sched, cgroup: Optimize load_balance_fair()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
63f01241 127 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
cd62287e
MG
295#define MIN_SHARES (1UL << 1)
296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
4934a4d3 331#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 332 unsigned int nr_spread_over;
4934a4d3 333#endif
ddc97297 334
62160e3f 335#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
41a2d6cf
IM
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
3d4b47b4 346 int on_list;
41a2d6cf
IM
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
349
350#ifdef CONFIG_SMP
c09595f6 351 /*
c8cba857 352 * the part of load.weight contributed by tasks
c09595f6 353 */
c8cba857 354 unsigned long task_weight;
c09595f6 355
c8cba857
PZ
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
c09595f6 363
c8cba857 364 /*
3b3d190e
PT
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 370 */
2069dd75
PZ
371 u64 load_avg;
372 u64 load_period;
3b3d190e 373 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 374
2069dd75 375 unsigned long load_contribution;
c09595f6 376#endif
6aa645ea
IM
377#endif
378};
1da177e4 379
6aa645ea
IM
380/* Real-Time classes' related field in a runqueue: */
381struct rt_rq {
382 struct rt_prio_array active;
63489e45 383 unsigned long rt_nr_running;
052f1dc7 384#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
385 struct {
386 int curr; /* highest queued rt task prio */
398a153b 387#ifdef CONFIG_SMP
e864c499 388 int next; /* next highest */
398a153b 389#endif
e864c499 390 } highest_prio;
6f505b16 391#endif
fa85ae24 392#ifdef CONFIG_SMP
73fe6aae 393 unsigned long rt_nr_migratory;
a1ba4d8b 394 unsigned long rt_nr_total;
a22d7fc1 395 int overloaded;
917b627d 396 struct plist_head pushable_tasks;
fa85ae24 397#endif
6f505b16 398 int rt_throttled;
fa85ae24 399 u64 rt_time;
ac086bc2 400 u64 rt_runtime;
ea736ed5 401 /* Nests inside the rq lock: */
0986b11b 402 raw_spinlock_t rt_runtime_lock;
6f505b16 403
052f1dc7 404#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
405 unsigned long rt_nr_boosted;
406
6f505b16
PZ
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
6f505b16 410#endif
6aa645ea
IM
411};
412
57d885fe
GH
413#ifdef CONFIG_SMP
414
415/*
416 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
57d885fe
GH
422 */
423struct root_domain {
424 atomic_t refcount;
dce840a0 425 struct rcu_head rcu;
c6c4927b
RR
426 cpumask_var_t span;
427 cpumask_var_t online;
637f5085 428
0eab9146 429 /*
637f5085
GH
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
c6c4927b 433 cpumask_var_t rto_mask;
0eab9146 434 atomic_t rto_count;
6e0534f2 435 struct cpupri cpupri;
57d885fe
GH
436};
437
dc938520
GH
438/*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
57d885fe
GH
442static struct root_domain def_root_domain;
443
ed2d372c 444#endif /* CONFIG_SMP */
57d885fe 445
1da177e4
LT
446/*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
70b97a7f 453struct rq {
d8016491 454 /* runqueue lock: */
05fa785c 455 raw_spinlock_t lock;
1da177e4
LT
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
6aa645ea
IM
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 464 unsigned long last_load_update_tick;
46cb4b7c 465#ifdef CONFIG_NO_HZ
39c0cbe2 466 u64 nohz_stamp;
83cd4fe2 467 unsigned char nohz_balance_kick;
46cb4b7c 468#endif
61eadef6 469 int skip_clock_update;
a64692a3 470
d8016491
IM
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
6aa645ea
IM
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
6f505b16 477 struct rt_rq rt;
6f505b16 478
6aa645ea 479#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
482#endif
483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 484 struct list_head leaf_rt_rq_list;
1da177e4 485#endif
1da177e4
LT
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
34f971f6 495 struct task_struct *curr, *idle, *stop;
c9819f45 496 unsigned long next_balance;
1da177e4 497 struct mm_struct *prev_mm;
6aa645ea 498
3e51f33f 499 u64 clock;
305e6835 500 u64 clock_task;
6aa645ea 501
1da177e4
LT
502 atomic_t nr_iowait;
503
504#ifdef CONFIG_SMP
0eab9146 505 struct root_domain *rd;
1da177e4
LT
506 struct sched_domain *sd;
507
e51fd5e2
PZ
508 unsigned long cpu_power;
509
a0a522ce 510 unsigned char idle_at_tick;
1da177e4 511 /* For active balancing */
3f029d3c 512 int post_schedule;
1da177e4
LT
513 int active_balance;
514 int push_cpu;
969c7921 515 struct cpu_stop_work active_balance_work;
d8016491
IM
516 /* cpu of this runqueue: */
517 int cpu;
1f11eb6a 518 int online;
1da177e4 519
a8a51d5e 520 unsigned long avg_load_per_task;
1da177e4 521
e9e9250b
PZ
522 u64 rt_avg;
523 u64 age_stamp;
1b9508f6
MG
524 u64 idle_stamp;
525 u64 avg_idle;
1da177e4
LT
526#endif
527
aa483808
VP
528#ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530#endif
531
dce48a84
TG
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
8f4d37ec 536#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
537#ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540#endif
8f4d37ec
PZ
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
9c2c4802
KC
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
549
550 /* sys_sched_yield() stats */
480b9434 551 unsigned int yld_count;
1da177e4
LT
552
553 /* schedule() stats */
480b9434
KC
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
1da177e4
LT
557
558 /* try_to_wake_up() stats */
480b9434
KC
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
1da177e4 561#endif
317f3941
PZ
562
563#ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565#endif
1da177e4
LT
566};
567
f34e3b61 568static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 569
a64692a3 570
1e5a7405 571static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d 583 rcu_dereference_check((p), \
dce840a0 584 rcu_read_lock_held() || \
d11c563d
PM
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
6c6c54e1
PZ
608 * We use task_subsys_state_check() and extend the RCU verification with
609 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
610 * task it moves into the cgroup. Therefore by holding either of those locks,
611 * we pin the task to the current cgroup.
dc61b1d6
PZ
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
5091faa4 615 struct task_group *tg;
dc61b1d6
PZ
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
619 lockdep_is_held(&p->pi_lock) ||
620 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
621 tg = container_of(css, struct task_group, css);
622
623 return autogroup_task_group(p, tg);
dc61b1d6
PZ
624}
625
626/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
627static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
628{
629#ifdef CONFIG_FAIR_GROUP_SCHED
630 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
631 p->se.parent = task_group(p)->se[cpu];
632#endif
633
634#ifdef CONFIG_RT_GROUP_SCHED
635 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
636 p->rt.parent = task_group(p)->rt_se[cpu];
637#endif
638}
639
640#else /* CONFIG_CGROUP_SCHED */
641
642static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
643static inline struct task_group *task_group(struct task_struct *p)
644{
645 return NULL;
646}
647
648#endif /* CONFIG_CGROUP_SCHED */
649
fe44d621 650static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 651
fe44d621 652static void update_rq_clock(struct rq *rq)
3e51f33f 653{
fe44d621 654 s64 delta;
305e6835 655
61eadef6 656 if (rq->skip_clock_update > 0)
f26f9aff 657 return;
aa483808 658
fe44d621
PZ
659 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
660 rq->clock += delta;
661 update_rq_clock_task(rq, delta);
3e51f33f
PZ
662}
663
bf5c91ba
IM
664/*
665 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 */
667#ifdef CONFIG_SCHED_DEBUG
668# define const_debug __read_mostly
669#else
670# define const_debug static const
671#endif
672
017730c1 673/**
1fd06bb1 674 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 675 * @cpu: the processor in question.
017730c1 676 *
017730c1
IM
677 * This interface allows printk to be called with the runqueue lock
678 * held and know whether or not it is OK to wake up the klogd.
679 */
89f19f04 680int runqueue_is_locked(int cpu)
017730c1 681{
05fa785c 682 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
683}
684
bf5c91ba
IM
685/*
686 * Debugging: various feature bits
687 */
f00b45c1
PZ
688
689#define SCHED_FEAT(name, enabled) \
690 __SCHED_FEAT_##name ,
691
bf5c91ba 692enum {
f00b45c1 693#include "sched_features.h"
bf5c91ba
IM
694};
695
f00b45c1
PZ
696#undef SCHED_FEAT
697
698#define SCHED_FEAT(name, enabled) \
699 (1UL << __SCHED_FEAT_##name) * enabled |
700
bf5c91ba 701const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
702#include "sched_features.h"
703 0;
704
705#undef SCHED_FEAT
706
707#ifdef CONFIG_SCHED_DEBUG
708#define SCHED_FEAT(name, enabled) \
709 #name ,
710
983ed7a6 711static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
712#include "sched_features.h"
713 NULL
714};
715
716#undef SCHED_FEAT
717
34f3a814 718static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 719{
f00b45c1
PZ
720 int i;
721
722 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
723 if (!(sysctl_sched_features & (1UL << i)))
724 seq_puts(m, "NO_");
725 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 726 }
34f3a814 727 seq_puts(m, "\n");
f00b45c1 728
34f3a814 729 return 0;
f00b45c1
PZ
730}
731
732static ssize_t
733sched_feat_write(struct file *filp, const char __user *ubuf,
734 size_t cnt, loff_t *ppos)
735{
736 char buf[64];
7740191c 737 char *cmp;
f00b45c1
PZ
738 int neg = 0;
739 int i;
740
741 if (cnt > 63)
742 cnt = 63;
743
744 if (copy_from_user(&buf, ubuf, cnt))
745 return -EFAULT;
746
747 buf[cnt] = 0;
7740191c 748 cmp = strstrip(buf);
f00b45c1 749
524429c3 750 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
751 neg = 1;
752 cmp += 3;
753 }
754
755 for (i = 0; sched_feat_names[i]; i++) {
7740191c 756 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
757 if (neg)
758 sysctl_sched_features &= ~(1UL << i);
759 else
760 sysctl_sched_features |= (1UL << i);
761 break;
762 }
763 }
764
765 if (!sched_feat_names[i])
766 return -EINVAL;
767
42994724 768 *ppos += cnt;
f00b45c1
PZ
769
770 return cnt;
771}
772
34f3a814
LZ
773static int sched_feat_open(struct inode *inode, struct file *filp)
774{
775 return single_open(filp, sched_feat_show, NULL);
776}
777
828c0950 778static const struct file_operations sched_feat_fops = {
34f3a814
LZ
779 .open = sched_feat_open,
780 .write = sched_feat_write,
781 .read = seq_read,
782 .llseek = seq_lseek,
783 .release = single_release,
f00b45c1
PZ
784};
785
786static __init int sched_init_debug(void)
787{
f00b45c1
PZ
788 debugfs_create_file("sched_features", 0644, NULL, NULL,
789 &sched_feat_fops);
790
791 return 0;
792}
793late_initcall(sched_init_debug);
794
795#endif
796
797#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 798
b82d9fdd
PZ
799/*
800 * Number of tasks to iterate in a single balance run.
801 * Limited because this is done with IRQs disabled.
802 */
803const_debug unsigned int sysctl_sched_nr_migrate = 32;
804
e9e9250b
PZ
805/*
806 * period over which we average the RT time consumption, measured
807 * in ms.
808 *
809 * default: 1s
810 */
811const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
812
fa85ae24 813/*
9f0c1e56 814 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
815 * default: 1s
816 */
9f0c1e56 817unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 818
6892b75e
IM
819static __read_mostly int scheduler_running;
820
9f0c1e56
PZ
821/*
822 * part of the period that we allow rt tasks to run in us.
823 * default: 0.95s
824 */
825int sysctl_sched_rt_runtime = 950000;
fa85ae24 826
d0b27fa7
PZ
827static inline u64 global_rt_period(void)
828{
829 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
830}
831
832static inline u64 global_rt_runtime(void)
833{
e26873bb 834 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
835 return RUNTIME_INF;
836
837 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
838}
fa85ae24 839
1da177e4 840#ifndef prepare_arch_switch
4866cde0
NP
841# define prepare_arch_switch(next) do { } while (0)
842#endif
843#ifndef finish_arch_switch
844# define finish_arch_switch(prev) do { } while (0)
845#endif
846
051a1d1a
DA
847static inline int task_current(struct rq *rq, struct task_struct *p)
848{
849 return rq->curr == p;
850}
851
70b97a7f 852static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 853{
3ca7a440
PZ
854#ifdef CONFIG_SMP
855 return p->on_cpu;
856#else
051a1d1a 857 return task_current(rq, p);
3ca7a440 858#endif
4866cde0
NP
859}
860
3ca7a440 861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 863{
3ca7a440
PZ
864#ifdef CONFIG_SMP
865 /*
866 * We can optimise this out completely for !SMP, because the
867 * SMP rebalancing from interrupt is the only thing that cares
868 * here.
869 */
870 next->on_cpu = 1;
871#endif
4866cde0
NP
872}
873
70b97a7f 874static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 875{
3ca7a440
PZ
876#ifdef CONFIG_SMP
877 /*
878 * After ->on_cpu is cleared, the task can be moved to a different CPU.
879 * We must ensure this doesn't happen until the switch is completely
880 * finished.
881 */
882 smp_wmb();
883 prev->on_cpu = 0;
884#endif
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
05fa785c 896 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 /*
904 * We can optimise this out completely for !SMP, because the
905 * SMP rebalancing from interrupt is the only thing that cares
906 * here.
907 */
3ca7a440 908 next->on_cpu = 1;
4866cde0
NP
909#endif
910#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 911 raw_spin_unlock_irq(&rq->lock);
4866cde0 912#else
05fa785c 913 raw_spin_unlock(&rq->lock);
4866cde0
NP
914#endif
915}
916
70b97a7f 917static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
918{
919#ifdef CONFIG_SMP
920 /*
3ca7a440 921 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
922 * We must ensure this doesn't happen until the switch is completely
923 * finished.
924 */
925 smp_wmb();
3ca7a440 926 prev->on_cpu = 0;
4866cde0
NP
927#endif
928#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 local_irq_enable();
1da177e4 930#endif
4866cde0
NP
931}
932#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 933
0970d299 934/*
0122ec5b 935 * __task_rq_lock - lock the rq @p resides on.
b29739f9 936 */
70b97a7f 937static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
938 __acquires(rq->lock)
939{
0970d299
PZ
940 struct rq *rq;
941
0122ec5b
PZ
942 lockdep_assert_held(&p->pi_lock);
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4 953/*
0122ec5b 954 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 955 */
70b97a7f 956static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 957 __acquires(p->pi_lock)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a 962 for (;;) {
0122ec5b 963 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 964 rq = task_rq(p);
05fa785c 965 raw_spin_lock(&rq->lock);
65cc8e48 966 if (likely(rq == task_rq(p)))
3a5c359a 967 return rq;
0122ec5b
PZ
968 raw_spin_unlock(&rq->lock);
969 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
0122ec5b
PZ
979static inline void
980task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 981 __releases(rq->lock)
0122ec5b 982 __releases(p->pi_lock)
1da177e4 983{
0122ec5b
PZ
984 raw_spin_unlock(&rq->lock);
985 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
986}
987
1da177e4 988/*
cc2a73b5 989 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 990 */
a9957449 991static struct rq *this_rq_lock(void)
1da177e4
LT
992 __acquires(rq->lock)
993{
70b97a7f 994 struct rq *rq;
1da177e4
LT
995
996 local_irq_disable();
997 rq = this_rq();
05fa785c 998 raw_spin_lock(&rq->lock);
1da177e4
LT
999
1000 return rq;
1001}
1002
8f4d37ec
PZ
1003#ifdef CONFIG_SCHED_HRTICK
1004/*
1005 * Use HR-timers to deliver accurate preemption points.
1006 *
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1010 *
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1013 */
8f4d37ec
PZ
1014
1015/*
1016 * Use hrtick when:
1017 * - enabled by features
1018 * - hrtimer is actually high res
1019 */
1020static inline int hrtick_enabled(struct rq *rq)
1021{
1022 if (!sched_feat(HRTICK))
1023 return 0;
ba42059f 1024 if (!cpu_active(cpu_of(rq)))
b328ca18 1025 return 0;
8f4d37ec
PZ
1026 return hrtimer_is_hres_active(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029static void hrtick_clear(struct rq *rq)
1030{
1031 if (hrtimer_active(&rq->hrtick_timer))
1032 hrtimer_cancel(&rq->hrtick_timer);
1033}
1034
8f4d37ec
PZ
1035/*
1036 * High-resolution timer tick.
1037 * Runs from hardirq context with interrupts disabled.
1038 */
1039static enum hrtimer_restart hrtick(struct hrtimer *timer)
1040{
1041 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1042
1043 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1044
05fa785c 1045 raw_spin_lock(&rq->lock);
3e51f33f 1046 update_rq_clock(rq);
8f4d37ec 1047 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1048 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1049
1050 return HRTIMER_NORESTART;
1051}
1052
95e904c7 1053#ifdef CONFIG_SMP
31656519
PZ
1054/*
1055 * called from hardirq (IPI) context
1056 */
1057static void __hrtick_start(void *arg)
b328ca18 1058{
31656519 1059 struct rq *rq = arg;
b328ca18 1060
05fa785c 1061 raw_spin_lock(&rq->lock);
31656519
PZ
1062 hrtimer_restart(&rq->hrtick_timer);
1063 rq->hrtick_csd_pending = 0;
05fa785c 1064 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1065}
1066
31656519
PZ
1067/*
1068 * Called to set the hrtick timer state.
1069 *
1070 * called with rq->lock held and irqs disabled
1071 */
1072static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1073{
31656519
PZ
1074 struct hrtimer *timer = &rq->hrtick_timer;
1075 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1076
cc584b21 1077 hrtimer_set_expires(timer, time);
31656519
PZ
1078
1079 if (rq == this_rq()) {
1080 hrtimer_restart(timer);
1081 } else if (!rq->hrtick_csd_pending) {
6e275637 1082 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1083 rq->hrtick_csd_pending = 1;
1084 }
b328ca18
PZ
1085}
1086
1087static int
1088hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1089{
1090 int cpu = (int)(long)hcpu;
1091
1092 switch (action) {
1093 case CPU_UP_CANCELED:
1094 case CPU_UP_CANCELED_FROZEN:
1095 case CPU_DOWN_PREPARE:
1096 case CPU_DOWN_PREPARE_FROZEN:
1097 case CPU_DEAD:
1098 case CPU_DEAD_FROZEN:
31656519 1099 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1100 return NOTIFY_OK;
1101 }
1102
1103 return NOTIFY_DONE;
1104}
1105
fa748203 1106static __init void init_hrtick(void)
b328ca18
PZ
1107{
1108 hotcpu_notifier(hotplug_hrtick, 0);
1109}
31656519
PZ
1110#else
1111/*
1112 * Called to set the hrtick timer state.
1113 *
1114 * called with rq->lock held and irqs disabled
1115 */
1116static void hrtick_start(struct rq *rq, u64 delay)
1117{
7f1e2ca9 1118 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1119 HRTIMER_MODE_REL_PINNED, 0);
31656519 1120}
b328ca18 1121
006c75f1 1122static inline void init_hrtick(void)
8f4d37ec 1123{
8f4d37ec 1124}
31656519 1125#endif /* CONFIG_SMP */
8f4d37ec 1126
31656519 1127static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1128{
31656519
PZ
1129#ifdef CONFIG_SMP
1130 rq->hrtick_csd_pending = 0;
8f4d37ec 1131
31656519
PZ
1132 rq->hrtick_csd.flags = 0;
1133 rq->hrtick_csd.func = __hrtick_start;
1134 rq->hrtick_csd.info = rq;
1135#endif
8f4d37ec 1136
31656519
PZ
1137 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1138 rq->hrtick_timer.function = hrtick;
8f4d37ec 1139}
006c75f1 1140#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1141static inline void hrtick_clear(struct rq *rq)
1142{
1143}
1144
8f4d37ec
PZ
1145static inline void init_rq_hrtick(struct rq *rq)
1146{
1147}
1148
b328ca18
PZ
1149static inline void init_hrtick(void)
1150{
1151}
006c75f1 1152#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1153
c24d20db
IM
1154/*
1155 * resched_task - mark a task 'to be rescheduled now'.
1156 *
1157 * On UP this means the setting of the need_resched flag, on SMP it
1158 * might also involve a cross-CPU call to trigger the scheduler on
1159 * the target CPU.
1160 */
1161#ifdef CONFIG_SMP
1162
1163#ifndef tsk_is_polling
1164#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1165#endif
1166
31656519 1167static void resched_task(struct task_struct *p)
c24d20db
IM
1168{
1169 int cpu;
1170
05fa785c 1171 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1172
5ed0cec0 1173 if (test_tsk_need_resched(p))
c24d20db
IM
1174 return;
1175
5ed0cec0 1176 set_tsk_need_resched(p);
c24d20db
IM
1177
1178 cpu = task_cpu(p);
1179 if (cpu == smp_processor_id())
1180 return;
1181
1182 /* NEED_RESCHED must be visible before we test polling */
1183 smp_mb();
1184 if (!tsk_is_polling(p))
1185 smp_send_reschedule(cpu);
1186}
1187
1188static void resched_cpu(int cpu)
1189{
1190 struct rq *rq = cpu_rq(cpu);
1191 unsigned long flags;
1192
05fa785c 1193 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1194 return;
1195 resched_task(cpu_curr(cpu));
05fa785c 1196 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1197}
06d8308c
TG
1198
1199#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1200/*
1201 * In the semi idle case, use the nearest busy cpu for migrating timers
1202 * from an idle cpu. This is good for power-savings.
1203 *
1204 * We don't do similar optimization for completely idle system, as
1205 * selecting an idle cpu will add more delays to the timers than intended
1206 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 */
1208int get_nohz_timer_target(void)
1209{
1210 int cpu = smp_processor_id();
1211 int i;
1212 struct sched_domain *sd;
1213
057f3fad 1214 rcu_read_lock();
83cd4fe2 1215 for_each_domain(cpu, sd) {
057f3fad
PZ
1216 for_each_cpu(i, sched_domain_span(sd)) {
1217 if (!idle_cpu(i)) {
1218 cpu = i;
1219 goto unlock;
1220 }
1221 }
83cd4fe2 1222 }
057f3fad
PZ
1223unlock:
1224 rcu_read_unlock();
83cd4fe2
VP
1225 return cpu;
1226}
06d8308c
TG
1227/*
1228 * When add_timer_on() enqueues a timer into the timer wheel of an
1229 * idle CPU then this timer might expire before the next timer event
1230 * which is scheduled to wake up that CPU. In case of a completely
1231 * idle system the next event might even be infinite time into the
1232 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1233 * leaves the inner idle loop so the newly added timer is taken into
1234 * account when the CPU goes back to idle and evaluates the timer
1235 * wheel for the next timer event.
1236 */
1237void wake_up_idle_cpu(int cpu)
1238{
1239 struct rq *rq = cpu_rq(cpu);
1240
1241 if (cpu == smp_processor_id())
1242 return;
1243
1244 /*
1245 * This is safe, as this function is called with the timer
1246 * wheel base lock of (cpu) held. When the CPU is on the way
1247 * to idle and has not yet set rq->curr to idle then it will
1248 * be serialized on the timer wheel base lock and take the new
1249 * timer into account automatically.
1250 */
1251 if (rq->curr != rq->idle)
1252 return;
1253
1254 /*
1255 * We can set TIF_RESCHED on the idle task of the other CPU
1256 * lockless. The worst case is that the other CPU runs the
1257 * idle task through an additional NOOP schedule()
1258 */
5ed0cec0 1259 set_tsk_need_resched(rq->idle);
06d8308c
TG
1260
1261 /* NEED_RESCHED must be visible before we test polling */
1262 smp_mb();
1263 if (!tsk_is_polling(rq->idle))
1264 smp_send_reschedule(cpu);
1265}
39c0cbe2 1266
6d6bc0ad 1267#endif /* CONFIG_NO_HZ */
06d8308c 1268
e9e9250b
PZ
1269static u64 sched_avg_period(void)
1270{
1271 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1272}
1273
1274static void sched_avg_update(struct rq *rq)
1275{
1276 s64 period = sched_avg_period();
1277
1278 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1279 /*
1280 * Inline assembly required to prevent the compiler
1281 * optimising this loop into a divmod call.
1282 * See __iter_div_u64_rem() for another example of this.
1283 */
1284 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1285 rq->age_stamp += period;
1286 rq->rt_avg /= 2;
1287 }
1288}
1289
1290static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1291{
1292 rq->rt_avg += rt_delta;
1293 sched_avg_update(rq);
1294}
1295
6d6bc0ad 1296#else /* !CONFIG_SMP */
31656519 1297static void resched_task(struct task_struct *p)
c24d20db 1298{
05fa785c 1299 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1300 set_tsk_need_resched(p);
c24d20db 1301}
e9e9250b
PZ
1302
1303static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1304{
1305}
da2b71ed
SS
1306
1307static void sched_avg_update(struct rq *rq)
1308{
1309}
6d6bc0ad 1310#endif /* CONFIG_SMP */
c24d20db 1311
45bf76df
IM
1312#if BITS_PER_LONG == 32
1313# define WMULT_CONST (~0UL)
1314#else
1315# define WMULT_CONST (1UL << 32)
1316#endif
1317
1318#define WMULT_SHIFT 32
1319
194081eb
IM
1320/*
1321 * Shift right and round:
1322 */
cf2ab469 1323#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1324
a7be37ac
PZ
1325/*
1326 * delta *= weight / lw
1327 */
cb1c4fc9 1328static unsigned long
45bf76df
IM
1329calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1330 struct load_weight *lw)
1331{
1332 u64 tmp;
1333
c8b28116
NR
1334 /*
1335 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1336 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1337 * 2^SCHED_LOAD_RESOLUTION.
1338 */
1339 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1340 tmp = (u64)delta_exec * scale_load_down(weight);
1341 else
1342 tmp = (u64)delta_exec;
db670dac 1343
7a232e03 1344 if (!lw->inv_weight) {
c8b28116
NR
1345 unsigned long w = scale_load_down(lw->weight);
1346
1347 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1348 lw->inv_weight = 1;
c8b28116
NR
1349 else if (unlikely(!w))
1350 lw->inv_weight = WMULT_CONST;
7a232e03 1351 else
c8b28116 1352 lw->inv_weight = WMULT_CONST / w;
7a232e03 1353 }
45bf76df 1354
45bf76df
IM
1355 /*
1356 * Check whether we'd overflow the 64-bit multiplication:
1357 */
194081eb 1358 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1359 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1360 WMULT_SHIFT/2);
1361 else
cf2ab469 1362 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1363
ecf691da 1364 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1365}
1366
1091985b 1367static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1368{
1369 lw->weight += inc;
e89996ae 1370 lw->inv_weight = 0;
45bf76df
IM
1371}
1372
1091985b 1373static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1374{
1375 lw->weight -= dec;
e89996ae 1376 lw->inv_weight = 0;
45bf76df
IM
1377}
1378
2069dd75
PZ
1379static inline void update_load_set(struct load_weight *lw, unsigned long w)
1380{
1381 lw->weight = w;
1382 lw->inv_weight = 0;
1383}
1384
2dd73a4f
PW
1385/*
1386 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1387 * of tasks with abnormal "nice" values across CPUs the contribution that
1388 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1389 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1390 * scaled version of the new time slice allocation that they receive on time
1391 * slice expiry etc.
1392 */
1393
cce7ade8
PZ
1394#define WEIGHT_IDLEPRIO 3
1395#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1396
1397/*
1398 * Nice levels are multiplicative, with a gentle 10% change for every
1399 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1400 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1401 * that remained on nice 0.
1402 *
1403 * The "10% effect" is relative and cumulative: from _any_ nice level,
1404 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1405 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1406 * If a task goes up by ~10% and another task goes down by ~10% then
1407 * the relative distance between them is ~25%.)
dd41f596
IM
1408 */
1409static const int prio_to_weight[40] = {
254753dc
IM
1410 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1411 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1412 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1413 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1414 /* 0 */ 1024, 820, 655, 526, 423,
1415 /* 5 */ 335, 272, 215, 172, 137,
1416 /* 10 */ 110, 87, 70, 56, 45,
1417 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1418};
1419
5714d2de
IM
1420/*
1421 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 *
1423 * In cases where the weight does not change often, we can use the
1424 * precalculated inverse to speed up arithmetics by turning divisions
1425 * into multiplications:
1426 */
dd41f596 1427static const u32 prio_to_wmult[40] = {
254753dc
IM
1428 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1429 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1430 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1431 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1432 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1433 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1434 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1435 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1436};
2dd73a4f 1437
ef12fefa
BR
1438/* Time spent by the tasks of the cpu accounting group executing in ... */
1439enum cpuacct_stat_index {
1440 CPUACCT_STAT_USER, /* ... user mode */
1441 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1442
1443 CPUACCT_STAT_NSTATS,
1444};
1445
d842de87
SV
1446#ifdef CONFIG_CGROUP_CPUACCT
1447static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1448static void cpuacct_update_stats(struct task_struct *tsk,
1449 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1450#else
1451static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1452static inline void cpuacct_update_stats(struct task_struct *tsk,
1453 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1454#endif
1455
18d95a28
PZ
1456static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1457{
1458 update_load_add(&rq->load, load);
1459}
1460
1461static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1462{
1463 update_load_sub(&rq->load, load);
1464}
1465
7940ca36 1466#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1467typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1468
1469/*
1470 * Iterate the full tree, calling @down when first entering a node and @up when
1471 * leaving it for the final time.
1472 */
eb755805 1473static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1474{
1475 struct task_group *parent, *child;
eb755805 1476 int ret;
c09595f6
PZ
1477
1478 rcu_read_lock();
1479 parent = &root_task_group;
1480down:
eb755805
PZ
1481 ret = (*down)(parent, data);
1482 if (ret)
1483 goto out_unlock;
c09595f6
PZ
1484 list_for_each_entry_rcu(child, &parent->children, siblings) {
1485 parent = child;
1486 goto down;
1487
1488up:
1489 continue;
1490 }
eb755805
PZ
1491 ret = (*up)(parent, data);
1492 if (ret)
1493 goto out_unlock;
c09595f6
PZ
1494
1495 child = parent;
1496 parent = parent->parent;
1497 if (parent)
1498 goto up;
eb755805 1499out_unlock:
c09595f6 1500 rcu_read_unlock();
eb755805
PZ
1501
1502 return ret;
c09595f6
PZ
1503}
1504
eb755805
PZ
1505static int tg_nop(struct task_group *tg, void *data)
1506{
1507 return 0;
c09595f6 1508}
eb755805
PZ
1509#endif
1510
1511#ifdef CONFIG_SMP
f5f08f39
PZ
1512/* Used instead of source_load when we know the type == 0 */
1513static unsigned long weighted_cpuload(const int cpu)
1514{
1515 return cpu_rq(cpu)->load.weight;
1516}
1517
1518/*
1519 * Return a low guess at the load of a migration-source cpu weighted
1520 * according to the scheduling class and "nice" value.
1521 *
1522 * We want to under-estimate the load of migration sources, to
1523 * balance conservatively.
1524 */
1525static unsigned long source_load(int cpu, int type)
1526{
1527 struct rq *rq = cpu_rq(cpu);
1528 unsigned long total = weighted_cpuload(cpu);
1529
1530 if (type == 0 || !sched_feat(LB_BIAS))
1531 return total;
1532
1533 return min(rq->cpu_load[type-1], total);
1534}
1535
1536/*
1537 * Return a high guess at the load of a migration-target cpu weighted
1538 * according to the scheduling class and "nice" value.
1539 */
1540static unsigned long target_load(int cpu, int type)
1541{
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long total = weighted_cpuload(cpu);
1544
1545 if (type == 0 || !sched_feat(LB_BIAS))
1546 return total;
1547
1548 return max(rq->cpu_load[type-1], total);
1549}
1550
ae154be1
PZ
1551static unsigned long power_of(int cpu)
1552{
e51fd5e2 1553 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1554}
1555
eb755805
PZ
1556static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1557
1558static unsigned long cpu_avg_load_per_task(int cpu)
1559{
1560 struct rq *rq = cpu_rq(cpu);
af6d596f 1561 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1562
4cd42620
SR
1563 if (nr_running)
1564 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1565 else
1566 rq->avg_load_per_task = 0;
eb755805
PZ
1567
1568 return rq->avg_load_per_task;
1569}
1570
8f45e2b5
GH
1571#ifdef CONFIG_PREEMPT
1572
b78bb868
PZ
1573static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1574
70574a99 1575/*
8f45e2b5
GH
1576 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1577 * way at the expense of forcing extra atomic operations in all
1578 * invocations. This assures that the double_lock is acquired using the
1579 * same underlying policy as the spinlock_t on this architecture, which
1580 * reduces latency compared to the unfair variant below. However, it
1581 * also adds more overhead and therefore may reduce throughput.
70574a99 1582 */
8f45e2b5
GH
1583static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1584 __releases(this_rq->lock)
1585 __acquires(busiest->lock)
1586 __acquires(this_rq->lock)
1587{
05fa785c 1588 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1589 double_rq_lock(this_rq, busiest);
1590
1591 return 1;
1592}
1593
1594#else
1595/*
1596 * Unfair double_lock_balance: Optimizes throughput at the expense of
1597 * latency by eliminating extra atomic operations when the locks are
1598 * already in proper order on entry. This favors lower cpu-ids and will
1599 * grant the double lock to lower cpus over higher ids under contention,
1600 * regardless of entry order into the function.
