sched: Wrap the 'cfs_rq->nr_spread_over' field with CONFIG_SCHED_DEBUG
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
4934a4d3 331#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 332 unsigned int nr_spread_over;
4934a4d3 333#endif
ddc97297 334
62160e3f 335#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
41a2d6cf
IM
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
3d4b47b4 346 int on_list;
41a2d6cf
IM
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
349
350#ifdef CONFIG_SMP
c09595f6 351 /*
c8cba857 352 * the part of load.weight contributed by tasks
c09595f6 353 */
c8cba857 354 unsigned long task_weight;
c09595f6 355
c8cba857
PZ
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
c09595f6 363
c8cba857 364 /*
3b3d190e
PT
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 370 */
2069dd75
PZ
371 u64 load_avg;
372 u64 load_period;
3b3d190e 373 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 374
2069dd75 375 unsigned long load_contribution;
c09595f6 376#endif
6aa645ea
IM
377#endif
378};
1da177e4 379
6aa645ea
IM
380/* Real-Time classes' related field in a runqueue: */
381struct rt_rq {
382 struct rt_prio_array active;
63489e45 383 unsigned long rt_nr_running;
052f1dc7 384#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
385 struct {
386 int curr; /* highest queued rt task prio */
398a153b 387#ifdef CONFIG_SMP
e864c499 388 int next; /* next highest */
398a153b 389#endif
e864c499 390 } highest_prio;
6f505b16 391#endif
fa85ae24 392#ifdef CONFIG_SMP
73fe6aae 393 unsigned long rt_nr_migratory;
a1ba4d8b 394 unsigned long rt_nr_total;
a22d7fc1 395 int overloaded;
917b627d 396 struct plist_head pushable_tasks;
fa85ae24 397#endif
6f505b16 398 int rt_throttled;
fa85ae24 399 u64 rt_time;
ac086bc2 400 u64 rt_runtime;
ea736ed5 401 /* Nests inside the rq lock: */
0986b11b 402 raw_spinlock_t rt_runtime_lock;
6f505b16 403
052f1dc7 404#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
405 unsigned long rt_nr_boosted;
406
6f505b16
PZ
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
6f505b16 410#endif
6aa645ea
IM
411};
412
57d885fe
GH
413#ifdef CONFIG_SMP
414
415/*
416 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
57d885fe
GH
422 */
423struct root_domain {
424 atomic_t refcount;
dce840a0 425 struct rcu_head rcu;
c6c4927b
RR
426 cpumask_var_t span;
427 cpumask_var_t online;
637f5085 428
0eab9146 429 /*
637f5085
GH
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
c6c4927b 433 cpumask_var_t rto_mask;
0eab9146 434 atomic_t rto_count;
6e0534f2 435 struct cpupri cpupri;
57d885fe
GH
436};
437
dc938520
GH
438/*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
57d885fe
GH
442static struct root_domain def_root_domain;
443
ed2d372c 444#endif /* CONFIG_SMP */
57d885fe 445
1da177e4
LT
446/*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
70b97a7f 453struct rq {
d8016491 454 /* runqueue lock: */
05fa785c 455 raw_spinlock_t lock;
1da177e4
LT
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
6aa645ea
IM
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 464 unsigned long last_load_update_tick;
46cb4b7c 465#ifdef CONFIG_NO_HZ
39c0cbe2 466 u64 nohz_stamp;
83cd4fe2 467 unsigned char nohz_balance_kick;
46cb4b7c 468#endif
a64692a3
MG
469 unsigned int skip_clock_update;
470
d8016491
IM
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
6aa645ea
IM
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
6f505b16 477 struct rt_rq rt;
6f505b16 478
6aa645ea 479#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
482#endif
483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 484 struct list_head leaf_rt_rq_list;
1da177e4 485#endif
1da177e4
LT
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
34f971f6 495 struct task_struct *curr, *idle, *stop;
c9819f45 496 unsigned long next_balance;
1da177e4 497 struct mm_struct *prev_mm;
6aa645ea 498
3e51f33f 499 u64 clock;
305e6835 500 u64 clock_task;
6aa645ea 501
1da177e4
LT
502 atomic_t nr_iowait;
503
504#ifdef CONFIG_SMP
0eab9146 505 struct root_domain *rd;
1da177e4
LT
506 struct sched_domain *sd;
507
e51fd5e2
PZ
508 unsigned long cpu_power;
509
a0a522ce 510 unsigned char idle_at_tick;
1da177e4 511 /* For active balancing */
3f029d3c 512 int post_schedule;
1da177e4
LT
513 int active_balance;
514 int push_cpu;
969c7921 515 struct cpu_stop_work active_balance_work;
d8016491
IM
516 /* cpu of this runqueue: */
517 int cpu;
1f11eb6a 518 int online;
1da177e4 519
a8a51d5e 520 unsigned long avg_load_per_task;
1da177e4 521
e9e9250b
PZ
522 u64 rt_avg;
523 u64 age_stamp;
1b9508f6
MG
524 u64 idle_stamp;
525 u64 avg_idle;
1da177e4
LT
526#endif
527
aa483808
VP
528#ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530#endif
531
dce48a84
TG
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
8f4d37ec 536#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
537#ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540#endif
8f4d37ec
PZ
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
9c2c4802
KC
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
549
550 /* sys_sched_yield() stats */
480b9434 551 unsigned int yld_count;
1da177e4
LT
552
553 /* schedule() stats */
480b9434
KC
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
1da177e4
LT
557
558 /* try_to_wake_up() stats */
480b9434
KC
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
1da177e4 561#endif
317f3941
PZ
562
563#ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565#endif
1da177e4
LT
566};
567
f34e3b61 568static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 569
a64692a3 570
1e5a7405 571static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d 583 rcu_dereference_check((p), \
dce840a0 584 rcu_read_lock_held() || \
d11c563d
PM
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
5091faa4 615 struct task_group *tg;
dc61b1d6
PZ
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 619 lockdep_is_held(&p->pi_lock));
5091faa4
MG
620 tg = container_of(css, struct task_group, css);
621
622 return autogroup_task_group(p, tg);
dc61b1d6
PZ
623}
624
625/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627{
628#ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631#endif
632
633#ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636#endif
637}
638
639#else /* CONFIG_CGROUP_SCHED */
640
641static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642static inline struct task_group *task_group(struct task_struct *p)
643{
644 return NULL;
645}
646
647#endif /* CONFIG_CGROUP_SCHED */
648
fe44d621 649static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 650
fe44d621 651static void update_rq_clock(struct rq *rq)
3e51f33f 652{
fe44d621 653 s64 delta;
305e6835 654
f26f9aff
MG
655 if (rq->skip_clock_update)
656 return;
aa483808 657
fe44d621
PZ
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
659 rq->clock += delta;
660 update_rq_clock_task(rq, delta);
3e51f33f
PZ
661}
662
bf5c91ba
IM
663/*
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
665 */
666#ifdef CONFIG_SCHED_DEBUG
667# define const_debug __read_mostly
668#else
669# define const_debug static const
670#endif
671
017730c1 672/**
1fd06bb1 673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 674 * @cpu: the processor in question.
017730c1 675 *
017730c1
IM
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
678 */
89f19f04 679int runqueue_is_locked(int cpu)
017730c1 680{
05fa785c 681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
682}
683
bf5c91ba
IM
684/*
685 * Debugging: various feature bits
686 */
f00b45c1
PZ
687
688#define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
690
bf5c91ba 691enum {
f00b45c1 692#include "sched_features.h"
bf5c91ba
IM
693};
694
f00b45c1
PZ
695#undef SCHED_FEAT
696
697#define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
699
bf5c91ba 700const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
701#include "sched_features.h"
702 0;
703
704#undef SCHED_FEAT
705
706#ifdef CONFIG_SCHED_DEBUG
707#define SCHED_FEAT(name, enabled) \
708 #name ,
709
983ed7a6 710static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
711#include "sched_features.h"
712 NULL
713};
714
715#undef SCHED_FEAT
716
34f3a814 717static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 718{
f00b45c1
PZ
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
722 if (!(sysctl_sched_features & (1UL << i)))
723 seq_puts(m, "NO_");
724 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 725 }
34f3a814 726 seq_puts(m, "\n");
f00b45c1 727
34f3a814 728 return 0;
f00b45c1
PZ
729}
730
731static ssize_t
732sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
734{
735 char buf[64];
7740191c 736 char *cmp;
f00b45c1
PZ
737 int neg = 0;
738 int i;
739
740 if (cnt > 63)
741 cnt = 63;
742
743 if (copy_from_user(&buf, ubuf, cnt))
744 return -EFAULT;
745
746 buf[cnt] = 0;
7740191c 747 cmp = strstrip(buf);
f00b45c1 748
524429c3 749 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
750 neg = 1;
751 cmp += 3;
752 }
753
754 for (i = 0; sched_feat_names[i]; i++) {
7740191c 755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
761 }
762 }
763
764 if (!sched_feat_names[i])
765 return -EINVAL;
766
42994724 767 *ppos += cnt;
f00b45c1
PZ
768
769 return cnt;
770}
771
34f3a814
LZ
772static int sched_feat_open(struct inode *inode, struct file *filp)
773{
774 return single_open(filp, sched_feat_show, NULL);
775}
776
828c0950 777static const struct file_operations sched_feat_fops = {
34f3a814
LZ
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
f00b45c1
PZ
783};
784
785static __init int sched_init_debug(void)
786{
f00b45c1
PZ
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
789
790 return 0;
791}
792late_initcall(sched_init_debug);
793
794#endif
795
796#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 797
b82d9fdd
PZ
798/*
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
801 */
802const_debug unsigned int sysctl_sched_nr_migrate = 32;
803
e9e9250b
PZ
804/*
805 * period over which we average the RT time consumption, measured
806 * in ms.
807 *
808 * default: 1s
809 */
810const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
811
fa85ae24 812/*
9f0c1e56 813 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
814 * default: 1s
815 */
9f0c1e56 816unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 817
6892b75e
IM
818static __read_mostly int scheduler_running;
819
9f0c1e56
PZ
820/*
821 * part of the period that we allow rt tasks to run in us.
822 * default: 0.95s
823 */
824int sysctl_sched_rt_runtime = 950000;
fa85ae24 825
d0b27fa7
PZ
826static inline u64 global_rt_period(void)
827{
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
829}
830
831static inline u64 global_rt_runtime(void)
832{
e26873bb 833 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
834 return RUNTIME_INF;
835
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
837}
fa85ae24 838
1da177e4 839#ifndef prepare_arch_switch
4866cde0
NP
840# define prepare_arch_switch(next) do { } while (0)
841#endif
842#ifndef finish_arch_switch
843# define finish_arch_switch(prev) do { } while (0)
844#endif
845
051a1d1a
DA
846static inline int task_current(struct rq *rq, struct task_struct *p)
847{
848 return rq->curr == p;
849}
850
70b97a7f 851static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 return p->on_cpu;
855#else
051a1d1a 856 return task_current(rq, p);
3ca7a440 857#endif
4866cde0
NP
858}
859
3ca7a440 860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 861static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 862{
3ca7a440
PZ
863#ifdef CONFIG_SMP
864 /*
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
867 * here.
868 */
869 next->on_cpu = 1;
870#endif
4866cde0
NP
871}
872
70b97a7f 873static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 874{
3ca7a440
PZ
875#ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883#endif
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
05fa785c 895 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
3ca7a440 907 next->on_cpu = 1;
4866cde0
NP
908#endif
909#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 910 raw_spin_unlock_irq(&rq->lock);
4866cde0 911#else
05fa785c 912 raw_spin_unlock(&rq->lock);
4866cde0
NP
913#endif
914}
915
70b97a7f 916static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
917{
918#ifdef CONFIG_SMP
919 /*
3ca7a440 920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
923 */
924 smp_wmb();
3ca7a440 925 prev->on_cpu = 0;
4866cde0
NP
926#endif
927#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
1da177e4 929#endif
4866cde0
NP
930}
931#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 932
0970d299 933/*
0122ec5b 934 * __task_rq_lock - lock the rq @p resides on.
b29739f9 935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
0122ec5b
PZ
941 lockdep_assert_held(&p->pi_lock);
942
3a5c359a 943 for (;;) {
0970d299 944 rq = task_rq(p);
05fa785c 945 raw_spin_lock(&rq->lock);
65cc8e48 946 if (likely(rq == task_rq(p)))
3a5c359a 947 return rq;
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4 952/*
0122ec5b 953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 956 __acquires(p->pi_lock)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a 961 for (;;) {
0122ec5b 962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
0122ec5b
PZ
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
05fa785c 975 raw_spin_unlock(&rq->lock);
b29739f9
IM
976}
977
0122ec5b
PZ
978static inline void
979task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 980 __releases(rq->lock)
0122ec5b 981 __releases(p->pi_lock)
1da177e4 982{
0122ec5b
PZ
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
985}
986
1da177e4 987/*
cc2a73b5 988 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 989 */
a9957449 990static struct rq *this_rq_lock(void)
1da177e4
LT
991 __acquires(rq->lock)
992{
70b97a7f 993 struct rq *rq;
1da177e4
LT
994
995 local_irq_disable();
996 rq = this_rq();
05fa785c 997 raw_spin_lock(&rq->lock);
1da177e4
LT
998
999 return rq;
1000}
1001
8f4d37ec
PZ
1002#ifdef CONFIG_SCHED_HRTICK
1003/*
1004 * Use HR-timers to deliver accurate preemption points.
1005 *
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1009 *
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1012 */
8f4d37ec
PZ
1013
1014/*
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1018 */
1019static inline int hrtick_enabled(struct rq *rq)
1020{
1021 if (!sched_feat(HRTICK))
1022 return 0;
ba42059f 1023 if (!cpu_active(cpu_of(rq)))
b328ca18 1024 return 0;
8f4d37ec
PZ
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026}
1027
8f4d37ec
PZ
1028static void hrtick_clear(struct rq *rq)
1029{
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1032}
1033
8f4d37ec
PZ
1034/*
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1037 */
1038static enum hrtimer_restart hrtick(struct hrtimer *timer)
1039{
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1041
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1043
05fa785c 1044 raw_spin_lock(&rq->lock);
3e51f33f 1045 update_rq_clock(rq);
8f4d37ec 1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1047 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1048
1049 return HRTIMER_NORESTART;
1050}
1051
95e904c7 1052#ifdef CONFIG_SMP
31656519
PZ
1053/*
1054 * called from hardirq (IPI) context
1055 */
1056static void __hrtick_start(void *arg)
b328ca18 1057{
31656519 1058 struct rq *rq = arg;
b328ca18 1059
05fa785c 1060 raw_spin_lock(&rq->lock);
31656519
PZ
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
05fa785c 1063 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1064}
1065
31656519
PZ
1066/*
1067 * Called to set the hrtick timer state.
1068 *
1069 * called with rq->lock held and irqs disabled
1070 */
1071static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1072{
31656519
PZ
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1075
cc584b21 1076 hrtimer_set_expires(timer, time);
31656519
PZ
1077
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
6e275637 1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1082 rq->hrtick_csd_pending = 1;
1083 }
b328ca18
PZ
1084}
1085
1086static int
1087hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1088{
1089 int cpu = (int)(long)hcpu;
1090
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
31656519 1098 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1099 return NOTIFY_OK;
1100 }
1101
1102 return NOTIFY_DONE;
1103}
1104
fa748203 1105static __init void init_hrtick(void)
b328ca18
PZ
1106{
1107 hotcpu_notifier(hotplug_hrtick, 0);
1108}
31656519
PZ
1109#else
1110/*
1111 * Called to set the hrtick timer state.
1112 *
1113 * called with rq->lock held and irqs disabled
1114 */
1115static void hrtick_start(struct rq *rq, u64 delay)
1116{
7f1e2ca9 1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1118 HRTIMER_MODE_REL_PINNED, 0);
31656519 1119}
b328ca18 1120
006c75f1 1121static inline void init_hrtick(void)
8f4d37ec 1122{
8f4d37ec 1123}
31656519 1124#endif /* CONFIG_SMP */
8f4d37ec 1125
31656519 1126static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1127{
31656519
PZ
1128#ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
8f4d37ec 1130
31656519
PZ
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134#endif
8f4d37ec 1135
31656519
PZ
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
8f4d37ec 1138}
006c75f1 1139#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1140static inline void hrtick_clear(struct rq *rq)
1141{
1142}
1143
8f4d37ec
PZ
1144static inline void init_rq_hrtick(struct rq *rq)
1145{
1146}
1147
b328ca18
PZ
1148static inline void init_hrtick(void)
1149{
1150}
006c75f1 1151#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1152
c24d20db
IM
1153/*
1154 * resched_task - mark a task 'to be rescheduled now'.
1155 *
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1159 */
1160#ifdef CONFIG_SMP
1161
1162#ifndef tsk_is_polling
1163#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164#endif
1165
31656519 1166static void resched_task(struct task_struct *p)
c24d20db
IM
1167{
1168 int cpu;
1169
05fa785c 1170 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1171
5ed0cec0 1172 if (test_tsk_need_resched(p))
c24d20db
IM
1173 return;
1174
5ed0cec0 1175 set_tsk_need_resched(p);
c24d20db
IM
1176
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1180
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1185}
1186
1187static void resched_cpu(int cpu)
1188{
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1191
05fa785c 1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1193 return;
1194 resched_task(cpu_curr(cpu));
05fa785c 1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1196}
06d8308c
TG
1197
1198#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1199/*
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1202 *
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1206 */
1207int get_nohz_timer_target(void)
1208{
1209 int cpu = smp_processor_id();
1210 int i;
1211 struct sched_domain *sd;
1212
057f3fad 1213 rcu_read_lock();
83cd4fe2 1214 for_each_domain(cpu, sd) {
057f3fad
PZ
1215 for_each_cpu(i, sched_domain_span(sd)) {
1216 if (!idle_cpu(i)) {
1217 cpu = i;
1218 goto unlock;
1219 }
1220 }
83cd4fe2 1221 }
057f3fad
PZ
1222unlock:
1223 rcu_read_unlock();
83cd4fe2
VP
1224 return cpu;
1225}
06d8308c
TG
1226/*
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1235 */
1236void wake_up_idle_cpu(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239
1240 if (cpu == smp_processor_id())
1241 return;
1242
1243 /*
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1249 */
1250 if (rq->curr != rq->idle)
1251 return;
1252
1253 /*
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1257 */
5ed0cec0 1258 set_tsk_need_resched(rq->idle);
06d8308c
TG
1259
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1264}
39c0cbe2 1265
6d6bc0ad 1266#endif /* CONFIG_NO_HZ */
06d8308c 1267
e9e9250b
PZ
1268static u64 sched_avg_period(void)
1269{
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1271}
1272
1273static void sched_avg_update(struct rq *rq)
1274{
1275 s64 period = sched_avg_period();
1276
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1278 /*
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1282 */
1283 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1284 rq->age_stamp += period;
1285 rq->rt_avg /= 2;
1286 }
1287}
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1293}
1294
6d6bc0ad 1295#else /* !CONFIG_SMP */
31656519 1296static void resched_task(struct task_struct *p)
c24d20db 1297{
05fa785c 1298 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1299 set_tsk_need_resched(p);
c24d20db 1300}
e9e9250b
PZ
1301
1302static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1303{
1304}
da2b71ed
SS
1305
1306static void sched_avg_update(struct rq *rq)
1307{
1308}
6d6bc0ad 1309#endif /* CONFIG_SMP */
c24d20db 1310
45bf76df
IM
1311#if BITS_PER_LONG == 32
1312# define WMULT_CONST (~0UL)
1313#else
1314# define WMULT_CONST (1UL << 32)
1315#endif
1316
1317#define WMULT_SHIFT 32
1318
194081eb
IM
1319/*
1320 * Shift right and round:
1321 */
cf2ab469 1322#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1323
a7be37ac
PZ
1324/*
1325 * delta *= weight / lw
1326 */
cb1c4fc9 1327static unsigned long
45bf76df
IM
1328calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1330{
1331 u64 tmp;
1332
7a232e03
LJ
1333 if (!lw->inv_weight) {
1334 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1335 lw->inv_weight = 1;
1336 else
1337 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1338 / (lw->weight+1);
1339 }
45bf76df
IM
1340
1341 tmp = (u64)delta_exec * weight;
1342 /*
1343 * Check whether we'd overflow the 64-bit multiplication:
1344 */
194081eb 1345 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1346 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1347 WMULT_SHIFT/2);
1348 else
cf2ab469 1349 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1350
ecf691da 1351 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1352}
1353
1091985b 1354static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1355{
1356 lw->weight += inc;
e89996ae 1357 lw->inv_weight = 0;
45bf76df
IM
1358}
1359
1091985b 1360static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1361{
1362 lw->weight -= dec;
e89996ae 1363 lw->inv_weight = 0;
45bf76df
IM
1364}
1365
2069dd75
PZ
1366static inline void update_load_set(struct load_weight *lw, unsigned long w)
1367{
1368 lw->weight = w;
1369 lw->inv_weight = 0;
1370}
1371
2dd73a4f
PW
1372/*
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1377 * scaled version of the new time slice allocation that they receive on time
1378 * slice expiry etc.
1379 */
1380
cce7ade8
PZ
1381#define WEIGHT_IDLEPRIO 3
1382#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1383
1384/*
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1389 *
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
dd41f596
IM
1395 */
1396static const int prio_to_weight[40] = {
254753dc
IM
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1405};
1406
5714d2de
IM
1407/*
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1409 *
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1413 */
dd41f596 1414static const u32 prio_to_wmult[40] = {
254753dc
IM
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1423};
2dd73a4f 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
f5f08f39
PZ
1499/* Used instead of source_load when we know the type == 0 */
1500static unsigned long weighted_cpuload(const int cpu)
1501{
1502 return cpu_rq(cpu)->load.weight;
1503}
1504
1505/*
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 *
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1511 */
1512static unsigned long source_load(int cpu, int type)
1513{
1514 struct rq *rq = cpu_rq(cpu);
1515 unsigned long total = weighted_cpuload(cpu);
1516
1517 if (type == 0 || !sched_feat(LB_BIAS))
1518 return total;
1519
1520 return min(rq->cpu_load[type-1], total);
1521}
1522
1523/*
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1526 */
1527static unsigned long target_load(int cpu, int type)
1528{
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long total = weighted_cpuload(cpu);
1531
1532 if (type == 0 || !sched_feat(LB_BIAS))
1533 return total;
1534
1535 return max(rq->cpu_load[type-1], total);
1536}
1537
ae154be1
PZ
1538static unsigned long power_of(int cpu)
1539{
e51fd5e2 1540 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1541}
1542
eb755805
PZ
1543static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1544
1545static unsigned long cpu_avg_load_per_task(int cpu)
1546{
1547 struct rq *rq = cpu_rq(cpu);
af6d596f 1548 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1549
4cd42620
SR
1550 if (nr_running)
1551 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1552 else
1553 rq->avg_load_per_task = 0;
eb755805
PZ
1554
1555 return rq->avg_load_per_task;
1556}
1557
1558#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1559
c09595f6 1560/*
c8cba857
PZ
1561 * Compute the cpu's hierarchical load factor for each task group.
1562 * This needs to be done in a top-down fashion because the load of a child
1563 * group is a fraction of its parents load.
c09595f6 1564 */
eb755805 1565static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1566{
c8cba857 1567 unsigned long load;
eb755805 1568 long cpu = (long)data;
c09595f6 1569
c8cba857
PZ
1570 if (!tg->parent) {
1571 load = cpu_rq(cpu)->load.weight;
1572 } else {
1573 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1574 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1575 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1576 }
c09595f6 1577
c8cba857 1578 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1579
eb755805 1580 return 0;
c09595f6
PZ
1581}
1582
eb755805 1583static void update_h_load(long cpu)
c09595f6 1584{
eb755805 1585 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1586}
1587
18d95a28
PZ
1588#endif
1589
8f45e2b5
GH
1590#ifdef CONFIG_PREEMPT
1591
b78bb868
PZ
1592static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1593
70574a99 1594/*
8f45e2b5
GH
1595 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1596 * way at the expense of forcing extra atomic operations in all
1597 * invocations. This assures that the double_lock is acquired using the
1598 * same underlying policy as the spinlock_t on this architecture, which
1599 * reduces latency compared to the unfair variant below. However, it
1600 * also adds more overhead and therefore may reduce throughput.
70574a99 1601 */
8f45e2b5
GH
1602static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1603 __releases(this_rq->lock)
1604 __acquires(busiest->lock)
1605 __acquires(this_rq->lock)
1606{
05fa785c 1607 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1608 double_rq_lock(this_rq, busiest);
1609
1610 return 1;
1611}
1612
1613#else
1614/*
1615 * Unfair double_lock_balance: Optimizes throughput at the expense of
1616 * latency by eliminating extra atomic operations when the locks are
1617 * already in proper order on entry. This favors lower cpu-ids and will
1618 * grant the double lock to lower cpus over higher ids under contention,
1619 * regardless of entry order into the function.
1620 */
1621static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1622 __releases(this_rq->lock)
1623 __acquires(busiest->lock)
1624 __acquires(this_rq->lock)
1625{
1626 int ret = 0;
1627
05fa785c 1628 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1629 if (busiest < this_rq) {
05fa785c
TG
1630 raw_spin_unlock(&this_rq->lock);
1631 raw_spin_lock(&busiest->lock);
1632 raw_spin_lock_nested(&this_rq->lock,
1633 SINGLE_DEPTH_NESTING);
70574a99
AD
1634 ret = 1;
1635 } else
05fa785c
TG
1636 raw_spin_lock_nested(&busiest->lock,
1637 SINGLE_DEPTH_NESTING);
70574a99
AD
1638 }
1639 return ret;
1640}
1641
8f45e2b5
GH
1642#endif /* CONFIG_PREEMPT */
1643
1644/*
1645 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1646 */
1647static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1648{
1649 if (unlikely(!irqs_disabled())) {
1650 /* printk() doesn't work good under rq->lock */
05fa785c 1651 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1652 BUG_ON(1);
1653 }
1654
1655 return _double_lock_balance(this_rq, busiest);
1656}
1657
70574a99
AD
1658static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1659 __releases(busiest->lock)
1660{
05fa785c 1661 raw_spin_unlock(&busiest->lock);
70574a99
AD
1662 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1663}
1e3c88bd
PZ
1664
1665/*
1666 * double_rq_lock - safely lock two runqueues
1667 *
1668 * Note this does not disable interrupts like task_rq_lock,
1669 * you need to do so manually before calling.
1670 */
1671static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1672 __acquires(rq1->lock)
1673 __acquires(rq2->lock)
1674{
1675 BUG_ON(!irqs_disabled());
1676 if (rq1 == rq2) {
1677 raw_spin_lock(&rq1->lock);
1678 __acquire(rq2->lock); /* Fake it out ;) */
1679 } else {
1680 if (rq1 < rq2) {
1681 raw_spin_lock(&rq1->lock);
1682 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1683 } else {
1684 raw_spin_lock(&rq2->lock);
1685 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1686 }
1687 }
1e3c88bd
PZ
1688}
1689
1690/*
1691 * double_rq_unlock - safely unlock two runqueues
1692 *
1693 * Note this does not restore interrupts like task_rq_unlock,
1694 * you need to do so manually after calling.
1695 */
1696static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1697 __releases(rq1->lock)
1698 __releases(rq2->lock)
1699{
1700 raw_spin_unlock(&rq1->lock);
1701 if (rq1 != rq2)
1702 raw_spin_unlock(&rq2->lock);
1703 else
1704 __release(rq2->lock);
1705}
1706
d95f4122
MG
1707#else /* CONFIG_SMP */
1708
1709/*
1710 * double_rq_lock - safely lock two runqueues
1711 *
1712 * Note this does not disable interrupts like task_rq_lock,
1713 * you need to do so manually before calling.
1714 */
1715static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1716 __acquires(rq1->lock)
1717 __acquires(rq2->lock)
1718{
1719 BUG_ON(!irqs_disabled());
1720 BUG_ON(rq1 != rq2);
1721 raw_spin_lock(&rq1->lock);
1722 __acquire(rq2->lock); /* Fake it out ;) */
1723}
1724
1725/*
1726 * double_rq_unlock - safely unlock two runqueues
1727 *
1728 * Note this does not restore interrupts like task_rq_unlock,
1729 * you need to do so manually after calling.
1730 */
1731static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1732 __releases(rq1->lock)
1733 __releases(rq2->lock)
1734{
1735 BUG_ON(rq1 != rq2);
1736 raw_spin_unlock(&rq1->lock);
1737 __release(rq2->lock);
1738}
1739
18d95a28
PZ
1740#endif
1741
74f5187a 1742static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1743static void update_sysctl(void);
acb4a848 1744static int get_update_sysctl_factor(void);
fdf3e95d 1745static void update_cpu_load(struct rq *this_rq);
dce48a84 1746
cd29fe6f
PZ
1747static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1748{
1749 set_task_rq(p, cpu);
1750#ifdef CONFIG_SMP
1751 /*
1752 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1753 * successfuly executed on another CPU. We must ensure that updates of
1754 * per-task data have been completed by this moment.
1755 */
1756 smp_wmb();
1757 task_thread_info(p)->cpu = cpu;
1758#endif
1759}
dce48a84 1760
1e3c88bd 1761static const struct sched_class rt_sched_class;
dd41f596 1762
34f971f6 1763#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1764#define for_each_class(class) \
1765 for (class = sched_class_highest; class; class = class->next)
dd41f596 1766
1e3c88bd
PZ
1767#include "sched_stats.h"
1768
c09595f6 1769static void inc_nr_running(struct rq *rq)
9c217245
IM
1770{
1771 rq->nr_running++;
9c217245
IM
1772}
1773
c09595f6 1774static void dec_nr_running(struct rq *rq)
9c217245
IM
1775{
1776 rq->nr_running--;
9c217245
IM
1777}
1778
45bf76df
IM
1779static void set_load_weight(struct task_struct *p)
1780{
dd41f596
IM
1781 /*
1782 * SCHED_IDLE tasks get minimal weight:
1783 */
1784 if (p->policy == SCHED_IDLE) {
1785 p->se.load.weight = WEIGHT_IDLEPRIO;
1786 p->se.load.inv_weight = WMULT_IDLEPRIO;
1787 return;
1788 }
71f8bd46 1789
dd41f596
IM
1790 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1791 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1792}
1793
371fd7e7 1794static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1795{
a64692a3 1796 update_rq_clock(rq);
dd41f596 1797 sched_info_queued(p);
371fd7e7 1798 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1799}
1800
371fd7e7 1801static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1802{
a64692a3 1803 update_rq_clock(rq);
46ac22ba 1804 sched_info_dequeued(p);
371fd7e7 1805 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1806}
1807
1e3c88bd
PZ
1808/*
1809 * activate_task - move a task to the runqueue.
1810 */
371fd7e7 1811static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1812{
1813 if (task_contributes_to_load(p))
1814 rq->nr_uninterruptible--;
1815
371fd7e7 1816 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1817 inc_nr_running(rq);
1818}
1819
1820/*
1821 * deactivate_task - remove a task from the runqueue.
1822 */
371fd7e7 1823static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1824{
1825 if (task_contributes_to_load(p))
1826 rq->nr_uninterruptible++;
1827
371fd7e7 1828 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1829 dec_nr_running(rq);
1830}
1831
b52bfee4
VP
1832#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1833
305e6835
VP
1834/*
1835 * There are no locks covering percpu hardirq/softirq time.
1836 * They are only modified in account_system_vtime, on corresponding CPU
1837 * with interrupts disabled. So, writes are safe.
1838 * They are read and saved off onto struct rq in update_rq_clock().
1839 * This may result in other CPU reading this CPU's irq time and can
1840 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1841 * or new value with a side effect of accounting a slice of irq time to wrong
1842 * task when irq is in progress while we read rq->clock. That is a worthy
1843 * compromise in place of having locks on each irq in account_system_time.
