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2023 *
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2027 */
2028 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2029
2030 stop->sched_class = &stop_sched_class;
2031 }
2032
2033 cpu_rq(cpu)->stop = stop;
2034
2035 if (old_stop) {
2036 /*
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2039 */
2040 old_stop->sched_class = &rt_sched_class;
2041 }
2042}
2043
14531189 2044/*
dd41f596 2045 * __normal_prio - return the priority that is based on the static prio
14531189 2046 */
14531189
IM
2047static inline int __normal_prio(struct task_struct *p)
2048{
dd41f596 2049 return p->static_prio;
14531189
IM
2050}
2051
b29739f9
IM
2052/*
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2058 */
36c8b586 2059static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2060{
2061 int prio;
2062
e05606d3 2063 if (task_has_rt_policy(p))
b29739f9
IM
2064 prio = MAX_RT_PRIO-1 - p->rt_priority;
2065 else
2066 prio = __normal_prio(p);
2067 return prio;
2068}
2069
2070/*
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2076 */
36c8b586 2077static int effective_prio(struct task_struct *p)
b29739f9
IM
2078{
2079 p->normal_prio = normal_prio(p);
2080 /*
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2084 */
2085 if (!rt_prio(p->prio))
2086 return p->normal_prio;
2087 return p->prio;
2088}
2089
1da177e4
LT
2090/**
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2093 */
36c8b586 2094inline int task_curr(const struct task_struct *p)
1da177e4
LT
2095{
2096 return cpu_curr(task_cpu(p)) == p;
2097}
2098
cb469845
SR
2099static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2100 const struct sched_class *prev_class,
da7a735e 2101 int oldprio)
cb469845
SR
2102{
2103 if (prev_class != p->sched_class) {
2104 if (prev_class->switched_from)
da7a735e
PZ
2105 prev_class->switched_from(rq, p);
2106 p->sched_class->switched_to(rq, p);
2107 } else if (oldprio != p->prio)
2108 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2109}
2110
1e5a7405
PZ
2111static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2112{
2113 const struct sched_class *class;
2114
2115 if (p->sched_class == rq->curr->sched_class) {
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 } else {
2118 for_each_class(class) {
2119 if (class == rq->curr->sched_class)
2120 break;
2121 if (class == p->sched_class) {
2122 resched_task(rq->curr);
2123 break;
2124 }
2125 }
2126 }
2127
2128 /*
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2131 */
fd2f4419 2132 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2133 rq->skip_clock_update = 1;
2134}
2135
1da177e4 2136#ifdef CONFIG_SMP
cc367732
IM
2137/*
2138 * Is this task likely cache-hot:
2139 */
e7693a36 2140static int
cc367732
IM
2141task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2142{
2143 s64 delta;
2144
e6c8fba7
PZ
2145 if (p->sched_class != &fair_sched_class)
2146 return 0;
2147
ef8002f6
NR
2148 if (unlikely(p->policy == SCHED_IDLE))
2149 return 0;
2150
f540a608
IM
2151 /*
2152 * Buddy candidates are cache hot:
2153 */
f685ceac 2154 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2155 (&p->se == cfs_rq_of(&p->se)->next ||
2156 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2157 return 1;
2158
6bc1665b
IM
2159 if (sysctl_sched_migration_cost == -1)
2160 return 1;
2161 if (sysctl_sched_migration_cost == 0)
2162 return 0;
2163
cc367732
IM
2164 delta = now - p->se.exec_start;
2165
2166 return delta < (s64)sysctl_sched_migration_cost;
2167}
2168
dd41f596 2169void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2170{
e2912009
PZ
2171#ifdef CONFIG_SCHED_DEBUG
2172 /*
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2175 */
077614ee
PZ
2176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2177 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2178#endif
2179
de1d7286 2180 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2181
0c69774e
PZ
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2185 }
dd41f596
IM
2186
2187 __set_task_cpu(p, new_cpu);
c65cc870
IM
2188}
2189
969c7921 2190struct migration_arg {
36c8b586 2191 struct task_struct *task;
1da177e4 2192 int dest_cpu;
70b97a7f 2193};
1da177e4 2194
969c7921
TH
2195static int migration_cpu_stop(void *data);
2196
1da177e4
LT
2197/*
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2200 */
7608dec2 2201static bool need_migrate_task(struct task_struct *p)
1da177e4 2202{
1da177e4
LT
2203 /*
2204 * If the task is not on a runqueue (and not running), then
e2912009 2205 * the next wake-up will properly place the task.
1da177e4 2206 */
7608dec2
PZ
2207 bool running = p->on_rq || p->on_cpu;
2208 smp_rmb(); /* finish_lock_switch() */
2209 return running;
1da177e4
LT
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
85ba2d86
RM
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
1da177e4
LT
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
85ba2d86 2228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2229{
2230 unsigned long flags;
dd41f596 2231 int running, on_rq;
85ba2d86 2232 unsigned long ncsw;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
85ba2d86
RM
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
3a5c359a 2258 cpu_relax();
85ba2d86 2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &flags);
27a9da65 2267 trace_sched_wait_task(p);
3a5c359a 2268 running = task_running(rq, p);
fd2f4419 2269 on_rq = p->on_rq;
85ba2d86 2270 ncsw = 0;
f31e11d8 2271 if (!match_state || p->state == match_state)
93dcf55f 2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2273 task_rq_unlock(rq, &flags);
fa490cfd 2274
85ba2d86
RM
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
3a5c359a
AK
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
fa490cfd 2291
3a5c359a
AK
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
80dd99b3 2297 * So if it was still runnable (but just not actively
3a5c359a
AK
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(on_rq)) {
8eb90c30
TG
2302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2303
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2306 continue;
2307 }
fa490cfd 2308
3a5c359a
AK
2309 /*
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2313 */
2314 break;
2315 }
85ba2d86
RM
2316
2317 return ncsw;
1da177e4
LT
2318}
2319
2320/***
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2323 *
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2326 *
25985edc 2327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2331 * achieved as well.
2332 */
36c8b586 2333void kick_process(struct task_struct *p)
1da177e4
LT
2334{
2335 int cpu;
2336
2337 preempt_disable();
2338 cpu = task_cpu(p);
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2341 preempt_enable();
2342}
b43e3521 2343EXPORT_SYMBOL_GPL(kick_process);
476d139c 2344#endif /* CONFIG_SMP */
1da177e4 2345
970b13ba 2346#ifdef CONFIG_SMP
30da688e 2347/*
013fdb80 2348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2349 */
5da9a0fb
PZ
2350static int select_fallback_rq(int cpu, struct task_struct *p)
2351{
2352 int dest_cpu;
2353 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2354
2355 /* Look for allowed, online CPU in same node. */
2356 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2357 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2358 return dest_cpu;
2359
2360 /* Any allowed, online CPU? */
2361 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2362 if (dest_cpu < nr_cpu_ids)
2363 return dest_cpu;
2364
2365 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2366 dest_cpu = cpuset_cpus_allowed_fallback(p);
2367 /*
2368 * Don't tell them about moving exiting tasks or
2369 * kernel threads (both mm NULL), since they never
2370 * leave kernel.
2371 */
2372 if (p->mm && printk_ratelimit()) {
2373 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2374 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2375 }
2376
2377 return dest_cpu;
2378}
2379
e2912009 2380/*
013fdb80 2381 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2382 */
970b13ba 2383static inline
7608dec2 2384int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2385{
7608dec2 2386 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2387
2388 /*
2389 * In order not to call set_task_cpu() on a blocking task we need
2390 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2391 * cpu.
2392 *
2393 * Since this is common to all placement strategies, this lives here.
2394 *
2395 * [ this allows ->select_task() to simply return task_cpu(p) and
2396 * not worry about this generic constraint ]
2397 */
2398 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2399 !cpu_online(cpu)))
5da9a0fb 2400 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2401
2402 return cpu;
970b13ba 2403}
09a40af5
MG
2404
2405static void update_avg(u64 *avg, u64 sample)
2406{
2407 s64 diff = sample - *avg;
2408 *avg += diff >> 3;
2409}
970b13ba
PZ
2410#endif
2411
d7c01d27
PZ
2412static void
2413ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2414{
d7c01d27
PZ
2415#ifdef CONFIG_SCHEDSTATS
2416#ifdef CONFIG_SMP
2417 int this_cpu = smp_processor_id();
2418
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2422 } else {
2423 struct sched_domain *sd;
2424
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
2433#endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2437
2438 if (wake_flags & WF_SYNC)
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2440
2441 if (cpu != task_cpu(p))
9ed3811a 2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2443
d7c01d27
PZ
2444#endif /* CONFIG_SCHEDSTATS */
2445}
2446
2447static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2448{
9ed3811a 2449 activate_task(rq, p, en_flags);
fd2f4419 2450 p->on_rq = 1;
c2f7115e
PZ
2451
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2455}
2456
89363381
PZ
2457static void
2458ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2459{
89363381 2460 trace_sched_wakeup(p, true);
9ed3811a
TH
2461 check_preempt_curr(rq, p, wake_flags);
2462
2463 p->state = TASK_RUNNING;
2464#ifdef CONFIG_SMP
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2467
2468 if (unlikely(rq->idle_stamp)) {
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2471
2472 if (delta > max)
2473 rq->avg_idle = max;
2474 else
2475 update_avg(&rq->avg_idle, delta);
2476 rq->idle_stamp = 0;
2477 }
2478#endif
2479}
2480
2481/**
1da177e4 2482 * try_to_wake_up - wake up a thread
9ed3811a 2483 * @p: the thread to be awakened
1da177e4 2484 * @state: the mask of task states that can be woken
9ed3811a 2485 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2486 *
2487 * Put it on the run-queue if it's not already there. The "current"
2488 * thread is always on the run-queue (except when the actual
2489 * re-schedule is in progress), and as such you're allowed to do
2490 * the simpler "current->state = TASK_RUNNING" to mark yourself
2491 * runnable without the overhead of this.
2492 *
9ed3811a
TH
2493 * Returns %true if @p was woken up, %false if it was already running
2494 * or @state didn't match @p's state.
1da177e4 2495 */
7d478721
PZ
2496static int try_to_wake_up(struct task_struct *p, unsigned int state,
2497 int wake_flags)
1da177e4 2498{
cc367732 2499 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2500 unsigned long flags;
371fd7e7 2501 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2502 struct rq *rq;
1da177e4 2503
e9c84311 2504 this_cpu = get_cpu();
2398f2c6 2505
04e2f174 2506 smp_wmb();
013fdb80
PZ
2507 raw_spin_lock_irqsave(&p->pi_lock, flags);
2508 rq = __task_rq_lock(p);
e9c84311 2509 if (!(p->state & state))
1da177e4
LT
2510 goto out;
2511
d7c01d27
PZ
2512 cpu = task_cpu(p);
2513
fd2f4419 2514 if (p->on_rq)
1da177e4
LT
2515 goto out_running;
2516
cc367732 2517 orig_cpu = cpu;
1da177e4
LT
2518#ifdef CONFIG_SMP
2519 if (unlikely(task_running(rq, p)))
2520 goto out_activate;
2521
e9c84311
PZ
2522 /*
2523 * In order to handle concurrent wakeups and release the rq->lock
2524 * we put the task in TASK_WAKING state.
eb24073b
IM
2525 *
2526 * First fix up the nr_uninterruptible count:
e9c84311 2527 */
cc87f76a
PZ
2528 if (task_contributes_to_load(p)) {
2529 if (likely(cpu_online(orig_cpu)))
2530 rq->nr_uninterruptible--;
2531 else
2532 this_rq()->nr_uninterruptible--;
2533 }
e9c84311 2534 p->state = TASK_WAKING;
efbbd05a 2535
371fd7e7 2536 if (p->sched_class->task_waking) {
74f8e4b2 2537 p->sched_class->task_waking(p);
371fd7e7
PZ
2538 en_flags |= ENQUEUE_WAKING;
2539 }
efbbd05a 2540
7608dec2 2541 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0017d735 2542 if (cpu != orig_cpu)
5d2f5a61 2543 set_task_cpu(p, cpu);
0017d735 2544 __task_rq_unlock(rq);
ab19cb23 2545
0970d299
PZ
2546 rq = cpu_rq(cpu);
2547 raw_spin_lock(&rq->lock);
f5dc3753 2548
0970d299
PZ
2549 /*
2550 * We migrated the task without holding either rq->lock, however
2551 * since the task is not on the task list itself, nobody else
2552 * will try and migrate the task, hence the rq should match the
2553 * cpu we just moved it to.
2554 */
2555 WARN_ON(task_cpu(p) != cpu);
e9c84311 2556 WARN_ON(p->state != TASK_WAKING);
1da177e4
LT
2557
2558out_activate:
2559#endif /* CONFIG_SMP */
d7c01d27 2560 ttwu_activate(rq, p, en_flags);
1da177e4 2561out_running:
89363381 2562 ttwu_post_activation(p, rq, wake_flags);
d7c01d27 2563 ttwu_stat(rq, p, cpu, wake_flags);
89363381 2564 success = 1;
1da177e4 2565out:
013fdb80
PZ
2566 __task_rq_unlock(rq);
2567 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
e9c84311 2568 put_cpu();
1da177e4
LT
2569
2570 return success;
2571}
2572
21aa9af0
TH
2573/**
2574 * try_to_wake_up_local - try to wake up a local task with rq lock held
2575 * @p: the thread to be awakened
2576 *
b595076a 2577 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2578 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2579 * the current task. this_rq() stays locked over invocation.
2580 */
2581static void try_to_wake_up_local(struct task_struct *p)
2582{
2583 struct rq *rq = task_rq(p);
21aa9af0
TH
2584
2585 BUG_ON(rq != this_rq());
2586 BUG_ON(p == current);
2587 lockdep_assert_held(&rq->lock);
2588
2589 if (!(p->state & TASK_NORMAL))
2590 return;
2591
fd2f4419 2592 if (!p->on_rq)
d7c01d27
PZ
2593 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2594
89363381 2595 ttwu_post_activation(p, rq, 0);
d7c01d27 2596 ttwu_stat(rq, p, smp_processor_id(), 0);
21aa9af0
TH
2597}
2598
50fa610a
DH
2599/**
2600 * wake_up_process - Wake up a specific process
2601 * @p: The process to be woken up.
2602 *
2603 * Attempt to wake up the nominated process and move it to the set of runnable
2604 * processes. Returns 1 if the process was woken up, 0 if it was already
2605 * running.
2606 *
2607 * It may be assumed that this function implies a write memory barrier before
2608 * changing the task state if and only if any tasks are woken up.
2609 */
7ad5b3a5 2610int wake_up_process(struct task_struct *p)
1da177e4 2611{
d9514f6c 2612 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2613}
1da177e4
LT
2614EXPORT_SYMBOL(wake_up_process);
2615
7ad5b3a5 2616int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2617{
2618 return try_to_wake_up(p, state, 0);
2619}
2620
1da177e4
LT
2621/*
2622 * Perform scheduler related setup for a newly forked process p.
2623 * p is forked by current.
dd41f596
IM
2624 *
2625 * __sched_fork() is basic setup used by init_idle() too:
2626 */
2627static void __sched_fork(struct task_struct *p)
2628{
fd2f4419
PZ
2629 p->on_rq = 0;
2630
2631 p->se.on_rq = 0;
dd41f596
IM
2632 p->se.exec_start = 0;
2633 p->se.sum_exec_runtime = 0;
f6cf891c 2634 p->se.prev_sum_exec_runtime = 0;
6c594c21 2635 p->se.nr_migrations = 0;
da7a735e 2636 p->se.vruntime = 0;
fd2f4419 2637 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2638
2639#ifdef CONFIG_SCHEDSTATS
41acab88 2640 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2641#endif
476d139c 2642
fa717060 2643 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2644
e107be36
AK
2645#ifdef CONFIG_PREEMPT_NOTIFIERS
2646 INIT_HLIST_HEAD(&p->preempt_notifiers);
2647#endif
dd41f596
IM
2648}
2649
2650/*
2651 * fork()/clone()-time setup:
2652 */
2653void sched_fork(struct task_struct *p, int clone_flags)
2654{
2655 int cpu = get_cpu();
2656
2657 __sched_fork(p);
06b83b5f 2658 /*
0017d735 2659 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2660 * nobody will actually run it, and a signal or other external
2661 * event cannot wake it up and insert it on the runqueue either.
2662 */
0017d735 2663 p->state = TASK_RUNNING;
dd41f596 2664
b9dc29e7
MG
2665 /*
2666 * Revert to default priority/policy on fork if requested.
2667 */
2668 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2669 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2670 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2671 p->normal_prio = p->static_prio;
2672 }
b9dc29e7 2673
6c697bdf
MG
2674 if (PRIO_TO_NICE(p->static_prio) < 0) {
2675 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2676 p->normal_prio = p->static_prio;
6c697bdf
MG
2677 set_load_weight(p);
2678 }
2679
b9dc29e7
MG
2680 /*
2681 * We don't need the reset flag anymore after the fork. It has
2682 * fulfilled its duty:
2683 */
2684 p->sched_reset_on_fork = 0;
2685 }
ca94c442 2686
f83f9ac2
PW
2687 /*
2688 * Make sure we do not leak PI boosting priority to the child.
2689 */
2690 p->prio = current->normal_prio;
2691
2ddbf952
HS
2692 if (!rt_prio(p->prio))
2693 p->sched_class = &fair_sched_class;
b29739f9 2694
cd29fe6f
PZ
2695 if (p->sched_class->task_fork)
2696 p->sched_class->task_fork(p);
2697
86951599
PZ
2698 /*
2699 * The child is not yet in the pid-hash so no cgroup attach races,
2700 * and the cgroup is pinned to this child due to cgroup_fork()
2701 * is ran before sched_fork().
2702 *
2703 * Silence PROVE_RCU.
2704 */
2705 rcu_read_lock();
5f3edc1b 2706 set_task_cpu(p, cpu);
86951599 2707 rcu_read_unlock();
5f3edc1b 2708
52f17b6c 2709#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2710 if (likely(sched_info_on()))
52f17b6c 2711 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2712#endif
3ca7a440
PZ
2713#if defined(CONFIG_SMP)
2714 p->on_cpu = 0;
4866cde0 2715#endif
1da177e4 2716#ifdef CONFIG_PREEMPT
4866cde0 2717 /* Want to start with kernel preemption disabled. */
a1261f54 2718 task_thread_info(p)->preempt_count = 1;
1da177e4 2719#endif
806c09a7 2720#ifdef CONFIG_SMP
917b627d 2721 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2722#endif
917b627d 2723
476d139c 2724 put_cpu();
1da177e4
LT
2725}
2726
2727/*
2728 * wake_up_new_task - wake up a newly created task for the first time.
2729 *
2730 * This function will do some initial scheduler statistics housekeeping
2731 * that must be done for every newly created context, then puts the task
2732 * on the runqueue and wakes it.
2733 */
7ad5b3a5 2734void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2735{
2736 unsigned long flags;
dd41f596 2737 struct rq *rq;
c890692b 2738 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2739
2740#ifdef CONFIG_SMP
0017d735
PZ
2741 rq = task_rq_lock(p, &flags);
2742 p->state = TASK_WAKING;
2743
fabf318e
PZ
2744 /*
2745 * Fork balancing, do it here and not earlier because:
2746 * - cpus_allowed can change in the fork path
2747 * - any previously selected cpu might disappear through hotplug
2748 *
0017d735
PZ
2749 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2750 * without people poking at ->cpus_allowed.
fabf318e 2751 */
7608dec2 2752 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
fabf318e 2753 set_task_cpu(p, cpu);
1da177e4 2754
06b83b5f 2755 p->state = TASK_RUNNING;
0017d735
PZ
2756 task_rq_unlock(rq, &flags);
2757#endif
2758
2759 rq = task_rq_lock(p, &flags);
cd29fe6f 2760 activate_task(rq, p, 0);
fd2f4419 2761 p->on_rq = 1;
89363381 2762 trace_sched_wakeup_new(p, true);
a7558e01 2763 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2764#ifdef CONFIG_SMP
efbbd05a
PZ
2765 if (p->sched_class->task_woken)
2766 p->sched_class->task_woken(rq, p);
9a897c5a 2767#endif
dd41f596 2768 task_rq_unlock(rq, &flags);
fabf318e 2769 put_cpu();
1da177e4
LT
2770}
2771
e107be36
AK
2772#ifdef CONFIG_PREEMPT_NOTIFIERS
2773
2774/**
80dd99b3 2775 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2776 * @notifier: notifier struct to register
e107be36
AK
2777 */
2778void preempt_notifier_register(struct preempt_notifier *notifier)
2779{
2780 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2781}
2782EXPORT_SYMBOL_GPL(preempt_notifier_register);
2783
2784/**
2785 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2786 * @notifier: notifier struct to unregister
e107be36
AK
2787 *
2788 * This is safe to call from within a preemption notifier.
2789 */
2790void preempt_notifier_unregister(struct preempt_notifier *notifier)
2791{
2792 hlist_del(&notifier->link);
2793}
2794EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2795
2796static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2797{
2798 struct preempt_notifier *notifier;
2799 struct hlist_node *node;
2800
2801 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2802 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2803}
2804
2805static void
2806fire_sched_out_preempt_notifiers(struct task_struct *curr,
2807 struct task_struct *next)
2808{
2809 struct preempt_notifier *notifier;
2810 struct hlist_node *node;
2811
2812 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2813 notifier->ops->sched_out(notifier, next);
2814}
2815
6d6bc0ad 2816#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2817
2818static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2819{
2820}
2821
2822static void
2823fire_sched_out_preempt_notifiers(struct task_struct *curr,
2824 struct task_struct *next)
2825{
2826}
2827
6d6bc0ad 2828#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2829
4866cde0
NP
2830/**
2831 * prepare_task_switch - prepare to switch tasks
2832 * @rq: the runqueue preparing to switch
421cee29 2833 * @prev: the current task that is being switched out
4866cde0
NP
2834 * @next: the task we are going to switch to.
2835 *
2836 * This is called with the rq lock held and interrupts off. It must
2837 * be paired with a subsequent finish_task_switch after the context
2838 * switch.
2839 *
2840 * prepare_task_switch sets up locking and calls architecture specific
2841 * hooks.
2842 */
e107be36
AK
2843static inline void
2844prepare_task_switch(struct rq *rq, struct task_struct *prev,
2845 struct task_struct *next)
4866cde0 2846{
fe4b04fa
PZ
2847 sched_info_switch(prev, next);
2848 perf_event_task_sched_out(prev, next);
e107be36 2849 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2850 prepare_lock_switch(rq, next);
2851 prepare_arch_switch(next);
fe4b04fa 2852 trace_sched_switch(prev, next);
4866cde0
NP
2853}
2854
1da177e4
LT
2855/**
2856 * finish_task_switch - clean up after a task-switch
344babaa 2857 * @rq: runqueue associated with task-switch
1da177e4
LT
2858 * @prev: the thread we just switched away from.
2859 *
4866cde0
NP
2860 * finish_task_switch must be called after the context switch, paired
2861 * with a prepare_task_switch call before the context switch.
2862 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2863 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2864 *
2865 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2866 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2867 * with the lock held can cause deadlocks; see schedule() for
2868 * details.)
2869 */
a9957449 2870static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2871 __releases(rq->lock)
2872{
1da177e4 2873 struct mm_struct *mm = rq->prev_mm;
55a101f8 2874 long prev_state;
1da177e4
LT
2875
2876 rq->prev_mm = NULL;
2877
2878 /*
2879 * A task struct has one reference for the use as "current".
c394cc9f 2880 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2881 * schedule one last time. The schedule call will never return, and
2882 * the scheduled task must drop that reference.
c394cc9f 2883 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2884 * still held, otherwise prev could be scheduled on another cpu, die
2885 * there before we look at prev->state, and then the reference would
2886 * be dropped twice.
2887 * Manfred Spraul <manfred@colorfullife.com>
2888 */
55a101f8 2889 prev_state = prev->state;
4866cde0 2890 finish_arch_switch(prev);
8381f65d
JI
2891#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2892 local_irq_disable();
2893#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2894 perf_event_task_sched_in(current);
8381f65d
JI
2895#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2896 local_irq_enable();
2897#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2898 finish_lock_switch(rq, prev);
e8fa1362 2899
e107be36 2900 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2901 if (mm)
2902 mmdrop(mm);
c394cc9f 2903 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2904 /*
2905 * Remove function-return probe instances associated with this
2906 * task and put them back on the free list.
9761eea8 2907 */
c6fd91f0 2908 kprobe_flush_task(prev);
1da177e4 2909 put_task_struct(prev);
c6fd91f0 2910 }
1da177e4
LT
2911}
2912
3f029d3c
GH
2913#ifdef CONFIG_SMP
2914
2915/* assumes rq->lock is held */
2916static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2917{
2918 if (prev->sched_class->pre_schedule)
2919 prev->sched_class->pre_schedule(rq, prev);
2920}
2921
2922/* rq->lock is NOT held, but preemption is disabled */
2923static inline void post_schedule(struct rq *rq)
2924{
2925 if (rq->post_schedule) {
2926 unsigned long flags;
2927
05fa785c 2928 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2929 if (rq->curr->sched_class->post_schedule)
2930 rq->curr->sched_class->post_schedule(rq);
05fa785c 2931 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2932
2933 rq->post_schedule = 0;
2934 }
2935}
2936
2937#else
da19ab51 2938
3f029d3c
GH
2939static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2940{
2941}
2942
2943static inline void post_schedule(struct rq *rq)
2944{
1da177e4
LT
2945}
2946
3f029d3c
GH
2947#endif
2948
1da177e4
LT
2949/**
2950 * schedule_tail - first thing a freshly forked thread must call.
2951 * @prev: the thread we just switched away from.
2952 */
36c8b586 2953asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2954 __releases(rq->lock)
2955{
70b97a7f
IM
2956 struct rq *rq = this_rq();
2957
4866cde0 2958 finish_task_switch(rq, prev);
da19ab51 2959
3f029d3c
GH
2960 /*
2961 * FIXME: do we need to worry about rq being invalidated by the
2962 * task_switch?
2963 */
2964 post_schedule(rq);
70b97a7f 2965
4866cde0
NP
2966#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2967 /* In this case, finish_task_switch does not reenable preemption */
2968 preempt_enable();
2969#endif
1da177e4 2970 if (current->set_child_tid)
b488893a 2971 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2972}
2973
2974/*
2975 * context_switch - switch to the new MM and the new
2976 * thread's register state.
2977 */
dd41f596 2978static inline void
70b97a7f 2979context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2980 struct task_struct *next)
1da177e4 2981{
dd41f596 2982 struct mm_struct *mm, *oldmm;
1da177e4 2983
e107be36 2984 prepare_task_switch(rq, prev, next);
fe4b04fa 2985
dd41f596
IM
2986 mm = next->mm;
2987 oldmm = prev->active_mm;
9226d125
ZA
2988 /*
2989 * For paravirt, this is coupled with an exit in switch_to to
2990 * combine the page table reload and the switch backend into
2991 * one hypercall.
2992 */
224101ed 2993 arch_start_context_switch(prev);
9226d125 2994
31915ab4 2995 if (!mm) {
1da177e4
LT
2996 next->active_mm = oldmm;
2997 atomic_inc(&oldmm->mm_count);
2998 enter_lazy_tlb(oldmm, next);
2999 } else
3000 switch_mm(oldmm, mm, next);
3001
31915ab4 3002 if (!prev->mm) {
1da177e4 3003 prev->active_mm = NULL;
1da177e4
LT
3004 rq->prev_mm = oldmm;
3005 }
3a5f5e48
IM
3006 /*
3007 * Since the runqueue lock will be released by the next
3008 * task (which is an invalid locking op but in the case
3009 * of the scheduler it's an obvious special-case), so we
3010 * do an early lockdep release here:
3011 */
3012#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3013 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3014#endif
1da177e4
LT
3015
3016 /* Here we just switch the register state and the stack. */
3017 switch_to(prev, next, prev);
3018
dd41f596
IM
3019 barrier();
3020 /*
3021 * this_rq must be evaluated again because prev may have moved
3022 * CPUs since it called schedule(), thus the 'rq' on its stack
3023 * frame will be invalid.
3024 */
3025 finish_task_switch(this_rq(), prev);
1da177e4
LT
3026}
3027
3028/*
3029 * nr_running, nr_uninterruptible and nr_context_switches:
3030 *
3031 * externally visible scheduler statistics: current number of runnable
3032 * threads, current number of uninterruptible-sleeping threads, total
3033 * number of context switches performed since bootup.
