sched: Prevent buddy interactions with throttled entities
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
a9cf55b2 259 u64 runtime_expires;
58088ad0
PT
260
261 int idle, timer_active;
262 struct hrtimer period_timer;
85dac906
PT
263 struct list_head throttled_cfs_rq;
264
ab84d31e
PT
265#endif
266};
267
29f59db3 268/* task group related information */
4cf86d77 269struct task_group {
68318b8e 270 struct cgroup_subsys_state css;
6c415b92 271
052f1dc7 272#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
273 /* schedulable entities of this group on each cpu */
274 struct sched_entity **se;
275 /* runqueue "owned" by this group on each cpu */
276 struct cfs_rq **cfs_rq;
277 unsigned long shares;
2069dd75
PZ
278
279 atomic_t load_weight;
052f1dc7
PZ
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
d0b27fa7 286 struct rt_bandwidth rt_bandwidth;
052f1dc7 287#endif
6b2d7700 288
ae8393e5 289 struct rcu_head rcu;
6f505b16 290 struct list_head list;
f473aa5e
PZ
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
5091faa4
MG
295
296#ifdef CONFIG_SCHED_AUTOGROUP
297 struct autogroup *autogroup;
298#endif
ab84d31e
PT
299
300 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
301};
302
3d4b47b4 303/* task_group_lock serializes the addition/removal of task groups */
8ed36996 304static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 305
e9036b36
CG
306#ifdef CONFIG_FAIR_GROUP_SCHED
307
07e06b01 308# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 309
cb4ad1ff 310/*
2e084786
LJ
311 * A weight of 0 or 1 can cause arithmetics problems.
312 * A weight of a cfs_rq is the sum of weights of which entities
313 * are queued on this cfs_rq, so a weight of a entity should not be
314 * too large, so as the shares value of a task group.
cb4ad1ff
MX
315 * (The default weight is 1024 - so there's no practical
316 * limitation from this.)
317 */
cd62287e
MG
318#define MIN_SHARES (1UL << 1)
319#define MAX_SHARES (1UL << 18)
18d95a28 320
07e06b01 321static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
322#endif
323
29f59db3 324/* Default task group.
3a252015 325 * Every task in system belong to this group at bootup.
29f59db3 326 */
07e06b01 327struct task_group root_task_group;
29f59db3 328
7c941438 329#endif /* CONFIG_CGROUP_SCHED */
29f59db3 330
6aa645ea
IM
331/* CFS-related fields in a runqueue */
332struct cfs_rq {
333 struct load_weight load;
953bfcd1 334 unsigned long nr_running, h_nr_running;
6aa645ea 335
6aa645ea 336 u64 exec_clock;
e9acbff6 337 u64 min_vruntime;
3fe1698b
PZ
338#ifndef CONFIG_64BIT
339 u64 min_vruntime_copy;
340#endif
6aa645ea
IM
341
342 struct rb_root tasks_timeline;
343 struct rb_node *rb_leftmost;
4a55bd5e
PZ
344
345 struct list_head tasks;
346 struct list_head *balance_iterator;
347
348 /*
349 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
350 * It is set to NULL otherwise (i.e when none are currently running).
351 */
ac53db59 352 struct sched_entity *curr, *next, *last, *skip;
ddc97297 353
4934a4d3 354#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 355 unsigned int nr_spread_over;
4934a4d3 356#endif
ddc97297 357
62160e3f 358#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
359 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
360
41a2d6cf
IM
361 /*
362 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
363 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
364 * (like users, containers etc.)
365 *
366 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
367 * list is used during load balance.
368 */
3d4b47b4 369 int on_list;
41a2d6cf
IM
370 struct list_head leaf_cfs_rq_list;
371 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
372
373#ifdef CONFIG_SMP
c09595f6 374 /*
c8cba857 375 * the part of load.weight contributed by tasks
c09595f6 376 */
c8cba857 377 unsigned long task_weight;
c09595f6 378
c8cba857
PZ
379 /*
380 * h_load = weight * f(tg)
381 *
382 * Where f(tg) is the recursive weight fraction assigned to
383 * this group.
384 */
385 unsigned long h_load;
c09595f6 386
c8cba857 387 /*
3b3d190e
PT
388 * Maintaining per-cpu shares distribution for group scheduling
389 *
390 * load_stamp is the last time we updated the load average
391 * load_last is the last time we updated the load average and saw load
392 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 393 */
2069dd75
PZ
394 u64 load_avg;
395 u64 load_period;
3b3d190e 396 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 397
2069dd75 398 unsigned long load_contribution;
c09595f6 399#endif
ab84d31e
PT
400#ifdef CONFIG_CFS_BANDWIDTH
401 int runtime_enabled;
a9cf55b2 402 u64 runtime_expires;
ab84d31e 403 s64 runtime_remaining;
85dac906 404
64660c86 405 int throttled, throttle_count;
85dac906 406 struct list_head throttled_list;
ab84d31e 407#endif
6aa645ea
IM
408#endif
409};
1da177e4 410
ab84d31e
PT
411#ifdef CONFIG_FAIR_GROUP_SCHED
412#ifdef CONFIG_CFS_BANDWIDTH
413static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
414{
415 return &tg->cfs_bandwidth;
416}
417
418static inline u64 default_cfs_period(void);
58088ad0
PT
419static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
420
421static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
422{
423 struct cfs_bandwidth *cfs_b =
424 container_of(timer, struct cfs_bandwidth, period_timer);
425 ktime_t now;
426 int overrun;
427 int idle = 0;
428
429 for (;;) {
430 now = hrtimer_cb_get_time(timer);
431 overrun = hrtimer_forward(timer, now, cfs_b->period);
432
433 if (!overrun)
434 break;
435
436 idle = do_sched_cfs_period_timer(cfs_b, overrun);
437 }
438
439 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
440}
ab84d31e
PT
441
442static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
443{
444 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 445 cfs_b->runtime = 0;
ab84d31e
PT
446 cfs_b->quota = RUNTIME_INF;
447 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0 448
85dac906 449 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
58088ad0
PT
450 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
451 cfs_b->period_timer.function = sched_cfs_period_timer;
ab84d31e
PT
452}
453
454static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
455{
456 cfs_rq->runtime_enabled = 0;
85dac906 457 INIT_LIST_HEAD(&cfs_rq->throttled_list);
ab84d31e
PT
458}
459
58088ad0
PT
460/* requires cfs_b->lock, may release to reprogram timer */
461static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
462{
463 /*
464 * The timer may be active because we're trying to set a new bandwidth
465 * period or because we're racing with the tear-down path
466 * (timer_active==0 becomes visible before the hrtimer call-back
467 * terminates). In either case we ensure that it's re-programmed
468 */
469 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
470 raw_spin_unlock(&cfs_b->lock);
471 /* ensure cfs_b->lock is available while we wait */
472 hrtimer_cancel(&cfs_b->period_timer);
473
474 raw_spin_lock(&cfs_b->lock);
475 /* if someone else restarted the timer then we're done */
476 if (cfs_b->timer_active)
477 return;
478 }
479
480 cfs_b->timer_active = 1;
481 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
482}
483
ab84d31e 484static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
485{
486 hrtimer_cancel(&cfs_b->period_timer);
487}
ab84d31e
PT
488#else
489static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
490static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
491static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
492
493static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
494{
495 return NULL;
496}
497#endif /* CONFIG_CFS_BANDWIDTH */
498#endif /* CONFIG_FAIR_GROUP_SCHED */
499
6aa645ea
IM
500/* Real-Time classes' related field in a runqueue: */
501struct rt_rq {
502 struct rt_prio_array active;
63489e45 503 unsigned long rt_nr_running;
052f1dc7 504#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
505 struct {
506 int curr; /* highest queued rt task prio */
398a153b 507#ifdef CONFIG_SMP
e864c499 508 int next; /* next highest */
398a153b 509#endif
e864c499 510 } highest_prio;
6f505b16 511#endif
fa85ae24 512#ifdef CONFIG_SMP
73fe6aae 513 unsigned long rt_nr_migratory;
a1ba4d8b 514 unsigned long rt_nr_total;
a22d7fc1 515 int overloaded;
917b627d 516 struct plist_head pushable_tasks;
fa85ae24 517#endif
6f505b16 518 int rt_throttled;
fa85ae24 519 u64 rt_time;
ac086bc2 520 u64 rt_runtime;
ea736ed5 521 /* Nests inside the rq lock: */
0986b11b 522 raw_spinlock_t rt_runtime_lock;
6f505b16 523
052f1dc7 524#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
525 unsigned long rt_nr_boosted;
526
6f505b16
PZ
527 struct rq *rq;
528 struct list_head leaf_rt_rq_list;
529 struct task_group *tg;
6f505b16 530#endif
6aa645ea
IM
531};
532
57d885fe
GH
533#ifdef CONFIG_SMP
534
535/*
536 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
539 * exclusive cpuset is created, we also create and attach a new root-domain
540 * object.
541 *
57d885fe
GH
542 */
543struct root_domain {
544 atomic_t refcount;
26a148eb 545 atomic_t rto_count;
dce840a0 546 struct rcu_head rcu;
c6c4927b
RR
547 cpumask_var_t span;
548 cpumask_var_t online;
637f5085 549
0eab9146 550 /*
637f5085
GH
551 * The "RT overload" flag: it gets set if a CPU has more than
552 * one runnable RT task.
553 */
c6c4927b 554 cpumask_var_t rto_mask;
6e0534f2 555 struct cpupri cpupri;
57d885fe
GH
556};
557
dc938520
GH
558/*
559 * By default the system creates a single root-domain with all cpus as
560 * members (mimicking the global state we have today).
561 */
57d885fe
GH
562static struct root_domain def_root_domain;
563
ed2d372c 564#endif /* CONFIG_SMP */
57d885fe 565
1da177e4
LT
566/*
567 * This is the main, per-CPU runqueue data structure.
568 *
569 * Locking rule: those places that want to lock multiple runqueues
570 * (such as the load balancing or the thread migration code), lock
571 * acquire operations must be ordered by ascending &runqueue.
572 */
70b97a7f 573struct rq {
d8016491 574 /* runqueue lock: */
05fa785c 575 raw_spinlock_t lock;
1da177e4
LT
576
577 /*
578 * nr_running and cpu_load should be in the same cacheline because
579 * remote CPUs use both these fields when doing load calculation.
580 */
581 unsigned long nr_running;
6aa645ea
IM
582 #define CPU_LOAD_IDX_MAX 5
583 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 584 unsigned long last_load_update_tick;
46cb4b7c 585#ifdef CONFIG_NO_HZ
39c0cbe2 586 u64 nohz_stamp;
83cd4fe2 587 unsigned char nohz_balance_kick;
46cb4b7c 588#endif
61eadef6 589 int skip_clock_update;
a64692a3 590
d8016491
IM
591 /* capture load from *all* tasks on this cpu: */
592 struct load_weight load;
6aa645ea
IM
593 unsigned long nr_load_updates;
594 u64 nr_switches;
595
596 struct cfs_rq cfs;
6f505b16 597 struct rt_rq rt;
6f505b16 598
6aa645ea 599#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
600 /* list of leaf cfs_rq on this cpu: */
601 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
602#endif
603#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 604 struct list_head leaf_rt_rq_list;
1da177e4 605#endif
1da177e4
LT
606
607 /*
608 * This is part of a global counter where only the total sum
609 * over all CPUs matters. A task can increase this counter on
610 * one CPU and if it got migrated afterwards it may decrease
611 * it on another CPU. Always updated under the runqueue lock:
612 */
613 unsigned long nr_uninterruptible;
614
34f971f6 615 struct task_struct *curr, *idle, *stop;
c9819f45 616 unsigned long next_balance;
1da177e4 617 struct mm_struct *prev_mm;
6aa645ea 618
3e51f33f 619 u64 clock;
305e6835 620 u64 clock_task;
6aa645ea 621
1da177e4
LT
622 atomic_t nr_iowait;
623
624#ifdef CONFIG_SMP
0eab9146 625 struct root_domain *rd;
1da177e4
LT
626 struct sched_domain *sd;
627
e51fd5e2
PZ
628 unsigned long cpu_power;
629
a0a522ce 630 unsigned char idle_at_tick;
1da177e4 631 /* For active balancing */
3f029d3c 632 int post_schedule;
1da177e4
LT
633 int active_balance;
634 int push_cpu;
969c7921 635 struct cpu_stop_work active_balance_work;
d8016491
IM
636 /* cpu of this runqueue: */
637 int cpu;
1f11eb6a 638 int online;
1da177e4 639
e9e9250b
PZ
640 u64 rt_avg;
641 u64 age_stamp;
1b9508f6
MG
642 u64 idle_stamp;
643 u64 avg_idle;
1da177e4
LT
644#endif
645
aa483808
VP
646#ifdef CONFIG_IRQ_TIME_ACCOUNTING
647 u64 prev_irq_time;
648#endif
e6e6685a
GC
649#ifdef CONFIG_PARAVIRT
650 u64 prev_steal_time;
651#endif
095c0aa8
GC
652#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
653 u64 prev_steal_time_rq;
654#endif
aa483808 655
dce48a84
TG
656 /* calc_load related fields */
657 unsigned long calc_load_update;
658 long calc_load_active;
659
8f4d37ec 660#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
661#ifdef CONFIG_SMP
662 int hrtick_csd_pending;
663 struct call_single_data hrtick_csd;
664#endif
8f4d37ec
PZ
665 struct hrtimer hrtick_timer;
666#endif
667
1da177e4
LT
668#ifdef CONFIG_SCHEDSTATS
669 /* latency stats */
670 struct sched_info rq_sched_info;
9c2c4802
KC
671 unsigned long long rq_cpu_time;
672 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
673
674 /* sys_sched_yield() stats */
480b9434 675 unsigned int yld_count;
1da177e4
LT
676
677 /* schedule() stats */
480b9434
KC
678 unsigned int sched_switch;
679 unsigned int sched_count;
680 unsigned int sched_goidle;
1da177e4
LT
681
682 /* try_to_wake_up() stats */
480b9434
KC
683 unsigned int ttwu_count;
684 unsigned int ttwu_local;
1da177e4 685#endif
317f3941
PZ
686
687#ifdef CONFIG_SMP
688 struct task_struct *wake_list;
689#endif
1da177e4
LT
690};
691
f34e3b61 692static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 693
a64692a3 694
1e5a7405 695static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 696
0a2966b4
CL
697static inline int cpu_of(struct rq *rq)
698{
699#ifdef CONFIG_SMP
700 return rq->cpu;
701#else
702 return 0;
703#endif
704}
705
497f0ab3 706#define rcu_dereference_check_sched_domain(p) \
d11c563d 707 rcu_dereference_check((p), \
d11c563d
PM
708 lockdep_is_held(&sched_domains_mutex))
709
674311d5
NP
710/*
711 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 712 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
713 *
714 * The domain tree of any CPU may only be accessed from within
715 * preempt-disabled sections.
716 */
48f24c4d 717#define for_each_domain(cpu, __sd) \
497f0ab3 718 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
719
720#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
721#define this_rq() (&__get_cpu_var(runqueues))
722#define task_rq(p) cpu_rq(task_cpu(p))
723#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 724#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 725
dc61b1d6
PZ
726#ifdef CONFIG_CGROUP_SCHED
727
728/*
729 * Return the group to which this tasks belongs.
730 *
6c6c54e1
PZ
731 * We use task_subsys_state_check() and extend the RCU verification with
732 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
733 * task it moves into the cgroup. Therefore by holding either of those locks,
734 * we pin the task to the current cgroup.
dc61b1d6
PZ
735 */
736static inline struct task_group *task_group(struct task_struct *p)
737{
5091faa4 738 struct task_group *tg;
dc61b1d6
PZ
739 struct cgroup_subsys_state *css;
740
741 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
742 lockdep_is_held(&p->pi_lock) ||
743 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
744 tg = container_of(css, struct task_group, css);
745
746 return autogroup_task_group(p, tg);
dc61b1d6
PZ
747}
748
749/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
750static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
751{
752#ifdef CONFIG_FAIR_GROUP_SCHED
753 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
754 p->se.parent = task_group(p)->se[cpu];
755#endif
756
757#ifdef CONFIG_RT_GROUP_SCHED
758 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
759 p->rt.parent = task_group(p)->rt_se[cpu];
760#endif
761}
762
763#else /* CONFIG_CGROUP_SCHED */
764
765static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
766static inline struct task_group *task_group(struct task_struct *p)
767{
768 return NULL;
769}
770
771#endif /* CONFIG_CGROUP_SCHED */
772
fe44d621 773static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 774
fe44d621 775static void update_rq_clock(struct rq *rq)
3e51f33f 776{
fe44d621 777 s64 delta;
305e6835 778
61eadef6 779 if (rq->skip_clock_update > 0)
f26f9aff 780 return;
aa483808 781
fe44d621
PZ
782 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
783 rq->clock += delta;
784 update_rq_clock_task(rq, delta);
3e51f33f
PZ
785}
786
bf5c91ba
IM
787/*
788 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
789 */
790#ifdef CONFIG_SCHED_DEBUG
791# define const_debug __read_mostly
792#else
793# define const_debug static const
794#endif
795
017730c1 796/**
1fd06bb1 797 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 798 * @cpu: the processor in question.
017730c1 799 *
017730c1
IM
800 * This interface allows printk to be called with the runqueue lock
801 * held and know whether or not it is OK to wake up the klogd.
802 */
89f19f04 803int runqueue_is_locked(int cpu)
017730c1 804{
05fa785c 805 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
806}
807
bf5c91ba
IM
808/*
809 * Debugging: various feature bits
810 */
f00b45c1
PZ
811
812#define SCHED_FEAT(name, enabled) \
813 __SCHED_FEAT_##name ,
814
bf5c91ba 815enum {
f00b45c1 816#include "sched_features.h"
bf5c91ba
IM
817};
818
f00b45c1
PZ
819#undef SCHED_FEAT
820
821#define SCHED_FEAT(name, enabled) \
822 (1UL << __SCHED_FEAT_##name) * enabled |
823
bf5c91ba 824const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
825#include "sched_features.h"
826 0;
827
828#undef SCHED_FEAT
829
830#ifdef CONFIG_SCHED_DEBUG
831#define SCHED_FEAT(name, enabled) \
832 #name ,
833
983ed7a6 834static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
835#include "sched_features.h"
836 NULL
837};
838
839#undef SCHED_FEAT
840
34f3a814 841static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 842{
f00b45c1
PZ
843 int i;
844
845 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
846 if (!(sysctl_sched_features & (1UL << i)))
847 seq_puts(m, "NO_");
848 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 849 }
34f3a814 850 seq_puts(m, "\n");
f00b45c1 851
34f3a814 852 return 0;
f00b45c1
PZ
853}
854
855static ssize_t
856sched_feat_write(struct file *filp, const char __user *ubuf,
857 size_t cnt, loff_t *ppos)
858{
859 char buf[64];
7740191c 860 char *cmp;
f00b45c1
PZ
861 int neg = 0;
862 int i;
863
864 if (cnt > 63)
865 cnt = 63;
866
867 if (copy_from_user(&buf, ubuf, cnt))
868 return -EFAULT;
869
870 buf[cnt] = 0;
7740191c 871 cmp = strstrip(buf);
f00b45c1 872
524429c3 873 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
874 neg = 1;
875 cmp += 3;
876 }
877
878 for (i = 0; sched_feat_names[i]; i++) {
7740191c 879 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
880 if (neg)
881 sysctl_sched_features &= ~(1UL << i);
882 else
883 sysctl_sched_features |= (1UL << i);
884 break;
885 }
886 }
887
888 if (!sched_feat_names[i])
889 return -EINVAL;
890
42994724 891 *ppos += cnt;
f00b45c1
PZ
892
893 return cnt;
894}
895
34f3a814
LZ
896static int sched_feat_open(struct inode *inode, struct file *filp)
897{
898 return single_open(filp, sched_feat_show, NULL);
899}
900
828c0950 901static const struct file_operations sched_feat_fops = {
34f3a814
LZ
902 .open = sched_feat_open,
903 .write = sched_feat_write,
904 .read = seq_read,
905 .llseek = seq_lseek,
906 .release = single_release,
f00b45c1
PZ
907};
908
909static __init int sched_init_debug(void)
910{
f00b45c1
PZ
911 debugfs_create_file("sched_features", 0644, NULL, NULL,
912 &sched_feat_fops);
913
914 return 0;
915}
916late_initcall(sched_init_debug);
917
918#endif
919
920#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 921
b82d9fdd
PZ
922/*
923 * Number of tasks to iterate in a single balance run.
924 * Limited because this is done with IRQs disabled.
925 */
926const_debug unsigned int sysctl_sched_nr_migrate = 32;
927
e9e9250b
PZ
928/*
929 * period over which we average the RT time consumption, measured
930 * in ms.
931 *
932 * default: 1s
933 */
934const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
935
fa85ae24 936/*
9f0c1e56 937 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
938 * default: 1s
939 */
9f0c1e56 940unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 941
6892b75e
IM
942static __read_mostly int scheduler_running;
943
9f0c1e56
PZ
944/*
945 * part of the period that we allow rt tasks to run in us.
946 * default: 0.95s
947 */
948int sysctl_sched_rt_runtime = 950000;
fa85ae24 949
d0b27fa7
PZ
950static inline u64 global_rt_period(void)
951{
952 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
953}
954
955static inline u64 global_rt_runtime(void)
956{
e26873bb 957 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
958 return RUNTIME_INF;
959
960 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
961}
fa85ae24 962
1da177e4 963#ifndef prepare_arch_switch
4866cde0
NP
964# define prepare_arch_switch(next) do { } while (0)
965#endif
966#ifndef finish_arch_switch
967# define finish_arch_switch(prev) do { } while (0)
968#endif
969
051a1d1a
DA
970static inline int task_current(struct rq *rq, struct task_struct *p)
971{
972 return rq->curr == p;
973}
974
70b97a7f 975static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 976{
3ca7a440
PZ
977#ifdef CONFIG_SMP
978 return p->on_cpu;
979#else
051a1d1a 980 return task_current(rq, p);
3ca7a440 981#endif
4866cde0
NP
982}
983
3ca7a440 984#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 985static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 986{
3ca7a440
PZ
987#ifdef CONFIG_SMP
988 /*
989 * We can optimise this out completely for !SMP, because the
990 * SMP rebalancing from interrupt is the only thing that cares
991 * here.
992 */
993 next->on_cpu = 1;
994#endif
4866cde0
NP
995}
996
70b97a7f 997static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 998{
3ca7a440
PZ
999#ifdef CONFIG_SMP
1000 /*
1001 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1002 * We must ensure this doesn't happen until the switch is completely
1003 * finished.
1004 */
1005 smp_wmb();
1006 prev->on_cpu = 0;
1007#endif
da04c035
IM
1008#ifdef CONFIG_DEBUG_SPINLOCK
1009 /* this is a valid case when another task releases the spinlock */
1010 rq->lock.owner = current;
1011#endif
8a25d5de
IM
1012 /*
1013 * If we are tracking spinlock dependencies then we have to
1014 * fix up the runqueue lock - which gets 'carried over' from
1015 * prev into current:
1016 */
1017 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1018
05fa785c 1019 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1020}
1021
1022#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1023static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1024{
1025#ifdef CONFIG_SMP
1026 /*
1027 * We can optimise this out completely for !SMP, because the
1028 * SMP rebalancing from interrupt is the only thing that cares
1029 * here.
1030 */
3ca7a440 1031 next->on_cpu = 1;
4866cde0
NP
1032#endif
1033#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1034 raw_spin_unlock_irq(&rq->lock);
4866cde0 1035#else
05fa785c 1036 raw_spin_unlock(&rq->lock);
4866cde0
NP
1037#endif
1038}
1039
70b97a7f 1040static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1041{
1042#ifdef CONFIG_SMP
1043 /*
3ca7a440 1044 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1045 * We must ensure this doesn't happen until the switch is completely
1046 * finished.
1047 */
1048 smp_wmb();
3ca7a440 1049 prev->on_cpu = 0;
4866cde0
NP
1050#endif
1051#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1052 local_irq_enable();
1da177e4 1053#endif
4866cde0
NP
1054}
1055#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1056
0970d299 1057/*
0122ec5b 1058 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1059 */
70b97a7f 1060static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1061 __acquires(rq->lock)
1062{
0970d299
PZ
1063 struct rq *rq;
1064
0122ec5b
PZ
1065 lockdep_assert_held(&p->pi_lock);
1066
3a5c359a 1067 for (;;) {
0970d299 1068 rq = task_rq(p);
05fa785c 1069 raw_spin_lock(&rq->lock);
65cc8e48 1070 if (likely(rq == task_rq(p)))
3a5c359a 1071 return rq;
05fa785c 1072 raw_spin_unlock(&rq->lock);
b29739f9 1073 }
b29739f9
IM
1074}
1075
1da177e4 1076/*
0122ec5b 1077 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1078 */
70b97a7f 1079static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1080 __acquires(p->pi_lock)
1da177e4
LT
1081 __acquires(rq->lock)
1082{
70b97a7f 1083 struct rq *rq;
1da177e4 1084
3a5c359a 1085 for (;;) {
0122ec5b 1086 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1087 rq = task_rq(p);
05fa785c 1088 raw_spin_lock(&rq->lock);
65cc8e48 1089 if (likely(rq == task_rq(p)))
3a5c359a 1090 return rq;
0122ec5b
PZ
1091 raw_spin_unlock(&rq->lock);
1092 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1093 }
1da177e4
LT
1094}
1095
a9957449 1096static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1097 __releases(rq->lock)
1098{
05fa785c 1099 raw_spin_unlock(&rq->lock);
b29739f9
IM
1100}
1101
0122ec5b
PZ
1102static inline void
1103task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1104 __releases(rq->lock)
0122ec5b 1105 __releases(p->pi_lock)
1da177e4 1106{
0122ec5b
PZ
1107 raw_spin_unlock(&rq->lock);
1108 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1109}
1110
1da177e4 1111/*
cc2a73b5 1112 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1113 */
a9957449 1114static struct rq *this_rq_lock(void)
1da177e4
LT
1115 __acquires(rq->lock)
1116{
70b97a7f 1117 struct rq *rq;
1da177e4
LT
1118
1119 local_irq_disable();
1120 rq = this_rq();
05fa785c 1121 raw_spin_lock(&rq->lock);
1da177e4
LT
1122
1123 return rq;
1124}
1125
8f4d37ec
PZ
1126#ifdef CONFIG_SCHED_HRTICK
1127/*
1128 * Use HR-timers to deliver accurate preemption points.
1129 *
1130 * Its all a bit involved since we cannot program an hrt while holding the
1131 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1132 * reschedule event.
1133 *
1134 * When we get rescheduled we reprogram the hrtick_timer outside of the
1135 * rq->lock.
1136 */
8f4d37ec
PZ
1137
1138/*
1139 * Use hrtick when:
1140 * - enabled by features
1141 * - hrtimer is actually high res
1142 */
1143static inline int hrtick_enabled(struct rq *rq)
1144{
1145 if (!sched_feat(HRTICK))
1146 return 0;
ba42059f 1147 if (!cpu_active(cpu_of(rq)))
b328ca18 1148 return 0;
8f4d37ec
PZ
1149 return hrtimer_is_hres_active(&rq->hrtick_timer);
1150}
1151
8f4d37ec
PZ
1152static void hrtick_clear(struct rq *rq)
1153{
1154 if (hrtimer_active(&rq->hrtick_timer))
1155 hrtimer_cancel(&rq->hrtick_timer);
1156}
1157
8f4d37ec
PZ
1158/*
1159 * High-resolution timer tick.
1160 * Runs from hardirq context with interrupts disabled.
1161 */
1162static enum hrtimer_restart hrtick(struct hrtimer *timer)
1163{
1164 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1165
1166 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1167
05fa785c 1168 raw_spin_lock(&rq->lock);
3e51f33f 1169 update_rq_clock(rq);
8f4d37ec 1170 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1171 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1172
1173 return HRTIMER_NORESTART;
1174}
1175
95e904c7 1176#ifdef CONFIG_SMP
31656519
PZ
1177/*
1178 * called from hardirq (IPI) context
1179 */
1180static void __hrtick_start(void *arg)
b328ca18 1181{
31656519 1182 struct rq *rq = arg;
b328ca18 1183
05fa785c 1184 raw_spin_lock(&rq->lock);
31656519
PZ
1185 hrtimer_restart(&rq->hrtick_timer);
1186 rq->hrtick_csd_pending = 0;
05fa785c 1187 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1188}
1189
31656519
PZ
1190/*
1191 * Called to set the hrtick timer state.
1192 *
1193 * called with rq->lock held and irqs disabled
1194 */
1195static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1196{
31656519
PZ
1197 struct hrtimer *timer = &rq->hrtick_timer;
1198 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1199
cc584b21 1200 hrtimer_set_expires(timer, time);
31656519
PZ
1201
1202 if (rq == this_rq()) {
1203 hrtimer_restart(timer);
1204 } else if (!rq->hrtick_csd_pending) {
6e275637 1205 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1206 rq->hrtick_csd_pending = 1;
1207 }
b328ca18
PZ
1208}
1209
1210static int
1211hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1212{
1213 int cpu = (int)(long)hcpu;
1214
1215 switch (action) {
1216 case CPU_UP_CANCELED:
1217 case CPU_UP_CANCELED_FROZEN:
1218 case CPU_DOWN_PREPARE:
1219 case CPU_DOWN_PREPARE_FROZEN:
1220 case CPU_DEAD:
1221 case CPU_DEAD_FROZEN:
31656519 1222 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1223 return NOTIFY_OK;
1224 }
1225
1226 return NOTIFY_DONE;
1227}
1228
fa748203 1229static __init void init_hrtick(void)
b328ca18
PZ
1230{
1231 hotcpu_notifier(hotplug_hrtick, 0);
1232}
31656519
PZ
1233#else
1234/*
1235 * Called to set the hrtick timer state.
1236 *
1237 * called with rq->lock held and irqs disabled
1238 */
1239static void hrtick_start(struct rq *rq, u64 delay)
1240{
7f1e2ca9 1241 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1242 HRTIMER_MODE_REL_PINNED, 0);
31656519 1243}
b328ca18 1244
006c75f1 1245static inline void init_hrtick(void)
8f4d37ec 1246{
8f4d37ec 1247}
31656519 1248#endif /* CONFIG_SMP */
8f4d37ec 1249
31656519 1250static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1251{
31656519
PZ
1252#ifdef CONFIG_SMP
1253 rq->hrtick_csd_pending = 0;
8f4d37ec 1254
31656519
PZ
1255 rq->hrtick_csd.flags = 0;
1256 rq->hrtick_csd.func = __hrtick_start;
1257 rq->hrtick_csd.info = rq;
1258#endif
8f4d37ec 1259
31656519
PZ
1260 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1261 rq->hrtick_timer.function = hrtick;
8f4d37ec 1262}
006c75f1 1263#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1264static inline void hrtick_clear(struct rq *rq)
1265{
1266}
1267
8f4d37ec
PZ
1268static inline void init_rq_hrtick(struct rq *rq)
1269{
1270}
1271
b328ca18
PZ
1272static inline void init_hrtick(void)
1273{
1274}
006c75f1 1275#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1276
c24d20db
IM
1277/*
1278 * resched_task - mark a task 'to be rescheduled now'.
1279 *
1280 * On UP this means the setting of the need_resched flag, on SMP it
1281 * might also involve a cross-CPU call to trigger the scheduler on
1282 * the target CPU.
1283 */
1284#ifdef CONFIG_SMP
1285
1286#ifndef tsk_is_polling
1287#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1288#endif
1289
31656519 1290static void resched_task(struct task_struct *p)
c24d20db
IM
1291{
1292 int cpu;
1293
05fa785c 1294 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1295
5ed0cec0 1296 if (test_tsk_need_resched(p))
c24d20db
IM
1297 return;
1298
5ed0cec0 1299 set_tsk_need_resched(p);
c24d20db
IM
1300
1301 cpu = task_cpu(p);
1302 if (cpu == smp_processor_id())
1303 return;
1304
1305 /* NEED_RESCHED must be visible before we test polling */
1306 smp_mb();
1307 if (!tsk_is_polling(p))
1308 smp_send_reschedule(cpu);
1309}
1310
1311static void resched_cpu(int cpu)
1312{
1313 struct rq *rq = cpu_rq(cpu);
1314 unsigned long flags;
1315
05fa785c 1316 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1317 return;
1318 resched_task(cpu_curr(cpu));
05fa785c 1319 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1320}
06d8308c
TG
1321
1322#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1323/*
1324 * In the semi idle case, use the nearest busy cpu for migrating timers
1325 * from an idle cpu. This is good for power-savings.
1326 *
1327 * We don't do similar optimization for completely idle system, as
1328 * selecting an idle cpu will add more delays to the timers than intended
1329 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1330 */
1331int get_nohz_timer_target(void)
1332{
1333 int cpu = smp_processor_id();
1334 int i;
1335 struct sched_domain *sd;
1336
057f3fad 1337 rcu_read_lock();
83cd4fe2 1338 for_each_domain(cpu, sd) {
057f3fad
PZ
1339 for_each_cpu(i, sched_domain_span(sd)) {
1340 if (!idle_cpu(i)) {
1341 cpu = i;
1342 goto unlock;
1343 }
1344 }
83cd4fe2 1345 }
057f3fad
PZ
1346unlock:
1347 rcu_read_unlock();
83cd4fe2
VP
1348 return cpu;
1349}
06d8308c
TG
1350/*
1351 * When add_timer_on() enqueues a timer into the timer wheel of an
1352 * idle CPU then this timer might expire before the next timer event
1353 * which is scheduled to wake up that CPU. In case of a completely
1354 * idle system the next event might even be infinite time into the
1355 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1356 * leaves the inner idle loop so the newly added timer is taken into
1357 * account when the CPU goes back to idle and evaluates the timer
1358 * wheel for the next timer event.
1359 */
1360void wake_up_idle_cpu(int cpu)
1361{
1362 struct rq *rq = cpu_rq(cpu);
1363
1364 if (cpu == smp_processor_id())
1365 return;
1366
1367 /*
1368 * This is safe, as this function is called with the timer
1369 * wheel base lock of (cpu) held. When the CPU is on the way
1370 * to idle and has not yet set rq->curr to idle then it will
1371 * be serialized on the timer wheel base lock and take the new
1372 * timer into account automatically.
1373 */
1374 if (rq->curr != rq->idle)
1375 return;
1376
1377 /*
1378 * We can set TIF_RESCHED on the idle task of the other CPU
1379 * lockless. The worst case is that the other CPU runs the
1380 * idle task through an additional NOOP schedule()
1381 */
5ed0cec0 1382 set_tsk_need_resched(rq->idle);
06d8308c
TG
1383
1384 /* NEED_RESCHED must be visible before we test polling */
1385 smp_mb();
1386 if (!tsk_is_polling(rq->idle))
1387 smp_send_reschedule(cpu);
1388}
39c0cbe2 1389
6d6bc0ad 1390#endif /* CONFIG_NO_HZ */
06d8308c 1391
e9e9250b
PZ
1392static u64 sched_avg_period(void)
1393{
1394 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1395}
1396
1397static void sched_avg_update(struct rq *rq)
1398{
1399 s64 period = sched_avg_period();
1400
1401 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1402 /*
1403 * Inline assembly required to prevent the compiler
1404 * optimising this loop into a divmod call.
1405 * See __iter_div_u64_rem() for another example of this.
1406 */
1407 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1408 rq->age_stamp += period;
1409 rq->rt_avg /= 2;
1410 }
1411}
1412
1413static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1414{
1415 rq->rt_avg += rt_delta;
1416 sched_avg_update(rq);
1417}
1418
6d6bc0ad 1419#else /* !CONFIG_SMP */
31656519 1420static void resched_task(struct task_struct *p)
c24d20db 1421{
05fa785c 1422 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1423 set_tsk_need_resched(p);
c24d20db 1424}
e9e9250b
PZ
1425
1426static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1427{
1428}
da2b71ed
SS
1429
1430static void sched_avg_update(struct rq *rq)
1431{
1432}
6d6bc0ad 1433#endif /* CONFIG_SMP */
c24d20db 1434
45bf76df
IM
1435#if BITS_PER_LONG == 32
1436# define WMULT_CONST (~0UL)
1437#else
1438# define WMULT_CONST (1UL << 32)
1439#endif
1440
1441#define WMULT_SHIFT 32
1442
194081eb
IM
1443/*
1444 * Shift right and round:
1445 */
cf2ab469 1446#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1447
a7be37ac
PZ
1448/*
1449 * delta *= weight / lw
1450 */
cb1c4fc9 1451static unsigned long
45bf76df
IM
1452calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1453 struct load_weight *lw)
1454{
1455 u64 tmp;
1456
c8b28116
NR
1457 /*
1458 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1459 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1460 * 2^SCHED_LOAD_RESOLUTION.