305e6835 1844 */
b52bfee4
VP
1845static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1846static DEFINE_PER_CPU(u64, cpu_softirq_time);
1847
1848static DEFINE_PER_CPU(u64, irq_start_time);
1849static int sched_clock_irqtime;
1850
1851void enable_sched_clock_irqtime(void)
1852{
1853 sched_clock_irqtime = 1;
1854}
1855
1856void disable_sched_clock_irqtime(void)
1857{
1858 sched_clock_irqtime = 0;
1859}
1860
8e92c201
PZ
1861#ifndef CONFIG_64BIT
1862static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1863
1864static inline void irq_time_write_begin(void)
1865{
1866 __this_cpu_inc(irq_time_seq.sequence);
1867 smp_wmb();
1868}
1869
1870static inline void irq_time_write_end(void)
1871{
1872 smp_wmb();
1873 __this_cpu_inc(irq_time_seq.sequence);
1874}
1875
1876static inline u64 irq_time_read(int cpu)
1877{
1878 u64 irq_time;
1879 unsigned seq;
1880
1881 do {
1882 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1883 irq_time = per_cpu(cpu_softirq_time, cpu) +
1884 per_cpu(cpu_hardirq_time, cpu);
1885 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1886
1887 return irq_time;
1888}
1889#else /* CONFIG_64BIT */
1890static inline void irq_time_write_begin(void)
1891{
1892}
1893
1894static inline void irq_time_write_end(void)
1895{
1896}
1897
1898static inline u64 irq_time_read(int cpu)
305e6835 1899{
305e6835
VP
1900 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1901}
8e92c201 1902#endif /* CONFIG_64BIT */
305e6835 1903
fe44d621
PZ
1904/*
1905 * Called before incrementing preempt_count on {soft,}irq_enter
1906 * and before decrementing preempt_count on {soft,}irq_exit.
1907 */
b52bfee4
VP
1908void account_system_vtime(struct task_struct *curr)
1909{
1910 unsigned long flags;
fe44d621 1911 s64 delta;
b52bfee4 1912 int cpu;
b52bfee4
VP
1913
1914 if (!sched_clock_irqtime)
1915 return;
1916
1917 local_irq_save(flags);
1918
b52bfee4 1919 cpu = smp_processor_id();
fe44d621
PZ
1920 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1921 __this_cpu_add(irq_start_time, delta);
1922
8e92c201 1923 irq_time_write_begin();
b52bfee4
VP
1924 /*
1925 * We do not account for softirq time from ksoftirqd here.
1926 * We want to continue accounting softirq time to ksoftirqd thread
1927 * in that case, so as not to confuse scheduler with a special task
1928 * that do not consume any time, but still wants to run.
1929 */
1930 if (hardirq_count())
fe44d621 1931 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1932 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1933 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1934
8e92c201 1935 irq_time_write_end();
b52bfee4
VP
1936 local_irq_restore(flags);
1937}
b7dadc38 1938EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1939
fe44d621 1940static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1941{
fe44d621
PZ
1942 s64 irq_delta;
1943
8e92c201 1944 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1945
1946 /*
1947 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1948 * this case when a previous update_rq_clock() happened inside a
1949 * {soft,}irq region.
1950 *
1951 * When this happens, we stop ->clock_task and only update the
1952 * prev_irq_time stamp to account for the part that fit, so that a next
1953 * update will consume the rest. This ensures ->clock_task is
1954 * monotonic.
1955 *
1956 * It does however cause some slight miss-attribution of {soft,}irq
1957 * time, a more accurate solution would be to update the irq_time using
1958 * the current rq->clock timestamp, except that would require using
1959 * atomic ops.
1960 */
1961 if (irq_delta > delta)
1962 irq_delta = delta;
1963
1964 rq->prev_irq_time += irq_delta;
1965 delta -= irq_delta;
1966 rq->clock_task += delta;
1967
1968 if (irq_delta && sched_feat(NONIRQ_POWER))
1969 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1970}
1971
abb74cef
VP
1972static int irqtime_account_hi_update(void)
1973{
1974 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1975 unsigned long flags;
1976 u64 latest_ns;
1977 int ret = 0;
1978
1979 local_irq_save(flags);
1980 latest_ns = this_cpu_read(cpu_hardirq_time);
1981 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1982 ret = 1;
1983 local_irq_restore(flags);
1984 return ret;
1985}
1986
1987static int irqtime_account_si_update(void)
1988{
1989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1990 unsigned long flags;
1991 u64 latest_ns;
1992 int ret = 0;
1993
1994 local_irq_save(flags);
1995 latest_ns = this_cpu_read(cpu_softirq_time);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1997 ret = 1;
1998 local_irq_restore(flags);
1999 return ret;
2000}
2001
fe44d621 2002#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2003
abb74cef
VP
2004#define sched_clock_irqtime (0)
2005
fe44d621 2006static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2007{
fe44d621 2008 rq->clock_task += delta;
305e6835
VP
2009}
2010
fe44d621 2011#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2012
1e3c88bd
PZ
2013#include "sched_idletask.c"
2014#include "sched_fair.c"
2015#include "sched_rt.c"
5091faa4 2016#include "sched_autogroup.c"
34f971f6 2017#include "sched_stoptask.c"
1e3c88bd
PZ
2018#ifdef CONFIG_SCHED_DEBUG
2019# include "sched_debug.c"
2020#endif
2021
34f971f6
PZ
2022void sched_set_stop_task(int cpu, struct task_struct *stop)
2023{
2024 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2025 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2026
2027 if (stop) {
2028 /*
2029 * Make it appear like a SCHED_FIFO task, its something
2030 * userspace knows about and won't get confused about.
2031 *
2032 * Also, it will make PI more or less work without too
2033 * much confusion -- but then, stop work should not
2034 * rely on PI working anyway.
2035 */
2036 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2037
2038 stop->sched_class = &stop_sched_class;
2039 }
2040
2041 cpu_rq(cpu)->stop = stop;
2042
2043 if (old_stop) {
2044 /*
2045 * Reset it back to a normal scheduling class so that
2046 * it can die in pieces.
2047 */
2048 old_stop->sched_class = &rt_sched_class;
2049 }
2050}
2051
14531189 2052/*
dd41f596 2053 * __normal_prio - return the priority that is based on the static prio
14531189 2054 */
14531189
IM
2055static inline int __normal_prio(struct task_struct *p)
2056{
dd41f596 2057 return p->static_prio;
14531189
IM
2058}
2059
b29739f9
IM
2060/*
2061 * Calculate the expected normal priority: i.e. priority
2062 * without taking RT-inheritance into account. Might be
2063 * boosted by interactivity modifiers. Changes upon fork,
2064 * setprio syscalls, and whenever the interactivity
2065 * estimator recalculates.
2066 */
36c8b586 2067static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2068{
2069 int prio;
2070
e05606d3 2071 if (task_has_rt_policy(p))
b29739f9
IM
2072 prio = MAX_RT_PRIO-1 - p->rt_priority;
2073 else
2074 prio = __normal_prio(p);
2075 return prio;
2076}
2077
2078/*
2079 * Calculate the current priority, i.e. the priority
2080 * taken into account by the scheduler. This value might
2081 * be boosted by RT tasks, or might be boosted by
2082 * interactivity modifiers. Will be RT if the task got
2083 * RT-boosted. If not then it returns p->normal_prio.
2084 */
36c8b586 2085static int effective_prio(struct task_struct *p)
b29739f9
IM
2086{
2087 p->normal_prio = normal_prio(p);
2088 /*
2089 * If we are RT tasks or we were boosted to RT priority,
2090 * keep the priority unchanged. Otherwise, update priority
2091 * to the normal priority:
2092 */
2093 if (!rt_prio(p->prio))
2094 return p->normal_prio;
2095 return p->prio;
2096}
2097
1da177e4
LT
2098/**
2099 * task_curr - is this task currently executing on a CPU?
2100 * @p: the task in question.
2101 */
36c8b586 2102inline int task_curr(const struct task_struct *p)
1da177e4
LT
2103{
2104 return cpu_curr(task_cpu(p)) == p;
2105}
2106
cb469845
SR
2107static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2108 const struct sched_class *prev_class,
da7a735e 2109 int oldprio)
cb469845
SR
2110{
2111 if (prev_class != p->sched_class) {
2112 if (prev_class->switched_from)
da7a735e
PZ
2113 prev_class->switched_from(rq, p);
2114 p->sched_class->switched_to(rq, p);
2115 } else if (oldprio != p->prio)
2116 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2117}
2118
1e5a7405
PZ
2119static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2120{
2121 const struct sched_class *class;
2122
2123 if (p->sched_class == rq->curr->sched_class) {
2124 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2125 } else {
2126 for_each_class(class) {
2127 if (class == rq->curr->sched_class)
2128 break;
2129 if (class == p->sched_class) {
2130 resched_task(rq->curr);
2131 break;
2132 }
2133 }
2134 }
2135
2136 /*
2137 * A queue event has occurred, and we're going to schedule. In
2138 * this case, we can save a useless back to back clock update.
2139 */
fd2f4419 2140 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2141 rq->skip_clock_update = 1;
2142}
2143
1da177e4 2144#ifdef CONFIG_SMP
cc367732
IM
2145/*
2146 * Is this task likely cache-hot:
2147 */
e7693a36 2148static int
cc367732
IM
2149task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2150{
2151 s64 delta;
2152
e6c8fba7
PZ
2153 if (p->sched_class != &fair_sched_class)
2154 return 0;
2155
ef8002f6
NR
2156 if (unlikely(p->policy == SCHED_IDLE))
2157 return 0;
2158
f540a608
IM
2159 /*
2160 * Buddy candidates are cache hot:
2161 */
f685ceac 2162 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2163 (&p->se == cfs_rq_of(&p->se)->next ||
2164 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2165 return 1;
2166
6bc1665b
IM
2167 if (sysctl_sched_migration_cost == -1)
2168 return 1;
2169 if (sysctl_sched_migration_cost == 0)
2170 return 0;
2171
cc367732
IM
2172 delta = now - p->se.exec_start;
2173
2174 return delta < (s64)sysctl_sched_migration_cost;
2175}
2176
dd41f596 2177void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2178{
e2912009
PZ
2179#ifdef CONFIG_SCHED_DEBUG
2180 /*
2181 * We should never call set_task_cpu() on a blocked task,
2182 * ttwu() will sort out the placement.
2183 */
077614ee
PZ
2184 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2185 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2186
2187#ifdef CONFIG_LOCKDEP
2188 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2189 lockdep_is_held(&task_rq(p)->lock)));
2190#endif
e2912009
PZ
2191#endif
2192
de1d7286 2193 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2194
0c69774e
PZ
2195 if (task_cpu(p) != new_cpu) {
2196 p->se.nr_migrations++;
2197 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2198 }
dd41f596
IM
2199
2200 __set_task_cpu(p, new_cpu);
c65cc870
IM
2201}
2202
969c7921 2203struct migration_arg {
36c8b586 2204 struct task_struct *task;
1da177e4 2205 int dest_cpu;
70b97a7f 2206};
1da177e4 2207
969c7921
TH
2208static int migration_cpu_stop(void *data);
2209
1da177e4
LT
2210/*
2211 * wait_task_inactive - wait for a thread to unschedule.
2212 *
85ba2d86
RM
2213 * If @match_state is nonzero, it's the @p->state value just checked and
2214 * not expected to change. If it changes, i.e. @p might have woken up,
2215 * then return zero. When we succeed in waiting for @p to be off its CPU,
2216 * we return a positive number (its total switch count). If a second call
2217 * a short while later returns the same number, the caller can be sure that
2218 * @p has remained unscheduled the whole time.
2219 *
1da177e4
LT
2220 * The caller must ensure that the task *will* unschedule sometime soon,
2221 * else this function might spin for a *long* time. This function can't
2222 * be called with interrupts off, or it may introduce deadlock with
2223 * smp_call_function() if an IPI is sent by the same process we are
2224 * waiting to become inactive.
2225 */
85ba2d86 2226unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2227{
2228 unsigned long flags;
dd41f596 2229 int running, on_rq;
85ba2d86 2230 unsigned long ncsw;
70b97a7f 2231 struct rq *rq;
1da177e4 2232
3a5c359a
AK
2233 for (;;) {
2234 /*
2235 * We do the initial early heuristics without holding
2236 * any task-queue locks at all. We'll only try to get
2237 * the runqueue lock when things look like they will
2238 * work out!
2239 */
2240 rq = task_rq(p);
fa490cfd 2241
3a5c359a
AK
2242 /*
2243 * If the task is actively running on another CPU
2244 * still, just relax and busy-wait without holding
2245 * any locks.
2246 *
2247 * NOTE! Since we don't hold any locks, it's not
2248 * even sure that "rq" stays as the right runqueue!
2249 * But we don't care, since "task_running()" will
2250 * return false if the runqueue has changed and p
2251 * is actually now running somewhere else!
2252 */
85ba2d86
RM
2253 while (task_running(rq, p)) {
2254 if (match_state && unlikely(p->state != match_state))
2255 return 0;
3a5c359a 2256 cpu_relax();
85ba2d86 2257 }
fa490cfd 2258
3a5c359a
AK
2259 /*
2260 * Ok, time to look more closely! We need the rq
2261 * lock now, to be *sure*. If we're wrong, we'll
2262 * just go back and repeat.
2263 */
2264 rq = task_rq_lock(p, &flags);
27a9da65 2265 trace_sched_wait_task(p);
3a5c359a 2266 running = task_running(rq, p);
fd2f4419 2267 on_rq = p->on_rq;
85ba2d86 2268 ncsw = 0;
f31e11d8 2269 if (!match_state || p->state == match_state)
93dcf55f 2270 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2271 task_rq_unlock(rq, p, &flags);
fa490cfd 2272
85ba2d86
RM
2273 /*
2274 * If it changed from the expected state, bail out now.
2275 */
2276 if (unlikely(!ncsw))
2277 break;
2278
3a5c359a
AK
2279 /*
2280 * Was it really running after all now that we
2281 * checked with the proper locks actually held?
2282 *
2283 * Oops. Go back and try again..
2284 */
2285 if (unlikely(running)) {
2286 cpu_relax();
2287 continue;
2288 }
fa490cfd 2289
3a5c359a
AK
2290 /*
2291 * It's not enough that it's not actively running,
2292 * it must be off the runqueue _entirely_, and not
2293 * preempted!
2294 *
80dd99b3 2295 * So if it was still runnable (but just not actively
3a5c359a
AK
2296 * running right now), it's preempted, and we should
2297 * yield - it could be a while.
2298 */
2299 if (unlikely(on_rq)) {
8eb90c30
TG
2300 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2301
2302 set_current_state(TASK_UNINTERRUPTIBLE);
2303 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2304 continue;
2305 }
fa490cfd 2306
3a5c359a
AK
2307 /*
2308 * Ahh, all good. It wasn't running, and it wasn't
2309 * runnable, which means that it will never become
2310 * running in the future either. We're all done!
2311 */
2312 break;
2313 }
85ba2d86
RM
2314
2315 return ncsw;
1da177e4
LT
2316}
2317
2318/***
2319 * kick_process - kick a running thread to enter/exit the kernel
2320 * @p: the to-be-kicked thread
2321 *
2322 * Cause a process which is running on another CPU to enter
2323 * kernel-mode, without any delay. (to get signals handled.)
2324 *
25985edc 2325 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2326 * because all it wants to ensure is that the remote task enters
2327 * the kernel. If the IPI races and the task has been migrated
2328 * to another CPU then no harm is done and the purpose has been
2329 * achieved as well.
2330 */
36c8b586 2331void kick_process(struct task_struct *p)
1da177e4
LT
2332{
2333 int cpu;
2334
2335 preempt_disable();
2336 cpu = task_cpu(p);
2337 if ((cpu != smp_processor_id()) && task_curr(p))
2338 smp_send_reschedule(cpu);
2339 preempt_enable();
2340}
b43e3521 2341EXPORT_SYMBOL_GPL(kick_process);
476d139c 2342#endif /* CONFIG_SMP */
1da177e4 2343
970b13ba 2344#ifdef CONFIG_SMP
30da688e 2345/*
013fdb80 2346 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2347 */
5da9a0fb
PZ
2348static int select_fallback_rq(int cpu, struct task_struct *p)
2349{
2350 int dest_cpu;
2351 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2352
2353 /* Look for allowed, online CPU in same node. */
2354 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2355 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2356 return dest_cpu;
2357
2358 /* Any allowed, online CPU? */
2359 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2360 if (dest_cpu < nr_cpu_ids)
2361 return dest_cpu;
2362
2363 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2364 dest_cpu = cpuset_cpus_allowed_fallback(p);
2365 /*
2366 * Don't tell them about moving exiting tasks or
2367 * kernel threads (both mm NULL), since they never
2368 * leave kernel.
2369 */
2370 if (p->mm && printk_ratelimit()) {
2371 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2372 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2373 }
2374
2375 return dest_cpu;
2376}
2377
e2912009 2378/*
013fdb80 2379 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2380 */
970b13ba 2381static inline
7608dec2 2382int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2383{
7608dec2 2384 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2385
2386 /*
2387 * In order not to call set_task_cpu() on a blocking task we need
2388 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2389 * cpu.
2390 *
2391 * Since this is common to all placement strategies, this lives here.
2392 *
2393 * [ this allows ->select_task() to simply return task_cpu(p) and
2394 * not worry about this generic constraint ]
2395 */
2396 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2397 !cpu_online(cpu)))
5da9a0fb 2398 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2399
2400 return cpu;
970b13ba 2401}
09a40af5
MG
2402
2403static void update_avg(u64 *avg, u64 sample)
2404{
2405 s64 diff = sample - *avg;
2406 *avg += diff >> 3;
2407}
970b13ba
PZ
2408#endif
2409
d7c01d27 2410static void
b84cb5df 2411ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2412{
d7c01d27 2413#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2414 struct rq *rq = this_rq();
2415
d7c01d27
PZ
2416#ifdef CONFIG_SMP
2417 int this_cpu = smp_processor_id();
2418
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2422 } else {
2423 struct sched_domain *sd;
2424
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2426 rcu_read_lock();
d7c01d27
PZ
2427 for_each_domain(this_cpu, sd) {
2428 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2429 schedstat_inc(sd, ttwu_wake_remote);
2430 break;
2431 }
2432 }
057f3fad 2433 rcu_read_unlock();
d7c01d27
PZ
2434 }
2435#endif /* CONFIG_SMP */
2436
2437 schedstat_inc(rq, ttwu_count);
9ed3811a 2438 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2439
2440 if (wake_flags & WF_SYNC)
9ed3811a 2441 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2442
2443 if (cpu != task_cpu(p))
9ed3811a 2444 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2445
d7c01d27
PZ
2446#endif /* CONFIG_SCHEDSTATS */
2447}
2448
2449static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2450{
9ed3811a 2451 activate_task(rq, p, en_flags);
fd2f4419 2452 p->on_rq = 1;
c2f7115e
PZ
2453
2454 /* if a worker is waking up, notify workqueue */
2455 if (p->flags & PF_WQ_WORKER)
2456 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2457}
2458
23f41eeb
PZ
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
89363381 2462static void
23f41eeb 2463ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2464{
89363381 2465 trace_sched_wakeup(p, true);
9ed3811a
TH
2466 check_preempt_curr(rq, p, wake_flags);
2467
2468 p->state = TASK_RUNNING;
2469#ifdef CONFIG_SMP
2470 if (p->sched_class->task_woken)
2471 p->sched_class->task_woken(rq, p);
2472
2473 if (unlikely(rq->idle_stamp)) {
2474 u64 delta = rq->clock - rq->idle_stamp;
2475 u64 max = 2*sysctl_sched_migration_cost;
2476
2477 if (delta > max)
2478 rq->avg_idle = max;
2479 else
2480 update_avg(&rq->avg_idle, delta);
2481 rq->idle_stamp = 0;
2482 }
2483#endif
2484}
2485
c05fbafb
PZ
2486static void
2487ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2488{
2489#ifdef CONFIG_SMP
2490 if (p->sched_contributes_to_load)
2491 rq->nr_uninterruptible--;
2492#endif
2493
2494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2495 ttwu_do_wakeup(rq, p, wake_flags);
2496}
2497
2498/*
2499 * Called in case the task @p isn't fully descheduled from its runqueue,
2500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2501 * since all we need to do is flip p->state to TASK_RUNNING, since
2502 * the task is still ->on_rq.
2503 */
2504static int ttwu_remote(struct task_struct *p, int wake_flags)
2505{
2506 struct rq *rq;
2507 int ret = 0;
2508
2509 rq = __task_rq_lock(p);
2510 if (p->on_rq) {
2511 ttwu_do_wakeup(rq, p, wake_flags);
2512 ret = 1;
2513 }
2514 __task_rq_unlock(rq);
2515
2516 return ret;
2517}
2518
317f3941
PZ
2519#ifdef CONFIG_SMP
2520static void sched_ttwu_pending(void)
2521{
2522 struct rq *rq = this_rq();
2523 struct task_struct *list = xchg(&rq->wake_list, NULL);
2524
2525 if (!list)
2526 return;
2527
2528 raw_spin_lock(&rq->lock);
2529
2530 while (list) {
2531 struct task_struct *p = list;
2532 list = list->wake_entry;
2533 ttwu_do_activate(rq, p, 0);
2534 }
2535
2536 raw_spin_unlock(&rq->lock);
2537}
2538
2539void scheduler_ipi(void)
2540{
2541 sched_ttwu_pending();
2542}
2543
2544static void ttwu_queue_remote(struct task_struct *p, int cpu)
2545{
2546 struct rq *rq = cpu_rq(cpu);
2547 struct task_struct *next = rq->wake_list;
2548
2549 for (;;) {
2550 struct task_struct *old = next;
2551
2552 p->wake_entry = next;
2553 next = cmpxchg(&rq->wake_list, old, p);
2554 if (next == old)
2555 break;
2556 }
2557
2558 if (!next)
2559 smp_send_reschedule(cpu);
2560}
2561#endif
2562
c05fbafb
PZ
2563static void ttwu_queue(struct task_struct *p, int cpu)
2564{
2565 struct rq *rq = cpu_rq(cpu);
2566
317f3941
PZ
2567#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
2568 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2569 ttwu_queue_remote(p, cpu);
2570 return;
2571 }
2572#endif
2573
c05fbafb
PZ
2574 raw_spin_lock(&rq->lock);
2575 ttwu_do_activate(rq, p, 0);
2576 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2577}
2578
2579/**
1da177e4 2580 * try_to_wake_up - wake up a thread
9ed3811a 2581 * @p: the thread to be awakened
1da177e4 2582 * @state: the mask of task states that can be woken
9ed3811a 2583 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2584 *
2585 * Put it on the run-queue if it's not already there. The "current"
2586 * thread is always on the run-queue (except when the actual
2587 * re-schedule is in progress), and as such you're allowed to do
2588 * the simpler "current->state = TASK_RUNNING" to mark yourself
2589 * runnable without the overhead of this.
2590 *
9ed3811a
TH
2591 * Returns %true if @p was woken up, %false if it was already running
2592 * or @state didn't match @p's state.
1da177e4 2593 */
e4a52bcb
PZ
2594static int
2595try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2596{
1da177e4 2597 unsigned long flags;
c05fbafb 2598 int cpu, success = 0;
2398f2c6 2599
04e2f174 2600 smp_wmb();
013fdb80 2601 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2602 if (!(p->state & state))
1da177e4
LT
2603 goto out;
2604
c05fbafb 2605 success = 1; /* we're going to change ->state */
1da177e4 2606 cpu = task_cpu(p);
1da177e4 2607
c05fbafb
PZ
2608 if (p->on_rq && ttwu_remote(p, wake_flags))
2609 goto stat;
1da177e4 2610
1da177e4 2611#ifdef CONFIG_SMP
e9c84311 2612 /*
c05fbafb
PZ
2613 * If the owning (remote) cpu is still in the middle of schedule() with
2614 * this task as prev, wait until its done referencing the task.
e9c84311 2615 */
e4a52bcb
PZ
2616 while (p->on_cpu) {
2617#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2618 /*
2619 * If called from interrupt context we could have landed in the
2620 * middle of schedule(), in this case we should take care not
2621 * to spin on ->on_cpu if p is current, since that would
2622 * deadlock.
2623 */
c05fbafb
PZ
2624 if (p == current) {
2625 ttwu_queue(p, cpu);
2626 goto stat;
2627 }
e4a52bcb
PZ
2628#endif
2629 cpu_relax();
371fd7e7 2630 }
0970d299 2631 /*
e4a52bcb 2632 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2633 */
e4a52bcb 2634 smp_rmb();
1da177e4 2635
a8e4f2ea 2636 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2637 p->state = TASK_WAKING;
e7693a36 2638
e4a52bcb 2639 if (p->sched_class->task_waking)
74f8e4b2 2640 p->sched_class->task_waking(p);
efbbd05a 2641
7608dec2 2642 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
c05fbafb 2643 if (task_cpu(p) != cpu)
e4a52bcb 2644 set_task_cpu(p, cpu);
1da177e4 2645#endif /* CONFIG_SMP */
1da177e4 2646
c05fbafb
PZ
2647 ttwu_queue(p, cpu);
2648stat:
b84cb5df 2649 ttwu_stat(p, cpu, wake_flags);
1da177e4 2650out:
013fdb80 2651 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2652
2653 return success;
2654}
2655
21aa9af0
TH
2656/**
2657 * try_to_wake_up_local - try to wake up a local task with rq lock held
2658 * @p: the thread to be awakened
2659 *
2acca55e 2660 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2661 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2662 * the current task.
21aa9af0
TH
2663 */
2664static void try_to_wake_up_local(struct task_struct *p)
2665{
2666 struct rq *rq = task_rq(p);
21aa9af0
TH
2667
2668 BUG_ON(rq != this_rq());
2669 BUG_ON(p == current);
2670 lockdep_assert_held(&rq->lock);
2671
2acca55e
PZ
2672 if (!raw_spin_trylock(&p->pi_lock)) {
2673 raw_spin_unlock(&rq->lock);
2674 raw_spin_lock(&p->pi_lock);
2675 raw_spin_lock(&rq->lock);
2676 }
2677
21aa9af0 2678 if (!(p->state & TASK_NORMAL))
2acca55e 2679 goto out;
21aa9af0 2680
fd2f4419 2681 if (!p->on_rq)
d7c01d27
PZ
2682 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2683
23f41eeb 2684 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2685 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2686out:
2687 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2688}
2689
50fa610a
DH
2690/**
2691 * wake_up_process - Wake up a specific process
2692 * @p: The process to be woken up.
2693 *
2694 * Attempt to wake up the nominated process and move it to the set of runnable
2695 * processes. Returns 1 if the process was woken up, 0 if it was already
2696 * running.
2697 *
2698 * It may be assumed that this function implies a write memory barrier before
2699 * changing the task state if and only if any tasks are woken up.
2700 */
7ad5b3a5 2701int wake_up_process(struct task_struct *p)
1da177e4 2702{
d9514f6c 2703 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2704}
1da177e4
LT
2705EXPORT_SYMBOL(wake_up_process);
2706
7ad5b3a5 2707int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2708{
2709 return try_to_wake_up(p, state, 0);
2710}
2711
1da177e4
LT
2712/*
2713 * Perform scheduler related setup for a newly forked process p.
2714 * p is forked by current.
dd41f596
IM
2715 *
2716 * __sched_fork() is basic setup used by init_idle() too:
2717 */
2718static void __sched_fork(struct task_struct *p)
2719{
fd2f4419
PZ
2720 p->on_rq = 0;
2721
2722 p->se.on_rq = 0;
dd41f596
IM
2723 p->se.exec_start = 0;
2724 p->se.sum_exec_runtime = 0;
f6cf891c 2725 p->se.prev_sum_exec_runtime = 0;
6c594c21 2726 p->se.nr_migrations = 0;
da7a735e 2727 p->se.vruntime = 0;
fd2f4419 2728 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2729
2730#ifdef CONFIG_SCHEDSTATS
41acab88 2731 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2732#endif
476d139c 2733
fa717060 2734 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2735
e107be36
AK
2736#ifdef CONFIG_PREEMPT_NOTIFIERS
2737 INIT_HLIST_HEAD(&p->preempt_notifiers);
2738#endif
dd41f596
IM
2739}
2740
2741/*
2742 * fork()/clone()-time setup:
2743 */
2744void sched_fork(struct task_struct *p, int clone_flags)
2745{
0122ec5b 2746 unsigned long flags;
dd41f596
IM
2747 int cpu = get_cpu();
2748
2749 __sched_fork(p);
06b83b5f 2750 /*
0017d735 2751 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2752 * nobody will actually run it, and a signal or other external
2753 * event cannot wake it up and insert it on the runqueue either.
2754 */
0017d735 2755 p->state = TASK_RUNNING;
dd41f596 2756
b9dc29e7
MG
2757 /*
2758 * Revert to default priority/policy on fork if requested.
2759 */
2760 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2761 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2762 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2763 p->normal_prio = p->static_prio;
2764 }
b9dc29e7 2765
6c697bdf
MG
2766 if (PRIO_TO_NICE(p->static_prio) < 0) {
2767 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2768 p->normal_prio = p->static_prio;
6c697bdf
MG
2769 set_load_weight(p);
2770 }
2771
b9dc29e7
MG
2772 /*
2773 * We don't need the reset flag anymore after the fork. It has
2774 * fulfilled its duty:
2775 */
2776 p->sched_reset_on_fork = 0;
2777 }
ca94c442 2778
f83f9ac2
PW
2779 /*
2780 * Make sure we do not leak PI boosting priority to the child.
2781 */
2782 p->prio = current->normal_prio;
2783
2ddbf952
HS
2784 if (!rt_prio(p->prio))
2785 p->sched_class = &fair_sched_class;
b29739f9 2786
cd29fe6f
PZ
2787 if (p->sched_class->task_fork)
2788 p->sched_class->task_fork(p);
2789
86951599
PZ
2790 /*
2791 * The child is not yet in the pid-hash so no cgroup attach races,
2792 * and the cgroup is pinned to this child due to cgroup_fork()
2793 * is ran before sched_fork().
2794 *
2795 * Silence PROVE_RCU.
2796 */
0122ec5b 2797 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2798 set_task_cpu(p, cpu);
0122ec5b 2799 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2800
52f17b6c 2801#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2802 if (likely(sched_info_on()))
52f17b6c 2803 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2804#endif
3ca7a440
PZ
2805#if defined(CONFIG_SMP)
2806 p->on_cpu = 0;
4866cde0 2807#endif
1da177e4 2808#ifdef CONFIG_PREEMPT
4866cde0 2809 /* Want to start with kernel preemption disabled. */
a1261f54 2810 task_thread_info(p)->preempt_count = 1;
1da177e4 2811#endif
806c09a7 2812#ifdef CONFIG_SMP
917b627d 2813 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2814#endif
917b627d 2815
476d139c 2816 put_cpu();
1da177e4
LT
2817}
2818
2819/*
2820 * wake_up_new_task - wake up a newly created task for the first time.
2821 *
2822 * This function will do some initial scheduler statistics housekeeping
2823 * that must be done for every newly created context, then puts the task
2824 * on the runqueue and wakes it.
2825 */
7ad5b3a5 2826void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2827{
2828 unsigned long flags;
dd41f596 2829 struct rq *rq;
fabf318e 2830
ab2515c4 2831 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2832#ifdef CONFIG_SMP
2833 /*
2834 * Fork balancing, do it here and not earlier because:
2835 * - cpus_allowed can change in the fork path
2836 * - any previously selected cpu might disappear through hotplug
fabf318e 2837 */
ab2515c4 2838 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2839#endif
2840
ab2515c4 2841 rq = __task_rq_lock(p);
cd29fe6f 2842 activate_task(rq, p, 0);
fd2f4419 2843 p->on_rq = 1;
89363381 2844 trace_sched_wakeup_new(p, true);
a7558e01 2845 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2846#ifdef CONFIG_SMP
efbbd05a
PZ
2847 if (p->sched_class->task_woken)
2848 p->sched_class->task_woken(rq, p);
9a897c5a 2849#endif
0122ec5b 2850 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2851}
2852
e107be36
AK
2853#ifdef CONFIG_PREEMPT_NOTIFIERS
2854
2855/**
80dd99b3 2856 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2857 * @notifier: notifier struct to register
e107be36
AK
2858 */
2859void preempt_notifier_register(struct preempt_notifier *notifier)
2860{
2861 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2862}
2863EXPORT_SYMBOL_GPL(preempt_notifier_register);
2864
2865/**
2866 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2867 * @notifier: notifier struct to unregister
e107be36
AK
2868 *
2869 * This is safe to call from within a preemption notifier.
