sched: Drop rq->lock from sched_exec()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
c6c4927b
RR
423 cpumask_var_t span;
424 cpumask_var_t online;
637f5085 425
0eab9146 426 /*
637f5085
GH
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
c6c4927b 430 cpumask_var_t rto_mask;
0eab9146 431 atomic_t rto_count;
6e0534f2 432 struct cpupri cpupri;
57d885fe
GH
433};
434
dc938520
GH
435/*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
57d885fe
GH
439static struct root_domain def_root_domain;
440
ed2d372c 441#endif /* CONFIG_SMP */
57d885fe 442
1da177e4
LT
443/*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
70b97a7f 450struct rq {
d8016491 451 /* runqueue lock: */
05fa785c 452 raw_spinlock_t lock;
1da177e4
LT
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
6aa645ea
IM
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 461 unsigned long last_load_update_tick;
46cb4b7c 462#ifdef CONFIG_NO_HZ
39c0cbe2 463 u64 nohz_stamp;
83cd4fe2 464 unsigned char nohz_balance_kick;
46cb4b7c 465#endif
a64692a3
MG
466 unsigned int skip_clock_update;
467
d8016491
IM
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
6aa645ea
IM
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
6f505b16 474 struct rt_rq rt;
6f505b16 475
6aa645ea 476#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
479#endif
480#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 481 struct list_head leaf_rt_rq_list;
1da177e4 482#endif
1da177e4
LT
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
34f971f6 492 struct task_struct *curr, *idle, *stop;
c9819f45 493 unsigned long next_balance;
1da177e4 494 struct mm_struct *prev_mm;
6aa645ea 495
3e51f33f 496 u64 clock;
305e6835 497 u64 clock_task;
6aa645ea 498
1da177e4
LT
499 atomic_t nr_iowait;
500
501#ifdef CONFIG_SMP
0eab9146 502 struct root_domain *rd;
1da177e4
LT
503 struct sched_domain *sd;
504
e51fd5e2
PZ
505 unsigned long cpu_power;
506
a0a522ce 507 unsigned char idle_at_tick;
1da177e4 508 /* For active balancing */
3f029d3c 509 int post_schedule;
1da177e4
LT
510 int active_balance;
511 int push_cpu;
969c7921 512 struct cpu_stop_work active_balance_work;
d8016491
IM
513 /* cpu of this runqueue: */
514 int cpu;
1f11eb6a 515 int online;
1da177e4 516
a8a51d5e 517 unsigned long avg_load_per_task;
1da177e4 518
e9e9250b
PZ
519 u64 rt_avg;
520 u64 age_stamp;
1b9508f6
MG
521 u64 idle_stamp;
522 u64 avg_idle;
1da177e4
LT
523#endif
524
aa483808
VP
525#ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527#endif
528
dce48a84
TG
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
8f4d37ec 533#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
534#ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537#endif
8f4d37ec
PZ
538 struct hrtimer hrtick_timer;
539#endif
540
1da177e4
LT
541#ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
9c2c4802
KC
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
546
547 /* sys_sched_yield() stats */
480b9434 548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 602 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
5091faa4 608 struct task_group *tg;
dc61b1d6
PZ
609 struct cgroup_subsys_state *css;
610
611 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 612 lockdep_is_held(&p->pi_lock));
5091faa4
MG
613 tg = container_of(css, struct task_group, css);
614
615 return autogroup_task_group(p, tg);
dc61b1d6
PZ
616}
617
618/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
620{
621#ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
624#endif
625
626#ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
629#endif
630}
631
632#else /* CONFIG_CGROUP_SCHED */
633
634static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635static inline struct task_group *task_group(struct task_struct *p)
636{
637 return NULL;
638}
639
640#endif /* CONFIG_CGROUP_SCHED */
641
fe44d621 642static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 643
fe44d621 644static void update_rq_clock(struct rq *rq)
3e51f33f 645{
fe44d621 646 s64 delta;
305e6835 647
f26f9aff
MG
648 if (rq->skip_clock_update)
649 return;
aa483808 650
fe44d621
PZ
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
652 rq->clock += delta;
653 update_rq_clock_task(rq, delta);
3e51f33f
PZ
654}
655
bf5c91ba
IM
656/*
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
658 */
659#ifdef CONFIG_SCHED_DEBUG
660# define const_debug __read_mostly
661#else
662# define const_debug static const
663#endif
664
017730c1 665/**
1fd06bb1 666 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 667 * @cpu: the processor in question.
017730c1 668 *
017730c1
IM
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
671 */
89f19f04 672int runqueue_is_locked(int cpu)
017730c1 673{
05fa785c 674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
675}
676
bf5c91ba
IM
677/*
678 * Debugging: various feature bits
679 */
f00b45c1
PZ
680
681#define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
683
bf5c91ba 684enum {
f00b45c1 685#include "sched_features.h"
bf5c91ba
IM
686};
687
f00b45c1
PZ
688#undef SCHED_FEAT
689
690#define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
692
bf5c91ba 693const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
694#include "sched_features.h"
695 0;
696
697#undef SCHED_FEAT
698
699#ifdef CONFIG_SCHED_DEBUG
700#define SCHED_FEAT(name, enabled) \
701 #name ,
702
983ed7a6 703static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
704#include "sched_features.h"
705 NULL
706};
707
708#undef SCHED_FEAT
709
34f3a814 710static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 711{
f00b45c1
PZ
712 int i;
713
714 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
715 if (!(sysctl_sched_features & (1UL << i)))
716 seq_puts(m, "NO_");
717 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 718 }
34f3a814 719 seq_puts(m, "\n");
f00b45c1 720
34f3a814 721 return 0;
f00b45c1
PZ
722}
723
724static ssize_t
725sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
727{
728 char buf[64];
7740191c 729 char *cmp;
f00b45c1
PZ
730 int neg = 0;
731 int i;
732
733 if (cnt > 63)
734 cnt = 63;
735
736 if (copy_from_user(&buf, ubuf, cnt))
737 return -EFAULT;
738
739 buf[cnt] = 0;
7740191c 740 cmp = strstrip(buf);
f00b45c1 741
524429c3 742 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
743 neg = 1;
744 cmp += 3;
745 }
746
747 for (i = 0; sched_feat_names[i]; i++) {
7740191c 748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
749 if (neg)
750 sysctl_sched_features &= ~(1UL << i);
751 else
752 sysctl_sched_features |= (1UL << i);
753 break;
754 }
755 }
756
757 if (!sched_feat_names[i])
758 return -EINVAL;
759
42994724 760 *ppos += cnt;
f00b45c1
PZ
761
762 return cnt;
763}
764
34f3a814
LZ
765static int sched_feat_open(struct inode *inode, struct file *filp)
766{
767 return single_open(filp, sched_feat_show, NULL);
768}
769
828c0950 770static const struct file_operations sched_feat_fops = {
34f3a814
LZ
771 .open = sched_feat_open,
772 .write = sched_feat_write,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = single_release,
f00b45c1
PZ
776};
777
778static __init int sched_init_debug(void)
779{
f00b45c1
PZ
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
781 &sched_feat_fops);
782
783 return 0;
784}
785late_initcall(sched_init_debug);
786
787#endif
788
789#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 790
b82d9fdd
PZ
791/*
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
794 */
795const_debug unsigned int sysctl_sched_nr_migrate = 32;
796
e9e9250b
PZ
797/*
798 * period over which we average the RT time consumption, measured
799 * in ms.
800 *
801 * default: 1s
802 */
803const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
804
fa85ae24 805/*
9f0c1e56 806 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
807 * default: 1s
808 */
9f0c1e56 809unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 810
6892b75e
IM
811static __read_mostly int scheduler_running;
812
9f0c1e56
PZ
813/*
814 * part of the period that we allow rt tasks to run in us.
815 * default: 0.95s
816 */
817int sysctl_sched_rt_runtime = 950000;
fa85ae24 818
d0b27fa7
PZ
819static inline u64 global_rt_period(void)
820{
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
822}
823
824static inline u64 global_rt_runtime(void)
825{
e26873bb 826 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
827 return RUNTIME_INF;
828
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
830}
fa85ae24 831
1da177e4 832#ifndef prepare_arch_switch
4866cde0
NP
833# define prepare_arch_switch(next) do { } while (0)
834#endif
835#ifndef finish_arch_switch
836# define finish_arch_switch(prev) do { } while (0)
837#endif
838
051a1d1a
DA
839static inline int task_current(struct rq *rq, struct task_struct *p)
840{
841 return rq->curr == p;
842}
843
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 845{
3ca7a440
PZ
846#ifdef CONFIG_SMP
847 return p->on_cpu;
848#else
051a1d1a 849 return task_current(rq, p);
3ca7a440 850#endif
4866cde0
NP
851}
852
3ca7a440 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 855{
3ca7a440
PZ
856#ifdef CONFIG_SMP
857 /*
858 * We can optimise this out completely for !SMP, because the
859 * SMP rebalancing from interrupt is the only thing that cares
860 * here.
861 */
862 next->on_cpu = 1;
863#endif
4866cde0
NP
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
3ca7a440
PZ
868#ifdef CONFIG_SMP
869 /*
870 * After ->on_cpu is cleared, the task can be moved to a different CPU.
871 * We must ensure this doesn't happen until the switch is completely
872 * finished.
873 */
874 smp_wmb();
875 prev->on_cpu = 0;
876#endif
da04c035
IM
877#ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
880#endif
8a25d5de
IM
881 /*
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
884 * prev into current:
885 */
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
887
05fa785c 888 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
889}
890
891#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
3ca7a440 900 next->on_cpu = 1;
4866cde0
NP
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
3ca7a440 913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
3ca7a440 918 prev->on_cpu = 0;
4866cde0
NP
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
0122ec5b 927 * __task_rq_lock - lock the rq @p resides on.
b29739f9 928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
0122ec5b
PZ
934 lockdep_assert_held(&p->pi_lock);
935
3a5c359a 936 for (;;) {
0970d299 937 rq = task_rq(p);
05fa785c 938 raw_spin_lock(&rq->lock);
65cc8e48 939 if (likely(rq == task_rq(p)))
3a5c359a 940 return rq;
05fa785c 941 raw_spin_unlock(&rq->lock);
b29739f9 942 }
b29739f9
IM
943}
944
1da177e4 945/*
0122ec5b 946 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 949 __acquires(p->pi_lock)
1da177e4
LT
950 __acquires(rq->lock)
951{
70b97a7f 952 struct rq *rq;
1da177e4 953
3a5c359a 954 for (;;) {
0122ec5b 955 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 956 rq = task_rq(p);
05fa785c 957 raw_spin_lock(&rq->lock);
65cc8e48 958 if (likely(rq == task_rq(p)))
3a5c359a 959 return rq;
0122ec5b
PZ
960 raw_spin_unlock(&rq->lock);
961 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 962 }
1da177e4
LT
963}
964
a9957449 965static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
966 __releases(rq->lock)
967{
05fa785c 968 raw_spin_unlock(&rq->lock);
b29739f9
IM
969}
970
0122ec5b
PZ
971static inline void
972task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 973 __releases(rq->lock)
0122ec5b 974 __releases(p->pi_lock)
1da177e4 975{
0122ec5b
PZ
976 raw_spin_unlock(&rq->lock);
977 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
978}
979
1da177e4 980/*
cc2a73b5 981 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 982 */
a9957449 983static struct rq *this_rq_lock(void)
1da177e4
LT
984 __acquires(rq->lock)
985{
70b97a7f 986 struct rq *rq;
1da177e4
LT
987
988 local_irq_disable();
989 rq = this_rq();
05fa785c 990 raw_spin_lock(&rq->lock);
1da177e4
LT
991
992 return rq;
993}
994
8f4d37ec
PZ
995#ifdef CONFIG_SCHED_HRTICK
996/*
997 * Use HR-timers to deliver accurate preemption points.
998 *
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * reschedule event.
1002 *
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * rq->lock.
1005 */
8f4d37ec
PZ
1006
1007/*
1008 * Use hrtick when:
1009 * - enabled by features
1010 * - hrtimer is actually high res
1011 */
1012static inline int hrtick_enabled(struct rq *rq)
1013{
1014 if (!sched_feat(HRTICK))
1015 return 0;
ba42059f 1016 if (!cpu_active(cpu_of(rq)))
b328ca18 1017 return 0;
8f4d37ec
PZ
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1019}
1020
8f4d37ec
PZ
1021static void hrtick_clear(struct rq *rq)
1022{
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1025}
1026
8f4d37ec
PZ
1027/*
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1030 */
1031static enum hrtimer_restart hrtick(struct hrtimer *timer)
1032{
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1034
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1036
05fa785c 1037 raw_spin_lock(&rq->lock);
3e51f33f 1038 update_rq_clock(rq);
8f4d37ec 1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1040 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1041
1042 return HRTIMER_NORESTART;
1043}
1044
95e904c7 1045#ifdef CONFIG_SMP
31656519
PZ
1046/*
1047 * called from hardirq (IPI) context
1048 */
1049static void __hrtick_start(void *arg)
b328ca18 1050{
31656519 1051 struct rq *rq = arg;
b328ca18 1052
05fa785c 1053 raw_spin_lock(&rq->lock);
31656519
PZ
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
05fa785c 1056 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1057}
1058
31656519
PZ
1059/*
1060 * Called to set the hrtick timer state.
1061 *
1062 * called with rq->lock held and irqs disabled
1063 */
1064static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1065{
31656519
PZ
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1068
cc584b21 1069 hrtimer_set_expires(timer, time);
31656519
PZ
1070
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
6e275637 1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1075 rq->hrtick_csd_pending = 1;
1076 }
b328ca18
PZ
1077}
1078
1079static int
1080hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1081{
1082 int cpu = (int)(long)hcpu;
1083
1084 switch (action) {
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1089 case CPU_DEAD:
1090 case CPU_DEAD_FROZEN:
31656519 1091 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1092 return NOTIFY_OK;
1093 }
1094
1095 return NOTIFY_DONE;
1096}
1097
fa748203 1098static __init void init_hrtick(void)
b328ca18
PZ
1099{
1100 hotcpu_notifier(hotplug_hrtick, 0);
1101}
31656519
PZ
1102#else
1103/*
1104 * Called to set the hrtick timer state.
1105 *
1106 * called with rq->lock held and irqs disabled
1107 */
1108static void hrtick_start(struct rq *rq, u64 delay)
1109{
7f1e2ca9 1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1111 HRTIMER_MODE_REL_PINNED, 0);
31656519 1112}
b328ca18 1113
006c75f1 1114static inline void init_hrtick(void)
8f4d37ec 1115{
8f4d37ec 1116}
31656519 1117#endif /* CONFIG_SMP */
8f4d37ec 1118
31656519 1119static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1120{
31656519
PZ
1121#ifdef CONFIG_SMP
1122 rq->hrtick_csd_pending = 0;
8f4d37ec 1123
31656519
PZ
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1127#endif
8f4d37ec 1128
31656519
PZ
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
8f4d37ec 1131}
006c75f1 1132#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1133static inline void hrtick_clear(struct rq *rq)
1134{
1135}
1136
8f4d37ec
PZ
1137static inline void init_rq_hrtick(struct rq *rq)
1138{
1139}
1140
b328ca18
PZ
1141static inline void init_hrtick(void)
1142{
1143}
006c75f1 1144#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1145
c24d20db
IM
1146/*
1147 * resched_task - mark a task 'to be rescheduled now'.
1148 *
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1151 * the target CPU.
1152 */
1153#ifdef CONFIG_SMP
1154
1155#ifndef tsk_is_polling
1156#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157#endif
1158
31656519 1159static void resched_task(struct task_struct *p)
c24d20db
IM
1160{
1161 int cpu;
1162
05fa785c 1163 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1164
5ed0cec0 1165 if (test_tsk_need_resched(p))
c24d20db
IM
1166 return;
1167
5ed0cec0 1168 set_tsk_need_resched(p);
c24d20db
IM
1169
1170 cpu = task_cpu(p);
1171 if (cpu == smp_processor_id())
1172 return;
1173
1174 /* NEED_RESCHED must be visible before we test polling */
1175 smp_mb();
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1178}
1179
1180static void resched_cpu(int cpu)
1181{
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1184
05fa785c 1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1186 return;
1187 resched_task(cpu_curr(cpu));
05fa785c 1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1189}
06d8308c
TG
1190
1191#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1192/*
1193 * In the semi idle case, use the nearest busy cpu for migrating timers
1194 * from an idle cpu. This is good for power-savings.
1195 *
1196 * We don't do similar optimization for completely idle system, as
1197 * selecting an idle cpu will add more delays to the timers than intended
1198 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1199 */
1200int get_nohz_timer_target(void)
1201{
1202 int cpu = smp_processor_id();
1203 int i;
1204 struct sched_domain *sd;
1205
1206 for_each_domain(cpu, sd) {
1207 for_each_cpu(i, sched_domain_span(sd))
1208 if (!idle_cpu(i))
1209 return i;
1210 }
1211 return cpu;
1212}
06d8308c
TG
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
39c0cbe2 1252
6d6bc0ad 1253#endif /* CONFIG_NO_HZ */
06d8308c 1254
e9e9250b
PZ
1255static u64 sched_avg_period(void)
1256{
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258}
1259
1260static void sched_avg_update(struct rq *rq)
1261{
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1265 /*
1266 * Inline assembly required to prevent the compiler
1267 * optimising this loop into a divmod call.
1268 * See __iter_div_u64_rem() for another example of this.
1269 */
1270 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1273 }
1274}
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1280}
1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db 1284{
05fa785c 1285 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
e9e9250b
PZ
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291}
da2b71ed
SS
1292
1293static void sched_avg_update(struct rq *rq)
1294{
1295}
6d6bc0ad 1296#endif /* CONFIG_SMP */
c24d20db 1297
45bf76df
IM
1298#if BITS_PER_LONG == 32
1299# define WMULT_CONST (~0UL)
1300#else
1301# define WMULT_CONST (1UL << 32)
1302#endif
1303
1304#define WMULT_SHIFT 32
1305
194081eb
IM
1306/*
1307 * Shift right and round:
1308 */
cf2ab469 1309#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1310
a7be37ac
PZ
1311/*
1312 * delta *= weight / lw
1313 */
cb1c4fc9 1314static unsigned long
45bf76df
IM
1315calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1316 struct load_weight *lw)
1317{
1318 u64 tmp;
1319
7a232e03
LJ
1320 if (!lw->inv_weight) {
1321 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1322 lw->inv_weight = 1;
1323 else
1324 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1325 / (lw->weight+1);
1326 }
45bf76df
IM
1327
1328 tmp = (u64)delta_exec * weight;
1329 /*
1330 * Check whether we'd overflow the 64-bit multiplication:
1331 */
194081eb 1332 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1333 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1334 WMULT_SHIFT/2);
1335 else
cf2ab469 1336 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1337
ecf691da 1338 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1339}
1340
1091985b 1341static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1342{
1343 lw->weight += inc;
e89996ae 1344 lw->inv_weight = 0;
45bf76df
IM
1345}
1346
1091985b 1347static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1348{
1349 lw->weight -= dec;
e89996ae 1350 lw->inv_weight = 0;
45bf76df
IM
1351}
1352
2069dd75
PZ
1353static inline void update_load_set(struct load_weight *lw, unsigned long w)
1354{
1355 lw->weight = w;
1356 lw->inv_weight = 0;
1357}
1358
2dd73a4f
PW
1359/*
1360 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1361 * of tasks with abnormal "nice" values across CPUs the contribution that
1362 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1363 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1364 * scaled version of the new time slice allocation that they receive on time
1365 * slice expiry etc.
1366 */
1367
cce7ade8
PZ
1368#define WEIGHT_IDLEPRIO 3
1369#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1370
1371/*
1372 * Nice levels are multiplicative, with a gentle 10% change for every
1373 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1374 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1375 * that remained on nice 0.
1376 *
1377 * The "10% effect" is relative and cumulative: from _any_ nice level,
1378 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1379 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1380 * If a task goes up by ~10% and another task goes down by ~10% then
1381 * the relative distance between them is ~25%.)
dd41f596
IM
1382 */
1383static const int prio_to_weight[40] = {
254753dc
IM
1384 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1385 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1386 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1387 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1388 /* 0 */ 1024, 820, 655, 526, 423,
1389 /* 5 */ 335, 272, 215, 172, 137,
1390 /* 10 */ 110, 87, 70, 56, 45,
1391 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1392};
1393
5714d2de
IM
1394/*
1395 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 *
1397 * In cases where the weight does not change often, we can use the
1398 * precalculated inverse to speed up arithmetics by turning divisions
1399 * into multiplications:
1400 */
dd41f596 1401static const u32 prio_to_wmult[40] = {
254753dc
IM
1402 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1403 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1404 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1405 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1406 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1407 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1408 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1409 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1410};
2dd73a4f 1411
ef12fefa
BR
1412/* Time spent by the tasks of the cpu accounting group executing in ... */
1413enum cpuacct_stat_index {
1414 CPUACCT_STAT_USER, /* ... user mode */
1415 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1416
1417 CPUACCT_STAT_NSTATS,
1418};
1419
d842de87
SV
1420#ifdef CONFIG_CGROUP_CPUACCT
1421static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1422static void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1424#else
1425static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1426static inline void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1428#endif
1429
18d95a28
PZ
1430static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_add(&rq->load, load);
1433}
1434
1435static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_sub(&rq->load, load);
1438}
1439
7940ca36 1440#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1441typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1442
1443/*
1444 * Iterate the full tree, calling @down when first entering a node and @up when
1445 * leaving it for the final time.
1446 */
eb755805 1447static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1448{
1449 struct task_group *parent, *child;
eb755805 1450 int ret;
c09595f6
PZ
1451
1452 rcu_read_lock();
1453 parent = &root_task_group;
1454down:
eb755805
PZ
1455 ret = (*down)(parent, data);
1456 if (ret)
1457 goto out_unlock;
c09595f6
PZ
1458 list_for_each_entry_rcu(child, &parent->children, siblings) {
1459 parent = child;
1460 goto down;
1461
1462up:
1463 continue;
1464 }
eb755805
PZ
1465 ret = (*up)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468
1469 child = parent;
1470 parent = parent->parent;
1471 if (parent)
1472 goto up;
eb755805 1473out_unlock:
c09595f6 1474 rcu_read_unlock();
eb755805
PZ
1475
1476 return ret;
c09595f6
PZ
1477}
1478
eb755805
PZ
1479static int tg_nop(struct task_group *tg, void *data)
1480{
1481 return 0;
c09595f6 1482}
eb755805
PZ
1483#endif
1484
1485#ifdef CONFIG_SMP
f5f08f39
PZ
1486/* Used instead of source_load when we know the type == 0 */
1487static unsigned long weighted_cpuload(const int cpu)
1488{
1489 return cpu_rq(cpu)->load.weight;
1490}
1491
1492/*
1493 * Return a low guess at the load of a migration-source cpu weighted
1494 * according to the scheduling class and "nice" value.
1495 *
1496 * We want to under-estimate the load of migration sources, to
1497 * balance conservatively.
1498 */
1499static unsigned long source_load(int cpu, int type)
1500{
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1503
1504 if (type == 0 || !sched_feat(LB_BIAS))
1505 return total;
1506
1507 return min(rq->cpu_load[type-1], total);
1508}
1509
1510/*
1511 * Return a high guess at the load of a migration-target cpu weighted
1512 * according to the scheduling class and "nice" value.
1513 */
1514static unsigned long target_load(int cpu, int type)
1515{
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long total = weighted_cpuload(cpu);
1518
1519 if (type == 0 || !sched_feat(LB_BIAS))
1520 return total;
1521
1522 return max(rq->cpu_load[type-1], total);
1523}
1524
ae154be1
PZ
1525static unsigned long power_of(int cpu)
1526{
e51fd5e2 1527 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1528}
1529
eb755805
PZ
1530static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531
1532static unsigned long cpu_avg_load_per_task(int cpu)
1533{
1534 struct rq *rq = cpu_rq(cpu);
af6d596f 1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1536
4cd42620
SR
1537 if (nr_running)
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1539 else
1540 rq->avg_load_per_task = 0;
eb755805
PZ
1541
1542 return rq->avg_load_per_task;
1543}
1544
1545#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1546
c09595f6 1547/*
c8cba857
PZ
1548 * Compute the cpu's hierarchical load factor for each task group.
1549 * This needs to be done in a top-down fashion because the load of a child
1550 * group is a fraction of its parents load.
c09595f6 1551 */
eb755805 1552static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1553{
c8cba857 1554 unsigned long load;
eb755805 1555 long cpu = (long)data;
c09595f6 1556
c8cba857
PZ
1557 if (!tg->parent) {
1558 load = cpu_rq(cpu)->load.weight;
1559 } else {
1560 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1561 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1562 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1563 }
c09595f6 1564
c8cba857 1565 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1566
eb755805 1567 return 0;
c09595f6
PZ
1568}
1569
eb755805 1570static void update_h_load(long cpu)
c09595f6 1571{
eb755805 1572 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1573}
1574
18d95a28
PZ
1575#endif
1576
8f45e2b5
GH
1577#ifdef CONFIG_PREEMPT
1578
b78bb868
PZ
1579static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1580
70574a99 1581/*
8f45e2b5
GH
1582 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1583 * way at the expense of forcing extra atomic operations in all
1584 * invocations. This assures that the double_lock is acquired using the
1585 * same underlying policy as the spinlock_t on this architecture, which
1586 * reduces latency compared to the unfair variant below. However, it
1587 * also adds more overhead and therefore may reduce throughput.
70574a99 1588 */
8f45e2b5
GH
1589static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1590 __releases(this_rq->lock)
1591 __acquires(busiest->lock)
1592 __acquires(this_rq->lock)
1593{
05fa785c 1594 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1595 double_rq_lock(this_rq, busiest);
1596
1597 return 1;
1598}
1599
1600#else
1601/*
1602 * Unfair double_lock_balance: Optimizes throughput at the expense of
1603 * latency by eliminating extra atomic operations when the locks are
1604 * already in proper order on entry. This favors lower cpu-ids and will
1605 * grant the double lock to lower cpus over higher ids under contention,
1606 * regardless of entry order into the function.
1607 */
1608static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1609 __releases(this_rq->lock)
1610 __acquires(busiest->lock)
1611 __acquires(this_rq->lock)
1612{
1613 int ret = 0;
1614
05fa785c 1615 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1616 if (busiest < this_rq) {
05fa785c
TG
1617 raw_spin_unlock(&this_rq->lock);
1618 raw_spin_lock(&busiest->lock);
1619 raw_spin_lock_nested(&this_rq->lock,
1620 SINGLE_DEPTH_NESTING);
70574a99
AD
1621 ret = 1;
1622 } else
05fa785c
TG
1623 raw_spin_lock_nested(&busiest->lock,
1624 SINGLE_DEPTH_NESTING);
70574a99
AD
1625 }
1626 return ret;
1627}
1628
8f45e2b5
GH
1629#endif /* CONFIG_PREEMPT */
1630
1631/*
1632 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1633 */
1634static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1635{
1636 if (unlikely(!irqs_disabled())) {
1637 /* printk() doesn't work good under rq->lock */
05fa785c 1638 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1639 BUG_ON(1);
1640 }
1641
1642 return _double_lock_balance(this_rq, busiest);
1643}
1644
70574a99
AD
1645static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1646 __releases(busiest->lock)
1647{
05fa785c 1648 raw_spin_unlock(&busiest->lock);
70574a99
AD
1649 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1650}
1e3c88bd
PZ
1651
1652/*
1653 * double_rq_lock - safely lock two runqueues
1654 *
1655 * Note this does not disable interrupts like task_rq_lock,
1656 * you need to do so manually before calling.
1657 */
1658static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1659 __acquires(rq1->lock)
1660 __acquires(rq2->lock)
1661{
1662 BUG_ON(!irqs_disabled());
1663 if (rq1 == rq2) {
1664 raw_spin_lock(&rq1->lock);
1665 __acquire(rq2->lock); /* Fake it out ;) */
1666 } else {
1667 if (rq1 < rq2) {
1668 raw_spin_lock(&rq1->lock);
1669 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1670 } else {
1671 raw_spin_lock(&rq2->lock);
1672 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1673 }
1674 }
1e3c88bd
PZ
1675}
1676
1677/*
1678 * double_rq_unlock - safely unlock two runqueues
1679 *
1680 * Note this does not restore interrupts like task_rq_unlock,
1681 * you need to do so manually after calling.
1682 */
1683static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1684 __releases(rq1->lock)
1685 __releases(rq2->lock)
1686{
1687 raw_spin_unlock(&rq1->lock);
1688 if (rq1 != rq2)
1689 raw_spin_unlock(&rq2->lock);
1690 else
1691 __release(rq2->lock);
1692}
1693
d95f4122
MG
1694#else /* CONFIG_SMP */
1695
1696/*
1697 * double_rq_lock - safely lock two runqueues
1698 *
1699 * Note this does not disable interrupts like task_rq_lock,
1700 * you need to do so manually before calling.
1701 */
1702static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1703 __acquires(rq1->lock)
1704 __acquires(rq2->lock)
1705{
1706 BUG_ON(!irqs_disabled());
1707 BUG_ON(rq1 != rq2);
1708 raw_spin_lock(&rq1->lock);
1709 __acquire(rq2->lock); /* Fake it out ;) */
1710}
1711
1712/*
1713 * double_rq_unlock - safely unlock two runqueues
1714 *
1715 * Note this does not restore interrupts like task_rq_unlock,
1716 * you need to do so manually after calling.
1717 */
1718static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1719 __releases(rq1->lock)
1720 __releases(rq2->lock)
1721{
1722 BUG_ON(rq1 != rq2);
1723 raw_spin_unlock(&rq1->lock);
1724 __release(rq2->lock);
1725}
1726
18d95a28
PZ
1727#endif
1728
74f5187a 1729static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1730static void update_sysctl(void);
acb4a848 1731static int get_update_sysctl_factor(void);
fdf3e95d 1732static void update_cpu_load(struct rq *this_rq);
dce48a84 1733
cd29fe6f
PZ
1734static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1735{
1736 set_task_rq(p, cpu);
1737#ifdef CONFIG_SMP
1738 /*
1739 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1740 * successfuly executed on another CPU. We must ensure that updates of
1741 * per-task data have been completed by this moment.
1742 */
1743 smp_wmb();
1744 task_thread_info(p)->cpu = cpu;
1745#endif
1746}
dce48a84 1747
1e3c88bd 1748static const struct sched_class rt_sched_class;
dd41f596 1749
34f971f6 1750#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1751#define for_each_class(class) \
1752 for (class = sched_class_highest; class; class = class->next)
dd41f596 1753
1e3c88bd
PZ
1754#include "sched_stats.h"
1755
c09595f6 1756static void inc_nr_running(struct rq *rq)
9c217245
IM
1757{
1758 rq->nr_running++;
9c217245
IM
1759}
1760
c09595f6 1761static void dec_nr_running(struct rq *rq)
9c217245
IM
1762{
1763 rq->nr_running--;
9c217245
IM
1764}
1765
45bf76df
IM
1766static void set_load_weight(struct task_struct *p)
1767{
dd41f596
IM
1768 /*
1769 * SCHED_IDLE tasks get minimal weight:
1770 */
1771 if (p->policy == SCHED_IDLE) {
1772 p->se.load.weight = WEIGHT_IDLEPRIO;
1773 p->se.load.inv_weight = WMULT_IDLEPRIO;
1774 return;
1775 }
71f8bd46 1776
dd41f596
IM
1777 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1778 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1779}
1780
371fd7e7 1781static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1782{
a64692a3 1783 update_rq_clock(rq);
dd41f596 1784 sched_info_queued(p);
371fd7e7 1785 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1786}
1787
371fd7e7 1788static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1789{
a64692a3 1790 update_rq_clock(rq);
46ac22ba 1791 sched_info_dequeued(p);
371fd7e7 1792 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1793}
1794
1e3c88bd
PZ
1795/*
1796 * activate_task - move a task to the runqueue.
1797 */
371fd7e7 1798static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1799{
1800 if (task_contributes_to_load(p))
1801 rq->nr_uninterruptible--;
1802
371fd7e7 1803 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1804 inc_nr_running(rq);
1805}
1806
1807/*
1808 * deactivate_task - remove a task from the runqueue.
1809 */
371fd7e7 1810static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1811{
1812 if (task_contributes_to_load(p))
1813 rq->nr_uninterruptible++;
1814
371fd7e7 1815 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1816 dec_nr_running(rq);
1817}
1818
b52bfee4
VP
1819#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1820
305e6835
VP
1821/*
1822 * There are no locks covering percpu hardirq/softirq time.
1823 * They are only modified in account_system_vtime, on corresponding CPU
1824 * with interrupts disabled. So, writes are safe.
1825 * They are read and saved off onto struct rq in update_rq_clock().
1826 * This may result in other CPU reading this CPU's irq time and can
1827 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1828 * or new value with a side effect of accounting a slice of irq time to wrong
1829 * task when irq is in progress while we read rq->clock. That is a worthy
1830 * compromise in place of having locks on each irq in account_system_time.
