kernel.h: add BUILD_BUG() macro
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
ac924c60 62#include <asm/div64.h>
1da177e4
LT
63#include "internal.h"
64
72812019
LS
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
7aac7898
LS
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
1da177e4 81/*
13808910 82 * Array of node states.
1da177e4 83 */
13808910
CL
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92 [N_CPU] = { { [0] = 1UL } },
93#endif /* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
6c231b7b 97unsigned long totalram_pages __read_mostly;
cb45b0e9 98unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 99int percpu_pagelist_fraction;
dcce284a 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 101
452aa699
RW
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
c9e664f1
RW
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
452aa699
RW
115{
116 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
120 }
452aa699
RW
121}
122
c9e664f1 123void pm_restrict_gfp_mask(void)
452aa699 124{
452aa699 125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 129}
f90ac398
MG
130
131bool pm_suspended_storage(void)
132{
133 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
134 return false;
135 return true;
136}
452aa699
RW
137#endif /* CONFIG_PM_SLEEP */
138
d9c23400
MG
139#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
140int pageblock_order __read_mostly;
141#endif
142
d98c7a09 143static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 144
1da177e4
LT
145/*
146 * results with 256, 32 in the lowmem_reserve sysctl:
147 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
148 * 1G machine -> (16M dma, 784M normal, 224M high)
149 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
150 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
151 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
152 *
153 * TBD: should special case ZONE_DMA32 machines here - in those we normally
154 * don't need any ZONE_NORMAL reservation
1da177e4 155 */
2f1b6248 156int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 157#ifdef CONFIG_ZONE_DMA
2f1b6248 158 256,
4b51d669 159#endif
fb0e7942 160#ifdef CONFIG_ZONE_DMA32
2f1b6248 161 256,
fb0e7942 162#endif
e53ef38d 163#ifdef CONFIG_HIGHMEM
2a1e274a 164 32,
e53ef38d 165#endif
2a1e274a 166 32,
2f1b6248 167};
1da177e4
LT
168
169EXPORT_SYMBOL(totalram_pages);
1da177e4 170
15ad7cdc 171static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 172#ifdef CONFIG_ZONE_DMA
2f1b6248 173 "DMA",
4b51d669 174#endif
fb0e7942 175#ifdef CONFIG_ZONE_DMA32
2f1b6248 176 "DMA32",
fb0e7942 177#endif
2f1b6248 178 "Normal",
e53ef38d 179#ifdef CONFIG_HIGHMEM
2a1e274a 180 "HighMem",
e53ef38d 181#endif
2a1e274a 182 "Movable",
2f1b6248
CL
183};
184
1da177e4
LT
185int min_free_kbytes = 1024;
186
2c85f51d
JB
187static unsigned long __meminitdata nr_kernel_pages;
188static unsigned long __meminitdata nr_all_pages;
a3142c8e 189static unsigned long __meminitdata dma_reserve;
1da177e4 190
0ee332c1
TH
191#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
192static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
193static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
194static unsigned long __initdata required_kernelcore;
195static unsigned long __initdata required_movablecore;
196static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
197
198/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
199int movable_zone;
200EXPORT_SYMBOL(movable_zone);
201#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 202
418508c1
MS
203#if MAX_NUMNODES > 1
204int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 205int nr_online_nodes __read_mostly = 1;
418508c1 206EXPORT_SYMBOL(nr_node_ids);
62bc62a8 207EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
208#endif
209
9ef9acb0
MG
210int page_group_by_mobility_disabled __read_mostly;
211
b2a0ac88
MG
212static void set_pageblock_migratetype(struct page *page, int migratetype)
213{
49255c61
MG
214
215 if (unlikely(page_group_by_mobility_disabled))
216 migratetype = MIGRATE_UNMOVABLE;
217
b2a0ac88
MG
218 set_pageblock_flags_group(page, (unsigned long)migratetype,
219 PB_migrate, PB_migrate_end);
220}
221
7f33d49a
RW
222bool oom_killer_disabled __read_mostly;
223
13e7444b 224#ifdef CONFIG_DEBUG_VM
c6a57e19 225static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 226{
bdc8cb98
DH
227 int ret = 0;
228 unsigned seq;
229 unsigned long pfn = page_to_pfn(page);
c6a57e19 230
bdc8cb98
DH
231 do {
232 seq = zone_span_seqbegin(zone);
233 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
234 ret = 1;
235 else if (pfn < zone->zone_start_pfn)
236 ret = 1;
237 } while (zone_span_seqretry(zone, seq));
238
239 return ret;
c6a57e19
DH
240}
241
242static int page_is_consistent(struct zone *zone, struct page *page)
243{
14e07298 244 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 245 return 0;
1da177e4 246 if (zone != page_zone(page))
c6a57e19
DH
247 return 0;
248
249 return 1;
250}
251/*
252 * Temporary debugging check for pages not lying within a given zone.
253 */
254static int bad_range(struct zone *zone, struct page *page)
255{
256 if (page_outside_zone_boundaries(zone, page))
1da177e4 257 return 1;
c6a57e19
DH
258 if (!page_is_consistent(zone, page))
259 return 1;
260
1da177e4
LT
261 return 0;
262}
13e7444b
NP
263#else
264static inline int bad_range(struct zone *zone, struct page *page)
265{
266 return 0;
267}
268#endif
269
224abf92 270static void bad_page(struct page *page)
1da177e4 271{
d936cf9b
HD
272 static unsigned long resume;
273 static unsigned long nr_shown;
274 static unsigned long nr_unshown;
275
2a7684a2
WF
276 /* Don't complain about poisoned pages */
277 if (PageHWPoison(page)) {
ef2b4b95 278 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
279 return;
280 }
281
d936cf9b
HD
282 /*
283 * Allow a burst of 60 reports, then keep quiet for that minute;
284 * or allow a steady drip of one report per second.
285 */
286 if (nr_shown == 60) {
287 if (time_before(jiffies, resume)) {
288 nr_unshown++;
289 goto out;
290 }
291 if (nr_unshown) {
1e9e6365
HD
292 printk(KERN_ALERT
293 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
294 nr_unshown);
295 nr_unshown = 0;
296 }
297 nr_shown = 0;
298 }
299 if (nr_shown++ == 0)
300 resume = jiffies + 60 * HZ;
301
1e9e6365 302 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 303 current->comm, page_to_pfn(page));
718a3821 304 dump_page(page);
3dc14741 305
4f31888c 306 print_modules();
1da177e4 307 dump_stack();
d936cf9b 308out:
8cc3b392 309 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 310 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 311 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
312}
313
1da177e4
LT
314/*
315 * Higher-order pages are called "compound pages". They are structured thusly:
316 *
317 * The first PAGE_SIZE page is called the "head page".
318 *
319 * The remaining PAGE_SIZE pages are called "tail pages".
320 *
6416b9fa
WSH
321 * All pages have PG_compound set. All tail pages have their ->first_page
322 * pointing at the head page.
1da177e4 323 *
41d78ba5
HD
324 * The first tail page's ->lru.next holds the address of the compound page's
325 * put_page() function. Its ->lru.prev holds the order of allocation.
326 * This usage means that zero-order pages may not be compound.
1da177e4 327 */
d98c7a09
HD
328
329static void free_compound_page(struct page *page)
330{
d85f3385 331 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
332}
333
01ad1c08 334void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
335{
336 int i;
337 int nr_pages = 1 << order;
338
339 set_compound_page_dtor(page, free_compound_page);
340 set_compound_order(page, order);
341 __SetPageHead(page);
342 for (i = 1; i < nr_pages; i++) {
343 struct page *p = page + i;
18229df5 344 __SetPageTail(p);
58a84aa9 345 set_page_count(p, 0);
18229df5
AW
346 p->first_page = page;
347 }
348}
349
59ff4216 350/* update __split_huge_page_refcount if you change this function */
8cc3b392 351static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
352{
353 int i;
354 int nr_pages = 1 << order;
8cc3b392 355 int bad = 0;
1da177e4 356
8cc3b392
HD
357 if (unlikely(compound_order(page) != order) ||
358 unlikely(!PageHead(page))) {
224abf92 359 bad_page(page);
8cc3b392
HD
360 bad++;
361 }
1da177e4 362
6d777953 363 __ClearPageHead(page);
8cc3b392 364
18229df5
AW
365 for (i = 1; i < nr_pages; i++) {
366 struct page *p = page + i;
1da177e4 367
e713a21d 368 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 369 bad_page(page);
8cc3b392
HD
370 bad++;
371 }
d85f3385 372 __ClearPageTail(p);
1da177e4 373 }
8cc3b392
HD
374
375 return bad;
1da177e4 376}
1da177e4 377
17cf4406
NP
378static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
379{
380 int i;
381
6626c5d5
AM
382 /*
383 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
384 * and __GFP_HIGHMEM from hard or soft interrupt context.
385 */
725d704e 386 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
387 for (i = 0; i < (1 << order); i++)
388 clear_highpage(page + i);
389}
390
6aa3001b
AM
391static inline void set_page_order(struct page *page, int order)
392{
4c21e2f2 393 set_page_private(page, order);
676165a8 394 __SetPageBuddy(page);
1da177e4
LT
395}
396
397static inline void rmv_page_order(struct page *page)
398{
676165a8 399 __ClearPageBuddy(page);
4c21e2f2 400 set_page_private(page, 0);
1da177e4
LT
401}
402
403/*
404 * Locate the struct page for both the matching buddy in our
405 * pair (buddy1) and the combined O(n+1) page they form (page).
406 *
407 * 1) Any buddy B1 will have an order O twin B2 which satisfies
408 * the following equation:
409 * B2 = B1 ^ (1 << O)
410 * For example, if the starting buddy (buddy2) is #8 its order
411 * 1 buddy is #10:
412 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
413 *
414 * 2) Any buddy B will have an order O+1 parent P which
415 * satisfies the following equation:
416 * P = B & ~(1 << O)
417 *
d6e05edc 418 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 419 */
1da177e4 420static inline unsigned long
43506fad 421__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 422{
43506fad 423 return page_idx ^ (1 << order);
1da177e4
LT
424}
425
426/*
427 * This function checks whether a page is free && is the buddy
428 * we can do coalesce a page and its buddy if
13e7444b 429 * (a) the buddy is not in a hole &&
676165a8 430 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
431 * (c) a page and its buddy have the same order &&
432 * (d) a page and its buddy are in the same zone.
676165a8 433 *
5f24ce5f
AA
434 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
435 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 436 *
676165a8 437 * For recording page's order, we use page_private(page).
1da177e4 438 */
cb2b95e1
AW
439static inline int page_is_buddy(struct page *page, struct page *buddy,
440 int order)
1da177e4 441{
14e07298 442 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 443 return 0;
13e7444b 444
cb2b95e1
AW
445 if (page_zone_id(page) != page_zone_id(buddy))
446 return 0;
447
448 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 449 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 450 return 1;
676165a8 451 }
6aa3001b 452 return 0;
1da177e4
LT
453}
454
455/*
456 * Freeing function for a buddy system allocator.
457 *
458 * The concept of a buddy system is to maintain direct-mapped table
459 * (containing bit values) for memory blocks of various "orders".
460 * The bottom level table contains the map for the smallest allocatable
461 * units of memory (here, pages), and each level above it describes
462 * pairs of units from the levels below, hence, "buddies".
463 * At a high level, all that happens here is marking the table entry
464 * at the bottom level available, and propagating the changes upward
465 * as necessary, plus some accounting needed to play nicely with other
466 * parts of the VM system.
467 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 468 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 469 * order is recorded in page_private(page) field.
1da177e4
LT
470 * So when we are allocating or freeing one, we can derive the state of the
471 * other. That is, if we allocate a small block, and both were
472 * free, the remainder of the region must be split into blocks.
473 * If a block is freed, and its buddy is also free, then this
474 * triggers coalescing into a block of larger size.
475 *
476 * -- wli
477 */
478
48db57f8 479static inline void __free_one_page(struct page *page,
ed0ae21d
MG
480 struct zone *zone, unsigned int order,
481 int migratetype)
1da177e4
LT
482{
483 unsigned long page_idx;
6dda9d55 484 unsigned long combined_idx;
43506fad 485 unsigned long uninitialized_var(buddy_idx);
6dda9d55 486 struct page *buddy;
1da177e4 487
224abf92 488 if (unlikely(PageCompound(page)))
8cc3b392
HD
489 if (unlikely(destroy_compound_page(page, order)))
490 return;
1da177e4 491
ed0ae21d
MG
492 VM_BUG_ON(migratetype == -1);
493
1da177e4
LT
494 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
495
f2260e6b 496 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 497 VM_BUG_ON(bad_range(zone, page));
1da177e4 498
1da177e4 499 while (order < MAX_ORDER-1) {
43506fad
KC
500 buddy_idx = __find_buddy_index(page_idx, order);
501 buddy = page + (buddy_idx - page_idx);
cb2b95e1 502 if (!page_is_buddy(page, buddy, order))
3c82d0ce 503 break;
13e7444b 504
3c82d0ce 505 /* Our buddy is free, merge with it and move up one order. */
1da177e4 506 list_del(&buddy->lru);
b2a0ac88 507 zone->free_area[order].nr_free--;
1da177e4 508 rmv_page_order(buddy);
43506fad 509 combined_idx = buddy_idx & page_idx;
1da177e4
LT
510 page = page + (combined_idx - page_idx);
511 page_idx = combined_idx;
512 order++;
513 }
514 set_page_order(page, order);
6dda9d55
CZ
515
516 /*
517 * If this is not the largest possible page, check if the buddy
518 * of the next-highest order is free. If it is, it's possible
519 * that pages are being freed that will coalesce soon. In case,
520 * that is happening, add the free page to the tail of the list
521 * so it's less likely to be used soon and more likely to be merged
522 * as a higher order page
523 */
b7f50cfa 524 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 525 struct page *higher_page, *higher_buddy;
43506fad
KC
526 combined_idx = buddy_idx & page_idx;
527 higher_page = page + (combined_idx - page_idx);
528 buddy_idx = __find_buddy_index(combined_idx, order + 1);
529 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
530 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
531 list_add_tail(&page->lru,
532 &zone->free_area[order].free_list[migratetype]);
533 goto out;
534 }
535 }
536
537 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
538out:
1da177e4
LT
539 zone->free_area[order].nr_free++;
540}
541
092cead6
KM
542/*
543 * free_page_mlock() -- clean up attempts to free and mlocked() page.