2870 */
2871void preempt_notifier_unregister(struct preempt_notifier *notifier)
2872{
2873 hlist_del(&notifier->link);
2874}
2875EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2876
2877static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2878{
2879 struct preempt_notifier *notifier;
2880 struct hlist_node *node;
2881
2882 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2883 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2884}
2885
2886static void
2887fire_sched_out_preempt_notifiers(struct task_struct *curr,
2888 struct task_struct *next)
2889{
2890 struct preempt_notifier *notifier;
2891 struct hlist_node *node;
2892
2893 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2894 notifier->ops->sched_out(notifier, next);
2895}
2896
6d6bc0ad 2897#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2898
2899static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2900{
2901}
2902
2903static void
2904fire_sched_out_preempt_notifiers(struct task_struct *curr,
2905 struct task_struct *next)
2906{
2907}
2908
6d6bc0ad 2909#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2910
4866cde0
NP
2911/**
2912 * prepare_task_switch - prepare to switch tasks
2913 * @rq: the runqueue preparing to switch
421cee29 2914 * @prev: the current task that is being switched out
4866cde0
NP
2915 * @next: the task we are going to switch to.
2916 *
2917 * This is called with the rq lock held and interrupts off. It must
2918 * be paired with a subsequent finish_task_switch after the context
2919 * switch.
2920 *
2921 * prepare_task_switch sets up locking and calls architecture specific
2922 * hooks.
2923 */
e107be36
AK
2924static inline void
2925prepare_task_switch(struct rq *rq, struct task_struct *prev,
2926 struct task_struct *next)
4866cde0 2927{
fe4b04fa
PZ
2928 sched_info_switch(prev, next);
2929 perf_event_task_sched_out(prev, next);
e107be36 2930 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2931 prepare_lock_switch(rq, next);
2932 prepare_arch_switch(next);
fe4b04fa 2933 trace_sched_switch(prev, next);
4866cde0
NP
2934}
2935
1da177e4
LT
2936/**
2937 * finish_task_switch - clean up after a task-switch
344babaa 2938 * @rq: runqueue associated with task-switch
1da177e4
LT
2939 * @prev: the thread we just switched away from.
2940 *
4866cde0
NP
2941 * finish_task_switch must be called after the context switch, paired
2942 * with a prepare_task_switch call before the context switch.
2943 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2944 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2945 *
2946 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2947 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2948 * with the lock held can cause deadlocks; see schedule() for
2949 * details.)
2950 */
a9957449 2951static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2952 __releases(rq->lock)
2953{
1da177e4 2954 struct mm_struct *mm = rq->prev_mm;
55a101f8 2955 long prev_state;
1da177e4
LT
2956
2957 rq->prev_mm = NULL;
2958
2959 /*
2960 * A task struct has one reference for the use as "current".
c394cc9f 2961 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2962 * schedule one last time. The schedule call will never return, and
2963 * the scheduled task must drop that reference.
c394cc9f 2964 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2965 * still held, otherwise prev could be scheduled on another cpu, die
2966 * there before we look at prev->state, and then the reference would
2967 * be dropped twice.
2968 * Manfred Spraul <manfred@colorfullife.com>
2969 */
55a101f8 2970 prev_state = prev->state;
4866cde0 2971 finish_arch_switch(prev);
8381f65d
JI
2972#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2973 local_irq_disable();
2974#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2975 perf_event_task_sched_in(current);
8381f65d
JI
2976#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2977 local_irq_enable();
2978#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2979 finish_lock_switch(rq, prev);
e8fa1362 2980
e107be36 2981 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2982 if (mm)
2983 mmdrop(mm);
c394cc9f 2984 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2985 /*
2986 * Remove function-return probe instances associated with this
2987 * task and put them back on the free list.
9761eea8 2988 */
c6fd91f0 2989 kprobe_flush_task(prev);
1da177e4 2990 put_task_struct(prev);
c6fd91f0 2991 }
1da177e4
LT
2992}
2993
3f029d3c
GH
2994#ifdef CONFIG_SMP
2995
2996/* assumes rq->lock is held */
2997static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2998{
2999 if (prev->sched_class->pre_schedule)
3000 prev->sched_class->pre_schedule(rq, prev);
3001}
3002
3003/* rq->lock is NOT held, but preemption is disabled */
3004static inline void post_schedule(struct rq *rq)
3005{
3006 if (rq->post_schedule) {
3007 unsigned long flags;
3008
05fa785c 3009 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3010 if (rq->curr->sched_class->post_schedule)
3011 rq->curr->sched_class->post_schedule(rq);
05fa785c 3012 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3013
3014 rq->post_schedule = 0;
3015 }
3016}
3017
3018#else
da19ab51 3019
3f029d3c
GH
3020static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3021{
3022}
3023
3024static inline void post_schedule(struct rq *rq)
3025{
1da177e4
LT
3026}
3027
3f029d3c
GH
3028#endif
3029
1da177e4
LT
3030/**
3031 * schedule_tail - first thing a freshly forked thread must call.
3032 * @prev: the thread we just switched away from.
3033 */
36c8b586 3034asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3035 __releases(rq->lock)
3036{
70b97a7f
IM
3037 struct rq *rq = this_rq();
3038
4866cde0 3039 finish_task_switch(rq, prev);
da19ab51 3040
3f029d3c
GH
3041 /*
3042 * FIXME: do we need to worry about rq being invalidated by the
3043 * task_switch?
3044 */
3045 post_schedule(rq);
70b97a7f 3046
4866cde0
NP
3047#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3048 /* In this case, finish_task_switch does not reenable preemption */
3049 preempt_enable();
3050#endif
1da177e4 3051 if (current->set_child_tid)
b488893a 3052 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3053}
3054
3055/*
3056 * context_switch - switch to the new MM and the new
3057 * thread's register state.
3058 */
dd41f596 3059static inline void
70b97a7f 3060context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3061 struct task_struct *next)
1da177e4 3062{
dd41f596 3063 struct mm_struct *mm, *oldmm;
1da177e4 3064
e107be36 3065 prepare_task_switch(rq, prev, next);
fe4b04fa 3066
dd41f596
IM
3067 mm = next->mm;
3068 oldmm = prev->active_mm;
9226d125
ZA
3069 /*
3070 * For paravirt, this is coupled with an exit in switch_to to
3071 * combine the page table reload and the switch backend into
3072 * one hypercall.
3073 */
224101ed 3074 arch_start_context_switch(prev);
9226d125 3075
31915ab4 3076 if (!mm) {
1da177e4
LT
3077 next->active_mm = oldmm;
3078 atomic_inc(&oldmm->mm_count);
3079 enter_lazy_tlb(oldmm, next);
3080 } else
3081 switch_mm(oldmm, mm, next);
3082
31915ab4 3083 if (!prev->mm) {
1da177e4 3084 prev->active_mm = NULL;
1da177e4
LT
3085 rq->prev_mm = oldmm;
3086 }
3a5f5e48
IM
3087 /*
3088 * Since the runqueue lock will be released by the next
3089 * task (which is an invalid locking op but in the case
3090 * of the scheduler it's an obvious special-case), so we
3091 * do an early lockdep release here:
3092 */
3093#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3094 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3095#endif
1da177e4
LT
3096
3097 /* Here we just switch the register state and the stack. */
3098 switch_to(prev, next, prev);
3099
dd41f596
IM
3100 barrier();
3101 /*
3102 * this_rq must be evaluated again because prev may have moved
3103 * CPUs since it called schedule(), thus the 'rq' on its stack
3104 * frame will be invalid.
3105 */
3106 finish_task_switch(this_rq(), prev);
1da177e4
LT
3107}
3108
3109/*
3110 * nr_running, nr_uninterruptible and nr_context_switches:
3111 *
3112 * externally visible scheduler statistics: current number of runnable
3113 * threads, current number of uninterruptible-sleeping threads, total
3114 * number of context switches performed since bootup.
3115 */
3116unsigned long nr_running(void)
3117{
3118 unsigned long i, sum = 0;
3119
3120 for_each_online_cpu(i)
3121 sum += cpu_rq(i)->nr_running;
3122
3123 return sum;
f711f609 3124}
1da177e4
LT
3125
3126unsigned long nr_uninterruptible(void)
f711f609 3127{
1da177e4 3128 unsigned long i, sum = 0;
f711f609 3129
0a945022 3130 for_each_possible_cpu(i)
1da177e4 3131 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3132
3133 /*
1da177e4
LT
3134 * Since we read the counters lockless, it might be slightly
3135 * inaccurate. Do not allow it to go below zero though:
f711f609 3136 */
1da177e4
LT
3137 if (unlikely((long)sum < 0))
3138 sum = 0;
f711f609 3139
1da177e4 3140 return sum;
f711f609 3141}
f711f609 3142
1da177e4 3143unsigned long long nr_context_switches(void)
46cb4b7c 3144{
cc94abfc
SR
3145 int i;
3146 unsigned long long sum = 0;
46cb4b7c 3147
0a945022 3148 for_each_possible_cpu(i)
1da177e4 3149 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3150
1da177e4
LT
3151 return sum;
3152}
483b4ee6 3153
1da177e4
LT
3154unsigned long nr_iowait(void)
3155{
3156 unsigned long i, sum = 0;
483b4ee6 3157
0a945022 3158 for_each_possible_cpu(i)
1da177e4 3159 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3160
1da177e4
LT
3161 return sum;
3162}
483b4ee6 3163
8c215bd3 3164unsigned long nr_iowait_cpu(int cpu)
69d25870 3165{
8c215bd3 3166 struct rq *this = cpu_rq(cpu);
69d25870
AV
3167 return atomic_read(&this->nr_iowait);
3168}
46cb4b7c 3169
69d25870
AV
3170unsigned long this_cpu_load(void)
3171{
3172 struct rq *this = this_rq();
3173 return this->cpu_load[0];
3174}
e790fb0b 3175
46cb4b7c 3176
dce48a84
TG
3177/* Variables and functions for calc_load */
3178static atomic_long_t calc_load_tasks;
3179static unsigned long calc_load_update;
3180unsigned long avenrun[3];
3181EXPORT_SYMBOL(avenrun);
46cb4b7c 3182
74f5187a
PZ
3183static long calc_load_fold_active(struct rq *this_rq)
3184{
3185 long nr_active, delta = 0;
3186
3187 nr_active = this_rq->nr_running;
3188 nr_active += (long) this_rq->nr_uninterruptible;
3189
3190 if (nr_active != this_rq->calc_load_active) {
3191 delta = nr_active - this_rq->calc_load_active;
3192 this_rq->calc_load_active = nr_active;
3193 }
3194
3195 return delta;
3196}
3197
0f004f5a
PZ
3198static unsigned long
3199calc_load(unsigned long load, unsigned long exp, unsigned long active)
3200{
3201 load *= exp;
3202 load += active * (FIXED_1 - exp);
3203 load += 1UL << (FSHIFT - 1);
3204 return load >> FSHIFT;
3205}
3206
74f5187a
PZ
3207#ifdef CONFIG_NO_HZ
3208/*
3209 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3210 *
3211 * When making the ILB scale, we should try to pull this in as well.
3212 */
3213static atomic_long_t calc_load_tasks_idle;
3214
3215static void calc_load_account_idle(struct rq *this_rq)
3216{
3217 long delta;
3218
3219 delta = calc_load_fold_active(this_rq);
3220 if (delta)
3221 atomic_long_add(delta, &calc_load_tasks_idle);
3222}
3223
3224static long calc_load_fold_idle(void)
3225{
3226 long delta = 0;
3227
3228 /*
3229 * Its got a race, we don't care...
3230 */
3231 if (atomic_long_read(&calc_load_tasks_idle))
3232 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3233
3234 return delta;
3235}
0f004f5a
PZ
3236
3237/**
3238 * fixed_power_int - compute: x^n, in O(log n) time
3239 *
3240 * @x: base of the power
3241 * @frac_bits: fractional bits of @x
3242 * @n: power to raise @x to.
3243 *
3244 * By exploiting the relation between the definition of the natural power
3245 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3246 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3247 * (where: n_i \elem {0, 1}, the binary vector representing n),
3248 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3249 * of course trivially computable in O(log_2 n), the length of our binary
3250 * vector.
3251 */
3252static unsigned long
3253fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3254{
3255 unsigned long result = 1UL << frac_bits;
3256
3257 if (n) for (;;) {
3258 if (n & 1) {
3259 result *= x;
3260 result += 1UL << (frac_bits - 1);
3261 result >>= frac_bits;
3262 }
3263 n >>= 1;
3264 if (!n)
3265 break;
3266 x *= x;
3267 x += 1UL << (frac_bits - 1);
3268 x >>= frac_bits;
3269 }
3270
3271 return result;
3272}
3273
3274/*
3275 * a1 = a0 * e + a * (1 - e)
3276 *
3277 * a2 = a1 * e + a * (1 - e)
3278 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3279 * = a0 * e^2 + a * (1 - e) * (1 + e)
3280 *
3281 * a3 = a2 * e + a * (1 - e)
3282 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3283 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3284 *
3285 * ...
3286 *
3287 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3288 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3289 * = a0 * e^n + a * (1 - e^n)
3290 *
3291 * [1] application of the geometric series:
3292 *
3293 * n 1 - x^(n+1)
3294 * S_n := \Sum x^i = -------------
3295 * i=0 1 - x
3296 */
3297static unsigned long
3298calc_load_n(unsigned long load, unsigned long exp,
3299 unsigned long active, unsigned int n)
3300{
3301
3302 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3303}
3304
3305/*
3306 * NO_HZ can leave us missing all per-cpu ticks calling
3307 * calc_load_account_active(), but since an idle CPU folds its delta into
3308 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3309 * in the pending idle delta if our idle period crossed a load cycle boundary.
3310 *
3311 * Once we've updated the global active value, we need to apply the exponential
3312 * weights adjusted to the number of cycles missed.
3313 */
3314static void calc_global_nohz(unsigned long ticks)
3315{
3316 long delta, active, n;
3317
3318 if (time_before(jiffies, calc_load_update))
3319 return;
3320
3321 /*
3322 * If we crossed a calc_load_update boundary, make sure to fold
3323 * any pending idle changes, the respective CPUs might have
3324 * missed the tick driven calc_load_account_active() update
3325 * due to NO_HZ.
3326 */
3327 delta = calc_load_fold_idle();
3328 if (delta)
3329 atomic_long_add(delta, &calc_load_tasks);
3330
3331 /*
3332 * If we were idle for multiple load cycles, apply them.
3333 */
3334 if (ticks >= LOAD_FREQ) {
3335 n = ticks / LOAD_FREQ;
3336
3337 active = atomic_long_read(&calc_load_tasks);
3338 active = active > 0 ? active * FIXED_1 : 0;
3339
3340 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3341 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3342 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3343
3344 calc_load_update += n * LOAD_FREQ;
3345 }
3346
3347 /*
3348 * Its possible the remainder of the above division also crosses
3349 * a LOAD_FREQ period, the regular check in calc_global_load()
3350 * which comes after this will take care of that.
3351 *
3352 * Consider us being 11 ticks before a cycle completion, and us
3353 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3354 * age us 4 cycles, and the test in calc_global_load() will
3355 * pick up the final one.
3356 */
3357}
74f5187a
PZ
3358#else
3359static void calc_load_account_idle(struct rq *this_rq)
3360{
3361}
3362
3363static inline long calc_load_fold_idle(void)
3364{
3365 return 0;
3366}
0f004f5a
PZ
3367
3368static void calc_global_nohz(unsigned long ticks)
3369{
3370}
74f5187a
PZ
3371#endif
3372
2d02494f
TG
3373/**
3374 * get_avenrun - get the load average array
3375 * @loads: pointer to dest load array
3376 * @offset: offset to add
3377 * @shift: shift count to shift the result left
3378 *
3379 * These values are estimates at best, so no need for locking.
3380 */
3381void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3382{
3383 loads[0] = (avenrun[0] + offset) << shift;
3384 loads[1] = (avenrun[1] + offset) << shift;
3385 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3386}
46cb4b7c 3387
46cb4b7c 3388/*
dce48a84
TG
3389 * calc_load - update the avenrun load estimates 10 ticks after the
3390 * CPUs have updated calc_load_tasks.
7835b98b 3391 */
0f004f5a 3392void calc_global_load(unsigned long ticks)
7835b98b 3393{
dce48a84 3394 long active;
1da177e4 3395
0f004f5a
PZ
3396 calc_global_nohz(ticks);
3397
3398 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3399 return;
1da177e4 3400
dce48a84
TG
3401 active = atomic_long_read(&calc_load_tasks);
3402 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3403
dce48a84
TG
3404 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3405 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3406 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3407
dce48a84
TG
3408 calc_load_update += LOAD_FREQ;
3409}
1da177e4 3410
dce48a84 3411/*
74f5187a
PZ
3412 * Called from update_cpu_load() to periodically update this CPU's
3413 * active count.
dce48a84
TG
3414 */
3415static void calc_load_account_active(struct rq *this_rq)
3416{
74f5187a 3417 long delta;
08c183f3 3418
74f5187a
PZ
3419 if (time_before(jiffies, this_rq->calc_load_update))
3420 return;
783609c6 3421
74f5187a
PZ
3422 delta = calc_load_fold_active(this_rq);
3423 delta += calc_load_fold_idle();
3424 if (delta)
dce48a84 3425 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3426
3427 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3428}
3429
fdf3e95d
VP
3430/*
3431 * The exact cpuload at various idx values, calculated at every tick would be
3432 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3433 *
3434 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3435 * on nth tick when cpu may be busy, then we have:
3436 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3437 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3438 *
3439 * decay_load_missed() below does efficient calculation of
3440 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3441 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3442 *
3443 * The calculation is approximated on a 128 point scale.
3444 * degrade_zero_ticks is the number of ticks after which load at any
3445 * particular idx is approximated to be zero.
3446 * degrade_factor is a precomputed table, a row for each load idx.
3447 * Each column corresponds to degradation factor for a power of two ticks,
3448 * based on 128 point scale.
3449 * Example:
3450 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3451 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3452 *
3453 * With this power of 2 load factors, we can degrade the load n times
3454 * by looking at 1 bits in n and doing as many mult/shift instead of
3455 * n mult/shifts needed by the exact degradation.
3456 */
3457#define DEGRADE_SHIFT 7
3458static const unsigned char
3459 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3460static const unsigned char
3461 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3462 {0, 0, 0, 0, 0, 0, 0, 0},
3463 {64, 32, 8, 0, 0, 0, 0, 0},
3464 {96, 72, 40, 12, 1, 0, 0},
3465 {112, 98, 75, 43, 15, 1, 0},
3466 {120, 112, 98, 76, 45, 16, 2} };
3467
3468/*
3469 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3470 * would be when CPU is idle and so we just decay the old load without
3471 * adding any new load.
3472 */
3473static unsigned long
3474decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3475{
3476 int j = 0;
3477
3478 if (!missed_updates)
3479 return load;
3480
3481 if (missed_updates >= degrade_zero_ticks[idx])
3482 return 0;
3483
3484 if (idx == 1)
3485 return load >> missed_updates;
3486
3487 while (missed_updates) {
3488 if (missed_updates % 2)
3489 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3490
3491 missed_updates >>= 1;
3492 j++;
3493 }
3494 return load;
3495}
3496
46cb4b7c 3497/*
dd41f596 3498 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3499 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3500 * every tick. We fix it up based on jiffies.
46cb4b7c 3501 */
dd41f596 3502static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3503{
495eca49 3504 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3505 unsigned long curr_jiffies = jiffies;
3506 unsigned long pending_updates;
dd41f596 3507 int i, scale;
46cb4b7c 3508
dd41f596 3509 this_rq->nr_load_updates++;
46cb4b7c 3510
fdf3e95d
VP
3511 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3512 if (curr_jiffies == this_rq->last_load_update_tick)
3513 return;
3514
3515 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3516 this_rq->last_load_update_tick = curr_jiffies;
3517
dd41f596 3518 /* Update our load: */
fdf3e95d
VP
3519 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3520 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3521 unsigned long old_load, new_load;
7d1e6a9b 3522
dd41f596 3523 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3524
dd41f596 3525 old_load = this_rq->cpu_load[i];
fdf3e95d 3526 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3527 new_load = this_load;
a25707f3
IM
3528 /*
3529 * Round up the averaging division if load is increasing. This
3530 * prevents us from getting stuck on 9 if the load is 10, for
3531 * example.
3532 */
3533 if (new_load > old_load)
fdf3e95d
VP
3534 new_load += scale - 1;
3535
3536 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3537 }
da2b71ed
SS
3538
3539 sched_avg_update(this_rq);
fdf3e95d
VP
3540}
3541
3542static void update_cpu_load_active(struct rq *this_rq)
3543{
3544 update_cpu_load(this_rq);
46cb4b7c 3545
74f5187a 3546 calc_load_account_active(this_rq);
46cb4b7c
SS
3547}
3548
dd41f596 3549#ifdef CONFIG_SMP
8a0be9ef 3550
46cb4b7c 3551/*
38022906
PZ
3552 * sched_exec - execve() is a valuable balancing opportunity, because at
3553 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3554 */
38022906 3555void sched_exec(void)
46cb4b7c 3556{
38022906 3557 struct task_struct *p = current;
1da177e4 3558 unsigned long flags;
0017d735 3559 int dest_cpu;
46cb4b7c 3560
8f42ced9 3561 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3562 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3563 if (dest_cpu == smp_processor_id())
3564 goto unlock;
38022906 3565
8f42ced9 3566 if (likely(cpu_active(dest_cpu))) {
969c7921 3567 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3568
8f42ced9
PZ
3569 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3570 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3571 return;
3572 }
0017d735 3573unlock:
8f42ced9 3574 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3575}
dd41f596 3576
1da177e4
LT
3577#endif
3578
1da177e4
LT
3579DEFINE_PER_CPU(struct kernel_stat, kstat);
3580
3581EXPORT_PER_CPU_SYMBOL(kstat);
3582
3583/*
c5f8d995 3584 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3585 * @p in case that task is currently running.
c5f8d995
HS
3586 *
3587 * Called with task_rq_lock() held on @rq.
1da177e4 3588 */
c5f8d995
HS
3589static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3590{
3591 u64 ns = 0;
3592
3593 if (task_current(rq, p)) {
3594 update_rq_clock(rq);
305e6835 3595 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3596 if ((s64)ns < 0)
3597 ns = 0;
3598 }
3599
3600 return ns;
3601}
3602
bb34d92f 3603unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3604{
1da177e4 3605 unsigned long flags;
41b86e9c 3606 struct rq *rq;
bb34d92f 3607 u64 ns = 0;
48f24c4d 3608
41b86e9c 3609 rq = task_rq_lock(p, &flags);
c5f8d995 3610 ns = do_task_delta_exec(p, rq);
0122ec5b 3611 task_rq_unlock(rq, p, &flags);
1508487e 3612
c5f8d995
HS
3613 return ns;
3614}
f06febc9 3615
c5f8d995
HS
3616/*
3617 * Return accounted runtime for the task.
3618 * In case the task is currently running, return the runtime plus current's
3619 * pending runtime that have not been accounted yet.
3620 */
3621unsigned long long task_sched_runtime(struct task_struct *p)
3622{
3623 unsigned long flags;
3624 struct rq *rq;
3625 u64 ns = 0;
3626
3627 rq = task_rq_lock(p, &flags);
3628 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3629 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3630
3631 return ns;
3632}
48f24c4d 3633
c5f8d995
HS
3634/*
3635 * Return sum_exec_runtime for the thread group.
3636 * In case the task is currently running, return the sum plus current's
3637 * pending runtime that have not been accounted yet.
3638 *
3639 * Note that the thread group might have other running tasks as well,
3640 * so the return value not includes other pending runtime that other
3641 * running tasks might have.
3642 */
3643unsigned long long thread_group_sched_runtime(struct task_struct *p)
3644{
3645 struct task_cputime totals;
3646 unsigned long flags;
3647 struct rq *rq;
3648 u64 ns;
3649
3650 rq = task_rq_lock(p, &flags);
3651 thread_group_cputime(p, &totals);
3652 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3653 task_rq_unlock(rq, p, &flags);
48f24c4d 3654
1da177e4
LT
3655 return ns;
3656}
3657
1da177e4
LT
3658/*
3659 * Account user cpu time to a process.
3660 * @p: the process that the cpu time gets accounted to
1da177e4 3661 * @cputime: the cpu time spent in user space since the last update
457533a7 3662 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3663 */
457533a7
MS
3664void account_user_time(struct task_struct *p, cputime_t cputime,
3665 cputime_t cputime_scaled)
1da177e4
LT
3666{
3667 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3668 cputime64_t tmp;
3669
457533a7 3670 /* Add user time to process. */
1da177e4 3671 p->utime = cputime_add(p->utime, cputime);
457533a7 3672 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3673 account_group_user_time(p, cputime);
1da177e4
LT
3674
3675 /* Add user time to cpustat. */
3676 tmp = cputime_to_cputime64(cputime);
3677 if (TASK_NICE(p) > 0)
3678 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3679 else
3680 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3681
3682 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3683 /* Account for user time used */
3684 acct_update_integrals(p);
1da177e4
LT
3685}
3686
94886b84
LV
3687/*
3688 * Account guest cpu time to a process.
3689 * @p: the process that the cpu time gets accounted to
3690 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3691 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3692 */
457533a7
MS
3693static void account_guest_time(struct task_struct *p, cputime_t cputime,
3694 cputime_t cputime_scaled)
94886b84
LV
3695{
3696 cputime64_t tmp;
3697 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3698
3699 tmp = cputime_to_cputime64(cputime);
3700
457533a7 3701 /* Add guest time to process. */
94886b84 3702 p->utime = cputime_add(p->utime, cputime);
457533a7 3703 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3704 account_group_user_time(p, cputime);
94886b84
LV
3705 p->gtime = cputime_add(p->gtime, cputime);
3706
457533a7 3707 /* Add guest time to cpustat. */
ce0e7b28
RO
3708 if (TASK_NICE(p) > 0) {
3709 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3710 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3711 } else {
3712 cpustat->user = cputime64_add(cpustat->user, tmp);
3713 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3714 }
94886b84
LV
3715}
3716
70a89a66
VP
3717/*
3718 * Account system cpu time to a process and desired cpustat field
3719 * @p: the process that the cpu time gets accounted to
3720 * @cputime: the cpu time spent in kernel space since the last update
3721 * @cputime_scaled: cputime scaled by cpu frequency
3722 * @target_cputime64: pointer to cpustat field that has to be updated
3723 */
3724static inline
3725void __account_system_time(struct task_struct *p, cputime_t cputime,
3726 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3727{
3728 cputime64_t tmp = cputime_to_cputime64(cputime);
3729
3730 /* Add system time to process. */
3731 p->stime = cputime_add(p->stime, cputime);
3732 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3733 account_group_system_time(p, cputime);
3734
3735 /* Add system time to cpustat. */
3736 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3737 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3738
3739 /* Account for system time used */
3740 acct_update_integrals(p);
3741}
3742
1da177e4
LT
3743/*
3744 * Account system cpu time to a process.
3745 * @p: the process that the cpu time gets accounted to
3746 * @hardirq_offset: the offset to subtract from hardirq_count()
3747 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3748 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3749 */
3750void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3751 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3752{
3753 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3754 cputime64_t *target_cputime64;
1da177e4 3755
983ed7a6 3756 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3757 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3758 return;
3759 }
94886b84 3760
1da177e4 3761 if (hardirq_count() - hardirq_offset)
70a89a66 3762 target_cputime64 = &cpustat->irq;
75e1056f 3763 else if (in_serving_softirq())
70a89a66 3764 target_cputime64 = &cpustat->softirq;
1da177e4 3765 else
70a89a66 3766 target_cputime64 = &cpustat->system;
ef12fefa 3767
70a89a66 3768 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3769}
3770
c66f08be 3771/*
1da177e4 3772 * Account for involuntary wait time.
544b4a1f 3773 * @cputime: the cpu time spent in involuntary wait
c66f08be 3774 */
79741dd3 3775void account_steal_time(cputime_t cputime)
c66f08be 3776{
79741dd3
MS
3777 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3778 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3779
3780 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3781}
3782
1da177e4 3783/*
79741dd3
MS
3784 * Account for idle time.
3785 * @cputime: the cpu time spent in idle wait
1da177e4 3786 */
79741dd3 3787void account_idle_time(cputime_t cputime)
1da177e4
LT
3788{
3789 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3790 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3791 struct rq *rq = this_rq();
1da177e4 3792
79741dd3
MS
3793 if (atomic_read(&rq->nr_iowait) > 0)
3794 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3795 else
3796 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3797}
3798
79741dd3
MS
3799#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3800
abb74cef
VP
3801#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3802/*
3803 * Account a tick to a process and cpustat
3804 * @p: the process that the cpu time gets accounted to
3805 * @user_tick: is the tick from userspace
3806 * @rq: the pointer to rq
3807 *
3808 * Tick demultiplexing follows the order
3809 * - pending hardirq update
3810 * - pending softirq update
3811 * - user_time
3812 * - idle_time
3813 * - system time
3814 * - check for guest_time
3815 * - else account as system_time
3816 *
3817 * Check for hardirq is done both for system and user time as there is
3818 * no timer going off while we are on hardirq and hence we may never get an
3819 * opportunity to update it solely in system time.
3820 * p->stime and friends are only updated on system time and not on irq
3821 * softirq as those do not count in task exec_runtime any more.
3822 */
3823static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3824 struct rq *rq)
3825{
3826 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3827 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3828 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3829
3830 if (irqtime_account_hi_update()) {
3831 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3832 } else if (irqtime_account_si_update()) {
3833 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3834 } else if (this_cpu_ksoftirqd() == p) {
3835 /*
3836 * ksoftirqd time do not get accounted in cpu_softirq_time.
3837 * So, we have to handle it separately here.
3838 * Also, p->stime needs to be updated for ksoftirqd.
3839 */
3840 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3841 &cpustat->softirq);
abb74cef
VP
3842 } else if (user_tick) {
3843 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3844 } else if (p == rq->idle) {
3845 account_idle_time(cputime_one_jiffy);
3846 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3847 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3848 } else {
3849 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3850 &cpustat->system);
3851 }
3852}
3853
3854static void irqtime_account_idle_ticks(int ticks)
3855{
3856 int i;
3857 struct rq *rq = this_rq();
3858
3859 for (i = 0; i < ticks; i++)
3860 irqtime_account_process_tick(current, 0, rq);
3861}
544b4a1f 3862#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3863static void irqtime_account_idle_ticks(int ticks) {}
3864static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3865 struct rq *rq) {}
544b4a1f 3866#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3867
3868/*
3869 * Account a single tick of cpu time.
3870 * @p: the process that the cpu time gets accounted to
3871 * @user_tick: indicates if the tick is a user or a system tick
3872 */
3873void account_process_tick(struct task_struct *p, int user_tick)
3874{
a42548a1 3875 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3876 struct rq *rq = this_rq();
3877
abb74cef
VP
3878 if (sched_clock_irqtime) {
3879 irqtime_account_process_tick(p, user_tick, rq);
3880 return;
3881 }
3882
79741dd3 3883 if (user_tick)
a42548a1 3884 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3885 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3886 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3887 one_jiffy_scaled);
3888 else
a42548a1 3889 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3890}
3891
3892/*
3893 * Account multiple ticks of steal time.
3894 * @p: the process from which the cpu time has been stolen
3895 * @ticks: number of stolen ticks
3896 */
3897void account_steal_ticks(unsigned long ticks)
3898{
3899 account_steal_time(jiffies_to_cputime(ticks));
3900}
3901
3902/*
3903 * Account multiple ticks of idle time.
3904 * @ticks: number of stolen ticks
3905 */
3906void account_idle_ticks(unsigned long ticks)
3907{
abb74cef
VP
3908
3909 if (sched_clock_irqtime) {
3910 irqtime_account_idle_ticks(ticks);
3911 return;
3912 }
3913
79741dd3 3914 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3915}
3916
79741dd3
MS
3917#endif
3918
49048622
BS
3919/*
3920 * Use precise platform statistics if available:
3921 */
3922#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3923void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3924{
d99ca3b9
HS
3925 *ut = p->utime;
3926 *st = p->stime;
49048622
BS
3927}
3928
0cf55e1e 3929void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3930{
0cf55e1e
HS
3931 struct task_cputime cputime;
3932
3933 thread_group_cputime(p, &cputime);
3934
3935 *ut = cputime.utime;
3936 *st = cputime.stime;
49048622
BS
3937}
3938#else
761b1d26
HS
3939
3940#ifndef nsecs_to_cputime
b7b20df9 3941# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3942#endif
3943
d180c5bc 3944void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3945{
d99ca3b9 3946 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3947
3948 /*
3949 * Use CFS's precise accounting:
3950 */
d180c5bc 3951 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3952
3953 if (total) {
e75e863d 3954 u64 temp = rtime;
d180c5bc 3955
e75e863d 3956 temp *= utime;
49048622 3957 do_div(temp, total);
d180c5bc
HS
3958 utime = (cputime_t)temp;
3959 } else
3960 utime = rtime;
49048622 3961
d180c5bc
HS
3962 /*
3963 * Compare with previous values, to keep monotonicity:
3964 */
761b1d26 3965 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3966 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3967
d99ca3b9
HS
3968 *ut = p->prev_utime;
3969 *st = p->prev_stime;
49048622
BS
3970}
3971
0cf55e1e
HS
3972/*
3973 * Must be called with siglock held.