3034 */
3035unsigned long nr_running(void)
3036{
3037 unsigned long i, sum = 0;
3038
3039 for_each_online_cpu(i)
3040 sum += cpu_rq(i)->nr_running;
3041
3042 return sum;
f711f609 3043}
1da177e4
LT
3044
3045unsigned long nr_uninterruptible(void)
f711f609 3046{
1da177e4 3047 unsigned long i, sum = 0;
f711f609 3048
0a945022 3049 for_each_possible_cpu(i)
1da177e4 3050 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3051
3052 /*
1da177e4
LT
3053 * Since we read the counters lockless, it might be slightly
3054 * inaccurate. Do not allow it to go below zero though:
f711f609 3055 */
1da177e4
LT
3056 if (unlikely((long)sum < 0))
3057 sum = 0;
f711f609 3058
1da177e4 3059 return sum;
f711f609 3060}
f711f609 3061
1da177e4 3062unsigned long long nr_context_switches(void)
46cb4b7c 3063{
cc94abfc
SR
3064 int i;
3065 unsigned long long sum = 0;
46cb4b7c 3066
0a945022 3067 for_each_possible_cpu(i)
1da177e4 3068 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3069
1da177e4
LT
3070 return sum;
3071}
483b4ee6 3072
1da177e4
LT
3073unsigned long nr_iowait(void)
3074{
3075 unsigned long i, sum = 0;
483b4ee6 3076
0a945022 3077 for_each_possible_cpu(i)
1da177e4 3078 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3079
1da177e4
LT
3080 return sum;
3081}
483b4ee6 3082
8c215bd3 3083unsigned long nr_iowait_cpu(int cpu)
69d25870 3084{
8c215bd3 3085 struct rq *this = cpu_rq(cpu);
69d25870
AV
3086 return atomic_read(&this->nr_iowait);
3087}
46cb4b7c 3088
69d25870
AV
3089unsigned long this_cpu_load(void)
3090{
3091 struct rq *this = this_rq();
3092 return this->cpu_load[0];
3093}
e790fb0b 3094
46cb4b7c 3095
dce48a84
TG
3096/* Variables and functions for calc_load */
3097static atomic_long_t calc_load_tasks;
3098static unsigned long calc_load_update;
3099unsigned long avenrun[3];
3100EXPORT_SYMBOL(avenrun);
46cb4b7c 3101
74f5187a
PZ
3102static long calc_load_fold_active(struct rq *this_rq)
3103{
3104 long nr_active, delta = 0;
3105
3106 nr_active = this_rq->nr_running;
3107 nr_active += (long) this_rq->nr_uninterruptible;
3108
3109 if (nr_active != this_rq->calc_load_active) {
3110 delta = nr_active - this_rq->calc_load_active;
3111 this_rq->calc_load_active = nr_active;
3112 }
3113
3114 return delta;
3115}
3116
0f004f5a
PZ
3117static unsigned long
3118calc_load(unsigned long load, unsigned long exp, unsigned long active)
3119{
3120 load *= exp;
3121 load += active * (FIXED_1 - exp);
3122 load += 1UL << (FSHIFT - 1);
3123 return load >> FSHIFT;
3124}
3125
74f5187a
PZ
3126#ifdef CONFIG_NO_HZ
3127/*
3128 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3129 *
3130 * When making the ILB scale, we should try to pull this in as well.
3131 */
3132static atomic_long_t calc_load_tasks_idle;
3133
3134static void calc_load_account_idle(struct rq *this_rq)
3135{
3136 long delta;
3137
3138 delta = calc_load_fold_active(this_rq);
3139 if (delta)
3140 atomic_long_add(delta, &calc_load_tasks_idle);
3141}
3142
3143static long calc_load_fold_idle(void)
3144{
3145 long delta = 0;
3146
3147 /*
3148 * Its got a race, we don't care...
3149 */
3150 if (atomic_long_read(&calc_load_tasks_idle))
3151 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3152
3153 return delta;
3154}
0f004f5a
PZ
3155
3156/**
3157 * fixed_power_int - compute: x^n, in O(log n) time
3158 *
3159 * @x: base of the power
3160 * @frac_bits: fractional bits of @x
3161 * @n: power to raise @x to.
3162 *
3163 * By exploiting the relation between the definition of the natural power
3164 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3165 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3166 * (where: n_i \elem {0, 1}, the binary vector representing n),
3167 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3168 * of course trivially computable in O(log_2 n), the length of our binary
3169 * vector.
3170 */
3171static unsigned long
3172fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3173{
3174 unsigned long result = 1UL << frac_bits;
3175
3176 if (n) for (;;) {
3177 if (n & 1) {
3178 result *= x;
3179 result += 1UL << (frac_bits - 1);
3180 result >>= frac_bits;
3181 }
3182 n >>= 1;
3183 if (!n)
3184 break;
3185 x *= x;
3186 x += 1UL << (frac_bits - 1);
3187 x >>= frac_bits;
3188 }
3189
3190 return result;
3191}
3192
3193/*
3194 * a1 = a0 * e + a * (1 - e)
3195 *
3196 * a2 = a1 * e + a * (1 - e)
3197 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3198 * = a0 * e^2 + a * (1 - e) * (1 + e)
3199 *
3200 * a3 = a2 * e + a * (1 - e)
3201 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3202 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3203 *
3204 * ...
3205 *
3206 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3207 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3208 * = a0 * e^n + a * (1 - e^n)
3209 *
3210 * [1] application of the geometric series:
3211 *
3212 * n 1 - x^(n+1)
3213 * S_n := \Sum x^i = -------------
3214 * i=0 1 - x
3215 */
3216static unsigned long
3217calc_load_n(unsigned long load, unsigned long exp,
3218 unsigned long active, unsigned int n)
3219{
3220
3221 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3222}
3223
3224/*
3225 * NO_HZ can leave us missing all per-cpu ticks calling
3226 * calc_load_account_active(), but since an idle CPU folds its delta into
3227 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3228 * in the pending idle delta if our idle period crossed a load cycle boundary.
3229 *
3230 * Once we've updated the global active value, we need to apply the exponential
3231 * weights adjusted to the number of cycles missed.
3232 */
3233static void calc_global_nohz(unsigned long ticks)
3234{
3235 long delta, active, n;
3236
3237 if (time_before(jiffies, calc_load_update))
3238 return;
3239
3240 /*
3241 * If we crossed a calc_load_update boundary, make sure to fold
3242 * any pending idle changes, the respective CPUs might have
3243 * missed the tick driven calc_load_account_active() update
3244 * due to NO_HZ.
3245 */
3246 delta = calc_load_fold_idle();
3247 if (delta)
3248 atomic_long_add(delta, &calc_load_tasks);
3249
3250 /*
3251 * If we were idle for multiple load cycles, apply them.
3252 */
3253 if (ticks >= LOAD_FREQ) {
3254 n = ticks / LOAD_FREQ;
3255
3256 active = atomic_long_read(&calc_load_tasks);
3257 active = active > 0 ? active * FIXED_1 : 0;
3258
3259 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3260 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3261 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3262
3263 calc_load_update += n * LOAD_FREQ;
3264 }
3265
3266 /*
3267 * Its possible the remainder of the above division also crosses
3268 * a LOAD_FREQ period, the regular check in calc_global_load()
3269 * which comes after this will take care of that.
3270 *
3271 * Consider us being 11 ticks before a cycle completion, and us
3272 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3273 * age us 4 cycles, and the test in calc_global_load() will
3274 * pick up the final one.
3275 */
3276}
74f5187a
PZ
3277#else
3278static void calc_load_account_idle(struct rq *this_rq)
3279{
3280}
3281
3282static inline long calc_load_fold_idle(void)
3283{
3284 return 0;
3285}
0f004f5a
PZ
3286
3287static void calc_global_nohz(unsigned long ticks)
3288{
3289}
74f5187a
PZ
3290#endif
3291
2d02494f
TG
3292/**
3293 * get_avenrun - get the load average array
3294 * @loads: pointer to dest load array
3295 * @offset: offset to add
3296 * @shift: shift count to shift the result left
3297 *
3298 * These values are estimates at best, so no need for locking.
3299 */
3300void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3301{
3302 loads[0] = (avenrun[0] + offset) << shift;
3303 loads[1] = (avenrun[1] + offset) << shift;
3304 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3305}
46cb4b7c 3306
46cb4b7c 3307/*
dce48a84
TG
3308 * calc_load - update the avenrun load estimates 10 ticks after the
3309 * CPUs have updated calc_load_tasks.
7835b98b 3310 */
0f004f5a 3311void calc_global_load(unsigned long ticks)
7835b98b 3312{
dce48a84 3313 long active;
1da177e4 3314
0f004f5a
PZ
3315 calc_global_nohz(ticks);
3316
3317 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3318 return;
1da177e4 3319
dce48a84
TG
3320 active = atomic_long_read(&calc_load_tasks);
3321 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3322
dce48a84
TG
3323 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3324 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3325 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3326
dce48a84
TG
3327 calc_load_update += LOAD_FREQ;
3328}
1da177e4 3329
dce48a84 3330/*
74f5187a
PZ
3331 * Called from update_cpu_load() to periodically update this CPU's
3332 * active count.
dce48a84
TG
3333 */
3334static void calc_load_account_active(struct rq *this_rq)
3335{
74f5187a 3336 long delta;
08c183f3 3337
74f5187a
PZ
3338 if (time_before(jiffies, this_rq->calc_load_update))
3339 return;
783609c6 3340
74f5187a
PZ
3341 delta = calc_load_fold_active(this_rq);
3342 delta += calc_load_fold_idle();
3343 if (delta)
dce48a84 3344 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3345
3346 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3347}
3348
fdf3e95d
VP
3349/*
3350 * The exact cpuload at various idx values, calculated at every tick would be
3351 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3352 *
3353 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3354 * on nth tick when cpu may be busy, then we have:
3355 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3356 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3357 *
3358 * decay_load_missed() below does efficient calculation of
3359 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3360 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3361 *
3362 * The calculation is approximated on a 128 point scale.
3363 * degrade_zero_ticks is the number of ticks after which load at any
3364 * particular idx is approximated to be zero.
3365 * degrade_factor is a precomputed table, a row for each load idx.
3366 * Each column corresponds to degradation factor for a power of two ticks,
3367 * based on 128 point scale.
3368 * Example:
3369 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3370 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3371 *
3372 * With this power of 2 load factors, we can degrade the load n times
3373 * by looking at 1 bits in n and doing as many mult/shift instead of
3374 * n mult/shifts needed by the exact degradation.
3375 */
3376#define DEGRADE_SHIFT 7
3377static const unsigned char
3378 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3379static const unsigned char
3380 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3381 {0, 0, 0, 0, 0, 0, 0, 0},
3382 {64, 32, 8, 0, 0, 0, 0, 0},
3383 {96, 72, 40, 12, 1, 0, 0},
3384 {112, 98, 75, 43, 15, 1, 0},
3385 {120, 112, 98, 76, 45, 16, 2} };
3386
3387/*
3388 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3389 * would be when CPU is idle and so we just decay the old load without
3390 * adding any new load.
3391 */
3392static unsigned long
3393decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3394{
3395 int j = 0;
3396
3397 if (!missed_updates)
3398 return load;
3399
3400 if (missed_updates >= degrade_zero_ticks[idx])
3401 return 0;
3402
3403 if (idx == 1)
3404 return load >> missed_updates;
3405
3406 while (missed_updates) {
3407 if (missed_updates % 2)
3408 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3409
3410 missed_updates >>= 1;
3411 j++;
3412 }
3413 return load;
3414}
3415
46cb4b7c 3416/*
dd41f596 3417 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3418 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3419 * every tick. We fix it up based on jiffies.
46cb4b7c 3420 */
dd41f596 3421static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3422{
495eca49 3423 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3424 unsigned long curr_jiffies = jiffies;
3425 unsigned long pending_updates;
dd41f596 3426 int i, scale;
46cb4b7c 3427
dd41f596 3428 this_rq->nr_load_updates++;
46cb4b7c 3429
fdf3e95d
VP
3430 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3431 if (curr_jiffies == this_rq->last_load_update_tick)
3432 return;
3433
3434 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3435 this_rq->last_load_update_tick = curr_jiffies;
3436
dd41f596 3437 /* Update our load: */
fdf3e95d
VP
3438 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3439 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3440 unsigned long old_load, new_load;
7d1e6a9b 3441
dd41f596 3442 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3443
dd41f596 3444 old_load = this_rq->cpu_load[i];
fdf3e95d 3445 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3446 new_load = this_load;
a25707f3
IM
3447 /*
3448 * Round up the averaging division if load is increasing. This
3449 * prevents us from getting stuck on 9 if the load is 10, for
3450 * example.
3451 */
3452 if (new_load > old_load)
fdf3e95d
VP
3453 new_load += scale - 1;
3454
3455 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3456 }
da2b71ed
SS
3457
3458 sched_avg_update(this_rq);
fdf3e95d
VP
3459}
3460
3461static void update_cpu_load_active(struct rq *this_rq)
3462{
3463 update_cpu_load(this_rq);
46cb4b7c 3464
74f5187a 3465 calc_load_account_active(this_rq);
46cb4b7c
SS
3466}
3467
dd41f596 3468#ifdef CONFIG_SMP
8a0be9ef 3469
46cb4b7c 3470/*
38022906
PZ
3471 * sched_exec - execve() is a valuable balancing opportunity, because at
3472 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3473 */
38022906 3474void sched_exec(void)
46cb4b7c 3475{
38022906 3476 struct task_struct *p = current;
1da177e4 3477 unsigned long flags;
70b97a7f 3478 struct rq *rq;
0017d735 3479 int dest_cpu;
46cb4b7c 3480
1da177e4 3481 rq = task_rq_lock(p, &flags);
7608dec2 3482 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3483 if (dest_cpu == smp_processor_id())
3484 goto unlock;
38022906 3485
46cb4b7c 3486 /*
38022906 3487 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3488 */
30da688e 3489 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
7608dec2 3490 likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
969c7921 3491 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3492
1da177e4 3493 task_rq_unlock(rq, &flags);
969c7921 3494 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3495 return;
3496 }
0017d735 3497unlock:
1da177e4 3498 task_rq_unlock(rq, &flags);
1da177e4 3499}
dd41f596 3500
1da177e4
LT
3501#endif
3502
1da177e4
LT
3503DEFINE_PER_CPU(struct kernel_stat, kstat);
3504
3505EXPORT_PER_CPU_SYMBOL(kstat);
3506
3507/*
c5f8d995 3508 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3509 * @p in case that task is currently running.
c5f8d995
HS
3510 *
3511 * Called with task_rq_lock() held on @rq.
1da177e4 3512 */
c5f8d995
HS
3513static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3514{
3515 u64 ns = 0;
3516
3517 if (task_current(rq, p)) {
3518 update_rq_clock(rq);
305e6835 3519 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3520 if ((s64)ns < 0)
3521 ns = 0;
3522 }
3523
3524 return ns;
3525}
3526
bb34d92f 3527unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3528{
1da177e4 3529 unsigned long flags;
41b86e9c 3530 struct rq *rq;
bb34d92f 3531 u64 ns = 0;
48f24c4d 3532
41b86e9c 3533 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3534 ns = do_task_delta_exec(p, rq);
3535 task_rq_unlock(rq, &flags);
1508487e 3536
c5f8d995
HS
3537 return ns;
3538}
f06febc9 3539
c5f8d995
HS
3540/*
3541 * Return accounted runtime for the task.
3542 * In case the task is currently running, return the runtime plus current's
3543 * pending runtime that have not been accounted yet.
3544 */
3545unsigned long long task_sched_runtime(struct task_struct *p)
3546{
3547 unsigned long flags;
3548 struct rq *rq;
3549 u64 ns = 0;
3550
3551 rq = task_rq_lock(p, &flags);
3552 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3553 task_rq_unlock(rq, &flags);
3554
3555 return ns;
3556}
48f24c4d 3557
c5f8d995
HS
3558/*
3559 * Return sum_exec_runtime for the thread group.
3560 * In case the task is currently running, return the sum plus current's
3561 * pending runtime that have not been accounted yet.
3562 *
3563 * Note that the thread group might have other running tasks as well,
3564 * so the return value not includes other pending runtime that other
3565 * running tasks might have.
3566 */
3567unsigned long long thread_group_sched_runtime(struct task_struct *p)
3568{
3569 struct task_cputime totals;
3570 unsigned long flags;
3571 struct rq *rq;
3572 u64 ns;
3573
3574 rq = task_rq_lock(p, &flags);
3575 thread_group_cputime(p, &totals);
3576 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3577 task_rq_unlock(rq, &flags);
48f24c4d 3578
1da177e4
LT
3579 return ns;
3580}
3581
1da177e4
LT
3582/*
3583 * Account user cpu time to a process.
3584 * @p: the process that the cpu time gets accounted to
1da177e4 3585 * @cputime: the cpu time spent in user space since the last update
457533a7 3586 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3587 */
457533a7
MS
3588void account_user_time(struct task_struct *p, cputime_t cputime,
3589 cputime_t cputime_scaled)
1da177e4
LT
3590{
3591 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3592 cputime64_t tmp;
3593
457533a7 3594 /* Add user time to process. */
1da177e4 3595 p->utime = cputime_add(p->utime, cputime);
457533a7 3596 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3597 account_group_user_time(p, cputime);
1da177e4
LT
3598
3599 /* Add user time to cpustat. */
3600 tmp = cputime_to_cputime64(cputime);
3601 if (TASK_NICE(p) > 0)
3602 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3603 else
3604 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3605
3606 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3607 /* Account for user time used */
3608 acct_update_integrals(p);
1da177e4
LT
3609}
3610
94886b84
LV
3611/*
3612 * Account guest cpu time to a process.
3613 * @p: the process that the cpu time gets accounted to
3614 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3615 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3616 */
457533a7
MS
3617static void account_guest_time(struct task_struct *p, cputime_t cputime,
3618 cputime_t cputime_scaled)
94886b84
LV
3619{
3620 cputime64_t tmp;
3621 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3622
3623 tmp = cputime_to_cputime64(cputime);
3624
457533a7 3625 /* Add guest time to process. */
94886b84 3626 p->utime = cputime_add(p->utime, cputime);
457533a7 3627 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3628 account_group_user_time(p, cputime);
94886b84
LV
3629 p->gtime = cputime_add(p->gtime, cputime);
3630
457533a7 3631 /* Add guest time to cpustat. */
ce0e7b28
RO
3632 if (TASK_NICE(p) > 0) {
3633 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3634 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3635 } else {
3636 cpustat->user = cputime64_add(cpustat->user, tmp);
3637 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3638 }
94886b84
LV
3639}
3640
70a89a66
VP
3641/*
3642 * Account system cpu time to a process and desired cpustat field
3643 * @p: the process that the cpu time gets accounted to
3644 * @cputime: the cpu time spent in kernel space since the last update
3645 * @cputime_scaled: cputime scaled by cpu frequency
3646 * @target_cputime64: pointer to cpustat field that has to be updated
3647 */
3648static inline
3649void __account_system_time(struct task_struct *p, cputime_t cputime,
3650 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3651{
3652 cputime64_t tmp = cputime_to_cputime64(cputime);
3653
3654 /* Add system time to process. */
3655 p->stime = cputime_add(p->stime, cputime);
3656 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3657 account_group_system_time(p, cputime);
3658
3659 /* Add system time to cpustat. */
3660 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3661 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3662
3663 /* Account for system time used */
3664 acct_update_integrals(p);
3665}
3666
1da177e4
LT
3667/*
3668 * Account system cpu time to a process.
3669 * @p: the process that the cpu time gets accounted to
3670 * @hardirq_offset: the offset to subtract from hardirq_count()
3671 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3672 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3673 */
3674void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3675 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3676{
3677 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3678 cputime64_t *target_cputime64;
1da177e4 3679
983ed7a6 3680 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3681 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3682 return;
3683 }
94886b84 3684
1da177e4 3685 if (hardirq_count() - hardirq_offset)
70a89a66 3686 target_cputime64 = &cpustat->irq;
75e1056f 3687 else if (in_serving_softirq())
70a89a66 3688 target_cputime64 = &cpustat->softirq;
1da177e4 3689 else
70a89a66 3690 target_cputime64 = &cpustat->system;
ef12fefa 3691
70a89a66 3692 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3693}
3694
c66f08be 3695/*
1da177e4 3696 * Account for involuntary wait time.
544b4a1f 3697 * @cputime: the cpu time spent in involuntary wait
c66f08be 3698 */
79741dd3 3699void account_steal_time(cputime_t cputime)
c66f08be 3700{
79741dd3
MS
3701 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3702 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3703
3704 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3705}
3706
1da177e4 3707/*
79741dd3
MS
3708 * Account for idle time.
3709 * @cputime: the cpu time spent in idle wait
1da177e4 3710 */
79741dd3 3711void account_idle_time(cputime_t cputime)
1da177e4
LT
3712{
3713 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3714 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3715 struct rq *rq = this_rq();
1da177e4 3716
79741dd3
MS
3717 if (atomic_read(&rq->nr_iowait) > 0)
3718 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3719 else
3720 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3721}
3722
79741dd3
MS
3723#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3724
abb74cef
VP
3725#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3726/*
3727 * Account a tick to a process and cpustat
3728 * @p: the process that the cpu time gets accounted to
3729 * @user_tick: is the tick from userspace
3730 * @rq: the pointer to rq
3731 *
3732 * Tick demultiplexing follows the order
3733 * - pending hardirq update
3734 * - pending softirq update
3735 * - user_time
3736 * - idle_time
3737 * - system time
3738 * - check for guest_time
3739 * - else account as system_time
3740 *
3741 * Check for hardirq is done both for system and user time as there is
3742 * no timer going off while we are on hardirq and hence we may never get an
3743 * opportunity to update it solely in system time.
3744 * p->stime and friends are only updated on system time and not on irq
3745 * softirq as those do not count in task exec_runtime any more.
3746 */
3747static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3748 struct rq *rq)
3749{
3750 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3751 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3752 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3753
3754 if (irqtime_account_hi_update()) {
3755 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3756 } else if (irqtime_account_si_update()) {
3757 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3758 } else if (this_cpu_ksoftirqd() == p) {
3759 /*
3760 * ksoftirqd time do not get accounted in cpu_softirq_time.
3761 * So, we have to handle it separately here.
3762 * Also, p->stime needs to be updated for ksoftirqd.
3763 */
3764 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3765 &cpustat->softirq);
abb74cef
VP
3766 } else if (user_tick) {
3767 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3768 } else if (p == rq->idle) {
3769 account_idle_time(cputime_one_jiffy);
3770 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3771 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3772 } else {
3773 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3774 &cpustat->system);
3775 }
3776}
3777
3778static void irqtime_account_idle_ticks(int ticks)
3779{
3780 int i;
3781 struct rq *rq = this_rq();
3782
3783 for (i = 0; i < ticks; i++)
3784 irqtime_account_process_tick(current, 0, rq);
3785}
544b4a1f 3786#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3787static void irqtime_account_idle_ticks(int ticks) {}
3788static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3789 struct rq *rq) {}
544b4a1f 3790#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3791
3792/*
3793 * Account a single tick of cpu time.
3794 * @p: the process that the cpu time gets accounted to
3795 * @user_tick: indicates if the tick is a user or a system tick
3796 */
3797void account_process_tick(struct task_struct *p, int user_tick)
3798{
a42548a1 3799 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3800 struct rq *rq = this_rq();
3801
abb74cef
VP
3802 if (sched_clock_irqtime) {
3803 irqtime_account_process_tick(p, user_tick, rq);
3804 return;
3805 }
3806
79741dd3 3807 if (user_tick)
a42548a1 3808 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3809 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3810 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3811 one_jiffy_scaled);
3812 else
a42548a1 3813 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3814}
3815
3816/*
3817 * Account multiple ticks of steal time.
3818 * @p: the process from which the cpu time has been stolen
3819 * @ticks: number of stolen ticks
3820 */
3821void account_steal_ticks(unsigned long ticks)
3822{
3823 account_steal_time(jiffies_to_cputime(ticks));
3824}
3825
3826/*
3827 * Account multiple ticks of idle time.
3828 * @ticks: number of stolen ticks
3829 */
3830void account_idle_ticks(unsigned long ticks)
3831{
abb74cef
VP
3832
3833 if (sched_clock_irqtime) {
3834 irqtime_account_idle_ticks(ticks);
3835 return;
3836 }
3837
79741dd3 3838 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3839}
3840
79741dd3
MS
3841#endif
3842
49048622
BS
3843/*
3844 * Use precise platform statistics if available:
3845 */
3846#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3847void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3848{
d99ca3b9
HS
3849 *ut = p->utime;
3850 *st = p->stime;
49048622
BS
3851}
3852
0cf55e1e 3853void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3854{
0cf55e1e
HS
3855 struct task_cputime cputime;
3856
3857 thread_group_cputime(p, &cputime);
3858
3859 *ut = cputime.utime;
3860 *st = cputime.stime;
49048622
BS
3861}
3862#else
761b1d26
HS
3863
3864#ifndef nsecs_to_cputime
b7b20df9 3865# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3866#endif
3867
d180c5bc 3868void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3869{
d99ca3b9 3870 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3871
3872 /*
3873 * Use CFS's precise accounting:
3874 */
d180c5bc 3875 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3876
3877 if (total) {
e75e863d 3878 u64 temp = rtime;
d180c5bc 3879
e75e863d 3880 temp *= utime;
49048622 3881 do_div(temp, total);
d180c5bc
HS
3882 utime = (cputime_t)temp;
3883 } else
3884 utime = rtime;
49048622 3885
d180c5bc
HS
3886 /*
3887 * Compare with previous values, to keep monotonicity:
3888 */
761b1d26 3889 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3890 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3891
d99ca3b9
HS
3892 *ut = p->prev_utime;
3893 *st = p->prev_stime;
49048622
BS
3894}
3895
0cf55e1e
HS
3896/*
3897 * Must be called with siglock held.
3898 */
3899void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3900{
0cf55e1e
HS
3901 struct signal_struct *sig = p->signal;
3902 struct task_cputime cputime;
3903 cputime_t rtime, utime, total;
49048622 3904
0cf55e1e 3905 thread_group_cputime(p, &cputime);
49048622 3906
0cf55e1e
HS
3907 total = cputime_add(cputime.utime, cputime.stime);
3908 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3909
0cf55e1e 3910 if (total) {
e75e863d 3911 u64 temp = rtime;
49048622 3912
e75e863d 3913 temp *= cputime.utime;
0cf55e1e
HS
3914 do_div(temp, total);
3915 utime = (cputime_t)temp;
3916 } else
3917 utime = rtime;
3918
3919 sig->prev_utime = max(sig->prev_utime, utime);
3920 sig->prev_stime = max(sig->prev_stime,
3921 cputime_sub(rtime, sig->prev_utime));
3922
3923 *ut = sig->prev_utime;
3924 *st = sig->prev_stime;
49048622 3925}
49048622 3926#endif
49048622 3927
7835b98b
CL
3928/*
3929 * This function gets called by the timer code, with HZ frequency.
3930 * We call it with interrupts disabled.
3931 *
3932 * It also gets called by the fork code, when changing the parent's
3933 * timeslices.
3934 */
3935void scheduler_tick(void)
3936{
7835b98b
CL
3937 int cpu = smp_processor_id();
3938 struct rq *rq = cpu_rq(cpu);
dd41f596 3939 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3940
3941 sched_clock_tick();
dd41f596 3942
05fa785c 3943 raw_spin_lock(&rq->lock);
3e51f33f 3944 update_rq_clock(rq);
fdf3e95d 3945 update_cpu_load_active(rq);
fa85ae24 3946 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3947 raw_spin_unlock(&rq->lock);
7835b98b 3948
e9d2b064 3949 perf_event_task_tick();
e220d2dc 3950
e418e1c2 3951#ifdef CONFIG_SMP
dd41f596
IM
3952 rq->idle_at_tick = idle_cpu(cpu);
3953 trigger_load_balance(rq, cpu);
e418e1c2 3954#endif
1da177e4
LT
3955}
3956
132380a0 3957notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3958{
3959 if (in_lock_functions(addr)) {
3960 addr = CALLER_ADDR2;
3961 if (in_lock_functions(addr))
3962 addr = CALLER_ADDR3;
3963 }
3964 return addr;
3965}
1da177e4 3966
7e49fcce
SR
3967#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3968 defined(CONFIG_PREEMPT_TRACER))
3969
43627582 3970void __kprobes add_preempt_count(int val)
1da177e4 3971{
6cd8a4bb 3972#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3973 /*
3974 * Underflow?