1461 */
1462 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1463 tmp = (u64)delta_exec * scale_load_down(weight);
1464 else
1465 tmp = (u64)delta_exec;
db670dac 1466
7a232e03 1467 if (!lw->inv_weight) {
c8b28116
NR
1468 unsigned long w = scale_load_down(lw->weight);
1469
1470 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1471 lw->inv_weight = 1;
c8b28116
NR
1472 else if (unlikely(!w))
1473 lw->inv_weight = WMULT_CONST;
7a232e03 1474 else
c8b28116 1475 lw->inv_weight = WMULT_CONST / w;
7a232e03 1476 }
45bf76df 1477
45bf76df
IM
1478 /*
1479 * Check whether we'd overflow the 64-bit multiplication:
1480 */
194081eb 1481 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1482 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1483 WMULT_SHIFT/2);
1484 else
cf2ab469 1485 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1486
ecf691da 1487 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1488}
1489
1091985b 1490static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1491{
1492 lw->weight += inc;
e89996ae 1493 lw->inv_weight = 0;
45bf76df
IM
1494}
1495
1091985b 1496static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1497{
1498 lw->weight -= dec;
e89996ae 1499 lw->inv_weight = 0;
45bf76df
IM
1500}
1501
2069dd75
PZ
1502static inline void update_load_set(struct load_weight *lw, unsigned long w)
1503{
1504 lw->weight = w;
1505 lw->inv_weight = 0;
1506}
1507
2dd73a4f
PW
1508/*
1509 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1510 * of tasks with abnormal "nice" values across CPUs the contribution that
1511 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1512 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1513 * scaled version of the new time slice allocation that they receive on time
1514 * slice expiry etc.
1515 */
1516
cce7ade8
PZ
1517#define WEIGHT_IDLEPRIO 3
1518#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1519
1520/*
1521 * Nice levels are multiplicative, with a gentle 10% change for every
1522 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1523 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1524 * that remained on nice 0.
1525 *
1526 * The "10% effect" is relative and cumulative: from _any_ nice level,
1527 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1528 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1529 * If a task goes up by ~10% and another task goes down by ~10% then
1530 * the relative distance between them is ~25%.)
dd41f596
IM
1531 */
1532static const int prio_to_weight[40] = {
254753dc
IM
1533 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1534 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1535 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1536 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1537 /* 0 */ 1024, 820, 655, 526, 423,
1538 /* 5 */ 335, 272, 215, 172, 137,
1539 /* 10 */ 110, 87, 70, 56, 45,
1540 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1541};
1542
5714d2de
IM
1543/*
1544 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1545 *
1546 * In cases where the weight does not change often, we can use the
1547 * precalculated inverse to speed up arithmetics by turning divisions
1548 * into multiplications:
1549 */
dd41f596 1550static const u32 prio_to_wmult[40] = {
254753dc
IM
1551 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1552 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1553 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1554 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1555 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1556 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1557 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1558 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1559};
2dd73a4f 1560
ef12fefa
BR
1561/* Time spent by the tasks of the cpu accounting group executing in ... */
1562enum cpuacct_stat_index {
1563 CPUACCT_STAT_USER, /* ... user mode */
1564 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1565
1566 CPUACCT_STAT_NSTATS,
1567};
1568
d842de87
SV
1569#ifdef CONFIG_CGROUP_CPUACCT
1570static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1571static void cpuacct_update_stats(struct task_struct *tsk,
1572 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1573#else
1574static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1575static inline void cpuacct_update_stats(struct task_struct *tsk,
1576 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1577#endif
1578
18d95a28
PZ
1579static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1580{
1581 update_load_add(&rq->load, load);
1582}
1583
1584static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1585{
1586 update_load_sub(&rq->load, load);
1587}
1588
a790de99
PT
1589#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1590 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1591typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1592
1593/*
8277434e
PT
1594 * Iterate task_group tree rooted at *from, calling @down when first entering a
1595 * node and @up when leaving it for the final time.
1596 *
1597 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1598 */
8277434e
PT
1599static int walk_tg_tree_from(struct task_group *from,
1600 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1601{
1602 struct task_group *parent, *child;
eb755805 1603 int ret;
c09595f6 1604
8277434e
PT
1605 parent = from;
1606
c09595f6 1607down:
eb755805
PZ
1608 ret = (*down)(parent, data);
1609 if (ret)
8277434e 1610 goto out;
c09595f6
PZ
1611 list_for_each_entry_rcu(child, &parent->children, siblings) {
1612 parent = child;
1613 goto down;
1614
1615up:
1616 continue;
1617 }
eb755805 1618 ret = (*up)(parent, data);
8277434e
PT
1619 if (ret || parent == from)
1620 goto out;
c09595f6
PZ
1621
1622 child = parent;
1623 parent = parent->parent;
1624 if (parent)
1625 goto up;
8277434e 1626out:
eb755805 1627 return ret;
c09595f6
PZ
1628}
1629
8277434e
PT
1630/*
1631 * Iterate the full tree, calling @down when first entering a node and @up when
1632 * leaving it for the final time.
1633 *
1634 * Caller must hold rcu_lock or sufficient equivalent.
1635 */
1636
1637static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1638{
1639 return walk_tg_tree_from(&root_task_group, down, up, data);
1640}
1641
eb755805
PZ
1642static int tg_nop(struct task_group *tg, void *data)
1643{
1644 return 0;
c09595f6 1645}
eb755805
PZ
1646#endif
1647
1648#ifdef CONFIG_SMP
f5f08f39
PZ
1649/* Used instead of source_load when we know the type == 0 */
1650static unsigned long weighted_cpuload(const int cpu)
1651{
1652 return cpu_rq(cpu)->load.weight;
1653}
1654
1655/*
1656 * Return a low guess at the load of a migration-source cpu weighted
1657 * according to the scheduling class and "nice" value.
1658 *
1659 * We want to under-estimate the load of migration sources, to
1660 * balance conservatively.
1661 */
1662static unsigned long source_load(int cpu, int type)
1663{
1664 struct rq *rq = cpu_rq(cpu);
1665 unsigned long total = weighted_cpuload(cpu);
1666
1667 if (type == 0 || !sched_feat(LB_BIAS))
1668 return total;
1669
1670 return min(rq->cpu_load[type-1], total);
1671}
1672
1673/*
1674 * Return a high guess at the load of a migration-target cpu weighted
1675 * according to the scheduling class and "nice" value.
1676 */
1677static unsigned long target_load(int cpu, int type)
1678{
1679 struct rq *rq = cpu_rq(cpu);
1680 unsigned long total = weighted_cpuload(cpu);
1681
1682 if (type == 0 || !sched_feat(LB_BIAS))
1683 return total;
1684
1685 return max(rq->cpu_load[type-1], total);
1686}
1687
ae154be1
PZ
1688static unsigned long power_of(int cpu)
1689{
e51fd5e2 1690 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1691}
1692
eb755805
PZ
1693static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1694
1695static unsigned long cpu_avg_load_per_task(int cpu)
1696{
1697 struct rq *rq = cpu_rq(cpu);
af6d596f 1698 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1699
4cd42620 1700 if (nr_running)
e2b245f8 1701 return rq->load.weight / nr_running;
eb755805 1702
e2b245f8 1703 return 0;
eb755805
PZ
1704}
1705
8f45e2b5
GH
1706#ifdef CONFIG_PREEMPT
1707
b78bb868
PZ
1708static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1709
70574a99 1710/*
8f45e2b5
GH
1711 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1712 * way at the expense of forcing extra atomic operations in all
1713 * invocations. This assures that the double_lock is acquired using the
1714 * same underlying policy as the spinlock_t on this architecture, which
1715 * reduces latency compared to the unfair variant below. However, it
1716 * also adds more overhead and therefore may reduce throughput.
70574a99 1717 */
8f45e2b5
GH
1718static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1719 __releases(this_rq->lock)
1720 __acquires(busiest->lock)
1721 __acquires(this_rq->lock)
1722{
05fa785c 1723 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1724 double_rq_lock(this_rq, busiest);
1725
1726 return 1;
1727}
1728
1729#else
1730/*
1731 * Unfair double_lock_balance: Optimizes throughput at the expense of
1732 * latency by eliminating extra atomic operations when the locks are
1733 * already in proper order on entry. This favors lower cpu-ids and will
1734 * grant the double lock to lower cpus over higher ids under contention,
1735 * regardless of entry order into the function.
1736 */
1737static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1738 __releases(this_rq->lock)
1739 __acquires(busiest->lock)
1740 __acquires(this_rq->lock)
1741{
1742 int ret = 0;
1743
05fa785c 1744 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1745 if (busiest < this_rq) {
05fa785c
TG
1746 raw_spin_unlock(&this_rq->lock);
1747 raw_spin_lock(&busiest->lock);
1748 raw_spin_lock_nested(&this_rq->lock,
1749 SINGLE_DEPTH_NESTING);
70574a99
AD
1750 ret = 1;
1751 } else
05fa785c
TG
1752 raw_spin_lock_nested(&busiest->lock,
1753 SINGLE_DEPTH_NESTING);
70574a99
AD
1754 }
1755 return ret;
1756}
1757
8f45e2b5
GH
1758#endif /* CONFIG_PREEMPT */
1759
1760/*
1761 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1762 */
1763static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764{
1765 if (unlikely(!irqs_disabled())) {
1766 /* printk() doesn't work good under rq->lock */
05fa785c 1767 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1768 BUG_ON(1);
1769 }
1770
1771 return _double_lock_balance(this_rq, busiest);
1772}
1773
70574a99
AD
1774static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1775 __releases(busiest->lock)
1776{
05fa785c 1777 raw_spin_unlock(&busiest->lock);
70574a99
AD
1778 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1779}
1e3c88bd
PZ
1780
1781/*
1782 * double_rq_lock - safely lock two runqueues
1783 *
1784 * Note this does not disable interrupts like task_rq_lock,
1785 * you need to do so manually before calling.
1786 */
1787static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1788 __acquires(rq1->lock)
1789 __acquires(rq2->lock)
1790{
1791 BUG_ON(!irqs_disabled());
1792 if (rq1 == rq2) {
1793 raw_spin_lock(&rq1->lock);
1794 __acquire(rq2->lock); /* Fake it out ;) */
1795 } else {
1796 if (rq1 < rq2) {
1797 raw_spin_lock(&rq1->lock);
1798 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1799 } else {
1800 raw_spin_lock(&rq2->lock);
1801 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1802 }
1803 }
1e3c88bd
PZ
1804}
1805
1806/*
1807 * double_rq_unlock - safely unlock two runqueues
1808 *
1809 * Note this does not restore interrupts like task_rq_unlock,
1810 * you need to do so manually after calling.
1811 */
1812static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1813 __releases(rq1->lock)
1814 __releases(rq2->lock)
1815{
1816 raw_spin_unlock(&rq1->lock);
1817 if (rq1 != rq2)
1818 raw_spin_unlock(&rq2->lock);
1819 else
1820 __release(rq2->lock);
1821}
1822
d95f4122
MG
1823#else /* CONFIG_SMP */
1824
1825/*
1826 * double_rq_lock - safely lock two runqueues
1827 *
1828 * Note this does not disable interrupts like task_rq_lock,
1829 * you need to do so manually before calling.
1830 */
1831static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1832 __acquires(rq1->lock)
1833 __acquires(rq2->lock)
1834{
1835 BUG_ON(!irqs_disabled());
1836 BUG_ON(rq1 != rq2);
1837 raw_spin_lock(&rq1->lock);
1838 __acquire(rq2->lock); /* Fake it out ;) */
1839}
1840
1841/*
1842 * double_rq_unlock - safely unlock two runqueues
1843 *
1844 * Note this does not restore interrupts like task_rq_unlock,
1845 * you need to do so manually after calling.
1846 */
1847static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1848 __releases(rq1->lock)
1849 __releases(rq2->lock)
1850{
1851 BUG_ON(rq1 != rq2);
1852 raw_spin_unlock(&rq1->lock);
1853 __release(rq2->lock);
1854}
1855
18d95a28
PZ
1856#endif
1857
74f5187a 1858static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1859static void update_sysctl(void);
acb4a848 1860static int get_update_sysctl_factor(void);
fdf3e95d 1861static void update_cpu_load(struct rq *this_rq);
dce48a84 1862
cd29fe6f
PZ
1863static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1864{
1865 set_task_rq(p, cpu);
1866#ifdef CONFIG_SMP
1867 /*
1868 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1869 * successfuly executed on another CPU. We must ensure that updates of
1870 * per-task data have been completed by this moment.
1871 */
1872 smp_wmb();
1873 task_thread_info(p)->cpu = cpu;
1874#endif
1875}
dce48a84 1876
1e3c88bd 1877static const struct sched_class rt_sched_class;
dd41f596 1878
34f971f6 1879#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1880#define for_each_class(class) \
1881 for (class = sched_class_highest; class; class = class->next)
dd41f596 1882
1e3c88bd
PZ
1883#include "sched_stats.h"
1884
c09595f6 1885static void inc_nr_running(struct rq *rq)
9c217245
IM
1886{
1887 rq->nr_running++;
9c217245
IM
1888}
1889
c09595f6 1890static void dec_nr_running(struct rq *rq)
9c217245
IM
1891{
1892 rq->nr_running--;
9c217245
IM
1893}
1894
45bf76df
IM
1895static void set_load_weight(struct task_struct *p)
1896{
f05998d4
NR
1897 int prio = p->static_prio - MAX_RT_PRIO;
1898 struct load_weight *load = &p->se.load;
1899
dd41f596
IM
1900 /*
1901 * SCHED_IDLE tasks get minimal weight:
1902 */
1903 if (p->policy == SCHED_IDLE) {
c8b28116 1904 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1905 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1906 return;
1907 }
71f8bd46 1908
c8b28116 1909 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1910 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1911}
1912
371fd7e7 1913static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1914{
a64692a3 1915 update_rq_clock(rq);
dd41f596 1916 sched_info_queued(p);
371fd7e7 1917 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1918}
1919
371fd7e7 1920static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1921{
a64692a3 1922 update_rq_clock(rq);
46ac22ba 1923 sched_info_dequeued(p);
371fd7e7 1924 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1925}
1926
1e3c88bd
PZ
1927/*
1928 * activate_task - move a task to the runqueue.
1929 */
371fd7e7 1930static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1931{
1932 if (task_contributes_to_load(p))
1933 rq->nr_uninterruptible--;
1934
371fd7e7 1935 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1936}
1937
1938/*
1939 * deactivate_task - remove a task from the runqueue.
1940 */
371fd7e7 1941static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1942{
1943 if (task_contributes_to_load(p))
1944 rq->nr_uninterruptible++;
1945
371fd7e7 1946 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1947}
1948
b52bfee4
VP
1949#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1950
305e6835
VP
1951/*
1952 * There are no locks covering percpu hardirq/softirq time.
1953 * They are only modified in account_system_vtime, on corresponding CPU
1954 * with interrupts disabled. So, writes are safe.
1955 * They are read and saved off onto struct rq in update_rq_clock().
1956 * This may result in other CPU reading this CPU's irq time and can
1957 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1958 * or new value with a side effect of accounting a slice of irq time to wrong
1959 * task when irq is in progress while we read rq->clock. That is a worthy
1960 * compromise in place of having locks on each irq in account_system_time.
305e6835 1961 */
b52bfee4
VP
1962static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1963static DEFINE_PER_CPU(u64, cpu_softirq_time);
1964
1965static DEFINE_PER_CPU(u64, irq_start_time);
1966static int sched_clock_irqtime;
1967
1968void enable_sched_clock_irqtime(void)
1969{
1970 sched_clock_irqtime = 1;
1971}
1972
1973void disable_sched_clock_irqtime(void)
1974{
1975 sched_clock_irqtime = 0;
1976}
1977
8e92c201
PZ
1978#ifndef CONFIG_64BIT
1979static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1980
1981static inline void irq_time_write_begin(void)
1982{
1983 __this_cpu_inc(irq_time_seq.sequence);
1984 smp_wmb();
1985}
1986
1987static inline void irq_time_write_end(void)
1988{
1989 smp_wmb();
1990 __this_cpu_inc(irq_time_seq.sequence);
1991}
1992
1993static inline u64 irq_time_read(int cpu)
1994{
1995 u64 irq_time;
1996 unsigned seq;
1997
1998 do {
1999 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2000 irq_time = per_cpu(cpu_softirq_time, cpu) +
2001 per_cpu(cpu_hardirq_time, cpu);
2002 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2003
2004 return irq_time;
2005}
2006#else /* CONFIG_64BIT */
2007static inline void irq_time_write_begin(void)
2008{
2009}
2010
2011static inline void irq_time_write_end(void)
2012{
2013}
2014
2015static inline u64 irq_time_read(int cpu)
305e6835 2016{
305e6835
VP
2017 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2018}
8e92c201 2019#endif /* CONFIG_64BIT */
305e6835 2020
fe44d621
PZ
2021/*
2022 * Called before incrementing preempt_count on {soft,}irq_enter
2023 * and before decrementing preempt_count on {soft,}irq_exit.
2024 */
b52bfee4
VP
2025void account_system_vtime(struct task_struct *curr)
2026{
2027 unsigned long flags;
fe44d621 2028 s64 delta;
b52bfee4 2029 int cpu;
b52bfee4
VP
2030
2031 if (!sched_clock_irqtime)
2032 return;
2033
2034 local_irq_save(flags);
2035
b52bfee4 2036 cpu = smp_processor_id();
fe44d621
PZ
2037 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2038 __this_cpu_add(irq_start_time, delta);
2039
8e92c201 2040 irq_time_write_begin();
b52bfee4
VP
2041 /*
2042 * We do not account for softirq time from ksoftirqd here.
2043 * We want to continue accounting softirq time to ksoftirqd thread
2044 * in that case, so as not to confuse scheduler with a special task
2045 * that do not consume any time, but still wants to run.
2046 */
2047 if (hardirq_count())
fe44d621 2048 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2049 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2050 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2051
8e92c201 2052 irq_time_write_end();
b52bfee4
VP
2053 local_irq_restore(flags);
2054}
b7dadc38 2055EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2056
e6e6685a
GC
2057#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2058
2059#ifdef CONFIG_PARAVIRT
2060static inline u64 steal_ticks(u64 steal)
aa483808 2061{
e6e6685a
GC
2062 if (unlikely(steal > NSEC_PER_SEC))
2063 return div_u64(steal, TICK_NSEC);
fe44d621 2064
e6e6685a
GC
2065 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2066}
2067#endif
2068
fe44d621 2069static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2070{
095c0aa8
GC
2071/*
2072 * In theory, the compile should just see 0 here, and optimize out the call
2073 * to sched_rt_avg_update. But I don't trust it...
2074 */
2075#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2076 s64 steal = 0, irq_delta = 0;
2077#endif
2078#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2079 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2080
2081 /*
2082 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2083 * this case when a previous update_rq_clock() happened inside a
2084 * {soft,}irq region.
2085 *
2086 * When this happens, we stop ->clock_task and only update the
2087 * prev_irq_time stamp to account for the part that fit, so that a next
2088 * update will consume the rest. This ensures ->clock_task is
2089 * monotonic.
2090 *
2091 * It does however cause some slight miss-attribution of {soft,}irq
2092 * time, a more accurate solution would be to update the irq_time using
2093 * the current rq->clock timestamp, except that would require using
2094 * atomic ops.
2095 */
2096 if (irq_delta > delta)
2097 irq_delta = delta;
2098
2099 rq->prev_irq_time += irq_delta;
2100 delta -= irq_delta;
095c0aa8
GC
2101#endif
2102#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2103 if (static_branch((&paravirt_steal_rq_enabled))) {
2104 u64 st;
2105
2106 steal = paravirt_steal_clock(cpu_of(rq));
2107 steal -= rq->prev_steal_time_rq;
2108
2109 if (unlikely(steal > delta))
2110 steal = delta;
2111
2112 st = steal_ticks(steal);
2113 steal = st * TICK_NSEC;
2114
2115 rq->prev_steal_time_rq += steal;
2116
2117 delta -= steal;
2118 }
2119#endif
2120
fe44d621
PZ
2121 rq->clock_task += delta;
2122
095c0aa8
GC
2123#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2124 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2125 sched_rt_avg_update(rq, irq_delta + steal);
2126#endif
aa483808
VP
2127}
2128
095c0aa8 2129#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2130static int irqtime_account_hi_update(void)
2131{
2132 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2133 unsigned long flags;
2134 u64 latest_ns;
2135 int ret = 0;
2136
2137 local_irq_save(flags);
2138 latest_ns = this_cpu_read(cpu_hardirq_time);
2139 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2140 ret = 1;
2141 local_irq_restore(flags);
2142 return ret;
2143}
2144
2145static int irqtime_account_si_update(void)
2146{
2147 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2148 unsigned long flags;
2149 u64 latest_ns;
2150 int ret = 0;
2151
2152 local_irq_save(flags);
2153 latest_ns = this_cpu_read(cpu_softirq_time);
2154 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2155 ret = 1;
2156 local_irq_restore(flags);
2157 return ret;
2158}
2159
fe44d621 2160#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2161
abb74cef
VP
2162#define sched_clock_irqtime (0)
2163
095c0aa8 2164#endif
b52bfee4 2165
1e3c88bd
PZ
2166#include "sched_idletask.c"
2167#include "sched_fair.c"
2168#include "sched_rt.c"
5091faa4 2169#include "sched_autogroup.c"
34f971f6 2170#include "sched_stoptask.c"
1e3c88bd
PZ
2171#ifdef CONFIG_SCHED_DEBUG
2172# include "sched_debug.c"
2173#endif
2174
34f971f6
PZ
2175void sched_set_stop_task(int cpu, struct task_struct *stop)
2176{
2177 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2178 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2179
2180 if (stop) {
2181 /*
2182 * Make it appear like a SCHED_FIFO task, its something
2183 * userspace knows about and won't get confused about.
2184 *
2185 * Also, it will make PI more or less work without too
2186 * much confusion -- but then, stop work should not
2187 * rely on PI working anyway.
2188 */
2189 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2190
2191 stop->sched_class = &stop_sched_class;
2192 }
2193
2194 cpu_rq(cpu)->stop = stop;
2195
2196 if (old_stop) {
2197 /*
2198 * Reset it back to a normal scheduling class so that
2199 * it can die in pieces.
2200 */
2201 old_stop->sched_class = &rt_sched_class;
2202 }
2203}
2204
14531189 2205/*
dd41f596 2206 * __normal_prio - return the priority that is based on the static prio
14531189 2207 */
14531189
IM
2208static inline int __normal_prio(struct task_struct *p)
2209{
dd41f596 2210 return p->static_prio;
14531189
IM
2211}
2212
b29739f9
IM
2213/*
2214 * Calculate the expected normal priority: i.e. priority
2215 * without taking RT-inheritance into account. Might be
2216 * boosted by interactivity modifiers. Changes upon fork,
2217 * setprio syscalls, and whenever the interactivity
2218 * estimator recalculates.
2219 */
36c8b586 2220static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2221{
2222 int prio;
2223
e05606d3 2224 if (task_has_rt_policy(p))
b29739f9
IM
2225 prio = MAX_RT_PRIO-1 - p->rt_priority;
2226 else
2227 prio = __normal_prio(p);
2228 return prio;
2229}
2230
2231/*
2232 * Calculate the current priority, i.e. the priority
2233 * taken into account by the scheduler. This value might
2234 * be boosted by RT tasks, or might be boosted by
2235 * interactivity modifiers. Will be RT if the task got
2236 * RT-boosted. If not then it returns p->normal_prio.
2237 */
36c8b586 2238static int effective_prio(struct task_struct *p)
b29739f9
IM
2239{
2240 p->normal_prio = normal_prio(p);
2241 /*
2242 * If we are RT tasks or we were boosted to RT priority,
2243 * keep the priority unchanged. Otherwise, update priority
2244 * to the normal priority:
2245 */
2246 if (!rt_prio(p->prio))
2247 return p->normal_prio;
2248 return p->prio;
2249}
2250
1da177e4
LT
2251/**
2252 * task_curr - is this task currently executing on a CPU?
2253 * @p: the task in question.
2254 */
36c8b586 2255inline int task_curr(const struct task_struct *p)
1da177e4
LT
2256{
2257 return cpu_curr(task_cpu(p)) == p;
2258}
2259
cb469845
SR
2260static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2261 const struct sched_class *prev_class,
da7a735e 2262 int oldprio)
cb469845
SR
2263{
2264 if (prev_class != p->sched_class) {
2265 if (prev_class->switched_from)
da7a735e
PZ
2266 prev_class->switched_from(rq, p);
2267 p->sched_class->switched_to(rq, p);
2268 } else if (oldprio != p->prio)
2269 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2270}
2271
1e5a7405
PZ
2272static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2273{
2274 const struct sched_class *class;
2275
2276 if (p->sched_class == rq->curr->sched_class) {
2277 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2278 } else {
2279 for_each_class(class) {
2280 if (class == rq->curr->sched_class)
2281 break;
2282 if (class == p->sched_class) {
2283 resched_task(rq->curr);
2284 break;
2285 }
2286 }
2287 }
2288
2289 /*
2290 * A queue event has occurred, and we're going to schedule. In
2291 * this case, we can save a useless back to back clock update.
2292 */
fd2f4419 2293 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2294 rq->skip_clock_update = 1;
2295}
2296
1da177e4 2297#ifdef CONFIG_SMP
cc367732
IM
2298/*
2299 * Is this task likely cache-hot:
2300 */
e7693a36 2301static int
cc367732
IM
2302task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2303{
2304 s64 delta;
2305
e6c8fba7
PZ
2306 if (p->sched_class != &fair_sched_class)
2307 return 0;
2308
ef8002f6
NR
2309 if (unlikely(p->policy == SCHED_IDLE))
2310 return 0;
2311
f540a608
IM
2312 /*
2313 * Buddy candidates are cache hot:
2314 */
f685ceac 2315 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2316 (&p->se == cfs_rq_of(&p->se)->next ||
2317 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2318 return 1;
2319
6bc1665b
IM
2320 if (sysctl_sched_migration_cost == -1)
2321 return 1;
2322 if (sysctl_sched_migration_cost == 0)
2323 return 0;
2324
cc367732
IM
2325 delta = now - p->se.exec_start;
2326
2327 return delta < (s64)sysctl_sched_migration_cost;
2328}
2329
dd41f596 2330void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2331{
e2912009
PZ
2332#ifdef CONFIG_SCHED_DEBUG
2333 /*
2334 * We should never call set_task_cpu() on a blocked task,
2335 * ttwu() will sort out the placement.
2336 */
077614ee
PZ
2337 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2338 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2339
2340#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2341 /*
2342 * The caller should hold either p->pi_lock or rq->lock, when changing
2343 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2344 *
2345 * sched_move_task() holds both and thus holding either pins the cgroup,
2346 * see set_task_rq().
2347 *
2348 * Furthermore, all task_rq users should acquire both locks, see
2349 * task_rq_lock().
2350 */
0122ec5b
PZ
2351 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2352 lockdep_is_held(&task_rq(p)->lock)));
2353#endif
e2912009
PZ
2354#endif
2355
de1d7286 2356 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2357
0c69774e
PZ
2358 if (task_cpu(p) != new_cpu) {
2359 p->se.nr_migrations++;
a8b0ca17 2360 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2361 }
dd41f596
IM
2362
2363 __set_task_cpu(p, new_cpu);
c65cc870
IM
2364}
2365
969c7921 2366struct migration_arg {
36c8b586 2367 struct task_struct *task;
1da177e4 2368 int dest_cpu;
70b97a7f 2369};
1da177e4 2370
969c7921
TH
2371static int migration_cpu_stop(void *data);
2372
1da177e4
LT
2373/*
2374 * wait_task_inactive - wait for a thread to unschedule.
2375 *
85ba2d86
RM
2376 * If @match_state is nonzero, it's the @p->state value just checked and
2377 * not expected to change. If it changes, i.e. @p might have woken up,
2378 * then return zero. When we succeed in waiting for @p to be off its CPU,
2379 * we return a positive number (its total switch count). If a second call
2380 * a short while later returns the same number, the caller can be sure that
2381 * @p has remained unscheduled the whole time.
2382 *
1da177e4
LT
2383 * The caller must ensure that the task *will* unschedule sometime soon,
2384 * else this function might spin for a *long* time. This function can't
2385 * be called with interrupts off, or it may introduce deadlock with
2386 * smp_call_function() if an IPI is sent by the same process we are
2387 * waiting to become inactive.
2388 */
85ba2d86 2389unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2390{
2391 unsigned long flags;
dd41f596 2392 int running, on_rq;
85ba2d86 2393 unsigned long ncsw;
70b97a7f 2394 struct rq *rq;
1da177e4 2395
3a5c359a
AK
2396 for (;;) {
2397 /*
2398 * We do the initial early heuristics without holding
2399 * any task-queue locks at all. We'll only try to get
2400 * the runqueue lock when things look like they will
2401 * work out!
2402 */
2403 rq = task_rq(p);
fa490cfd 2404
3a5c359a
AK
2405 /*
2406 * If the task is actively running on another CPU
2407 * still, just relax and busy-wait without holding
2408 * any locks.
2409 *
2410 * NOTE! Since we don't hold any locks, it's not
2411 * even sure that "rq" stays as the right runqueue!
2412 * But we don't care, since "task_running()" will
2413 * return false if the runqueue has changed and p
2414 * is actually now running somewhere else!
2415 */
85ba2d86
RM
2416 while (task_running(rq, p)) {
2417 if (match_state && unlikely(p->state != match_state))
2418 return 0;
3a5c359a 2419 cpu_relax();
85ba2d86 2420 }
fa490cfd 2421
3a5c359a
AK
2422 /*
2423 * Ok, time to look more closely! We need the rq
2424 * lock now, to be *sure*. If we're wrong, we'll
2425 * just go back and repeat.
2426 */
2427 rq = task_rq_lock(p, &flags);
27a9da65 2428 trace_sched_wait_task(p);
3a5c359a 2429 running = task_running(rq, p);
fd2f4419 2430 on_rq = p->on_rq;
85ba2d86 2431 ncsw = 0;
f31e11d8 2432 if (!match_state || p->state == match_state)
93dcf55f 2433 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2434 task_rq_unlock(rq, p, &flags);
fa490cfd 2435
85ba2d86
RM
2436 /*
2437 * If it changed from the expected state, bail out now.
2438 */
2439 if (unlikely(!ncsw))
2440 break;
2441
3a5c359a
AK
2442 /*
2443 * Was it really running after all now that we
2444 * checked with the proper locks actually held?
2445 *
2446 * Oops. Go back and try again..
2447 */
2448 if (unlikely(running)) {
2449 cpu_relax();
2450 continue;
2451 }
fa490cfd 2452
3a5c359a
AK
2453 /*
2454 * It's not enough that it's not actively running,
2455 * it must be off the runqueue _entirely_, and not
2456 * preempted!
2457 *
80dd99b3 2458 * So if it was still runnable (but just not actively
3a5c359a
AK
2459 * running right now), it's preempted, and we should
2460 * yield - it could be a while.
2461 */
2462 if (unlikely(on_rq)) {
8eb90c30
TG
2463 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2464
2465 set_current_state(TASK_UNINTERRUPTIBLE);
2466 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2467 continue;
2468 }
fa490cfd 2469
3a5c359a
AK
2470 /*
2471 * Ahh, all good. It wasn't running, and it wasn't
2472 * runnable, which means that it will never become
2473 * running in the future either. We're all done!
2474 */
2475 break;
2476 }
85ba2d86
RM
2477
2478 return ncsw;
1da177e4
LT
2479}
2480
2481/***
2482 * kick_process - kick a running thread to enter/exit the kernel
2483 * @p: the to-be-kicked thread
2484 *
2485 * Cause a process which is running on another CPU to enter
2486 * kernel-mode, without any delay. (to get signals handled.)
2487 *
25985edc 2488 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2489 * because all it wants to ensure is that the remote task enters
2490 * the kernel. If the IPI races and the task has been migrated
2491 * to another CPU then no harm is done and the purpose has been
2492 * achieved as well.
2493 */
36c8b586 2494void kick_process(struct task_struct *p)
1da177e4
LT
2495{
2496 int cpu;
2497
2498 preempt_disable();
2499 cpu = task_cpu(p);
2500 if ((cpu != smp_processor_id()) && task_curr(p))
2501 smp_send_reschedule(cpu);
2502 preempt_enable();
2503}
b43e3521 2504EXPORT_SYMBOL_GPL(kick_process);
476d139c 2505#endif /* CONFIG_SMP */
1da177e4 2506
970b13ba 2507#ifdef CONFIG_SMP
30da688e 2508/*
013fdb80 2509 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2510 */
5da9a0fb
PZ
2511static int select_fallback_rq(int cpu, struct task_struct *p)
2512{
2513 int dest_cpu;
2514 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2515
2516 /* Look for allowed, online CPU in same node. */
2517 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2518 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2519 return dest_cpu;
2520
2521 /* Any allowed, online CPU? */
2522 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2523 if (dest_cpu < nr_cpu_ids)
2524 return dest_cpu;
2525
2526 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2527 dest_cpu = cpuset_cpus_allowed_fallback(p);
2528 /*
2529 * Don't tell them about moving exiting tasks or
2530 * kernel threads (both mm NULL), since they never
2531 * leave kernel.
2532 */
2533 if (p->mm && printk_ratelimit()) {
2534 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2535 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2536 }
2537
2538 return dest_cpu;
2539}
2540
e2912009 2541/*
013fdb80 2542 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2543 */
970b13ba 2544static inline
7608dec2 2545int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2546{
7608dec2 2547 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2548
2549 /*
2550 * In order not to call set_task_cpu() on a blocking task we need
2551 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2552 * cpu.
2553 *
2554 * Since this is common to all placement strategies, this lives here.
2555 *
2556 * [ this allows ->select_task() to simply return task_cpu(p) and
2557 * not worry about this generic constraint ]
2558 */
2559 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2560 !cpu_online(cpu)))
5da9a0fb 2561 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2562
2563 return cpu;
970b13ba 2564}
09a40af5
MG
2565
2566static void update_avg(u64 *avg, u64 sample)
2567{
2568 s64 diff = sample - *avg;
2569 *avg += diff >> 3;
2570}
970b13ba
PZ
2571#endif
2572
d7c01d27 2573static void
b84cb5df 2574ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2575{
d7c01d27 2576#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2577 struct rq *rq = this_rq();
2578
d7c01d27
PZ
2579#ifdef CONFIG_SMP
2580 int this_cpu = smp_processor_id();
2581
2582 if (cpu == this_cpu) {
2583 schedstat_inc(rq, ttwu_local);
2584 schedstat_inc(p, se.statistics.nr_wakeups_local);
2585 } else {
2586 struct sched_domain *sd;
2587
2588 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2589 rcu_read_lock();
d7c01d27
PZ
2590 for_each_domain(this_cpu, sd) {
2591 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2592 schedstat_inc(sd, ttwu_wake_remote);
2593 break;
2594 }
2595 }
057f3fad 2596 rcu_read_unlock();
d7c01d27 2597 }
f339b9dc
PZ
2598
2599 if (wake_flags & WF_MIGRATED)
2600 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2601
d7c01d27
PZ
2602#endif /* CONFIG_SMP */
2603
2604 schedstat_inc(rq, ttwu_count);
9ed3811a 2605 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2606
2607 if (wake_flags & WF_SYNC)
9ed3811a 2608 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2609
d7c01d27
PZ
2610#endif /* CONFIG_SCHEDSTATS */
2611}
2612
2613static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2614{
9ed3811a 2615 activate_task(rq, p, en_flags);
fd2f4419 2616 p->on_rq = 1;
c2f7115e
PZ
2617
2618 /* if a worker is waking up, notify workqueue */
2619 if (p->flags & PF_WQ_WORKER)
2620 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2621}
2622
23f41eeb
PZ
2623/*
2624 * Mark the task runnable and perform wakeup-preemption.