544 * Page should not be on lru, so no need to fix that up.
545 * free_pages_check() will verify...
546 */
547static inline void free_page_mlock(struct page *page)
548{
092cead6
KM
549 __dec_zone_page_state(page, NR_MLOCK);
550 __count_vm_event(UNEVICTABLE_MLOCKFREED);
551}
092cead6 552
224abf92 553static inline int free_pages_check(struct page *page)
1da177e4 554{
92be2e33
NP
555 if (unlikely(page_mapcount(page) |
556 (page->mapping != NULL) |
a3af9c38 557 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
558 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
559 (mem_cgroup_bad_page_check(page)))) {
224abf92 560 bad_page(page);
79f4b7bf 561 return 1;
8cc3b392 562 }
79f4b7bf
HD
563 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
564 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
565 return 0;
1da177e4
LT
566}
567
568/*
5f8dcc21 569 * Frees a number of pages from the PCP lists
1da177e4 570 * Assumes all pages on list are in same zone, and of same order.
207f36ee 571 * count is the number of pages to free.
1da177e4
LT
572 *
573 * If the zone was previously in an "all pages pinned" state then look to
574 * see if this freeing clears that state.
575 *
576 * And clear the zone's pages_scanned counter, to hold off the "all pages are
577 * pinned" detection logic.
578 */
5f8dcc21
MG
579static void free_pcppages_bulk(struct zone *zone, int count,
580 struct per_cpu_pages *pcp)
1da177e4 581{
5f8dcc21 582 int migratetype = 0;
a6f9edd6 583 int batch_free = 0;
72853e29 584 int to_free = count;
5f8dcc21 585
c54ad30c 586 spin_lock(&zone->lock);
93e4a89a 587 zone->all_unreclaimable = 0;
1da177e4 588 zone->pages_scanned = 0;
f2260e6b 589
72853e29 590 while (to_free) {
48db57f8 591 struct page *page;
5f8dcc21
MG
592 struct list_head *list;
593
594 /*
a6f9edd6
MG
595 * Remove pages from lists in a round-robin fashion. A
596 * batch_free count is maintained that is incremented when an
597 * empty list is encountered. This is so more pages are freed
598 * off fuller lists instead of spinning excessively around empty
599 * lists
5f8dcc21
MG
600 */
601 do {
a6f9edd6 602 batch_free++;
5f8dcc21
MG
603 if (++migratetype == MIGRATE_PCPTYPES)
604 migratetype = 0;
605 list = &pcp->lists[migratetype];
606 } while (list_empty(list));
48db57f8 607
1d16871d
NK
608 /* This is the only non-empty list. Free them all. */
609 if (batch_free == MIGRATE_PCPTYPES)
610 batch_free = to_free;
611
a6f9edd6
MG
612 do {
613 page = list_entry(list->prev, struct page, lru);
614 /* must delete as __free_one_page list manipulates */
615 list_del(&page->lru);
a7016235
HD
616 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
617 __free_one_page(page, zone, 0, page_private(page));
618 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 619 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 620 }
72853e29 621 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 622 spin_unlock(&zone->lock);
1da177e4
LT
623}
624
ed0ae21d
MG
625static void free_one_page(struct zone *zone, struct page *page, int order,
626 int migratetype)
1da177e4 627{
006d22d9 628 spin_lock(&zone->lock);
93e4a89a 629 zone->all_unreclaimable = 0;
006d22d9 630 zone->pages_scanned = 0;
f2260e6b 631
ed0ae21d 632 __free_one_page(page, zone, order, migratetype);
72853e29 633 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 634 spin_unlock(&zone->lock);
48db57f8
NP
635}
636
ec95f53a 637static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 638{
1da177e4 639 int i;
8cc3b392 640 int bad = 0;
1da177e4 641
b413d48a 642 trace_mm_page_free(page, order);
b1eeab67
VN
643 kmemcheck_free_shadow(page, order);
644
8dd60a3a
AA
645 if (PageAnon(page))
646 page->mapping = NULL;
647 for (i = 0; i < (1 << order); i++)
648 bad += free_pages_check(page + i);
8cc3b392 649 if (bad)
ec95f53a 650 return false;
689bcebf 651
3ac7fe5a 652 if (!PageHighMem(page)) {
9858db50 653 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
654 debug_check_no_obj_freed(page_address(page),
655 PAGE_SIZE << order);
656 }
dafb1367 657 arch_free_page(page, order);
48db57f8 658 kernel_map_pages(page, 1 << order, 0);
dafb1367 659
ec95f53a
KM
660 return true;
661}
662
663static void __free_pages_ok(struct page *page, unsigned int order)
664{
665 unsigned long flags;
666 int wasMlocked = __TestClearPageMlocked(page);
667
668 if (!free_pages_prepare(page, order))
669 return;
670
c54ad30c 671 local_irq_save(flags);
c277331d 672 if (unlikely(wasMlocked))
da456f14 673 free_page_mlock(page);
f8891e5e 674 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
675 free_one_page(page_zone(page), page, order,
676 get_pageblock_migratetype(page));
c54ad30c 677 local_irq_restore(flags);
1da177e4
LT
678}
679
a226f6c8
DH
680/*
681 * permit the bootmem allocator to evade page validation on high-order frees
682 */
af370fb8 683void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
684{
685 if (order == 0) {
686 __ClearPageReserved(page);
687 set_page_count(page, 0);
7835e98b 688 set_page_refcounted(page);
545b1ea9 689 __free_page(page);
a226f6c8 690 } else {
a226f6c8
DH
691 int loop;
692
545b1ea9 693 prefetchw(page);
53348f27 694 for (loop = 0; loop < (1 << order); loop++) {
a226f6c8
DH
695 struct page *p = &page[loop];
696
53348f27 697 if (loop + 1 < (1 << order))
545b1ea9 698 prefetchw(p + 1);
a226f6c8
DH
699 __ClearPageReserved(p);
700 set_page_count(p, 0);
701 }
702
7835e98b 703 set_page_refcounted(page);
545b1ea9 704 __free_pages(page, order);
a226f6c8
DH
705 }
706}
707
1da177e4
LT
708
709/*
710 * The order of subdivision here is critical for the IO subsystem.
711 * Please do not alter this order without good reasons and regression
712 * testing. Specifically, as large blocks of memory are subdivided,
713 * the order in which smaller blocks are delivered depends on the order
714 * they're subdivided in this function. This is the primary factor
715 * influencing the order in which pages are delivered to the IO
716 * subsystem according to empirical testing, and this is also justified
717 * by considering the behavior of a buddy system containing a single
718 * large block of memory acted on by a series of small allocations.
719 * This behavior is a critical factor in sglist merging's success.
720 *
721 * -- wli
722 */
085cc7d5 723static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
724 int low, int high, struct free_area *area,
725 int migratetype)
1da177e4
LT
726{
727 unsigned long size = 1 << high;
728
729 while (high > low) {
730 area--;
731 high--;
732 size >>= 1;
725d704e 733 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 734 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
735 area->nr_free++;
736 set_page_order(&page[size], high);
737 }
1da177e4
LT
738}
739
1da177e4
LT
740/*
741 * This page is about to be returned from the page allocator
742 */
2a7684a2 743static inline int check_new_page(struct page *page)
1da177e4 744{
92be2e33
NP
745 if (unlikely(page_mapcount(page) |
746 (page->mapping != NULL) |
a3af9c38 747 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
748 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
749 (mem_cgroup_bad_page_check(page)))) {
224abf92 750 bad_page(page);
689bcebf 751 return 1;
8cc3b392 752 }
2a7684a2
WF
753 return 0;
754}
755
756static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
757{
758 int i;
759
760 for (i = 0; i < (1 << order); i++) {
761 struct page *p = page + i;
762 if (unlikely(check_new_page(p)))
763 return 1;
764 }
689bcebf 765
4c21e2f2 766 set_page_private(page, 0);
7835e98b 767 set_page_refcounted(page);
cc102509
NP
768
769 arch_alloc_page(page, order);
1da177e4 770 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
771
772 if (gfp_flags & __GFP_ZERO)
773 prep_zero_page(page, order, gfp_flags);
774
775 if (order && (gfp_flags & __GFP_COMP))
776 prep_compound_page(page, order);
777
689bcebf 778 return 0;
1da177e4
LT
779}
780
56fd56b8
MG
781/*
782 * Go through the free lists for the given migratetype and remove
783 * the smallest available page from the freelists
784 */
728ec980
MG
785static inline
786struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
787 int migratetype)
788{
789 unsigned int current_order;
790 struct free_area * area;
791 struct page *page;
792
793 /* Find a page of the appropriate size in the preferred list */
794 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
795 area = &(zone->free_area[current_order]);
796 if (list_empty(&area->free_list[migratetype]))
797 continue;
798
799 page = list_entry(area->free_list[migratetype].next,
800 struct page, lru);
801 list_del(&page->lru);
802 rmv_page_order(page);
803 area->nr_free--;
56fd56b8
MG
804 expand(zone, page, order, current_order, area, migratetype);
805 return page;
806 }
807
808 return NULL;
809}
810
811
b2a0ac88
MG
812/*
813 * This array describes the order lists are fallen back to when
814 * the free lists for the desirable migrate type are depleted
815 */
816static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
817 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
818 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
819 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
820 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
821};
822
c361be55
MG
823/*
824 * Move the free pages in a range to the free lists of the requested type.
d9c23400 825 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
826 * boundary. If alignment is required, use move_freepages_block()
827 */
b69a7288
AB
828static int move_freepages(struct zone *zone,
829 struct page *start_page, struct page *end_page,
830 int migratetype)
c361be55
MG
831{
832 struct page *page;
833 unsigned long order;
d100313f 834 int pages_moved = 0;
c361be55
MG
835
836#ifndef CONFIG_HOLES_IN_ZONE
837 /*
838 * page_zone is not safe to call in this context when
839 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
840 * anyway as we check zone boundaries in move_freepages_block().
841 * Remove at a later date when no bug reports exist related to
ac0e5b7a 842 * grouping pages by mobility
c361be55
MG
843 */
844 BUG_ON(page_zone(start_page) != page_zone(end_page));
845#endif
846
847 for (page = start_page; page <= end_page;) {
344c790e
AL
848 /* Make sure we are not inadvertently changing nodes */
849 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
850
c361be55
MG
851 if (!pfn_valid_within(page_to_pfn(page))) {
852 page++;
853 continue;
854 }
855
856 if (!PageBuddy(page)) {
857 page++;
858 continue;
859 }
860
861 order = page_order(page);
84be48d8
KS
862 list_move(&page->lru,
863 &zone->free_area[order].free_list[migratetype]);
c361be55 864 page += 1 << order;
d100313f 865 pages_moved += 1 << order;
c361be55
MG
866 }
867
d100313f 868 return pages_moved;
c361be55
MG
869}
870
b69a7288
AB
871static int move_freepages_block(struct zone *zone, struct page *page,
872 int migratetype)
c361be55
MG
873{
874 unsigned long start_pfn, end_pfn;
875 struct page *start_page, *end_page;
876
877 start_pfn = page_to_pfn(page);
d9c23400 878 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 879 start_page = pfn_to_page(start_pfn);
d9c23400
MG
880 end_page = start_page + pageblock_nr_pages - 1;
881 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
882
883 /* Do not cross zone boundaries */
884 if (start_pfn < zone->zone_start_pfn)
885 start_page = page;
886 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
887 return 0;
888
889 return move_freepages(zone, start_page, end_page, migratetype);
890}
891
2f66a68f
MG
892static void change_pageblock_range(struct page *pageblock_page,
893 int start_order, int migratetype)
894{
895 int nr_pageblocks = 1 << (start_order - pageblock_order);
896
897 while (nr_pageblocks--) {
898 set_pageblock_migratetype(pageblock_page, migratetype);
899 pageblock_page += pageblock_nr_pages;
900 }
901}
902
b2a0ac88 903/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
904static inline struct page *
905__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
906{
907 struct free_area * area;
908 int current_order;
909 struct page *page;
910 int migratetype, i;
911
912 /* Find the largest possible block of pages in the other list */
913 for (current_order = MAX_ORDER-1; current_order >= order;
914 --current_order) {
915 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
916 migratetype = fallbacks[start_migratetype][i];
917
56fd56b8
MG
918 /* MIGRATE_RESERVE handled later if necessary */
919 if (migratetype == MIGRATE_RESERVE)
920 continue;
e010487d 921
b2a0ac88
MG
922 area = &(zone->free_area[current_order]);
923 if (list_empty(&area->free_list[migratetype]))
924 continue;
925
926 page = list_entry(area->free_list[migratetype].next,
927 struct page, lru);
928 area->nr_free--;
929
930 /*
c361be55 931 * If breaking a large block of pages, move all free
46dafbca
MG
932 * pages to the preferred allocation list. If falling
933 * back for a reclaimable kernel allocation, be more
25985edc 934 * aggressive about taking ownership of free pages
b2a0ac88 935 */
d9c23400 936 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
937 start_migratetype == MIGRATE_RECLAIMABLE ||
938 page_group_by_mobility_disabled) {
46dafbca
MG
939 unsigned long pages;
940 pages = move_freepages_block(zone, page,
941 start_migratetype);
942
943 /* Claim the whole block if over half of it is free */
dd5d241e
MG
944 if (pages >= (1 << (pageblock_order-1)) ||
945 page_group_by_mobility_disabled)
46dafbca
MG
946 set_pageblock_migratetype(page,
947 start_migratetype);
948
b2a0ac88 949 migratetype = start_migratetype;
c361be55 950 }
b2a0ac88
MG
951
952 /* Remove the page from the freelists */
953 list_del(&page->lru);
954 rmv_page_order(page);
b2a0ac88 955
2f66a68f
MG
956 /* Take ownership for orders >= pageblock_order */
957 if (current_order >= pageblock_order)
958 change_pageblock_range(page, current_order,
b2a0ac88
MG
959 start_migratetype);
960
961 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
962
963 trace_mm_page_alloc_extfrag(page, order, current_order,
964 start_migratetype, migratetype);
965
b2a0ac88
MG
966 return page;
967 }
968 }
969
728ec980 970 return NULL;
b2a0ac88
MG
971}
972
56fd56b8 973/*
1da177e4
LT
974 * Do the hard work of removing an element from the buddy allocator.