3974 */
3975void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3976{
0cf55e1e
HS
3977 struct signal_struct *sig = p->signal;
3978 struct task_cputime cputime;
3979 cputime_t rtime, utime, total;
49048622 3980
0cf55e1e 3981 thread_group_cputime(p, &cputime);
49048622 3982
0cf55e1e
HS
3983 total = cputime_add(cputime.utime, cputime.stime);
3984 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3985
0cf55e1e 3986 if (total) {
e75e863d 3987 u64 temp = rtime;
49048622 3988
e75e863d 3989 temp *= cputime.utime;
0cf55e1e
HS
3990 do_div(temp, total);
3991 utime = (cputime_t)temp;
3992 } else
3993 utime = rtime;
3994
3995 sig->prev_utime = max(sig->prev_utime, utime);
3996 sig->prev_stime = max(sig->prev_stime,
3997 cputime_sub(rtime, sig->prev_utime));
3998
3999 *ut = sig->prev_utime;
4000 *st = sig->prev_stime;
49048622 4001}
49048622 4002#endif
49048622 4003
7835b98b
CL
4004/*
4005 * This function gets called by the timer code, with HZ frequency.
4006 * We call it with interrupts disabled.
7835b98b
CL
4007 */
4008void scheduler_tick(void)
4009{
7835b98b
CL
4010 int cpu = smp_processor_id();
4011 struct rq *rq = cpu_rq(cpu);
dd41f596 4012 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4013
4014 sched_clock_tick();
dd41f596 4015
05fa785c 4016 raw_spin_lock(&rq->lock);
3e51f33f 4017 update_rq_clock(rq);
fdf3e95d 4018 update_cpu_load_active(rq);
fa85ae24 4019 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4020 raw_spin_unlock(&rq->lock);
7835b98b 4021
e9d2b064 4022 perf_event_task_tick();
e220d2dc 4023
e418e1c2 4024#ifdef CONFIG_SMP
dd41f596
IM
4025 rq->idle_at_tick = idle_cpu(cpu);
4026 trigger_load_balance(rq, cpu);
e418e1c2 4027#endif
1da177e4
LT
4028}
4029
132380a0 4030notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4031{
4032 if (in_lock_functions(addr)) {
4033 addr = CALLER_ADDR2;
4034 if (in_lock_functions(addr))
4035 addr = CALLER_ADDR3;
4036 }
4037 return addr;
4038}
1da177e4 4039
7e49fcce
SR
4040#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4041 defined(CONFIG_PREEMPT_TRACER))
4042
43627582 4043void __kprobes add_preempt_count(int val)
1da177e4 4044{
6cd8a4bb 4045#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4046 /*
4047 * Underflow?
4048 */
9a11b49a
IM
4049 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4050 return;
6cd8a4bb 4051#endif
1da177e4 4052 preempt_count() += val;
6cd8a4bb 4053#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4054 /*
4055 * Spinlock count overflowing soon?
4056 */
33859f7f
MOS
4057 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4058 PREEMPT_MASK - 10);
6cd8a4bb
SR
4059#endif
4060 if (preempt_count() == val)
4061 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4062}
4063EXPORT_SYMBOL(add_preempt_count);
4064
43627582 4065void __kprobes sub_preempt_count(int val)
1da177e4 4066{
6cd8a4bb 4067#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4068 /*
4069 * Underflow?
4070 */
01e3eb82 4071 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4072 return;
1da177e4
LT
4073 /*
4074 * Is the spinlock portion underflowing?
4075 */
9a11b49a
IM
4076 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4077 !(preempt_count() & PREEMPT_MASK)))
4078 return;
6cd8a4bb 4079#endif
9a11b49a 4080
6cd8a4bb
SR
4081 if (preempt_count() == val)
4082 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4083 preempt_count() -= val;
4084}
4085EXPORT_SYMBOL(sub_preempt_count);
4086
4087#endif
4088
4089/*
dd41f596 4090 * Print scheduling while atomic bug:
1da177e4 4091 */
dd41f596 4092static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4093{
838225b4
SS
4094 struct pt_regs *regs = get_irq_regs();
4095
3df0fc5b
PZ
4096 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4097 prev->comm, prev->pid, preempt_count());
838225b4 4098
dd41f596 4099 debug_show_held_locks(prev);
e21f5b15 4100 print_modules();
dd41f596
IM
4101 if (irqs_disabled())
4102 print_irqtrace_events(prev);
838225b4
SS
4103
4104 if (regs)
4105 show_regs(regs);
4106 else
4107 dump_stack();
dd41f596 4108}
1da177e4 4109
dd41f596
IM
4110/*
4111 * Various schedule()-time debugging checks and statistics:
4112 */
4113static inline void schedule_debug(struct task_struct *prev)
4114{
1da177e4 4115 /*
41a2d6cf 4116 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4117 * schedule() atomically, we ignore that path for now.
4118 * Otherwise, whine if we are scheduling when we should not be.
4119 */
3f33a7ce 4120 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4121 __schedule_bug(prev);
4122
1da177e4
LT
4123 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4124
2d72376b 4125 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4126}
4127
6cecd084 4128static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4129{
fd2f4419 4130 if (prev->on_rq)
a64692a3 4131 update_rq_clock(rq);
6cecd084 4132 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4133}
4134
dd41f596
IM
4135/*
4136 * Pick up the highest-prio task:
4137 */
4138static inline struct task_struct *
b67802ea 4139pick_next_task(struct rq *rq)
dd41f596 4140{
5522d5d5 4141 const struct sched_class *class;
dd41f596 4142 struct task_struct *p;
1da177e4
LT
4143
4144 /*
dd41f596
IM
4145 * Optimization: we know that if all tasks are in
4146 * the fair class we can call that function directly:
1da177e4 4147 */
dd41f596 4148 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4149 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4150 if (likely(p))
4151 return p;
1da177e4
LT
4152 }
4153
34f971f6 4154 for_each_class(class) {
fb8d4724 4155 p = class->pick_next_task(rq);
dd41f596
IM
4156 if (p)
4157 return p;
dd41f596 4158 }
34f971f6
PZ
4159
4160 BUG(); /* the idle class will always have a runnable task */
dd41f596 4161}
1da177e4 4162
dd41f596
IM
4163/*
4164 * schedule() is the main scheduler function.
4165 */
ff743345 4166asmlinkage void __sched schedule(void)
dd41f596
IM
4167{
4168 struct task_struct *prev, *next;
67ca7bde 4169 unsigned long *switch_count;
dd41f596 4170 struct rq *rq;
31656519 4171 int cpu;
dd41f596 4172
ff743345
PZ
4173need_resched:
4174 preempt_disable();
dd41f596
IM
4175 cpu = smp_processor_id();
4176 rq = cpu_rq(cpu);
25502a6c 4177 rcu_note_context_switch(cpu);
dd41f596 4178 prev = rq->curr;
dd41f596 4179
dd41f596 4180 schedule_debug(prev);
1da177e4 4181
31656519 4182 if (sched_feat(HRTICK))
f333fdc9 4183 hrtick_clear(rq);
8f4d37ec 4184
05fa785c 4185 raw_spin_lock_irq(&rq->lock);
1da177e4 4186
246d86b5 4187 switch_count = &prev->nivcsw;
1da177e4 4188 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4189 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4190 prev->state = TASK_RUNNING;
21aa9af0 4191 } else {
2acca55e
PZ
4192 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4193 prev->on_rq = 0;
4194
21aa9af0 4195 /*
2acca55e
PZ
4196 * If a worker went to sleep, notify and ask workqueue
4197 * whether it wants to wake up a task to maintain
4198 * concurrency.
21aa9af0
TH
4199 */
4200 if (prev->flags & PF_WQ_WORKER) {
4201 struct task_struct *to_wakeup;
4202
4203 to_wakeup = wq_worker_sleeping(prev, cpu);
4204 if (to_wakeup)
4205 try_to_wake_up_local(to_wakeup);
4206 }
fd2f4419 4207
6631e635 4208 /*
2acca55e
PZ
4209 * If we are going to sleep and we have plugged IO
4210 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4211 */
4212 if (blk_needs_flush_plug(prev)) {
4213 raw_spin_unlock(&rq->lock);
a237c1c5 4214 blk_schedule_flush_plug(prev);
6631e635
LT
4215 raw_spin_lock(&rq->lock);
4216 }
21aa9af0 4217 }
dd41f596 4218 switch_count = &prev->nvcsw;
1da177e4
LT
4219 }
4220
3f029d3c 4221 pre_schedule(rq, prev);
f65eda4f 4222
dd41f596 4223 if (unlikely(!rq->nr_running))
1da177e4 4224 idle_balance(cpu, rq);
1da177e4 4225
df1c99d4 4226 put_prev_task(rq, prev);
b67802ea 4227 next = pick_next_task(rq);
f26f9aff
MG
4228 clear_tsk_need_resched(prev);
4229 rq->skip_clock_update = 0;
1da177e4 4230
1da177e4 4231 if (likely(prev != next)) {
1da177e4
LT
4232 rq->nr_switches++;
4233 rq->curr = next;
4234 ++*switch_count;
4235
dd41f596 4236 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4237 /*
246d86b5
ON
4238 * The context switch have flipped the stack from under us
4239 * and restored the local variables which were saved when
4240 * this task called schedule() in the past. prev == current
4241 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4242 */
4243 cpu = smp_processor_id();
4244 rq = cpu_rq(cpu);
1da177e4 4245 } else
05fa785c 4246 raw_spin_unlock_irq(&rq->lock);
1da177e4 4247
3f029d3c 4248 post_schedule(rq);
1da177e4 4249
1da177e4 4250 preempt_enable_no_resched();
ff743345 4251 if (need_resched())
1da177e4
LT
4252 goto need_resched;
4253}
1da177e4
LT
4254EXPORT_SYMBOL(schedule);
4255
c08f7829 4256#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4257
c6eb3dda
PZ
4258static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4259{
4260 bool ret = false;
0d66bf6d 4261
c6eb3dda
PZ
4262 rcu_read_lock();
4263 if (lock->owner != owner)
4264 goto fail;
0d66bf6d
PZ
4265
4266 /*
c6eb3dda
PZ
4267 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4268 * lock->owner still matches owner, if that fails, owner might
4269 * point to free()d memory, if it still matches, the rcu_read_lock()
4270 * ensures the memory stays valid.
0d66bf6d 4271 */
c6eb3dda 4272 barrier();
0d66bf6d 4273
c6eb3dda
PZ
4274 ret = owner->on_cpu;
4275fail:
4276 rcu_read_unlock();
0d66bf6d 4277
c6eb3dda
PZ
4278 return ret;
4279}
0d66bf6d 4280
c6eb3dda
PZ
4281/*
4282 * Look out! "owner" is an entirely speculative pointer
4283 * access and not reliable.
4284 */
4285int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4286{
4287 if (!sched_feat(OWNER_SPIN))
4288 return 0;
0d66bf6d 4289
c6eb3dda
PZ
4290 while (owner_running(lock, owner)) {
4291 if (need_resched())
0d66bf6d
PZ
4292 return 0;
4293
335d7afb 4294 arch_mutex_cpu_relax();
0d66bf6d 4295 }
4b402210 4296
c6eb3dda
PZ
4297 /*
4298 * If the owner changed to another task there is likely
4299 * heavy contention, stop spinning.
4300 */
4301 if (lock->owner)
4302 return 0;
4303
0d66bf6d
PZ
4304 return 1;
4305}
4306#endif
4307
1da177e4
LT
4308#ifdef CONFIG_PREEMPT
4309/*
2ed6e34f 4310 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4311 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4312 * occur there and call schedule directly.
4313 */
d1f74e20 4314asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4315{
4316 struct thread_info *ti = current_thread_info();
6478d880 4317
1da177e4
LT
4318 /*
4319 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4320 * we do not want to preempt the current task. Just return..
1da177e4 4321 */
beed33a8 4322 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4323 return;
4324
3a5c359a 4325 do {
d1f74e20 4326 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4327 schedule();
d1f74e20 4328 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4329
3a5c359a
AK
4330 /*
4331 * Check again in case we missed a preemption opportunity
4332 * between schedule and now.
4333 */
4334 barrier();
5ed0cec0 4335 } while (need_resched());
1da177e4 4336}
1da177e4
LT
4337EXPORT_SYMBOL(preempt_schedule);
4338
4339/*
2ed6e34f 4340 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4341 * off of irq context.
4342 * Note, that this is called and return with irqs disabled. This will
4343 * protect us against recursive calling from irq.
4344 */
4345asmlinkage void __sched preempt_schedule_irq(void)
4346{
4347 struct thread_info *ti = current_thread_info();
6478d880 4348
2ed6e34f 4349 /* Catch callers which need to be fixed */
1da177e4
LT
4350 BUG_ON(ti->preempt_count || !irqs_disabled());
4351
3a5c359a
AK
4352 do {
4353 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4354 local_irq_enable();
4355 schedule();
4356 local_irq_disable();
3a5c359a 4357 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4358
3a5c359a
AK
4359 /*
4360 * Check again in case we missed a preemption opportunity
4361 * between schedule and now.
4362 */
4363 barrier();
5ed0cec0 4364 } while (need_resched());
1da177e4
LT
4365}
4366
4367#endif /* CONFIG_PREEMPT */
4368
63859d4f 4369int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4370 void *key)
1da177e4 4371{
63859d4f 4372 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4373}
1da177e4
LT
4374EXPORT_SYMBOL(default_wake_function);
4375
4376/*
41a2d6cf
IM
4377 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4378 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4379 * number) then we wake all the non-exclusive tasks and one exclusive task.
4380 *
4381 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4382 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4383 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4384 */
78ddb08f 4385static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4386 int nr_exclusive, int wake_flags, void *key)
1da177e4 4387{
2e45874c 4388 wait_queue_t *curr, *next;
1da177e4 4389
2e45874c 4390 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4391 unsigned flags = curr->flags;
4392
63859d4f 4393 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4394 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4395 break;
4396 }
4397}
4398
4399/**
4400 * __wake_up - wake up threads blocked on a waitqueue.
4401 * @q: the waitqueue
4402 * @mode: which threads
4403 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4404 * @key: is directly passed to the wakeup function
50fa610a
DH
4405 *
4406 * It may be assumed that this function implies a write memory barrier before
4407 * changing the task state if and only if any tasks are woken up.
1da177e4 4408 */
7ad5b3a5 4409void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4410 int nr_exclusive, void *key)
1da177e4
LT
4411{
4412 unsigned long flags;
4413
4414 spin_lock_irqsave(&q->lock, flags);
4415 __wake_up_common(q, mode, nr_exclusive, 0, key);
4416 spin_unlock_irqrestore(&q->lock, flags);
4417}
1da177e4
LT
4418EXPORT_SYMBOL(__wake_up);
4419
4420/*
4421 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4422 */
7ad5b3a5 4423void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4424{
4425 __wake_up_common(q, mode, 1, 0, NULL);
4426}
22c43c81 4427EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4428
4ede816a
DL
4429void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4430{
4431 __wake_up_common(q, mode, 1, 0, key);
4432}
bf294b41 4433EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4434
1da177e4 4435/**
4ede816a 4436 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4437 * @q: the waitqueue
4438 * @mode: which threads
4439 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4440 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4441 *
4442 * The sync wakeup differs that the waker knows that it will schedule
4443 * away soon, so while the target thread will be woken up, it will not
4444 * be migrated to another CPU - ie. the two threads are 'synchronized'
4445 * with each other. This can prevent needless bouncing between CPUs.
4446 *
4447 * On UP it can prevent extra preemption.
50fa610a
DH
4448 *
4449 * It may be assumed that this function implies a write memory barrier before
4450 * changing the task state if and only if any tasks are woken up.
1da177e4 4451 */
4ede816a
DL
4452void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4453 int nr_exclusive, void *key)
1da177e4
LT
4454{
4455 unsigned long flags;
7d478721 4456 int wake_flags = WF_SYNC;
1da177e4
LT
4457
4458 if (unlikely(!q))
4459 return;
4460
4461 if (unlikely(!nr_exclusive))
7d478721 4462 wake_flags = 0;
1da177e4
LT
4463
4464 spin_lock_irqsave(&q->lock, flags);
7d478721 4465 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4466 spin_unlock_irqrestore(&q->lock, flags);
4467}
4ede816a
DL
4468EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4469
4470/*
4471 * __wake_up_sync - see __wake_up_sync_key()
4472 */
4473void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4474{
4475 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4476}
1da177e4
LT
4477EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4478
65eb3dc6
KD
4479/**
4480 * complete: - signals a single thread waiting on this completion
4481 * @x: holds the state of this particular completion
4482 *
4483 * This will wake up a single thread waiting on this completion. Threads will be
4484 * awakened in the same order in which they were queued.
4485 *
4486 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4487 *
4488 * It may be assumed that this function implies a write memory barrier before
4489 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4490 */
b15136e9 4491void complete(struct completion *x)
1da177e4
LT
4492{
4493 unsigned long flags;
4494
4495 spin_lock_irqsave(&x->wait.lock, flags);
4496 x->done++;
d9514f6c 4497 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4498 spin_unlock_irqrestore(&x->wait.lock, flags);
4499}
4500EXPORT_SYMBOL(complete);
4501
65eb3dc6
KD
4502/**
4503 * complete_all: - signals all threads waiting on this completion
4504 * @x: holds the state of this particular completion
4505 *
4506 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4507 *
4508 * It may be assumed that this function implies a write memory barrier before
4509 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4510 */
b15136e9 4511void complete_all(struct completion *x)
1da177e4
LT
4512{
4513 unsigned long flags;
4514
4515 spin_lock_irqsave(&x->wait.lock, flags);
4516 x->done += UINT_MAX/2;
d9514f6c 4517 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4518 spin_unlock_irqrestore(&x->wait.lock, flags);
4519}
4520EXPORT_SYMBOL(complete_all);
4521
8cbbe86d
AK
4522static inline long __sched
4523do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4524{
1da177e4
LT
4525 if (!x->done) {
4526 DECLARE_WAITQUEUE(wait, current);
4527
a93d2f17 4528 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4529 do {
94d3d824 4530 if (signal_pending_state(state, current)) {
ea71a546
ON
4531 timeout = -ERESTARTSYS;
4532 break;
8cbbe86d
AK
4533 }
4534 __set_current_state(state);
1da177e4
LT
4535 spin_unlock_irq(&x->wait.lock);
4536 timeout = schedule_timeout(timeout);
4537 spin_lock_irq(&x->wait.lock);
ea71a546 4538 } while (!x->done && timeout);
1da177e4 4539 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4540 if (!x->done)
4541 return timeout;
1da177e4
LT
4542 }
4543 x->done--;
ea71a546 4544 return timeout ?: 1;
1da177e4 4545}
1da177e4 4546
8cbbe86d
AK
4547static long __sched
4548wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4549{
1da177e4
LT
4550 might_sleep();
4551
4552 spin_lock_irq(&x->wait.lock);
8cbbe86d 4553 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4554 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4555 return timeout;
4556}
1da177e4 4557
65eb3dc6
KD
4558/**
4559 * wait_for_completion: - waits for completion of a task
4560 * @x: holds the state of this particular completion
4561 *
4562 * This waits to be signaled for completion of a specific task. It is NOT
4563 * interruptible and there is no timeout.
4564 *
4565 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4566 * and interrupt capability. Also see complete().
4567 */
b15136e9 4568void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4569{
4570 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4571}
8cbbe86d 4572EXPORT_SYMBOL(wait_for_completion);
1da177e4 4573
65eb3dc6
KD
4574/**
4575 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4576 * @x: holds the state of this particular completion
4577 * @timeout: timeout value in jiffies
4578 *
4579 * This waits for either a completion of a specific task to be signaled or for a
4580 * specified timeout to expire. The timeout is in jiffies. It is not
4581 * interruptible.
4582 */
b15136e9 4583unsigned long __sched
8cbbe86d 4584wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4585{
8cbbe86d 4586 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4587}
8cbbe86d 4588EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4589
65eb3dc6
KD
4590/**
4591 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4592 * @x: holds the state of this particular completion
4593 *
4594 * This waits for completion of a specific task to be signaled. It is
4595 * interruptible.
4596 */
8cbbe86d 4597int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4598{
51e97990
AK
4599 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4600 if (t == -ERESTARTSYS)
4601 return t;
4602 return 0;
0fec171c 4603}
8cbbe86d 4604EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4605
65eb3dc6
KD
4606/**
4607 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4608 * @x: holds the state of this particular completion
4609 * @timeout: timeout value in jiffies
4610 *
4611 * This waits for either a completion of a specific task to be signaled or for a
4612 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4613 */
6bf41237 4614long __sched
8cbbe86d
AK
4615wait_for_completion_interruptible_timeout(struct completion *x,
4616 unsigned long timeout)
0fec171c 4617{
8cbbe86d 4618 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4619}
8cbbe86d 4620EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4621
65eb3dc6
KD
4622/**
4623 * wait_for_completion_killable: - waits for completion of a task (killable)
4624 * @x: holds the state of this particular completion
4625 *
4626 * This waits to be signaled for completion of a specific task. It can be
4627 * interrupted by a kill signal.
4628 */
009e577e
MW
4629int __sched wait_for_completion_killable(struct completion *x)
4630{
4631 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4632 if (t == -ERESTARTSYS)
4633 return t;
4634 return 0;
4635}
4636EXPORT_SYMBOL(wait_for_completion_killable);
4637
0aa12fb4
SW
4638/**
4639 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4640 * @x: holds the state of this particular completion
4641 * @timeout: timeout value in jiffies
4642 *
4643 * This waits for either a completion of a specific task to be
4644 * signaled or for a specified timeout to expire. It can be
4645 * interrupted by a kill signal. The timeout is in jiffies.
4646 */
6bf41237 4647long __sched
0aa12fb4
SW
4648wait_for_completion_killable_timeout(struct completion *x,
4649 unsigned long timeout)
4650{
4651 return wait_for_common(x, timeout, TASK_KILLABLE);
4652}
4653EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4654
be4de352
DC
4655/**
4656 * try_wait_for_completion - try to decrement a completion without blocking
4657 * @x: completion structure
4658 *
4659 * Returns: 0 if a decrement cannot be done without blocking
4660 * 1 if a decrement succeeded.
4661 *
4662 * If a completion is being used as a counting completion,
4663 * attempt to decrement the counter without blocking. This
4664 * enables us to avoid waiting if the resource the completion
4665 * is protecting is not available.
4666 */
4667bool try_wait_for_completion(struct completion *x)
4668{
7539a3b3 4669 unsigned long flags;
be4de352
DC
4670 int ret = 1;
4671
7539a3b3 4672 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4673 if (!x->done)
4674 ret = 0;
4675 else
4676 x->done--;
7539a3b3 4677 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4678 return ret;
4679}
4680EXPORT_SYMBOL(try_wait_for_completion);
4681
4682/**
4683 * completion_done - Test to see if a completion has any waiters
4684 * @x: completion structure
4685 *
4686 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4687 * 1 if there are no waiters.
4688 *
4689 */
4690bool completion_done(struct completion *x)
4691{
7539a3b3 4692 unsigned long flags;
be4de352
DC
4693 int ret = 1;
4694
7539a3b3 4695 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4696 if (!x->done)
4697 ret = 0;
7539a3b3 4698 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4699 return ret;
4700}
4701EXPORT_SYMBOL(completion_done);
4702
8cbbe86d
AK
4703static long __sched
4704sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4705{
0fec171c
IM
4706 unsigned long flags;
4707 wait_queue_t wait;
4708
4709 init_waitqueue_entry(&wait, current);
1da177e4 4710
8cbbe86d 4711 __set_current_state(state);
1da177e4 4712
8cbbe86d
AK
4713 spin_lock_irqsave(&q->lock, flags);
4714 __add_wait_queue(q, &wait);
4715 spin_unlock(&q->lock);
4716 timeout = schedule_timeout(timeout);
4717 spin_lock_irq(&q->lock);
4718 __remove_wait_queue(q, &wait);
4719 spin_unlock_irqrestore(&q->lock, flags);
4720
4721 return timeout;
4722}
4723
4724void __sched interruptible_sleep_on(wait_queue_head_t *q)
4725{
4726 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4727}
1da177e4
LT
4728EXPORT_SYMBOL(interruptible_sleep_on);
4729
0fec171c 4730long __sched
95cdf3b7 4731interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4732{
8cbbe86d 4733 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4734}
1da177e4
LT
4735EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4736
0fec171c 4737void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4738{
8cbbe86d 4739 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4740}
1da177e4
LT
4741EXPORT_SYMBOL(sleep_on);
4742
0fec171c 4743long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4744{
8cbbe86d 4745 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4746}
1da177e4
LT
4747EXPORT_SYMBOL(sleep_on_timeout);
4748
b29739f9
IM
4749#ifdef CONFIG_RT_MUTEXES
4750
4751/*
4752 * rt_mutex_setprio - set the current priority of a task
4753 * @p: task
4754 * @prio: prio value (kernel-internal form)
4755 *
4756 * This function changes the 'effective' priority of a task. It does
4757 * not touch ->normal_prio like __setscheduler().
4758 *
4759 * Used by the rt_mutex code to implement priority inheritance logic.
4760 */
36c8b586 4761void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4762{
83b699ed 4763 int oldprio, on_rq, running;
70b97a7f 4764 struct rq *rq;
83ab0aa0 4765 const struct sched_class *prev_class;
b29739f9
IM
4766
4767 BUG_ON(prio < 0 || prio > MAX_PRIO);
4768
0122ec5b 4769 rq = __task_rq_lock(p);
b29739f9 4770
a8027073 4771 trace_sched_pi_setprio(p, prio);
d5f9f942 4772 oldprio = p->prio;
83ab0aa0 4773 prev_class = p->sched_class;
fd2f4419 4774 on_rq = p->on_rq;
051a1d1a 4775 running = task_current(rq, p);
0e1f3483 4776 if (on_rq)
69be72c1 4777 dequeue_task(rq, p, 0);
0e1f3483
HS
4778 if (running)
4779 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4780
4781 if (rt_prio(prio))
4782 p->sched_class = &rt_sched_class;
4783 else
4784 p->sched_class = &fair_sched_class;
4785
b29739f9
IM
4786 p->prio = prio;
4787
0e1f3483
HS
4788 if (running)
4789 p->sched_class->set_curr_task(rq);
da7a735e 4790 if (on_rq)
371fd7e7 4791 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4792
da7a735e 4793 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4794 __task_rq_unlock(rq);
b29739f9
IM
4795}
4796
4797#endif
4798
36c8b586 4799void set_user_nice(struct task_struct *p, long nice)
1da177e4 4800{
dd41f596 4801 int old_prio, delta, on_rq;
1da177e4 4802 unsigned long flags;
70b97a7f 4803 struct rq *rq;
1da177e4
LT
4804
4805 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4806 return;
4807 /*
4808 * We have to be careful, if called from sys_setpriority(),
4809 * the task might be in the middle of scheduling on another CPU.
4810 */
4811 rq = task_rq_lock(p, &flags);
4812 /*
4813 * The RT priorities are set via sched_setscheduler(), but we still
4814 * allow the 'normal' nice value to be set - but as expected
4815 * it wont have any effect on scheduling until the task is
dd41f596 4816 * SCHED_FIFO/SCHED_RR:
1da177e4 4817 */
e05606d3 4818 if (task_has_rt_policy(p)) {
1da177e4
LT
4819 p->static_prio = NICE_TO_PRIO(nice);
4820 goto out_unlock;
4821 }
fd2f4419 4822 on_rq = p->on_rq;
c09595f6 4823 if (on_rq)
69be72c1 4824 dequeue_task(rq, p, 0);
1da177e4 4825
1da177e4 4826 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4827 set_load_weight(p);
b29739f9
IM
4828 old_prio = p->prio;
4829 p->prio = effective_prio(p);
4830 delta = p->prio - old_prio;
1da177e4 4831
dd41f596 4832 if (on_rq) {
371fd7e7 4833 enqueue_task(rq, p, 0);
1da177e4 4834 /*
d5f9f942
AM
4835 * If the task increased its priority or is running and
4836 * lowered its priority, then reschedule its CPU:
1da177e4 4837 */
d5f9f942 4838 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4839 resched_task(rq->curr);
4840 }
4841out_unlock:
0122ec5b 4842 task_rq_unlock(rq, p, &flags);
1da177e4 4843}
1da177e4
LT
4844EXPORT_SYMBOL(set_user_nice);
4845
e43379f1
MM
4846/*
4847 * can_nice - check if a task can reduce its nice value
4848 * @p: task
4849 * @nice: nice value
4850 */
36c8b586 4851int can_nice(const struct task_struct *p, const int nice)
e43379f1 4852{
024f4747
MM
4853 /* convert nice value [19,-20] to rlimit style value [1,40] */
4854 int nice_rlim = 20 - nice;
48f24c4d 4855
78d7d407 4856 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4857 capable(CAP_SYS_NICE));
4858}
4859
1da177e4
LT
4860#ifdef __ARCH_WANT_SYS_NICE
4861
4862/*
4863 * sys_nice - change the priority of the current process.
4864 * @increment: priority increment
4865 *
4866 * sys_setpriority is a more generic, but much slower function that
4867 * does similar things.
4868 */
5add95d4 4869SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4870{
48f24c4d 4871 long nice, retval;
1da177e4
LT
4872
4873 /*
4874 * Setpriority might change our priority at the same moment.
4875 * We don't have to worry. Conceptually one call occurs first
4876 * and we have a single winner.
4877 */
e43379f1
MM
4878 if (increment < -40)
4879 increment = -40;
1da177e4
LT
4880 if (increment > 40)
4881 increment = 40;
4882
2b8f836f 4883 nice = TASK_NICE(current) + increment;
1da177e4
LT
4884 if (nice < -20)
4885 nice = -20;
4886 if (nice > 19)
4887 nice = 19;
4888
e43379f1
MM
4889 if (increment < 0 && !can_nice(current, nice))
4890 return -EPERM;
4891
1da177e4
LT
4892 retval = security_task_setnice(current, nice);
4893 if (retval)
4894 return retval;
4895
4896 set_user_nice(current, nice);
4897 return 0;
4898}
4899
4900#endif
4901
4902/**
4903 * task_prio - return the priority value of a given task.
4904 * @p: the task in question.
4905 *
4906 * This is the priority value as seen by users in /proc.
4907 * RT tasks are offset by -200. Normal tasks are centered
4908 * around 0, value goes from -16 to +15.
4909 */
36c8b586 4910int task_prio(const struct task_struct *p)
1da177e4
LT
4911{
4912 return p->prio - MAX_RT_PRIO;
4913}
4914
4915/**
4916 * task_nice - return the nice value of a given task.
4917 * @p: the task in question.
4918 */
36c8b586 4919int task_nice(const struct task_struct *p)
1da177e4
LT
4920{
4921 return TASK_NICE(p);
4922}
150d8bed 4923EXPORT_SYMBOL(task_nice);
1da177e4
LT
4924
4925/**
4926 * idle_cpu - is a given cpu idle currently?
4927 * @cpu: the processor in question.
4928 */
4929int idle_cpu(int cpu)
4930{
4931 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4932}
4933
1da177e4
LT
4934/**
4935 * idle_task - return the idle task for a given cpu.
4936 * @cpu: the processor in question.
4937 */
36c8b586 4938struct task_struct *idle_task(int cpu)
1da177e4
LT
4939{
4940 return cpu_rq(cpu)->idle;
4941}
4942
4943/**
4944 * find_process_by_pid - find a process with a matching PID value.