2625 */
89363381 2626static void
23f41eeb 2627ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2628{
89363381 2629 trace_sched_wakeup(p, true);
9ed3811a
TH
2630 check_preempt_curr(rq, p, wake_flags);
2631
2632 p->state = TASK_RUNNING;
2633#ifdef CONFIG_SMP
2634 if (p->sched_class->task_woken)
2635 p->sched_class->task_woken(rq, p);
2636
e69c6341 2637 if (rq->idle_stamp) {
9ed3811a
TH
2638 u64 delta = rq->clock - rq->idle_stamp;
2639 u64 max = 2*sysctl_sched_migration_cost;
2640
2641 if (delta > max)
2642 rq->avg_idle = max;
2643 else
2644 update_avg(&rq->avg_idle, delta);
2645 rq->idle_stamp = 0;
2646 }
2647#endif
2648}
2649
c05fbafb
PZ
2650static void
2651ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2652{
2653#ifdef CONFIG_SMP
2654 if (p->sched_contributes_to_load)
2655 rq->nr_uninterruptible--;
2656#endif
2657
2658 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2659 ttwu_do_wakeup(rq, p, wake_flags);
2660}
2661
2662/*
2663 * Called in case the task @p isn't fully descheduled from its runqueue,
2664 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2665 * since all we need to do is flip p->state to TASK_RUNNING, since
2666 * the task is still ->on_rq.
2667 */
2668static int ttwu_remote(struct task_struct *p, int wake_flags)
2669{
2670 struct rq *rq;
2671 int ret = 0;
2672
2673 rq = __task_rq_lock(p);
2674 if (p->on_rq) {
2675 ttwu_do_wakeup(rq, p, wake_flags);
2676 ret = 1;
2677 }
2678 __task_rq_unlock(rq);
2679
2680 return ret;
2681}
2682
317f3941 2683#ifdef CONFIG_SMP
c5d753a5 2684static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2685{
2686 struct rq *rq = this_rq();
317f3941
PZ
2687
2688 raw_spin_lock(&rq->lock);
2689
2690 while (list) {
2691 struct task_struct *p = list;
2692 list = list->wake_entry;
2693 ttwu_do_activate(rq, p, 0);
2694 }
2695
2696 raw_spin_unlock(&rq->lock);
2697}
2698
c5d753a5
PZ
2699#ifdef CONFIG_HOTPLUG_CPU
2700
2701static void sched_ttwu_pending(void)
2702{
2703 struct rq *rq = this_rq();
2704 struct task_struct *list = xchg(&rq->wake_list, NULL);
2705
2706 if (!list)
2707 return;
2708
2709 sched_ttwu_do_pending(list);
2710}
2711
2712#endif /* CONFIG_HOTPLUG_CPU */
2713
317f3941
PZ
2714void scheduler_ipi(void)
2715{
c5d753a5
PZ
2716 struct rq *rq = this_rq();
2717 struct task_struct *list = xchg(&rq->wake_list, NULL);
2718
2719 if (!list)
2720 return;
2721
2722 /*
2723 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2724 * traditionally all their work was done from the interrupt return
2725 * path. Now that we actually do some work, we need to make sure
2726 * we do call them.
2727 *
2728 * Some archs already do call them, luckily irq_enter/exit nest
2729 * properly.
2730 *
2731 * Arguably we should visit all archs and update all handlers,
2732 * however a fair share of IPIs are still resched only so this would
2733 * somewhat pessimize the simple resched case.
2734 */
2735 irq_enter();
2736 sched_ttwu_do_pending(list);
2737 irq_exit();
317f3941
PZ
2738}
2739
2740static void ttwu_queue_remote(struct task_struct *p, int cpu)
2741{
2742 struct rq *rq = cpu_rq(cpu);
2743 struct task_struct *next = rq->wake_list;
2744
2745 for (;;) {
2746 struct task_struct *old = next;
2747
2748 p->wake_entry = next;
2749 next = cmpxchg(&rq->wake_list, old, p);
2750 if (next == old)
2751 break;
2752 }
2753
2754 if (!next)
2755 smp_send_reschedule(cpu);
2756}
d6aa8f85
PZ
2757
2758#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2759static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2760{
2761 struct rq *rq;
2762 int ret = 0;
2763
2764 rq = __task_rq_lock(p);
2765 if (p->on_cpu) {
2766 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2767 ttwu_do_wakeup(rq, p, wake_flags);
2768 ret = 1;
2769 }
2770 __task_rq_unlock(rq);
2771
2772 return ret;
2773
2774}
2775#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2776#endif /* CONFIG_SMP */
317f3941 2777
c05fbafb
PZ
2778static void ttwu_queue(struct task_struct *p, int cpu)
2779{
2780 struct rq *rq = cpu_rq(cpu);
2781
17d9f311 2782#if defined(CONFIG_SMP)
317f3941 2783 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2784 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2785 ttwu_queue_remote(p, cpu);
2786 return;
2787 }
2788#endif
2789
c05fbafb
PZ
2790 raw_spin_lock(&rq->lock);
2791 ttwu_do_activate(rq, p, 0);
2792 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2793}
2794
2795/**
1da177e4 2796 * try_to_wake_up - wake up a thread
9ed3811a 2797 * @p: the thread to be awakened
1da177e4 2798 * @state: the mask of task states that can be woken
9ed3811a 2799 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2800 *
2801 * Put it on the run-queue if it's not already there. The "current"
2802 * thread is always on the run-queue (except when the actual
2803 * re-schedule is in progress), and as such you're allowed to do
2804 * the simpler "current->state = TASK_RUNNING" to mark yourself
2805 * runnable without the overhead of this.
2806 *
9ed3811a
TH
2807 * Returns %true if @p was woken up, %false if it was already running
2808 * or @state didn't match @p's state.
1da177e4 2809 */
e4a52bcb
PZ
2810static int
2811try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2812{
1da177e4 2813 unsigned long flags;
c05fbafb 2814 int cpu, success = 0;
2398f2c6 2815
04e2f174 2816 smp_wmb();
013fdb80 2817 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2818 if (!(p->state & state))
1da177e4
LT
2819 goto out;
2820
c05fbafb 2821 success = 1; /* we're going to change ->state */
1da177e4 2822 cpu = task_cpu(p);
1da177e4 2823
c05fbafb
PZ
2824 if (p->on_rq && ttwu_remote(p, wake_flags))
2825 goto stat;
1da177e4 2826
1da177e4 2827#ifdef CONFIG_SMP
e9c84311 2828 /*
c05fbafb
PZ
2829 * If the owning (remote) cpu is still in the middle of schedule() with
2830 * this task as prev, wait until its done referencing the task.
e9c84311 2831 */
e4a52bcb
PZ
2832 while (p->on_cpu) {
2833#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2834 /*
d6aa8f85
PZ
2835 * In case the architecture enables interrupts in
2836 * context_switch(), we cannot busy wait, since that
2837 * would lead to deadlocks when an interrupt hits and
2838 * tries to wake up @prev. So bail and do a complete
2839 * remote wakeup.
e4a52bcb 2840 */
d6aa8f85 2841 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2842 goto stat;
d6aa8f85 2843#else
e4a52bcb 2844 cpu_relax();
d6aa8f85 2845#endif
371fd7e7 2846 }
0970d299 2847 /*
e4a52bcb 2848 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2849 */
e4a52bcb 2850 smp_rmb();
1da177e4 2851
a8e4f2ea 2852 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2853 p->state = TASK_WAKING;
e7693a36 2854
e4a52bcb 2855 if (p->sched_class->task_waking)
74f8e4b2 2856 p->sched_class->task_waking(p);
efbbd05a 2857
7608dec2 2858 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2859 if (task_cpu(p) != cpu) {
2860 wake_flags |= WF_MIGRATED;
e4a52bcb 2861 set_task_cpu(p, cpu);
f339b9dc 2862 }
1da177e4 2863#endif /* CONFIG_SMP */
1da177e4 2864
c05fbafb
PZ
2865 ttwu_queue(p, cpu);
2866stat:
b84cb5df 2867 ttwu_stat(p, cpu, wake_flags);
1da177e4 2868out:
013fdb80 2869 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2870
2871 return success;
2872}
2873
21aa9af0
TH
2874/**
2875 * try_to_wake_up_local - try to wake up a local task with rq lock held
2876 * @p: the thread to be awakened
2877 *
2acca55e 2878 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2879 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2880 * the current task.
21aa9af0
TH
2881 */
2882static void try_to_wake_up_local(struct task_struct *p)
2883{
2884 struct rq *rq = task_rq(p);
21aa9af0
TH
2885
2886 BUG_ON(rq != this_rq());
2887 BUG_ON(p == current);
2888 lockdep_assert_held(&rq->lock);
2889
2acca55e
PZ
2890 if (!raw_spin_trylock(&p->pi_lock)) {
2891 raw_spin_unlock(&rq->lock);
2892 raw_spin_lock(&p->pi_lock);
2893 raw_spin_lock(&rq->lock);
2894 }
2895
21aa9af0 2896 if (!(p->state & TASK_NORMAL))
2acca55e 2897 goto out;
21aa9af0 2898
fd2f4419 2899 if (!p->on_rq)
d7c01d27
PZ
2900 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2901
23f41eeb 2902 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2903 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2904out:
2905 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2906}
2907
50fa610a
DH
2908/**
2909 * wake_up_process - Wake up a specific process
2910 * @p: The process to be woken up.
2911 *
2912 * Attempt to wake up the nominated process and move it to the set of runnable
2913 * processes. Returns 1 if the process was woken up, 0 if it was already
2914 * running.
2915 *
2916 * It may be assumed that this function implies a write memory barrier before
2917 * changing the task state if and only if any tasks are woken up.
2918 */
7ad5b3a5 2919int wake_up_process(struct task_struct *p)
1da177e4 2920{
d9514f6c 2921 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2922}
1da177e4
LT
2923EXPORT_SYMBOL(wake_up_process);
2924
7ad5b3a5 2925int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2926{
2927 return try_to_wake_up(p, state, 0);
2928}
2929
1da177e4
LT
2930/*
2931 * Perform scheduler related setup for a newly forked process p.
2932 * p is forked by current.
dd41f596
IM
2933 *
2934 * __sched_fork() is basic setup used by init_idle() too:
2935 */
2936static void __sched_fork(struct task_struct *p)
2937{
fd2f4419
PZ
2938 p->on_rq = 0;
2939
2940 p->se.on_rq = 0;
dd41f596
IM
2941 p->se.exec_start = 0;
2942 p->se.sum_exec_runtime = 0;
f6cf891c 2943 p->se.prev_sum_exec_runtime = 0;
6c594c21 2944 p->se.nr_migrations = 0;
da7a735e 2945 p->se.vruntime = 0;
fd2f4419 2946 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2947
2948#ifdef CONFIG_SCHEDSTATS
41acab88 2949 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2950#endif
476d139c 2951
fa717060 2952 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2953
e107be36
AK
2954#ifdef CONFIG_PREEMPT_NOTIFIERS
2955 INIT_HLIST_HEAD(&p->preempt_notifiers);
2956#endif
dd41f596
IM
2957}
2958
2959/*
2960 * fork()/clone()-time setup:
2961 */
3e51e3ed 2962void sched_fork(struct task_struct *p)
dd41f596 2963{
0122ec5b 2964 unsigned long flags;
dd41f596
IM
2965 int cpu = get_cpu();
2966
2967 __sched_fork(p);
06b83b5f 2968 /*
0017d735 2969 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2970 * nobody will actually run it, and a signal or other external
2971 * event cannot wake it up and insert it on the runqueue either.
2972 */
0017d735 2973 p->state = TASK_RUNNING;
dd41f596 2974
c350a04e
MG
2975 /*
2976 * Make sure we do not leak PI boosting priority to the child.
2977 */
2978 p->prio = current->normal_prio;
2979
b9dc29e7
MG
2980 /*
2981 * Revert to default priority/policy on fork if requested.
2982 */
2983 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2984 if (task_has_rt_policy(p)) {
b9dc29e7 2985 p->policy = SCHED_NORMAL;
6c697bdf 2986 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2987 p->rt_priority = 0;
2988 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2989 p->static_prio = NICE_TO_PRIO(0);
2990
2991 p->prio = p->normal_prio = __normal_prio(p);
2992 set_load_weight(p);
6c697bdf 2993
b9dc29e7
MG
2994 /*
2995 * We don't need the reset flag anymore after the fork. It has
2996 * fulfilled its duty:
2997 */
2998 p->sched_reset_on_fork = 0;
2999 }
ca94c442 3000
2ddbf952
HS
3001 if (!rt_prio(p->prio))
3002 p->sched_class = &fair_sched_class;
b29739f9 3003
cd29fe6f
PZ
3004 if (p->sched_class->task_fork)
3005 p->sched_class->task_fork(p);
3006
86951599
PZ
3007 /*
3008 * The child is not yet in the pid-hash so no cgroup attach races,
3009 * and the cgroup is pinned to this child due to cgroup_fork()
3010 * is ran before sched_fork().
3011 *
3012 * Silence PROVE_RCU.
3013 */
0122ec5b 3014 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 3015 set_task_cpu(p, cpu);
0122ec5b 3016 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3017
52f17b6c 3018#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 3019 if (likely(sched_info_on()))
52f17b6c 3020 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3021#endif
3ca7a440
PZ
3022#if defined(CONFIG_SMP)
3023 p->on_cpu = 0;
4866cde0 3024#endif
bdd4e85d 3025#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3026 /* Want to start with kernel preemption disabled. */
a1261f54 3027 task_thread_info(p)->preempt_count = 1;
1da177e4 3028#endif
806c09a7 3029#ifdef CONFIG_SMP
917b627d 3030 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3031#endif
917b627d 3032
476d139c 3033 put_cpu();
1da177e4
LT
3034}
3035
3036/*
3037 * wake_up_new_task - wake up a newly created task for the first time.
3038 *
3039 * This function will do some initial scheduler statistics housekeeping
3040 * that must be done for every newly created context, then puts the task
3041 * on the runqueue and wakes it.
3042 */
3e51e3ed 3043void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3044{
3045 unsigned long flags;
dd41f596 3046 struct rq *rq;
fabf318e 3047
ab2515c4 3048 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3049#ifdef CONFIG_SMP
3050 /*
3051 * Fork balancing, do it here and not earlier because:
3052 * - cpus_allowed can change in the fork path
3053 * - any previously selected cpu might disappear through hotplug
fabf318e 3054 */
ab2515c4 3055 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3056#endif
3057
ab2515c4 3058 rq = __task_rq_lock(p);
cd29fe6f 3059 activate_task(rq, p, 0);
fd2f4419 3060 p->on_rq = 1;
89363381 3061 trace_sched_wakeup_new(p, true);
a7558e01 3062 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3063#ifdef CONFIG_SMP
efbbd05a
PZ
3064 if (p->sched_class->task_woken)
3065 p->sched_class->task_woken(rq, p);
9a897c5a 3066#endif
0122ec5b 3067 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3068}
3069
e107be36
AK
3070#ifdef CONFIG_PREEMPT_NOTIFIERS
3071
3072/**
80dd99b3 3073 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3074 * @notifier: notifier struct to register
e107be36
AK
3075 */
3076void preempt_notifier_register(struct preempt_notifier *notifier)
3077{
3078 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3079}
3080EXPORT_SYMBOL_GPL(preempt_notifier_register);
3081
3082/**
3083 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3084 * @notifier: notifier struct to unregister
e107be36
AK
3085 *
3086 * This is safe to call from within a preemption notifier.
3087 */
3088void preempt_notifier_unregister(struct preempt_notifier *notifier)
3089{
3090 hlist_del(&notifier->link);
3091}
3092EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3093
3094static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3095{
3096 struct preempt_notifier *notifier;
3097 struct hlist_node *node;
3098
3099 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3100 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3101}
3102
3103static void
3104fire_sched_out_preempt_notifiers(struct task_struct *curr,
3105 struct task_struct *next)
3106{
3107 struct preempt_notifier *notifier;
3108 struct hlist_node *node;
3109
3110 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3111 notifier->ops->sched_out(notifier, next);
3112}
3113
6d6bc0ad 3114#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3115
3116static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3117{
3118}
3119
3120static void
3121fire_sched_out_preempt_notifiers(struct task_struct *curr,
3122 struct task_struct *next)
3123{
3124}
3125
6d6bc0ad 3126#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3127
4866cde0
NP
3128/**
3129 * prepare_task_switch - prepare to switch tasks
3130 * @rq: the runqueue preparing to switch
421cee29 3131 * @prev: the current task that is being switched out
4866cde0
NP
3132 * @next: the task we are going to switch to.
3133 *
3134 * This is called with the rq lock held and interrupts off. It must
3135 * be paired with a subsequent finish_task_switch after the context
3136 * switch.
3137 *
3138 * prepare_task_switch sets up locking and calls architecture specific
3139 * hooks.
3140 */
e107be36
AK
3141static inline void
3142prepare_task_switch(struct rq *rq, struct task_struct *prev,
3143 struct task_struct *next)
4866cde0 3144{
fe4b04fa
PZ
3145 sched_info_switch(prev, next);
3146 perf_event_task_sched_out(prev, next);
e107be36 3147 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3148 prepare_lock_switch(rq, next);
3149 prepare_arch_switch(next);
fe4b04fa 3150 trace_sched_switch(prev, next);
4866cde0
NP
3151}
3152
1da177e4
LT
3153/**
3154 * finish_task_switch - clean up after a task-switch
344babaa 3155 * @rq: runqueue associated with task-switch
1da177e4
LT
3156 * @prev: the thread we just switched away from.
3157 *
4866cde0
NP
3158 * finish_task_switch must be called after the context switch, paired
3159 * with a prepare_task_switch call before the context switch.
3160 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3161 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3162 *
3163 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3164 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3165 * with the lock held can cause deadlocks; see schedule() for
3166 * details.)
3167 */
a9957449 3168static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3169 __releases(rq->lock)
3170{
1da177e4 3171 struct mm_struct *mm = rq->prev_mm;
55a101f8 3172 long prev_state;
1da177e4
LT
3173
3174 rq->prev_mm = NULL;
3175
3176 /*
3177 * A task struct has one reference for the use as "current".
c394cc9f 3178 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3179 * schedule one last time. The schedule call will never return, and
3180 * the scheduled task must drop that reference.
c394cc9f 3181 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3182 * still held, otherwise prev could be scheduled on another cpu, die
3183 * there before we look at prev->state, and then the reference would
3184 * be dropped twice.
3185 * Manfred Spraul <manfred@colorfullife.com>
3186 */
55a101f8 3187 prev_state = prev->state;
4866cde0 3188 finish_arch_switch(prev);
8381f65d
JI
3189#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3190 local_irq_disable();
3191#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3192 perf_event_task_sched_in(current);
8381f65d
JI
3193#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3194 local_irq_enable();
3195#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3196 finish_lock_switch(rq, prev);
e8fa1362 3197
e107be36 3198 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3199 if (mm)
3200 mmdrop(mm);
c394cc9f 3201 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3202 /*
3203 * Remove function-return probe instances associated with this
3204 * task and put them back on the free list.
9761eea8 3205 */
c6fd91f0 3206 kprobe_flush_task(prev);
1da177e4 3207 put_task_struct(prev);
c6fd91f0 3208 }
1da177e4
LT
3209}
3210
3f029d3c
GH
3211#ifdef CONFIG_SMP
3212
3213/* assumes rq->lock is held */
3214static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3215{
3216 if (prev->sched_class->pre_schedule)
3217 prev->sched_class->pre_schedule(rq, prev);
3218}
3219
3220/* rq->lock is NOT held, but preemption is disabled */
3221static inline void post_schedule(struct rq *rq)
3222{
3223 if (rq->post_schedule) {
3224 unsigned long flags;
3225
05fa785c 3226 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3227 if (rq->curr->sched_class->post_schedule)
3228 rq->curr->sched_class->post_schedule(rq);
05fa785c 3229 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3230
3231 rq->post_schedule = 0;
3232 }
3233}
3234
3235#else
da19ab51 3236
3f029d3c
GH
3237static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3238{
3239}
3240
3241static inline void post_schedule(struct rq *rq)
3242{
1da177e4
LT
3243}
3244
3f029d3c
GH
3245#endif
3246
1da177e4
LT
3247/**
3248 * schedule_tail - first thing a freshly forked thread must call.
3249 * @prev: the thread we just switched away from.
3250 */
36c8b586 3251asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3252 __releases(rq->lock)
3253{
70b97a7f
IM
3254 struct rq *rq = this_rq();
3255
4866cde0 3256 finish_task_switch(rq, prev);
da19ab51 3257
3f029d3c
GH
3258 /*
3259 * FIXME: do we need to worry about rq being invalidated by the
3260 * task_switch?
3261 */
3262 post_schedule(rq);
70b97a7f 3263
4866cde0
NP
3264#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3265 /* In this case, finish_task_switch does not reenable preemption */
3266 preempt_enable();
3267#endif
1da177e4 3268 if (current->set_child_tid)
b488893a 3269 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3270}
3271
3272/*
3273 * context_switch - switch to the new MM and the new
3274 * thread's register state.
3275 */
dd41f596 3276static inline void
70b97a7f 3277context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3278 struct task_struct *next)
1da177e4 3279{
dd41f596 3280 struct mm_struct *mm, *oldmm;
1da177e4 3281
e107be36 3282 prepare_task_switch(rq, prev, next);
fe4b04fa 3283
dd41f596
IM
3284 mm = next->mm;
3285 oldmm = prev->active_mm;
9226d125
ZA
3286 /*
3287 * For paravirt, this is coupled with an exit in switch_to to
3288 * combine the page table reload and the switch backend into
3289 * one hypercall.
3290 */
224101ed 3291 arch_start_context_switch(prev);
9226d125 3292
31915ab4 3293 if (!mm) {
1da177e4
LT
3294 next->active_mm = oldmm;
3295 atomic_inc(&oldmm->mm_count);
3296 enter_lazy_tlb(oldmm, next);
3297 } else
3298 switch_mm(oldmm, mm, next);
3299
31915ab4 3300 if (!prev->mm) {
1da177e4 3301 prev->active_mm = NULL;
1da177e4
LT
3302 rq->prev_mm = oldmm;
3303 }
3a5f5e48
IM
3304 /*
3305 * Since the runqueue lock will be released by the next
3306 * task (which is an invalid locking op but in the case
3307 * of the scheduler it's an obvious special-case), so we
3308 * do an early lockdep release here:
3309 */
3310#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3311 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3312#endif
1da177e4
LT
3313
3314 /* Here we just switch the register state and the stack. */
3315 switch_to(prev, next, prev);
3316
dd41f596
IM
3317 barrier();
3318 /*
3319 * this_rq must be evaluated again because prev may have moved
3320 * CPUs since it called schedule(), thus the 'rq' on its stack
3321 * frame will be invalid.
3322 */
3323 finish_task_switch(this_rq(), prev);
1da177e4
LT
3324}
3325
3326/*
3327 * nr_running, nr_uninterruptible and nr_context_switches:
3328 *
3329 * externally visible scheduler statistics: current number of runnable
3330 * threads, current number of uninterruptible-sleeping threads, total
3331 * number of context switches performed since bootup.
3332 */
3333unsigned long nr_running(void)
3334{
3335 unsigned long i, sum = 0;
3336
3337 for_each_online_cpu(i)
3338 sum += cpu_rq(i)->nr_running;
3339
3340 return sum;
f711f609 3341}
1da177e4
LT
3342
3343unsigned long nr_uninterruptible(void)
f711f609 3344{
1da177e4 3345 unsigned long i, sum = 0;
f711f609 3346
0a945022 3347 for_each_possible_cpu(i)
1da177e4 3348 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3349
3350 /*
1da177e4
LT
3351 * Since we read the counters lockless, it might be slightly
3352 * inaccurate. Do not allow it to go below zero though:
f711f609 3353 */
1da177e4
LT
3354 if (unlikely((long)sum < 0))
3355 sum = 0;
f711f609 3356
1da177e4 3357 return sum;
f711f609 3358}
f711f609 3359
1da177e4 3360unsigned long long nr_context_switches(void)
46cb4b7c 3361{
cc94abfc
SR
3362 int i;
3363 unsigned long long sum = 0;
46cb4b7c 3364
0a945022 3365 for_each_possible_cpu(i)
1da177e4 3366 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3367
1da177e4
LT
3368 return sum;
3369}
483b4ee6 3370
1da177e4
LT
3371unsigned long nr_iowait(void)
3372{
3373 unsigned long i, sum = 0;
483b4ee6 3374
0a945022 3375 for_each_possible_cpu(i)
1da177e4 3376 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3377
1da177e4
LT
3378 return sum;
3379}
483b4ee6 3380
8c215bd3 3381unsigned long nr_iowait_cpu(int cpu)
69d25870 3382{
8c215bd3 3383 struct rq *this = cpu_rq(cpu);
69d25870
AV
3384 return atomic_read(&this->nr_iowait);
3385}
46cb4b7c 3386
69d25870
AV
3387unsigned long this_cpu_load(void)
3388{
3389 struct rq *this = this_rq();
3390 return this->cpu_load[0];
3391}
e790fb0b 3392
46cb4b7c 3393
dce48a84
TG
3394/* Variables and functions for calc_load */
3395static atomic_long_t calc_load_tasks;
3396static unsigned long calc_load_update;
3397unsigned long avenrun[3];
3398EXPORT_SYMBOL(avenrun);
46cb4b7c 3399
74f5187a
PZ
3400static long calc_load_fold_active(struct rq *this_rq)
3401{
3402 long nr_active, delta = 0;
3403
3404 nr_active = this_rq->nr_running;
3405 nr_active += (long) this_rq->nr_uninterruptible;
3406
3407 if (nr_active != this_rq->calc_load_active) {
3408 delta = nr_active - this_rq->calc_load_active;
3409 this_rq->calc_load_active = nr_active;
3410 }
3411
3412 return delta;
3413}
3414
0f004f5a
PZ
3415static unsigned long
3416calc_load(unsigned long load, unsigned long exp, unsigned long active)
3417{
3418 load *= exp;
3419 load += active * (FIXED_1 - exp);
3420 load += 1UL << (FSHIFT - 1);
3421 return load >> FSHIFT;
3422}
3423
74f5187a
PZ
3424#ifdef CONFIG_NO_HZ
3425/*
3426 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3427 *
3428 * When making the ILB scale, we should try to pull this in as well.
3429 */
3430static atomic_long_t calc_load_tasks_idle;
3431
3432static void calc_load_account_idle(struct rq *this_rq)
3433{
3434 long delta;
3435
3436 delta = calc_load_fold_active(this_rq);
3437 if (delta)
3438 atomic_long_add(delta, &calc_load_tasks_idle);
3439}
3440
3441static long calc_load_fold_idle(void)
3442{
3443 long delta = 0;
3444
3445 /*
3446 * Its got a race, we don't care...
3447 */
3448 if (atomic_long_read(&calc_load_tasks_idle))
3449 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3450
3451 return delta;
3452}
0f004f5a
PZ
3453
3454/**
3455 * fixed_power_int - compute: x^n, in O(log n) time
3456 *
3457 * @x: base of the power
3458 * @frac_bits: fractional bits of @x
3459 * @n: power to raise @x to.
3460 *
3461 * By exploiting the relation between the definition of the natural power
3462 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3463 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3464 * (where: n_i \elem {0, 1}, the binary vector representing n),
3465 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3466 * of course trivially computable in O(log_2 n), the length of our binary
3467 * vector.
3468 */
3469static unsigned long
3470fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3471{
3472 unsigned long result = 1UL << frac_bits;
3473
3474 if (n) for (;;) {
3475 if (n & 1) {
3476 result *= x;
3477 result += 1UL << (frac_bits - 1);
3478 result >>= frac_bits;
3479 }
3480 n >>= 1;
3481 if (!n)
3482 break;
3483 x *= x;
3484 x += 1UL << (frac_bits - 1);
3485 x >>= frac_bits;
3486 }
3487
3488 return result;
3489}
3490
3491/*
3492 * a1 = a0 * e + a * (1 - e)
3493 *
3494 * a2 = a1 * e + a * (1 - e)
3495 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3496 * = a0 * e^2 + a * (1 - e) * (1 + e)
3497 *
3498 * a3 = a2 * e + a * (1 - e)
3499 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3500 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3501 *
3502 * ...
3503 *
3504 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3505 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3506 * = a0 * e^n + a * (1 - e^n)
3507 *
3508 * [1] application of the geometric series:
3509 *
3510 * n 1 - x^(n+1)
3511 * S_n := \Sum x^i = -------------
3512 * i=0 1 - x
3513 */
3514static unsigned long
3515calc_load_n(unsigned long load, unsigned long exp,
3516 unsigned long active, unsigned int n)
3517{
3518
3519 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3520}
3521
3522/*
3523 * NO_HZ can leave us missing all per-cpu ticks calling
3524 * calc_load_account_active(), but since an idle CPU folds its delta into
3525 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3526 * in the pending idle delta if our idle period crossed a load cycle boundary.
3527 *
3528 * Once we've updated the global active value, we need to apply the exponential
3529 * weights adjusted to the number of cycles missed.
3530 */
3531static void calc_global_nohz(unsigned long ticks)
3532{
3533 long delta, active, n;
3534
3535 if (time_before(jiffies, calc_load_update))
3536 return;
3537
3538 /*
3539 * If we crossed a calc_load_update boundary, make sure to fold
3540 * any pending idle changes, the respective CPUs might have
3541 * missed the tick driven calc_load_account_active() update
3542 * due to NO_HZ.
3543 */
3544 delta = calc_load_fold_idle();
3545 if (delta)
3546 atomic_long_add(delta, &calc_load_tasks);
3547
3548 /*
3549 * If we were idle for multiple load cycles, apply them.
3550 */
3551 if (ticks >= LOAD_FREQ) {
3552 n = ticks / LOAD_FREQ;
3553
3554 active = atomic_long_read(&calc_load_tasks);
3555 active = active > 0 ? active * FIXED_1 : 0;
3556
3557 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3558 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3559 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3560
3561 calc_load_update += n * LOAD_FREQ;
3562 }
3563
3564 /*
3565 * Its possible the remainder of the above division also crosses
3566 * a LOAD_FREQ period, the regular check in calc_global_load()
3567 * which comes after this will take care of that.
3568 *
3569 * Consider us being 11 ticks before a cycle completion, and us
3570 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3571 * age us 4 cycles, and the test in calc_global_load() will
3572 * pick up the final one.
3573 */
3574}
74f5187a
PZ
3575#else
3576static void calc_load_account_idle(struct rq *this_rq)
3577{
3578}
3579
3580static inline long calc_load_fold_idle(void)
3581{
3582 return 0;
3583}
0f004f5a
PZ
3584
3585static void calc_global_nohz(unsigned long ticks)
3586{
3587}
74f5187a
PZ
3588#endif
3589
2d02494f
TG
3590/**
3591 * get_avenrun - get the load average array
3592 * @loads: pointer to dest load array
3593 * @offset: offset to add
3594 * @shift: shift count to shift the result left
3595 *
3596 * These values are estimates at best, so no need for locking.
3597 */
3598void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3599{
3600 loads[0] = (avenrun[0] + offset) << shift;
3601 loads[1] = (avenrun[1] + offset) << shift;
3602 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3603}
46cb4b7c 3604
46cb4b7c 3605/*
dce48a84
TG
3606 * calc_load - update the avenrun load estimates 10 ticks after the
3607 * CPUs have updated calc_load_tasks.
7835b98b 3608 */
0f004f5a 3609void calc_global_load(unsigned long ticks)
7835b98b 3610{
dce48a84 3611 long active;
1da177e4 3612
0f004f5a
PZ
3613 calc_global_nohz(ticks);
3614
3615 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3616 return;
1da177e4 3617
dce48a84
TG
3618 active = atomic_long_read(&calc_load_tasks);
3619 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3620
dce48a84
TG
3621 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3622 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3623 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3624
dce48a84
TG
3625 calc_load_update += LOAD_FREQ;
3626}
1da177e4 3627
dce48a84 3628/*
74f5187a
PZ
3629 * Called from update_cpu_load() to periodically update this CPU's
3630 * active count.
dce48a84
TG
3631 */
3632static void calc_load_account_active(struct rq *this_rq)
3633{
74f5187a 3634 long delta;
08c183f3 3635
74f5187a
PZ
3636 if (time_before(jiffies, this_rq->calc_load_update))
3637 return;
783609c6 3638
74f5187a
PZ
3639 delta = calc_load_fold_active(this_rq);
3640 delta += calc_load_fold_idle();
3641 if (delta)
dce48a84 3642 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3643
3644 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3645}
3646
fdf3e95d
VP
3647/*
3648 * The exact cpuload at various idx values, calculated at every tick would be
3649 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3650 *
3651 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3652 * on nth tick when cpu may be busy, then we have:
3653 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3654 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3655 *
3656 * decay_load_missed() below does efficient calculation of
3657 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3658 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3659 *
3660 * The calculation is approximated on a 128 point scale.
3661 * degrade_zero_ticks is the number of ticks after which load at any
3662 * particular idx is approximated to be zero.
3663 * degrade_factor is a precomputed table, a row for each load idx.
3664 * Each column corresponds to degradation factor for a power of two ticks,
3665 * based on 128 point scale.
3666 * Example:
3667 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3668 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3669 *
3670 * With this power of 2 load factors, we can degrade the load n times
3671 * by looking at 1 bits in n and doing as many mult/shift instead of
3672 * n mult/shifts needed by the exact degradation.
3673 */
3674#define DEGRADE_SHIFT 7
3675static const unsigned char
3676 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3677static const unsigned char
3678 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3679 {0, 0, 0, 0, 0, 0, 0, 0},
3680 {64, 32, 8, 0, 0, 0, 0, 0},
3681 {96, 72, 40, 12, 1, 0, 0},
3682 {112, 98, 75, 43, 15, 1, 0},
3683 {120, 112, 98, 76, 45, 16, 2} };
3684
3685/*
3686 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3687 * would be when CPU is idle and so we just decay the old load without
3688 * adding any new load.
3689 */
3690static unsigned long
3691decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3692{
3693 int j = 0;
3694
3695 if (!missed_updates)
3696 return load;
3697
3698 if (missed_updates >= degrade_zero_ticks[idx])
3699 return 0;
3700
3701 if (idx == 1)
3702 return load >> missed_updates;
3703
3704 while (missed_updates) {
3705 if (missed_updates % 2)
3706 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3707
3708 missed_updates >>= 1;
3709 j++;
3710 }
3711 return load;
3712}
3713
46cb4b7c 3714/*
dd41f596 3715 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3716 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3717 * every tick. We fix it up based on jiffies.
46cb4b7c 3718 */
dd41f596 3719static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3720{
495eca49 3721 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3722 unsigned long curr_jiffies = jiffies;
3723 unsigned long pending_updates;
dd41f596 3724 int i, scale;
46cb4b7c 3725
dd41f596 3726 this_rq->nr_load_updates++;
46cb4b7c 3727
fdf3e95d
VP
3728 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3729 if (curr_jiffies == this_rq->last_load_update_tick)
3730 return;
3731
3732 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3733 this_rq->last_load_update_tick = curr_jiffies;
3734
dd41f596 3735 /* Update our load: */
fdf3e95d
VP
3736 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3737 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3738 unsigned long old_load, new_load;
7d1e6a9b 3739
dd41f596 3740 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3741
dd41f596 3742 old_load = this_rq->cpu_load[i];
fdf3e95d 3743 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3744 new_load = this_load;
a25707f3
IM
3745 /*
3746 * Round up the averaging division if load is increasing. This
3747 * prevents us from getting stuck on 9 if the load is 10, for
3748 * example.
3749 */
3750 if (new_load > old_load)
fdf3e95d
VP
3751 new_load += scale - 1;
3752
3753 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3754 }
da2b71ed
SS
3755
3756 sched_avg_update(this_rq);
fdf3e95d
VP
3757}
3758
3759static void update_cpu_load_active(struct rq *this_rq)
3760{
3761 update_cpu_load(this_rq);
46cb4b7c 3762
74f5187a 3763 calc_load_account_active(this_rq);
46cb4b7c
SS
3764}
3765
dd41f596 3766#ifdef CONFIG_SMP
8a0be9ef 3767
46cb4b7c 3768/*
38022906
PZ
3769 * sched_exec - execve() is a valuable balancing opportunity, because at
3770 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3771 */
38022906 3772void sched_exec(void)
46cb4b7c 3773{
38022906 3774 struct task_struct *p = current;
1da177e4 3775 unsigned long flags;
0017d735 3776 int dest_cpu;
46cb4b7c 3777
8f42ced9 3778 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3779 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3780 if (dest_cpu == smp_processor_id())
3781 goto unlock;
38022906 3782
8f42ced9 3783 if (likely(cpu_active(dest_cpu))) {
969c7921 3784 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3785
8f42ced9
PZ
3786 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3787 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3788 return;
3789 }
0017d735 3790unlock:
8f42ced9 3791 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3792}
dd41f596 3793
1da177e4
LT
3794#endif
3795
1da177e4
LT
3796DEFINE_PER_CPU(struct kernel_stat, kstat);
3797
3798EXPORT_PER_CPU_SYMBOL(kstat);
3799
3800/*
c5f8d995 3801 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3802 * @p in case that task is currently running.
c5f8d995
HS
3803 *
3804 * Called with task_rq_lock() held on @rq.