975 * Call me with the zone->lock already held.
976 */
b2a0ac88
MG
977static struct page *__rmqueue(struct zone *zone, unsigned int order,
978 int migratetype)
1da177e4 979{
1da177e4
LT
980 struct page *page;
981
728ec980 982retry_reserve:
56fd56b8 983 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 984
728ec980 985 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 986 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 987
728ec980
MG
988 /*
989 * Use MIGRATE_RESERVE rather than fail an allocation. goto
990 * is used because __rmqueue_smallest is an inline function
991 * and we want just one call site
992 */
993 if (!page) {
994 migratetype = MIGRATE_RESERVE;
995 goto retry_reserve;
996 }
997 }
998
0d3d062a 999 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1000 return page;
1da177e4
LT
1001}
1002
1003/*
1004 * Obtain a specified number of elements from the buddy allocator, all under
1005 * a single hold of the lock, for efficiency. Add them to the supplied list.
1006 * Returns the number of new pages which were placed at *list.
1007 */
1008static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1009 unsigned long count, struct list_head *list,
e084b2d9 1010 int migratetype, int cold)
1da177e4 1011{
1da177e4 1012 int i;
1da177e4 1013
c54ad30c 1014 spin_lock(&zone->lock);
1da177e4 1015 for (i = 0; i < count; ++i) {
b2a0ac88 1016 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1017 if (unlikely(page == NULL))
1da177e4 1018 break;
81eabcbe
MG
1019
1020 /*
1021 * Split buddy pages returned by expand() are received here
1022 * in physical page order. The page is added to the callers and
1023 * list and the list head then moves forward. From the callers
1024 * perspective, the linked list is ordered by page number in
1025 * some conditions. This is useful for IO devices that can
1026 * merge IO requests if the physical pages are ordered
1027 * properly.
1028 */
e084b2d9
MG
1029 if (likely(cold == 0))
1030 list_add(&page->lru, list);
1031 else
1032 list_add_tail(&page->lru, list);
535131e6 1033 set_page_private(page, migratetype);
81eabcbe 1034 list = &page->lru;
1da177e4 1035 }
f2260e6b 1036 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1037 spin_unlock(&zone->lock);
085cc7d5 1038 return i;
1da177e4
LT
1039}
1040
4ae7c039 1041#ifdef CONFIG_NUMA
8fce4d8e 1042/*
4037d452
CL
1043 * Called from the vmstat counter updater to drain pagesets of this
1044 * currently executing processor on remote nodes after they have
1045 * expired.
1046 *
879336c3
CL
1047 * Note that this function must be called with the thread pinned to
1048 * a single processor.
8fce4d8e 1049 */
4037d452 1050void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1051{
4ae7c039 1052 unsigned long flags;
4037d452 1053 int to_drain;
4ae7c039 1054
4037d452
CL
1055 local_irq_save(flags);
1056 if (pcp->count >= pcp->batch)
1057 to_drain = pcp->batch;
1058 else
1059 to_drain = pcp->count;
5f8dcc21 1060 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1061 pcp->count -= to_drain;
1062 local_irq_restore(flags);
4ae7c039
CL
1063}
1064#endif
1065
9f8f2172
CL
1066/*
1067 * Drain pages of the indicated processor.
1068 *
1069 * The processor must either be the current processor and the
1070 * thread pinned to the current processor or a processor that
1071 * is not online.
1072 */
1073static void drain_pages(unsigned int cpu)
1da177e4 1074{
c54ad30c 1075 unsigned long flags;
1da177e4 1076 struct zone *zone;
1da177e4 1077
ee99c71c 1078 for_each_populated_zone(zone) {
1da177e4 1079 struct per_cpu_pageset *pset;
3dfa5721 1080 struct per_cpu_pages *pcp;
1da177e4 1081
99dcc3e5
CL
1082 local_irq_save(flags);
1083 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1084
1085 pcp = &pset->pcp;
2ff754fa
DR
1086 if (pcp->count) {
1087 free_pcppages_bulk(zone, pcp->count, pcp);
1088 pcp->count = 0;
1089 }
3dfa5721 1090 local_irq_restore(flags);
1da177e4
LT
1091 }
1092}
1da177e4 1093
9f8f2172
CL
1094/*
1095 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1096 */
1097void drain_local_pages(void *arg)
1098{
1099 drain_pages(smp_processor_id());
1100}
1101
1102/*
1103 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1104 */
1105void drain_all_pages(void)
1106{
15c8b6c1 1107 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1108}
1109
296699de 1110#ifdef CONFIG_HIBERNATION
1da177e4
LT
1111
1112void mark_free_pages(struct zone *zone)
1113{
f623f0db
RW
1114 unsigned long pfn, max_zone_pfn;
1115 unsigned long flags;
b2a0ac88 1116 int order, t;
1da177e4
LT
1117 struct list_head *curr;
1118
1119 if (!zone->spanned_pages)
1120 return;
1121
1122 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1123
1124 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1125 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1126 if (pfn_valid(pfn)) {
1127 struct page *page = pfn_to_page(pfn);
1128
7be98234
RW
1129 if (!swsusp_page_is_forbidden(page))
1130 swsusp_unset_page_free(page);
f623f0db 1131 }
1da177e4 1132
b2a0ac88
MG
1133 for_each_migratetype_order(order, t) {
1134 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1135 unsigned long i;
1da177e4 1136
f623f0db
RW
1137 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1138 for (i = 0; i < (1UL << order); i++)
7be98234 1139 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1140 }
b2a0ac88 1141 }
1da177e4
LT
1142 spin_unlock_irqrestore(&zone->lock, flags);
1143}
e2c55dc8 1144#endif /* CONFIG_PM */
1da177e4 1145
1da177e4
LT
1146/*
1147 * Free a 0-order page
fc91668e 1148 * cold == 1 ? free a cold page : free a hot page
1da177e4 1149 */
fc91668e 1150void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1151{
1152 struct zone *zone = page_zone(page);
1153 struct per_cpu_pages *pcp;
1154 unsigned long flags;
5f8dcc21 1155 int migratetype;
451ea25d 1156 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1157
ec95f53a 1158 if (!free_pages_prepare(page, 0))
689bcebf
HD
1159 return;
1160
5f8dcc21
MG
1161 migratetype = get_pageblock_migratetype(page);
1162 set_page_private(page, migratetype);
1da177e4 1163 local_irq_save(flags);
c277331d 1164 if (unlikely(wasMlocked))
da456f14 1165 free_page_mlock(page);
f8891e5e 1166 __count_vm_event(PGFREE);
da456f14 1167
5f8dcc21
MG
1168 /*
1169 * We only track unmovable, reclaimable and movable on pcp lists.
1170 * Free ISOLATE pages back to the allocator because they are being
1171 * offlined but treat RESERVE as movable pages so we can get those
1172 * areas back if necessary. Otherwise, we may have to free
1173 * excessively into the page allocator
1174 */
1175 if (migratetype >= MIGRATE_PCPTYPES) {
1176 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1177 free_one_page(zone, page, 0, migratetype);
1178 goto out;
1179 }
1180 migratetype = MIGRATE_MOVABLE;
1181 }
1182
99dcc3e5 1183 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1184 if (cold)
5f8dcc21 1185 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1186 else
5f8dcc21 1187 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1188 pcp->count++;
48db57f8 1189 if (pcp->count >= pcp->high) {
5f8dcc21 1190 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1191 pcp->count -= pcp->batch;
1192 }
5f8dcc21
MG
1193
1194out:
1da177e4 1195 local_irq_restore(flags);
1da177e4
LT
1196}
1197
cc59850e
KK
1198/*
1199 * Free a list of 0-order pages
1200 */
1201void free_hot_cold_page_list(struct list_head *list, int cold)
1202{
1203 struct page *page, *next;
1204
1205 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1206 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1207 free_hot_cold_page(page, cold);
1208 }
1209}
1210
8dfcc9ba
NP
1211/*
1212 * split_page takes a non-compound higher-order page, and splits it into
1213 * n (1<<order) sub-pages: page[0..n]
1214 * Each sub-page must be freed individually.
1215 *
1216 * Note: this is probably too low level an operation for use in drivers.
1217 * Please consult with lkml before using this in your driver.
1218 */
1219void split_page(struct page *page, unsigned int order)
1220{
1221 int i;
1222
725d704e
NP
1223 VM_BUG_ON(PageCompound(page));
1224 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1225
1226#ifdef CONFIG_KMEMCHECK
1227 /*
1228 * Split shadow pages too, because free(page[0]) would
1229 * otherwise free the whole shadow.
1230 */
1231 if (kmemcheck_page_is_tracked(page))
1232 split_page(virt_to_page(page[0].shadow), order);
1233#endif
1234
7835e98b
NP
1235 for (i = 1; i < (1 << order); i++)
1236 set_page_refcounted(page + i);
8dfcc9ba 1237}
8dfcc9ba 1238
748446bb
MG
1239/*
1240 * Similar to split_page except the page is already free. As this is only
1241 * being used for migration, the migratetype of the block also changes.
1242 * As this is called with interrupts disabled, the caller is responsible
1243 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1244 * are enabled.
1245 *
1246 * Note: this is probably too low level an operation for use in drivers.
1247 * Please consult with lkml before using this in your driver.
1248 */
1249int split_free_page(struct page *page)
1250{
1251 unsigned int order;
1252 unsigned long watermark;
1253 struct zone *zone;
1254
1255 BUG_ON(!PageBuddy(page));
1256
1257 zone = page_zone(page);
1258 order = page_order(page);
1259
1260 /* Obey watermarks as if the page was being allocated */
1261 watermark = low_wmark_pages(zone) + (1 << order);
1262 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1263 return 0;
1264
1265 /* Remove page from free list */
1266 list_del(&page->lru);
1267 zone->free_area[order].nr_free--;
1268 rmv_page_order(page);
1269 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1270
1271 /* Split into individual pages */
1272 set_page_refcounted(page);
1273 split_page(page, order);
1274
1275 if (order >= pageblock_order - 1) {
1276 struct page *endpage = page + (1 << order) - 1;
1277 for (; page < endpage; page += pageblock_nr_pages)
1278 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1279 }
1280
1281 return 1 << order;
1282}
1283
1da177e4
LT
1284/*
1285 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1286 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1287 * or two.
1288 */
0a15c3e9
MG
1289static inline
1290struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1291 struct zone *zone, int order, gfp_t gfp_flags,
1292 int migratetype)
1da177e4
LT
1293{
1294 unsigned long flags;
689bcebf 1295 struct page *page;
1da177e4
LT
1296 int cold = !!(gfp_flags & __GFP_COLD);
1297
689bcebf 1298again:
48db57f8 1299 if (likely(order == 0)) {
1da177e4 1300 struct per_cpu_pages *pcp;
5f8dcc21 1301 struct list_head *list;
1da177e4 1302
1da177e4 1303 local_irq_save(flags);
99dcc3e5
CL
1304 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1305 list = &pcp->lists[migratetype];
5f8dcc21 1306 if (list_empty(list)) {
535131e6 1307 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1308 pcp->batch, list,
e084b2d9 1309 migratetype, cold);
5f8dcc21 1310 if (unlikely(list_empty(list)))
6fb332fa 1311 goto failed;
535131e6 1312 }
b92a6edd 1313
5f8dcc21
MG
1314 if (cold)
1315 page = list_entry(list->prev, struct page, lru);
1316 else
1317 page = list_entry(list->next, struct page, lru);
1318
b92a6edd
MG
1319 list_del(&page->lru);
1320 pcp->count--;
7fb1d9fc 1321 } else {
dab48dab
AM
1322 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1323 /*
1324 * __GFP_NOFAIL is not to be used in new code.