3975 */
9a11b49a
IM
3976 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3977 return;
6cd8a4bb 3978#endif
1da177e4 3979 preempt_count() += val;
6cd8a4bb 3980#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3981 /*
3982 * Spinlock count overflowing soon?
3983 */
33859f7f
MOS
3984 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3985 PREEMPT_MASK - 10);
6cd8a4bb
SR
3986#endif
3987 if (preempt_count() == val)
3988 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3989}
3990EXPORT_SYMBOL(add_preempt_count);
3991
43627582 3992void __kprobes sub_preempt_count(int val)
1da177e4 3993{
6cd8a4bb 3994#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3995 /*
3996 * Underflow?
3997 */
01e3eb82 3998 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3999 return;
1da177e4
LT
4000 /*
4001 * Is the spinlock portion underflowing?
4002 */
9a11b49a
IM
4003 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4004 !(preempt_count() & PREEMPT_MASK)))
4005 return;
6cd8a4bb 4006#endif
9a11b49a 4007
6cd8a4bb
SR
4008 if (preempt_count() == val)
4009 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4010 preempt_count() -= val;
4011}
4012EXPORT_SYMBOL(sub_preempt_count);
4013
4014#endif
4015
4016/*
dd41f596 4017 * Print scheduling while atomic bug:
1da177e4 4018 */
dd41f596 4019static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4020{
838225b4
SS
4021 struct pt_regs *regs = get_irq_regs();
4022
3df0fc5b
PZ
4023 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4024 prev->comm, prev->pid, preempt_count());
838225b4 4025
dd41f596 4026 debug_show_held_locks(prev);
e21f5b15 4027 print_modules();
dd41f596
IM
4028 if (irqs_disabled())
4029 print_irqtrace_events(prev);
838225b4
SS
4030
4031 if (regs)
4032 show_regs(regs);
4033 else
4034 dump_stack();
dd41f596 4035}
1da177e4 4036
dd41f596
IM
4037/*
4038 * Various schedule()-time debugging checks and statistics:
4039 */
4040static inline void schedule_debug(struct task_struct *prev)
4041{
1da177e4 4042 /*
41a2d6cf 4043 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4044 * schedule() atomically, we ignore that path for now.
4045 * Otherwise, whine if we are scheduling when we should not be.
4046 */
3f33a7ce 4047 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4048 __schedule_bug(prev);
4049
1da177e4
LT
4050 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4051
2d72376b 4052 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4053#ifdef CONFIG_SCHEDSTATS
4054 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4055 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4056 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4057 }
4058#endif
dd41f596
IM
4059}
4060
6cecd084 4061static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4062{
fd2f4419 4063 if (prev->on_rq)
a64692a3 4064 update_rq_clock(rq);
6cecd084 4065 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4066}
4067
dd41f596
IM
4068/*
4069 * Pick up the highest-prio task:
4070 */
4071static inline struct task_struct *
b67802ea 4072pick_next_task(struct rq *rq)
dd41f596 4073{
5522d5d5 4074 const struct sched_class *class;
dd41f596 4075 struct task_struct *p;
1da177e4
LT
4076
4077 /*
dd41f596
IM
4078 * Optimization: we know that if all tasks are in
4079 * the fair class we can call that function directly:
1da177e4 4080 */
dd41f596 4081 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4082 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4083 if (likely(p))
4084 return p;
1da177e4
LT
4085 }
4086
34f971f6 4087 for_each_class(class) {
fb8d4724 4088 p = class->pick_next_task(rq);
dd41f596
IM
4089 if (p)
4090 return p;
dd41f596 4091 }
34f971f6
PZ
4092
4093 BUG(); /* the idle class will always have a runnable task */
dd41f596 4094}
1da177e4 4095
dd41f596
IM
4096/*
4097 * schedule() is the main scheduler function.
4098 */
ff743345 4099asmlinkage void __sched schedule(void)
dd41f596
IM
4100{
4101 struct task_struct *prev, *next;
67ca7bde 4102 unsigned long *switch_count;
dd41f596 4103 struct rq *rq;
31656519 4104 int cpu;
dd41f596 4105
ff743345
PZ
4106need_resched:
4107 preempt_disable();
dd41f596
IM
4108 cpu = smp_processor_id();
4109 rq = cpu_rq(cpu);
25502a6c 4110 rcu_note_context_switch(cpu);
dd41f596 4111 prev = rq->curr;
dd41f596 4112
dd41f596 4113 schedule_debug(prev);
1da177e4 4114
31656519 4115 if (sched_feat(HRTICK))
f333fdc9 4116 hrtick_clear(rq);
8f4d37ec 4117
05fa785c 4118 raw_spin_lock_irq(&rq->lock);
1da177e4 4119
246d86b5 4120 switch_count = &prev->nivcsw;
1da177e4 4121 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4122 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4123 prev->state = TASK_RUNNING;
21aa9af0
TH
4124 } else {
4125 /*
4126 * If a worker is going to sleep, notify and
4127 * ask workqueue whether it wants to wake up a
4128 * task to maintain concurrency. If so, wake
4129 * up the task.
4130 */
4131 if (prev->flags & PF_WQ_WORKER) {
4132 struct task_struct *to_wakeup;
4133
4134 to_wakeup = wq_worker_sleeping(prev, cpu);
4135 if (to_wakeup)
4136 try_to_wake_up_local(to_wakeup);
4137 }
fd2f4419 4138
371fd7e7 4139 deactivate_task(rq, prev, DEQUEUE_SLEEP);
fd2f4419 4140 prev->on_rq = 0;
6631e635
LT
4141
4142 /*
4143 * If we are going to sleep and we have plugged IO queued, make
4144 * sure to submit it to avoid deadlocks.
4145 */
4146 if (blk_needs_flush_plug(prev)) {
4147 raw_spin_unlock(&rq->lock);
4148 blk_flush_plug(prev);
4149 raw_spin_lock(&rq->lock);
4150 }
21aa9af0 4151 }
dd41f596 4152 switch_count = &prev->nvcsw;
1da177e4
LT
4153 }
4154
3f029d3c 4155 pre_schedule(rq, prev);
f65eda4f 4156
dd41f596 4157 if (unlikely(!rq->nr_running))
1da177e4 4158 idle_balance(cpu, rq);
1da177e4 4159
df1c99d4 4160 put_prev_task(rq, prev);
b67802ea 4161 next = pick_next_task(rq);
f26f9aff
MG
4162 clear_tsk_need_resched(prev);
4163 rq->skip_clock_update = 0;
1da177e4 4164
1da177e4 4165 if (likely(prev != next)) {
1da177e4
LT
4166 rq->nr_switches++;
4167 rq->curr = next;
4168 ++*switch_count;
4169
dd41f596 4170 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4171 /*
246d86b5
ON
4172 * The context switch have flipped the stack from under us
4173 * and restored the local variables which were saved when
4174 * this task called schedule() in the past. prev == current
4175 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4176 */
4177 cpu = smp_processor_id();
4178 rq = cpu_rq(cpu);
1da177e4 4179 } else
05fa785c 4180 raw_spin_unlock_irq(&rq->lock);
1da177e4 4181
3f029d3c 4182 post_schedule(rq);
1da177e4 4183
1da177e4 4184 preempt_enable_no_resched();
ff743345 4185 if (need_resched())
1da177e4
LT
4186 goto need_resched;
4187}
1da177e4
LT
4188EXPORT_SYMBOL(schedule);
4189
c08f7829 4190#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4191
c6eb3dda
PZ
4192static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4193{
4194 bool ret = false;
0d66bf6d 4195
c6eb3dda
PZ
4196 rcu_read_lock();
4197 if (lock->owner != owner)
4198 goto fail;
0d66bf6d
PZ
4199
4200 /*
c6eb3dda
PZ
4201 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4202 * lock->owner still matches owner, if that fails, owner might
4203 * point to free()d memory, if it still matches, the rcu_read_lock()
4204 * ensures the memory stays valid.
0d66bf6d 4205 */
c6eb3dda 4206 barrier();
0d66bf6d 4207
c6eb3dda
PZ
4208 ret = owner->on_cpu;
4209fail:
4210 rcu_read_unlock();
0d66bf6d 4211
c6eb3dda
PZ
4212 return ret;
4213}
0d66bf6d 4214
c6eb3dda
PZ
4215/*
4216 * Look out! "owner" is an entirely speculative pointer
4217 * access and not reliable.
4218 */
4219int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4220{
4221 if (!sched_feat(OWNER_SPIN))
4222 return 0;
0d66bf6d 4223
c6eb3dda
PZ
4224 while (owner_running(lock, owner)) {
4225 if (need_resched())
0d66bf6d
PZ
4226 return 0;
4227
335d7afb 4228 arch_mutex_cpu_relax();
0d66bf6d 4229 }
4b402210 4230
c6eb3dda
PZ
4231 /*
4232 * If the owner changed to another task there is likely
4233 * heavy contention, stop spinning.
4234 */
4235 if (lock->owner)
4236 return 0;
4237
0d66bf6d
PZ
4238 return 1;
4239}
4240#endif
4241
1da177e4
LT
4242#ifdef CONFIG_PREEMPT
4243/*
2ed6e34f 4244 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4245 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4246 * occur there and call schedule directly.
4247 */
d1f74e20 4248asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4249{
4250 struct thread_info *ti = current_thread_info();
6478d880 4251
1da177e4
LT
4252 /*
4253 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4254 * we do not want to preempt the current task. Just return..
1da177e4 4255 */
beed33a8 4256 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4257 return;
4258
3a5c359a 4259 do {
d1f74e20 4260 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4261 schedule();
d1f74e20 4262 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4263
3a5c359a
AK
4264 /*
4265 * Check again in case we missed a preemption opportunity
4266 * between schedule and now.
4267 */
4268 barrier();
5ed0cec0 4269 } while (need_resched());
1da177e4 4270}
1da177e4
LT
4271EXPORT_SYMBOL(preempt_schedule);
4272
4273/*
2ed6e34f 4274 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4275 * off of irq context.
4276 * Note, that this is called and return with irqs disabled. This will
4277 * protect us against recursive calling from irq.
4278 */
4279asmlinkage void __sched preempt_schedule_irq(void)
4280{
4281 struct thread_info *ti = current_thread_info();
6478d880 4282
2ed6e34f 4283 /* Catch callers which need to be fixed */
1da177e4
LT
4284 BUG_ON(ti->preempt_count || !irqs_disabled());
4285
3a5c359a
AK
4286 do {
4287 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4288 local_irq_enable();
4289 schedule();
4290 local_irq_disable();
3a5c359a 4291 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4292
3a5c359a
AK
4293 /*
4294 * Check again in case we missed a preemption opportunity
4295 * between schedule and now.
4296 */
4297 barrier();
5ed0cec0 4298 } while (need_resched());
1da177e4
LT
4299}
4300
4301#endif /* CONFIG_PREEMPT */
4302
63859d4f 4303int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4304 void *key)
1da177e4 4305{
63859d4f 4306 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4307}
1da177e4
LT
4308EXPORT_SYMBOL(default_wake_function);
4309
4310/*
41a2d6cf
IM
4311 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4312 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4313 * number) then we wake all the non-exclusive tasks and one exclusive task.
4314 *
4315 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4316 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4317 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4318 */
78ddb08f 4319static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4320 int nr_exclusive, int wake_flags, void *key)
1da177e4 4321{
2e45874c 4322 wait_queue_t *curr, *next;
1da177e4 4323
2e45874c 4324 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4325 unsigned flags = curr->flags;
4326
63859d4f 4327 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4328 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4329 break;
4330 }
4331}
4332
4333/**
4334 * __wake_up - wake up threads blocked on a waitqueue.
4335 * @q: the waitqueue
4336 * @mode: which threads
4337 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4338 * @key: is directly passed to the wakeup function
50fa610a
DH
4339 *
4340 * It may be assumed that this function implies a write memory barrier before
4341 * changing the task state if and only if any tasks are woken up.
1da177e4 4342 */
7ad5b3a5 4343void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4344 int nr_exclusive, void *key)
1da177e4
LT
4345{
4346 unsigned long flags;
4347
4348 spin_lock_irqsave(&q->lock, flags);
4349 __wake_up_common(q, mode, nr_exclusive, 0, key);
4350 spin_unlock_irqrestore(&q->lock, flags);
4351}
1da177e4
LT
4352EXPORT_SYMBOL(__wake_up);
4353
4354/*
4355 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4356 */
7ad5b3a5 4357void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4358{
4359 __wake_up_common(q, mode, 1, 0, NULL);
4360}
22c43c81 4361EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4362
4ede816a
DL
4363void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4364{
4365 __wake_up_common(q, mode, 1, 0, key);
4366}
bf294b41 4367EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4368
1da177e4 4369/**
4ede816a 4370 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4371 * @q: the waitqueue
4372 * @mode: which threads
4373 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4374 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4375 *
4376 * The sync wakeup differs that the waker knows that it will schedule
4377 * away soon, so while the target thread will be woken up, it will not
4378 * be migrated to another CPU - ie. the two threads are 'synchronized'
4379 * with each other. This can prevent needless bouncing between CPUs.
4380 *
4381 * On UP it can prevent extra preemption.
50fa610a
DH
4382 *
4383 * It may be assumed that this function implies a write memory barrier before
4384 * changing the task state if and only if any tasks are woken up.
1da177e4 4385 */
4ede816a
DL
4386void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4387 int nr_exclusive, void *key)
1da177e4
LT
4388{
4389 unsigned long flags;
7d478721 4390 int wake_flags = WF_SYNC;
1da177e4
LT
4391
4392 if (unlikely(!q))
4393 return;
4394
4395 if (unlikely(!nr_exclusive))
7d478721 4396 wake_flags = 0;
1da177e4
LT
4397
4398 spin_lock_irqsave(&q->lock, flags);
7d478721 4399 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4400 spin_unlock_irqrestore(&q->lock, flags);
4401}
4ede816a
DL
4402EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4403
4404/*
4405 * __wake_up_sync - see __wake_up_sync_key()
4406 */
4407void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4408{
4409 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4410}
1da177e4
LT
4411EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4412
65eb3dc6
KD
4413/**
4414 * complete: - signals a single thread waiting on this completion
4415 * @x: holds the state of this particular completion
4416 *
4417 * This will wake up a single thread waiting on this completion. Threads will be
4418 * awakened in the same order in which they were queued.
4419 *
4420 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4421 *
4422 * It may be assumed that this function implies a write memory barrier before
4423 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4424 */
b15136e9 4425void complete(struct completion *x)
1da177e4
LT
4426{
4427 unsigned long flags;
4428
4429 spin_lock_irqsave(&x->wait.lock, flags);
4430 x->done++;
d9514f6c 4431 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4432 spin_unlock_irqrestore(&x->wait.lock, flags);
4433}
4434EXPORT_SYMBOL(complete);
4435
65eb3dc6
KD
4436/**
4437 * complete_all: - signals all threads waiting on this completion
4438 * @x: holds the state of this particular completion
4439 *
4440 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4441 *
4442 * It may be assumed that this function implies a write memory barrier before
4443 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4444 */
b15136e9 4445void complete_all(struct completion *x)
1da177e4
LT
4446{
4447 unsigned long flags;
4448
4449 spin_lock_irqsave(&x->wait.lock, flags);
4450 x->done += UINT_MAX/2;
d9514f6c 4451 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4452 spin_unlock_irqrestore(&x->wait.lock, flags);
4453}
4454EXPORT_SYMBOL(complete_all);
4455
8cbbe86d
AK
4456static inline long __sched
4457do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4458{
1da177e4
LT
4459 if (!x->done) {
4460 DECLARE_WAITQUEUE(wait, current);
4461
a93d2f17 4462 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4463 do {
94d3d824 4464 if (signal_pending_state(state, current)) {
ea71a546
ON
4465 timeout = -ERESTARTSYS;
4466 break;
8cbbe86d
AK
4467 }
4468 __set_current_state(state);
1da177e4
LT
4469 spin_unlock_irq(&x->wait.lock);
4470 timeout = schedule_timeout(timeout);
4471 spin_lock_irq(&x->wait.lock);
ea71a546 4472 } while (!x->done && timeout);
1da177e4 4473 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4474 if (!x->done)
4475 return timeout;
1da177e4
LT
4476 }
4477 x->done--;
ea71a546 4478 return timeout ?: 1;
1da177e4 4479}
1da177e4 4480
8cbbe86d
AK
4481static long __sched
4482wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4483{
1da177e4
LT
4484 might_sleep();
4485
4486 spin_lock_irq(&x->wait.lock);
8cbbe86d 4487 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4488 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4489 return timeout;
4490}
1da177e4 4491
65eb3dc6
KD
4492/**
4493 * wait_for_completion: - waits for completion of a task
4494 * @x: holds the state of this particular completion
4495 *
4496 * This waits to be signaled for completion of a specific task. It is NOT
4497 * interruptible and there is no timeout.
4498 *
4499 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4500 * and interrupt capability. Also see complete().
4501 */
b15136e9 4502void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4503{
4504 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4505}
8cbbe86d 4506EXPORT_SYMBOL(wait_for_completion);
1da177e4 4507
65eb3dc6
KD
4508/**
4509 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4510 * @x: holds the state of this particular completion
4511 * @timeout: timeout value in jiffies
4512 *
4513 * This waits for either a completion of a specific task to be signaled or for a
4514 * specified timeout to expire. The timeout is in jiffies. It is not
4515 * interruptible.
4516 */
b15136e9 4517unsigned long __sched
8cbbe86d 4518wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4519{
8cbbe86d 4520 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4521}
8cbbe86d 4522EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4523
65eb3dc6
KD
4524/**
4525 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4526 * @x: holds the state of this particular completion
4527 *
4528 * This waits for completion of a specific task to be signaled. It is
4529 * interruptible.
4530 */
8cbbe86d 4531int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4532{
51e97990
AK
4533 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4534 if (t == -ERESTARTSYS)
4535 return t;
4536 return 0;
0fec171c 4537}
8cbbe86d 4538EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4539
65eb3dc6
KD
4540/**
4541 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4542 * @x: holds the state of this particular completion
4543 * @timeout: timeout value in jiffies
4544 *
4545 * This waits for either a completion of a specific task to be signaled or for a
4546 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4547 */
6bf41237 4548long __sched
8cbbe86d
AK
4549wait_for_completion_interruptible_timeout(struct completion *x,
4550 unsigned long timeout)
0fec171c 4551{
8cbbe86d 4552 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4553}
8cbbe86d 4554EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4555
65eb3dc6
KD
4556/**
4557 * wait_for_completion_killable: - waits for completion of a task (killable)
4558 * @x: holds the state of this particular completion
4559 *
4560 * This waits to be signaled for completion of a specific task. It can be
4561 * interrupted by a kill signal.
4562 */
009e577e
MW
4563int __sched wait_for_completion_killable(struct completion *x)
4564{
4565 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4566 if (t == -ERESTARTSYS)
4567 return t;
4568 return 0;
4569}
4570EXPORT_SYMBOL(wait_for_completion_killable);
4571
0aa12fb4
SW
4572/**
4573 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4574 * @x: holds the state of this particular completion
4575 * @timeout: timeout value in jiffies
4576 *
4577 * This waits for either a completion of a specific task to be
4578 * signaled or for a specified timeout to expire. It can be
4579 * interrupted by a kill signal. The timeout is in jiffies.
4580 */
6bf41237 4581long __sched
0aa12fb4
SW
4582wait_for_completion_killable_timeout(struct completion *x,
4583 unsigned long timeout)
4584{
4585 return wait_for_common(x, timeout, TASK_KILLABLE);
4586}
4587EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4588
be4de352
DC
4589/**
4590 * try_wait_for_completion - try to decrement a completion without blocking
4591 * @x: completion structure
4592 *
4593 * Returns: 0 if a decrement cannot be done without blocking
4594 * 1 if a decrement succeeded.
4595 *
4596 * If a completion is being used as a counting completion,
4597 * attempt to decrement the counter without blocking. This
4598 * enables us to avoid waiting if the resource the completion
4599 * is protecting is not available.
4600 */
4601bool try_wait_for_completion(struct completion *x)
4602{
7539a3b3 4603 unsigned long flags;
be4de352
DC
4604 int ret = 1;
4605
7539a3b3 4606 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4607 if (!x->done)
4608 ret = 0;
4609 else
4610 x->done--;
7539a3b3 4611 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4612 return ret;
4613}
4614EXPORT_SYMBOL(try_wait_for_completion);
4615
4616/**
4617 * completion_done - Test to see if a completion has any waiters
4618 * @x: completion structure
4619 *
4620 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4621 * 1 if there are no waiters.
4622 *
4623 */
4624bool completion_done(struct completion *x)
4625{
7539a3b3 4626 unsigned long flags;
be4de352
DC
4627 int ret = 1;
4628
7539a3b3 4629 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4630 if (!x->done)
4631 ret = 0;
7539a3b3 4632 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4633 return ret;
4634}
4635EXPORT_SYMBOL(completion_done);
4636
8cbbe86d
AK
4637static long __sched
4638sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4639{
0fec171c
IM
4640 unsigned long flags;
4641 wait_queue_t wait;
4642
4643 init_waitqueue_entry(&wait, current);
1da177e4 4644
8cbbe86d 4645 __set_current_state(state);
1da177e4 4646
8cbbe86d
AK
4647 spin_lock_irqsave(&q->lock, flags);
4648 __add_wait_queue(q, &wait);
4649 spin_unlock(&q->lock);
4650 timeout = schedule_timeout(timeout);
4651 spin_lock_irq(&q->lock);
4652 __remove_wait_queue(q, &wait);
4653 spin_unlock_irqrestore(&q->lock, flags);
4654
4655 return timeout;
4656}
4657
4658void __sched interruptible_sleep_on(wait_queue_head_t *q)
4659{
4660 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4661}
1da177e4
LT
4662EXPORT_SYMBOL(interruptible_sleep_on);
4663
0fec171c 4664long __sched
95cdf3b7 4665interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4666{
8cbbe86d 4667 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4668}
1da177e4
LT
4669EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4670
0fec171c 4671void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4672{
8cbbe86d 4673 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4674}
1da177e4
LT
4675EXPORT_SYMBOL(sleep_on);
4676
0fec171c 4677long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4678{
8cbbe86d 4679 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4680}
1da177e4
LT
4681EXPORT_SYMBOL(sleep_on_timeout);
4682
b29739f9
IM
4683#ifdef CONFIG_RT_MUTEXES
4684
4685/*
4686 * rt_mutex_setprio - set the current priority of a task
4687 * @p: task
4688 * @prio: prio value (kernel-internal form)
4689 *
4690 * This function changes the 'effective' priority of a task. It does
4691 * not touch ->normal_prio like __setscheduler().
4692 *
4693 * Used by the rt_mutex code to implement priority inheritance logic.
4694 */
36c8b586 4695void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4696{
4697 unsigned long flags;
83b699ed 4698 int oldprio, on_rq, running;
70b97a7f 4699 struct rq *rq;
83ab0aa0 4700 const struct sched_class *prev_class;
b29739f9
IM
4701
4702 BUG_ON(prio < 0 || prio > MAX_PRIO);
4703
013fdb80
PZ
4704 lockdep_assert_held(&p->pi_lock);
4705
b29739f9
IM
4706 rq = task_rq_lock(p, &flags);
4707
a8027073 4708 trace_sched_pi_setprio(p, prio);
d5f9f942 4709 oldprio = p->prio;
83ab0aa0 4710 prev_class = p->sched_class;
fd2f4419 4711 on_rq = p->on_rq;
051a1d1a 4712 running = task_current(rq, p);
0e1f3483 4713 if (on_rq)
69be72c1 4714 dequeue_task(rq, p, 0);
0e1f3483
HS
4715 if (running)
4716 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4717
4718 if (rt_prio(prio))
4719 p->sched_class = &rt_sched_class;
4720 else
4721 p->sched_class = &fair_sched_class;
4722
b29739f9
IM
4723 p->prio = prio;
4724
0e1f3483
HS
4725 if (running)
4726 p->sched_class->set_curr_task(rq);
da7a735e 4727 if (on_rq)
371fd7e7 4728 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4729
da7a735e 4730 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4731 task_rq_unlock(rq, &flags);
4732}
4733
4734#endif
4735
36c8b586 4736void set_user_nice(struct task_struct *p, long nice)
1da177e4 4737{
dd41f596 4738 int old_prio, delta, on_rq;
1da177e4 4739 unsigned long flags;
70b97a7f 4740 struct rq *rq;
1da177e4
LT
4741
4742 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4743 return;
4744 /*
4745 * We have to be careful, if called from sys_setpriority(),
4746 * the task might be in the middle of scheduling on another CPU.
4747 */
4748 rq = task_rq_lock(p, &flags);
4749 /*
4750 * The RT priorities are set via sched_setscheduler(), but we still
4751 * allow the 'normal' nice value to be set - but as expected
4752 * it wont have any effect on scheduling until the task is
dd41f596 4753 * SCHED_FIFO/SCHED_RR:
1da177e4 4754 */
e05606d3 4755 if (task_has_rt_policy(p)) {
1da177e4
LT
4756 p->static_prio = NICE_TO_PRIO(nice);
4757 goto out_unlock;
4758 }
fd2f4419 4759 on_rq = p->on_rq;
c09595f6 4760 if (on_rq)
69be72c1 4761 dequeue_task(rq, p, 0);
1da177e4 4762
1da177e4 4763 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4764 set_load_weight(p);
b29739f9
IM
4765 old_prio = p->prio;
4766 p->prio = effective_prio(p);
4767 delta = p->prio - old_prio;
1da177e4 4768
dd41f596 4769 if (on_rq) {
371fd7e7 4770 enqueue_task(rq, p, 0);
1da177e4 4771 /*
d5f9f942
AM
4772 * If the task increased its priority or is running and
4773 * lowered its priority, then reschedule its CPU:
1da177e4 4774 */
d5f9f942 4775 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4776 resched_task(rq->curr);
4777 }
4778out_unlock:
4779 task_rq_unlock(rq, &flags);
4780}
1da177e4
LT
4781EXPORT_SYMBOL(set_user_nice);
4782
e43379f1
MM
4783/*
4784 * can_nice - check if a task can reduce its nice value
4785 * @p: task
4786 * @nice: nice value
4787 */
36c8b586 4788int can_nice(const struct task_struct *p, const int nice)
e43379f1 4789{
024f4747
MM
4790 /* convert nice value [19,-20] to rlimit style value [1,40] */
4791 int nice_rlim = 20 - nice;
48f24c4d 4792
78d7d407 4793 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4794 capable(CAP_SYS_NICE));
4795}
4796
1da177e4
LT
4797#ifdef __ARCH_WANT_SYS_NICE
4798
4799/*
4800 * sys_nice - change the priority of the current process.
4801 * @increment: priority increment
4802 *
4803 * sys_setpriority is a more generic, but much slower function that
4804 * does similar things.
4805 */
5add95d4 4806SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4807{
48f24c4d 4808 long nice, retval;
1da177e4
LT
4809
4810 /*
4811 * Setpriority might change our priority at the same moment.
4812 * We don't have to worry. Conceptually one call occurs first
4813 * and we have a single winner.
4814 */
e43379f1
MM
4815 if (increment < -40)
4816 increment = -40;
1da177e4
LT
4817 if (increment > 40)
4818 increment = 40;
4819
2b8f836f 4820 nice = TASK_NICE(current) + increment;
1da177e4
LT
4821 if (nice < -20)
4822 nice = -20;
4823 if (nice > 19)
4824 nice = 19;
4825
e43379f1
MM
4826 if (increment < 0 && !can_nice(current, nice))
4827 return -EPERM;
4828
1da177e4
LT
4829 retval = security_task_setnice(current, nice);
4830 if (retval)
4831 return retval;
4832
4833 set_user_nice(current, nice);
4834 return 0;
4835}
4836
4837#endif
4838
4839/**
4840 * task_prio - return the priority value of a given task.
4841 * @p: the task in question.
4842 *
4843 * This is the priority value as seen by users in /proc.
4844 * RT tasks are offset by -200. Normal tasks are centered
4845 * around 0, value goes from -16 to +15.
4846 */
36c8b586 4847int task_prio(const struct task_struct *p)
1da177e4
LT
4848{
4849 return p->prio - MAX_RT_PRIO;
4850}
4851
4852/**
4853 * task_nice - return the nice value of a given task.
4854 * @p: the task in question.
4855 */
36c8b586 4856int task_nice(const struct task_struct *p)
1da177e4
LT
4857{
4858 return TASK_NICE(p);
4859}
150d8bed 4860EXPORT_SYMBOL(task_nice);
1da177e4
LT
4861
4862/**
4863 * idle_cpu - is a given cpu idle currently?