305e6835 1831 */
b52bfee4
VP
1832static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1833static DEFINE_PER_CPU(u64, cpu_softirq_time);
1834
1835static DEFINE_PER_CPU(u64, irq_start_time);
1836static int sched_clock_irqtime;
1837
1838void enable_sched_clock_irqtime(void)
1839{
1840 sched_clock_irqtime = 1;
1841}
1842
1843void disable_sched_clock_irqtime(void)
1844{
1845 sched_clock_irqtime = 0;
1846}
1847
8e92c201
PZ
1848#ifndef CONFIG_64BIT
1849static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1850
1851static inline void irq_time_write_begin(void)
1852{
1853 __this_cpu_inc(irq_time_seq.sequence);
1854 smp_wmb();
1855}
1856
1857static inline void irq_time_write_end(void)
1858{
1859 smp_wmb();
1860 __this_cpu_inc(irq_time_seq.sequence);
1861}
1862
1863static inline u64 irq_time_read(int cpu)
1864{
1865 u64 irq_time;
1866 unsigned seq;
1867
1868 do {
1869 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1870 irq_time = per_cpu(cpu_softirq_time, cpu) +
1871 per_cpu(cpu_hardirq_time, cpu);
1872 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1873
1874 return irq_time;
1875}
1876#else /* CONFIG_64BIT */
1877static inline void irq_time_write_begin(void)
1878{
1879}
1880
1881static inline void irq_time_write_end(void)
1882{
1883}
1884
1885static inline u64 irq_time_read(int cpu)
305e6835 1886{
305e6835
VP
1887 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1888}
8e92c201 1889#endif /* CONFIG_64BIT */
305e6835 1890
fe44d621
PZ
1891/*
1892 * Called before incrementing preempt_count on {soft,}irq_enter
1893 * and before decrementing preempt_count on {soft,}irq_exit.
1894 */
b52bfee4
VP
1895void account_system_vtime(struct task_struct *curr)
1896{
1897 unsigned long flags;
fe44d621 1898 s64 delta;
b52bfee4 1899 int cpu;
b52bfee4
VP
1900
1901 if (!sched_clock_irqtime)
1902 return;
1903
1904 local_irq_save(flags);
1905
b52bfee4 1906 cpu = smp_processor_id();
fe44d621
PZ
1907 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1908 __this_cpu_add(irq_start_time, delta);
1909
8e92c201 1910 irq_time_write_begin();
b52bfee4
VP
1911 /*
1912 * We do not account for softirq time from ksoftirqd here.
1913 * We want to continue accounting softirq time to ksoftirqd thread
1914 * in that case, so as not to confuse scheduler with a special task
1915 * that do not consume any time, but still wants to run.
1916 */
1917 if (hardirq_count())
fe44d621 1918 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1919 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1920 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1921
8e92c201 1922 irq_time_write_end();
b52bfee4
VP
1923 local_irq_restore(flags);
1924}
b7dadc38 1925EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1926
fe44d621 1927static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1928{
fe44d621
PZ
1929 s64 irq_delta;
1930
8e92c201 1931 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1932
1933 /*
1934 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1935 * this case when a previous update_rq_clock() happened inside a
1936 * {soft,}irq region.
1937 *
1938 * When this happens, we stop ->clock_task and only update the
1939 * prev_irq_time stamp to account for the part that fit, so that a next
1940 * update will consume the rest. This ensures ->clock_task is
1941 * monotonic.
1942 *
1943 * It does however cause some slight miss-attribution of {soft,}irq
1944 * time, a more accurate solution would be to update the irq_time using
1945 * the current rq->clock timestamp, except that would require using
1946 * atomic ops.
1947 */
1948 if (irq_delta > delta)
1949 irq_delta = delta;
1950
1951 rq->prev_irq_time += irq_delta;
1952 delta -= irq_delta;
1953 rq->clock_task += delta;
1954
1955 if (irq_delta && sched_feat(NONIRQ_POWER))
1956 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1957}
1958
abb74cef
VP
1959static int irqtime_account_hi_update(void)
1960{
1961 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1962 unsigned long flags;
1963 u64 latest_ns;
1964 int ret = 0;
1965
1966 local_irq_save(flags);
1967 latest_ns = this_cpu_read(cpu_hardirq_time);
1968 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1969 ret = 1;
1970 local_irq_restore(flags);
1971 return ret;
1972}
1973
1974static int irqtime_account_si_update(void)
1975{
1976 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1977 unsigned long flags;
1978 u64 latest_ns;
1979 int ret = 0;
1980
1981 local_irq_save(flags);
1982 latest_ns = this_cpu_read(cpu_softirq_time);
1983 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1984 ret = 1;
1985 local_irq_restore(flags);
1986 return ret;
1987}
1988
fe44d621 1989#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1990
abb74cef
VP
1991#define sched_clock_irqtime (0)
1992
fe44d621 1993static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1994{
fe44d621 1995 rq->clock_task += delta;
305e6835
VP
1996}
1997
fe44d621 1998#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1999
1e3c88bd
PZ
2000#include "sched_idletask.c"
2001#include "sched_fair.c"
2002#include "sched_rt.c"
5091faa4 2003#include "sched_autogroup.c"
34f971f6 2004#include "sched_stoptask.c"
1e3c88bd
PZ
2005#ifdef CONFIG_SCHED_DEBUG
2006# include "sched_debug.c"
2007#endif
2008
34f971f6
PZ
2009void sched_set_stop_task(int cpu, struct task_struct *stop)
2010{
2011 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2012 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2013
2014 if (stop) {
2015 /*
2016 * Make it appear like a SCHED_FIFO task, its something
2017 * userspace knows about and won't get confused about.
2018 *
2019 * Also, it will make PI more or less work without too
2020 * much confusion -- but then, stop work should not
2021 * rely on PI working anyway.
2022 */
2023 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2024
2025 stop->sched_class = &stop_sched_class;
2026 }
2027
2028 cpu_rq(cpu)->stop = stop;
2029
2030 if (old_stop) {
2031 /*
2032 * Reset it back to a normal scheduling class so that
2033 * it can die in pieces.
2034 */
2035 old_stop->sched_class = &rt_sched_class;
2036 }
2037}
2038
14531189 2039/*
dd41f596 2040 * __normal_prio - return the priority that is based on the static prio
14531189 2041 */
14531189
IM
2042static inline int __normal_prio(struct task_struct *p)
2043{
dd41f596 2044 return p->static_prio;
14531189
IM
2045}
2046
b29739f9
IM
2047/*
2048 * Calculate the expected normal priority: i.e. priority
2049 * without taking RT-inheritance into account. Might be
2050 * boosted by interactivity modifiers. Changes upon fork,
2051 * setprio syscalls, and whenever the interactivity
2052 * estimator recalculates.
2053 */
36c8b586 2054static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2055{
2056 int prio;
2057
e05606d3 2058 if (task_has_rt_policy(p))
b29739f9
IM
2059 prio = MAX_RT_PRIO-1 - p->rt_priority;
2060 else
2061 prio = __normal_prio(p);
2062 return prio;
2063}
2064
2065/*
2066 * Calculate the current priority, i.e. the priority
2067 * taken into account by the scheduler. This value might
2068 * be boosted by RT tasks, or might be boosted by
2069 * interactivity modifiers. Will be RT if the task got
2070 * RT-boosted. If not then it returns p->normal_prio.
2071 */
36c8b586 2072static int effective_prio(struct task_struct *p)
b29739f9
IM
2073{
2074 p->normal_prio = normal_prio(p);
2075 /*
2076 * If we are RT tasks or we were boosted to RT priority,
2077 * keep the priority unchanged. Otherwise, update priority
2078 * to the normal priority:
2079 */
2080 if (!rt_prio(p->prio))
2081 return p->normal_prio;
2082 return p->prio;
2083}
2084
1da177e4
LT
2085/**
2086 * task_curr - is this task currently executing on a CPU?
2087 * @p: the task in question.
2088 */
36c8b586 2089inline int task_curr(const struct task_struct *p)
1da177e4
LT
2090{
2091 return cpu_curr(task_cpu(p)) == p;
2092}
2093
cb469845
SR
2094static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2095 const struct sched_class *prev_class,
da7a735e 2096 int oldprio)
cb469845
SR
2097{
2098 if (prev_class != p->sched_class) {
2099 if (prev_class->switched_from)
da7a735e
PZ
2100 prev_class->switched_from(rq, p);
2101 p->sched_class->switched_to(rq, p);
2102 } else if (oldprio != p->prio)
2103 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2104}
2105
1e5a7405
PZ
2106static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2107{
2108 const struct sched_class *class;
2109
2110 if (p->sched_class == rq->curr->sched_class) {
2111 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2112 } else {
2113 for_each_class(class) {
2114 if (class == rq->curr->sched_class)
2115 break;
2116 if (class == p->sched_class) {
2117 resched_task(rq->curr);
2118 break;
2119 }
2120 }
2121 }
2122
2123 /*
2124 * A queue event has occurred, and we're going to schedule. In
2125 * this case, we can save a useless back to back clock update.
2126 */
fd2f4419 2127 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2128 rq->skip_clock_update = 1;
2129}
2130
1da177e4 2131#ifdef CONFIG_SMP
cc367732
IM
2132/*
2133 * Is this task likely cache-hot:
2134 */
e7693a36 2135static int
cc367732
IM
2136task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2137{
2138 s64 delta;
2139
e6c8fba7
PZ
2140 if (p->sched_class != &fair_sched_class)
2141 return 0;
2142
ef8002f6
NR
2143 if (unlikely(p->policy == SCHED_IDLE))
2144 return 0;
2145
f540a608
IM
2146 /*
2147 * Buddy candidates are cache hot:
2148 */
f685ceac 2149 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2150 (&p->se == cfs_rq_of(&p->se)->next ||
2151 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2152 return 1;
2153
6bc1665b
IM
2154 if (sysctl_sched_migration_cost == -1)
2155 return 1;
2156 if (sysctl_sched_migration_cost == 0)
2157 return 0;
2158
cc367732
IM
2159 delta = now - p->se.exec_start;
2160
2161 return delta < (s64)sysctl_sched_migration_cost;
2162}
2163
dd41f596 2164void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2165{
e2912009
PZ
2166#ifdef CONFIG_SCHED_DEBUG
2167 /*
2168 * We should never call set_task_cpu() on a blocked task,
2169 * ttwu() will sort out the placement.
2170 */
077614ee
PZ
2171 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2172 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2173
2174#ifdef CONFIG_LOCKDEP
2175 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2176 lockdep_is_held(&task_rq(p)->lock)));
2177#endif
e2912009
PZ
2178#endif
2179
de1d7286 2180 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2181
0c69774e
PZ
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2185 }
dd41f596
IM
2186
2187 __set_task_cpu(p, new_cpu);
c65cc870
IM
2188}
2189
969c7921 2190struct migration_arg {
36c8b586 2191 struct task_struct *task;
1da177e4 2192 int dest_cpu;
70b97a7f 2193};
1da177e4 2194
969c7921
TH
2195static int migration_cpu_stop(void *data);
2196
1da177e4
LT
2197/*
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2200 */
7608dec2 2201static bool need_migrate_task(struct task_struct *p)
1da177e4 2202{
1da177e4
LT
2203 /*
2204 * If the task is not on a runqueue (and not running), then
e2912009 2205 * the next wake-up will properly place the task.
1da177e4 2206 */
7608dec2
PZ
2207 bool running = p->on_rq || p->on_cpu;
2208 smp_rmb(); /* finish_lock_switch() */
2209 return running;
1da177e4
LT
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
85ba2d86
RM
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
1da177e4
LT
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
85ba2d86 2228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2229{
2230 unsigned long flags;
dd41f596 2231 int running, on_rq;
85ba2d86 2232 unsigned long ncsw;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
85ba2d86
RM
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
3a5c359a 2258 cpu_relax();
85ba2d86 2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &flags);
27a9da65 2267 trace_sched_wait_task(p);
3a5c359a 2268 running = task_running(rq, p);
fd2f4419 2269 on_rq = p->on_rq;
85ba2d86 2270 ncsw = 0;
f31e11d8 2271 if (!match_state || p->state == match_state)
93dcf55f 2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2273 task_rq_unlock(rq, p, &flags);
fa490cfd 2274
85ba2d86
RM
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
3a5c359a
AK
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
fa490cfd 2291
3a5c359a
AK
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
80dd99b3 2297 * So if it was still runnable (but just not actively
3a5c359a
AK
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(on_rq)) {
8eb90c30
TG
2302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2303
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2306 continue;
2307 }
fa490cfd 2308
3a5c359a
AK
2309 /*
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2313 */
2314 break;
2315 }
85ba2d86
RM
2316
2317 return ncsw;
1da177e4
LT
2318}
2319
2320/***
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2323 *
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2326 *
25985edc 2327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2331 * achieved as well.
2332 */
36c8b586 2333void kick_process(struct task_struct *p)
1da177e4
LT
2334{
2335 int cpu;
2336
2337 preempt_disable();
2338 cpu = task_cpu(p);
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2341 preempt_enable();
2342}
b43e3521 2343EXPORT_SYMBOL_GPL(kick_process);
476d139c 2344#endif /* CONFIG_SMP */
1da177e4 2345
970b13ba 2346#ifdef CONFIG_SMP
30da688e 2347/*
013fdb80 2348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2349 */
5da9a0fb
PZ
2350static int select_fallback_rq(int cpu, struct task_struct *p)
2351{
2352 int dest_cpu;
2353 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2354
2355 /* Look for allowed, online CPU in same node. */
2356 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2357 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2358 return dest_cpu;
2359
2360 /* Any allowed, online CPU? */
2361 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2362 if (dest_cpu < nr_cpu_ids)
2363 return dest_cpu;
2364
2365 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2366 dest_cpu = cpuset_cpus_allowed_fallback(p);
2367 /*
2368 * Don't tell them about moving exiting tasks or
2369 * kernel threads (both mm NULL), since they never
2370 * leave kernel.
2371 */
2372 if (p->mm && printk_ratelimit()) {
2373 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2374 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2375 }
2376
2377 return dest_cpu;
2378}
2379
e2912009 2380/*
013fdb80 2381 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2382 */
970b13ba 2383static inline
7608dec2 2384int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2385{
7608dec2 2386 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2387
2388 /*
2389 * In order not to call set_task_cpu() on a blocking task we need
2390 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2391 * cpu.
2392 *
2393 * Since this is common to all placement strategies, this lives here.
2394 *
2395 * [ this allows ->select_task() to simply return task_cpu(p) and
2396 * not worry about this generic constraint ]
2397 */
2398 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2399 !cpu_online(cpu)))
5da9a0fb 2400 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2401
2402 return cpu;
970b13ba 2403}
09a40af5
MG
2404
2405static void update_avg(u64 *avg, u64 sample)
2406{
2407 s64 diff = sample - *avg;
2408 *avg += diff >> 3;
2409}
970b13ba
PZ
2410#endif
2411
d7c01d27
PZ
2412static void
2413ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2414{
d7c01d27
PZ
2415#ifdef CONFIG_SCHEDSTATS
2416#ifdef CONFIG_SMP
2417 int this_cpu = smp_processor_id();
2418
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2422 } else {
2423 struct sched_domain *sd;
2424
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
2433#endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2437
2438 if (wake_flags & WF_SYNC)
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2440
2441 if (cpu != task_cpu(p))
9ed3811a 2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2443
d7c01d27
PZ
2444#endif /* CONFIG_SCHEDSTATS */
2445}
2446
2447static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2448{
9ed3811a 2449 activate_task(rq, p, en_flags);
fd2f4419 2450 p->on_rq = 1;
c2f7115e
PZ
2451
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2455}
2456
89363381
PZ
2457static void
2458ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2459{
89363381 2460 trace_sched_wakeup(p, true);
9ed3811a
TH
2461 check_preempt_curr(rq, p, wake_flags);
2462
2463 p->state = TASK_RUNNING;
2464#ifdef CONFIG_SMP
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2467
2468 if (unlikely(rq->idle_stamp)) {
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2471
2472 if (delta > max)
2473 rq->avg_idle = max;
2474 else
2475 update_avg(&rq->avg_idle, delta);
2476 rq->idle_stamp = 0;
2477 }
2478#endif
2479}
2480
2481/**
1da177e4 2482 * try_to_wake_up - wake up a thread
9ed3811a 2483 * @p: the thread to be awakened
1da177e4 2484 * @state: the mask of task states that can be woken
9ed3811a 2485 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2486 *
2487 * Put it on the run-queue if it's not already there. The "current"
2488 * thread is always on the run-queue (except when the actual
2489 * re-schedule is in progress), and as such you're allowed to do
2490 * the simpler "current->state = TASK_RUNNING" to mark yourself
2491 * runnable without the overhead of this.
2492 *
9ed3811a
TH
2493 * Returns %true if @p was woken up, %false if it was already running
2494 * or @state didn't match @p's state.
1da177e4 2495 */
7d478721
PZ
2496static int try_to_wake_up(struct task_struct *p, unsigned int state,
2497 int wake_flags)
1da177e4 2498{
cc367732 2499 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2500 unsigned long flags;
371fd7e7 2501 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2502 struct rq *rq;
1da177e4 2503
e9c84311 2504 this_cpu = get_cpu();
2398f2c6 2505
04e2f174 2506 smp_wmb();
013fdb80
PZ
2507 raw_spin_lock_irqsave(&p->pi_lock, flags);
2508 rq = __task_rq_lock(p);
e9c84311 2509 if (!(p->state & state))
1da177e4
LT
2510 goto out;
2511
d7c01d27
PZ
2512 cpu = task_cpu(p);
2513
fd2f4419 2514 if (p->on_rq)
1da177e4
LT
2515 goto out_running;
2516
cc367732 2517 orig_cpu = cpu;
1da177e4
LT
2518#ifdef CONFIG_SMP
2519 if (unlikely(task_running(rq, p)))
2520 goto out_activate;
2521
a8e4f2ea 2522 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2523 p->state = TASK_WAKING;
efbbd05a 2524
371fd7e7 2525 if (p->sched_class->task_waking) {
74f8e4b2 2526 p->sched_class->task_waking(p);
371fd7e7
PZ
2527 en_flags |= ENQUEUE_WAKING;
2528 }
efbbd05a 2529
7608dec2 2530 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0017d735 2531 if (cpu != orig_cpu)
5d2f5a61 2532 set_task_cpu(p, cpu);
0017d735 2533 __task_rq_unlock(rq);
ab19cb23 2534
0970d299
PZ
2535 rq = cpu_rq(cpu);
2536 raw_spin_lock(&rq->lock);
f5dc3753 2537
0970d299
PZ
2538 /*
2539 * We migrated the task without holding either rq->lock, however
2540 * since the task is not on the task list itself, nobody else
2541 * will try and migrate the task, hence the rq should match the
2542 * cpu we just moved it to.
2543 */
2544 WARN_ON(task_cpu(p) != cpu);
e9c84311 2545 WARN_ON(p->state != TASK_WAKING);
1da177e4 2546
a8e4f2ea
PZ
2547 if (p->sched_contributes_to_load)
2548 rq->nr_uninterruptible--;
2549
1da177e4
LT
2550out_activate:
2551#endif /* CONFIG_SMP */
d7c01d27 2552 ttwu_activate(rq, p, en_flags);
1da177e4 2553out_running:
89363381 2554 ttwu_post_activation(p, rq, wake_flags);
d7c01d27 2555 ttwu_stat(rq, p, cpu, wake_flags);
89363381 2556 success = 1;
1da177e4 2557out:
013fdb80
PZ
2558 __task_rq_unlock(rq);
2559 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
e9c84311 2560 put_cpu();
1da177e4
LT
2561
2562 return success;
2563}
2564
21aa9af0
TH
2565/**
2566 * try_to_wake_up_local - try to wake up a local task with rq lock held
2567 * @p: the thread to be awakened
2568 *
2acca55e 2569 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2570 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2571 * the current task.
21aa9af0
TH
2572 */
2573static void try_to_wake_up_local(struct task_struct *p)
2574{
2575 struct rq *rq = task_rq(p);
21aa9af0
TH
2576
2577 BUG_ON(rq != this_rq());
2578 BUG_ON(p == current);
2579 lockdep_assert_held(&rq->lock);
2580
2acca55e
PZ
2581 if (!raw_spin_trylock(&p->pi_lock)) {
2582 raw_spin_unlock(&rq->lock);
2583 raw_spin_lock(&p->pi_lock);
2584 raw_spin_lock(&rq->lock);
2585 }
2586
21aa9af0 2587 if (!(p->state & TASK_NORMAL))
2acca55e 2588 goto out;
21aa9af0 2589
fd2f4419 2590 if (!p->on_rq)
d7c01d27
PZ
2591 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2592
89363381 2593 ttwu_post_activation(p, rq, 0);
d7c01d27 2594 ttwu_stat(rq, p, smp_processor_id(), 0);
2acca55e
PZ
2595out:
2596 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2597}
2598
50fa610a
DH
2599/**
2600 * wake_up_process - Wake up a specific process
2601 * @p: The process to be woken up.
2602 *
2603 * Attempt to wake up the nominated process and move it to the set of runnable
2604 * processes. Returns 1 if the process was woken up, 0 if it was already
2605 * running.
2606 *
2607 * It may be assumed that this function implies a write memory barrier before
2608 * changing the task state if and only if any tasks are woken up.
2609 */
7ad5b3a5 2610int wake_up_process(struct task_struct *p)
1da177e4 2611{
d9514f6c 2612 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2613}
1da177e4
LT
2614EXPORT_SYMBOL(wake_up_process);
2615
7ad5b3a5 2616int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2617{
2618 return try_to_wake_up(p, state, 0);
2619}
2620
1da177e4
LT
2621/*
2622 * Perform scheduler related setup for a newly forked process p.
2623 * p is forked by current.
dd41f596
IM
2624 *
2625 * __sched_fork() is basic setup used by init_idle() too:
2626 */
2627static void __sched_fork(struct task_struct *p)
2628{
fd2f4419
PZ
2629 p->on_rq = 0;
2630
2631 p->se.on_rq = 0;
dd41f596
IM
2632 p->se.exec_start = 0;
2633 p->se.sum_exec_runtime = 0;
f6cf891c 2634 p->se.prev_sum_exec_runtime = 0;
6c594c21 2635 p->se.nr_migrations = 0;
da7a735e 2636 p->se.vruntime = 0;
fd2f4419 2637 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2638
2639#ifdef CONFIG_SCHEDSTATS
41acab88 2640 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2641#endif
476d139c 2642
fa717060 2643 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2644
e107be36
AK
2645#ifdef CONFIG_PREEMPT_NOTIFIERS
2646 INIT_HLIST_HEAD(&p->preempt_notifiers);
2647#endif
dd41f596
IM
2648}
2649
2650/*
2651 * fork()/clone()-time setup:
2652 */
2653void sched_fork(struct task_struct *p, int clone_flags)
2654{
0122ec5b 2655 unsigned long flags;
dd41f596
IM
2656 int cpu = get_cpu();
2657
2658 __sched_fork(p);
06b83b5f 2659 /*
0017d735 2660 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2661 * nobody will actually run it, and a signal or other external
2662 * event cannot wake it up and insert it on the runqueue either.
2663 */
0017d735 2664 p->state = TASK_RUNNING;
dd41f596 2665
b9dc29e7
MG
2666 /*
2667 * Revert to default priority/policy on fork if requested.
2668 */
2669 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2670 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2671 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2672 p->normal_prio = p->static_prio;
2673 }
b9dc29e7 2674
6c697bdf
MG
2675 if (PRIO_TO_NICE(p->static_prio) < 0) {
2676 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2677 p->normal_prio = p->static_prio;
6c697bdf
MG
2678 set_load_weight(p);
2679 }
2680
b9dc29e7
MG
2681 /*
2682 * We don't need the reset flag anymore after the fork. It has
2683 * fulfilled its duty:
2684 */
2685 p->sched_reset_on_fork = 0;
2686 }
ca94c442 2687
f83f9ac2
PW
2688 /*
2689 * Make sure we do not leak PI boosting priority to the child.
2690 */
2691 p->prio = current->normal_prio;
2692
2ddbf952
HS
2693 if (!rt_prio(p->prio))
2694 p->sched_class = &fair_sched_class;
b29739f9 2695
cd29fe6f
PZ
2696 if (p->sched_class->task_fork)
2697 p->sched_class->task_fork(p);
2698
86951599
PZ
2699 /*
2700 * The child is not yet in the pid-hash so no cgroup attach races,
2701 * and the cgroup is pinned to this child due to cgroup_fork()
2702 * is ran before sched_fork().
2703 *
2704 * Silence PROVE_RCU.
2705 */
0122ec5b 2706 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2707 set_task_cpu(p, cpu);
0122ec5b 2708 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2709
52f17b6c 2710#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2711 if (likely(sched_info_on()))
52f17b6c 2712 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2713#endif
3ca7a440
PZ
2714#if defined(CONFIG_SMP)
2715 p->on_cpu = 0;
4866cde0 2716#endif
1da177e4 2717#ifdef CONFIG_PREEMPT
4866cde0 2718 /* Want to start with kernel preemption disabled. */
a1261f54 2719 task_thread_info(p)->preempt_count = 1;
1da177e4 2720#endif
806c09a7 2721#ifdef CONFIG_SMP
917b627d 2722 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2723#endif
917b627d 2724
476d139c 2725 put_cpu();
1da177e4
LT
2726}
2727
2728/*
2729 * wake_up_new_task - wake up a newly created task for the first time.
2730 *
2731 * This function will do some initial scheduler statistics housekeeping
2732 * that must be done for every newly created context, then puts the task
2733 * on the runqueue and wakes it.
2734 */
7ad5b3a5 2735void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2736{
2737 unsigned long flags;
dd41f596 2738 struct rq *rq;
fabf318e 2739
ab2515c4 2740 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2741#ifdef CONFIG_SMP
2742 /*
2743 * Fork balancing, do it here and not earlier because:
2744 * - cpus_allowed can change in the fork path
2745 * - any previously selected cpu might disappear through hotplug
fabf318e 2746 */
ab2515c4 2747 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2748#endif
2749
ab2515c4 2750 rq = __task_rq_lock(p);
cd29fe6f 2751 activate_task(rq, p, 0);
fd2f4419 2752 p->on_rq = 1;
89363381 2753 trace_sched_wakeup_new(p, true);
a7558e01 2754 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2755#ifdef CONFIG_SMP
efbbd05a
PZ
2756 if (p->sched_class->task_woken)
2757 p->sched_class->task_woken(rq, p);
9a897c5a 2758#endif
0122ec5b 2759 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2760}
2761
e107be36
AK
2762#ifdef CONFIG_PREEMPT_NOTIFIERS
2763
2764/**
80dd99b3 2765 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2766 * @notifier: notifier struct to register
e107be36
AK
2767 */
2768void preempt_notifier_register(struct preempt_notifier *notifier)
2769{
2770 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2771}
2772EXPORT_SYMBOL_GPL(preempt_notifier_register);
2773
2774/**
2775 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2776 * @notifier: notifier struct to unregister
e107be36
AK
2777 *
2778 * This is safe to call from within a preemption notifier.
2779 */
2780void preempt_notifier_unregister(struct preempt_notifier *notifier)
2781{
2782 hlist_del(&notifier->link);
2783}
2784EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2785
2786static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2787{
2788 struct preempt_notifier *notifier;
2789 struct hlist_node *node;
2790
2791 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2792 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2793}
2794
2795static void
2796fire_sched_out_preempt_notifiers(struct task_struct *curr,
2797 struct task_struct *next)
2798{
2799 struct preempt_notifier *notifier;
2800 struct hlist_node *node;
2801
2802 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2803 notifier->ops->sched_out(notifier, next);
2804}
2805
6d6bc0ad 2806#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2807
2808static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2809{
2810}
2811
2812static void
2813fire_sched_out_preempt_notifiers(struct task_struct *curr,
2814 struct task_struct *next)
2815{
2816}
2817
6d6bc0ad 2818#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2819
4866cde0
NP
2820/**
2821 * prepare_task_switch - prepare to switch tasks
2822 * @rq: the runqueue preparing to switch
421cee29 2823 * @prev: the current task that is being switched out
4866cde0
NP
2824 * @next: the task we are going to switch to.
2825 *
2826 * This is called with the rq lock held and interrupts off. It must
2827 * be paired with a subsequent finish_task_switch after the context
2828 * switch.
2829 *
2830 * prepare_task_switch sets up locking and calls architecture specific
2831 * hooks.
2832 */
e107be36
AK
2833static inline void
2834prepare_task_switch(struct rq *rq, struct task_struct *prev,
2835 struct task_struct *next)
4866cde0 2836{
fe4b04fa
PZ
2837 sched_info_switch(prev, next);
2838 perf_event_task_sched_out(prev, next);
e107be36 2839 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2840 prepare_lock_switch(rq, next);
2841 prepare_arch_switch(next);
fe4b04fa 2842 trace_sched_switch(prev, next);
4866cde0
NP
2843}
2844
1da177e4
LT
2845/**
2846 * finish_task_switch - clean up after a task-switch
344babaa 2847 * @rq: runqueue associated with task-switch
1da177e4
LT
2848 * @prev: the thread we just switched away from.
2849 *
4866cde0
NP
2850 * finish_task_switch must be called after the context switch, paired
2851 * with a prepare_task_switch call before the context switch.
2852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2853 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2854 *
2855 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2856 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2857 * with the lock held can cause deadlocks; see schedule() for
2858 * details.)
2859 */
a9957449 2860static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2861 __releases(rq->lock)
2862{
1da177e4 2863 struct mm_struct *mm = rq->prev_mm;
55a101f8 2864 long prev_state;
1da177e4
LT
2865
2866 rq->prev_mm = NULL;
2867
2868 /*
2869 * A task struct has one reference for the use as "current".
c394cc9f 2870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2871 * schedule one last time. The schedule call will never return, and
2872 * the scheduled task must drop that reference.
c394cc9f 2873 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2874 * still held, otherwise prev could be scheduled on another cpu, die
2875 * there before we look at prev->state, and then the reference would
2876 * be dropped twice.
2877 * Manfred Spraul <manfred@colorfullife.com>
2878 */
55a101f8 2879 prev_state = prev->state;
4866cde0 2880 finish_arch_switch(prev);
8381f65d
JI
2881#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2882 local_irq_disable();
2883#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2884 perf_event_task_sched_in(current);
8381f65d
JI
2885#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2886 local_irq_enable();
2887#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2888 finish_lock_switch(rq, prev);
e8fa1362 2889
e107be36 2890 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2891 if (mm)
2892 mmdrop(mm);
c394cc9f 2893 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2894 /*
2895 * Remove function-return probe instances associated with this
2896 * task and put them back on the free list.
9761eea8 2897 */
c6fd91f0 2898 kprobe_flush_task(prev);
1da177e4 2899 put_task_struct(prev);
c6fd91f0 2900 }
1da177e4
LT
2901}
2902
3f029d3c
GH
2903#ifdef CONFIG_SMP
2904
2905/* assumes rq->lock is held */
2906static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2907{
2908 if (prev->sched_class->pre_schedule)
2909 prev->sched_class->pre_schedule(rq, prev);
2910}
2911
2912/* rq->lock is NOT held, but preemption is disabled */
2913static inline void post_schedule(struct rq *rq)
2914{
2915 if (rq->post_schedule) {
2916 unsigned long flags;
2917
05fa785c 2918 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2919 if (rq->curr->sched_class->post_schedule)
2920 rq->curr->sched_class->post_schedule(rq);
05fa785c 2921 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2922
2923 rq->post_schedule = 0;
2924 }
2925}
2926
2927#else
da19ab51 2928
3f029d3c
GH
2929static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2930{
2931}
2932
2933static inline void post_schedule(struct rq *rq)
2934{
1da177e4
LT
2935}
2936
3f029d3c
GH
2937#endif
2938
1da177e4
LT
2939/**
2940 * schedule_tail - first thing a freshly forked thread must call.
2941 * @prev: the thread we just switched away from.
2942 */
36c8b586 2943asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2944 __releases(rq->lock)
2945{
70b97a7f
IM
2946 struct rq *rq = this_rq();
2947
4866cde0 2948 finish_task_switch(rq, prev);
da19ab51 2949
3f029d3c
GH
2950 /*
2951 * FIXME: do we need to worry about rq being invalidated by the
2952 * task_switch?
2953 */
2954 post_schedule(rq);
70b97a7f 2955
4866cde0
NP
2956#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2957 /* In this case, finish_task_switch does not reenable preemption */
2958 preempt_enable();
2959#endif
1da177e4 2960 if (current->set_child_tid)
b488893a 2961 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2962}
2963
2964/*
2965 * context_switch - switch to the new MM and the new
2966 * thread's register state.
2967 */
dd41f596 2968static inline void
70b97a7f 2969context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2970 struct task_struct *next)
1da177e4 2971{
dd41f596 2972 struct mm_struct *mm, *oldmm;
1da177e4 2973
e107be36 2974 prepare_task_switch(rq, prev, next);
fe4b04fa 2975
dd41f596
IM
2976 mm = next->mm;
2977 oldmm = prev->active_mm;
9226d125
ZA
2978 /*
2979 * For paravirt, this is coupled with an exit in switch_to to
2980 * combine the page table reload and the switch backend into
2981 * one hypercall.