1325 *
1326 * All __GFP_NOFAIL callers should be fixed so that they
1327 * properly detect and handle allocation failures.
1328 *
1329 * We most definitely don't want callers attempting to
4923abf9 1330 * allocate greater than order-1 page units with
dab48dab
AM
1331 * __GFP_NOFAIL.
1332 */
4923abf9 1333 WARN_ON_ONCE(order > 1);
dab48dab 1334 }
1da177e4 1335 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1336 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1337 spin_unlock(&zone->lock);
1338 if (!page)
1339 goto failed;
6ccf80eb 1340 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1341 }
1342
f8891e5e 1343 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1344 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1345 local_irq_restore(flags);
1da177e4 1346
725d704e 1347 VM_BUG_ON(bad_range(zone, page));
17cf4406 1348 if (prep_new_page(page, order, gfp_flags))
a74609fa 1349 goto again;
1da177e4 1350 return page;
a74609fa
NP
1351
1352failed:
1353 local_irq_restore(flags);
a74609fa 1354 return NULL;
1da177e4
LT
1355}
1356
41858966
MG
1357/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1358#define ALLOC_WMARK_MIN WMARK_MIN
1359#define ALLOC_WMARK_LOW WMARK_LOW
1360#define ALLOC_WMARK_HIGH WMARK_HIGH
1361#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1362
1363/* Mask to get the watermark bits */
1364#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1365
3148890b
NP
1366#define ALLOC_HARDER 0x10 /* try to alloc harder */
1367#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1368#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1369
933e312e
AM
1370#ifdef CONFIG_FAIL_PAGE_ALLOC
1371
b2588c4b 1372static struct {
933e312e
AM
1373 struct fault_attr attr;
1374
1375 u32 ignore_gfp_highmem;
1376 u32 ignore_gfp_wait;
54114994 1377 u32 min_order;
933e312e
AM
1378} fail_page_alloc = {
1379 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1380 .ignore_gfp_wait = 1,
1381 .ignore_gfp_highmem = 1,
54114994 1382 .min_order = 1,
933e312e
AM
1383};
1384
1385static int __init setup_fail_page_alloc(char *str)
1386{
1387 return setup_fault_attr(&fail_page_alloc.attr, str);
1388}
1389__setup("fail_page_alloc=", setup_fail_page_alloc);
1390
1391static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1392{
54114994
AM
1393 if (order < fail_page_alloc.min_order)
1394 return 0;
933e312e
AM
1395 if (gfp_mask & __GFP_NOFAIL)
1396 return 0;
1397 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1398 return 0;
1399 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1400 return 0;
1401
1402 return should_fail(&fail_page_alloc.attr, 1 << order);
1403}
1404
1405#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406
1407static int __init fail_page_alloc_debugfs(void)
1408{
f4ae40a6 1409 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1410 struct dentry *dir;
933e312e 1411
dd48c085
AM
1412 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1413 &fail_page_alloc.attr);
1414 if (IS_ERR(dir))
1415 return PTR_ERR(dir);
933e312e 1416
b2588c4b
AM
1417 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1418 &fail_page_alloc.ignore_gfp_wait))
1419 goto fail;
1420 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1421 &fail_page_alloc.ignore_gfp_highmem))
1422 goto fail;
1423 if (!debugfs_create_u32("min-order", mode, dir,
1424 &fail_page_alloc.min_order))
1425 goto fail;
1426
1427 return 0;
1428fail:
dd48c085 1429 debugfs_remove_recursive(dir);
933e312e 1430
b2588c4b 1431 return -ENOMEM;
933e312e
AM
1432}
1433
1434late_initcall(fail_page_alloc_debugfs);
1435
1436#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1437
1438#else /* CONFIG_FAIL_PAGE_ALLOC */
1439
1440static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1441{
1442 return 0;
1443}
1444
1445#endif /* CONFIG_FAIL_PAGE_ALLOC */
1446
1da177e4 1447/*
88f5acf8 1448 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1449 * of the allocation.
1450 */
88f5acf8
MG
1451static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1452 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1453{
1454 /* free_pages my go negative - that's OK */
d23ad423 1455 long min = mark;
1da177e4
LT
1456 int o;
1457
88f5acf8 1458 free_pages -= (1 << order) + 1;
7fb1d9fc 1459 if (alloc_flags & ALLOC_HIGH)
1da177e4 1460 min -= min / 2;
7fb1d9fc 1461 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1462 min -= min / 4;
1463
1464 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1465 return false;
1da177e4
LT
1466 for (o = 0; o < order; o++) {
1467 /* At the next order, this order's pages become unavailable */
1468 free_pages -= z->free_area[o].nr_free << o;
1469
1470 /* Require fewer higher order pages to be free */
1471 min >>= 1;
1472
1473 if (free_pages <= min)
88f5acf8 1474 return false;
1da177e4 1475 }
88f5acf8
MG
1476 return true;
1477}
1478
1479bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1480 int classzone_idx, int alloc_flags)
1481{
1482 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1483 zone_page_state(z, NR_FREE_PAGES));
1484}
1485
1486bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1487 int classzone_idx, int alloc_flags)
1488{
1489 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1490
1491 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1492 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1493
1494 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1495 free_pages);
1da177e4
LT
1496}
1497
9276b1bc
PJ
1498#ifdef CONFIG_NUMA
1499/*
1500 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1501 * skip over zones that are not allowed by the cpuset, or that have
1502 * been recently (in last second) found to be nearly full. See further
1503 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1504 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1505 *
1506 * If the zonelist cache is present in the passed in zonelist, then
1507 * returns a pointer to the allowed node mask (either the current
37b07e41 1508 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1509 *
1510 * If the zonelist cache is not available for this zonelist, does
1511 * nothing and returns NULL.
1512 *
1513 * If the fullzones BITMAP in the zonelist cache is stale (more than
1514 * a second since last zap'd) then we zap it out (clear its bits.)
1515 *
1516 * We hold off even calling zlc_setup, until after we've checked the
1517 * first zone in the zonelist, on the theory that most allocations will
1518 * be satisfied from that first zone, so best to examine that zone as
1519 * quickly as we can.
1520 */
1521static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1522{
1523 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1524 nodemask_t *allowednodes; /* zonelist_cache approximation */
1525
1526 zlc = zonelist->zlcache_ptr;
1527 if (!zlc)
1528 return NULL;
1529
f05111f5 1530 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1531 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1532 zlc->last_full_zap = jiffies;
1533 }
1534
1535 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1536 &cpuset_current_mems_allowed :
37b07e41 1537 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1538 return allowednodes;
1539}
1540
1541/*
1542 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1543 * if it is worth looking at further for free memory:
1544 * 1) Check that the zone isn't thought to be full (doesn't have its
1545 * bit set in the zonelist_cache fullzones BITMAP).
1546 * 2) Check that the zones node (obtained from the zonelist_cache
1547 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1548 * Return true (non-zero) if zone is worth looking at further, or
1549 * else return false (zero) if it is not.
1550 *
1551 * This check -ignores- the distinction between various watermarks,
1552 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1553 * found to be full for any variation of these watermarks, it will
1554 * be considered full for up to one second by all requests, unless
1555 * we are so low on memory on all allowed nodes that we are forced
1556 * into the second scan of the zonelist.
1557 *
1558 * In the second scan we ignore this zonelist cache and exactly
1559 * apply the watermarks to all zones, even it is slower to do so.
1560 * We are low on memory in the second scan, and should leave no stone
1561 * unturned looking for a free page.
1562 */
dd1a239f 1563static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1564 nodemask_t *allowednodes)
1565{
1566 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1567 int i; /* index of *z in zonelist zones */
1568 int n; /* node that zone *z is on */
1569
1570 zlc = zonelist->zlcache_ptr;
1571 if (!zlc)
1572 return 1;
1573
dd1a239f 1574 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1575 n = zlc->z_to_n[i];
1576
1577 /* This zone is worth trying if it is allowed but not full */
1578 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1579}
1580
1581/*
1582 * Given 'z' scanning a zonelist, set the corresponding bit in
1583 * zlc->fullzones, so that subsequent attempts to allocate a page
1584 * from that zone don't waste time re-examining it.
1585 */
dd1a239f 1586static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1587{
1588 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1589 int i; /* index of *z in zonelist zones */
1590
1591 zlc = zonelist->zlcache_ptr;
1592 if (!zlc)
1593 return;
1594
dd1a239f 1595 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1596
1597 set_bit(i, zlc->fullzones);
1598}
1599
76d3fbf8
MG
1600/*
1601 * clear all zones full, called after direct reclaim makes progress so that
1602 * a zone that was recently full is not skipped over for up to a second
1603 */
1604static void zlc_clear_zones_full(struct zonelist *zonelist)
1605{
1606 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1607
1608 zlc = zonelist->zlcache_ptr;
1609 if (!zlc)
1610 return;
1611
1612 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1613}
1614
9276b1bc
PJ
1615#else /* CONFIG_NUMA */
1616
1617static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1618{
1619 return NULL;
1620}
1621
dd1a239f 1622static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1623 nodemask_t *allowednodes)
1624{
1625 return 1;
1626}
1627
dd1a239f 1628static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1629{
1630}
76d3fbf8
MG
1631
1632static void zlc_clear_zones_full(struct zonelist *zonelist)
1633{
1634}
9276b1bc
PJ
1635#endif /* CONFIG_NUMA */
1636
7fb1d9fc 1637/*
0798e519 1638 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1639 * a page.
1640 */
1641static struct page *
19770b32 1642get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1643 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1644 struct zone *preferred_zone, int migratetype)
753ee728 1645{
dd1a239f 1646 struct zoneref *z;
7fb1d9fc 1647 struct page *page = NULL;
54a6eb5c 1648 int classzone_idx;
5117f45d 1649 struct zone *zone;
9276b1bc
PJ
1650 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1651 int zlc_active = 0; /* set if using zonelist_cache */
1652 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1653
19770b32 1654 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1655zonelist_scan:
7fb1d9fc 1656 /*
9276b1bc 1657 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1658 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1659 */
19770b32
MG
1660 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1661 high_zoneidx, nodemask) {
9276b1bc
PJ
1662 if (NUMA_BUILD && zlc_active &&
1663 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1664 continue;
7fb1d9fc 1665 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1666 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1667 continue;
7fb1d9fc 1668
41858966 1669 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1670 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1671 unsigned long mark;
fa5e084e
MG
1672 int ret;
1673
41858966 1674 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1675 if (zone_watermark_ok(zone, order, mark,
1676 classzone_idx, alloc_flags))
1677 goto try_this_zone;
1678
cd38b115
MG
1679 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1680 /*
1681 * we do zlc_setup if there are multiple nodes
1682 * and before considering the first zone allowed
1683 * by the cpuset.
1684 */
1685 allowednodes = zlc_setup(zonelist, alloc_flags);
1686 zlc_active = 1;
1687 did_zlc_setup = 1;
1688 }
1689
fa5e084e
MG
1690 if (zone_reclaim_mode == 0)
1691 goto this_zone_full;
1692
cd38b115
MG
1693 /*
1694 * As we may have just activated ZLC, check if the first
1695 * eligible zone has failed zone_reclaim recently.
1696 */
1697 if (NUMA_BUILD && zlc_active &&
1698 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1699 continue;
1700
fa5e084e
MG
1701 ret = zone_reclaim(zone, gfp_mask, order);
1702 switch (ret) {
1703 case ZONE_RECLAIM_NOSCAN:
1704 /* did not scan */
cd38b115 1705 continue;
fa5e084e
MG
1706 case ZONE_RECLAIM_FULL:
1707 /* scanned but unreclaimable */
cd38b115 1708 continue;
fa5e084e
MG
1709 default:
1710 /* did we reclaim enough */
1711 if (!zone_watermark_ok(zone, order, mark,
1712 classzone_idx, alloc_flags))
9276b1bc 1713 goto this_zone_full;
0798e519 1714 }
7fb1d9fc
RS
1715 }
1716
fa5e084e 1717try_this_zone:
3dd28266
MG
1718 page = buffered_rmqueue(preferred_zone, zone, order,
1719 gfp_mask, migratetype);
0798e519 1720 if (page)
7fb1d9fc 1721 break;
9276b1bc
PJ
1722this_zone_full:
1723 if (NUMA_BUILD)
1724 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1725 }
9276b1bc
PJ
1726
1727 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1728 /* Disable zlc cache for second zonelist scan */
1729 zlc_active = 0;
1730 goto zonelist_scan;
1731 }
7fb1d9fc 1732 return page;
753ee728
MH
1733}
1734
29423e77
DR
1735/*
1736 * Large machines with many possible nodes should not always dump per-node
1737 * meminfo in irq context.