1da177e4 3805 */
c5f8d995
HS
3806static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3807{
3808 u64 ns = 0;
3809
3810 if (task_current(rq, p)) {
3811 update_rq_clock(rq);
305e6835 3812 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3813 if ((s64)ns < 0)
3814 ns = 0;
3815 }
3816
3817 return ns;
3818}
3819
bb34d92f 3820unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3821{
1da177e4 3822 unsigned long flags;
41b86e9c 3823 struct rq *rq;
bb34d92f 3824 u64 ns = 0;
48f24c4d 3825
41b86e9c 3826 rq = task_rq_lock(p, &flags);
c5f8d995 3827 ns = do_task_delta_exec(p, rq);
0122ec5b 3828 task_rq_unlock(rq, p, &flags);
1508487e 3829
c5f8d995
HS
3830 return ns;
3831}
f06febc9 3832
c5f8d995
HS
3833/*
3834 * Return accounted runtime for the task.
3835 * In case the task is currently running, return the runtime plus current's
3836 * pending runtime that have not been accounted yet.
3837 */
3838unsigned long long task_sched_runtime(struct task_struct *p)
3839{
3840 unsigned long flags;
3841 struct rq *rq;
3842 u64 ns = 0;
3843
3844 rq = task_rq_lock(p, &flags);
3845 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3846 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3847
3848 return ns;
3849}
48f24c4d 3850
c5f8d995
HS
3851/*
3852 * Return sum_exec_runtime for the thread group.
3853 * In case the task is currently running, return the sum plus current's
3854 * pending runtime that have not been accounted yet.
3855 *
3856 * Note that the thread group might have other running tasks as well,
3857 * so the return value not includes other pending runtime that other
3858 * running tasks might have.
3859 */
3860unsigned long long thread_group_sched_runtime(struct task_struct *p)
3861{
3862 struct task_cputime totals;
3863 unsigned long flags;
3864 struct rq *rq;
3865 u64 ns;
3866
3867 rq = task_rq_lock(p, &flags);
3868 thread_group_cputime(p, &totals);
3869 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3870 task_rq_unlock(rq, p, &flags);
48f24c4d 3871
1da177e4
LT
3872 return ns;
3873}
3874
1da177e4
LT
3875/*
3876 * Account user cpu time to a process.
3877 * @p: the process that the cpu time gets accounted to
1da177e4 3878 * @cputime: the cpu time spent in user space since the last update
457533a7 3879 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3880 */
457533a7
MS
3881void account_user_time(struct task_struct *p, cputime_t cputime,
3882 cputime_t cputime_scaled)
1da177e4
LT
3883{
3884 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3885 cputime64_t tmp;
3886
457533a7 3887 /* Add user time to process. */
1da177e4 3888 p->utime = cputime_add(p->utime, cputime);
457533a7 3889 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3890 account_group_user_time(p, cputime);
1da177e4
LT
3891
3892 /* Add user time to cpustat. */
3893 tmp = cputime_to_cputime64(cputime);
3894 if (TASK_NICE(p) > 0)
3895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3896 else
3897 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3898
3899 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3900 /* Account for user time used */
3901 acct_update_integrals(p);
1da177e4
LT
3902}
3903
94886b84
LV
3904/*
3905 * Account guest cpu time to a process.
3906 * @p: the process that the cpu time gets accounted to
3907 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3908 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3909 */
457533a7
MS
3910static void account_guest_time(struct task_struct *p, cputime_t cputime,
3911 cputime_t cputime_scaled)
94886b84
LV
3912{
3913 cputime64_t tmp;
3914 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3915
3916 tmp = cputime_to_cputime64(cputime);
3917
457533a7 3918 /* Add guest time to process. */
94886b84 3919 p->utime = cputime_add(p->utime, cputime);
457533a7 3920 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3921 account_group_user_time(p, cputime);
94886b84
LV
3922 p->gtime = cputime_add(p->gtime, cputime);
3923
457533a7 3924 /* Add guest time to cpustat. */
ce0e7b28
RO
3925 if (TASK_NICE(p) > 0) {
3926 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3927 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3928 } else {
3929 cpustat->user = cputime64_add(cpustat->user, tmp);
3930 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3931 }
94886b84
LV
3932}
3933
70a89a66
VP
3934/*
3935 * Account system cpu time to a process and desired cpustat field
3936 * @p: the process that the cpu time gets accounted to
3937 * @cputime: the cpu time spent in kernel space since the last update
3938 * @cputime_scaled: cputime scaled by cpu frequency
3939 * @target_cputime64: pointer to cpustat field that has to be updated
3940 */
3941static inline
3942void __account_system_time(struct task_struct *p, cputime_t cputime,
3943 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3944{
3945 cputime64_t tmp = cputime_to_cputime64(cputime);
3946
3947 /* Add system time to process. */
3948 p->stime = cputime_add(p->stime, cputime);
3949 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3950 account_group_system_time(p, cputime);
3951
3952 /* Add system time to cpustat. */
3953 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3954 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3955
3956 /* Account for system time used */
3957 acct_update_integrals(p);
3958}
3959
1da177e4
LT
3960/*
3961 * Account system cpu time to a process.
3962 * @p: the process that the cpu time gets accounted to
3963 * @hardirq_offset: the offset to subtract from hardirq_count()
3964 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3965 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3966 */
3967void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3968 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3969{
3970 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3971 cputime64_t *target_cputime64;
1da177e4 3972
983ed7a6 3973 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3974 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3975 return;
3976 }
94886b84 3977
1da177e4 3978 if (hardirq_count() - hardirq_offset)
70a89a66 3979 target_cputime64 = &cpustat->irq;
75e1056f 3980 else if (in_serving_softirq())
70a89a66 3981 target_cputime64 = &cpustat->softirq;
1da177e4 3982 else
70a89a66 3983 target_cputime64 = &cpustat->system;
ef12fefa 3984
70a89a66 3985 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3986}
3987
c66f08be 3988/*
1da177e4 3989 * Account for involuntary wait time.
544b4a1f 3990 * @cputime: the cpu time spent in involuntary wait
c66f08be 3991 */
79741dd3 3992void account_steal_time(cputime_t cputime)
c66f08be 3993{
79741dd3
MS
3994 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3995 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3996
3997 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3998}
3999
1da177e4 4000/*
79741dd3
MS
4001 * Account for idle time.
4002 * @cputime: the cpu time spent in idle wait
1da177e4 4003 */
79741dd3 4004void account_idle_time(cputime_t cputime)
1da177e4
LT
4005{
4006 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4007 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4008 struct rq *rq = this_rq();
1da177e4 4009
79741dd3
MS
4010 if (atomic_read(&rq->nr_iowait) > 0)
4011 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4012 else
4013 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4014}
4015
e6e6685a
GC
4016static __always_inline bool steal_account_process_tick(void)
4017{
4018#ifdef CONFIG_PARAVIRT
4019 if (static_branch(&paravirt_steal_enabled)) {
4020 u64 steal, st = 0;
4021
4022 steal = paravirt_steal_clock(smp_processor_id());
4023 steal -= this_rq()->prev_steal_time;
4024
4025 st = steal_ticks(steal);
4026 this_rq()->prev_steal_time += st * TICK_NSEC;
4027
4028 account_steal_time(st);
4029 return st;
4030 }
4031#endif
4032 return false;
4033}
4034
79741dd3
MS
4035#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4036
abb74cef
VP
4037#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4038/*
4039 * Account a tick to a process and cpustat
4040 * @p: the process that the cpu time gets accounted to
4041 * @user_tick: is the tick from userspace
4042 * @rq: the pointer to rq
4043 *
4044 * Tick demultiplexing follows the order
4045 * - pending hardirq update
4046 * - pending softirq update
4047 * - user_time
4048 * - idle_time
4049 * - system time
4050 * - check for guest_time
4051 * - else account as system_time
4052 *
4053 * Check for hardirq is done both for system and user time as there is
4054 * no timer going off while we are on hardirq and hence we may never get an
4055 * opportunity to update it solely in system time.
4056 * p->stime and friends are only updated on system time and not on irq
4057 * softirq as those do not count in task exec_runtime any more.
4058 */
4059static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4060 struct rq *rq)
4061{
4062 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4063 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4064 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4065
e6e6685a
GC
4066 if (steal_account_process_tick())
4067 return;
4068
abb74cef
VP
4069 if (irqtime_account_hi_update()) {
4070 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4071 } else if (irqtime_account_si_update()) {
4072 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4073 } else if (this_cpu_ksoftirqd() == p) {
4074 /*
4075 * ksoftirqd time do not get accounted in cpu_softirq_time.
4076 * So, we have to handle it separately here.
4077 * Also, p->stime needs to be updated for ksoftirqd.
4078 */
4079 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4080 &cpustat->softirq);
abb74cef
VP
4081 } else if (user_tick) {
4082 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4083 } else if (p == rq->idle) {
4084 account_idle_time(cputime_one_jiffy);
4085 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4086 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4087 } else {
4088 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4089 &cpustat->system);
4090 }
4091}
4092
4093static void irqtime_account_idle_ticks(int ticks)
4094{
4095 int i;
4096 struct rq *rq = this_rq();
4097
4098 for (i = 0; i < ticks; i++)
4099 irqtime_account_process_tick(current, 0, rq);
4100}
544b4a1f 4101#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4102static void irqtime_account_idle_ticks(int ticks) {}
4103static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4104 struct rq *rq) {}
544b4a1f 4105#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4106
4107/*
4108 * Account a single tick of cpu time.
4109 * @p: the process that the cpu time gets accounted to
4110 * @user_tick: indicates if the tick is a user or a system tick
4111 */
4112void account_process_tick(struct task_struct *p, int user_tick)
4113{
a42548a1 4114 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4115 struct rq *rq = this_rq();
4116
abb74cef
VP
4117 if (sched_clock_irqtime) {
4118 irqtime_account_process_tick(p, user_tick, rq);
4119 return;
4120 }
4121
e6e6685a
GC
4122 if (steal_account_process_tick())
4123 return;
4124
79741dd3 4125 if (user_tick)
a42548a1 4126 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4127 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4128 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4129 one_jiffy_scaled);
4130 else
a42548a1 4131 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4132}
4133
4134/*
4135 * Account multiple ticks of steal time.
4136 * @p: the process from which the cpu time has been stolen
4137 * @ticks: number of stolen ticks
4138 */
4139void account_steal_ticks(unsigned long ticks)
4140{
4141 account_steal_time(jiffies_to_cputime(ticks));
4142}
4143
4144/*
4145 * Account multiple ticks of idle time.
4146 * @ticks: number of stolen ticks
4147 */
4148void account_idle_ticks(unsigned long ticks)
4149{
abb74cef
VP
4150
4151 if (sched_clock_irqtime) {
4152 irqtime_account_idle_ticks(ticks);
4153 return;
4154 }
4155
79741dd3 4156 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4157}
4158
79741dd3
MS
4159#endif
4160
49048622
BS
4161/*
4162 * Use precise platform statistics if available:
4163 */
4164#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4165void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4166{
d99ca3b9
HS
4167 *ut = p->utime;
4168 *st = p->stime;
49048622
BS
4169}
4170
0cf55e1e 4171void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4172{
0cf55e1e
HS
4173 struct task_cputime cputime;
4174
4175 thread_group_cputime(p, &cputime);
4176
4177 *ut = cputime.utime;
4178 *st = cputime.stime;
49048622
BS
4179}
4180#else
761b1d26
HS
4181
4182#ifndef nsecs_to_cputime
b7b20df9 4183# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4184#endif
4185
d180c5bc 4186void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4187{
d99ca3b9 4188 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4189
4190 /*
4191 * Use CFS's precise accounting:
4192 */
d180c5bc 4193 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4194
4195 if (total) {
e75e863d 4196 u64 temp = rtime;
d180c5bc 4197
e75e863d 4198 temp *= utime;
49048622 4199 do_div(temp, total);
d180c5bc
HS
4200 utime = (cputime_t)temp;
4201 } else
4202 utime = rtime;
49048622 4203
d180c5bc
HS
4204 /*
4205 * Compare with previous values, to keep monotonicity:
4206 */
761b1d26 4207 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4208 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4209
d99ca3b9
HS
4210 *ut = p->prev_utime;
4211 *st = p->prev_stime;
49048622
BS
4212}
4213
0cf55e1e
HS
4214/*
4215 * Must be called with siglock held.
4216 */
4217void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4218{
0cf55e1e
HS
4219 struct signal_struct *sig = p->signal;
4220 struct task_cputime cputime;
4221 cputime_t rtime, utime, total;
49048622 4222
0cf55e1e 4223 thread_group_cputime(p, &cputime);
49048622 4224
0cf55e1e
HS
4225 total = cputime_add(cputime.utime, cputime.stime);
4226 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4227
0cf55e1e 4228 if (total) {
e75e863d 4229 u64 temp = rtime;
49048622 4230
e75e863d 4231 temp *= cputime.utime;
0cf55e1e
HS
4232 do_div(temp, total);
4233 utime = (cputime_t)temp;
4234 } else
4235 utime = rtime;
4236
4237 sig->prev_utime = max(sig->prev_utime, utime);
4238 sig->prev_stime = max(sig->prev_stime,
4239 cputime_sub(rtime, sig->prev_utime));
4240
4241 *ut = sig->prev_utime;
4242 *st = sig->prev_stime;
49048622 4243}
49048622 4244#endif
49048622 4245
7835b98b
CL
4246/*
4247 * This function gets called by the timer code, with HZ frequency.
4248 * We call it with interrupts disabled.
7835b98b
CL
4249 */
4250void scheduler_tick(void)
4251{
7835b98b
CL
4252 int cpu = smp_processor_id();
4253 struct rq *rq = cpu_rq(cpu);
dd41f596 4254 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4255
4256 sched_clock_tick();
dd41f596 4257
05fa785c 4258 raw_spin_lock(&rq->lock);
3e51f33f 4259 update_rq_clock(rq);
fdf3e95d 4260 update_cpu_load_active(rq);
fa85ae24 4261 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4262 raw_spin_unlock(&rq->lock);
7835b98b 4263
e9d2b064 4264 perf_event_task_tick();
e220d2dc 4265
e418e1c2 4266#ifdef CONFIG_SMP
dd41f596
IM
4267 rq->idle_at_tick = idle_cpu(cpu);
4268 trigger_load_balance(rq, cpu);
e418e1c2 4269#endif
1da177e4
LT
4270}
4271
132380a0 4272notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4273{
4274 if (in_lock_functions(addr)) {
4275 addr = CALLER_ADDR2;
4276 if (in_lock_functions(addr))
4277 addr = CALLER_ADDR3;
4278 }
4279 return addr;
4280}
1da177e4 4281
7e49fcce
SR
4282#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4283 defined(CONFIG_PREEMPT_TRACER))
4284
43627582 4285void __kprobes add_preempt_count(int val)
1da177e4 4286{
6cd8a4bb 4287#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4288 /*
4289 * Underflow?
4290 */
9a11b49a
IM
4291 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4292 return;
6cd8a4bb 4293#endif
1da177e4 4294 preempt_count() += val;
6cd8a4bb 4295#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4296 /*
4297 * Spinlock count overflowing soon?
4298 */
33859f7f
MOS
4299 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4300 PREEMPT_MASK - 10);
6cd8a4bb
SR
4301#endif
4302 if (preempt_count() == val)
4303 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4304}
4305EXPORT_SYMBOL(add_preempt_count);
4306
43627582 4307void __kprobes sub_preempt_count(int val)
1da177e4 4308{
6cd8a4bb 4309#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4310 /*
4311 * Underflow?
4312 */
01e3eb82 4313 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4314 return;
1da177e4
LT
4315 /*
4316 * Is the spinlock portion underflowing?
4317 */
9a11b49a
IM
4318 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4319 !(preempt_count() & PREEMPT_MASK)))
4320 return;
6cd8a4bb 4321#endif
9a11b49a 4322
6cd8a4bb
SR
4323 if (preempt_count() == val)
4324 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4325 preempt_count() -= val;
4326}
4327EXPORT_SYMBOL(sub_preempt_count);
4328
4329#endif
4330
4331/*
dd41f596 4332 * Print scheduling while atomic bug:
1da177e4 4333 */
dd41f596 4334static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4335{
838225b4
SS
4336 struct pt_regs *regs = get_irq_regs();
4337
3df0fc5b
PZ
4338 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4339 prev->comm, prev->pid, preempt_count());
838225b4 4340
dd41f596 4341 debug_show_held_locks(prev);
e21f5b15 4342 print_modules();
dd41f596
IM
4343 if (irqs_disabled())
4344 print_irqtrace_events(prev);
838225b4
SS
4345
4346 if (regs)
4347 show_regs(regs);
4348 else
4349 dump_stack();
dd41f596 4350}
1da177e4 4351
dd41f596
IM
4352/*
4353 * Various schedule()-time debugging checks and statistics:
4354 */
4355static inline void schedule_debug(struct task_struct *prev)
4356{
1da177e4 4357 /*
41a2d6cf 4358 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4359 * schedule() atomically, we ignore that path for now.
4360 * Otherwise, whine if we are scheduling when we should not be.
4361 */
3f33a7ce 4362 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4363 __schedule_bug(prev);
4364
1da177e4
LT
4365 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4366
2d72376b 4367 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4368}
4369
6cecd084 4370static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4371{
61eadef6 4372 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4373 update_rq_clock(rq);
6cecd084 4374 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4375}
4376
dd41f596
IM
4377/*
4378 * Pick up the highest-prio task:
4379 */
4380static inline struct task_struct *
b67802ea 4381pick_next_task(struct rq *rq)
dd41f596 4382{
5522d5d5 4383 const struct sched_class *class;
dd41f596 4384 struct task_struct *p;
1da177e4
LT
4385
4386 /*
dd41f596
IM
4387 * Optimization: we know that if all tasks are in
4388 * the fair class we can call that function directly:
1da177e4 4389 */
953bfcd1 4390 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4391 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4392 if (likely(p))
4393 return p;
1da177e4
LT
4394 }
4395
34f971f6 4396 for_each_class(class) {
fb8d4724 4397 p = class->pick_next_task(rq);
dd41f596
IM
4398 if (p)
4399 return p;
dd41f596 4400 }
34f971f6
PZ
4401
4402 BUG(); /* the idle class will always have a runnable task */
dd41f596 4403}
1da177e4 4404
dd41f596
IM
4405/*
4406 * schedule() is the main scheduler function.
4407 */
ff743345 4408asmlinkage void __sched schedule(void)
dd41f596
IM
4409{
4410 struct task_struct *prev, *next;
67ca7bde 4411 unsigned long *switch_count;
dd41f596 4412 struct rq *rq;
31656519 4413 int cpu;
dd41f596 4414
ff743345
PZ
4415need_resched:
4416 preempt_disable();
dd41f596
IM
4417 cpu = smp_processor_id();
4418 rq = cpu_rq(cpu);
25502a6c 4419 rcu_note_context_switch(cpu);
dd41f596 4420 prev = rq->curr;
dd41f596 4421
dd41f596 4422 schedule_debug(prev);
1da177e4 4423
31656519 4424 if (sched_feat(HRTICK))
f333fdc9 4425 hrtick_clear(rq);
8f4d37ec 4426
05fa785c 4427 raw_spin_lock_irq(&rq->lock);
1da177e4 4428
246d86b5 4429 switch_count = &prev->nivcsw;
1da177e4 4430 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4431 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4432 prev->state = TASK_RUNNING;
21aa9af0 4433 } else {
2acca55e
PZ
4434 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4435 prev->on_rq = 0;
4436
21aa9af0 4437 /*
2acca55e
PZ
4438 * If a worker went to sleep, notify and ask workqueue
4439 * whether it wants to wake up a task to maintain
4440 * concurrency.
21aa9af0
TH
4441 */
4442 if (prev->flags & PF_WQ_WORKER) {
4443 struct task_struct *to_wakeup;
4444
4445 to_wakeup = wq_worker_sleeping(prev, cpu);
4446 if (to_wakeup)
4447 try_to_wake_up_local(to_wakeup);
4448 }
fd2f4419 4449
6631e635 4450 /*
2acca55e
PZ
4451 * If we are going to sleep and we have plugged IO
4452 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4453 */
4454 if (blk_needs_flush_plug(prev)) {
4455 raw_spin_unlock(&rq->lock);
a237c1c5 4456 blk_schedule_flush_plug(prev);
6631e635
LT
4457 raw_spin_lock(&rq->lock);
4458 }
21aa9af0 4459 }
dd41f596 4460 switch_count = &prev->nvcsw;
1da177e4
LT
4461 }
4462
3f029d3c 4463 pre_schedule(rq, prev);
f65eda4f 4464
dd41f596 4465 if (unlikely(!rq->nr_running))
1da177e4 4466 idle_balance(cpu, rq);
1da177e4 4467
df1c99d4 4468 put_prev_task(rq, prev);
b67802ea 4469 next = pick_next_task(rq);
f26f9aff
MG
4470 clear_tsk_need_resched(prev);
4471 rq->skip_clock_update = 0;
1da177e4 4472
1da177e4 4473 if (likely(prev != next)) {
1da177e4
LT
4474 rq->nr_switches++;
4475 rq->curr = next;
4476 ++*switch_count;
4477
dd41f596 4478 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4479 /*
246d86b5
ON
4480 * The context switch have flipped the stack from under us
4481 * and restored the local variables which were saved when
4482 * this task called schedule() in the past. prev == current
4483 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4484 */
4485 cpu = smp_processor_id();
4486 rq = cpu_rq(cpu);
1da177e4 4487 } else
05fa785c 4488 raw_spin_unlock_irq(&rq->lock);
1da177e4 4489
3f029d3c 4490 post_schedule(rq);
1da177e4 4491
1da177e4 4492 preempt_enable_no_resched();
ff743345 4493 if (need_resched())
1da177e4
LT
4494 goto need_resched;
4495}
1da177e4
LT
4496EXPORT_SYMBOL(schedule);
4497
c08f7829 4498#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4499
c6eb3dda
PZ
4500static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4501{
c6eb3dda 4502 if (lock->owner != owner)
307bf980 4503 return false;
0d66bf6d
PZ
4504
4505 /*
c6eb3dda
PZ
4506 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4507 * lock->owner still matches owner, if that fails, owner might
4508 * point to free()d memory, if it still matches, the rcu_read_lock()
4509 * ensures the memory stays valid.
0d66bf6d 4510 */
c6eb3dda 4511 barrier();
0d66bf6d 4512
307bf980 4513 return owner->on_cpu;
c6eb3dda 4514}
0d66bf6d 4515
c6eb3dda
PZ
4516/*
4517 * Look out! "owner" is an entirely speculative pointer
4518 * access and not reliable.
4519 */
4520int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4521{
4522 if (!sched_feat(OWNER_SPIN))
4523 return 0;
0d66bf6d 4524
307bf980 4525 rcu_read_lock();
c6eb3dda
PZ
4526 while (owner_running(lock, owner)) {
4527 if (need_resched())
307bf980 4528 break;
0d66bf6d 4529
335d7afb 4530 arch_mutex_cpu_relax();
0d66bf6d 4531 }
307bf980 4532 rcu_read_unlock();
4b402210 4533
c6eb3dda 4534 /*
307bf980
TG
4535 * We break out the loop above on need_resched() and when the
4536 * owner changed, which is a sign for heavy contention. Return
4537 * success only when lock->owner is NULL.
c6eb3dda 4538 */
307bf980 4539 return lock->owner == NULL;
0d66bf6d
PZ
4540}
4541#endif
4542
1da177e4
LT
4543#ifdef CONFIG_PREEMPT
4544/*
2ed6e34f 4545 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4546 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4547 * occur there and call schedule directly.
4548 */
d1f74e20 4549asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4550{
4551 struct thread_info *ti = current_thread_info();
6478d880 4552
1da177e4
LT
4553 /*
4554 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4555 * we do not want to preempt the current task. Just return..
1da177e4 4556 */
beed33a8 4557 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4558 return;
4559
3a5c359a 4560 do {
d1f74e20 4561 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4562 schedule();
d1f74e20 4563 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4564
3a5c359a
AK
4565 /*
4566 * Check again in case we missed a preemption opportunity
4567 * between schedule and now.
4568 */
4569 barrier();
5ed0cec0 4570 } while (need_resched());
1da177e4 4571}
1da177e4
LT
4572EXPORT_SYMBOL(preempt_schedule);
4573
4574/*
2ed6e34f 4575 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4576 * off of irq context.
4577 * Note, that this is called and return with irqs disabled. This will
4578 * protect us against recursive calling from irq.
4579 */
4580asmlinkage void __sched preempt_schedule_irq(void)
4581{
4582 struct thread_info *ti = current_thread_info();
6478d880 4583
2ed6e34f 4584 /* Catch callers which need to be fixed */
1da177e4
LT
4585 BUG_ON(ti->preempt_count || !irqs_disabled());
4586
3a5c359a
AK
4587 do {
4588 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4589 local_irq_enable();
4590 schedule();
4591 local_irq_disable();
3a5c359a 4592 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4593
3a5c359a
AK
4594 /*
4595 * Check again in case we missed a preemption opportunity
4596 * between schedule and now.
4597 */
4598 barrier();
5ed0cec0 4599 } while (need_resched());
1da177e4
LT
4600}
4601
4602#endif /* CONFIG_PREEMPT */
4603
63859d4f 4604int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4605 void *key)
1da177e4 4606{
63859d4f 4607 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4608}
1da177e4
LT
4609EXPORT_SYMBOL(default_wake_function);
4610
4611/*
41a2d6cf
IM
4612 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4613 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4614 * number) then we wake all the non-exclusive tasks and one exclusive task.
4615 *
4616 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4617 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4618 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4619 */
78ddb08f 4620static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4621 int nr_exclusive, int wake_flags, void *key)
1da177e4 4622{
2e45874c 4623 wait_queue_t *curr, *next;
1da177e4 4624
2e45874c 4625 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4626 unsigned flags = curr->flags;
4627
63859d4f 4628 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4629 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4630 break;
4631 }
4632}
4633
4634/**
4635 * __wake_up - wake up threads blocked on a waitqueue.
4636 * @q: the waitqueue
4637 * @mode: which threads
4638 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4639 * @key: is directly passed to the wakeup function
50fa610a
DH
4640 *
4641 * It may be assumed that this function implies a write memory barrier before
4642 * changing the task state if and only if any tasks are woken up.
1da177e4 4643 */
7ad5b3a5 4644void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4645 int nr_exclusive, void *key)
1da177e4
LT
4646{
4647 unsigned long flags;
4648
4649 spin_lock_irqsave(&q->lock, flags);
4650 __wake_up_common(q, mode, nr_exclusive, 0, key);
4651 spin_unlock_irqrestore(&q->lock, flags);
4652}
1da177e4
LT
4653EXPORT_SYMBOL(__wake_up);
4654
4655/*
4656 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4657 */
7ad5b3a5 4658void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4659{
4660 __wake_up_common(q, mode, 1, 0, NULL);
4661}
22c43c81 4662EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4663
4ede816a
DL
4664void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4665{
4666 __wake_up_common(q, mode, 1, 0, key);
4667}
bf294b41 4668EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4669
1da177e4 4670/**
4ede816a 4671 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4672 * @q: the waitqueue
4673 * @mode: which threads
4674 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4675 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4676 *
4677 * The sync wakeup differs that the waker knows that it will schedule
4678 * away soon, so while the target thread will be woken up, it will not
4679 * be migrated to another CPU - ie. the two threads are 'synchronized'
4680 * with each other. This can prevent needless bouncing between CPUs.
4681 *
4682 * On UP it can prevent extra preemption.
50fa610a
DH
4683 *
4684 * It may be assumed that this function implies a write memory barrier before
4685 * changing the task state if and only if any tasks are woken up.
1da177e4 4686 */
4ede816a
DL
4687void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4688 int nr_exclusive, void *key)
1da177e4
LT
4689{
4690 unsigned long flags;
7d478721 4691 int wake_flags = WF_SYNC;
1da177e4
LT
4692
4693 if (unlikely(!q))
4694 return;
4695
4696 if (unlikely(!nr_exclusive))
7d478721 4697 wake_flags = 0;
1da177e4
LT
4698
4699 spin_lock_irqsave(&q->lock, flags);
7d478721 4700 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4701 spin_unlock_irqrestore(&q->lock, flags);
4702}
4ede816a
DL
4703EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4704
4705/*
4706 * __wake_up_sync - see __wake_up_sync_key()
4707 */
4708void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4709{
4710 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4711}
1da177e4
LT
4712EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4713
65eb3dc6
KD
4714/**
4715 * complete: - signals a single thread waiting on this completion
4716 * @x: holds the state of this particular completion
4717 *
4718 * This will wake up a single thread waiting on this completion. Threads will be
4719 * awakened in the same order in which they were queued.
4720 *
4721 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4722 *
4723 * It may be assumed that this function implies a write memory barrier before
4724 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4725 */
b15136e9 4726void complete(struct completion *x)
1da177e4
LT
4727{
4728 unsigned long flags;
4729
4730 spin_lock_irqsave(&x->wait.lock, flags);
4731 x->done++;
d9514f6c 4732 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4733 spin_unlock_irqrestore(&x->wait.lock, flags);
4734}
4735EXPORT_SYMBOL(complete);
4736
65eb3dc6
KD
4737/**
4738 * complete_all: - signals all threads waiting on this completion
4739 * @x: holds the state of this particular completion
4740 *
4741 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4742 *
4743 * It may be assumed that this function implies a write memory barrier before
4744 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4745 */
b15136e9 4746void complete_all(struct completion *x)
1da177e4
LT
4747{
4748 unsigned long flags;
4749
4750 spin_lock_irqsave(&x->wait.lock, flags);
4751 x->done += UINT_MAX/2;
d9514f6c 4752 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4753 spin_unlock_irqrestore(&x->wait.lock, flags);
4754}
4755EXPORT_SYMBOL(complete_all);
4756
8cbbe86d
AK
4757static inline long __sched
4758do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4759{
1da177e4
LT
4760 if (!x->done) {
4761 DECLARE_WAITQUEUE(wait, current);
4762
a93d2f17 4763 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4764 do {
94d3d824 4765 if (signal_pending_state(state, current)) {
ea71a546
ON
4766 timeout = -ERESTARTSYS;
4767 break;
8cbbe86d
AK
4768 }
4769 __set_current_state(state);
1da177e4
LT
4770 spin_unlock_irq(&x->wait.lock);
4771 timeout = schedule_timeout(timeout);
4772 spin_lock_irq(&x->wait.lock);
ea71a546 4773 } while (!x->done && timeout);
1da177e4 4774 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4775 if (!x->done)
4776 return timeout;
1da177e4
LT
4777 }
4778 x->done--;
ea71a546 4779 return timeout ?: 1;
1da177e4 4780}
1da177e4 4781
8cbbe86d
AK
4782static long __sched
4783wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4784{
1da177e4
LT
4785 might_sleep();
4786
4787 spin_lock_irq(&x->wait.lock);
8cbbe86d 4788 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4789 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4790 return timeout;
4791}
1da177e4 4792
65eb3dc6
KD
4793/**
4794 * wait_for_completion: - waits for completion of a task
4795 * @x: holds the state of this particular completion
4796 *
4797 * This waits to be signaled for completion of a specific task. It is NOT
4798 * interruptible and there is no timeout.
4799 *
4800 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4801 * and interrupt capability. Also see complete().
4802 */
b15136e9 4803void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4804{
4805 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4806}
8cbbe86d 4807EXPORT_SYMBOL(wait_for_completion);
1da177e4 4808
65eb3dc6
KD
4809/**
4810 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4811 * @x: holds the state of this particular completion
4812 * @timeout: timeout value in jiffies
4813 *
4814 * This waits for either a completion of a specific task to be signaled or for a
4815 * specified timeout to expire. The timeout is in jiffies. It is not
4816 * interruptible.
4817 */
b15136e9 4818unsigned long __sched
8cbbe86d 4819wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4820{
8cbbe86d 4821 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4822}
8cbbe86d 4823EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4824
65eb3dc6
KD
4825/**
4826 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4827 * @x: holds the state of this particular completion
4828 *
4829 * This waits for completion of a specific task to be signaled. It is
4830 * interruptible.
4831 */
8cbbe86d 4832int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4833{
51e97990
AK
4834 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4835 if (t == -ERESTARTSYS)
4836 return t;
4837 return 0;
0fec171c 4838}
8cbbe86d 4839EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4840
65eb3dc6
KD
4841/**
4842 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4843 * @x: holds the state of this particular completion
4844 * @timeout: timeout value in jiffies
4845 *
4846 * This waits for either a completion of a specific task to be signaled or for a
4847 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4848 */
6bf41237 4849long __sched
8cbbe86d
AK
4850wait_for_completion_interruptible_timeout(struct completion *x,
4851 unsigned long timeout)
0fec171c 4852{
8cbbe86d 4853 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4854}
8cbbe86d 4855EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4856
65eb3dc6
KD
4857/**
4858 * wait_for_completion_killable: - waits for completion of a task (killable)
4859 * @x: holds the state of this particular completion
4860 *
4861 * This waits to be signaled for completion of a specific task. It can be
4862 * interrupted by a kill signal.
4863 */
009e577e
MW
4864int __sched wait_for_completion_killable(struct completion *x)
4865{
4866 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4867 if (t == -ERESTARTSYS)
4868 return t;
4869 return 0;
4870}
4871EXPORT_SYMBOL(wait_for_completion_killable);
4872
0aa12fb4
SW
4873/**
4874 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4875 * @x: holds the state of this particular completion
4876 * @timeout: timeout value in jiffies
4877 *
4878 * This waits for either a completion of a specific task to be
4879 * signaled or for a specified timeout to expire. It can be
4880 * interrupted by a kill signal. The timeout is in jiffies.
4881 */
6bf41237 4882long __sched
0aa12fb4
SW
4883wait_for_completion_killable_timeout(struct completion *x,
4884 unsigned long timeout)
4885{
4886 return wait_for_common(x, timeout, TASK_KILLABLE);
4887}
4888EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4889
be4de352
DC
4890/**
4891 * try_wait_for_completion - try to decrement a completion without blocking
4892 * @x: completion structure
4893 *
4894 * Returns: 0 if a decrement cannot be done without blocking
4895 * 1 if a decrement succeeded.
4896 *
4897 * If a completion is being used as a counting completion,
4898 * attempt to decrement the counter without blocking. This
4899 * enables us to avoid waiting if the resource the completion
4900 * is protecting is not available.
4901 */
4902bool try_wait_for_completion(struct completion *x)
4903{
7539a3b3 4904 unsigned long flags;
be4de352
DC
4905 int ret = 1;
4906
7539a3b3 4907 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4908 if (!x->done)
4909 ret = 0;
4910 else
4911 x->done--;
7539a3b3 4912 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4913 return ret;
4914}
4915EXPORT_SYMBOL(try_wait_for_completion);
4916
4917/**
4918 * completion_done - Test to see if a completion has any waiters
4919 * @x: completion structure
4920 *
4921 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4922 * 1 if there are no waiters.