2982 */
224101ed 2983 arch_start_context_switch(prev);
9226d125 2984
31915ab4 2985 if (!mm) {
1da177e4
LT
2986 next->active_mm = oldmm;
2987 atomic_inc(&oldmm->mm_count);
2988 enter_lazy_tlb(oldmm, next);
2989 } else
2990 switch_mm(oldmm, mm, next);
2991
31915ab4 2992 if (!prev->mm) {
1da177e4 2993 prev->active_mm = NULL;
1da177e4
LT
2994 rq->prev_mm = oldmm;
2995 }
3a5f5e48
IM
2996 /*
2997 * Since the runqueue lock will be released by the next
2998 * task (which is an invalid locking op but in the case
2999 * of the scheduler it's an obvious special-case), so we
3000 * do an early lockdep release here:
3001 */
3002#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3003 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3004#endif
1da177e4
LT
3005
3006 /* Here we just switch the register state and the stack. */
3007 switch_to(prev, next, prev);
3008
dd41f596
IM
3009 barrier();
3010 /*
3011 * this_rq must be evaluated again because prev may have moved
3012 * CPUs since it called schedule(), thus the 'rq' on its stack
3013 * frame will be invalid.
3014 */
3015 finish_task_switch(this_rq(), prev);
1da177e4
LT
3016}
3017
3018/*
3019 * nr_running, nr_uninterruptible and nr_context_switches:
3020 *
3021 * externally visible scheduler statistics: current number of runnable
3022 * threads, current number of uninterruptible-sleeping threads, total
3023 * number of context switches performed since bootup.
3024 */
3025unsigned long nr_running(void)
3026{
3027 unsigned long i, sum = 0;
3028
3029 for_each_online_cpu(i)
3030 sum += cpu_rq(i)->nr_running;
3031
3032 return sum;
f711f609 3033}
1da177e4
LT
3034
3035unsigned long nr_uninterruptible(void)
f711f609 3036{
1da177e4 3037 unsigned long i, sum = 0;
f711f609 3038
0a945022 3039 for_each_possible_cpu(i)
1da177e4 3040 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3041
3042 /*
1da177e4
LT
3043 * Since we read the counters lockless, it might be slightly
3044 * inaccurate. Do not allow it to go below zero though:
f711f609 3045 */
1da177e4
LT
3046 if (unlikely((long)sum < 0))
3047 sum = 0;
f711f609 3048
1da177e4 3049 return sum;
f711f609 3050}
f711f609 3051
1da177e4 3052unsigned long long nr_context_switches(void)
46cb4b7c 3053{
cc94abfc
SR
3054 int i;
3055 unsigned long long sum = 0;
46cb4b7c 3056
0a945022 3057 for_each_possible_cpu(i)
1da177e4 3058 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3059
1da177e4
LT
3060 return sum;
3061}
483b4ee6 3062
1da177e4
LT
3063unsigned long nr_iowait(void)
3064{
3065 unsigned long i, sum = 0;
483b4ee6 3066
0a945022 3067 for_each_possible_cpu(i)
1da177e4 3068 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3069
1da177e4
LT
3070 return sum;
3071}
483b4ee6 3072
8c215bd3 3073unsigned long nr_iowait_cpu(int cpu)
69d25870 3074{
8c215bd3 3075 struct rq *this = cpu_rq(cpu);
69d25870
AV
3076 return atomic_read(&this->nr_iowait);
3077}
46cb4b7c 3078
69d25870
AV
3079unsigned long this_cpu_load(void)
3080{
3081 struct rq *this = this_rq();
3082 return this->cpu_load[0];
3083}
e790fb0b 3084
46cb4b7c 3085
dce48a84
TG
3086/* Variables and functions for calc_load */
3087static atomic_long_t calc_load_tasks;
3088static unsigned long calc_load_update;
3089unsigned long avenrun[3];
3090EXPORT_SYMBOL(avenrun);
46cb4b7c 3091
74f5187a
PZ
3092static long calc_load_fold_active(struct rq *this_rq)
3093{
3094 long nr_active, delta = 0;
3095
3096 nr_active = this_rq->nr_running;
3097 nr_active += (long) this_rq->nr_uninterruptible;
3098
3099 if (nr_active != this_rq->calc_load_active) {
3100 delta = nr_active - this_rq->calc_load_active;
3101 this_rq->calc_load_active = nr_active;
3102 }
3103
3104 return delta;
3105}
3106
0f004f5a
PZ
3107static unsigned long
3108calc_load(unsigned long load, unsigned long exp, unsigned long active)
3109{
3110 load *= exp;
3111 load += active * (FIXED_1 - exp);
3112 load += 1UL << (FSHIFT - 1);
3113 return load >> FSHIFT;
3114}
3115
74f5187a
PZ
3116#ifdef CONFIG_NO_HZ
3117/*
3118 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3119 *
3120 * When making the ILB scale, we should try to pull this in as well.
3121 */
3122static atomic_long_t calc_load_tasks_idle;
3123
3124static void calc_load_account_idle(struct rq *this_rq)
3125{
3126 long delta;
3127
3128 delta = calc_load_fold_active(this_rq);
3129 if (delta)
3130 atomic_long_add(delta, &calc_load_tasks_idle);
3131}
3132
3133static long calc_load_fold_idle(void)
3134{
3135 long delta = 0;
3136
3137 /*
3138 * Its got a race, we don't care...
3139 */
3140 if (atomic_long_read(&calc_load_tasks_idle))
3141 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3142
3143 return delta;
3144}
0f004f5a
PZ
3145
3146/**
3147 * fixed_power_int - compute: x^n, in O(log n) time
3148 *
3149 * @x: base of the power
3150 * @frac_bits: fractional bits of @x
3151 * @n: power to raise @x to.
3152 *
3153 * By exploiting the relation between the definition of the natural power
3154 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3155 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3156 * (where: n_i \elem {0, 1}, the binary vector representing n),
3157 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3158 * of course trivially computable in O(log_2 n), the length of our binary
3159 * vector.
3160 */
3161static unsigned long
3162fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3163{
3164 unsigned long result = 1UL << frac_bits;
3165
3166 if (n) for (;;) {
3167 if (n & 1) {
3168 result *= x;
3169 result += 1UL << (frac_bits - 1);
3170 result >>= frac_bits;
3171 }
3172 n >>= 1;
3173 if (!n)
3174 break;
3175 x *= x;
3176 x += 1UL << (frac_bits - 1);
3177 x >>= frac_bits;
3178 }
3179
3180 return result;
3181}
3182
3183/*
3184 * a1 = a0 * e + a * (1 - e)
3185 *
3186 * a2 = a1 * e + a * (1 - e)
3187 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3188 * = a0 * e^2 + a * (1 - e) * (1 + e)
3189 *
3190 * a3 = a2 * e + a * (1 - e)
3191 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3192 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3193 *
3194 * ...
3195 *
3196 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3197 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3198 * = a0 * e^n + a * (1 - e^n)
3199 *
3200 * [1] application of the geometric series:
3201 *
3202 * n 1 - x^(n+1)
3203 * S_n := \Sum x^i = -------------
3204 * i=0 1 - x
3205 */
3206static unsigned long
3207calc_load_n(unsigned long load, unsigned long exp,
3208 unsigned long active, unsigned int n)
3209{
3210
3211 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3212}
3213
3214/*
3215 * NO_HZ can leave us missing all per-cpu ticks calling
3216 * calc_load_account_active(), but since an idle CPU folds its delta into
3217 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3218 * in the pending idle delta if our idle period crossed a load cycle boundary.
3219 *
3220 * Once we've updated the global active value, we need to apply the exponential
3221 * weights adjusted to the number of cycles missed.
3222 */
3223static void calc_global_nohz(unsigned long ticks)
3224{
3225 long delta, active, n;
3226
3227 if (time_before(jiffies, calc_load_update))
3228 return;
3229
3230 /*
3231 * If we crossed a calc_load_update boundary, make sure to fold
3232 * any pending idle changes, the respective CPUs might have
3233 * missed the tick driven calc_load_account_active() update
3234 * due to NO_HZ.
3235 */
3236 delta = calc_load_fold_idle();
3237 if (delta)
3238 atomic_long_add(delta, &calc_load_tasks);
3239
3240 /*
3241 * If we were idle for multiple load cycles, apply them.
3242 */
3243 if (ticks >= LOAD_FREQ) {
3244 n = ticks / LOAD_FREQ;
3245
3246 active = atomic_long_read(&calc_load_tasks);
3247 active = active > 0 ? active * FIXED_1 : 0;
3248
3249 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3250 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3251 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3252
3253 calc_load_update += n * LOAD_FREQ;
3254 }
3255
3256 /*
3257 * Its possible the remainder of the above division also crosses
3258 * a LOAD_FREQ period, the regular check in calc_global_load()
3259 * which comes after this will take care of that.
3260 *
3261 * Consider us being 11 ticks before a cycle completion, and us
3262 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3263 * age us 4 cycles, and the test in calc_global_load() will
3264 * pick up the final one.
3265 */
3266}
74f5187a
PZ
3267#else
3268static void calc_load_account_idle(struct rq *this_rq)
3269{
3270}
3271
3272static inline long calc_load_fold_idle(void)
3273{
3274 return 0;
3275}
0f004f5a
PZ
3276
3277static void calc_global_nohz(unsigned long ticks)
3278{
3279}
74f5187a
PZ
3280#endif
3281
2d02494f
TG
3282/**
3283 * get_avenrun - get the load average array
3284 * @loads: pointer to dest load array
3285 * @offset: offset to add
3286 * @shift: shift count to shift the result left
3287 *
3288 * These values are estimates at best, so no need for locking.
3289 */
3290void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3291{
3292 loads[0] = (avenrun[0] + offset) << shift;
3293 loads[1] = (avenrun[1] + offset) << shift;
3294 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3295}
46cb4b7c 3296
46cb4b7c 3297/*
dce48a84
TG
3298 * calc_load - update the avenrun load estimates 10 ticks after the
3299 * CPUs have updated calc_load_tasks.
7835b98b 3300 */
0f004f5a 3301void calc_global_load(unsigned long ticks)
7835b98b 3302{
dce48a84 3303 long active;
1da177e4 3304
0f004f5a
PZ
3305 calc_global_nohz(ticks);
3306
3307 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3308 return;
1da177e4 3309
dce48a84
TG
3310 active = atomic_long_read(&calc_load_tasks);
3311 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3312
dce48a84
TG
3313 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3314 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3315 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3316
dce48a84
TG
3317 calc_load_update += LOAD_FREQ;
3318}
1da177e4 3319
dce48a84 3320/*
74f5187a
PZ
3321 * Called from update_cpu_load() to periodically update this CPU's
3322 * active count.
dce48a84
TG
3323 */
3324static void calc_load_account_active(struct rq *this_rq)
3325{
74f5187a 3326 long delta;
08c183f3 3327
74f5187a
PZ
3328 if (time_before(jiffies, this_rq->calc_load_update))
3329 return;
783609c6 3330
74f5187a
PZ
3331 delta = calc_load_fold_active(this_rq);
3332 delta += calc_load_fold_idle();
3333 if (delta)
dce48a84 3334 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3335
3336 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3337}
3338
fdf3e95d
VP
3339/*
3340 * The exact cpuload at various idx values, calculated at every tick would be
3341 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3342 *
3343 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3344 * on nth tick when cpu may be busy, then we have:
3345 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3346 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3347 *
3348 * decay_load_missed() below does efficient calculation of
3349 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3350 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3351 *
3352 * The calculation is approximated on a 128 point scale.
3353 * degrade_zero_ticks is the number of ticks after which load at any
3354 * particular idx is approximated to be zero.
3355 * degrade_factor is a precomputed table, a row for each load idx.
3356 * Each column corresponds to degradation factor for a power of two ticks,
3357 * based on 128 point scale.
3358 * Example:
3359 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3360 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3361 *
3362 * With this power of 2 load factors, we can degrade the load n times
3363 * by looking at 1 bits in n and doing as many mult/shift instead of
3364 * n mult/shifts needed by the exact degradation.
3365 */
3366#define DEGRADE_SHIFT 7
3367static const unsigned char
3368 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3369static const unsigned char
3370 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3371 {0, 0, 0, 0, 0, 0, 0, 0},
3372 {64, 32, 8, 0, 0, 0, 0, 0},
3373 {96, 72, 40, 12, 1, 0, 0},
3374 {112, 98, 75, 43, 15, 1, 0},
3375 {120, 112, 98, 76, 45, 16, 2} };
3376
3377/*
3378 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3379 * would be when CPU is idle and so we just decay the old load without
3380 * adding any new load.
3381 */
3382static unsigned long
3383decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3384{
3385 int j = 0;
3386
3387 if (!missed_updates)
3388 return load;
3389
3390 if (missed_updates >= degrade_zero_ticks[idx])
3391 return 0;
3392
3393 if (idx == 1)
3394 return load >> missed_updates;
3395
3396 while (missed_updates) {
3397 if (missed_updates % 2)
3398 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3399
3400 missed_updates >>= 1;
3401 j++;
3402 }
3403 return load;
3404}
3405
46cb4b7c 3406/*
dd41f596 3407 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3408 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3409 * every tick. We fix it up based on jiffies.
46cb4b7c 3410 */
dd41f596 3411static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3412{
495eca49 3413 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3414 unsigned long curr_jiffies = jiffies;
3415 unsigned long pending_updates;
dd41f596 3416 int i, scale;
46cb4b7c 3417
dd41f596 3418 this_rq->nr_load_updates++;
46cb4b7c 3419
fdf3e95d
VP
3420 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3421 if (curr_jiffies == this_rq->last_load_update_tick)
3422 return;
3423
3424 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3425 this_rq->last_load_update_tick = curr_jiffies;
3426
dd41f596 3427 /* Update our load: */
fdf3e95d
VP
3428 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3429 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3430 unsigned long old_load, new_load;
7d1e6a9b 3431
dd41f596 3432 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3433
dd41f596 3434 old_load = this_rq->cpu_load[i];
fdf3e95d 3435 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3436 new_load = this_load;
a25707f3
IM
3437 /*
3438 * Round up the averaging division if load is increasing. This
3439 * prevents us from getting stuck on 9 if the load is 10, for
3440 * example.
3441 */
3442 if (new_load > old_load)
fdf3e95d
VP
3443 new_load += scale - 1;
3444
3445 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3446 }
da2b71ed
SS
3447
3448 sched_avg_update(this_rq);
fdf3e95d
VP
3449}
3450
3451static void update_cpu_load_active(struct rq *this_rq)
3452{
3453 update_cpu_load(this_rq);
46cb4b7c 3454
74f5187a 3455 calc_load_account_active(this_rq);
46cb4b7c
SS
3456}
3457
dd41f596 3458#ifdef CONFIG_SMP
8a0be9ef 3459
46cb4b7c 3460/*
38022906
PZ
3461 * sched_exec - execve() is a valuable balancing opportunity, because at
3462 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3463 */
38022906 3464void sched_exec(void)
46cb4b7c 3465{
38022906 3466 struct task_struct *p = current;
1da177e4 3467 unsigned long flags;
0017d735 3468 int dest_cpu;
46cb4b7c 3469
8f42ced9 3470 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3471 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3472 if (dest_cpu == smp_processor_id())
3473 goto unlock;
38022906 3474
8f42ced9 3475 if (likely(cpu_active(dest_cpu))) {
969c7921 3476 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3477
8f42ced9
PZ
3478 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3479 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3480 return;
3481 }
0017d735 3482unlock:
8f42ced9 3483 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3484}
dd41f596 3485
1da177e4
LT
3486#endif
3487
1da177e4
LT
3488DEFINE_PER_CPU(struct kernel_stat, kstat);
3489
3490EXPORT_PER_CPU_SYMBOL(kstat);
3491
3492/*
c5f8d995 3493 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3494 * @p in case that task is currently running.
c5f8d995
HS
3495 *
3496 * Called with task_rq_lock() held on @rq.
1da177e4 3497 */
c5f8d995
HS
3498static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3499{
3500 u64 ns = 0;
3501
3502 if (task_current(rq, p)) {
3503 update_rq_clock(rq);
305e6835 3504 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3505 if ((s64)ns < 0)
3506 ns = 0;
3507 }
3508
3509 return ns;
3510}
3511
bb34d92f 3512unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3513{
1da177e4 3514 unsigned long flags;
41b86e9c 3515 struct rq *rq;
bb34d92f 3516 u64 ns = 0;
48f24c4d 3517
41b86e9c 3518 rq = task_rq_lock(p, &flags);
c5f8d995 3519 ns = do_task_delta_exec(p, rq);
0122ec5b 3520 task_rq_unlock(rq, p, &flags);
1508487e 3521
c5f8d995
HS
3522 return ns;
3523}
f06febc9 3524
c5f8d995
HS
3525/*
3526 * Return accounted runtime for the task.
3527 * In case the task is currently running, return the runtime plus current's
3528 * pending runtime that have not been accounted yet.
3529 */
3530unsigned long long task_sched_runtime(struct task_struct *p)
3531{
3532 unsigned long flags;
3533 struct rq *rq;
3534 u64 ns = 0;
3535
3536 rq = task_rq_lock(p, &flags);
3537 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3538 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3539
3540 return ns;
3541}
48f24c4d 3542
c5f8d995
HS
3543/*
3544 * Return sum_exec_runtime for the thread group.
3545 * In case the task is currently running, return the sum plus current's
3546 * pending runtime that have not been accounted yet.
3547 *
3548 * Note that the thread group might have other running tasks as well,
3549 * so the return value not includes other pending runtime that other
3550 * running tasks might have.
3551 */
3552unsigned long long thread_group_sched_runtime(struct task_struct *p)
3553{
3554 struct task_cputime totals;
3555 unsigned long flags;
3556 struct rq *rq;
3557 u64 ns;
3558
3559 rq = task_rq_lock(p, &flags);
3560 thread_group_cputime(p, &totals);
3561 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3562 task_rq_unlock(rq, p, &flags);
48f24c4d 3563
1da177e4
LT
3564 return ns;
3565}
3566
1da177e4
LT
3567/*
3568 * Account user cpu time to a process.
3569 * @p: the process that the cpu time gets accounted to
1da177e4 3570 * @cputime: the cpu time spent in user space since the last update
457533a7 3571 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3572 */
457533a7
MS
3573void account_user_time(struct task_struct *p, cputime_t cputime,
3574 cputime_t cputime_scaled)
1da177e4
LT
3575{
3576 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3577 cputime64_t tmp;
3578
457533a7 3579 /* Add user time to process. */
1da177e4 3580 p->utime = cputime_add(p->utime, cputime);
457533a7 3581 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3582 account_group_user_time(p, cputime);
1da177e4
LT
3583
3584 /* Add user time to cpustat. */
3585 tmp = cputime_to_cputime64(cputime);
3586 if (TASK_NICE(p) > 0)
3587 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3588 else
3589 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3590
3591 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3592 /* Account for user time used */
3593 acct_update_integrals(p);
1da177e4
LT
3594}
3595
94886b84
LV
3596/*
3597 * Account guest cpu time to a process.
3598 * @p: the process that the cpu time gets accounted to
3599 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3600 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3601 */
457533a7
MS
3602static void account_guest_time(struct task_struct *p, cputime_t cputime,
3603 cputime_t cputime_scaled)
94886b84
LV
3604{
3605 cputime64_t tmp;
3606 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3607
3608 tmp = cputime_to_cputime64(cputime);
3609
457533a7 3610 /* Add guest time to process. */
94886b84 3611 p->utime = cputime_add(p->utime, cputime);
457533a7 3612 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3613 account_group_user_time(p, cputime);
94886b84
LV
3614 p->gtime = cputime_add(p->gtime, cputime);
3615
457533a7 3616 /* Add guest time to cpustat. */
ce0e7b28
RO
3617 if (TASK_NICE(p) > 0) {
3618 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3619 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3620 } else {
3621 cpustat->user = cputime64_add(cpustat->user, tmp);
3622 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3623 }
94886b84
LV
3624}
3625
70a89a66
VP
3626/*
3627 * Account system cpu time to a process and desired cpustat field
3628 * @p: the process that the cpu time gets accounted to
3629 * @cputime: the cpu time spent in kernel space since the last update
3630 * @cputime_scaled: cputime scaled by cpu frequency
3631 * @target_cputime64: pointer to cpustat field that has to be updated
3632 */
3633static inline
3634void __account_system_time(struct task_struct *p, cputime_t cputime,
3635 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3636{
3637 cputime64_t tmp = cputime_to_cputime64(cputime);
3638
3639 /* Add system time to process. */
3640 p->stime = cputime_add(p->stime, cputime);
3641 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3642 account_group_system_time(p, cputime);
3643
3644 /* Add system time to cpustat. */
3645 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3646 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3647
3648 /* Account for system time used */
3649 acct_update_integrals(p);
3650}
3651
1da177e4
LT
3652/*
3653 * Account system cpu time to a process.
3654 * @p: the process that the cpu time gets accounted to
3655 * @hardirq_offset: the offset to subtract from hardirq_count()
3656 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3657 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3658 */
3659void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3660 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3661{
3662 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3663 cputime64_t *target_cputime64;
1da177e4 3664
983ed7a6 3665 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3666 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3667 return;
3668 }
94886b84 3669
1da177e4 3670 if (hardirq_count() - hardirq_offset)
70a89a66 3671 target_cputime64 = &cpustat->irq;
75e1056f 3672 else if (in_serving_softirq())
70a89a66 3673 target_cputime64 = &cpustat->softirq;
1da177e4 3674 else
70a89a66 3675 target_cputime64 = &cpustat->system;
ef12fefa 3676
70a89a66 3677 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3678}
3679
c66f08be 3680/*
1da177e4 3681 * Account for involuntary wait time.
544b4a1f 3682 * @cputime: the cpu time spent in involuntary wait
c66f08be 3683 */
79741dd3 3684void account_steal_time(cputime_t cputime)
c66f08be 3685{
79741dd3
MS
3686 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3687 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3688
3689 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3690}
3691
1da177e4 3692/*
79741dd3
MS
3693 * Account for idle time.
3694 * @cputime: the cpu time spent in idle wait
1da177e4 3695 */
79741dd3 3696void account_idle_time(cputime_t cputime)
1da177e4
LT
3697{
3698 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3699 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3700 struct rq *rq = this_rq();
1da177e4 3701
79741dd3
MS
3702 if (atomic_read(&rq->nr_iowait) > 0)
3703 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3704 else
3705 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3706}
3707
79741dd3
MS
3708#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3709
abb74cef
VP
3710#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3711/*
3712 * Account a tick to a process and cpustat
3713 * @p: the process that the cpu time gets accounted to
3714 * @user_tick: is the tick from userspace
3715 * @rq: the pointer to rq
3716 *
3717 * Tick demultiplexing follows the order
3718 * - pending hardirq update
3719 * - pending softirq update
3720 * - user_time
3721 * - idle_time
3722 * - system time
3723 * - check for guest_time
3724 * - else account as system_time
3725 *
3726 * Check for hardirq is done both for system and user time as there is
3727 * no timer going off while we are on hardirq and hence we may never get an
3728 * opportunity to update it solely in system time.
3729 * p->stime and friends are only updated on system time and not on irq
3730 * softirq as those do not count in task exec_runtime any more.
3731 */
3732static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3733 struct rq *rq)
3734{
3735 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3736 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3737 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3738
3739 if (irqtime_account_hi_update()) {
3740 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3741 } else if (irqtime_account_si_update()) {
3742 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3743 } else if (this_cpu_ksoftirqd() == p) {
3744 /*
3745 * ksoftirqd time do not get accounted in cpu_softirq_time.
3746 * So, we have to handle it separately here.
3747 * Also, p->stime needs to be updated for ksoftirqd.
3748 */
3749 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3750 &cpustat->softirq);
abb74cef
VP
3751 } else if (user_tick) {
3752 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3753 } else if (p == rq->idle) {
3754 account_idle_time(cputime_one_jiffy);
3755 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3756 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3757 } else {
3758 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3759 &cpustat->system);
3760 }
3761}
3762
3763static void irqtime_account_idle_ticks(int ticks)
3764{
3765 int i;
3766 struct rq *rq = this_rq();
3767
3768 for (i = 0; i < ticks; i++)
3769 irqtime_account_process_tick(current, 0, rq);
3770}
544b4a1f 3771#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3772static void irqtime_account_idle_ticks(int ticks) {}
3773static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3774 struct rq *rq) {}
544b4a1f 3775#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3776
3777/*
3778 * Account a single tick of cpu time.
3779 * @p: the process that the cpu time gets accounted to
3780 * @user_tick: indicates if the tick is a user or a system tick
3781 */
3782void account_process_tick(struct task_struct *p, int user_tick)
3783{
a42548a1 3784 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3785 struct rq *rq = this_rq();
3786
abb74cef
VP
3787 if (sched_clock_irqtime) {
3788 irqtime_account_process_tick(p, user_tick, rq);
3789 return;
3790 }
3791
79741dd3 3792 if (user_tick)
a42548a1 3793 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3794 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3795 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3796 one_jiffy_scaled);
3797 else
a42548a1 3798 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3799}
3800
3801/*
3802 * Account multiple ticks of steal time.
3803 * @p: the process from which the cpu time has been stolen
3804 * @ticks: number of stolen ticks
3805 */
3806void account_steal_ticks(unsigned long ticks)
3807{
3808 account_steal_time(jiffies_to_cputime(ticks));
3809}
3810
3811/*
3812 * Account multiple ticks of idle time.
3813 * @ticks: number of stolen ticks
3814 */
3815void account_idle_ticks(unsigned long ticks)
3816{
abb74cef
VP
3817
3818 if (sched_clock_irqtime) {
3819 irqtime_account_idle_ticks(ticks);
3820 return;
3821 }
3822
79741dd3 3823 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3824}
3825
79741dd3
MS
3826#endif
3827
49048622
BS
3828/*
3829 * Use precise platform statistics if available:
3830 */
3831#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3832void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3833{
d99ca3b9
HS
3834 *ut = p->utime;
3835 *st = p->stime;
49048622
BS
3836}
3837
0cf55e1e 3838void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3839{
0cf55e1e
HS
3840 struct task_cputime cputime;
3841
3842 thread_group_cputime(p, &cputime);
3843
3844 *ut = cputime.utime;
3845 *st = cputime.stime;
49048622
BS
3846}
3847#else
761b1d26
HS
3848
3849#ifndef nsecs_to_cputime
b7b20df9 3850# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3851#endif
3852
d180c5bc 3853void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3854{
d99ca3b9 3855 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3856
3857 /*
3858 * Use CFS's precise accounting:
3859 */
d180c5bc 3860 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3861
3862 if (total) {
e75e863d 3863 u64 temp = rtime;
d180c5bc 3864
e75e863d 3865 temp *= utime;
49048622 3866 do_div(temp, total);
d180c5bc
HS
3867 utime = (cputime_t)temp;
3868 } else
3869 utime = rtime;
49048622 3870
d180c5bc
HS
3871 /*
3872 * Compare with previous values, to keep monotonicity:
3873 */
761b1d26 3874 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3875 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3876
d99ca3b9
HS
3877 *ut = p->prev_utime;
3878 *st = p->prev_stime;
49048622
BS
3879}
3880
0cf55e1e
HS
3881/*
3882 * Must be called with siglock held.
3883 */
3884void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3885{
0cf55e1e
HS
3886 struct signal_struct *sig = p->signal;
3887 struct task_cputime cputime;
3888 cputime_t rtime, utime, total;
49048622 3889
0cf55e1e 3890 thread_group_cputime(p, &cputime);
49048622 3891
0cf55e1e
HS
3892 total = cputime_add(cputime.utime, cputime.stime);
3893 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3894
0cf55e1e 3895 if (total) {
e75e863d 3896 u64 temp = rtime;
49048622 3897
e75e863d 3898 temp *= cputime.utime;
0cf55e1e
HS
3899 do_div(temp, total);
3900 utime = (cputime_t)temp;
3901 } else
3902 utime = rtime;
3903
3904 sig->prev_utime = max(sig->prev_utime, utime);
3905 sig->prev_stime = max(sig->prev_stime,
3906 cputime_sub(rtime, sig->prev_utime));
3907
3908 *ut = sig->prev_utime;
3909 *st = sig->prev_stime;
49048622 3910}
49048622 3911#endif
49048622 3912
7835b98b
CL
3913/*
3914 * This function gets called by the timer code, with HZ frequency.
3915 * We call it with interrupts disabled.
3916 *
3917 * It also gets called by the fork code, when changing the parent's
3918 * timeslices.
3919 */
3920void scheduler_tick(void)
3921{
7835b98b
CL
3922 int cpu = smp_processor_id();
3923 struct rq *rq = cpu_rq(cpu);
dd41f596 3924 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3925
3926 sched_clock_tick();
dd41f596 3927
05fa785c 3928 raw_spin_lock(&rq->lock);
3e51f33f 3929 update_rq_clock(rq);
fdf3e95d 3930 update_cpu_load_active(rq);
fa85ae24 3931 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3932 raw_spin_unlock(&rq->lock);
7835b98b 3933
e9d2b064 3934 perf_event_task_tick();
e220d2dc 3935
e418e1c2 3936#ifdef CONFIG_SMP
dd41f596
IM
3937 rq->idle_at_tick = idle_cpu(cpu);
3938 trigger_load_balance(rq, cpu);
e418e1c2 3939#endif
1da177e4
LT
3940}
3941
132380a0 3942notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3943{
3944 if (in_lock_functions(addr)) {
3945 addr = CALLER_ADDR2;
3946 if (in_lock_functions(addr))
3947 addr = CALLER_ADDR3;
3948 }
3949 return addr;
3950}
1da177e4 3951
7e49fcce
SR
3952#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3953 defined(CONFIG_PREEMPT_TRACER))
3954
43627582 3955void __kprobes add_preempt_count(int val)
1da177e4 3956{
6cd8a4bb 3957#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3958 /*
3959 * Underflow?
3960 */
9a11b49a
IM
3961 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3962 return;
6cd8a4bb 3963#endif
1da177e4 3964 preempt_count() += val;
6cd8a4bb 3965#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3966 /*
3967 * Spinlock count overflowing soon?
3968 */
33859f7f
MOS
3969 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3970 PREEMPT_MASK - 10);
6cd8a4bb
SR
3971#endif
3972 if (preempt_count() == val)
3973 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3974}
3975EXPORT_SYMBOL(add_preempt_count);
3976
43627582 3977void __kprobes sub_preempt_count(int val)
1da177e4 3978{
6cd8a4bb 3979#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3980 /*
3981 * Underflow?
3982 */
01e3eb82 3983 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3984 return;
1da177e4
LT
3985 /*
3986 * Is the spinlock portion underflowing?
3987 */
9a11b49a
IM
3988 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3989 !(preempt_count() & PREEMPT_MASK)))
3990 return;
6cd8a4bb 3991#endif
9a11b49a 3992
6cd8a4bb
SR
3993 if (preempt_count() == val)
3994 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3995 preempt_count() -= val;
3996}
3997EXPORT_SYMBOL(sub_preempt_count);
3998
3999#endif
4000
4001/*
dd41f596 4002 * Print scheduling while atomic bug:
1da177e4 4003 */
dd41f596 4004static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4005{
838225b4
SS
4006 struct pt_regs *regs = get_irq_regs();
4007
3df0fc5b
PZ
4008 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4009 prev->comm, prev->pid, preempt_count());
838225b4 4010
dd41f596 4011 debug_show_held_locks(prev);
e21f5b15 4012 print_modules();
dd41f596
IM
4013 if (irqs_disabled())
4014 print_irqtrace_events(prev);
838225b4
SS
4015
4016 if (regs)
4017 show_regs(regs);
4018 else
4019 dump_stack();
dd41f596 4020}
1da177e4 4021
dd41f596
IM
4022/*
4023 * Various schedule()-time debugging checks and statistics:
4024 */
4025static inline void schedule_debug(struct task_struct *prev)
4026{
1da177e4 4027 /*
41a2d6cf 4028 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4029 * schedule() atomically, we ignore that path for now.
4030 * Otherwise, whine if we are scheduling when we should not be.
4031 */
3f33a7ce 4032 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4033 __schedule_bug(prev);
4034
1da177e4
LT
4035 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4036
2d72376b 4037 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4038#ifdef CONFIG_SCHEDSTATS
4039 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4040 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4041 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4042 }
4043#endif
dd41f596
IM
4044}
4045
6cecd084 4046static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4047{
fd2f4419 4048 if (prev->on_rq)
a64692a3 4049 update_rq_clock(rq);
6cecd084 4050 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4051}
4052
dd41f596
IM
4053/*
4054 * Pick up the highest-prio task:
4055 */
4056static inline struct task_struct *
b67802ea 4057pick_next_task(struct rq *rq)
dd41f596 4058{
5522d5d5 4059 const struct sched_class *class;
dd41f596 4060 struct task_struct *p;
1da177e4
LT
4061
4062 /*
dd41f596
IM
4063 * Optimization: we know that if all tasks are in
4064 * the fair class we can call that function directly:
1da177e4 4065 */
dd41f596 4066 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4067 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4068 if (likely(p))
4069 return p;
1da177e4
LT
4070 }
4071
34f971f6 4072 for_each_class(class) {
fb8d4724 4073 p = class->pick_next_task(rq);
dd41f596
IM
4074 if (p)
4075 return p;
dd41f596 4076 }
34f971f6
PZ
4077
4078 BUG(); /* the idle class will always have a runnable task */
dd41f596 4079}
1da177e4 4080
dd41f596
IM
4081/*
4082 * schedule() is the main scheduler function.