1738 */
1739static inline bool should_suppress_show_mem(void)
1740{
1741 bool ret = false;
1742
1743#if NODES_SHIFT > 8
1744 ret = in_interrupt();
1745#endif
1746 return ret;
1747}
1748
a238ab5b
DH
1749static DEFINE_RATELIMIT_STATE(nopage_rs,
1750 DEFAULT_RATELIMIT_INTERVAL,
1751 DEFAULT_RATELIMIT_BURST);
1752
1753void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1754{
a238ab5b
DH
1755 unsigned int filter = SHOW_MEM_FILTER_NODES;
1756
1757 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1758 return;
1759
1760 /*
1761 * This documents exceptions given to allocations in certain
1762 * contexts that are allowed to allocate outside current's set
1763 * of allowed nodes.
1764 */
1765 if (!(gfp_mask & __GFP_NOMEMALLOC))
1766 if (test_thread_flag(TIF_MEMDIE) ||
1767 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1768 filter &= ~SHOW_MEM_FILTER_NODES;
1769 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1770 filter &= ~SHOW_MEM_FILTER_NODES;
1771
1772 if (fmt) {
3ee9a4f0
JP
1773 struct va_format vaf;
1774 va_list args;
1775
a238ab5b 1776 va_start(args, fmt);
3ee9a4f0
JP
1777
1778 vaf.fmt = fmt;
1779 vaf.va = &args;
1780
1781 pr_warn("%pV", &vaf);
1782
a238ab5b
DH
1783 va_end(args);
1784 }
1785
3ee9a4f0
JP
1786 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1787 current->comm, order, gfp_mask);
a238ab5b
DH
1788
1789 dump_stack();
1790 if (!should_suppress_show_mem())
1791 show_mem(filter);
1792}
1793
11e33f6a
MG
1794static inline int
1795should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1796 unsigned long did_some_progress,
11e33f6a 1797 unsigned long pages_reclaimed)
1da177e4 1798{
11e33f6a
MG
1799 /* Do not loop if specifically requested */
1800 if (gfp_mask & __GFP_NORETRY)
1801 return 0;
1da177e4 1802
f90ac398
MG
1803 /* Always retry if specifically requested */
1804 if (gfp_mask & __GFP_NOFAIL)
1805 return 1;
1806
1807 /*
1808 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1809 * making forward progress without invoking OOM. Suspend also disables
1810 * storage devices so kswapd will not help. Bail if we are suspending.
1811 */
1812 if (!did_some_progress && pm_suspended_storage())
1813 return 0;
1814
11e33f6a
MG
1815 /*
1816 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1817 * means __GFP_NOFAIL, but that may not be true in other
1818 * implementations.
1819 */
1820 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1821 return 1;
1822
1823 /*
1824 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1825 * specified, then we retry until we no longer reclaim any pages
1826 * (above), or we've reclaimed an order of pages at least as
1827 * large as the allocation's order. In both cases, if the
1828 * allocation still fails, we stop retrying.
1829 */
1830 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1831 return 1;
cf40bd16 1832
11e33f6a
MG
1833 return 0;
1834}
933e312e 1835
11e33f6a
MG
1836static inline struct page *
1837__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1838 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1839 nodemask_t *nodemask, struct zone *preferred_zone,
1840 int migratetype)
11e33f6a
MG
1841{
1842 struct page *page;
1843
1844 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1845 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1846 schedule_timeout_uninterruptible(1);
1da177e4
LT
1847 return NULL;
1848 }
6b1de916 1849
11e33f6a
MG
1850 /*
1851 * Go through the zonelist yet one more time, keep very high watermark
1852 * here, this is only to catch a parallel oom killing, we must fail if
1853 * we're still under heavy pressure.
1854 */
1855 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1856 order, zonelist, high_zoneidx,
5117f45d 1857 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1858 preferred_zone, migratetype);
7fb1d9fc 1859 if (page)
11e33f6a
MG
1860 goto out;
1861
4365a567
KH
1862 if (!(gfp_mask & __GFP_NOFAIL)) {
1863 /* The OOM killer will not help higher order allocs */
1864 if (order > PAGE_ALLOC_COSTLY_ORDER)
1865 goto out;
03668b3c
DR
1866 /* The OOM killer does not needlessly kill tasks for lowmem */
1867 if (high_zoneidx < ZONE_NORMAL)
1868 goto out;
4365a567
KH
1869 /*
1870 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1871 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1872 * The caller should handle page allocation failure by itself if
1873 * it specifies __GFP_THISNODE.
1874 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1875 */
1876 if (gfp_mask & __GFP_THISNODE)
1877 goto out;
1878 }
11e33f6a 1879 /* Exhausted what can be done so it's blamo time */
4365a567 1880 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1881
1882out:
1883 clear_zonelist_oom(zonelist, gfp_mask);
1884 return page;
1885}
1886
56de7263
MG
1887#ifdef CONFIG_COMPACTION
1888/* Try memory compaction for high-order allocations before reclaim */
1889static struct page *
1890__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1891 struct zonelist *zonelist, enum zone_type high_zoneidx,
1892 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1893 int migratetype, unsigned long *did_some_progress,
1894 bool sync_migration)
56de7263
MG
1895{
1896 struct page *page;
1897
4f92e258 1898 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1899 return NULL;
1900
c06b1fca 1901 current->flags |= PF_MEMALLOC;
56de7263 1902 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1903 nodemask, sync_migration);
c06b1fca 1904 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1905 if (*did_some_progress != COMPACT_SKIPPED) {
1906
1907 /* Page migration frees to the PCP lists but we want merging */
1908 drain_pages(get_cpu());
1909 put_cpu();
1910
1911 page = get_page_from_freelist(gfp_mask, nodemask,
1912 order, zonelist, high_zoneidx,
1913 alloc_flags, preferred_zone,
1914 migratetype);
1915 if (page) {
4f92e258
MG
1916 preferred_zone->compact_considered = 0;
1917 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1918 count_vm_event(COMPACTSUCCESS);
1919 return page;
1920 }
1921
1922 /*
1923 * It's bad if compaction run occurs and fails.
1924 * The most likely reason is that pages exist,
1925 * but not enough to satisfy watermarks.
1926 */
1927 count_vm_event(COMPACTFAIL);
4f92e258 1928 defer_compaction(preferred_zone);
56de7263
MG
1929
1930 cond_resched();
1931 }
1932
1933 return NULL;
1934}
1935#else
1936static inline struct page *
1937__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1938 struct zonelist *zonelist, enum zone_type high_zoneidx,
1939 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1940 int migratetype, unsigned long *did_some_progress,
1941 bool sync_migration)
56de7263
MG
1942{
1943 return NULL;
1944}
1945#endif /* CONFIG_COMPACTION */
1946
11e33f6a
MG
1947/* The really slow allocator path where we enter direct reclaim */
1948static inline struct page *
1949__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1950 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1951 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1952 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1953{
1954 struct page *page = NULL;
1955 struct reclaim_state reclaim_state;
9ee493ce 1956 bool drained = false;
11e33f6a
MG
1957
1958 cond_resched();
1959
1960 /* We now go into synchronous reclaim */
1961 cpuset_memory_pressure_bump();
c06b1fca 1962 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1963 lockdep_set_current_reclaim_state(gfp_mask);
1964 reclaim_state.reclaimed_slab = 0;
c06b1fca 1965 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1966
1967 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1968
c06b1fca 1969 current->reclaim_state = NULL;
11e33f6a 1970 lockdep_clear_current_reclaim_state();
c06b1fca 1971 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1972
1973 cond_resched();
1974
9ee493ce
MG
1975 if (unlikely(!(*did_some_progress)))
1976 return NULL;
11e33f6a 1977
76d3fbf8
MG
1978 /* After successful reclaim, reconsider all zones for allocation */
1979 if (NUMA_BUILD)
1980 zlc_clear_zones_full(zonelist);
1981
9ee493ce
MG
1982retry:
1983 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1984 zonelist, high_zoneidx,
3dd28266
MG
1985 alloc_flags, preferred_zone,
1986 migratetype);
9ee493ce
MG
1987
1988 /*
1989 * If an allocation failed after direct reclaim, it could be because
1990 * pages are pinned on the per-cpu lists. Drain them and try again
1991 */
1992 if (!page && !drained) {
1993 drain_all_pages();
1994 drained = true;
1995 goto retry;
1996 }
1997
11e33f6a
MG
1998 return page;
1999}
2000
1da177e4 2001/*
11e33f6a
MG
2002 * This is called in the allocator slow-path if the allocation request is of
2003 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2004 */
11e33f6a
MG
2005static inline struct page *
2006__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2007 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2008 nodemask_t *nodemask, struct zone *preferred_zone,
2009 int migratetype)
11e33f6a
MG
2010{
2011 struct page *page;
2012
2013 do {
2014 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2015 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2016 preferred_zone, migratetype);
11e33f6a
MG
2017
2018 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2019 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2020 } while (!page && (gfp_mask & __GFP_NOFAIL));
2021
2022 return page;
2023}
2024
2025static inline
2026void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2027 enum zone_type high_zoneidx,
2028 enum zone_type classzone_idx)
1da177e4 2029{
dd1a239f
MG
2030 struct zoneref *z;
2031 struct zone *zone;
1da177e4 2032
11e33f6a 2033 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2034 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2035}
cf40bd16 2036
341ce06f
PZ
2037static inline int
2038gfp_to_alloc_flags(gfp_t gfp_mask)
2039{
341ce06f
PZ
2040 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2041 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2042
a56f57ff 2043 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2044 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2045
341ce06f
PZ
2046 /*
2047 * The caller may dip into page reserves a bit more if the caller
2048 * cannot run direct reclaim, or if the caller has realtime scheduling
2049 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2050 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2051 */
e6223a3b 2052 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2053
341ce06f 2054 if (!wait) {
5c3240d9
AA
2055 /*
2056 * Not worth trying to allocate harder for
2057 * __GFP_NOMEMALLOC even if it can't schedule.
2058 */
2059 if (!(gfp_mask & __GFP_NOMEMALLOC))
2060 alloc_flags |= ALLOC_HARDER;
523b9458 2061 /*
341ce06f
PZ
2062 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2063 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2064 */
341ce06f 2065 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2066 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2067 alloc_flags |= ALLOC_HARDER;
2068
2069 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2070 if (!in_interrupt() &&
c06b1fca 2071 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2072 unlikely(test_thread_flag(TIF_MEMDIE))))
2073 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2074 }
6b1de916 2075
341ce06f
PZ
2076 return alloc_flags;
2077}
2078
11e33f6a
MG
2079static inline struct page *
2080__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2081 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2082 nodemask_t *nodemask, struct zone *preferred_zone,
2083 int migratetype)
11e33f6a
MG
2084{
2085 const gfp_t wait = gfp_mask & __GFP_WAIT;
2086 struct page *page = NULL;
2087 int alloc_flags;
2088 unsigned long pages_reclaimed = 0;
2089 unsigned long did_some_progress;
77f1fe6b 2090 bool sync_migration = false;
1da177e4 2091
72807a74
MG
2092 /*
2093 * In the slowpath, we sanity check order to avoid ever trying to
2094 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2095 * be using allocators in order of preference for an area that is
2096 * too large.
2097 */
1fc28b70
MG
2098 if (order >= MAX_ORDER) {
2099 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2100 return NULL;
1fc28b70 2101 }
1da177e4 2102
952f3b51
CL
2103 /*
2104 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2105 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2106 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2107 * using a larger set of nodes after it has established that the
2108 * allowed per node queues are empty and that nodes are
2109 * over allocated.
2110 */
2111 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2112 goto nopage;
2113
cc4a6851 2114restart:
32dba98e
AA
2115 if (!(gfp_mask & __GFP_NO_KSWAPD))
2116 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2117 zone_idx(preferred_zone));
1da177e4 2118
9bf2229f 2119 /*
7fb1d9fc
RS
2120 * OK, we're below the kswapd watermark and have kicked background
2121 * reclaim. Now things get more complex, so set up alloc_flags according
2122 * to how we want to proceed.
9bf2229f 2123 */
341ce06f 2124 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2125
f33261d7
DR
2126 /*
2127 * Find the true preferred zone if the allocation is unconstrained by
2128 * cpusets.