1601 */
1602static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1603 __releases(this_rq->lock)
1604 __acquires(busiest->lock)
1605 __acquires(this_rq->lock)
1606{
1607 int ret = 0;
1608
05fa785c 1609 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1610 if (busiest < this_rq) {
05fa785c
TG
1611 raw_spin_unlock(&this_rq->lock);
1612 raw_spin_lock(&busiest->lock);
1613 raw_spin_lock_nested(&this_rq->lock,
1614 SINGLE_DEPTH_NESTING);
70574a99
AD
1615 ret = 1;
1616 } else
05fa785c
TG
1617 raw_spin_lock_nested(&busiest->lock,
1618 SINGLE_DEPTH_NESTING);
70574a99
AD
1619 }
1620 return ret;
1621}
1622
8f45e2b5
GH
1623#endif /* CONFIG_PREEMPT */
1624
1625/*
1626 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1627 */
1628static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1629{
1630 if (unlikely(!irqs_disabled())) {
1631 /* printk() doesn't work good under rq->lock */
05fa785c 1632 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1633 BUG_ON(1);
1634 }
1635
1636 return _double_lock_balance(this_rq, busiest);
1637}
1638
70574a99
AD
1639static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1640 __releases(busiest->lock)
1641{
05fa785c 1642 raw_spin_unlock(&busiest->lock);
70574a99
AD
1643 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1644}
1e3c88bd
PZ
1645
1646/*
1647 * double_rq_lock - safely lock two runqueues
1648 *
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1651 */
1652static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1655{
1656 BUG_ON(!irqs_disabled());
1657 if (rq1 == rq2) {
1658 raw_spin_lock(&rq1->lock);
1659 __acquire(rq2->lock); /* Fake it out ;) */
1660 } else {
1661 if (rq1 < rq2) {
1662 raw_spin_lock(&rq1->lock);
1663 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1664 } else {
1665 raw_spin_lock(&rq2->lock);
1666 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1667 }
1668 }
1e3c88bd
PZ
1669}
1670
1671/*
1672 * double_rq_unlock - safely unlock two runqueues
1673 *
1674 * Note this does not restore interrupts like task_rq_unlock,
1675 * you need to do so manually after calling.
1676 */
1677static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1678 __releases(rq1->lock)
1679 __releases(rq2->lock)
1680{
1681 raw_spin_unlock(&rq1->lock);
1682 if (rq1 != rq2)
1683 raw_spin_unlock(&rq2->lock);
1684 else
1685 __release(rq2->lock);
1686}
1687
d95f4122
MG
1688#else /* CONFIG_SMP */
1689
1690/*
1691 * double_rq_lock - safely lock two runqueues
1692 *
1693 * Note this does not disable interrupts like task_rq_lock,
1694 * you need to do so manually before calling.
1695 */
1696static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1697 __acquires(rq1->lock)
1698 __acquires(rq2->lock)
1699{
1700 BUG_ON(!irqs_disabled());
1701 BUG_ON(rq1 != rq2);
1702 raw_spin_lock(&rq1->lock);
1703 __acquire(rq2->lock); /* Fake it out ;) */
1704}
1705
1706/*
1707 * double_rq_unlock - safely unlock two runqueues
1708 *
1709 * Note this does not restore interrupts like task_rq_unlock,
1710 * you need to do so manually after calling.
1711 */
1712static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1713 __releases(rq1->lock)
1714 __releases(rq2->lock)
1715{
1716 BUG_ON(rq1 != rq2);
1717 raw_spin_unlock(&rq1->lock);
1718 __release(rq2->lock);
1719}
1720
18d95a28
PZ
1721#endif
1722
74f5187a 1723static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1724static void update_sysctl(void);
acb4a848 1725static int get_update_sysctl_factor(void);
fdf3e95d 1726static void update_cpu_load(struct rq *this_rq);
dce48a84 1727
cd29fe6f
PZ
1728static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1729{
1730 set_task_rq(p, cpu);
1731#ifdef CONFIG_SMP
1732 /*
1733 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1734 * successfuly executed on another CPU. We must ensure that updates of
1735 * per-task data have been completed by this moment.
1736 */
1737 smp_wmb();
1738 task_thread_info(p)->cpu = cpu;
1739#endif
1740}
dce48a84 1741
1e3c88bd 1742static const struct sched_class rt_sched_class;
dd41f596 1743
34f971f6 1744#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1745#define for_each_class(class) \
1746 for (class = sched_class_highest; class; class = class->next)
dd41f596 1747
1e3c88bd
PZ
1748#include "sched_stats.h"
1749
c09595f6 1750static void inc_nr_running(struct rq *rq)
9c217245
IM
1751{
1752 rq->nr_running++;
9c217245
IM
1753}
1754
c09595f6 1755static void dec_nr_running(struct rq *rq)
9c217245
IM
1756{
1757 rq->nr_running--;
9c217245
IM
1758}
1759
45bf76df
IM
1760static void set_load_weight(struct task_struct *p)
1761{
f05998d4
NR
1762 int prio = p->static_prio - MAX_RT_PRIO;
1763 struct load_weight *load = &p->se.load;
1764
dd41f596
IM
1765 /*
1766 * SCHED_IDLE tasks get minimal weight:
1767 */
1768 if (p->policy == SCHED_IDLE) {
c8b28116 1769 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1770 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1771 return;
1772 }
71f8bd46 1773
c8b28116 1774 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1775 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1776}
1777
371fd7e7 1778static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1779{
a64692a3 1780 update_rq_clock(rq);
dd41f596 1781 sched_info_queued(p);
371fd7e7 1782 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1783}
1784
371fd7e7 1785static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1786{
a64692a3 1787 update_rq_clock(rq);
46ac22ba 1788 sched_info_dequeued(p);
371fd7e7 1789 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1790}
1791
1e3c88bd
PZ
1792/*
1793 * activate_task - move a task to the runqueue.
1794 */
371fd7e7 1795static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1796{
1797 if (task_contributes_to_load(p))
1798 rq->nr_uninterruptible--;
1799
371fd7e7 1800 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1801 inc_nr_running(rq);
1802}
1803
1804/*
1805 * deactivate_task - remove a task from the runqueue.
1806 */
371fd7e7 1807static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1808{
1809 if (task_contributes_to_load(p))
1810 rq->nr_uninterruptible++;
1811
371fd7e7 1812 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1813 dec_nr_running(rq);
1814}
1815
b52bfee4
VP
1816#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1817
305e6835
VP
1818/*
1819 * There are no locks covering percpu hardirq/softirq time.
1820 * They are only modified in account_system_vtime, on corresponding CPU
1821 * with interrupts disabled. So, writes are safe.
1822 * They are read and saved off onto struct rq in update_rq_clock().
1823 * This may result in other CPU reading this CPU's irq time and can
1824 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1825 * or new value with a side effect of accounting a slice of irq time to wrong
1826 * task when irq is in progress while we read rq->clock. That is a worthy
1827 * compromise in place of having locks on each irq in account_system_time.
305e6835 1828 */
b52bfee4
VP
1829static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1830static DEFINE_PER_CPU(u64, cpu_softirq_time);
1831
1832static DEFINE_PER_CPU(u64, irq_start_time);
1833static int sched_clock_irqtime;
1834
1835void enable_sched_clock_irqtime(void)
1836{
1837 sched_clock_irqtime = 1;
1838}
1839
1840void disable_sched_clock_irqtime(void)
1841{
1842 sched_clock_irqtime = 0;
1843}
1844
8e92c201
PZ
1845#ifndef CONFIG_64BIT
1846static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1847
1848static inline void irq_time_write_begin(void)
1849{
1850 __this_cpu_inc(irq_time_seq.sequence);
1851 smp_wmb();
1852}
1853
1854static inline void irq_time_write_end(void)
1855{
1856 smp_wmb();
1857 __this_cpu_inc(irq_time_seq.sequence);
1858}
1859
1860static inline u64 irq_time_read(int cpu)
1861{
1862 u64 irq_time;
1863 unsigned seq;
1864
1865 do {
1866 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1867 irq_time = per_cpu(cpu_softirq_time, cpu) +
1868 per_cpu(cpu_hardirq_time, cpu);
1869 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1870
1871 return irq_time;
1872}
1873#else /* CONFIG_64BIT */
1874static inline void irq_time_write_begin(void)
1875{
1876}
1877
1878static inline void irq_time_write_end(void)
1879{
1880}
1881
1882static inline u64 irq_time_read(int cpu)
305e6835 1883{
305e6835
VP
1884 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1885}
8e92c201 1886#endif /* CONFIG_64BIT */
305e6835 1887
fe44d621
PZ
1888/*
1889 * Called before incrementing preempt_count on {soft,}irq_enter
1890 * and before decrementing preempt_count on {soft,}irq_exit.
1891 */
b52bfee4
VP
1892void account_system_vtime(struct task_struct *curr)
1893{
1894 unsigned long flags;
fe44d621 1895 s64 delta;
b52bfee4 1896 int cpu;
b52bfee4
VP
1897
1898 if (!sched_clock_irqtime)
1899 return;
1900
1901 local_irq_save(flags);
1902
b52bfee4 1903 cpu = smp_processor_id();
fe44d621
PZ
1904 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1905 __this_cpu_add(irq_start_time, delta);
1906
8e92c201 1907 irq_time_write_begin();
b52bfee4
VP
1908 /*
1909 * We do not account for softirq time from ksoftirqd here.
1910 * We want to continue accounting softirq time to ksoftirqd thread
1911 * in that case, so as not to confuse scheduler with a special task
1912 * that do not consume any time, but still wants to run.
1913 */
1914 if (hardirq_count())
fe44d621 1915 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1916 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1917 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1918
8e92c201 1919 irq_time_write_end();
b52bfee4
VP
1920 local_irq_restore(flags);
1921}
b7dadc38 1922EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1923
fe44d621 1924static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1925{
fe44d621
PZ
1926 s64 irq_delta;
1927
8e92c201 1928 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1929
1930 /*
1931 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1932 * this case when a previous update_rq_clock() happened inside a
1933 * {soft,}irq region.
1934 *
1935 * When this happens, we stop ->clock_task and only update the
1936 * prev_irq_time stamp to account for the part that fit, so that a next
1937 * update will consume the rest. This ensures ->clock_task is
1938 * monotonic.
1939 *
1940 * It does however cause some slight miss-attribution of {soft,}irq
1941 * time, a more accurate solution would be to update the irq_time using
1942 * the current rq->clock timestamp, except that would require using
1943 * atomic ops.
1944 */
1945 if (irq_delta > delta)
1946 irq_delta = delta;
1947
1948 rq->prev_irq_time += irq_delta;
1949 delta -= irq_delta;
1950 rq->clock_task += delta;
1951
1952 if (irq_delta && sched_feat(NONIRQ_POWER))
1953 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1954}
1955
abb74cef
VP
1956static int irqtime_account_hi_update(void)
1957{
1958 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1959 unsigned long flags;
1960 u64 latest_ns;
1961 int ret = 0;
1962
1963 local_irq_save(flags);
1964 latest_ns = this_cpu_read(cpu_hardirq_time);
1965 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1966 ret = 1;
1967 local_irq_restore(flags);
1968 return ret;
1969}
1970
1971static int irqtime_account_si_update(void)
1972{
1973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1974 unsigned long flags;
1975 u64 latest_ns;
1976 int ret = 0;
1977
1978 local_irq_save(flags);
1979 latest_ns = this_cpu_read(cpu_softirq_time);
1980 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1981 ret = 1;
1982 local_irq_restore(flags);
1983 return ret;
1984}
1985
fe44d621 1986#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1987
abb74cef
VP
1988#define sched_clock_irqtime (0)
1989
fe44d621 1990static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1991{
fe44d621 1992 rq->clock_task += delta;
305e6835
VP
1993}
1994
fe44d621 1995#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1996
1e3c88bd
PZ
1997#include "sched_idletask.c"
1998#include "sched_fair.c"
1999#include "sched_rt.c"
5091faa4 2000#include "sched_autogroup.c"
34f971f6 2001#include "sched_stoptask.c"
1e3c88bd
PZ
2002#ifdef CONFIG_SCHED_DEBUG
2003# include "sched_debug.c"
2004#endif
2005
34f971f6
PZ
2006void sched_set_stop_task(int cpu, struct task_struct *stop)
2007{
2008 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2009 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2010
2011 if (stop) {
2012 /*
2013 * Make it appear like a SCHED_FIFO task, its something
2014 * userspace knows about and won't get confused about.
2015 *
2016 * Also, it will make PI more or less work without too
2017 * much confusion -- but then, stop work should not
2018 * rely on PI working anyway.
2019 */
2020 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2021
2022 stop->sched_class = &stop_sched_class;
2023 }
2024
2025 cpu_rq(cpu)->stop = stop;
2026
2027 if (old_stop) {
2028 /*
2029 * Reset it back to a normal scheduling class so that
2030 * it can die in pieces.
2031 */
2032 old_stop->sched_class = &rt_sched_class;
2033 }
2034}
2035
14531189 2036/*
dd41f596 2037 * __normal_prio - return the priority that is based on the static prio
14531189 2038 */
14531189
IM
2039static inline int __normal_prio(struct task_struct *p)
2040{
dd41f596 2041 return p->static_prio;
14531189
IM
2042}
2043
b29739f9
IM
2044/*
2045 * Calculate the expected normal priority: i.e. priority
2046 * without taking RT-inheritance into account. Might be
2047 * boosted by interactivity modifiers. Changes upon fork,
2048 * setprio syscalls, and whenever the interactivity
2049 * estimator recalculates.
2050 */
36c8b586 2051static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2052{
2053 int prio;
2054
e05606d3 2055 if (task_has_rt_policy(p))
b29739f9
IM
2056 prio = MAX_RT_PRIO-1 - p->rt_priority;
2057 else
2058 prio = __normal_prio(p);
2059 return prio;
2060}
2061
2062/*
2063 * Calculate the current priority, i.e. the priority
2064 * taken into account by the scheduler. This value might
2065 * be boosted by RT tasks, or might be boosted by
2066 * interactivity modifiers. Will be RT if the task got
2067 * RT-boosted. If not then it returns p->normal_prio.
2068 */
36c8b586 2069static int effective_prio(struct task_struct *p)
b29739f9
IM
2070{
2071 p->normal_prio = normal_prio(p);
2072 /*
2073 * If we are RT tasks or we were boosted to RT priority,
2074 * keep the priority unchanged. Otherwise, update priority
2075 * to the normal priority:
2076 */
2077 if (!rt_prio(p->prio))
2078 return p->normal_prio;
2079 return p->prio;
2080}
2081
1da177e4
LT
2082/**
2083 * task_curr - is this task currently executing on a CPU?
2084 * @p: the task in question.
2085 */
36c8b586 2086inline int task_curr(const struct task_struct *p)
1da177e4
LT
2087{
2088 return cpu_curr(task_cpu(p)) == p;
2089}
2090
cb469845
SR
2091static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2092 const struct sched_class *prev_class,
da7a735e 2093 int oldprio)
cb469845
SR
2094{
2095 if (prev_class != p->sched_class) {
2096 if (prev_class->switched_from)
da7a735e
PZ
2097 prev_class->switched_from(rq, p);
2098 p->sched_class->switched_to(rq, p);
2099 } else if (oldprio != p->prio)
2100 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2101}
2102
1e5a7405
PZ
2103static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2104{
2105 const struct sched_class *class;
2106
2107 if (p->sched_class == rq->curr->sched_class) {
2108 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2109 } else {
2110 for_each_class(class) {
2111 if (class == rq->curr->sched_class)
2112 break;
2113 if (class == p->sched_class) {
2114 resched_task(rq->curr);
2115 break;
2116 }
2117 }
2118 }
2119
2120 /*
2121 * A queue event has occurred, and we're going to schedule. In
2122 * this case, we can save a useless back to back clock update.
2123 */
fd2f4419 2124 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2125 rq->skip_clock_update = 1;
2126}
2127
1da177e4 2128#ifdef CONFIG_SMP
cc367732
IM
2129/*
2130 * Is this task likely cache-hot:
2131 */
e7693a36 2132static int
cc367732
IM
2133task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2134{
2135 s64 delta;
2136
e6c8fba7
PZ
2137 if (p->sched_class != &fair_sched_class)
2138 return 0;
2139
ef8002f6
NR
2140 if (unlikely(p->policy == SCHED_IDLE))
2141 return 0;
2142
f540a608
IM
2143 /*
2144 * Buddy candidates are cache hot:
2145 */
f685ceac 2146 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2147 (&p->se == cfs_rq_of(&p->se)->next ||
2148 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2149 return 1;
2150
6bc1665b
IM
2151 if (sysctl_sched_migration_cost == -1)
2152 return 1;
2153 if (sysctl_sched_migration_cost == 0)
2154 return 0;
2155
cc367732
IM
2156 delta = now - p->se.exec_start;
2157
2158 return delta < (s64)sysctl_sched_migration_cost;
2159}
2160
dd41f596 2161void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2162{
e2912009
PZ
2163#ifdef CONFIG_SCHED_DEBUG
2164 /*
2165 * We should never call set_task_cpu() on a blocked task,
2166 * ttwu() will sort out the placement.
2167 */
077614ee
PZ
2168 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2169 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2170
2171#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2172 /*
2173 * The caller should hold either p->pi_lock or rq->lock, when changing
2174 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2175 *
2176 * sched_move_task() holds both and thus holding either pins the cgroup,
2177 * see set_task_rq().
2178 *
2179 * Furthermore, all task_rq users should acquire both locks, see
2180 * task_rq_lock().
2181 */
0122ec5b
PZ
2182 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2183 lockdep_is_held(&task_rq(p)->lock)));
2184#endif
e2912009
PZ
2185#endif
2186
de1d7286 2187 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2188
0c69774e
PZ
2189 if (task_cpu(p) != new_cpu) {
2190 p->se.nr_migrations++;
2191 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2192 }
dd41f596
IM
2193
2194 __set_task_cpu(p, new_cpu);
c65cc870
IM
2195}
2196
969c7921 2197struct migration_arg {
36c8b586 2198 struct task_struct *task;
1da177e4 2199 int dest_cpu;
70b97a7f 2200};
1da177e4 2201
969c7921
TH
2202static int migration_cpu_stop(void *data);
2203
1da177e4
LT
2204/*
2205 * wait_task_inactive - wait for a thread to unschedule.
2206 *
85ba2d86
RM
2207 * If @match_state is nonzero, it's the @p->state value just checked and
2208 * not expected to change. If it changes, i.e. @p might have woken up,
2209 * then return zero. When we succeed in waiting for @p to be off its CPU,
2210 * we return a positive number (its total switch count). If a second call
2211 * a short while later returns the same number, the caller can be sure that
2212 * @p has remained unscheduled the whole time.
2213 *
1da177e4
LT
2214 * The caller must ensure that the task *will* unschedule sometime soon,
2215 * else this function might spin for a *long* time. This function can't
2216 * be called with interrupts off, or it may introduce deadlock with
2217 * smp_call_function() if an IPI is sent by the same process we are
2218 * waiting to become inactive.
2219 */
85ba2d86 2220unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2221{
2222 unsigned long flags;
dd41f596 2223 int running, on_rq;
85ba2d86 2224 unsigned long ncsw;
70b97a7f 2225 struct rq *rq;
1da177e4 2226
3a5c359a
AK
2227 for (;;) {
2228 /*
2229 * We do the initial early heuristics without holding
2230 * any task-queue locks at all. We'll only try to get
2231 * the runqueue lock when things look like they will
2232 * work out!
2233 */
2234 rq = task_rq(p);
fa490cfd 2235
3a5c359a
AK
2236 /*
2237 * If the task is actively running on another CPU
2238 * still, just relax and busy-wait without holding
2239 * any locks.
2240 *
2241 * NOTE! Since we don't hold any locks, it's not
2242 * even sure that "rq" stays as the right runqueue!
2243 * But we don't care, since "task_running()" will
2244 * return false if the runqueue has changed and p
2245 * is actually now running somewhere else!
2246 */
85ba2d86
RM
2247 while (task_running(rq, p)) {
2248 if (match_state && unlikely(p->state != match_state))
2249 return 0;
3a5c359a 2250 cpu_relax();
85ba2d86 2251 }
fa490cfd 2252
3a5c359a
AK
2253 /*
2254 * Ok, time to look more closely! We need the rq
2255 * lock now, to be *sure*. If we're wrong, we'll
2256 * just go back and repeat.
2257 */
2258 rq = task_rq_lock(p, &flags);
27a9da65 2259 trace_sched_wait_task(p);
3a5c359a 2260 running = task_running(rq, p);
fd2f4419 2261 on_rq = p->on_rq;
85ba2d86 2262 ncsw = 0;
f31e11d8 2263 if (!match_state || p->state == match_state)
93dcf55f 2264 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2265 task_rq_unlock(rq, p, &flags);
fa490cfd 2266
85ba2d86
RM
2267 /*
2268 * If it changed from the expected state, bail out now.
2269 */
2270 if (unlikely(!ncsw))
2271 break;
2272
3a5c359a
AK
2273 /*
2274 * Was it really running after all now that we
2275 * checked with the proper locks actually held?
2276 *
2277 * Oops. Go back and try again..
2278 */
2279 if (unlikely(running)) {
2280 cpu_relax();
2281 continue;
2282 }
fa490cfd 2283
3a5c359a
AK
2284 /*
2285 * It's not enough that it's not actively running,
2286 * it must be off the runqueue _entirely_, and not
2287 * preempted!
2288 *
80dd99b3 2289 * So if it was still runnable (but just not actively
3a5c359a
AK
2290 * running right now), it's preempted, and we should
2291 * yield - it could be a while.
2292 */
2293 if (unlikely(on_rq)) {
8eb90c30
TG
2294 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2295
2296 set_current_state(TASK_UNINTERRUPTIBLE);
2297 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2298 continue;
2299 }
fa490cfd 2300
3a5c359a
AK
2301 /*
2302 * Ahh, all good. It wasn't running, and it wasn't
2303 * runnable, which means that it will never become
2304 * running in the future either. We're all done!
2305 */
2306 break;
2307 }
85ba2d86
RM
2308
2309 return ncsw;
1da177e4
LT
2310}
2311
2312/***
2313 * kick_process - kick a running thread to enter/exit the kernel
2314 * @p: the to-be-kicked thread
2315 *
2316 * Cause a process which is running on another CPU to enter
2317 * kernel-mode, without any delay. (to get signals handled.)
2318 *
25985edc 2319 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2320 * because all it wants to ensure is that the remote task enters
2321 * the kernel. If the IPI races and the task has been migrated
2322 * to another CPU then no harm is done and the purpose has been
2323 * achieved as well.
2324 */
36c8b586 2325void kick_process(struct task_struct *p)
1da177e4
LT
2326{
2327 int cpu;
2328
2329 preempt_disable();
2330 cpu = task_cpu(p);
2331 if ((cpu != smp_processor_id()) && task_curr(p))
2332 smp_send_reschedule(cpu);
2333 preempt_enable();
2334}
b43e3521 2335EXPORT_SYMBOL_GPL(kick_process);
476d139c 2336#endif /* CONFIG_SMP */
1da177e4 2337
970b13ba 2338#ifdef CONFIG_SMP
30da688e 2339/*
013fdb80 2340 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2341 */
5da9a0fb
PZ
2342static int select_fallback_rq(int cpu, struct task_struct *p)
2343{
2344 int dest_cpu;
2345 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2346
2347 /* Look for allowed, online CPU in same node. */
2348 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2349 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2350 return dest_cpu;
2351
2352 /* Any allowed, online CPU? */
2353 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2354 if (dest_cpu < nr_cpu_ids)
2355 return dest_cpu;
2356
2357 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2358 dest_cpu = cpuset_cpus_allowed_fallback(p);
2359 /*
2360 * Don't tell them about moving exiting tasks or
2361 * kernel threads (both mm NULL), since they never
2362 * leave kernel.
2363 */
2364 if (p->mm && printk_ratelimit()) {
2365 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2366 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2367 }
2368
2369 return dest_cpu;
2370}
2371
e2912009 2372/*
013fdb80 2373 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2374 */
970b13ba 2375static inline
7608dec2 2376int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2377{
7608dec2 2378 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2379
2380 /*
2381 * In order not to call set_task_cpu() on a blocking task we need
2382 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2383 * cpu.
2384 *
2385 * Since this is common to all placement strategies, this lives here.
2386 *
2387 * [ this allows ->select_task() to simply return task_cpu(p) and
2388 * not worry about this generic constraint ]
2389 */
2390 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2391 !cpu_online(cpu)))
5da9a0fb 2392 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2393
2394 return cpu;
970b13ba 2395}
09a40af5
MG
2396
2397static void update_avg(u64 *avg, u64 sample)
2398{
2399 s64 diff = sample - *avg;
2400 *avg += diff >> 3;
2401}
970b13ba
PZ
2402#endif
2403
d7c01d27 2404static void
b84cb5df 2405ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2406{
d7c01d27 2407#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2408 struct rq *rq = this_rq();
2409
d7c01d27
PZ
2410#ifdef CONFIG_SMP
2411 int this_cpu = smp_processor_id();
2412
2413 if (cpu == this_cpu) {
2414 schedstat_inc(rq, ttwu_local);
2415 schedstat_inc(p, se.statistics.nr_wakeups_local);
2416 } else {
2417 struct sched_domain *sd;
2418
2419 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2420 rcu_read_lock();
d7c01d27
PZ
2421 for_each_domain(this_cpu, sd) {
2422 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2423 schedstat_inc(sd, ttwu_wake_remote);
2424 break;
2425 }
2426 }
057f3fad 2427 rcu_read_unlock();
d7c01d27 2428 }
f339b9dc
PZ
2429
2430 if (wake_flags & WF_MIGRATED)
2431 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2432
d7c01d27
PZ
2433#endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2437
2438 if (wake_flags & WF_SYNC)
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2440
d7c01d27
PZ
2441#endif /* CONFIG_SCHEDSTATS */
2442}
2443
2444static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2445{
9ed3811a 2446 activate_task(rq, p, en_flags);
fd2f4419 2447 p->on_rq = 1;
c2f7115e
PZ
2448
2449 /* if a worker is waking up, notify workqueue */
2450 if (p->flags & PF_WQ_WORKER)
2451 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2452}
2453
23f41eeb
PZ
2454/*
2455 * Mark the task runnable and perform wakeup-preemption.
2456 */
89363381 2457static void
23f41eeb 2458ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2459{
89363381 2460 trace_sched_wakeup(p, true);
9ed3811a
TH
2461 check_preempt_curr(rq, p, wake_flags);
2462
2463 p->state = TASK_RUNNING;
2464#ifdef CONFIG_SMP
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2467
e69c6341 2468 if (rq->idle_stamp) {
9ed3811a
TH
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2471
2472 if (delta > max)
2473 rq->avg_idle = max;
2474 else
2475 update_avg(&rq->avg_idle, delta);
2476 rq->idle_stamp = 0;
2477 }
2478#endif
2479}
2480
c05fbafb
PZ
2481static void
2482ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2483{
2484#ifdef CONFIG_SMP
2485 if (p->sched_contributes_to_load)
2486 rq->nr_uninterruptible--;
2487#endif
2488
2489 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2490 ttwu_do_wakeup(rq, p, wake_flags);
2491}
2492
2493/*
2494 * Called in case the task @p isn't fully descheduled from its runqueue,
2495 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2496 * since all we need to do is flip p->state to TASK_RUNNING, since
2497 * the task is still ->on_rq.
2498 */
2499static int ttwu_remote(struct task_struct *p, int wake_flags)
2500{
2501 struct rq *rq;
2502 int ret = 0;
2503
2504 rq = __task_rq_lock(p);
2505 if (p->on_rq) {
2506 ttwu_do_wakeup(rq, p, wake_flags);
2507 ret = 1;
2508 }
2509 __task_rq_unlock(rq);
2510
2511 return ret;
2512}
2513
317f3941 2514#ifdef CONFIG_SMP
c5d753a5 2515static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2516{
2517 struct rq *rq = this_rq();
317f3941
PZ
2518
2519 raw_spin_lock(&rq->lock);
2520
2521 while (list) {
2522 struct task_struct *p = list;
2523 list = list->wake_entry;
2524 ttwu_do_activate(rq, p, 0);
2525 }
2526
2527 raw_spin_unlock(&rq->lock);
2528}
2529
c5d753a5
PZ
2530#ifdef CONFIG_HOTPLUG_CPU
2531
2532static void sched_ttwu_pending(void)
2533{
2534 struct rq *rq = this_rq();
2535 struct task_struct *list = xchg(&rq->wake_list, NULL);
2536
2537 if (!list)
2538 return;
2539
2540 sched_ttwu_do_pending(list);
2541}
2542
2543#endif /* CONFIG_HOTPLUG_CPU */
2544
317f3941
PZ
2545void scheduler_ipi(void)
2546{
c5d753a5
PZ
2547 struct rq *rq = this_rq();
2548 struct task_struct *list = xchg(&rq->wake_list, NULL);
2549
2550 if (!list)
2551 return;
2552
2553 /*
2554 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2555 * traditionally all their work was done from the interrupt return
2556 * path. Now that we actually do some work, we need to make sure
2557 * we do call them.
2558 *
2559 * Some archs already do call them, luckily irq_enter/exit nest
2560 * properly.
2561 *
2562 * Arguably we should visit all archs and update all handlers,
2563 * however a fair share of IPIs are still resched only so this would
2564 * somewhat pessimize the simple resched case.
2565 */
2566 irq_enter();
2567 sched_ttwu_do_pending(list);
2568 irq_exit();
317f3941
PZ
2569}
2570
2571static void ttwu_queue_remote(struct task_struct *p, int cpu)
2572{
2573 struct rq *rq = cpu_rq(cpu);
2574 struct task_struct *next = rq->wake_list;
2575
2576 for (;;) {
2577 struct task_struct *old = next;
2578
2579 p->wake_entry = next;
2580 next = cmpxchg(&rq->wake_list, old, p);
2581 if (next == old)
2582 break;
2583 }
2584
2585 if (!next)
2586 smp_send_reschedule(cpu);
2587}
d6aa8f85
PZ
2588
2589#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2590static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2591{
2592 struct rq *rq;
2593 int ret = 0;
2594
2595 rq = __task_rq_lock(p);
2596 if (p->on_cpu) {
2597 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2598 ttwu_do_wakeup(rq, p, wake_flags);
2599 ret = 1;
2600 }
2601 __task_rq_unlock(rq);
2602
2603 return ret;
2604
2605}
2606#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2607#endif /* CONFIG_SMP */
317f3941 2608
c05fbafb
PZ
2609static void ttwu_queue(struct task_struct *p, int cpu)
2610{
2611 struct rq *rq = cpu_rq(cpu);
2612
17d9f311 2613#if defined(CONFIG_SMP)
317f3941 2614 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2615 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2616 ttwu_queue_remote(p, cpu);
2617 return;
2618 }
2619#endif
2620
c05fbafb
PZ
2621 raw_spin_lock(&rq->lock);
2622 ttwu_do_activate(rq, p, 0);
2623 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2624}
2625
2626/**
1da177e4 2627 * try_to_wake_up - wake up a thread
9ed3811a 2628 * @p: the thread to be awakened
1da177e4 2629 * @state: the mask of task states that can be woken
9ed3811a 2630 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2631 *
2632 * Put it on the run-queue if it's not already there. The "current"
2633 * thread is always on the run-queue (except when the actual
2634 * re-schedule is in progress), and as such you're allowed to do
2635 * the simpler "current->state = TASK_RUNNING" to mark yourself
2636 * runnable without the overhead of this.
2637 *
9ed3811a
TH
2638 * Returns %true if @p was woken up, %false if it was already running
2639 * or @state didn't match @p's state.
1da177e4 2640 */
e4a52bcb
PZ
2641static int
2642try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2643{
1da177e4 2644 unsigned long flags;
c05fbafb 2645 int cpu, success = 0;
2398f2c6 2646
04e2f174 2647 smp_wmb();
013fdb80 2648 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2649 if (!(p->state & state))
1da177e4
LT
2650 goto out;
2651
c05fbafb 2652 success = 1; /* we're going to change ->state */
1da177e4 2653 cpu = task_cpu(p);
1da177e4 2654
c05fbafb
PZ
2655 if (p->on_rq && ttwu_remote(p, wake_flags))
2656 goto stat;
1da177e4 2657
1da177e4 2658#ifdef CONFIG_SMP
e9c84311 2659 /*
c05fbafb
PZ
2660 * If the owning (remote) cpu is still in the middle of schedule() with
2661 * this task as prev, wait until its done referencing the task.
e9c84311 2662 */
e4a52bcb
PZ
2663 while (p->on_cpu) {
2664#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2665 /*
d6aa8f85
PZ
2666 * In case the architecture enables interrupts in
2667 * context_switch(), we cannot busy wait, since that
2668 * would lead to deadlocks when an interrupt hits and
2669 * tries to wake up @prev. So bail and do a complete
2670 * remote wakeup.
e4a52bcb 2671 */
d6aa8f85 2672 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2673 goto stat;
d6aa8f85 2674#else
e4a52bcb 2675 cpu_relax();
d6aa8f85 2676#endif
371fd7e7 2677 }
0970d299 2678 /*
e4a52bcb 2679 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2680 */
e4a52bcb 2681 smp_rmb();
1da177e4 2682
a8e4f2ea 2683 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2684 p->state = TASK_WAKING;
e7693a36 2685
e4a52bcb 2686 if (p->sched_class->task_waking)
74f8e4b2 2687 p->sched_class->task_waking(p);
efbbd05a 2688
7608dec2 2689 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2690 if (task_cpu(p) != cpu) {
2691 wake_flags |= WF_MIGRATED;
e4a52bcb 2692 set_task_cpu(p, cpu);
f339b9dc 2693 }
1da177e4 2694#endif /* CONFIG_SMP */
1da177e4 2695
c05fbafb
PZ
2696 ttwu_queue(p, cpu);
2697stat:
b84cb5df 2698 ttwu_stat(p, cpu, wake_flags);
1da177e4 2699out:
013fdb80 2700 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2701
2702 return success;
2703}
2704
21aa9af0
TH
2705/**
2706 * try_to_wake_up_local - try to wake up a local task with rq lock held
2707 * @p: the thread to be awakened
2708 *
2acca55e 2709 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2710 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2711 * the current task.