4923 *
4924 */
4925bool completion_done(struct completion *x)
4926{
7539a3b3 4927 unsigned long flags;
be4de352
DC
4928 int ret = 1;
4929
7539a3b3 4930 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4931 if (!x->done)
4932 ret = 0;
7539a3b3 4933 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4934 return ret;
4935}
4936EXPORT_SYMBOL(completion_done);
4937
8cbbe86d
AK
4938static long __sched
4939sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4940{
0fec171c
IM
4941 unsigned long flags;
4942 wait_queue_t wait;
4943
4944 init_waitqueue_entry(&wait, current);
1da177e4 4945
8cbbe86d 4946 __set_current_state(state);
1da177e4 4947
8cbbe86d
AK
4948 spin_lock_irqsave(&q->lock, flags);
4949 __add_wait_queue(q, &wait);
4950 spin_unlock(&q->lock);
4951 timeout = schedule_timeout(timeout);
4952 spin_lock_irq(&q->lock);
4953 __remove_wait_queue(q, &wait);
4954 spin_unlock_irqrestore(&q->lock, flags);
4955
4956 return timeout;
4957}
4958
4959void __sched interruptible_sleep_on(wait_queue_head_t *q)
4960{
4961 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4962}
1da177e4
LT
4963EXPORT_SYMBOL(interruptible_sleep_on);
4964
0fec171c 4965long __sched
95cdf3b7 4966interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4967{
8cbbe86d 4968 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4969}
1da177e4
LT
4970EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4971
0fec171c 4972void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4973{
8cbbe86d 4974 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4975}
1da177e4
LT
4976EXPORT_SYMBOL(sleep_on);
4977
0fec171c 4978long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4979{
8cbbe86d 4980 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4981}
1da177e4
LT
4982EXPORT_SYMBOL(sleep_on_timeout);
4983
b29739f9
IM
4984#ifdef CONFIG_RT_MUTEXES
4985
4986/*
4987 * rt_mutex_setprio - set the current priority of a task
4988 * @p: task
4989 * @prio: prio value (kernel-internal form)
4990 *
4991 * This function changes the 'effective' priority of a task. It does
4992 * not touch ->normal_prio like __setscheduler().
4993 *
4994 * Used by the rt_mutex code to implement priority inheritance logic.
4995 */
36c8b586 4996void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4997{
83b699ed 4998 int oldprio, on_rq, running;
70b97a7f 4999 struct rq *rq;
83ab0aa0 5000 const struct sched_class *prev_class;
b29739f9
IM
5001
5002 BUG_ON(prio < 0 || prio > MAX_PRIO);
5003
0122ec5b 5004 rq = __task_rq_lock(p);
b29739f9 5005
a8027073 5006 trace_sched_pi_setprio(p, prio);
d5f9f942 5007 oldprio = p->prio;
83ab0aa0 5008 prev_class = p->sched_class;
fd2f4419 5009 on_rq = p->on_rq;
051a1d1a 5010 running = task_current(rq, p);
0e1f3483 5011 if (on_rq)
69be72c1 5012 dequeue_task(rq, p, 0);
0e1f3483
HS
5013 if (running)
5014 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5015
5016 if (rt_prio(prio))
5017 p->sched_class = &rt_sched_class;
5018 else
5019 p->sched_class = &fair_sched_class;
5020
b29739f9
IM
5021 p->prio = prio;
5022
0e1f3483
HS
5023 if (running)
5024 p->sched_class->set_curr_task(rq);
da7a735e 5025 if (on_rq)
371fd7e7 5026 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5027
da7a735e 5028 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5029 __task_rq_unlock(rq);
b29739f9
IM
5030}
5031
5032#endif
5033
36c8b586 5034void set_user_nice(struct task_struct *p, long nice)
1da177e4 5035{
dd41f596 5036 int old_prio, delta, on_rq;
1da177e4 5037 unsigned long flags;
70b97a7f 5038 struct rq *rq;
1da177e4
LT
5039
5040 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5041 return;
5042 /*
5043 * We have to be careful, if called from sys_setpriority(),
5044 * the task might be in the middle of scheduling on another CPU.
5045 */
5046 rq = task_rq_lock(p, &flags);
5047 /*
5048 * The RT priorities are set via sched_setscheduler(), but we still
5049 * allow the 'normal' nice value to be set - but as expected
5050 * it wont have any effect on scheduling until the task is
dd41f596 5051 * SCHED_FIFO/SCHED_RR:
1da177e4 5052 */
e05606d3 5053 if (task_has_rt_policy(p)) {
1da177e4
LT
5054 p->static_prio = NICE_TO_PRIO(nice);
5055 goto out_unlock;
5056 }
fd2f4419 5057 on_rq = p->on_rq;
c09595f6 5058 if (on_rq)
69be72c1 5059 dequeue_task(rq, p, 0);
1da177e4 5060
1da177e4 5061 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5062 set_load_weight(p);
b29739f9
IM
5063 old_prio = p->prio;
5064 p->prio = effective_prio(p);
5065 delta = p->prio - old_prio;
1da177e4 5066
dd41f596 5067 if (on_rq) {
371fd7e7 5068 enqueue_task(rq, p, 0);
1da177e4 5069 /*
d5f9f942
AM
5070 * If the task increased its priority or is running and
5071 * lowered its priority, then reschedule its CPU:
1da177e4 5072 */
d5f9f942 5073 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5074 resched_task(rq->curr);
5075 }
5076out_unlock:
0122ec5b 5077 task_rq_unlock(rq, p, &flags);
1da177e4 5078}
1da177e4
LT
5079EXPORT_SYMBOL(set_user_nice);
5080
e43379f1
MM
5081/*
5082 * can_nice - check if a task can reduce its nice value
5083 * @p: task
5084 * @nice: nice value
5085 */
36c8b586 5086int can_nice(const struct task_struct *p, const int nice)
e43379f1 5087{
024f4747
MM
5088 /* convert nice value [19,-20] to rlimit style value [1,40] */
5089 int nice_rlim = 20 - nice;
48f24c4d 5090
78d7d407 5091 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5092 capable(CAP_SYS_NICE));
5093}
5094
1da177e4
LT
5095#ifdef __ARCH_WANT_SYS_NICE
5096
5097/*
5098 * sys_nice - change the priority of the current process.
5099 * @increment: priority increment
5100 *
5101 * sys_setpriority is a more generic, but much slower function that
5102 * does similar things.
5103 */
5add95d4 5104SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5105{
48f24c4d 5106 long nice, retval;
1da177e4
LT
5107
5108 /*
5109 * Setpriority might change our priority at the same moment.
5110 * We don't have to worry. Conceptually one call occurs first
5111 * and we have a single winner.
5112 */
e43379f1
MM
5113 if (increment < -40)
5114 increment = -40;
1da177e4
LT
5115 if (increment > 40)
5116 increment = 40;
5117
2b8f836f 5118 nice = TASK_NICE(current) + increment;
1da177e4
LT
5119 if (nice < -20)
5120 nice = -20;
5121 if (nice > 19)
5122 nice = 19;
5123
e43379f1
MM
5124 if (increment < 0 && !can_nice(current, nice))
5125 return -EPERM;
5126
1da177e4
LT
5127 retval = security_task_setnice(current, nice);
5128 if (retval)
5129 return retval;
5130
5131 set_user_nice(current, nice);
5132 return 0;
5133}
5134
5135#endif
5136
5137/**
5138 * task_prio - return the priority value of a given task.
5139 * @p: the task in question.
5140 *
5141 * This is the priority value as seen by users in /proc.
5142 * RT tasks are offset by -200. Normal tasks are centered
5143 * around 0, value goes from -16 to +15.
5144 */
36c8b586 5145int task_prio(const struct task_struct *p)
1da177e4
LT
5146{
5147 return p->prio - MAX_RT_PRIO;
5148}
5149
5150/**
5151 * task_nice - return the nice value of a given task.
5152 * @p: the task in question.
5153 */
36c8b586 5154int task_nice(const struct task_struct *p)
1da177e4
LT
5155{
5156 return TASK_NICE(p);
5157}
150d8bed 5158EXPORT_SYMBOL(task_nice);
1da177e4
LT
5159
5160/**
5161 * idle_cpu - is a given cpu idle currently?
5162 * @cpu: the processor in question.
5163 */
5164int idle_cpu(int cpu)
5165{
5166 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5167}
5168
1da177e4
LT
5169/**
5170 * idle_task - return the idle task for a given cpu.
5171 * @cpu: the processor in question.
5172 */
36c8b586 5173struct task_struct *idle_task(int cpu)
1da177e4
LT
5174{
5175 return cpu_rq(cpu)->idle;
5176}
5177
5178/**
5179 * find_process_by_pid - find a process with a matching PID value.
5180 * @pid: the pid in question.
5181 */
a9957449 5182static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5183{
228ebcbe 5184 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5185}
5186
5187/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5188static void
5189__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5190{
1da177e4
LT
5191 p->policy = policy;
5192 p->rt_priority = prio;
b29739f9
IM
5193 p->normal_prio = normal_prio(p);
5194 /* we are holding p->pi_lock already */
5195 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5196 if (rt_prio(p->prio))
5197 p->sched_class = &rt_sched_class;
5198 else
5199 p->sched_class = &fair_sched_class;
2dd73a4f 5200 set_load_weight(p);
1da177e4
LT
5201}
5202
c69e8d9c
DH
5203/*
5204 * check the target process has a UID that matches the current process's
5205 */
5206static bool check_same_owner(struct task_struct *p)
5207{
5208 const struct cred *cred = current_cred(), *pcred;
5209 bool match;
5210
5211 rcu_read_lock();
5212 pcred = __task_cred(p);
b0e77598
SH
5213 if (cred->user->user_ns == pcred->user->user_ns)
5214 match = (cred->euid == pcred->euid ||
5215 cred->euid == pcred->uid);
5216 else
5217 match = false;
c69e8d9c
DH
5218 rcu_read_unlock();
5219 return match;
5220}
5221
961ccddd 5222static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5223 const struct sched_param *param, bool user)
1da177e4 5224{
83b699ed 5225 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5226 unsigned long flags;
83ab0aa0 5227 const struct sched_class *prev_class;
70b97a7f 5228 struct rq *rq;
ca94c442 5229 int reset_on_fork;
1da177e4 5230
66e5393a
SR
5231 /* may grab non-irq protected spin_locks */
5232 BUG_ON(in_interrupt());
1da177e4
LT
5233recheck:
5234 /* double check policy once rq lock held */
ca94c442
LP
5235 if (policy < 0) {
5236 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5237 policy = oldpolicy = p->policy;
ca94c442
LP
5238 } else {
5239 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5240 policy &= ~SCHED_RESET_ON_FORK;
5241
5242 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5243 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5244 policy != SCHED_IDLE)
5245 return -EINVAL;
5246 }
5247
1da177e4
LT
5248 /*
5249 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5250 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5251 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5252 */
5253 if (param->sched_priority < 0 ||
95cdf3b7 5254 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5255 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5256 return -EINVAL;
e05606d3 5257 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5258 return -EINVAL;
5259
37e4ab3f
OC
5260 /*
5261 * Allow unprivileged RT tasks to decrease priority:
5262 */
961ccddd 5263 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5264 if (rt_policy(policy)) {
a44702e8
ON
5265 unsigned long rlim_rtprio =
5266 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5267
5268 /* can't set/change the rt policy */
5269 if (policy != p->policy && !rlim_rtprio)
5270 return -EPERM;
5271
5272 /* can't increase priority */
5273 if (param->sched_priority > p->rt_priority &&
5274 param->sched_priority > rlim_rtprio)
5275 return -EPERM;
5276 }
c02aa73b 5277
dd41f596 5278 /*
c02aa73b
DH
5279 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5280 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5281 */
c02aa73b
DH
5282 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5283 if (!can_nice(p, TASK_NICE(p)))
5284 return -EPERM;
5285 }
5fe1d75f 5286
37e4ab3f 5287 /* can't change other user's priorities */
c69e8d9c 5288 if (!check_same_owner(p))
37e4ab3f 5289 return -EPERM;
ca94c442
LP
5290
5291 /* Normal users shall not reset the sched_reset_on_fork flag */
5292 if (p->sched_reset_on_fork && !reset_on_fork)
5293 return -EPERM;
37e4ab3f 5294 }
1da177e4 5295
725aad24 5296 if (user) {
b0ae1981 5297 retval = security_task_setscheduler(p);
725aad24
JF
5298 if (retval)
5299 return retval;
5300 }
5301
b29739f9
IM
5302 /*
5303 * make sure no PI-waiters arrive (or leave) while we are
5304 * changing the priority of the task:
0122ec5b 5305 *
25985edc 5306 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5307 * runqueue lock must be held.
5308 */
0122ec5b 5309 rq = task_rq_lock(p, &flags);
dc61b1d6 5310
34f971f6
PZ
5311 /*
5312 * Changing the policy of the stop threads its a very bad idea
5313 */
5314 if (p == rq->stop) {
0122ec5b 5315 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5316 return -EINVAL;
5317 }
5318
a51e9198
DF
5319 /*
5320 * If not changing anything there's no need to proceed further:
5321 */
5322 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5323 param->sched_priority == p->rt_priority))) {
5324
5325 __task_rq_unlock(rq);
5326 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5327 return 0;
5328 }
5329
dc61b1d6
PZ
5330#ifdef CONFIG_RT_GROUP_SCHED
5331 if (user) {
5332 /*
5333 * Do not allow realtime tasks into groups that have no runtime
5334 * assigned.
5335 */
5336 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5337 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5338 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5339 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5340 return -EPERM;
5341 }
5342 }
5343#endif
5344
1da177e4
LT
5345 /* recheck policy now with rq lock held */
5346 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5347 policy = oldpolicy = -1;
0122ec5b 5348 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5349 goto recheck;
5350 }
fd2f4419 5351 on_rq = p->on_rq;
051a1d1a 5352 running = task_current(rq, p);
0e1f3483 5353 if (on_rq)
2e1cb74a 5354 deactivate_task(rq, p, 0);
0e1f3483
HS
5355 if (running)
5356 p->sched_class->put_prev_task(rq, p);
f6b53205 5357
ca94c442
LP
5358 p->sched_reset_on_fork = reset_on_fork;
5359
1da177e4 5360 oldprio = p->prio;
83ab0aa0 5361 prev_class = p->sched_class;
dd41f596 5362 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5363
0e1f3483
HS
5364 if (running)
5365 p->sched_class->set_curr_task(rq);
da7a735e 5366 if (on_rq)
dd41f596 5367 activate_task(rq, p, 0);
cb469845 5368
da7a735e 5369 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5370 task_rq_unlock(rq, p, &flags);
b29739f9 5371
95e02ca9
TG
5372 rt_mutex_adjust_pi(p);
5373
1da177e4
LT
5374 return 0;
5375}
961ccddd
RR
5376
5377/**
5378 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5379 * @p: the task in question.
5380 * @policy: new policy.
5381 * @param: structure containing the new RT priority.
5382 *
5383 * NOTE that the task may be already dead.
5384 */
5385int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5386 const struct sched_param *param)
961ccddd
RR
5387{
5388 return __sched_setscheduler(p, policy, param, true);
5389}
1da177e4
LT
5390EXPORT_SYMBOL_GPL(sched_setscheduler);
5391
961ccddd
RR
5392/**
5393 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5394 * @p: the task in question.
5395 * @policy: new policy.
5396 * @param: structure containing the new RT priority.
5397 *
5398 * Just like sched_setscheduler, only don't bother checking if the
5399 * current context has permission. For example, this is needed in
5400 * stop_machine(): we create temporary high priority worker threads,
5401 * but our caller might not have that capability.
5402 */
5403int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5404 const struct sched_param *param)
961ccddd
RR
5405{
5406 return __sched_setscheduler(p, policy, param, false);
5407}
5408
95cdf3b7
IM
5409static int
5410do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5411{
1da177e4
LT
5412 struct sched_param lparam;
5413 struct task_struct *p;
36c8b586 5414 int retval;
1da177e4
LT
5415
5416 if (!param || pid < 0)
5417 return -EINVAL;
5418 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5419 return -EFAULT;
5fe1d75f
ON
5420
5421 rcu_read_lock();
5422 retval = -ESRCH;
1da177e4 5423 p = find_process_by_pid(pid);
5fe1d75f
ON
5424 if (p != NULL)
5425 retval = sched_setscheduler(p, policy, &lparam);
5426 rcu_read_unlock();
36c8b586 5427
1da177e4
LT
5428 return retval;
5429}
5430
5431/**
5432 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5433 * @pid: the pid in question.
5434 * @policy: new policy.
5435 * @param: structure containing the new RT priority.
5436 */
5add95d4
HC
5437SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5438 struct sched_param __user *, param)
1da177e4 5439{
c21761f1
JB
5440 /* negative values for policy are not valid */
5441 if (policy < 0)
5442 return -EINVAL;
5443
1da177e4
LT
5444 return do_sched_setscheduler(pid, policy, param);
5445}
5446
5447/**
5448 * sys_sched_setparam - set/change the RT priority of a thread
5449 * @pid: the pid in question.
5450 * @param: structure containing the new RT priority.
5451 */
5add95d4 5452SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5453{
5454 return do_sched_setscheduler(pid, -1, param);
5455}
5456
5457/**
5458 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5459 * @pid: the pid in question.
5460 */
5add95d4 5461SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5462{
36c8b586 5463 struct task_struct *p;
3a5c359a 5464 int retval;
1da177e4
LT
5465
5466 if (pid < 0)
3a5c359a 5467 return -EINVAL;
1da177e4
LT
5468
5469 retval = -ESRCH;
5fe85be0 5470 rcu_read_lock();
1da177e4
LT
5471 p = find_process_by_pid(pid);
5472 if (p) {
5473 retval = security_task_getscheduler(p);
5474 if (!retval)
ca94c442
LP
5475 retval = p->policy
5476 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5477 }
5fe85be0 5478 rcu_read_unlock();
1da177e4
LT
5479 return retval;
5480}
5481
5482/**
ca94c442 5483 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5484 * @pid: the pid in question.
5485 * @param: structure containing the RT priority.
5486 */
5add95d4 5487SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5488{
5489 struct sched_param lp;
36c8b586 5490 struct task_struct *p;
3a5c359a 5491 int retval;
1da177e4
LT
5492
5493 if (!param || pid < 0)
3a5c359a 5494 return -EINVAL;
1da177e4 5495
5fe85be0 5496 rcu_read_lock();
1da177e4
LT
5497 p = find_process_by_pid(pid);
5498 retval = -ESRCH;
5499 if (!p)
5500 goto out_unlock;
5501
5502 retval = security_task_getscheduler(p);
5503 if (retval)
5504 goto out_unlock;
5505
5506 lp.sched_priority = p->rt_priority;
5fe85be0 5507 rcu_read_unlock();
1da177e4
LT
5508
5509 /*
5510 * This one might sleep, we cannot do it with a spinlock held ...
5511 */
5512 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5513
1da177e4
LT
5514 return retval;
5515
5516out_unlock:
5fe85be0 5517 rcu_read_unlock();
1da177e4
LT
5518 return retval;
5519}
5520
96f874e2 5521long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5522{
5a16f3d3 5523 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5524 struct task_struct *p;
5525 int retval;
1da177e4 5526
95402b38 5527 get_online_cpus();
23f5d142 5528 rcu_read_lock();
1da177e4
LT
5529
5530 p = find_process_by_pid(pid);
5531 if (!p) {
23f5d142 5532 rcu_read_unlock();
95402b38 5533 put_online_cpus();
1da177e4
LT
5534 return -ESRCH;
5535 }
5536
23f5d142 5537 /* Prevent p going away */
1da177e4 5538 get_task_struct(p);
23f5d142 5539 rcu_read_unlock();
1da177e4 5540
5a16f3d3
RR
5541 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5542 retval = -ENOMEM;
5543 goto out_put_task;
5544 }
5545 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5546 retval = -ENOMEM;
5547 goto out_free_cpus_allowed;
5548 }
1da177e4 5549 retval = -EPERM;
b0e77598 5550 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5551 goto out_unlock;
5552
b0ae1981 5553 retval = security_task_setscheduler(p);
e7834f8f
DQ
5554 if (retval)
5555 goto out_unlock;
5556
5a16f3d3
RR
5557 cpuset_cpus_allowed(p, cpus_allowed);
5558 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5559again:
5a16f3d3 5560 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5561
8707d8b8 5562 if (!retval) {
5a16f3d3
RR
5563 cpuset_cpus_allowed(p, cpus_allowed);
5564 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5565 /*
5566 * We must have raced with a concurrent cpuset
5567 * update. Just reset the cpus_allowed to the
5568 * cpuset's cpus_allowed
5569 */
5a16f3d3 5570 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5571 goto again;
5572 }
5573 }
1da177e4 5574out_unlock:
5a16f3d3
RR
5575 free_cpumask_var(new_mask);
5576out_free_cpus_allowed:
5577 free_cpumask_var(cpus_allowed);
5578out_put_task:
1da177e4 5579 put_task_struct(p);
95402b38 5580 put_online_cpus();
1da177e4
LT
5581 return retval;
5582}
5583
5584static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5585 struct cpumask *new_mask)
1da177e4 5586{
96f874e2
RR
5587 if (len < cpumask_size())
5588 cpumask_clear(new_mask);
5589 else if (len > cpumask_size())
5590 len = cpumask_size();
5591
1da177e4
LT
5592 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5593}
5594
5595/**
5596 * sys_sched_setaffinity - set the cpu affinity of a process
5597 * @pid: pid of the process
5598 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5599 * @user_mask_ptr: user-space pointer to the new cpu mask
5600 */
5add95d4
HC
5601SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5602 unsigned long __user *, user_mask_ptr)
1da177e4 5603{
5a16f3d3 5604 cpumask_var_t new_mask;
1da177e4
LT
5605 int retval;
5606
5a16f3d3
RR
5607 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5608 return -ENOMEM;
1da177e4 5609
5a16f3d3
RR
5610 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5611 if (retval == 0)
5612 retval = sched_setaffinity(pid, new_mask);
5613 free_cpumask_var(new_mask);
5614 return retval;
1da177e4
LT
5615}
5616
96f874e2 5617long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5618{
36c8b586 5619 struct task_struct *p;
31605683 5620 unsigned long flags;
1da177e4 5621 int retval;
1da177e4 5622
95402b38 5623 get_online_cpus();
23f5d142 5624 rcu_read_lock();
1da177e4
LT
5625
5626 retval = -ESRCH;
5627 p = find_process_by_pid(pid);
5628 if (!p)
5629 goto out_unlock;
5630
e7834f8f
DQ
5631 retval = security_task_getscheduler(p);
5632 if (retval)
5633 goto out_unlock;
5634
013fdb80 5635 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5636 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5638
5639out_unlock:
23f5d142 5640 rcu_read_unlock();
95402b38 5641 put_online_cpus();
1da177e4 5642
9531b62f 5643 return retval;
1da177e4
LT
5644}
5645
5646/**
5647 * sys_sched_getaffinity - get the cpu affinity of a process
5648 * @pid: pid of the process
5649 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5650 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5651 */
5add95d4
HC
5652SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5653 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5654{
5655 int ret;
f17c8607 5656 cpumask_var_t mask;
1da177e4 5657
84fba5ec 5658 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5659 return -EINVAL;
5660 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5661 return -EINVAL;
5662
f17c8607
RR
5663 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5664 return -ENOMEM;
1da177e4 5665
f17c8607
RR
5666 ret = sched_getaffinity(pid, mask);
5667 if (ret == 0) {
8bc037fb 5668 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5669
5670 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5671 ret = -EFAULT;
5672 else
cd3d8031 5673 ret = retlen;
f17c8607
RR
5674 }
5675 free_cpumask_var(mask);
1da177e4 5676
f17c8607 5677 return ret;
1da177e4
LT
5678}
5679
5680/**
5681 * sys_sched_yield - yield the current processor to other threads.
5682 *
dd41f596
IM
5683 * This function yields the current CPU to other tasks. If there are no
5684 * other threads running on this CPU then this function will return.
1da177e4 5685 */
5add95d4 5686SYSCALL_DEFINE0(sched_yield)
1da177e4 5687{
70b97a7f 5688 struct rq *rq = this_rq_lock();
1da177e4 5689
2d72376b 5690 schedstat_inc(rq, yld_count);
4530d7ab 5691 current->sched_class->yield_task(rq);
1da177e4
LT
5692
5693 /*
5694 * Since we are going to call schedule() anyway, there's
5695 * no need to preempt or enable interrupts:
5696 */
5697 __release(rq->lock);
8a25d5de 5698 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5699 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5700 preempt_enable_no_resched();
5701
5702 schedule();
5703
5704 return 0;
5705}
5706
d86ee480
PZ
5707static inline int should_resched(void)
5708{
5709 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5710}
5711
e7b38404 5712static void __cond_resched(void)
1da177e4 5713{
e7aaaa69
FW
5714 add_preempt_count(PREEMPT_ACTIVE);
5715 schedule();
5716 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5717}
5718
02b67cc3 5719int __sched _cond_resched(void)
1da177e4 5720{
d86ee480 5721 if (should_resched()) {
1da177e4
LT
5722 __cond_resched();
5723 return 1;
5724 }
5725 return 0;
5726}
02b67cc3 5727EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5728
5729/*
613afbf8 5730 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5731 * call schedule, and on return reacquire the lock.
5732 *
41a2d6cf 5733 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5734 * operations here to prevent schedule() from being called twice (once via
5735 * spin_unlock(), once by hand).
5736 */
613afbf8 5737int __cond_resched_lock(spinlock_t *lock)
1da177e4 5738{
d86ee480 5739 int resched = should_resched();
6df3cecb
JK
5740 int ret = 0;
5741
f607c668
PZ
5742 lockdep_assert_held(lock);
5743
95c354fe 5744 if (spin_needbreak(lock) || resched) {
1da177e4 5745 spin_unlock(lock);
d86ee480 5746 if (resched)
95c354fe
NP
5747 __cond_resched();
5748 else
5749 cpu_relax();
6df3cecb 5750 ret = 1;
1da177e4 5751 spin_lock(lock);
1da177e4 5752 }
6df3cecb 5753 return ret;
1da177e4 5754}
613afbf8 5755EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5756
613afbf8 5757int __sched __cond_resched_softirq(void)
1da177e4
LT
5758{
5759 BUG_ON(!in_softirq());
5760
d86ee480 5761 if (should_resched()) {
98d82567 5762 local_bh_enable();
1da177e4
LT
5763 __cond_resched();
5764 local_bh_disable();
5765 return 1;
5766 }
5767 return 0;
5768}
613afbf8 5769EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5770
1da177e4
LT
5771/**
5772 * yield - yield the current processor to other threads.
5773 *
72fd4a35 5774 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5775 * thread runnable and calls sys_sched_yield().
5776 */
5777void __sched yield(void)
5778{
5779 set_current_state(TASK_RUNNING);
5780 sys_sched_yield();
5781}
1da177e4
LT
5782EXPORT_SYMBOL(yield);
5783
d95f4122
MG
5784/**
5785 * yield_to - yield the current processor to another thread in
5786 * your thread group, or accelerate that thread toward the
5787 * processor it's on.
16addf95
RD
5788 * @p: target task
5789 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5790 *
5791 * It's the caller's job to ensure that the target task struct
5792 * can't go away on us before we can do any checks.
5793 *
5794 * Returns true if we indeed boosted the target task.
5795 */
5796bool __sched yield_to(struct task_struct *p, bool preempt)
5797{
5798 struct task_struct *curr = current;
5799 struct rq *rq, *p_rq;
5800 unsigned long flags;
5801 bool yielded = 0;
5802
5803 local_irq_save(flags);
5804 rq = this_rq();
5805
5806again:
5807 p_rq = task_rq(p);
5808 double_rq_lock(rq, p_rq);
5809 while (task_rq(p) != p_rq) {
5810 double_rq_unlock(rq, p_rq);
5811 goto again;
5812 }
5813
5814 if (!curr->sched_class->yield_to_task)
5815 goto out;
5816
5817 if (curr->sched_class != p->sched_class)
5818 goto out;
5819
5820 if (task_running(p_rq, p) || p->state)
5821 goto out;
5822
5823 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5824 if (yielded) {
d95f4122 5825 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5826 /*
5827 * Make p's CPU reschedule; pick_next_entity takes care of
5828 * fairness.
5829 */
5830 if (preempt && rq != p_rq)
5831 resched_task(p_rq->curr);
5832 }
d95f4122
MG
5833
5834out:
5835 double_rq_unlock(rq, p_rq);
5836 local_irq_restore(flags);
5837
5838 if (yielded)
5839 schedule();
5840
5841 return yielded;
5842}
5843EXPORT_SYMBOL_GPL(yield_to);
5844
1da177e4 5845/*
41a2d6cf 5846 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5847 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5848 */
5849void __sched io_schedule(void)
5850{
54d35f29 5851 struct rq *rq = raw_rq();
1da177e4 5852
0ff92245 5853 delayacct_blkio_start();
1da177e4 5854 atomic_inc(&rq->nr_iowait);
73c10101 5855 blk_flush_plug(current);
8f0dfc34 5856 current->in_iowait = 1;
1da177e4 5857 schedule();
8f0dfc34 5858 current->in_iowait = 0;
1da177e4 5859 atomic_dec(&rq->nr_iowait);
0ff92245 5860 delayacct_blkio_end();
1da177e4 5861}
1da177e4
LT
5862EXPORT_SYMBOL(io_schedule);
5863
5864long __sched io_schedule_timeout(long timeout)
5865{
54d35f29 5866 struct rq *rq = raw_rq();
1da177e4
LT
5867 long ret;
5868
0ff92245 5869 delayacct_blkio_start();
1da177e4 5870 atomic_inc(&rq->nr_iowait);
73c10101 5871 blk_flush_plug(current);
8f0dfc34 5872 current->in_iowait = 1;
1da177e4 5873 ret = schedule_timeout(timeout);
8f0dfc34 5874 current->in_iowait = 0;
1da177e4 5875 atomic_dec(&rq->nr_iowait);
0ff92245 5876 delayacct_blkio_end();
1da177e4
LT
5877 return ret;
5878}
5879
5880/**
5881 * sys_sched_get_priority_max - return maximum RT priority.
5882 * @policy: scheduling class.
5883 *
5884 * this syscall returns the maximum rt_priority that can be used
5885 * by a given scheduling class.
5886 */
5add95d4 5887SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5888{
5889 int ret = -EINVAL;
5890
5891 switch (policy) {
5892 case SCHED_FIFO:
5893 case SCHED_RR:
5894 ret = MAX_USER_RT_PRIO-1;
5895 break;
5896 case SCHED_NORMAL:
b0a9499c 5897 case SCHED_BATCH:
dd41f596 5898 case SCHED_IDLE:
1da177e4
LT
5899 ret = 0;
5900 break;
5901 }
5902 return ret;
5903}
5904
5905/**
5906 * sys_sched_get_priority_min - return minimum RT priority.
5907 * @policy: scheduling class.
5908 *
5909 * this syscall returns the minimum rt_priority that can be used
5910 * by a given scheduling class.
5911 */
5add95d4 5912SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5913{
5914 int ret = -EINVAL;
5915
5916 switch (policy) {
5917 case SCHED_FIFO:
5918 case SCHED_RR:
5919 ret = 1;
5920 break;
5921 case SCHED_NORMAL:
b0a9499c 5922 case SCHED_BATCH:
dd41f596 5923 case SCHED_IDLE:
1da177e4
LT
5924 ret = 0;
5925 }
5926 return ret;
5927}
5928
5929/**
5930 * sys_sched_rr_get_interval - return the default timeslice of a process.
5931 * @pid: pid of the process.
5932 * @interval: userspace pointer to the timeslice value.
5933 *
5934 * this syscall writes the default timeslice value of a given process
5935 * into the user-space timespec buffer. A value of '0' means infinity.
5936 */
17da2bd9 5937SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5938 struct timespec __user *, interval)
1da177e4 5939{
36c8b586 5940 struct task_struct *p;
a4ec24b4 5941 unsigned int time_slice;
dba091b9
TG
5942 unsigned long flags;
5943 struct rq *rq;
3a5c359a 5944 int retval;
1da177e4 5945 struct timespec t;
1da177e4
LT
5946
5947 if (pid < 0)
3a5c359a 5948 return -EINVAL;
1da177e4
LT
5949
5950 retval = -ESRCH;
1a551ae7 5951 rcu_read_lock();
1da177e4
LT
5952 p = find_process_by_pid(pid);
5953 if (!p)
5954 goto out_unlock;
5955
5956 retval = security_task_getscheduler(p);
5957 if (retval)
5958 goto out_unlock;
5959
dba091b9
TG
5960 rq = task_rq_lock(p, &flags);
5961 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5962 task_rq_unlock(rq, p, &flags);
a4ec24b4 5963
1a551ae7 5964 rcu_read_unlock();
a4ec24b4 5965 jiffies_to_timespec(time_slice, &t);
1da177e4 5966 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5967 return retval;
3a5c359a 5968
1da177e4 5969out_unlock:
1a551ae7 5970 rcu_read_unlock();
1da177e4
LT
5971 return retval;
5972}
5973
7c731e0a 5974static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5975
82a1fcb9 5976void sched_show_task(struct task_struct *p)
1da177e4 5977{
1da177e4 5978 unsigned long free = 0;
36c8b586 5979 unsigned state;
1da177e4 5980
1da177e4 5981 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5982 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5983 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5984#if BITS_PER_LONG == 32
1da177e4 5985 if (state == TASK_RUNNING)
3df0fc5b 5986 printk(KERN_CONT " running ");
1da177e4 5987 else
3df0fc5b 5988 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5989#else
5990 if (state == TASK_RUNNING)
3df0fc5b 5991 printk(KERN_CONT " running task ");
1da177e4 5992 else
3df0fc5b 5993 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5994#endif
5995#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5996 free = stack_not_used(p);
1da177e4 5997#endif
3df0fc5b 5998 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5999 task_pid_nr(p), task_pid_nr(p->real_parent),
6000 (unsigned long)task_thread_info(p)->flags);
1da177e4 6001
5fb5e6de 6002 show_stack(p, NULL);
1da177e4
LT
6003}
6004
e59e2ae2 6005void show_state_filter(unsigned long state_filter)
1da177e4 6006{
36c8b586 6007 struct task_struct *g, *p;
1da177e4 6008
4bd77321 6009#if BITS_PER_LONG == 32
3df0fc5b
PZ
6010 printk(KERN_INFO
6011 " task PC stack pid father\n");
1da177e4 6012#else
3df0fc5b
PZ
6013 printk(KERN_INFO
6014 " task PC stack pid father\n");
1da177e4
LT
6015#endif
6016 read_lock(&tasklist_lock);
6017 do_each_thread(g, p) {
6018 /*
6019 * reset the NMI-timeout, listing all files on a slow
25985edc 6020 * console might take a lot of time:
1da177e4
LT
6021 */
6022 touch_nmi_watchdog();
39bc89fd 6023 if (!state_filter || (p->state & state_filter))
82a1fcb9 6024 sched_show_task(p);
1da177e4
LT
6025 } while_each_thread(g, p);
6026
04c9167f
JF
6027 touch_all_softlockup_watchdogs();
6028
dd41f596
IM
6029#ifdef CONFIG_SCHED_DEBUG
6030 sysrq_sched_debug_show();
6031#endif
1da177e4 6032 read_unlock(&tasklist_lock);
e59e2ae2
IM
6033 /*
6034 * Only show locks if all tasks are dumped:
6035 */
93335a21 6036 if (!state_filter)
e59e2ae2 6037 debug_show_all_locks();
1da177e4
LT
6038}
6039
1df21055
IM
6040void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6041{
dd41f596 6042 idle->sched_class = &idle_sched_class;
1df21055
IM
6043}
6044
f340c0d1
IM
6045/**
6046 * init_idle - set up an idle thread for a given CPU
6047 * @idle: task in question
6048 * @cpu: cpu the idle task belongs to
6049 *
6050 * NOTE: this function does not set the idle thread's NEED_RESCHED
6051 * flag, to make booting more robust.
6052 */
5c1e1767 6053void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6054{
70b97a7f 6055 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6056 unsigned long flags;
6057
05fa785c 6058 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6059
dd41f596 6060 __sched_fork(idle);
06b83b5f 6061 idle->state = TASK_RUNNING;
dd41f596
IM
6062 idle->se.exec_start = sched_clock();
6063
1e1b6c51 6064 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6065 /*
6066 * We're having a chicken and egg problem, even though we are
6067 * holding rq->lock, the cpu isn't yet set to this cpu so the
6068 * lockdep check in task_group() will fail.
6069 *
6070 * Similar case to sched_fork(). / Alternatively we could
6071 * use task_rq_lock() here and obtain the other rq->lock.
6072 *
6073 * Silence PROVE_RCU
6074 */
6075 rcu_read_lock();
dd41f596 6076 __set_task_cpu(idle, cpu);
6506cf6c 6077 rcu_read_unlock();
1da177e4 6078
1da177e4 6079 rq->curr = rq->idle = idle;
3ca7a440
PZ
6080#if defined(CONFIG_SMP)
6081 idle->on_cpu = 1;
4866cde0 6082#endif
05fa785c 6083 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6084
6085 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6086 task_thread_info(idle)->preempt_count = 0;
625f2a37 6087
dd41f596
IM
6088 /*
6089 * The idle tasks have their own, simple scheduling class:
6090 */
6091 idle->sched_class = &idle_sched_class;
868baf07 6092 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6093}
6094
6095/*
6096 * In a system that switches off the HZ timer nohz_cpu_mask
6097 * indicates which cpus entered this state. This is used
6098 * in the rcu update to wait only for active cpus. For system
6099 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6100 * always be CPU_BITS_NONE.