4945 * @pid: the pid in question.
4946 */
a9957449 4947static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4948{
228ebcbe 4949 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4950}
4951
4952/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4953static void
4954__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4955{
1da177e4
LT
4956 p->policy = policy;
4957 p->rt_priority = prio;
b29739f9
IM
4958 p->normal_prio = normal_prio(p);
4959 /* we are holding p->pi_lock already */
4960 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4961 if (rt_prio(p->prio))
4962 p->sched_class = &rt_sched_class;
4963 else
4964 p->sched_class = &fair_sched_class;
2dd73a4f 4965 set_load_weight(p);
1da177e4
LT
4966}
4967
c69e8d9c
DH
4968/*
4969 * check the target process has a UID that matches the current process's
4970 */
4971static bool check_same_owner(struct task_struct *p)
4972{
4973 const struct cred *cred = current_cred(), *pcred;
4974 bool match;
4975
4976 rcu_read_lock();
4977 pcred = __task_cred(p);
b0e77598
SH
4978 if (cred->user->user_ns == pcred->user->user_ns)
4979 match = (cred->euid == pcred->euid ||
4980 cred->euid == pcred->uid);
4981 else
4982 match = false;
c69e8d9c
DH
4983 rcu_read_unlock();
4984 return match;
4985}
4986
961ccddd 4987static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4988 const struct sched_param *param, bool user)
1da177e4 4989{
83b699ed 4990 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4991 unsigned long flags;
83ab0aa0 4992 const struct sched_class *prev_class;
70b97a7f 4993 struct rq *rq;
ca94c442 4994 int reset_on_fork;
1da177e4 4995
66e5393a
SR
4996 /* may grab non-irq protected spin_locks */
4997 BUG_ON(in_interrupt());
1da177e4
LT
4998recheck:
4999 /* double check policy once rq lock held */
ca94c442
LP
5000 if (policy < 0) {
5001 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5002 policy = oldpolicy = p->policy;
ca94c442
LP
5003 } else {
5004 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5005 policy &= ~SCHED_RESET_ON_FORK;
5006
5007 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5008 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5009 policy != SCHED_IDLE)
5010 return -EINVAL;
5011 }
5012
1da177e4
LT
5013 /*
5014 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5015 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5016 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5017 */
5018 if (param->sched_priority < 0 ||
95cdf3b7 5019 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5020 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5021 return -EINVAL;
e05606d3 5022 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5023 return -EINVAL;
5024
37e4ab3f
OC
5025 /*
5026 * Allow unprivileged RT tasks to decrease priority:
5027 */
961ccddd 5028 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5029 if (rt_policy(policy)) {
a44702e8
ON
5030 unsigned long rlim_rtprio =
5031 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5032
5033 /* can't set/change the rt policy */
5034 if (policy != p->policy && !rlim_rtprio)
5035 return -EPERM;
5036
5037 /* can't increase priority */
5038 if (param->sched_priority > p->rt_priority &&
5039 param->sched_priority > rlim_rtprio)
5040 return -EPERM;
5041 }
c02aa73b 5042
dd41f596 5043 /*
c02aa73b
DH
5044 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5045 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5046 */
c02aa73b
DH
5047 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5048 if (!can_nice(p, TASK_NICE(p)))
5049 return -EPERM;
5050 }
5fe1d75f 5051
37e4ab3f 5052 /* can't change other user's priorities */
c69e8d9c 5053 if (!check_same_owner(p))
37e4ab3f 5054 return -EPERM;
ca94c442
LP
5055
5056 /* Normal users shall not reset the sched_reset_on_fork flag */
5057 if (p->sched_reset_on_fork && !reset_on_fork)
5058 return -EPERM;
37e4ab3f 5059 }
1da177e4 5060
725aad24 5061 if (user) {
b0ae1981 5062 retval = security_task_setscheduler(p);
725aad24
JF
5063 if (retval)
5064 return retval;
5065 }
5066
b29739f9
IM
5067 /*
5068 * make sure no PI-waiters arrive (or leave) while we are
5069 * changing the priority of the task:
0122ec5b 5070 *
25985edc 5071 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5072 * runqueue lock must be held.
5073 */
0122ec5b 5074 rq = task_rq_lock(p, &flags);
dc61b1d6 5075
34f971f6
PZ
5076 /*
5077 * Changing the policy of the stop threads its a very bad idea
5078 */
5079 if (p == rq->stop) {
0122ec5b 5080 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5081 return -EINVAL;
5082 }
5083
a51e9198
DF
5084 /*
5085 * If not changing anything there's no need to proceed further:
5086 */
5087 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5088 param->sched_priority == p->rt_priority))) {
5089
5090 __task_rq_unlock(rq);
5091 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5092 return 0;
5093 }
5094
dc61b1d6
PZ
5095#ifdef CONFIG_RT_GROUP_SCHED
5096 if (user) {
5097 /*
5098 * Do not allow realtime tasks into groups that have no runtime
5099 * assigned.
5100 */
5101 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5102 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5103 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5104 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5105 return -EPERM;
5106 }
5107 }
5108#endif
5109
1da177e4
LT
5110 /* recheck policy now with rq lock held */
5111 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5112 policy = oldpolicy = -1;
0122ec5b 5113 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5114 goto recheck;
5115 }
fd2f4419 5116 on_rq = p->on_rq;
051a1d1a 5117 running = task_current(rq, p);
0e1f3483 5118 if (on_rq)
2e1cb74a 5119 deactivate_task(rq, p, 0);
0e1f3483
HS
5120 if (running)
5121 p->sched_class->put_prev_task(rq, p);
f6b53205 5122
ca94c442
LP
5123 p->sched_reset_on_fork = reset_on_fork;
5124
1da177e4 5125 oldprio = p->prio;
83ab0aa0 5126 prev_class = p->sched_class;
dd41f596 5127 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5128
0e1f3483
HS
5129 if (running)
5130 p->sched_class->set_curr_task(rq);
da7a735e 5131 if (on_rq)
dd41f596 5132 activate_task(rq, p, 0);
cb469845 5133
da7a735e 5134 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5135 task_rq_unlock(rq, p, &flags);
b29739f9 5136
95e02ca9
TG
5137 rt_mutex_adjust_pi(p);
5138
1da177e4
LT
5139 return 0;
5140}
961ccddd
RR
5141
5142/**
5143 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5144 * @p: the task in question.
5145 * @policy: new policy.
5146 * @param: structure containing the new RT priority.
5147 *
5148 * NOTE that the task may be already dead.
5149 */
5150int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5151 const struct sched_param *param)
961ccddd
RR
5152{
5153 return __sched_setscheduler(p, policy, param, true);
5154}
1da177e4
LT
5155EXPORT_SYMBOL_GPL(sched_setscheduler);
5156
961ccddd
RR
5157/**
5158 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5159 * @p: the task in question.
5160 * @policy: new policy.
5161 * @param: structure containing the new RT priority.
5162 *
5163 * Just like sched_setscheduler, only don't bother checking if the
5164 * current context has permission. For example, this is needed in
5165 * stop_machine(): we create temporary high priority worker threads,
5166 * but our caller might not have that capability.
5167 */
5168int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5169 const struct sched_param *param)
961ccddd
RR
5170{
5171 return __sched_setscheduler(p, policy, param, false);
5172}
5173
95cdf3b7
IM
5174static int
5175do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5176{
1da177e4
LT
5177 struct sched_param lparam;
5178 struct task_struct *p;
36c8b586 5179 int retval;
1da177e4
LT
5180
5181 if (!param || pid < 0)
5182 return -EINVAL;
5183 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5184 return -EFAULT;
5fe1d75f
ON
5185
5186 rcu_read_lock();
5187 retval = -ESRCH;
1da177e4 5188 p = find_process_by_pid(pid);
5fe1d75f
ON
5189 if (p != NULL)
5190 retval = sched_setscheduler(p, policy, &lparam);
5191 rcu_read_unlock();
36c8b586 5192
1da177e4
LT
5193 return retval;
5194}
5195
5196/**
5197 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5198 * @pid: the pid in question.
5199 * @policy: new policy.
5200 * @param: structure containing the new RT priority.
5201 */
5add95d4
HC
5202SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5203 struct sched_param __user *, param)
1da177e4 5204{
c21761f1
JB
5205 /* negative values for policy are not valid */
5206 if (policy < 0)
5207 return -EINVAL;
5208
1da177e4
LT
5209 return do_sched_setscheduler(pid, policy, param);
5210}
5211
5212/**
5213 * sys_sched_setparam - set/change the RT priority of a thread
5214 * @pid: the pid in question.
5215 * @param: structure containing the new RT priority.
5216 */
5add95d4 5217SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5218{
5219 return do_sched_setscheduler(pid, -1, param);
5220}
5221
5222/**
5223 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5224 * @pid: the pid in question.
5225 */
5add95d4 5226SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5227{
36c8b586 5228 struct task_struct *p;
3a5c359a 5229 int retval;
1da177e4
LT
5230
5231 if (pid < 0)
3a5c359a 5232 return -EINVAL;
1da177e4
LT
5233
5234 retval = -ESRCH;
5fe85be0 5235 rcu_read_lock();
1da177e4
LT
5236 p = find_process_by_pid(pid);
5237 if (p) {
5238 retval = security_task_getscheduler(p);
5239 if (!retval)
ca94c442
LP
5240 retval = p->policy
5241 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5242 }
5fe85be0 5243 rcu_read_unlock();
1da177e4
LT
5244 return retval;
5245}
5246
5247/**
ca94c442 5248 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5249 * @pid: the pid in question.
5250 * @param: structure containing the RT priority.
5251 */
5add95d4 5252SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5253{
5254 struct sched_param lp;
36c8b586 5255 struct task_struct *p;
3a5c359a 5256 int retval;
1da177e4
LT
5257
5258 if (!param || pid < 0)
3a5c359a 5259 return -EINVAL;
1da177e4 5260
5fe85be0 5261 rcu_read_lock();
1da177e4
LT
5262 p = find_process_by_pid(pid);
5263 retval = -ESRCH;
5264 if (!p)
5265 goto out_unlock;
5266
5267 retval = security_task_getscheduler(p);
5268 if (retval)
5269 goto out_unlock;
5270
5271 lp.sched_priority = p->rt_priority;
5fe85be0 5272 rcu_read_unlock();
1da177e4
LT
5273
5274 /*
5275 * This one might sleep, we cannot do it with a spinlock held ...
5276 */
5277 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5278
1da177e4
LT
5279 return retval;
5280
5281out_unlock:
5fe85be0 5282 rcu_read_unlock();
1da177e4
LT
5283 return retval;
5284}
5285
96f874e2 5286long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5287{
5a16f3d3 5288 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5289 struct task_struct *p;
5290 int retval;
1da177e4 5291
95402b38 5292 get_online_cpus();
23f5d142 5293 rcu_read_lock();
1da177e4
LT
5294
5295 p = find_process_by_pid(pid);
5296 if (!p) {
23f5d142 5297 rcu_read_unlock();
95402b38 5298 put_online_cpus();
1da177e4
LT
5299 return -ESRCH;
5300 }
5301
23f5d142 5302 /* Prevent p going away */
1da177e4 5303 get_task_struct(p);
23f5d142 5304 rcu_read_unlock();
1da177e4 5305
5a16f3d3
RR
5306 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5307 retval = -ENOMEM;
5308 goto out_put_task;
5309 }
5310 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5311 retval = -ENOMEM;
5312 goto out_free_cpus_allowed;
5313 }
1da177e4 5314 retval = -EPERM;
b0e77598 5315 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5316 goto out_unlock;
5317
b0ae1981 5318 retval = security_task_setscheduler(p);
e7834f8f
DQ
5319 if (retval)
5320 goto out_unlock;
5321
5a16f3d3
RR
5322 cpuset_cpus_allowed(p, cpus_allowed);
5323 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5324again:
5a16f3d3 5325 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5326
8707d8b8 5327 if (!retval) {
5a16f3d3
RR
5328 cpuset_cpus_allowed(p, cpus_allowed);
5329 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5330 /*
5331 * We must have raced with a concurrent cpuset
5332 * update. Just reset the cpus_allowed to the
5333 * cpuset's cpus_allowed
5334 */
5a16f3d3 5335 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5336 goto again;
5337 }
5338 }
1da177e4 5339out_unlock:
5a16f3d3
RR
5340 free_cpumask_var(new_mask);
5341out_free_cpus_allowed:
5342 free_cpumask_var(cpus_allowed);
5343out_put_task:
1da177e4 5344 put_task_struct(p);
95402b38 5345 put_online_cpus();
1da177e4
LT
5346 return retval;
5347}
5348
5349static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5350 struct cpumask *new_mask)
1da177e4 5351{
96f874e2
RR
5352 if (len < cpumask_size())
5353 cpumask_clear(new_mask);
5354 else if (len > cpumask_size())
5355 len = cpumask_size();
5356
1da177e4
LT
5357 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5358}
5359
5360/**
5361 * sys_sched_setaffinity - set the cpu affinity of a process
5362 * @pid: pid of the process
5363 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5364 * @user_mask_ptr: user-space pointer to the new cpu mask
5365 */
5add95d4
HC
5366SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5367 unsigned long __user *, user_mask_ptr)
1da177e4 5368{
5a16f3d3 5369 cpumask_var_t new_mask;
1da177e4
LT
5370 int retval;
5371
5a16f3d3
RR
5372 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5373 return -ENOMEM;
1da177e4 5374
5a16f3d3
RR
5375 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5376 if (retval == 0)
5377 retval = sched_setaffinity(pid, new_mask);
5378 free_cpumask_var(new_mask);
5379 return retval;
1da177e4
LT
5380}
5381
96f874e2 5382long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5383{
36c8b586 5384 struct task_struct *p;
31605683 5385 unsigned long flags;
1da177e4 5386 int retval;
1da177e4 5387
95402b38 5388 get_online_cpus();
23f5d142 5389 rcu_read_lock();
1da177e4
LT
5390
5391 retval = -ESRCH;
5392 p = find_process_by_pid(pid);
5393 if (!p)
5394 goto out_unlock;
5395
e7834f8f
DQ
5396 retval = security_task_getscheduler(p);
5397 if (retval)
5398 goto out_unlock;
5399
013fdb80 5400 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5401 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5402 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5403
5404out_unlock:
23f5d142 5405 rcu_read_unlock();
95402b38 5406 put_online_cpus();
1da177e4 5407
9531b62f 5408 return retval;
1da177e4
LT
5409}
5410
5411/**
5412 * sys_sched_getaffinity - get the cpu affinity of a process
5413 * @pid: pid of the process
5414 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5415 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5416 */
5add95d4
HC
5417SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5418 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5419{
5420 int ret;
f17c8607 5421 cpumask_var_t mask;
1da177e4 5422
84fba5ec 5423 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5424 return -EINVAL;
5425 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5426 return -EINVAL;
5427
f17c8607
RR
5428 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5429 return -ENOMEM;
1da177e4 5430
f17c8607
RR
5431 ret = sched_getaffinity(pid, mask);
5432 if (ret == 0) {
8bc037fb 5433 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5434
5435 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5436 ret = -EFAULT;
5437 else
cd3d8031 5438 ret = retlen;
f17c8607
RR
5439 }
5440 free_cpumask_var(mask);
1da177e4 5441
f17c8607 5442 return ret;
1da177e4
LT
5443}
5444
5445/**
5446 * sys_sched_yield - yield the current processor to other threads.
5447 *
dd41f596
IM
5448 * This function yields the current CPU to other tasks. If there are no
5449 * other threads running on this CPU then this function will return.
1da177e4 5450 */
5add95d4 5451SYSCALL_DEFINE0(sched_yield)
1da177e4 5452{
70b97a7f 5453 struct rq *rq = this_rq_lock();
1da177e4 5454
2d72376b 5455 schedstat_inc(rq, yld_count);
4530d7ab 5456 current->sched_class->yield_task(rq);
1da177e4
LT
5457
5458 /*
5459 * Since we are going to call schedule() anyway, there's
5460 * no need to preempt or enable interrupts:
5461 */
5462 __release(rq->lock);
8a25d5de 5463 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5464 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5465 preempt_enable_no_resched();
5466
5467 schedule();
5468
5469 return 0;
5470}
5471
d86ee480
PZ
5472static inline int should_resched(void)
5473{
5474 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5475}
5476
e7b38404 5477static void __cond_resched(void)
1da177e4 5478{
e7aaaa69
FW
5479 add_preempt_count(PREEMPT_ACTIVE);
5480 schedule();
5481 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5482}
5483
02b67cc3 5484int __sched _cond_resched(void)
1da177e4 5485{
d86ee480 5486 if (should_resched()) {
1da177e4
LT
5487 __cond_resched();
5488 return 1;
5489 }
5490 return 0;
5491}
02b67cc3 5492EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5493
5494/*
613afbf8 5495 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5496 * call schedule, and on return reacquire the lock.
5497 *
41a2d6cf 5498 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5499 * operations here to prevent schedule() from being called twice (once via
5500 * spin_unlock(), once by hand).
5501 */
613afbf8 5502int __cond_resched_lock(spinlock_t *lock)
1da177e4 5503{
d86ee480 5504 int resched = should_resched();
6df3cecb
JK
5505 int ret = 0;
5506
f607c668
PZ
5507 lockdep_assert_held(lock);
5508
95c354fe 5509 if (spin_needbreak(lock) || resched) {
1da177e4 5510 spin_unlock(lock);
d86ee480 5511 if (resched)
95c354fe
NP
5512 __cond_resched();
5513 else
5514 cpu_relax();
6df3cecb 5515 ret = 1;
1da177e4 5516 spin_lock(lock);
1da177e4 5517 }
6df3cecb 5518 return ret;
1da177e4 5519}
613afbf8 5520EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5521
613afbf8 5522int __sched __cond_resched_softirq(void)
1da177e4
LT
5523{
5524 BUG_ON(!in_softirq());
5525
d86ee480 5526 if (should_resched()) {
98d82567 5527 local_bh_enable();
1da177e4
LT
5528 __cond_resched();
5529 local_bh_disable();
5530 return 1;
5531 }
5532 return 0;
5533}
613afbf8 5534EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5535
1da177e4
LT
5536/**
5537 * yield - yield the current processor to other threads.
5538 *
72fd4a35 5539 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5540 * thread runnable and calls sys_sched_yield().
5541 */
5542void __sched yield(void)
5543{
5544 set_current_state(TASK_RUNNING);
5545 sys_sched_yield();
5546}
1da177e4
LT
5547EXPORT_SYMBOL(yield);
5548
d95f4122
MG
5549/**
5550 * yield_to - yield the current processor to another thread in
5551 * your thread group, or accelerate that thread toward the
5552 * processor it's on.
16addf95
RD
5553 * @p: target task
5554 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5555 *
5556 * It's the caller's job to ensure that the target task struct
5557 * can't go away on us before we can do any checks.
5558 *
5559 * Returns true if we indeed boosted the target task.
5560 */
5561bool __sched yield_to(struct task_struct *p, bool preempt)
5562{
5563 struct task_struct *curr = current;
5564 struct rq *rq, *p_rq;
5565 unsigned long flags;
5566 bool yielded = 0;
5567
5568 local_irq_save(flags);
5569 rq = this_rq();
5570
5571again:
5572 p_rq = task_rq(p);
5573 double_rq_lock(rq, p_rq);
5574 while (task_rq(p) != p_rq) {
5575 double_rq_unlock(rq, p_rq);
5576 goto again;
5577 }
5578
5579 if (!curr->sched_class->yield_to_task)
5580 goto out;
5581
5582 if (curr->sched_class != p->sched_class)
5583 goto out;
5584
5585 if (task_running(p_rq, p) || p->state)
5586 goto out;
5587
5588 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5589 if (yielded) {
d95f4122 5590 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5591 /*
5592 * Make p's CPU reschedule; pick_next_entity takes care of
5593 * fairness.
5594 */
5595 if (preempt && rq != p_rq)
5596 resched_task(p_rq->curr);
5597 }
d95f4122
MG
5598
5599out:
5600 double_rq_unlock(rq, p_rq);
5601 local_irq_restore(flags);
5602
5603 if (yielded)
5604 schedule();
5605
5606 return yielded;
5607}
5608EXPORT_SYMBOL_GPL(yield_to);
5609
1da177e4 5610/*
41a2d6cf 5611 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5612 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5613 */
5614void __sched io_schedule(void)
5615{
54d35f29 5616 struct rq *rq = raw_rq();
1da177e4 5617
0ff92245 5618 delayacct_blkio_start();
1da177e4 5619 atomic_inc(&rq->nr_iowait);
73c10101 5620 blk_flush_plug(current);
8f0dfc34 5621 current->in_iowait = 1;
1da177e4 5622 schedule();
8f0dfc34 5623 current->in_iowait = 0;
1da177e4 5624 atomic_dec(&rq->nr_iowait);
0ff92245 5625 delayacct_blkio_end();
1da177e4 5626}
1da177e4
LT
5627EXPORT_SYMBOL(io_schedule);
5628
5629long __sched io_schedule_timeout(long timeout)
5630{
54d35f29 5631 struct rq *rq = raw_rq();
1da177e4
LT
5632 long ret;
5633
0ff92245 5634 delayacct_blkio_start();
1da177e4 5635 atomic_inc(&rq->nr_iowait);
73c10101 5636 blk_flush_plug(current);
8f0dfc34 5637 current->in_iowait = 1;
1da177e4 5638 ret = schedule_timeout(timeout);
8f0dfc34 5639 current->in_iowait = 0;
1da177e4 5640 atomic_dec(&rq->nr_iowait);
0ff92245 5641 delayacct_blkio_end();
1da177e4
LT
5642 return ret;
5643}
5644
5645/**
5646 * sys_sched_get_priority_max - return maximum RT priority.
5647 * @policy: scheduling class.
5648 *
5649 * this syscall returns the maximum rt_priority that can be used
5650 * by a given scheduling class.
5651 */
5add95d4 5652SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5653{
5654 int ret = -EINVAL;
5655
5656 switch (policy) {
5657 case SCHED_FIFO:
5658 case SCHED_RR:
5659 ret = MAX_USER_RT_PRIO-1;
5660 break;
5661 case SCHED_NORMAL:
b0a9499c 5662 case SCHED_BATCH:
dd41f596 5663 case SCHED_IDLE:
1da177e4
LT
5664 ret = 0;
5665 break;
5666 }
5667 return ret;
5668}
5669
5670/**
5671 * sys_sched_get_priority_min - return minimum RT priority.
5672 * @policy: scheduling class.
5673 *
5674 * this syscall returns the minimum rt_priority that can be used
5675 * by a given scheduling class.
5676 */
5add95d4 5677SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5678{
5679 int ret = -EINVAL;
5680
5681 switch (policy) {
5682 case SCHED_FIFO:
5683 case SCHED_RR:
5684 ret = 1;
5685 break;
5686 case SCHED_NORMAL:
b0a9499c 5687 case SCHED_BATCH:
dd41f596 5688 case SCHED_IDLE:
1da177e4
LT
5689 ret = 0;
5690 }
5691 return ret;
5692}
5693
5694/**
5695 * sys_sched_rr_get_interval - return the default timeslice of a process.
5696 * @pid: pid of the process.
5697 * @interval: userspace pointer to the timeslice value.
5698 *
5699 * this syscall writes the default timeslice value of a given process
5700 * into the user-space timespec buffer. A value of '0' means infinity.
5701 */
17da2bd9 5702SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5703 struct timespec __user *, interval)
1da177e4 5704{
36c8b586 5705 struct task_struct *p;
a4ec24b4 5706 unsigned int time_slice;
dba091b9
TG
5707 unsigned long flags;
5708 struct rq *rq;
3a5c359a 5709 int retval;
1da177e4 5710 struct timespec t;
1da177e4
LT
5711
5712 if (pid < 0)
3a5c359a 5713 return -EINVAL;
1da177e4
LT
5714
5715 retval = -ESRCH;
1a551ae7 5716 rcu_read_lock();
1da177e4
LT
5717 p = find_process_by_pid(pid);
5718 if (!p)
5719 goto out_unlock;
5720
5721 retval = security_task_getscheduler(p);
5722 if (retval)
5723 goto out_unlock;
5724
dba091b9
TG
5725 rq = task_rq_lock(p, &flags);
5726 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5727 task_rq_unlock(rq, p, &flags);
a4ec24b4 5728
1a551ae7 5729 rcu_read_unlock();
a4ec24b4 5730 jiffies_to_timespec(time_slice, &t);
1da177e4 5731 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5732 return retval;
3a5c359a 5733
1da177e4 5734out_unlock:
1a551ae7 5735 rcu_read_unlock();
1da177e4
LT
5736 return retval;
5737}
5738
7c731e0a 5739static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5740
82a1fcb9 5741void sched_show_task(struct task_struct *p)
1da177e4 5742{
1da177e4 5743 unsigned long free = 0;
36c8b586 5744 unsigned state;
1da177e4 5745
1da177e4 5746 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5747 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5748 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5749#if BITS_PER_LONG == 32
1da177e4 5750 if (state == TASK_RUNNING)
3df0fc5b 5751 printk(KERN_CONT " running ");
1da177e4 5752 else
3df0fc5b 5753 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5754#else
5755 if (state == TASK_RUNNING)
3df0fc5b 5756 printk(KERN_CONT " running task ");
1da177e4 5757 else
3df0fc5b 5758 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5759#endif
5760#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5761 free = stack_not_used(p);
1da177e4 5762#endif
3df0fc5b 5763 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5764 task_pid_nr(p), task_pid_nr(p->real_parent),
5765 (unsigned long)task_thread_info(p)->flags);
1da177e4 5766
5fb5e6de 5767 show_stack(p, NULL);
1da177e4
LT
5768}
5769
e59e2ae2 5770void show_state_filter(unsigned long state_filter)
1da177e4 5771{
36c8b586 5772 struct task_struct *g, *p;
1da177e4 5773
4bd77321 5774#if BITS_PER_LONG == 32
3df0fc5b
PZ
5775 printk(KERN_INFO
5776 " task PC stack pid father\n");
1da177e4 5777#else
3df0fc5b
PZ
5778 printk(KERN_INFO
5779 " task PC stack pid father\n");
1da177e4
LT
5780#endif
5781 read_lock(&tasklist_lock);
5782 do_each_thread(g, p) {
5783 /*
5784 * reset the NMI-timeout, listing all files on a slow
25985edc 5785 * console might take a lot of time:
1da177e4
LT
5786 */
5787 touch_nmi_watchdog();
39bc89fd 5788 if (!state_filter || (p->state & state_filter))
82a1fcb9 5789 sched_show_task(p);
1da177e4
LT
5790 } while_each_thread(g, p);
5791
04c9167f
JF
5792 touch_all_softlockup_watchdogs();
5793
dd41f596
IM
5794#ifdef CONFIG_SCHED_DEBUG
5795 sysrq_sched_debug_show();
5796#endif
1da177e4 5797 read_unlock(&tasklist_lock);
e59e2ae2
IM
5798 /*
5799 * Only show locks if all tasks are dumped:
5800 */
93335a21 5801 if (!state_filter)
e59e2ae2 5802 debug_show_all_locks();
1da177e4
LT
5803}
5804
1df21055
IM
5805void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5806{
dd41f596 5807 idle->sched_class = &idle_sched_class;
1df21055
IM
5808}
5809
f340c0d1
IM
5810/**
5811 * init_idle - set up an idle thread for a given CPU
5812 * @idle: task in question
5813 * @cpu: cpu the idle task belongs to
5814 *
5815 * NOTE: this function does not set the idle thread's NEED_RESCHED
5816 * flag, to make booting more robust.
5817 */
5c1e1767 5818void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5819{
70b97a7f 5820 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5821 unsigned long flags;
5822
05fa785c 5823 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5824
dd41f596 5825 __sched_fork(idle);
06b83b5f 5826 idle->state = TASK_RUNNING;
dd41f596
IM
5827 idle->se.exec_start = sched_clock();
5828
96f874e2 5829 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5830 /*
5831 * We're having a chicken and egg problem, even though we are
5832 * holding rq->lock, the cpu isn't yet set to this cpu so the
5833 * lockdep check in task_group() will fail.
5834 *
5835 * Similar case to sched_fork(). / Alternatively we could
5836 * use task_rq_lock() here and obtain the other rq->lock.
5837 *
5838 * Silence PROVE_RCU
5839 */
5840 rcu_read_lock();
dd41f596 5841 __set_task_cpu(idle, cpu);
6506cf6c 5842 rcu_read_unlock();
1da177e4 5843
1da177e4 5844 rq->curr = rq->idle = idle;
3ca7a440
PZ
5845#if defined(CONFIG_SMP)
5846 idle->on_cpu = 1;
4866cde0 5847#endif
05fa785c 5848 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5849
5850 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5851 task_thread_info(idle)->preempt_count = 0;
625f2a37 5852
dd41f596
IM
5853 /*
5854 * The idle tasks have their own, simple scheduling class:
5855 */
5856 idle->sched_class = &idle_sched_class;
868baf07 5857 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5858}
5859
5860/*
5861 * In a system that switches off the HZ timer nohz_cpu_mask
5862 * indicates which cpus entered this state. This is used
5863 * in the rcu update to wait only for active cpus. For system
5864 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5865 * always be CPU_BITS_NONE.
1da177e4 5866 */
6a7b3dc3 5867cpumask_var_t nohz_cpu_mask;
1da177e4 5868
19978ca6
IM
5869/*
5870 * Increase the granularity value when there are more CPUs,
5871 * because with more CPUs the 'effective latency' as visible
5872 * to users decreases. But the relationship is not linear,
5873 * so pick a second-best guess by going with the log2 of the
5874 * number of CPUs.
5875 *
5876 * This idea comes from the SD scheduler of Con Kolivas:
5877 */
acb4a848 5878static int get_update_sysctl_factor(void)
19978ca6 5879{
4ca3ef71 5880 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5881 unsigned int factor;
5882
5883 switch (sysctl_sched_tunable_scaling) {
5884 case SCHED_TUNABLESCALING_NONE:
5885 factor = 1;
5886 break;
5887 case SCHED_TUNABLESCALING_LINEAR:
5888 factor = cpus;
5889 break;
5890 case SCHED_TUNABLESCALING_LOG:
5891 default:
5892 factor = 1 + ilog2(cpus);
5893 break;
5894 }
19978ca6 5895
acb4a848
CE
5896 return factor;
5897}
19978ca6 5898
acb4a848
CE
5899static void update_sysctl(void)
5900{
5901 unsigned int factor = get_update_sysctl_factor();
19978ca6 5902
0bcdcf28
CE
5903#define SET_SYSCTL(name) \
5904 (sysctl_##name = (factor) * normalized_sysctl_##name)
5905 SET_SYSCTL(sched_min_granularity);
5906 SET_SYSCTL(sched_latency);
5907 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5908#undef SET_SYSCTL
5909}
55cd5340 5910
0bcdcf28
CE
5911static inline void sched_init_granularity(void)
5912{
5913 update_sysctl();
19978ca6
IM
5914}
5915
1da177e4
LT
5916#ifdef CONFIG_SMP
5917/*
5918 * This is how migration works:
5919 *
969c7921
TH
5920 * 1) we invoke migration_cpu_stop() on the target CPU using
5921 * stop_one_cpu().
5922 * 2) stopper starts to run (implicitly forcing the migrated thread
5923 * off the CPU)
5924 * 3) it checks whether the migrated task is still in the wrong runqueue.
5925 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5926 * it and puts it into the right queue.
969c7921
TH
5927 * 5) stopper completes and stop_one_cpu() returns and the migration
5928 * is done.
1da177e4
LT
5929 */
5930
5931/*
5932 * Change a given task's CPU affinity. Migrate the thread to a
5933 * proper CPU and schedule it away if the CPU it's executing on
5934 * is removed from the allowed bitmask.
5935 *
5936 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5937 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5938 * call is not atomic; no spinlocks may be held.