21aa9af0
TH
2712 */
2713static void try_to_wake_up_local(struct task_struct *p)
2714{
2715 struct rq *rq = task_rq(p);
21aa9af0
TH
2716
2717 BUG_ON(rq != this_rq());
2718 BUG_ON(p == current);
2719 lockdep_assert_held(&rq->lock);
2720
2acca55e
PZ
2721 if (!raw_spin_trylock(&p->pi_lock)) {
2722 raw_spin_unlock(&rq->lock);
2723 raw_spin_lock(&p->pi_lock);
2724 raw_spin_lock(&rq->lock);
2725 }
2726
21aa9af0 2727 if (!(p->state & TASK_NORMAL))
2acca55e 2728 goto out;
21aa9af0 2729
fd2f4419 2730 if (!p->on_rq)
d7c01d27
PZ
2731 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2732
23f41eeb 2733 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2734 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2735out:
2736 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2737}
2738
50fa610a
DH
2739/**
2740 * wake_up_process - Wake up a specific process
2741 * @p: The process to be woken up.
2742 *
2743 * Attempt to wake up the nominated process and move it to the set of runnable
2744 * processes. Returns 1 if the process was woken up, 0 if it was already
2745 * running.
2746 *
2747 * It may be assumed that this function implies a write memory barrier before
2748 * changing the task state if and only if any tasks are woken up.
2749 */
7ad5b3a5 2750int wake_up_process(struct task_struct *p)
1da177e4 2751{
d9514f6c 2752 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2753}
1da177e4
LT
2754EXPORT_SYMBOL(wake_up_process);
2755
7ad5b3a5 2756int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2757{
2758 return try_to_wake_up(p, state, 0);
2759}
2760
1da177e4
LT
2761/*
2762 * Perform scheduler related setup for a newly forked process p.
2763 * p is forked by current.
dd41f596
IM
2764 *
2765 * __sched_fork() is basic setup used by init_idle() too:
2766 */
2767static void __sched_fork(struct task_struct *p)
2768{
fd2f4419
PZ
2769 p->on_rq = 0;
2770
2771 p->se.on_rq = 0;
dd41f596
IM
2772 p->se.exec_start = 0;
2773 p->se.sum_exec_runtime = 0;
f6cf891c 2774 p->se.prev_sum_exec_runtime = 0;
6c594c21 2775 p->se.nr_migrations = 0;
da7a735e 2776 p->se.vruntime = 0;
fd2f4419 2777 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2778
2779#ifdef CONFIG_SCHEDSTATS
41acab88 2780 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2781#endif
476d139c 2782
fa717060 2783 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2784
e107be36
AK
2785#ifdef CONFIG_PREEMPT_NOTIFIERS
2786 INIT_HLIST_HEAD(&p->preempt_notifiers);
2787#endif
dd41f596
IM
2788}
2789
2790/*
2791 * fork()/clone()-time setup:
2792 */
3e51e3ed 2793void sched_fork(struct task_struct *p)
dd41f596 2794{
0122ec5b 2795 unsigned long flags;
dd41f596
IM
2796 int cpu = get_cpu();
2797
2798 __sched_fork(p);
06b83b5f 2799 /*
0017d735 2800 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2801 * nobody will actually run it, and a signal or other external
2802 * event cannot wake it up and insert it on the runqueue either.
2803 */
0017d735 2804 p->state = TASK_RUNNING;
dd41f596 2805
b9dc29e7
MG
2806 /*
2807 * Revert to default priority/policy on fork if requested.
2808 */
2809 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2810 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2811 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2812 p->normal_prio = p->static_prio;
2813 }
b9dc29e7 2814
6c697bdf
MG
2815 if (PRIO_TO_NICE(p->static_prio) < 0) {
2816 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2817 p->normal_prio = p->static_prio;
6c697bdf
MG
2818 set_load_weight(p);
2819 }
2820
b9dc29e7
MG
2821 /*
2822 * We don't need the reset flag anymore after the fork. It has
2823 * fulfilled its duty:
2824 */
2825 p->sched_reset_on_fork = 0;
2826 }
ca94c442 2827
f83f9ac2
PW
2828 /*
2829 * Make sure we do not leak PI boosting priority to the child.
2830 */
2831 p->prio = current->normal_prio;
2832
2ddbf952
HS
2833 if (!rt_prio(p->prio))
2834 p->sched_class = &fair_sched_class;
b29739f9 2835
cd29fe6f
PZ
2836 if (p->sched_class->task_fork)
2837 p->sched_class->task_fork(p);
2838
86951599
PZ
2839 /*
2840 * The child is not yet in the pid-hash so no cgroup attach races,
2841 * and the cgroup is pinned to this child due to cgroup_fork()
2842 * is ran before sched_fork().
2843 *
2844 * Silence PROVE_RCU.
2845 */
0122ec5b 2846 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2847 set_task_cpu(p, cpu);
0122ec5b 2848 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2849
52f17b6c 2850#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2851 if (likely(sched_info_on()))
52f17b6c 2852 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2853#endif
3ca7a440
PZ
2854#if defined(CONFIG_SMP)
2855 p->on_cpu = 0;
4866cde0 2856#endif
bdd4e85d 2857#ifdef CONFIG_PREEMPT_COUNT
4866cde0 2858 /* Want to start with kernel preemption disabled. */
a1261f54 2859 task_thread_info(p)->preempt_count = 1;
1da177e4 2860#endif
806c09a7 2861#ifdef CONFIG_SMP
917b627d 2862 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2863#endif
917b627d 2864
476d139c 2865 put_cpu();
1da177e4
LT
2866}
2867
2868/*
2869 * wake_up_new_task - wake up a newly created task for the first time.
2870 *
2871 * This function will do some initial scheduler statistics housekeeping
2872 * that must be done for every newly created context, then puts the task
2873 * on the runqueue and wakes it.
2874 */
3e51e3ed 2875void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2876{
2877 unsigned long flags;
dd41f596 2878 struct rq *rq;
fabf318e 2879
ab2515c4 2880 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2881#ifdef CONFIG_SMP
2882 /*
2883 * Fork balancing, do it here and not earlier because:
2884 * - cpus_allowed can change in the fork path
2885 * - any previously selected cpu might disappear through hotplug
fabf318e 2886 */
ab2515c4 2887 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2888#endif
2889
ab2515c4 2890 rq = __task_rq_lock(p);
cd29fe6f 2891 activate_task(rq, p, 0);
fd2f4419 2892 p->on_rq = 1;
89363381 2893 trace_sched_wakeup_new(p, true);
a7558e01 2894 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2895#ifdef CONFIG_SMP
efbbd05a
PZ
2896 if (p->sched_class->task_woken)
2897 p->sched_class->task_woken(rq, p);
9a897c5a 2898#endif
0122ec5b 2899 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2900}
2901
e107be36
AK
2902#ifdef CONFIG_PREEMPT_NOTIFIERS
2903
2904/**
80dd99b3 2905 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2906 * @notifier: notifier struct to register
e107be36
AK
2907 */
2908void preempt_notifier_register(struct preempt_notifier *notifier)
2909{
2910 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2911}
2912EXPORT_SYMBOL_GPL(preempt_notifier_register);
2913
2914/**
2915 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2916 * @notifier: notifier struct to unregister
e107be36
AK
2917 *
2918 * This is safe to call from within a preemption notifier.
2919 */
2920void preempt_notifier_unregister(struct preempt_notifier *notifier)
2921{
2922 hlist_del(&notifier->link);
2923}
2924EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2925
2926static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2927{
2928 struct preempt_notifier *notifier;
2929 struct hlist_node *node;
2930
2931 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2932 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2933}
2934
2935static void
2936fire_sched_out_preempt_notifiers(struct task_struct *curr,
2937 struct task_struct *next)
2938{
2939 struct preempt_notifier *notifier;
2940 struct hlist_node *node;
2941
2942 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2943 notifier->ops->sched_out(notifier, next);
2944}
2945
6d6bc0ad 2946#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2947
2948static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2949{
2950}
2951
2952static void
2953fire_sched_out_preempt_notifiers(struct task_struct *curr,
2954 struct task_struct *next)
2955{
2956}
2957
6d6bc0ad 2958#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2959
4866cde0
NP
2960/**
2961 * prepare_task_switch - prepare to switch tasks
2962 * @rq: the runqueue preparing to switch
421cee29 2963 * @prev: the current task that is being switched out
4866cde0
NP
2964 * @next: the task we are going to switch to.
2965 *
2966 * This is called with the rq lock held and interrupts off. It must
2967 * be paired with a subsequent finish_task_switch after the context
2968 * switch.
2969 *
2970 * prepare_task_switch sets up locking and calls architecture specific
2971 * hooks.
2972 */
e107be36
AK
2973static inline void
2974prepare_task_switch(struct rq *rq, struct task_struct *prev,
2975 struct task_struct *next)
4866cde0 2976{
fe4b04fa
PZ
2977 sched_info_switch(prev, next);
2978 perf_event_task_sched_out(prev, next);
e107be36 2979 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2980 prepare_lock_switch(rq, next);
2981 prepare_arch_switch(next);
fe4b04fa 2982 trace_sched_switch(prev, next);
4866cde0
NP
2983}
2984
1da177e4
LT
2985/**
2986 * finish_task_switch - clean up after a task-switch
344babaa 2987 * @rq: runqueue associated with task-switch
1da177e4
LT
2988 * @prev: the thread we just switched away from.
2989 *
4866cde0
NP
2990 * finish_task_switch must be called after the context switch, paired
2991 * with a prepare_task_switch call before the context switch.
2992 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2993 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2994 *
2995 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2996 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2997 * with the lock held can cause deadlocks; see schedule() for
2998 * details.)
2999 */
a9957449 3000static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3001 __releases(rq->lock)
3002{
1da177e4 3003 struct mm_struct *mm = rq->prev_mm;
55a101f8 3004 long prev_state;
1da177e4
LT
3005
3006 rq->prev_mm = NULL;
3007
3008 /*
3009 * A task struct has one reference for the use as "current".
c394cc9f 3010 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3011 * schedule one last time. The schedule call will never return, and
3012 * the scheduled task must drop that reference.
c394cc9f 3013 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3014 * still held, otherwise prev could be scheduled on another cpu, die
3015 * there before we look at prev->state, and then the reference would
3016 * be dropped twice.
3017 * Manfred Spraul <manfred@colorfullife.com>
3018 */
55a101f8 3019 prev_state = prev->state;
4866cde0 3020 finish_arch_switch(prev);
8381f65d
JI
3021#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3022 local_irq_disable();
3023#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3024 perf_event_task_sched_in(current);
8381f65d
JI
3025#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3026 local_irq_enable();
3027#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3028 finish_lock_switch(rq, prev);
e8fa1362 3029
e107be36 3030 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3031 if (mm)
3032 mmdrop(mm);
c394cc9f 3033 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3034 /*
3035 * Remove function-return probe instances associated with this
3036 * task and put them back on the free list.
9761eea8 3037 */
c6fd91f0 3038 kprobe_flush_task(prev);
1da177e4 3039 put_task_struct(prev);
c6fd91f0 3040 }
1da177e4
LT
3041}
3042
3f029d3c
GH
3043#ifdef CONFIG_SMP
3044
3045/* assumes rq->lock is held */
3046static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3047{
3048 if (prev->sched_class->pre_schedule)
3049 prev->sched_class->pre_schedule(rq, prev);
3050}
3051
3052/* rq->lock is NOT held, but preemption is disabled */
3053static inline void post_schedule(struct rq *rq)
3054{
3055 if (rq->post_schedule) {
3056 unsigned long flags;
3057
05fa785c 3058 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3059 if (rq->curr->sched_class->post_schedule)
3060 rq->curr->sched_class->post_schedule(rq);
05fa785c 3061 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3062
3063 rq->post_schedule = 0;
3064 }
3065}
3066
3067#else
da19ab51 3068
3f029d3c
GH
3069static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3070{
3071}
3072
3073static inline void post_schedule(struct rq *rq)
3074{
1da177e4
LT
3075}
3076
3f029d3c
GH
3077#endif
3078
1da177e4
LT
3079/**
3080 * schedule_tail - first thing a freshly forked thread must call.
3081 * @prev: the thread we just switched away from.
3082 */
36c8b586 3083asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3084 __releases(rq->lock)
3085{
70b97a7f
IM
3086 struct rq *rq = this_rq();
3087
4866cde0 3088 finish_task_switch(rq, prev);
da19ab51 3089
3f029d3c
GH
3090 /*
3091 * FIXME: do we need to worry about rq being invalidated by the
3092 * task_switch?
3093 */
3094 post_schedule(rq);
70b97a7f 3095
4866cde0
NP
3096#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3097 /* In this case, finish_task_switch does not reenable preemption */
3098 preempt_enable();
3099#endif
1da177e4 3100 if (current->set_child_tid)
b488893a 3101 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3102}
3103
3104/*
3105 * context_switch - switch to the new MM and the new
3106 * thread's register state.
3107 */
dd41f596 3108static inline void
70b97a7f 3109context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3110 struct task_struct *next)
1da177e4 3111{
dd41f596 3112 struct mm_struct *mm, *oldmm;
1da177e4 3113
e107be36 3114 prepare_task_switch(rq, prev, next);
fe4b04fa 3115
dd41f596
IM
3116 mm = next->mm;
3117 oldmm = prev->active_mm;
9226d125
ZA
3118 /*
3119 * For paravirt, this is coupled with an exit in switch_to to
3120 * combine the page table reload and the switch backend into
3121 * one hypercall.
3122 */
224101ed 3123 arch_start_context_switch(prev);
9226d125 3124
31915ab4 3125 if (!mm) {
1da177e4
LT
3126 next->active_mm = oldmm;
3127 atomic_inc(&oldmm->mm_count);
3128 enter_lazy_tlb(oldmm, next);
3129 } else
3130 switch_mm(oldmm, mm, next);
3131
31915ab4 3132 if (!prev->mm) {
1da177e4 3133 prev->active_mm = NULL;
1da177e4
LT
3134 rq->prev_mm = oldmm;
3135 }
3a5f5e48
IM
3136 /*
3137 * Since the runqueue lock will be released by the next
3138 * task (which is an invalid locking op but in the case
3139 * of the scheduler it's an obvious special-case), so we
3140 * do an early lockdep release here:
3141 */
3142#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3143 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3144#endif
1da177e4
LT
3145
3146 /* Here we just switch the register state and the stack. */
3147 switch_to(prev, next, prev);
3148
dd41f596
IM
3149 barrier();
3150 /*
3151 * this_rq must be evaluated again because prev may have moved
3152 * CPUs since it called schedule(), thus the 'rq' on its stack
3153 * frame will be invalid.
3154 */
3155 finish_task_switch(this_rq(), prev);
1da177e4
LT
3156}
3157
3158/*
3159 * nr_running, nr_uninterruptible and nr_context_switches:
3160 *
3161 * externally visible scheduler statistics: current number of runnable
3162 * threads, current number of uninterruptible-sleeping threads, total
3163 * number of context switches performed since bootup.
3164 */
3165unsigned long nr_running(void)
3166{
3167 unsigned long i, sum = 0;
3168
3169 for_each_online_cpu(i)
3170 sum += cpu_rq(i)->nr_running;
3171
3172 return sum;
f711f609 3173}
1da177e4
LT
3174
3175unsigned long nr_uninterruptible(void)
f711f609 3176{
1da177e4 3177 unsigned long i, sum = 0;
f711f609 3178
0a945022 3179 for_each_possible_cpu(i)
1da177e4 3180 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3181
3182 /*
1da177e4
LT
3183 * Since we read the counters lockless, it might be slightly
3184 * inaccurate. Do not allow it to go below zero though:
f711f609 3185 */
1da177e4
LT
3186 if (unlikely((long)sum < 0))
3187 sum = 0;
f711f609 3188
1da177e4 3189 return sum;
f711f609 3190}
f711f609 3191
1da177e4 3192unsigned long long nr_context_switches(void)
46cb4b7c 3193{
cc94abfc
SR
3194 int i;
3195 unsigned long long sum = 0;
46cb4b7c 3196
0a945022 3197 for_each_possible_cpu(i)
1da177e4 3198 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3199
1da177e4
LT
3200 return sum;
3201}
483b4ee6 3202
1da177e4
LT
3203unsigned long nr_iowait(void)
3204{
3205 unsigned long i, sum = 0;
483b4ee6 3206
0a945022 3207 for_each_possible_cpu(i)
1da177e4 3208 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3209
1da177e4
LT
3210 return sum;
3211}
483b4ee6 3212
8c215bd3 3213unsigned long nr_iowait_cpu(int cpu)
69d25870 3214{
8c215bd3 3215 struct rq *this = cpu_rq(cpu);
69d25870
AV
3216 return atomic_read(&this->nr_iowait);
3217}
46cb4b7c 3218
69d25870
AV
3219unsigned long this_cpu_load(void)
3220{
3221 struct rq *this = this_rq();
3222 return this->cpu_load[0];
3223}
e790fb0b 3224
46cb4b7c 3225
dce48a84
TG
3226/* Variables and functions for calc_load */
3227static atomic_long_t calc_load_tasks;
3228static unsigned long calc_load_update;
3229unsigned long avenrun[3];
3230EXPORT_SYMBOL(avenrun);
46cb4b7c 3231
74f5187a
PZ
3232static long calc_load_fold_active(struct rq *this_rq)
3233{
3234 long nr_active, delta = 0;
3235
3236 nr_active = this_rq->nr_running;
3237 nr_active += (long) this_rq->nr_uninterruptible;
3238
3239 if (nr_active != this_rq->calc_load_active) {
3240 delta = nr_active - this_rq->calc_load_active;
3241 this_rq->calc_load_active = nr_active;
3242 }
3243
3244 return delta;
3245}
3246
0f004f5a
PZ
3247static unsigned long
3248calc_load(unsigned long load, unsigned long exp, unsigned long active)
3249{
3250 load *= exp;
3251 load += active * (FIXED_1 - exp);
3252 load += 1UL << (FSHIFT - 1);
3253 return load >> FSHIFT;
3254}
3255
74f5187a
PZ
3256#ifdef CONFIG_NO_HZ
3257/*
3258 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3259 *
3260 * When making the ILB scale, we should try to pull this in as well.
3261 */
3262static atomic_long_t calc_load_tasks_idle;
3263
3264static void calc_load_account_idle(struct rq *this_rq)
3265{
3266 long delta;
3267
3268 delta = calc_load_fold_active(this_rq);
3269 if (delta)
3270 atomic_long_add(delta, &calc_load_tasks_idle);
3271}
3272
3273static long calc_load_fold_idle(void)
3274{
3275 long delta = 0;
3276
3277 /*
3278 * Its got a race, we don't care...
3279 */
3280 if (atomic_long_read(&calc_load_tasks_idle))
3281 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3282
3283 return delta;
3284}
0f004f5a
PZ
3285
3286/**
3287 * fixed_power_int - compute: x^n, in O(log n) time
3288 *
3289 * @x: base of the power
3290 * @frac_bits: fractional bits of @x
3291 * @n: power to raise @x to.
3292 *
3293 * By exploiting the relation between the definition of the natural power
3294 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3295 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3296 * (where: n_i \elem {0, 1}, the binary vector representing n),
3297 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3298 * of course trivially computable in O(log_2 n), the length of our binary
3299 * vector.
3300 */
3301static unsigned long
3302fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3303{
3304 unsigned long result = 1UL << frac_bits;
3305
3306 if (n) for (;;) {
3307 if (n & 1) {
3308 result *= x;
3309 result += 1UL << (frac_bits - 1);
3310 result >>= frac_bits;
3311 }
3312 n >>= 1;
3313 if (!n)
3314 break;
3315 x *= x;
3316 x += 1UL << (frac_bits - 1);
3317 x >>= frac_bits;
3318 }
3319
3320 return result;
3321}
3322
3323/*
3324 * a1 = a0 * e + a * (1 - e)
3325 *
3326 * a2 = a1 * e + a * (1 - e)
3327 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3328 * = a0 * e^2 + a * (1 - e) * (1 + e)
3329 *
3330 * a3 = a2 * e + a * (1 - e)
3331 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3332 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3333 *
3334 * ...
3335 *
3336 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3337 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3338 * = a0 * e^n + a * (1 - e^n)
3339 *
3340 * [1] application of the geometric series:
3341 *
3342 * n 1 - x^(n+1)
3343 * S_n := \Sum x^i = -------------
3344 * i=0 1 - x
3345 */
3346static unsigned long
3347calc_load_n(unsigned long load, unsigned long exp,
3348 unsigned long active, unsigned int n)
3349{
3350
3351 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3352}
3353
3354/*
3355 * NO_HZ can leave us missing all per-cpu ticks calling
3356 * calc_load_account_active(), but since an idle CPU folds its delta into
3357 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3358 * in the pending idle delta if our idle period crossed a load cycle boundary.
3359 *
3360 * Once we've updated the global active value, we need to apply the exponential
3361 * weights adjusted to the number of cycles missed.
3362 */
3363static void calc_global_nohz(unsigned long ticks)
3364{
3365 long delta, active, n;
3366
3367 if (time_before(jiffies, calc_load_update))
3368 return;
3369
3370 /*
3371 * If we crossed a calc_load_update boundary, make sure to fold
3372 * any pending idle changes, the respective CPUs might have
3373 * missed the tick driven calc_load_account_active() update
3374 * due to NO_HZ.
3375 */
3376 delta = calc_load_fold_idle();
3377 if (delta)
3378 atomic_long_add(delta, &calc_load_tasks);
3379
3380 /*
3381 * If we were idle for multiple load cycles, apply them.
3382 */
3383 if (ticks >= LOAD_FREQ) {
3384 n = ticks / LOAD_FREQ;
3385
3386 active = atomic_long_read(&calc_load_tasks);
3387 active = active > 0 ? active * FIXED_1 : 0;
3388
3389 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3390 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3391 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3392
3393 calc_load_update += n * LOAD_FREQ;
3394 }
3395
3396 /*
3397 * Its possible the remainder of the above division also crosses
3398 * a LOAD_FREQ period, the regular check in calc_global_load()
3399 * which comes after this will take care of that.
3400 *
3401 * Consider us being 11 ticks before a cycle completion, and us
3402 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3403 * age us 4 cycles, and the test in calc_global_load() will
3404 * pick up the final one.
3405 */
3406}
74f5187a
PZ
3407#else
3408static void calc_load_account_idle(struct rq *this_rq)
3409{
3410}
3411
3412static inline long calc_load_fold_idle(void)
3413{
3414 return 0;
3415}
0f004f5a
PZ
3416
3417static void calc_global_nohz(unsigned long ticks)
3418{
3419}
74f5187a
PZ
3420#endif
3421
2d02494f
TG
3422/**
3423 * get_avenrun - get the load average array
3424 * @loads: pointer to dest load array
3425 * @offset: offset to add
3426 * @shift: shift count to shift the result left
3427 *
3428 * These values are estimates at best, so no need for locking.
3429 */
3430void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3431{
3432 loads[0] = (avenrun[0] + offset) << shift;
3433 loads[1] = (avenrun[1] + offset) << shift;
3434 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3435}
46cb4b7c 3436
46cb4b7c 3437/*
dce48a84
TG
3438 * calc_load - update the avenrun load estimates 10 ticks after the
3439 * CPUs have updated calc_load_tasks.
7835b98b 3440 */
0f004f5a 3441void calc_global_load(unsigned long ticks)
7835b98b 3442{
dce48a84 3443 long active;
1da177e4 3444
0f004f5a
PZ
3445 calc_global_nohz(ticks);
3446
3447 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3448 return;
1da177e4 3449
dce48a84
TG
3450 active = atomic_long_read(&calc_load_tasks);
3451 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3452
dce48a84
TG
3453 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3454 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3455 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3456
dce48a84
TG
3457 calc_load_update += LOAD_FREQ;
3458}
1da177e4 3459
dce48a84 3460/*
74f5187a
PZ
3461 * Called from update_cpu_load() to periodically update this CPU's
3462 * active count.
dce48a84
TG
3463 */
3464static void calc_load_account_active(struct rq *this_rq)
3465{
74f5187a 3466 long delta;
08c183f3 3467
74f5187a
PZ
3468 if (time_before(jiffies, this_rq->calc_load_update))
3469 return;
783609c6 3470
74f5187a
PZ
3471 delta = calc_load_fold_active(this_rq);
3472 delta += calc_load_fold_idle();
3473 if (delta)
dce48a84 3474 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3475
3476 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3477}
3478
fdf3e95d
VP
3479/*
3480 * The exact cpuload at various idx values, calculated at every tick would be
3481 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3482 *
3483 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3484 * on nth tick when cpu may be busy, then we have:
3485 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3486 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3487 *
3488 * decay_load_missed() below does efficient calculation of
3489 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3490 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3491 *
3492 * The calculation is approximated on a 128 point scale.
3493 * degrade_zero_ticks is the number of ticks after which load at any
3494 * particular idx is approximated to be zero.
3495 * degrade_factor is a precomputed table, a row for each load idx.
3496 * Each column corresponds to degradation factor for a power of two ticks,
3497 * based on 128 point scale.
3498 * Example:
3499 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3500 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3501 *
3502 * With this power of 2 load factors, we can degrade the load n times
3503 * by looking at 1 bits in n and doing as many mult/shift instead of
3504 * n mult/shifts needed by the exact degradation.
3505 */
3506#define DEGRADE_SHIFT 7
3507static const unsigned char
3508 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3509static const unsigned char
3510 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3511 {0, 0, 0, 0, 0, 0, 0, 0},
3512 {64, 32, 8, 0, 0, 0, 0, 0},
3513 {96, 72, 40, 12, 1, 0, 0},
3514 {112, 98, 75, 43, 15, 1, 0},
3515 {120, 112, 98, 76, 45, 16, 2} };
3516
3517/*
3518 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3519 * would be when CPU is idle and so we just decay the old load without
3520 * adding any new load.
3521 */
3522static unsigned long
3523decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3524{
3525 int j = 0;
3526
3527 if (!missed_updates)
3528 return load;
3529
3530 if (missed_updates >= degrade_zero_ticks[idx])
3531 return 0;
3532
3533 if (idx == 1)
3534 return load >> missed_updates;
3535
3536 while (missed_updates) {
3537 if (missed_updates % 2)
3538 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3539
3540 missed_updates >>= 1;
3541 j++;
3542 }
3543 return load;
3544}
3545
46cb4b7c 3546/*
dd41f596 3547 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3548 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3549 * every tick. We fix it up based on jiffies.
46cb4b7c 3550 */
dd41f596 3551static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3552{
495eca49 3553 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3554 unsigned long curr_jiffies = jiffies;
3555 unsigned long pending_updates;
dd41f596 3556 int i, scale;
46cb4b7c 3557
dd41f596 3558 this_rq->nr_load_updates++;
46cb4b7c 3559
fdf3e95d
VP
3560 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3561 if (curr_jiffies == this_rq->last_load_update_tick)
3562 return;
3563
3564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3565 this_rq->last_load_update_tick = curr_jiffies;
3566
dd41f596 3567 /* Update our load: */
fdf3e95d
VP
3568 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3569 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3570 unsigned long old_load, new_load;
7d1e6a9b 3571
dd41f596 3572 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3573
dd41f596 3574 old_load = this_rq->cpu_load[i];
fdf3e95d 3575 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3576 new_load = this_load;
a25707f3
IM
3577 /*
3578 * Round up the averaging division if load is increasing. This
3579 * prevents us from getting stuck on 9 if the load is 10, for
3580 * example.
3581 */
3582 if (new_load > old_load)
fdf3e95d
VP
3583 new_load += scale - 1;
3584
3585 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3586 }
da2b71ed
SS
3587
3588 sched_avg_update(this_rq);
fdf3e95d
VP
3589}
3590
3591static void update_cpu_load_active(struct rq *this_rq)
3592{
3593 update_cpu_load(this_rq);
46cb4b7c 3594
74f5187a 3595 calc_load_account_active(this_rq);
46cb4b7c
SS
3596}
3597
dd41f596 3598#ifdef CONFIG_SMP
8a0be9ef 3599
46cb4b7c 3600/*
38022906
PZ
3601 * sched_exec - execve() is a valuable balancing opportunity, because at
3602 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3603 */
38022906 3604void sched_exec(void)
46cb4b7c 3605{
38022906 3606 struct task_struct *p = current;
1da177e4 3607 unsigned long flags;
0017d735 3608 int dest_cpu;
46cb4b7c 3609
8f42ced9 3610 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3611 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3612 if (dest_cpu == smp_processor_id())
3613 goto unlock;
38022906 3614
8f42ced9 3615 if (likely(cpu_active(dest_cpu))) {
969c7921 3616 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3617
8f42ced9
PZ
3618 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3619 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3620 return;
3621 }
0017d735 3622unlock:
8f42ced9 3623 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3624}
dd41f596 3625
1da177e4
LT
3626#endif
3627
1da177e4
LT
3628DEFINE_PER_CPU(struct kernel_stat, kstat);
3629
3630EXPORT_PER_CPU_SYMBOL(kstat);
3631
3632/*
c5f8d995 3633 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3634 * @p in case that task is currently running.
c5f8d995
HS
3635 *
3636 * Called with task_rq_lock() held on @rq.
1da177e4 3637 */
c5f8d995
HS
3638static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3639{
3640 u64 ns = 0;
3641
3642 if (task_current(rq, p)) {
3643 update_rq_clock(rq);
305e6835 3644 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3645 if ((s64)ns < 0)
3646 ns = 0;
3647 }
3648
3649 return ns;
3650}
3651
bb34d92f 3652unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3653{
1da177e4 3654 unsigned long flags;
41b86e9c 3655 struct rq *rq;
bb34d92f 3656 u64 ns = 0;
48f24c4d 3657
41b86e9c 3658 rq = task_rq_lock(p, &flags);
c5f8d995 3659 ns = do_task_delta_exec(p, rq);
0122ec5b 3660 task_rq_unlock(rq, p, &flags);
1508487e 3661
c5f8d995
HS
3662 return ns;
3663}
f06febc9 3664
c5f8d995
HS
3665/*
3666 * Return accounted runtime for the task.
3667 * In case the task is currently running, return the runtime plus current's
3668 * pending runtime that have not been accounted yet.
3669 */
3670unsigned long long task_sched_runtime(struct task_struct *p)
3671{
3672 unsigned long flags;
3673 struct rq *rq;
3674 u64 ns = 0;
3675
3676 rq = task_rq_lock(p, &flags);
3677 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3678 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3679
3680 return ns;
3681}
48f24c4d 3682
c5f8d995
HS
3683/*
3684 * Return sum_exec_runtime for the thread group.
3685 * In case the task is currently running, return the sum plus current's
3686 * pending runtime that have not been accounted yet.
3687 *
3688 * Note that the thread group might have other running tasks as well,
3689 * so the return value not includes other pending runtime that other
3690 * running tasks might have.
3691 */
3692unsigned long long thread_group_sched_runtime(struct task_struct *p)
3693{
3694 struct task_cputime totals;
3695 unsigned long flags;
3696 struct rq *rq;
3697 u64 ns;
3698
3699 rq = task_rq_lock(p, &flags);
3700 thread_group_cputime(p, &totals);
3701 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3702 task_rq_unlock(rq, p, &flags);
48f24c4d 3703
1da177e4
LT
3704 return ns;
3705}
3706
1da177e4
LT
3707/*
3708 * Account user cpu time to a process.
3709 * @p: the process that the cpu time gets accounted to
1da177e4 3710 * @cputime: the cpu time spent in user space since the last update
457533a7 3711 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3712 */
457533a7
MS
3713void account_user_time(struct task_struct *p, cputime_t cputime,
3714 cputime_t cputime_scaled)
1da177e4
LT
3715{
3716 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3717 cputime64_t tmp;
3718
457533a7 3719 /* Add user time to process. */
1da177e4 3720 p->utime = cputime_add(p->utime, cputime);
457533a7 3721 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3722 account_group_user_time(p, cputime);
1da177e4
LT
3723
3724 /* Add user time to cpustat. */
3725 tmp = cputime_to_cputime64(cputime);
3726 if (TASK_NICE(p) > 0)
3727 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3728 else
3729 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3730
3731 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3732 /* Account for user time used */
3733 acct_update_integrals(p);
1da177e4
LT
3734}
3735
94886b84
LV
3736/*
3737 * Account guest cpu time to a process.
3738 * @p: the process that the cpu time gets accounted to
3739 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3740 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3741 */
457533a7
MS
3742static void account_guest_time(struct task_struct *p, cputime_t cputime,
3743 cputime_t cputime_scaled)
94886b84
LV
3744{
3745 cputime64_t tmp;
3746 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3747
3748 tmp = cputime_to_cputime64(cputime);
3749
457533a7 3750 /* Add guest time to process. */
94886b84 3751 p->utime = cputime_add(p->utime, cputime);
457533a7 3752 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3753 account_group_user_time(p, cputime);
94886b84
LV
3754 p->gtime = cputime_add(p->gtime, cputime);
3755
457533a7 3756 /* Add guest time to cpustat. */
ce0e7b28
RO
3757 if (TASK_NICE(p) > 0) {
3758 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3759 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3760 } else {
3761 cpustat->user = cputime64_add(cpustat->user, tmp);
3762 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3763 }
94886b84
LV
3764}
3765
70a89a66
VP
3766/*
3767 * Account system cpu time to a process and desired cpustat field
3768 * @p: the process that the cpu time gets accounted to
3769 * @cputime: the cpu time spent in kernel space since the last update
3770 * @cputime_scaled: cputime scaled by cpu frequency
3771 * @target_cputime64: pointer to cpustat field that has to be updated
3772 */
3773static inline
3774void __account_system_time(struct task_struct *p, cputime_t cputime,
3775 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3776{
3777 cputime64_t tmp = cputime_to_cputime64(cputime);
3778
3779 /* Add system time to process. */
3780 p->stime = cputime_add(p->stime, cputime);
3781 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3782 account_group_system_time(p, cputime);
3783
3784 /* Add system time to cpustat. */
3785 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3786 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3787
3788 /* Account for system time used */
3789 acct_update_integrals(p);
3790}
3791
1da177e4
LT
3792/*
3793 * Account system cpu time to a process.