4083 */
ff743345 4084asmlinkage void __sched schedule(void)
dd41f596
IM
4085{
4086 struct task_struct *prev, *next;
67ca7bde 4087 unsigned long *switch_count;
dd41f596 4088 struct rq *rq;
31656519 4089 int cpu;
dd41f596 4090
ff743345
PZ
4091need_resched:
4092 preempt_disable();
dd41f596
IM
4093 cpu = smp_processor_id();
4094 rq = cpu_rq(cpu);
25502a6c 4095 rcu_note_context_switch(cpu);
dd41f596 4096 prev = rq->curr;
dd41f596 4097
dd41f596 4098 schedule_debug(prev);
1da177e4 4099
31656519 4100 if (sched_feat(HRTICK))
f333fdc9 4101 hrtick_clear(rq);
8f4d37ec 4102
05fa785c 4103 raw_spin_lock_irq(&rq->lock);
1da177e4 4104
246d86b5 4105 switch_count = &prev->nivcsw;
1da177e4 4106 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4107 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4108 prev->state = TASK_RUNNING;
21aa9af0 4109 } else {
2acca55e
PZ
4110 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4111 prev->on_rq = 0;
4112
21aa9af0 4113 /*
2acca55e
PZ
4114 * If a worker went to sleep, notify and ask workqueue
4115 * whether it wants to wake up a task to maintain
4116 * concurrency.
21aa9af0
TH
4117 */
4118 if (prev->flags & PF_WQ_WORKER) {
4119 struct task_struct *to_wakeup;
4120
4121 to_wakeup = wq_worker_sleeping(prev, cpu);
4122 if (to_wakeup)
4123 try_to_wake_up_local(to_wakeup);
4124 }
fd2f4419 4125
6631e635 4126 /*
2acca55e
PZ
4127 * If we are going to sleep and we have plugged IO
4128 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4129 */
4130 if (blk_needs_flush_plug(prev)) {
4131 raw_spin_unlock(&rq->lock);
4132 blk_flush_plug(prev);
4133 raw_spin_lock(&rq->lock);
4134 }
21aa9af0 4135 }
dd41f596 4136 switch_count = &prev->nvcsw;
1da177e4
LT
4137 }
4138
3f029d3c 4139 pre_schedule(rq, prev);
f65eda4f 4140
dd41f596 4141 if (unlikely(!rq->nr_running))
1da177e4 4142 idle_balance(cpu, rq);
1da177e4 4143
df1c99d4 4144 put_prev_task(rq, prev);
b67802ea 4145 next = pick_next_task(rq);
f26f9aff
MG
4146 clear_tsk_need_resched(prev);
4147 rq->skip_clock_update = 0;
1da177e4 4148
1da177e4 4149 if (likely(prev != next)) {
1da177e4
LT
4150 rq->nr_switches++;
4151 rq->curr = next;
4152 ++*switch_count;
4153
dd41f596 4154 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4155 /*
246d86b5
ON
4156 * The context switch have flipped the stack from under us
4157 * and restored the local variables which were saved when
4158 * this task called schedule() in the past. prev == current
4159 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4160 */
4161 cpu = smp_processor_id();
4162 rq = cpu_rq(cpu);
1da177e4 4163 } else
05fa785c 4164 raw_spin_unlock_irq(&rq->lock);
1da177e4 4165
3f029d3c 4166 post_schedule(rq);
1da177e4 4167
1da177e4 4168 preempt_enable_no_resched();
ff743345 4169 if (need_resched())
1da177e4
LT
4170 goto need_resched;
4171}
1da177e4
LT
4172EXPORT_SYMBOL(schedule);
4173
c08f7829 4174#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4175
c6eb3dda
PZ
4176static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4177{
4178 bool ret = false;
0d66bf6d 4179
c6eb3dda
PZ
4180 rcu_read_lock();
4181 if (lock->owner != owner)
4182 goto fail;
0d66bf6d
PZ
4183
4184 /*
c6eb3dda
PZ
4185 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4186 * lock->owner still matches owner, if that fails, owner might
4187 * point to free()d memory, if it still matches, the rcu_read_lock()
4188 * ensures the memory stays valid.
0d66bf6d 4189 */
c6eb3dda 4190 barrier();
0d66bf6d 4191
c6eb3dda
PZ
4192 ret = owner->on_cpu;
4193fail:
4194 rcu_read_unlock();
0d66bf6d 4195
c6eb3dda
PZ
4196 return ret;
4197}
0d66bf6d 4198
c6eb3dda
PZ
4199/*
4200 * Look out! "owner" is an entirely speculative pointer
4201 * access and not reliable.
4202 */
4203int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4204{
4205 if (!sched_feat(OWNER_SPIN))
4206 return 0;
0d66bf6d 4207
c6eb3dda
PZ
4208 while (owner_running(lock, owner)) {
4209 if (need_resched())
0d66bf6d
PZ
4210 return 0;
4211
335d7afb 4212 arch_mutex_cpu_relax();
0d66bf6d 4213 }
4b402210 4214
c6eb3dda
PZ
4215 /*
4216 * If the owner changed to another task there is likely
4217 * heavy contention, stop spinning.
4218 */
4219 if (lock->owner)
4220 return 0;
4221
0d66bf6d
PZ
4222 return 1;
4223}
4224#endif
4225
1da177e4
LT
4226#ifdef CONFIG_PREEMPT
4227/*
2ed6e34f 4228 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4229 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4230 * occur there and call schedule directly.
4231 */
d1f74e20 4232asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4233{
4234 struct thread_info *ti = current_thread_info();
6478d880 4235
1da177e4
LT
4236 /*
4237 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4238 * we do not want to preempt the current task. Just return..
1da177e4 4239 */
beed33a8 4240 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4241 return;
4242
3a5c359a 4243 do {
d1f74e20 4244 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4245 schedule();
d1f74e20 4246 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4247
3a5c359a
AK
4248 /*
4249 * Check again in case we missed a preemption opportunity
4250 * between schedule and now.
4251 */
4252 barrier();
5ed0cec0 4253 } while (need_resched());
1da177e4 4254}
1da177e4
LT
4255EXPORT_SYMBOL(preempt_schedule);
4256
4257/*
2ed6e34f 4258 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4259 * off of irq context.
4260 * Note, that this is called and return with irqs disabled. This will
4261 * protect us against recursive calling from irq.
4262 */
4263asmlinkage void __sched preempt_schedule_irq(void)
4264{
4265 struct thread_info *ti = current_thread_info();
6478d880 4266
2ed6e34f 4267 /* Catch callers which need to be fixed */
1da177e4
LT
4268 BUG_ON(ti->preempt_count || !irqs_disabled());
4269
3a5c359a
AK
4270 do {
4271 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4272 local_irq_enable();
4273 schedule();
4274 local_irq_disable();
3a5c359a 4275 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4276
3a5c359a
AK
4277 /*
4278 * Check again in case we missed a preemption opportunity
4279 * between schedule and now.
4280 */
4281 barrier();
5ed0cec0 4282 } while (need_resched());
1da177e4
LT
4283}
4284
4285#endif /* CONFIG_PREEMPT */
4286
63859d4f 4287int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4288 void *key)
1da177e4 4289{
63859d4f 4290 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4291}
1da177e4
LT
4292EXPORT_SYMBOL(default_wake_function);
4293
4294/*
41a2d6cf
IM
4295 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4296 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4297 * number) then we wake all the non-exclusive tasks and one exclusive task.
4298 *
4299 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4300 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4301 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4302 */
78ddb08f 4303static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4304 int nr_exclusive, int wake_flags, void *key)
1da177e4 4305{
2e45874c 4306 wait_queue_t *curr, *next;
1da177e4 4307
2e45874c 4308 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4309 unsigned flags = curr->flags;
4310
63859d4f 4311 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4312 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4313 break;
4314 }
4315}
4316
4317/**
4318 * __wake_up - wake up threads blocked on a waitqueue.
4319 * @q: the waitqueue
4320 * @mode: which threads
4321 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4322 * @key: is directly passed to the wakeup function
50fa610a
DH
4323 *
4324 * It may be assumed that this function implies a write memory barrier before
4325 * changing the task state if and only if any tasks are woken up.
1da177e4 4326 */
7ad5b3a5 4327void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4328 int nr_exclusive, void *key)
1da177e4
LT
4329{
4330 unsigned long flags;
4331
4332 spin_lock_irqsave(&q->lock, flags);
4333 __wake_up_common(q, mode, nr_exclusive, 0, key);
4334 spin_unlock_irqrestore(&q->lock, flags);
4335}
1da177e4
LT
4336EXPORT_SYMBOL(__wake_up);
4337
4338/*
4339 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4340 */
7ad5b3a5 4341void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4342{
4343 __wake_up_common(q, mode, 1, 0, NULL);
4344}
22c43c81 4345EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4346
4ede816a
DL
4347void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4348{
4349 __wake_up_common(q, mode, 1, 0, key);
4350}
bf294b41 4351EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4352
1da177e4 4353/**
4ede816a 4354 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4355 * @q: the waitqueue
4356 * @mode: which threads
4357 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4358 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4359 *
4360 * The sync wakeup differs that the waker knows that it will schedule
4361 * away soon, so while the target thread will be woken up, it will not
4362 * be migrated to another CPU - ie. the two threads are 'synchronized'
4363 * with each other. This can prevent needless bouncing between CPUs.
4364 *
4365 * On UP it can prevent extra preemption.
50fa610a
DH
4366 *
4367 * It may be assumed that this function implies a write memory barrier before
4368 * changing the task state if and only if any tasks are woken up.
1da177e4 4369 */
4ede816a
DL
4370void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4371 int nr_exclusive, void *key)
1da177e4
LT
4372{
4373 unsigned long flags;
7d478721 4374 int wake_flags = WF_SYNC;
1da177e4
LT
4375
4376 if (unlikely(!q))
4377 return;
4378
4379 if (unlikely(!nr_exclusive))
7d478721 4380 wake_flags = 0;
1da177e4
LT
4381
4382 spin_lock_irqsave(&q->lock, flags);
7d478721 4383 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4384 spin_unlock_irqrestore(&q->lock, flags);
4385}
4ede816a
DL
4386EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4387
4388/*
4389 * __wake_up_sync - see __wake_up_sync_key()
4390 */
4391void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4392{
4393 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4394}
1da177e4
LT
4395EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4396
65eb3dc6
KD
4397/**
4398 * complete: - signals a single thread waiting on this completion
4399 * @x: holds the state of this particular completion
4400 *
4401 * This will wake up a single thread waiting on this completion. Threads will be
4402 * awakened in the same order in which they were queued.
4403 *
4404 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4405 *
4406 * It may be assumed that this function implies a write memory barrier before
4407 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4408 */
b15136e9 4409void complete(struct completion *x)
1da177e4
LT
4410{
4411 unsigned long flags;
4412
4413 spin_lock_irqsave(&x->wait.lock, flags);
4414 x->done++;
d9514f6c 4415 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4416 spin_unlock_irqrestore(&x->wait.lock, flags);
4417}
4418EXPORT_SYMBOL(complete);
4419
65eb3dc6
KD
4420/**
4421 * complete_all: - signals all threads waiting on this completion
4422 * @x: holds the state of this particular completion
4423 *
4424 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4425 *
4426 * It may be assumed that this function implies a write memory barrier before
4427 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4428 */
b15136e9 4429void complete_all(struct completion *x)
1da177e4
LT
4430{
4431 unsigned long flags;
4432
4433 spin_lock_irqsave(&x->wait.lock, flags);
4434 x->done += UINT_MAX/2;
d9514f6c 4435 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4436 spin_unlock_irqrestore(&x->wait.lock, flags);
4437}
4438EXPORT_SYMBOL(complete_all);
4439
8cbbe86d
AK
4440static inline long __sched
4441do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4442{
1da177e4
LT
4443 if (!x->done) {
4444 DECLARE_WAITQUEUE(wait, current);
4445
a93d2f17 4446 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4447 do {
94d3d824 4448 if (signal_pending_state(state, current)) {
ea71a546
ON
4449 timeout = -ERESTARTSYS;
4450 break;
8cbbe86d
AK
4451 }
4452 __set_current_state(state);
1da177e4
LT
4453 spin_unlock_irq(&x->wait.lock);
4454 timeout = schedule_timeout(timeout);
4455 spin_lock_irq(&x->wait.lock);
ea71a546 4456 } while (!x->done && timeout);
1da177e4 4457 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4458 if (!x->done)
4459 return timeout;
1da177e4
LT
4460 }
4461 x->done--;
ea71a546 4462 return timeout ?: 1;
1da177e4 4463}
1da177e4 4464
8cbbe86d
AK
4465static long __sched
4466wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4467{
1da177e4
LT
4468 might_sleep();
4469
4470 spin_lock_irq(&x->wait.lock);
8cbbe86d 4471 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4472 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4473 return timeout;
4474}
1da177e4 4475
65eb3dc6
KD
4476/**
4477 * wait_for_completion: - waits for completion of a task
4478 * @x: holds the state of this particular completion
4479 *
4480 * This waits to be signaled for completion of a specific task. It is NOT
4481 * interruptible and there is no timeout.
4482 *
4483 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4484 * and interrupt capability. Also see complete().
4485 */
b15136e9 4486void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4487{
4488 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4489}
8cbbe86d 4490EXPORT_SYMBOL(wait_for_completion);
1da177e4 4491
65eb3dc6
KD
4492/**
4493 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4494 * @x: holds the state of this particular completion
4495 * @timeout: timeout value in jiffies
4496 *
4497 * This waits for either a completion of a specific task to be signaled or for a
4498 * specified timeout to expire. The timeout is in jiffies. It is not
4499 * interruptible.
4500 */
b15136e9 4501unsigned long __sched
8cbbe86d 4502wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4503{
8cbbe86d 4504 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4505}
8cbbe86d 4506EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4507
65eb3dc6
KD
4508/**
4509 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4510 * @x: holds the state of this particular completion
4511 *
4512 * This waits for completion of a specific task to be signaled. It is
4513 * interruptible.
4514 */
8cbbe86d 4515int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4516{
51e97990
AK
4517 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4518 if (t == -ERESTARTSYS)
4519 return t;
4520 return 0;
0fec171c 4521}
8cbbe86d 4522EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4523
65eb3dc6
KD
4524/**
4525 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4526 * @x: holds the state of this particular completion
4527 * @timeout: timeout value in jiffies
4528 *
4529 * This waits for either a completion of a specific task to be signaled or for a
4530 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4531 */
6bf41237 4532long __sched
8cbbe86d
AK
4533wait_for_completion_interruptible_timeout(struct completion *x,
4534 unsigned long timeout)
0fec171c 4535{
8cbbe86d 4536 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4537}
8cbbe86d 4538EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4539
65eb3dc6
KD
4540/**
4541 * wait_for_completion_killable: - waits for completion of a task (killable)
4542 * @x: holds the state of this particular completion
4543 *
4544 * This waits to be signaled for completion of a specific task. It can be
4545 * interrupted by a kill signal.
4546 */
009e577e
MW
4547int __sched wait_for_completion_killable(struct completion *x)
4548{
4549 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4550 if (t == -ERESTARTSYS)
4551 return t;
4552 return 0;
4553}
4554EXPORT_SYMBOL(wait_for_completion_killable);
4555
0aa12fb4
SW
4556/**
4557 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4558 * @x: holds the state of this particular completion
4559 * @timeout: timeout value in jiffies
4560 *
4561 * This waits for either a completion of a specific task to be
4562 * signaled or for a specified timeout to expire. It can be
4563 * interrupted by a kill signal. The timeout is in jiffies.
4564 */
6bf41237 4565long __sched
0aa12fb4
SW
4566wait_for_completion_killable_timeout(struct completion *x,
4567 unsigned long timeout)
4568{
4569 return wait_for_common(x, timeout, TASK_KILLABLE);
4570}
4571EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4572
be4de352
DC
4573/**
4574 * try_wait_for_completion - try to decrement a completion without blocking
4575 * @x: completion structure
4576 *
4577 * Returns: 0 if a decrement cannot be done without blocking
4578 * 1 if a decrement succeeded.
4579 *
4580 * If a completion is being used as a counting completion,
4581 * attempt to decrement the counter without blocking. This
4582 * enables us to avoid waiting if the resource the completion
4583 * is protecting is not available.
4584 */
4585bool try_wait_for_completion(struct completion *x)
4586{
7539a3b3 4587 unsigned long flags;
be4de352
DC
4588 int ret = 1;
4589
7539a3b3 4590 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4591 if (!x->done)
4592 ret = 0;
4593 else
4594 x->done--;
7539a3b3 4595 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4596 return ret;
4597}
4598EXPORT_SYMBOL(try_wait_for_completion);
4599
4600/**
4601 * completion_done - Test to see if a completion has any waiters
4602 * @x: completion structure
4603 *
4604 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4605 * 1 if there are no waiters.
4606 *
4607 */
4608bool completion_done(struct completion *x)
4609{
7539a3b3 4610 unsigned long flags;
be4de352
DC
4611 int ret = 1;
4612
7539a3b3 4613 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4614 if (!x->done)
4615 ret = 0;
7539a3b3 4616 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4617 return ret;
4618}
4619EXPORT_SYMBOL(completion_done);
4620
8cbbe86d
AK
4621static long __sched
4622sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4623{
0fec171c
IM
4624 unsigned long flags;
4625 wait_queue_t wait;
4626
4627 init_waitqueue_entry(&wait, current);
1da177e4 4628
8cbbe86d 4629 __set_current_state(state);
1da177e4 4630
8cbbe86d
AK
4631 spin_lock_irqsave(&q->lock, flags);
4632 __add_wait_queue(q, &wait);
4633 spin_unlock(&q->lock);
4634 timeout = schedule_timeout(timeout);
4635 spin_lock_irq(&q->lock);
4636 __remove_wait_queue(q, &wait);
4637 spin_unlock_irqrestore(&q->lock, flags);
4638
4639 return timeout;
4640}
4641
4642void __sched interruptible_sleep_on(wait_queue_head_t *q)
4643{
4644 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4645}
1da177e4
LT
4646EXPORT_SYMBOL(interruptible_sleep_on);
4647
0fec171c 4648long __sched
95cdf3b7 4649interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4650{
8cbbe86d 4651 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4652}
1da177e4
LT
4653EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4654
0fec171c 4655void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4656{
8cbbe86d 4657 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4658}
1da177e4
LT
4659EXPORT_SYMBOL(sleep_on);
4660
0fec171c 4661long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4662{
8cbbe86d 4663 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4664}
1da177e4
LT
4665EXPORT_SYMBOL(sleep_on_timeout);
4666
b29739f9
IM
4667#ifdef CONFIG_RT_MUTEXES
4668
4669/*
4670 * rt_mutex_setprio - set the current priority of a task
4671 * @p: task
4672 * @prio: prio value (kernel-internal form)
4673 *
4674 * This function changes the 'effective' priority of a task. It does
4675 * not touch ->normal_prio like __setscheduler().
4676 *
4677 * Used by the rt_mutex code to implement priority inheritance logic.
4678 */
36c8b586 4679void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4680{
83b699ed 4681 int oldprio, on_rq, running;
70b97a7f 4682 struct rq *rq;
83ab0aa0 4683 const struct sched_class *prev_class;
b29739f9
IM
4684
4685 BUG_ON(prio < 0 || prio > MAX_PRIO);
4686
0122ec5b 4687 rq = __task_rq_lock(p);
b29739f9 4688
a8027073 4689 trace_sched_pi_setprio(p, prio);
d5f9f942 4690 oldprio = p->prio;
83ab0aa0 4691 prev_class = p->sched_class;
fd2f4419 4692 on_rq = p->on_rq;
051a1d1a 4693 running = task_current(rq, p);
0e1f3483 4694 if (on_rq)
69be72c1 4695 dequeue_task(rq, p, 0);
0e1f3483
HS
4696 if (running)
4697 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4698
4699 if (rt_prio(prio))
4700 p->sched_class = &rt_sched_class;
4701 else
4702 p->sched_class = &fair_sched_class;
4703
b29739f9
IM
4704 p->prio = prio;
4705
0e1f3483
HS
4706 if (running)
4707 p->sched_class->set_curr_task(rq);
da7a735e 4708 if (on_rq)
371fd7e7 4709 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4710
da7a735e 4711 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4712 __task_rq_unlock(rq);
b29739f9
IM
4713}
4714
4715#endif
4716
36c8b586 4717void set_user_nice(struct task_struct *p, long nice)
1da177e4 4718{
dd41f596 4719 int old_prio, delta, on_rq;
1da177e4 4720 unsigned long flags;
70b97a7f 4721 struct rq *rq;
1da177e4
LT
4722
4723 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4724 return;
4725 /*
4726 * We have to be careful, if called from sys_setpriority(),
4727 * the task might be in the middle of scheduling on another CPU.
4728 */
4729 rq = task_rq_lock(p, &flags);
4730 /*
4731 * The RT priorities are set via sched_setscheduler(), but we still
4732 * allow the 'normal' nice value to be set - but as expected
4733 * it wont have any effect on scheduling until the task is
dd41f596 4734 * SCHED_FIFO/SCHED_RR:
1da177e4 4735 */
e05606d3 4736 if (task_has_rt_policy(p)) {
1da177e4
LT
4737 p->static_prio = NICE_TO_PRIO(nice);
4738 goto out_unlock;
4739 }
fd2f4419 4740 on_rq = p->on_rq;
c09595f6 4741 if (on_rq)
69be72c1 4742 dequeue_task(rq, p, 0);
1da177e4 4743
1da177e4 4744 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4745 set_load_weight(p);
b29739f9
IM
4746 old_prio = p->prio;
4747 p->prio = effective_prio(p);
4748 delta = p->prio - old_prio;
1da177e4 4749
dd41f596 4750 if (on_rq) {
371fd7e7 4751 enqueue_task(rq, p, 0);
1da177e4 4752 /*
d5f9f942
AM
4753 * If the task increased its priority or is running and
4754 * lowered its priority, then reschedule its CPU:
1da177e4 4755 */
d5f9f942 4756 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4757 resched_task(rq->curr);
4758 }
4759out_unlock:
0122ec5b 4760 task_rq_unlock(rq, p, &flags);
1da177e4 4761}
1da177e4
LT
4762EXPORT_SYMBOL(set_user_nice);
4763
e43379f1
MM
4764/*
4765 * can_nice - check if a task can reduce its nice value
4766 * @p: task
4767 * @nice: nice value
4768 */
36c8b586 4769int can_nice(const struct task_struct *p, const int nice)
e43379f1 4770{
024f4747
MM
4771 /* convert nice value [19,-20] to rlimit style value [1,40] */
4772 int nice_rlim = 20 - nice;
48f24c4d 4773
78d7d407 4774 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4775 capable(CAP_SYS_NICE));
4776}
4777
1da177e4
LT
4778#ifdef __ARCH_WANT_SYS_NICE
4779
4780/*
4781 * sys_nice - change the priority of the current process.
4782 * @increment: priority increment
4783 *
4784 * sys_setpriority is a more generic, but much slower function that
4785 * does similar things.
4786 */
5add95d4 4787SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4788{
48f24c4d 4789 long nice, retval;
1da177e4
LT
4790
4791 /*
4792 * Setpriority might change our priority at the same moment.
4793 * We don't have to worry. Conceptually one call occurs first
4794 * and we have a single winner.
4795 */
e43379f1
MM
4796 if (increment < -40)
4797 increment = -40;
1da177e4
LT
4798 if (increment > 40)
4799 increment = 40;
4800
2b8f836f 4801 nice = TASK_NICE(current) + increment;
1da177e4
LT
4802 if (nice < -20)
4803 nice = -20;
4804 if (nice > 19)
4805 nice = 19;
4806
e43379f1
MM
4807 if (increment < 0 && !can_nice(current, nice))
4808 return -EPERM;
4809
1da177e4
LT
4810 retval = security_task_setnice(current, nice);
4811 if (retval)
4812 return retval;
4813
4814 set_user_nice(current, nice);
4815 return 0;
4816}
4817
4818#endif
4819
4820/**
4821 * task_prio - return the priority value of a given task.
4822 * @p: the task in question.
4823 *
4824 * This is the priority value as seen by users in /proc.
4825 * RT tasks are offset by -200. Normal tasks are centered
4826 * around 0, value goes from -16 to +15.
4827 */
36c8b586 4828int task_prio(const struct task_struct *p)
1da177e4
LT
4829{
4830 return p->prio - MAX_RT_PRIO;
4831}
4832
4833/**
4834 * task_nice - return the nice value of a given task.
4835 * @p: the task in question.
4836 */
36c8b586 4837int task_nice(const struct task_struct *p)
1da177e4
LT
4838{
4839 return TASK_NICE(p);
4840}
150d8bed 4841EXPORT_SYMBOL(task_nice);
1da177e4
LT
4842
4843/**
4844 * idle_cpu - is a given cpu idle currently?
4845 * @cpu: the processor in question.
4846 */
4847int idle_cpu(int cpu)
4848{
4849 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4850}
4851
1da177e4
LT
4852/**
4853 * idle_task - return the idle task for a given cpu.
4854 * @cpu: the processor in question.
4855 */
36c8b586 4856struct task_struct *idle_task(int cpu)
1da177e4
LT
4857{
4858 return cpu_rq(cpu)->idle;
4859}
4860
4861/**
4862 * find_process_by_pid - find a process with a matching PID value.
4863 * @pid: the pid in question.
4864 */
a9957449 4865static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4866{
228ebcbe 4867 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4868}
4869
4870/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4871static void
4872__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4873{
1da177e4
LT
4874 p->policy = policy;
4875 p->rt_priority = prio;
b29739f9
IM
4876 p->normal_prio = normal_prio(p);
4877 /* we are holding p->pi_lock already */
4878 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4879 if (rt_prio(p->prio))
4880 p->sched_class = &rt_sched_class;
4881 else
4882 p->sched_class = &fair_sched_class;
2dd73a4f 4883 set_load_weight(p);
1da177e4
LT
4884}
4885
c69e8d9c
DH
4886/*
4887 * check the target process has a UID that matches the current process's
4888 */
4889static bool check_same_owner(struct task_struct *p)
4890{
4891 const struct cred *cred = current_cred(), *pcred;
4892 bool match;
4893
4894 rcu_read_lock();
4895 pcred = __task_cred(p);
b0e77598
SH
4896 if (cred->user->user_ns == pcred->user->user_ns)
4897 match = (cred->euid == pcred->euid ||
4898 cred->euid == pcred->uid);
4899 else
4900 match = false;
c69e8d9c
DH
4901 rcu_read_unlock();
4902 return match;
4903}
4904
961ccddd 4905static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4906 const struct sched_param *param, bool user)
1da177e4 4907{
83b699ed 4908 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4909 unsigned long flags;
83ab0aa0 4910 const struct sched_class *prev_class;
70b97a7f 4911 struct rq *rq;
ca94c442 4912 int reset_on_fork;
1da177e4 4913
66e5393a
SR
4914 /* may grab non-irq protected spin_locks */
4915 BUG_ON(in_interrupt());
1da177e4
LT
4916recheck:
4917 /* double check policy once rq lock held */
ca94c442
LP
4918 if (policy < 0) {
4919 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4920 policy = oldpolicy = p->policy;
ca94c442
LP
4921 } else {
4922 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4923 policy &= ~SCHED_RESET_ON_FORK;
4924
4925 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4926 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4927 policy != SCHED_IDLE)
4928 return -EINVAL;
4929 }
4930
1da177e4
LT
4931 /*
4932 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4933 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4934 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4935 */
4936 if (param->sched_priority < 0 ||
95cdf3b7 4937 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4938 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4939 return -EINVAL;
e05606d3 4940 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4941 return -EINVAL;
4942
37e4ab3f
OC
4943 /*
4944 * Allow unprivileged RT tasks to decrease priority:
4945 */
961ccddd 4946 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4947 if (rt_policy(policy)) {
a44702e8
ON
4948 unsigned long rlim_rtprio =
4949 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4950
4951 /* can't set/change the rt policy */
4952 if (policy != p->policy && !rlim_rtprio)
4953 return -EPERM;
4954
4955 /* can't increase priority */
4956 if (param->sched_priority > p->rt_priority &&
4957 param->sched_priority > rlim_rtprio)
4958 return -EPERM;
4959 }
c02aa73b 4960
dd41f596 4961 /*
c02aa73b
DH
4962 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4963 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4964 */
c02aa73b
DH
4965 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4966 if (!can_nice(p, TASK_NICE(p)))
4967 return -EPERM;
4968 }
5fe1d75f 4969
37e4ab3f 4970 /* can't change other user's priorities */
c69e8d9c 4971 if (!check_same_owner(p))
37e4ab3f 4972 return -EPERM;
ca94c442
LP
4973
4974 /* Normal users shall not reset the sched_reset_on_fork flag */
4975 if (p->sched_reset_on_fork && !reset_on_fork)
4976 return -EPERM;
37e4ab3f 4977 }
1da177e4 4978
725aad24 4979 if (user) {
b0ae1981 4980 retval = security_task_setscheduler(p);
725aad24
JF
4981 if (retval)
4982 return retval;
4983 }
4984
b29739f9
IM
4985 /*
4986 * make sure no PI-waiters arrive (or leave) while we are
4987 * changing the priority of the task:
0122ec5b 4988 *
25985edc 4989 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4990 * runqueue lock must be held.
4991 */
0122ec5b 4992 rq = task_rq_lock(p, &flags);
dc61b1d6 4993
34f971f6
PZ
4994 /*
4995 * Changing the policy of the stop threads its a very bad idea
4996 */
4997 if (p == rq->stop) {
0122ec5b 4998 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4999 return -EINVAL;
5000 }
5001
a51e9198
DF
5002 /*
5003 * If not changing anything there's no need to proceed further:
5004 */
5005 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5006 param->sched_priority == p->rt_priority))) {
5007
5008 __task_rq_unlock(rq);
5009 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5010 return 0;
5011 }
5012
dc61b1d6
PZ
5013#ifdef CONFIG_RT_GROUP_SCHED
5014 if (user) {
5015 /*
5016 * Do not allow realtime tasks into groups that have no runtime
5017 * assigned.
5018 */
5019 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5020 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5021 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5022 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5023 return -EPERM;
5024 }
5025 }
5026#endif
5027
1da177e4
LT
5028 /* recheck policy now with rq lock held */
5029 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5030 policy = oldpolicy = -1;
0122ec5b 5031 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5032 goto recheck;
5033 }
fd2f4419 5034 on_rq = p->on_rq;
051a1d1a 5035 running = task_current(rq, p);
0e1f3483 5036 if (on_rq)
2e1cb74a 5037 deactivate_task(rq, p, 0);
0e1f3483
HS
5038 if (running)
5039 p->sched_class->put_prev_task(rq, p);
f6b53205 5040
ca94c442
LP
5041 p->sched_reset_on_fork = reset_on_fork;
5042
1da177e4 5043 oldprio = p->prio;
83ab0aa0 5044 prev_class = p->sched_class;
dd41f596 5045 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5046
0e1f3483
HS
5047 if (running)
5048 p->sched_class->set_curr_task(rq);
da7a735e 5049 if (on_rq)
dd41f596 5050 activate_task(rq, p, 0);
cb469845 5051
da7a735e 5052 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5053 task_rq_unlock(rq, p, &flags);
b29739f9 5054
95e02ca9
TG
5055 rt_mutex_adjust_pi(p);
5056
1da177e4
LT
5057 return 0;
5058}
961ccddd
RR
5059
5060/**
5061 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5062 * @p: the task in question.
5063 * @policy: new policy.
5064 * @param: structure containing the new RT priority.
5065 *
5066 * NOTE that the task may be already dead.
5067 */
5068int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5069 const struct sched_param *param)
961ccddd
RR
5070{
5071 return __sched_setscheduler(p, policy, param, true);
5072}
1da177e4
LT
5073EXPORT_SYMBOL_GPL(sched_setscheduler);
5074
961ccddd
RR
5075/**
5076 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5077 * @p: the task in question.
5078 * @policy: new policy.
5079 * @param: structure containing the new RT priority.
5080 *
5081 * Just like sched_setscheduler, only don't bother checking if the
5082 * current context has permission. For example, this is needed in
5083 * stop_machine(): we create temporary high priority worker threads,
5084 * but our caller might not have that capability.
5085 */
5086int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5087 const struct sched_param *param)
961ccddd
RR
5088{
5089 return __sched_setscheduler(p, policy, param, false);
5090}
5091
95cdf3b7
IM
5092static int
5093do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5094{
1da177e4
LT
5095 struct sched_param lparam;
5096 struct task_struct *p;
36c8b586 5097 int retval;
1da177e4
LT
5098
5099 if (!param || pid < 0)
5100 return -EINVAL;
5101 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5102 return -EFAULT;
5fe1d75f
ON
5103
5104 rcu_read_lock();
5105 retval = -ESRCH;
1da177e4 5106 p = find_process_by_pid(pid);
5fe1d75f
ON
5107 if (p != NULL)
5108 retval = sched_setscheduler(p, policy, &lparam);
5109 rcu_read_unlock();
36c8b586 5110
1da177e4
LT
5111 return retval;
5112}
5113
5114/**
5115 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5116 * @pid: the pid in question.
5117 * @policy: new policy.
5118 * @param: structure containing the new RT priority.
5119 */
5add95d4
HC
5120SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5121 struct sched_param __user *, param)
1da177e4 5122{
c21761f1
JB
5123 /* negative values for policy are not valid */
5124 if (policy < 0)
5125 return -EINVAL;
5126
1da177e4
LT
5127 return do_sched_setscheduler(pid, policy, param);
5128}
5129
5130/**
5131 * sys_sched_setparam - set/change the RT priority of a thread
5132 * @pid: the pid in question.