5939 */
96f874e2 5940int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5941{
5942 unsigned long flags;
70b97a7f 5943 struct rq *rq;
969c7921 5944 unsigned int dest_cpu;
48f24c4d 5945 int ret = 0;
1da177e4
LT
5946
5947 rq = task_rq_lock(p, &flags);
e2912009 5948
6ad4c188 5949 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5950 ret = -EINVAL;
5951 goto out;
5952 }
5953
9985b0ba 5954 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5955 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5956 ret = -EINVAL;
5957 goto out;
5958 }
5959
73fe6aae 5960 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5961 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5962 else {
96f874e2
RR
5963 cpumask_copy(&p->cpus_allowed, new_mask);
5964 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5965 }
5966
1da177e4 5967 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5968 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5969 goto out;
5970
969c7921 5971 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5972 if (p->on_rq) {
969c7921 5973 struct migration_arg arg = { p, dest_cpu };
1da177e4 5974 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5975 task_rq_unlock(rq, p, &flags);
969c7921 5976 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5977 tlb_migrate_finish(p->mm);
5978 return 0;
5979 }
5980out:
0122ec5b 5981 task_rq_unlock(rq, p, &flags);
48f24c4d 5982
1da177e4
LT
5983 return ret;
5984}
cd8ba7cd 5985EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5986
5987/*
41a2d6cf 5988 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5989 * this because either it can't run here any more (set_cpus_allowed()
5990 * away from this CPU, or CPU going down), or because we're
5991 * attempting to rebalance this task on exec (sched_exec).
5992 *
5993 * So we race with normal scheduler movements, but that's OK, as long
5994 * as the task is no longer on this CPU.
efc30814
KK
5995 *
5996 * Returns non-zero if task was successfully migrated.
1da177e4 5997 */
efc30814 5998static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5999{
70b97a7f 6000 struct rq *rq_dest, *rq_src;
e2912009 6001 int ret = 0;
1da177e4 6002
e761b772 6003 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6004 return ret;
1da177e4
LT
6005
6006 rq_src = cpu_rq(src_cpu);
6007 rq_dest = cpu_rq(dest_cpu);
6008
0122ec5b 6009 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6010 double_rq_lock(rq_src, rq_dest);
6011 /* Already moved. */
6012 if (task_cpu(p) != src_cpu)
b1e38734 6013 goto done;
1da177e4 6014 /* Affinity changed (again). */
96f874e2 6015 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6016 goto fail;
1da177e4 6017
e2912009
PZ
6018 /*
6019 * If we're not on a rq, the next wake-up will ensure we're
6020 * placed properly.
6021 */
fd2f4419 6022 if (p->on_rq) {
2e1cb74a 6023 deactivate_task(rq_src, p, 0);
e2912009 6024 set_task_cpu(p, dest_cpu);
dd41f596 6025 activate_task(rq_dest, p, 0);
15afe09b 6026 check_preempt_curr(rq_dest, p, 0);
1da177e4 6027 }
b1e38734 6028done:
efc30814 6029 ret = 1;
b1e38734 6030fail:
1da177e4 6031 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6032 raw_spin_unlock(&p->pi_lock);
efc30814 6033 return ret;
1da177e4
LT
6034}
6035
6036/*
969c7921
TH
6037 * migration_cpu_stop - this will be executed by a highprio stopper thread
6038 * and performs thread migration by bumping thread off CPU then
6039 * 'pushing' onto another runqueue.
1da177e4 6040 */
969c7921 6041static int migration_cpu_stop(void *data)
1da177e4 6042{
969c7921 6043 struct migration_arg *arg = data;
f7b4cddc 6044
969c7921
TH
6045 /*
6046 * The original target cpu might have gone down and we might
6047 * be on another cpu but it doesn't matter.
6048 */
f7b4cddc 6049 local_irq_disable();
969c7921 6050 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6051 local_irq_enable();
1da177e4 6052 return 0;
f7b4cddc
ON
6053}
6054
1da177e4 6055#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6056
054b9108 6057/*
48c5ccae
PZ
6058 * Ensures that the idle task is using init_mm right before its cpu goes
6059 * offline.
054b9108 6060 */
48c5ccae 6061void idle_task_exit(void)
1da177e4 6062{
48c5ccae 6063 struct mm_struct *mm = current->active_mm;
e76bd8d9 6064
48c5ccae 6065 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6066
48c5ccae
PZ
6067 if (mm != &init_mm)
6068 switch_mm(mm, &init_mm, current);
6069 mmdrop(mm);
1da177e4
LT
6070}
6071
6072/*
6073 * While a dead CPU has no uninterruptible tasks queued at this point,
6074 * it might still have a nonzero ->nr_uninterruptible counter, because
6075 * for performance reasons the counter is not stricly tracking tasks to
6076 * their home CPUs. So we just add the counter to another CPU's counter,
6077 * to keep the global sum constant after CPU-down:
6078 */
70b97a7f 6079static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6080{
6ad4c188 6081 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6082
1da177e4
LT
6083 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6084 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6085}
6086
dd41f596 6087/*
48c5ccae 6088 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6089 */
48c5ccae 6090static void calc_global_load_remove(struct rq *rq)
1da177e4 6091{
48c5ccae
PZ
6092 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6093 rq->calc_load_active = 0;
1da177e4
LT
6094}
6095
48f24c4d 6096/*
48c5ccae
PZ
6097 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6098 * try_to_wake_up()->select_task_rq().
6099 *
6100 * Called with rq->lock held even though we'er in stop_machine() and
6101 * there's no concurrency possible, we hold the required locks anyway
6102 * because of lock validation efforts.
1da177e4 6103 */
48c5ccae 6104static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6105{
70b97a7f 6106 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6107 struct task_struct *next, *stop = rq->stop;
6108 int dest_cpu;
1da177e4
LT
6109
6110 /*
48c5ccae
PZ
6111 * Fudge the rq selection such that the below task selection loop
6112 * doesn't get stuck on the currently eligible stop task.
6113 *
6114 * We're currently inside stop_machine() and the rq is either stuck
6115 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6116 * either way we should never end up calling schedule() until we're
6117 * done here.
1da177e4 6118 */
48c5ccae 6119 rq->stop = NULL;
48f24c4d 6120
dd41f596 6121 for ( ; ; ) {
48c5ccae
PZ
6122 /*
6123 * There's this thread running, bail when that's the only
6124 * remaining thread.
6125 */
6126 if (rq->nr_running == 1)
dd41f596 6127 break;
48c5ccae 6128
b67802ea 6129 next = pick_next_task(rq);
48c5ccae 6130 BUG_ON(!next);
79c53799 6131 next->sched_class->put_prev_task(rq, next);
e692ab53 6132
48c5ccae
PZ
6133 /* Find suitable destination for @next, with force if needed. */
6134 dest_cpu = select_fallback_rq(dead_cpu, next);
6135 raw_spin_unlock(&rq->lock);
6136
6137 __migrate_task(next, dead_cpu, dest_cpu);
6138
6139 raw_spin_lock(&rq->lock);
1da177e4 6140 }
dce48a84 6141
48c5ccae 6142 rq->stop = stop;
dce48a84 6143}
48c5ccae 6144
1da177e4
LT
6145#endif /* CONFIG_HOTPLUG_CPU */
6146
e692ab53
NP
6147#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6148
6149static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6150 {
6151 .procname = "sched_domain",
c57baf1e 6152 .mode = 0555,
e0361851 6153 },
56992309 6154 {}
e692ab53
NP
6155};
6156
6157static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6158 {
6159 .procname = "kernel",
c57baf1e 6160 .mode = 0555,
e0361851
AD
6161 .child = sd_ctl_dir,
6162 },
56992309 6163 {}
e692ab53
NP
6164};
6165
6166static struct ctl_table *sd_alloc_ctl_entry(int n)
6167{
6168 struct ctl_table *entry =
5cf9f062 6169 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6170
e692ab53
NP
6171 return entry;
6172}
6173
6382bc90
MM
6174static void sd_free_ctl_entry(struct ctl_table **tablep)
6175{
cd790076 6176 struct ctl_table *entry;
6382bc90 6177
cd790076
MM
6178 /*
6179 * In the intermediate directories, both the child directory and
6180 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6181 * will always be set. In the lowest directory the names are
cd790076
MM
6182 * static strings and all have proc handlers.
6183 */
6184 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6185 if (entry->child)
6186 sd_free_ctl_entry(&entry->child);
cd790076
MM
6187 if (entry->proc_handler == NULL)
6188 kfree(entry->procname);
6189 }
6382bc90
MM
6190
6191 kfree(*tablep);
6192 *tablep = NULL;
6193}
6194
e692ab53 6195static void
e0361851 6196set_table_entry(struct ctl_table *entry,
e692ab53
NP
6197 const char *procname, void *data, int maxlen,
6198 mode_t mode, proc_handler *proc_handler)
6199{
e692ab53
NP
6200 entry->procname = procname;
6201 entry->data = data;
6202 entry->maxlen = maxlen;
6203 entry->mode = mode;
6204 entry->proc_handler = proc_handler;
6205}
6206
6207static struct ctl_table *
6208sd_alloc_ctl_domain_table(struct sched_domain *sd)
6209{
a5d8c348 6210 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6211
ad1cdc1d
MM
6212 if (table == NULL)
6213 return NULL;
6214
e0361851 6215 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6216 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6217 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6218 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6219 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6220 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6221 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6222 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6223 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6224 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6225 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6226 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6227 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6228 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6229 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6230 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6231 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6232 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6233 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6234 &sd->cache_nice_tries,
6235 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6236 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6237 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6238 set_table_entry(&table[11], "name", sd->name,
6239 CORENAME_MAX_SIZE, 0444, proc_dostring);
6240 /* &table[12] is terminator */
e692ab53
NP
6241
6242 return table;
6243}
6244
9a4e7159 6245static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6246{
6247 struct ctl_table *entry, *table;
6248 struct sched_domain *sd;
6249 int domain_num = 0, i;
6250 char buf[32];
6251
6252 for_each_domain(cpu, sd)
6253 domain_num++;
6254 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6255 if (table == NULL)
6256 return NULL;
e692ab53
NP
6257
6258 i = 0;
6259 for_each_domain(cpu, sd) {
6260 snprintf(buf, 32, "domain%d", i);
e692ab53 6261 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6262 entry->mode = 0555;
e692ab53
NP
6263 entry->child = sd_alloc_ctl_domain_table(sd);
6264 entry++;
6265 i++;
6266 }
6267 return table;
6268}
6269
6270static struct ctl_table_header *sd_sysctl_header;
6382bc90 6271static void register_sched_domain_sysctl(void)
e692ab53 6272{
6ad4c188 6273 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6274 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6275 char buf[32];
6276
7378547f
MM
6277 WARN_ON(sd_ctl_dir[0].child);
6278 sd_ctl_dir[0].child = entry;
6279
ad1cdc1d
MM
6280 if (entry == NULL)
6281 return;
6282
6ad4c188 6283 for_each_possible_cpu(i) {
e692ab53 6284 snprintf(buf, 32, "cpu%d", i);
e692ab53 6285 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6286 entry->mode = 0555;
e692ab53 6287 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6288 entry++;
e692ab53 6289 }
7378547f
MM
6290
6291 WARN_ON(sd_sysctl_header);
e692ab53
NP
6292 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6293}
6382bc90 6294
7378547f 6295/* may be called multiple times per register */
6382bc90
MM
6296static void unregister_sched_domain_sysctl(void)
6297{
7378547f
MM
6298 if (sd_sysctl_header)
6299 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6300 sd_sysctl_header = NULL;
7378547f
MM
6301 if (sd_ctl_dir[0].child)
6302 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6303}
e692ab53 6304#else
6382bc90
MM
6305static void register_sched_domain_sysctl(void)
6306{
6307}
6308static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6309{
6310}
6311#endif
6312
1f11eb6a
GH
6313static void set_rq_online(struct rq *rq)
6314{
6315 if (!rq->online) {
6316 const struct sched_class *class;
6317
c6c4927b 6318 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6319 rq->online = 1;
6320
6321 for_each_class(class) {
6322 if (class->rq_online)
6323 class->rq_online(rq);
6324 }
6325 }
6326}
6327
6328static void set_rq_offline(struct rq *rq)
6329{
6330 if (rq->online) {
6331 const struct sched_class *class;
6332
6333 for_each_class(class) {
6334 if (class->rq_offline)
6335 class->rq_offline(rq);
6336 }
6337
c6c4927b 6338 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6339 rq->online = 0;
6340 }
6341}
6342
1da177e4
LT
6343/*
6344 * migration_call - callback that gets triggered when a CPU is added.
6345 * Here we can start up the necessary migration thread for the new CPU.
6346 */
48f24c4d
IM
6347static int __cpuinit
6348migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6349{
48f24c4d 6350 int cpu = (long)hcpu;
1da177e4 6351 unsigned long flags;
969c7921 6352 struct rq *rq = cpu_rq(cpu);
1da177e4 6353
48c5ccae 6354 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6355
1da177e4 6356 case CPU_UP_PREPARE:
a468d389 6357 rq->calc_load_update = calc_load_update;
1da177e4 6358 break;
48f24c4d 6359
1da177e4 6360 case CPU_ONLINE:
1f94ef59 6361 /* Update our root-domain */
05fa785c 6362 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6363 if (rq->rd) {
c6c4927b 6364 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6365
6366 set_rq_online(rq);
1f94ef59 6367 }
05fa785c 6368 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6369 break;
48f24c4d 6370
1da177e4 6371#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6372 case CPU_DYING:
317f3941 6373 sched_ttwu_pending();
57d885fe 6374 /* Update our root-domain */
05fa785c 6375 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6376 if (rq->rd) {
c6c4927b 6377 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6378 set_rq_offline(rq);
57d885fe 6379 }
48c5ccae
PZ
6380 migrate_tasks(cpu);
6381 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6382 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6383
6384 migrate_nr_uninterruptible(rq);
6385 calc_global_load_remove(rq);
57d885fe 6386 break;
1da177e4
LT
6387#endif
6388 }
49c022e6
PZ
6389
6390 update_max_interval();
6391
1da177e4
LT
6392 return NOTIFY_OK;
6393}
6394
f38b0820
PM
6395/*
6396 * Register at high priority so that task migration (migrate_all_tasks)
6397 * happens before everything else. This has to be lower priority than
cdd6c482 6398 * the notifier in the perf_event subsystem, though.
1da177e4 6399 */
26c2143b 6400static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6401 .notifier_call = migration_call,
50a323b7 6402 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6403};
6404
3a101d05
TH
6405static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6406 unsigned long action, void *hcpu)
6407{
6408 switch (action & ~CPU_TASKS_FROZEN) {
6409 case CPU_ONLINE:
6410 case CPU_DOWN_FAILED:
6411 set_cpu_active((long)hcpu, true);
6412 return NOTIFY_OK;
6413 default:
6414 return NOTIFY_DONE;
6415 }
6416}
6417
6418static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6419 unsigned long action, void *hcpu)
6420{
6421 switch (action & ~CPU_TASKS_FROZEN) {
6422 case CPU_DOWN_PREPARE:
6423 set_cpu_active((long)hcpu, false);
6424 return NOTIFY_OK;
6425 default:
6426 return NOTIFY_DONE;
6427 }
6428}
6429
7babe8db 6430static int __init migration_init(void)
1da177e4
LT
6431{
6432 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6433 int err;
48f24c4d 6434
3a101d05 6435 /* Initialize migration for the boot CPU */
07dccf33
AM
6436 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6437 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6438 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6439 register_cpu_notifier(&migration_notifier);
7babe8db 6440
3a101d05
TH
6441 /* Register cpu active notifiers */
6442 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6443 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6444
a004cd42 6445 return 0;
1da177e4 6446}
7babe8db 6447early_initcall(migration_init);
1da177e4
LT
6448#endif
6449
6450#ifdef CONFIG_SMP
476f3534 6451
4cb98839
PZ
6452static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6453
3e9830dc 6454#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6455
f6630114
MT
6456static __read_mostly int sched_domain_debug_enabled;
6457
6458static int __init sched_domain_debug_setup(char *str)
6459{
6460 sched_domain_debug_enabled = 1;
6461
6462 return 0;
6463}
6464early_param("sched_debug", sched_domain_debug_setup);
6465
7c16ec58 6466static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6467 struct cpumask *groupmask)
1da177e4 6468{
4dcf6aff 6469 struct sched_group *group = sd->groups;
434d53b0 6470 char str[256];
1da177e4 6471
968ea6d8 6472 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6473 cpumask_clear(groupmask);
4dcf6aff
IM
6474
6475 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6476
6477 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6478 printk("does not load-balance\n");
4dcf6aff 6479 if (sd->parent)
3df0fc5b
PZ
6480 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6481 " has parent");
4dcf6aff 6482 return -1;
41c7ce9a
NP
6483 }
6484
3df0fc5b 6485 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6486
758b2cdc 6487 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6488 printk(KERN_ERR "ERROR: domain->span does not contain "
6489 "CPU%d\n", cpu);
4dcf6aff 6490 }
758b2cdc 6491 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6492 printk(KERN_ERR "ERROR: domain->groups does not contain"
6493 " CPU%d\n", cpu);
4dcf6aff 6494 }
1da177e4 6495
4dcf6aff 6496 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6497 do {
4dcf6aff 6498 if (!group) {
3df0fc5b
PZ
6499 printk("\n");
6500 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6501 break;
6502 }
6503
18a3885f 6504 if (!group->cpu_power) {
3df0fc5b
PZ
6505 printk(KERN_CONT "\n");
6506 printk(KERN_ERR "ERROR: domain->cpu_power not "
6507 "set\n");
4dcf6aff
IM
6508 break;
6509 }
1da177e4 6510
758b2cdc 6511 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6512 printk(KERN_CONT "\n");
6513 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6514 break;
6515 }
1da177e4 6516
758b2cdc 6517 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6518 printk(KERN_CONT "\n");
6519 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6520 break;
6521 }
1da177e4 6522
758b2cdc 6523 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6524
968ea6d8 6525 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6526
3df0fc5b 6527 printk(KERN_CONT " %s", str);
18a3885f 6528 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6529 printk(KERN_CONT " (cpu_power = %d)",
6530 group->cpu_power);
381512cf 6531 }
1da177e4 6532
4dcf6aff
IM
6533 group = group->next;
6534 } while (group != sd->groups);
3df0fc5b 6535 printk(KERN_CONT "\n");
1da177e4 6536
758b2cdc 6537 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6538 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6539
758b2cdc
RR
6540 if (sd->parent &&
6541 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6542 printk(KERN_ERR "ERROR: parent span is not a superset "
6543 "of domain->span\n");
4dcf6aff
IM
6544 return 0;
6545}
1da177e4 6546
4dcf6aff
IM
6547static void sched_domain_debug(struct sched_domain *sd, int cpu)
6548{
6549 int level = 0;
1da177e4 6550
f6630114
MT
6551 if (!sched_domain_debug_enabled)
6552 return;
6553
4dcf6aff
IM
6554 if (!sd) {
6555 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6556 return;
6557 }
1da177e4 6558
4dcf6aff
IM
6559 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6560
6561 for (;;) {
4cb98839 6562 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6563 break;
1da177e4
LT
6564 level++;
6565 sd = sd->parent;
33859f7f 6566 if (!sd)
4dcf6aff
IM
6567 break;
6568 }
1da177e4 6569}
6d6bc0ad 6570#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6571# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6572#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6573
1a20ff27 6574static int sd_degenerate(struct sched_domain *sd)
245af2c7 6575{
758b2cdc 6576 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6577 return 1;
6578
6579 /* Following flags need at least 2 groups */
6580 if (sd->flags & (SD_LOAD_BALANCE |
6581 SD_BALANCE_NEWIDLE |
6582 SD_BALANCE_FORK |
89c4710e
SS
6583 SD_BALANCE_EXEC |
6584 SD_SHARE_CPUPOWER |
6585 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6586 if (sd->groups != sd->groups->next)
6587 return 0;
6588 }
6589
6590 /* Following flags don't use groups */
c88d5910 6591 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6592 return 0;
6593
6594 return 1;
6595}
6596
48f24c4d
IM
6597static int
6598sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6599{
6600 unsigned long cflags = sd->flags, pflags = parent->flags;
6601
6602 if (sd_degenerate(parent))
6603 return 1;
6604
758b2cdc 6605 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6606 return 0;
6607
245af2c7
SS
6608 /* Flags needing groups don't count if only 1 group in parent */
6609 if (parent->groups == parent->groups->next) {
6610 pflags &= ~(SD_LOAD_BALANCE |
6611 SD_BALANCE_NEWIDLE |
6612 SD_BALANCE_FORK |
89c4710e
SS
6613 SD_BALANCE_EXEC |
6614 SD_SHARE_CPUPOWER |
6615 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6616 if (nr_node_ids == 1)
6617 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6618 }
6619 if (~cflags & pflags)
6620 return 0;
6621
6622 return 1;
6623}
6624
dce840a0 6625static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6626{
dce840a0 6627 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6628
68e74568 6629 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6630 free_cpumask_var(rd->rto_mask);
6631 free_cpumask_var(rd->online);
6632 free_cpumask_var(rd->span);
6633 kfree(rd);
6634}
6635
57d885fe
GH
6636static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6637{
a0490fa3 6638 struct root_domain *old_rd = NULL;
57d885fe 6639 unsigned long flags;
57d885fe 6640
05fa785c 6641 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6642
6643 if (rq->rd) {
a0490fa3 6644 old_rd = rq->rd;
57d885fe 6645
c6c4927b 6646 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6647 set_rq_offline(rq);
57d885fe 6648
c6c4927b 6649 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6650
a0490fa3
IM
6651 /*
6652 * If we dont want to free the old_rt yet then
6653 * set old_rd to NULL to skip the freeing later
6654 * in this function:
6655 */
6656 if (!atomic_dec_and_test(&old_rd->refcount))
6657 old_rd = NULL;
57d885fe
GH
6658 }
6659
6660 atomic_inc(&rd->refcount);
6661 rq->rd = rd;
6662
c6c4927b 6663 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6664 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6665 set_rq_online(rq);
57d885fe 6666
05fa785c 6667 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6668
6669 if (old_rd)
dce840a0 6670 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6671}
6672
68c38fc3 6673static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6674{
6675 memset(rd, 0, sizeof(*rd));
6676
68c38fc3 6677 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6678 goto out;
68c38fc3 6679 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6680 goto free_span;
68c38fc3 6681 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6682 goto free_online;
6e0534f2 6683
68c38fc3 6684 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6685 goto free_rto_mask;
c6c4927b 6686 return 0;
6e0534f2 6687
68e74568
RR
6688free_rto_mask:
6689 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6690free_online:
6691 free_cpumask_var(rd->online);
6692free_span:
6693 free_cpumask_var(rd->span);
0c910d28 6694out:
c6c4927b 6695 return -ENOMEM;
57d885fe
GH
6696}
6697
6698static void init_defrootdomain(void)
6699{
68c38fc3 6700 init_rootdomain(&def_root_domain);
c6c4927b 6701
57d885fe
GH
6702 atomic_set(&def_root_domain.refcount, 1);
6703}
6704
dc938520 6705static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6706{
6707 struct root_domain *rd;
6708
6709 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6710 if (!rd)
6711 return NULL;
6712
68c38fc3 6713 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6714 kfree(rd);
6715 return NULL;
6716 }
57d885fe
GH
6717
6718 return rd;
6719}
6720
dce840a0
PZ
6721static void free_sched_domain(struct rcu_head *rcu)
6722{
6723 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6724 if (atomic_dec_and_test(&sd->groups->ref))
6725 kfree(sd->groups);
6726 kfree(sd);
6727}
6728
6729static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6730{
6731 call_rcu(&sd->rcu, free_sched_domain);
6732}
6733
6734static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6735{
6736 for (; sd; sd = sd->parent)
6737 destroy_sched_domain(sd, cpu);
6738}
6739
1da177e4 6740/*
0eab9146 6741 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6742 * hold the hotplug lock.
6743 */
0eab9146
IM
6744static void
6745cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6746{
70b97a7f 6747 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6748 struct sched_domain *tmp;
6749
6750 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6751 for (tmp = sd; tmp; ) {
245af2c7
SS
6752 struct sched_domain *parent = tmp->parent;
6753 if (!parent)
6754 break;
f29c9b1c 6755
1a848870 6756 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6757 tmp->parent = parent->parent;
1a848870
SS
6758 if (parent->parent)
6759 parent->parent->child = tmp;
dce840a0 6760 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6761 } else
6762 tmp = tmp->parent;
245af2c7
SS
6763 }
6764
1a848870 6765 if (sd && sd_degenerate(sd)) {
dce840a0 6766 tmp = sd;
245af2c7 6767 sd = sd->parent;
dce840a0 6768 destroy_sched_domain(tmp, cpu);
1a848870
SS
6769 if (sd)
6770 sd->child = NULL;
6771 }
1da177e4 6772
4cb98839 6773 sched_domain_debug(sd, cpu);
1da177e4 6774
57d885fe 6775 rq_attach_root(rq, rd);
dce840a0 6776 tmp = rq->sd;
674311d5 6777 rcu_assign_pointer(rq->sd, sd);
dce840a0 6778 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6779}
6780
6781/* cpus with isolated domains */
dcc30a35 6782static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6783
6784/* Setup the mask of cpus configured for isolated domains */
6785static int __init isolated_cpu_setup(char *str)
6786{
bdddd296 6787 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6788 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6789 return 1;
6790}
6791
8927f494 6792__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6793
9c1cfda2 6794#define SD_NODES_PER_DOMAIN 16
1da177e4 6795
9c1cfda2 6796#ifdef CONFIG_NUMA
198e2f18 6797
9c1cfda2
JH
6798/**
6799 * find_next_best_node - find the next node to include in a sched_domain
6800 * @node: node whose sched_domain we're building
6801 * @used_nodes: nodes already in the sched_domain
6802 *
41a2d6cf 6803 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6804 * finds the closest node not already in the @used_nodes map.
6805 *
6806 * Should use nodemask_t.
6807 */
c5f59f08 6808static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6809{
6810 int i, n, val, min_val, best_node = 0;
6811
6812 min_val = INT_MAX;
6813
076ac2af 6814 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6815 /* Start at @node */
076ac2af 6816 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6817
6818 if (!nr_cpus_node(n))
6819 continue;
6820
6821 /* Skip already used nodes */
c5f59f08 6822 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6823 continue;
6824
6825 /* Simple min distance search */
6826 val = node_distance(node, n);
6827
6828 if (val < min_val) {
6829 min_val = val;
6830 best_node = n;
6831 }
6832 }
6833
c5f59f08 6834 node_set(best_node, *used_nodes);
9c1cfda2
JH
6835 return best_node;
6836}
6837
6838/**
6839 * sched_domain_node_span - get a cpumask for a node's sched_domain
6840 * @node: node whose cpumask we're constructing
73486722 6841 * @span: resulting cpumask
9c1cfda2 6842 *
41a2d6cf 6843 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6844 * should be one that prevents unnecessary balancing, but also spreads tasks
6845 * out optimally.
6846 */
96f874e2 6847static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6848{
c5f59f08 6849 nodemask_t used_nodes;
48f24c4d 6850 int i;
9c1cfda2 6851
6ca09dfc 6852 cpumask_clear(span);
c5f59f08 6853 nodes_clear(used_nodes);
9c1cfda2 6854
6ca09dfc 6855 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6856 node_set(node, used_nodes);
9c1cfda2
JH
6857
6858 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6859 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6860
6ca09dfc 6861 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6862 }
9c1cfda2 6863}
d3081f52
PZ
6864
6865static const struct cpumask *cpu_node_mask(int cpu)
6866{
6867 lockdep_assert_held(&sched_domains_mutex);
6868
6869 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6870
6871 return sched_domains_tmpmask;
6872}
2c402dc3
PZ
6873
6874static const struct cpumask *cpu_allnodes_mask(int cpu)
6875{
6876 return cpu_possible_mask;
6877}
6d6bc0ad 6878#endif /* CONFIG_NUMA */
9c1cfda2 6879
d3081f52
PZ
6880static const struct cpumask *cpu_cpu_mask(int cpu)
6881{
6882 return cpumask_of_node(cpu_to_node(cpu));
6883}
6884
5c45bf27 6885int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6886
dce840a0
PZ
6887struct sd_data {
6888 struct sched_domain **__percpu sd;
6889 struct sched_group **__percpu sg;
6890};
6891
49a02c51 6892struct s_data {
21d42ccf 6893 struct sched_domain ** __percpu sd;
49a02c51
AH
6894 struct root_domain *rd;
6895};
6896
2109b99e 6897enum s_alloc {
2109b99e 6898 sa_rootdomain,
21d42ccf 6899 sa_sd,
dce840a0 6900 sa_sd_storage,
2109b99e
AH
6901 sa_none,
6902};
6903
54ab4ff4
PZ
6904struct sched_domain_topology_level;
6905
6906typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6907typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6908
6909struct sched_domain_topology_level {
2c402dc3
PZ
6910 sched_domain_init_f init;
6911 sched_domain_mask_f mask;
54ab4ff4 6912 struct sd_data data;
eb7a74e6
PZ
6913};
6914
9c1cfda2 6915/*
dce840a0 6916 * Assumes the sched_domain tree is fully constructed
9c1cfda2 6917 */
dce840a0 6918static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6919{
dce840a0
PZ
6920 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6921 struct sched_domain *child = sd->child;
1da177e4 6922
dce840a0
PZ
6923 if (child)
6924 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6925
6711cab4 6926 if (sg)
dce840a0
PZ
6927 *sg = *per_cpu_ptr(sdd->sg, cpu);
6928
6929 return cpu;
1e9f28fa 6930}
1e9f28fa 6931
01a08546 6932/*
dce840a0
PZ
6933 * build_sched_groups takes the cpumask we wish to span, and a pointer
6934 * to a function which identifies what group(along with sched group) a CPU
6935 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6936 * (due to the fact that we keep track of groups covered with a struct cpumask).
6937 *
6938 * build_sched_groups will build a circular linked list of the groups
6939 * covered by the given span, and will set each group's ->cpumask correctly,
6940 * and ->cpu_power to 0.
01a08546 6941 */
dce840a0 6942static void
f96225fd 6943build_sched_groups(struct sched_domain *sd)
1da177e4 6944{
dce840a0
PZ
6945 struct sched_group *first = NULL, *last = NULL;
6946 struct sd_data *sdd = sd->private;
6947 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6948 struct cpumask *covered;
dce840a0 6949 int i;
9c1cfda2 6950
f96225fd
PZ
6951 lockdep_assert_held(&sched_domains_mutex);
6952 covered = sched_domains_tmpmask;
6953
dce840a0 6954 cpumask_clear(covered);
6711cab4 6955
dce840a0
PZ
6956 for_each_cpu(i, span) {
6957 struct sched_group *sg;
6958 int group = get_group(i, sdd, &sg);
6959 int j;
6711cab4 6960
dce840a0
PZ
6961 if (cpumask_test_cpu(i, covered))
6962 continue;
6711cab4 6963
dce840a0
PZ
6964 cpumask_clear(sched_group_cpus(sg));
6965 sg->cpu_power = 0;
0601a88d 6966
dce840a0
PZ
6967 for_each_cpu(j, span) {
6968 if (get_group(j, sdd, NULL) != group)
6969 continue;
0601a88d 6970
dce840a0
PZ
6971 cpumask_set_cpu(j, covered);
6972 cpumask_set_cpu(j, sched_group_cpus(sg));
6973 }
0601a88d 6974
dce840a0
PZ
6975 if (!first)
6976 first = sg;
6977 if (last)
6978 last->next = sg;
6979 last = sg;
6980 }
6981 last->next = first;
0601a88d 6982}
51888ca2 6983
89c4710e
SS
6984/*
6985 * Initialize sched groups cpu_power.
6986 *
6987 * cpu_power indicates the capacity of sched group, which is used while
6988 * distributing the load between different sched groups in a sched domain.
6989 * Typically cpu_power for all the groups in a sched domain will be same unless
6990 * there are asymmetries in the topology. If there are asymmetries, group
6991 * having more cpu_power will pickup more load compared to the group having
6992 * less cpu_power.