3794 * @p: the process that the cpu time gets accounted to
3795 * @hardirq_offset: the offset to subtract from hardirq_count()
3796 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3797 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3798 */
3799void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3800 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3801{
3802 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3803 cputime64_t *target_cputime64;
1da177e4 3804
983ed7a6 3805 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3806 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3807 return;
3808 }
94886b84 3809
1da177e4 3810 if (hardirq_count() - hardirq_offset)
70a89a66 3811 target_cputime64 = &cpustat->irq;
75e1056f 3812 else if (in_serving_softirq())
70a89a66 3813 target_cputime64 = &cpustat->softirq;
1da177e4 3814 else
70a89a66 3815 target_cputime64 = &cpustat->system;
ef12fefa 3816
70a89a66 3817 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3818}
3819
c66f08be 3820/*
1da177e4 3821 * Account for involuntary wait time.
544b4a1f 3822 * @cputime: the cpu time spent in involuntary wait
c66f08be 3823 */
79741dd3 3824void account_steal_time(cputime_t cputime)
c66f08be 3825{
79741dd3
MS
3826 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3827 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3828
3829 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3830}
3831
1da177e4 3832/*
79741dd3
MS
3833 * Account for idle time.
3834 * @cputime: the cpu time spent in idle wait
1da177e4 3835 */
79741dd3 3836void account_idle_time(cputime_t cputime)
1da177e4
LT
3837{
3838 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3839 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3840 struct rq *rq = this_rq();
1da177e4 3841
79741dd3
MS
3842 if (atomic_read(&rq->nr_iowait) > 0)
3843 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3844 else
3845 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3846}
3847
79741dd3
MS
3848#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3849
abb74cef
VP
3850#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3851/*
3852 * Account a tick to a process and cpustat
3853 * @p: the process that the cpu time gets accounted to
3854 * @user_tick: is the tick from userspace
3855 * @rq: the pointer to rq
3856 *
3857 * Tick demultiplexing follows the order
3858 * - pending hardirq update
3859 * - pending softirq update
3860 * - user_time
3861 * - idle_time
3862 * - system time
3863 * - check for guest_time
3864 * - else account as system_time
3865 *
3866 * Check for hardirq is done both for system and user time as there is
3867 * no timer going off while we are on hardirq and hence we may never get an
3868 * opportunity to update it solely in system time.
3869 * p->stime and friends are only updated on system time and not on irq
3870 * softirq as those do not count in task exec_runtime any more.
3871 */
3872static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3873 struct rq *rq)
3874{
3875 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3876 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3878
3879 if (irqtime_account_hi_update()) {
3880 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3881 } else if (irqtime_account_si_update()) {
3882 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3883 } else if (this_cpu_ksoftirqd() == p) {
3884 /*
3885 * ksoftirqd time do not get accounted in cpu_softirq_time.
3886 * So, we have to handle it separately here.
3887 * Also, p->stime needs to be updated for ksoftirqd.
3888 */
3889 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3890 &cpustat->softirq);
abb74cef
VP
3891 } else if (user_tick) {
3892 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3893 } else if (p == rq->idle) {
3894 account_idle_time(cputime_one_jiffy);
3895 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3896 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3897 } else {
3898 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3899 &cpustat->system);
3900 }
3901}
3902
3903static void irqtime_account_idle_ticks(int ticks)
3904{
3905 int i;
3906 struct rq *rq = this_rq();
3907
3908 for (i = 0; i < ticks; i++)
3909 irqtime_account_process_tick(current, 0, rq);
3910}
544b4a1f 3911#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3912static void irqtime_account_idle_ticks(int ticks) {}
3913static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3914 struct rq *rq) {}
544b4a1f 3915#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3916
3917/*
3918 * Account a single tick of cpu time.
3919 * @p: the process that the cpu time gets accounted to
3920 * @user_tick: indicates if the tick is a user or a system tick
3921 */
3922void account_process_tick(struct task_struct *p, int user_tick)
3923{
a42548a1 3924 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3925 struct rq *rq = this_rq();
3926
abb74cef
VP
3927 if (sched_clock_irqtime) {
3928 irqtime_account_process_tick(p, user_tick, rq);
3929 return;
3930 }
3931
79741dd3 3932 if (user_tick)
a42548a1 3933 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3934 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3935 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3936 one_jiffy_scaled);
3937 else
a42548a1 3938 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3939}
3940
3941/*
3942 * Account multiple ticks of steal time.
3943 * @p: the process from which the cpu time has been stolen
3944 * @ticks: number of stolen ticks
3945 */
3946void account_steal_ticks(unsigned long ticks)
3947{
3948 account_steal_time(jiffies_to_cputime(ticks));
3949}
3950
3951/*
3952 * Account multiple ticks of idle time.
3953 * @ticks: number of stolen ticks
3954 */
3955void account_idle_ticks(unsigned long ticks)
3956{
abb74cef
VP
3957
3958 if (sched_clock_irqtime) {
3959 irqtime_account_idle_ticks(ticks);
3960 return;
3961 }
3962
79741dd3 3963 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3964}
3965
79741dd3
MS
3966#endif
3967
49048622
BS
3968/*
3969 * Use precise platform statistics if available:
3970 */
3971#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3972void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3973{
d99ca3b9
HS
3974 *ut = p->utime;
3975 *st = p->stime;
49048622
BS
3976}
3977
0cf55e1e 3978void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3979{
0cf55e1e
HS
3980 struct task_cputime cputime;
3981
3982 thread_group_cputime(p, &cputime);
3983
3984 *ut = cputime.utime;
3985 *st = cputime.stime;
49048622
BS
3986}
3987#else
761b1d26
HS
3988
3989#ifndef nsecs_to_cputime
b7b20df9 3990# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3991#endif
3992
d180c5bc 3993void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3994{
d99ca3b9 3995 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3996
3997 /*
3998 * Use CFS's precise accounting:
3999 */
d180c5bc 4000 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4001
4002 if (total) {
e75e863d 4003 u64 temp = rtime;
d180c5bc 4004
e75e863d 4005 temp *= utime;
49048622 4006 do_div(temp, total);
d180c5bc
HS
4007 utime = (cputime_t)temp;
4008 } else
4009 utime = rtime;
49048622 4010
d180c5bc
HS
4011 /*
4012 * Compare with previous values, to keep monotonicity:
4013 */
761b1d26 4014 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4015 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4016
d99ca3b9
HS
4017 *ut = p->prev_utime;
4018 *st = p->prev_stime;
49048622
BS
4019}
4020
0cf55e1e
HS
4021/*
4022 * Must be called with siglock held.
4023 */
4024void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4025{
0cf55e1e
HS
4026 struct signal_struct *sig = p->signal;
4027 struct task_cputime cputime;
4028 cputime_t rtime, utime, total;
49048622 4029
0cf55e1e 4030 thread_group_cputime(p, &cputime);
49048622 4031
0cf55e1e
HS
4032 total = cputime_add(cputime.utime, cputime.stime);
4033 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4034
0cf55e1e 4035 if (total) {
e75e863d 4036 u64 temp = rtime;
49048622 4037
e75e863d 4038 temp *= cputime.utime;
0cf55e1e
HS
4039 do_div(temp, total);
4040 utime = (cputime_t)temp;
4041 } else
4042 utime = rtime;
4043
4044 sig->prev_utime = max(sig->prev_utime, utime);
4045 sig->prev_stime = max(sig->prev_stime,
4046 cputime_sub(rtime, sig->prev_utime));
4047
4048 *ut = sig->prev_utime;
4049 *st = sig->prev_stime;
49048622 4050}
49048622 4051#endif
49048622 4052
7835b98b
CL
4053/*
4054 * This function gets called by the timer code, with HZ frequency.
4055 * We call it with interrupts disabled.
7835b98b
CL
4056 */
4057void scheduler_tick(void)
4058{
7835b98b
CL
4059 int cpu = smp_processor_id();
4060 struct rq *rq = cpu_rq(cpu);
dd41f596 4061 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4062
4063 sched_clock_tick();
dd41f596 4064
05fa785c 4065 raw_spin_lock(&rq->lock);
3e51f33f 4066 update_rq_clock(rq);
fdf3e95d 4067 update_cpu_load_active(rq);
fa85ae24 4068 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4069 raw_spin_unlock(&rq->lock);
7835b98b 4070
e9d2b064 4071 perf_event_task_tick();
e220d2dc 4072
e418e1c2 4073#ifdef CONFIG_SMP
dd41f596
IM
4074 rq->idle_at_tick = idle_cpu(cpu);
4075 trigger_load_balance(rq, cpu);
e418e1c2 4076#endif
1da177e4
LT
4077}
4078
132380a0 4079notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4080{
4081 if (in_lock_functions(addr)) {
4082 addr = CALLER_ADDR2;
4083 if (in_lock_functions(addr))
4084 addr = CALLER_ADDR3;
4085 }
4086 return addr;
4087}
1da177e4 4088
7e49fcce
SR
4089#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4090 defined(CONFIG_PREEMPT_TRACER))
4091
43627582 4092void __kprobes add_preempt_count(int val)
1da177e4 4093{
6cd8a4bb 4094#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4095 /*
4096 * Underflow?
4097 */
9a11b49a
IM
4098 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4099 return;
6cd8a4bb 4100#endif
1da177e4 4101 preempt_count() += val;
6cd8a4bb 4102#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4103 /*
4104 * Spinlock count overflowing soon?
4105 */
33859f7f
MOS
4106 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4107 PREEMPT_MASK - 10);
6cd8a4bb
SR
4108#endif
4109 if (preempt_count() == val)
4110 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4111}
4112EXPORT_SYMBOL(add_preempt_count);
4113
43627582 4114void __kprobes sub_preempt_count(int val)
1da177e4 4115{
6cd8a4bb 4116#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4117 /*
4118 * Underflow?
4119 */
01e3eb82 4120 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4121 return;
1da177e4
LT
4122 /*
4123 * Is the spinlock portion underflowing?
4124 */
9a11b49a
IM
4125 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4126 !(preempt_count() & PREEMPT_MASK)))
4127 return;
6cd8a4bb 4128#endif
9a11b49a 4129
6cd8a4bb
SR
4130 if (preempt_count() == val)
4131 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4132 preempt_count() -= val;
4133}
4134EXPORT_SYMBOL(sub_preempt_count);
4135
4136#endif
4137
4138/*
dd41f596 4139 * Print scheduling while atomic bug:
1da177e4 4140 */
dd41f596 4141static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4142{
838225b4
SS
4143 struct pt_regs *regs = get_irq_regs();
4144
3df0fc5b
PZ
4145 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4146 prev->comm, prev->pid, preempt_count());
838225b4 4147
dd41f596 4148 debug_show_held_locks(prev);
e21f5b15 4149 print_modules();
dd41f596
IM
4150 if (irqs_disabled())
4151 print_irqtrace_events(prev);
838225b4
SS
4152
4153 if (regs)
4154 show_regs(regs);
4155 else
4156 dump_stack();
dd41f596 4157}
1da177e4 4158
dd41f596
IM
4159/*
4160 * Various schedule()-time debugging checks and statistics:
4161 */
4162static inline void schedule_debug(struct task_struct *prev)
4163{
1da177e4 4164 /*
41a2d6cf 4165 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4166 * schedule() atomically, we ignore that path for now.
4167 * Otherwise, whine if we are scheduling when we should not be.
4168 */
3f33a7ce 4169 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4170 __schedule_bug(prev);
4171
1da177e4
LT
4172 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4173
2d72376b 4174 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4175}
4176
6cecd084 4177static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4178{
61eadef6 4179 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4180 update_rq_clock(rq);
6cecd084 4181 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4182}
4183
dd41f596
IM
4184/*
4185 * Pick up the highest-prio task:
4186 */
4187static inline struct task_struct *
b67802ea 4188pick_next_task(struct rq *rq)
dd41f596 4189{
5522d5d5 4190 const struct sched_class *class;
dd41f596 4191 struct task_struct *p;
1da177e4
LT
4192
4193 /*
dd41f596
IM
4194 * Optimization: we know that if all tasks are in
4195 * the fair class we can call that function directly:
1da177e4 4196 */
dd41f596 4197 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4198 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4199 if (likely(p))
4200 return p;
1da177e4
LT
4201 }
4202
34f971f6 4203 for_each_class(class) {
fb8d4724 4204 p = class->pick_next_task(rq);
dd41f596
IM
4205 if (p)
4206 return p;
dd41f596 4207 }
34f971f6
PZ
4208
4209 BUG(); /* the idle class will always have a runnable task */
dd41f596 4210}
1da177e4 4211
dd41f596
IM
4212/*
4213 * schedule() is the main scheduler function.
4214 */
ff743345 4215asmlinkage void __sched schedule(void)
dd41f596
IM
4216{
4217 struct task_struct *prev, *next;
67ca7bde 4218 unsigned long *switch_count;
dd41f596 4219 struct rq *rq;
31656519 4220 int cpu;
dd41f596 4221
ff743345
PZ
4222need_resched:
4223 preempt_disable();
dd41f596
IM
4224 cpu = smp_processor_id();
4225 rq = cpu_rq(cpu);
25502a6c 4226 rcu_note_context_switch(cpu);
dd41f596 4227 prev = rq->curr;
dd41f596 4228
dd41f596 4229 schedule_debug(prev);
1da177e4 4230
31656519 4231 if (sched_feat(HRTICK))
f333fdc9 4232 hrtick_clear(rq);
8f4d37ec 4233
05fa785c 4234 raw_spin_lock_irq(&rq->lock);
1da177e4 4235
246d86b5 4236 switch_count = &prev->nivcsw;
1da177e4 4237 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4238 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4239 prev->state = TASK_RUNNING;
21aa9af0 4240 } else {
2acca55e
PZ
4241 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4242 prev->on_rq = 0;
4243
21aa9af0 4244 /*
2acca55e
PZ
4245 * If a worker went to sleep, notify and ask workqueue
4246 * whether it wants to wake up a task to maintain
4247 * concurrency.
21aa9af0
TH
4248 */
4249 if (prev->flags & PF_WQ_WORKER) {
4250 struct task_struct *to_wakeup;
4251
4252 to_wakeup = wq_worker_sleeping(prev, cpu);
4253 if (to_wakeup)
4254 try_to_wake_up_local(to_wakeup);
4255 }
fd2f4419 4256
6631e635 4257 /*
2acca55e
PZ
4258 * If we are going to sleep and we have plugged IO
4259 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4260 */
4261 if (blk_needs_flush_plug(prev)) {
4262 raw_spin_unlock(&rq->lock);
a237c1c5 4263 blk_schedule_flush_plug(prev);
6631e635
LT
4264 raw_spin_lock(&rq->lock);
4265 }
21aa9af0 4266 }
dd41f596 4267 switch_count = &prev->nvcsw;
1da177e4
LT
4268 }
4269
3f029d3c 4270 pre_schedule(rq, prev);
f65eda4f 4271
dd41f596 4272 if (unlikely(!rq->nr_running))
1da177e4 4273 idle_balance(cpu, rq);
1da177e4 4274
df1c99d4 4275 put_prev_task(rq, prev);
b67802ea 4276 next = pick_next_task(rq);
f26f9aff
MG
4277 clear_tsk_need_resched(prev);
4278 rq->skip_clock_update = 0;
1da177e4 4279
1da177e4 4280 if (likely(prev != next)) {
1da177e4
LT
4281 rq->nr_switches++;
4282 rq->curr = next;
4283 ++*switch_count;
4284
dd41f596 4285 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4286 /*
246d86b5
ON
4287 * The context switch have flipped the stack from under us
4288 * and restored the local variables which were saved when
4289 * this task called schedule() in the past. prev == current
4290 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4291 */
4292 cpu = smp_processor_id();
4293 rq = cpu_rq(cpu);
1da177e4 4294 } else
05fa785c 4295 raw_spin_unlock_irq(&rq->lock);
1da177e4 4296
3f029d3c 4297 post_schedule(rq);
1da177e4 4298
1da177e4 4299 preempt_enable_no_resched();
ff743345 4300 if (need_resched())
1da177e4
LT
4301 goto need_resched;
4302}
1da177e4
LT
4303EXPORT_SYMBOL(schedule);
4304
c08f7829 4305#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4306
c6eb3dda
PZ
4307static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4308{
c6eb3dda 4309 if (lock->owner != owner)
307bf980 4310 return false;
0d66bf6d
PZ
4311
4312 /*
c6eb3dda
PZ
4313 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4314 * lock->owner still matches owner, if that fails, owner might
4315 * point to free()d memory, if it still matches, the rcu_read_lock()
4316 * ensures the memory stays valid.
0d66bf6d 4317 */
c6eb3dda 4318 barrier();
0d66bf6d 4319
307bf980 4320 return owner->on_cpu;
c6eb3dda 4321}
0d66bf6d 4322
c6eb3dda
PZ
4323/*
4324 * Look out! "owner" is an entirely speculative pointer
4325 * access and not reliable.
4326 */
4327int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4328{
4329 if (!sched_feat(OWNER_SPIN))
4330 return 0;
0d66bf6d 4331
307bf980 4332 rcu_read_lock();
c6eb3dda
PZ
4333 while (owner_running(lock, owner)) {
4334 if (need_resched())
307bf980 4335 break;
0d66bf6d 4336
335d7afb 4337 arch_mutex_cpu_relax();
0d66bf6d 4338 }
307bf980 4339 rcu_read_unlock();
4b402210 4340
c6eb3dda 4341 /*
307bf980
TG
4342 * We break out the loop above on need_resched() and when the
4343 * owner changed, which is a sign for heavy contention. Return
4344 * success only when lock->owner is NULL.
c6eb3dda 4345 */
307bf980 4346 return lock->owner == NULL;
0d66bf6d
PZ
4347}
4348#endif
4349
1da177e4
LT
4350#ifdef CONFIG_PREEMPT
4351/*
2ed6e34f 4352 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4353 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4354 * occur there and call schedule directly.
4355 */
d1f74e20 4356asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4357{
4358 struct thread_info *ti = current_thread_info();
6478d880 4359
1da177e4
LT
4360 /*
4361 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4362 * we do not want to preempt the current task. Just return..
1da177e4 4363 */
beed33a8 4364 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4365 return;
4366
3a5c359a 4367 do {
d1f74e20 4368 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4369 schedule();
d1f74e20 4370 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4371
3a5c359a
AK
4372 /*
4373 * Check again in case we missed a preemption opportunity
4374 * between schedule and now.
4375 */
4376 barrier();
5ed0cec0 4377 } while (need_resched());
1da177e4 4378}
1da177e4
LT
4379EXPORT_SYMBOL(preempt_schedule);
4380
4381/*
2ed6e34f 4382 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4383 * off of irq context.
4384 * Note, that this is called and return with irqs disabled. This will
4385 * protect us against recursive calling from irq.
4386 */
4387asmlinkage void __sched preempt_schedule_irq(void)
4388{
4389 struct thread_info *ti = current_thread_info();
6478d880 4390
2ed6e34f 4391 /* Catch callers which need to be fixed */
1da177e4
LT
4392 BUG_ON(ti->preempt_count || !irqs_disabled());
4393
3a5c359a
AK
4394 do {
4395 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4396 local_irq_enable();
4397 schedule();
4398 local_irq_disable();
3a5c359a 4399 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4400
3a5c359a
AK
4401 /*
4402 * Check again in case we missed a preemption opportunity
4403 * between schedule and now.
4404 */
4405 barrier();
5ed0cec0 4406 } while (need_resched());
1da177e4
LT
4407}
4408
4409#endif /* CONFIG_PREEMPT */
4410
63859d4f 4411int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4412 void *key)
1da177e4 4413{
63859d4f 4414 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4415}
1da177e4
LT
4416EXPORT_SYMBOL(default_wake_function);
4417
4418/*
41a2d6cf
IM
4419 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4420 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4421 * number) then we wake all the non-exclusive tasks and one exclusive task.
4422 *
4423 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4424 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4425 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4426 */
78ddb08f 4427static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4428 int nr_exclusive, int wake_flags, void *key)
1da177e4 4429{
2e45874c 4430 wait_queue_t *curr, *next;
1da177e4 4431
2e45874c 4432 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4433 unsigned flags = curr->flags;
4434
63859d4f 4435 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4436 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4437 break;
4438 }
4439}
4440
4441/**
4442 * __wake_up - wake up threads blocked on a waitqueue.
4443 * @q: the waitqueue
4444 * @mode: which threads
4445 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4446 * @key: is directly passed to the wakeup function
50fa610a
DH
4447 *
4448 * It may be assumed that this function implies a write memory barrier before
4449 * changing the task state if and only if any tasks are woken up.
1da177e4 4450 */
7ad5b3a5 4451void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4452 int nr_exclusive, void *key)
1da177e4
LT
4453{
4454 unsigned long flags;
4455
4456 spin_lock_irqsave(&q->lock, flags);
4457 __wake_up_common(q, mode, nr_exclusive, 0, key);
4458 spin_unlock_irqrestore(&q->lock, flags);
4459}
1da177e4
LT
4460EXPORT_SYMBOL(__wake_up);
4461
4462/*
4463 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4464 */
7ad5b3a5 4465void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4466{
4467 __wake_up_common(q, mode, 1, 0, NULL);
4468}
22c43c81 4469EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4470
4ede816a
DL
4471void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4472{
4473 __wake_up_common(q, mode, 1, 0, key);
4474}
bf294b41 4475EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4476
1da177e4 4477/**
4ede816a 4478 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4479 * @q: the waitqueue
4480 * @mode: which threads
4481 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4482 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4483 *
4484 * The sync wakeup differs that the waker knows that it will schedule
4485 * away soon, so while the target thread will be woken up, it will not
4486 * be migrated to another CPU - ie. the two threads are 'synchronized'
4487 * with each other. This can prevent needless bouncing between CPUs.
4488 *
4489 * On UP it can prevent extra preemption.
50fa610a
DH
4490 *
4491 * It may be assumed that this function implies a write memory barrier before
4492 * changing the task state if and only if any tasks are woken up.
1da177e4 4493 */
4ede816a
DL
4494void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4495 int nr_exclusive, void *key)
1da177e4
LT
4496{
4497 unsigned long flags;
7d478721 4498 int wake_flags = WF_SYNC;
1da177e4
LT
4499
4500 if (unlikely(!q))
4501 return;
4502
4503 if (unlikely(!nr_exclusive))
7d478721 4504 wake_flags = 0;
1da177e4
LT
4505
4506 spin_lock_irqsave(&q->lock, flags);
7d478721 4507 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4508 spin_unlock_irqrestore(&q->lock, flags);
4509}
4ede816a
DL
4510EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4511
4512/*
4513 * __wake_up_sync - see __wake_up_sync_key()
4514 */
4515void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4516{
4517 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4518}
1da177e4
LT
4519EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4520
65eb3dc6
KD
4521/**
4522 * complete: - signals a single thread waiting on this completion
4523 * @x: holds the state of this particular completion
4524 *
4525 * This will wake up a single thread waiting on this completion. Threads will be
4526 * awakened in the same order in which they were queued.
4527 *
4528 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4529 *
4530 * It may be assumed that this function implies a write memory barrier before
4531 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4532 */
b15136e9 4533void complete(struct completion *x)
1da177e4
LT
4534{
4535 unsigned long flags;
4536
4537 spin_lock_irqsave(&x->wait.lock, flags);
4538 x->done++;
d9514f6c 4539 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4540 spin_unlock_irqrestore(&x->wait.lock, flags);
4541}
4542EXPORT_SYMBOL(complete);
4543
65eb3dc6
KD
4544/**
4545 * complete_all: - signals all threads waiting on this completion
4546 * @x: holds the state of this particular completion
4547 *
4548 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4549 *
4550 * It may be assumed that this function implies a write memory barrier before
4551 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4552 */
b15136e9 4553void complete_all(struct completion *x)
1da177e4
LT
4554{
4555 unsigned long flags;
4556
4557 spin_lock_irqsave(&x->wait.lock, flags);
4558 x->done += UINT_MAX/2;
d9514f6c 4559 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4560 spin_unlock_irqrestore(&x->wait.lock, flags);
4561}
4562EXPORT_SYMBOL(complete_all);
4563
8cbbe86d
AK
4564static inline long __sched
4565do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4566{
1da177e4
LT
4567 if (!x->done) {
4568 DECLARE_WAITQUEUE(wait, current);
4569
a93d2f17 4570 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4571 do {
94d3d824 4572 if (signal_pending_state(state, current)) {
ea71a546
ON
4573 timeout = -ERESTARTSYS;
4574 break;
8cbbe86d
AK
4575 }
4576 __set_current_state(state);
1da177e4
LT
4577 spin_unlock_irq(&x->wait.lock);
4578 timeout = schedule_timeout(timeout);
4579 spin_lock_irq(&x->wait.lock);
ea71a546 4580 } while (!x->done && timeout);
1da177e4 4581 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4582 if (!x->done)
4583 return timeout;
1da177e4
LT
4584 }
4585 x->done--;
ea71a546 4586 return timeout ?: 1;
1da177e4 4587}
1da177e4 4588
8cbbe86d
AK
4589static long __sched
4590wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4591{
1da177e4
LT
4592 might_sleep();
4593
4594 spin_lock_irq(&x->wait.lock);
8cbbe86d 4595 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4596 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4597 return timeout;
4598}
1da177e4 4599
65eb3dc6
KD
4600/**
4601 * wait_for_completion: - waits for completion of a task
4602 * @x: holds the state of this particular completion
4603 *
4604 * This waits to be signaled for completion of a specific task. It is NOT
4605 * interruptible and there is no timeout.
4606 *
4607 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4608 * and interrupt capability. Also see complete().
4609 */
b15136e9 4610void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4611{
4612 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4613}
8cbbe86d 4614EXPORT_SYMBOL(wait_for_completion);
1da177e4 4615
65eb3dc6
KD
4616/**
4617 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4618 * @x: holds the state of this particular completion
4619 * @timeout: timeout value in jiffies
4620 *
4621 * This waits for either a completion of a specific task to be signaled or for a
4622 * specified timeout to expire. The timeout is in jiffies. It is not
4623 * interruptible.
4624 */
b15136e9 4625unsigned long __sched
8cbbe86d 4626wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4627{
8cbbe86d 4628 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4629}
8cbbe86d 4630EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4631
65eb3dc6
KD
4632/**
4633 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4634 * @x: holds the state of this particular completion
4635 *
4636 * This waits for completion of a specific task to be signaled. It is
4637 * interruptible.
4638 */
8cbbe86d 4639int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4640{
51e97990
AK
4641 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4642 if (t == -ERESTARTSYS)
4643 return t;
4644 return 0;
0fec171c 4645}
8cbbe86d 4646EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4647
65eb3dc6
KD
4648/**
4649 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4650 * @x: holds the state of this particular completion
4651 * @timeout: timeout value in jiffies
4652 *
4653 * This waits for either a completion of a specific task to be signaled or for a
4654 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4655 */
6bf41237 4656long __sched
8cbbe86d
AK
4657wait_for_completion_interruptible_timeout(struct completion *x,
4658 unsigned long timeout)
0fec171c 4659{
8cbbe86d 4660 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4661}
8cbbe86d 4662EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4663
65eb3dc6
KD
4664/**
4665 * wait_for_completion_killable: - waits for completion of a task (killable)
4666 * @x: holds the state of this particular completion
4667 *
4668 * This waits to be signaled for completion of a specific task. It can be
4669 * interrupted by a kill signal.
4670 */
009e577e
MW
4671int __sched wait_for_completion_killable(struct completion *x)
4672{
4673 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4674 if (t == -ERESTARTSYS)
4675 return t;
4676 return 0;
4677}
4678EXPORT_SYMBOL(wait_for_completion_killable);
4679
0aa12fb4
SW
4680/**
4681 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4682 * @x: holds the state of this particular completion
4683 * @timeout: timeout value in jiffies
4684 *
4685 * This waits for either a completion of a specific task to be
4686 * signaled or for a specified timeout to expire. It can be
4687 * interrupted by a kill signal. The timeout is in jiffies.
4688 */
6bf41237 4689long __sched
0aa12fb4
SW
4690wait_for_completion_killable_timeout(struct completion *x,
4691 unsigned long timeout)
4692{
4693 return wait_for_common(x, timeout, TASK_KILLABLE);
4694}
4695EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4696
be4de352
DC
4697/**
4698 * try_wait_for_completion - try to decrement a completion without blocking
4699 * @x: completion structure
4700 *
4701 * Returns: 0 if a decrement cannot be done without blocking
4702 * 1 if a decrement succeeded.
4703 *
4704 * If a completion is being used as a counting completion,
4705 * attempt to decrement the counter without blocking. This
4706 * enables us to avoid waiting if the resource the completion
4707 * is protecting is not available.
4708 */
4709bool try_wait_for_completion(struct completion *x)
4710{
7539a3b3 4711 unsigned long flags;
be4de352
DC
4712 int ret = 1;
4713
7539a3b3 4714 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4715 if (!x->done)
4716 ret = 0;
4717 else
4718 x->done--;
7539a3b3 4719 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4720 return ret;
4721}
4722EXPORT_SYMBOL(try_wait_for_completion);
4723
4724/**
4725 * completion_done - Test to see if a completion has any waiters
4726 * @x: completion structure
4727 *
4728 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4729 * 1 if there are no waiters.
4730 *
4731 */
4732bool completion_done(struct completion *x)
4733{
7539a3b3 4734 unsigned long flags;
be4de352
DC
4735 int ret = 1;
4736
7539a3b3 4737 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4738 if (!x->done)
4739 ret = 0;
7539a3b3 4740 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4741 return ret;
4742}
4743EXPORT_SYMBOL(completion_done);
4744
8cbbe86d
AK
4745static long __sched
4746sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4747{
0fec171c
IM
4748 unsigned long flags;
4749 wait_queue_t wait;
4750
4751 init_waitqueue_entry(&wait, current);
1da177e4 4752
8cbbe86d 4753 __set_current_state(state);
1da177e4 4754
8cbbe86d
AK
4755 spin_lock_irqsave(&q->lock, flags);
4756 __add_wait_queue(q, &wait);
4757 spin_unlock(&q->lock);
4758 timeout = schedule_timeout(timeout);
4759 spin_lock_irq(&q->lock);
4760 __remove_wait_queue(q, &wait);
4761 spin_unlock_irqrestore(&q->lock, flags);
4762
4763 return timeout;
4764}
4765
4766void __sched interruptible_sleep_on(wait_queue_head_t *q)
4767{
4768 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4769}
1da177e4
LT
4770EXPORT_SYMBOL(interruptible_sleep_on);
4771
0fec171c 4772long __sched
95cdf3b7 4773interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4774{
8cbbe86d 4775 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4776}
1da177e4
LT
4777EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4778
0fec171c 4779void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4780{
8cbbe86d 4781 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4782}
1da177e4
LT
4783EXPORT_SYMBOL(sleep_on);
4784
0fec171c 4785long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4786{
8cbbe86d 4787 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4788}
1da177e4
LT
4789EXPORT_SYMBOL(sleep_on_timeout);
4790
b29739f9
IM
4791#ifdef CONFIG_RT_MUTEXES
4792
4793/*
4794 * rt_mutex_setprio - set the current priority of a task
4795 * @p: task
4796 * @prio: prio value (kernel-internal form)
4797 *
4798 * This function changes the 'effective' priority of a task. It does
4799 * not touch ->normal_prio like __setscheduler().
4800 *
4801 * Used by the rt_mutex code to implement priority inheritance logic.
4802 */
36c8b586 4803void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4804{
83b699ed 4805 int oldprio, on_rq, running;
70b97a7f 4806 struct rq *rq;
83ab0aa0 4807 const struct sched_class *prev_class;
b29739f9
IM
4808
4809 BUG_ON(prio < 0 || prio > MAX_PRIO);
4810
0122ec5b 4811 rq = __task_rq_lock(p);
b29739f9 4812
a8027073 4813 trace_sched_pi_setprio(p, prio);
d5f9f942 4814 oldprio = p->prio;
83ab0aa0 4815 prev_class = p->sched_class;
fd2f4419 4816 on_rq = p->on_rq;
051a1d1a 4817 running = task_current(rq, p);
0e1f3483 4818 if (on_rq)
69be72c1 4819 dequeue_task(rq, p, 0);
0e1f3483
HS
4820 if (running)
4821 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4822
4823 if (rt_prio(prio))
4824 p->sched_class = &rt_sched_class;
4825 else
4826 p->sched_class = &fair_sched_class;
4827
b29739f9
IM
4828 p->prio = prio;
4829
0e1f3483
HS
4830 if (running)
4831 p->sched_class->set_curr_task(rq);
da7a735e 4832 if (on_rq)
371fd7e7 4833 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4834
da7a735e 4835 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4836 __task_rq_unlock(rq);
b29739f9
IM
4837}
4838
4839#endif
4840
36c8b586 4841void set_user_nice(struct task_struct *p, long nice)
1da177e4 4842{
dd41f596 4843 int old_prio, delta, on_rq;
1da177e4 4844 unsigned long flags;
70b97a7f 4845 struct rq *rq;
1da177e4
LT
4846
4847 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4848 return;
4849 /*
4850 * We have to be careful, if called from sys_setpriority(),
4851 * the task might be in the middle of scheduling on another CPU.