5133 * @param: structure containing the new RT priority.
5134 */
5add95d4 5135SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5136{
5137 return do_sched_setscheduler(pid, -1, param);
5138}
5139
5140/**
5141 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5142 * @pid: the pid in question.
5143 */
5add95d4 5144SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5145{
36c8b586 5146 struct task_struct *p;
3a5c359a 5147 int retval;
1da177e4
LT
5148
5149 if (pid < 0)
3a5c359a 5150 return -EINVAL;
1da177e4
LT
5151
5152 retval = -ESRCH;
5fe85be0 5153 rcu_read_lock();
1da177e4
LT
5154 p = find_process_by_pid(pid);
5155 if (p) {
5156 retval = security_task_getscheduler(p);
5157 if (!retval)
ca94c442
LP
5158 retval = p->policy
5159 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5160 }
5fe85be0 5161 rcu_read_unlock();
1da177e4
LT
5162 return retval;
5163}
5164
5165/**
ca94c442 5166 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5167 * @pid: the pid in question.
5168 * @param: structure containing the RT priority.
5169 */
5add95d4 5170SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5171{
5172 struct sched_param lp;
36c8b586 5173 struct task_struct *p;
3a5c359a 5174 int retval;
1da177e4
LT
5175
5176 if (!param || pid < 0)
3a5c359a 5177 return -EINVAL;
1da177e4 5178
5fe85be0 5179 rcu_read_lock();
1da177e4
LT
5180 p = find_process_by_pid(pid);
5181 retval = -ESRCH;
5182 if (!p)
5183 goto out_unlock;
5184
5185 retval = security_task_getscheduler(p);
5186 if (retval)
5187 goto out_unlock;
5188
5189 lp.sched_priority = p->rt_priority;
5fe85be0 5190 rcu_read_unlock();
1da177e4
LT
5191
5192 /*
5193 * This one might sleep, we cannot do it with a spinlock held ...
5194 */
5195 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5196
1da177e4
LT
5197 return retval;
5198
5199out_unlock:
5fe85be0 5200 rcu_read_unlock();
1da177e4
LT
5201 return retval;
5202}
5203
96f874e2 5204long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5205{
5a16f3d3 5206 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5207 struct task_struct *p;
5208 int retval;
1da177e4 5209
95402b38 5210 get_online_cpus();
23f5d142 5211 rcu_read_lock();
1da177e4
LT
5212
5213 p = find_process_by_pid(pid);
5214 if (!p) {
23f5d142 5215 rcu_read_unlock();
95402b38 5216 put_online_cpus();
1da177e4
LT
5217 return -ESRCH;
5218 }
5219
23f5d142 5220 /* Prevent p going away */
1da177e4 5221 get_task_struct(p);
23f5d142 5222 rcu_read_unlock();
1da177e4 5223
5a16f3d3
RR
5224 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5225 retval = -ENOMEM;
5226 goto out_put_task;
5227 }
5228 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5229 retval = -ENOMEM;
5230 goto out_free_cpus_allowed;
5231 }
1da177e4 5232 retval = -EPERM;
b0e77598 5233 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5234 goto out_unlock;
5235
b0ae1981 5236 retval = security_task_setscheduler(p);
e7834f8f
DQ
5237 if (retval)
5238 goto out_unlock;
5239
5a16f3d3
RR
5240 cpuset_cpus_allowed(p, cpus_allowed);
5241 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5242again:
5a16f3d3 5243 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5244
8707d8b8 5245 if (!retval) {
5a16f3d3
RR
5246 cpuset_cpus_allowed(p, cpus_allowed);
5247 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5248 /*
5249 * We must have raced with a concurrent cpuset
5250 * update. Just reset the cpus_allowed to the
5251 * cpuset's cpus_allowed
5252 */
5a16f3d3 5253 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5254 goto again;
5255 }
5256 }
1da177e4 5257out_unlock:
5a16f3d3
RR
5258 free_cpumask_var(new_mask);
5259out_free_cpus_allowed:
5260 free_cpumask_var(cpus_allowed);
5261out_put_task:
1da177e4 5262 put_task_struct(p);
95402b38 5263 put_online_cpus();
1da177e4
LT
5264 return retval;
5265}
5266
5267static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5268 struct cpumask *new_mask)
1da177e4 5269{
96f874e2
RR
5270 if (len < cpumask_size())
5271 cpumask_clear(new_mask);
5272 else if (len > cpumask_size())
5273 len = cpumask_size();
5274
1da177e4
LT
5275 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5276}
5277
5278/**
5279 * sys_sched_setaffinity - set the cpu affinity of a process
5280 * @pid: pid of the process
5281 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5282 * @user_mask_ptr: user-space pointer to the new cpu mask
5283 */
5add95d4
HC
5284SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5285 unsigned long __user *, user_mask_ptr)
1da177e4 5286{
5a16f3d3 5287 cpumask_var_t new_mask;
1da177e4
LT
5288 int retval;
5289
5a16f3d3
RR
5290 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5291 return -ENOMEM;
1da177e4 5292
5a16f3d3
RR
5293 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5294 if (retval == 0)
5295 retval = sched_setaffinity(pid, new_mask);
5296 free_cpumask_var(new_mask);
5297 return retval;
1da177e4
LT
5298}
5299
96f874e2 5300long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5301{
36c8b586 5302 struct task_struct *p;
31605683 5303 unsigned long flags;
1da177e4 5304 int retval;
1da177e4 5305
95402b38 5306 get_online_cpus();
23f5d142 5307 rcu_read_lock();
1da177e4
LT
5308
5309 retval = -ESRCH;
5310 p = find_process_by_pid(pid);
5311 if (!p)
5312 goto out_unlock;
5313
e7834f8f
DQ
5314 retval = security_task_getscheduler(p);
5315 if (retval)
5316 goto out_unlock;
5317
013fdb80 5318 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5319 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5320 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5321
5322out_unlock:
23f5d142 5323 rcu_read_unlock();
95402b38 5324 put_online_cpus();
1da177e4 5325
9531b62f 5326 return retval;
1da177e4
LT
5327}
5328
5329/**
5330 * sys_sched_getaffinity - get the cpu affinity of a process
5331 * @pid: pid of the process
5332 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5333 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5334 */
5add95d4
HC
5335SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5336 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5337{
5338 int ret;
f17c8607 5339 cpumask_var_t mask;
1da177e4 5340
84fba5ec 5341 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5342 return -EINVAL;
5343 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5344 return -EINVAL;
5345
f17c8607
RR
5346 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5347 return -ENOMEM;
1da177e4 5348
f17c8607
RR
5349 ret = sched_getaffinity(pid, mask);
5350 if (ret == 0) {
8bc037fb 5351 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5352
5353 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5354 ret = -EFAULT;
5355 else
cd3d8031 5356 ret = retlen;
f17c8607
RR
5357 }
5358 free_cpumask_var(mask);
1da177e4 5359
f17c8607 5360 return ret;
1da177e4
LT
5361}
5362
5363/**
5364 * sys_sched_yield - yield the current processor to other threads.
5365 *
dd41f596
IM
5366 * This function yields the current CPU to other tasks. If there are no
5367 * other threads running on this CPU then this function will return.
1da177e4 5368 */
5add95d4 5369SYSCALL_DEFINE0(sched_yield)
1da177e4 5370{
70b97a7f 5371 struct rq *rq = this_rq_lock();
1da177e4 5372
2d72376b 5373 schedstat_inc(rq, yld_count);
4530d7ab 5374 current->sched_class->yield_task(rq);
1da177e4
LT
5375
5376 /*
5377 * Since we are going to call schedule() anyway, there's
5378 * no need to preempt or enable interrupts:
5379 */
5380 __release(rq->lock);
8a25d5de 5381 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5382 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5383 preempt_enable_no_resched();
5384
5385 schedule();
5386
5387 return 0;
5388}
5389
d86ee480
PZ
5390static inline int should_resched(void)
5391{
5392 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5393}
5394
e7b38404 5395static void __cond_resched(void)
1da177e4 5396{
e7aaaa69
FW
5397 add_preempt_count(PREEMPT_ACTIVE);
5398 schedule();
5399 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5400}
5401
02b67cc3 5402int __sched _cond_resched(void)
1da177e4 5403{
d86ee480 5404 if (should_resched()) {
1da177e4
LT
5405 __cond_resched();
5406 return 1;
5407 }
5408 return 0;
5409}
02b67cc3 5410EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5411
5412/*
613afbf8 5413 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5414 * call schedule, and on return reacquire the lock.
5415 *
41a2d6cf 5416 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5417 * operations here to prevent schedule() from being called twice (once via
5418 * spin_unlock(), once by hand).
5419 */
613afbf8 5420int __cond_resched_lock(spinlock_t *lock)
1da177e4 5421{
d86ee480 5422 int resched = should_resched();
6df3cecb
JK
5423 int ret = 0;
5424
f607c668
PZ
5425 lockdep_assert_held(lock);
5426
95c354fe 5427 if (spin_needbreak(lock) || resched) {
1da177e4 5428 spin_unlock(lock);
d86ee480 5429 if (resched)
95c354fe
NP
5430 __cond_resched();
5431 else
5432 cpu_relax();
6df3cecb 5433 ret = 1;
1da177e4 5434 spin_lock(lock);
1da177e4 5435 }
6df3cecb 5436 return ret;
1da177e4 5437}
613afbf8 5438EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5439
613afbf8 5440int __sched __cond_resched_softirq(void)
1da177e4
LT
5441{
5442 BUG_ON(!in_softirq());
5443
d86ee480 5444 if (should_resched()) {
98d82567 5445 local_bh_enable();
1da177e4
LT
5446 __cond_resched();
5447 local_bh_disable();
5448 return 1;
5449 }
5450 return 0;
5451}
613afbf8 5452EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5453
1da177e4
LT
5454/**
5455 * yield - yield the current processor to other threads.
5456 *
72fd4a35 5457 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5458 * thread runnable and calls sys_sched_yield().
5459 */
5460void __sched yield(void)
5461{
5462 set_current_state(TASK_RUNNING);
5463 sys_sched_yield();
5464}
1da177e4
LT
5465EXPORT_SYMBOL(yield);
5466
d95f4122
MG
5467/**
5468 * yield_to - yield the current processor to another thread in
5469 * your thread group, or accelerate that thread toward the
5470 * processor it's on.
16addf95
RD
5471 * @p: target task
5472 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5473 *
5474 * It's the caller's job to ensure that the target task struct
5475 * can't go away on us before we can do any checks.
5476 *
5477 * Returns true if we indeed boosted the target task.
5478 */
5479bool __sched yield_to(struct task_struct *p, bool preempt)
5480{
5481 struct task_struct *curr = current;
5482 struct rq *rq, *p_rq;
5483 unsigned long flags;
5484 bool yielded = 0;
5485
5486 local_irq_save(flags);
5487 rq = this_rq();
5488
5489again:
5490 p_rq = task_rq(p);
5491 double_rq_lock(rq, p_rq);
5492 while (task_rq(p) != p_rq) {
5493 double_rq_unlock(rq, p_rq);
5494 goto again;
5495 }
5496
5497 if (!curr->sched_class->yield_to_task)
5498 goto out;
5499
5500 if (curr->sched_class != p->sched_class)
5501 goto out;
5502
5503 if (task_running(p_rq, p) || p->state)
5504 goto out;
5505
5506 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5507 if (yielded) {
d95f4122 5508 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5509 /*
5510 * Make p's CPU reschedule; pick_next_entity takes care of
5511 * fairness.
5512 */
5513 if (preempt && rq != p_rq)
5514 resched_task(p_rq->curr);
5515 }
d95f4122
MG
5516
5517out:
5518 double_rq_unlock(rq, p_rq);
5519 local_irq_restore(flags);
5520
5521 if (yielded)
5522 schedule();
5523
5524 return yielded;
5525}
5526EXPORT_SYMBOL_GPL(yield_to);
5527
1da177e4 5528/*
41a2d6cf 5529 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5530 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5531 */
5532void __sched io_schedule(void)
5533{
54d35f29 5534 struct rq *rq = raw_rq();
1da177e4 5535
0ff92245 5536 delayacct_blkio_start();
1da177e4 5537 atomic_inc(&rq->nr_iowait);
73c10101 5538 blk_flush_plug(current);
8f0dfc34 5539 current->in_iowait = 1;
1da177e4 5540 schedule();
8f0dfc34 5541 current->in_iowait = 0;
1da177e4 5542 atomic_dec(&rq->nr_iowait);
0ff92245 5543 delayacct_blkio_end();
1da177e4 5544}
1da177e4
LT
5545EXPORT_SYMBOL(io_schedule);
5546
5547long __sched io_schedule_timeout(long timeout)
5548{
54d35f29 5549 struct rq *rq = raw_rq();
1da177e4
LT
5550 long ret;
5551
0ff92245 5552 delayacct_blkio_start();
1da177e4 5553 atomic_inc(&rq->nr_iowait);
73c10101 5554 blk_flush_plug(current);
8f0dfc34 5555 current->in_iowait = 1;
1da177e4 5556 ret = schedule_timeout(timeout);
8f0dfc34 5557 current->in_iowait = 0;
1da177e4 5558 atomic_dec(&rq->nr_iowait);
0ff92245 5559 delayacct_blkio_end();
1da177e4
LT
5560 return ret;
5561}
5562
5563/**
5564 * sys_sched_get_priority_max - return maximum RT priority.
5565 * @policy: scheduling class.
5566 *
5567 * this syscall returns the maximum rt_priority that can be used
5568 * by a given scheduling class.
5569 */
5add95d4 5570SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5571{
5572 int ret = -EINVAL;
5573
5574 switch (policy) {
5575 case SCHED_FIFO:
5576 case SCHED_RR:
5577 ret = MAX_USER_RT_PRIO-1;
5578 break;
5579 case SCHED_NORMAL:
b0a9499c 5580 case SCHED_BATCH:
dd41f596 5581 case SCHED_IDLE:
1da177e4
LT
5582 ret = 0;
5583 break;
5584 }
5585 return ret;
5586}
5587
5588/**
5589 * sys_sched_get_priority_min - return minimum RT priority.
5590 * @policy: scheduling class.
5591 *
5592 * this syscall returns the minimum rt_priority that can be used
5593 * by a given scheduling class.
5594 */
5add95d4 5595SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5596{
5597 int ret = -EINVAL;
5598
5599 switch (policy) {
5600 case SCHED_FIFO:
5601 case SCHED_RR:
5602 ret = 1;
5603 break;
5604 case SCHED_NORMAL:
b0a9499c 5605 case SCHED_BATCH:
dd41f596 5606 case SCHED_IDLE:
1da177e4
LT
5607 ret = 0;
5608 }
5609 return ret;
5610}
5611
5612/**
5613 * sys_sched_rr_get_interval - return the default timeslice of a process.
5614 * @pid: pid of the process.
5615 * @interval: userspace pointer to the timeslice value.
5616 *
5617 * this syscall writes the default timeslice value of a given process
5618 * into the user-space timespec buffer. A value of '0' means infinity.
5619 */
17da2bd9 5620SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5621 struct timespec __user *, interval)
1da177e4 5622{
36c8b586 5623 struct task_struct *p;
a4ec24b4 5624 unsigned int time_slice;
dba091b9
TG
5625 unsigned long flags;
5626 struct rq *rq;
3a5c359a 5627 int retval;
1da177e4 5628 struct timespec t;
1da177e4
LT
5629
5630 if (pid < 0)
3a5c359a 5631 return -EINVAL;
1da177e4
LT
5632
5633 retval = -ESRCH;
1a551ae7 5634 rcu_read_lock();
1da177e4
LT
5635 p = find_process_by_pid(pid);
5636 if (!p)
5637 goto out_unlock;
5638
5639 retval = security_task_getscheduler(p);
5640 if (retval)
5641 goto out_unlock;
5642
dba091b9
TG
5643 rq = task_rq_lock(p, &flags);
5644 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5645 task_rq_unlock(rq, p, &flags);
a4ec24b4 5646
1a551ae7 5647 rcu_read_unlock();
a4ec24b4 5648 jiffies_to_timespec(time_slice, &t);
1da177e4 5649 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5650 return retval;
3a5c359a 5651
1da177e4 5652out_unlock:
1a551ae7 5653 rcu_read_unlock();
1da177e4
LT
5654 return retval;
5655}
5656
7c731e0a 5657static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5658
82a1fcb9 5659void sched_show_task(struct task_struct *p)
1da177e4 5660{
1da177e4 5661 unsigned long free = 0;
36c8b586 5662 unsigned state;
1da177e4 5663
1da177e4 5664 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5665 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5666 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5667#if BITS_PER_LONG == 32
1da177e4 5668 if (state == TASK_RUNNING)
3df0fc5b 5669 printk(KERN_CONT " running ");
1da177e4 5670 else
3df0fc5b 5671 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5672#else
5673 if (state == TASK_RUNNING)
3df0fc5b 5674 printk(KERN_CONT " running task ");
1da177e4 5675 else
3df0fc5b 5676 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5677#endif
5678#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5679 free = stack_not_used(p);
1da177e4 5680#endif
3df0fc5b 5681 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5682 task_pid_nr(p), task_pid_nr(p->real_parent),
5683 (unsigned long)task_thread_info(p)->flags);
1da177e4 5684
5fb5e6de 5685 show_stack(p, NULL);
1da177e4
LT
5686}
5687
e59e2ae2 5688void show_state_filter(unsigned long state_filter)
1da177e4 5689{
36c8b586 5690 struct task_struct *g, *p;
1da177e4 5691
4bd77321 5692#if BITS_PER_LONG == 32
3df0fc5b
PZ
5693 printk(KERN_INFO
5694 " task PC stack pid father\n");
1da177e4 5695#else
3df0fc5b
PZ
5696 printk(KERN_INFO
5697 " task PC stack pid father\n");
1da177e4
LT
5698#endif
5699 read_lock(&tasklist_lock);
5700 do_each_thread(g, p) {
5701 /*
5702 * reset the NMI-timeout, listing all files on a slow
25985edc 5703 * console might take a lot of time:
1da177e4
LT
5704 */
5705 touch_nmi_watchdog();
39bc89fd 5706 if (!state_filter || (p->state & state_filter))
82a1fcb9 5707 sched_show_task(p);
1da177e4
LT
5708 } while_each_thread(g, p);
5709
04c9167f
JF
5710 touch_all_softlockup_watchdogs();
5711
dd41f596
IM
5712#ifdef CONFIG_SCHED_DEBUG
5713 sysrq_sched_debug_show();
5714#endif
1da177e4 5715 read_unlock(&tasklist_lock);
e59e2ae2
IM
5716 /*
5717 * Only show locks if all tasks are dumped:
5718 */
93335a21 5719 if (!state_filter)
e59e2ae2 5720 debug_show_all_locks();
1da177e4
LT
5721}
5722
1df21055
IM
5723void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5724{
dd41f596 5725 idle->sched_class = &idle_sched_class;
1df21055
IM
5726}
5727
f340c0d1
IM
5728/**
5729 * init_idle - set up an idle thread for a given CPU
5730 * @idle: task in question
5731 * @cpu: cpu the idle task belongs to
5732 *
5733 * NOTE: this function does not set the idle thread's NEED_RESCHED
5734 * flag, to make booting more robust.
5735 */
5c1e1767 5736void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5737{
70b97a7f 5738 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5739 unsigned long flags;
5740
05fa785c 5741 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5742
dd41f596 5743 __sched_fork(idle);
06b83b5f 5744 idle->state = TASK_RUNNING;
dd41f596
IM
5745 idle->se.exec_start = sched_clock();
5746
96f874e2 5747 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5748 /*
5749 * We're having a chicken and egg problem, even though we are
5750 * holding rq->lock, the cpu isn't yet set to this cpu so the
5751 * lockdep check in task_group() will fail.
5752 *
5753 * Similar case to sched_fork(). / Alternatively we could
5754 * use task_rq_lock() here and obtain the other rq->lock.
5755 *
5756 * Silence PROVE_RCU
5757 */
5758 rcu_read_lock();
dd41f596 5759 __set_task_cpu(idle, cpu);
6506cf6c 5760 rcu_read_unlock();
1da177e4 5761
1da177e4 5762 rq->curr = rq->idle = idle;
3ca7a440
PZ
5763#if defined(CONFIG_SMP)
5764 idle->on_cpu = 1;
4866cde0 5765#endif
05fa785c 5766 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5767
5768 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5769#if defined(CONFIG_PREEMPT)
5770 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5771#else
a1261f54 5772 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5773#endif
dd41f596
IM
5774 /*
5775 * The idle tasks have their own, simple scheduling class:
5776 */
5777 idle->sched_class = &idle_sched_class;
868baf07 5778 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5779}
5780
5781/*
5782 * In a system that switches off the HZ timer nohz_cpu_mask
5783 * indicates which cpus entered this state. This is used
5784 * in the rcu update to wait only for active cpus. For system
5785 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5786 * always be CPU_BITS_NONE.
1da177e4 5787 */
6a7b3dc3 5788cpumask_var_t nohz_cpu_mask;
1da177e4 5789
19978ca6
IM
5790/*
5791 * Increase the granularity value when there are more CPUs,
5792 * because with more CPUs the 'effective latency' as visible
5793 * to users decreases. But the relationship is not linear,
5794 * so pick a second-best guess by going with the log2 of the
5795 * number of CPUs.
5796 *
5797 * This idea comes from the SD scheduler of Con Kolivas:
5798 */
acb4a848 5799static int get_update_sysctl_factor(void)
19978ca6 5800{
4ca3ef71 5801 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5802 unsigned int factor;
5803
5804 switch (sysctl_sched_tunable_scaling) {
5805 case SCHED_TUNABLESCALING_NONE:
5806 factor = 1;
5807 break;
5808 case SCHED_TUNABLESCALING_LINEAR:
5809 factor = cpus;
5810 break;
5811 case SCHED_TUNABLESCALING_LOG:
5812 default:
5813 factor = 1 + ilog2(cpus);
5814 break;
5815 }
19978ca6 5816
acb4a848
CE
5817 return factor;
5818}
19978ca6 5819
acb4a848
CE
5820static void update_sysctl(void)
5821{
5822 unsigned int factor = get_update_sysctl_factor();
19978ca6 5823
0bcdcf28
CE
5824#define SET_SYSCTL(name) \
5825 (sysctl_##name = (factor) * normalized_sysctl_##name)
5826 SET_SYSCTL(sched_min_granularity);
5827 SET_SYSCTL(sched_latency);
5828 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5829#undef SET_SYSCTL
5830}
55cd5340 5831
0bcdcf28
CE
5832static inline void sched_init_granularity(void)
5833{
5834 update_sysctl();
19978ca6
IM
5835}
5836
1da177e4
LT
5837#ifdef CONFIG_SMP
5838/*
5839 * This is how migration works:
5840 *
969c7921
TH
5841 * 1) we invoke migration_cpu_stop() on the target CPU using
5842 * stop_one_cpu().
5843 * 2) stopper starts to run (implicitly forcing the migrated thread
5844 * off the CPU)
5845 * 3) it checks whether the migrated task is still in the wrong runqueue.
5846 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5847 * it and puts it into the right queue.
969c7921
TH
5848 * 5) stopper completes and stop_one_cpu() returns and the migration
5849 * is done.
1da177e4
LT
5850 */
5851
5852/*
5853 * Change a given task's CPU affinity. Migrate the thread to a
5854 * proper CPU and schedule it away if the CPU it's executing on
5855 * is removed from the allowed bitmask.
5856 *
5857 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5858 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5859 * call is not atomic; no spinlocks may be held.
5860 */
96f874e2 5861int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5862{
5863 unsigned long flags;
70b97a7f 5864 struct rq *rq;
969c7921 5865 unsigned int dest_cpu;
48f24c4d 5866 int ret = 0;
1da177e4 5867
0122ec5b 5868 rq = task_rq_lock(p, &flags);
e2912009 5869
6ad4c188 5870 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5871 ret = -EINVAL;
5872 goto out;
5873 }
5874
9985b0ba 5875 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5876 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5877 ret = -EINVAL;
5878 goto out;
5879 }
5880
73fe6aae 5881 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5882 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5883 else {
96f874e2
RR
5884 cpumask_copy(&p->cpus_allowed, new_mask);
5885 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5886 }
5887
1da177e4 5888 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5889 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5890 goto out;
5891
969c7921 5892 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
7608dec2 5893 if (need_migrate_task(p)) {
969c7921 5894 struct migration_arg arg = { p, dest_cpu };
1da177e4 5895 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5896 task_rq_unlock(rq, p, &flags);
969c7921 5897 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5898 tlb_migrate_finish(p->mm);
5899 return 0;
5900 }
5901out:
0122ec5b 5902 task_rq_unlock(rq, p, &flags);
48f24c4d 5903
1da177e4
LT
5904 return ret;
5905}
cd8ba7cd 5906EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5907
5908/*
41a2d6cf 5909 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5910 * this because either it can't run here any more (set_cpus_allowed()
5911 * away from this CPU, or CPU going down), or because we're
5912 * attempting to rebalance this task on exec (sched_exec).
5913 *
5914 * So we race with normal scheduler movements, but that's OK, as long
5915 * as the task is no longer on this CPU.
efc30814
KK
5916 *
5917 * Returns non-zero if task was successfully migrated.
1da177e4 5918 */
efc30814 5919static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5920{
70b97a7f 5921 struct rq *rq_dest, *rq_src;
e2912009 5922 int ret = 0;
1da177e4 5923
e761b772 5924 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5925 return ret;
1da177e4
LT
5926
5927 rq_src = cpu_rq(src_cpu);
5928 rq_dest = cpu_rq(dest_cpu);
5929
0122ec5b 5930 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5931 double_rq_lock(rq_src, rq_dest);
5932 /* Already moved. */
5933 if (task_cpu(p) != src_cpu)
b1e38734 5934 goto done;
1da177e4 5935 /* Affinity changed (again). */
96f874e2 5936 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5937 goto fail;
1da177e4 5938
e2912009
PZ
5939 /*
5940 * If we're not on a rq, the next wake-up will ensure we're
5941 * placed properly.
5942 */
fd2f4419 5943 if (p->on_rq) {
2e1cb74a 5944 deactivate_task(rq_src, p, 0);
e2912009 5945 set_task_cpu(p, dest_cpu);
dd41f596 5946 activate_task(rq_dest, p, 0);
15afe09b 5947 check_preempt_curr(rq_dest, p, 0);
1da177e4 5948 }
b1e38734 5949done:
efc30814 5950 ret = 1;
b1e38734 5951fail:
1da177e4 5952 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5953 raw_spin_unlock(&p->pi_lock);
efc30814 5954 return ret;
1da177e4
LT
5955}
5956
5957/*
969c7921
TH
5958 * migration_cpu_stop - this will be executed by a highprio stopper thread
5959 * and performs thread migration by bumping thread off CPU then
5960 * 'pushing' onto another runqueue.
1da177e4 5961 */
969c7921 5962static int migration_cpu_stop(void *data)
1da177e4 5963{
969c7921 5964 struct migration_arg *arg = data;
f7b4cddc 5965
969c7921
TH
5966 /*
5967 * The original target cpu might have gone down and we might
5968 * be on another cpu but it doesn't matter.
5969 */
f7b4cddc 5970 local_irq_disable();
969c7921 5971 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5972 local_irq_enable();
1da177e4 5973 return 0;
f7b4cddc
ON
5974}
5975
1da177e4 5976#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5977
054b9108 5978/*
48c5ccae
PZ
5979 * Ensures that the idle task is using init_mm right before its cpu goes
5980 * offline.
054b9108 5981 */
48c5ccae 5982void idle_task_exit(void)
1da177e4 5983{
48c5ccae 5984 struct mm_struct *mm = current->active_mm;
e76bd8d9 5985
48c5ccae 5986 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5987
48c5ccae
PZ
5988 if (mm != &init_mm)
5989 switch_mm(mm, &init_mm, current);
5990 mmdrop(mm);
1da177e4
LT
5991}
5992
5993/*
5994 * While a dead CPU has no uninterruptible tasks queued at this point,
5995 * it might still have a nonzero ->nr_uninterruptible counter, because
5996 * for performance reasons the counter is not stricly tracking tasks to
5997 * their home CPUs. So we just add the counter to another CPU's counter,
5998 * to keep the global sum constant after CPU-down:
5999 */
70b97a7f 6000static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6001{
6ad4c188 6002 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6003
1da177e4
LT
6004 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6005 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6006}
6007
dd41f596 6008/*
48c5ccae 6009 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6010 */
48c5ccae 6011static void calc_global_load_remove(struct rq *rq)
1da177e4 6012{
48c5ccae
PZ
6013 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6014 rq->calc_load_active = 0;
1da177e4
LT
6015}
6016
48f24c4d 6017/*
48c5ccae
PZ
6018 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6019 * try_to_wake_up()->select_task_rq().
6020 *
6021 * Called with rq->lock held even though we'er in stop_machine() and
6022 * there's no concurrency possible, we hold the required locks anyway
6023 * because of lock validation efforts.
1da177e4 6024 */
48c5ccae 6025static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6026{
70b97a7f 6027 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6028 struct task_struct *next, *stop = rq->stop;
6029 int dest_cpu;
1da177e4
LT
6030
6031 /*
48c5ccae
PZ
6032 * Fudge the rq selection such that the below task selection loop
6033 * doesn't get stuck on the currently eligible stop task.
6034 *
6035 * We're currently inside stop_machine() and the rq is either stuck
6036 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6037 * either way we should never end up calling schedule() until we're
6038 * done here.
1da177e4 6039 */
48c5ccae 6040 rq->stop = NULL;
48f24c4d 6041
dd41f596 6042 for ( ; ; ) {
48c5ccae
PZ
6043 /*
6044 * There's this thread running, bail when that's the only
6045 * remaining thread.
6046 */
6047 if (rq->nr_running == 1)
dd41f596 6048 break;
48c5ccae 6049
b67802ea 6050 next = pick_next_task(rq);
48c5ccae 6051 BUG_ON(!next);
79c53799 6052 next->sched_class->put_prev_task(rq, next);
e692ab53 6053
48c5ccae
PZ
6054 /* Find suitable destination for @next, with force if needed. */
6055 dest_cpu = select_fallback_rq(dead_cpu, next);
6056 raw_spin_unlock(&rq->lock);
6057
6058 __migrate_task(next, dead_cpu, dest_cpu);
6059
6060 raw_spin_lock(&rq->lock);
1da177e4 6061 }
dce48a84 6062
48c5ccae 6063 rq->stop = stop;
dce48a84 6064}
48c5ccae 6065
1da177e4
LT
6066#endif /* CONFIG_HOTPLUG_CPU */
6067
e692ab53
NP
6068#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6069
6070static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6071 {
6072 .procname = "sched_domain",
c57baf1e 6073 .mode = 0555,
e0361851 6074 },
56992309 6075 {}
e692ab53
NP
6076};
6077
6078static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6079 {
6080 .procname = "kernel",
c57baf1e 6081 .mode = 0555,
e0361851
AD
6082 .child = sd_ctl_dir,
6083 },
56992309 6084 {}
e692ab53
NP
6085};
6086
6087static struct ctl_table *sd_alloc_ctl_entry(int n)
6088{
6089 struct ctl_table *entry =
5cf9f062 6090 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6091
e692ab53
NP
6092 return entry;
6093}
6094
6382bc90
MM
6095static void sd_free_ctl_entry(struct ctl_table **tablep)
6096{
cd790076 6097 struct ctl_table *entry;
6382bc90 6098
cd790076
MM
6099 /*
6100 * In the intermediate directories, both the child directory and
6101 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6102 * will always be set. In the lowest directory the names are
cd790076
MM
6103 * static strings and all have proc handlers.