2129 */
2130 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2131 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2132 &preferred_zone);
2133
cfa54a0f 2134rebalance:
341ce06f 2135 /* This is the last chance, in general, before the goto nopage. */
19770b32 2136 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2137 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2138 preferred_zone, migratetype);
7fb1d9fc
RS
2139 if (page)
2140 goto got_pg;
1da177e4 2141
11e33f6a 2142 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2143 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2144 page = __alloc_pages_high_priority(gfp_mask, order,
2145 zonelist, high_zoneidx, nodemask,
2146 preferred_zone, migratetype);
2147 if (page)
2148 goto got_pg;
1da177e4
LT
2149 }
2150
2151 /* Atomic allocations - we can't balance anything */
2152 if (!wait)
2153 goto nopage;
2154
341ce06f 2155 /* Avoid recursion of direct reclaim */
c06b1fca 2156 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2157 goto nopage;
2158
6583bb64
DR
2159 /* Avoid allocations with no watermarks from looping endlessly */
2160 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2161 goto nopage;
2162
77f1fe6b
MG
2163 /*
2164 * Try direct compaction. The first pass is asynchronous. Subsequent
2165 * attempts after direct reclaim are synchronous
2166 */
56de7263
MG
2167 page = __alloc_pages_direct_compact(gfp_mask, order,
2168 zonelist, high_zoneidx,
2169 nodemask,
2170 alloc_flags, preferred_zone,
77f1fe6b
MG
2171 migratetype, &did_some_progress,
2172 sync_migration);
56de7263
MG
2173 if (page)
2174 goto got_pg;
c6a140bf 2175 sync_migration = true;
56de7263 2176
11e33f6a
MG
2177 /* Try direct reclaim and then allocating */
2178 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2179 zonelist, high_zoneidx,
2180 nodemask,
5117f45d 2181 alloc_flags, preferred_zone,
3dd28266 2182 migratetype, &did_some_progress);
11e33f6a
MG
2183 if (page)
2184 goto got_pg;
1da177e4 2185
e33c3b5e 2186 /*
11e33f6a
MG
2187 * If we failed to make any progress reclaiming, then we are
2188 * running out of options and have to consider going OOM
e33c3b5e 2189 */
11e33f6a
MG
2190 if (!did_some_progress) {
2191 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2192 if (oom_killer_disabled)
2193 goto nopage;
11e33f6a
MG
2194 page = __alloc_pages_may_oom(gfp_mask, order,
2195 zonelist, high_zoneidx,
3dd28266
MG
2196 nodemask, preferred_zone,
2197 migratetype);
11e33f6a
MG
2198 if (page)
2199 goto got_pg;
1da177e4 2200
03668b3c
DR
2201 if (!(gfp_mask & __GFP_NOFAIL)) {
2202 /*
2203 * The oom killer is not called for high-order
2204 * allocations that may fail, so if no progress
2205 * is being made, there are no other options and
2206 * retrying is unlikely to help.
2207 */
2208 if (order > PAGE_ALLOC_COSTLY_ORDER)
2209 goto nopage;
2210 /*
2211 * The oom killer is not called for lowmem
2212 * allocations to prevent needlessly killing
2213 * innocent tasks.
2214 */
2215 if (high_zoneidx < ZONE_NORMAL)
2216 goto nopage;
2217 }
e2c55dc8 2218
ff0ceb9d
DR
2219 goto restart;
2220 }
1da177e4
LT
2221 }
2222
11e33f6a 2223 /* Check if we should retry the allocation */
a41f24ea 2224 pages_reclaimed += did_some_progress;
f90ac398
MG
2225 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2226 pages_reclaimed)) {
11e33f6a 2227 /* Wait for some write requests to complete then retry */
0e093d99 2228 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2229 goto rebalance;
3e7d3449
MG
2230 } else {
2231 /*
2232 * High-order allocations do not necessarily loop after
2233 * direct reclaim and reclaim/compaction depends on compaction
2234 * being called after reclaim so call directly if necessary
2235 */
2236 page = __alloc_pages_direct_compact(gfp_mask, order,
2237 zonelist, high_zoneidx,
2238 nodemask,
2239 alloc_flags, preferred_zone,
77f1fe6b
MG
2240 migratetype, &did_some_progress,
2241 sync_migration);
3e7d3449
MG
2242 if (page)
2243 goto got_pg;
1da177e4
LT
2244 }
2245
2246nopage:
a238ab5b 2247 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2248 return page;
1da177e4 2249got_pg:
b1eeab67
VN
2250 if (kmemcheck_enabled)
2251 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2252 return page;
11e33f6a 2253
1da177e4 2254}
11e33f6a
MG
2255
2256/*
2257 * This is the 'heart' of the zoned buddy allocator.
2258 */
2259struct page *
2260__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2261 struct zonelist *zonelist, nodemask_t *nodemask)
2262{
2263 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2264 struct zone *preferred_zone;
11e33f6a 2265 struct page *page;
3dd28266 2266 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2267
dcce284a
BH
2268 gfp_mask &= gfp_allowed_mask;
2269
11e33f6a
MG
2270 lockdep_trace_alloc(gfp_mask);
2271
2272 might_sleep_if(gfp_mask & __GFP_WAIT);
2273
2274 if (should_fail_alloc_page(gfp_mask, order))
2275 return NULL;
2276
2277 /*
2278 * Check the zones suitable for the gfp_mask contain at least one
2279 * valid zone. It's possible to have an empty zonelist as a result
2280 * of GFP_THISNODE and a memoryless node
2281 */
2282 if (unlikely(!zonelist->_zonerefs->zone))
2283 return NULL;
2284
c0ff7453 2285 get_mems_allowed();
5117f45d 2286 /* The preferred zone is used for statistics later */
f33261d7
DR
2287 first_zones_zonelist(zonelist, high_zoneidx,
2288 nodemask ? : &cpuset_current_mems_allowed,
2289 &preferred_zone);
c0ff7453
MX
2290 if (!preferred_zone) {
2291 put_mems_allowed();
5117f45d 2292 return NULL;
c0ff7453 2293 }
5117f45d
MG
2294
2295 /* First allocation attempt */
11e33f6a 2296 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2297 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2298 preferred_zone, migratetype);
11e33f6a
MG
2299 if (unlikely(!page))
2300 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2301 zonelist, high_zoneidx, nodemask,
3dd28266 2302 preferred_zone, migratetype);
c0ff7453 2303 put_mems_allowed();
11e33f6a 2304
4b4f278c 2305 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2306 return page;
1da177e4 2307}
d239171e 2308EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2309
2310/*
2311 * Common helper functions.
2312 */
920c7a5d 2313unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2314{
945a1113
AM
2315 struct page *page;
2316
2317 /*
2318 * __get_free_pages() returns a 32-bit address, which cannot represent
2319 * a highmem page
2320 */
2321 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2322
1da177e4
LT
2323 page = alloc_pages(gfp_mask, order);
2324 if (!page)
2325 return 0;
2326 return (unsigned long) page_address(page);
2327}
1da177e4
LT
2328EXPORT_SYMBOL(__get_free_pages);
2329
920c7a5d 2330unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2331{
945a1113 2332 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2333}
1da177e4
LT
2334EXPORT_SYMBOL(get_zeroed_page);
2335
920c7a5d 2336void __free_pages(struct page *page, unsigned int order)
1da177e4 2337{
b5810039 2338 if (put_page_testzero(page)) {
1da177e4 2339 if (order == 0)
fc91668e 2340 free_hot_cold_page(page, 0);
1da177e4
LT
2341 else
2342 __free_pages_ok(page, order);
2343 }
2344}
2345
2346EXPORT_SYMBOL(__free_pages);
2347
920c7a5d 2348void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2349{
2350 if (addr != 0) {
725d704e 2351 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2352 __free_pages(virt_to_page((void *)addr), order);
2353 }
2354}
2355
2356EXPORT_SYMBOL(free_pages);
2357
ee85c2e1
AK
2358static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2359{
2360 if (addr) {
2361 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2362 unsigned long used = addr + PAGE_ALIGN(size);
2363
2364 split_page(virt_to_page((void *)addr), order);
2365 while (used < alloc_end) {
2366 free_page(used);
2367 used += PAGE_SIZE;
2368 }
2369 }
2370 return (void *)addr;
2371}
2372
2be0ffe2
TT
2373/**
2374 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2375 * @size: the number of bytes to allocate
2376 * @gfp_mask: GFP flags for the allocation
2377 *
2378 * This function is similar to alloc_pages(), except that it allocates the
2379 * minimum number of pages to satisfy the request. alloc_pages() can only
2380 * allocate memory in power-of-two pages.
2381 *
2382 * This function is also limited by MAX_ORDER.
2383 *
2384 * Memory allocated by this function must be released by free_pages_exact().
2385 */
2386void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2387{
2388 unsigned int order = get_order(size);
2389 unsigned long addr;
2390
2391 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2392 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2393}
2394EXPORT_SYMBOL(alloc_pages_exact);
2395
ee85c2e1
AK
2396/**
2397 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2398 * pages on a node.
b5e6ab58 2399 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2400 * @size: the number of bytes to allocate
2401 * @gfp_mask: GFP flags for the allocation
2402 *
2403 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2404 * back.
2405 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2406 * but is not exact.
2407 */
2408void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2409{
2410 unsigned order = get_order(size);
2411 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2412 if (!p)
2413 return NULL;
2414 return make_alloc_exact((unsigned long)page_address(p), order, size);
2415}
2416EXPORT_SYMBOL(alloc_pages_exact_nid);
2417
2be0ffe2
TT
2418/**
2419 * free_pages_exact - release memory allocated via alloc_pages_exact()
2420 * @virt: the value returned by alloc_pages_exact.
2421 * @size: size of allocation, same value as passed to alloc_pages_exact().
2422 *
2423 * Release the memory allocated by a previous call to alloc_pages_exact.
2424 */
2425void free_pages_exact(void *virt, size_t size)
2426{
2427 unsigned long addr = (unsigned long)virt;
2428 unsigned long end = addr + PAGE_ALIGN(size);
2429
2430 while (addr < end) {
2431 free_page(addr);
2432 addr += PAGE_SIZE;
2433 }
2434}
2435EXPORT_SYMBOL(free_pages_exact);
2436
1da177e4
LT
2437static unsigned int nr_free_zone_pages(int offset)
2438{
dd1a239f 2439 struct zoneref *z;
54a6eb5c
MG
2440 struct zone *zone;
2441
e310fd43 2442 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2443 unsigned int sum = 0;
2444
0e88460d 2445 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2446
54a6eb5c 2447 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2448 unsigned long size = zone->present_pages;
41858966 2449 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2450 if (size > high)
2451 sum += size - high;
1da177e4
LT
2452 }
2453
2454 return sum;
2455}
2456
2457/*
2458 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2459 */
2460unsigned int nr_free_buffer_pages(void)
2461{
af4ca457 2462 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2463}
c2f1a551 2464EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2465
2466/*
2467 * Amount of free RAM allocatable within all zones
2468 */
2469unsigned int nr_free_pagecache_pages(void)
2470{
2a1e274a 2471 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2472}
08e0f6a9
CL
2473
2474static inline void show_node(struct zone *zone)
1da177e4 2475{
08e0f6a9 2476 if (NUMA_BUILD)
25ba77c1 2477 printk("Node %d ", zone_to_nid(zone));
1da177e4 2478}
1da177e4 2479
1da177e4
LT
2480void si_meminfo(struct sysinfo *val)
2481{
2482 val->totalram = totalram_pages;
2483 val->sharedram = 0;
d23ad423 2484 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2485 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2486 val->totalhigh = totalhigh_pages;
2487 val->freehigh = nr_free_highpages();
1da177e4
LT
2488 val->mem_unit = PAGE_SIZE;
2489}
2490
2491EXPORT_SYMBOL(si_meminfo);
2492
2493#ifdef CONFIG_NUMA
2494void si_meminfo_node(struct sysinfo *val, int nid)
2495{
2496 pg_data_t *pgdat = NODE_DATA(nid);
2497
2498 val->totalram = pgdat->node_present_pages;
d23ad423 2499 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2500#ifdef CONFIG_HIGHMEM
1da177e4 2501 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2502 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2503 NR_FREE_PAGES);
98d2b0eb
CL
2504#else
2505 val->totalhigh = 0;
2506 val->freehigh = 0;
2507#endif
1da177e4
LT
2508 val->mem_unit = PAGE_SIZE;
2509}
2510#endif
2511
ddd588b5 2512/*
7bf02ea2
DR
2513 * Determine whether the node should be displayed or not, depending on whether
2514 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2515 */
7bf02ea2 2516bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2517{
2518 bool ret = false;
2519
2520 if (!(flags & SHOW_MEM_FILTER_NODES))
2521 goto out;
2522
2523 get_mems_allowed();
7bf02ea2 2524 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2525 put_mems_allowed();
2526out:
2527 return ret;
2528}
2529
1da177e4
LT
2530#define K(x) ((x) << (PAGE_SHIFT-10))
2531
2532/*
2533 * Show free area list (used inside shift_scroll-lock stuff)
2534 * We also calculate the percentage fragmentation. We do this by counting the
2535 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2536 * Suppresses nodes that are not allowed by current's cpuset if
2537 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2538 */
7bf02ea2 2539void show_free_areas(unsigned int filter)
1da177e4 2540{
c7241913 2541 int cpu;
1da177e4
LT
2542 struct zone *zone;
2543
ee99c71c 2544 for_each_populated_zone(zone) {
7bf02ea2 2545 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2546 continue;
c7241913
JS
2547 show_node(zone);
2548 printk("%s per-cpu:\n", zone->name);
1da177e4 2549
6b482c67 2550 for_each_online_cpu(cpu) {
1da177e4
LT
2551 struct per_cpu_pageset *pageset;
2552
99dcc3e5 2553 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2554
3dfa5721
CL
2555 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2556 cpu, pageset->pcp.high,
2557 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2558 }
2559 }
2560
a731286d
KM
2561 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2562 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2563 " unevictable:%lu"
b76146ed 2564 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2565 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2566 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2567 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2568 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2569 global_page_state(NR_ISOLATED_ANON),
2570 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2571 global_page_state(NR_INACTIVE_FILE),
a731286d 2572 global_page_state(NR_ISOLATED_FILE),
7b854121 2573 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2574 global_page_state(NR_FILE_DIRTY),
ce866b34 2575 global_page_state(NR_WRITEBACK),
fd39fc85 2576 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2577 global_page_state(NR_FREE_PAGES),
3701b033
KM
2578 global_page_state(NR_SLAB_RECLAIMABLE),
2579 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2580 global_page_state(NR_FILE_MAPPED),
4b02108a 2581 global_page_state(NR_SHMEM),
a25700a5
AM
2582 global_page_state(NR_PAGETABLE),
2583 global_page_state(NR_BOUNCE));
1da177e4 2584
ee99c71c 2585 for_each_populated_zone(zone) {
1da177e4
LT
2586 int i;
2587
7bf02ea2 2588 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2589 continue;
1da177e4
LT
2590 show_node(zone);
2591 printk("%s"
2592 " free:%lukB"
2593 " min:%lukB"
2594 " low:%lukB"
2595 " high:%lukB"
4f98a2fe
RR
2596 " active_anon:%lukB"
2597 " inactive_anon:%lukB"
2598 " active_file:%lukB"
2599 " inactive_file:%lukB"
7b854121 2600 " unevictable:%lukB"
a731286d
KM
2601 " isolated(anon):%lukB"
2602 " isolated(file):%lukB"
1da177e4 2603 " present:%lukB"
4a0aa73f
KM
2604 " mlocked:%lukB"
2605 " dirty:%lukB"
2606 " writeback:%lukB"
2607 " mapped:%lukB"
4b02108a 2608 " shmem:%lukB"
4a0aa73f
KM
2609 " slab_reclaimable:%lukB"
2610 " slab_unreclaimable:%lukB"
c6a7f572 2611 " kernel_stack:%lukB"
4a0aa73f
KM
2612 " pagetables:%lukB"
2613 " unstable:%lukB"
2614 " bounce:%lukB"
2615 " writeback_tmp:%lukB"
1da177e4
LT
2616 " pages_scanned:%lu"
2617 " all_unreclaimable? %s"
2618 "\n",
2619 zone->name,
88f5acf8 2620 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2621 K(min_wmark_pages(zone)),
2622 K(low_wmark_pages(zone)),
2623 K(high_wmark_pages(zone)),
4f98a2fe
RR
2624 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2625 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2626 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2627 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2628 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2629 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2630 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2631 K(zone->present_pages),
4a0aa73f
KM
2632 K(zone_page_state(zone, NR_MLOCK)),
2633 K(zone_page_state(zone, NR_FILE_DIRTY)),
2634 K(zone_page_state(zone, NR_WRITEBACK)),
2635 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2636 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2637 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2638 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2639 zone_page_state(zone, NR_KERNEL_STACK) *
2640 THREAD_SIZE / 1024,
4a0aa73f
KM
2641 K(zone_page_state(zone, NR_PAGETABLE)),
2642 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2643 K(zone_page_state(zone, NR_BOUNCE)),
2644 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2645 zone->pages_scanned,
93e4a89a 2646 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2647 );
2648 printk("lowmem_reserve[]:");
2649 for (i = 0; i < MAX_NR_ZONES; i++)
2650 printk(" %lu", zone->lowmem_reserve[i]);
2651 printk("\n");
2652 }
2653
ee99c71c 2654 for_each_populated_zone(zone) {
8f9de51a 2655 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2656
7bf02ea2 2657 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2658 continue;
1da177e4
LT
2659 show_node(zone);
2660 printk("%s: ", zone->name);
1da177e4
LT
2661
2662 spin_lock_irqsave(&zone->lock, flags);
2663 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2664 nr[order] = zone->free_area[order].nr_free;
2665 total += nr[order] << order;
1da177e4
LT
2666 }
2667 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2668 for (order = 0; order < MAX_ORDER; order++)
2669 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2670 printk("= %lukB\n", K(total));
2671 }
2672
e6f3602d
LW
2673 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2674
1da177e4
LT
2675 show_swap_cache_info();
2676}
2677
19770b32
MG
2678static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2679{
2680 zoneref->zone = zone;
2681 zoneref->zone_idx = zone_idx(zone);
2682}
2683
1da177e4
LT
2684/*
2685 * Builds allocation fallback zone lists.