4864 * @cpu: the processor in question.
4865 */
4866int idle_cpu(int cpu)
4867{
4868 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4869}
4870
1da177e4
LT
4871/**
4872 * idle_task - return the idle task for a given cpu.
4873 * @cpu: the processor in question.
4874 */
36c8b586 4875struct task_struct *idle_task(int cpu)
1da177e4
LT
4876{
4877 return cpu_rq(cpu)->idle;
4878}
4879
4880/**
4881 * find_process_by_pid - find a process with a matching PID value.
4882 * @pid: the pid in question.
4883 */
a9957449 4884static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4885{
228ebcbe 4886 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4887}
4888
4889/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4890static void
4891__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4892{
1da177e4
LT
4893 p->policy = policy;
4894 p->rt_priority = prio;
b29739f9
IM
4895 p->normal_prio = normal_prio(p);
4896 /* we are holding p->pi_lock already */
4897 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4898 if (rt_prio(p->prio))
4899 p->sched_class = &rt_sched_class;
4900 else
4901 p->sched_class = &fair_sched_class;
2dd73a4f 4902 set_load_weight(p);
1da177e4
LT
4903}
4904
c69e8d9c
DH
4905/*
4906 * check the target process has a UID that matches the current process's
4907 */
4908static bool check_same_owner(struct task_struct *p)
4909{
4910 const struct cred *cred = current_cred(), *pcred;
4911 bool match;
4912
4913 rcu_read_lock();
4914 pcred = __task_cred(p);
b0e77598
SH
4915 if (cred->user->user_ns == pcred->user->user_ns)
4916 match = (cred->euid == pcred->euid ||
4917 cred->euid == pcred->uid);
4918 else
4919 match = false;
c69e8d9c
DH
4920 rcu_read_unlock();
4921 return match;
4922}
4923
961ccddd 4924static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4925 const struct sched_param *param, bool user)
1da177e4 4926{
83b699ed 4927 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4928 unsigned long flags;
83ab0aa0 4929 const struct sched_class *prev_class;
70b97a7f 4930 struct rq *rq;
ca94c442 4931 int reset_on_fork;
1da177e4 4932
66e5393a
SR
4933 /* may grab non-irq protected spin_locks */
4934 BUG_ON(in_interrupt());
1da177e4
LT
4935recheck:
4936 /* double check policy once rq lock held */
ca94c442
LP
4937 if (policy < 0) {
4938 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4939 policy = oldpolicy = p->policy;
ca94c442
LP
4940 } else {
4941 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4942 policy &= ~SCHED_RESET_ON_FORK;
4943
4944 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4945 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4946 policy != SCHED_IDLE)
4947 return -EINVAL;
4948 }
4949
1da177e4
LT
4950 /*
4951 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4952 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4953 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4954 */
4955 if (param->sched_priority < 0 ||
95cdf3b7 4956 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4957 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4958 return -EINVAL;
e05606d3 4959 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4960 return -EINVAL;
4961
37e4ab3f
OC
4962 /*
4963 * Allow unprivileged RT tasks to decrease priority:
4964 */
961ccddd 4965 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4966 if (rt_policy(policy)) {
a44702e8
ON
4967 unsigned long rlim_rtprio =
4968 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4969
4970 /* can't set/change the rt policy */
4971 if (policy != p->policy && !rlim_rtprio)
4972 return -EPERM;
4973
4974 /* can't increase priority */
4975 if (param->sched_priority > p->rt_priority &&
4976 param->sched_priority > rlim_rtprio)
4977 return -EPERM;
4978 }
c02aa73b 4979
dd41f596 4980 /*
c02aa73b
DH
4981 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4982 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4983 */
c02aa73b
DH
4984 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4985 if (!can_nice(p, TASK_NICE(p)))
4986 return -EPERM;
4987 }
5fe1d75f 4988
37e4ab3f 4989 /* can't change other user's priorities */
c69e8d9c 4990 if (!check_same_owner(p))
37e4ab3f 4991 return -EPERM;
ca94c442
LP
4992
4993 /* Normal users shall not reset the sched_reset_on_fork flag */
4994 if (p->sched_reset_on_fork && !reset_on_fork)
4995 return -EPERM;
37e4ab3f 4996 }
1da177e4 4997
725aad24 4998 if (user) {
b0ae1981 4999 retval = security_task_setscheduler(p);
725aad24
JF
5000 if (retval)
5001 return retval;
5002 }
5003
b29739f9
IM
5004 /*
5005 * make sure no PI-waiters arrive (or leave) while we are
5006 * changing the priority of the task:
5007 */
1d615482 5008 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 5009 /*
25985edc 5010 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5011 * runqueue lock must be held.
5012 */
b29739f9 5013 rq = __task_rq_lock(p);
dc61b1d6 5014
34f971f6
PZ
5015 /*
5016 * Changing the policy of the stop threads its a very bad idea
5017 */
5018 if (p == rq->stop) {
5019 __task_rq_unlock(rq);
5020 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5021 return -EINVAL;
5022 }
5023
a51e9198
DF
5024 /*
5025 * If not changing anything there's no need to proceed further:
5026 */
5027 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5028 param->sched_priority == p->rt_priority))) {
5029
5030 __task_rq_unlock(rq);
5031 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5032 return 0;
5033 }
5034
dc61b1d6
PZ
5035#ifdef CONFIG_RT_GROUP_SCHED
5036 if (user) {
5037 /*
5038 * Do not allow realtime tasks into groups that have no runtime
5039 * assigned.
5040 */
5041 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5042 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5043 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5044 __task_rq_unlock(rq);
5045 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5046 return -EPERM;
5047 }
5048 }
5049#endif
5050
1da177e4
LT
5051 /* recheck policy now with rq lock held */
5052 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5053 policy = oldpolicy = -1;
b29739f9 5054 __task_rq_unlock(rq);
1d615482 5055 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5056 goto recheck;
5057 }
fd2f4419 5058 on_rq = p->on_rq;
051a1d1a 5059 running = task_current(rq, p);
0e1f3483 5060 if (on_rq)
2e1cb74a 5061 deactivate_task(rq, p, 0);
0e1f3483
HS
5062 if (running)
5063 p->sched_class->put_prev_task(rq, p);
f6b53205 5064
ca94c442
LP
5065 p->sched_reset_on_fork = reset_on_fork;
5066
1da177e4 5067 oldprio = p->prio;
83ab0aa0 5068 prev_class = p->sched_class;
dd41f596 5069 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5070
0e1f3483
HS
5071 if (running)
5072 p->sched_class->set_curr_task(rq);
da7a735e 5073 if (on_rq)
dd41f596 5074 activate_task(rq, p, 0);
cb469845 5075
da7a735e 5076 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5077 __task_rq_unlock(rq);
1d615482 5078 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5079
95e02ca9
TG
5080 rt_mutex_adjust_pi(p);
5081
1da177e4
LT
5082 return 0;
5083}
961ccddd
RR
5084
5085/**
5086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5087 * @p: the task in question.
5088 * @policy: new policy.
5089 * @param: structure containing the new RT priority.
5090 *
5091 * NOTE that the task may be already dead.
5092 */
5093int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5094 const struct sched_param *param)
961ccddd
RR
5095{
5096 return __sched_setscheduler(p, policy, param, true);
5097}
1da177e4
LT
5098EXPORT_SYMBOL_GPL(sched_setscheduler);
5099
961ccddd
RR
5100/**
5101 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5102 * @p: the task in question.
5103 * @policy: new policy.
5104 * @param: structure containing the new RT priority.
5105 *
5106 * Just like sched_setscheduler, only don't bother checking if the
5107 * current context has permission. For example, this is needed in
5108 * stop_machine(): we create temporary high priority worker threads,
5109 * but our caller might not have that capability.
5110 */
5111int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5112 const struct sched_param *param)
961ccddd
RR
5113{
5114 return __sched_setscheduler(p, policy, param, false);
5115}
5116
95cdf3b7
IM
5117static int
5118do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5119{
1da177e4
LT
5120 struct sched_param lparam;
5121 struct task_struct *p;
36c8b586 5122 int retval;
1da177e4
LT
5123
5124 if (!param || pid < 0)
5125 return -EINVAL;
5126 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5127 return -EFAULT;
5fe1d75f
ON
5128
5129 rcu_read_lock();
5130 retval = -ESRCH;
1da177e4 5131 p = find_process_by_pid(pid);
5fe1d75f
ON
5132 if (p != NULL)
5133 retval = sched_setscheduler(p, policy, &lparam);
5134 rcu_read_unlock();
36c8b586 5135
1da177e4
LT
5136 return retval;
5137}
5138
5139/**
5140 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5141 * @pid: the pid in question.
5142 * @policy: new policy.
5143 * @param: structure containing the new RT priority.
5144 */
5add95d4
HC
5145SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5146 struct sched_param __user *, param)
1da177e4 5147{
c21761f1
JB
5148 /* negative values for policy are not valid */
5149 if (policy < 0)
5150 return -EINVAL;
5151
1da177e4
LT
5152 return do_sched_setscheduler(pid, policy, param);
5153}
5154
5155/**
5156 * sys_sched_setparam - set/change the RT priority of a thread
5157 * @pid: the pid in question.
5158 * @param: structure containing the new RT priority.
5159 */
5add95d4 5160SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5161{
5162 return do_sched_setscheduler(pid, -1, param);
5163}
5164
5165/**
5166 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5167 * @pid: the pid in question.
5168 */
5add95d4 5169SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5170{
36c8b586 5171 struct task_struct *p;
3a5c359a 5172 int retval;
1da177e4
LT
5173
5174 if (pid < 0)
3a5c359a 5175 return -EINVAL;
1da177e4
LT
5176
5177 retval = -ESRCH;
5fe85be0 5178 rcu_read_lock();
1da177e4
LT
5179 p = find_process_by_pid(pid);
5180 if (p) {
5181 retval = security_task_getscheduler(p);
5182 if (!retval)
ca94c442
LP
5183 retval = p->policy
5184 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5185 }
5fe85be0 5186 rcu_read_unlock();
1da177e4
LT
5187 return retval;
5188}
5189
5190/**
ca94c442 5191 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5192 * @pid: the pid in question.
5193 * @param: structure containing the RT priority.
5194 */
5add95d4 5195SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5196{
5197 struct sched_param lp;
36c8b586 5198 struct task_struct *p;
3a5c359a 5199 int retval;
1da177e4
LT
5200
5201 if (!param || pid < 0)
3a5c359a 5202 return -EINVAL;
1da177e4 5203
5fe85be0 5204 rcu_read_lock();
1da177e4
LT
5205 p = find_process_by_pid(pid);
5206 retval = -ESRCH;
5207 if (!p)
5208 goto out_unlock;
5209
5210 retval = security_task_getscheduler(p);
5211 if (retval)
5212 goto out_unlock;
5213
5214 lp.sched_priority = p->rt_priority;
5fe85be0 5215 rcu_read_unlock();
1da177e4
LT
5216
5217 /*
5218 * This one might sleep, we cannot do it with a spinlock held ...
5219 */
5220 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5221
1da177e4
LT
5222 return retval;
5223
5224out_unlock:
5fe85be0 5225 rcu_read_unlock();
1da177e4
LT
5226 return retval;
5227}
5228
96f874e2 5229long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5230{
5a16f3d3 5231 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5232 struct task_struct *p;
5233 int retval;
1da177e4 5234
95402b38 5235 get_online_cpus();
23f5d142 5236 rcu_read_lock();
1da177e4
LT
5237
5238 p = find_process_by_pid(pid);
5239 if (!p) {
23f5d142 5240 rcu_read_unlock();
95402b38 5241 put_online_cpus();
1da177e4
LT
5242 return -ESRCH;
5243 }
5244
23f5d142 5245 /* Prevent p going away */
1da177e4 5246 get_task_struct(p);
23f5d142 5247 rcu_read_unlock();
1da177e4 5248
5a16f3d3
RR
5249 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5250 retval = -ENOMEM;
5251 goto out_put_task;
5252 }
5253 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5254 retval = -ENOMEM;
5255 goto out_free_cpus_allowed;
5256 }
1da177e4 5257 retval = -EPERM;
b0e77598 5258 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5259 goto out_unlock;
5260
b0ae1981 5261 retval = security_task_setscheduler(p);
e7834f8f
DQ
5262 if (retval)
5263 goto out_unlock;
5264
5a16f3d3
RR
5265 cpuset_cpus_allowed(p, cpus_allowed);
5266 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5267again:
5a16f3d3 5268 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5269
8707d8b8 5270 if (!retval) {
5a16f3d3
RR
5271 cpuset_cpus_allowed(p, cpus_allowed);
5272 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5273 /*
5274 * We must have raced with a concurrent cpuset
5275 * update. Just reset the cpus_allowed to the
5276 * cpuset's cpus_allowed
5277 */
5a16f3d3 5278 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5279 goto again;
5280 }
5281 }
1da177e4 5282out_unlock:
5a16f3d3
RR
5283 free_cpumask_var(new_mask);
5284out_free_cpus_allowed:
5285 free_cpumask_var(cpus_allowed);
5286out_put_task:
1da177e4 5287 put_task_struct(p);
95402b38 5288 put_online_cpus();
1da177e4
LT
5289 return retval;
5290}
5291
5292static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5293 struct cpumask *new_mask)
1da177e4 5294{
96f874e2
RR
5295 if (len < cpumask_size())
5296 cpumask_clear(new_mask);
5297 else if (len > cpumask_size())
5298 len = cpumask_size();
5299
1da177e4
LT
5300 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5301}
5302
5303/**
5304 * sys_sched_setaffinity - set the cpu affinity of a process
5305 * @pid: pid of the process
5306 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5307 * @user_mask_ptr: user-space pointer to the new cpu mask
5308 */
5add95d4
HC
5309SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5310 unsigned long __user *, user_mask_ptr)
1da177e4 5311{
5a16f3d3 5312 cpumask_var_t new_mask;
1da177e4
LT
5313 int retval;
5314
5a16f3d3
RR
5315 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5316 return -ENOMEM;
1da177e4 5317
5a16f3d3
RR
5318 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5319 if (retval == 0)
5320 retval = sched_setaffinity(pid, new_mask);
5321 free_cpumask_var(new_mask);
5322 return retval;
1da177e4
LT
5323}
5324
96f874e2 5325long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5326{
36c8b586 5327 struct task_struct *p;
31605683 5328 unsigned long flags;
1da177e4 5329 int retval;
1da177e4 5330
95402b38 5331 get_online_cpus();
23f5d142 5332 rcu_read_lock();
1da177e4
LT
5333
5334 retval = -ESRCH;
5335 p = find_process_by_pid(pid);
5336 if (!p)
5337 goto out_unlock;
5338
e7834f8f
DQ
5339 retval = security_task_getscheduler(p);
5340 if (retval)
5341 goto out_unlock;
5342
013fdb80 5343 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5344 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5345 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5346
5347out_unlock:
23f5d142 5348 rcu_read_unlock();
95402b38 5349 put_online_cpus();
1da177e4 5350
9531b62f 5351 return retval;
1da177e4
LT
5352}
5353
5354/**
5355 * sys_sched_getaffinity - get the cpu affinity of a process
5356 * @pid: pid of the process
5357 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5358 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5359 */
5add95d4
HC
5360SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5361 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5362{
5363 int ret;
f17c8607 5364 cpumask_var_t mask;
1da177e4 5365
84fba5ec 5366 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5367 return -EINVAL;
5368 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5369 return -EINVAL;
5370
f17c8607
RR
5371 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5372 return -ENOMEM;
1da177e4 5373
f17c8607
RR
5374 ret = sched_getaffinity(pid, mask);
5375 if (ret == 0) {
8bc037fb 5376 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5377
5378 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5379 ret = -EFAULT;
5380 else
cd3d8031 5381 ret = retlen;
f17c8607
RR
5382 }
5383 free_cpumask_var(mask);
1da177e4 5384
f17c8607 5385 return ret;
1da177e4
LT
5386}
5387
5388/**
5389 * sys_sched_yield - yield the current processor to other threads.
5390 *
dd41f596
IM
5391 * This function yields the current CPU to other tasks. If there are no
5392 * other threads running on this CPU then this function will return.
1da177e4 5393 */
5add95d4 5394SYSCALL_DEFINE0(sched_yield)
1da177e4 5395{
70b97a7f 5396 struct rq *rq = this_rq_lock();
1da177e4 5397
2d72376b 5398 schedstat_inc(rq, yld_count);
4530d7ab 5399 current->sched_class->yield_task(rq);
1da177e4
LT
5400
5401 /*
5402 * Since we are going to call schedule() anyway, there's
5403 * no need to preempt or enable interrupts:
5404 */
5405 __release(rq->lock);
8a25d5de 5406 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5407 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5408 preempt_enable_no_resched();
5409
5410 schedule();
5411
5412 return 0;
5413}
5414
d86ee480
PZ
5415static inline int should_resched(void)
5416{
5417 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5418}
5419
e7b38404 5420static void __cond_resched(void)
1da177e4 5421{
e7aaaa69
FW
5422 add_preempt_count(PREEMPT_ACTIVE);
5423 schedule();
5424 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5425}
5426
02b67cc3 5427int __sched _cond_resched(void)
1da177e4 5428{
d86ee480 5429 if (should_resched()) {
1da177e4
LT
5430 __cond_resched();
5431 return 1;
5432 }
5433 return 0;
5434}
02b67cc3 5435EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5436
5437/*
613afbf8 5438 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5439 * call schedule, and on return reacquire the lock.
5440 *
41a2d6cf 5441 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5442 * operations here to prevent schedule() from being called twice (once via
5443 * spin_unlock(), once by hand).
5444 */
613afbf8 5445int __cond_resched_lock(spinlock_t *lock)
1da177e4 5446{
d86ee480 5447 int resched = should_resched();
6df3cecb
JK
5448 int ret = 0;
5449
f607c668
PZ
5450 lockdep_assert_held(lock);
5451
95c354fe 5452 if (spin_needbreak(lock) || resched) {
1da177e4 5453 spin_unlock(lock);
d86ee480 5454 if (resched)
95c354fe
NP
5455 __cond_resched();
5456 else
5457 cpu_relax();
6df3cecb 5458 ret = 1;
1da177e4 5459 spin_lock(lock);
1da177e4 5460 }
6df3cecb 5461 return ret;
1da177e4 5462}
613afbf8 5463EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5464
613afbf8 5465int __sched __cond_resched_softirq(void)
1da177e4
LT
5466{
5467 BUG_ON(!in_softirq());
5468
d86ee480 5469 if (should_resched()) {
98d82567 5470 local_bh_enable();
1da177e4
LT
5471 __cond_resched();
5472 local_bh_disable();
5473 return 1;
5474 }
5475 return 0;
5476}
613afbf8 5477EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5478
1da177e4
LT
5479/**
5480 * yield - yield the current processor to other threads.
5481 *
72fd4a35 5482 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5483 * thread runnable and calls sys_sched_yield().
5484 */
5485void __sched yield(void)
5486{
5487 set_current_state(TASK_RUNNING);
5488 sys_sched_yield();
5489}
1da177e4
LT
5490EXPORT_SYMBOL(yield);
5491
d95f4122
MG
5492/**
5493 * yield_to - yield the current processor to another thread in
5494 * your thread group, or accelerate that thread toward the
5495 * processor it's on.
16addf95
RD
5496 * @p: target task
5497 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5498 *
5499 * It's the caller's job to ensure that the target task struct
5500 * can't go away on us before we can do any checks.
5501 *
5502 * Returns true if we indeed boosted the target task.
5503 */
5504bool __sched yield_to(struct task_struct *p, bool preempt)
5505{
5506 struct task_struct *curr = current;
5507 struct rq *rq, *p_rq;
5508 unsigned long flags;
5509 bool yielded = 0;
5510
5511 local_irq_save(flags);
5512 rq = this_rq();
5513
5514again:
5515 p_rq = task_rq(p);
5516 double_rq_lock(rq, p_rq);
5517 while (task_rq(p) != p_rq) {
5518 double_rq_unlock(rq, p_rq);
5519 goto again;
5520 }
5521
5522 if (!curr->sched_class->yield_to_task)
5523 goto out;
5524
5525 if (curr->sched_class != p->sched_class)
5526 goto out;
5527
5528 if (task_running(p_rq, p) || p->state)
5529 goto out;
5530
5531 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5532 if (yielded) {
d95f4122 5533 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5534 /*
5535 * Make p's CPU reschedule; pick_next_entity takes care of
5536 * fairness.
5537 */
5538 if (preempt && rq != p_rq)
5539 resched_task(p_rq->curr);
5540 }
d95f4122
MG
5541
5542out:
5543 double_rq_unlock(rq, p_rq);
5544 local_irq_restore(flags);
5545
5546 if (yielded)
5547 schedule();
5548
5549 return yielded;
5550}
5551EXPORT_SYMBOL_GPL(yield_to);
5552
1da177e4 5553/*
41a2d6cf 5554 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5555 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5556 */
5557void __sched io_schedule(void)
5558{
54d35f29 5559 struct rq *rq = raw_rq();
1da177e4 5560
0ff92245 5561 delayacct_blkio_start();
1da177e4 5562 atomic_inc(&rq->nr_iowait);
73c10101 5563 blk_flush_plug(current);
8f0dfc34 5564 current->in_iowait = 1;
1da177e4 5565 schedule();
8f0dfc34 5566 current->in_iowait = 0;
1da177e4 5567 atomic_dec(&rq->nr_iowait);
0ff92245 5568 delayacct_blkio_end();
1da177e4 5569}
1da177e4
LT
5570EXPORT_SYMBOL(io_schedule);
5571
5572long __sched io_schedule_timeout(long timeout)
5573{
54d35f29 5574 struct rq *rq = raw_rq();
1da177e4
LT
5575 long ret;
5576
0ff92245 5577 delayacct_blkio_start();
1da177e4 5578 atomic_inc(&rq->nr_iowait);
73c10101 5579 blk_flush_plug(current);
8f0dfc34 5580 current->in_iowait = 1;
1da177e4 5581 ret = schedule_timeout(timeout);
8f0dfc34 5582 current->in_iowait = 0;
1da177e4 5583 atomic_dec(&rq->nr_iowait);
0ff92245 5584 delayacct_blkio_end();
1da177e4
LT
5585 return ret;
5586}
5587
5588/**
5589 * sys_sched_get_priority_max - return maximum RT priority.
5590 * @policy: scheduling class.
5591 *
5592 * this syscall returns the maximum rt_priority that can be used
5593 * by a given scheduling class.
5594 */
5add95d4 5595SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5596{
5597 int ret = -EINVAL;
5598
5599 switch (policy) {
5600 case SCHED_FIFO:
5601 case SCHED_RR:
5602 ret = MAX_USER_RT_PRIO-1;
5603 break;
5604 case SCHED_NORMAL:
b0a9499c 5605 case SCHED_BATCH:
dd41f596 5606 case SCHED_IDLE:
1da177e4
LT
5607 ret = 0;
5608 break;
5609 }
5610 return ret;
5611}
5612
5613/**
5614 * sys_sched_get_priority_min - return minimum RT priority.
5615 * @policy: scheduling class.
5616 *
5617 * this syscall returns the minimum rt_priority that can be used
5618 * by a given scheduling class.
5619 */
5add95d4 5620SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5621{
5622 int ret = -EINVAL;
5623
5624 switch (policy) {
5625 case SCHED_FIFO:
5626 case SCHED_RR:
5627 ret = 1;
5628 break;
5629 case SCHED_NORMAL:
b0a9499c 5630 case SCHED_BATCH:
dd41f596 5631 case SCHED_IDLE:
1da177e4
LT
5632 ret = 0;
5633 }
5634 return ret;
5635}
5636
5637/**
5638 * sys_sched_rr_get_interval - return the default timeslice of a process.
5639 * @pid: pid of the process.
5640 * @interval: userspace pointer to the timeslice value.
5641 *
5642 * this syscall writes the default timeslice value of a given process
5643 * into the user-space timespec buffer. A value of '0' means infinity.
5644 */
17da2bd9 5645SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5646 struct timespec __user *, interval)
1da177e4 5647{
36c8b586 5648 struct task_struct *p;
a4ec24b4 5649 unsigned int time_slice;
dba091b9
TG
5650 unsigned long flags;
5651 struct rq *rq;
3a5c359a 5652 int retval;
1da177e4 5653 struct timespec t;
1da177e4
LT
5654
5655 if (pid < 0)
3a5c359a 5656 return -EINVAL;
1da177e4
LT
5657
5658 retval = -ESRCH;
1a551ae7 5659 rcu_read_lock();
1da177e4
LT
5660 p = find_process_by_pid(pid);
5661 if (!p)
5662 goto out_unlock;
5663
5664 retval = security_task_getscheduler(p);
5665 if (retval)
5666 goto out_unlock;
5667
dba091b9
TG
5668 rq = task_rq_lock(p, &flags);
5669 time_slice = p->sched_class->get_rr_interval(rq, p);
5670 task_rq_unlock(rq, &flags);
a4ec24b4 5671
1a551ae7 5672 rcu_read_unlock();
a4ec24b4 5673 jiffies_to_timespec(time_slice, &t);
1da177e4 5674 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5675 return retval;
3a5c359a 5676
1da177e4 5677out_unlock:
1a551ae7 5678 rcu_read_unlock();
1da177e4
LT
5679 return retval;
5680}
5681
7c731e0a 5682static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5683
82a1fcb9 5684void sched_show_task(struct task_struct *p)
1da177e4 5685{
1da177e4 5686 unsigned long free = 0;
36c8b586 5687 unsigned state;
1da177e4 5688
1da177e4 5689 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5690 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5691 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5692#if BITS_PER_LONG == 32
1da177e4 5693 if (state == TASK_RUNNING)
3df0fc5b 5694 printk(KERN_CONT " running ");
1da177e4 5695 else
3df0fc5b 5696 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5697#else
5698 if (state == TASK_RUNNING)
3df0fc5b 5699 printk(KERN_CONT " running task ");
1da177e4 5700 else
3df0fc5b 5701 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5702#endif
5703#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5704 free = stack_not_used(p);
1da177e4 5705#endif
3df0fc5b 5706 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5707 task_pid_nr(p), task_pid_nr(p->real_parent),
5708 (unsigned long)task_thread_info(p)->flags);
1da177e4 5709
5fb5e6de 5710 show_stack(p, NULL);
1da177e4
LT
5711}
5712
e59e2ae2 5713void show_state_filter(unsigned long state_filter)
1da177e4 5714{
36c8b586 5715 struct task_struct *g, *p;
1da177e4 5716
4bd77321 5717#if BITS_PER_LONG == 32
3df0fc5b
PZ
5718 printk(KERN_INFO
5719 " task PC stack pid father\n");
1da177e4 5720#else
3df0fc5b
PZ
5721 printk(KERN_INFO
5722 " task PC stack pid father\n");
1da177e4
LT
5723#endif
5724 read_lock(&tasklist_lock);
5725 do_each_thread(g, p) {
5726 /*
5727 * reset the NMI-timeout, listing all files on a slow
25985edc 5728 * console might take a lot of time:
1da177e4
LT
5729 */
5730 touch_nmi_watchdog();
39bc89fd 5731 if (!state_filter || (p->state & state_filter))
82a1fcb9 5732 sched_show_task(p);
1da177e4
LT
5733 } while_each_thread(g, p);
5734
04c9167f
JF
5735 touch_all_softlockup_watchdogs();
5736
dd41f596
IM
5737#ifdef CONFIG_SCHED_DEBUG
5738 sysrq_sched_debug_show();
5739#endif
1da177e4 5740 read_unlock(&tasklist_lock);
e59e2ae2
IM
5741 /*
5742 * Only show locks if all tasks are dumped:
5743 */
93335a21 5744 if (!state_filter)
e59e2ae2 5745 debug_show_all_locks();
1da177e4
LT
5746}
5747
1df21055
IM
5748void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5749{
dd41f596 5750 idle->sched_class = &idle_sched_class;
1df21055
IM
5751}
5752
f340c0d1
IM
5753/**
5754 * init_idle - set up an idle thread for a given CPU
5755 * @idle: task in question
5756 * @cpu: cpu the idle task belongs to
5757 *
5758 * NOTE: this function does not set the idle thread's NEED_RESCHED
5759 * flag, to make booting more robust.