1da177e4 6101 */
6a7b3dc3 6102cpumask_var_t nohz_cpu_mask;
1da177e4 6103
19978ca6
IM
6104/*
6105 * Increase the granularity value when there are more CPUs,
6106 * because with more CPUs the 'effective latency' as visible
6107 * to users decreases. But the relationship is not linear,
6108 * so pick a second-best guess by going with the log2 of the
6109 * number of CPUs.
6110 *
6111 * This idea comes from the SD scheduler of Con Kolivas:
6112 */
acb4a848 6113static int get_update_sysctl_factor(void)
19978ca6 6114{
4ca3ef71 6115 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6116 unsigned int factor;
6117
6118 switch (sysctl_sched_tunable_scaling) {
6119 case SCHED_TUNABLESCALING_NONE:
6120 factor = 1;
6121 break;
6122 case SCHED_TUNABLESCALING_LINEAR:
6123 factor = cpus;
6124 break;
6125 case SCHED_TUNABLESCALING_LOG:
6126 default:
6127 factor = 1 + ilog2(cpus);
6128 break;
6129 }
19978ca6 6130
acb4a848
CE
6131 return factor;
6132}
19978ca6 6133
acb4a848
CE
6134static void update_sysctl(void)
6135{
6136 unsigned int factor = get_update_sysctl_factor();
19978ca6 6137
0bcdcf28
CE
6138#define SET_SYSCTL(name) \
6139 (sysctl_##name = (factor) * normalized_sysctl_##name)
6140 SET_SYSCTL(sched_min_granularity);
6141 SET_SYSCTL(sched_latency);
6142 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6143#undef SET_SYSCTL
6144}
55cd5340 6145
0bcdcf28
CE
6146static inline void sched_init_granularity(void)
6147{
6148 update_sysctl();
19978ca6
IM
6149}
6150
1da177e4 6151#ifdef CONFIG_SMP
1e1b6c51
KM
6152void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6153{
6154 if (p->sched_class && p->sched_class->set_cpus_allowed)
6155 p->sched_class->set_cpus_allowed(p, new_mask);
6156 else {
6157 cpumask_copy(&p->cpus_allowed, new_mask);
6158 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6159 }
6160}
6161
1da177e4
LT
6162/*
6163 * This is how migration works:
6164 *
969c7921
TH
6165 * 1) we invoke migration_cpu_stop() on the target CPU using
6166 * stop_one_cpu().
6167 * 2) stopper starts to run (implicitly forcing the migrated thread
6168 * off the CPU)
6169 * 3) it checks whether the migrated task is still in the wrong runqueue.
6170 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6171 * it and puts it into the right queue.
969c7921
TH
6172 * 5) stopper completes and stop_one_cpu() returns and the migration
6173 * is done.
1da177e4
LT
6174 */
6175
6176/*
6177 * Change a given task's CPU affinity. Migrate the thread to a
6178 * proper CPU and schedule it away if the CPU it's executing on
6179 * is removed from the allowed bitmask.
6180 *
6181 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6182 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6183 * call is not atomic; no spinlocks may be held.
6184 */
96f874e2 6185int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6186{
6187 unsigned long flags;
70b97a7f 6188 struct rq *rq;
969c7921 6189 unsigned int dest_cpu;
48f24c4d 6190 int ret = 0;
1da177e4
LT
6191
6192 rq = task_rq_lock(p, &flags);
e2912009 6193
db44fc01
YZ
6194 if (cpumask_equal(&p->cpus_allowed, new_mask))
6195 goto out;
6196
6ad4c188 6197 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6198 ret = -EINVAL;
6199 goto out;
6200 }
6201
db44fc01 6202 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6203 ret = -EINVAL;
6204 goto out;
6205 }
6206
1e1b6c51 6207 do_set_cpus_allowed(p, new_mask);
73fe6aae 6208
1da177e4 6209 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6210 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6211 goto out;
6212
969c7921 6213 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6214 if (p->on_rq) {
969c7921 6215 struct migration_arg arg = { p, dest_cpu };
1da177e4 6216 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6217 task_rq_unlock(rq, p, &flags);
969c7921 6218 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6219 tlb_migrate_finish(p->mm);
6220 return 0;
6221 }
6222out:
0122ec5b 6223 task_rq_unlock(rq, p, &flags);
48f24c4d 6224
1da177e4
LT
6225 return ret;
6226}
cd8ba7cd 6227EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6228
6229/*
41a2d6cf 6230 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6231 * this because either it can't run here any more (set_cpus_allowed()
6232 * away from this CPU, or CPU going down), or because we're
6233 * attempting to rebalance this task on exec (sched_exec).
6234 *
6235 * So we race with normal scheduler movements, but that's OK, as long
6236 * as the task is no longer on this CPU.
efc30814
KK
6237 *
6238 * Returns non-zero if task was successfully migrated.
1da177e4 6239 */
efc30814 6240static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6241{
70b97a7f 6242 struct rq *rq_dest, *rq_src;
e2912009 6243 int ret = 0;
1da177e4 6244
e761b772 6245 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6246 return ret;
1da177e4
LT
6247
6248 rq_src = cpu_rq(src_cpu);
6249 rq_dest = cpu_rq(dest_cpu);
6250
0122ec5b 6251 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6252 double_rq_lock(rq_src, rq_dest);
6253 /* Already moved. */
6254 if (task_cpu(p) != src_cpu)
b1e38734 6255 goto done;
1da177e4 6256 /* Affinity changed (again). */
96f874e2 6257 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6258 goto fail;
1da177e4 6259
e2912009
PZ
6260 /*
6261 * If we're not on a rq, the next wake-up will ensure we're
6262 * placed properly.
6263 */
fd2f4419 6264 if (p->on_rq) {
2e1cb74a 6265 deactivate_task(rq_src, p, 0);
e2912009 6266 set_task_cpu(p, dest_cpu);
dd41f596 6267 activate_task(rq_dest, p, 0);
15afe09b 6268 check_preempt_curr(rq_dest, p, 0);
1da177e4 6269 }
b1e38734 6270done:
efc30814 6271 ret = 1;
b1e38734 6272fail:
1da177e4 6273 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6274 raw_spin_unlock(&p->pi_lock);
efc30814 6275 return ret;
1da177e4
LT
6276}
6277
6278/*
969c7921
TH
6279 * migration_cpu_stop - this will be executed by a highprio stopper thread
6280 * and performs thread migration by bumping thread off CPU then
6281 * 'pushing' onto another runqueue.
1da177e4 6282 */
969c7921 6283static int migration_cpu_stop(void *data)
1da177e4 6284{
969c7921 6285 struct migration_arg *arg = data;
f7b4cddc 6286
969c7921
TH
6287 /*
6288 * The original target cpu might have gone down and we might
6289 * be on another cpu but it doesn't matter.
6290 */
f7b4cddc 6291 local_irq_disable();
969c7921 6292 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6293 local_irq_enable();
1da177e4 6294 return 0;
f7b4cddc
ON
6295}
6296
1da177e4 6297#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6298
054b9108 6299/*
48c5ccae
PZ
6300 * Ensures that the idle task is using init_mm right before its cpu goes
6301 * offline.
054b9108 6302 */
48c5ccae 6303void idle_task_exit(void)
1da177e4 6304{
48c5ccae 6305 struct mm_struct *mm = current->active_mm;
e76bd8d9 6306
48c5ccae 6307 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6308
48c5ccae
PZ
6309 if (mm != &init_mm)
6310 switch_mm(mm, &init_mm, current);
6311 mmdrop(mm);
1da177e4
LT
6312}
6313
6314/*
6315 * While a dead CPU has no uninterruptible tasks queued at this point,
6316 * it might still have a nonzero ->nr_uninterruptible counter, because
6317 * for performance reasons the counter is not stricly tracking tasks to
6318 * their home CPUs. So we just add the counter to another CPU's counter,
6319 * to keep the global sum constant after CPU-down:
6320 */
70b97a7f 6321static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6322{
6ad4c188 6323 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6324
1da177e4
LT
6325 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6326 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6327}
6328
dd41f596 6329/*
48c5ccae 6330 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6331 */
48c5ccae 6332static void calc_global_load_remove(struct rq *rq)
1da177e4 6333{
48c5ccae
PZ
6334 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6335 rq->calc_load_active = 0;
1da177e4
LT
6336}
6337
48f24c4d 6338/*
48c5ccae
PZ
6339 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6340 * try_to_wake_up()->select_task_rq().
6341 *
6342 * Called with rq->lock held even though we'er in stop_machine() and
6343 * there's no concurrency possible, we hold the required locks anyway
6344 * because of lock validation efforts.
1da177e4 6345 */
48c5ccae 6346static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6347{
70b97a7f 6348 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6349 struct task_struct *next, *stop = rq->stop;
6350 int dest_cpu;
1da177e4
LT
6351
6352 /*
48c5ccae
PZ
6353 * Fudge the rq selection such that the below task selection loop
6354 * doesn't get stuck on the currently eligible stop task.
6355 *
6356 * We're currently inside stop_machine() and the rq is either stuck
6357 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6358 * either way we should never end up calling schedule() until we're
6359 * done here.
1da177e4 6360 */
48c5ccae 6361 rq->stop = NULL;
48f24c4d 6362
dd41f596 6363 for ( ; ; ) {
48c5ccae
PZ
6364 /*
6365 * There's this thread running, bail when that's the only
6366 * remaining thread.
6367 */
6368 if (rq->nr_running == 1)
dd41f596 6369 break;
48c5ccae 6370
b67802ea 6371 next = pick_next_task(rq);
48c5ccae 6372 BUG_ON(!next);
79c53799 6373 next->sched_class->put_prev_task(rq, next);
e692ab53 6374
48c5ccae
PZ
6375 /* Find suitable destination for @next, with force if needed. */
6376 dest_cpu = select_fallback_rq(dead_cpu, next);
6377 raw_spin_unlock(&rq->lock);
6378
6379 __migrate_task(next, dead_cpu, dest_cpu);
6380
6381 raw_spin_lock(&rq->lock);
1da177e4 6382 }
dce48a84 6383
48c5ccae 6384 rq->stop = stop;
dce48a84 6385}
48c5ccae 6386
1da177e4
LT
6387#endif /* CONFIG_HOTPLUG_CPU */
6388
e692ab53
NP
6389#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6390
6391static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6392 {
6393 .procname = "sched_domain",
c57baf1e 6394 .mode = 0555,
e0361851 6395 },
56992309 6396 {}
e692ab53
NP
6397};
6398
6399static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6400 {
6401 .procname = "kernel",
c57baf1e 6402 .mode = 0555,
e0361851
AD
6403 .child = sd_ctl_dir,
6404 },
56992309 6405 {}
e692ab53
NP
6406};
6407
6408static struct ctl_table *sd_alloc_ctl_entry(int n)
6409{
6410 struct ctl_table *entry =
5cf9f062 6411 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6412
e692ab53
NP
6413 return entry;
6414}
6415
6382bc90
MM
6416static void sd_free_ctl_entry(struct ctl_table **tablep)
6417{
cd790076 6418 struct ctl_table *entry;
6382bc90 6419
cd790076
MM
6420 /*
6421 * In the intermediate directories, both the child directory and
6422 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6423 * will always be set. In the lowest directory the names are
cd790076
MM
6424 * static strings and all have proc handlers.
6425 */
6426 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6427 if (entry->child)
6428 sd_free_ctl_entry(&entry->child);
cd790076
MM
6429 if (entry->proc_handler == NULL)
6430 kfree(entry->procname);
6431 }
6382bc90
MM
6432
6433 kfree(*tablep);
6434 *tablep = NULL;
6435}
6436
e692ab53 6437static void
e0361851 6438set_table_entry(struct ctl_table *entry,
e692ab53
NP
6439 const char *procname, void *data, int maxlen,
6440 mode_t mode, proc_handler *proc_handler)
6441{
e692ab53
NP
6442 entry->procname = procname;
6443 entry->data = data;
6444 entry->maxlen = maxlen;
6445 entry->mode = mode;
6446 entry->proc_handler = proc_handler;
6447}
6448
6449static struct ctl_table *
6450sd_alloc_ctl_domain_table(struct sched_domain *sd)
6451{
a5d8c348 6452 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6453
ad1cdc1d
MM
6454 if (table == NULL)
6455 return NULL;
6456
e0361851 6457 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6458 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6459 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6460 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6461 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6463 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6465 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6467 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6468 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6469 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6470 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6471 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6472 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6473 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6474 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6475 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6476 &sd->cache_nice_tries,
6477 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6478 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6479 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6480 set_table_entry(&table[11], "name", sd->name,
6481 CORENAME_MAX_SIZE, 0444, proc_dostring);
6482 /* &table[12] is terminator */
e692ab53
NP
6483
6484 return table;
6485}
6486
9a4e7159 6487static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6488{
6489 struct ctl_table *entry, *table;
6490 struct sched_domain *sd;
6491 int domain_num = 0, i;
6492 char buf[32];
6493
6494 for_each_domain(cpu, sd)
6495 domain_num++;
6496 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6497 if (table == NULL)
6498 return NULL;
e692ab53
NP
6499
6500 i = 0;
6501 for_each_domain(cpu, sd) {
6502 snprintf(buf, 32, "domain%d", i);
e692ab53 6503 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6504 entry->mode = 0555;
e692ab53
NP
6505 entry->child = sd_alloc_ctl_domain_table(sd);
6506 entry++;
6507 i++;
6508 }
6509 return table;
6510}
6511
6512static struct ctl_table_header *sd_sysctl_header;
6382bc90 6513static void register_sched_domain_sysctl(void)
e692ab53 6514{
6ad4c188 6515 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6516 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6517 char buf[32];
6518
7378547f
MM
6519 WARN_ON(sd_ctl_dir[0].child);
6520 sd_ctl_dir[0].child = entry;
6521
ad1cdc1d
MM
6522 if (entry == NULL)
6523 return;
6524
6ad4c188 6525 for_each_possible_cpu(i) {
e692ab53 6526 snprintf(buf, 32, "cpu%d", i);
e692ab53 6527 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6528 entry->mode = 0555;
e692ab53 6529 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6530 entry++;
e692ab53 6531 }
7378547f
MM
6532
6533 WARN_ON(sd_sysctl_header);
e692ab53
NP
6534 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6535}
6382bc90 6536
7378547f 6537/* may be called multiple times per register */
6382bc90
MM
6538static void unregister_sched_domain_sysctl(void)
6539{
7378547f
MM
6540 if (sd_sysctl_header)
6541 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6542 sd_sysctl_header = NULL;
7378547f
MM
6543 if (sd_ctl_dir[0].child)
6544 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6545}
e692ab53 6546#else
6382bc90
MM
6547static void register_sched_domain_sysctl(void)
6548{
6549}
6550static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6551{
6552}
6553#endif
6554
1f11eb6a
GH
6555static void set_rq_online(struct rq *rq)
6556{
6557 if (!rq->online) {
6558 const struct sched_class *class;
6559
c6c4927b 6560 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6561 rq->online = 1;
6562
6563 for_each_class(class) {
6564 if (class->rq_online)
6565 class->rq_online(rq);
6566 }
6567 }
6568}
6569
6570static void set_rq_offline(struct rq *rq)
6571{
6572 if (rq->online) {
6573 const struct sched_class *class;
6574
6575 for_each_class(class) {
6576 if (class->rq_offline)
6577 class->rq_offline(rq);
6578 }
6579
c6c4927b 6580 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6581 rq->online = 0;
6582 }
6583}
6584
1da177e4
LT
6585/*
6586 * migration_call - callback that gets triggered when a CPU is added.
6587 * Here we can start up the necessary migration thread for the new CPU.
6588 */
48f24c4d
IM
6589static int __cpuinit
6590migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6591{
48f24c4d 6592 int cpu = (long)hcpu;
1da177e4 6593 unsigned long flags;
969c7921 6594 struct rq *rq = cpu_rq(cpu);
1da177e4 6595
48c5ccae 6596 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6597
1da177e4 6598 case CPU_UP_PREPARE:
a468d389 6599 rq->calc_load_update = calc_load_update;
1da177e4 6600 break;
48f24c4d 6601
1da177e4 6602 case CPU_ONLINE:
1f94ef59 6603 /* Update our root-domain */
05fa785c 6604 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6605 if (rq->rd) {
c6c4927b 6606 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6607
6608 set_rq_online(rq);
1f94ef59 6609 }
05fa785c 6610 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6611 break;
48f24c4d 6612
1da177e4 6613#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6614 case CPU_DYING:
317f3941 6615 sched_ttwu_pending();
57d885fe 6616 /* Update our root-domain */
05fa785c 6617 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6618 if (rq->rd) {
c6c4927b 6619 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6620 set_rq_offline(rq);
57d885fe 6621 }
48c5ccae
PZ
6622 migrate_tasks(cpu);
6623 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6624 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6625
6626 migrate_nr_uninterruptible(rq);
6627 calc_global_load_remove(rq);
57d885fe 6628 break;
1da177e4
LT
6629#endif
6630 }
49c022e6
PZ
6631
6632 update_max_interval();
6633
1da177e4
LT
6634 return NOTIFY_OK;
6635}
6636
f38b0820
PM
6637/*
6638 * Register at high priority so that task migration (migrate_all_tasks)
6639 * happens before everything else. This has to be lower priority than
cdd6c482 6640 * the notifier in the perf_event subsystem, though.
1da177e4 6641 */
26c2143b 6642static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6643 .notifier_call = migration_call,
50a323b7 6644 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6645};
6646
3a101d05
TH
6647static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6648 unsigned long action, void *hcpu)
6649{
6650 switch (action & ~CPU_TASKS_FROZEN) {
6651 case CPU_ONLINE:
6652 case CPU_DOWN_FAILED:
6653 set_cpu_active((long)hcpu, true);
6654 return NOTIFY_OK;
6655 default:
6656 return NOTIFY_DONE;
6657 }
6658}
6659
6660static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6661 unsigned long action, void *hcpu)
6662{
6663 switch (action & ~CPU_TASKS_FROZEN) {
6664 case CPU_DOWN_PREPARE:
6665 set_cpu_active((long)hcpu, false);
6666 return NOTIFY_OK;
6667 default:
6668 return NOTIFY_DONE;
6669 }
6670}
6671
7babe8db 6672static int __init migration_init(void)
1da177e4
LT
6673{
6674 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6675 int err;
48f24c4d 6676
3a101d05 6677 /* Initialize migration for the boot CPU */
07dccf33
AM
6678 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6679 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6680 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6681 register_cpu_notifier(&migration_notifier);
7babe8db 6682
3a101d05
TH
6683 /* Register cpu active notifiers */
6684 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6685 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6686
a004cd42 6687 return 0;
1da177e4 6688}
7babe8db 6689early_initcall(migration_init);
1da177e4
LT
6690#endif
6691
6692#ifdef CONFIG_SMP
476f3534 6693
4cb98839
PZ
6694static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6695
3e9830dc 6696#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6697
f6630114
MT
6698static __read_mostly int sched_domain_debug_enabled;
6699
6700static int __init sched_domain_debug_setup(char *str)
6701{
6702 sched_domain_debug_enabled = 1;
6703
6704 return 0;
6705}
6706early_param("sched_debug", sched_domain_debug_setup);
6707
7c16ec58 6708static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6709 struct cpumask *groupmask)
1da177e4 6710{
4dcf6aff 6711 struct sched_group *group = sd->groups;
434d53b0 6712 char str[256];
1da177e4 6713
968ea6d8 6714 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6715 cpumask_clear(groupmask);
4dcf6aff
IM
6716
6717 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6718
6719 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6720 printk("does not load-balance\n");
4dcf6aff 6721 if (sd->parent)
3df0fc5b
PZ
6722 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6723 " has parent");
4dcf6aff 6724 return -1;
41c7ce9a
NP
6725 }
6726
3df0fc5b 6727 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6728
758b2cdc 6729 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6730 printk(KERN_ERR "ERROR: domain->span does not contain "
6731 "CPU%d\n", cpu);
4dcf6aff 6732 }
758b2cdc 6733 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6734 printk(KERN_ERR "ERROR: domain->groups does not contain"
6735 " CPU%d\n", cpu);
4dcf6aff 6736 }
1da177e4 6737
4dcf6aff 6738 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6739 do {
4dcf6aff 6740 if (!group) {
3df0fc5b
PZ
6741 printk("\n");
6742 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6743 break;
6744 }
6745
9c3f75cb 6746 if (!group->sgp->power) {
3df0fc5b
PZ
6747 printk(KERN_CONT "\n");
6748 printk(KERN_ERR "ERROR: domain->cpu_power not "
6749 "set\n");
4dcf6aff
IM
6750 break;
6751 }
1da177e4 6752
758b2cdc 6753 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6754 printk(KERN_CONT "\n");
6755 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6756 break;
6757 }
1da177e4 6758
758b2cdc 6759 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6760 printk(KERN_CONT "\n");
6761 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6762 break;
6763 }
1da177e4 6764
758b2cdc 6765 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6766
968ea6d8 6767 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6768
3df0fc5b 6769 printk(KERN_CONT " %s", str);
9c3f75cb 6770 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6771 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6772 group->sgp->power);
381512cf 6773 }
1da177e4 6774
4dcf6aff
IM
6775 group = group->next;
6776 } while (group != sd->groups);
3df0fc5b 6777 printk(KERN_CONT "\n");
1da177e4 6778
758b2cdc 6779 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6780 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6781
758b2cdc
RR
6782 if (sd->parent &&
6783 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6784 printk(KERN_ERR "ERROR: parent span is not a superset "
6785 "of domain->span\n");
4dcf6aff
IM
6786 return 0;
6787}
1da177e4 6788
4dcf6aff
IM
6789static void sched_domain_debug(struct sched_domain *sd, int cpu)
6790{
6791 int level = 0;
1da177e4 6792
f6630114
MT
6793 if (!sched_domain_debug_enabled)
6794 return;
6795
4dcf6aff
IM
6796 if (!sd) {
6797 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6798 return;
6799 }
1da177e4 6800
4dcf6aff
IM
6801 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6802
6803 for (;;) {
4cb98839 6804 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6805 break;
1da177e4
LT
6806 level++;
6807 sd = sd->parent;
33859f7f 6808 if (!sd)
4dcf6aff
IM
6809 break;
6810 }
1da177e4 6811}
6d6bc0ad 6812#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6813# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6814#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6815
1a20ff27 6816static int sd_degenerate(struct sched_domain *sd)
245af2c7 6817{
758b2cdc 6818 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6819 return 1;
6820
6821 /* Following flags need at least 2 groups */
6822 if (sd->flags & (SD_LOAD_BALANCE |
6823 SD_BALANCE_NEWIDLE |
6824 SD_BALANCE_FORK |
89c4710e
SS
6825 SD_BALANCE_EXEC |
6826 SD_SHARE_CPUPOWER |
6827 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6828 if (sd->groups != sd->groups->next)
6829 return 0;
6830 }
6831
6832 /* Following flags don't use groups */
c88d5910 6833 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6834 return 0;
6835
6836 return 1;
6837}
6838
48f24c4d
IM
6839static int
6840sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6841{
6842 unsigned long cflags = sd->flags, pflags = parent->flags;
6843
6844 if (sd_degenerate(parent))
6845 return 1;
6846
758b2cdc 6847 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6848 return 0;
6849
245af2c7
SS
6850 /* Flags needing groups don't count if only 1 group in parent */
6851 if (parent->groups == parent->groups->next) {
6852 pflags &= ~(SD_LOAD_BALANCE |
6853 SD_BALANCE_NEWIDLE |
6854 SD_BALANCE_FORK |
89c4710e
SS
6855 SD_BALANCE_EXEC |
6856 SD_SHARE_CPUPOWER |
6857 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6858 if (nr_node_ids == 1)
6859 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6860 }
6861 if (~cflags & pflags)
6862 return 0;
6863
6864 return 1;
6865}
6866
dce840a0 6867static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6868{
dce840a0 6869 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6870
68e74568 6871 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6872 free_cpumask_var(rd->rto_mask);
6873 free_cpumask_var(rd->online);
6874 free_cpumask_var(rd->span);
6875 kfree(rd);
6876}
6877
57d885fe
GH
6878static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6879{
a0490fa3 6880 struct root_domain *old_rd = NULL;
57d885fe 6881 unsigned long flags;
57d885fe 6882
05fa785c 6883 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6884
6885 if (rq->rd) {
a0490fa3 6886 old_rd = rq->rd;
57d885fe 6887
c6c4927b 6888 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6889 set_rq_offline(rq);
57d885fe 6890
c6c4927b 6891 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6892
a0490fa3
IM
6893 /*
6894 * If we dont want to free the old_rt yet then
6895 * set old_rd to NULL to skip the freeing later
6896 * in this function:
6897 */
6898 if (!atomic_dec_and_test(&old_rd->refcount))
6899 old_rd = NULL;
57d885fe
GH
6900 }
6901
6902 atomic_inc(&rd->refcount);
6903 rq->rd = rd;
6904
c6c4927b 6905 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6906 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6907 set_rq_online(rq);
57d885fe 6908
05fa785c 6909 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6910
6911 if (old_rd)
dce840a0 6912 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6913}
6914
68c38fc3 6915static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6916{
6917 memset(rd, 0, sizeof(*rd));
6918
68c38fc3 6919 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6920 goto out;
68c38fc3 6921 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6922 goto free_span;
68c38fc3 6923 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6924 goto free_online;
6e0534f2 6925
68c38fc3 6926 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6927 goto free_rto_mask;
c6c4927b 6928 return 0;
6e0534f2 6929
68e74568
RR
6930free_rto_mask:
6931 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6932free_online:
6933 free_cpumask_var(rd->online);
6934free_span:
6935 free_cpumask_var(rd->span);
0c910d28 6936out:
c6c4927b 6937 return -ENOMEM;
57d885fe
GH
6938}
6939
6940static void init_defrootdomain(void)
6941{
68c38fc3 6942 init_rootdomain(&def_root_domain);
c6c4927b 6943
57d885fe
GH
6944 atomic_set(&def_root_domain.refcount, 1);
6945}
6946
dc938520 6947static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6948{
6949 struct root_domain *rd;
6950
6951 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6952 if (!rd)
6953 return NULL;
6954
68c38fc3 6955 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6956 kfree(rd);
6957 return NULL;
6958 }
57d885fe
GH
6959
6960 return rd;
6961}
6962
e3589f6c
PZ
6963static void free_sched_groups(struct sched_group *sg, int free_sgp)
6964{
6965 struct sched_group *tmp, *first;
6966
6967 if (!sg)
6968 return;
6969
6970 first = sg;
6971 do {
6972 tmp = sg->next;
6973
6974 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6975 kfree(sg->sgp);
6976
6977 kfree(sg);
6978 sg = tmp;
6979 } while (sg != first);
6980}
6981
dce840a0
PZ
6982static void free_sched_domain(struct rcu_head *rcu)
6983{
6984 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6985
6986 /*
6987 * If its an overlapping domain it has private groups, iterate and
6988 * nuke them all.
6989 */
6990 if (sd->flags & SD_OVERLAP) {
6991 free_sched_groups(sd->groups, 1);
6992 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6993 kfree(sd->groups->sgp);
dce840a0 6994 kfree(sd->groups);
9c3f75cb 6995 }
dce840a0
PZ
6996 kfree(sd);
6997}
6998
6999static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7000{
7001 call_rcu(&sd->rcu, free_sched_domain);
7002}
7003
7004static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7005{
7006 for (; sd; sd = sd->parent)
7007 destroy_sched_domain(sd, cpu);
7008}
7009
1da177e4 7010/*
0eab9146 7011 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7012 * hold the hotplug lock.
7013 */
0eab9146
IM
7014static void
7015cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7016{
70b97a7f 7017 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7018 struct sched_domain *tmp;
7019
7020 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7021 for (tmp = sd; tmp; ) {
245af2c7
SS
7022 struct sched_domain *parent = tmp->parent;
7023 if (!parent)
7024 break;
f29c9b1c 7025
1a848870 7026 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7027 tmp->parent = parent->parent;
1a848870
SS
7028 if (parent->parent)
7029 parent->parent->child = tmp;
dce840a0 7030 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7031 } else
7032 tmp = tmp->parent;
245af2c7
SS
7033 }
7034
1a848870 7035 if (sd && sd_degenerate(sd)) {
dce840a0 7036 tmp = sd;
245af2c7 7037 sd = sd->parent;
dce840a0 7038 destroy_sched_domain(tmp, cpu);
1a848870
SS
7039 if (sd)
7040 sd->child = NULL;
7041 }
1da177e4 7042
4cb98839 7043 sched_domain_debug(sd, cpu);
1da177e4 7044
57d885fe 7045 rq_attach_root(rq, rd);
dce840a0 7046 tmp = rq->sd;
674311d5 7047 rcu_assign_pointer(rq->sd, sd);
dce840a0 7048 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7049}
7050
7051/* cpus with isolated domains */
dcc30a35 7052static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7053
7054/* Setup the mask of cpus configured for isolated domains */
7055static int __init isolated_cpu_setup(char *str)
7056{
bdddd296 7057 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7058 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7059 return 1;
7060}
7061
8927f494 7062__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7063
9c1cfda2 7064#define SD_NODES_PER_DOMAIN 16
1da177e4 7065
9c1cfda2 7066#ifdef CONFIG_NUMA
198e2f18 7067
9c1cfda2
JH
7068/**
7069 * find_next_best_node - find the next node to include in a sched_domain
7070 * @node: node whose sched_domain we're building
7071 * @used_nodes: nodes already in the sched_domain
7072 *
41a2d6cf 7073 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7074 * finds the closest node not already in the @used_nodes map.
7075 *
7076 * Should use nodemask_t.
7077 */
c5f59f08 7078static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7079{
7142d17e 7080 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7081
7082 min_val = INT_MAX;
7083
076ac2af 7084 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7085 /* Start at @node */
076ac2af 7086 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7087
7088 if (!nr_cpus_node(n))
7089 continue;
7090
7091 /* Skip already used nodes */
c5f59f08 7092 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7093 continue;
7094
7095 /* Simple min distance search */
7096 val = node_distance(node, n);
7097
7098 if (val < min_val) {
7099 min_val = val;
7100 best_node = n;
7101 }
7102 }
7103
7142d17e
HD
7104 if (best_node != -1)
7105 node_set(best_node, *used_nodes);
9c1cfda2
JH
7106 return best_node;
7107}
7108
7109/**
7110 * sched_domain_node_span - get a cpumask for a node's sched_domain
7111 * @node: node whose cpumask we're constructing
73486722 7112 * @span: resulting cpumask
9c1cfda2 7113 *
41a2d6cf 7114 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7115 * should be one that prevents unnecessary balancing, but also spreads tasks
7116 * out optimally.
7117 */
96f874e2 7118static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7119{
c5f59f08 7120 nodemask_t used_nodes;
48f24c4d 7121 int i;
9c1cfda2 7122
6ca09dfc 7123 cpumask_clear(span);
c5f59f08 7124 nodes_clear(used_nodes);
9c1cfda2 7125
6ca09dfc 7126 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7127 node_set(node, used_nodes);
9c1cfda2
JH
7128
7129 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7130 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7131 if (next_node < 0)
7132 break;
6ca09dfc 7133 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7134 }
9c1cfda2 7135}
d3081f52
PZ
7136
7137static const struct cpumask *cpu_node_mask(int cpu)
7138{
7139 lockdep_assert_held(&sched_domains_mutex);
7140
7141 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7142
7143 return sched_domains_tmpmask;
7144}
2c402dc3
PZ
7145
7146static const struct cpumask *cpu_allnodes_mask(int cpu)
7147{
7148 return cpu_possible_mask;
7149}
6d6bc0ad 7150#endif /* CONFIG_NUMA */
9c1cfda2 7151
d3081f52
PZ
7152static const struct cpumask *cpu_cpu_mask(int cpu)
7153{
7154 return cpumask_of_node(cpu_to_node(cpu));
7155}
7156
5c45bf27 7157int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7158
dce840a0
PZ
7159struct sd_data {
7160 struct sched_domain **__percpu sd;
7161 struct sched_group **__percpu sg;
9c3f75cb 7162 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7163};
7164
49a02c51 7165struct s_data {
21d42ccf 7166 struct sched_domain ** __percpu sd;
49a02c51
AH
7167 struct root_domain *rd;
7168};
7169
2109b99e 7170enum s_alloc {
2109b99e 7171 sa_rootdomain,
21d42ccf 7172 sa_sd,
dce840a0 7173 sa_sd_storage,
2109b99e
AH
7174 sa_none,
7175};
7176
54ab4ff4
PZ
7177struct sched_domain_topology_level;
7178
7179typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7180typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7181
e3589f6c
PZ
7182#define SDTL_OVERLAP 0x01
7183
eb7a74e6 7184struct sched_domain_topology_level {
2c402dc3
PZ
7185 sched_domain_init_f init;
7186 sched_domain_mask_f mask;
e3589f6c 7187 int flags;
54ab4ff4 7188 struct sd_data data;
eb7a74e6
PZ
7189};
7190
e3589f6c
PZ
7191static int
7192build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7193{
7194 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7195 const struct cpumask *span = sched_domain_span(sd);
7196 struct cpumask *covered = sched_domains_tmpmask;
7197 struct sd_data *sdd = sd->private;
7198 struct sched_domain *child;
7199 int i;
7200
7201 cpumask_clear(covered);
7202
7203 for_each_cpu(i, span) {
7204 struct cpumask *sg_span;
7205
7206 if (cpumask_test_cpu(i, covered))
7207 continue;
7208
7209 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7210 GFP_KERNEL, cpu_to_node(i));
7211
7212 if (!sg)
7213 goto fail;
7214
7215 sg_span = sched_group_cpus(sg);
7216
7217 child = *per_cpu_ptr(sdd->sd, i);
7218 if (child->child) {
7219 child = child->child;
7220 cpumask_copy(sg_span, sched_domain_span(child));
7221 } else
7222 cpumask_set_cpu(i, sg_span);
7223
7224 cpumask_or(covered, covered, sg_span);
7225
7226 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7227 atomic_inc(&sg->sgp->ref);
7228
7229 if (cpumask_test_cpu(cpu, sg_span))
7230 groups = sg;
7231
7232 if (!first)
7233 first = sg;
7234 if (last)
7235 last->next = sg;
7236 last = sg;
7237 last->next = first;
7238 }
7239 sd->groups = groups;
7240
7241 return 0;
7242
7243fail:
7244 free_sched_groups(first, 0);
7245
7246 return -ENOMEM;
7247}
7248
dce840a0 7249static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7250{
dce840a0
PZ
7251 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7252 struct sched_domain *child = sd->child;
1da177e4 7253
dce840a0
PZ
7254 if (child)
7255 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7256
9c3f75cb 7257 if (sg) {
dce840a0 7258 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7259 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7260 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7261 }
dce840a0
PZ
7262
7263 return cpu;
1e9f28fa 7264}
1e9f28fa 7265
01a08546 7266/*
dce840a0
PZ
7267 * build_sched_groups will build a circular linked list of the groups
7268 * covered by the given span, and will set each group's ->cpumask correctly,
7269 * and ->cpu_power to 0.
e3589f6c
PZ
7270 *
7271 * Assumes the sched_domain tree is fully constructed
01a08546 7272 */
e3589f6c
PZ
7273static int
7274build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7275{
dce840a0
PZ
7276 struct sched_group *first = NULL, *last = NULL;
7277 struct sd_data *sdd = sd->private;
7278 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7279 struct cpumask *covered;
dce840a0 7280 int i;
9c1cfda2 7281
e3589f6c
PZ
7282 get_group(cpu, sdd, &sd->groups);
7283 atomic_inc(&sd->groups->ref);
7284
7285 if (cpu != cpumask_first(sched_domain_span(sd)))
7286 return 0;
7287
f96225fd
PZ
7288 lockdep_assert_held(&sched_domains_mutex);
7289 covered = sched_domains_tmpmask;
7290
dce840a0 7291 cpumask_clear(covered);
6711cab4 7292
dce840a0
PZ
7293 for_each_cpu(i, span) {
7294 struct sched_group *sg;
7295 int group = get_group(i, sdd, &sg);
7296 int j;
6711cab4 7297
dce840a0
PZ
7298 if (cpumask_test_cpu(i, covered))
7299 continue;
6711cab4 7300
dce840a0 7301 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7302 sg->sgp->power = 0;
0601a88d 7303
dce840a0
PZ
7304 for_each_cpu(j, span) {
7305 if (get_group(j, sdd, NULL) != group)
7306 continue;
0601a88d 7307
dce840a0
PZ
7308 cpumask_set_cpu(j, covered);
7309 cpumask_set_cpu(j, sched_group_cpus(sg));
7310 }
0601a88d 7311
dce840a0
PZ
7312 if (!first)
7313 first = sg;
7314 if (last)
7315 last->next = sg;
7316 last = sg;
7317 }
7318 last->next = first;
e3589f6c
PZ
7319
7320 return 0;
0601a88d 7321}
51888ca2 7322
89c4710e
SS
7323/*
7324 * Initialize sched groups cpu_power.