89c4710e
SS
6993 */
6994static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6995{
89c4710e
SS
6996 WARN_ON(!sd || !sd->groups);
6997
13318a71 6998 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6999 return;
7000
aae6d3dd
SS
7001 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7002
d274cb30 7003 update_group_power(sd, cpu);
89c4710e
SS
7004}
7005
7c16ec58
MT
7006/*
7007 * Initializers for schedule domains
7008 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7009 */
7010
a5d8c348
IM
7011#ifdef CONFIG_SCHED_DEBUG
7012# define SD_INIT_NAME(sd, type) sd->name = #type
7013#else
7014# define SD_INIT_NAME(sd, type) do { } while (0)
7015#endif
7016
54ab4ff4
PZ
7017#define SD_INIT_FUNC(type) \
7018static noinline struct sched_domain * \
7019sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7020{ \
7021 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7022 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7023 SD_INIT_NAME(sd, type); \
7024 sd->private = &tl->data; \
7025 return sd; \
7c16ec58
MT
7026}
7027
7028SD_INIT_FUNC(CPU)
7029#ifdef CONFIG_NUMA
7030 SD_INIT_FUNC(ALLNODES)
7031 SD_INIT_FUNC(NODE)
7032#endif
7033#ifdef CONFIG_SCHED_SMT
7034 SD_INIT_FUNC(SIBLING)
7035#endif
7036#ifdef CONFIG_SCHED_MC
7037 SD_INIT_FUNC(MC)
7038#endif
01a08546
HC
7039#ifdef CONFIG_SCHED_BOOK
7040 SD_INIT_FUNC(BOOK)
7041#endif
7c16ec58 7042
1d3504fc 7043static int default_relax_domain_level = -1;
60495e77 7044int sched_domain_level_max;
1d3504fc
HS
7045
7046static int __init setup_relax_domain_level(char *str)
7047{
30e0e178
LZ
7048 unsigned long val;
7049
7050 val = simple_strtoul(str, NULL, 0);
60495e77 7051 if (val < sched_domain_level_max)
30e0e178
LZ
7052 default_relax_domain_level = val;
7053
1d3504fc
HS
7054 return 1;
7055}
7056__setup("relax_domain_level=", setup_relax_domain_level);
7057
7058static void set_domain_attribute(struct sched_domain *sd,
7059 struct sched_domain_attr *attr)
7060{
7061 int request;
7062
7063 if (!attr || attr->relax_domain_level < 0) {
7064 if (default_relax_domain_level < 0)
7065 return;
7066 else
7067 request = default_relax_domain_level;
7068 } else
7069 request = attr->relax_domain_level;
7070 if (request < sd->level) {
7071 /* turn off idle balance on this domain */
c88d5910 7072 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7073 } else {
7074 /* turn on idle balance on this domain */
c88d5910 7075 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7076 }
7077}
7078
54ab4ff4
PZ
7079static void __sdt_free(const struct cpumask *cpu_map);
7080static int __sdt_alloc(const struct cpumask *cpu_map);
7081
2109b99e
AH
7082static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7083 const struct cpumask *cpu_map)
7084{
7085 switch (what) {
2109b99e 7086 case sa_rootdomain:
822ff793
PZ
7087 if (!atomic_read(&d->rd->refcount))
7088 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7089 case sa_sd:
7090 free_percpu(d->sd); /* fall through */
dce840a0 7091 case sa_sd_storage:
54ab4ff4 7092 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7093 case sa_none:
7094 break;
7095 }
7096}
3404c8d9 7097
2109b99e
AH
7098static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7099 const struct cpumask *cpu_map)
7100{
dce840a0
PZ
7101 memset(d, 0, sizeof(*d));
7102
54ab4ff4
PZ
7103 if (__sdt_alloc(cpu_map))
7104 return sa_sd_storage;
dce840a0
PZ
7105 d->sd = alloc_percpu(struct sched_domain *);
7106 if (!d->sd)
7107 return sa_sd_storage;
2109b99e 7108 d->rd = alloc_rootdomain();
dce840a0 7109 if (!d->rd)
21d42ccf 7110 return sa_sd;
2109b99e
AH
7111 return sa_rootdomain;
7112}
57d885fe 7113
dce840a0
PZ
7114/*
7115 * NULL the sd_data elements we've used to build the sched_domain and
7116 * sched_group structure so that the subsequent __free_domain_allocs()
7117 * will not free the data we're using.
7118 */
7119static void claim_allocations(int cpu, struct sched_domain *sd)
7120{
7121 struct sd_data *sdd = sd->private;
7122 struct sched_group *sg = sd->groups;
7123
7124 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7125 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7126
7127 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7128 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7129 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7130 }
7131}
7132
2c402dc3
PZ
7133#ifdef CONFIG_SCHED_SMT
7134static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7135{
2c402dc3 7136 return topology_thread_cpumask(cpu);
3bd65a80 7137}
2c402dc3 7138#endif
7f4588f3 7139
d069b916
PZ
7140/*
7141 * Topology list, bottom-up.
7142 */
2c402dc3 7143static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7144#ifdef CONFIG_SCHED_SMT
7145 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7146#endif
1e9f28fa 7147#ifdef CONFIG_SCHED_MC
2c402dc3 7148 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7149#endif
d069b916
PZ
7150#ifdef CONFIG_SCHED_BOOK
7151 { sd_init_BOOK, cpu_book_mask, },
7152#endif
7153 { sd_init_CPU, cpu_cpu_mask, },
7154#ifdef CONFIG_NUMA
7155 { sd_init_NODE, cpu_node_mask, },
7156 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7157#endif
eb7a74e6
PZ
7158 { NULL, },
7159};
7160
7161static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7162
54ab4ff4
PZ
7163static int __sdt_alloc(const struct cpumask *cpu_map)
7164{
7165 struct sched_domain_topology_level *tl;
7166 int j;
7167
7168 for (tl = sched_domain_topology; tl->init; tl++) {
7169 struct sd_data *sdd = &tl->data;
7170
7171 sdd->sd = alloc_percpu(struct sched_domain *);
7172 if (!sdd->sd)
7173 return -ENOMEM;
7174
7175 sdd->sg = alloc_percpu(struct sched_group *);
7176 if (!sdd->sg)
7177 return -ENOMEM;
7178
7179 for_each_cpu(j, cpu_map) {
7180 struct sched_domain *sd;
7181 struct sched_group *sg;
7182
7183 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7184 GFP_KERNEL, cpu_to_node(j));
7185 if (!sd)
7186 return -ENOMEM;
7187
7188 *per_cpu_ptr(sdd->sd, j) = sd;
7189
7190 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7191 GFP_KERNEL, cpu_to_node(j));
7192 if (!sg)
7193 return -ENOMEM;
7194
7195 *per_cpu_ptr(sdd->sg, j) = sg;
7196 }
7197 }
7198
7199 return 0;
7200}
7201
7202static void __sdt_free(const struct cpumask *cpu_map)
7203{
7204 struct sched_domain_topology_level *tl;
7205 int j;
7206
7207 for (tl = sched_domain_topology; tl->init; tl++) {
7208 struct sd_data *sdd = &tl->data;
7209
7210 for_each_cpu(j, cpu_map) {
7211 kfree(*per_cpu_ptr(sdd->sd, j));
7212 kfree(*per_cpu_ptr(sdd->sg, j));
7213 }
7214 free_percpu(sdd->sd);
7215 free_percpu(sdd->sg);
7216 }
7217}
7218
2c402dc3
PZ
7219struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7220 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7221 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7222 int cpu)
7223{
54ab4ff4 7224 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7225 if (!sd)
d069b916 7226 return child;
2c402dc3
PZ
7227
7228 set_domain_attribute(sd, attr);
7229 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7230 if (child) {
7231 sd->level = child->level + 1;
7232 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7233 child->parent = sd;
60495e77 7234 }
d069b916 7235 sd->child = child;
2c402dc3
PZ
7236
7237 return sd;
7238}
7239
2109b99e
AH
7240/*
7241 * Build sched domains for a given set of cpus and attach the sched domains
7242 * to the individual cpus
7243 */
dce840a0
PZ
7244static int build_sched_domains(const struct cpumask *cpu_map,
7245 struct sched_domain_attr *attr)
2109b99e
AH
7246{
7247 enum s_alloc alloc_state = sa_none;
dce840a0 7248 struct sched_domain *sd;
2109b99e 7249 struct s_data d;
822ff793 7250 int i, ret = -ENOMEM;
9c1cfda2 7251
2109b99e
AH
7252 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7253 if (alloc_state != sa_rootdomain)
7254 goto error;
9c1cfda2 7255
dce840a0 7256 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7257 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7258 struct sched_domain_topology_level *tl;
7259
3bd65a80 7260 sd = NULL;
2c402dc3
PZ
7261 for (tl = sched_domain_topology; tl->init; tl++)
7262 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
d274cb30 7263
d069b916
PZ
7264 while (sd->child)
7265 sd = sd->child;
7266
21d42ccf 7267 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7268 }
7269
7270 /* Build the groups for the domains */
7271 for_each_cpu(i, cpu_map) {
7272 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7273 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7274 get_group(i, sd->private, &sd->groups);
7275 atomic_inc(&sd->groups->ref);
21d42ccf 7276
dce840a0
PZ
7277 if (i != cpumask_first(sched_domain_span(sd)))
7278 continue;
7279
f96225fd 7280 build_sched_groups(sd);
1cf51902 7281 }
a06dadbe 7282 }
9c1cfda2 7283
1da177e4 7284 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7285 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7286 if (!cpumask_test_cpu(i, cpu_map))
7287 continue;
9c1cfda2 7288
dce840a0
PZ
7289 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7290 claim_allocations(i, sd);
cd4ea6ae 7291 init_sched_groups_power(i, sd);
dce840a0 7292 }
f712c0c7 7293 }
9c1cfda2 7294
1da177e4 7295 /* Attach the domains */
dce840a0 7296 rcu_read_lock();
abcd083a 7297 for_each_cpu(i, cpu_map) {
21d42ccf 7298 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7299 cpu_attach_domain(sd, d.rd, i);
1da177e4 7300 }
dce840a0 7301 rcu_read_unlock();
51888ca2 7302
822ff793 7303 ret = 0;
51888ca2 7304error:
2109b99e 7305 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7306 return ret;
1da177e4 7307}
029190c5 7308
acc3f5d7 7309static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7310static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7311static struct sched_domain_attr *dattr_cur;
7312 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7313
7314/*
7315 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7316 * cpumask) fails, then fallback to a single sched domain,
7317 * as determined by the single cpumask fallback_doms.
029190c5 7318 */
4212823f 7319static cpumask_var_t fallback_doms;
029190c5 7320
ee79d1bd
HC
7321/*
7322 * arch_update_cpu_topology lets virtualized architectures update the
7323 * cpu core maps. It is supposed to return 1 if the topology changed
7324 * or 0 if it stayed the same.
7325 */
7326int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7327{
ee79d1bd 7328 return 0;
22e52b07
HC
7329}
7330
acc3f5d7
RR
7331cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7332{
7333 int i;
7334 cpumask_var_t *doms;
7335
7336 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7337 if (!doms)
7338 return NULL;
7339 for (i = 0; i < ndoms; i++) {
7340 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7341 free_sched_domains(doms, i);
7342 return NULL;
7343 }
7344 }
7345 return doms;
7346}
7347
7348void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7349{
7350 unsigned int i;
7351 for (i = 0; i < ndoms; i++)
7352 free_cpumask_var(doms[i]);
7353 kfree(doms);
7354}
7355
1a20ff27 7356/*
41a2d6cf 7357 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7358 * For now this just excludes isolated cpus, but could be used to
7359 * exclude other special cases in the future.
1a20ff27 7360 */
c4a8849a 7361static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7362{
7378547f
MM
7363 int err;
7364
22e52b07 7365 arch_update_cpu_topology();
029190c5 7366 ndoms_cur = 1;
acc3f5d7 7367 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7368 if (!doms_cur)
acc3f5d7
RR
7369 doms_cur = &fallback_doms;
7370 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7371 dattr_cur = NULL;
dce840a0 7372 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7373 register_sched_domain_sysctl();
7378547f
MM
7374
7375 return err;
1a20ff27
DG
7376}
7377
1a20ff27
DG
7378/*
7379 * Detach sched domains from a group of cpus specified in cpu_map
7380 * These cpus will now be attached to the NULL domain
7381 */
96f874e2 7382static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7383{
7384 int i;
7385
dce840a0 7386 rcu_read_lock();
abcd083a 7387 for_each_cpu(i, cpu_map)
57d885fe 7388 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7389 rcu_read_unlock();
1a20ff27
DG
7390}
7391
1d3504fc
HS
7392/* handle null as "default" */
7393static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7394 struct sched_domain_attr *new, int idx_new)
7395{
7396 struct sched_domain_attr tmp;
7397
7398 /* fast path */
7399 if (!new && !cur)
7400 return 1;
7401
7402 tmp = SD_ATTR_INIT;
7403 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7404 new ? (new + idx_new) : &tmp,
7405 sizeof(struct sched_domain_attr));
7406}
7407
029190c5
PJ
7408/*
7409 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7410 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7411 * doms_new[] to the current sched domain partitioning, doms_cur[].
7412 * It destroys each deleted domain and builds each new domain.
7413 *
acc3f5d7 7414 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7415 * The masks don't intersect (don't overlap.) We should setup one
7416 * sched domain for each mask. CPUs not in any of the cpumasks will
7417 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7418 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7419 * it as it is.
7420 *
acc3f5d7
RR
7421 * The passed in 'doms_new' should be allocated using
7422 * alloc_sched_domains. This routine takes ownership of it and will
7423 * free_sched_domains it when done with it. If the caller failed the
7424 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7425 * and partition_sched_domains() will fallback to the single partition
7426 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7427 *
96f874e2 7428 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7429 * ndoms_new == 0 is a special case for destroying existing domains,
7430 * and it will not create the default domain.
dfb512ec 7431 *
029190c5
PJ
7432 * Call with hotplug lock held
7433 */
acc3f5d7 7434void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7435 struct sched_domain_attr *dattr_new)
029190c5 7436{
dfb512ec 7437 int i, j, n;
d65bd5ec 7438 int new_topology;
029190c5 7439
712555ee 7440 mutex_lock(&sched_domains_mutex);
a1835615 7441
7378547f
MM
7442 /* always unregister in case we don't destroy any domains */
7443 unregister_sched_domain_sysctl();
7444
d65bd5ec
HC
7445 /* Let architecture update cpu core mappings. */
7446 new_topology = arch_update_cpu_topology();
7447
dfb512ec 7448 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7449
7450 /* Destroy deleted domains */
7451 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7452 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7453 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7454 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7455 goto match1;
7456 }
7457 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7458 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7459match1:
7460 ;
7461 }
7462
e761b772
MK
7463 if (doms_new == NULL) {
7464 ndoms_cur = 0;
acc3f5d7 7465 doms_new = &fallback_doms;
6ad4c188 7466 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7467 WARN_ON_ONCE(dattr_new);
e761b772
MK
7468 }
7469
029190c5
PJ
7470 /* Build new domains */
7471 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7472 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7473 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7474 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7475 goto match2;
7476 }
7477 /* no match - add a new doms_new */
dce840a0 7478 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7479match2:
7480 ;
7481 }
7482
7483 /* Remember the new sched domains */
acc3f5d7
RR
7484 if (doms_cur != &fallback_doms)
7485 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7486 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7487 doms_cur = doms_new;
1d3504fc 7488 dattr_cur = dattr_new;
029190c5 7489 ndoms_cur = ndoms_new;
7378547f
MM
7490
7491 register_sched_domain_sysctl();
a1835615 7492
712555ee 7493 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7494}
7495
5c45bf27 7496#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7497static void reinit_sched_domains(void)
5c45bf27 7498{
95402b38 7499 get_online_cpus();
dfb512ec
MK
7500
7501 /* Destroy domains first to force the rebuild */
7502 partition_sched_domains(0, NULL, NULL);
7503
e761b772 7504 rebuild_sched_domains();
95402b38 7505 put_online_cpus();
5c45bf27
SS
7506}
7507
7508static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7509{
afb8a9b7 7510 unsigned int level = 0;
5c45bf27 7511
afb8a9b7
GS
7512 if (sscanf(buf, "%u", &level) != 1)
7513 return -EINVAL;
7514
7515 /*
7516 * level is always be positive so don't check for
7517 * level < POWERSAVINGS_BALANCE_NONE which is 0
7518 * What happens on 0 or 1 byte write,
7519 * need to check for count as well?
7520 */
7521
7522 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7523 return -EINVAL;
7524
7525 if (smt)
afb8a9b7 7526 sched_smt_power_savings = level;
5c45bf27 7527 else
afb8a9b7 7528 sched_mc_power_savings = level;
5c45bf27 7529
c4a8849a 7530 reinit_sched_domains();
5c45bf27 7531
c70f22d2 7532 return count;
5c45bf27
SS
7533}
7534
5c45bf27 7535#ifdef CONFIG_SCHED_MC
f718cd4a 7536static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7537 struct sysdev_class_attribute *attr,
f718cd4a 7538 char *page)
5c45bf27
SS
7539{
7540 return sprintf(page, "%u\n", sched_mc_power_savings);
7541}
f718cd4a 7542static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7543 struct sysdev_class_attribute *attr,
48f24c4d 7544 const char *buf, size_t count)
5c45bf27
SS
7545{
7546 return sched_power_savings_store(buf, count, 0);
7547}
f718cd4a
AK
7548static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7549 sched_mc_power_savings_show,
7550 sched_mc_power_savings_store);
5c45bf27
SS
7551#endif
7552
7553#ifdef CONFIG_SCHED_SMT
f718cd4a 7554static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7555 struct sysdev_class_attribute *attr,
f718cd4a 7556 char *page)
5c45bf27
SS
7557{
7558 return sprintf(page, "%u\n", sched_smt_power_savings);
7559}
f718cd4a 7560static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7561 struct sysdev_class_attribute *attr,
48f24c4d 7562 const char *buf, size_t count)
5c45bf27
SS
7563{
7564 return sched_power_savings_store(buf, count, 1);
7565}
f718cd4a
AK
7566static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7567 sched_smt_power_savings_show,
6707de00
AB
7568 sched_smt_power_savings_store);
7569#endif
7570
39aac648 7571int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7572{
7573 int err = 0;
7574
7575#ifdef CONFIG_SCHED_SMT
7576 if (smt_capable())
7577 err = sysfs_create_file(&cls->kset.kobj,
7578 &attr_sched_smt_power_savings.attr);
7579#endif
7580#ifdef CONFIG_SCHED_MC
7581 if (!err && mc_capable())
7582 err = sysfs_create_file(&cls->kset.kobj,
7583 &attr_sched_mc_power_savings.attr);
7584#endif
7585 return err;
7586}
6d6bc0ad 7587#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7588
1da177e4 7589/*
3a101d05
TH
7590 * Update cpusets according to cpu_active mask. If cpusets are
7591 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7592 * around partition_sched_domains().
1da177e4 7593 */
0b2e918a
TH
7594static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7595 void *hcpu)
e761b772 7596{
3a101d05 7597 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7598 case CPU_ONLINE:
6ad4c188 7599 case CPU_DOWN_FAILED:
3a101d05 7600 cpuset_update_active_cpus();
e761b772 7601 return NOTIFY_OK;
3a101d05
TH
7602 default:
7603 return NOTIFY_DONE;
7604 }
7605}
e761b772 7606
0b2e918a
TH
7607static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7608 void *hcpu)
3a101d05
TH
7609{
7610 switch (action & ~CPU_TASKS_FROZEN) {
7611 case CPU_DOWN_PREPARE:
7612 cpuset_update_active_cpus();
7613 return NOTIFY_OK;
e761b772
MK
7614 default:
7615 return NOTIFY_DONE;
7616 }
7617}
e761b772
MK
7618
7619static int update_runtime(struct notifier_block *nfb,
7620 unsigned long action, void *hcpu)
1da177e4 7621{
7def2be1
PZ
7622 int cpu = (int)(long)hcpu;
7623
1da177e4 7624 switch (action) {
1da177e4 7625 case CPU_DOWN_PREPARE:
8bb78442 7626 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7627 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7628 return NOTIFY_OK;
7629
1da177e4 7630 case CPU_DOWN_FAILED:
8bb78442 7631 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7632 case CPU_ONLINE:
8bb78442 7633 case CPU_ONLINE_FROZEN:
7def2be1 7634 enable_runtime(cpu_rq(cpu));
e761b772
MK
7635 return NOTIFY_OK;
7636
1da177e4
LT
7637 default:
7638 return NOTIFY_DONE;
7639 }
1da177e4 7640}
1da177e4
LT
7641
7642void __init sched_init_smp(void)
7643{
dcc30a35
RR
7644 cpumask_var_t non_isolated_cpus;
7645
7646 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7647 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7648
95402b38 7649 get_online_cpus();
712555ee 7650 mutex_lock(&sched_domains_mutex);
c4a8849a 7651 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7652 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7653 if (cpumask_empty(non_isolated_cpus))
7654 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7655 mutex_unlock(&sched_domains_mutex);
95402b38 7656 put_online_cpus();
e761b772 7657
3a101d05
TH
7658 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7659 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7660
7661 /* RT runtime code needs to handle some hotplug events */
7662 hotcpu_notifier(update_runtime, 0);
7663
b328ca18 7664 init_hrtick();
5c1e1767
NP
7665
7666 /* Move init over to a non-isolated CPU */
dcc30a35 7667 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7668 BUG();
19978ca6 7669 sched_init_granularity();
dcc30a35 7670 free_cpumask_var(non_isolated_cpus);
4212823f 7671
0e3900e6 7672 init_sched_rt_class();
1da177e4
LT
7673}
7674#else
7675void __init sched_init_smp(void)
7676{
19978ca6 7677 sched_init_granularity();
1da177e4
LT
7678}
7679#endif /* CONFIG_SMP */
7680
cd1bb94b
AB
7681const_debug unsigned int sysctl_timer_migration = 1;
7682
1da177e4
LT
7683int in_sched_functions(unsigned long addr)
7684{
1da177e4
LT
7685 return in_lock_functions(addr) ||
7686 (addr >= (unsigned long)__sched_text_start
7687 && addr < (unsigned long)__sched_text_end);
7688}
7689
a9957449 7690static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7691{
7692 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7693 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7694#ifdef CONFIG_FAIR_GROUP_SCHED
7695 cfs_rq->rq = rq;
f07333bf 7696 /* allow initial update_cfs_load() to truncate */
6ea72f12 7697#ifdef CONFIG_SMP
f07333bf 7698 cfs_rq->load_stamp = 1;
6ea72f12 7699#endif
dd41f596 7700#endif
67e9fb2a 7701 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7702}
7703
fa85ae24
PZ
7704static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7705{
7706 struct rt_prio_array *array;
7707 int i;
7708
7709 array = &rt_rq->active;
7710 for (i = 0; i < MAX_RT_PRIO; i++) {
7711 INIT_LIST_HEAD(array->queue + i);
7712 __clear_bit(i, array->bitmap);
7713 }
7714 /* delimiter for bitsearch: */
7715 __set_bit(MAX_RT_PRIO, array->bitmap);
7716
052f1dc7 7717#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7718 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7719#ifdef CONFIG_SMP
e864c499 7720 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7721#endif
48d5e258 7722#endif
fa85ae24
PZ
7723#ifdef CONFIG_SMP
7724 rt_rq->rt_nr_migratory = 0;
fa85ae24 7725 rt_rq->overloaded = 0;
05fa785c 7726 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7727#endif
7728
7729 rt_rq->rt_time = 0;
7730 rt_rq->rt_throttled = 0;
ac086bc2 7731 rt_rq->rt_runtime = 0;
0986b11b 7732 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7733
052f1dc7 7734#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7735 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7736 rt_rq->rq = rq;
7737#endif
fa85ae24
PZ
7738}
7739
6f505b16 7740#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7741static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7742 struct sched_entity *se, int cpu,
ec7dc8ac 7743 struct sched_entity *parent)
6f505b16 7744{
ec7dc8ac 7745 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7746 tg->cfs_rq[cpu] = cfs_rq;
7747 init_cfs_rq(cfs_rq, rq);
7748 cfs_rq->tg = tg;
6f505b16
PZ
7749
7750 tg->se[cpu] = se;
07e06b01 7751 /* se could be NULL for root_task_group */
354d60c2
DG
7752 if (!se)
7753 return;
7754
ec7dc8ac
DG
7755 if (!parent)
7756 se->cfs_rq = &rq->cfs;
7757 else
7758 se->cfs_rq = parent->my_q;
7759
6f505b16 7760 se->my_q = cfs_rq;
9437178f 7761 update_load_set(&se->load, 0);
ec7dc8ac 7762 se->parent = parent;
6f505b16 7763}
052f1dc7 7764#endif
6f505b16 7765
052f1dc7 7766#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7767static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7768 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7769 struct sched_rt_entity *parent)
6f505b16 7770{
ec7dc8ac
DG
7771 struct rq *rq = cpu_rq(cpu);
7772
6f505b16
PZ
7773 tg->rt_rq[cpu] = rt_rq;
7774 init_rt_rq(rt_rq, rq);
7775 rt_rq->tg = tg;
ac086bc2 7776 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7777
7778 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7779 if (!rt_se)
7780 return;
7781
ec7dc8ac
DG
7782 if (!parent)
7783 rt_se->rt_rq = &rq->rt;
7784 else
7785 rt_se->rt_rq = parent->my_q;
7786
6f505b16 7787 rt_se->my_q = rt_rq;
ec7dc8ac 7788 rt_se->parent = parent;
6f505b16
PZ
7789 INIT_LIST_HEAD(&rt_se->run_list);
7790}
7791#endif
7792
1da177e4
LT
7793void __init sched_init(void)
7794{
dd41f596 7795 int i, j;
434d53b0
MT
7796 unsigned long alloc_size = 0, ptr;
7797
7798#ifdef CONFIG_FAIR_GROUP_SCHED
7799 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7800#endif
7801#ifdef CONFIG_RT_GROUP_SCHED
7802 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7803#endif
df7c8e84 7804#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7805 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7806#endif
434d53b0 7807 if (alloc_size) {
36b7b6d4 7808 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7809
7810#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7811 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7812 ptr += nr_cpu_ids * sizeof(void **);
7813
07e06b01 7814 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7815 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7816
6d6bc0ad 7817#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7818#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7819 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7820 ptr += nr_cpu_ids * sizeof(void **);
7821
07e06b01 7822 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7823 ptr += nr_cpu_ids * sizeof(void **);
7824
6d6bc0ad 7825#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7826#ifdef CONFIG_CPUMASK_OFFSTACK
7827 for_each_possible_cpu(i) {
7828 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7829 ptr += cpumask_size();
7830 }
7831#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7832 }
dd41f596 7833
57d885fe
GH
7834#ifdef CONFIG_SMP
7835 init_defrootdomain();
7836#endif
7837
d0b27fa7
PZ
7838 init_rt_bandwidth(&def_rt_bandwidth,
7839 global_rt_period(), global_rt_runtime());
7840
7841#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7842 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7843 global_rt_period(), global_rt_runtime());
6d6bc0ad 7844#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7845
7c941438 7846#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7847 list_add(&root_task_group.list, &task_groups);
7848 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7849 autogroup_init(&init_task);
7c941438 7850#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7851
0a945022 7852 for_each_possible_cpu(i) {
70b97a7f 7853 struct rq *rq;
1da177e4
LT
7854
7855 rq = cpu_rq(i);
05fa785c 7856 raw_spin_lock_init(&rq->lock);
7897986b 7857 rq->nr_running = 0;
dce48a84
TG
7858 rq->calc_load_active = 0;
7859 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7860 init_cfs_rq(&rq->cfs, rq);
6f505b16 7861 init_rt_rq(&rq->rt, rq);
dd41f596 7862#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7863 root_task_group.shares = root_task_group_load;
6f505b16 7864 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7865 /*
07e06b01 7866 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7867 *
7868 * In case of task-groups formed thr' the cgroup filesystem, it
7869 * gets 100% of the cpu resources in the system. This overall
7870 * system cpu resource is divided among the tasks of
07e06b01 7871 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7872 * based on each entity's (task or task-group's) weight
7873 * (se->load.weight).
7874 *
07e06b01 7875 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7876 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7877 * then A0's share of the cpu resource is:
7878 *
0d905bca 7879 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7880 *
07e06b01
YZ
7881 * We achieve this by letting root_task_group's tasks sit
7882 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7883 */
07e06b01 7884 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7885#endif /* CONFIG_FAIR_GROUP_SCHED */
7886
7887 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7888#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7889 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7890 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7891#endif
1da177e4 7892
dd41f596
IM
7893 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7894 rq->cpu_load[j] = 0;
fdf3e95d
VP
7895
7896 rq->last_load_update_tick = jiffies;
7897
1da177e4 7898#ifdef CONFIG_SMP
41c7ce9a 7899 rq->sd = NULL;
57d885fe 7900 rq->rd = NULL;
e51fd5e2 7901 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7902 rq->post_schedule = 0;
1da177e4 7903 rq->active_balance = 0;
dd41f596 7904 rq->next_balance = jiffies;
1da177e4 7905 rq->push_cpu = 0;
0a2966b4 7906 rq->cpu = i;
1f11eb6a 7907 rq->online = 0;
eae0c9df
MG
7908 rq->idle_stamp = 0;
7909 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7910 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7911#ifdef CONFIG_NO_HZ
7912 rq->nohz_balance_kick = 0;
7913 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7914#endif
1da177e4 7915#endif
8f4d37ec 7916 init_rq_hrtick(rq);
1da177e4 7917 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7918 }
7919
2dd73a4f 7920 set_load_weight(&init_task);
b50f60ce 7921
e107be36
AK
7922#ifdef CONFIG_PREEMPT_NOTIFIERS
7923 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7924#endif
7925
c9819f45 7926#ifdef CONFIG_SMP
962cf36c 7927 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7928#endif
7929
b50f60ce 7930#ifdef CONFIG_RT_MUTEXES
1d615482 7931 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7932#endif
7933
1da177e4
LT
7934 /*
7935 * The boot idle thread does lazy MMU switching as well:
7936 */
7937 atomic_inc(&init_mm.mm_count);
7938 enter_lazy_tlb(&init_mm, current);
7939
7940 /*
7941 * Make us the idle thread. Technically, schedule() should not be
7942 * called from this thread, however somewhere below it might be,
7943 * but because we are the idle thread, we just pick up running again
7944 * when this runqueue becomes "idle".
7945 */
7946 init_idle(current, smp_processor_id());
dce48a84
TG
7947
7948 calc_load_update = jiffies + LOAD_FREQ;
7949
dd41f596
IM
7950 /*
7951 * During early bootup we pretend to be a normal task:
7952 */
7953 current->sched_class = &fair_sched_class;
6892b75e 7954
6a7b3dc3 7955 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7956 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7957#ifdef CONFIG_SMP
4cb98839 7958 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 7959#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7960 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7961 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7962 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7963 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7964 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7965#endif
bdddd296
RR
7966 /* May be allocated at isolcpus cmdline parse time */
7967 if (cpu_isolated_map == NULL)
7968 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7969#endif /* SMP */
6a7b3dc3 7970
6892b75e 7971 scheduler_running = 1;
1da177e4
LT
7972}
7973
7974#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7975static inline int preempt_count_equals(int preempt_offset)
7976{
234da7bc 7977 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7978
4ba8216c 7979 return (nested == preempt_offset);
e4aafea2
FW
7980}
7981
d894837f 7982void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7983{
48f24c4d 7984#ifdef in_atomic
1da177e4
LT
7985 static unsigned long prev_jiffy; /* ratelimiting */
7986
e4aafea2
FW
7987 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7988 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7989 return;
7990 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7991 return;
7992 prev_jiffy = jiffies;
7993
3df0fc5b
PZ
7994 printk(KERN_ERR
7995 "BUG: sleeping function called from invalid context at %s:%d\n",
7996 file, line);
7997 printk(KERN_ERR
7998 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7999 in_atomic(), irqs_disabled(),
8000 current->pid, current->comm);
aef745fc
IM
8001
8002 debug_show_held_locks(current);
8003 if (irqs_disabled())
8004 print_irqtrace_events(current);
8005 dump_stack();
1da177e4
LT
8006#endif
8007}
8008EXPORT_SYMBOL(__might_sleep);
8009#endif
8010
8011#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8012static void normalize_task(struct rq *rq, struct task_struct *p)
8013{
da7a735e
PZ
8014 const struct sched_class *prev_class = p->sched_class;
8015 int old_prio = p->prio;
3a5e4dc1 8016 int on_rq;
3e51f33f 8017
fd2f4419 8018 on_rq = p->on_rq;
3a5e4dc1
AK
8019 if (on_rq)
8020 deactivate_task(rq, p, 0);
8021 __setscheduler(rq, p, SCHED_NORMAL, 0);
8022 if (on_rq) {
8023 activate_task(rq, p, 0);
8024 resched_task(rq->curr);
8025 }
da7a735e
PZ
8026
8027 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8028}
8029
1da177e4
LT
8030void normalize_rt_tasks(void)
8031{
a0f98a1c 8032 struct task_struct *g, *p;
1da177e4 8033 unsigned long flags;
70b97a7f 8034 struct rq *rq;
1da177e4 8035
4cf5d77a 8036 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8037 do_each_thread(g, p) {
178be793
IM
8038 /*
8039 * Only normalize user tasks:
8040 */
8041 if (!p->mm)
8042 continue;
8043
6cfb0d5d 8044 p->se.exec_start = 0;
6cfb0d5d 8045#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8046 p->se.statistics.wait_start = 0;
8047 p->se.statistics.sleep_start = 0;
8048 p->se.statistics.block_start = 0;
6cfb0d5d 8049#endif
dd41f596
IM
8050
8051 if (!rt_task(p)) {
8052 /*
8053 * Renice negative nice level userspace
8054 * tasks back to 0:
8055 */
8056 if (TASK_NICE(p) < 0 && p->mm)
8057 set_user_nice(p, 0);
1da177e4 8058 continue;
dd41f596 8059 }
1da177e4 8060
1d615482 8061 raw_spin_lock(&p->pi_lock);
b29739f9 8062 rq = __task_rq_lock(p);
1da177e4 8063
178be793 8064 normalize_task(rq, p);
3a5e4dc1 8065
b29739f9 8066 __task_rq_unlock(rq);
1d615482 8067 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8068 } while_each_thread(g, p);
8069
4cf5d77a 8070 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8071}
8072
8073#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8074
67fc4e0c 8075#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8076/*
67fc4e0c 8077 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8078 *
8079 * They can only be called when the whole system has been
8080 * stopped - every CPU needs to be quiescent, and no scheduling
8081 * activity can take place. Using them for anything else would
8082 * be a serious bug, and as a result, they aren't even visible
8083 * under any other configuration.