5760 */
5c1e1767 5761void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5762{
70b97a7f 5763 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5764 unsigned long flags;
5765
05fa785c 5766 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5767
dd41f596 5768 __sched_fork(idle);
06b83b5f 5769 idle->state = TASK_RUNNING;
dd41f596
IM
5770 idle->se.exec_start = sched_clock();
5771
96f874e2 5772 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5773 /*
5774 * We're having a chicken and egg problem, even though we are
5775 * holding rq->lock, the cpu isn't yet set to this cpu so the
5776 * lockdep check in task_group() will fail.
5777 *
5778 * Similar case to sched_fork(). / Alternatively we could
5779 * use task_rq_lock() here and obtain the other rq->lock.
5780 *
5781 * Silence PROVE_RCU
5782 */
5783 rcu_read_lock();
dd41f596 5784 __set_task_cpu(idle, cpu);
6506cf6c 5785 rcu_read_unlock();
1da177e4 5786
1da177e4 5787 rq->curr = rq->idle = idle;
3ca7a440
PZ
5788#if defined(CONFIG_SMP)
5789 idle->on_cpu = 1;
4866cde0 5790#endif
05fa785c 5791 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5792
5793 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5794#if defined(CONFIG_PREEMPT)
5795 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5796#else
a1261f54 5797 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5798#endif
dd41f596
IM
5799 /*
5800 * The idle tasks have their own, simple scheduling class:
5801 */
5802 idle->sched_class = &idle_sched_class;
868baf07 5803 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5804}
5805
5806/*
5807 * In a system that switches off the HZ timer nohz_cpu_mask
5808 * indicates which cpus entered this state. This is used
5809 * in the rcu update to wait only for active cpus. For system
5810 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5811 * always be CPU_BITS_NONE.
1da177e4 5812 */
6a7b3dc3 5813cpumask_var_t nohz_cpu_mask;
1da177e4 5814
19978ca6
IM
5815/*
5816 * Increase the granularity value when there are more CPUs,
5817 * because with more CPUs the 'effective latency' as visible
5818 * to users decreases. But the relationship is not linear,
5819 * so pick a second-best guess by going with the log2 of the
5820 * number of CPUs.
5821 *
5822 * This idea comes from the SD scheduler of Con Kolivas:
5823 */
acb4a848 5824static int get_update_sysctl_factor(void)
19978ca6 5825{
4ca3ef71 5826 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5827 unsigned int factor;
5828
5829 switch (sysctl_sched_tunable_scaling) {
5830 case SCHED_TUNABLESCALING_NONE:
5831 factor = 1;
5832 break;
5833 case SCHED_TUNABLESCALING_LINEAR:
5834 factor = cpus;
5835 break;
5836 case SCHED_TUNABLESCALING_LOG:
5837 default:
5838 factor = 1 + ilog2(cpus);
5839 break;
5840 }
19978ca6 5841
acb4a848
CE
5842 return factor;
5843}
19978ca6 5844
acb4a848
CE
5845static void update_sysctl(void)
5846{
5847 unsigned int factor = get_update_sysctl_factor();
19978ca6 5848
0bcdcf28
CE
5849#define SET_SYSCTL(name) \
5850 (sysctl_##name = (factor) * normalized_sysctl_##name)
5851 SET_SYSCTL(sched_min_granularity);
5852 SET_SYSCTL(sched_latency);
5853 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5854#undef SET_SYSCTL
5855}
55cd5340 5856
0bcdcf28
CE
5857static inline void sched_init_granularity(void)
5858{
5859 update_sysctl();
19978ca6
IM
5860}
5861
1da177e4
LT
5862#ifdef CONFIG_SMP
5863/*
5864 * This is how migration works:
5865 *
969c7921
TH
5866 * 1) we invoke migration_cpu_stop() on the target CPU using
5867 * stop_one_cpu().
5868 * 2) stopper starts to run (implicitly forcing the migrated thread
5869 * off the CPU)
5870 * 3) it checks whether the migrated task is still in the wrong runqueue.
5871 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5872 * it and puts it into the right queue.
969c7921
TH
5873 * 5) stopper completes and stop_one_cpu() returns and the migration
5874 * is done.
1da177e4
LT
5875 */
5876
5877/*
5878 * Change a given task's CPU affinity. Migrate the thread to a
5879 * proper CPU and schedule it away if the CPU it's executing on
5880 * is removed from the allowed bitmask.
5881 *
5882 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5883 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5884 * call is not atomic; no spinlocks may be held.
5885 */
96f874e2 5886int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5887{
5888 unsigned long flags;
70b97a7f 5889 struct rq *rq;
969c7921 5890 unsigned int dest_cpu;
48f24c4d 5891 int ret = 0;
1da177e4 5892
013fdb80
PZ
5893 raw_spin_lock_irqsave(&p->pi_lock, flags);
5894 rq = __task_rq_lock(p);
e2912009 5895
6ad4c188 5896 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5897 ret = -EINVAL;
5898 goto out;
5899 }
5900
9985b0ba 5901 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5902 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5903 ret = -EINVAL;
5904 goto out;
5905 }
5906
73fe6aae 5907 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5908 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5909 else {
96f874e2
RR
5910 cpumask_copy(&p->cpus_allowed, new_mask);
5911 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5912 }
5913
1da177e4 5914 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5915 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5916 goto out;
5917
969c7921 5918 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
7608dec2 5919 if (need_migrate_task(p)) {
969c7921 5920 struct migration_arg arg = { p, dest_cpu };
1da177e4 5921 /* Need help from migration thread: drop lock and wait. */
013fdb80
PZ
5922 __task_rq_unlock(rq);
5923 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
969c7921 5924 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5925 tlb_migrate_finish(p->mm);
5926 return 0;
5927 }
5928out:
013fdb80
PZ
5929 __task_rq_unlock(rq);
5930 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
48f24c4d 5931
1da177e4
LT
5932 return ret;
5933}
cd8ba7cd 5934EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5935
5936/*
41a2d6cf 5937 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5938 * this because either it can't run here any more (set_cpus_allowed()
5939 * away from this CPU, or CPU going down), or because we're
5940 * attempting to rebalance this task on exec (sched_exec).
5941 *
5942 * So we race with normal scheduler movements, but that's OK, as long
5943 * as the task is no longer on this CPU.
efc30814
KK
5944 *
5945 * Returns non-zero if task was successfully migrated.
1da177e4 5946 */
efc30814 5947static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5948{
70b97a7f 5949 struct rq *rq_dest, *rq_src;
e2912009 5950 int ret = 0;
1da177e4 5951
e761b772 5952 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5953 return ret;
1da177e4
LT
5954
5955 rq_src = cpu_rq(src_cpu);
5956 rq_dest = cpu_rq(dest_cpu);
5957
5958 double_rq_lock(rq_src, rq_dest);
5959 /* Already moved. */
5960 if (task_cpu(p) != src_cpu)
b1e38734 5961 goto done;
1da177e4 5962 /* Affinity changed (again). */
96f874e2 5963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5964 goto fail;
1da177e4 5965
e2912009
PZ
5966 /*
5967 * If we're not on a rq, the next wake-up will ensure we're
5968 * placed properly.
5969 */
fd2f4419 5970 if (p->on_rq) {
2e1cb74a 5971 deactivate_task(rq_src, p, 0);
e2912009 5972 set_task_cpu(p, dest_cpu);
dd41f596 5973 activate_task(rq_dest, p, 0);
15afe09b 5974 check_preempt_curr(rq_dest, p, 0);
1da177e4 5975 }
b1e38734 5976done:
efc30814 5977 ret = 1;
b1e38734 5978fail:
1da177e4 5979 double_rq_unlock(rq_src, rq_dest);
efc30814 5980 return ret;
1da177e4
LT
5981}
5982
5983/*
969c7921
TH
5984 * migration_cpu_stop - this will be executed by a highprio stopper thread
5985 * and performs thread migration by bumping thread off CPU then
5986 * 'pushing' onto another runqueue.
1da177e4 5987 */
969c7921 5988static int migration_cpu_stop(void *data)
1da177e4 5989{
969c7921 5990 struct migration_arg *arg = data;
f7b4cddc 5991
969c7921
TH
5992 /*
5993 * The original target cpu might have gone down and we might
5994 * be on another cpu but it doesn't matter.
5995 */
f7b4cddc 5996 local_irq_disable();
969c7921 5997 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5998 local_irq_enable();
1da177e4 5999 return 0;
f7b4cddc
ON
6000}
6001
1da177e4 6002#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6003
054b9108 6004/*
48c5ccae
PZ
6005 * Ensures that the idle task is using init_mm right before its cpu goes
6006 * offline.
054b9108 6007 */
48c5ccae 6008void idle_task_exit(void)
1da177e4 6009{
48c5ccae 6010 struct mm_struct *mm = current->active_mm;
e76bd8d9 6011
48c5ccae 6012 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6013
48c5ccae
PZ
6014 if (mm != &init_mm)
6015 switch_mm(mm, &init_mm, current);
6016 mmdrop(mm);
1da177e4
LT
6017}
6018
6019/*
6020 * While a dead CPU has no uninterruptible tasks queued at this point,
6021 * it might still have a nonzero ->nr_uninterruptible counter, because
6022 * for performance reasons the counter is not stricly tracking tasks to
6023 * their home CPUs. So we just add the counter to another CPU's counter,
6024 * to keep the global sum constant after CPU-down:
6025 */
70b97a7f 6026static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6027{
6ad4c188 6028 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6029
1da177e4
LT
6030 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6031 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6032}
6033
dd41f596 6034/*
48c5ccae 6035 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6036 */
48c5ccae 6037static void calc_global_load_remove(struct rq *rq)
1da177e4 6038{
48c5ccae
PZ
6039 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6040 rq->calc_load_active = 0;
1da177e4
LT
6041}
6042
48f24c4d 6043/*
48c5ccae
PZ
6044 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6045 * try_to_wake_up()->select_task_rq().
6046 *
6047 * Called with rq->lock held even though we'er in stop_machine() and
6048 * there's no concurrency possible, we hold the required locks anyway
6049 * because of lock validation efforts.
1da177e4 6050 */
48c5ccae 6051static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6052{
70b97a7f 6053 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6054 struct task_struct *next, *stop = rq->stop;
6055 int dest_cpu;
1da177e4
LT
6056
6057 /*
48c5ccae
PZ
6058 * Fudge the rq selection such that the below task selection loop
6059 * doesn't get stuck on the currently eligible stop task.
6060 *
6061 * We're currently inside stop_machine() and the rq is either stuck
6062 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6063 * either way we should never end up calling schedule() until we're
6064 * done here.
1da177e4 6065 */
48c5ccae 6066 rq->stop = NULL;
48f24c4d 6067
dd41f596 6068 for ( ; ; ) {
48c5ccae
PZ
6069 /*
6070 * There's this thread running, bail when that's the only
6071 * remaining thread.
6072 */
6073 if (rq->nr_running == 1)
dd41f596 6074 break;
48c5ccae 6075
b67802ea 6076 next = pick_next_task(rq);
48c5ccae 6077 BUG_ON(!next);
79c53799 6078 next->sched_class->put_prev_task(rq, next);
e692ab53 6079
48c5ccae
PZ
6080 /* Find suitable destination for @next, with force if needed. */
6081 dest_cpu = select_fallback_rq(dead_cpu, next);
6082 raw_spin_unlock(&rq->lock);
6083
6084 __migrate_task(next, dead_cpu, dest_cpu);
6085
6086 raw_spin_lock(&rq->lock);
1da177e4 6087 }
dce48a84 6088
48c5ccae 6089 rq->stop = stop;
dce48a84 6090}
48c5ccae 6091
1da177e4
LT
6092#endif /* CONFIG_HOTPLUG_CPU */
6093
e692ab53
NP
6094#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6095
6096static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6097 {
6098 .procname = "sched_domain",
c57baf1e 6099 .mode = 0555,
e0361851 6100 },
56992309 6101 {}
e692ab53
NP
6102};
6103
6104static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6105 {
6106 .procname = "kernel",
c57baf1e 6107 .mode = 0555,
e0361851
AD
6108 .child = sd_ctl_dir,
6109 },
56992309 6110 {}
e692ab53
NP
6111};
6112
6113static struct ctl_table *sd_alloc_ctl_entry(int n)
6114{
6115 struct ctl_table *entry =
5cf9f062 6116 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6117
e692ab53
NP
6118 return entry;
6119}
6120
6382bc90
MM
6121static void sd_free_ctl_entry(struct ctl_table **tablep)
6122{
cd790076 6123 struct ctl_table *entry;
6382bc90 6124
cd790076
MM
6125 /*
6126 * In the intermediate directories, both the child directory and
6127 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6128 * will always be set. In the lowest directory the names are
cd790076
MM
6129 * static strings and all have proc handlers.
6130 */
6131 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6132 if (entry->child)
6133 sd_free_ctl_entry(&entry->child);
cd790076
MM
6134 if (entry->proc_handler == NULL)
6135 kfree(entry->procname);
6136 }
6382bc90
MM
6137
6138 kfree(*tablep);
6139 *tablep = NULL;
6140}
6141
e692ab53 6142static void
e0361851 6143set_table_entry(struct ctl_table *entry,
e692ab53
NP
6144 const char *procname, void *data, int maxlen,
6145 mode_t mode, proc_handler *proc_handler)
6146{
e692ab53
NP
6147 entry->procname = procname;
6148 entry->data = data;
6149 entry->maxlen = maxlen;
6150 entry->mode = mode;
6151 entry->proc_handler = proc_handler;
6152}
6153
6154static struct ctl_table *
6155sd_alloc_ctl_domain_table(struct sched_domain *sd)
6156{
a5d8c348 6157 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6158
ad1cdc1d
MM
6159 if (table == NULL)
6160 return NULL;
6161
e0361851 6162 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6163 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6164 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6165 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6166 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6167 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6168 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6169 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6170 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6171 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6172 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6173 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6174 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6175 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6176 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6177 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6178 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6179 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6180 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6181 &sd->cache_nice_tries,
6182 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6183 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6184 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6185 set_table_entry(&table[11], "name", sd->name,
6186 CORENAME_MAX_SIZE, 0444, proc_dostring);
6187 /* &table[12] is terminator */
e692ab53
NP
6188
6189 return table;
6190}
6191
9a4e7159 6192static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6193{
6194 struct ctl_table *entry, *table;
6195 struct sched_domain *sd;
6196 int domain_num = 0, i;
6197 char buf[32];
6198
6199 for_each_domain(cpu, sd)
6200 domain_num++;
6201 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6202 if (table == NULL)
6203 return NULL;
e692ab53
NP
6204
6205 i = 0;
6206 for_each_domain(cpu, sd) {
6207 snprintf(buf, 32, "domain%d", i);
e692ab53 6208 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6209 entry->mode = 0555;
e692ab53
NP
6210 entry->child = sd_alloc_ctl_domain_table(sd);
6211 entry++;
6212 i++;
6213 }
6214 return table;
6215}
6216
6217static struct ctl_table_header *sd_sysctl_header;
6382bc90 6218static void register_sched_domain_sysctl(void)
e692ab53 6219{
6ad4c188 6220 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6221 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6222 char buf[32];
6223
7378547f
MM
6224 WARN_ON(sd_ctl_dir[0].child);
6225 sd_ctl_dir[0].child = entry;
6226
ad1cdc1d
MM
6227 if (entry == NULL)
6228 return;
6229
6ad4c188 6230 for_each_possible_cpu(i) {
e692ab53 6231 snprintf(buf, 32, "cpu%d", i);
e692ab53 6232 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6233 entry->mode = 0555;
e692ab53 6234 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6235 entry++;
e692ab53 6236 }
7378547f
MM
6237
6238 WARN_ON(sd_sysctl_header);
e692ab53
NP
6239 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6240}
6382bc90 6241
7378547f 6242/* may be called multiple times per register */
6382bc90
MM
6243static void unregister_sched_domain_sysctl(void)
6244{
7378547f
MM
6245 if (sd_sysctl_header)
6246 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6247 sd_sysctl_header = NULL;
7378547f
MM
6248 if (sd_ctl_dir[0].child)
6249 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6250}
e692ab53 6251#else
6382bc90
MM
6252static void register_sched_domain_sysctl(void)
6253{
6254}
6255static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6256{
6257}
6258#endif
6259
1f11eb6a
GH
6260static void set_rq_online(struct rq *rq)
6261{
6262 if (!rq->online) {
6263 const struct sched_class *class;
6264
c6c4927b 6265 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6266 rq->online = 1;
6267
6268 for_each_class(class) {
6269 if (class->rq_online)
6270 class->rq_online(rq);
6271 }
6272 }
6273}
6274
6275static void set_rq_offline(struct rq *rq)
6276{
6277 if (rq->online) {
6278 const struct sched_class *class;
6279
6280 for_each_class(class) {
6281 if (class->rq_offline)
6282 class->rq_offline(rq);
6283 }
6284
c6c4927b 6285 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6286 rq->online = 0;
6287 }
6288}
6289
1da177e4
LT
6290/*
6291 * migration_call - callback that gets triggered when a CPU is added.
6292 * Here we can start up the necessary migration thread for the new CPU.
6293 */
48f24c4d
IM
6294static int __cpuinit
6295migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6296{
48f24c4d 6297 int cpu = (long)hcpu;
1da177e4 6298 unsigned long flags;
969c7921 6299 struct rq *rq = cpu_rq(cpu);
1da177e4 6300
48c5ccae 6301 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6302
1da177e4 6303 case CPU_UP_PREPARE:
a468d389 6304 rq->calc_load_update = calc_load_update;
1da177e4 6305 break;
48f24c4d 6306
1da177e4 6307 case CPU_ONLINE:
1f94ef59 6308 /* Update our root-domain */
05fa785c 6309 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6310 if (rq->rd) {
c6c4927b 6311 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6312
6313 set_rq_online(rq);
1f94ef59 6314 }
05fa785c 6315 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6316 break;
48f24c4d 6317
1da177e4 6318#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6319 case CPU_DYING:
57d885fe 6320 /* Update our root-domain */
05fa785c 6321 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6322 if (rq->rd) {
c6c4927b 6323 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6324 set_rq_offline(rq);
57d885fe 6325 }
48c5ccae
PZ
6326 migrate_tasks(cpu);
6327 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6328 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6329
6330 migrate_nr_uninterruptible(rq);
6331 calc_global_load_remove(rq);
57d885fe 6332 break;
1da177e4
LT
6333#endif
6334 }
49c022e6
PZ
6335
6336 update_max_interval();
6337
1da177e4
LT
6338 return NOTIFY_OK;
6339}
6340
f38b0820
PM
6341/*
6342 * Register at high priority so that task migration (migrate_all_tasks)
6343 * happens before everything else. This has to be lower priority than
cdd6c482 6344 * the notifier in the perf_event subsystem, though.
1da177e4 6345 */
26c2143b 6346static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6347 .notifier_call = migration_call,
50a323b7 6348 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6349};
6350
3a101d05
TH
6351static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6352 unsigned long action, void *hcpu)
6353{
6354 switch (action & ~CPU_TASKS_FROZEN) {
6355 case CPU_ONLINE:
6356 case CPU_DOWN_FAILED:
6357 set_cpu_active((long)hcpu, true);
6358 return NOTIFY_OK;
6359 default:
6360 return NOTIFY_DONE;
6361 }
6362}
6363
6364static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6365 unsigned long action, void *hcpu)
6366{
6367 switch (action & ~CPU_TASKS_FROZEN) {
6368 case CPU_DOWN_PREPARE:
6369 set_cpu_active((long)hcpu, false);
6370 return NOTIFY_OK;
6371 default:
6372 return NOTIFY_DONE;
6373 }
6374}
6375
7babe8db 6376static int __init migration_init(void)
1da177e4
LT
6377{
6378 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6379 int err;
48f24c4d 6380
3a101d05 6381 /* Initialize migration for the boot CPU */
07dccf33
AM
6382 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6383 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6384 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6385 register_cpu_notifier(&migration_notifier);
7babe8db 6386
3a101d05
TH
6387 /* Register cpu active notifiers */
6388 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6389 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6390
a004cd42 6391 return 0;
1da177e4 6392}
7babe8db 6393early_initcall(migration_init);
1da177e4
LT
6394#endif
6395
6396#ifdef CONFIG_SMP
476f3534 6397
3e9830dc 6398#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6399
f6630114
MT
6400static __read_mostly int sched_domain_debug_enabled;
6401
6402static int __init sched_domain_debug_setup(char *str)
6403{
6404 sched_domain_debug_enabled = 1;
6405
6406 return 0;
6407}
6408early_param("sched_debug", sched_domain_debug_setup);
6409
7c16ec58 6410static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6411 struct cpumask *groupmask)
1da177e4 6412{
4dcf6aff 6413 struct sched_group *group = sd->groups;
434d53b0 6414 char str[256];
1da177e4 6415
968ea6d8 6416 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6417 cpumask_clear(groupmask);
4dcf6aff
IM
6418
6419 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6420
6421 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6422 printk("does not load-balance\n");
4dcf6aff 6423 if (sd->parent)
3df0fc5b
PZ
6424 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6425 " has parent");
4dcf6aff 6426 return -1;
41c7ce9a
NP
6427 }
6428
3df0fc5b 6429 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6430
758b2cdc 6431 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6432 printk(KERN_ERR "ERROR: domain->span does not contain "
6433 "CPU%d\n", cpu);
4dcf6aff 6434 }
758b2cdc 6435 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6436 printk(KERN_ERR "ERROR: domain->groups does not contain"
6437 " CPU%d\n", cpu);
4dcf6aff 6438 }
1da177e4 6439
4dcf6aff 6440 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6441 do {
4dcf6aff 6442 if (!group) {
3df0fc5b
PZ
6443 printk("\n");
6444 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6445 break;
6446 }
6447
18a3885f 6448 if (!group->cpu_power) {
3df0fc5b
PZ
6449 printk(KERN_CONT "\n");
6450 printk(KERN_ERR "ERROR: domain->cpu_power not "
6451 "set\n");
4dcf6aff
IM
6452 break;
6453 }
1da177e4 6454
758b2cdc 6455 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6456 printk(KERN_CONT "\n");
6457 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6458 break;
6459 }
1da177e4 6460
758b2cdc 6461 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6462 printk(KERN_CONT "\n");
6463 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6464 break;
6465 }
1da177e4 6466
758b2cdc 6467 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6468
968ea6d8 6469 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6470
3df0fc5b 6471 printk(KERN_CONT " %s", str);
18a3885f 6472 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6473 printk(KERN_CONT " (cpu_power = %d)",
6474 group->cpu_power);
381512cf 6475 }
1da177e4 6476
4dcf6aff
IM
6477 group = group->next;
6478 } while (group != sd->groups);
3df0fc5b 6479 printk(KERN_CONT "\n");
1da177e4 6480
758b2cdc 6481 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6482 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6483
758b2cdc
RR
6484 if (sd->parent &&
6485 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6486 printk(KERN_ERR "ERROR: parent span is not a superset "
6487 "of domain->span\n");
4dcf6aff
IM
6488 return 0;
6489}
1da177e4 6490
4dcf6aff
IM
6491static void sched_domain_debug(struct sched_domain *sd, int cpu)
6492{
d5dd3db1 6493 cpumask_var_t groupmask;
4dcf6aff 6494 int level = 0;
1da177e4 6495
f6630114
MT
6496 if (!sched_domain_debug_enabled)
6497 return;
6498
4dcf6aff
IM
6499 if (!sd) {
6500 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6501 return;
6502 }
1da177e4 6503
4dcf6aff
IM
6504 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6505
d5dd3db1 6506 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6507 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6508 return;
6509 }
6510
4dcf6aff 6511 for (;;) {
7c16ec58 6512 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6513 break;
1da177e4
LT
6514 level++;
6515 sd = sd->parent;
33859f7f 6516 if (!sd)
4dcf6aff
IM
6517 break;
6518 }
d5dd3db1 6519 free_cpumask_var(groupmask);
1da177e4 6520}
6d6bc0ad 6521#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6522# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6523#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6524
1a20ff27 6525static int sd_degenerate(struct sched_domain *sd)
245af2c7 6526{
758b2cdc 6527 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6528 return 1;
6529
6530 /* Following flags need at least 2 groups */
6531 if (sd->flags & (SD_LOAD_BALANCE |
6532 SD_BALANCE_NEWIDLE |
6533 SD_BALANCE_FORK |
89c4710e
SS
6534 SD_BALANCE_EXEC |
6535 SD_SHARE_CPUPOWER |
6536 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6537 if (sd->groups != sd->groups->next)
6538 return 0;
6539 }
6540
6541 /* Following flags don't use groups */
c88d5910 6542 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6543 return 0;
6544
6545 return 1;
6546}
6547
48f24c4d
IM
6548static int
6549sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6550{
6551 unsigned long cflags = sd->flags, pflags = parent->flags;
6552
6553 if (sd_degenerate(parent))
6554 return 1;
6555
758b2cdc 6556 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6557 return 0;
6558
245af2c7
SS
6559 /* Flags needing groups don't count if only 1 group in parent */
6560 if (parent->groups == parent->groups->next) {
6561 pflags &= ~(SD_LOAD_BALANCE |
6562 SD_BALANCE_NEWIDLE |
6563 SD_BALANCE_FORK |
89c4710e
SS
6564 SD_BALANCE_EXEC |
6565 SD_SHARE_CPUPOWER |
6566 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6567 if (nr_node_ids == 1)
6568 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6569 }
6570 if (~cflags & pflags)
6571 return 0;
6572
6573 return 1;
6574}
6575
c6c4927b
RR
6576static void free_rootdomain(struct root_domain *rd)
6577{
047106ad
PZ
6578 synchronize_sched();
6579
68e74568
RR
6580 cpupri_cleanup(&rd->cpupri);
6581
c6c4927b
RR
6582 free_cpumask_var(rd->rto_mask);
6583 free_cpumask_var(rd->online);
6584 free_cpumask_var(rd->span);
6585 kfree(rd);
6586}
6587
57d885fe
GH
6588static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6589{
a0490fa3 6590 struct root_domain *old_rd = NULL;
57d885fe 6591 unsigned long flags;
57d885fe 6592
05fa785c 6593 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6594
6595 if (rq->rd) {
a0490fa3 6596 old_rd = rq->rd;
57d885fe 6597
c6c4927b 6598 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6599 set_rq_offline(rq);
57d885fe 6600
c6c4927b 6601 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6602
a0490fa3
IM
6603 /*
6604 * If we dont want to free the old_rt yet then
6605 * set old_rd to NULL to skip the freeing later
6606 * in this function:
6607 */
6608 if (!atomic_dec_and_test(&old_rd->refcount))
6609 old_rd = NULL;
57d885fe
GH
6610 }
6611
6612 atomic_inc(&rd->refcount);
6613 rq->rd = rd;
6614
c6c4927b 6615 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6616 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6617 set_rq_online(rq);
57d885fe 6618
05fa785c 6619 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6620
6621 if (old_rd)
6622 free_rootdomain(old_rd);
57d885fe
GH
6623}
6624
68c38fc3 6625static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6626{
6627 memset(rd, 0, sizeof(*rd));
6628
68c38fc3 6629 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6630 goto out;
68c38fc3 6631 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6632 goto free_span;
68c38fc3 6633 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6634 goto free_online;
6e0534f2 6635
68c38fc3 6636 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6637 goto free_rto_mask;
c6c4927b 6638 return 0;
6e0534f2 6639
68e74568
RR
6640free_rto_mask:
6641 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6642free_online:
6643 free_cpumask_var(rd->online);
6644free_span:
6645 free_cpumask_var(rd->span);
0c910d28 6646out:
c6c4927b 6647 return -ENOMEM;
57d885fe
GH
6648}
6649
6650static void init_defrootdomain(void)
6651{
68c38fc3 6652 init_rootdomain(&def_root_domain);
c6c4927b 6653
57d885fe
GH
6654 atomic_set(&def_root_domain.refcount, 1);
6655}
6656
dc938520 6657static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6658{
6659 struct root_domain *rd;
6660
6661 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6662 if (!rd)
6663 return NULL;
6664
68c38fc3 6665 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6666 kfree(rd);
6667 return NULL;
6668 }
57d885fe
GH
6669
6670 return rd;
6671}
6672
1da177e4 6673/*
0eab9146 6674 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6675 * hold the hotplug lock.