7325 *
7326 * cpu_power indicates the capacity of sched group, which is used while
7327 * distributing the load between different sched groups in a sched domain.
7328 * Typically cpu_power for all the groups in a sched domain will be same unless
7329 * there are asymmetries in the topology. If there are asymmetries, group
7330 * having more cpu_power will pickup more load compared to the group having
7331 * less cpu_power.
89c4710e
SS
7332 */
7333static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7334{
e3589f6c 7335 struct sched_group *sg = sd->groups;
89c4710e 7336
e3589f6c
PZ
7337 WARN_ON(!sd || !sg);
7338
7339 do {
7340 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7341 sg = sg->next;
7342 } while (sg != sd->groups);
89c4710e 7343
e3589f6c
PZ
7344 if (cpu != group_first_cpu(sg))
7345 return;
aae6d3dd 7346
d274cb30 7347 update_group_power(sd, cpu);
89c4710e
SS
7348}
7349
7c16ec58
MT
7350/*
7351 * Initializers for schedule domains
7352 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7353 */
7354
a5d8c348
IM
7355#ifdef CONFIG_SCHED_DEBUG
7356# define SD_INIT_NAME(sd, type) sd->name = #type
7357#else
7358# define SD_INIT_NAME(sd, type) do { } while (0)
7359#endif
7360
54ab4ff4
PZ
7361#define SD_INIT_FUNC(type) \
7362static noinline struct sched_domain * \
7363sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7364{ \
7365 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7366 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7367 SD_INIT_NAME(sd, type); \
7368 sd->private = &tl->data; \
7369 return sd; \
7c16ec58
MT
7370}
7371
7372SD_INIT_FUNC(CPU)
7373#ifdef CONFIG_NUMA
7374 SD_INIT_FUNC(ALLNODES)
7375 SD_INIT_FUNC(NODE)
7376#endif
7377#ifdef CONFIG_SCHED_SMT
7378 SD_INIT_FUNC(SIBLING)
7379#endif
7380#ifdef CONFIG_SCHED_MC
7381 SD_INIT_FUNC(MC)
7382#endif
01a08546
HC
7383#ifdef CONFIG_SCHED_BOOK
7384 SD_INIT_FUNC(BOOK)
7385#endif
7c16ec58 7386
1d3504fc 7387static int default_relax_domain_level = -1;
60495e77 7388int sched_domain_level_max;
1d3504fc
HS
7389
7390static int __init setup_relax_domain_level(char *str)
7391{
30e0e178
LZ
7392 unsigned long val;
7393
7394 val = simple_strtoul(str, NULL, 0);
60495e77 7395 if (val < sched_domain_level_max)
30e0e178
LZ
7396 default_relax_domain_level = val;
7397
1d3504fc
HS
7398 return 1;
7399}
7400__setup("relax_domain_level=", setup_relax_domain_level);
7401
7402static void set_domain_attribute(struct sched_domain *sd,
7403 struct sched_domain_attr *attr)
7404{
7405 int request;
7406
7407 if (!attr || attr->relax_domain_level < 0) {
7408 if (default_relax_domain_level < 0)
7409 return;
7410 else
7411 request = default_relax_domain_level;
7412 } else
7413 request = attr->relax_domain_level;
7414 if (request < sd->level) {
7415 /* turn off idle balance on this domain */
c88d5910 7416 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7417 } else {
7418 /* turn on idle balance on this domain */
c88d5910 7419 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7420 }
7421}
7422
54ab4ff4
PZ
7423static void __sdt_free(const struct cpumask *cpu_map);
7424static int __sdt_alloc(const struct cpumask *cpu_map);
7425
2109b99e
AH
7426static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7427 const struct cpumask *cpu_map)
7428{
7429 switch (what) {
2109b99e 7430 case sa_rootdomain:
822ff793
PZ
7431 if (!atomic_read(&d->rd->refcount))
7432 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7433 case sa_sd:
7434 free_percpu(d->sd); /* fall through */
dce840a0 7435 case sa_sd_storage:
54ab4ff4 7436 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7437 case sa_none:
7438 break;
7439 }
7440}
3404c8d9 7441
2109b99e
AH
7442static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7443 const struct cpumask *cpu_map)
7444{
dce840a0
PZ
7445 memset(d, 0, sizeof(*d));
7446
54ab4ff4
PZ
7447 if (__sdt_alloc(cpu_map))
7448 return sa_sd_storage;
dce840a0
PZ
7449 d->sd = alloc_percpu(struct sched_domain *);
7450 if (!d->sd)
7451 return sa_sd_storage;
2109b99e 7452 d->rd = alloc_rootdomain();
dce840a0 7453 if (!d->rd)
21d42ccf 7454 return sa_sd;
2109b99e
AH
7455 return sa_rootdomain;
7456}
57d885fe 7457
dce840a0
PZ
7458/*
7459 * NULL the sd_data elements we've used to build the sched_domain and
7460 * sched_group structure so that the subsequent __free_domain_allocs()
7461 * will not free the data we're using.
7462 */
7463static void claim_allocations(int cpu, struct sched_domain *sd)
7464{
7465 struct sd_data *sdd = sd->private;
dce840a0
PZ
7466
7467 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7468 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7469
e3589f6c 7470 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7471 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7472
7473 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7474 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7475}
7476
2c402dc3
PZ
7477#ifdef CONFIG_SCHED_SMT
7478static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7479{
2c402dc3 7480 return topology_thread_cpumask(cpu);
3bd65a80 7481}
2c402dc3 7482#endif
7f4588f3 7483
d069b916
PZ
7484/*
7485 * Topology list, bottom-up.
7486 */
2c402dc3 7487static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7488#ifdef CONFIG_SCHED_SMT
7489 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7490#endif
1e9f28fa 7491#ifdef CONFIG_SCHED_MC
2c402dc3 7492 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7493#endif
d069b916
PZ
7494#ifdef CONFIG_SCHED_BOOK
7495 { sd_init_BOOK, cpu_book_mask, },
7496#endif
7497 { sd_init_CPU, cpu_cpu_mask, },
7498#ifdef CONFIG_NUMA
e3589f6c 7499 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7500 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7501#endif
eb7a74e6
PZ
7502 { NULL, },
7503};
7504
7505static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7506
54ab4ff4
PZ
7507static int __sdt_alloc(const struct cpumask *cpu_map)
7508{
7509 struct sched_domain_topology_level *tl;
7510 int j;
7511
7512 for (tl = sched_domain_topology; tl->init; tl++) {
7513 struct sd_data *sdd = &tl->data;
7514
7515 sdd->sd = alloc_percpu(struct sched_domain *);
7516 if (!sdd->sd)
7517 return -ENOMEM;
7518
7519 sdd->sg = alloc_percpu(struct sched_group *);
7520 if (!sdd->sg)
7521 return -ENOMEM;
7522
9c3f75cb
PZ
7523 sdd->sgp = alloc_percpu(struct sched_group_power *);
7524 if (!sdd->sgp)
7525 return -ENOMEM;
7526
54ab4ff4
PZ
7527 for_each_cpu(j, cpu_map) {
7528 struct sched_domain *sd;
7529 struct sched_group *sg;
9c3f75cb 7530 struct sched_group_power *sgp;
54ab4ff4
PZ
7531
7532 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7533 GFP_KERNEL, cpu_to_node(j));
7534 if (!sd)
7535 return -ENOMEM;
7536
7537 *per_cpu_ptr(sdd->sd, j) = sd;
7538
7539 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7540 GFP_KERNEL, cpu_to_node(j));
7541 if (!sg)
7542 return -ENOMEM;
7543
7544 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7545
7546 sgp = kzalloc_node(sizeof(struct sched_group_power),
7547 GFP_KERNEL, cpu_to_node(j));
7548 if (!sgp)
7549 return -ENOMEM;
7550
7551 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7552 }
7553 }
7554
7555 return 0;
7556}
7557
7558static void __sdt_free(const struct cpumask *cpu_map)
7559{
7560 struct sched_domain_topology_level *tl;
7561 int j;
7562
7563 for (tl = sched_domain_topology; tl->init; tl++) {
7564 struct sd_data *sdd = &tl->data;
7565
7566 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7567 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7568 if (sd && (sd->flags & SD_OVERLAP))
7569 free_sched_groups(sd->groups, 0);
54ab4ff4 7570 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7571 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7572 }
7573 free_percpu(sdd->sd);
7574 free_percpu(sdd->sg);
9c3f75cb 7575 free_percpu(sdd->sgp);
54ab4ff4
PZ
7576 }
7577}
7578
2c402dc3
PZ
7579struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7580 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7581 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7582 int cpu)
7583{
54ab4ff4 7584 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7585 if (!sd)
d069b916 7586 return child;
2c402dc3
PZ
7587
7588 set_domain_attribute(sd, attr);
7589 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7590 if (child) {
7591 sd->level = child->level + 1;
7592 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7593 child->parent = sd;
60495e77 7594 }
d069b916 7595 sd->child = child;
2c402dc3
PZ
7596
7597 return sd;
7598}
7599
2109b99e
AH
7600/*
7601 * Build sched domains for a given set of cpus and attach the sched domains
7602 * to the individual cpus
7603 */
dce840a0
PZ
7604static int build_sched_domains(const struct cpumask *cpu_map,
7605 struct sched_domain_attr *attr)
2109b99e
AH
7606{
7607 enum s_alloc alloc_state = sa_none;
dce840a0 7608 struct sched_domain *sd;
2109b99e 7609 struct s_data d;
822ff793 7610 int i, ret = -ENOMEM;
9c1cfda2 7611
2109b99e
AH
7612 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7613 if (alloc_state != sa_rootdomain)
7614 goto error;
9c1cfda2 7615
dce840a0 7616 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7617 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7618 struct sched_domain_topology_level *tl;
7619
3bd65a80 7620 sd = NULL;
e3589f6c 7621 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7622 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7623 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7624 sd->flags |= SD_OVERLAP;
d110235d
PZ
7625 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7626 break;
e3589f6c 7627 }
d274cb30 7628
d069b916
PZ
7629 while (sd->child)
7630 sd = sd->child;
7631
21d42ccf 7632 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7633 }
7634
7635 /* Build the groups for the domains */
7636 for_each_cpu(i, cpu_map) {
7637 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7638 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7639 if (sd->flags & SD_OVERLAP) {
7640 if (build_overlap_sched_groups(sd, i))
7641 goto error;
7642 } else {
7643 if (build_sched_groups(sd, i))
7644 goto error;
7645 }
1cf51902 7646 }
a06dadbe 7647 }
9c1cfda2 7648
1da177e4 7649 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7650 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7651 if (!cpumask_test_cpu(i, cpu_map))
7652 continue;
9c1cfda2 7653
dce840a0
PZ
7654 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7655 claim_allocations(i, sd);
cd4ea6ae 7656 init_sched_groups_power(i, sd);
dce840a0 7657 }
f712c0c7 7658 }
9c1cfda2 7659
1da177e4 7660 /* Attach the domains */
dce840a0 7661 rcu_read_lock();
abcd083a 7662 for_each_cpu(i, cpu_map) {
21d42ccf 7663 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7664 cpu_attach_domain(sd, d.rd, i);
1da177e4 7665 }
dce840a0 7666 rcu_read_unlock();
51888ca2 7667
822ff793 7668 ret = 0;
51888ca2 7669error:
2109b99e 7670 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7671 return ret;
1da177e4 7672}
029190c5 7673
acc3f5d7 7674static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7675static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7676static struct sched_domain_attr *dattr_cur;
7677 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7678
7679/*
7680 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7681 * cpumask) fails, then fallback to a single sched domain,
7682 * as determined by the single cpumask fallback_doms.
029190c5 7683 */
4212823f 7684static cpumask_var_t fallback_doms;
029190c5 7685
ee79d1bd
HC
7686/*
7687 * arch_update_cpu_topology lets virtualized architectures update the
7688 * cpu core maps. It is supposed to return 1 if the topology changed
7689 * or 0 if it stayed the same.
7690 */
7691int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7692{
ee79d1bd 7693 return 0;
22e52b07
HC
7694}
7695
acc3f5d7
RR
7696cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7697{
7698 int i;
7699 cpumask_var_t *doms;
7700
7701 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7702 if (!doms)
7703 return NULL;
7704 for (i = 0; i < ndoms; i++) {
7705 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7706 free_sched_domains(doms, i);
7707 return NULL;
7708 }
7709 }
7710 return doms;
7711}
7712
7713void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7714{
7715 unsigned int i;
7716 for (i = 0; i < ndoms; i++)
7717 free_cpumask_var(doms[i]);
7718 kfree(doms);
7719}
7720
1a20ff27 7721/*
41a2d6cf 7722 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7723 * For now this just excludes isolated cpus, but could be used to
7724 * exclude other special cases in the future.
1a20ff27 7725 */
c4a8849a 7726static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7727{
7378547f
MM
7728 int err;
7729
22e52b07 7730 arch_update_cpu_topology();
029190c5 7731 ndoms_cur = 1;
acc3f5d7 7732 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7733 if (!doms_cur)
acc3f5d7
RR
7734 doms_cur = &fallback_doms;
7735 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7736 dattr_cur = NULL;
dce840a0 7737 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7738 register_sched_domain_sysctl();
7378547f
MM
7739
7740 return err;
1a20ff27
DG
7741}
7742
1a20ff27
DG
7743/*
7744 * Detach sched domains from a group of cpus specified in cpu_map
7745 * These cpus will now be attached to the NULL domain
7746 */
96f874e2 7747static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7748{
7749 int i;
7750
dce840a0 7751 rcu_read_lock();
abcd083a 7752 for_each_cpu(i, cpu_map)
57d885fe 7753 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7754 rcu_read_unlock();
1a20ff27
DG
7755}
7756
1d3504fc
HS
7757/* handle null as "default" */
7758static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7759 struct sched_domain_attr *new, int idx_new)
7760{
7761 struct sched_domain_attr tmp;
7762
7763 /* fast path */
7764 if (!new && !cur)
7765 return 1;
7766
7767 tmp = SD_ATTR_INIT;
7768 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7769 new ? (new + idx_new) : &tmp,
7770 sizeof(struct sched_domain_attr));
7771}
7772
029190c5
PJ
7773/*
7774 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7775 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7776 * doms_new[] to the current sched domain partitioning, doms_cur[].
7777 * It destroys each deleted domain and builds each new domain.
7778 *
acc3f5d7 7779 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7780 * The masks don't intersect (don't overlap.) We should setup one
7781 * sched domain for each mask. CPUs not in any of the cpumasks will
7782 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7783 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7784 * it as it is.
7785 *
acc3f5d7
RR
7786 * The passed in 'doms_new' should be allocated using
7787 * alloc_sched_domains. This routine takes ownership of it and will
7788 * free_sched_domains it when done with it. If the caller failed the
7789 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7790 * and partition_sched_domains() will fallback to the single partition
7791 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7792 *
96f874e2 7793 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7794 * ndoms_new == 0 is a special case for destroying existing domains,
7795 * and it will not create the default domain.
dfb512ec 7796 *
029190c5
PJ
7797 * Call with hotplug lock held
7798 */
acc3f5d7 7799void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7800 struct sched_domain_attr *dattr_new)
029190c5 7801{
dfb512ec 7802 int i, j, n;
d65bd5ec 7803 int new_topology;
029190c5 7804
712555ee 7805 mutex_lock(&sched_domains_mutex);
a1835615 7806
7378547f
MM
7807 /* always unregister in case we don't destroy any domains */
7808 unregister_sched_domain_sysctl();
7809
d65bd5ec
HC
7810 /* Let architecture update cpu core mappings. */
7811 new_topology = arch_update_cpu_topology();
7812
dfb512ec 7813 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7814
7815 /* Destroy deleted domains */
7816 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7817 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7818 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7819 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7820 goto match1;
7821 }
7822 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7823 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7824match1:
7825 ;
7826 }
7827
e761b772
MK
7828 if (doms_new == NULL) {
7829 ndoms_cur = 0;
acc3f5d7 7830 doms_new = &fallback_doms;
6ad4c188 7831 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7832 WARN_ON_ONCE(dattr_new);
e761b772
MK
7833 }
7834
029190c5
PJ
7835 /* Build new domains */
7836 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7837 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7838 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7839 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7840 goto match2;
7841 }
7842 /* no match - add a new doms_new */
dce840a0 7843 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7844match2:
7845 ;
7846 }
7847
7848 /* Remember the new sched domains */
acc3f5d7
RR
7849 if (doms_cur != &fallback_doms)
7850 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7851 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7852 doms_cur = doms_new;
1d3504fc 7853 dattr_cur = dattr_new;
029190c5 7854 ndoms_cur = ndoms_new;
7378547f
MM
7855
7856 register_sched_domain_sysctl();
a1835615 7857
712555ee 7858 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7859}
7860
5c45bf27 7861#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7862static void reinit_sched_domains(void)
5c45bf27 7863{
95402b38 7864 get_online_cpus();
dfb512ec
MK
7865
7866 /* Destroy domains first to force the rebuild */
7867 partition_sched_domains(0, NULL, NULL);
7868
e761b772 7869 rebuild_sched_domains();
95402b38 7870 put_online_cpus();
5c45bf27
SS
7871}
7872
7873static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7874{
afb8a9b7 7875 unsigned int level = 0;
5c45bf27 7876
afb8a9b7
GS
7877 if (sscanf(buf, "%u", &level) != 1)
7878 return -EINVAL;
7879
7880 /*
7881 * level is always be positive so don't check for
7882 * level < POWERSAVINGS_BALANCE_NONE which is 0
7883 * What happens on 0 or 1 byte write,
7884 * need to check for count as well?
7885 */
7886
7887 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7888 return -EINVAL;
7889
7890 if (smt)
afb8a9b7 7891 sched_smt_power_savings = level;
5c45bf27 7892 else
afb8a9b7 7893 sched_mc_power_savings = level;
5c45bf27 7894
c4a8849a 7895 reinit_sched_domains();
5c45bf27 7896
c70f22d2 7897 return count;
5c45bf27
SS
7898}
7899
5c45bf27 7900#ifdef CONFIG_SCHED_MC
f718cd4a 7901static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7902 struct sysdev_class_attribute *attr,
f718cd4a 7903 char *page)
5c45bf27
SS
7904{
7905 return sprintf(page, "%u\n", sched_mc_power_savings);
7906}
f718cd4a 7907static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7908 struct sysdev_class_attribute *attr,
48f24c4d 7909 const char *buf, size_t count)
5c45bf27
SS
7910{
7911 return sched_power_savings_store(buf, count, 0);
7912}
f718cd4a
AK
7913static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7914 sched_mc_power_savings_show,
7915 sched_mc_power_savings_store);
5c45bf27
SS
7916#endif
7917
7918#ifdef CONFIG_SCHED_SMT
f718cd4a 7919static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7920 struct sysdev_class_attribute *attr,
f718cd4a 7921 char *page)
5c45bf27
SS
7922{
7923 return sprintf(page, "%u\n", sched_smt_power_savings);
7924}
f718cd4a 7925static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7926 struct sysdev_class_attribute *attr,
48f24c4d 7927 const char *buf, size_t count)
5c45bf27
SS
7928{
7929 return sched_power_savings_store(buf, count, 1);
7930}
f718cd4a
AK
7931static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7932 sched_smt_power_savings_show,
6707de00
AB
7933 sched_smt_power_savings_store);
7934#endif
7935
39aac648 7936int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7937{
7938 int err = 0;
7939
7940#ifdef CONFIG_SCHED_SMT
7941 if (smt_capable())
7942 err = sysfs_create_file(&cls->kset.kobj,
7943 &attr_sched_smt_power_savings.attr);
7944#endif
7945#ifdef CONFIG_SCHED_MC
7946 if (!err && mc_capable())
7947 err = sysfs_create_file(&cls->kset.kobj,
7948 &attr_sched_mc_power_savings.attr);
7949#endif
7950 return err;
7951}
6d6bc0ad 7952#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7953
1da177e4 7954/*
3a101d05
TH
7955 * Update cpusets according to cpu_active mask. If cpusets are
7956 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7957 * around partition_sched_domains().
1da177e4 7958 */
0b2e918a
TH
7959static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7960 void *hcpu)
e761b772 7961{
3a101d05 7962 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7963 case CPU_ONLINE:
6ad4c188 7964 case CPU_DOWN_FAILED:
3a101d05 7965 cpuset_update_active_cpus();
e761b772 7966 return NOTIFY_OK;
3a101d05
TH
7967 default:
7968 return NOTIFY_DONE;
7969 }
7970}
e761b772 7971
0b2e918a
TH
7972static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7973 void *hcpu)
3a101d05
TH
7974{
7975 switch (action & ~CPU_TASKS_FROZEN) {
7976 case CPU_DOWN_PREPARE:
7977 cpuset_update_active_cpus();
7978 return NOTIFY_OK;
e761b772
MK
7979 default:
7980 return NOTIFY_DONE;
7981 }
7982}
e761b772
MK
7983
7984static int update_runtime(struct notifier_block *nfb,
7985 unsigned long action, void *hcpu)
1da177e4 7986{
7def2be1
PZ
7987 int cpu = (int)(long)hcpu;
7988
1da177e4 7989 switch (action) {
1da177e4 7990 case CPU_DOWN_PREPARE:
8bb78442 7991 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7992 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7993 return NOTIFY_OK;
7994
1da177e4 7995 case CPU_DOWN_FAILED:
8bb78442 7996 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7997 case CPU_ONLINE:
8bb78442 7998 case CPU_ONLINE_FROZEN:
7def2be1 7999 enable_runtime(cpu_rq(cpu));
e761b772
MK
8000 return NOTIFY_OK;
8001
1da177e4
LT
8002 default:
8003 return NOTIFY_DONE;
8004 }
1da177e4 8005}
1da177e4
LT
8006
8007void __init sched_init_smp(void)
8008{
dcc30a35
RR
8009 cpumask_var_t non_isolated_cpus;
8010
8011 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 8012 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8013
95402b38 8014 get_online_cpus();
712555ee 8015 mutex_lock(&sched_domains_mutex);
c4a8849a 8016 init_sched_domains(cpu_active_mask);
dcc30a35
RR
8017 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8018 if (cpumask_empty(non_isolated_cpus))
8019 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8020 mutex_unlock(&sched_domains_mutex);
95402b38 8021 put_online_cpus();
e761b772 8022
3a101d05
TH
8023 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8024 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8025
8026 /* RT runtime code needs to handle some hotplug events */
8027 hotcpu_notifier(update_runtime, 0);
8028
b328ca18 8029 init_hrtick();
5c1e1767
NP
8030
8031 /* Move init over to a non-isolated CPU */
dcc30a35 8032 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8033 BUG();
19978ca6 8034 sched_init_granularity();
dcc30a35 8035 free_cpumask_var(non_isolated_cpus);
4212823f 8036
0e3900e6 8037 init_sched_rt_class();
1da177e4
LT
8038}
8039#else
8040void __init sched_init_smp(void)
8041{
19978ca6 8042 sched_init_granularity();
1da177e4
LT
8043}
8044#endif /* CONFIG_SMP */
8045
cd1bb94b
AB
8046const_debug unsigned int sysctl_timer_migration = 1;
8047
1da177e4
LT
8048int in_sched_functions(unsigned long addr)
8049{
1da177e4
LT
8050 return in_lock_functions(addr) ||
8051 (addr >= (unsigned long)__sched_text_start
8052 && addr < (unsigned long)__sched_text_end);
8053}
8054
acb5a9ba 8055static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8056{
8057 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8058 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8059 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8060#ifndef CONFIG_64BIT
8061 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8062#endif
dd41f596
IM
8063}
8064
fa85ae24
PZ
8065static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8066{
8067 struct rt_prio_array *array;
8068 int i;
8069
8070 array = &rt_rq->active;
8071 for (i = 0; i < MAX_RT_PRIO; i++) {
8072 INIT_LIST_HEAD(array->queue + i);
8073 __clear_bit(i, array->bitmap);
8074 }
8075 /* delimiter for bitsearch: */
8076 __set_bit(MAX_RT_PRIO, array->bitmap);
8077
acb5a9ba 8078#if defined CONFIG_SMP
e864c499
GH
8079 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8080 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8081 rt_rq->rt_nr_migratory = 0;
fa85ae24 8082 rt_rq->overloaded = 0;
732375c6 8083 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8084#endif
8085
8086 rt_rq->rt_time = 0;
8087 rt_rq->rt_throttled = 0;
ac086bc2 8088 rt_rq->rt_runtime = 0;
0986b11b 8089 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8090}
8091
6f505b16 8092#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8093static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8094 struct sched_entity *se, int cpu,
ec7dc8ac 8095 struct sched_entity *parent)
6f505b16 8096{
ec7dc8ac 8097 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8098
6f505b16 8099 cfs_rq->tg = tg;
acb5a9ba
JS
8100 cfs_rq->rq = rq;
8101#ifdef CONFIG_SMP
8102 /* allow initial update_cfs_load() to truncate */
8103 cfs_rq->load_stamp = 1;
8104#endif
ab84d31e 8105 init_cfs_rq_runtime(cfs_rq);
6f505b16 8106
acb5a9ba 8107 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8108 tg->se[cpu] = se;
acb5a9ba 8109
07e06b01 8110 /* se could be NULL for root_task_group */
354d60c2
DG
8111 if (!se)
8112 return;
8113
ec7dc8ac
DG
8114 if (!parent)
8115 se->cfs_rq = &rq->cfs;
8116 else
8117 se->cfs_rq = parent->my_q;
8118
6f505b16 8119 se->my_q = cfs_rq;
9437178f 8120 update_load_set(&se->load, 0);
ec7dc8ac 8121 se->parent = parent;
6f505b16 8122}
052f1dc7 8123#endif
6f505b16 8124
052f1dc7 8125#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8126static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8127 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8128 struct sched_rt_entity *parent)
6f505b16 8129{
ec7dc8ac
DG
8130 struct rq *rq = cpu_rq(cpu);
8131
acb5a9ba
JS
8132 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8133 rt_rq->rt_nr_boosted = 0;
8134 rt_rq->rq = rq;
6f505b16 8135 rt_rq->tg = tg;
6f505b16 8136
acb5a9ba 8137 tg->rt_rq[cpu] = rt_rq;
6f505b16 8138 tg->rt_se[cpu] = rt_se;
acb5a9ba 8139
354d60c2
DG
8140 if (!rt_se)
8141 return;
8142
ec7dc8ac
DG
8143 if (!parent)
8144 rt_se->rt_rq = &rq->rt;
8145 else
8146 rt_se->rt_rq = parent->my_q;
8147
6f505b16 8148 rt_se->my_q = rt_rq;
ec7dc8ac 8149 rt_se->parent = parent;
6f505b16
PZ
8150 INIT_LIST_HEAD(&rt_se->run_list);
8151}
8152#endif
8153
1da177e4
LT
8154void __init sched_init(void)
8155{
dd41f596 8156 int i, j;
434d53b0
MT
8157 unsigned long alloc_size = 0, ptr;
8158
8159#ifdef CONFIG_FAIR_GROUP_SCHED
8160 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8161#endif
8162#ifdef CONFIG_RT_GROUP_SCHED
8163 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8164#endif
df7c8e84 8165#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8166 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8167#endif
434d53b0 8168 if (alloc_size) {
36b7b6d4 8169 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8170
8171#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8172 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8173 ptr += nr_cpu_ids * sizeof(void **);
8174
07e06b01 8175 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8176 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8177
6d6bc0ad 8178#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8179#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8180 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8181 ptr += nr_cpu_ids * sizeof(void **);
8182
07e06b01 8183 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8184 ptr += nr_cpu_ids * sizeof(void **);
8185
6d6bc0ad 8186#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8187#ifdef CONFIG_CPUMASK_OFFSTACK
8188 for_each_possible_cpu(i) {
8189 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8190 ptr += cpumask_size();
8191 }
8192#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8193 }
dd41f596 8194
57d885fe
GH
8195#ifdef CONFIG_SMP
8196 init_defrootdomain();
8197#endif
8198
d0b27fa7
PZ
8199 init_rt_bandwidth(&def_rt_bandwidth,
8200 global_rt_period(), global_rt_runtime());
8201
8202#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8203 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8204 global_rt_period(), global_rt_runtime());
6d6bc0ad 8205#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8206
7c941438 8207#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8208 list_add(&root_task_group.list, &task_groups);
8209 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8210 autogroup_init(&init_task);
7c941438 8211#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8212
0a945022 8213 for_each_possible_cpu(i) {
70b97a7f 8214 struct rq *rq;
1da177e4
LT
8215
8216 rq = cpu_rq(i);
05fa785c 8217 raw_spin_lock_init(&rq->lock);
7897986b 8218 rq->nr_running = 0;
dce48a84
TG
8219 rq->calc_load_active = 0;
8220 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8221 init_cfs_rq(&rq->cfs);
6f505b16 8222 init_rt_rq(&rq->rt, rq);
dd41f596 8223#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8224 root_task_group.shares = root_task_group_load;
6f505b16 8225 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8226 /*
07e06b01 8227 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8228 *
8229 * In case of task-groups formed thr' the cgroup filesystem, it
8230 * gets 100% of the cpu resources in the system. This overall
8231 * system cpu resource is divided among the tasks of
07e06b01 8232 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8233 * based on each entity's (task or task-group's) weight
8234 * (se->load.weight).
8235 *
07e06b01 8236 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8237 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8238 * then A0's share of the cpu resource is:
8239 *
0d905bca 8240 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8241 *
07e06b01
YZ
8242 * We achieve this by letting root_task_group's tasks sit
8243 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8244 */
ab84d31e 8245 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8246 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8247#endif /* CONFIG_FAIR_GROUP_SCHED */
8248
8249 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8250#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8251 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8252 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8253#endif
1da177e4 8254
dd41f596
IM
8255 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8256 rq->cpu_load[j] = 0;
fdf3e95d
VP
8257
8258 rq->last_load_update_tick = jiffies;
8259
1da177e4 8260#ifdef CONFIG_SMP
41c7ce9a 8261 rq->sd = NULL;
57d885fe 8262 rq->rd = NULL;
1399fa78 8263 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8264 rq->post_schedule = 0;
1da177e4 8265 rq->active_balance = 0;
dd41f596 8266 rq->next_balance = jiffies;
1da177e4 8267 rq->push_cpu = 0;
0a2966b4 8268 rq->cpu = i;
1f11eb6a 8269 rq->online = 0;
eae0c9df
MG
8270 rq->idle_stamp = 0;
8271 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8272 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8273#ifdef CONFIG_NO_HZ
8274 rq->nohz_balance_kick = 0;
8275 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8276#endif
1da177e4 8277#endif
8f4d37ec 8278 init_rq_hrtick(rq);
1da177e4 8279 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8280 }
8281
2dd73a4f 8282 set_load_weight(&init_task);
b50f60ce 8283
e107be36
AK
8284#ifdef CONFIG_PREEMPT_NOTIFIERS
8285 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8286#endif
8287
c9819f45 8288#ifdef CONFIG_SMP
962cf36c 8289 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8290#endif
8291
b50f60ce 8292#ifdef CONFIG_RT_MUTEXES
732375c6 8293 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8294#endif
8295
1da177e4
LT
8296 /*
8297 * The boot idle thread does lazy MMU switching as well:
8298 */
8299 atomic_inc(&init_mm.mm_count);
8300 enter_lazy_tlb(&init_mm, current);
8301
8302 /*
8303 * Make us the idle thread. Technically, schedule() should not be
8304 * called from this thread, however somewhere below it might be,
8305 * but because we are the idle thread, we just pick up running again
8306 * when this runqueue becomes "idle".
8307 */
8308 init_idle(current, smp_processor_id());
dce48a84
TG
8309
8310 calc_load_update = jiffies + LOAD_FREQ;
8311
dd41f596
IM
8312 /*
8313 * During early bootup we pretend to be a normal task:
8314 */
8315 current->sched_class = &fair_sched_class;
6892b75e 8316
6a7b3dc3 8317 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8318 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8319#ifdef CONFIG_SMP
4cb98839 8320 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8321#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8322 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8323 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8324 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8325 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8326 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8327#endif
bdddd296
RR
8328 /* May be allocated at isolcpus cmdline parse time */
8329 if (cpu_isolated_map == NULL)
8330 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8331#endif /* SMP */
6a7b3dc3 8332
6892b75e 8333 scheduler_running = 1;
1da177e4
LT
8334}
8335
d902db1e 8336#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8337static inline int preempt_count_equals(int preempt_offset)
8338{
234da7bc 8339 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8340
4ba8216c 8341 return (nested == preempt_offset);
e4aafea2
FW
8342}
8343
d894837f 8344void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8345{
1da177e4
LT
8346 static unsigned long prev_jiffy; /* ratelimiting */
8347
e4aafea2
FW
8348 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8349 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8350 return;
8351 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8352 return;
8353 prev_jiffy = jiffies;
8354
3df0fc5b
PZ
8355 printk(KERN_ERR
8356 "BUG: sleeping function called from invalid context at %s:%d\n",
8357 file, line);
8358 printk(KERN_ERR
8359 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8360 in_atomic(), irqs_disabled(),
8361 current->pid, current->comm);
aef745fc
IM
8362
8363 debug_show_held_locks(current);
8364 if (irqs_disabled())
8365 print_irqtrace_events(current);
8366 dump_stack();
1da177e4
LT
8367}
8368EXPORT_SYMBOL(__might_sleep);
8369#endif
8370
8371#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8372static void normalize_task(struct rq *rq, struct task_struct *p)
8373{
da7a735e
PZ
8374 const struct sched_class *prev_class = p->sched_class;
8375 int old_prio = p->prio;
3a5e4dc1 8376 int on_rq;
3e51f33f 8377
fd2f4419 8378 on_rq = p->on_rq;
3a5e4dc1
AK
8379 if (on_rq)
8380 deactivate_task(rq, p, 0);
8381 __setscheduler(rq, p, SCHED_NORMAL, 0);
8382 if (on_rq) {
8383 activate_task(rq, p, 0);
8384 resched_task(rq->curr);
8385 }
da7a735e
PZ
8386
8387 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8388}
8389
1da177e4
LT
8390void normalize_rt_tasks(void)
8391{
a0f98a1c 8392 struct task_struct *g, *p;
1da177e4 8393 unsigned long flags;
70b97a7f 8394 struct rq *rq;
1da177e4 8395
4cf5d77a 8396 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8397 do_each_thread(g, p) {
178be793
IM
8398 /*
8399 * Only normalize user tasks:
8400 */
8401 if (!p->mm)
8402 continue;
8403
6cfb0d5d 8404 p->se.exec_start = 0;
6cfb0d5d 8405#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8406 p->se.statistics.wait_start = 0;
8407 p->se.statistics.sleep_start = 0;
8408 p->se.statistics.block_start = 0;
6cfb0d5d 8409#endif
dd41f596
IM
8410
8411 if (!rt_task(p)) {
8412 /*
8413 * Renice negative nice level userspace
8414 * tasks back to 0:
8415 */
8416 if (TASK_NICE(p) < 0 && p->mm)
8417 set_user_nice(p, 0);
1da177e4 8418 continue;
dd41f596 8419 }
1da177e4 8420
1d615482 8421 raw_spin_lock(&p->pi_lock);
b29739f9 8422 rq = __task_rq_lock(p);
1da177e4 8423
178be793 8424 normalize_task(rq, p);
3a5e4dc1 8425
b29739f9 8426 __task_rq_unlock(rq);
1d615482 8427 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8428 } while_each_thread(g, p);
8429
4cf5d77a 8430 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8431}
8432
8433#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8434
67fc4e0c 8435#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8436/*
67fc4e0c 8437 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8438 *
8439 * They can only be called when the whole system has been
8440 * stopped - every CPU needs to be quiescent, and no scheduling
8441 * activity can take place. Using them for anything else would
8442 * be a serious bug, and as a result, they aren't even visible
8443 * under any other configuration.