6104 */
6105 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6106 if (entry->child)
6107 sd_free_ctl_entry(&entry->child);
cd790076
MM
6108 if (entry->proc_handler == NULL)
6109 kfree(entry->procname);
6110 }
6382bc90
MM
6111
6112 kfree(*tablep);
6113 *tablep = NULL;
6114}
6115
e692ab53 6116static void
e0361851 6117set_table_entry(struct ctl_table *entry,
e692ab53
NP
6118 const char *procname, void *data, int maxlen,
6119 mode_t mode, proc_handler *proc_handler)
6120{
e692ab53
NP
6121 entry->procname = procname;
6122 entry->data = data;
6123 entry->maxlen = maxlen;
6124 entry->mode = mode;
6125 entry->proc_handler = proc_handler;
6126}
6127
6128static struct ctl_table *
6129sd_alloc_ctl_domain_table(struct sched_domain *sd)
6130{
a5d8c348 6131 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6132
ad1cdc1d
MM
6133 if (table == NULL)
6134 return NULL;
6135
e0361851 6136 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6137 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6138 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6139 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6140 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6141 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6142 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6143 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6144 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6145 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6146 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6147 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6148 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6149 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6150 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6151 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6152 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6153 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6154 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6155 &sd->cache_nice_tries,
6156 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6157 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6158 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6159 set_table_entry(&table[11], "name", sd->name,
6160 CORENAME_MAX_SIZE, 0444, proc_dostring);
6161 /* &table[12] is terminator */
e692ab53
NP
6162
6163 return table;
6164}
6165
9a4e7159 6166static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6167{
6168 struct ctl_table *entry, *table;
6169 struct sched_domain *sd;
6170 int domain_num = 0, i;
6171 char buf[32];
6172
6173 for_each_domain(cpu, sd)
6174 domain_num++;
6175 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6176 if (table == NULL)
6177 return NULL;
e692ab53
NP
6178
6179 i = 0;
6180 for_each_domain(cpu, sd) {
6181 snprintf(buf, 32, "domain%d", i);
e692ab53 6182 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6183 entry->mode = 0555;
e692ab53
NP
6184 entry->child = sd_alloc_ctl_domain_table(sd);
6185 entry++;
6186 i++;
6187 }
6188 return table;
6189}
6190
6191static struct ctl_table_header *sd_sysctl_header;
6382bc90 6192static void register_sched_domain_sysctl(void)
e692ab53 6193{
6ad4c188 6194 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6195 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6196 char buf[32];
6197
7378547f
MM
6198 WARN_ON(sd_ctl_dir[0].child);
6199 sd_ctl_dir[0].child = entry;
6200
ad1cdc1d
MM
6201 if (entry == NULL)
6202 return;
6203
6ad4c188 6204 for_each_possible_cpu(i) {
e692ab53 6205 snprintf(buf, 32, "cpu%d", i);
e692ab53 6206 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6207 entry->mode = 0555;
e692ab53 6208 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6209 entry++;
e692ab53 6210 }
7378547f
MM
6211
6212 WARN_ON(sd_sysctl_header);
e692ab53
NP
6213 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6214}
6382bc90 6215
7378547f 6216/* may be called multiple times per register */
6382bc90
MM
6217static void unregister_sched_domain_sysctl(void)
6218{
7378547f
MM
6219 if (sd_sysctl_header)
6220 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6221 sd_sysctl_header = NULL;
7378547f
MM
6222 if (sd_ctl_dir[0].child)
6223 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6224}
e692ab53 6225#else
6382bc90
MM
6226static void register_sched_domain_sysctl(void)
6227{
6228}
6229static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6230{
6231}
6232#endif
6233
1f11eb6a
GH
6234static void set_rq_online(struct rq *rq)
6235{
6236 if (!rq->online) {
6237 const struct sched_class *class;
6238
c6c4927b 6239 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6240 rq->online = 1;
6241
6242 for_each_class(class) {
6243 if (class->rq_online)
6244 class->rq_online(rq);
6245 }
6246 }
6247}
6248
6249static void set_rq_offline(struct rq *rq)
6250{
6251 if (rq->online) {
6252 const struct sched_class *class;
6253
6254 for_each_class(class) {
6255 if (class->rq_offline)
6256 class->rq_offline(rq);
6257 }
6258
c6c4927b 6259 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6260 rq->online = 0;
6261 }
6262}
6263
1da177e4
LT
6264/*
6265 * migration_call - callback that gets triggered when a CPU is added.
6266 * Here we can start up the necessary migration thread for the new CPU.
6267 */
48f24c4d
IM
6268static int __cpuinit
6269migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6270{
48f24c4d 6271 int cpu = (long)hcpu;
1da177e4 6272 unsigned long flags;
969c7921 6273 struct rq *rq = cpu_rq(cpu);
1da177e4 6274
48c5ccae 6275 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6276
1da177e4 6277 case CPU_UP_PREPARE:
a468d389 6278 rq->calc_load_update = calc_load_update;
1da177e4 6279 break;
48f24c4d 6280
1da177e4 6281 case CPU_ONLINE:
1f94ef59 6282 /* Update our root-domain */
05fa785c 6283 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6284 if (rq->rd) {
c6c4927b 6285 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6286
6287 set_rq_online(rq);
1f94ef59 6288 }
05fa785c 6289 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6290 break;
48f24c4d 6291
1da177e4 6292#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6293 case CPU_DYING:
57d885fe 6294 /* Update our root-domain */
05fa785c 6295 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6296 if (rq->rd) {
c6c4927b 6297 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6298 set_rq_offline(rq);
57d885fe 6299 }
48c5ccae
PZ
6300 migrate_tasks(cpu);
6301 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6302 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6303
6304 migrate_nr_uninterruptible(rq);
6305 calc_global_load_remove(rq);
57d885fe 6306 break;
1da177e4
LT
6307#endif
6308 }
49c022e6
PZ
6309
6310 update_max_interval();
6311
1da177e4
LT
6312 return NOTIFY_OK;
6313}
6314
f38b0820
PM
6315/*
6316 * Register at high priority so that task migration (migrate_all_tasks)
6317 * happens before everything else. This has to be lower priority than
cdd6c482 6318 * the notifier in the perf_event subsystem, though.
1da177e4 6319 */
26c2143b 6320static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6321 .notifier_call = migration_call,
50a323b7 6322 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6323};
6324
3a101d05
TH
6325static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6326 unsigned long action, void *hcpu)
6327{
6328 switch (action & ~CPU_TASKS_FROZEN) {
6329 case CPU_ONLINE:
6330 case CPU_DOWN_FAILED:
6331 set_cpu_active((long)hcpu, true);
6332 return NOTIFY_OK;
6333 default:
6334 return NOTIFY_DONE;
6335 }
6336}
6337
6338static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6339 unsigned long action, void *hcpu)
6340{
6341 switch (action & ~CPU_TASKS_FROZEN) {
6342 case CPU_DOWN_PREPARE:
6343 set_cpu_active((long)hcpu, false);
6344 return NOTIFY_OK;
6345 default:
6346 return NOTIFY_DONE;
6347 }
6348}
6349
7babe8db 6350static int __init migration_init(void)
1da177e4
LT
6351{
6352 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6353 int err;
48f24c4d 6354
3a101d05 6355 /* Initialize migration for the boot CPU */
07dccf33
AM
6356 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6357 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6358 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6359 register_cpu_notifier(&migration_notifier);
7babe8db 6360
3a101d05
TH
6361 /* Register cpu active notifiers */
6362 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6363 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6364
a004cd42 6365 return 0;
1da177e4 6366}
7babe8db 6367early_initcall(migration_init);
1da177e4
LT
6368#endif
6369
6370#ifdef CONFIG_SMP
476f3534 6371
3e9830dc 6372#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6373
f6630114
MT
6374static __read_mostly int sched_domain_debug_enabled;
6375
6376static int __init sched_domain_debug_setup(char *str)
6377{
6378 sched_domain_debug_enabled = 1;
6379
6380 return 0;
6381}
6382early_param("sched_debug", sched_domain_debug_setup);
6383
7c16ec58 6384static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6385 struct cpumask *groupmask)
1da177e4 6386{
4dcf6aff 6387 struct sched_group *group = sd->groups;
434d53b0 6388 char str[256];
1da177e4 6389
968ea6d8 6390 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6391 cpumask_clear(groupmask);
4dcf6aff
IM
6392
6393 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6394
6395 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6396 printk("does not load-balance\n");
4dcf6aff 6397 if (sd->parent)
3df0fc5b
PZ
6398 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6399 " has parent");
4dcf6aff 6400 return -1;
41c7ce9a
NP
6401 }
6402
3df0fc5b 6403 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6404
758b2cdc 6405 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6406 printk(KERN_ERR "ERROR: domain->span does not contain "
6407 "CPU%d\n", cpu);
4dcf6aff 6408 }
758b2cdc 6409 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6410 printk(KERN_ERR "ERROR: domain->groups does not contain"
6411 " CPU%d\n", cpu);
4dcf6aff 6412 }
1da177e4 6413
4dcf6aff 6414 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6415 do {
4dcf6aff 6416 if (!group) {
3df0fc5b
PZ
6417 printk("\n");
6418 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6419 break;
6420 }
6421
18a3885f 6422 if (!group->cpu_power) {
3df0fc5b
PZ
6423 printk(KERN_CONT "\n");
6424 printk(KERN_ERR "ERROR: domain->cpu_power not "
6425 "set\n");
4dcf6aff
IM
6426 break;
6427 }
1da177e4 6428
758b2cdc 6429 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6430 printk(KERN_CONT "\n");
6431 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6432 break;
6433 }
1da177e4 6434
758b2cdc 6435 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6436 printk(KERN_CONT "\n");
6437 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6438 break;
6439 }
1da177e4 6440
758b2cdc 6441 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6442
968ea6d8 6443 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6444
3df0fc5b 6445 printk(KERN_CONT " %s", str);
18a3885f 6446 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6447 printk(KERN_CONT " (cpu_power = %d)",
6448 group->cpu_power);
381512cf 6449 }
1da177e4 6450
4dcf6aff
IM
6451 group = group->next;
6452 } while (group != sd->groups);
3df0fc5b 6453 printk(KERN_CONT "\n");
1da177e4 6454
758b2cdc 6455 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6456 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6457
758b2cdc
RR
6458 if (sd->parent &&
6459 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6460 printk(KERN_ERR "ERROR: parent span is not a superset "
6461 "of domain->span\n");
4dcf6aff
IM
6462 return 0;
6463}
1da177e4 6464
4dcf6aff
IM
6465static void sched_domain_debug(struct sched_domain *sd, int cpu)
6466{
d5dd3db1 6467 cpumask_var_t groupmask;
4dcf6aff 6468 int level = 0;
1da177e4 6469
f6630114
MT
6470 if (!sched_domain_debug_enabled)
6471 return;
6472
4dcf6aff
IM
6473 if (!sd) {
6474 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6475 return;
6476 }
1da177e4 6477
4dcf6aff
IM
6478 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6479
d5dd3db1 6480 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6481 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6482 return;
6483 }
6484
4dcf6aff 6485 for (;;) {
7c16ec58 6486 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6487 break;
1da177e4
LT
6488 level++;
6489 sd = sd->parent;
33859f7f 6490 if (!sd)
4dcf6aff
IM
6491 break;
6492 }
d5dd3db1 6493 free_cpumask_var(groupmask);
1da177e4 6494}
6d6bc0ad 6495#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6496# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6497#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6498
1a20ff27 6499static int sd_degenerate(struct sched_domain *sd)
245af2c7 6500{
758b2cdc 6501 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6502 return 1;
6503
6504 /* Following flags need at least 2 groups */
6505 if (sd->flags & (SD_LOAD_BALANCE |
6506 SD_BALANCE_NEWIDLE |
6507 SD_BALANCE_FORK |
89c4710e
SS
6508 SD_BALANCE_EXEC |
6509 SD_SHARE_CPUPOWER |
6510 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6511 if (sd->groups != sd->groups->next)
6512 return 0;
6513 }
6514
6515 /* Following flags don't use groups */
c88d5910 6516 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6517 return 0;
6518
6519 return 1;
6520}
6521
48f24c4d
IM
6522static int
6523sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6524{
6525 unsigned long cflags = sd->flags, pflags = parent->flags;
6526
6527 if (sd_degenerate(parent))
6528 return 1;
6529
758b2cdc 6530 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6531 return 0;
6532
245af2c7
SS
6533 /* Flags needing groups don't count if only 1 group in parent */
6534 if (parent->groups == parent->groups->next) {
6535 pflags &= ~(SD_LOAD_BALANCE |
6536 SD_BALANCE_NEWIDLE |
6537 SD_BALANCE_FORK |
89c4710e
SS
6538 SD_BALANCE_EXEC |
6539 SD_SHARE_CPUPOWER |
6540 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6541 if (nr_node_ids == 1)
6542 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6543 }
6544 if (~cflags & pflags)
6545 return 0;
6546
6547 return 1;
6548}
6549
c6c4927b
RR
6550static void free_rootdomain(struct root_domain *rd)
6551{
047106ad
PZ
6552 synchronize_sched();
6553
68e74568
RR
6554 cpupri_cleanup(&rd->cpupri);
6555
c6c4927b
RR
6556 free_cpumask_var(rd->rto_mask);
6557 free_cpumask_var(rd->online);
6558 free_cpumask_var(rd->span);
6559 kfree(rd);
6560}
6561
57d885fe
GH
6562static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6563{
a0490fa3 6564 struct root_domain *old_rd = NULL;
57d885fe 6565 unsigned long flags;
57d885fe 6566
05fa785c 6567 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6568
6569 if (rq->rd) {
a0490fa3 6570 old_rd = rq->rd;
57d885fe 6571
c6c4927b 6572 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6573 set_rq_offline(rq);
57d885fe 6574
c6c4927b 6575 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6576
a0490fa3
IM
6577 /*
6578 * If we dont want to free the old_rt yet then
6579 * set old_rd to NULL to skip the freeing later
6580 * in this function:
6581 */
6582 if (!atomic_dec_and_test(&old_rd->refcount))
6583 old_rd = NULL;
57d885fe
GH
6584 }
6585
6586 atomic_inc(&rd->refcount);
6587 rq->rd = rd;
6588
c6c4927b 6589 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6590 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6591 set_rq_online(rq);
57d885fe 6592
05fa785c 6593 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6594
6595 if (old_rd)
6596 free_rootdomain(old_rd);
57d885fe
GH
6597}
6598
68c38fc3 6599static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6600{
6601 memset(rd, 0, sizeof(*rd));
6602
68c38fc3 6603 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6604 goto out;
68c38fc3 6605 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6606 goto free_span;
68c38fc3 6607 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6608 goto free_online;
6e0534f2 6609
68c38fc3 6610 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6611 goto free_rto_mask;
c6c4927b 6612 return 0;
6e0534f2 6613
68e74568
RR
6614free_rto_mask:
6615 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6616free_online:
6617 free_cpumask_var(rd->online);
6618free_span:
6619 free_cpumask_var(rd->span);
0c910d28 6620out:
c6c4927b 6621 return -ENOMEM;
57d885fe
GH
6622}
6623
6624static void init_defrootdomain(void)
6625{
68c38fc3 6626 init_rootdomain(&def_root_domain);
c6c4927b 6627
57d885fe
GH
6628 atomic_set(&def_root_domain.refcount, 1);
6629}
6630
dc938520 6631static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6632{
6633 struct root_domain *rd;
6634
6635 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6636 if (!rd)
6637 return NULL;
6638
68c38fc3 6639 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6640 kfree(rd);
6641 return NULL;
6642 }
57d885fe
GH
6643
6644 return rd;
6645}
6646
1da177e4 6647/*
0eab9146 6648 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6649 * hold the hotplug lock.
6650 */
0eab9146
IM
6651static void
6652cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6653{
70b97a7f 6654 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6655 struct sched_domain *tmp;
6656
669c55e9
PZ
6657 for (tmp = sd; tmp; tmp = tmp->parent)
6658 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6659
245af2c7 6660 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6661 for (tmp = sd; tmp; ) {
245af2c7
SS
6662 struct sched_domain *parent = tmp->parent;
6663 if (!parent)
6664 break;
f29c9b1c 6665
1a848870 6666 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6667 tmp->parent = parent->parent;
1a848870
SS
6668 if (parent->parent)
6669 parent->parent->child = tmp;
f29c9b1c
LZ
6670 } else
6671 tmp = tmp->parent;
245af2c7
SS
6672 }
6673
1a848870 6674 if (sd && sd_degenerate(sd)) {
245af2c7 6675 sd = sd->parent;
1a848870
SS
6676 if (sd)
6677 sd->child = NULL;
6678 }
1da177e4
LT
6679
6680 sched_domain_debug(sd, cpu);
6681
57d885fe 6682 rq_attach_root(rq, rd);
674311d5 6683 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6684}
6685
6686/* cpus with isolated domains */
dcc30a35 6687static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6688
6689/* Setup the mask of cpus configured for isolated domains */
6690static int __init isolated_cpu_setup(char *str)
6691{
bdddd296 6692 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6693 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6694 return 1;
6695}
6696
8927f494 6697__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6698
6699/*
6711cab4
SS
6700 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6701 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6702 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6703 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6704 *
6705 * init_sched_build_groups will build a circular linked list of the groups
6706 * covered by the given span, and will set each group's ->cpumask correctly,
6707 * and ->cpu_power to 0.
6708 */
a616058b 6709static void
96f874e2
RR
6710init_sched_build_groups(const struct cpumask *span,
6711 const struct cpumask *cpu_map,
6712 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6713 struct sched_group **sg,
96f874e2
RR
6714 struct cpumask *tmpmask),
6715 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6716{
6717 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6718 int i;
6719
96f874e2 6720 cpumask_clear(covered);
7c16ec58 6721
abcd083a 6722 for_each_cpu(i, span) {
6711cab4 6723 struct sched_group *sg;
7c16ec58 6724 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6725 int j;
6726
758b2cdc 6727 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6728 continue;
6729
758b2cdc 6730 cpumask_clear(sched_group_cpus(sg));
18a3885f 6731 sg->cpu_power = 0;
1da177e4 6732
abcd083a 6733 for_each_cpu(j, span) {
7c16ec58 6734 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6735 continue;
6736
96f874e2 6737 cpumask_set_cpu(j, covered);
758b2cdc 6738 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6739 }
6740 if (!first)
6741 first = sg;
6742 if (last)
6743 last->next = sg;
6744 last = sg;
6745 }
6746 last->next = first;
6747}
6748
9c1cfda2 6749#define SD_NODES_PER_DOMAIN 16
1da177e4 6750
9c1cfda2 6751#ifdef CONFIG_NUMA
198e2f18 6752
9c1cfda2
JH
6753/**
6754 * find_next_best_node - find the next node to include in a sched_domain
6755 * @node: node whose sched_domain we're building
6756 * @used_nodes: nodes already in the sched_domain
6757 *
41a2d6cf 6758 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6759 * finds the closest node not already in the @used_nodes map.
6760 *
6761 * Should use nodemask_t.
6762 */
c5f59f08 6763static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6764{
6765 int i, n, val, min_val, best_node = 0;
6766
6767 min_val = INT_MAX;
6768
076ac2af 6769 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6770 /* Start at @node */
076ac2af 6771 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6772
6773 if (!nr_cpus_node(n))
6774 continue;
6775
6776 /* Skip already used nodes */
c5f59f08 6777 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6778 continue;
6779
6780 /* Simple min distance search */
6781 val = node_distance(node, n);
6782
6783 if (val < min_val) {
6784 min_val = val;
6785 best_node = n;
6786 }
6787 }
6788
c5f59f08 6789 node_set(best_node, *used_nodes);
9c1cfda2
JH
6790 return best_node;
6791}
6792
6793/**
6794 * sched_domain_node_span - get a cpumask for a node's sched_domain
6795 * @node: node whose cpumask we're constructing
73486722 6796 * @span: resulting cpumask
9c1cfda2 6797 *
41a2d6cf 6798 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6799 * should be one that prevents unnecessary balancing, but also spreads tasks
6800 * out optimally.
6801 */
96f874e2 6802static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6803{
c5f59f08 6804 nodemask_t used_nodes;
48f24c4d 6805 int i;
9c1cfda2 6806
6ca09dfc 6807 cpumask_clear(span);
c5f59f08 6808 nodes_clear(used_nodes);
9c1cfda2 6809
6ca09dfc 6810 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6811 node_set(node, used_nodes);
9c1cfda2
JH
6812
6813 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6814 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6815
6ca09dfc 6816 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6817 }
9c1cfda2 6818}
6d6bc0ad 6819#endif /* CONFIG_NUMA */
9c1cfda2 6820
5c45bf27 6821int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6822
6c99e9ad
RR
6823/*
6824 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6825 *
6826 * ( See the the comments in include/linux/sched.h:struct sched_group
6827 * and struct sched_domain. )
6c99e9ad
RR
6828 */
6829struct static_sched_group {
6830 struct sched_group sg;
6831 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6832};
6833
6834struct static_sched_domain {
6835 struct sched_domain sd;
6836 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6837};
6838
49a02c51
AH
6839struct s_data {
6840#ifdef CONFIG_NUMA
6841 int sd_allnodes;
6842 cpumask_var_t domainspan;
6843 cpumask_var_t covered;
6844 cpumask_var_t notcovered;
6845#endif
6846 cpumask_var_t nodemask;
6847 cpumask_var_t this_sibling_map;
6848 cpumask_var_t this_core_map;
01a08546 6849 cpumask_var_t this_book_map;
49a02c51
AH
6850 cpumask_var_t send_covered;
6851 cpumask_var_t tmpmask;
6852 struct sched_group **sched_group_nodes;
6853 struct root_domain *rd;
6854};
6855
2109b99e
AH
6856enum s_alloc {
6857 sa_sched_groups = 0,
6858 sa_rootdomain,
6859 sa_tmpmask,
6860 sa_send_covered,
01a08546 6861 sa_this_book_map,
2109b99e
AH
6862 sa_this_core_map,
6863 sa_this_sibling_map,
6864 sa_nodemask,
6865 sa_sched_group_nodes,
6866#ifdef CONFIG_NUMA
6867 sa_notcovered,
6868 sa_covered,
6869 sa_domainspan,
6870#endif
6871 sa_none,
6872};
6873
9c1cfda2 6874/*
48f24c4d 6875 * SMT sched-domains:
9c1cfda2 6876 */
1da177e4 6877#ifdef CONFIG_SCHED_SMT
6c99e9ad 6878static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6879static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6880
41a2d6cf 6881static int
96f874e2
RR
6882cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6883 struct sched_group **sg, struct cpumask *unused)
1da177e4 6884{
6711cab4 6885 if (sg)
1871e52c 6886 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6887 return cpu;
6888}
6d6bc0ad 6889#endif /* CONFIG_SCHED_SMT */
1da177e4 6890
48f24c4d
IM
6891/*
6892 * multi-core sched-domains:
6893 */
1e9f28fa 6894#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6895static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6896static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6897
41a2d6cf 6898static int
96f874e2
RR
6899cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6900 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6901{
6711cab4 6902 int group;
f269893c 6903#ifdef CONFIG_SCHED_SMT
c69fc56d 6904 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6905 group = cpumask_first(mask);
f269893c
HC
6906#else
6907 group = cpu;
6908#endif
6711cab4 6909 if (sg)
6c99e9ad 6910 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6911 return group;
1e9f28fa 6912}
f269893c 6913#endif /* CONFIG_SCHED_MC */
1e9f28fa 6914
01a08546
HC
6915/*
6916 * book sched-domains:
6917 */
6918#ifdef CONFIG_SCHED_BOOK
6919static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6920static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6921
41a2d6cf 6922static int
01a08546
HC
6923cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6924 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6925{
01a08546
HC
6926 int group = cpu;
6927#ifdef CONFIG_SCHED_MC
6928 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6929 group = cpumask_first(mask);
6930#elif defined(CONFIG_SCHED_SMT)
6931 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6932 group = cpumask_first(mask);
6933#endif
6711cab4 6934 if (sg)
01a08546
HC
6935 *sg = &per_cpu(sched_group_book, group).sg;
6936 return group;
1e9f28fa 6937}
01a08546 6938#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6939
6c99e9ad
RR
6940static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6941static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6942
41a2d6cf 6943static int
96f874e2
RR
6944cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6945 struct sched_group **sg, struct cpumask *mask)
1da177e4 6946{
6711cab4 6947 int group;
01a08546
HC
6948#ifdef CONFIG_SCHED_BOOK
6949 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6950 group = cpumask_first(mask);
6951#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6952 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6953 group = cpumask_first(mask);
1e9f28fa 6954#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6955 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6956 group = cpumask_first(mask);
1da177e4 6957#else
6711cab4 6958 group = cpu;
1da177e4 6959#endif
6711cab4 6960 if (sg)
6c99e9ad 6961 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6962 return group;
1da177e4
LT
6963}
6964
6965#ifdef CONFIG_NUMA
1da177e4 6966/*
9c1cfda2
JH
6967 * The init_sched_build_groups can't handle what we want to do with node
6968 * groups, so roll our own. Now each node has its own list of groups which
6969 * gets dynamically allocated.
1da177e4 6970 */
62ea9ceb 6971static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6972static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6973
62ea9ceb 6974static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6975static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6976
96f874e2
RR
6977static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6978 struct sched_group **sg,
6979 struct cpumask *nodemask)
9c1cfda2 6980{
6711cab4
SS
6981 int group;
6982
6ca09dfc 6983 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6984 group = cpumask_first(nodemask);
6711cab4
SS
6985
6986 if (sg)
6c99e9ad 6987 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6988 return group;
1da177e4 6989}
6711cab4 6990
08069033
SS
6991static void init_numa_sched_groups_power(struct sched_group *group_head)
6992{
6993 struct sched_group *sg = group_head;
6994 int j;
6995
6996 if (!sg)
6997 return;
3a5c359a 6998 do {
758b2cdc 6999 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7000 struct sched_domain *sd;
08069033 7001
6c99e9ad 7002 sd = &per_cpu(phys_domains, j).sd;
13318a71 7003 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7004 /*
7005 * Only add "power" once for each
7006 * physical package.
7007 */
7008 continue;
7009 }
08069033 7010
18a3885f 7011 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7012 }
7013 sg = sg->next;
7014 } while (sg != group_head);
08069033 7015}
0601a88d
AH
7016
7017static int build_numa_sched_groups(struct s_data *d,
7018 const struct cpumask *cpu_map, int num)
7019{
7020 struct sched_domain *sd;
7021 struct sched_group *sg, *prev;
7022 int n, j;
7023
7024 cpumask_clear(d->covered);
7025 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7026 if (cpumask_empty(d->nodemask)) {
7027 d->sched_group_nodes[num] = NULL;
7028 goto out;
7029 }
7030
7031 sched_domain_node_span(num, d->domainspan);
7032 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7033
7034 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7035 GFP_KERNEL, num);
7036 if (!sg) {
3df0fc5b
PZ
7037 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7038 num);
0601a88d
AH
7039 return -ENOMEM;
7040 }
7041 d->sched_group_nodes[num] = sg;
7042
7043 for_each_cpu(j, d->nodemask) {
7044 sd = &per_cpu(node_domains, j).sd;
7045 sd->groups = sg;
7046 }
7047
18a3885f 7048 sg->cpu_power = 0;
0601a88d
AH
7049 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7050 sg->next = sg;
7051 cpumask_or(d->covered, d->covered, d->nodemask);
7052
7053 prev = sg;
7054 for (j = 0; j < nr_node_ids; j++) {
7055 n = (num + j) % nr_node_ids;
7056 cpumask_complement(d->notcovered, d->covered);
7057 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7058 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7059 if (cpumask_empty(d->tmpmask))
7060 break;
7061 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7062 if (cpumask_empty(d->tmpmask))
7063 continue;
7064 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7065 GFP_KERNEL, num);
7066 if (!sg) {
3df0fc5b
PZ
7067 printk(KERN_WARNING
7068 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7069 return -ENOMEM;
7070 }
18a3885f 7071 sg->cpu_power = 0;
0601a88d
AH
7072 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7073 sg->next = prev->next;
7074 cpumask_or(d->covered, d->covered, d->tmpmask);
7075 prev->next = sg;
7076 prev = sg;
7077 }
7078out:
7079 return 0;
7080}
6d6bc0ad 7081#endif /* CONFIG_NUMA */
1da177e4 7082
a616058b 7083#ifdef CONFIG_NUMA
51888ca2 7084/* Free memory allocated for various sched_group structures */
96f874e2
RR
7085static void free_sched_groups(const struct cpumask *cpu_map,
7086 struct cpumask *nodemask)
51888ca2 7087{
a616058b 7088 int cpu, i;
51888ca2 7089
abcd083a 7090 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7091 struct sched_group **sched_group_nodes
7092 = sched_group_nodes_bycpu[cpu];
7093
51888ca2
SV
7094 if (!sched_group_nodes)
7095 continue;
7096
076ac2af 7097 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7098 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7099
6ca09dfc 7100 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7101 if (cpumask_empty(nodemask))
51888ca2
SV
7102 continue;
7103
7104 if (sg == NULL)
7105 continue;
7106 sg = sg->next;
7107next_sg:
7108 oldsg = sg;
7109 sg = sg->next;
7110 kfree(oldsg);
7111 if (oldsg != sched_group_nodes[i])
7112 goto next_sg;
7113 }
7114 kfree(sched_group_nodes);
7115 sched_group_nodes_bycpu[cpu] = NULL;
7116 }
51888ca2 7117}
6d6bc0ad 7118#else /* !CONFIG_NUMA */
96f874e2
RR
7119static void free_sched_groups(const struct cpumask *cpu_map,
7120 struct cpumask *nodemask)
a616058b
SS
7121{
7122}
6d6bc0ad 7123#endif /* CONFIG_NUMA */
51888ca2 7124
89c4710e
SS
7125/*
7126 * Initialize sched groups cpu_power.
7127 *
7128 * cpu_power indicates the capacity of sched group, which is used while
7129 * distributing the load between different sched groups in a sched domain.
7130 * Typically cpu_power for all the groups in a sched domain will be same unless
7131 * there are asymmetries in the topology. If there are asymmetries, group
7132 * having more cpu_power will pickup more load compared to the group having
7133 * less cpu_power.