8084 */
8085
8086/**
8087 * curr_task - return the current task for a given cpu.
8088 * @cpu: the processor in question.
8089 *
8090 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8091 */
36c8b586 8092struct task_struct *curr_task(int cpu)
1df5c10a
LT
8093{
8094 return cpu_curr(cpu);
8095}
8096
67fc4e0c
JW
8097#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8098
8099#ifdef CONFIG_IA64
1df5c10a
LT
8100/**
8101 * set_curr_task - set the current task for a given cpu.
8102 * @cpu: the processor in question.
8103 * @p: the task pointer to set.
8104 *
8105 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8106 * are serviced on a separate stack. It allows the architecture to switch the
8107 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8108 * must be called with all CPU's synchronized, and interrupts disabled, the
8109 * and caller must save the original value of the current task (see
8110 * curr_task() above) and restore that value before reenabling interrupts and
8111 * re-starting the system.
8112 *
8113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8114 */
36c8b586 8115void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8116{
8117 cpu_curr(cpu) = p;
8118}
8119
8120#endif
29f59db3 8121
bccbe08a
PZ
8122#ifdef CONFIG_FAIR_GROUP_SCHED
8123static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8124{
8125 int i;
8126
8127 for_each_possible_cpu(i) {
8128 if (tg->cfs_rq)
8129 kfree(tg->cfs_rq[i]);
8130 if (tg->se)
8131 kfree(tg->se[i]);
6f505b16
PZ
8132 }
8133
8134 kfree(tg->cfs_rq);
8135 kfree(tg->se);
6f505b16
PZ
8136}
8137
ec7dc8ac
DG
8138static
8139int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8140{
29f59db3 8141 struct cfs_rq *cfs_rq;
eab17229 8142 struct sched_entity *se;
29f59db3
SV
8143 int i;
8144
434d53b0 8145 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8146 if (!tg->cfs_rq)
8147 goto err;
434d53b0 8148 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8149 if (!tg->se)
8150 goto err;
052f1dc7
PZ
8151
8152 tg->shares = NICE_0_LOAD;
29f59db3
SV
8153
8154 for_each_possible_cpu(i) {
eab17229
LZ
8155 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8156 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8157 if (!cfs_rq)
8158 goto err;
8159
eab17229
LZ
8160 se = kzalloc_node(sizeof(struct sched_entity),
8161 GFP_KERNEL, cpu_to_node(i));
29f59db3 8162 if (!se)
dfc12eb2 8163 goto err_free_rq;
29f59db3 8164
3d4b47b4 8165 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8166 }
8167
8168 return 1;
8169
49246274 8170err_free_rq:
dfc12eb2 8171 kfree(cfs_rq);
49246274 8172err:
bccbe08a
PZ
8173 return 0;
8174}
8175
bccbe08a
PZ
8176static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8177{
3d4b47b4
PZ
8178 struct rq *rq = cpu_rq(cpu);
8179 unsigned long flags;
3d4b47b4
PZ
8180
8181 /*
8182 * Only empty task groups can be destroyed; so we can speculatively
8183 * check on_list without danger of it being re-added.
8184 */
8185 if (!tg->cfs_rq[cpu]->on_list)
8186 return;
8187
8188 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8189 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8190 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8191}
6d6bc0ad 8192#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8193static inline void free_fair_sched_group(struct task_group *tg)
8194{
8195}
8196
ec7dc8ac
DG
8197static inline
8198int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8199{
8200 return 1;
8201}
8202
bccbe08a
PZ
8203static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8204{
8205}
6d6bc0ad 8206#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8207
8208#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8209static void free_rt_sched_group(struct task_group *tg)
8210{
8211 int i;
8212
d0b27fa7
PZ
8213 destroy_rt_bandwidth(&tg->rt_bandwidth);
8214
bccbe08a
PZ
8215 for_each_possible_cpu(i) {
8216 if (tg->rt_rq)
8217 kfree(tg->rt_rq[i]);
8218 if (tg->rt_se)
8219 kfree(tg->rt_se[i]);
8220 }
8221
8222 kfree(tg->rt_rq);
8223 kfree(tg->rt_se);
8224}
8225
ec7dc8ac
DG
8226static
8227int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8228{
8229 struct rt_rq *rt_rq;
eab17229 8230 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8231 int i;
8232
434d53b0 8233 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8234 if (!tg->rt_rq)
8235 goto err;
434d53b0 8236 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8237 if (!tg->rt_se)
8238 goto err;
8239
d0b27fa7
PZ
8240 init_rt_bandwidth(&tg->rt_bandwidth,
8241 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8242
8243 for_each_possible_cpu(i) {
eab17229
LZ
8244 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8245 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8246 if (!rt_rq)
8247 goto err;
29f59db3 8248
eab17229
LZ
8249 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8250 GFP_KERNEL, cpu_to_node(i));
6f505b16 8251 if (!rt_se)
dfc12eb2 8252 goto err_free_rq;
29f59db3 8253
3d4b47b4 8254 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8255 }
8256
bccbe08a
PZ
8257 return 1;
8258
49246274 8259err_free_rq:
dfc12eb2 8260 kfree(rt_rq);
49246274 8261err:
bccbe08a
PZ
8262 return 0;
8263}
6d6bc0ad 8264#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8265static inline void free_rt_sched_group(struct task_group *tg)
8266{
8267}
8268
ec7dc8ac
DG
8269static inline
8270int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8271{
8272 return 1;
8273}
6d6bc0ad 8274#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8275
7c941438 8276#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8277static void free_sched_group(struct task_group *tg)
8278{
8279 free_fair_sched_group(tg);
8280 free_rt_sched_group(tg);
e9aa1dd1 8281 autogroup_free(tg);
bccbe08a
PZ
8282 kfree(tg);
8283}
8284
8285/* allocate runqueue etc for a new task group */
ec7dc8ac 8286struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8287{
8288 struct task_group *tg;
8289 unsigned long flags;
bccbe08a
PZ
8290
8291 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8292 if (!tg)
8293 return ERR_PTR(-ENOMEM);
8294
ec7dc8ac 8295 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8296 goto err;
8297
ec7dc8ac 8298 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8299 goto err;
8300
8ed36996 8301 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8302 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8303
8304 WARN_ON(!parent); /* root should already exist */
8305
8306 tg->parent = parent;
f473aa5e 8307 INIT_LIST_HEAD(&tg->children);
09f2724a 8308 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8309 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8310
9b5b7751 8311 return tg;
29f59db3
SV
8312
8313err:
6f505b16 8314 free_sched_group(tg);
29f59db3
SV
8315 return ERR_PTR(-ENOMEM);
8316}
8317
9b5b7751 8318/* rcu callback to free various structures associated with a task group */
6f505b16 8319static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8320{
29f59db3 8321 /* now it should be safe to free those cfs_rqs */
6f505b16 8322 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8323}
8324
9b5b7751 8325/* Destroy runqueue etc associated with a task group */
4cf86d77 8326void sched_destroy_group(struct task_group *tg)
29f59db3 8327{
8ed36996 8328 unsigned long flags;
9b5b7751 8329 int i;
29f59db3 8330
3d4b47b4
PZ
8331 /* end participation in shares distribution */
8332 for_each_possible_cpu(i)
bccbe08a 8333 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8334
8335 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8336 list_del_rcu(&tg->list);
f473aa5e 8337 list_del_rcu(&tg->siblings);
8ed36996 8338 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8339
9b5b7751 8340 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8341 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8342}
8343
9b5b7751 8344/* change task's runqueue when it moves between groups.
3a252015
IM
8345 * The caller of this function should have put the task in its new group
8346 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8347 * reflect its new group.
9b5b7751
SV
8348 */
8349void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8350{
8351 int on_rq, running;
8352 unsigned long flags;
8353 struct rq *rq;
8354
8355 rq = task_rq_lock(tsk, &flags);
8356
051a1d1a 8357 running = task_current(rq, tsk);
fd2f4419 8358 on_rq = tsk->on_rq;
29f59db3 8359
0e1f3483 8360 if (on_rq)
29f59db3 8361 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8362 if (unlikely(running))
8363 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8364
810b3817 8365#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8366 if (tsk->sched_class->task_move_group)
8367 tsk->sched_class->task_move_group(tsk, on_rq);
8368 else
810b3817 8369#endif
b2b5ce02 8370 set_task_rq(tsk, task_cpu(tsk));
810b3817 8371
0e1f3483
HS
8372 if (unlikely(running))
8373 tsk->sched_class->set_curr_task(rq);
8374 if (on_rq)
371fd7e7 8375 enqueue_task(rq, tsk, 0);
29f59db3 8376
0122ec5b 8377 task_rq_unlock(rq, tsk, &flags);
29f59db3 8378}
7c941438 8379#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8380
052f1dc7 8381#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8382static DEFINE_MUTEX(shares_mutex);
8383
4cf86d77 8384int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8385{
8386 int i;
8ed36996 8387 unsigned long flags;
c61935fd 8388
ec7dc8ac
DG
8389 /*
8390 * We can't change the weight of the root cgroup.
8391 */
8392 if (!tg->se[0])
8393 return -EINVAL;
8394
18d95a28
PZ
8395 if (shares < MIN_SHARES)
8396 shares = MIN_SHARES;
cb4ad1ff
MX
8397 else if (shares > MAX_SHARES)
8398 shares = MAX_SHARES;
62fb1851 8399
8ed36996 8400 mutex_lock(&shares_mutex);
9b5b7751 8401 if (tg->shares == shares)
5cb350ba 8402 goto done;
29f59db3 8403
9b5b7751 8404 tg->shares = shares;
c09595f6 8405 for_each_possible_cpu(i) {
9437178f
PT
8406 struct rq *rq = cpu_rq(i);
8407 struct sched_entity *se;
8408
8409 se = tg->se[i];
8410 /* Propagate contribution to hierarchy */
8411 raw_spin_lock_irqsave(&rq->lock, flags);
8412 for_each_sched_entity(se)
6d5ab293 8413 update_cfs_shares(group_cfs_rq(se));
9437178f 8414 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8415 }
29f59db3 8416
5cb350ba 8417done:
8ed36996 8418 mutex_unlock(&shares_mutex);
9b5b7751 8419 return 0;
29f59db3
SV
8420}
8421
5cb350ba
DG
8422unsigned long sched_group_shares(struct task_group *tg)
8423{
8424 return tg->shares;
8425}
052f1dc7 8426#endif
5cb350ba 8427
052f1dc7 8428#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8429/*
9f0c1e56 8430 * Ensure that the real time constraints are schedulable.
6f505b16 8431 */
9f0c1e56
PZ
8432static DEFINE_MUTEX(rt_constraints_mutex);
8433
8434static unsigned long to_ratio(u64 period, u64 runtime)
8435{
8436 if (runtime == RUNTIME_INF)
9a7e0b18 8437 return 1ULL << 20;
9f0c1e56 8438
9a7e0b18 8439 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8440}
8441
9a7e0b18
PZ
8442/* Must be called with tasklist_lock held */
8443static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8444{
9a7e0b18 8445 struct task_struct *g, *p;
b40b2e8e 8446
9a7e0b18
PZ
8447 do_each_thread(g, p) {
8448 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8449 return 1;
8450 } while_each_thread(g, p);
b40b2e8e 8451
9a7e0b18
PZ
8452 return 0;
8453}
b40b2e8e 8454
9a7e0b18
PZ
8455struct rt_schedulable_data {
8456 struct task_group *tg;
8457 u64 rt_period;
8458 u64 rt_runtime;
8459};
b40b2e8e 8460
9a7e0b18
PZ
8461static int tg_schedulable(struct task_group *tg, void *data)
8462{
8463 struct rt_schedulable_data *d = data;
8464 struct task_group *child;
8465 unsigned long total, sum = 0;
8466 u64 period, runtime;
b40b2e8e 8467
9a7e0b18
PZ
8468 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8469 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8470
9a7e0b18
PZ
8471 if (tg == d->tg) {
8472 period = d->rt_period;
8473 runtime = d->rt_runtime;
b40b2e8e 8474 }
b40b2e8e 8475
4653f803
PZ
8476 /*
8477 * Cannot have more runtime than the period.
8478 */
8479 if (runtime > period && runtime != RUNTIME_INF)
8480 return -EINVAL;
6f505b16 8481
4653f803
PZ
8482 /*
8483 * Ensure we don't starve existing RT tasks.
8484 */
9a7e0b18
PZ
8485 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8486 return -EBUSY;
6f505b16 8487
9a7e0b18 8488 total = to_ratio(period, runtime);
6f505b16 8489
4653f803
PZ
8490 /*
8491 * Nobody can have more than the global setting allows.
8492 */
8493 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8494 return -EINVAL;
6f505b16 8495
4653f803
PZ
8496 /*
8497 * The sum of our children's runtime should not exceed our own.
8498 */
9a7e0b18
PZ
8499 list_for_each_entry_rcu(child, &tg->children, siblings) {
8500 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8501 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8502
9a7e0b18
PZ
8503 if (child == d->tg) {
8504 period = d->rt_period;
8505 runtime = d->rt_runtime;
8506 }
6f505b16 8507
9a7e0b18 8508 sum += to_ratio(period, runtime);
9f0c1e56 8509 }
6f505b16 8510
9a7e0b18
PZ
8511 if (sum > total)
8512 return -EINVAL;
8513
8514 return 0;
6f505b16
PZ
8515}
8516
9a7e0b18 8517static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8518{
9a7e0b18
PZ
8519 struct rt_schedulable_data data = {
8520 .tg = tg,
8521 .rt_period = period,
8522 .rt_runtime = runtime,
8523 };
8524
8525 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8526}
8527
d0b27fa7
PZ
8528static int tg_set_bandwidth(struct task_group *tg,
8529 u64 rt_period, u64 rt_runtime)
6f505b16 8530{
ac086bc2 8531 int i, err = 0;
9f0c1e56 8532
9f0c1e56 8533 mutex_lock(&rt_constraints_mutex);
521f1a24 8534 read_lock(&tasklist_lock);
9a7e0b18
PZ
8535 err = __rt_schedulable(tg, rt_period, rt_runtime);
8536 if (err)
9f0c1e56 8537 goto unlock;
ac086bc2 8538
0986b11b 8539 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8540 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8541 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8542
8543 for_each_possible_cpu(i) {
8544 struct rt_rq *rt_rq = tg->rt_rq[i];
8545
0986b11b 8546 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8547 rt_rq->rt_runtime = rt_runtime;
0986b11b 8548 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8549 }
0986b11b 8550 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8551unlock:
521f1a24 8552 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8553 mutex_unlock(&rt_constraints_mutex);
8554
8555 return err;
6f505b16
PZ
8556}
8557
d0b27fa7
PZ
8558int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8559{
8560 u64 rt_runtime, rt_period;
8561
8562 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8563 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8564 if (rt_runtime_us < 0)
8565 rt_runtime = RUNTIME_INF;
8566
8567 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8568}
8569
9f0c1e56
PZ
8570long sched_group_rt_runtime(struct task_group *tg)
8571{
8572 u64 rt_runtime_us;
8573
d0b27fa7 8574 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8575 return -1;
8576
d0b27fa7 8577 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8578 do_div(rt_runtime_us, NSEC_PER_USEC);
8579 return rt_runtime_us;
8580}
d0b27fa7
PZ
8581
8582int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8583{
8584 u64 rt_runtime, rt_period;
8585
8586 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8587 rt_runtime = tg->rt_bandwidth.rt_runtime;
8588
619b0488
R
8589 if (rt_period == 0)
8590 return -EINVAL;
8591
d0b27fa7
PZ
8592 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8593}
8594
8595long sched_group_rt_period(struct task_group *tg)
8596{
8597 u64 rt_period_us;
8598
8599 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8600 do_div(rt_period_us, NSEC_PER_USEC);
8601 return rt_period_us;
8602}
8603
8604static int sched_rt_global_constraints(void)
8605{
4653f803 8606 u64 runtime, period;
d0b27fa7
PZ
8607 int ret = 0;
8608
ec5d4989
HS
8609 if (sysctl_sched_rt_period <= 0)
8610 return -EINVAL;
8611
4653f803
PZ
8612 runtime = global_rt_runtime();
8613 period = global_rt_period();
8614
8615 /*
8616 * Sanity check on the sysctl variables.
8617 */
8618 if (runtime > period && runtime != RUNTIME_INF)
8619 return -EINVAL;
10b612f4 8620
d0b27fa7 8621 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8622 read_lock(&tasklist_lock);
4653f803 8623 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8624 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8625 mutex_unlock(&rt_constraints_mutex);
8626
8627 return ret;
8628}
54e99124
DG
8629
8630int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8631{
8632 /* Don't accept realtime tasks when there is no way for them to run */
8633 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8634 return 0;
8635
8636 return 1;
8637}
8638
6d6bc0ad 8639#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8640static int sched_rt_global_constraints(void)
8641{
ac086bc2
PZ
8642 unsigned long flags;
8643 int i;
8644
ec5d4989
HS
8645 if (sysctl_sched_rt_period <= 0)
8646 return -EINVAL;
8647
60aa605d
PZ
8648 /*
8649 * There's always some RT tasks in the root group
8650 * -- migration, kstopmachine etc..
8651 */
8652 if (sysctl_sched_rt_runtime == 0)
8653 return -EBUSY;
8654
0986b11b 8655 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8656 for_each_possible_cpu(i) {
8657 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8658
0986b11b 8659 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8660 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8661 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8662 }
0986b11b 8663 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8664
d0b27fa7
PZ
8665 return 0;
8666}
6d6bc0ad 8667#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8668
8669int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8670 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8671 loff_t *ppos)
8672{
8673 int ret;
8674 int old_period, old_runtime;
8675 static DEFINE_MUTEX(mutex);
8676
8677 mutex_lock(&mutex);
8678 old_period = sysctl_sched_rt_period;
8679 old_runtime = sysctl_sched_rt_runtime;
8680
8d65af78 8681 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8682
8683 if (!ret && write) {
8684 ret = sched_rt_global_constraints();
8685 if (ret) {
8686 sysctl_sched_rt_period = old_period;
8687 sysctl_sched_rt_runtime = old_runtime;
8688 } else {
8689 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8690 def_rt_bandwidth.rt_period =
8691 ns_to_ktime(global_rt_period());
8692 }
8693 }
8694 mutex_unlock(&mutex);
8695
8696 return ret;
8697}
68318b8e 8698
052f1dc7 8699#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8700
8701/* return corresponding task_group object of a cgroup */
2b01dfe3 8702static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8703{
2b01dfe3
PM
8704 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8705 struct task_group, css);
68318b8e
SV
8706}
8707
8708static struct cgroup_subsys_state *
2b01dfe3 8709cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8710{
ec7dc8ac 8711 struct task_group *tg, *parent;
68318b8e 8712
2b01dfe3 8713 if (!cgrp->parent) {
68318b8e 8714 /* This is early initialization for the top cgroup */
07e06b01 8715 return &root_task_group.css;
68318b8e
SV
8716 }
8717
ec7dc8ac
DG
8718 parent = cgroup_tg(cgrp->parent);
8719 tg = sched_create_group(parent);
68318b8e
SV
8720 if (IS_ERR(tg))
8721 return ERR_PTR(-ENOMEM);
8722
68318b8e
SV
8723 return &tg->css;
8724}
8725
41a2d6cf
IM
8726static void
8727cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8728{
2b01dfe3 8729 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8730
8731 sched_destroy_group(tg);
8732}
8733
41a2d6cf 8734static int
be367d09 8735cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8736{
b68aa230 8737#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8738 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8739 return -EINVAL;
8740#else
68318b8e
SV
8741 /* We don't support RT-tasks being in separate groups */
8742 if (tsk->sched_class != &fair_sched_class)
8743 return -EINVAL;
b68aa230 8744#endif
be367d09
BB
8745 return 0;
8746}
68318b8e 8747
be367d09
BB
8748static int
8749cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8750 struct task_struct *tsk, bool threadgroup)
8751{
8752 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8753 if (retval)
8754 return retval;
8755 if (threadgroup) {
8756 struct task_struct *c;
8757 rcu_read_lock();
8758 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8759 retval = cpu_cgroup_can_attach_task(cgrp, c);
8760 if (retval) {
8761 rcu_read_unlock();
8762 return retval;
8763 }
8764 }
8765 rcu_read_unlock();
8766 }
68318b8e
SV
8767 return 0;
8768}
8769
8770static void
2b01dfe3 8771cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8772 struct cgroup *old_cont, struct task_struct *tsk,
8773 bool threadgroup)
68318b8e
SV
8774{
8775 sched_move_task(tsk);
be367d09
BB
8776 if (threadgroup) {
8777 struct task_struct *c;
8778 rcu_read_lock();
8779 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8780 sched_move_task(c);
8781 }
8782 rcu_read_unlock();
8783 }
68318b8e
SV
8784}
8785
068c5cc5 8786static void
d41d5a01
PZ
8787cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8788 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8789{
8790 /*
8791 * cgroup_exit() is called in the copy_process() failure path.
8792 * Ignore this case since the task hasn't ran yet, this avoids
8793 * trying to poke a half freed task state from generic code.
8794 */
8795 if (!(task->flags & PF_EXITING))
8796 return;
8797
8798 sched_move_task(task);
8799}
8800
052f1dc7 8801#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8802static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8803 u64 shareval)
68318b8e 8804{
2b01dfe3 8805 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8806}
8807
f4c753b7 8808static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8809{
2b01dfe3 8810 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8811
8812 return (u64) tg->shares;
8813}
6d6bc0ad 8814#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8815
052f1dc7 8816#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8817static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8818 s64 val)
6f505b16 8819{
06ecb27c 8820 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8821}
8822
06ecb27c 8823static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8824{
06ecb27c 8825 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8826}
d0b27fa7
PZ
8827
8828static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8829 u64 rt_period_us)
8830{
8831 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8832}
8833
8834static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8835{
8836 return sched_group_rt_period(cgroup_tg(cgrp));
8837}
6d6bc0ad 8838#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8839
fe5c7cc2 8840static struct cftype cpu_files[] = {
052f1dc7 8841#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8842 {
8843 .name = "shares",
f4c753b7
PM
8844 .read_u64 = cpu_shares_read_u64,
8845 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8846 },
052f1dc7
PZ
8847#endif
8848#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8849 {
9f0c1e56 8850 .name = "rt_runtime_us",
06ecb27c
PM
8851 .read_s64 = cpu_rt_runtime_read,
8852 .write_s64 = cpu_rt_runtime_write,
6f505b16 8853 },
d0b27fa7
PZ
8854 {
8855 .name = "rt_period_us",
f4c753b7
PM
8856 .read_u64 = cpu_rt_period_read_uint,
8857 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8858 },
052f1dc7 8859#endif
68318b8e
SV
8860};
8861
8862static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8863{
fe5c7cc2 8864 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8865}
8866
8867struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8868 .name = "cpu",
8869 .create = cpu_cgroup_create,
8870 .destroy = cpu_cgroup_destroy,
8871 .can_attach = cpu_cgroup_can_attach,
8872 .attach = cpu_cgroup_attach,
068c5cc5 8873 .exit = cpu_cgroup_exit,
38605cae
IM
8874 .populate = cpu_cgroup_populate,
8875 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8876 .early_init = 1,
8877};
8878
052f1dc7 8879#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8880
8881#ifdef CONFIG_CGROUP_CPUACCT
8882
8883/*
8884 * CPU accounting code for task groups.
8885 *
8886 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8887 * (balbir@in.ibm.com).
8888 */
8889
934352f2 8890/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8891struct cpuacct {
8892 struct cgroup_subsys_state css;
8893 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8894 u64 __percpu *cpuusage;
ef12fefa 8895 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8896 struct cpuacct *parent;
d842de87
SV
8897};
8898
8899struct cgroup_subsys cpuacct_subsys;
8900
8901/* return cpu accounting group corresponding to this container */
32cd756a 8902static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8903{
32cd756a 8904 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8905 struct cpuacct, css);
8906}
8907
8908/* return cpu accounting group to which this task belongs */
8909static inline struct cpuacct *task_ca(struct task_struct *tsk)
8910{
8911 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8912 struct cpuacct, css);
8913}
8914
8915/* create a new cpu accounting group */
8916static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8917 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8918{
8919 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8920 int i;
d842de87
SV
8921
8922 if (!ca)
ef12fefa 8923 goto out;
d842de87
SV
8924
8925 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8926 if (!ca->cpuusage)
8927 goto out_free_ca;
8928
8929 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8930 if (percpu_counter_init(&ca->cpustat[i], 0))
8931 goto out_free_counters;
d842de87 8932
934352f2
BR
8933 if (cgrp->parent)
8934 ca->parent = cgroup_ca(cgrp->parent);
8935
d842de87 8936 return &ca->css;
ef12fefa
BR
8937
8938out_free_counters:
8939 while (--i >= 0)
8940 percpu_counter_destroy(&ca->cpustat[i]);
8941 free_percpu(ca->cpuusage);
8942out_free_ca:
8943 kfree(ca);
8944out:
8945 return ERR_PTR(-ENOMEM);
d842de87
SV
8946}
8947
8948/* destroy an existing cpu accounting group */
41a2d6cf 8949static void
32cd756a 8950cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8951{
32cd756a 8952 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8953 int i;
d842de87 8954
ef12fefa
BR
8955 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8956 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8957 free_percpu(ca->cpuusage);
8958 kfree(ca);
8959}
8960
720f5498
KC
8961static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8962{
b36128c8 8963 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8964 u64 data;
8965
8966#ifndef CONFIG_64BIT
8967 /*
8968 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8969 */
05fa785c 8970 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8971 data = *cpuusage;
05fa785c 8972 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8973#else
8974 data = *cpuusage;
8975#endif
8976
8977 return data;
8978}
8979
8980static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8981{
b36128c8 8982 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8983
8984#ifndef CONFIG_64BIT
8985 /*
8986 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8987 */
05fa785c 8988 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8989 *cpuusage = val;
05fa785c 8990 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8991#else
8992 *cpuusage = val;
8993#endif
8994}
8995
d842de87 8996/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8997static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8998{
32cd756a 8999 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9000 u64 totalcpuusage = 0;
9001 int i;
9002
720f5498
KC
9003 for_each_present_cpu(i)
9004 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9005
9006 return totalcpuusage;
9007}
9008
0297b803
DG
9009static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9010 u64 reset)
9011{
9012 struct cpuacct *ca = cgroup_ca(cgrp);
9013 int err = 0;
9014 int i;
9015
9016 if (reset) {
9017 err = -EINVAL;
9018 goto out;
9019 }
9020
720f5498
KC
9021 for_each_present_cpu(i)
9022 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9023
0297b803
DG
9024out:
9025 return err;
9026}
9027
e9515c3c
KC
9028static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9029 struct seq_file *m)
9030{
9031 struct cpuacct *ca = cgroup_ca(cgroup);
9032 u64 percpu;
9033 int i;
9034
9035 for_each_present_cpu(i) {
9036 percpu = cpuacct_cpuusage_read(ca, i);
9037 seq_printf(m, "%llu ", (unsigned long long) percpu);
9038 }
9039 seq_printf(m, "\n");
9040 return 0;
9041}
9042
ef12fefa
BR
9043static const char *cpuacct_stat_desc[] = {
9044 [CPUACCT_STAT_USER] = "user",
9045 [CPUACCT_STAT_SYSTEM] = "system",
9046};
9047
9048static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9049 struct cgroup_map_cb *cb)
9050{
9051 struct cpuacct *ca = cgroup_ca(cgrp);
9052 int i;
9053
9054 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9055 s64 val = percpu_counter_read(&ca->cpustat[i]);
9056 val = cputime64_to_clock_t(val);
9057 cb->fill(cb, cpuacct_stat_desc[i], val);
9058 }
9059 return 0;
9060}
9061
d842de87
SV
9062static struct cftype files[] = {
9063 {
9064 .name = "usage",
f4c753b7
PM
9065 .read_u64 = cpuusage_read,
9066 .write_u64 = cpuusage_write,
d842de87 9067 },
e9515c3c
KC
9068 {
9069 .name = "usage_percpu",
9070 .read_seq_string = cpuacct_percpu_seq_read,
9071 },
ef12fefa
BR
9072 {
9073 .name = "stat",
9074 .read_map = cpuacct_stats_show,
9075 },
d842de87
SV
9076};
9077
32cd756a 9078static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9079{
32cd756a 9080 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9081}
9082
9083/*
9084 * charge this task's execution time to its accounting group.
9085 *
9086 * called with rq->lock held.
9087 */
9088static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9089{
9090 struct cpuacct *ca;
934352f2 9091 int cpu;
d842de87 9092
c40c6f85 9093 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9094 return;
9095
934352f2 9096 cpu = task_cpu(tsk);
a18b83b7
BR
9097
9098 rcu_read_lock();
9099
d842de87 9100 ca = task_ca(tsk);
d842de87 9101
934352f2 9102 for (; ca; ca = ca->parent) {
b36128c8 9103 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9104 *cpuusage += cputime;
9105 }
a18b83b7
BR
9106
9107 rcu_read_unlock();
d842de87
SV
9108}
9109
fa535a77
AB
9110/*
9111 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9112 * in cputime_t units. As a result, cpuacct_update_stats calls
9113 * percpu_counter_add with values large enough to always overflow the
9114 * per cpu batch limit causing bad SMP scalability.
9115 *
9116 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9117 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9118 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9119 */
9120#ifdef CONFIG_SMP
9121#define CPUACCT_BATCH \
9122 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9123#else
9124#define CPUACCT_BATCH 0
9125#endif
9126
ef12fefa
BR
9127/*
9128 * Charge the system/user time to the task's accounting group.
9129 */
9130static void cpuacct_update_stats(struct task_struct *tsk,
9131 enum cpuacct_stat_index idx, cputime_t val)
9132{
9133 struct cpuacct *ca;
fa535a77 9134 int batch = CPUACCT_BATCH;
ef12fefa
BR
9135
9136 if (unlikely(!cpuacct_subsys.active))
9137 return;
9138
9139 rcu_read_lock();
9140 ca = task_ca(tsk);
9141
9142 do {
fa535a77 9143 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9144 ca = ca->parent;
9145 } while (ca);
9146 rcu_read_unlock();
9147}
9148
d842de87
SV
9149struct cgroup_subsys cpuacct_subsys = {
9150 .name = "cpuacct",
9151 .create = cpuacct_create,
9152 .destroy = cpuacct_destroy,
9153 .populate = cpuacct_populate,
9154 .subsys_id = cpuacct_subsys_id,
9155};
9156#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9157
This page took 2.246375 seconds and 5 git commands to generate.