8444 */
8445
8446/**
8447 * curr_task - return the current task for a given cpu.
8448 * @cpu: the processor in question.
8449 *
8450 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8451 */
36c8b586 8452struct task_struct *curr_task(int cpu)
1df5c10a
LT
8453{
8454 return cpu_curr(cpu);
8455}
8456
67fc4e0c
JW
8457#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8458
8459#ifdef CONFIG_IA64
1df5c10a
LT
8460/**
8461 * set_curr_task - set the current task for a given cpu.
8462 * @cpu: the processor in question.
8463 * @p: the task pointer to set.
8464 *
8465 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8466 * are serviced on a separate stack. It allows the architecture to switch the
8467 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8468 * must be called with all CPU's synchronized, and interrupts disabled, the
8469 * and caller must save the original value of the current task (see
8470 * curr_task() above) and restore that value before reenabling interrupts and
8471 * re-starting the system.
8472 *
8473 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8474 */
36c8b586 8475void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8476{
8477 cpu_curr(cpu) = p;
8478}
8479
8480#endif
29f59db3 8481
bccbe08a
PZ
8482#ifdef CONFIG_FAIR_GROUP_SCHED
8483static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8484{
8485 int i;
8486
ab84d31e
PT
8487 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8488
6f505b16
PZ
8489 for_each_possible_cpu(i) {
8490 if (tg->cfs_rq)
8491 kfree(tg->cfs_rq[i]);
8492 if (tg->se)
8493 kfree(tg->se[i]);
6f505b16
PZ
8494 }
8495
8496 kfree(tg->cfs_rq);
8497 kfree(tg->se);
6f505b16
PZ
8498}
8499
ec7dc8ac
DG
8500static
8501int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8502{
29f59db3 8503 struct cfs_rq *cfs_rq;
eab17229 8504 struct sched_entity *se;
29f59db3
SV
8505 int i;
8506
434d53b0 8507 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8508 if (!tg->cfs_rq)
8509 goto err;
434d53b0 8510 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8511 if (!tg->se)
8512 goto err;
052f1dc7
PZ
8513
8514 tg->shares = NICE_0_LOAD;
29f59db3 8515
ab84d31e
PT
8516 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8517
29f59db3 8518 for_each_possible_cpu(i) {
eab17229
LZ
8519 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8520 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8521 if (!cfs_rq)
8522 goto err;
8523
eab17229
LZ
8524 se = kzalloc_node(sizeof(struct sched_entity),
8525 GFP_KERNEL, cpu_to_node(i));
29f59db3 8526 if (!se)
dfc12eb2 8527 goto err_free_rq;
29f59db3 8528
acb5a9ba 8529 init_cfs_rq(cfs_rq);
3d4b47b4 8530 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8531 }
8532
8533 return 1;
8534
49246274 8535err_free_rq:
dfc12eb2 8536 kfree(cfs_rq);
49246274 8537err:
bccbe08a
PZ
8538 return 0;
8539}
8540
bccbe08a
PZ
8541static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8542{
3d4b47b4
PZ
8543 struct rq *rq = cpu_rq(cpu);
8544 unsigned long flags;
3d4b47b4
PZ
8545
8546 /*
8547 * Only empty task groups can be destroyed; so we can speculatively
8548 * check on_list without danger of it being re-added.
8549 */
8550 if (!tg->cfs_rq[cpu]->on_list)
8551 return;
8552
8553 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8554 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8555 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8556}
5f817d67 8557#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8558static inline void free_fair_sched_group(struct task_group *tg)
8559{
8560}
8561
ec7dc8ac
DG
8562static inline
8563int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8564{
8565 return 1;
8566}
8567
bccbe08a
PZ
8568static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8569{
8570}
6d6bc0ad 8571#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8572
8573#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8574static void free_rt_sched_group(struct task_group *tg)
8575{
8576 int i;
8577
99bc5242
BL
8578 if (tg->rt_se)
8579 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8580
bccbe08a
PZ
8581 for_each_possible_cpu(i) {
8582 if (tg->rt_rq)
8583 kfree(tg->rt_rq[i]);
8584 if (tg->rt_se)
8585 kfree(tg->rt_se[i]);
8586 }
8587
8588 kfree(tg->rt_rq);
8589 kfree(tg->rt_se);
8590}
8591
ec7dc8ac
DG
8592static
8593int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8594{
8595 struct rt_rq *rt_rq;
eab17229 8596 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8597 int i;
8598
434d53b0 8599 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8600 if (!tg->rt_rq)
8601 goto err;
434d53b0 8602 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8603 if (!tg->rt_se)
8604 goto err;
8605
d0b27fa7
PZ
8606 init_rt_bandwidth(&tg->rt_bandwidth,
8607 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8608
8609 for_each_possible_cpu(i) {
eab17229
LZ
8610 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8611 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8612 if (!rt_rq)
8613 goto err;
29f59db3 8614
eab17229
LZ
8615 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8616 GFP_KERNEL, cpu_to_node(i));
6f505b16 8617 if (!rt_se)
dfc12eb2 8618 goto err_free_rq;
29f59db3 8619
acb5a9ba
JS
8620 init_rt_rq(rt_rq, cpu_rq(i));
8621 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8622 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8623 }
8624
bccbe08a
PZ
8625 return 1;
8626
49246274 8627err_free_rq:
dfc12eb2 8628 kfree(rt_rq);
49246274 8629err:
bccbe08a
PZ
8630 return 0;
8631}
6d6bc0ad 8632#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8633static inline void free_rt_sched_group(struct task_group *tg)
8634{
8635}
8636
ec7dc8ac
DG
8637static inline
8638int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8639{
8640 return 1;
8641}
6d6bc0ad 8642#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8643
7c941438 8644#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8645static void free_sched_group(struct task_group *tg)
8646{
8647 free_fair_sched_group(tg);
8648 free_rt_sched_group(tg);
e9aa1dd1 8649 autogroup_free(tg);
bccbe08a
PZ
8650 kfree(tg);
8651}
8652
8653/* allocate runqueue etc for a new task group */
ec7dc8ac 8654struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8655{
8656 struct task_group *tg;
8657 unsigned long flags;
bccbe08a
PZ
8658
8659 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8660 if (!tg)
8661 return ERR_PTR(-ENOMEM);
8662
ec7dc8ac 8663 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8664 goto err;
8665
ec7dc8ac 8666 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8667 goto err;
8668
8ed36996 8669 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8670 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8671
8672 WARN_ON(!parent); /* root should already exist */
8673
8674 tg->parent = parent;
f473aa5e 8675 INIT_LIST_HEAD(&tg->children);
09f2724a 8676 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8677 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8678
9b5b7751 8679 return tg;
29f59db3
SV
8680
8681err:
6f505b16 8682 free_sched_group(tg);
29f59db3
SV
8683 return ERR_PTR(-ENOMEM);
8684}
8685
9b5b7751 8686/* rcu callback to free various structures associated with a task group */
6f505b16 8687static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8688{
29f59db3 8689 /* now it should be safe to free those cfs_rqs */
6f505b16 8690 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8691}
8692
9b5b7751 8693/* Destroy runqueue etc associated with a task group */
4cf86d77 8694void sched_destroy_group(struct task_group *tg)
29f59db3 8695{
8ed36996 8696 unsigned long flags;
9b5b7751 8697 int i;
29f59db3 8698
3d4b47b4
PZ
8699 /* end participation in shares distribution */
8700 for_each_possible_cpu(i)
bccbe08a 8701 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8702
8703 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8704 list_del_rcu(&tg->list);
f473aa5e 8705 list_del_rcu(&tg->siblings);
8ed36996 8706 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8707
9b5b7751 8708 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8709 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8710}
8711
9b5b7751 8712/* change task's runqueue when it moves between groups.
3a252015
IM
8713 * The caller of this function should have put the task in its new group
8714 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8715 * reflect its new group.
9b5b7751
SV
8716 */
8717void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8718{
8719 int on_rq, running;
8720 unsigned long flags;
8721 struct rq *rq;
8722
8723 rq = task_rq_lock(tsk, &flags);
8724
051a1d1a 8725 running = task_current(rq, tsk);
fd2f4419 8726 on_rq = tsk->on_rq;
29f59db3 8727
0e1f3483 8728 if (on_rq)
29f59db3 8729 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8730 if (unlikely(running))
8731 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8732
810b3817 8733#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8734 if (tsk->sched_class->task_move_group)
8735 tsk->sched_class->task_move_group(tsk, on_rq);
8736 else
810b3817 8737#endif
b2b5ce02 8738 set_task_rq(tsk, task_cpu(tsk));
810b3817 8739
0e1f3483
HS
8740 if (unlikely(running))
8741 tsk->sched_class->set_curr_task(rq);
8742 if (on_rq)
371fd7e7 8743 enqueue_task(rq, tsk, 0);
29f59db3 8744
0122ec5b 8745 task_rq_unlock(rq, tsk, &flags);
29f59db3 8746}
7c941438 8747#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8748
052f1dc7 8749#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8750static DEFINE_MUTEX(shares_mutex);
8751
4cf86d77 8752int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8753{
8754 int i;
8ed36996 8755 unsigned long flags;
c61935fd 8756
ec7dc8ac
DG
8757 /*
8758 * We can't change the weight of the root cgroup.
8759 */
8760 if (!tg->se[0])
8761 return -EINVAL;
8762
cd62287e 8763 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8764
8ed36996 8765 mutex_lock(&shares_mutex);
9b5b7751 8766 if (tg->shares == shares)
5cb350ba 8767 goto done;
29f59db3 8768
9b5b7751 8769 tg->shares = shares;
c09595f6 8770 for_each_possible_cpu(i) {
9437178f
PT
8771 struct rq *rq = cpu_rq(i);
8772 struct sched_entity *se;
8773
8774 se = tg->se[i];
8775 /* Propagate contribution to hierarchy */
8776 raw_spin_lock_irqsave(&rq->lock, flags);
8777 for_each_sched_entity(se)
6d5ab293 8778 update_cfs_shares(group_cfs_rq(se));
9437178f 8779 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8780 }
29f59db3 8781
5cb350ba 8782done:
8ed36996 8783 mutex_unlock(&shares_mutex);
9b5b7751 8784 return 0;
29f59db3
SV
8785}
8786
5cb350ba
DG
8787unsigned long sched_group_shares(struct task_group *tg)
8788{
8789 return tg->shares;
8790}
052f1dc7 8791#endif
5cb350ba 8792
a790de99 8793#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8794static unsigned long to_ratio(u64 period, u64 runtime)
8795{
8796 if (runtime == RUNTIME_INF)
9a7e0b18 8797 return 1ULL << 20;
9f0c1e56 8798
9a7e0b18 8799 return div64_u64(runtime << 20, period);
9f0c1e56 8800}
a790de99
PT
8801#endif
8802
8803#ifdef CONFIG_RT_GROUP_SCHED
8804/*
8805 * Ensure that the real time constraints are schedulable.
8806 */
8807static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8808
9a7e0b18
PZ
8809/* Must be called with tasklist_lock held */
8810static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8811{
9a7e0b18 8812 struct task_struct *g, *p;
b40b2e8e 8813
9a7e0b18
PZ
8814 do_each_thread(g, p) {
8815 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8816 return 1;
8817 } while_each_thread(g, p);
b40b2e8e 8818
9a7e0b18
PZ
8819 return 0;
8820}
b40b2e8e 8821
9a7e0b18
PZ
8822struct rt_schedulable_data {
8823 struct task_group *tg;
8824 u64 rt_period;
8825 u64 rt_runtime;
8826};
b40b2e8e 8827
a790de99 8828static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8829{
8830 struct rt_schedulable_data *d = data;
8831 struct task_group *child;
8832 unsigned long total, sum = 0;
8833 u64 period, runtime;
b40b2e8e 8834
9a7e0b18
PZ
8835 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8836 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8837
9a7e0b18
PZ
8838 if (tg == d->tg) {
8839 period = d->rt_period;
8840 runtime = d->rt_runtime;
b40b2e8e 8841 }
b40b2e8e 8842
4653f803
PZ
8843 /*
8844 * Cannot have more runtime than the period.
8845 */
8846 if (runtime > period && runtime != RUNTIME_INF)
8847 return -EINVAL;
6f505b16 8848
4653f803
PZ
8849 /*
8850 * Ensure we don't starve existing RT tasks.
8851 */
9a7e0b18
PZ
8852 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8853 return -EBUSY;
6f505b16 8854
9a7e0b18 8855 total = to_ratio(period, runtime);
6f505b16 8856
4653f803
PZ
8857 /*
8858 * Nobody can have more than the global setting allows.
8859 */
8860 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8861 return -EINVAL;
6f505b16 8862
4653f803
PZ
8863 /*
8864 * The sum of our children's runtime should not exceed our own.
8865 */
9a7e0b18
PZ
8866 list_for_each_entry_rcu(child, &tg->children, siblings) {
8867 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8868 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8869
9a7e0b18
PZ
8870 if (child == d->tg) {
8871 period = d->rt_period;
8872 runtime = d->rt_runtime;
8873 }
6f505b16 8874
9a7e0b18 8875 sum += to_ratio(period, runtime);
9f0c1e56 8876 }
6f505b16 8877
9a7e0b18
PZ
8878 if (sum > total)
8879 return -EINVAL;
8880
8881 return 0;
6f505b16
PZ
8882}
8883
9a7e0b18 8884static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8885{
8277434e
PT
8886 int ret;
8887
9a7e0b18
PZ
8888 struct rt_schedulable_data data = {
8889 .tg = tg,
8890 .rt_period = period,
8891 .rt_runtime = runtime,
8892 };
8893
8277434e
PT
8894 rcu_read_lock();
8895 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8896 rcu_read_unlock();
8897
8898 return ret;
521f1a24
DG
8899}
8900
ab84d31e 8901static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8902 u64 rt_period, u64 rt_runtime)
6f505b16 8903{
ac086bc2 8904 int i, err = 0;
9f0c1e56 8905
9f0c1e56 8906 mutex_lock(&rt_constraints_mutex);
521f1a24 8907 read_lock(&tasklist_lock);
9a7e0b18
PZ
8908 err = __rt_schedulable(tg, rt_period, rt_runtime);
8909 if (err)
9f0c1e56 8910 goto unlock;
ac086bc2 8911
0986b11b 8912 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8913 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8914 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8915
8916 for_each_possible_cpu(i) {
8917 struct rt_rq *rt_rq = tg->rt_rq[i];
8918
0986b11b 8919 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8920 rt_rq->rt_runtime = rt_runtime;
0986b11b 8921 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8922 }
0986b11b 8923 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8924unlock:
521f1a24 8925 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8926 mutex_unlock(&rt_constraints_mutex);
8927
8928 return err;
6f505b16
PZ
8929}
8930
d0b27fa7
PZ
8931int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8932{
8933 u64 rt_runtime, rt_period;
8934
8935 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8936 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8937 if (rt_runtime_us < 0)
8938 rt_runtime = RUNTIME_INF;
8939
ab84d31e 8940 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8941}
8942
9f0c1e56
PZ
8943long sched_group_rt_runtime(struct task_group *tg)
8944{
8945 u64 rt_runtime_us;
8946
d0b27fa7 8947 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8948 return -1;
8949
d0b27fa7 8950 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8951 do_div(rt_runtime_us, NSEC_PER_USEC);
8952 return rt_runtime_us;
8953}
d0b27fa7
PZ
8954
8955int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8956{
8957 u64 rt_runtime, rt_period;
8958
8959 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8960 rt_runtime = tg->rt_bandwidth.rt_runtime;
8961
619b0488
R
8962 if (rt_period == 0)
8963 return -EINVAL;
8964
ab84d31e 8965 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8966}
8967
8968long sched_group_rt_period(struct task_group *tg)
8969{
8970 u64 rt_period_us;
8971
8972 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8973 do_div(rt_period_us, NSEC_PER_USEC);
8974 return rt_period_us;
8975}
8976
8977static int sched_rt_global_constraints(void)
8978{
4653f803 8979 u64 runtime, period;
d0b27fa7
PZ
8980 int ret = 0;
8981
ec5d4989
HS
8982 if (sysctl_sched_rt_period <= 0)
8983 return -EINVAL;
8984
4653f803
PZ
8985 runtime = global_rt_runtime();
8986 period = global_rt_period();
8987
8988 /*
8989 * Sanity check on the sysctl variables.
8990 */
8991 if (runtime > period && runtime != RUNTIME_INF)
8992 return -EINVAL;
10b612f4 8993
d0b27fa7 8994 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8995 read_lock(&tasklist_lock);
4653f803 8996 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8997 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8998 mutex_unlock(&rt_constraints_mutex);
8999
9000 return ret;
9001}
54e99124
DG
9002
9003int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9004{
9005 /* Don't accept realtime tasks when there is no way for them to run */
9006 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9007 return 0;
9008
9009 return 1;
9010}
9011
6d6bc0ad 9012#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9013static int sched_rt_global_constraints(void)
9014{
ac086bc2
PZ
9015 unsigned long flags;
9016 int i;
9017
ec5d4989
HS
9018 if (sysctl_sched_rt_period <= 0)
9019 return -EINVAL;
9020
60aa605d
PZ
9021 /*
9022 * There's always some RT tasks in the root group
9023 * -- migration, kstopmachine etc..
9024 */
9025 if (sysctl_sched_rt_runtime == 0)
9026 return -EBUSY;
9027
0986b11b 9028 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9029 for_each_possible_cpu(i) {
9030 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9031
0986b11b 9032 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9033 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9034 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9035 }
0986b11b 9036 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9037
d0b27fa7
PZ
9038 return 0;
9039}
6d6bc0ad 9040#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9041
9042int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9043 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9044 loff_t *ppos)
9045{
9046 int ret;
9047 int old_period, old_runtime;
9048 static DEFINE_MUTEX(mutex);
9049
9050 mutex_lock(&mutex);
9051 old_period = sysctl_sched_rt_period;
9052 old_runtime = sysctl_sched_rt_runtime;
9053
8d65af78 9054 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9055
9056 if (!ret && write) {
9057 ret = sched_rt_global_constraints();
9058 if (ret) {
9059 sysctl_sched_rt_period = old_period;
9060 sysctl_sched_rt_runtime = old_runtime;
9061 } else {
9062 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9063 def_rt_bandwidth.rt_period =
9064 ns_to_ktime(global_rt_period());
9065 }
9066 }
9067 mutex_unlock(&mutex);
9068
9069 return ret;
9070}
68318b8e 9071
052f1dc7 9072#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9073
9074/* return corresponding task_group object of a cgroup */
2b01dfe3 9075static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9076{
2b01dfe3
PM
9077 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9078 struct task_group, css);
68318b8e
SV
9079}
9080
9081static struct cgroup_subsys_state *
2b01dfe3 9082cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9083{
ec7dc8ac 9084 struct task_group *tg, *parent;
68318b8e 9085
2b01dfe3 9086 if (!cgrp->parent) {
68318b8e 9087 /* This is early initialization for the top cgroup */
07e06b01 9088 return &root_task_group.css;
68318b8e
SV
9089 }
9090
ec7dc8ac
DG
9091 parent = cgroup_tg(cgrp->parent);
9092 tg = sched_create_group(parent);
68318b8e
SV
9093 if (IS_ERR(tg))
9094 return ERR_PTR(-ENOMEM);
9095
68318b8e
SV
9096 return &tg->css;
9097}
9098
41a2d6cf
IM
9099static void
9100cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9101{
2b01dfe3 9102 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9103
9104 sched_destroy_group(tg);
9105}
9106
41a2d6cf 9107static int
be367d09 9108cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9109{
b68aa230 9110#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9111 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9112 return -EINVAL;
9113#else
68318b8e
SV
9114 /* We don't support RT-tasks being in separate groups */
9115 if (tsk->sched_class != &fair_sched_class)
9116 return -EINVAL;
b68aa230 9117#endif
be367d09
BB
9118 return 0;
9119}
68318b8e 9120
68318b8e 9121static void
f780bdb7 9122cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9123{
9124 sched_move_task(tsk);
9125}
9126
068c5cc5 9127static void
d41d5a01
PZ
9128cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9129 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9130{
9131 /*
9132 * cgroup_exit() is called in the copy_process() failure path.
9133 * Ignore this case since the task hasn't ran yet, this avoids
9134 * trying to poke a half freed task state from generic code.
9135 */
9136 if (!(task->flags & PF_EXITING))
9137 return;
9138
9139 sched_move_task(task);
9140}
9141
052f1dc7 9142#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9143static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9144 u64 shareval)
68318b8e 9145{
c8b28116 9146 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9147}
9148
f4c753b7 9149static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9150{
2b01dfe3 9151 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9152
c8b28116 9153 return (u64) scale_load_down(tg->shares);
68318b8e 9154}
ab84d31e
PT
9155
9156#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9157static DEFINE_MUTEX(cfs_constraints_mutex);
9158
ab84d31e
PT
9159const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9160const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9161
a790de99
PT
9162static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9163
ab84d31e
PT
9164static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9165{
58088ad0 9166 int i, ret = 0, runtime_enabled;
ab84d31e 9167 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9168
9169 if (tg == &root_task_group)
9170 return -EINVAL;
9171
9172 /*
9173 * Ensure we have at some amount of bandwidth every period. This is
9174 * to prevent reaching a state of large arrears when throttled via
9175 * entity_tick() resulting in prolonged exit starvation.
9176 */
9177 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9178 return -EINVAL;
9179
9180 /*
9181 * Likewise, bound things on the otherside by preventing insane quota
9182 * periods. This also allows us to normalize in computing quota
9183 * feasibility.
9184 */
9185 if (period > max_cfs_quota_period)
9186 return -EINVAL;
9187
a790de99
PT
9188 mutex_lock(&cfs_constraints_mutex);
9189 ret = __cfs_schedulable(tg, period, quota);
9190 if (ret)
9191 goto out_unlock;
9192
58088ad0 9193 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9194 raw_spin_lock_irq(&cfs_b->lock);
9195 cfs_b->period = ns_to_ktime(period);
9196 cfs_b->quota = quota;
58088ad0 9197
a9cf55b2 9198 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
9199 /* restart the period timer (if active) to handle new period expiry */
9200 if (runtime_enabled && cfs_b->timer_active) {
9201 /* force a reprogram */
9202 cfs_b->timer_active = 0;
9203 __start_cfs_bandwidth(cfs_b);
9204 }
ab84d31e
PT
9205 raw_spin_unlock_irq(&cfs_b->lock);
9206
9207 for_each_possible_cpu(i) {
9208 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9209 struct rq *rq = rq_of(cfs_rq);
9210
9211 raw_spin_lock_irq(&rq->lock);
58088ad0 9212 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9213 cfs_rq->runtime_remaining = 0;
671fd9da
PT
9214
9215 if (cfs_rq_throttled(cfs_rq))
9216 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
9217 raw_spin_unlock_irq(&rq->lock);
9218 }
a790de99
PT
9219out_unlock:
9220 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9221
a790de99 9222 return ret;
ab84d31e
PT
9223}
9224
9225int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9226{
9227 u64 quota, period;
9228
9229 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9230 if (cfs_quota_us < 0)
9231 quota = RUNTIME_INF;
9232 else
9233 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9234
9235 return tg_set_cfs_bandwidth(tg, period, quota);
9236}
9237
9238long tg_get_cfs_quota(struct task_group *tg)
9239{
9240 u64 quota_us;
9241
9242 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9243 return -1;
9244
9245 quota_us = tg_cfs_bandwidth(tg)->quota;
9246 do_div(quota_us, NSEC_PER_USEC);
9247
9248 return quota_us;
9249}
9250
9251int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9252{
9253 u64 quota, period;
9254
9255 period = (u64)cfs_period_us * NSEC_PER_USEC;
9256 quota = tg_cfs_bandwidth(tg)->quota;
9257
9258 if (period <= 0)
9259 return -EINVAL;
9260
9261 return tg_set_cfs_bandwidth(tg, period, quota);
9262}
9263
9264long tg_get_cfs_period(struct task_group *tg)
9265{
9266 u64 cfs_period_us;
9267
9268 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9269 do_div(cfs_period_us, NSEC_PER_USEC);
9270
9271 return cfs_period_us;
9272}
9273
9274static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9275{
9276 return tg_get_cfs_quota(cgroup_tg(cgrp));
9277}
9278
9279static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9280 s64 cfs_quota_us)
9281{
9282 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9283}
9284
9285static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9286{
9287 return tg_get_cfs_period(cgroup_tg(cgrp));
9288}
9289
9290static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9291 u64 cfs_period_us)
9292{
9293 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9294}
9295
a790de99
PT
9296struct cfs_schedulable_data {
9297 struct task_group *tg;
9298 u64 period, quota;
9299};
9300
9301/*
9302 * normalize group quota/period to be quota/max_period
9303 * note: units are usecs
9304 */
9305static u64 normalize_cfs_quota(struct task_group *tg,
9306 struct cfs_schedulable_data *d)
9307{
9308 u64 quota, period;
9309
9310 if (tg == d->tg) {
9311 period = d->period;
9312 quota = d->quota;
9313 } else {
9314 period = tg_get_cfs_period(tg);
9315 quota = tg_get_cfs_quota(tg);
9316 }
9317
9318 /* note: these should typically be equivalent */
9319 if (quota == RUNTIME_INF || quota == -1)
9320 return RUNTIME_INF;
9321
9322 return to_ratio(period, quota);
9323}
9324
9325static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9326{
9327 struct cfs_schedulable_data *d = data;
9328 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9329 s64 quota = 0, parent_quota = -1;
9330
9331 if (!tg->parent) {
9332 quota = RUNTIME_INF;
9333 } else {
9334 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9335
9336 quota = normalize_cfs_quota(tg, d);
9337 parent_quota = parent_b->hierarchal_quota;
9338
9339 /*
9340 * ensure max(child_quota) <= parent_quota, inherit when no
9341 * limit is set
9342 */
9343 if (quota == RUNTIME_INF)
9344 quota = parent_quota;
9345 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9346 return -EINVAL;
9347 }
9348 cfs_b->hierarchal_quota = quota;
9349
9350 return 0;
9351}
9352
9353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9354{
8277434e 9355 int ret;
a790de99
PT
9356 struct cfs_schedulable_data data = {
9357 .tg = tg,
9358 .period = period,
9359 .quota = quota,
9360 };
9361
9362 if (quota != RUNTIME_INF) {
9363 do_div(data.period, NSEC_PER_USEC);
9364 do_div(data.quota, NSEC_PER_USEC);
9365 }
9366
8277434e
PT
9367 rcu_read_lock();
9368 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9369 rcu_read_unlock();
9370
9371 return ret;
a790de99 9372}
ab84d31e 9373#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9374#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9375
052f1dc7 9376#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9377static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9378 s64 val)
6f505b16 9379{
06ecb27c 9380 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9381}
9382
06ecb27c 9383static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9384{
06ecb27c 9385 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9386}
d0b27fa7
PZ
9387
9388static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9389 u64 rt_period_us)
9390{
9391 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9392}
9393
9394static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9395{
9396 return sched_group_rt_period(cgroup_tg(cgrp));
9397}
6d6bc0ad 9398#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9399
fe5c7cc2 9400static struct cftype cpu_files[] = {
052f1dc7 9401#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9402 {
9403 .name = "shares",
f4c753b7
PM
9404 .read_u64 = cpu_shares_read_u64,
9405 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9406 },
052f1dc7 9407#endif
ab84d31e
PT
9408#ifdef CONFIG_CFS_BANDWIDTH
9409 {
9410 .name = "cfs_quota_us",
9411 .read_s64 = cpu_cfs_quota_read_s64,
9412 .write_s64 = cpu_cfs_quota_write_s64,
9413 },
9414 {
9415 .name = "cfs_period_us",
9416 .read_u64 = cpu_cfs_period_read_u64,
9417 .write_u64 = cpu_cfs_period_write_u64,
9418 },
9419#endif
052f1dc7 9420#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9421 {
9f0c1e56 9422 .name = "rt_runtime_us",
06ecb27c
PM
9423 .read_s64 = cpu_rt_runtime_read,
9424 .write_s64 = cpu_rt_runtime_write,
6f505b16 9425 },
d0b27fa7
PZ
9426 {
9427 .name = "rt_period_us",
f4c753b7
PM
9428 .read_u64 = cpu_rt_period_read_uint,
9429 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9430 },
052f1dc7 9431#endif
68318b8e
SV
9432};
9433
9434static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9435{
fe5c7cc2 9436 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9437}
9438
9439struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9440 .name = "cpu",
9441 .create = cpu_cgroup_create,
9442 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9443 .can_attach_task = cpu_cgroup_can_attach_task,
9444 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9445 .exit = cpu_cgroup_exit,
38605cae
IM
9446 .populate = cpu_cgroup_populate,
9447 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9448 .early_init = 1,
9449};
9450
052f1dc7 9451#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9452
9453#ifdef CONFIG_CGROUP_CPUACCT
9454
9455/*
9456 * CPU accounting code for task groups.
9457 *
9458 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9459 * (balbir@in.ibm.com).
9460 */
9461
934352f2 9462/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9463struct cpuacct {
9464 struct cgroup_subsys_state css;
9465 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9466 u64 __percpu *cpuusage;
ef12fefa 9467 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9468 struct cpuacct *parent;
d842de87
SV
9469};
9470
9471struct cgroup_subsys cpuacct_subsys;
9472
9473/* return cpu accounting group corresponding to this container */
32cd756a 9474static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9475{
32cd756a 9476 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9477 struct cpuacct, css);
9478}
9479
9480/* return cpu accounting group to which this task belongs */
9481static inline struct cpuacct *task_ca(struct task_struct *tsk)
9482{
9483 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9484 struct cpuacct, css);
9485}
9486
9487/* create a new cpu accounting group */
9488static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9489 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9490{
9491 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9492 int i;
d842de87
SV
9493
9494 if (!ca)
ef12fefa 9495 goto out;
d842de87
SV
9496
9497 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9498 if (!ca->cpuusage)
9499 goto out_free_ca;
9500
9501 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9502 if (percpu_counter_init(&ca->cpustat[i], 0))
9503 goto out_free_counters;
d842de87 9504
934352f2
BR
9505 if (cgrp->parent)
9506 ca->parent = cgroup_ca(cgrp->parent);
9507
d842de87 9508 return &ca->css;
ef12fefa
BR
9509
9510out_free_counters:
9511 while (--i >= 0)
9512 percpu_counter_destroy(&ca->cpustat[i]);
9513 free_percpu(ca->cpuusage);
9514out_free_ca:
9515 kfree(ca);
9516out:
9517 return ERR_PTR(-ENOMEM);
d842de87
SV
9518}
9519
9520/* destroy an existing cpu accounting group */
41a2d6cf 9521static void
32cd756a 9522cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9523{
32cd756a 9524 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9525 int i;
d842de87 9526
ef12fefa
BR
9527 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9528 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9529 free_percpu(ca->cpuusage);
9530 kfree(ca);
9531}
9532
720f5498
KC
9533static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9534{
b36128c8 9535 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9536 u64 data;
9537
9538#ifndef CONFIG_64BIT
9539 /*
9540 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9541 */
05fa785c 9542 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9543 data = *cpuusage;
05fa785c 9544 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9545#else
9546 data = *cpuusage;
9547#endif
9548
9549 return data;
9550}
9551
9552static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9553{
b36128c8 9554 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9555
9556#ifndef CONFIG_64BIT
9557 /*
9558 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9559 */
05fa785c 9560 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9561 *cpuusage = val;
05fa785c 9562 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9563#else
9564 *cpuusage = val;
9565#endif
9566}
9567
d842de87 9568/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9569static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9570{
32cd756a 9571 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9572 u64 totalcpuusage = 0;
9573 int i;
9574
720f5498
KC
9575 for_each_present_cpu(i)
9576 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9577
9578 return totalcpuusage;
9579}
9580
0297b803
DG
9581static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9582 u64 reset)
9583{
9584 struct cpuacct *ca = cgroup_ca(cgrp);
9585 int err = 0;
9586 int i;
9587
9588 if (reset) {
9589 err = -EINVAL;
9590 goto out;
9591 }
9592
720f5498
KC
9593 for_each_present_cpu(i)
9594 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9595
0297b803
DG
9596out:
9597 return err;
9598}
9599
e9515c3c
KC
9600static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9601 struct seq_file *m)
9602{
9603 struct cpuacct *ca = cgroup_ca(cgroup);
9604 u64 percpu;
9605 int i;
9606
9607 for_each_present_cpu(i) {
9608 percpu = cpuacct_cpuusage_read(ca, i);
9609 seq_printf(m, "%llu ", (unsigned long long) percpu);
9610 }
9611 seq_printf(m, "\n");
9612 return 0;
9613}
9614
ef12fefa
BR
9615static const char *cpuacct_stat_desc[] = {
9616 [CPUACCT_STAT_USER] = "user",
9617 [CPUACCT_STAT_SYSTEM] = "system",
9618};
9619
9620static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9621 struct cgroup_map_cb *cb)
9622{
9623 struct cpuacct *ca = cgroup_ca(cgrp);
9624 int i;
9625
9626 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9627 s64 val = percpu_counter_read(&ca->cpustat[i]);
9628 val = cputime64_to_clock_t(val);
9629 cb->fill(cb, cpuacct_stat_desc[i], val);
9630 }
9631 return 0;
9632}
9633
d842de87
SV
9634static struct cftype files[] = {
9635 {
9636 .name = "usage",
f4c753b7
PM
9637 .read_u64 = cpuusage_read,
9638 .write_u64 = cpuusage_write,
d842de87 9639 },
e9515c3c
KC
9640 {
9641 .name = "usage_percpu",
9642 .read_seq_string = cpuacct_percpu_seq_read,
9643 },
ef12fefa
BR
9644 {
9645 .name = "stat",
9646 .read_map = cpuacct_stats_show,
9647 },
d842de87
SV
9648};
9649
32cd756a 9650static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9651{
32cd756a 9652 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9653}
9654
9655/*
9656 * charge this task's execution time to its accounting group.
9657 *
9658 * called with rq->lock held.
9659 */
9660static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9661{
9662 struct cpuacct *ca;
934352f2 9663 int cpu;
d842de87 9664
c40c6f85 9665 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9666 return;
9667
934352f2 9668 cpu = task_cpu(tsk);
a18b83b7
BR
9669
9670 rcu_read_lock();
9671
d842de87 9672 ca = task_ca(tsk);
d842de87 9673
934352f2 9674 for (; ca; ca = ca->parent) {
b36128c8 9675 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9676 *cpuusage += cputime;
9677 }
a18b83b7
BR
9678
9679 rcu_read_unlock();
d842de87
SV
9680}
9681
fa535a77
AB
9682/*
9683 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9684 * in cputime_t units. As a result, cpuacct_update_stats calls
9685 * percpu_counter_add with values large enough to always overflow the
9686 * per cpu batch limit causing bad SMP scalability.
9687 *
9688 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9689 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9690 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9691 */
9692#ifdef CONFIG_SMP
9693#define CPUACCT_BATCH \
9694 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9695#else
9696#define CPUACCT_BATCH 0
9697#endif
9698
ef12fefa
BR
9699/*
9700 * Charge the system/user time to the task's accounting group.
9701 */
9702static void cpuacct_update_stats(struct task_struct *tsk,
9703 enum cpuacct_stat_index idx, cputime_t val)
9704{
9705 struct cpuacct *ca;
fa535a77 9706 int batch = CPUACCT_BATCH;
ef12fefa
BR
9707
9708 if (unlikely(!cpuacct_subsys.active))
9709 return;
9710
9711 rcu_read_lock();
9712 ca = task_ca(tsk);
9713
9714 do {
fa535a77 9715 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9716 ca = ca->parent;
9717 } while (ca);
9718 rcu_read_unlock();
9719}
9720
d842de87
SV
9721struct cgroup_subsys cpuacct_subsys = {
9722 .name = "cpuacct",
9723 .create = cpuacct_create,
9724 .destroy = cpuacct_destroy,
9725 .populate = cpuacct_populate,
9726 .subsys_id = cpuacct_subsys_id,
9727};
9728#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.306116 seconds and 5 git commands to generate.