89c4710e
SS
7134 */
7135static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7136{
7137 struct sched_domain *child;
7138 struct sched_group *group;
f93e65c1
PZ
7139 long power;
7140 int weight;
89c4710e
SS
7141
7142 WARN_ON(!sd || !sd->groups);
7143
13318a71 7144 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7145 return;
7146
aae6d3dd
SS
7147 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7148
89c4710e
SS
7149 child = sd->child;
7150
18a3885f 7151 sd->groups->cpu_power = 0;
5517d86b 7152
f93e65c1
PZ
7153 if (!child) {
7154 power = SCHED_LOAD_SCALE;
7155 weight = cpumask_weight(sched_domain_span(sd));
7156 /*
7157 * SMT siblings share the power of a single core.
a52bfd73
PZ
7158 * Usually multiple threads get a better yield out of
7159 * that one core than a single thread would have,
7160 * reflect that in sd->smt_gain.
f93e65c1 7161 */
a52bfd73
PZ
7162 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7163 power *= sd->smt_gain;
f93e65c1 7164 power /= weight;
a52bfd73
PZ
7165 power >>= SCHED_LOAD_SHIFT;
7166 }
18a3885f 7167 sd->groups->cpu_power += power;
89c4710e
SS
7168 return;
7169 }
7170
89c4710e 7171 /*
f93e65c1 7172 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7173 */
7174 group = child->groups;
7175 do {
18a3885f 7176 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7177 group = group->next;
7178 } while (group != child->groups);
7179}
7180
7c16ec58
MT
7181/*
7182 * Initializers for schedule domains
7183 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7184 */
7185
a5d8c348
IM
7186#ifdef CONFIG_SCHED_DEBUG
7187# define SD_INIT_NAME(sd, type) sd->name = #type
7188#else
7189# define SD_INIT_NAME(sd, type) do { } while (0)
7190#endif
7191
7c16ec58 7192#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7193
7c16ec58
MT
7194#define SD_INIT_FUNC(type) \
7195static noinline void sd_init_##type(struct sched_domain *sd) \
7196{ \
7197 memset(sd, 0, sizeof(*sd)); \
7198 *sd = SD_##type##_INIT; \
1d3504fc 7199 sd->level = SD_LV_##type; \
a5d8c348 7200 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7201}
7202
7203SD_INIT_FUNC(CPU)
7204#ifdef CONFIG_NUMA
7205 SD_INIT_FUNC(ALLNODES)
7206 SD_INIT_FUNC(NODE)
7207#endif
7208#ifdef CONFIG_SCHED_SMT
7209 SD_INIT_FUNC(SIBLING)
7210#endif
7211#ifdef CONFIG_SCHED_MC
7212 SD_INIT_FUNC(MC)
7213#endif
01a08546
HC
7214#ifdef CONFIG_SCHED_BOOK
7215 SD_INIT_FUNC(BOOK)
7216#endif
7c16ec58 7217
1d3504fc
HS
7218static int default_relax_domain_level = -1;
7219
7220static int __init setup_relax_domain_level(char *str)
7221{
30e0e178
LZ
7222 unsigned long val;
7223
7224 val = simple_strtoul(str, NULL, 0);
7225 if (val < SD_LV_MAX)
7226 default_relax_domain_level = val;
7227
1d3504fc
HS
7228 return 1;
7229}
7230__setup("relax_domain_level=", setup_relax_domain_level);
7231
7232static void set_domain_attribute(struct sched_domain *sd,
7233 struct sched_domain_attr *attr)
7234{
7235 int request;
7236
7237 if (!attr || attr->relax_domain_level < 0) {
7238 if (default_relax_domain_level < 0)
7239 return;
7240 else
7241 request = default_relax_domain_level;
7242 } else
7243 request = attr->relax_domain_level;
7244 if (request < sd->level) {
7245 /* turn off idle balance on this domain */
c88d5910 7246 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7247 } else {
7248 /* turn on idle balance on this domain */
c88d5910 7249 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7250 }
7251}
7252
2109b99e
AH
7253static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7254 const struct cpumask *cpu_map)
7255{
7256 switch (what) {
7257 case sa_sched_groups:
7258 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7259 d->sched_group_nodes = NULL;
7260 case sa_rootdomain:
7261 free_rootdomain(d->rd); /* fall through */
7262 case sa_tmpmask:
7263 free_cpumask_var(d->tmpmask); /* fall through */
7264 case sa_send_covered:
7265 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7266 case sa_this_book_map:
7267 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7268 case sa_this_core_map:
7269 free_cpumask_var(d->this_core_map); /* fall through */
7270 case sa_this_sibling_map:
7271 free_cpumask_var(d->this_sibling_map); /* fall through */
7272 case sa_nodemask:
7273 free_cpumask_var(d->nodemask); /* fall through */
7274 case sa_sched_group_nodes:
d1b55138 7275#ifdef CONFIG_NUMA
2109b99e
AH
7276 kfree(d->sched_group_nodes); /* fall through */
7277 case sa_notcovered:
7278 free_cpumask_var(d->notcovered); /* fall through */
7279 case sa_covered:
7280 free_cpumask_var(d->covered); /* fall through */
7281 case sa_domainspan:
7282 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7283#endif
2109b99e
AH
7284 case sa_none:
7285 break;
7286 }
7287}
3404c8d9 7288
2109b99e
AH
7289static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7290 const struct cpumask *cpu_map)
7291{
3404c8d9 7292#ifdef CONFIG_NUMA
2109b99e
AH
7293 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7294 return sa_none;
7295 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7296 return sa_domainspan;
7297 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7298 return sa_covered;
7299 /* Allocate the per-node list of sched groups */
7300 d->sched_group_nodes = kcalloc(nr_node_ids,
7301 sizeof(struct sched_group *), GFP_KERNEL);
7302 if (!d->sched_group_nodes) {
3df0fc5b 7303 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7304 return sa_notcovered;
d1b55138 7305 }
2109b99e 7306 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7307#endif
2109b99e
AH
7308 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7309 return sa_sched_group_nodes;
7310 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7311 return sa_nodemask;
7312 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7313 return sa_this_sibling_map;
01a08546 7314 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7315 return sa_this_core_map;
01a08546
HC
7316 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7317 return sa_this_book_map;
2109b99e
AH
7318 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7319 return sa_send_covered;
7320 d->rd = alloc_rootdomain();
7321 if (!d->rd) {
3df0fc5b 7322 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7323 return sa_tmpmask;
57d885fe 7324 }
2109b99e
AH
7325 return sa_rootdomain;
7326}
57d885fe 7327
7f4588f3
AH
7328static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7329 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7330{
7331 struct sched_domain *sd = NULL;
7c16ec58 7332#ifdef CONFIG_NUMA
7f4588f3 7333 struct sched_domain *parent;
1da177e4 7334
7f4588f3
AH
7335 d->sd_allnodes = 0;
7336 if (cpumask_weight(cpu_map) >
7337 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7338 sd = &per_cpu(allnodes_domains, i).sd;
7339 SD_INIT(sd, ALLNODES);
1d3504fc 7340 set_domain_attribute(sd, attr);
7f4588f3
AH
7341 cpumask_copy(sched_domain_span(sd), cpu_map);
7342 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7343 d->sd_allnodes = 1;
7344 }
7345 parent = sd;
7346
7347 sd = &per_cpu(node_domains, i).sd;
7348 SD_INIT(sd, NODE);
7349 set_domain_attribute(sd, attr);
7350 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7351 sd->parent = parent;
7352 if (parent)
7353 parent->child = sd;
7354 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7355#endif
7f4588f3
AH
7356 return sd;
7357}
1da177e4 7358
87cce662
AH
7359static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7360 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7361 struct sched_domain *parent, int i)
7362{
7363 struct sched_domain *sd;
7364 sd = &per_cpu(phys_domains, i).sd;
7365 SD_INIT(sd, CPU);
7366 set_domain_attribute(sd, attr);
7367 cpumask_copy(sched_domain_span(sd), d->nodemask);
7368 sd->parent = parent;
7369 if (parent)
7370 parent->child = sd;
7371 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7372 return sd;
7373}
1da177e4 7374
01a08546
HC
7375static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7376 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7377 struct sched_domain *parent, int i)
7378{
7379 struct sched_domain *sd = parent;
7380#ifdef CONFIG_SCHED_BOOK
7381 sd = &per_cpu(book_domains, i).sd;
7382 SD_INIT(sd, BOOK);
7383 set_domain_attribute(sd, attr);
7384 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7385 sd->parent = parent;
7386 parent->child = sd;
7387 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7388#endif
7389 return sd;
7390}
7391
410c4081
AH
7392static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7393 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7394 struct sched_domain *parent, int i)
7395{
7396 struct sched_domain *sd = parent;
1e9f28fa 7397#ifdef CONFIG_SCHED_MC
410c4081
AH
7398 sd = &per_cpu(core_domains, i).sd;
7399 SD_INIT(sd, MC);
7400 set_domain_attribute(sd, attr);
7401 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7402 sd->parent = parent;
7403 parent->child = sd;
7404 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7405#endif
410c4081
AH
7406 return sd;
7407}
1e9f28fa 7408
d8173535
AH
7409static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7410 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7411 struct sched_domain *parent, int i)
7412{
7413 struct sched_domain *sd = parent;
1da177e4 7414#ifdef CONFIG_SCHED_SMT
d8173535
AH
7415 sd = &per_cpu(cpu_domains, i).sd;
7416 SD_INIT(sd, SIBLING);
7417 set_domain_attribute(sd, attr);
7418 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7419 sd->parent = parent;
7420 parent->child = sd;
7421 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7422#endif
d8173535
AH
7423 return sd;
7424}
1da177e4 7425
0e8e85c9
AH
7426static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7427 const struct cpumask *cpu_map, int cpu)
7428{
7429 switch (l) {
1da177e4 7430#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7431 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7432 cpumask_and(d->this_sibling_map, cpu_map,
7433 topology_thread_cpumask(cpu));
7434 if (cpu == cpumask_first(d->this_sibling_map))
7435 init_sched_build_groups(d->this_sibling_map, cpu_map,
7436 &cpu_to_cpu_group,
7437 d->send_covered, d->tmpmask);
7438 break;
1da177e4 7439#endif
1e9f28fa 7440#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7441 case SD_LV_MC: /* set up multi-core groups */
7442 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7443 if (cpu == cpumask_first(d->this_core_map))
7444 init_sched_build_groups(d->this_core_map, cpu_map,
7445 &cpu_to_core_group,
7446 d->send_covered, d->tmpmask);
7447 break;
01a08546
HC
7448#endif
7449#ifdef CONFIG_SCHED_BOOK
7450 case SD_LV_BOOK: /* set up book groups */
7451 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7452 if (cpu == cpumask_first(d->this_book_map))
7453 init_sched_build_groups(d->this_book_map, cpu_map,
7454 &cpu_to_book_group,
7455 d->send_covered, d->tmpmask);
7456 break;
1e9f28fa 7457#endif
86548096
AH
7458 case SD_LV_CPU: /* set up physical groups */
7459 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7460 if (!cpumask_empty(d->nodemask))
7461 init_sched_build_groups(d->nodemask, cpu_map,
7462 &cpu_to_phys_group,
7463 d->send_covered, d->tmpmask);
7464 break;
1da177e4 7465#ifdef CONFIG_NUMA
de616e36
AH
7466 case SD_LV_ALLNODES:
7467 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7468 d->send_covered, d->tmpmask);
7469 break;
7470#endif
0e8e85c9
AH
7471 default:
7472 break;
7c16ec58 7473 }
0e8e85c9 7474}
9c1cfda2 7475
2109b99e
AH
7476/*
7477 * Build sched domains for a given set of cpus and attach the sched domains
7478 * to the individual cpus
7479 */
7480static int __build_sched_domains(const struct cpumask *cpu_map,
7481 struct sched_domain_attr *attr)
7482{
7483 enum s_alloc alloc_state = sa_none;
7484 struct s_data d;
294b0c96 7485 struct sched_domain *sd;
2109b99e 7486 int i;
7c16ec58 7487#ifdef CONFIG_NUMA
2109b99e 7488 d.sd_allnodes = 0;
7c16ec58 7489#endif
9c1cfda2 7490
2109b99e
AH
7491 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7492 if (alloc_state != sa_rootdomain)
7493 goto error;
7494 alloc_state = sa_sched_groups;
9c1cfda2 7495
1da177e4 7496 /*
1a20ff27 7497 * Set up domains for cpus specified by the cpu_map.
1da177e4 7498 */
abcd083a 7499 for_each_cpu(i, cpu_map) {
49a02c51
AH
7500 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7501 cpu_map);
9761eea8 7502
7f4588f3 7503 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7504 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7505 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7506 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7507 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7508 }
9c1cfda2 7509
abcd083a 7510 for_each_cpu(i, cpu_map) {
0e8e85c9 7511 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7512 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7513 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7514 }
9c1cfda2 7515
1da177e4 7516 /* Set up physical groups */
86548096
AH
7517 for (i = 0; i < nr_node_ids; i++)
7518 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7519
1da177e4
LT
7520#ifdef CONFIG_NUMA
7521 /* Set up node groups */
de616e36
AH
7522 if (d.sd_allnodes)
7523 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7524
0601a88d
AH
7525 for (i = 0; i < nr_node_ids; i++)
7526 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7527 goto error;
1da177e4
LT
7528#endif
7529
7530 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7531#ifdef CONFIG_SCHED_SMT
abcd083a 7532 for_each_cpu(i, cpu_map) {
294b0c96 7533 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7534 init_sched_groups_power(i, sd);
5c45bf27 7535 }
1da177e4 7536#endif
1e9f28fa 7537#ifdef CONFIG_SCHED_MC
abcd083a 7538 for_each_cpu(i, cpu_map) {
294b0c96 7539 sd = &per_cpu(core_domains, i).sd;
89c4710e 7540 init_sched_groups_power(i, sd);
5c45bf27
SS
7541 }
7542#endif
01a08546
HC
7543#ifdef CONFIG_SCHED_BOOK
7544 for_each_cpu(i, cpu_map) {
7545 sd = &per_cpu(book_domains, i).sd;
7546 init_sched_groups_power(i, sd);
7547 }
7548#endif
1e9f28fa 7549
abcd083a 7550 for_each_cpu(i, cpu_map) {
294b0c96 7551 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7552 init_sched_groups_power(i, sd);
1da177e4
LT
7553 }
7554
9c1cfda2 7555#ifdef CONFIG_NUMA
076ac2af 7556 for (i = 0; i < nr_node_ids; i++)
49a02c51 7557 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7558
49a02c51 7559 if (d.sd_allnodes) {
6711cab4 7560 struct sched_group *sg;
f712c0c7 7561
96f874e2 7562 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7563 d.tmpmask);
f712c0c7
SS
7564 init_numa_sched_groups_power(sg);
7565 }
9c1cfda2
JH
7566#endif
7567
1da177e4 7568 /* Attach the domains */
abcd083a 7569 for_each_cpu(i, cpu_map) {
1da177e4 7570#ifdef CONFIG_SCHED_SMT
6c99e9ad 7571 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7572#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7573 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7574#elif defined(CONFIG_SCHED_BOOK)
7575 sd = &per_cpu(book_domains, i).sd;
1da177e4 7576#else
6c99e9ad 7577 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7578#endif
49a02c51 7579 cpu_attach_domain(sd, d.rd, i);
1da177e4 7580 }
51888ca2 7581
2109b99e
AH
7582 d.sched_group_nodes = NULL; /* don't free this we still need it */
7583 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7584 return 0;
51888ca2 7585
51888ca2 7586error:
2109b99e
AH
7587 __free_domain_allocs(&d, alloc_state, cpu_map);
7588 return -ENOMEM;
1da177e4 7589}
029190c5 7590
96f874e2 7591static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7592{
7593 return __build_sched_domains(cpu_map, NULL);
7594}
7595
acc3f5d7 7596static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7597static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7598static struct sched_domain_attr *dattr_cur;
7599 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7600
7601/*
7602 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7603 * cpumask) fails, then fallback to a single sched domain,
7604 * as determined by the single cpumask fallback_doms.
029190c5 7605 */
4212823f 7606static cpumask_var_t fallback_doms;
029190c5 7607
ee79d1bd
HC
7608/*
7609 * arch_update_cpu_topology lets virtualized architectures update the
7610 * cpu core maps. It is supposed to return 1 if the topology changed
7611 * or 0 if it stayed the same.
7612 */
7613int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7614{
ee79d1bd 7615 return 0;
22e52b07
HC
7616}
7617
acc3f5d7
RR
7618cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7619{
7620 int i;
7621 cpumask_var_t *doms;
7622
7623 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7624 if (!doms)
7625 return NULL;
7626 for (i = 0; i < ndoms; i++) {
7627 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7628 free_sched_domains(doms, i);
7629 return NULL;
7630 }
7631 }
7632 return doms;
7633}
7634
7635void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7636{
7637 unsigned int i;
7638 for (i = 0; i < ndoms; i++)
7639 free_cpumask_var(doms[i]);
7640 kfree(doms);
7641}
7642
1a20ff27 7643/*
41a2d6cf 7644 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7645 * For now this just excludes isolated cpus, but could be used to
7646 * exclude other special cases in the future.
1a20ff27 7647 */
96f874e2 7648static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7649{
7378547f
MM
7650 int err;
7651
22e52b07 7652 arch_update_cpu_topology();
029190c5 7653 ndoms_cur = 1;
acc3f5d7 7654 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7655 if (!doms_cur)
acc3f5d7
RR
7656 doms_cur = &fallback_doms;
7657 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7658 dattr_cur = NULL;
acc3f5d7 7659 err = build_sched_domains(doms_cur[0]);
6382bc90 7660 register_sched_domain_sysctl();
7378547f
MM
7661
7662 return err;
1a20ff27
DG
7663}
7664
96f874e2
RR
7665static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7666 struct cpumask *tmpmask)
1da177e4 7667{
7c16ec58 7668 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7669}
1da177e4 7670
1a20ff27
DG
7671/*
7672 * Detach sched domains from a group of cpus specified in cpu_map
7673 * These cpus will now be attached to the NULL domain
7674 */
96f874e2 7675static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7676{
96f874e2
RR
7677 /* Save because hotplug lock held. */
7678 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7679 int i;
7680
abcd083a 7681 for_each_cpu(i, cpu_map)
57d885fe 7682 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7683 synchronize_sched();
96f874e2 7684 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7685}
7686
1d3504fc
HS
7687/* handle null as "default" */
7688static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7689 struct sched_domain_attr *new, int idx_new)
7690{
7691 struct sched_domain_attr tmp;
7692
7693 /* fast path */
7694 if (!new && !cur)
7695 return 1;
7696
7697 tmp = SD_ATTR_INIT;
7698 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7699 new ? (new + idx_new) : &tmp,
7700 sizeof(struct sched_domain_attr));
7701}
7702
029190c5
PJ
7703/*
7704 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7705 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7706 * doms_new[] to the current sched domain partitioning, doms_cur[].
7707 * It destroys each deleted domain and builds each new domain.
7708 *
acc3f5d7 7709 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7710 * The masks don't intersect (don't overlap.) We should setup one
7711 * sched domain for each mask. CPUs not in any of the cpumasks will
7712 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7713 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7714 * it as it is.
7715 *
acc3f5d7
RR
7716 * The passed in 'doms_new' should be allocated using
7717 * alloc_sched_domains. This routine takes ownership of it and will
7718 * free_sched_domains it when done with it. If the caller failed the
7719 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7720 * and partition_sched_domains() will fallback to the single partition
7721 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7722 *
96f874e2 7723 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7724 * ndoms_new == 0 is a special case for destroying existing domains,
7725 * and it will not create the default domain.
dfb512ec 7726 *
029190c5
PJ
7727 * Call with hotplug lock held
7728 */
acc3f5d7 7729void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7730 struct sched_domain_attr *dattr_new)
029190c5 7731{
dfb512ec 7732 int i, j, n;
d65bd5ec 7733 int new_topology;
029190c5 7734
712555ee 7735 mutex_lock(&sched_domains_mutex);
a1835615 7736
7378547f
MM
7737 /* always unregister in case we don't destroy any domains */
7738 unregister_sched_domain_sysctl();
7739
d65bd5ec
HC
7740 /* Let architecture update cpu core mappings. */
7741 new_topology = arch_update_cpu_topology();
7742
dfb512ec 7743 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7744
7745 /* Destroy deleted domains */
7746 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7747 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7748 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7749 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7750 goto match1;
7751 }
7752 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7753 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7754match1:
7755 ;
7756 }
7757
e761b772
MK
7758 if (doms_new == NULL) {
7759 ndoms_cur = 0;
acc3f5d7 7760 doms_new = &fallback_doms;
6ad4c188 7761 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7762 WARN_ON_ONCE(dattr_new);
e761b772
MK
7763 }
7764
029190c5
PJ
7765 /* Build new domains */
7766 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7767 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7768 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7769 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7770 goto match2;
7771 }
7772 /* no match - add a new doms_new */
acc3f5d7 7773 __build_sched_domains(doms_new[i],
1d3504fc 7774 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7775match2:
7776 ;
7777 }
7778
7779 /* Remember the new sched domains */
acc3f5d7
RR
7780 if (doms_cur != &fallback_doms)
7781 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7782 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7783 doms_cur = doms_new;
1d3504fc 7784 dattr_cur = dattr_new;
029190c5 7785 ndoms_cur = ndoms_new;
7378547f
MM
7786
7787 register_sched_domain_sysctl();
a1835615 7788
712555ee 7789 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7790}
7791
5c45bf27 7792#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7793static void arch_reinit_sched_domains(void)
5c45bf27 7794{
95402b38 7795 get_online_cpus();
dfb512ec
MK
7796
7797 /* Destroy domains first to force the rebuild */
7798 partition_sched_domains(0, NULL, NULL);
7799
e761b772 7800 rebuild_sched_domains();
95402b38 7801 put_online_cpus();
5c45bf27
SS
7802}
7803
7804static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7805{
afb8a9b7 7806 unsigned int level = 0;
5c45bf27 7807
afb8a9b7
GS
7808 if (sscanf(buf, "%u", &level) != 1)
7809 return -EINVAL;
7810
7811 /*
7812 * level is always be positive so don't check for
7813 * level < POWERSAVINGS_BALANCE_NONE which is 0
7814 * What happens on 0 or 1 byte write,
7815 * need to check for count as well?
7816 */
7817
7818 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7819 return -EINVAL;
7820
7821 if (smt)
afb8a9b7 7822 sched_smt_power_savings = level;
5c45bf27 7823 else
afb8a9b7 7824 sched_mc_power_savings = level;
5c45bf27 7825
c70f22d2 7826 arch_reinit_sched_domains();
5c45bf27 7827
c70f22d2 7828 return count;
5c45bf27
SS
7829}
7830
5c45bf27 7831#ifdef CONFIG_SCHED_MC
f718cd4a 7832static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7833 struct sysdev_class_attribute *attr,
f718cd4a 7834 char *page)
5c45bf27
SS
7835{
7836 return sprintf(page, "%u\n", sched_mc_power_savings);
7837}
f718cd4a 7838static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7839 struct sysdev_class_attribute *attr,
48f24c4d 7840 const char *buf, size_t count)
5c45bf27
SS
7841{
7842 return sched_power_savings_store(buf, count, 0);
7843}
f718cd4a
AK
7844static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7845 sched_mc_power_savings_show,
7846 sched_mc_power_savings_store);
5c45bf27
SS
7847#endif
7848
7849#ifdef CONFIG_SCHED_SMT
f718cd4a 7850static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7851 struct sysdev_class_attribute *attr,
f718cd4a 7852 char *page)
5c45bf27
SS
7853{
7854 return sprintf(page, "%u\n", sched_smt_power_savings);
7855}
f718cd4a 7856static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7857 struct sysdev_class_attribute *attr,
48f24c4d 7858 const char *buf, size_t count)
5c45bf27
SS
7859{
7860 return sched_power_savings_store(buf, count, 1);
7861}
f718cd4a
AK
7862static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7863 sched_smt_power_savings_show,
6707de00
AB
7864 sched_smt_power_savings_store);
7865#endif
7866
39aac648 7867int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7868{
7869 int err = 0;
7870
7871#ifdef CONFIG_SCHED_SMT
7872 if (smt_capable())
7873 err = sysfs_create_file(&cls->kset.kobj,
7874 &attr_sched_smt_power_savings.attr);
7875#endif
7876#ifdef CONFIG_SCHED_MC
7877 if (!err && mc_capable())
7878 err = sysfs_create_file(&cls->kset.kobj,
7879 &attr_sched_mc_power_savings.attr);
7880#endif
7881 return err;
7882}
6d6bc0ad 7883#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7884
1da177e4 7885/*
3a101d05
TH
7886 * Update cpusets according to cpu_active mask. If cpusets are
7887 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7888 * around partition_sched_domains().
1da177e4 7889 */
0b2e918a
TH
7890static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7891 void *hcpu)
e761b772 7892{
3a101d05 7893 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7894 case CPU_ONLINE:
6ad4c188 7895 case CPU_DOWN_FAILED:
3a101d05 7896 cpuset_update_active_cpus();
e761b772 7897 return NOTIFY_OK;
3a101d05
TH
7898 default:
7899 return NOTIFY_DONE;
7900 }
7901}
e761b772 7902
0b2e918a
TH
7903static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7904 void *hcpu)
3a101d05
TH
7905{
7906 switch (action & ~CPU_TASKS_FROZEN) {
7907 case CPU_DOWN_PREPARE:
7908 cpuset_update_active_cpus();
7909 return NOTIFY_OK;
e761b772
MK
7910 default:
7911 return NOTIFY_DONE;
7912 }
7913}
e761b772
MK
7914
7915static int update_runtime(struct notifier_block *nfb,
7916 unsigned long action, void *hcpu)
1da177e4 7917{
7def2be1
PZ
7918 int cpu = (int)(long)hcpu;
7919
1da177e4 7920 switch (action) {
1da177e4 7921 case CPU_DOWN_PREPARE:
8bb78442 7922 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7923 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7924 return NOTIFY_OK;
7925
1da177e4 7926 case CPU_DOWN_FAILED:
8bb78442 7927 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7928 case CPU_ONLINE:
8bb78442 7929 case CPU_ONLINE_FROZEN:
7def2be1 7930 enable_runtime(cpu_rq(cpu));
e761b772
MK
7931 return NOTIFY_OK;
7932
1da177e4
LT
7933 default:
7934 return NOTIFY_DONE;
7935 }
1da177e4 7936}
1da177e4
LT
7937
7938void __init sched_init_smp(void)
7939{
dcc30a35
RR
7940 cpumask_var_t non_isolated_cpus;
7941
7942 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7943 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7944
434d53b0
MT
7945#if defined(CONFIG_NUMA)
7946 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7947 GFP_KERNEL);
7948 BUG_ON(sched_group_nodes_bycpu == NULL);
7949#endif
95402b38 7950 get_online_cpus();
712555ee 7951 mutex_lock(&sched_domains_mutex);
6ad4c188 7952 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7953 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7954 if (cpumask_empty(non_isolated_cpus))
7955 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7956 mutex_unlock(&sched_domains_mutex);
95402b38 7957 put_online_cpus();
e761b772 7958
3a101d05
TH
7959 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7960 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7961
7962 /* RT runtime code needs to handle some hotplug events */
7963 hotcpu_notifier(update_runtime, 0);
7964
b328ca18 7965 init_hrtick();
5c1e1767
NP
7966
7967 /* Move init over to a non-isolated CPU */
dcc30a35 7968 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7969 BUG();
19978ca6 7970 sched_init_granularity();
dcc30a35 7971 free_cpumask_var(non_isolated_cpus);
4212823f 7972
0e3900e6 7973 init_sched_rt_class();
1da177e4
LT
7974}
7975#else
7976void __init sched_init_smp(void)
7977{
19978ca6 7978 sched_init_granularity();
1da177e4
LT
7979}
7980#endif /* CONFIG_SMP */
7981
cd1bb94b
AB
7982const_debug unsigned int sysctl_timer_migration = 1;
7983
1da177e4
LT
7984int in_sched_functions(unsigned long addr)
7985{
1da177e4
LT
7986 return in_lock_functions(addr) ||
7987 (addr >= (unsigned long)__sched_text_start
7988 && addr < (unsigned long)__sched_text_end);
7989}
7990
a9957449 7991static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7992{
7993 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7994 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7995#ifdef CONFIG_FAIR_GROUP_SCHED
7996 cfs_rq->rq = rq;
f07333bf 7997 /* allow initial update_cfs_load() to truncate */
6ea72f12 7998#ifdef CONFIG_SMP
f07333bf 7999 cfs_rq->load_stamp = 1;
6ea72f12 8000#endif
dd41f596 8001#endif
67e9fb2a 8002 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8003}
8004
fa85ae24
PZ
8005static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8006{
8007 struct rt_prio_array *array;
8008 int i;
8009
8010 array = &rt_rq->active;
8011 for (i = 0; i < MAX_RT_PRIO; i++) {
8012 INIT_LIST_HEAD(array->queue + i);
8013 __clear_bit(i, array->bitmap);
8014 }
8015 /* delimiter for bitsearch: */
8016 __set_bit(MAX_RT_PRIO, array->bitmap);
8017
052f1dc7 8018#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8019 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8020#ifdef CONFIG_SMP
e864c499 8021 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8022#endif
48d5e258 8023#endif
fa85ae24
PZ
8024#ifdef CONFIG_SMP
8025 rt_rq->rt_nr_migratory = 0;
fa85ae24 8026 rt_rq->overloaded = 0;
05fa785c 8027 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8028#endif
8029
8030 rt_rq->rt_time = 0;
8031 rt_rq->rt_throttled = 0;
ac086bc2 8032 rt_rq->rt_runtime = 0;
0986b11b 8033 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8034
052f1dc7 8035#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8036 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8037 rt_rq->rq = rq;
8038#endif
fa85ae24
PZ
8039}
8040
6f505b16 8041#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8042static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8043 struct sched_entity *se, int cpu,
ec7dc8ac 8044 struct sched_entity *parent)
6f505b16 8045{
ec7dc8ac 8046 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8047 tg->cfs_rq[cpu] = cfs_rq;
8048 init_cfs_rq(cfs_rq, rq);
8049 cfs_rq->tg = tg;
6f505b16
PZ
8050
8051 tg->se[cpu] = se;
07e06b01 8052 /* se could be NULL for root_task_group */
354d60c2
DG
8053 if (!se)
8054 return;
8055
ec7dc8ac
DG
8056 if (!parent)
8057 se->cfs_rq = &rq->cfs;
8058 else
8059 se->cfs_rq = parent->my_q;
8060
6f505b16 8061 se->my_q = cfs_rq;
9437178f 8062 update_load_set(&se->load, 0);
ec7dc8ac 8063 se->parent = parent;
6f505b16 8064}
052f1dc7 8065#endif
6f505b16 8066
052f1dc7 8067#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8068static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8069 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8070 struct sched_rt_entity *parent)
6f505b16 8071{
ec7dc8ac
DG
8072 struct rq *rq = cpu_rq(cpu);
8073
6f505b16
PZ
8074 tg->rt_rq[cpu] = rt_rq;
8075 init_rt_rq(rt_rq, rq);
8076 rt_rq->tg = tg;
ac086bc2 8077 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8078
8079 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8080 if (!rt_se)
8081 return;
8082
ec7dc8ac
DG
8083 if (!parent)
8084 rt_se->rt_rq = &rq->rt;
8085 else
8086 rt_se->rt_rq = parent->my_q;
8087
6f505b16 8088 rt_se->my_q = rt_rq;
ec7dc8ac 8089 rt_se->parent = parent;
6f505b16
PZ
8090 INIT_LIST_HEAD(&rt_se->run_list);
8091}
8092#endif
8093
1da177e4
LT
8094void __init sched_init(void)
8095{
dd41f596 8096 int i, j;
434d53b0
MT
8097 unsigned long alloc_size = 0, ptr;
8098
8099#ifdef CONFIG_FAIR_GROUP_SCHED
8100 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8101#endif
8102#ifdef CONFIG_RT_GROUP_SCHED
8103 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8104#endif
df7c8e84 8105#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8106 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8107#endif
434d53b0 8108 if (alloc_size) {
36b7b6d4 8109 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8110
8111#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8112 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8113 ptr += nr_cpu_ids * sizeof(void **);
8114
07e06b01 8115 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8116 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8117
6d6bc0ad 8118#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8119#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8120 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8121 ptr += nr_cpu_ids * sizeof(void **);
8122
07e06b01 8123 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8124 ptr += nr_cpu_ids * sizeof(void **);
8125
6d6bc0ad 8126#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8127#ifdef CONFIG_CPUMASK_OFFSTACK
8128 for_each_possible_cpu(i) {
8129 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8130 ptr += cpumask_size();
8131 }
8132#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8133 }
dd41f596 8134
57d885fe
GH
8135#ifdef CONFIG_SMP
8136 init_defrootdomain();
8137#endif
8138
d0b27fa7
PZ
8139 init_rt_bandwidth(&def_rt_bandwidth,
8140 global_rt_period(), global_rt_runtime());
8141
8142#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8143 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8144 global_rt_period(), global_rt_runtime());
6d6bc0ad 8145#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8146
7c941438 8147#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8148 list_add(&root_task_group.list, &task_groups);
8149 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8150 autogroup_init(&init_task);
7c941438 8151#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8152
0a945022 8153 for_each_possible_cpu(i) {
70b97a7f 8154 struct rq *rq;
1da177e4
LT
8155
8156 rq = cpu_rq(i);
05fa785c 8157 raw_spin_lock_init(&rq->lock);
7897986b 8158 rq->nr_running = 0;
dce48a84
TG
8159 rq->calc_load_active = 0;
8160 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8161 init_cfs_rq(&rq->cfs, rq);
6f505b16 8162 init_rt_rq(&rq->rt, rq);
dd41f596 8163#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8164 root_task_group.shares = root_task_group_load;
6f505b16 8165 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8166 /*
07e06b01 8167 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8168 *
8169 * In case of task-groups formed thr' the cgroup filesystem, it
8170 * gets 100% of the cpu resources in the system. This overall
8171 * system cpu resource is divided among the tasks of
07e06b01 8172 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8173 * based on each entity's (task or task-group's) weight
8174 * (se->load.weight).
8175 *
07e06b01 8176 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8177 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8178 * then A0's share of the cpu resource is:
8179 *
0d905bca 8180 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8181 *
07e06b01
YZ
8182 * We achieve this by letting root_task_group's tasks sit
8183 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8184 */
07e06b01 8185 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8186#endif /* CONFIG_FAIR_GROUP_SCHED */
8187
8188 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8189#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8190 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8191 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8192#endif
1da177e4 8193
dd41f596
IM
8194 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8195 rq->cpu_load[j] = 0;
fdf3e95d
VP
8196
8197 rq->last_load_update_tick = jiffies;
8198
1da177e4 8199#ifdef CONFIG_SMP
41c7ce9a 8200 rq->sd = NULL;
57d885fe 8201 rq->rd = NULL;
e51fd5e2 8202 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8203 rq->post_schedule = 0;
1da177e4 8204 rq->active_balance = 0;
dd41f596 8205 rq->next_balance = jiffies;
1da177e4 8206 rq->push_cpu = 0;
0a2966b4 8207 rq->cpu = i;
1f11eb6a 8208 rq->online = 0;
eae0c9df
MG
8209 rq->idle_stamp = 0;
8210 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8211 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8212#ifdef CONFIG_NO_HZ
8213 rq->nohz_balance_kick = 0;
8214 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8215#endif
1da177e4 8216#endif
8f4d37ec 8217 init_rq_hrtick(rq);
1da177e4 8218 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8219 }
8220
2dd73a4f 8221 set_load_weight(&init_task);
b50f60ce 8222
e107be36
AK
8223#ifdef CONFIG_PREEMPT_NOTIFIERS
8224 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8225#endif
8226
c9819f45 8227#ifdef CONFIG_SMP
962cf36c 8228 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8229#endif
8230
b50f60ce 8231#ifdef CONFIG_RT_MUTEXES
1d615482 8232 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8233#endif
8234
1da177e4
LT
8235 /*
8236 * The boot idle thread does lazy MMU switching as well:
8237 */
8238 atomic_inc(&init_mm.mm_count);
8239 enter_lazy_tlb(&init_mm, current);
8240
8241 /*
8242 * Make us the idle thread. Technically, schedule() should not be
8243 * called from this thread, however somewhere below it might be,
8244 * but because we are the idle thread, we just pick up running again
8245 * when this runqueue becomes "idle".