1a93205b
CL
2686 *
2687 * Add all populated zones of a node to the zonelist.
1da177e4 2688 */
f0c0b2b8
KH
2689static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2690 int nr_zones, enum zone_type zone_type)
1da177e4 2691{
1a93205b
CL
2692 struct zone *zone;
2693
98d2b0eb 2694 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2695 zone_type++;
02a68a5e
CL
2696
2697 do {
2f6726e5 2698 zone_type--;
070f8032 2699 zone = pgdat->node_zones + zone_type;
1a93205b 2700 if (populated_zone(zone)) {
dd1a239f
MG
2701 zoneref_set_zone(zone,
2702 &zonelist->_zonerefs[nr_zones++]);
070f8032 2703 check_highest_zone(zone_type);
1da177e4 2704 }
02a68a5e 2705
2f6726e5 2706 } while (zone_type);
070f8032 2707 return nr_zones;
1da177e4
LT
2708}
2709
f0c0b2b8
KH
2710
2711/*
2712 * zonelist_order:
2713 * 0 = automatic detection of better ordering.
2714 * 1 = order by ([node] distance, -zonetype)
2715 * 2 = order by (-zonetype, [node] distance)
2716 *
2717 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2718 * the same zonelist. So only NUMA can configure this param.
2719 */
2720#define ZONELIST_ORDER_DEFAULT 0
2721#define ZONELIST_ORDER_NODE 1
2722#define ZONELIST_ORDER_ZONE 2
2723
2724/* zonelist order in the kernel.
2725 * set_zonelist_order() will set this to NODE or ZONE.
2726 */
2727static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2728static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2729
2730
1da177e4 2731#ifdef CONFIG_NUMA
f0c0b2b8
KH
2732/* The value user specified ....changed by config */
2733static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2734/* string for sysctl */
2735#define NUMA_ZONELIST_ORDER_LEN 16
2736char numa_zonelist_order[16] = "default";
2737
2738/*
2739 * interface for configure zonelist ordering.
2740 * command line option "numa_zonelist_order"
2741 * = "[dD]efault - default, automatic configuration.
2742 * = "[nN]ode - order by node locality, then by zone within node
2743 * = "[zZ]one - order by zone, then by locality within zone
2744 */
2745
2746static int __parse_numa_zonelist_order(char *s)
2747{
2748 if (*s == 'd' || *s == 'D') {
2749 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2750 } else if (*s == 'n' || *s == 'N') {
2751 user_zonelist_order = ZONELIST_ORDER_NODE;
2752 } else if (*s == 'z' || *s == 'Z') {
2753 user_zonelist_order = ZONELIST_ORDER_ZONE;
2754 } else {
2755 printk(KERN_WARNING
2756 "Ignoring invalid numa_zonelist_order value: "
2757 "%s\n", s);
2758 return -EINVAL;
2759 }
2760 return 0;
2761}
2762
2763static __init int setup_numa_zonelist_order(char *s)
2764{
ecb256f8
VL
2765 int ret;
2766
2767 if (!s)
2768 return 0;
2769
2770 ret = __parse_numa_zonelist_order(s);
2771 if (ret == 0)
2772 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2773
2774 return ret;
f0c0b2b8
KH
2775}
2776early_param("numa_zonelist_order", setup_numa_zonelist_order);
2777
2778/*
2779 * sysctl handler for numa_zonelist_order
2780 */
2781int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2782 void __user *buffer, size_t *length,
f0c0b2b8
KH
2783 loff_t *ppos)
2784{
2785 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2786 int ret;
443c6f14 2787 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2788
443c6f14 2789 mutex_lock(&zl_order_mutex);
f0c0b2b8 2790 if (write)
443c6f14 2791 strcpy(saved_string, (char*)table->data);
8d65af78 2792 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2793 if (ret)
443c6f14 2794 goto out;
f0c0b2b8
KH
2795 if (write) {
2796 int oldval = user_zonelist_order;
2797 if (__parse_numa_zonelist_order((char*)table->data)) {
2798 /*
2799 * bogus value. restore saved string
2800 */
2801 strncpy((char*)table->data, saved_string,
2802 NUMA_ZONELIST_ORDER_LEN);
2803 user_zonelist_order = oldval;
4eaf3f64
HL
2804 } else if (oldval != user_zonelist_order) {
2805 mutex_lock(&zonelists_mutex);
1f522509 2806 build_all_zonelists(NULL);
4eaf3f64
HL
2807 mutex_unlock(&zonelists_mutex);
2808 }
f0c0b2b8 2809 }
443c6f14
AK
2810out:
2811 mutex_unlock(&zl_order_mutex);
2812 return ret;
f0c0b2b8
KH
2813}
2814
2815
62bc62a8 2816#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2817static int node_load[MAX_NUMNODES];
2818
1da177e4 2819/**
4dc3b16b 2820 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2821 * @node: node whose fallback list we're appending
2822 * @used_node_mask: nodemask_t of already used nodes
2823 *
2824 * We use a number of factors to determine which is the next node that should
2825 * appear on a given node's fallback list. The node should not have appeared
2826 * already in @node's fallback list, and it should be the next closest node
2827 * according to the distance array (which contains arbitrary distance values
2828 * from each node to each node in the system), and should also prefer nodes
2829 * with no CPUs, since presumably they'll have very little allocation pressure
2830 * on them otherwise.
2831 * It returns -1 if no node is found.
2832 */
f0c0b2b8 2833static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2834{
4cf808eb 2835 int n, val;
1da177e4
LT
2836 int min_val = INT_MAX;
2837 int best_node = -1;
a70f7302 2838 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2839
4cf808eb
LT
2840 /* Use the local node if we haven't already */
2841 if (!node_isset(node, *used_node_mask)) {
2842 node_set(node, *used_node_mask);
2843 return node;
2844 }
1da177e4 2845
37b07e41 2846 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2847
2848 /* Don't want a node to appear more than once */
2849 if (node_isset(n, *used_node_mask))
2850 continue;
2851
1da177e4
LT
2852 /* Use the distance array to find the distance */
2853 val = node_distance(node, n);
2854
4cf808eb
LT
2855 /* Penalize nodes under us ("prefer the next node") */
2856 val += (n < node);
2857
1da177e4 2858 /* Give preference to headless and unused nodes */
a70f7302
RR
2859 tmp = cpumask_of_node(n);
2860 if (!cpumask_empty(tmp))
1da177e4
LT
2861 val += PENALTY_FOR_NODE_WITH_CPUS;
2862
2863 /* Slight preference for less loaded node */
2864 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2865 val += node_load[n];
2866
2867 if (val < min_val) {
2868 min_val = val;
2869 best_node = n;
2870 }
2871 }
2872
2873 if (best_node >= 0)
2874 node_set(best_node, *used_node_mask);
2875
2876 return best_node;
2877}
2878
f0c0b2b8
KH
2879
2880/*
2881 * Build zonelists ordered by node and zones within node.
2882 * This results in maximum locality--normal zone overflows into local
2883 * DMA zone, if any--but risks exhausting DMA zone.
2884 */
2885static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2886{
f0c0b2b8 2887 int j;
1da177e4 2888 struct zonelist *zonelist;
f0c0b2b8 2889
54a6eb5c 2890 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2891 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2892 ;
2893 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2894 MAX_NR_ZONES - 1);
dd1a239f
MG
2895 zonelist->_zonerefs[j].zone = NULL;
2896 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2897}
2898
523b9458
CL
2899/*
2900 * Build gfp_thisnode zonelists
2901 */
2902static void build_thisnode_zonelists(pg_data_t *pgdat)
2903{
523b9458
CL
2904 int j;
2905 struct zonelist *zonelist;
2906
54a6eb5c
MG
2907 zonelist = &pgdat->node_zonelists[1];
2908 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2909 zonelist->_zonerefs[j].zone = NULL;
2910 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2911}
2912
f0c0b2b8
KH
2913/*
2914 * Build zonelists ordered by zone and nodes within zones.
2915 * This results in conserving DMA zone[s] until all Normal memory is
2916 * exhausted, but results in overflowing to remote node while memory
2917 * may still exist in local DMA zone.
2918 */
2919static int node_order[MAX_NUMNODES];
2920
2921static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2922{
f0c0b2b8
KH
2923 int pos, j, node;
2924 int zone_type; /* needs to be signed */
2925 struct zone *z;
2926 struct zonelist *zonelist;
2927
54a6eb5c
MG
2928 zonelist = &pgdat->node_zonelists[0];
2929 pos = 0;
2930 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2931 for (j = 0; j < nr_nodes; j++) {
2932 node = node_order[j];
2933 z = &NODE_DATA(node)->node_zones[zone_type];
2934 if (populated_zone(z)) {
dd1a239f
MG
2935 zoneref_set_zone(z,
2936 &zonelist->_zonerefs[pos++]);
54a6eb5c 2937 check_highest_zone(zone_type);
f0c0b2b8
KH
2938 }
2939 }
f0c0b2b8 2940 }
dd1a239f
MG
2941 zonelist->_zonerefs[pos].zone = NULL;
2942 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2943}
2944
2945static int default_zonelist_order(void)
2946{
2947 int nid, zone_type;
2948 unsigned long low_kmem_size,total_size;
2949 struct zone *z;
2950 int average_size;
2951 /*
88393161 2952 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2953 * If they are really small and used heavily, the system can fall
2954 * into OOM very easily.
e325c90f 2955 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2956 */
2957 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2958 low_kmem_size = 0;
2959 total_size = 0;
2960 for_each_online_node(nid) {
2961 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2962 z = &NODE_DATA(nid)->node_zones[zone_type];
2963 if (populated_zone(z)) {
2964 if (zone_type < ZONE_NORMAL)
2965 low_kmem_size += z->present_pages;
2966 total_size += z->present_pages;
e325c90f
DR
2967 } else if (zone_type == ZONE_NORMAL) {
2968 /*
2969 * If any node has only lowmem, then node order
2970 * is preferred to allow kernel allocations
2971 * locally; otherwise, they can easily infringe
2972 * on other nodes when there is an abundance of
2973 * lowmem available to allocate from.