4852 */
4853 rq = task_rq_lock(p, &flags);
4854 /*
4855 * The RT priorities are set via sched_setscheduler(), but we still
4856 * allow the 'normal' nice value to be set - but as expected
4857 * it wont have any effect on scheduling until the task is
dd41f596 4858 * SCHED_FIFO/SCHED_RR:
1da177e4 4859 */
e05606d3 4860 if (task_has_rt_policy(p)) {
1da177e4
LT
4861 p->static_prio = NICE_TO_PRIO(nice);
4862 goto out_unlock;
4863 }
fd2f4419 4864 on_rq = p->on_rq;
c09595f6 4865 if (on_rq)
69be72c1 4866 dequeue_task(rq, p, 0);
1da177e4 4867
1da177e4 4868 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4869 set_load_weight(p);
b29739f9
IM
4870 old_prio = p->prio;
4871 p->prio = effective_prio(p);
4872 delta = p->prio - old_prio;
1da177e4 4873
dd41f596 4874 if (on_rq) {
371fd7e7 4875 enqueue_task(rq, p, 0);
1da177e4 4876 /*
d5f9f942
AM
4877 * If the task increased its priority or is running and
4878 * lowered its priority, then reschedule its CPU:
1da177e4 4879 */
d5f9f942 4880 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4881 resched_task(rq->curr);
4882 }
4883out_unlock:
0122ec5b 4884 task_rq_unlock(rq, p, &flags);
1da177e4 4885}
1da177e4
LT
4886EXPORT_SYMBOL(set_user_nice);
4887
e43379f1
MM
4888/*
4889 * can_nice - check if a task can reduce its nice value
4890 * @p: task
4891 * @nice: nice value
4892 */
36c8b586 4893int can_nice(const struct task_struct *p, const int nice)
e43379f1 4894{
024f4747
MM
4895 /* convert nice value [19,-20] to rlimit style value [1,40] */
4896 int nice_rlim = 20 - nice;
48f24c4d 4897
78d7d407 4898 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4899 capable(CAP_SYS_NICE));
4900}
4901
1da177e4
LT
4902#ifdef __ARCH_WANT_SYS_NICE
4903
4904/*
4905 * sys_nice - change the priority of the current process.
4906 * @increment: priority increment
4907 *
4908 * sys_setpriority is a more generic, but much slower function that
4909 * does similar things.
4910 */
5add95d4 4911SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4912{
48f24c4d 4913 long nice, retval;
1da177e4
LT
4914
4915 /*
4916 * Setpriority might change our priority at the same moment.
4917 * We don't have to worry. Conceptually one call occurs first
4918 * and we have a single winner.
4919 */
e43379f1
MM
4920 if (increment < -40)
4921 increment = -40;
1da177e4
LT
4922 if (increment > 40)
4923 increment = 40;
4924
2b8f836f 4925 nice = TASK_NICE(current) + increment;
1da177e4
LT
4926 if (nice < -20)
4927 nice = -20;
4928 if (nice > 19)
4929 nice = 19;
4930
e43379f1
MM
4931 if (increment < 0 && !can_nice(current, nice))
4932 return -EPERM;
4933
1da177e4
LT
4934 retval = security_task_setnice(current, nice);
4935 if (retval)
4936 return retval;
4937
4938 set_user_nice(current, nice);
4939 return 0;
4940}
4941
4942#endif
4943
4944/**
4945 * task_prio - return the priority value of a given task.
4946 * @p: the task in question.
4947 *
4948 * This is the priority value as seen by users in /proc.
4949 * RT tasks are offset by -200. Normal tasks are centered
4950 * around 0, value goes from -16 to +15.
4951 */
36c8b586 4952int task_prio(const struct task_struct *p)
1da177e4
LT
4953{
4954 return p->prio - MAX_RT_PRIO;
4955}
4956
4957/**
4958 * task_nice - return the nice value of a given task.
4959 * @p: the task in question.
4960 */
36c8b586 4961int task_nice(const struct task_struct *p)
1da177e4
LT
4962{
4963 return TASK_NICE(p);
4964}
150d8bed 4965EXPORT_SYMBOL(task_nice);
1da177e4
LT
4966
4967/**
4968 * idle_cpu - is a given cpu idle currently?
4969 * @cpu: the processor in question.
4970 */
4971int idle_cpu(int cpu)
4972{
4973 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4974}
4975
1da177e4
LT
4976/**
4977 * idle_task - return the idle task for a given cpu.
4978 * @cpu: the processor in question.
4979 */
36c8b586 4980struct task_struct *idle_task(int cpu)
1da177e4
LT
4981{
4982 return cpu_rq(cpu)->idle;
4983}
4984
4985/**
4986 * find_process_by_pid - find a process with a matching PID value.
4987 * @pid: the pid in question.
4988 */
a9957449 4989static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4990{
228ebcbe 4991 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4992}
4993
4994/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4995static void
4996__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4997{
1da177e4
LT
4998 p->policy = policy;
4999 p->rt_priority = prio;
b29739f9
IM
5000 p->normal_prio = normal_prio(p);
5001 /* we are holding p->pi_lock already */
5002 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5003 if (rt_prio(p->prio))
5004 p->sched_class = &rt_sched_class;
5005 else
5006 p->sched_class = &fair_sched_class;
2dd73a4f 5007 set_load_weight(p);
1da177e4
LT
5008}
5009
c69e8d9c
DH
5010/*
5011 * check the target process has a UID that matches the current process's
5012 */
5013static bool check_same_owner(struct task_struct *p)
5014{
5015 const struct cred *cred = current_cred(), *pcred;
5016 bool match;
5017
5018 rcu_read_lock();
5019 pcred = __task_cred(p);
b0e77598
SH
5020 if (cred->user->user_ns == pcred->user->user_ns)
5021 match = (cred->euid == pcred->euid ||
5022 cred->euid == pcred->uid);
5023 else
5024 match = false;
c69e8d9c
DH
5025 rcu_read_unlock();
5026 return match;
5027}
5028
961ccddd 5029static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5030 const struct sched_param *param, bool user)
1da177e4 5031{
83b699ed 5032 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5033 unsigned long flags;
83ab0aa0 5034 const struct sched_class *prev_class;
70b97a7f 5035 struct rq *rq;
ca94c442 5036 int reset_on_fork;
1da177e4 5037
66e5393a
SR
5038 /* may grab non-irq protected spin_locks */
5039 BUG_ON(in_interrupt());
1da177e4
LT
5040recheck:
5041 /* double check policy once rq lock held */
ca94c442
LP
5042 if (policy < 0) {
5043 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5044 policy = oldpolicy = p->policy;
ca94c442
LP
5045 } else {
5046 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5047 policy &= ~SCHED_RESET_ON_FORK;
5048
5049 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5050 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5051 policy != SCHED_IDLE)
5052 return -EINVAL;
5053 }
5054
1da177e4
LT
5055 /*
5056 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5057 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5058 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5059 */
5060 if (param->sched_priority < 0 ||
95cdf3b7 5061 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5062 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5063 return -EINVAL;
e05606d3 5064 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5065 return -EINVAL;
5066
37e4ab3f
OC
5067 /*
5068 * Allow unprivileged RT tasks to decrease priority:
5069 */
961ccddd 5070 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5071 if (rt_policy(policy)) {
a44702e8
ON
5072 unsigned long rlim_rtprio =
5073 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5074
5075 /* can't set/change the rt policy */
5076 if (policy != p->policy && !rlim_rtprio)
5077 return -EPERM;
5078
5079 /* can't increase priority */
5080 if (param->sched_priority > p->rt_priority &&
5081 param->sched_priority > rlim_rtprio)
5082 return -EPERM;
5083 }
c02aa73b 5084
dd41f596 5085 /*
c02aa73b
DH
5086 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5087 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5088 */
c02aa73b
DH
5089 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5090 if (!can_nice(p, TASK_NICE(p)))
5091 return -EPERM;
5092 }
5fe1d75f 5093
37e4ab3f 5094 /* can't change other user's priorities */
c69e8d9c 5095 if (!check_same_owner(p))
37e4ab3f 5096 return -EPERM;
ca94c442
LP
5097
5098 /* Normal users shall not reset the sched_reset_on_fork flag */
5099 if (p->sched_reset_on_fork && !reset_on_fork)
5100 return -EPERM;
37e4ab3f 5101 }
1da177e4 5102
725aad24 5103 if (user) {
b0ae1981 5104 retval = security_task_setscheduler(p);
725aad24
JF
5105 if (retval)
5106 return retval;
5107 }
5108
b29739f9
IM
5109 /*
5110 * make sure no PI-waiters arrive (or leave) while we are
5111 * changing the priority of the task:
0122ec5b 5112 *
25985edc 5113 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5114 * runqueue lock must be held.
5115 */
0122ec5b 5116 rq = task_rq_lock(p, &flags);
dc61b1d6 5117
34f971f6
PZ
5118 /*
5119 * Changing the policy of the stop threads its a very bad idea
5120 */
5121 if (p == rq->stop) {
0122ec5b 5122 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5123 return -EINVAL;
5124 }
5125
a51e9198
DF
5126 /*
5127 * If not changing anything there's no need to proceed further:
5128 */
5129 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5130 param->sched_priority == p->rt_priority))) {
5131
5132 __task_rq_unlock(rq);
5133 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5134 return 0;
5135 }
5136
dc61b1d6
PZ
5137#ifdef CONFIG_RT_GROUP_SCHED
5138 if (user) {
5139 /*
5140 * Do not allow realtime tasks into groups that have no runtime
5141 * assigned.
5142 */
5143 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5144 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5145 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5146 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5147 return -EPERM;
5148 }
5149 }
5150#endif
5151
1da177e4
LT
5152 /* recheck policy now with rq lock held */
5153 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5154 policy = oldpolicy = -1;
0122ec5b 5155 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5156 goto recheck;
5157 }
fd2f4419 5158 on_rq = p->on_rq;
051a1d1a 5159 running = task_current(rq, p);
0e1f3483 5160 if (on_rq)
2e1cb74a 5161 deactivate_task(rq, p, 0);
0e1f3483
HS
5162 if (running)
5163 p->sched_class->put_prev_task(rq, p);
f6b53205 5164
ca94c442
LP
5165 p->sched_reset_on_fork = reset_on_fork;
5166
1da177e4 5167 oldprio = p->prio;
83ab0aa0 5168 prev_class = p->sched_class;
dd41f596 5169 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5170
0e1f3483
HS
5171 if (running)
5172 p->sched_class->set_curr_task(rq);
da7a735e 5173 if (on_rq)
dd41f596 5174 activate_task(rq, p, 0);
cb469845 5175
da7a735e 5176 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5177 task_rq_unlock(rq, p, &flags);
b29739f9 5178
95e02ca9
TG
5179 rt_mutex_adjust_pi(p);
5180
1da177e4
LT
5181 return 0;
5182}
961ccddd
RR
5183
5184/**
5185 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5186 * @p: the task in question.
5187 * @policy: new policy.
5188 * @param: structure containing the new RT priority.
5189 *
5190 * NOTE that the task may be already dead.
5191 */
5192int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5193 const struct sched_param *param)
961ccddd
RR
5194{
5195 return __sched_setscheduler(p, policy, param, true);
5196}
1da177e4
LT
5197EXPORT_SYMBOL_GPL(sched_setscheduler);
5198
961ccddd
RR
5199/**
5200 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5201 * @p: the task in question.
5202 * @policy: new policy.
5203 * @param: structure containing the new RT priority.
5204 *
5205 * Just like sched_setscheduler, only don't bother checking if the
5206 * current context has permission. For example, this is needed in
5207 * stop_machine(): we create temporary high priority worker threads,
5208 * but our caller might not have that capability.
5209 */
5210int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5211 const struct sched_param *param)
961ccddd
RR
5212{
5213 return __sched_setscheduler(p, policy, param, false);
5214}
5215
95cdf3b7
IM
5216static int
5217do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5218{
1da177e4
LT
5219 struct sched_param lparam;
5220 struct task_struct *p;
36c8b586 5221 int retval;
1da177e4
LT
5222
5223 if (!param || pid < 0)
5224 return -EINVAL;
5225 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5226 return -EFAULT;
5fe1d75f
ON
5227
5228 rcu_read_lock();
5229 retval = -ESRCH;
1da177e4 5230 p = find_process_by_pid(pid);
5fe1d75f
ON
5231 if (p != NULL)
5232 retval = sched_setscheduler(p, policy, &lparam);
5233 rcu_read_unlock();
36c8b586 5234
1da177e4
LT
5235 return retval;
5236}
5237
5238/**
5239 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5240 * @pid: the pid in question.
5241 * @policy: new policy.
5242 * @param: structure containing the new RT priority.
5243 */
5add95d4
HC
5244SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5245 struct sched_param __user *, param)
1da177e4 5246{
c21761f1
JB
5247 /* negative values for policy are not valid */
5248 if (policy < 0)
5249 return -EINVAL;
5250
1da177e4
LT
5251 return do_sched_setscheduler(pid, policy, param);
5252}
5253
5254/**
5255 * sys_sched_setparam - set/change the RT priority of a thread
5256 * @pid: the pid in question.
5257 * @param: structure containing the new RT priority.
5258 */
5add95d4 5259SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5260{
5261 return do_sched_setscheduler(pid, -1, param);
5262}
5263
5264/**
5265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5266 * @pid: the pid in question.
5267 */
5add95d4 5268SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5269{
36c8b586 5270 struct task_struct *p;
3a5c359a 5271 int retval;
1da177e4
LT
5272
5273 if (pid < 0)
3a5c359a 5274 return -EINVAL;
1da177e4
LT
5275
5276 retval = -ESRCH;
5fe85be0 5277 rcu_read_lock();
1da177e4
LT
5278 p = find_process_by_pid(pid);
5279 if (p) {
5280 retval = security_task_getscheduler(p);
5281 if (!retval)
ca94c442
LP
5282 retval = p->policy
5283 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5284 }
5fe85be0 5285 rcu_read_unlock();
1da177e4
LT
5286 return retval;
5287}
5288
5289/**
ca94c442 5290 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5291 * @pid: the pid in question.
5292 * @param: structure containing the RT priority.
5293 */
5add95d4 5294SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5295{
5296 struct sched_param lp;
36c8b586 5297 struct task_struct *p;
3a5c359a 5298 int retval;
1da177e4
LT
5299
5300 if (!param || pid < 0)
3a5c359a 5301 return -EINVAL;
1da177e4 5302
5fe85be0 5303 rcu_read_lock();
1da177e4
LT
5304 p = find_process_by_pid(pid);
5305 retval = -ESRCH;
5306 if (!p)
5307 goto out_unlock;
5308
5309 retval = security_task_getscheduler(p);
5310 if (retval)
5311 goto out_unlock;
5312
5313 lp.sched_priority = p->rt_priority;
5fe85be0 5314 rcu_read_unlock();
1da177e4
LT
5315
5316 /*
5317 * This one might sleep, we cannot do it with a spinlock held ...
5318 */
5319 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5320
1da177e4
LT
5321 return retval;
5322
5323out_unlock:
5fe85be0 5324 rcu_read_unlock();
1da177e4
LT
5325 return retval;
5326}
5327
96f874e2 5328long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5329{
5a16f3d3 5330 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5331 struct task_struct *p;
5332 int retval;
1da177e4 5333
95402b38 5334 get_online_cpus();
23f5d142 5335 rcu_read_lock();
1da177e4
LT
5336
5337 p = find_process_by_pid(pid);
5338 if (!p) {
23f5d142 5339 rcu_read_unlock();
95402b38 5340 put_online_cpus();
1da177e4
LT
5341 return -ESRCH;
5342 }
5343
23f5d142 5344 /* Prevent p going away */
1da177e4 5345 get_task_struct(p);
23f5d142 5346 rcu_read_unlock();
1da177e4 5347
5a16f3d3
RR
5348 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5349 retval = -ENOMEM;
5350 goto out_put_task;
5351 }
5352 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5353 retval = -ENOMEM;
5354 goto out_free_cpus_allowed;
5355 }
1da177e4 5356 retval = -EPERM;
b0e77598 5357 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5358 goto out_unlock;
5359
b0ae1981 5360 retval = security_task_setscheduler(p);
e7834f8f
DQ
5361 if (retval)
5362 goto out_unlock;
5363
5a16f3d3
RR
5364 cpuset_cpus_allowed(p, cpus_allowed);
5365 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5366again:
5a16f3d3 5367 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5368
8707d8b8 5369 if (!retval) {
5a16f3d3
RR
5370 cpuset_cpus_allowed(p, cpus_allowed);
5371 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5372 /*
5373 * We must have raced with a concurrent cpuset
5374 * update. Just reset the cpus_allowed to the
5375 * cpuset's cpus_allowed
5376 */
5a16f3d3 5377 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5378 goto again;
5379 }
5380 }
1da177e4 5381out_unlock:
5a16f3d3
RR
5382 free_cpumask_var(new_mask);
5383out_free_cpus_allowed:
5384 free_cpumask_var(cpus_allowed);
5385out_put_task:
1da177e4 5386 put_task_struct(p);
95402b38 5387 put_online_cpus();
1da177e4
LT
5388 return retval;
5389}
5390
5391static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5392 struct cpumask *new_mask)
1da177e4 5393{
96f874e2
RR
5394 if (len < cpumask_size())
5395 cpumask_clear(new_mask);
5396 else if (len > cpumask_size())
5397 len = cpumask_size();
5398
1da177e4
LT
5399 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5400}
5401
5402/**
5403 * sys_sched_setaffinity - set the cpu affinity of a process
5404 * @pid: pid of the process
5405 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5406 * @user_mask_ptr: user-space pointer to the new cpu mask
5407 */
5add95d4
HC
5408SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5409 unsigned long __user *, user_mask_ptr)
1da177e4 5410{
5a16f3d3 5411 cpumask_var_t new_mask;
1da177e4
LT
5412 int retval;
5413
5a16f3d3
RR
5414 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5415 return -ENOMEM;
1da177e4 5416
5a16f3d3
RR
5417 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5418 if (retval == 0)
5419 retval = sched_setaffinity(pid, new_mask);
5420 free_cpumask_var(new_mask);
5421 return retval;
1da177e4
LT
5422}
5423
96f874e2 5424long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5425{
36c8b586 5426 struct task_struct *p;
31605683 5427 unsigned long flags;
1da177e4 5428 int retval;
1da177e4 5429
95402b38 5430 get_online_cpus();
23f5d142 5431 rcu_read_lock();
1da177e4
LT
5432
5433 retval = -ESRCH;
5434 p = find_process_by_pid(pid);
5435 if (!p)
5436 goto out_unlock;
5437
e7834f8f
DQ
5438 retval = security_task_getscheduler(p);
5439 if (retval)
5440 goto out_unlock;
5441
013fdb80 5442 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5443 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5444 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5445
5446out_unlock:
23f5d142 5447 rcu_read_unlock();
95402b38 5448 put_online_cpus();
1da177e4 5449
9531b62f 5450 return retval;
1da177e4
LT
5451}
5452
5453/**
5454 * sys_sched_getaffinity - get the cpu affinity of a process
5455 * @pid: pid of the process
5456 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5457 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5458 */
5add95d4
HC
5459SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5460 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5461{
5462 int ret;
f17c8607 5463 cpumask_var_t mask;
1da177e4 5464
84fba5ec 5465 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5466 return -EINVAL;
5467 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5468 return -EINVAL;
5469
f17c8607
RR
5470 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5471 return -ENOMEM;
1da177e4 5472
f17c8607
RR
5473 ret = sched_getaffinity(pid, mask);
5474 if (ret == 0) {
8bc037fb 5475 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5476
5477 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5478 ret = -EFAULT;
5479 else
cd3d8031 5480 ret = retlen;
f17c8607
RR
5481 }
5482 free_cpumask_var(mask);
1da177e4 5483
f17c8607 5484 return ret;
1da177e4
LT
5485}
5486
5487/**
5488 * sys_sched_yield - yield the current processor to other threads.
5489 *
dd41f596
IM
5490 * This function yields the current CPU to other tasks. If there are no
5491 * other threads running on this CPU then this function will return.
1da177e4 5492 */
5add95d4 5493SYSCALL_DEFINE0(sched_yield)
1da177e4 5494{
70b97a7f 5495 struct rq *rq = this_rq_lock();
1da177e4 5496
2d72376b 5497 schedstat_inc(rq, yld_count);
4530d7ab 5498 current->sched_class->yield_task(rq);
1da177e4
LT
5499
5500 /*
5501 * Since we are going to call schedule() anyway, there's
5502 * no need to preempt or enable interrupts:
5503 */
5504 __release(rq->lock);
8a25d5de 5505 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5506 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5507 preempt_enable_no_resched();
5508
5509 schedule();
5510
5511 return 0;
5512}
5513
d86ee480
PZ
5514static inline int should_resched(void)
5515{
5516 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5517}
5518
e7b38404 5519static void __cond_resched(void)
1da177e4 5520{
e7aaaa69
FW
5521 add_preempt_count(PREEMPT_ACTIVE);
5522 schedule();
5523 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5524}
5525
02b67cc3 5526int __sched _cond_resched(void)
1da177e4 5527{
d86ee480 5528 if (should_resched()) {
1da177e4
LT
5529 __cond_resched();
5530 return 1;
5531 }
5532 return 0;
5533}
02b67cc3 5534EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5535
5536/*
613afbf8 5537 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5538 * call schedule, and on return reacquire the lock.
5539 *
41a2d6cf 5540 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5541 * operations here to prevent schedule() from being called twice (once via
5542 * spin_unlock(), once by hand).
5543 */
613afbf8 5544int __cond_resched_lock(spinlock_t *lock)
1da177e4 5545{
d86ee480 5546 int resched = should_resched();
6df3cecb
JK
5547 int ret = 0;
5548
f607c668
PZ
5549 lockdep_assert_held(lock);
5550
95c354fe 5551 if (spin_needbreak(lock) || resched) {
1da177e4 5552 spin_unlock(lock);
d86ee480 5553 if (resched)
95c354fe
NP
5554 __cond_resched();
5555 else
5556 cpu_relax();
6df3cecb 5557 ret = 1;
1da177e4 5558 spin_lock(lock);
1da177e4 5559 }
6df3cecb 5560 return ret;
1da177e4 5561}
613afbf8 5562EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5563
613afbf8 5564int __sched __cond_resched_softirq(void)
1da177e4
LT
5565{
5566 BUG_ON(!in_softirq());
5567
d86ee480 5568 if (should_resched()) {
98d82567 5569 local_bh_enable();
1da177e4
LT
5570 __cond_resched();
5571 local_bh_disable();
5572 return 1;
5573 }
5574 return 0;
5575}
613afbf8 5576EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5577
1da177e4
LT
5578/**
5579 * yield - yield the current processor to other threads.
5580 *
72fd4a35 5581 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5582 * thread runnable and calls sys_sched_yield().
5583 */
5584void __sched yield(void)
5585{
5586 set_current_state(TASK_RUNNING);
5587 sys_sched_yield();
5588}
1da177e4
LT
5589EXPORT_SYMBOL(yield);
5590
d95f4122
MG
5591/**
5592 * yield_to - yield the current processor to another thread in
5593 * your thread group, or accelerate that thread toward the
5594 * processor it's on.
16addf95
RD
5595 * @p: target task
5596 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5597 *
5598 * It's the caller's job to ensure that the target task struct
5599 * can't go away on us before we can do any checks.
5600 *
5601 * Returns true if we indeed boosted the target task.
5602 */
5603bool __sched yield_to(struct task_struct *p, bool preempt)
5604{
5605 struct task_struct *curr = current;
5606 struct rq *rq, *p_rq;
5607 unsigned long flags;
5608 bool yielded = 0;
5609
5610 local_irq_save(flags);
5611 rq = this_rq();
5612
5613again:
5614 p_rq = task_rq(p);
5615 double_rq_lock(rq, p_rq);
5616 while (task_rq(p) != p_rq) {
5617 double_rq_unlock(rq, p_rq);
5618 goto again;
5619 }
5620
5621 if (!curr->sched_class->yield_to_task)
5622 goto out;
5623
5624 if (curr->sched_class != p->sched_class)
5625 goto out;
5626
5627 if (task_running(p_rq, p) || p->state)
5628 goto out;
5629
5630 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5631 if (yielded) {
d95f4122 5632 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5633 /*
5634 * Make p's CPU reschedule; pick_next_entity takes care of
5635 * fairness.
5636 */
5637 if (preempt && rq != p_rq)
5638 resched_task(p_rq->curr);
5639 }
d95f4122
MG
5640
5641out:
5642 double_rq_unlock(rq, p_rq);
5643 local_irq_restore(flags);
5644
5645 if (yielded)
5646 schedule();
5647
5648 return yielded;
5649}
5650EXPORT_SYMBOL_GPL(yield_to);
5651
1da177e4 5652/*
41a2d6cf 5653 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5654 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5655 */
5656void __sched io_schedule(void)
5657{
54d35f29 5658 struct rq *rq = raw_rq();
1da177e4 5659
0ff92245 5660 delayacct_blkio_start();
1da177e4 5661 atomic_inc(&rq->nr_iowait);
73c10101 5662 blk_flush_plug(current);
8f0dfc34 5663 current->in_iowait = 1;
1da177e4 5664 schedule();
8f0dfc34 5665 current->in_iowait = 0;
1da177e4 5666 atomic_dec(&rq->nr_iowait);
0ff92245 5667 delayacct_blkio_end();
1da177e4 5668}
1da177e4
LT
5669EXPORT_SYMBOL(io_schedule);
5670
5671long __sched io_schedule_timeout(long timeout)
5672{
54d35f29 5673 struct rq *rq = raw_rq();
1da177e4
LT
5674 long ret;
5675
0ff92245 5676 delayacct_blkio_start();
1da177e4 5677 atomic_inc(&rq->nr_iowait);
73c10101 5678 blk_flush_plug(current);
8f0dfc34 5679 current->in_iowait = 1;
1da177e4 5680 ret = schedule_timeout(timeout);
8f0dfc34 5681 current->in_iowait = 0;
1da177e4 5682 atomic_dec(&rq->nr_iowait);
0ff92245 5683 delayacct_blkio_end();
1da177e4
LT
5684 return ret;
5685}
5686
5687/**
5688 * sys_sched_get_priority_max - return maximum RT priority.
5689 * @policy: scheduling class.
5690 *
5691 * this syscall returns the maximum rt_priority that can be used
5692 * by a given scheduling class.
5693 */
5add95d4 5694SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5695{
5696 int ret = -EINVAL;
5697
5698 switch (policy) {
5699 case SCHED_FIFO:
5700 case SCHED_RR:
5701 ret = MAX_USER_RT_PRIO-1;
5702 break;
5703 case SCHED_NORMAL:
b0a9499c 5704 case SCHED_BATCH:
dd41f596 5705 case SCHED_IDLE:
1da177e4
LT
5706 ret = 0;
5707 break;
5708 }
5709 return ret;
5710}
5711
5712/**
5713 * sys_sched_get_priority_min - return minimum RT priority.
5714 * @policy: scheduling class.
5715 *
5716 * this syscall returns the minimum rt_priority that can be used
5717 * by a given scheduling class.
5718 */
5add95d4 5719SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5720{
5721 int ret = -EINVAL;
5722
5723 switch (policy) {
5724 case SCHED_FIFO:
5725 case SCHED_RR:
5726 ret = 1;
5727 break;
5728 case SCHED_NORMAL:
b0a9499c 5729 case SCHED_BATCH:
dd41f596 5730 case SCHED_IDLE:
1da177e4
LT
5731 ret = 0;
5732 }
5733 return ret;
5734}
5735
5736/**
5737 * sys_sched_rr_get_interval - return the default timeslice of a process.
5738 * @pid: pid of the process.
5739 * @interval: userspace pointer to the timeslice value.
5740 *
5741 * this syscall writes the default timeslice value of a given process
5742 * into the user-space timespec buffer. A value of '0' means infinity.
5743 */
17da2bd9 5744SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5745 struct timespec __user *, interval)
1da177e4 5746{
36c8b586 5747 struct task_struct *p;
a4ec24b4 5748 unsigned int time_slice;
dba091b9
TG
5749 unsigned long flags;
5750 struct rq *rq;
3a5c359a 5751 int retval;
1da177e4 5752 struct timespec t;
1da177e4
LT
5753
5754 if (pid < 0)
3a5c359a 5755 return -EINVAL;
1da177e4
LT
5756
5757 retval = -ESRCH;
1a551ae7 5758 rcu_read_lock();
1da177e4
LT
5759 p = find_process_by_pid(pid);
5760 if (!p)
5761 goto out_unlock;
5762
5763 retval = security_task_getscheduler(p);
5764 if (retval)
5765 goto out_unlock;
5766
dba091b9
TG
5767 rq = task_rq_lock(p, &flags);
5768 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5769 task_rq_unlock(rq, p, &flags);
a4ec24b4 5770
1a551ae7 5771 rcu_read_unlock();
a4ec24b4 5772 jiffies_to_timespec(time_slice, &t);
1da177e4 5773 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5774 return retval;
3a5c359a 5775
1da177e4 5776out_unlock:
1a551ae7 5777 rcu_read_unlock();
1da177e4
LT
5778 return retval;
5779}
5780
7c731e0a 5781static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5782
82a1fcb9 5783void sched_show_task(struct task_struct *p)
1da177e4 5784{
1da177e4 5785 unsigned long free = 0;
36c8b586 5786 unsigned state;
1da177e4 5787
1da177e4 5788 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5789 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5790 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5791#if BITS_PER_LONG == 32
1da177e4 5792 if (state == TASK_RUNNING)
3df0fc5b 5793 printk(KERN_CONT " running ");
1da177e4 5794 else
3df0fc5b 5795 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5796#else
5797 if (state == TASK_RUNNING)
3df0fc5b 5798 printk(KERN_CONT " running task ");
1da177e4 5799 else
3df0fc5b 5800 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5801#endif
5802#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5803 free = stack_not_used(p);
1da177e4 5804#endif
3df0fc5b 5805 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5806 task_pid_nr(p), task_pid_nr(p->real_parent),
5807 (unsigned long)task_thread_info(p)->flags);
1da177e4 5808
5fb5e6de 5809 show_stack(p, NULL);
1da177e4
LT
5810}
5811
e59e2ae2 5812void show_state_filter(unsigned long state_filter)
1da177e4 5813{
36c8b586 5814 struct task_struct *g, *p;
1da177e4 5815
4bd77321 5816#if BITS_PER_LONG == 32
3df0fc5b
PZ
5817 printk(KERN_INFO
5818 " task PC stack pid father\n");
1da177e4 5819#else
3df0fc5b
PZ
5820 printk(KERN_INFO
5821 " task PC stack pid father\n");
1da177e4
LT
5822#endif
5823 read_lock(&tasklist_lock);
5824 do_each_thread(g, p) {
5825 /*
5826 * reset the NMI-timeout, listing all files on a slow
25985edc 5827 * console might take a lot of time:
1da177e4
LT
5828 */
5829 touch_nmi_watchdog();
39bc89fd 5830 if (!state_filter || (p->state & state_filter))
82a1fcb9 5831 sched_show_task(p);
1da177e4
LT
5832 } while_each_thread(g, p);
5833
04c9167f
JF
5834 touch_all_softlockup_watchdogs();
5835
dd41f596
IM
5836#ifdef CONFIG_SCHED_DEBUG
5837 sysrq_sched_debug_show();
5838#endif
1da177e4 5839 read_unlock(&tasklist_lock);
e59e2ae2
IM
5840 /*
5841 * Only show locks if all tasks are dumped:
5842 */
93335a21 5843 if (!state_filter)
e59e2ae2 5844 debug_show_all_locks();
1da177e4
LT
5845}
5846
1df21055
IM
5847void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5848{
dd41f596 5849 idle->sched_class = &idle_sched_class;
1df21055
IM
5850}
5851
f340c0d1
IM
5852/**
5853 * init_idle - set up an idle thread for a given CPU
5854 * @idle: task in question
5855 * @cpu: cpu the idle task belongs to
5856 *
5857 * NOTE: this function does not set the idle thread's NEED_RESCHED
5858 * flag, to make booting more robust.
5859 */
5c1e1767 5860void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5861{
70b97a7f 5862 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5863 unsigned long flags;
5864
05fa785c 5865 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5866
dd41f596 5867 __sched_fork(idle);
06b83b5f 5868 idle->state = TASK_RUNNING;
dd41f596
IM
5869 idle->se.exec_start = sched_clock();
5870
1e1b6c51 5871 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5872 /*
5873 * We're having a chicken and egg problem, even though we are
5874 * holding rq->lock, the cpu isn't yet set to this cpu so the
5875 * lockdep check in task_group() will fail.
5876 *
5877 * Similar case to sched_fork(). / Alternatively we could
5878 * use task_rq_lock() here and obtain the other rq->lock.
5879 *
5880 * Silence PROVE_RCU
5881 */
5882 rcu_read_lock();
dd41f596 5883 __set_task_cpu(idle, cpu);
6506cf6c 5884 rcu_read_unlock();
1da177e4 5885
1da177e4 5886 rq->curr = rq->idle = idle;
3ca7a440
PZ
5887#if defined(CONFIG_SMP)
5888 idle->on_cpu = 1;
4866cde0 5889#endif
05fa785c 5890 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5891
5892 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5893 task_thread_info(idle)->preempt_count = 0;
625f2a37 5894
dd41f596
IM
5895 /*
5896 * The idle tasks have their own, simple scheduling class:
5897 */
5898 idle->sched_class = &idle_sched_class;
868baf07 5899 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5900}
5901
5902/*
5903 * In a system that switches off the HZ timer nohz_cpu_mask
5904 * indicates which cpus entered this state. This is used
5905 * in the rcu update to wait only for active cpus. For system
5906 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5907 * always be CPU_BITS_NONE.
1da177e4 5908 */
6a7b3dc3 5909cpumask_var_t nohz_cpu_mask;
1da177e4 5910
19978ca6
IM
5911/*
5912 * Increase the granularity value when there are more CPUs,
5913 * because with more CPUs the 'effective latency' as visible
5914 * to users decreases. But the relationship is not linear,
5915 * so pick a second-best guess by going with the log2 of the
5916 * number of CPUs.