6676 */
0eab9146
IM
6677static void
6678cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6679{
70b97a7f 6680 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6681 struct sched_domain *tmp;
6682
669c55e9
PZ
6683 for (tmp = sd; tmp; tmp = tmp->parent)
6684 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6685
245af2c7 6686 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6687 for (tmp = sd; tmp; ) {
245af2c7
SS
6688 struct sched_domain *parent = tmp->parent;
6689 if (!parent)
6690 break;
f29c9b1c 6691
1a848870 6692 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6693 tmp->parent = parent->parent;
1a848870
SS
6694 if (parent->parent)
6695 parent->parent->child = tmp;
f29c9b1c
LZ
6696 } else
6697 tmp = tmp->parent;
245af2c7
SS
6698 }
6699
1a848870 6700 if (sd && sd_degenerate(sd)) {
245af2c7 6701 sd = sd->parent;
1a848870
SS
6702 if (sd)
6703 sd->child = NULL;
6704 }
1da177e4
LT
6705
6706 sched_domain_debug(sd, cpu);
6707
57d885fe 6708 rq_attach_root(rq, rd);
674311d5 6709 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6710}
6711
6712/* cpus with isolated domains */
dcc30a35 6713static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6714
6715/* Setup the mask of cpus configured for isolated domains */
6716static int __init isolated_cpu_setup(char *str)
6717{
bdddd296 6718 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6719 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6720 return 1;
6721}
6722
8927f494 6723__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6724
6725/*
6711cab4
SS
6726 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6727 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6728 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6729 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6730 *
6731 * init_sched_build_groups will build a circular linked list of the groups
6732 * covered by the given span, and will set each group's ->cpumask correctly,
6733 * and ->cpu_power to 0.
6734 */
a616058b 6735static void
96f874e2
RR
6736init_sched_build_groups(const struct cpumask *span,
6737 const struct cpumask *cpu_map,
6738 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6739 struct sched_group **sg,
96f874e2
RR
6740 struct cpumask *tmpmask),
6741 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6742{
6743 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6744 int i;
6745
96f874e2 6746 cpumask_clear(covered);
7c16ec58 6747
abcd083a 6748 for_each_cpu(i, span) {
6711cab4 6749 struct sched_group *sg;
7c16ec58 6750 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6751 int j;
6752
758b2cdc 6753 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6754 continue;
6755
758b2cdc 6756 cpumask_clear(sched_group_cpus(sg));
18a3885f 6757 sg->cpu_power = 0;
1da177e4 6758
abcd083a 6759 for_each_cpu(j, span) {
7c16ec58 6760 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6761 continue;
6762
96f874e2 6763 cpumask_set_cpu(j, covered);
758b2cdc 6764 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6765 }
6766 if (!first)
6767 first = sg;
6768 if (last)
6769 last->next = sg;
6770 last = sg;
6771 }
6772 last->next = first;
6773}
6774
9c1cfda2 6775#define SD_NODES_PER_DOMAIN 16
1da177e4 6776
9c1cfda2 6777#ifdef CONFIG_NUMA
198e2f18 6778
9c1cfda2
JH
6779/**
6780 * find_next_best_node - find the next node to include in a sched_domain
6781 * @node: node whose sched_domain we're building
6782 * @used_nodes: nodes already in the sched_domain
6783 *
41a2d6cf 6784 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6785 * finds the closest node not already in the @used_nodes map.
6786 *
6787 * Should use nodemask_t.
6788 */
c5f59f08 6789static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6790{
6791 int i, n, val, min_val, best_node = 0;
6792
6793 min_val = INT_MAX;
6794
076ac2af 6795 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6796 /* Start at @node */
076ac2af 6797 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6798
6799 if (!nr_cpus_node(n))
6800 continue;
6801
6802 /* Skip already used nodes */
c5f59f08 6803 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6804 continue;
6805
6806 /* Simple min distance search */
6807 val = node_distance(node, n);
6808
6809 if (val < min_val) {
6810 min_val = val;
6811 best_node = n;
6812 }
6813 }
6814
c5f59f08 6815 node_set(best_node, *used_nodes);
9c1cfda2
JH
6816 return best_node;
6817}
6818
6819/**
6820 * sched_domain_node_span - get a cpumask for a node's sched_domain
6821 * @node: node whose cpumask we're constructing
73486722 6822 * @span: resulting cpumask
9c1cfda2 6823 *
41a2d6cf 6824 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6825 * should be one that prevents unnecessary balancing, but also spreads tasks
6826 * out optimally.
6827 */
96f874e2 6828static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6829{
c5f59f08 6830 nodemask_t used_nodes;
48f24c4d 6831 int i;
9c1cfda2 6832
6ca09dfc 6833 cpumask_clear(span);
c5f59f08 6834 nodes_clear(used_nodes);
9c1cfda2 6835
6ca09dfc 6836 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6837 node_set(node, used_nodes);
9c1cfda2
JH
6838
6839 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6840 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6841
6ca09dfc 6842 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6843 }
9c1cfda2 6844}
6d6bc0ad 6845#endif /* CONFIG_NUMA */
9c1cfda2 6846
5c45bf27 6847int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6848
6c99e9ad
RR
6849/*
6850 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6851 *
6852 * ( See the the comments in include/linux/sched.h:struct sched_group
6853 * and struct sched_domain. )
6c99e9ad
RR
6854 */
6855struct static_sched_group {
6856 struct sched_group sg;
6857 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6858};
6859
6860struct static_sched_domain {
6861 struct sched_domain sd;
6862 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6863};
6864
49a02c51
AH
6865struct s_data {
6866#ifdef CONFIG_NUMA
6867 int sd_allnodes;
6868 cpumask_var_t domainspan;
6869 cpumask_var_t covered;
6870 cpumask_var_t notcovered;
6871#endif
6872 cpumask_var_t nodemask;
6873 cpumask_var_t this_sibling_map;
6874 cpumask_var_t this_core_map;
01a08546 6875 cpumask_var_t this_book_map;
49a02c51
AH
6876 cpumask_var_t send_covered;
6877 cpumask_var_t tmpmask;
6878 struct sched_group **sched_group_nodes;
6879 struct root_domain *rd;
6880};
6881
2109b99e
AH
6882enum s_alloc {
6883 sa_sched_groups = 0,
6884 sa_rootdomain,
6885 sa_tmpmask,
6886 sa_send_covered,
01a08546 6887 sa_this_book_map,
2109b99e
AH
6888 sa_this_core_map,
6889 sa_this_sibling_map,
6890 sa_nodemask,
6891 sa_sched_group_nodes,
6892#ifdef CONFIG_NUMA
6893 sa_notcovered,
6894 sa_covered,
6895 sa_domainspan,
6896#endif
6897 sa_none,
6898};
6899
9c1cfda2 6900/*
48f24c4d 6901 * SMT sched-domains:
9c1cfda2 6902 */
1da177e4 6903#ifdef CONFIG_SCHED_SMT
6c99e9ad 6904static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6905static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6906
41a2d6cf 6907static int
96f874e2
RR
6908cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6909 struct sched_group **sg, struct cpumask *unused)
1da177e4 6910{
6711cab4 6911 if (sg)
1871e52c 6912 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6913 return cpu;
6914}
6d6bc0ad 6915#endif /* CONFIG_SCHED_SMT */
1da177e4 6916
48f24c4d
IM
6917/*
6918 * multi-core sched-domains:
6919 */
1e9f28fa 6920#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6921static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6922static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6923
41a2d6cf 6924static int
96f874e2
RR
6925cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6926 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6927{
6711cab4 6928 int group;
f269893c 6929#ifdef CONFIG_SCHED_SMT
c69fc56d 6930 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6931 group = cpumask_first(mask);
f269893c
HC
6932#else
6933 group = cpu;
6934#endif
6711cab4 6935 if (sg)
6c99e9ad 6936 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6937 return group;
1e9f28fa 6938}
f269893c 6939#endif /* CONFIG_SCHED_MC */
1e9f28fa 6940
01a08546
HC
6941/*
6942 * book sched-domains:
6943 */
6944#ifdef CONFIG_SCHED_BOOK
6945static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6946static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6947
41a2d6cf 6948static int
01a08546
HC
6949cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6950 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6951{
01a08546
HC
6952 int group = cpu;
6953#ifdef CONFIG_SCHED_MC
6954 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6955 group = cpumask_first(mask);
6956#elif defined(CONFIG_SCHED_SMT)
6957 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6958 group = cpumask_first(mask);
6959#endif
6711cab4 6960 if (sg)
01a08546
HC
6961 *sg = &per_cpu(sched_group_book, group).sg;
6962 return group;
1e9f28fa 6963}
01a08546 6964#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6965
6c99e9ad
RR
6966static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6967static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6968
41a2d6cf 6969static int
96f874e2
RR
6970cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6971 struct sched_group **sg, struct cpumask *mask)
1da177e4 6972{
6711cab4 6973 int group;
01a08546
HC
6974#ifdef CONFIG_SCHED_BOOK
6975 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6976 group = cpumask_first(mask);
6977#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6978 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6979 group = cpumask_first(mask);
1e9f28fa 6980#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6981 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6982 group = cpumask_first(mask);
1da177e4 6983#else
6711cab4 6984 group = cpu;
1da177e4 6985#endif
6711cab4 6986 if (sg)
6c99e9ad 6987 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6988 return group;
1da177e4
LT
6989}
6990
6991#ifdef CONFIG_NUMA
1da177e4 6992/*
9c1cfda2
JH
6993 * The init_sched_build_groups can't handle what we want to do with node
6994 * groups, so roll our own. Now each node has its own list of groups which
6995 * gets dynamically allocated.
1da177e4 6996 */
62ea9ceb 6997static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6998static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6999
62ea9ceb 7000static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7001static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7002
96f874e2
RR
7003static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7004 struct sched_group **sg,
7005 struct cpumask *nodemask)
9c1cfda2 7006{
6711cab4
SS
7007 int group;
7008
6ca09dfc 7009 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7010 group = cpumask_first(nodemask);
6711cab4
SS
7011
7012 if (sg)
6c99e9ad 7013 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7014 return group;
1da177e4 7015}
6711cab4 7016
08069033
SS
7017static void init_numa_sched_groups_power(struct sched_group *group_head)
7018{
7019 struct sched_group *sg = group_head;
7020 int j;
7021
7022 if (!sg)
7023 return;
3a5c359a 7024 do {
758b2cdc 7025 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7026 struct sched_domain *sd;
08069033 7027
6c99e9ad 7028 sd = &per_cpu(phys_domains, j).sd;
13318a71 7029 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7030 /*
7031 * Only add "power" once for each
7032 * physical package.
7033 */
7034 continue;
7035 }
08069033 7036
18a3885f 7037 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7038 }
7039 sg = sg->next;
7040 } while (sg != group_head);
08069033 7041}
0601a88d
AH
7042
7043static int build_numa_sched_groups(struct s_data *d,
7044 const struct cpumask *cpu_map, int num)
7045{
7046 struct sched_domain *sd;
7047 struct sched_group *sg, *prev;
7048 int n, j;
7049
7050 cpumask_clear(d->covered);
7051 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7052 if (cpumask_empty(d->nodemask)) {
7053 d->sched_group_nodes[num] = NULL;
7054 goto out;
7055 }
7056
7057 sched_domain_node_span(num, d->domainspan);
7058 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7059
7060 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7061 GFP_KERNEL, num);
7062 if (!sg) {
3df0fc5b
PZ
7063 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7064 num);
0601a88d
AH
7065 return -ENOMEM;
7066 }
7067 d->sched_group_nodes[num] = sg;
7068
7069 for_each_cpu(j, d->nodemask) {
7070 sd = &per_cpu(node_domains, j).sd;
7071 sd->groups = sg;
7072 }
7073
18a3885f 7074 sg->cpu_power = 0;
0601a88d
AH
7075 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7076 sg->next = sg;
7077 cpumask_or(d->covered, d->covered, d->nodemask);
7078
7079 prev = sg;
7080 for (j = 0; j < nr_node_ids; j++) {
7081 n = (num + j) % nr_node_ids;
7082 cpumask_complement(d->notcovered, d->covered);
7083 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7084 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7085 if (cpumask_empty(d->tmpmask))
7086 break;
7087 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7088 if (cpumask_empty(d->tmpmask))
7089 continue;
7090 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7091 GFP_KERNEL, num);
7092 if (!sg) {
3df0fc5b
PZ
7093 printk(KERN_WARNING
7094 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7095 return -ENOMEM;
7096 }
18a3885f 7097 sg->cpu_power = 0;
0601a88d
AH
7098 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7099 sg->next = prev->next;
7100 cpumask_or(d->covered, d->covered, d->tmpmask);
7101 prev->next = sg;
7102 prev = sg;
7103 }
7104out:
7105 return 0;
7106}
6d6bc0ad 7107#endif /* CONFIG_NUMA */
1da177e4 7108
a616058b 7109#ifdef CONFIG_NUMA
51888ca2 7110/* Free memory allocated for various sched_group structures */
96f874e2
RR
7111static void free_sched_groups(const struct cpumask *cpu_map,
7112 struct cpumask *nodemask)
51888ca2 7113{
a616058b 7114 int cpu, i;
51888ca2 7115
abcd083a 7116 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7117 struct sched_group **sched_group_nodes
7118 = sched_group_nodes_bycpu[cpu];
7119
51888ca2
SV
7120 if (!sched_group_nodes)
7121 continue;
7122
076ac2af 7123 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7124 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7125
6ca09dfc 7126 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7127 if (cpumask_empty(nodemask))
51888ca2
SV
7128 continue;
7129
7130 if (sg == NULL)
7131 continue;
7132 sg = sg->next;
7133next_sg:
7134 oldsg = sg;
7135 sg = sg->next;
7136 kfree(oldsg);
7137 if (oldsg != sched_group_nodes[i])
7138 goto next_sg;
7139 }
7140 kfree(sched_group_nodes);
7141 sched_group_nodes_bycpu[cpu] = NULL;
7142 }
51888ca2 7143}
6d6bc0ad 7144#else /* !CONFIG_NUMA */
96f874e2
RR
7145static void free_sched_groups(const struct cpumask *cpu_map,
7146 struct cpumask *nodemask)
a616058b
SS
7147{
7148}
6d6bc0ad 7149#endif /* CONFIG_NUMA */
51888ca2 7150
89c4710e
SS
7151/*
7152 * Initialize sched groups cpu_power.
7153 *
7154 * cpu_power indicates the capacity of sched group, which is used while
7155 * distributing the load between different sched groups in a sched domain.
7156 * Typically cpu_power for all the groups in a sched domain will be same unless
7157 * there are asymmetries in the topology. If there are asymmetries, group
7158 * having more cpu_power will pickup more load compared to the group having
7159 * less cpu_power.
89c4710e
SS
7160 */
7161static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7162{
7163 struct sched_domain *child;
7164 struct sched_group *group;
f93e65c1
PZ
7165 long power;
7166 int weight;
89c4710e
SS
7167
7168 WARN_ON(!sd || !sd->groups);
7169
13318a71 7170 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7171 return;
7172
aae6d3dd
SS
7173 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7174
89c4710e
SS
7175 child = sd->child;
7176
18a3885f 7177 sd->groups->cpu_power = 0;
5517d86b 7178
f93e65c1
PZ
7179 if (!child) {
7180 power = SCHED_LOAD_SCALE;
7181 weight = cpumask_weight(sched_domain_span(sd));
7182 /*
7183 * SMT siblings share the power of a single core.
a52bfd73
PZ
7184 * Usually multiple threads get a better yield out of
7185 * that one core than a single thread would have,
7186 * reflect that in sd->smt_gain.
f93e65c1 7187 */
a52bfd73
PZ
7188 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7189 power *= sd->smt_gain;
f93e65c1 7190 power /= weight;
a52bfd73
PZ
7191 power >>= SCHED_LOAD_SHIFT;
7192 }
18a3885f 7193 sd->groups->cpu_power += power;
89c4710e
SS
7194 return;
7195 }
7196
89c4710e 7197 /*
f93e65c1 7198 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7199 */
7200 group = child->groups;
7201 do {
18a3885f 7202 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7203 group = group->next;
7204 } while (group != child->groups);
7205}
7206
7c16ec58
MT
7207/*
7208 * Initializers for schedule domains
7209 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7210 */
7211
a5d8c348
IM
7212#ifdef CONFIG_SCHED_DEBUG
7213# define SD_INIT_NAME(sd, type) sd->name = #type
7214#else
7215# define SD_INIT_NAME(sd, type) do { } while (0)
7216#endif
7217
7c16ec58 7218#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7219
7c16ec58
MT
7220#define SD_INIT_FUNC(type) \
7221static noinline void sd_init_##type(struct sched_domain *sd) \
7222{ \
7223 memset(sd, 0, sizeof(*sd)); \
7224 *sd = SD_##type##_INIT; \
1d3504fc 7225 sd->level = SD_LV_##type; \
a5d8c348 7226 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7227}
7228
7229SD_INIT_FUNC(CPU)
7230#ifdef CONFIG_NUMA
7231 SD_INIT_FUNC(ALLNODES)
7232 SD_INIT_FUNC(NODE)
7233#endif
7234#ifdef CONFIG_SCHED_SMT
7235 SD_INIT_FUNC(SIBLING)
7236#endif
7237#ifdef CONFIG_SCHED_MC
7238 SD_INIT_FUNC(MC)
7239#endif
01a08546
HC
7240#ifdef CONFIG_SCHED_BOOK
7241 SD_INIT_FUNC(BOOK)
7242#endif
7c16ec58 7243
1d3504fc
HS
7244static int default_relax_domain_level = -1;
7245
7246static int __init setup_relax_domain_level(char *str)
7247{
30e0e178
LZ
7248 unsigned long val;
7249
7250 val = simple_strtoul(str, NULL, 0);
7251 if (val < SD_LV_MAX)
7252 default_relax_domain_level = val;
7253
1d3504fc
HS
7254 return 1;
7255}
7256__setup("relax_domain_level=", setup_relax_domain_level);
7257
7258static void set_domain_attribute(struct sched_domain *sd,
7259 struct sched_domain_attr *attr)
7260{
7261 int request;
7262
7263 if (!attr || attr->relax_domain_level < 0) {
7264 if (default_relax_domain_level < 0)
7265 return;
7266 else
7267 request = default_relax_domain_level;
7268 } else
7269 request = attr->relax_domain_level;
7270 if (request < sd->level) {
7271 /* turn off idle balance on this domain */
c88d5910 7272 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7273 } else {
7274 /* turn on idle balance on this domain */
c88d5910 7275 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7276 }
7277}
7278
2109b99e
AH
7279static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7280 const struct cpumask *cpu_map)
7281{
7282 switch (what) {
7283 case sa_sched_groups:
7284 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7285 d->sched_group_nodes = NULL;
7286 case sa_rootdomain:
7287 free_rootdomain(d->rd); /* fall through */
7288 case sa_tmpmask:
7289 free_cpumask_var(d->tmpmask); /* fall through */
7290 case sa_send_covered:
7291 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7292 case sa_this_book_map:
7293 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7294 case sa_this_core_map:
7295 free_cpumask_var(d->this_core_map); /* fall through */
7296 case sa_this_sibling_map:
7297 free_cpumask_var(d->this_sibling_map); /* fall through */
7298 case sa_nodemask:
7299 free_cpumask_var(d->nodemask); /* fall through */
7300 case sa_sched_group_nodes:
d1b55138 7301#ifdef CONFIG_NUMA
2109b99e
AH
7302 kfree(d->sched_group_nodes); /* fall through */
7303 case sa_notcovered:
7304 free_cpumask_var(d->notcovered); /* fall through */
7305 case sa_covered:
7306 free_cpumask_var(d->covered); /* fall through */
7307 case sa_domainspan:
7308 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7309#endif
2109b99e
AH
7310 case sa_none:
7311 break;
7312 }
7313}
3404c8d9 7314
2109b99e
AH
7315static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7316 const struct cpumask *cpu_map)
7317{
3404c8d9 7318#ifdef CONFIG_NUMA
2109b99e
AH
7319 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7320 return sa_none;
7321 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7322 return sa_domainspan;
7323 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7324 return sa_covered;
7325 /* Allocate the per-node list of sched groups */
7326 d->sched_group_nodes = kcalloc(nr_node_ids,
7327 sizeof(struct sched_group *), GFP_KERNEL);
7328 if (!d->sched_group_nodes) {
3df0fc5b 7329 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7330 return sa_notcovered;
d1b55138 7331 }
2109b99e 7332 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7333#endif
2109b99e
AH
7334 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7335 return sa_sched_group_nodes;
7336 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7337 return sa_nodemask;
7338 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7339 return sa_this_sibling_map;
01a08546 7340 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7341 return sa_this_core_map;
01a08546
HC
7342 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7343 return sa_this_book_map;
2109b99e
AH
7344 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7345 return sa_send_covered;
7346 d->rd = alloc_rootdomain();
7347 if (!d->rd) {
3df0fc5b 7348 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7349 return sa_tmpmask;
57d885fe 7350 }
2109b99e
AH
7351 return sa_rootdomain;
7352}
57d885fe 7353
7f4588f3
AH
7354static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7355 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7356{
7357 struct sched_domain *sd = NULL;
7c16ec58 7358#ifdef CONFIG_NUMA
7f4588f3 7359 struct sched_domain *parent;
1da177e4 7360
7f4588f3
AH
7361 d->sd_allnodes = 0;
7362 if (cpumask_weight(cpu_map) >
7363 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7364 sd = &per_cpu(allnodes_domains, i).sd;
7365 SD_INIT(sd, ALLNODES);
1d3504fc 7366 set_domain_attribute(sd, attr);
7f4588f3
AH
7367 cpumask_copy(sched_domain_span(sd), cpu_map);
7368 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7369 d->sd_allnodes = 1;
7370 }
7371 parent = sd;
7372
7373 sd = &per_cpu(node_domains, i).sd;
7374 SD_INIT(sd, NODE);
7375 set_domain_attribute(sd, attr);
7376 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7377 sd->parent = parent;
7378 if (parent)
7379 parent->child = sd;
7380 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7381#endif
7f4588f3
AH
7382 return sd;
7383}
1da177e4 7384
87cce662
AH
7385static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7386 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7387 struct sched_domain *parent, int i)
7388{
7389 struct sched_domain *sd;
7390 sd = &per_cpu(phys_domains, i).sd;
7391 SD_INIT(sd, CPU);
7392 set_domain_attribute(sd, attr);
7393 cpumask_copy(sched_domain_span(sd), d->nodemask);
7394 sd->parent = parent;
7395 if (parent)
7396 parent->child = sd;
7397 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7398 return sd;
7399}
1da177e4 7400
01a08546
HC
7401static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7402 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7403 struct sched_domain *parent, int i)
7404{
7405 struct sched_domain *sd = parent;
7406#ifdef CONFIG_SCHED_BOOK
7407 sd = &per_cpu(book_domains, i).sd;
7408 SD_INIT(sd, BOOK);
7409 set_domain_attribute(sd, attr);
7410 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7411 sd->parent = parent;
7412 parent->child = sd;
7413 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7414#endif
7415 return sd;
7416}
7417
410c4081
AH
7418static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7419 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7420 struct sched_domain *parent, int i)
7421{
7422 struct sched_domain *sd = parent;
1e9f28fa 7423#ifdef CONFIG_SCHED_MC
410c4081
AH
7424 sd = &per_cpu(core_domains, i).sd;
7425 SD_INIT(sd, MC);
7426 set_domain_attribute(sd, attr);
7427 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7428 sd->parent = parent;
7429 parent->child = sd;
7430 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7431#endif
410c4081
AH
7432 return sd;
7433}
1e9f28fa 7434
d8173535
AH
7435static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7436 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7437 struct sched_domain *parent, int i)
7438{
7439 struct sched_domain *sd = parent;
1da177e4 7440#ifdef CONFIG_SCHED_SMT
d8173535
AH
7441 sd = &per_cpu(cpu_domains, i).sd;
7442 SD_INIT(sd, SIBLING);
7443 set_domain_attribute(sd, attr);
7444 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7445 sd->parent = parent;
7446 parent->child = sd;
7447 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7448#endif
d8173535
AH
7449 return sd;
7450}
1da177e4 7451
0e8e85c9
AH
7452static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7453 const struct cpumask *cpu_map, int cpu)
7454{
7455 switch (l) {
1da177e4 7456#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7457 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7458 cpumask_and(d->this_sibling_map, cpu_map,
7459 topology_thread_cpumask(cpu));
7460 if (cpu == cpumask_first(d->this_sibling_map))
7461 init_sched_build_groups(d->this_sibling_map, cpu_map,
7462 &cpu_to_cpu_group,
7463 d->send_covered, d->tmpmask);
7464 break;
1da177e4 7465#endif
1e9f28fa 7466#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7467 case SD_LV_MC: /* set up multi-core groups */
7468 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7469 if (cpu == cpumask_first(d->this_core_map))
7470 init_sched_build_groups(d->this_core_map, cpu_map,
7471 &cpu_to_core_group,
7472 d->send_covered, d->tmpmask);
7473 break;
01a08546
HC
7474#endif
7475#ifdef CONFIG_SCHED_BOOK
7476 case SD_LV_BOOK: /* set up book groups */
7477 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7478 if (cpu == cpumask_first(d->this_book_map))
7479 init_sched_build_groups(d->this_book_map, cpu_map,
7480 &cpu_to_book_group,
7481 d->send_covered, d->tmpmask);
7482 break;
1e9f28fa 7483#endif
86548096
AH
7484 case SD_LV_CPU: /* set up physical groups */
7485 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7486 if (!cpumask_empty(d->nodemask))
7487 init_sched_build_groups(d->nodemask, cpu_map,
7488 &cpu_to_phys_group,
7489 d->send_covered, d->tmpmask);
7490 break;
1da177e4 7491#ifdef CONFIG_NUMA
de616e36
AH
7492 case SD_LV_ALLNODES:
7493 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7494 d->send_covered, d->tmpmask);
7495 break;
7496#endif
0e8e85c9
AH
7497 default:
7498 break;
7c16ec58 7499 }
0e8e85c9 7500}
9c1cfda2 7501
2109b99e
AH
7502/*
7503 * Build sched domains for a given set of cpus and attach the sched domains
7504 * to the individual cpus
7505 */
7506static int __build_sched_domains(const struct cpumask *cpu_map,
7507 struct sched_domain_attr *attr)
7508{
7509 enum s_alloc alloc_state = sa_none;
7510 struct s_data d;
294b0c96 7511 struct sched_domain *sd;
2109b99e 7512 int i;
7c16ec58 7513#ifdef CONFIG_NUMA
2109b99e 7514 d.sd_allnodes = 0;
7c16ec58 7515#endif
9c1cfda2 7516
2109b99e
AH
7517 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7518 if (alloc_state != sa_rootdomain)
7519 goto error;
7520 alloc_state = sa_sched_groups;
9c1cfda2 7521
1da177e4 7522 /*
1a20ff27 7523 * Set up domains for cpus specified by the cpu_map.
1da177e4 7524 */
abcd083a 7525 for_each_cpu(i, cpu_map) {
49a02c51
AH
7526 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7527 cpu_map);
9761eea8 7528
7f4588f3 7529 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7530 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7531 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7532 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7533 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7534 }
9c1cfda2 7535
abcd083a 7536 for_each_cpu(i, cpu_map) {
0e8e85c9 7537 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7538 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7539 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7540 }
9c1cfda2 7541
1da177e4 7542 /* Set up physical groups */
86548096
AH
7543 for (i = 0; i < nr_node_ids; i++)
7544 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7545
1da177e4
LT
7546#ifdef CONFIG_NUMA
7547 /* Set up node groups */
de616e36
AH
7548 if (d.sd_allnodes)
7549 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7550
0601a88d
AH
7551 for (i = 0; i < nr_node_ids; i++)
7552 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7553 goto error;
1da177e4
LT
7554#endif
7555
7556 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7557#ifdef CONFIG_SCHED_SMT
abcd083a 7558 for_each_cpu(i, cpu_map) {
294b0c96 7559 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7560 init_sched_groups_power(i, sd);
5c45bf27 7561 }
1da177e4 7562#endif
1e9f28fa 7563#ifdef CONFIG_SCHED_MC
abcd083a 7564 for_each_cpu(i, cpu_map) {
294b0c96 7565 sd = &per_cpu(core_domains, i).sd;
89c4710e 7566 init_sched_groups_power(i, sd);
5c45bf27
SS
7567 }
7568#endif
01a08546
HC
7569#ifdef CONFIG_SCHED_BOOK
7570 for_each_cpu(i, cpu_map) {
7571 sd = &per_cpu(book_domains, i).sd;
7572 init_sched_groups_power(i, sd);
7573 }
7574#endif
1e9f28fa 7575
abcd083a 7576 for_each_cpu(i, cpu_map) {
294b0c96 7577 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7578 init_sched_groups_power(i, sd);
1da177e4
LT
7579 }
7580
9c1cfda2 7581#ifdef CONFIG_NUMA
076ac2af 7582 for (i = 0; i < nr_node_ids; i++)
49a02c51 7583 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7584
49a02c51 7585 if (d.sd_allnodes) {
6711cab4 7586 struct sched_group *sg;
f712c0c7 7587
96f874e2 7588 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7589 d.tmpmask);
f712c0c7
SS
7590 init_numa_sched_groups_power(sg);
7591 }
9c1cfda2
JH
7592#endif
7593
1da177e4 7594 /* Attach the domains */
abcd083a 7595 for_each_cpu(i, cpu_map) {
1da177e4 7596#ifdef CONFIG_SCHED_SMT
6c99e9ad 7597 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7598#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7599 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7600#elif defined(CONFIG_SCHED_BOOK)
7601 sd = &per_cpu(book_domains, i).sd;
1da177e4 7602#else
6c99e9ad 7603 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7604#endif
49a02c51 7605 cpu_attach_domain(sd, d.rd, i);
1da177e4 7606 }
51888ca2 7607
2109b99e
AH
7608 d.sched_group_nodes = NULL; /* don't free this we still need it */
7609 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7610 return 0;
51888ca2 7611
51888ca2 7612error:
2109b99e
AH
7613 __free_domain_allocs(&d, alloc_state, cpu_map);
7614 return -ENOMEM;
1da177e4 7615}
029190c5 7616
96f874e2 7617static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7618{
7619 return __build_sched_domains(cpu_map, NULL);
7620}
7621
acc3f5d7 7622static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7623static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7624static struct sched_domain_attr *dattr_cur;
7625 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7626
7627/*
7628 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7629 * cpumask) fails, then fallback to a single sched domain,
7630 * as determined by the single cpumask fallback_doms.