8246 */
8247 init_idle(current, smp_processor_id());
dce48a84
TG
8248
8249 calc_load_update = jiffies + LOAD_FREQ;
8250
dd41f596
IM
8251 /*
8252 * During early bootup we pretend to be a normal task:
8253 */
8254 current->sched_class = &fair_sched_class;
6892b75e 8255
6a7b3dc3 8256 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8257 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8258#ifdef CONFIG_SMP
7d1e6a9b 8259#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8260 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8261 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8262 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8263 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8264 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8265#endif
bdddd296
RR
8266 /* May be allocated at isolcpus cmdline parse time */
8267 if (cpu_isolated_map == NULL)
8268 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8269#endif /* SMP */
6a7b3dc3 8270
6892b75e 8271 scheduler_running = 1;
1da177e4
LT
8272}
8273
8274#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8275static inline int preempt_count_equals(int preempt_offset)
8276{
234da7bc 8277 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8278
4ba8216c 8279 return (nested == preempt_offset);
e4aafea2
FW
8280}
8281
d894837f 8282void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8283{
48f24c4d 8284#ifdef in_atomic
1da177e4
LT
8285 static unsigned long prev_jiffy; /* ratelimiting */
8286
e4aafea2
FW
8287 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8288 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8289 return;
8290 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8291 return;
8292 prev_jiffy = jiffies;
8293
3df0fc5b
PZ
8294 printk(KERN_ERR
8295 "BUG: sleeping function called from invalid context at %s:%d\n",
8296 file, line);
8297 printk(KERN_ERR
8298 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8299 in_atomic(), irqs_disabled(),
8300 current->pid, current->comm);
aef745fc
IM
8301
8302 debug_show_held_locks(current);
8303 if (irqs_disabled())
8304 print_irqtrace_events(current);
8305 dump_stack();
1da177e4
LT
8306#endif
8307}
8308EXPORT_SYMBOL(__might_sleep);
8309#endif
8310
8311#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8312static void normalize_task(struct rq *rq, struct task_struct *p)
8313{
da7a735e
PZ
8314 const struct sched_class *prev_class = p->sched_class;
8315 int old_prio = p->prio;
3a5e4dc1 8316 int on_rq;
3e51f33f 8317
fd2f4419 8318 on_rq = p->on_rq;
3a5e4dc1
AK
8319 if (on_rq)
8320 deactivate_task(rq, p, 0);
8321 __setscheduler(rq, p, SCHED_NORMAL, 0);
8322 if (on_rq) {
8323 activate_task(rq, p, 0);
8324 resched_task(rq->curr);
8325 }
da7a735e
PZ
8326
8327 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8328}
8329
1da177e4
LT
8330void normalize_rt_tasks(void)
8331{
a0f98a1c 8332 struct task_struct *g, *p;
1da177e4 8333 unsigned long flags;
70b97a7f 8334 struct rq *rq;
1da177e4 8335
4cf5d77a 8336 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8337 do_each_thread(g, p) {
178be793
IM
8338 /*
8339 * Only normalize user tasks:
8340 */
8341 if (!p->mm)
8342 continue;
8343
6cfb0d5d 8344 p->se.exec_start = 0;
6cfb0d5d 8345#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8346 p->se.statistics.wait_start = 0;
8347 p->se.statistics.sleep_start = 0;
8348 p->se.statistics.block_start = 0;
6cfb0d5d 8349#endif
dd41f596
IM
8350
8351 if (!rt_task(p)) {
8352 /*
8353 * Renice negative nice level userspace
8354 * tasks back to 0:
8355 */
8356 if (TASK_NICE(p) < 0 && p->mm)
8357 set_user_nice(p, 0);
1da177e4 8358 continue;
dd41f596 8359 }
1da177e4 8360
1d615482 8361 raw_spin_lock(&p->pi_lock);
b29739f9 8362 rq = __task_rq_lock(p);
1da177e4 8363
178be793 8364 normalize_task(rq, p);
3a5e4dc1 8365
b29739f9 8366 __task_rq_unlock(rq);
1d615482 8367 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8368 } while_each_thread(g, p);
8369
4cf5d77a 8370 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8371}
8372
8373#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8374
67fc4e0c 8375#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8376/*
67fc4e0c 8377 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8378 *
8379 * They can only be called when the whole system has been
8380 * stopped - every CPU needs to be quiescent, and no scheduling
8381 * activity can take place. Using them for anything else would
8382 * be a serious bug, and as a result, they aren't even visible
8383 * under any other configuration.
8384 */
8385
8386/**
8387 * curr_task - return the current task for a given cpu.
8388 * @cpu: the processor in question.
8389 *
8390 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8391 */
36c8b586 8392struct task_struct *curr_task(int cpu)
1df5c10a
LT
8393{
8394 return cpu_curr(cpu);
8395}
8396
67fc4e0c
JW
8397#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8398
8399#ifdef CONFIG_IA64
1df5c10a
LT
8400/**
8401 * set_curr_task - set the current task for a given cpu.
8402 * @cpu: the processor in question.
8403 * @p: the task pointer to set.
8404 *
8405 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8406 * are serviced on a separate stack. It allows the architecture to switch the
8407 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8408 * must be called with all CPU's synchronized, and interrupts disabled, the
8409 * and caller must save the original value of the current task (see
8410 * curr_task() above) and restore that value before reenabling interrupts and
8411 * re-starting the system.
8412 *
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8414 */
36c8b586 8415void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8416{
8417 cpu_curr(cpu) = p;
8418}
8419
8420#endif
29f59db3 8421
bccbe08a
PZ
8422#ifdef CONFIG_FAIR_GROUP_SCHED
8423static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8424{
8425 int i;
8426
8427 for_each_possible_cpu(i) {
8428 if (tg->cfs_rq)
8429 kfree(tg->cfs_rq[i]);
8430 if (tg->se)
8431 kfree(tg->se[i]);
6f505b16
PZ
8432 }
8433
8434 kfree(tg->cfs_rq);
8435 kfree(tg->se);
6f505b16
PZ
8436}
8437
ec7dc8ac
DG
8438static
8439int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8440{
29f59db3 8441 struct cfs_rq *cfs_rq;
eab17229 8442 struct sched_entity *se;
29f59db3
SV
8443 int i;
8444
434d53b0 8445 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8446 if (!tg->cfs_rq)
8447 goto err;
434d53b0 8448 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8449 if (!tg->se)
8450 goto err;
052f1dc7
PZ
8451
8452 tg->shares = NICE_0_LOAD;
29f59db3
SV
8453
8454 for_each_possible_cpu(i) {
eab17229
LZ
8455 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8456 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8457 if (!cfs_rq)
8458 goto err;
8459
eab17229
LZ
8460 se = kzalloc_node(sizeof(struct sched_entity),
8461 GFP_KERNEL, cpu_to_node(i));
29f59db3 8462 if (!se)
dfc12eb2 8463 goto err_free_rq;
29f59db3 8464
3d4b47b4 8465 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8466 }
8467
8468 return 1;
8469
49246274 8470err_free_rq:
dfc12eb2 8471 kfree(cfs_rq);
49246274 8472err:
bccbe08a
PZ
8473 return 0;
8474}
8475
bccbe08a
PZ
8476static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8477{
3d4b47b4
PZ
8478 struct rq *rq = cpu_rq(cpu);
8479 unsigned long flags;
3d4b47b4
PZ
8480
8481 /*
8482 * Only empty task groups can be destroyed; so we can speculatively
8483 * check on_list without danger of it being re-added.
8484 */
8485 if (!tg->cfs_rq[cpu]->on_list)
8486 return;
8487
8488 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8489 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8490 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8491}
6d6bc0ad 8492#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8493static inline void free_fair_sched_group(struct task_group *tg)
8494{
8495}
8496
ec7dc8ac
DG
8497static inline
8498int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8499{
8500 return 1;
8501}
8502
bccbe08a
PZ
8503static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8504{
8505}
6d6bc0ad 8506#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8507
8508#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8509static void free_rt_sched_group(struct task_group *tg)
8510{
8511 int i;
8512
d0b27fa7
PZ
8513 destroy_rt_bandwidth(&tg->rt_bandwidth);
8514
bccbe08a
PZ
8515 for_each_possible_cpu(i) {
8516 if (tg->rt_rq)
8517 kfree(tg->rt_rq[i]);
8518 if (tg->rt_se)
8519 kfree(tg->rt_se[i]);
8520 }
8521
8522 kfree(tg->rt_rq);
8523 kfree(tg->rt_se);
8524}
8525
ec7dc8ac
DG
8526static
8527int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8528{
8529 struct rt_rq *rt_rq;
eab17229 8530 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8531 struct rq *rq;
8532 int i;
8533
434d53b0 8534 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8535 if (!tg->rt_rq)
8536 goto err;
434d53b0 8537 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8538 if (!tg->rt_se)
8539 goto err;
8540
d0b27fa7
PZ
8541 init_rt_bandwidth(&tg->rt_bandwidth,
8542 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8543
8544 for_each_possible_cpu(i) {
8545 rq = cpu_rq(i);
8546
eab17229
LZ
8547 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8548 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8549 if (!rt_rq)
8550 goto err;
29f59db3 8551
eab17229
LZ
8552 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8553 GFP_KERNEL, cpu_to_node(i));
6f505b16 8554 if (!rt_se)
dfc12eb2 8555 goto err_free_rq;
29f59db3 8556
3d4b47b4 8557 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8558 }
8559
bccbe08a
PZ
8560 return 1;
8561
49246274 8562err_free_rq:
dfc12eb2 8563 kfree(rt_rq);
49246274 8564err:
bccbe08a
PZ
8565 return 0;
8566}
6d6bc0ad 8567#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8568static inline void free_rt_sched_group(struct task_group *tg)
8569{
8570}
8571
ec7dc8ac
DG
8572static inline
8573int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8574{
8575 return 1;
8576}
6d6bc0ad 8577#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8578
7c941438 8579#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8580static void free_sched_group(struct task_group *tg)
8581{
8582 free_fair_sched_group(tg);
8583 free_rt_sched_group(tg);
e9aa1dd1 8584 autogroup_free(tg);
bccbe08a
PZ
8585 kfree(tg);
8586}
8587
8588/* allocate runqueue etc for a new task group */
ec7dc8ac 8589struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8590{
8591 struct task_group *tg;
8592 unsigned long flags;
bccbe08a
PZ
8593
8594 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8595 if (!tg)
8596 return ERR_PTR(-ENOMEM);
8597
ec7dc8ac 8598 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8599 goto err;
8600
ec7dc8ac 8601 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8602 goto err;
8603
8ed36996 8604 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8605 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8606
8607 WARN_ON(!parent); /* root should already exist */
8608
8609 tg->parent = parent;
f473aa5e 8610 INIT_LIST_HEAD(&tg->children);
09f2724a 8611 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8612 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8613
9b5b7751 8614 return tg;
29f59db3
SV
8615
8616err:
6f505b16 8617 free_sched_group(tg);
29f59db3
SV
8618 return ERR_PTR(-ENOMEM);
8619}
8620
9b5b7751 8621/* rcu callback to free various structures associated with a task group */
6f505b16 8622static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8623{
29f59db3 8624 /* now it should be safe to free those cfs_rqs */
6f505b16 8625 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8626}
8627
9b5b7751 8628/* Destroy runqueue etc associated with a task group */
4cf86d77 8629void sched_destroy_group(struct task_group *tg)
29f59db3 8630{
8ed36996 8631 unsigned long flags;
9b5b7751 8632 int i;
29f59db3 8633
3d4b47b4
PZ
8634 /* end participation in shares distribution */
8635 for_each_possible_cpu(i)
bccbe08a 8636 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8637
8638 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8639 list_del_rcu(&tg->list);
f473aa5e 8640 list_del_rcu(&tg->siblings);
8ed36996 8641 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8642
9b5b7751 8643 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8644 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8645}
8646
9b5b7751 8647/* change task's runqueue when it moves between groups.
3a252015
IM
8648 * The caller of this function should have put the task in its new group
8649 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8650 * reflect its new group.
9b5b7751
SV
8651 */
8652void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8653{
8654 int on_rq, running;
8655 unsigned long flags;
8656 struct rq *rq;
8657
8658 rq = task_rq_lock(tsk, &flags);
8659
051a1d1a 8660 running = task_current(rq, tsk);
fd2f4419 8661 on_rq = tsk->on_rq;
29f59db3 8662
0e1f3483 8663 if (on_rq)
29f59db3 8664 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8665 if (unlikely(running))
8666 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8667
810b3817 8668#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8669 if (tsk->sched_class->task_move_group)
8670 tsk->sched_class->task_move_group(tsk, on_rq);
8671 else
810b3817 8672#endif
b2b5ce02 8673 set_task_rq(tsk, task_cpu(tsk));
810b3817 8674
0e1f3483
HS
8675 if (unlikely(running))
8676 tsk->sched_class->set_curr_task(rq);
8677 if (on_rq)
371fd7e7 8678 enqueue_task(rq, tsk, 0);
29f59db3 8679
0122ec5b 8680 task_rq_unlock(rq, tsk, &flags);
29f59db3 8681}
7c941438 8682#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8683
052f1dc7 8684#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8685static DEFINE_MUTEX(shares_mutex);
8686
4cf86d77 8687int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8688{
8689 int i;
8ed36996 8690 unsigned long flags;
c61935fd 8691
ec7dc8ac
DG
8692 /*
8693 * We can't change the weight of the root cgroup.
8694 */
8695 if (!tg->se[0])
8696 return -EINVAL;
8697
18d95a28
PZ
8698 if (shares < MIN_SHARES)
8699 shares = MIN_SHARES;
cb4ad1ff
MX
8700 else if (shares > MAX_SHARES)
8701 shares = MAX_SHARES;
62fb1851 8702
8ed36996 8703 mutex_lock(&shares_mutex);
9b5b7751 8704 if (tg->shares == shares)
5cb350ba 8705 goto done;
29f59db3 8706
9b5b7751 8707 tg->shares = shares;
c09595f6 8708 for_each_possible_cpu(i) {
9437178f
PT
8709 struct rq *rq = cpu_rq(i);
8710 struct sched_entity *se;
8711
8712 se = tg->se[i];
8713 /* Propagate contribution to hierarchy */
8714 raw_spin_lock_irqsave(&rq->lock, flags);
8715 for_each_sched_entity(se)
6d5ab293 8716 update_cfs_shares(group_cfs_rq(se));
9437178f 8717 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8718 }
29f59db3 8719
5cb350ba 8720done:
8ed36996 8721 mutex_unlock(&shares_mutex);
9b5b7751 8722 return 0;
29f59db3
SV
8723}
8724
5cb350ba
DG
8725unsigned long sched_group_shares(struct task_group *tg)
8726{
8727 return tg->shares;
8728}
052f1dc7 8729#endif
5cb350ba 8730
052f1dc7 8731#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8732/*
9f0c1e56 8733 * Ensure that the real time constraints are schedulable.
6f505b16 8734 */
9f0c1e56
PZ
8735static DEFINE_MUTEX(rt_constraints_mutex);
8736
8737static unsigned long to_ratio(u64 period, u64 runtime)
8738{
8739 if (runtime == RUNTIME_INF)
9a7e0b18 8740 return 1ULL << 20;
9f0c1e56 8741
9a7e0b18 8742 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8743}
8744
9a7e0b18
PZ
8745/* Must be called with tasklist_lock held */
8746static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8747{
9a7e0b18 8748 struct task_struct *g, *p;
b40b2e8e 8749
9a7e0b18
PZ
8750 do_each_thread(g, p) {
8751 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8752 return 1;
8753 } while_each_thread(g, p);
b40b2e8e 8754
9a7e0b18
PZ
8755 return 0;
8756}
b40b2e8e 8757
9a7e0b18
PZ
8758struct rt_schedulable_data {
8759 struct task_group *tg;
8760 u64 rt_period;
8761 u64 rt_runtime;
8762};
b40b2e8e 8763
9a7e0b18
PZ
8764static int tg_schedulable(struct task_group *tg, void *data)
8765{
8766 struct rt_schedulable_data *d = data;
8767 struct task_group *child;
8768 unsigned long total, sum = 0;
8769 u64 period, runtime;
b40b2e8e 8770
9a7e0b18
PZ
8771 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8772 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8773
9a7e0b18
PZ
8774 if (tg == d->tg) {
8775 period = d->rt_period;
8776 runtime = d->rt_runtime;
b40b2e8e 8777 }
b40b2e8e 8778
4653f803
PZ
8779 /*
8780 * Cannot have more runtime than the period.
8781 */
8782 if (runtime > period && runtime != RUNTIME_INF)
8783 return -EINVAL;
6f505b16 8784
4653f803
PZ
8785 /*
8786 * Ensure we don't starve existing RT tasks.
8787 */
9a7e0b18
PZ
8788 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8789 return -EBUSY;
6f505b16 8790
9a7e0b18 8791 total = to_ratio(period, runtime);
6f505b16 8792
4653f803
PZ
8793 /*
8794 * Nobody can have more than the global setting allows.
8795 */
8796 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8797 return -EINVAL;
6f505b16 8798
4653f803
PZ
8799 /*
8800 * The sum of our children's runtime should not exceed our own.
8801 */
9a7e0b18
PZ
8802 list_for_each_entry_rcu(child, &tg->children, siblings) {
8803 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8804 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8805
9a7e0b18
PZ
8806 if (child == d->tg) {
8807 period = d->rt_period;
8808 runtime = d->rt_runtime;
8809 }
6f505b16 8810
9a7e0b18 8811 sum += to_ratio(period, runtime);
9f0c1e56 8812 }
6f505b16 8813
9a7e0b18
PZ
8814 if (sum > total)
8815 return -EINVAL;
8816
8817 return 0;
6f505b16
PZ
8818}
8819
9a7e0b18 8820static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8821{
9a7e0b18
PZ
8822 struct rt_schedulable_data data = {
8823 .tg = tg,
8824 .rt_period = period,
8825 .rt_runtime = runtime,
8826 };
8827
8828 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8829}
8830
d0b27fa7
PZ
8831static int tg_set_bandwidth(struct task_group *tg,
8832 u64 rt_period, u64 rt_runtime)
6f505b16 8833{
ac086bc2 8834 int i, err = 0;
9f0c1e56 8835
9f0c1e56 8836 mutex_lock(&rt_constraints_mutex);
521f1a24 8837 read_lock(&tasklist_lock);
9a7e0b18
PZ
8838 err = __rt_schedulable(tg, rt_period, rt_runtime);
8839 if (err)
9f0c1e56 8840 goto unlock;
ac086bc2 8841
0986b11b 8842 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8843 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8844 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8845
8846 for_each_possible_cpu(i) {
8847 struct rt_rq *rt_rq = tg->rt_rq[i];
8848
0986b11b 8849 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8850 rt_rq->rt_runtime = rt_runtime;
0986b11b 8851 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8852 }
0986b11b 8853 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8854unlock:
521f1a24 8855 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8856 mutex_unlock(&rt_constraints_mutex);
8857
8858 return err;
6f505b16
PZ
8859}
8860
d0b27fa7
PZ
8861int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8862{
8863 u64 rt_runtime, rt_period;
8864
8865 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8866 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8867 if (rt_runtime_us < 0)
8868 rt_runtime = RUNTIME_INF;
8869
8870 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8871}
8872
9f0c1e56
PZ
8873long sched_group_rt_runtime(struct task_group *tg)
8874{
8875 u64 rt_runtime_us;
8876
d0b27fa7 8877 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8878 return -1;
8879
d0b27fa7 8880 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8881 do_div(rt_runtime_us, NSEC_PER_USEC);
8882 return rt_runtime_us;
8883}
d0b27fa7
PZ
8884
8885int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8886{
8887 u64 rt_runtime, rt_period;
8888
8889 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8890 rt_runtime = tg->rt_bandwidth.rt_runtime;
8891
619b0488
R
8892 if (rt_period == 0)
8893 return -EINVAL;
8894
d0b27fa7
PZ
8895 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8896}
8897
8898long sched_group_rt_period(struct task_group *tg)
8899{
8900 u64 rt_period_us;
8901
8902 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8903 do_div(rt_period_us, NSEC_PER_USEC);
8904 return rt_period_us;
8905}
8906
8907static int sched_rt_global_constraints(void)
8908{
4653f803 8909 u64 runtime, period;
d0b27fa7
PZ
8910 int ret = 0;
8911
ec5d4989
HS
8912 if (sysctl_sched_rt_period <= 0)
8913 return -EINVAL;
8914
4653f803
PZ
8915 runtime = global_rt_runtime();
8916 period = global_rt_period();
8917
8918 /*
8919 * Sanity check on the sysctl variables.
8920 */
8921 if (runtime > period && runtime != RUNTIME_INF)
8922 return -EINVAL;
10b612f4 8923
d0b27fa7 8924 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8925 read_lock(&tasklist_lock);
4653f803 8926 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8927 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8928 mutex_unlock(&rt_constraints_mutex);
8929
8930 return ret;
8931}
54e99124
DG
8932
8933int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8934{
8935 /* Don't accept realtime tasks when there is no way for them to run */
8936 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8937 return 0;
8938
8939 return 1;
8940}
8941
6d6bc0ad 8942#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8943static int sched_rt_global_constraints(void)
8944{
ac086bc2
PZ
8945 unsigned long flags;
8946 int i;
8947
ec5d4989
HS
8948 if (sysctl_sched_rt_period <= 0)
8949 return -EINVAL;
8950
60aa605d
PZ
8951 /*
8952 * There's always some RT tasks in the root group
8953 * -- migration, kstopmachine etc..
8954 */
8955 if (sysctl_sched_rt_runtime == 0)
8956 return -EBUSY;
8957
0986b11b 8958 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8959 for_each_possible_cpu(i) {
8960 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8961
0986b11b 8962 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8963 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8964 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8965 }
0986b11b 8966 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8967
d0b27fa7
PZ
8968 return 0;
8969}
6d6bc0ad 8970#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8971
8972int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8973 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8974 loff_t *ppos)
8975{
8976 int ret;
8977 int old_period, old_runtime;
8978 static DEFINE_MUTEX(mutex);
8979
8980 mutex_lock(&mutex);
8981 old_period = sysctl_sched_rt_period;
8982 old_runtime = sysctl_sched_rt_runtime;
8983
8d65af78 8984 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8985
8986 if (!ret && write) {
8987 ret = sched_rt_global_constraints();
8988 if (ret) {
8989 sysctl_sched_rt_period = old_period;
8990 sysctl_sched_rt_runtime = old_runtime;
8991 } else {
8992 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8993 def_rt_bandwidth.rt_period =
8994 ns_to_ktime(global_rt_period());
8995 }
8996 }
8997 mutex_unlock(&mutex);
8998
8999 return ret;
9000}
68318b8e 9001
052f1dc7 9002#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9003
9004/* return corresponding task_group object of a cgroup */
2b01dfe3 9005static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9006{
2b01dfe3
PM
9007 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9008 struct task_group, css);
68318b8e
SV
9009}
9010
9011static struct cgroup_subsys_state *
2b01dfe3 9012cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9013{
ec7dc8ac 9014 struct task_group *tg, *parent;
68318b8e 9015
2b01dfe3 9016 if (!cgrp->parent) {
68318b8e 9017 /* This is early initialization for the top cgroup */
07e06b01 9018 return &root_task_group.css;
68318b8e
SV
9019 }
9020
ec7dc8ac
DG
9021 parent = cgroup_tg(cgrp->parent);
9022 tg = sched_create_group(parent);
68318b8e
SV
9023 if (IS_ERR(tg))
9024 return ERR_PTR(-ENOMEM);
9025
68318b8e
SV
9026 return &tg->css;
9027}
9028
41a2d6cf
IM
9029static void
9030cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9031{
2b01dfe3 9032 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9033
9034 sched_destroy_group(tg);
9035}
9036
41a2d6cf 9037static int
be367d09 9038cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9039{
b68aa230 9040#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9041 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9042 return -EINVAL;
9043#else
68318b8e
SV
9044 /* We don't support RT-tasks being in separate groups */
9045 if (tsk->sched_class != &fair_sched_class)
9046 return -EINVAL;
b68aa230 9047#endif
be367d09
BB
9048 return 0;
9049}
68318b8e 9050
be367d09
BB
9051static int
9052cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9053 struct task_struct *tsk, bool threadgroup)
9054{
9055 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9056 if (retval)
9057 return retval;
9058 if (threadgroup) {
9059 struct task_struct *c;
9060 rcu_read_lock();
9061 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9062 retval = cpu_cgroup_can_attach_task(cgrp, c);
9063 if (retval) {
9064 rcu_read_unlock();
9065 return retval;
9066 }
9067 }
9068 rcu_read_unlock();
9069 }
68318b8e
SV
9070 return 0;
9071}
9072
9073static void
2b01dfe3 9074cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9075 struct cgroup *old_cont, struct task_struct *tsk,
9076 bool threadgroup)
68318b8e
SV
9077{
9078 sched_move_task(tsk);
be367d09
BB
9079 if (threadgroup) {
9080 struct task_struct *c;
9081 rcu_read_lock();
9082 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9083 sched_move_task(c);
9084 }
9085 rcu_read_unlock();
9086 }
68318b8e
SV
9087}
9088
068c5cc5 9089static void
d41d5a01
PZ
9090cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9091 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9092{
9093 /*
9094 * cgroup_exit() is called in the copy_process() failure path.
9095 * Ignore this case since the task hasn't ran yet, this avoids
9096 * trying to poke a half freed task state from generic code.
9097 */
9098 if (!(task->flags & PF_EXITING))
9099 return;
9100
9101 sched_move_task(task);
9102}
9103
052f1dc7 9104#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9105static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9106 u64 shareval)
68318b8e 9107{
2b01dfe3 9108 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9109}
9110
f4c753b7 9111static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9112{
2b01dfe3 9113 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9114
9115 return (u64) tg->shares;
9116}
6d6bc0ad 9117#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9118
052f1dc7 9119#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9120static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9121 s64 val)
6f505b16 9122{
06ecb27c 9123 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9124}
9125
06ecb27c 9126static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9127{
06ecb27c 9128 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9129}
d0b27fa7
PZ
9130
9131static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9132 u64 rt_period_us)
9133{
9134 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9135}
9136
9137static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9138{
9139 return sched_group_rt_period(cgroup_tg(cgrp));
9140}
6d6bc0ad 9141#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9142
fe5c7cc2 9143static struct cftype cpu_files[] = {
052f1dc7 9144#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9145 {
9146 .name = "shares",
f4c753b7
PM
9147 .read_u64 = cpu_shares_read_u64,
9148 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9149 },
052f1dc7
PZ
9150#endif
9151#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9152 {
9f0c1e56 9153 .name = "rt_runtime_us",
06ecb27c
PM
9154 .read_s64 = cpu_rt_runtime_read,
9155 .write_s64 = cpu_rt_runtime_write,
6f505b16 9156 },
d0b27fa7
PZ
9157 {
9158 .name = "rt_period_us",
f4c753b7
PM
9159 .read_u64 = cpu_rt_period_read_uint,
9160 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9161 },
052f1dc7 9162#endif
68318b8e
SV
9163};
9164
9165static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9166{
fe5c7cc2 9167 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9168}
9169
9170struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9171 .name = "cpu",
9172 .create = cpu_cgroup_create,
9173 .destroy = cpu_cgroup_destroy,
9174 .can_attach = cpu_cgroup_can_attach,
9175 .attach = cpu_cgroup_attach,
068c5cc5 9176 .exit = cpu_cgroup_exit,
38605cae
IM
9177 .populate = cpu_cgroup_populate,
9178 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9179 .early_init = 1,
9180};
9181
052f1dc7 9182#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9183
9184#ifdef CONFIG_CGROUP_CPUACCT
9185
9186/*
9187 * CPU accounting code for task groups.
9188 *
9189 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9190 * (balbir@in.ibm.com).
9191 */
9192
934352f2 9193/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9194struct cpuacct {
9195 struct cgroup_subsys_state css;
9196 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9197 u64 __percpu *cpuusage;
ef12fefa 9198 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9199 struct cpuacct *parent;
d842de87
SV
9200};
9201
9202struct cgroup_subsys cpuacct_subsys;
9203
9204/* return cpu accounting group corresponding to this container */
32cd756a 9205static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9206{
32cd756a 9207 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9208 struct cpuacct, css);
9209}
9210
9211/* return cpu accounting group to which this task belongs */
9212static inline struct cpuacct *task_ca(struct task_struct *tsk)
9213{
9214 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9215 struct cpuacct, css);
9216}
9217
9218/* create a new cpu accounting group */
9219static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9220 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9221{
9222 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9223 int i;
d842de87
SV
9224
9225 if (!ca)
ef12fefa 9226 goto out;
d842de87
SV
9227
9228 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9229 if (!ca->cpuusage)
9230 goto out_free_ca;
9231
9232 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9233 if (percpu_counter_init(&ca->cpustat[i], 0))
9234 goto out_free_counters;
d842de87 9235
934352f2
BR
9236 if (cgrp->parent)
9237 ca->parent = cgroup_ca(cgrp->parent);
9238
d842de87 9239 return &ca->css;
ef12fefa
BR
9240
9241out_free_counters:
9242 while (--i >= 0)
9243 percpu_counter_destroy(&ca->cpustat[i]);
9244 free_percpu(ca->cpuusage);
9245out_free_ca:
9246 kfree(ca);
9247out:
9248 return ERR_PTR(-ENOMEM);
d842de87
SV
9249}
9250
9251/* destroy an existing cpu accounting group */
41a2d6cf 9252static void
32cd756a 9253cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9254{
32cd756a 9255 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9256 int i;
d842de87 9257
ef12fefa
BR
9258 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9259 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9260 free_percpu(ca->cpuusage);
9261 kfree(ca);
9262}
9263
720f5498
KC
9264static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9265{
b36128c8 9266 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9267 u64 data;
9268
9269#ifndef CONFIG_64BIT
9270 /*
9271 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9272 */
05fa785c 9273 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9274 data = *cpuusage;
05fa785c 9275 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9276#else
9277 data = *cpuusage;
9278#endif
9279
9280 return data;
9281}
9282
9283static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9284{
b36128c8 9285 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9286
9287#ifndef CONFIG_64BIT
9288 /*
9289 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9290 */
05fa785c 9291 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9292 *cpuusage = val;
05fa785c 9293 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9294#else
9295 *cpuusage = val;
9296#endif
9297}
9298
d842de87 9299/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9300static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9301{
32cd756a 9302 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9303 u64 totalcpuusage = 0;
9304 int i;
9305
720f5498
KC
9306 for_each_present_cpu(i)
9307 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9308
9309 return totalcpuusage;
9310}
9311
0297b803
DG
9312static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9313 u64 reset)
9314{
9315 struct cpuacct *ca = cgroup_ca(cgrp);
9316 int err = 0;
9317 int i;
9318
9319 if (reset) {
9320 err = -EINVAL;
9321 goto out;
9322 }
9323
720f5498
KC
9324 for_each_present_cpu(i)
9325 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9326
0297b803
DG
9327out:
9328 return err;
9329}
9330
e9515c3c
KC
9331static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9332 struct seq_file *m)
9333{
9334 struct cpuacct *ca = cgroup_ca(cgroup);
9335 u64 percpu;
9336 int i;
9337
9338 for_each_present_cpu(i) {
9339 percpu = cpuacct_cpuusage_read(ca, i);
9340 seq_printf(m, "%llu ", (unsigned long long) percpu);
9341 }
9342 seq_printf(m, "\n");
9343 return 0;
9344}
9345
ef12fefa
BR
9346static const char *cpuacct_stat_desc[] = {
9347 [CPUACCT_STAT_USER] = "user",
9348 [CPUACCT_STAT_SYSTEM] = "system",
9349};
9350
9351static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9352 struct cgroup_map_cb *cb)
9353{
9354 struct cpuacct *ca = cgroup_ca(cgrp);
9355 int i;
9356
9357 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9358 s64 val = percpu_counter_read(&ca->cpustat[i]);
9359 val = cputime64_to_clock_t(val);
9360 cb->fill(cb, cpuacct_stat_desc[i], val);
9361 }
9362 return 0;
9363}
9364
d842de87
SV
9365static struct cftype files[] = {
9366 {
9367 .name = "usage",
f4c753b7
PM
9368 .read_u64 = cpuusage_read,
9369 .write_u64 = cpuusage_write,
d842de87 9370 },
e9515c3c
KC
9371 {
9372 .name = "usage_percpu",
9373 .read_seq_string = cpuacct_percpu_seq_read,
9374 },
ef12fefa
BR
9375 {
9376 .name = "stat",
9377 .read_map = cpuacct_stats_show,
9378 },
d842de87
SV
9379};
9380
32cd756a 9381static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9382{
32cd756a 9383 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9384}
9385
9386/*
9387 * charge this task's execution time to its accounting group.
9388 *
9389 * called with rq->lock held.
9390 */
9391static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9392{
9393 struct cpuacct *ca;
934352f2 9394 int cpu;
d842de87 9395
c40c6f85 9396 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9397 return;
9398
934352f2 9399 cpu = task_cpu(tsk);
a18b83b7
BR
9400
9401 rcu_read_lock();
9402
d842de87 9403 ca = task_ca(tsk);
d842de87 9404
934352f2 9405 for (; ca; ca = ca->parent) {
b36128c8 9406 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9407 *cpuusage += cputime;
9408 }
a18b83b7
BR
9409
9410 rcu_read_unlock();
d842de87
SV
9411}
9412
fa535a77
AB
9413/*
9414 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9415 * in cputime_t units. As a result, cpuacct_update_stats calls
9416 * percpu_counter_add with values large enough to always overflow the
9417 * per cpu batch limit causing bad SMP scalability.
9418 *
9419 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9420 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9421 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9422 */
9423#ifdef CONFIG_SMP
9424#define CPUACCT_BATCH \
9425 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9426#else
9427#define CPUACCT_BATCH 0
9428#endif
9429
ef12fefa
BR
9430/*
9431 * Charge the system/user time to the task's accounting group.
9432 */
9433static void cpuacct_update_stats(struct task_struct *tsk,
9434 enum cpuacct_stat_index idx, cputime_t val)
9435{
9436 struct cpuacct *ca;
fa535a77 9437 int batch = CPUACCT_BATCH;
ef12fefa
BR
9438
9439 if (unlikely(!cpuacct_subsys.active))
9440 return;
9441
9442 rcu_read_lock();
9443 ca = task_ca(tsk);
9444
9445 do {
fa535a77 9446 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9447 ca = ca->parent;
9448 } while (ca);
9449 rcu_read_unlock();
9450}
9451
d842de87
SV
9452struct cgroup_subsys cpuacct_subsys = {
9453 .name = "cpuacct",
9454 .create = cpuacct_create,
9455 .destroy = cpuacct_destroy,
9456 .populate = cpuacct_populate,
9457 .subsys_id = cpuacct_subsys_id,
9458};
9459#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9460
This page took 2.233319 seconds and 5 git commands to generate.