5917 *
5918 * This idea comes from the SD scheduler of Con Kolivas:
5919 */
acb4a848 5920static int get_update_sysctl_factor(void)
19978ca6 5921{
4ca3ef71 5922 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5923 unsigned int factor;
5924
5925 switch (sysctl_sched_tunable_scaling) {
5926 case SCHED_TUNABLESCALING_NONE:
5927 factor = 1;
5928 break;
5929 case SCHED_TUNABLESCALING_LINEAR:
5930 factor = cpus;
5931 break;
5932 case SCHED_TUNABLESCALING_LOG:
5933 default:
5934 factor = 1 + ilog2(cpus);
5935 break;
5936 }
19978ca6 5937
acb4a848
CE
5938 return factor;
5939}
19978ca6 5940
acb4a848
CE
5941static void update_sysctl(void)
5942{
5943 unsigned int factor = get_update_sysctl_factor();
19978ca6 5944
0bcdcf28
CE
5945#define SET_SYSCTL(name) \
5946 (sysctl_##name = (factor) * normalized_sysctl_##name)
5947 SET_SYSCTL(sched_min_granularity);
5948 SET_SYSCTL(sched_latency);
5949 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5950#undef SET_SYSCTL
5951}
55cd5340 5952
0bcdcf28
CE
5953static inline void sched_init_granularity(void)
5954{
5955 update_sysctl();
19978ca6
IM
5956}
5957
1da177e4 5958#ifdef CONFIG_SMP
1e1b6c51
KM
5959void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5960{
5961 if (p->sched_class && p->sched_class->set_cpus_allowed)
5962 p->sched_class->set_cpus_allowed(p, new_mask);
5963 else {
5964 cpumask_copy(&p->cpus_allowed, new_mask);
5965 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5966 }
5967}
5968
1da177e4
LT
5969/*
5970 * This is how migration works:
5971 *
969c7921
TH
5972 * 1) we invoke migration_cpu_stop() on the target CPU using
5973 * stop_one_cpu().
5974 * 2) stopper starts to run (implicitly forcing the migrated thread
5975 * off the CPU)
5976 * 3) it checks whether the migrated task is still in the wrong runqueue.
5977 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5978 * it and puts it into the right queue.
969c7921
TH
5979 * 5) stopper completes and stop_one_cpu() returns and the migration
5980 * is done.
1da177e4
LT
5981 */
5982
5983/*
5984 * Change a given task's CPU affinity. Migrate the thread to a
5985 * proper CPU and schedule it away if the CPU it's executing on
5986 * is removed from the allowed bitmask.
5987 *
5988 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5989 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5990 * call is not atomic; no spinlocks may be held.
5991 */
96f874e2 5992int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5993{
5994 unsigned long flags;
70b97a7f 5995 struct rq *rq;
969c7921 5996 unsigned int dest_cpu;
48f24c4d 5997 int ret = 0;
1da177e4
LT
5998
5999 rq = task_rq_lock(p, &flags);
e2912009 6000
db44fc01
YZ
6001 if (cpumask_equal(&p->cpus_allowed, new_mask))
6002 goto out;
6003
6ad4c188 6004 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6005 ret = -EINVAL;
6006 goto out;
6007 }
6008
db44fc01 6009 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6010 ret = -EINVAL;
6011 goto out;
6012 }
6013
1e1b6c51 6014 do_set_cpus_allowed(p, new_mask);
73fe6aae 6015
1da177e4 6016 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6017 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6018 goto out;
6019
969c7921 6020 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6021 if (p->on_rq) {
969c7921 6022 struct migration_arg arg = { p, dest_cpu };
1da177e4 6023 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6024 task_rq_unlock(rq, p, &flags);
969c7921 6025 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6026 tlb_migrate_finish(p->mm);
6027 return 0;
6028 }
6029out:
0122ec5b 6030 task_rq_unlock(rq, p, &flags);
48f24c4d 6031
1da177e4
LT
6032 return ret;
6033}
cd8ba7cd 6034EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6035
6036/*
41a2d6cf 6037 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6038 * this because either it can't run here any more (set_cpus_allowed()
6039 * away from this CPU, or CPU going down), or because we're
6040 * attempting to rebalance this task on exec (sched_exec).
6041 *
6042 * So we race with normal scheduler movements, but that's OK, as long
6043 * as the task is no longer on this CPU.
efc30814
KK
6044 *
6045 * Returns non-zero if task was successfully migrated.
1da177e4 6046 */
efc30814 6047static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6048{
70b97a7f 6049 struct rq *rq_dest, *rq_src;
e2912009 6050 int ret = 0;
1da177e4 6051
e761b772 6052 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6053 return ret;
1da177e4
LT
6054
6055 rq_src = cpu_rq(src_cpu);
6056 rq_dest = cpu_rq(dest_cpu);
6057
0122ec5b 6058 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6059 double_rq_lock(rq_src, rq_dest);
6060 /* Already moved. */
6061 if (task_cpu(p) != src_cpu)
b1e38734 6062 goto done;
1da177e4 6063 /* Affinity changed (again). */
96f874e2 6064 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6065 goto fail;
1da177e4 6066
e2912009
PZ
6067 /*
6068 * If we're not on a rq, the next wake-up will ensure we're
6069 * placed properly.
6070 */
fd2f4419 6071 if (p->on_rq) {
2e1cb74a 6072 deactivate_task(rq_src, p, 0);
e2912009 6073 set_task_cpu(p, dest_cpu);
dd41f596 6074 activate_task(rq_dest, p, 0);
15afe09b 6075 check_preempt_curr(rq_dest, p, 0);
1da177e4 6076 }
b1e38734 6077done:
efc30814 6078 ret = 1;
b1e38734 6079fail:
1da177e4 6080 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6081 raw_spin_unlock(&p->pi_lock);
efc30814 6082 return ret;
1da177e4
LT
6083}
6084
6085/*
969c7921
TH
6086 * migration_cpu_stop - this will be executed by a highprio stopper thread
6087 * and performs thread migration by bumping thread off CPU then
6088 * 'pushing' onto another runqueue.
1da177e4 6089 */
969c7921 6090static int migration_cpu_stop(void *data)
1da177e4 6091{
969c7921 6092 struct migration_arg *arg = data;
f7b4cddc 6093
969c7921
TH
6094 /*
6095 * The original target cpu might have gone down and we might
6096 * be on another cpu but it doesn't matter.
6097 */
f7b4cddc 6098 local_irq_disable();
969c7921 6099 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6100 local_irq_enable();
1da177e4 6101 return 0;
f7b4cddc
ON
6102}
6103
1da177e4 6104#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6105
054b9108 6106/*
48c5ccae
PZ
6107 * Ensures that the idle task is using init_mm right before its cpu goes
6108 * offline.
054b9108 6109 */
48c5ccae 6110void idle_task_exit(void)
1da177e4 6111{
48c5ccae 6112 struct mm_struct *mm = current->active_mm;
e76bd8d9 6113
48c5ccae 6114 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6115
48c5ccae
PZ
6116 if (mm != &init_mm)
6117 switch_mm(mm, &init_mm, current);
6118 mmdrop(mm);
1da177e4
LT
6119}
6120
6121/*
6122 * While a dead CPU has no uninterruptible tasks queued at this point,
6123 * it might still have a nonzero ->nr_uninterruptible counter, because
6124 * for performance reasons the counter is not stricly tracking tasks to
6125 * their home CPUs. So we just add the counter to another CPU's counter,
6126 * to keep the global sum constant after CPU-down:
6127 */
70b97a7f 6128static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6129{
6ad4c188 6130 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6131
1da177e4
LT
6132 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6133 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6134}
6135
dd41f596 6136/*
48c5ccae 6137 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6138 */
48c5ccae 6139static void calc_global_load_remove(struct rq *rq)
1da177e4 6140{
48c5ccae
PZ
6141 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6142 rq->calc_load_active = 0;
1da177e4
LT
6143}
6144
48f24c4d 6145/*
48c5ccae
PZ
6146 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6147 * try_to_wake_up()->select_task_rq().
6148 *
6149 * Called with rq->lock held even though we'er in stop_machine() and
6150 * there's no concurrency possible, we hold the required locks anyway
6151 * because of lock validation efforts.
1da177e4 6152 */
48c5ccae 6153static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6154{
70b97a7f 6155 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6156 struct task_struct *next, *stop = rq->stop;
6157 int dest_cpu;
1da177e4
LT
6158
6159 /*
48c5ccae
PZ
6160 * Fudge the rq selection such that the below task selection loop
6161 * doesn't get stuck on the currently eligible stop task.
6162 *
6163 * We're currently inside stop_machine() and the rq is either stuck
6164 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6165 * either way we should never end up calling schedule() until we're
6166 * done here.
1da177e4 6167 */
48c5ccae 6168 rq->stop = NULL;
48f24c4d 6169
dd41f596 6170 for ( ; ; ) {
48c5ccae
PZ
6171 /*
6172 * There's this thread running, bail when that's the only
6173 * remaining thread.
6174 */
6175 if (rq->nr_running == 1)
dd41f596 6176 break;
48c5ccae 6177
b67802ea 6178 next = pick_next_task(rq);
48c5ccae 6179 BUG_ON(!next);
79c53799 6180 next->sched_class->put_prev_task(rq, next);
e692ab53 6181
48c5ccae
PZ
6182 /* Find suitable destination for @next, with force if needed. */
6183 dest_cpu = select_fallback_rq(dead_cpu, next);
6184 raw_spin_unlock(&rq->lock);
6185
6186 __migrate_task(next, dead_cpu, dest_cpu);
6187
6188 raw_spin_lock(&rq->lock);
1da177e4 6189 }
dce48a84 6190
48c5ccae 6191 rq->stop = stop;
dce48a84 6192}
48c5ccae 6193
1da177e4
LT
6194#endif /* CONFIG_HOTPLUG_CPU */
6195
e692ab53
NP
6196#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6197
6198static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6199 {
6200 .procname = "sched_domain",
c57baf1e 6201 .mode = 0555,
e0361851 6202 },
56992309 6203 {}
e692ab53
NP
6204};
6205
6206static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6207 {
6208 .procname = "kernel",
c57baf1e 6209 .mode = 0555,
e0361851
AD
6210 .child = sd_ctl_dir,
6211 },
56992309 6212 {}
e692ab53
NP
6213};
6214
6215static struct ctl_table *sd_alloc_ctl_entry(int n)
6216{
6217 struct ctl_table *entry =
5cf9f062 6218 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6219
e692ab53
NP
6220 return entry;
6221}
6222
6382bc90
MM
6223static void sd_free_ctl_entry(struct ctl_table **tablep)
6224{
cd790076 6225 struct ctl_table *entry;
6382bc90 6226
cd790076
MM
6227 /*
6228 * In the intermediate directories, both the child directory and
6229 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6230 * will always be set. In the lowest directory the names are
cd790076
MM
6231 * static strings and all have proc handlers.
6232 */
6233 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6234 if (entry->child)
6235 sd_free_ctl_entry(&entry->child);
cd790076
MM
6236 if (entry->proc_handler == NULL)
6237 kfree(entry->procname);
6238 }
6382bc90
MM
6239
6240 kfree(*tablep);
6241 *tablep = NULL;
6242}
6243
e692ab53 6244static void
e0361851 6245set_table_entry(struct ctl_table *entry,
e692ab53
NP
6246 const char *procname, void *data, int maxlen,
6247 mode_t mode, proc_handler *proc_handler)
6248{
e692ab53
NP
6249 entry->procname = procname;
6250 entry->data = data;
6251 entry->maxlen = maxlen;
6252 entry->mode = mode;
6253 entry->proc_handler = proc_handler;
6254}
6255
6256static struct ctl_table *
6257sd_alloc_ctl_domain_table(struct sched_domain *sd)
6258{
a5d8c348 6259 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6260
ad1cdc1d
MM
6261 if (table == NULL)
6262 return NULL;
6263
e0361851 6264 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6265 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6266 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6267 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6268 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6269 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6270 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6271 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6272 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6273 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6274 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6275 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6276 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6277 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6278 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6279 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6280 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6281 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6282 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6283 &sd->cache_nice_tries,
6284 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6285 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6286 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6287 set_table_entry(&table[11], "name", sd->name,
6288 CORENAME_MAX_SIZE, 0444, proc_dostring);
6289 /* &table[12] is terminator */
e692ab53
NP
6290
6291 return table;
6292}
6293
9a4e7159 6294static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6295{
6296 struct ctl_table *entry, *table;
6297 struct sched_domain *sd;
6298 int domain_num = 0, i;
6299 char buf[32];
6300
6301 for_each_domain(cpu, sd)
6302 domain_num++;
6303 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6304 if (table == NULL)
6305 return NULL;
e692ab53
NP
6306
6307 i = 0;
6308 for_each_domain(cpu, sd) {
6309 snprintf(buf, 32, "domain%d", i);
e692ab53 6310 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6311 entry->mode = 0555;
e692ab53
NP
6312 entry->child = sd_alloc_ctl_domain_table(sd);
6313 entry++;
6314 i++;
6315 }
6316 return table;
6317}
6318
6319static struct ctl_table_header *sd_sysctl_header;
6382bc90 6320static void register_sched_domain_sysctl(void)
e692ab53 6321{
6ad4c188 6322 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6323 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6324 char buf[32];
6325
7378547f
MM
6326 WARN_ON(sd_ctl_dir[0].child);
6327 sd_ctl_dir[0].child = entry;
6328
ad1cdc1d
MM
6329 if (entry == NULL)
6330 return;
6331
6ad4c188 6332 for_each_possible_cpu(i) {
e692ab53 6333 snprintf(buf, 32, "cpu%d", i);
e692ab53 6334 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6335 entry->mode = 0555;
e692ab53 6336 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6337 entry++;
e692ab53 6338 }
7378547f
MM
6339
6340 WARN_ON(sd_sysctl_header);
e692ab53
NP
6341 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6342}
6382bc90 6343
7378547f 6344/* may be called multiple times per register */
6382bc90
MM
6345static void unregister_sched_domain_sysctl(void)
6346{
7378547f
MM
6347 if (sd_sysctl_header)
6348 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6349 sd_sysctl_header = NULL;
7378547f
MM
6350 if (sd_ctl_dir[0].child)
6351 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6352}
e692ab53 6353#else
6382bc90
MM
6354static void register_sched_domain_sysctl(void)
6355{
6356}
6357static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6358{
6359}
6360#endif
6361
1f11eb6a
GH
6362static void set_rq_online(struct rq *rq)
6363{
6364 if (!rq->online) {
6365 const struct sched_class *class;
6366
c6c4927b 6367 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6368 rq->online = 1;
6369
6370 for_each_class(class) {
6371 if (class->rq_online)
6372 class->rq_online(rq);
6373 }
6374 }
6375}
6376
6377static void set_rq_offline(struct rq *rq)
6378{
6379 if (rq->online) {
6380 const struct sched_class *class;
6381
6382 for_each_class(class) {
6383 if (class->rq_offline)
6384 class->rq_offline(rq);
6385 }
6386
c6c4927b 6387 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6388 rq->online = 0;
6389 }
6390}
6391
1da177e4
LT
6392/*
6393 * migration_call - callback that gets triggered when a CPU is added.
6394 * Here we can start up the necessary migration thread for the new CPU.
6395 */
48f24c4d
IM
6396static int __cpuinit
6397migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6398{
48f24c4d 6399 int cpu = (long)hcpu;
1da177e4 6400 unsigned long flags;
969c7921 6401 struct rq *rq = cpu_rq(cpu);
1da177e4 6402
48c5ccae 6403 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6404
1da177e4 6405 case CPU_UP_PREPARE:
a468d389 6406 rq->calc_load_update = calc_load_update;
1da177e4 6407 break;
48f24c4d 6408
1da177e4 6409 case CPU_ONLINE:
1f94ef59 6410 /* Update our root-domain */
05fa785c 6411 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6412 if (rq->rd) {
c6c4927b 6413 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6414
6415 set_rq_online(rq);
1f94ef59 6416 }
05fa785c 6417 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6418 break;
48f24c4d 6419
1da177e4 6420#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6421 case CPU_DYING:
317f3941 6422 sched_ttwu_pending();
57d885fe 6423 /* Update our root-domain */
05fa785c 6424 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6425 if (rq->rd) {
c6c4927b 6426 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6427 set_rq_offline(rq);
57d885fe 6428 }
48c5ccae
PZ
6429 migrate_tasks(cpu);
6430 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6431 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6432
6433 migrate_nr_uninterruptible(rq);
6434 calc_global_load_remove(rq);
57d885fe 6435 break;
1da177e4
LT
6436#endif
6437 }
49c022e6
PZ
6438
6439 update_max_interval();
6440
1da177e4
LT
6441 return NOTIFY_OK;
6442}
6443
f38b0820
PM
6444/*
6445 * Register at high priority so that task migration (migrate_all_tasks)
6446 * happens before everything else. This has to be lower priority than
cdd6c482 6447 * the notifier in the perf_event subsystem, though.
1da177e4 6448 */
26c2143b 6449static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6450 .notifier_call = migration_call,
50a323b7 6451 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6452};
6453
3a101d05
TH
6454static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6455 unsigned long action, void *hcpu)
6456{
6457 switch (action & ~CPU_TASKS_FROZEN) {
6458 case CPU_ONLINE:
6459 case CPU_DOWN_FAILED:
6460 set_cpu_active((long)hcpu, true);
6461 return NOTIFY_OK;
6462 default:
6463 return NOTIFY_DONE;
6464 }
6465}
6466
6467static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6468 unsigned long action, void *hcpu)
6469{
6470 switch (action & ~CPU_TASKS_FROZEN) {
6471 case CPU_DOWN_PREPARE:
6472 set_cpu_active((long)hcpu, false);
6473 return NOTIFY_OK;
6474 default:
6475 return NOTIFY_DONE;
6476 }
6477}
6478
7babe8db 6479static int __init migration_init(void)
1da177e4
LT
6480{
6481 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6482 int err;
48f24c4d 6483
3a101d05 6484 /* Initialize migration for the boot CPU */
07dccf33
AM
6485 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6486 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6487 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6488 register_cpu_notifier(&migration_notifier);
7babe8db 6489
3a101d05
TH
6490 /* Register cpu active notifiers */
6491 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6492 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6493
a004cd42 6494 return 0;
1da177e4 6495}
7babe8db 6496early_initcall(migration_init);
1da177e4
LT
6497#endif
6498
6499#ifdef CONFIG_SMP
476f3534 6500
4cb98839
PZ
6501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6502
3e9830dc 6503#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6504
f6630114
MT
6505static __read_mostly int sched_domain_debug_enabled;
6506
6507static int __init sched_domain_debug_setup(char *str)
6508{
6509 sched_domain_debug_enabled = 1;
6510
6511 return 0;
6512}
6513early_param("sched_debug", sched_domain_debug_setup);
6514
7c16ec58 6515static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6516 struct cpumask *groupmask)
1da177e4 6517{
4dcf6aff 6518 struct sched_group *group = sd->groups;
434d53b0 6519 char str[256];
1da177e4 6520
968ea6d8 6521 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6522 cpumask_clear(groupmask);
4dcf6aff
IM
6523
6524 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6525
6526 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6527 printk("does not load-balance\n");
4dcf6aff 6528 if (sd->parent)
3df0fc5b
PZ
6529 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6530 " has parent");
4dcf6aff 6531 return -1;
41c7ce9a
NP
6532 }
6533
3df0fc5b 6534 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6535
758b2cdc 6536 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6537 printk(KERN_ERR "ERROR: domain->span does not contain "
6538 "CPU%d\n", cpu);
4dcf6aff 6539 }
758b2cdc 6540 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6541 printk(KERN_ERR "ERROR: domain->groups does not contain"
6542 " CPU%d\n", cpu);
4dcf6aff 6543 }
1da177e4 6544
4dcf6aff 6545 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6546 do {
4dcf6aff 6547 if (!group) {
3df0fc5b
PZ
6548 printk("\n");
6549 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6550 break;
6551 }
6552
9c3f75cb 6553 if (!group->sgp->power) {
3df0fc5b
PZ
6554 printk(KERN_CONT "\n");
6555 printk(KERN_ERR "ERROR: domain->cpu_power not "
6556 "set\n");
4dcf6aff
IM
6557 break;
6558 }
1da177e4 6559
758b2cdc 6560 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6561 printk(KERN_CONT "\n");
6562 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6563 break;
6564 }
1da177e4 6565
758b2cdc 6566 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6567 printk(KERN_CONT "\n");
6568 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6569 break;
6570 }
1da177e4 6571
758b2cdc 6572 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6573
968ea6d8 6574 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6575
3df0fc5b 6576 printk(KERN_CONT " %s", str);
9c3f75cb 6577 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6578 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6579 group->sgp->power);
381512cf 6580 }
1da177e4 6581
4dcf6aff
IM
6582 group = group->next;
6583 } while (group != sd->groups);
3df0fc5b 6584 printk(KERN_CONT "\n");
1da177e4 6585
758b2cdc 6586 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6587 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6588
758b2cdc
RR
6589 if (sd->parent &&
6590 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6591 printk(KERN_ERR "ERROR: parent span is not a superset "
6592 "of domain->span\n");
4dcf6aff
IM
6593 return 0;
6594}
1da177e4 6595
4dcf6aff
IM
6596static void sched_domain_debug(struct sched_domain *sd, int cpu)
6597{
6598 int level = 0;
1da177e4 6599
f6630114
MT
6600 if (!sched_domain_debug_enabled)
6601 return;
6602
4dcf6aff
IM
6603 if (!sd) {
6604 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6605 return;
6606 }
1da177e4 6607
4dcf6aff
IM
6608 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6609
6610 for (;;) {
4cb98839 6611 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6612 break;
1da177e4
LT
6613 level++;
6614 sd = sd->parent;
33859f7f 6615 if (!sd)
4dcf6aff
IM
6616 break;
6617 }
1da177e4 6618}
6d6bc0ad 6619#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6620# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6621#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6622
1a20ff27 6623static int sd_degenerate(struct sched_domain *sd)
245af2c7 6624{
758b2cdc 6625 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6626 return 1;
6627
6628 /* Following flags need at least 2 groups */
6629 if (sd->flags & (SD_LOAD_BALANCE |
6630 SD_BALANCE_NEWIDLE |
6631 SD_BALANCE_FORK |
89c4710e
SS
6632 SD_BALANCE_EXEC |
6633 SD_SHARE_CPUPOWER |
6634 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6635 if (sd->groups != sd->groups->next)
6636 return 0;
6637 }
6638
6639 /* Following flags don't use groups */
c88d5910 6640 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6641 return 0;
6642
6643 return 1;
6644}
6645
48f24c4d
IM
6646static int
6647sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6648{
6649 unsigned long cflags = sd->flags, pflags = parent->flags;
6650
6651 if (sd_degenerate(parent))
6652 return 1;
6653
758b2cdc 6654 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6655 return 0;
6656
245af2c7
SS
6657 /* Flags needing groups don't count if only 1 group in parent */
6658 if (parent->groups == parent->groups->next) {
6659 pflags &= ~(SD_LOAD_BALANCE |
6660 SD_BALANCE_NEWIDLE |
6661 SD_BALANCE_FORK |
89c4710e
SS
6662 SD_BALANCE_EXEC |
6663 SD_SHARE_CPUPOWER |
6664 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6665 if (nr_node_ids == 1)
6666 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6667 }
6668 if (~cflags & pflags)
6669 return 0;
6670
6671 return 1;
6672}
6673
dce840a0 6674static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6675{
dce840a0 6676 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6677
68e74568 6678 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6679 free_cpumask_var(rd->rto_mask);
6680 free_cpumask_var(rd->online);
6681 free_cpumask_var(rd->span);
6682 kfree(rd);
6683}
6684
57d885fe
GH
6685static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6686{
a0490fa3 6687 struct root_domain *old_rd = NULL;
57d885fe 6688 unsigned long flags;
57d885fe 6689
05fa785c 6690 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6691
6692 if (rq->rd) {
a0490fa3 6693 old_rd = rq->rd;
57d885fe 6694
c6c4927b 6695 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6696 set_rq_offline(rq);
57d885fe 6697
c6c4927b 6698 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6699
a0490fa3
IM
6700 /*
6701 * If we dont want to free the old_rt yet then
6702 * set old_rd to NULL to skip the freeing later
6703 * in this function:
6704 */
6705 if (!atomic_dec_and_test(&old_rd->refcount))
6706 old_rd = NULL;
57d885fe
GH
6707 }
6708
6709 atomic_inc(&rd->refcount);
6710 rq->rd = rd;
6711
c6c4927b 6712 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6713 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6714 set_rq_online(rq);
57d885fe 6715
05fa785c 6716 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6717
6718 if (old_rd)
dce840a0 6719 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6720}
6721
68c38fc3 6722static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6723{
6724 memset(rd, 0, sizeof(*rd));
6725
68c38fc3 6726 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6727 goto out;
68c38fc3 6728 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6729 goto free_span;
68c38fc3 6730 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6731 goto free_online;
6e0534f2 6732
68c38fc3 6733 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6734 goto free_rto_mask;
c6c4927b 6735 return 0;
6e0534f2 6736
68e74568
RR
6737free_rto_mask:
6738 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6739free_online:
6740 free_cpumask_var(rd->online);
6741free_span:
6742 free_cpumask_var(rd->span);
0c910d28 6743out:
c6c4927b 6744 return -ENOMEM;
57d885fe
GH
6745}
6746
6747static void init_defrootdomain(void)
6748{
68c38fc3 6749 init_rootdomain(&def_root_domain);
c6c4927b 6750
57d885fe
GH
6751 atomic_set(&def_root_domain.refcount, 1);
6752}
6753
dc938520 6754static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6755{
6756 struct root_domain *rd;
6757
6758 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6759 if (!rd)
6760 return NULL;
6761
68c38fc3 6762 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6763 kfree(rd);
6764 return NULL;
6765 }
57d885fe
GH
6766
6767 return rd;
6768}
6769
e3589f6c
PZ
6770static void free_sched_groups(struct sched_group *sg, int free_sgp)
6771{
6772 struct sched_group *tmp, *first;
6773
6774 if (!sg)
6775 return;
6776
6777 first = sg;
6778 do {
6779 tmp = sg->next;
6780
6781 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6782 kfree(sg->sgp);
6783
6784 kfree(sg);
6785 sg = tmp;
6786 } while (sg != first);
6787}
6788
dce840a0
PZ
6789static void free_sched_domain(struct rcu_head *rcu)
6790{
6791 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6792
6793 /*
6794 * If its an overlapping domain it has private groups, iterate and
6795 * nuke them all.
6796 */
6797 if (sd->flags & SD_OVERLAP) {
6798 free_sched_groups(sd->groups, 1);
6799 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6800 kfree(sd->groups->sgp);
dce840a0 6801 kfree(sd->groups);
9c3f75cb 6802 }
dce840a0
PZ
6803 kfree(sd);
6804}
6805
6806static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6807{
6808 call_rcu(&sd->rcu, free_sched_domain);
6809}
6810
6811static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6812{
6813 for (; sd; sd = sd->parent)
6814 destroy_sched_domain(sd, cpu);
6815}
6816
1da177e4 6817/*
0eab9146 6818 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6819 * hold the hotplug lock.
6820 */
0eab9146
IM
6821static void
6822cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6823{
70b97a7f 6824 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6825 struct sched_domain *tmp;
6826
6827 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6828 for (tmp = sd; tmp; ) {
245af2c7
SS
6829 struct sched_domain *parent = tmp->parent;
6830 if (!parent)
6831 break;
f29c9b1c 6832
1a848870 6833 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6834 tmp->parent = parent->parent;
1a848870
SS
6835 if (parent->parent)
6836 parent->parent->child = tmp;
dce840a0 6837 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6838 } else
6839 tmp = tmp->parent;
245af2c7
SS
6840 }
6841
1a848870 6842 if (sd && sd_degenerate(sd)) {
dce840a0 6843 tmp = sd;
245af2c7 6844 sd = sd->parent;
dce840a0 6845 destroy_sched_domain(tmp, cpu);
1a848870
SS
6846 if (sd)
6847 sd->child = NULL;
6848 }
1da177e4 6849
4cb98839 6850 sched_domain_debug(sd, cpu);
1da177e4 6851
57d885fe 6852 rq_attach_root(rq, rd);
dce840a0 6853 tmp = rq->sd;
674311d5 6854 rcu_assign_pointer(rq->sd, sd);
dce840a0 6855 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6856}
6857
6858/* cpus with isolated domains */
dcc30a35 6859static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6860
6861/* Setup the mask of cpus configured for isolated domains */
6862static int __init isolated_cpu_setup(char *str)
6863{
bdddd296 6864 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6865 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6866 return 1;
6867}
6868
8927f494 6869__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6870
9c1cfda2 6871#define SD_NODES_PER_DOMAIN 16
1da177e4 6872
9c1cfda2 6873#ifdef CONFIG_NUMA
198e2f18 6874
9c1cfda2
JH
6875/**
6876 * find_next_best_node - find the next node to include in a sched_domain
6877 * @node: node whose sched_domain we're building
6878 * @used_nodes: nodes already in the sched_domain
6879 *
41a2d6cf 6880 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6881 * finds the closest node not already in the @used_nodes map.
6882 *
6883 * Should use nodemask_t.
6884 */
c5f59f08 6885static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6886{
7142d17e 6887 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
6888
6889 min_val = INT_MAX;
6890
076ac2af 6891 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6892 /* Start at @node */
076ac2af 6893 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6894
6895 if (!nr_cpus_node(n))
6896 continue;
6897
6898 /* Skip already used nodes */
c5f59f08 6899 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6900 continue;
6901
6902 /* Simple min distance search */
6903 val = node_distance(node, n);
6904
6905 if (val < min_val) {
6906 min_val = val;
6907 best_node = n;
6908 }
6909 }
6910
7142d17e
HD
6911 if (best_node != -1)
6912 node_set(best_node, *used_nodes);
9c1cfda2
JH
6913 return best_node;
6914}
6915
6916/**
6917 * sched_domain_node_span - get a cpumask for a node's sched_domain
6918 * @node: node whose cpumask we're constructing
73486722 6919 * @span: resulting cpumask
9c1cfda2 6920 *
41a2d6cf 6921 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6922 * should be one that prevents unnecessary balancing, but also spreads tasks
6923 * out optimally.
6924 */
96f874e2 6925static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6926{
c5f59f08 6927 nodemask_t used_nodes;
48f24c4d 6928 int i;
9c1cfda2 6929
6ca09dfc 6930 cpumask_clear(span);
c5f59f08 6931 nodes_clear(used_nodes);
9c1cfda2 6932
6ca09dfc 6933 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6934 node_set(node, used_nodes);
9c1cfda2
JH
6935
6936 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6937 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
6938 if (next_node < 0)
6939 break;
6ca09dfc 6940 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6941 }
9c1cfda2 6942}
d3081f52
PZ
6943
6944static const struct cpumask *cpu_node_mask(int cpu)
6945{
6946 lockdep_assert_held(&sched_domains_mutex);
6947
6948 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6949
6950 return sched_domains_tmpmask;
6951}
2c402dc3
PZ
6952
6953static const struct cpumask *cpu_allnodes_mask(int cpu)
6954{
6955 return cpu_possible_mask;
6956}
6d6bc0ad 6957#endif /* CONFIG_NUMA */
9c1cfda2 6958
d3081f52
PZ
6959static const struct cpumask *cpu_cpu_mask(int cpu)
6960{
6961 return cpumask_of_node(cpu_to_node(cpu));
6962}
6963
5c45bf27 6964int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6965
dce840a0
PZ
6966struct sd_data {
6967 struct sched_domain **__percpu sd;
6968 struct sched_group **__percpu sg;
9c3f75cb 6969 struct sched_group_power **__percpu sgp;
dce840a0
PZ
6970};
6971
49a02c51 6972struct s_data {
21d42ccf 6973 struct sched_domain ** __percpu sd;
49a02c51
AH
6974 struct root_domain *rd;
6975};
6976
2109b99e 6977enum s_alloc {
2109b99e 6978 sa_rootdomain,
21d42ccf 6979 sa_sd,
dce840a0 6980 sa_sd_storage,
2109b99e
AH
6981 sa_none,
6982};
6983
54ab4ff4
PZ
6984struct sched_domain_topology_level;
6985
6986typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6987typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6988
e3589f6c
PZ
6989#define SDTL_OVERLAP 0x01
6990
eb7a74e6 6991struct sched_domain_topology_level {
2c402dc3
PZ
6992 sched_domain_init_f init;
6993 sched_domain_mask_f mask;
e3589f6c 6994 int flags;
54ab4ff4 6995 struct sd_data data;
eb7a74e6
PZ
6996};
6997
e3589f6c
PZ
6998static int
6999build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7000{
7001 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7002 const struct cpumask *span = sched_domain_span(sd);
7003 struct cpumask *covered = sched_domains_tmpmask;
7004 struct sd_data *sdd = sd->private;
7005 struct sched_domain *child;
7006 int i;
7007
7008 cpumask_clear(covered);
7009
7010 for_each_cpu(i, span) {
7011 struct cpumask *sg_span;
7012
7013 if (cpumask_test_cpu(i, covered))
7014 continue;
7015
7016 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7017 GFP_KERNEL, cpu_to_node(i));
7018
7019 if (!sg)
7020 goto fail;
7021
7022 sg_span = sched_group_cpus(sg);
7023
7024 child = *per_cpu_ptr(sdd->sd, i);
7025 if (child->child) {
7026 child = child->child;
7027 cpumask_copy(sg_span, sched_domain_span(child));
7028 } else
7029 cpumask_set_cpu(i, sg_span);
7030
7031 cpumask_or(covered, covered, sg_span);
7032
7033 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7034 atomic_inc(&sg->sgp->ref);
7035
7036 if (cpumask_test_cpu(cpu, sg_span))
7037 groups = sg;
7038
7039 if (!first)
7040 first = sg;
7041 if (last)
7042 last->next = sg;
7043 last = sg;
7044 last->next = first;
7045 }
7046 sd->groups = groups;
7047
7048 return 0;
7049
7050fail:
7051 free_sched_groups(first, 0);
7052
7053 return -ENOMEM;
7054}
7055
dce840a0 7056static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7057{
dce840a0
PZ
7058 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7059 struct sched_domain *child = sd->child;
1da177e4 7060
dce840a0
PZ
7061 if (child)
7062 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7063
9c3f75cb 7064 if (sg) {
dce840a0 7065 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7066 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7067 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7068 }
dce840a0
PZ
7069
7070 return cpu;
1e9f28fa 7071}
1e9f28fa 7072
01a08546 7073/*
dce840a0
PZ
7074 * build_sched_groups will build a circular linked list of the groups
7075 * covered by the given span, and will set each group's ->cpumask correctly,
7076 * and ->cpu_power to 0.
e3589f6c
PZ
7077 *
7078 * Assumes the sched_domain tree is fully constructed
01a08546 7079 */
e3589f6c
PZ
7080static int
7081build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7082{
dce840a0
PZ
7083 struct sched_group *first = NULL, *last = NULL;
7084 struct sd_data *sdd = sd->private;
7085 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7086 struct cpumask *covered;
dce840a0 7087 int i;
9c1cfda2 7088
e3589f6c
PZ
7089 get_group(cpu, sdd, &sd->groups);
7090 atomic_inc(&sd->groups->ref);
7091
7092 if (cpu != cpumask_first(sched_domain_span(sd)))
7093 return 0;
7094
f96225fd
PZ
7095 lockdep_assert_held(&sched_domains_mutex);
7096 covered = sched_domains_tmpmask;
7097
dce840a0 7098 cpumask_clear(covered);
6711cab4 7099
dce840a0
PZ
7100 for_each_cpu(i, span) {
7101 struct sched_group *sg;
7102 int group = get_group(i, sdd, &sg);
7103 int j;
6711cab4 7104
dce840a0
PZ
7105 if (cpumask_test_cpu(i, covered))
7106 continue;
6711cab4 7107
dce840a0 7108 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7109 sg->sgp->power = 0;
0601a88d 7110
dce840a0
PZ
7111 for_each_cpu(j, span) {
7112 if (get_group(j, sdd, NULL) != group)
7113 continue;
0601a88d 7114
dce840a0
PZ
7115 cpumask_set_cpu(j, covered);
7116 cpumask_set_cpu(j, sched_group_cpus(sg));
7117 }
0601a88d 7118
dce840a0
PZ
7119 if (!first)
7120 first = sg;
7121 if (last)
7122 last->next = sg;
7123 last = sg;
7124 }
7125 last->next = first;
e3589f6c
PZ
7126
7127 return 0;
0601a88d 7128}
51888ca2 7129
89c4710e
SS
7130/*
7131 * Initialize sched groups cpu_power.