029190c5 7631 */
4212823f 7632static cpumask_var_t fallback_doms;
029190c5 7633
ee79d1bd
HC
7634/*
7635 * arch_update_cpu_topology lets virtualized architectures update the
7636 * cpu core maps. It is supposed to return 1 if the topology changed
7637 * or 0 if it stayed the same.
7638 */
7639int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7640{
ee79d1bd 7641 return 0;
22e52b07
HC
7642}
7643
acc3f5d7
RR
7644cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7645{
7646 int i;
7647 cpumask_var_t *doms;
7648
7649 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7650 if (!doms)
7651 return NULL;
7652 for (i = 0; i < ndoms; i++) {
7653 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7654 free_sched_domains(doms, i);
7655 return NULL;
7656 }
7657 }
7658 return doms;
7659}
7660
7661void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7662{
7663 unsigned int i;
7664 for (i = 0; i < ndoms; i++)
7665 free_cpumask_var(doms[i]);
7666 kfree(doms);
7667}
7668
1a20ff27 7669/*
41a2d6cf 7670 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7671 * For now this just excludes isolated cpus, but could be used to
7672 * exclude other special cases in the future.
1a20ff27 7673 */
96f874e2 7674static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7675{
7378547f
MM
7676 int err;
7677
22e52b07 7678 arch_update_cpu_topology();
029190c5 7679 ndoms_cur = 1;
acc3f5d7 7680 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7681 if (!doms_cur)
acc3f5d7
RR
7682 doms_cur = &fallback_doms;
7683 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7684 dattr_cur = NULL;
acc3f5d7 7685 err = build_sched_domains(doms_cur[0]);
6382bc90 7686 register_sched_domain_sysctl();
7378547f
MM
7687
7688 return err;
1a20ff27
DG
7689}
7690
96f874e2
RR
7691static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7692 struct cpumask *tmpmask)
1da177e4 7693{
7c16ec58 7694 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7695}
1da177e4 7696
1a20ff27
DG
7697/*
7698 * Detach sched domains from a group of cpus specified in cpu_map
7699 * These cpus will now be attached to the NULL domain
7700 */
96f874e2 7701static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7702{
96f874e2
RR
7703 /* Save because hotplug lock held. */
7704 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7705 int i;
7706
abcd083a 7707 for_each_cpu(i, cpu_map)
57d885fe 7708 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7709 synchronize_sched();
96f874e2 7710 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7711}
7712
1d3504fc
HS
7713/* handle null as "default" */
7714static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7715 struct sched_domain_attr *new, int idx_new)
7716{
7717 struct sched_domain_attr tmp;
7718
7719 /* fast path */
7720 if (!new && !cur)
7721 return 1;
7722
7723 tmp = SD_ATTR_INIT;
7724 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7725 new ? (new + idx_new) : &tmp,
7726 sizeof(struct sched_domain_attr));
7727}
7728
029190c5
PJ
7729/*
7730 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7731 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7732 * doms_new[] to the current sched domain partitioning, doms_cur[].
7733 * It destroys each deleted domain and builds each new domain.
7734 *
acc3f5d7 7735 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7736 * The masks don't intersect (don't overlap.) We should setup one
7737 * sched domain for each mask. CPUs not in any of the cpumasks will
7738 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7739 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7740 * it as it is.
7741 *
acc3f5d7
RR
7742 * The passed in 'doms_new' should be allocated using
7743 * alloc_sched_domains. This routine takes ownership of it and will
7744 * free_sched_domains it when done with it. If the caller failed the
7745 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7746 * and partition_sched_domains() will fallback to the single partition
7747 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7748 *
96f874e2 7749 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7750 * ndoms_new == 0 is a special case for destroying existing domains,
7751 * and it will not create the default domain.
dfb512ec 7752 *
029190c5
PJ
7753 * Call with hotplug lock held
7754 */
acc3f5d7 7755void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7756 struct sched_domain_attr *dattr_new)
029190c5 7757{
dfb512ec 7758 int i, j, n;
d65bd5ec 7759 int new_topology;
029190c5 7760
712555ee 7761 mutex_lock(&sched_domains_mutex);
a1835615 7762
7378547f
MM
7763 /* always unregister in case we don't destroy any domains */
7764 unregister_sched_domain_sysctl();
7765
d65bd5ec
HC
7766 /* Let architecture update cpu core mappings. */
7767 new_topology = arch_update_cpu_topology();
7768
dfb512ec 7769 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7770
7771 /* Destroy deleted domains */
7772 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7773 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7774 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7775 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7776 goto match1;
7777 }
7778 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7779 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7780match1:
7781 ;
7782 }
7783
e761b772
MK
7784 if (doms_new == NULL) {
7785 ndoms_cur = 0;
acc3f5d7 7786 doms_new = &fallback_doms;
6ad4c188 7787 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7788 WARN_ON_ONCE(dattr_new);
e761b772
MK
7789 }
7790
029190c5
PJ
7791 /* Build new domains */
7792 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7793 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7794 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7795 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7796 goto match2;
7797 }
7798 /* no match - add a new doms_new */
acc3f5d7 7799 __build_sched_domains(doms_new[i],
1d3504fc 7800 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7801match2:
7802 ;
7803 }
7804
7805 /* Remember the new sched domains */
acc3f5d7
RR
7806 if (doms_cur != &fallback_doms)
7807 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7808 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7809 doms_cur = doms_new;
1d3504fc 7810 dattr_cur = dattr_new;
029190c5 7811 ndoms_cur = ndoms_new;
7378547f
MM
7812
7813 register_sched_domain_sysctl();
a1835615 7814
712555ee 7815 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7816}
7817
5c45bf27 7818#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7819static void arch_reinit_sched_domains(void)
5c45bf27 7820{
95402b38 7821 get_online_cpus();
dfb512ec
MK
7822
7823 /* Destroy domains first to force the rebuild */
7824 partition_sched_domains(0, NULL, NULL);
7825
e761b772 7826 rebuild_sched_domains();
95402b38 7827 put_online_cpus();
5c45bf27
SS
7828}
7829
7830static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7831{
afb8a9b7 7832 unsigned int level = 0;
5c45bf27 7833
afb8a9b7
GS
7834 if (sscanf(buf, "%u", &level) != 1)
7835 return -EINVAL;
7836
7837 /*
7838 * level is always be positive so don't check for
7839 * level < POWERSAVINGS_BALANCE_NONE which is 0
7840 * What happens on 0 or 1 byte write,
7841 * need to check for count as well?
7842 */
7843
7844 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7845 return -EINVAL;
7846
7847 if (smt)
afb8a9b7 7848 sched_smt_power_savings = level;
5c45bf27 7849 else
afb8a9b7 7850 sched_mc_power_savings = level;
5c45bf27 7851
c70f22d2 7852 arch_reinit_sched_domains();
5c45bf27 7853
c70f22d2 7854 return count;
5c45bf27
SS
7855}
7856
5c45bf27 7857#ifdef CONFIG_SCHED_MC
f718cd4a 7858static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7859 struct sysdev_class_attribute *attr,
f718cd4a 7860 char *page)
5c45bf27
SS
7861{
7862 return sprintf(page, "%u\n", sched_mc_power_savings);
7863}
f718cd4a 7864static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7865 struct sysdev_class_attribute *attr,
48f24c4d 7866 const char *buf, size_t count)
5c45bf27
SS
7867{
7868 return sched_power_savings_store(buf, count, 0);
7869}
f718cd4a
AK
7870static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7871 sched_mc_power_savings_show,
7872 sched_mc_power_savings_store);
5c45bf27
SS
7873#endif
7874
7875#ifdef CONFIG_SCHED_SMT
f718cd4a 7876static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7877 struct sysdev_class_attribute *attr,
f718cd4a 7878 char *page)
5c45bf27
SS
7879{
7880 return sprintf(page, "%u\n", sched_smt_power_savings);
7881}
f718cd4a 7882static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7883 struct sysdev_class_attribute *attr,
48f24c4d 7884 const char *buf, size_t count)
5c45bf27
SS
7885{
7886 return sched_power_savings_store(buf, count, 1);
7887}
f718cd4a
AK
7888static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7889 sched_smt_power_savings_show,
6707de00
AB
7890 sched_smt_power_savings_store);
7891#endif
7892
39aac648 7893int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7894{
7895 int err = 0;
7896
7897#ifdef CONFIG_SCHED_SMT
7898 if (smt_capable())
7899 err = sysfs_create_file(&cls->kset.kobj,
7900 &attr_sched_smt_power_savings.attr);
7901#endif
7902#ifdef CONFIG_SCHED_MC
7903 if (!err && mc_capable())
7904 err = sysfs_create_file(&cls->kset.kobj,
7905 &attr_sched_mc_power_savings.attr);
7906#endif
7907 return err;
7908}
6d6bc0ad 7909#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7910
1da177e4 7911/*
3a101d05
TH
7912 * Update cpusets according to cpu_active mask. If cpusets are
7913 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7914 * around partition_sched_domains().
1da177e4 7915 */
0b2e918a
TH
7916static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7917 void *hcpu)
e761b772 7918{
3a101d05 7919 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7920 case CPU_ONLINE:
6ad4c188 7921 case CPU_DOWN_FAILED:
3a101d05 7922 cpuset_update_active_cpus();
e761b772 7923 return NOTIFY_OK;
3a101d05
TH
7924 default:
7925 return NOTIFY_DONE;
7926 }
7927}
e761b772 7928
0b2e918a
TH
7929static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7930 void *hcpu)
3a101d05
TH
7931{
7932 switch (action & ~CPU_TASKS_FROZEN) {
7933 case CPU_DOWN_PREPARE:
7934 cpuset_update_active_cpus();
7935 return NOTIFY_OK;
e761b772
MK
7936 default:
7937 return NOTIFY_DONE;
7938 }
7939}
e761b772
MK
7940
7941static int update_runtime(struct notifier_block *nfb,
7942 unsigned long action, void *hcpu)
1da177e4 7943{
7def2be1
PZ
7944 int cpu = (int)(long)hcpu;
7945
1da177e4 7946 switch (action) {
1da177e4 7947 case CPU_DOWN_PREPARE:
8bb78442 7948 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7949 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7950 return NOTIFY_OK;
7951
1da177e4 7952 case CPU_DOWN_FAILED:
8bb78442 7953 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7954 case CPU_ONLINE:
8bb78442 7955 case CPU_ONLINE_FROZEN:
7def2be1 7956 enable_runtime(cpu_rq(cpu));
e761b772
MK
7957 return NOTIFY_OK;
7958
1da177e4
LT
7959 default:
7960 return NOTIFY_DONE;
7961 }
1da177e4 7962}
1da177e4
LT
7963
7964void __init sched_init_smp(void)
7965{
dcc30a35
RR
7966 cpumask_var_t non_isolated_cpus;
7967
7968 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7969 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7970
434d53b0
MT
7971#if defined(CONFIG_NUMA)
7972 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7973 GFP_KERNEL);
7974 BUG_ON(sched_group_nodes_bycpu == NULL);
7975#endif
95402b38 7976 get_online_cpus();
712555ee 7977 mutex_lock(&sched_domains_mutex);
6ad4c188 7978 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7979 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7980 if (cpumask_empty(non_isolated_cpus))
7981 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7982 mutex_unlock(&sched_domains_mutex);
95402b38 7983 put_online_cpus();
e761b772 7984
3a101d05
TH
7985 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7986 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7987
7988 /* RT runtime code needs to handle some hotplug events */
7989 hotcpu_notifier(update_runtime, 0);
7990
b328ca18 7991 init_hrtick();
5c1e1767
NP
7992
7993 /* Move init over to a non-isolated CPU */
dcc30a35 7994 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7995 BUG();
19978ca6 7996 sched_init_granularity();
dcc30a35 7997 free_cpumask_var(non_isolated_cpus);
4212823f 7998
0e3900e6 7999 init_sched_rt_class();
1da177e4
LT
8000}
8001#else
8002void __init sched_init_smp(void)
8003{
19978ca6 8004 sched_init_granularity();
1da177e4
LT
8005}
8006#endif /* CONFIG_SMP */
8007
cd1bb94b
AB
8008const_debug unsigned int sysctl_timer_migration = 1;
8009
1da177e4
LT
8010int in_sched_functions(unsigned long addr)
8011{
1da177e4
LT
8012 return in_lock_functions(addr) ||
8013 (addr >= (unsigned long)__sched_text_start
8014 && addr < (unsigned long)__sched_text_end);
8015}
8016
a9957449 8017static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8018{
8019 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8020 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8021#ifdef CONFIG_FAIR_GROUP_SCHED
8022 cfs_rq->rq = rq;
f07333bf 8023 /* allow initial update_cfs_load() to truncate */
6ea72f12 8024#ifdef CONFIG_SMP
f07333bf 8025 cfs_rq->load_stamp = 1;
6ea72f12 8026#endif
dd41f596 8027#endif
67e9fb2a 8028 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8029}
8030
fa85ae24
PZ
8031static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8032{
8033 struct rt_prio_array *array;
8034 int i;
8035
8036 array = &rt_rq->active;
8037 for (i = 0; i < MAX_RT_PRIO; i++) {
8038 INIT_LIST_HEAD(array->queue + i);
8039 __clear_bit(i, array->bitmap);
8040 }
8041 /* delimiter for bitsearch: */
8042 __set_bit(MAX_RT_PRIO, array->bitmap);
8043
052f1dc7 8044#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8045 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8046#ifdef CONFIG_SMP
e864c499 8047 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8048#endif
48d5e258 8049#endif
fa85ae24
PZ
8050#ifdef CONFIG_SMP
8051 rt_rq->rt_nr_migratory = 0;
fa85ae24 8052 rt_rq->overloaded = 0;
05fa785c 8053 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8054#endif
8055
8056 rt_rq->rt_time = 0;
8057 rt_rq->rt_throttled = 0;
ac086bc2 8058 rt_rq->rt_runtime = 0;
0986b11b 8059 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8060
052f1dc7 8061#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8062 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8063 rt_rq->rq = rq;
8064#endif
fa85ae24
PZ
8065}
8066
6f505b16 8067#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8068static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8069 struct sched_entity *se, int cpu,
ec7dc8ac 8070 struct sched_entity *parent)
6f505b16 8071{
ec7dc8ac 8072 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8073 tg->cfs_rq[cpu] = cfs_rq;
8074 init_cfs_rq(cfs_rq, rq);
8075 cfs_rq->tg = tg;
6f505b16
PZ
8076
8077 tg->se[cpu] = se;
07e06b01 8078 /* se could be NULL for root_task_group */
354d60c2
DG
8079 if (!se)
8080 return;
8081
ec7dc8ac
DG
8082 if (!parent)
8083 se->cfs_rq = &rq->cfs;
8084 else
8085 se->cfs_rq = parent->my_q;
8086
6f505b16 8087 se->my_q = cfs_rq;
9437178f 8088 update_load_set(&se->load, 0);
ec7dc8ac 8089 se->parent = parent;
6f505b16 8090}
052f1dc7 8091#endif
6f505b16 8092
052f1dc7 8093#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8094static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8095 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8096 struct sched_rt_entity *parent)
6f505b16 8097{
ec7dc8ac
DG
8098 struct rq *rq = cpu_rq(cpu);
8099
6f505b16
PZ
8100 tg->rt_rq[cpu] = rt_rq;
8101 init_rt_rq(rt_rq, rq);
8102 rt_rq->tg = tg;
ac086bc2 8103 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8104
8105 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8106 if (!rt_se)
8107 return;
8108
ec7dc8ac
DG
8109 if (!parent)
8110 rt_se->rt_rq = &rq->rt;
8111 else
8112 rt_se->rt_rq = parent->my_q;
8113
6f505b16 8114 rt_se->my_q = rt_rq;
ec7dc8ac 8115 rt_se->parent = parent;
6f505b16
PZ
8116 INIT_LIST_HEAD(&rt_se->run_list);
8117}
8118#endif
8119
1da177e4
LT
8120void __init sched_init(void)
8121{
dd41f596 8122 int i, j;
434d53b0
MT
8123 unsigned long alloc_size = 0, ptr;
8124
8125#ifdef CONFIG_FAIR_GROUP_SCHED
8126 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8127#endif
8128#ifdef CONFIG_RT_GROUP_SCHED
8129 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8130#endif
df7c8e84 8131#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8132 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8133#endif
434d53b0 8134 if (alloc_size) {
36b7b6d4 8135 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8136
8137#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8138 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8139 ptr += nr_cpu_ids * sizeof(void **);
8140
07e06b01 8141 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8142 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8143
6d6bc0ad 8144#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8145#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8146 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8147 ptr += nr_cpu_ids * sizeof(void **);
8148
07e06b01 8149 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8150 ptr += nr_cpu_ids * sizeof(void **);
8151
6d6bc0ad 8152#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8153#ifdef CONFIG_CPUMASK_OFFSTACK
8154 for_each_possible_cpu(i) {
8155 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8156 ptr += cpumask_size();
8157 }
8158#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8159 }
dd41f596 8160
57d885fe
GH
8161#ifdef CONFIG_SMP
8162 init_defrootdomain();
8163#endif
8164
d0b27fa7
PZ
8165 init_rt_bandwidth(&def_rt_bandwidth,
8166 global_rt_period(), global_rt_runtime());
8167
8168#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8169 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8170 global_rt_period(), global_rt_runtime());
6d6bc0ad 8171#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8172
7c941438 8173#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8174 list_add(&root_task_group.list, &task_groups);
8175 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8176 autogroup_init(&init_task);
7c941438 8177#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8178
0a945022 8179 for_each_possible_cpu(i) {
70b97a7f 8180 struct rq *rq;
1da177e4
LT
8181
8182 rq = cpu_rq(i);
05fa785c 8183 raw_spin_lock_init(&rq->lock);
7897986b 8184 rq->nr_running = 0;
dce48a84
TG
8185 rq->calc_load_active = 0;
8186 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8187 init_cfs_rq(&rq->cfs, rq);
6f505b16 8188 init_rt_rq(&rq->rt, rq);
dd41f596 8189#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8190 root_task_group.shares = root_task_group_load;
6f505b16 8191 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8192 /*
07e06b01 8193 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8194 *
8195 * In case of task-groups formed thr' the cgroup filesystem, it
8196 * gets 100% of the cpu resources in the system. This overall
8197 * system cpu resource is divided among the tasks of
07e06b01 8198 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8199 * based on each entity's (task or task-group's) weight
8200 * (se->load.weight).
8201 *
07e06b01 8202 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8203 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8204 * then A0's share of the cpu resource is:
8205 *
0d905bca 8206 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8207 *
07e06b01
YZ
8208 * We achieve this by letting root_task_group's tasks sit
8209 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8210 */
07e06b01 8211 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8212#endif /* CONFIG_FAIR_GROUP_SCHED */
8213
8214 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8215#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8216 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8217 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8218#endif
1da177e4 8219
dd41f596
IM
8220 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8221 rq->cpu_load[j] = 0;
fdf3e95d
VP
8222
8223 rq->last_load_update_tick = jiffies;
8224
1da177e4 8225#ifdef CONFIG_SMP
41c7ce9a 8226 rq->sd = NULL;
57d885fe 8227 rq->rd = NULL;
e51fd5e2 8228 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8229 rq->post_schedule = 0;
1da177e4 8230 rq->active_balance = 0;
dd41f596 8231 rq->next_balance = jiffies;
1da177e4 8232 rq->push_cpu = 0;
0a2966b4 8233 rq->cpu = i;
1f11eb6a 8234 rq->online = 0;
eae0c9df
MG
8235 rq->idle_stamp = 0;
8236 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8237 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8238#ifdef CONFIG_NO_HZ
8239 rq->nohz_balance_kick = 0;
8240 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8241#endif
1da177e4 8242#endif
8f4d37ec 8243 init_rq_hrtick(rq);
1da177e4 8244 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8245 }
8246
2dd73a4f 8247 set_load_weight(&init_task);
b50f60ce 8248
e107be36
AK
8249#ifdef CONFIG_PREEMPT_NOTIFIERS
8250 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8251#endif
8252
c9819f45 8253#ifdef CONFIG_SMP
962cf36c 8254 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8255#endif
8256
b50f60ce 8257#ifdef CONFIG_RT_MUTEXES
1d615482 8258 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8259#endif
8260
1da177e4
LT
8261 /*
8262 * The boot idle thread does lazy MMU switching as well:
8263 */
8264 atomic_inc(&init_mm.mm_count);
8265 enter_lazy_tlb(&init_mm, current);
8266
8267 /*
8268 * Make us the idle thread. Technically, schedule() should not be
8269 * called from this thread, however somewhere below it might be,
8270 * but because we are the idle thread, we just pick up running again
8271 * when this runqueue becomes "idle".
8272 */
8273 init_idle(current, smp_processor_id());
dce48a84
TG
8274
8275 calc_load_update = jiffies + LOAD_FREQ;
8276
dd41f596
IM
8277 /*
8278 * During early bootup we pretend to be a normal task:
8279 */
8280 current->sched_class = &fair_sched_class;
6892b75e 8281
6a7b3dc3 8282 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8283 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8284#ifdef CONFIG_SMP
7d1e6a9b 8285#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8286 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8287 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8288 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8289 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8290 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8291#endif
bdddd296
RR
8292 /* May be allocated at isolcpus cmdline parse time */
8293 if (cpu_isolated_map == NULL)
8294 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8295#endif /* SMP */
6a7b3dc3 8296
6892b75e 8297 scheduler_running = 1;
1da177e4
LT
8298}
8299
8300#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8301static inline int preempt_count_equals(int preempt_offset)
8302{
234da7bc 8303 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8304
4ba8216c 8305 return (nested == preempt_offset);
e4aafea2
FW
8306}
8307
d894837f 8308void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8309{
48f24c4d 8310#ifdef in_atomic
1da177e4
LT
8311 static unsigned long prev_jiffy; /* ratelimiting */
8312
e4aafea2
FW
8313 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8314 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8315 return;
8316 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8317 return;
8318 prev_jiffy = jiffies;
8319
3df0fc5b
PZ
8320 printk(KERN_ERR
8321 "BUG: sleeping function called from invalid context at %s:%d\n",
8322 file, line);
8323 printk(KERN_ERR
8324 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8325 in_atomic(), irqs_disabled(),
8326 current->pid, current->comm);
aef745fc
IM
8327
8328 debug_show_held_locks(current);
8329 if (irqs_disabled())
8330 print_irqtrace_events(current);
8331 dump_stack();
1da177e4
LT
8332#endif
8333}
8334EXPORT_SYMBOL(__might_sleep);
8335#endif
8336
8337#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8338static void normalize_task(struct rq *rq, struct task_struct *p)
8339{
da7a735e
PZ
8340 const struct sched_class *prev_class = p->sched_class;
8341 int old_prio = p->prio;
3a5e4dc1 8342 int on_rq;
3e51f33f 8343
fd2f4419 8344 on_rq = p->on_rq;
3a5e4dc1
AK
8345 if (on_rq)
8346 deactivate_task(rq, p, 0);
8347 __setscheduler(rq, p, SCHED_NORMAL, 0);
8348 if (on_rq) {
8349 activate_task(rq, p, 0);
8350 resched_task(rq->curr);
8351 }
da7a735e
PZ
8352
8353 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8354}
8355
1da177e4
LT
8356void normalize_rt_tasks(void)
8357{
a0f98a1c 8358 struct task_struct *g, *p;
1da177e4 8359 unsigned long flags;
70b97a7f 8360 struct rq *rq;
1da177e4 8361
4cf5d77a 8362 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8363 do_each_thread(g, p) {
178be793
IM
8364 /*
8365 * Only normalize user tasks:
8366 */
8367 if (!p->mm)
8368 continue;
8369
6cfb0d5d 8370 p->se.exec_start = 0;
6cfb0d5d 8371#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8372 p->se.statistics.wait_start = 0;
8373 p->se.statistics.sleep_start = 0;
8374 p->se.statistics.block_start = 0;
6cfb0d5d 8375#endif
dd41f596
IM
8376
8377 if (!rt_task(p)) {
8378 /*
8379 * Renice negative nice level userspace
8380 * tasks back to 0:
8381 */
8382 if (TASK_NICE(p) < 0 && p->mm)
8383 set_user_nice(p, 0);
1da177e4 8384 continue;
dd41f596 8385 }
1da177e4 8386
1d615482 8387 raw_spin_lock(&p->pi_lock);
b29739f9 8388 rq = __task_rq_lock(p);
1da177e4 8389
178be793 8390 normalize_task(rq, p);
3a5e4dc1 8391
b29739f9 8392 __task_rq_unlock(rq);
1d615482 8393 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8394 } while_each_thread(g, p);
8395
4cf5d77a 8396 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8397}
8398
8399#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8400
67fc4e0c 8401#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8402/*
67fc4e0c 8403 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8404 *
8405 * They can only be called when the whole system has been
8406 * stopped - every CPU needs to be quiescent, and no scheduling
8407 * activity can take place. Using them for anything else would
8408 * be a serious bug, and as a result, they aren't even visible
8409 * under any other configuration.
8410 */
8411
8412/**
8413 * curr_task - return the current task for a given cpu.
8414 * @cpu: the processor in question.
8415 *
8416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8417 */
36c8b586 8418struct task_struct *curr_task(int cpu)
1df5c10a
LT
8419{
8420 return cpu_curr(cpu);
8421}
8422
67fc4e0c
JW
8423#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8424
8425#ifdef CONFIG_IA64
1df5c10a
LT
8426/**
8427 * set_curr_task - set the current task for a given cpu.
8428 * @cpu: the processor in question.
8429 * @p: the task pointer to set.
8430 *
8431 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8432 * are serviced on a separate stack. It allows the architecture to switch the
8433 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8434 * must be called with all CPU's synchronized, and interrupts disabled, the
8435 * and caller must save the original value of the current task (see
8436 * curr_task() above) and restore that value before reenabling interrupts and
8437 * re-starting the system.
8438 *
8439 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8440 */
36c8b586 8441void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8442{
8443 cpu_curr(cpu) = p;
8444}
8445
8446#endif
29f59db3 8447
bccbe08a
PZ
8448#ifdef CONFIG_FAIR_GROUP_SCHED
8449static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8450{
8451 int i;
8452
8453 for_each_possible_cpu(i) {
8454 if (tg->cfs_rq)
8455 kfree(tg->cfs_rq[i]);
8456 if (tg->se)
8457 kfree(tg->se[i]);
6f505b16
PZ
8458 }
8459
8460 kfree(tg->cfs_rq);
8461 kfree(tg->se);
6f505b16
PZ
8462}
8463
ec7dc8ac
DG
8464static
8465int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8466{
29f59db3 8467 struct cfs_rq *cfs_rq;
eab17229 8468 struct sched_entity *se;
29f59db3
SV
8469 int i;
8470
434d53b0 8471 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8472 if (!tg->cfs_rq)
8473 goto err;
434d53b0 8474 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8475 if (!tg->se)
8476 goto err;
052f1dc7
PZ
8477
8478 tg->shares = NICE_0_LOAD;
29f59db3
SV
8479
8480 for_each_possible_cpu(i) {
eab17229
LZ
8481 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8482 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8483 if (!cfs_rq)
8484 goto err;
8485
eab17229
LZ
8486 se = kzalloc_node(sizeof(struct sched_entity),
8487 GFP_KERNEL, cpu_to_node(i));
29f59db3 8488 if (!se)
dfc12eb2 8489 goto err_free_rq;
29f59db3 8490
3d4b47b4 8491 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8492 }
8493
8494 return 1;
8495
49246274 8496err_free_rq:
dfc12eb2 8497 kfree(cfs_rq);
49246274 8498err:
bccbe08a
PZ
8499 return 0;
8500}
8501
bccbe08a
PZ
8502static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8503{
3d4b47b4
PZ
8504 struct rq *rq = cpu_rq(cpu);
8505 unsigned long flags;
3d4b47b4
PZ
8506
8507 /*
8508 * Only empty task groups can be destroyed; so we can speculatively
8509 * check on_list without danger of it being re-added.
8510 */
8511 if (!tg->cfs_rq[cpu]->on_list)
8512 return;
8513
8514 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8515 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8516 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8517}
6d6bc0ad 8518#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8519static inline void free_fair_sched_group(struct task_group *tg)
8520{
8521}
8522
ec7dc8ac
DG
8523static inline
8524int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8525{
8526 return 1;
8527}
8528
bccbe08a
PZ
8529static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8530{
8531}
6d6bc0ad 8532#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8533
8534#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8535static void free_rt_sched_group(struct task_group *tg)
8536{
8537 int i;
8538
d0b27fa7
PZ
8539 destroy_rt_bandwidth(&tg->rt_bandwidth);
8540
bccbe08a
PZ
8541 for_each_possible_cpu(i) {
8542 if (tg->rt_rq)
8543 kfree(tg->rt_rq[i]);
8544 if (tg->rt_se)
8545 kfree(tg->rt_se[i]);
8546 }
8547
8548 kfree(tg->rt_rq);
8549 kfree(tg->rt_se);
8550}
8551
ec7dc8ac
DG
8552static
8553int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8554{
8555 struct rt_rq *rt_rq;
eab17229 8556 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8557 struct rq *rq;
8558 int i;
8559
434d53b0 8560 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8561 if (!tg->rt_rq)
8562 goto err;
434d53b0 8563 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8564 if (!tg->rt_se)
8565 goto err;
8566
d0b27fa7
PZ
8567 init_rt_bandwidth(&tg->rt_bandwidth,
8568 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8569
8570 for_each_possible_cpu(i) {
8571 rq = cpu_rq(i);
8572
eab17229
LZ
8573 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8574 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8575 if (!rt_rq)
8576 goto err;
29f59db3 8577
eab17229
LZ
8578 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8579 GFP_KERNEL, cpu_to_node(i));
6f505b16 8580 if (!rt_se)
dfc12eb2 8581 goto err_free_rq;
29f59db3 8582
3d4b47b4 8583 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8584 }
8585
bccbe08a
PZ
8586 return 1;
8587
49246274 8588err_free_rq:
dfc12eb2 8589 kfree(rt_rq);
49246274 8590err:
bccbe08a
PZ
8591 return 0;
8592}
6d6bc0ad 8593#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8594static inline void free_rt_sched_group(struct task_group *tg)
8595{
8596}
8597
ec7dc8ac
DG
8598static inline
8599int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8600{
8601 return 1;
8602}
6d6bc0ad 8603#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8604
7c941438 8605#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8606static void free_sched_group(struct task_group *tg)
8607{
8608 free_fair_sched_group(tg);
8609 free_rt_sched_group(tg);
e9aa1dd1 8610 autogroup_free(tg);
bccbe08a
PZ
8611 kfree(tg);
8612}
8613
8614/* allocate runqueue etc for a new task group */
ec7dc8ac 8615struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8616{
8617 struct task_group *tg;
8618 unsigned long flags;
bccbe08a
PZ
8619
8620 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8621 if (!tg)
8622 return ERR_PTR(-ENOMEM);
8623
ec7dc8ac 8624 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8625 goto err;
8626
ec7dc8ac 8627 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8628 goto err;
8629
8ed36996 8630 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8631 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8632
8633 WARN_ON(!parent); /* root should already exist */
8634
8635 tg->parent = parent;
f473aa5e 8636 INIT_LIST_HEAD(&tg->children);
09f2724a 8637 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8638 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8639
9b5b7751 8640 return tg;
29f59db3
SV
8641
8642err:
6f505b16 8643 free_sched_group(tg);
29f59db3
SV
8644 return ERR_PTR(-ENOMEM);
8645}
8646
9b5b7751 8647/* rcu callback to free various structures associated with a task group */
6f505b16 8648static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8649{
29f59db3 8650 /* now it should be safe to free those cfs_rqs */
6f505b16 8651 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8652}
8653
9b5b7751 8654/* Destroy runqueue etc associated with a task group */
4cf86d77 8655void sched_destroy_group(struct task_group *tg)
29f59db3 8656{
8ed36996 8657 unsigned long flags;
9b5b7751 8658 int i;
29f59db3 8659
3d4b47b4
PZ
8660 /* end participation in shares distribution */
8661 for_each_possible_cpu(i)
bccbe08a 8662 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8663
8664 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8665 list_del_rcu(&tg->list);
f473aa5e 8666 list_del_rcu(&tg->siblings);
8ed36996 8667 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8668
9b5b7751 8669 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8670 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8671}
8672
9b5b7751 8673/* change task's runqueue when it moves between groups.
3a252015
IM
8674 * The caller of this function should have put the task in its new group
8675 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8676 * reflect its new group.
9b5b7751
SV
8677 */
8678void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8679{
8680 int on_rq, running;
8681 unsigned long flags;
8682 struct rq *rq;
8683
8684 rq = task_rq_lock(tsk, &flags);
8685
051a1d1a 8686 running = task_current(rq, tsk);
fd2f4419 8687 on_rq = tsk->on_rq;
29f59db3 8688
0e1f3483 8689 if (on_rq)
29f59db3 8690 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8691 if (unlikely(running))
8692 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8693
810b3817 8694#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8695 if (tsk->sched_class->task_move_group)
8696 tsk->sched_class->task_move_group(tsk, on_rq);
8697 else
810b3817 8698#endif
b2b5ce02 8699 set_task_rq(tsk, task_cpu(tsk));
810b3817 8700
0e1f3483
HS
8701 if (unlikely(running))
8702 tsk->sched_class->set_curr_task(rq);
8703 if (on_rq)
371fd7e7 8704 enqueue_task(rq, tsk, 0);
29f59db3 8705
29f59db3
SV
8706 task_rq_unlock(rq, &flags);
8707}
7c941438 8708#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8709
052f1dc7 8710#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8711static DEFINE_MUTEX(shares_mutex);
8712
4cf86d77 8713int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8714{
8715 int i;
8ed36996 8716 unsigned long flags;
c61935fd 8717
ec7dc8ac
DG
8718 /*
8719 * We can't change the weight of the root cgroup.
8720 */
8721 if (!tg->se[0])
8722 return -EINVAL;
8723
18d95a28
PZ
8724 if (shares < MIN_SHARES)
8725 shares = MIN_SHARES;
cb4ad1ff
MX
8726 else if (shares > MAX_SHARES)
8727 shares = MAX_SHARES;
62fb1851 8728
8ed36996 8729 mutex_lock(&shares_mutex);
9b5b7751 8730 if (tg->shares == shares)
5cb350ba 8731 goto done;
29f59db3 8732
9b5b7751 8733 tg->shares = shares;
c09595f6 8734 for_each_possible_cpu(i) {
9437178f
PT
8735 struct rq *rq = cpu_rq(i);
8736 struct sched_entity *se;
8737
8738 se = tg->se[i];
8739 /* Propagate contribution to hierarchy */
8740 raw_spin_lock_irqsave(&rq->lock, flags);
8741 for_each_sched_entity(se)
6d5ab293 8742 update_cfs_shares(group_cfs_rq(se));
9437178f 8743 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8744 }
29f59db3 8745
5cb350ba 8746done:
8ed36996 8747 mutex_unlock(&shares_mutex);
9b5b7751 8748 return 0;
29f59db3
SV
8749}
8750
5cb350ba
DG
8751unsigned long sched_group_shares(struct task_group *tg)
8752{
8753 return tg->shares;
8754}
052f1dc7 8755#endif
5cb350ba 8756
052f1dc7 8757#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8758/*
9f0c1e56 8759 * Ensure that the real time constraints are schedulable.
6f505b16 8760 */
9f0c1e56
PZ
8761static DEFINE_MUTEX(rt_constraints_mutex);
8762
8763static unsigned long to_ratio(u64 period, u64 runtime)
8764{
8765 if (runtime == RUNTIME_INF)
9a7e0b18 8766 return 1ULL << 20;
9f0c1e56 8767
9a7e0b18 8768 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8769}
8770
9a7e0b18
PZ
8771/* Must be called with tasklist_lock held */
8772static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8773{
9a7e0b18 8774 struct task_struct *g, *p;
b40b2e8e 8775
9a7e0b18
PZ
8776 do_each_thread(g, p) {
8777 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8778 return 1;
8779 } while_each_thread(g, p);
b40b2e8e 8780
9a7e0b18
PZ
8781 return 0;
8782}
b40b2e8e 8783
9a7e0b18
PZ
8784struct rt_schedulable_data {
8785 struct task_group *tg;
8786 u64 rt_period;
8787 u64 rt_runtime;
8788};
b40b2e8e 8789
9a7e0b18
PZ
8790static int tg_schedulable(struct task_group *tg, void *data)
8791{
8792 struct rt_schedulable_data *d = data;
8793 struct task_group *child;
8794 unsigned long total, sum = 0;
8795 u64 period, runtime;
b40b2e8e 8796
9a7e0b18
PZ
8797 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8798 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8799
9a7e0b18
PZ
8800 if (tg == d->tg) {
8801 period = d->rt_period;
8802 runtime = d->rt_runtime;
b40b2e8e 8803 }
b40b2e8e 8804
4653f803
PZ
8805 /*
8806 * Cannot have more runtime than the period.
8807 */
8808 if (runtime > period && runtime != RUNTIME_INF)
8809 return -EINVAL;
6f505b16 8810
4653f803
PZ
8811 /*
8812 * Ensure we don't starve existing RT tasks.
8813 */
9a7e0b18
PZ
8814 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8815 return -EBUSY;
6f505b16 8816
9a7e0b18 8817 total = to_ratio(period, runtime);
6f505b16 8818
4653f803
PZ
8819 /*
8820 * Nobody can have more than the global setting allows.
8821 */
8822 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8823 return -EINVAL;
6f505b16 8824
4653f803
PZ
8825 /*
8826 * The sum of our children's runtime should not exceed our own.
8827 */
9a7e0b18
PZ
8828 list_for_each_entry_rcu(child, &tg->children, siblings) {
8829 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8830 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8831
9a7e0b18
PZ
8832 if (child == d->tg) {
8833 period = d->rt_period;
8834 runtime = d->rt_runtime;
8835 }
6f505b16 8836
9a7e0b18 8837 sum += to_ratio(period, runtime);
9f0c1e56 8838 }
6f505b16 8839
9a7e0b18
PZ
8840 if (sum > total)
8841 return -EINVAL;
8842
8843 return 0;
6f505b16
PZ
8844}
8845
9a7e0b18 8846static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8847{
9a7e0b18
PZ
8848 struct rt_schedulable_data data = {
8849 .tg = tg,
8850 .rt_period = period,
8851 .rt_runtime = runtime,
8852 };
8853
8854 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8855}
8856
d0b27fa7
PZ
8857static int tg_set_bandwidth(struct task_group *tg,
8858 u64 rt_period, u64 rt_runtime)
6f505b16 8859{
ac086bc2 8860 int i, err = 0;
9f0c1e56 8861
9f0c1e56 8862 mutex_lock(&rt_constraints_mutex);
521f1a24 8863 read_lock(&tasklist_lock);
9a7e0b18
PZ
8864 err = __rt_schedulable(tg, rt_period, rt_runtime);
8865 if (err)
9f0c1e56 8866 goto unlock;
ac086bc2 8867
0986b11b 8868 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8869 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8870 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8871
8872 for_each_possible_cpu(i) {
8873 struct rt_rq *rt_rq = tg->rt_rq[i];
8874
0986b11b 8875 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8876 rt_rq->rt_runtime = rt_runtime;
0986b11b 8877 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8878 }
0986b11b 8879 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8880unlock:
521f1a24 8881 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8882 mutex_unlock(&rt_constraints_mutex);
8883
8884 return err;
6f505b16
PZ
8885}
8886
d0b27fa7
PZ
8887int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8888{
8889 u64 rt_runtime, rt_period;
8890
8891 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8892 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8893 if (rt_runtime_us < 0)
8894 rt_runtime = RUNTIME_INF;
8895
8896 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8897}
8898
9f0c1e56
PZ
8899long sched_group_rt_runtime(struct task_group *tg)
8900{
8901 u64 rt_runtime_us;
8902
d0b27fa7 8903 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8904 return -1;
8905
d0b27fa7 8906 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8907 do_div(rt_runtime_us, NSEC_PER_USEC);
8908 return rt_runtime_us;
8909}
d0b27fa7
PZ
8910
8911int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8912{
8913 u64 rt_runtime, rt_period;
8914
8915 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8916 rt_runtime = tg->rt_bandwidth.rt_runtime;
8917
619b0488
R
8918 if (rt_period == 0)
8919 return -EINVAL;
8920
d0b27fa7
PZ
8921 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8922}
8923
8924long sched_group_rt_period(struct task_group *tg)
8925{
8926 u64 rt_period_us;
8927
8928 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8929 do_div(rt_period_us, NSEC_PER_USEC);
8930 return rt_period_us;
8931}
8932
8933static int sched_rt_global_constraints(void)
8934{
4653f803 8935 u64 runtime, period;
d0b27fa7
PZ
8936 int ret = 0;
8937
ec5d4989
HS
8938 if (sysctl_sched_rt_period <= 0)
8939 return -EINVAL;
8940
4653f803
PZ
8941 runtime = global_rt_runtime();
8942 period = global_rt_period();
8943
8944 /*
8945 * Sanity check on the sysctl variables.
8946 */
8947 if (runtime > period && runtime != RUNTIME_INF)
8948 return -EINVAL;
10b612f4 8949
d0b27fa7 8950 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8951 read_lock(&tasklist_lock);
4653f803 8952 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8953 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8954 mutex_unlock(&rt_constraints_mutex);
8955
8956 return ret;
8957}
54e99124
DG
8958
8959int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8960{
8961 /* Don't accept realtime tasks when there is no way for them to run */
8962 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8963 return 0;
8964
8965 return 1;
8966}
8967
6d6bc0ad 8968#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8969static int sched_rt_global_constraints(void)
8970{
ac086bc2
PZ
8971 unsigned long flags;
8972 int i;
8973
ec5d4989
HS
8974 if (sysctl_sched_rt_period <= 0)
8975 return -EINVAL;
8976
60aa605d
PZ
8977 /*
8978 * There's always some RT tasks in the root group
8979 * -- migration, kstopmachine etc..
8980 */
8981 if (sysctl_sched_rt_runtime == 0)
8982 return -EBUSY;
8983
0986b11b 8984 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8985 for_each_possible_cpu(i) {
8986 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8987
0986b11b 8988 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8989 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8990 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8991 }
0986b11b 8992 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8993
d0b27fa7
PZ
8994 return 0;
8995}
6d6bc0ad 8996#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8997
8998int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8999 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9000 loff_t *ppos)
9001{
9002 int ret;
9003 int old_period, old_runtime;
9004 static DEFINE_MUTEX(mutex);
9005
9006 mutex_lock(&mutex);
9007 old_period = sysctl_sched_rt_period;
9008 old_runtime = sysctl_sched_rt_runtime;
9009
8d65af78 9010 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9011
9012 if (!ret && write) {
9013 ret = sched_rt_global_constraints();
9014 if (ret) {
9015 sysctl_sched_rt_period = old_period;
9016 sysctl_sched_rt_runtime = old_runtime;
9017 } else {
9018 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9019 def_rt_bandwidth.rt_period =
9020 ns_to_ktime(global_rt_period());
9021 }
9022 }
9023 mutex_unlock(&mutex);
9024
9025 return ret;
9026}
68318b8e 9027
052f1dc7 9028#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9029
9030/* return corresponding task_group object of a cgroup */
2b01dfe3 9031static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9032{
2b01dfe3
PM
9033 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9034 struct task_group, css);
68318b8e
SV
9035}
9036
9037static struct cgroup_subsys_state *
2b01dfe3 9038cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9039{
ec7dc8ac 9040 struct task_group *tg, *parent;
68318b8e 9041
2b01dfe3 9042 if (!cgrp->parent) {
68318b8e 9043 /* This is early initialization for the top cgroup */
07e06b01 9044 return &root_task_group.css;
68318b8e
SV
9045 }
9046
ec7dc8ac
DG
9047 parent = cgroup_tg(cgrp->parent);
9048 tg = sched_create_group(parent);
68318b8e
SV
9049 if (IS_ERR(tg))
9050 return ERR_PTR(-ENOMEM);
9051
68318b8e
SV
9052 return &tg->css;
9053}
9054
41a2d6cf
IM
9055static void
9056cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9057{
2b01dfe3 9058 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9059
9060 sched_destroy_group(tg);
9061}
9062
41a2d6cf 9063static int
be367d09 9064cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9065{
b68aa230 9066#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9067 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9068 return -EINVAL;
9069#else
68318b8e
SV
9070 /* We don't support RT-tasks being in separate groups */
9071 if (tsk->sched_class != &fair_sched_class)
9072 return -EINVAL;
b68aa230 9073#endif
be367d09
BB
9074 return 0;
9075}
68318b8e 9076
be367d09
BB
9077static int
9078cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9079 struct task_struct *tsk, bool threadgroup)
9080{
9081 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9082 if (retval)
9083 return retval;
9084 if (threadgroup) {
9085 struct task_struct *c;
9086 rcu_read_lock();
9087 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9088 retval = cpu_cgroup_can_attach_task(cgrp, c);
9089 if (retval) {
9090 rcu_read_unlock();
9091 return retval;
9092 }
9093 }
9094 rcu_read_unlock();
9095 }
68318b8e
SV
9096 return 0;
9097}
9098
9099static void
2b01dfe3 9100cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9101 struct cgroup *old_cont, struct task_struct *tsk,
9102 bool threadgroup)
68318b8e
SV
9103{
9104 sched_move_task(tsk);
be367d09
BB
9105 if (threadgroup) {
9106 struct task_struct *c;
9107 rcu_read_lock();
9108 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9109 sched_move_task(c);
9110 }
9111 rcu_read_unlock();
9112 }
68318b8e
SV
9113}
9114
068c5cc5 9115static void
d41d5a01
PZ
9116cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9117 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9118{
9119 /*
9120 * cgroup_exit() is called in the copy_process() failure path.
9121 * Ignore this case since the task hasn't ran yet, this avoids
9122 * trying to poke a half freed task state from generic code.
9123 */
9124 if (!(task->flags & PF_EXITING))
9125 return;
9126
9127 sched_move_task(task);
9128}
9129
052f1dc7 9130#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9131static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9132 u64 shareval)
68318b8e 9133{
2b01dfe3 9134 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9135}
9136
f4c753b7 9137static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9138{
2b01dfe3 9139 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9140
9141 return (u64) tg->shares;
9142}
6d6bc0ad 9143#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9144
052f1dc7 9145#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9146static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9147 s64 val)
6f505b16 9148{
06ecb27c 9149 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9150}
9151
06ecb27c 9152static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9153{
06ecb27c 9154 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9155}
d0b27fa7
PZ
9156
9157static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9158 u64 rt_period_us)
9159{
9160 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9161}
9162
9163static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9164{
9165 return sched_group_rt_period(cgroup_tg(cgrp));
9166}
6d6bc0ad 9167#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9168
fe5c7cc2 9169static struct cftype cpu_files[] = {
052f1dc7 9170#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9171 {
9172 .name = "shares",
f4c753b7
PM
9173 .read_u64 = cpu_shares_read_u64,
9174 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9175 },
052f1dc7
PZ
9176#endif
9177#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9178 {
9f0c1e56 9179 .name = "rt_runtime_us",
06ecb27c
PM
9180 .read_s64 = cpu_rt_runtime_read,
9181 .write_s64 = cpu_rt_runtime_write,
6f505b16 9182 },
d0b27fa7
PZ
9183 {
9184 .name = "rt_period_us",
f4c753b7
PM
9185 .read_u64 = cpu_rt_period_read_uint,
9186 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9187 },
052f1dc7 9188#endif
68318b8e
SV
9189};
9190
9191static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9192{
fe5c7cc2 9193 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9194}
9195
9196struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9197 .name = "cpu",
9198 .create = cpu_cgroup_create,
9199 .destroy = cpu_cgroup_destroy,
9200 .can_attach = cpu_cgroup_can_attach,
9201 .attach = cpu_cgroup_attach,
068c5cc5 9202 .exit = cpu_cgroup_exit,
38605cae
IM
9203 .populate = cpu_cgroup_populate,
9204 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9205 .early_init = 1,
9206};
9207
052f1dc7 9208#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9209
9210#ifdef CONFIG_CGROUP_CPUACCT
9211
9212/*
9213 * CPU accounting code for task groups.
9214 *
9215 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9216 * (balbir@in.ibm.com).
9217 */
9218
934352f2 9219/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9220struct cpuacct {
9221 struct cgroup_subsys_state css;
9222 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9223 u64 __percpu *cpuusage;
ef12fefa 9224 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9225 struct cpuacct *parent;
d842de87
SV
9226};
9227
9228struct cgroup_subsys cpuacct_subsys;
9229
9230/* return cpu accounting group corresponding to this container */
32cd756a 9231static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9232{
32cd756a 9233 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9234 struct cpuacct, css);
9235}
9236
9237/* return cpu accounting group to which this task belongs */
9238static inline struct cpuacct *task_ca(struct task_struct *tsk)
9239{
9240 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9241 struct cpuacct, css);
9242}
9243
9244/* create a new cpu accounting group */
9245static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9246 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9247{
9248 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9249 int i;
d842de87
SV
9250
9251 if (!ca)
ef12fefa 9252 goto out;
d842de87
SV
9253
9254 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9255 if (!ca->cpuusage)
9256 goto out_free_ca;
9257
9258 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9259 if (percpu_counter_init(&ca->cpustat[i], 0))
9260 goto out_free_counters;
d842de87 9261
934352f2
BR
9262 if (cgrp->parent)
9263 ca->parent = cgroup_ca(cgrp->parent);
9264
d842de87 9265 return &ca->css;
ef12fefa
BR
9266
9267out_free_counters:
9268 while (--i >= 0)
9269 percpu_counter_destroy(&ca->cpustat[i]);
9270 free_percpu(ca->cpuusage);
9271out_free_ca:
9272 kfree(ca);
9273out:
9274 return ERR_PTR(-ENOMEM);
d842de87
SV
9275}
9276
9277/* destroy an existing cpu accounting group */
41a2d6cf 9278static void
32cd756a 9279cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9280{
32cd756a 9281 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9282 int i;
d842de87 9283
ef12fefa
BR
9284 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9285 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9286 free_percpu(ca->cpuusage);
9287 kfree(ca);
9288}
9289
720f5498
KC
9290static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9291{
b36128c8 9292 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9293 u64 data;
9294
9295#ifndef CONFIG_64BIT
9296 /*
9297 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9298 */
05fa785c 9299 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9300 data = *cpuusage;
05fa785c 9301 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9302#else
9303 data = *cpuusage;
9304#endif
9305
9306 return data;
9307}
9308
9309static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9310{
b36128c8 9311 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9312
9313#ifndef CONFIG_64BIT
9314 /*
9315 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9316 */
05fa785c 9317 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9318 *cpuusage = val;
05fa785c 9319 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9320#else
9321 *cpuusage = val;
9322#endif
9323}
9324
d842de87 9325/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9326static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9327{
32cd756a 9328 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9329 u64 totalcpuusage = 0;
9330 int i;
9331
720f5498
KC
9332 for_each_present_cpu(i)
9333 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9334
9335 return totalcpuusage;
9336}
9337
0297b803
DG
9338static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9339 u64 reset)
9340{
9341 struct cpuacct *ca = cgroup_ca(cgrp);
9342 int err = 0;
9343 int i;
9344
9345 if (reset) {
9346 err = -EINVAL;
9347 goto out;
9348 }
9349
720f5498
KC
9350 for_each_present_cpu(i)
9351 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9352
0297b803
DG
9353out:
9354 return err;
9355}
9356
e9515c3c
KC
9357static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9358 struct seq_file *m)
9359{
9360 struct cpuacct *ca = cgroup_ca(cgroup);
9361 u64 percpu;
9362 int i;
9363
9364 for_each_present_cpu(i) {
9365 percpu = cpuacct_cpuusage_read(ca, i);
9366 seq_printf(m, "%llu ", (unsigned long long) percpu);
9367 }
9368 seq_printf(m, "\n");
9369 return 0;
9370}
9371
ef12fefa
BR
9372static const char *cpuacct_stat_desc[] = {
9373 [CPUACCT_STAT_USER] = "user",
9374 [CPUACCT_STAT_SYSTEM] = "system",
9375};
9376
9377static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9378 struct cgroup_map_cb *cb)
9379{
9380 struct cpuacct *ca = cgroup_ca(cgrp);
9381 int i;
9382
9383 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9384 s64 val = percpu_counter_read(&ca->cpustat[i]);
9385 val = cputime64_to_clock_t(val);
9386 cb->fill(cb, cpuacct_stat_desc[i], val);
9387 }
9388 return 0;
9389}
9390
d842de87
SV
9391static struct cftype files[] = {
9392 {
9393 .name = "usage",
f4c753b7
PM
9394 .read_u64 = cpuusage_read,
9395 .write_u64 = cpuusage_write,
d842de87 9396 },
e9515c3c
KC
9397 {
9398 .name = "usage_percpu",
9399 .read_seq_string = cpuacct_percpu_seq_read,
9400 },
ef12fefa
BR
9401 {
9402 .name = "stat",
9403 .read_map = cpuacct_stats_show,
9404 },
d842de87
SV
9405};
9406
32cd756a 9407static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9408{
32cd756a 9409 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9410}
9411
9412/*
9413 * charge this task's execution time to its accounting group.
9414 *
9415 * called with rq->lock held.
9416 */
9417static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9418{
9419 struct cpuacct *ca;
934352f2 9420 int cpu;
d842de87 9421
c40c6f85 9422 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9423 return;
9424
934352f2 9425 cpu = task_cpu(tsk);
a18b83b7
BR
9426
9427 rcu_read_lock();
9428
d842de87 9429 ca = task_ca(tsk);
d842de87 9430
934352f2 9431 for (; ca; ca = ca->parent) {
b36128c8 9432 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9433 *cpuusage += cputime;
9434 }
a18b83b7
BR
9435
9436 rcu_read_unlock();
d842de87
SV
9437}
9438
fa535a77
AB
9439/*
9440 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9441 * in cputime_t units. As a result, cpuacct_update_stats calls
9442 * percpu_counter_add with values large enough to always overflow the
9443 * per cpu batch limit causing bad SMP scalability.
9444 *
9445 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9446 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9447 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9448 */
9449#ifdef CONFIG_SMP
9450#define CPUACCT_BATCH \
9451 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9452#else
9453#define CPUACCT_BATCH 0
9454#endif
9455
ef12fefa
BR
9456/*
9457 * Charge the system/user time to the task's accounting group.
9458 */
9459static void cpuacct_update_stats(struct task_struct *tsk,
9460 enum cpuacct_stat_index idx, cputime_t val)
9461{
9462 struct cpuacct *ca;
fa535a77 9463 int batch = CPUACCT_BATCH;
ef12fefa
BR
9464
9465 if (unlikely(!cpuacct_subsys.active))
9466 return;
9467
9468 rcu_read_lock();
9469 ca = task_ca(tsk);
9470
9471 do {
fa535a77 9472 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9473 ca = ca->parent;
9474 } while (ca);
9475 rcu_read_unlock();
9476}
9477
d842de87
SV
9478struct cgroup_subsys cpuacct_subsys = {
9479 .name = "cpuacct",
9480 .create = cpuacct_create,
9481 .destroy = cpuacct_destroy,
9482 .populate = cpuacct_populate,
9483 .subsys_id = cpuacct_subsys_id,
9484};
9485#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9486
This page took 2.093011 seconds and 5 git commands to generate.