7132 *
7133 * cpu_power indicates the capacity of sched group, which is used while
7134 * distributing the load between different sched groups in a sched domain.
7135 * Typically cpu_power for all the groups in a sched domain will be same unless
7136 * there are asymmetries in the topology. If there are asymmetries, group
7137 * having more cpu_power will pickup more load compared to the group having
7138 * less cpu_power.
89c4710e
SS
7139 */
7140static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7141{
e3589f6c 7142 struct sched_group *sg = sd->groups;
89c4710e 7143
e3589f6c
PZ
7144 WARN_ON(!sd || !sg);
7145
7146 do {
7147 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7148 sg = sg->next;
7149 } while (sg != sd->groups);
89c4710e 7150
e3589f6c
PZ
7151 if (cpu != group_first_cpu(sg))
7152 return;
aae6d3dd 7153
d274cb30 7154 update_group_power(sd, cpu);
89c4710e
SS
7155}
7156
7c16ec58
MT
7157/*
7158 * Initializers for schedule domains
7159 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7160 */
7161
a5d8c348
IM
7162#ifdef CONFIG_SCHED_DEBUG
7163# define SD_INIT_NAME(sd, type) sd->name = #type
7164#else
7165# define SD_INIT_NAME(sd, type) do { } while (0)
7166#endif
7167
54ab4ff4
PZ
7168#define SD_INIT_FUNC(type) \
7169static noinline struct sched_domain * \
7170sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7171{ \
7172 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7173 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7174 SD_INIT_NAME(sd, type); \
7175 sd->private = &tl->data; \
7176 return sd; \
7c16ec58
MT
7177}
7178
7179SD_INIT_FUNC(CPU)
7180#ifdef CONFIG_NUMA
7181 SD_INIT_FUNC(ALLNODES)
7182 SD_INIT_FUNC(NODE)
7183#endif
7184#ifdef CONFIG_SCHED_SMT
7185 SD_INIT_FUNC(SIBLING)
7186#endif
7187#ifdef CONFIG_SCHED_MC
7188 SD_INIT_FUNC(MC)
7189#endif
01a08546
HC
7190#ifdef CONFIG_SCHED_BOOK
7191 SD_INIT_FUNC(BOOK)
7192#endif
7c16ec58 7193
1d3504fc 7194static int default_relax_domain_level = -1;
60495e77 7195int sched_domain_level_max;
1d3504fc
HS
7196
7197static int __init setup_relax_domain_level(char *str)
7198{
30e0e178
LZ
7199 unsigned long val;
7200
7201 val = simple_strtoul(str, NULL, 0);
60495e77 7202 if (val < sched_domain_level_max)
30e0e178
LZ
7203 default_relax_domain_level = val;
7204
1d3504fc
HS
7205 return 1;
7206}
7207__setup("relax_domain_level=", setup_relax_domain_level);
7208
7209static void set_domain_attribute(struct sched_domain *sd,
7210 struct sched_domain_attr *attr)
7211{
7212 int request;
7213
7214 if (!attr || attr->relax_domain_level < 0) {
7215 if (default_relax_domain_level < 0)
7216 return;
7217 else
7218 request = default_relax_domain_level;
7219 } else
7220 request = attr->relax_domain_level;
7221 if (request < sd->level) {
7222 /* turn off idle balance on this domain */
c88d5910 7223 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7224 } else {
7225 /* turn on idle balance on this domain */
c88d5910 7226 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7227 }
7228}
7229
54ab4ff4
PZ
7230static void __sdt_free(const struct cpumask *cpu_map);
7231static int __sdt_alloc(const struct cpumask *cpu_map);
7232
2109b99e
AH
7233static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7234 const struct cpumask *cpu_map)
7235{
7236 switch (what) {
2109b99e 7237 case sa_rootdomain:
822ff793
PZ
7238 if (!atomic_read(&d->rd->refcount))
7239 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7240 case sa_sd:
7241 free_percpu(d->sd); /* fall through */
dce840a0 7242 case sa_sd_storage:
54ab4ff4 7243 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7244 case sa_none:
7245 break;
7246 }
7247}
3404c8d9 7248
2109b99e
AH
7249static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7250 const struct cpumask *cpu_map)
7251{
dce840a0
PZ
7252 memset(d, 0, sizeof(*d));
7253
54ab4ff4
PZ
7254 if (__sdt_alloc(cpu_map))
7255 return sa_sd_storage;
dce840a0
PZ
7256 d->sd = alloc_percpu(struct sched_domain *);
7257 if (!d->sd)
7258 return sa_sd_storage;
2109b99e 7259 d->rd = alloc_rootdomain();
dce840a0 7260 if (!d->rd)
21d42ccf 7261 return sa_sd;
2109b99e
AH
7262 return sa_rootdomain;
7263}
57d885fe 7264
dce840a0
PZ
7265/*
7266 * NULL the sd_data elements we've used to build the sched_domain and
7267 * sched_group structure so that the subsequent __free_domain_allocs()
7268 * will not free the data we're using.
7269 */
7270static void claim_allocations(int cpu, struct sched_domain *sd)
7271{
7272 struct sd_data *sdd = sd->private;
dce840a0
PZ
7273
7274 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7275 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7276
e3589f6c 7277 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7278 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7279
7280 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7281 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7282}
7283
2c402dc3
PZ
7284#ifdef CONFIG_SCHED_SMT
7285static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7286{
2c402dc3 7287 return topology_thread_cpumask(cpu);
3bd65a80 7288}
2c402dc3 7289#endif
7f4588f3 7290
d069b916
PZ
7291/*
7292 * Topology list, bottom-up.
7293 */
2c402dc3 7294static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7295#ifdef CONFIG_SCHED_SMT
7296 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7297#endif
1e9f28fa 7298#ifdef CONFIG_SCHED_MC
2c402dc3 7299 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7300#endif
d069b916
PZ
7301#ifdef CONFIG_SCHED_BOOK
7302 { sd_init_BOOK, cpu_book_mask, },
7303#endif
7304 { sd_init_CPU, cpu_cpu_mask, },
7305#ifdef CONFIG_NUMA
e3589f6c 7306 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7307 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7308#endif
eb7a74e6
PZ
7309 { NULL, },
7310};
7311
7312static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7313
54ab4ff4
PZ
7314static int __sdt_alloc(const struct cpumask *cpu_map)
7315{
7316 struct sched_domain_topology_level *tl;
7317 int j;
7318
7319 for (tl = sched_domain_topology; tl->init; tl++) {
7320 struct sd_data *sdd = &tl->data;
7321
7322 sdd->sd = alloc_percpu(struct sched_domain *);
7323 if (!sdd->sd)
7324 return -ENOMEM;
7325
7326 sdd->sg = alloc_percpu(struct sched_group *);
7327 if (!sdd->sg)
7328 return -ENOMEM;
7329
9c3f75cb
PZ
7330 sdd->sgp = alloc_percpu(struct sched_group_power *);
7331 if (!sdd->sgp)
7332 return -ENOMEM;
7333
54ab4ff4
PZ
7334 for_each_cpu(j, cpu_map) {
7335 struct sched_domain *sd;
7336 struct sched_group *sg;
9c3f75cb 7337 struct sched_group_power *sgp;
54ab4ff4
PZ
7338
7339 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7340 GFP_KERNEL, cpu_to_node(j));
7341 if (!sd)
7342 return -ENOMEM;
7343
7344 *per_cpu_ptr(sdd->sd, j) = sd;
7345
7346 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7347 GFP_KERNEL, cpu_to_node(j));
7348 if (!sg)
7349 return -ENOMEM;
7350
7351 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7352
7353 sgp = kzalloc_node(sizeof(struct sched_group_power),
7354 GFP_KERNEL, cpu_to_node(j));
7355 if (!sgp)
7356 return -ENOMEM;
7357
7358 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7359 }
7360 }
7361
7362 return 0;
7363}
7364
7365static void __sdt_free(const struct cpumask *cpu_map)
7366{
7367 struct sched_domain_topology_level *tl;
7368 int j;
7369
7370 for (tl = sched_domain_topology; tl->init; tl++) {
7371 struct sd_data *sdd = &tl->data;
7372
7373 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7374 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7375 if (sd && (sd->flags & SD_OVERLAP))
7376 free_sched_groups(sd->groups, 0);
54ab4ff4 7377 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7378 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7379 }
7380 free_percpu(sdd->sd);
7381 free_percpu(sdd->sg);
9c3f75cb 7382 free_percpu(sdd->sgp);
54ab4ff4
PZ
7383 }
7384}
7385
2c402dc3
PZ
7386struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7387 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7388 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7389 int cpu)
7390{
54ab4ff4 7391 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7392 if (!sd)
d069b916 7393 return child;
2c402dc3
PZ
7394
7395 set_domain_attribute(sd, attr);
7396 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7397 if (child) {
7398 sd->level = child->level + 1;
7399 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7400 child->parent = sd;
60495e77 7401 }
d069b916 7402 sd->child = child;
2c402dc3
PZ
7403
7404 return sd;
7405}
7406
2109b99e
AH
7407/*
7408 * Build sched domains for a given set of cpus and attach the sched domains
7409 * to the individual cpus
7410 */
dce840a0
PZ
7411static int build_sched_domains(const struct cpumask *cpu_map,
7412 struct sched_domain_attr *attr)
2109b99e
AH
7413{
7414 enum s_alloc alloc_state = sa_none;
dce840a0 7415 struct sched_domain *sd;
2109b99e 7416 struct s_data d;
822ff793 7417 int i, ret = -ENOMEM;
9c1cfda2 7418
2109b99e
AH
7419 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7420 if (alloc_state != sa_rootdomain)
7421 goto error;
9c1cfda2 7422
dce840a0 7423 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7424 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7425 struct sched_domain_topology_level *tl;
7426
3bd65a80 7427 sd = NULL;
e3589f6c 7428 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7429 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7430 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7431 sd->flags |= SD_OVERLAP;
d110235d
PZ
7432 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7433 break;
e3589f6c 7434 }
d274cb30 7435
d069b916
PZ
7436 while (sd->child)
7437 sd = sd->child;
7438
21d42ccf 7439 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7440 }
7441
7442 /* Build the groups for the domains */
7443 for_each_cpu(i, cpu_map) {
7444 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7445 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7446 if (sd->flags & SD_OVERLAP) {
7447 if (build_overlap_sched_groups(sd, i))
7448 goto error;
7449 } else {
7450 if (build_sched_groups(sd, i))
7451 goto error;
7452 }
1cf51902 7453 }
a06dadbe 7454 }
9c1cfda2 7455
1da177e4 7456 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7457 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7458 if (!cpumask_test_cpu(i, cpu_map))
7459 continue;
9c1cfda2 7460
dce840a0
PZ
7461 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7462 claim_allocations(i, sd);
cd4ea6ae 7463 init_sched_groups_power(i, sd);
dce840a0 7464 }
f712c0c7 7465 }
9c1cfda2 7466
1da177e4 7467 /* Attach the domains */
dce840a0 7468 rcu_read_lock();
abcd083a 7469 for_each_cpu(i, cpu_map) {
21d42ccf 7470 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7471 cpu_attach_domain(sd, d.rd, i);
1da177e4 7472 }
dce840a0 7473 rcu_read_unlock();
51888ca2 7474
822ff793 7475 ret = 0;
51888ca2 7476error:
2109b99e 7477 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7478 return ret;
1da177e4 7479}
029190c5 7480
acc3f5d7 7481static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7482static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7483static struct sched_domain_attr *dattr_cur;
7484 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7485
7486/*
7487 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7488 * cpumask) fails, then fallback to a single sched domain,
7489 * as determined by the single cpumask fallback_doms.
029190c5 7490 */
4212823f 7491static cpumask_var_t fallback_doms;
029190c5 7492
ee79d1bd
HC
7493/*
7494 * arch_update_cpu_topology lets virtualized architectures update the
7495 * cpu core maps. It is supposed to return 1 if the topology changed
7496 * or 0 if it stayed the same.
7497 */
7498int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7499{
ee79d1bd 7500 return 0;
22e52b07
HC
7501}
7502
acc3f5d7
RR
7503cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7504{
7505 int i;
7506 cpumask_var_t *doms;
7507
7508 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7509 if (!doms)
7510 return NULL;
7511 for (i = 0; i < ndoms; i++) {
7512 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7513 free_sched_domains(doms, i);
7514 return NULL;
7515 }
7516 }
7517 return doms;
7518}
7519
7520void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7521{
7522 unsigned int i;
7523 for (i = 0; i < ndoms; i++)
7524 free_cpumask_var(doms[i]);
7525 kfree(doms);
7526}
7527
1a20ff27 7528/*
41a2d6cf 7529 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7530 * For now this just excludes isolated cpus, but could be used to
7531 * exclude other special cases in the future.
1a20ff27 7532 */
c4a8849a 7533static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7534{
7378547f
MM
7535 int err;
7536
22e52b07 7537 arch_update_cpu_topology();
029190c5 7538 ndoms_cur = 1;
acc3f5d7 7539 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7540 if (!doms_cur)
acc3f5d7
RR
7541 doms_cur = &fallback_doms;
7542 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7543 dattr_cur = NULL;
dce840a0 7544 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7545 register_sched_domain_sysctl();
7378547f
MM
7546
7547 return err;
1a20ff27
DG
7548}
7549
1a20ff27
DG
7550/*
7551 * Detach sched domains from a group of cpus specified in cpu_map
7552 * These cpus will now be attached to the NULL domain
7553 */
96f874e2 7554static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7555{
7556 int i;
7557
dce840a0 7558 rcu_read_lock();
abcd083a 7559 for_each_cpu(i, cpu_map)
57d885fe 7560 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7561 rcu_read_unlock();
1a20ff27
DG
7562}
7563
1d3504fc
HS
7564/* handle null as "default" */
7565static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7566 struct sched_domain_attr *new, int idx_new)
7567{
7568 struct sched_domain_attr tmp;
7569
7570 /* fast path */
7571 if (!new && !cur)
7572 return 1;
7573
7574 tmp = SD_ATTR_INIT;
7575 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7576 new ? (new + idx_new) : &tmp,
7577 sizeof(struct sched_domain_attr));
7578}
7579
029190c5
PJ
7580/*
7581 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7582 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7583 * doms_new[] to the current sched domain partitioning, doms_cur[].
7584 * It destroys each deleted domain and builds each new domain.
7585 *
acc3f5d7 7586 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7587 * The masks don't intersect (don't overlap.) We should setup one
7588 * sched domain for each mask. CPUs not in any of the cpumasks will
7589 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7590 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7591 * it as it is.
7592 *
acc3f5d7
RR
7593 * The passed in 'doms_new' should be allocated using
7594 * alloc_sched_domains. This routine takes ownership of it and will
7595 * free_sched_domains it when done with it. If the caller failed the
7596 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7597 * and partition_sched_domains() will fallback to the single partition
7598 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7599 *
96f874e2 7600 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7601 * ndoms_new == 0 is a special case for destroying existing domains,
7602 * and it will not create the default domain.
dfb512ec 7603 *
029190c5
PJ
7604 * Call with hotplug lock held
7605 */
acc3f5d7 7606void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7607 struct sched_domain_attr *dattr_new)
029190c5 7608{
dfb512ec 7609 int i, j, n;
d65bd5ec 7610 int new_topology;
029190c5 7611
712555ee 7612 mutex_lock(&sched_domains_mutex);
a1835615 7613
7378547f
MM
7614 /* always unregister in case we don't destroy any domains */
7615 unregister_sched_domain_sysctl();
7616
d65bd5ec
HC
7617 /* Let architecture update cpu core mappings. */
7618 new_topology = arch_update_cpu_topology();
7619
dfb512ec 7620 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7621
7622 /* Destroy deleted domains */
7623 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7624 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7625 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7626 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7627 goto match1;
7628 }
7629 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7630 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7631match1:
7632 ;
7633 }
7634
e761b772
MK
7635 if (doms_new == NULL) {
7636 ndoms_cur = 0;
acc3f5d7 7637 doms_new = &fallback_doms;
6ad4c188 7638 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7639 WARN_ON_ONCE(dattr_new);
e761b772
MK
7640 }
7641
029190c5
PJ
7642 /* Build new domains */
7643 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7644 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7645 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7646 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7647 goto match2;
7648 }
7649 /* no match - add a new doms_new */
dce840a0 7650 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7651match2:
7652 ;
7653 }
7654
7655 /* Remember the new sched domains */
acc3f5d7
RR
7656 if (doms_cur != &fallback_doms)
7657 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7658 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7659 doms_cur = doms_new;
1d3504fc 7660 dattr_cur = dattr_new;
029190c5 7661 ndoms_cur = ndoms_new;
7378547f
MM
7662
7663 register_sched_domain_sysctl();
a1835615 7664
712555ee 7665 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7666}
7667
5c45bf27 7668#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7669static void reinit_sched_domains(void)
5c45bf27 7670{
95402b38 7671 get_online_cpus();
dfb512ec
MK
7672
7673 /* Destroy domains first to force the rebuild */
7674 partition_sched_domains(0, NULL, NULL);
7675
e761b772 7676 rebuild_sched_domains();
95402b38 7677 put_online_cpus();
5c45bf27
SS
7678}
7679
7680static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7681{
afb8a9b7 7682 unsigned int level = 0;
5c45bf27 7683
afb8a9b7
GS
7684 if (sscanf(buf, "%u", &level) != 1)
7685 return -EINVAL;
7686
7687 /*
7688 * level is always be positive so don't check for
7689 * level < POWERSAVINGS_BALANCE_NONE which is 0
7690 * What happens on 0 or 1 byte write,
7691 * need to check for count as well?
7692 */
7693
7694 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7695 return -EINVAL;
7696
7697 if (smt)
afb8a9b7 7698 sched_smt_power_savings = level;
5c45bf27 7699 else
afb8a9b7 7700 sched_mc_power_savings = level;
5c45bf27 7701
c4a8849a 7702 reinit_sched_domains();
5c45bf27 7703
c70f22d2 7704 return count;
5c45bf27
SS
7705}
7706
5c45bf27 7707#ifdef CONFIG_SCHED_MC
f718cd4a 7708static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7709 struct sysdev_class_attribute *attr,
f718cd4a 7710 char *page)
5c45bf27
SS
7711{
7712 return sprintf(page, "%u\n", sched_mc_power_savings);
7713}
f718cd4a 7714static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7715 struct sysdev_class_attribute *attr,
48f24c4d 7716 const char *buf, size_t count)
5c45bf27
SS
7717{
7718 return sched_power_savings_store(buf, count, 0);
7719}
f718cd4a
AK
7720static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7721 sched_mc_power_savings_show,
7722 sched_mc_power_savings_store);
5c45bf27
SS
7723#endif
7724
7725#ifdef CONFIG_SCHED_SMT
f718cd4a 7726static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7727 struct sysdev_class_attribute *attr,
f718cd4a 7728 char *page)
5c45bf27
SS
7729{
7730 return sprintf(page, "%u\n", sched_smt_power_savings);
7731}
f718cd4a 7732static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7733 struct sysdev_class_attribute *attr,
48f24c4d 7734 const char *buf, size_t count)
5c45bf27
SS
7735{
7736 return sched_power_savings_store(buf, count, 1);
7737}
f718cd4a
AK
7738static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7739 sched_smt_power_savings_show,
6707de00
AB
7740 sched_smt_power_savings_store);
7741#endif
7742
39aac648 7743int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7744{
7745 int err = 0;
7746
7747#ifdef CONFIG_SCHED_SMT
7748 if (smt_capable())
7749 err = sysfs_create_file(&cls->kset.kobj,
7750 &attr_sched_smt_power_savings.attr);
7751#endif
7752#ifdef CONFIG_SCHED_MC
7753 if (!err && mc_capable())
7754 err = sysfs_create_file(&cls->kset.kobj,
7755 &attr_sched_mc_power_savings.attr);
7756#endif
7757 return err;
7758}
6d6bc0ad 7759#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7760
1da177e4 7761/*
3a101d05
TH
7762 * Update cpusets according to cpu_active mask. If cpusets are
7763 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7764 * around partition_sched_domains().
1da177e4 7765 */
0b2e918a
TH
7766static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7767 void *hcpu)
e761b772 7768{
3a101d05 7769 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7770 case CPU_ONLINE:
6ad4c188 7771 case CPU_DOWN_FAILED:
3a101d05 7772 cpuset_update_active_cpus();
e761b772 7773 return NOTIFY_OK;
3a101d05
TH
7774 default:
7775 return NOTIFY_DONE;
7776 }
7777}
e761b772 7778
0b2e918a
TH
7779static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7780 void *hcpu)
3a101d05
TH
7781{
7782 switch (action & ~CPU_TASKS_FROZEN) {
7783 case CPU_DOWN_PREPARE:
7784 cpuset_update_active_cpus();
7785 return NOTIFY_OK;
e761b772
MK
7786 default:
7787 return NOTIFY_DONE;
7788 }
7789}
e761b772
MK
7790
7791static int update_runtime(struct notifier_block *nfb,
7792 unsigned long action, void *hcpu)
1da177e4 7793{
7def2be1
PZ
7794 int cpu = (int)(long)hcpu;
7795
1da177e4 7796 switch (action) {
1da177e4 7797 case CPU_DOWN_PREPARE:
8bb78442 7798 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7799 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7800 return NOTIFY_OK;
7801
1da177e4 7802 case CPU_DOWN_FAILED:
8bb78442 7803 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7804 case CPU_ONLINE:
8bb78442 7805 case CPU_ONLINE_FROZEN:
7def2be1 7806 enable_runtime(cpu_rq(cpu));
e761b772
MK
7807 return NOTIFY_OK;
7808
1da177e4
LT
7809 default:
7810 return NOTIFY_DONE;
7811 }
1da177e4 7812}
1da177e4
LT
7813
7814void __init sched_init_smp(void)
7815{
dcc30a35
RR
7816 cpumask_var_t non_isolated_cpus;
7817
7818 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7819 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7820
95402b38 7821 get_online_cpus();
712555ee 7822 mutex_lock(&sched_domains_mutex);
c4a8849a 7823 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7824 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7825 if (cpumask_empty(non_isolated_cpus))
7826 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7827 mutex_unlock(&sched_domains_mutex);
95402b38 7828 put_online_cpus();
e761b772 7829
3a101d05
TH
7830 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7831 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7832
7833 /* RT runtime code needs to handle some hotplug events */
7834 hotcpu_notifier(update_runtime, 0);
7835
b328ca18 7836 init_hrtick();
5c1e1767
NP
7837
7838 /* Move init over to a non-isolated CPU */
dcc30a35 7839 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7840 BUG();
19978ca6 7841 sched_init_granularity();
dcc30a35 7842 free_cpumask_var(non_isolated_cpus);
4212823f 7843
0e3900e6 7844 init_sched_rt_class();
1da177e4
LT
7845}
7846#else
7847void __init sched_init_smp(void)
7848{
19978ca6 7849 sched_init_granularity();
1da177e4
LT
7850}
7851#endif /* CONFIG_SMP */
7852
cd1bb94b
AB
7853const_debug unsigned int sysctl_timer_migration = 1;
7854
1da177e4
LT
7855int in_sched_functions(unsigned long addr)
7856{
1da177e4
LT
7857 return in_lock_functions(addr) ||
7858 (addr >= (unsigned long)__sched_text_start
7859 && addr < (unsigned long)__sched_text_end);
7860}
7861
a9957449 7862static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7863{
7864 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7865 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867 cfs_rq->rq = rq;
f07333bf 7868 /* allow initial update_cfs_load() to truncate */
6ea72f12 7869#ifdef CONFIG_SMP
f07333bf 7870 cfs_rq->load_stamp = 1;
6ea72f12 7871#endif
dd41f596 7872#endif
67e9fb2a 7873 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
7874#ifndef CONFIG_64BIT
7875 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7876#endif
dd41f596
IM
7877}
7878
fa85ae24
PZ
7879static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7880{
7881 struct rt_prio_array *array;
7882 int i;
7883
7884 array = &rt_rq->active;
7885 for (i = 0; i < MAX_RT_PRIO; i++) {
7886 INIT_LIST_HEAD(array->queue + i);
7887 __clear_bit(i, array->bitmap);
7888 }
7889 /* delimiter for bitsearch: */
7890 __set_bit(MAX_RT_PRIO, array->bitmap);
7891
052f1dc7 7892#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7893 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7894#ifdef CONFIG_SMP
e864c499 7895 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7896#endif
48d5e258 7897#endif
fa85ae24
PZ
7898#ifdef CONFIG_SMP
7899 rt_rq->rt_nr_migratory = 0;
fa85ae24 7900 rt_rq->overloaded = 0;
05fa785c 7901 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7902#endif
7903
7904 rt_rq->rt_time = 0;
7905 rt_rq->rt_throttled = 0;
ac086bc2 7906 rt_rq->rt_runtime = 0;
0986b11b 7907 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7908
052f1dc7 7909#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7910 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7911 rt_rq->rq = rq;
7912#endif
fa85ae24
PZ
7913}
7914
6f505b16 7915#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7916static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7917 struct sched_entity *se, int cpu,
ec7dc8ac 7918 struct sched_entity *parent)
6f505b16 7919{
ec7dc8ac 7920 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7921 tg->cfs_rq[cpu] = cfs_rq;
7922 init_cfs_rq(cfs_rq, rq);
7923 cfs_rq->tg = tg;
6f505b16
PZ
7924
7925 tg->se[cpu] = se;
07e06b01 7926 /* se could be NULL for root_task_group */
354d60c2
DG
7927 if (!se)
7928 return;
7929
ec7dc8ac
DG
7930 if (!parent)
7931 se->cfs_rq = &rq->cfs;
7932 else
7933 se->cfs_rq = parent->my_q;
7934
6f505b16 7935 se->my_q = cfs_rq;
9437178f 7936 update_load_set(&se->load, 0);
ec7dc8ac 7937 se->parent = parent;
6f505b16 7938}
052f1dc7 7939#endif
6f505b16 7940
052f1dc7 7941#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7942static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7943 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7944 struct sched_rt_entity *parent)
6f505b16 7945{
ec7dc8ac
DG
7946 struct rq *rq = cpu_rq(cpu);
7947
6f505b16
PZ
7948 tg->rt_rq[cpu] = rt_rq;
7949 init_rt_rq(rt_rq, rq);
7950 rt_rq->tg = tg;
ac086bc2 7951 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7952
7953 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7954 if (!rt_se)
7955 return;
7956
ec7dc8ac
DG
7957 if (!parent)
7958 rt_se->rt_rq = &rq->rt;
7959 else
7960 rt_se->rt_rq = parent->my_q;
7961
6f505b16 7962 rt_se->my_q = rt_rq;
ec7dc8ac 7963 rt_se->parent = parent;
6f505b16
PZ
7964 INIT_LIST_HEAD(&rt_se->run_list);
7965}
7966#endif
7967
1da177e4
LT
7968void __init sched_init(void)
7969{
dd41f596 7970 int i, j;
434d53b0
MT
7971 unsigned long alloc_size = 0, ptr;
7972
7973#ifdef CONFIG_FAIR_GROUP_SCHED
7974 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7975#endif
7976#ifdef CONFIG_RT_GROUP_SCHED
7977 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7978#endif
df7c8e84 7979#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7980 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7981#endif
434d53b0 7982 if (alloc_size) {
36b7b6d4 7983 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7984
7985#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7986 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7987 ptr += nr_cpu_ids * sizeof(void **);
7988
07e06b01 7989 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7990 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7991
6d6bc0ad 7992#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7993#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7994 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7995 ptr += nr_cpu_ids * sizeof(void **);
7996
07e06b01 7997 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7998 ptr += nr_cpu_ids * sizeof(void **);
7999
6d6bc0ad 8000#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8001#ifdef CONFIG_CPUMASK_OFFSTACK
8002 for_each_possible_cpu(i) {
8003 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8004 ptr += cpumask_size();
8005 }
8006#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8007 }
dd41f596 8008
57d885fe
GH
8009#ifdef CONFIG_SMP
8010 init_defrootdomain();
8011#endif
8012
d0b27fa7
PZ
8013 init_rt_bandwidth(&def_rt_bandwidth,
8014 global_rt_period(), global_rt_runtime());
8015
8016#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8017 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8018 global_rt_period(), global_rt_runtime());
6d6bc0ad 8019#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8020
7c941438 8021#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8022 list_add(&root_task_group.list, &task_groups);
8023 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8024 autogroup_init(&init_task);
7c941438 8025#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8026
0a945022 8027 for_each_possible_cpu(i) {
70b97a7f 8028 struct rq *rq;
1da177e4
LT
8029
8030 rq = cpu_rq(i);
05fa785c 8031 raw_spin_lock_init(&rq->lock);
7897986b 8032 rq->nr_running = 0;
dce48a84
TG
8033 rq->calc_load_active = 0;
8034 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8035 init_cfs_rq(&rq->cfs, rq);
6f505b16 8036 init_rt_rq(&rq->rt, rq);
dd41f596 8037#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8038 root_task_group.shares = root_task_group_load;
6f505b16 8039 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8040 /*
07e06b01 8041 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8042 *
8043 * In case of task-groups formed thr' the cgroup filesystem, it
8044 * gets 100% of the cpu resources in the system. This overall
8045 * system cpu resource is divided among the tasks of
07e06b01 8046 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8047 * based on each entity's (task or task-group's) weight
8048 * (se->load.weight).
8049 *
07e06b01 8050 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8051 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8052 * then A0's share of the cpu resource is:
8053 *
0d905bca 8054 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8055 *
07e06b01
YZ
8056 * We achieve this by letting root_task_group's tasks sit
8057 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8058 */
07e06b01 8059 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8060#endif /* CONFIG_FAIR_GROUP_SCHED */
8061
8062 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8063#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8064 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8065 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8066#endif
1da177e4 8067
dd41f596
IM
8068 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8069 rq->cpu_load[j] = 0;
fdf3e95d
VP
8070
8071 rq->last_load_update_tick = jiffies;
8072
1da177e4 8073#ifdef CONFIG_SMP
41c7ce9a 8074 rq->sd = NULL;
57d885fe 8075 rq->rd = NULL;
1399fa78 8076 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8077 rq->post_schedule = 0;
1da177e4 8078 rq->active_balance = 0;
dd41f596 8079 rq->next_balance = jiffies;
1da177e4 8080 rq->push_cpu = 0;
0a2966b4 8081 rq->cpu = i;
1f11eb6a 8082 rq->online = 0;
eae0c9df
MG
8083 rq->idle_stamp = 0;
8084 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8085 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8086#ifdef CONFIG_NO_HZ
8087 rq->nohz_balance_kick = 0;
8088 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8089#endif
1da177e4 8090#endif
8f4d37ec 8091 init_rq_hrtick(rq);
1da177e4 8092 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8093 }
8094
2dd73a4f 8095 set_load_weight(&init_task);
b50f60ce 8096
e107be36
AK
8097#ifdef CONFIG_PREEMPT_NOTIFIERS
8098 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8099#endif
8100
c9819f45 8101#ifdef CONFIG_SMP
962cf36c 8102 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8103#endif
8104
b50f60ce 8105#ifdef CONFIG_RT_MUTEXES
1d615482 8106 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8107#endif
8108
1da177e4
LT
8109 /*
8110 * The boot idle thread does lazy MMU switching as well:
8111 */
8112 atomic_inc(&init_mm.mm_count);
8113 enter_lazy_tlb(&init_mm, current);
8114
8115 /*
8116 * Make us the idle thread. Technically, schedule() should not be
8117 * called from this thread, however somewhere below it might be,
8118 * but because we are the idle thread, we just pick up running again
8119 * when this runqueue becomes "idle".
8120 */
8121 init_idle(current, smp_processor_id());
dce48a84
TG
8122
8123 calc_load_update = jiffies + LOAD_FREQ;
8124
dd41f596
IM
8125 /*
8126 * During early bootup we pretend to be a normal task:
8127 */
8128 current->sched_class = &fair_sched_class;
6892b75e 8129
6a7b3dc3 8130 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8131 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8132#ifdef CONFIG_SMP
4cb98839 8133 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8134#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8135 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8136 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8137 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8138 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8139 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8140#endif
bdddd296
RR
8141 /* May be allocated at isolcpus cmdline parse time */
8142 if (cpu_isolated_map == NULL)
8143 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8144#endif /* SMP */
6a7b3dc3 8145
6892b75e 8146 scheduler_running = 1;
1da177e4
LT
8147}
8148
d902db1e 8149#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8150static inline int preempt_count_equals(int preempt_offset)
8151{
234da7bc 8152 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8153
4ba8216c 8154 return (nested == preempt_offset);
e4aafea2
FW
8155}
8156
d894837f 8157void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8158{
1da177e4
LT
8159 static unsigned long prev_jiffy; /* ratelimiting */
8160
e4aafea2
FW
8161 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8162 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8163 return;
8164 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8165 return;
8166 prev_jiffy = jiffies;
8167
3df0fc5b
PZ
8168 printk(KERN_ERR
8169 "BUG: sleeping function called from invalid context at %s:%d\n",
8170 file, line);
8171 printk(KERN_ERR
8172 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8173 in_atomic(), irqs_disabled(),
8174 current->pid, current->comm);
aef745fc
IM
8175
8176 debug_show_held_locks(current);
8177 if (irqs_disabled())
8178 print_irqtrace_events(current);
8179 dump_stack();
1da177e4
LT
8180}
8181EXPORT_SYMBOL(__might_sleep);
8182#endif
8183
8184#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8185static void normalize_task(struct rq *rq, struct task_struct *p)
8186{
da7a735e
PZ
8187 const struct sched_class *prev_class = p->sched_class;
8188 int old_prio = p->prio;
3a5e4dc1 8189 int on_rq;
3e51f33f 8190
fd2f4419 8191 on_rq = p->on_rq;
3a5e4dc1
AK
8192 if (on_rq)
8193 deactivate_task(rq, p, 0);
8194 __setscheduler(rq, p, SCHED_NORMAL, 0);
8195 if (on_rq) {
8196 activate_task(rq, p, 0);
8197 resched_task(rq->curr);
8198 }
da7a735e
PZ
8199
8200 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8201}
8202
1da177e4
LT
8203void normalize_rt_tasks(void)
8204{
a0f98a1c 8205 struct task_struct *g, *p;
1da177e4 8206 unsigned long flags;
70b97a7f 8207 struct rq *rq;
1da177e4 8208
4cf5d77a 8209 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8210 do_each_thread(g, p) {
178be793
IM
8211 /*
8212 * Only normalize user tasks:
8213 */
8214 if (!p->mm)
8215 continue;
8216
6cfb0d5d 8217 p->se.exec_start = 0;
6cfb0d5d 8218#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8219 p->se.statistics.wait_start = 0;
8220 p->se.statistics.sleep_start = 0;
8221 p->se.statistics.block_start = 0;
6cfb0d5d 8222#endif
dd41f596
IM
8223
8224 if (!rt_task(p)) {
8225 /*
8226 * Renice negative nice level userspace
8227 * tasks back to 0:
8228 */
8229 if (TASK_NICE(p) < 0 && p->mm)
8230 set_user_nice(p, 0);
1da177e4 8231 continue;
dd41f596 8232 }
1da177e4 8233
1d615482 8234 raw_spin_lock(&p->pi_lock);
b29739f9 8235 rq = __task_rq_lock(p);
1da177e4 8236
178be793 8237 normalize_task(rq, p);
3a5e4dc1 8238
b29739f9 8239 __task_rq_unlock(rq);
1d615482 8240 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8241 } while_each_thread(g, p);
8242
4cf5d77a 8243 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8244}
8245
8246#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8247
67fc4e0c 8248#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8249/*
67fc4e0c 8250 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8251 *
8252 * They can only be called when the whole system has been
8253 * stopped - every CPU needs to be quiescent, and no scheduling
8254 * activity can take place. Using them for anything else would
8255 * be a serious bug, and as a result, they aren't even visible
8256 * under any other configuration.
8257 */
8258
8259/**
8260 * curr_task - return the current task for a given cpu.
8261 * @cpu: the processor in question.
8262 *
8263 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8264 */
36c8b586 8265struct task_struct *curr_task(int cpu)
1df5c10a
LT
8266{
8267 return cpu_curr(cpu);
8268}
8269
67fc4e0c
JW
8270#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8271
8272#ifdef CONFIG_IA64
1df5c10a
LT
8273/**
8274 * set_curr_task - set the current task for a given cpu.
8275 * @cpu: the processor in question.
8276 * @p: the task pointer to set.
8277 *
8278 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8279 * are serviced on a separate stack. It allows the architecture to switch the
8280 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8281 * must be called with all CPU's synchronized, and interrupts disabled, the
8282 * and caller must save the original value of the current task (see
8283 * curr_task() above) and restore that value before reenabling interrupts and
8284 * re-starting the system.
8285 *
8286 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8287 */
36c8b586 8288void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8289{
8290 cpu_curr(cpu) = p;
8291}
8292
8293#endif
29f59db3 8294
bccbe08a
PZ
8295#ifdef CONFIG_FAIR_GROUP_SCHED
8296static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8297{
8298 int i;
8299
8300 for_each_possible_cpu(i) {
8301 if (tg->cfs_rq)
8302 kfree(tg->cfs_rq[i]);
8303 if (tg->se)
8304 kfree(tg->se[i]);
6f505b16
PZ
8305 }
8306
8307 kfree(tg->cfs_rq);
8308 kfree(tg->se);
6f505b16
PZ
8309}
8310
ec7dc8ac
DG
8311static
8312int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8313{
29f59db3 8314 struct cfs_rq *cfs_rq;
eab17229 8315 struct sched_entity *se;
29f59db3
SV
8316 int i;
8317
434d53b0 8318 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8319 if (!tg->cfs_rq)
8320 goto err;
434d53b0 8321 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8322 if (!tg->se)
8323 goto err;
052f1dc7
PZ
8324
8325 tg->shares = NICE_0_LOAD;
29f59db3
SV
8326
8327 for_each_possible_cpu(i) {
eab17229
LZ
8328 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8329 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8330 if (!cfs_rq)
8331 goto err;
8332
eab17229
LZ
8333 se = kzalloc_node(sizeof(struct sched_entity),
8334 GFP_KERNEL, cpu_to_node(i));
29f59db3 8335 if (!se)
dfc12eb2 8336 goto err_free_rq;
29f59db3 8337
3d4b47b4 8338 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8339 }
8340
8341 return 1;
8342
49246274 8343err_free_rq:
dfc12eb2 8344 kfree(cfs_rq);
49246274 8345err:
bccbe08a
PZ
8346 return 0;
8347}
8348
bccbe08a
PZ
8349static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8350{
3d4b47b4
PZ
8351 struct rq *rq = cpu_rq(cpu);
8352 unsigned long flags;
3d4b47b4
PZ
8353
8354 /*
8355 * Only empty task groups can be destroyed; so we can speculatively
8356 * check on_list without danger of it being re-added.
8357 */
8358 if (!tg->cfs_rq[cpu]->on_list)
8359 return;
8360
8361 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8362 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8363 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8364}
6d6bc0ad 8365#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8366static inline void free_fair_sched_group(struct task_group *tg)
8367{
8368}
8369
ec7dc8ac
DG
8370static inline
8371int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8372{
8373 return 1;
8374}
8375
bccbe08a
PZ
8376static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8377{
8378}
6d6bc0ad 8379#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8380
8381#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8382static void free_rt_sched_group(struct task_group *tg)
8383{
8384 int i;
8385
d0b27fa7
PZ
8386 destroy_rt_bandwidth(&tg->rt_bandwidth);
8387
bccbe08a
PZ
8388 for_each_possible_cpu(i) {
8389 if (tg->rt_rq)
8390 kfree(tg->rt_rq[i]);
8391 if (tg->rt_se)
8392 kfree(tg->rt_se[i]);
8393 }
8394
8395 kfree(tg->rt_rq);
8396 kfree(tg->rt_se);
8397}
8398
ec7dc8ac
DG
8399static
8400int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8401{
8402 struct rt_rq *rt_rq;
eab17229 8403 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8404 int i;
8405
434d53b0 8406 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8407 if (!tg->rt_rq)
8408 goto err;
434d53b0 8409 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8410 if (!tg->rt_se)
8411 goto err;
8412
d0b27fa7
PZ
8413 init_rt_bandwidth(&tg->rt_bandwidth,
8414 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8415
8416 for_each_possible_cpu(i) {
eab17229
LZ
8417 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8418 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8419 if (!rt_rq)
8420 goto err;
29f59db3 8421
eab17229
LZ
8422 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8423 GFP_KERNEL, cpu_to_node(i));
6f505b16 8424 if (!rt_se)
dfc12eb2 8425 goto err_free_rq;
29f59db3 8426
3d4b47b4 8427 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8428 }
8429
bccbe08a
PZ
8430 return 1;
8431
49246274 8432err_free_rq:
dfc12eb2 8433 kfree(rt_rq);
49246274 8434err:
bccbe08a
PZ
8435 return 0;
8436}
6d6bc0ad 8437#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8438static inline void free_rt_sched_group(struct task_group *tg)
8439{
8440}
8441
ec7dc8ac
DG
8442static inline
8443int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8444{
8445 return 1;
8446}
6d6bc0ad 8447#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8448
7c941438 8449#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8450static void free_sched_group(struct task_group *tg)
8451{
8452 free_fair_sched_group(tg);
8453 free_rt_sched_group(tg);
e9aa1dd1 8454 autogroup_free(tg);
bccbe08a
PZ
8455 kfree(tg);
8456}
8457
8458/* allocate runqueue etc for a new task group */
ec7dc8ac 8459struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8460{
8461 struct task_group *tg;
8462 unsigned long flags;
bccbe08a
PZ
8463
8464 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8465 if (!tg)
8466 return ERR_PTR(-ENOMEM);
8467
ec7dc8ac 8468 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8469 goto err;
8470
ec7dc8ac 8471 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8472 goto err;
8473
8ed36996 8474 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8475 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8476
8477 WARN_ON(!parent); /* root should already exist */
8478
8479 tg->parent = parent;
f473aa5e 8480 INIT_LIST_HEAD(&tg->children);
09f2724a 8481 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8482 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8483
9b5b7751 8484 return tg;
29f59db3
SV
8485
8486err:
6f505b16 8487 free_sched_group(tg);
29f59db3
SV
8488 return ERR_PTR(-ENOMEM);
8489}
8490
9b5b7751 8491/* rcu callback to free various structures associated with a task group */
6f505b16 8492static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8493{
29f59db3 8494 /* now it should be safe to free those cfs_rqs */
6f505b16 8495 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8496}
8497
9b5b7751 8498/* Destroy runqueue etc associated with a task group */
4cf86d77 8499void sched_destroy_group(struct task_group *tg)
29f59db3 8500{
8ed36996 8501 unsigned long flags;
9b5b7751 8502 int i;
29f59db3 8503
3d4b47b4
PZ
8504 /* end participation in shares distribution */
8505 for_each_possible_cpu(i)
bccbe08a 8506 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8507
8508 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8509 list_del_rcu(&tg->list);
f473aa5e 8510 list_del_rcu(&tg->siblings);
8ed36996 8511 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8512
9b5b7751 8513 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8514 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8515}
8516
9b5b7751 8517/* change task's runqueue when it moves between groups.
3a252015
IM
8518 * The caller of this function should have put the task in its new group
8519 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8520 * reflect its new group.
9b5b7751
SV
8521 */
8522void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8523{
8524 int on_rq, running;
8525 unsigned long flags;
8526 struct rq *rq;
8527
8528 rq = task_rq_lock(tsk, &flags);
8529
051a1d1a 8530 running = task_current(rq, tsk);
fd2f4419 8531 on_rq = tsk->on_rq;
29f59db3 8532
0e1f3483 8533 if (on_rq)
29f59db3 8534 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8535 if (unlikely(running))
8536 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8537
810b3817 8538#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8539 if (tsk->sched_class->task_move_group)
8540 tsk->sched_class->task_move_group(tsk, on_rq);
8541 else
810b3817 8542#endif
b2b5ce02 8543 set_task_rq(tsk, task_cpu(tsk));
810b3817 8544
0e1f3483
HS
8545 if (unlikely(running))
8546 tsk->sched_class->set_curr_task(rq);
8547 if (on_rq)
371fd7e7 8548 enqueue_task(rq, tsk, 0);
29f59db3 8549
0122ec5b 8550 task_rq_unlock(rq, tsk, &flags);
29f59db3 8551}
7c941438 8552#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8553
052f1dc7 8554#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8555static DEFINE_MUTEX(shares_mutex);
8556
4cf86d77 8557int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8558{
8559 int i;
8ed36996 8560 unsigned long flags;
c61935fd 8561
ec7dc8ac
DG
8562 /*
8563 * We can't change the weight of the root cgroup.
8564 */
8565 if (!tg->se[0])
8566 return -EINVAL;
8567
cd62287e 8568 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8569
8ed36996 8570 mutex_lock(&shares_mutex);
9b5b7751 8571 if (tg->shares == shares)
5cb350ba 8572 goto done;
29f59db3 8573
9b5b7751 8574 tg->shares = shares;
c09595f6 8575 for_each_possible_cpu(i) {
9437178f
PT
8576 struct rq *rq = cpu_rq(i);
8577 struct sched_entity *se;
8578
8579 se = tg->se[i];
8580 /* Propagate contribution to hierarchy */
8581 raw_spin_lock_irqsave(&rq->lock, flags);
8582 for_each_sched_entity(se)
6d5ab293 8583 update_cfs_shares(group_cfs_rq(se));
9437178f 8584 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8585 }
29f59db3 8586
5cb350ba 8587done:
8ed36996 8588 mutex_unlock(&shares_mutex);
9b5b7751 8589 return 0;
29f59db3
SV
8590}
8591
5cb350ba
DG
8592unsigned long sched_group_shares(struct task_group *tg)
8593{
8594 return tg->shares;
8595}
052f1dc7 8596#endif
5cb350ba 8597
052f1dc7 8598#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8599/*
9f0c1e56 8600 * Ensure that the real time constraints are schedulable.
6f505b16 8601 */
9f0c1e56
PZ
8602static DEFINE_MUTEX(rt_constraints_mutex);
8603
8604static unsigned long to_ratio(u64 period, u64 runtime)
8605{
8606 if (runtime == RUNTIME_INF)
9a7e0b18 8607 return 1ULL << 20;
9f0c1e56 8608
9a7e0b18 8609 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8610}
8611
9a7e0b18
PZ
8612/* Must be called with tasklist_lock held */
8613static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8614{
9a7e0b18 8615 struct task_struct *g, *p;
b40b2e8e 8616
9a7e0b18
PZ
8617 do_each_thread(g, p) {
8618 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8619 return 1;
8620 } while_each_thread(g, p);
b40b2e8e 8621
9a7e0b18
PZ
8622 return 0;
8623}
b40b2e8e 8624
9a7e0b18
PZ
8625struct rt_schedulable_data {
8626 struct task_group *tg;
8627 u64 rt_period;
8628 u64 rt_runtime;
8629};
b40b2e8e 8630
9a7e0b18
PZ
8631static int tg_schedulable(struct task_group *tg, void *data)
8632{
8633 struct rt_schedulable_data *d = data;
8634 struct task_group *child;
8635 unsigned long total, sum = 0;
8636 u64 period, runtime;
b40b2e8e 8637
9a7e0b18
PZ
8638 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8639 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8640
9a7e0b18
PZ
8641 if (tg == d->tg) {
8642 period = d->rt_period;
8643 runtime = d->rt_runtime;
b40b2e8e 8644 }
b40b2e8e 8645
4653f803
PZ
8646 /*
8647 * Cannot have more runtime than the period.
8648 */
8649 if (runtime > period && runtime != RUNTIME_INF)
8650 return -EINVAL;
6f505b16 8651
4653f803
PZ
8652 /*
8653 * Ensure we don't starve existing RT tasks.
8654 */
9a7e0b18
PZ
8655 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8656 return -EBUSY;
6f505b16 8657
9a7e0b18 8658 total = to_ratio(period, runtime);
6f505b16 8659
4653f803
PZ
8660 /*
8661 * Nobody can have more than the global setting allows.
8662 */
8663 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8664 return -EINVAL;
6f505b16 8665
4653f803
PZ
8666 /*
8667 * The sum of our children's runtime should not exceed our own.
8668 */
9a7e0b18
PZ
8669 list_for_each_entry_rcu(child, &tg->children, siblings) {
8670 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8671 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8672
9a7e0b18
PZ
8673 if (child == d->tg) {
8674 period = d->rt_period;
8675 runtime = d->rt_runtime;
8676 }
6f505b16 8677
9a7e0b18 8678 sum += to_ratio(period, runtime);
9f0c1e56 8679 }
6f505b16 8680
9a7e0b18
PZ
8681 if (sum > total)
8682 return -EINVAL;
8683
8684 return 0;
6f505b16
PZ
8685}
8686
9a7e0b18 8687static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8688{
9a7e0b18
PZ
8689 struct rt_schedulable_data data = {
8690 .tg = tg,
8691 .rt_period = period,
8692 .rt_runtime = runtime,
8693 };
8694
8695 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8696}
8697
d0b27fa7
PZ
8698static int tg_set_bandwidth(struct task_group *tg,
8699 u64 rt_period, u64 rt_runtime)
6f505b16 8700{
ac086bc2 8701 int i, err = 0;
9f0c1e56 8702
9f0c1e56 8703 mutex_lock(&rt_constraints_mutex);
521f1a24 8704 read_lock(&tasklist_lock);
9a7e0b18
PZ
8705 err = __rt_schedulable(tg, rt_period, rt_runtime);
8706 if (err)
9f0c1e56 8707 goto unlock;
ac086bc2 8708
0986b11b 8709 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8710 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8711 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8712
8713 for_each_possible_cpu(i) {
8714 struct rt_rq *rt_rq = tg->rt_rq[i];
8715
0986b11b 8716 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8717 rt_rq->rt_runtime = rt_runtime;
0986b11b 8718 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8719 }
0986b11b 8720 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8721unlock:
521f1a24 8722 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8723 mutex_unlock(&rt_constraints_mutex);
8724
8725 return err;
6f505b16
PZ
8726}
8727
d0b27fa7
PZ
8728int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8729{
8730 u64 rt_runtime, rt_period;
8731
8732 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8733 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8734 if (rt_runtime_us < 0)
8735 rt_runtime = RUNTIME_INF;
8736
8737 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8738}
8739
9f0c1e56
PZ
8740long sched_group_rt_runtime(struct task_group *tg)
8741{
8742 u64 rt_runtime_us;
8743
d0b27fa7 8744 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8745 return -1;
8746
d0b27fa7 8747 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8748 do_div(rt_runtime_us, NSEC_PER_USEC);
8749 return rt_runtime_us;
8750}
d0b27fa7
PZ
8751
8752int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8753{
8754 u64 rt_runtime, rt_period;
8755
8756 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8757 rt_runtime = tg->rt_bandwidth.rt_runtime;
8758
619b0488
R
8759 if (rt_period == 0)
8760 return -EINVAL;
8761
d0b27fa7
PZ
8762 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8763}
8764
8765long sched_group_rt_period(struct task_group *tg)
8766{
8767 u64 rt_period_us;
8768
8769 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8770 do_div(rt_period_us, NSEC_PER_USEC);
8771 return rt_period_us;
8772}
8773
8774static int sched_rt_global_constraints(void)
8775{
4653f803 8776 u64 runtime, period;
d0b27fa7
PZ
8777 int ret = 0;
8778
ec5d4989
HS
8779 if (sysctl_sched_rt_period <= 0)
8780 return -EINVAL;
8781
4653f803
PZ
8782 runtime = global_rt_runtime();
8783 period = global_rt_period();
8784
8785 /*
8786 * Sanity check on the sysctl variables.
8787 */
8788 if (runtime > period && runtime != RUNTIME_INF)
8789 return -EINVAL;
10b612f4 8790
d0b27fa7 8791 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8792 read_lock(&tasklist_lock);
4653f803 8793 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8794 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8795 mutex_unlock(&rt_constraints_mutex);
8796
8797 return ret;
8798}
54e99124
DG
8799
8800int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8801{
8802 /* Don't accept realtime tasks when there is no way for them to run */
8803 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8804 return 0;
8805
8806 return 1;
8807}
8808
6d6bc0ad 8809#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8810static int sched_rt_global_constraints(void)
8811{
ac086bc2
PZ
8812 unsigned long flags;
8813 int i;
8814
ec5d4989
HS
8815 if (sysctl_sched_rt_period <= 0)
8816 return -EINVAL;
8817
60aa605d
PZ
8818 /*
8819 * There's always some RT tasks in the root group
8820 * -- migration, kstopmachine etc..
8821 */
8822 if (sysctl_sched_rt_runtime == 0)
8823 return -EBUSY;
8824
0986b11b 8825 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8826 for_each_possible_cpu(i) {
8827 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8828
0986b11b 8829 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8830 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8831 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8832 }
0986b11b 8833 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8834
d0b27fa7
PZ
8835 return 0;
8836}
6d6bc0ad 8837#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8838
8839int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8840 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8841 loff_t *ppos)
8842{
8843 int ret;
8844 int old_period, old_runtime;
8845 static DEFINE_MUTEX(mutex);
8846
8847 mutex_lock(&mutex);
8848 old_period = sysctl_sched_rt_period;
8849 old_runtime = sysctl_sched_rt_runtime;
8850
8d65af78 8851 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8852
8853 if (!ret && write) {
8854 ret = sched_rt_global_constraints();
8855 if (ret) {
8856 sysctl_sched_rt_period = old_period;
8857 sysctl_sched_rt_runtime = old_runtime;
8858 } else {
8859 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8860 def_rt_bandwidth.rt_period =
8861 ns_to_ktime(global_rt_period());
8862 }
8863 }
8864 mutex_unlock(&mutex);
8865
8866 return ret;
8867}
68318b8e 8868
052f1dc7 8869#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8870
8871/* return corresponding task_group object of a cgroup */
2b01dfe3 8872static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8873{
2b01dfe3
PM
8874 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8875 struct task_group, css);
68318b8e
SV
8876}
8877
8878static struct cgroup_subsys_state *
2b01dfe3 8879cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8880{
ec7dc8ac 8881 struct task_group *tg, *parent;
68318b8e 8882
2b01dfe3 8883 if (!cgrp->parent) {
68318b8e 8884 /* This is early initialization for the top cgroup */
07e06b01 8885 return &root_task_group.css;
68318b8e
SV
8886 }
8887
ec7dc8ac
DG
8888 parent = cgroup_tg(cgrp->parent);
8889 tg = sched_create_group(parent);
68318b8e
SV
8890 if (IS_ERR(tg))
8891 return ERR_PTR(-ENOMEM);
8892
68318b8e
SV
8893 return &tg->css;
8894}
8895
41a2d6cf
IM
8896static void
8897cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8898{
2b01dfe3 8899 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8900
8901 sched_destroy_group(tg);
8902}
8903
41a2d6cf 8904static int
be367d09 8905cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8906{
b68aa230 8907#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8908 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8909 return -EINVAL;
8910#else
68318b8e
SV
8911 /* We don't support RT-tasks being in separate groups */
8912 if (tsk->sched_class != &fair_sched_class)
8913 return -EINVAL;
b68aa230 8914#endif
be367d09
BB
8915 return 0;
8916}
68318b8e 8917
68318b8e 8918static void
f780bdb7 8919cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
8920{
8921 sched_move_task(tsk);
8922}
8923
068c5cc5 8924static void
d41d5a01
PZ
8925cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8926 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8927{
8928 /*
8929 * cgroup_exit() is called in the copy_process() failure path.
8930 * Ignore this case since the task hasn't ran yet, this avoids
8931 * trying to poke a half freed task state from generic code.
8932 */
8933 if (!(task->flags & PF_EXITING))
8934 return;
8935
8936 sched_move_task(task);
8937}
8938
052f1dc7 8939#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8940static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8941 u64 shareval)
68318b8e 8942{
c8b28116 8943 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
8944}
8945
f4c753b7 8946static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8947{
2b01dfe3 8948 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 8949
c8b28116 8950 return (u64) scale_load_down(tg->shares);
68318b8e 8951}
6d6bc0ad 8952#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8953
052f1dc7 8954#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8955static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8956 s64 val)
6f505b16 8957{
06ecb27c 8958 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8959}
8960
06ecb27c 8961static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8962{
06ecb27c 8963 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8964}
d0b27fa7
PZ
8965
8966static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8967 u64 rt_period_us)
8968{
8969 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8970}
8971
8972static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8973{
8974 return sched_group_rt_period(cgroup_tg(cgrp));
8975}
6d6bc0ad 8976#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8977
fe5c7cc2 8978static struct cftype cpu_files[] = {
052f1dc7 8979#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8980 {
8981 .name = "shares",
f4c753b7
PM
8982 .read_u64 = cpu_shares_read_u64,
8983 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8984 },
052f1dc7
PZ
8985#endif
8986#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8987 {
9f0c1e56 8988 .name = "rt_runtime_us",
06ecb27c
PM
8989 .read_s64 = cpu_rt_runtime_read,
8990 .write_s64 = cpu_rt_runtime_write,
6f505b16 8991 },
d0b27fa7
PZ
8992 {
8993 .name = "rt_period_us",
f4c753b7
PM
8994 .read_u64 = cpu_rt_period_read_uint,
8995 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8996 },
052f1dc7 8997#endif
68318b8e
SV
8998};
8999
9000static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9001{
fe5c7cc2 9002 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9003}
9004
9005struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9006 .name = "cpu",
9007 .create = cpu_cgroup_create,
9008 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9009 .can_attach_task = cpu_cgroup_can_attach_task,
9010 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9011 .exit = cpu_cgroup_exit,
38605cae
IM
9012 .populate = cpu_cgroup_populate,
9013 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9014 .early_init = 1,
9015};
9016
052f1dc7 9017#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9018
9019#ifdef CONFIG_CGROUP_CPUACCT
9020
9021/*
9022 * CPU accounting code for task groups.
9023 *
9024 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9025 * (balbir@in.ibm.com).
9026 */
9027
934352f2 9028/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9029struct cpuacct {
9030 struct cgroup_subsys_state css;
9031 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9032 u64 __percpu *cpuusage;
ef12fefa 9033 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9034 struct cpuacct *parent;
d842de87
SV
9035};
9036
9037struct cgroup_subsys cpuacct_subsys;
9038
9039/* return cpu accounting group corresponding to this container */
32cd756a 9040static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9041{
32cd756a 9042 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9043 struct cpuacct, css);
9044}
9045
9046/* return cpu accounting group to which this task belongs */
9047static inline struct cpuacct *task_ca(struct task_struct *tsk)
9048{
9049 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9050 struct cpuacct, css);
9051}
9052
9053/* create a new cpu accounting group */
9054static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9055 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9056{
9057 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9058 int i;
d842de87
SV
9059
9060 if (!ca)
ef12fefa 9061 goto out;
d842de87
SV
9062
9063 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9064 if (!ca->cpuusage)
9065 goto out_free_ca;
9066
9067 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9068 if (percpu_counter_init(&ca->cpustat[i], 0))
9069 goto out_free_counters;
d842de87 9070
934352f2
BR
9071 if (cgrp->parent)
9072 ca->parent = cgroup_ca(cgrp->parent);
9073
d842de87 9074 return &ca->css;
ef12fefa
BR
9075
9076out_free_counters:
9077 while (--i >= 0)
9078 percpu_counter_destroy(&ca->cpustat[i]);
9079 free_percpu(ca->cpuusage);
9080out_free_ca:
9081 kfree(ca);
9082out:
9083 return ERR_PTR(-ENOMEM);
d842de87
SV
9084}
9085
9086/* destroy an existing cpu accounting group */
41a2d6cf 9087static void
32cd756a 9088cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9089{
32cd756a 9090 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9091 int i;
d842de87 9092
ef12fefa
BR
9093 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9094 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9095 free_percpu(ca->cpuusage);
9096 kfree(ca);
9097}
9098
720f5498
KC
9099static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9100{
b36128c8 9101 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9102 u64 data;
9103
9104#ifndef CONFIG_64BIT
9105 /*
9106 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9107 */
05fa785c 9108 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9109 data = *cpuusage;
05fa785c 9110 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9111#else
9112 data = *cpuusage;
9113#endif
9114
9115 return data;
9116}
9117
9118static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9119{
b36128c8 9120 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9121
9122#ifndef CONFIG_64BIT
9123 /*
9124 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9125 */
05fa785c 9126 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9127 *cpuusage = val;
05fa785c 9128 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9129#else
9130 *cpuusage = val;
9131#endif
9132}
9133
d842de87 9134/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9135static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9136{
32cd756a 9137 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9138 u64 totalcpuusage = 0;
9139 int i;
9140
720f5498
KC
9141 for_each_present_cpu(i)
9142 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9143
9144 return totalcpuusage;
9145}
9146
0297b803
DG
9147static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9148 u64 reset)
9149{
9150 struct cpuacct *ca = cgroup_ca(cgrp);
9151 int err = 0;
9152 int i;
9153
9154 if (reset) {
9155 err = -EINVAL;
9156 goto out;
9157 }
9158
720f5498
KC
9159 for_each_present_cpu(i)
9160 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9161
0297b803
DG
9162out:
9163 return err;
9164}
9165
e9515c3c
KC
9166static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9167 struct seq_file *m)
9168{
9169 struct cpuacct *ca = cgroup_ca(cgroup);
9170 u64 percpu;
9171 int i;
9172
9173 for_each_present_cpu(i) {
9174 percpu = cpuacct_cpuusage_read(ca, i);
9175 seq_printf(m, "%llu ", (unsigned long long) percpu);
9176 }
9177 seq_printf(m, "\n");
9178 return 0;
9179}
9180
ef12fefa
BR
9181static const char *cpuacct_stat_desc[] = {
9182 [CPUACCT_STAT_USER] = "user",
9183 [CPUACCT_STAT_SYSTEM] = "system",
9184};
9185
9186static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9187 struct cgroup_map_cb *cb)
9188{
9189 struct cpuacct *ca = cgroup_ca(cgrp);
9190 int i;
9191
9192 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9193 s64 val = percpu_counter_read(&ca->cpustat[i]);
9194 val = cputime64_to_clock_t(val);
9195 cb->fill(cb, cpuacct_stat_desc[i], val);
9196 }
9197 return 0;
9198}
9199
d842de87
SV
9200static struct cftype files[] = {
9201 {
9202 .name = "usage",
f4c753b7
PM
9203 .read_u64 = cpuusage_read,
9204 .write_u64 = cpuusage_write,
d842de87 9205 },
e9515c3c
KC
9206 {
9207 .name = "usage_percpu",
9208 .read_seq_string = cpuacct_percpu_seq_read,
9209 },
ef12fefa
BR
9210 {
9211 .name = "stat",
9212 .read_map = cpuacct_stats_show,
9213 },
d842de87
SV
9214};
9215
32cd756a 9216static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9217{
32cd756a 9218 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9219}
9220
9221/*
9222 * charge this task's execution time to its accounting group.
9223 *
9224 * called with rq->lock held.
9225 */
9226static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9227{
9228 struct cpuacct *ca;
934352f2 9229 int cpu;
d842de87 9230
c40c6f85 9231 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9232 return;
9233
934352f2 9234 cpu = task_cpu(tsk);
a18b83b7
BR
9235
9236 rcu_read_lock();
9237
d842de87 9238 ca = task_ca(tsk);
d842de87 9239
934352f2 9240 for (; ca; ca = ca->parent) {
b36128c8 9241 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9242 *cpuusage += cputime;
9243 }
a18b83b7
BR
9244
9245 rcu_read_unlock();
d842de87
SV
9246}
9247
fa535a77
AB
9248/*
9249 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9250 * in cputime_t units. As a result, cpuacct_update_stats calls
9251 * percpu_counter_add with values large enough to always overflow the
9252 * per cpu batch limit causing bad SMP scalability.
9253 *
9254 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9255 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9256 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9257 */
9258#ifdef CONFIG_SMP
9259#define CPUACCT_BATCH \
9260 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9261#else
9262#define CPUACCT_BATCH 0
9263#endif
9264
ef12fefa
BR
9265/*
9266 * Charge the system/user time to the task's accounting group.
9267 */
9268static void cpuacct_update_stats(struct task_struct *tsk,
9269 enum cpuacct_stat_index idx, cputime_t val)
9270{
9271 struct cpuacct *ca;
fa535a77 9272 int batch = CPUACCT_BATCH;
ef12fefa
BR
9273
9274 if (unlikely(!cpuacct_subsys.active))
9275 return;
9276
9277 rcu_read_lock();
9278 ca = task_ca(tsk);
9279
9280 do {
fa535a77 9281 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9282 ca = ca->parent;
9283 } while (ca);
9284 rcu_read_unlock();
9285}
9286
d842de87
SV
9287struct cgroup_subsys cpuacct_subsys = {
9288 .name = "cpuacct",
9289 .create = cpuacct_create,
9290 .destroy = cpuacct_destroy,
9291 .populate = cpuacct_populate,
9292 .subsys_id = cpuacct_subsys_id,
9293};
9294#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9295
This page took 3.736605 seconds and 5 git commands to generate.