2974 */
2975 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2976 }
2977 }
2978 }
2979 if (!low_kmem_size || /* there are no DMA area. */
2980 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2981 return ZONELIST_ORDER_NODE;
2982 /*
2983 * look into each node's config.
2984 * If there is a node whose DMA/DMA32 memory is very big area on
2985 * local memory, NODE_ORDER may be suitable.
2986 */
37b07e41
LS
2987 average_size = total_size /
2988 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2989 for_each_online_node(nid) {
2990 low_kmem_size = 0;
2991 total_size = 0;
2992 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2993 z = &NODE_DATA(nid)->node_zones[zone_type];
2994 if (populated_zone(z)) {
2995 if (zone_type < ZONE_NORMAL)
2996 low_kmem_size += z->present_pages;
2997 total_size += z->present_pages;
2998 }
2999 }
3000 if (low_kmem_size &&
3001 total_size > average_size && /* ignore small node */
3002 low_kmem_size > total_size * 70/100)
3003 return ZONELIST_ORDER_NODE;
3004 }
3005 return ZONELIST_ORDER_ZONE;
3006}
3007
3008static void set_zonelist_order(void)
3009{
3010 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3011 current_zonelist_order = default_zonelist_order();
3012 else
3013 current_zonelist_order = user_zonelist_order;
3014}
3015
3016static void build_zonelists(pg_data_t *pgdat)
3017{
3018 int j, node, load;
3019 enum zone_type i;
1da177e4 3020 nodemask_t used_mask;
f0c0b2b8
KH
3021 int local_node, prev_node;
3022 struct zonelist *zonelist;
3023 int order = current_zonelist_order;
1da177e4
LT
3024
3025 /* initialize zonelists */
523b9458 3026 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3027 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3028 zonelist->_zonerefs[0].zone = NULL;
3029 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3030 }
3031
3032 /* NUMA-aware ordering of nodes */
3033 local_node = pgdat->node_id;
62bc62a8 3034 load = nr_online_nodes;
1da177e4
LT
3035 prev_node = local_node;
3036 nodes_clear(used_mask);
f0c0b2b8 3037
f0c0b2b8
KH
3038 memset(node_order, 0, sizeof(node_order));
3039 j = 0;
3040
1da177e4 3041 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3042 int distance = node_distance(local_node, node);
3043
3044 /*
3045 * If another node is sufficiently far away then it is better
3046 * to reclaim pages in a zone before going off node.
3047 */
3048 if (distance > RECLAIM_DISTANCE)
3049 zone_reclaim_mode = 1;
3050
1da177e4
LT
3051 /*
3052 * We don't want to pressure a particular node.
3053 * So adding penalty to the first node in same
3054 * distance group to make it round-robin.
3055 */
9eeff239 3056 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3057 node_load[node] = load;
3058
1da177e4
LT
3059 prev_node = node;
3060 load--;
f0c0b2b8
KH
3061 if (order == ZONELIST_ORDER_NODE)
3062 build_zonelists_in_node_order(pgdat, node);
3063 else
3064 node_order[j++] = node; /* remember order */
3065 }
1da177e4 3066
f0c0b2b8
KH
3067 if (order == ZONELIST_ORDER_ZONE) {
3068 /* calculate node order -- i.e., DMA last! */
3069 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3070 }
523b9458
CL
3071
3072 build_thisnode_zonelists(pgdat);
1da177e4
LT
3073}
3074
9276b1bc 3075/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3076static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3077{
54a6eb5c
MG
3078 struct zonelist *zonelist;
3079 struct zonelist_cache *zlc;
dd1a239f 3080 struct zoneref *z;
9276b1bc 3081
54a6eb5c
MG
3082 zonelist = &pgdat->node_zonelists[0];
3083 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3084 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3085 for (z = zonelist->_zonerefs; z->zone; z++)
3086 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3087}
3088
7aac7898
LS
3089#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3090/*
3091 * Return node id of node used for "local" allocations.
3092 * I.e., first node id of first zone in arg node's generic zonelist.
3093 * Used for initializing percpu 'numa_mem', which is used primarily
3094 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3095 */
3096int local_memory_node(int node)
3097{
3098 struct zone *zone;
3099
3100 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3101 gfp_zone(GFP_KERNEL),
3102 NULL,
3103 &zone);
3104 return zone->node;
3105}
3106#endif
f0c0b2b8 3107
1da177e4
LT
3108#else /* CONFIG_NUMA */
3109
f0c0b2b8
KH
3110static void set_zonelist_order(void)
3111{
3112 current_zonelist_order = ZONELIST_ORDER_ZONE;
3113}
3114
3115static void build_zonelists(pg_data_t *pgdat)
1da177e4 3116{
19655d34 3117 int node, local_node;
54a6eb5c
MG
3118 enum zone_type j;
3119 struct zonelist *zonelist;
1da177e4
LT
3120
3121 local_node = pgdat->node_id;
1da177e4 3122
54a6eb5c
MG
3123 zonelist = &pgdat->node_zonelists[0];
3124 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3125
54a6eb5c
MG
3126 /*
3127 * Now we build the zonelist so that it contains the zones
3128 * of all the other nodes.
3129 * We don't want to pressure a particular node, so when
3130 * building the zones for node N, we make sure that the
3131 * zones coming right after the local ones are those from
3132 * node N+1 (modulo N)
3133 */
3134 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3135 if (!node_online(node))
3136 continue;
3137 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3138 MAX_NR_ZONES - 1);
1da177e4 3139 }
54a6eb5c
MG
3140 for (node = 0; node < local_node; node++) {
3141 if (!node_online(node))
3142 continue;
3143 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3144 MAX_NR_ZONES - 1);
3145 }
3146
dd1a239f
MG
3147 zonelist->_zonerefs[j].zone = NULL;
3148 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3149}
3150
9276b1bc 3151/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3152static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3153{
54a6eb5c 3154 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3155}
3156
1da177e4
LT
3157#endif /* CONFIG_NUMA */
3158
99dcc3e5
CL
3159/*
3160 * Boot pageset table. One per cpu which is going to be used for all
3161 * zones and all nodes. The parameters will be set in such a way
3162 * that an item put on a list will immediately be handed over to
3163 * the buddy list. This is safe since pageset manipulation is done
3164 * with interrupts disabled.
3165 *
3166 * The boot_pagesets must be kept even after bootup is complete for
3167 * unused processors and/or zones. They do play a role for bootstrapping
3168 * hotplugged processors.
3169 *
3170 * zoneinfo_show() and maybe other functions do
3171 * not check if the processor is online before following the pageset pointer.
3172 * Other parts of the kernel may not check if the zone is available.
3173 */
3174static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3175static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3176static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3177
4eaf3f64
HL
3178/*
3179 * Global mutex to protect against size modification of zonelists
3180 * as well as to serialize pageset setup for the new populated zone.
3181 */
3182DEFINE_MUTEX(zonelists_mutex);
3183
9b1a4d38 3184/* return values int ....just for stop_machine() */
1f522509 3185static __init_refok int __build_all_zonelists(void *data)
1da177e4 3186{
6811378e 3187 int nid;
99dcc3e5 3188 int cpu;
9276b1bc 3189
7f9cfb31
BL
3190#ifdef CONFIG_NUMA
3191 memset(node_load, 0, sizeof(node_load));
3192#endif
9276b1bc 3193 for_each_online_node(nid) {
7ea1530a
CL
3194 pg_data_t *pgdat = NODE_DATA(nid);
3195
3196 build_zonelists(pgdat);
3197 build_zonelist_cache(pgdat);
9276b1bc 3198 }
99dcc3e5
CL
3199
3200 /*
3201 * Initialize the boot_pagesets that are going to be used
3202 * for bootstrapping processors. The real pagesets for
3203 * each zone will be allocated later when the per cpu
3204 * allocator is available.
3205 *
3206 * boot_pagesets are used also for bootstrapping offline
3207 * cpus if the system is already booted because the pagesets
3208 * are needed to initialize allocators on a specific cpu too.
3209 * F.e. the percpu allocator needs the page allocator which
3210 * needs the percpu allocator in order to allocate its pagesets
3211 * (a chicken-egg dilemma).
3212 */
7aac7898 3213 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3214 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3215
7aac7898
LS
3216#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3217 /*
3218 * We now know the "local memory node" for each node--
3219 * i.e., the node of the first zone in the generic zonelist.
3220 * Set up numa_mem percpu variable for on-line cpus. During
3221 * boot, only the boot cpu should be on-line; we'll init the
3222 * secondary cpus' numa_mem as they come on-line. During
3223 * node/memory hotplug, we'll fixup all on-line cpus.
3224 */
3225 if (cpu_online(cpu))
3226 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3227#endif
3228 }
3229
6811378e
YG
3230 return 0;
3231}
3232
4eaf3f64
HL
3233/*
3234 * Called with zonelists_mutex held always
3235 * unless system_state == SYSTEM_BOOTING.
3236 */
9f6ae448 3237void __ref build_all_zonelists(void *data)
6811378e 3238{
f0c0b2b8
KH
3239 set_zonelist_order();
3240
6811378e 3241 if (system_state == SYSTEM_BOOTING) {
423b41d7 3242 __build_all_zonelists(NULL);
68ad8df4 3243 mminit_verify_zonelist();
6811378e
YG
3244 cpuset_init_current_mems_allowed();
3245 } else {
183ff22b 3246 /* we have to stop all cpus to guarantee there is no user
6811378e 3247 of zonelist */
e9959f0f
KH
3248#ifdef CONFIG_MEMORY_HOTPLUG
3249 if (data)
3250 setup_zone_pageset((struct zone *)data);
3251#endif
3252 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3253 /* cpuset refresh routine should be here */
3254 }
bd1e22b8 3255 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3256 /*
3257 * Disable grouping by mobility if the number of pages in the
3258 * system is too low to allow the mechanism to work. It would be
3259 * more accurate, but expensive to check per-zone. This check is
3260 * made on memory-hotadd so a system can start with mobility
3261 * disabled and enable it later
3262 */
d9c23400 3263 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3264 page_group_by_mobility_disabled = 1;
3265 else
3266 page_group_by_mobility_disabled = 0;
3267
3268 printk("Built %i zonelists in %s order, mobility grouping %s. "
3269 "Total pages: %ld\n",
62bc62a8 3270 nr_online_nodes,
f0c0b2b8 3271 zonelist_order_name[current_zonelist_order],
9ef9acb0 3272 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3273 vm_total_pages);
3274#ifdef CONFIG_NUMA
3275 printk("Policy zone: %s\n", zone_names[policy_zone]);
3276#endif
1da177e4
LT
3277}
3278
3279/*
3280 * Helper functions to size the waitqueue hash table.
3281 * Essentially these want to choose hash table sizes sufficiently
3282 * large so that collisions trying to wait on pages are rare.
3283 * But in fact, the number of active page waitqueues on typical
3284 * systems is ridiculously low, less than 200. So this is even
3285 * conservative, even though it seems large.
3286 *
3287 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3288 * waitqueues, i.e. the size of the waitq table given the number of pages.
3289 */
3290#define PAGES_PER_WAITQUEUE 256
3291
cca448fe 3292#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3293static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3294{
3295 unsigned long size = 1;
3296
3297 pages /= PAGES_PER_WAITQUEUE;
3298
3299 while (size < pages)
3300 size <<= 1;
3301
3302 /*
3303 * Once we have dozens or even hundreds of threads sleeping
3304 * on IO we've got bigger problems than wait queue collision.
3305 * Limit the size of the wait table to a reasonable size.
3306 */
3307 size = min(size, 4096UL);
3308
3309 return max(size, 4UL);
3310}
cca448fe
YG
3311#else
3312/*
3313 * A zone's size might be changed by hot-add, so it is not possible to determine
3314 * a suitable size for its wait_table. So we use the maximum size now.
3315 *
3316 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3317 *
3318 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3319 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3320 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3321 *
3322 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3323 * or more by the traditional way. (See above). It equals:
3324 *
3325 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3326 * ia64(16K page size) : = ( 8G + 4M)byte.
3327 * powerpc (64K page size) : = (32G +16M)byte.
3328 */
3329static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3330{
3331 return 4096UL;
3332}
3333#endif
1da177e4
LT
3334
3335/*
3336 * This is an integer logarithm so that shifts can be used later
3337 * to extract the more random high bits from the multiplicative
3338 * hash function before the remainder is taken.
3339 */
3340static inline unsigned long wait_table_bits(unsigned long size)
3341{
3342 return ffz(~size);
3343}
3344
3345#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3346
6d3163ce
AH
3347/*
3348 * Check if a pageblock contains reserved pages
3349 */
3350static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3351{
3352 unsigned long pfn;
3353
3354 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3355 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3356 return 1;
3357 }
3358 return 0;
3359}
3360
56fd56b8 3361/*
d9c23400 3362 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3363 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3364 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3365 * higher will lead to a bigger reserve which will get freed as contiguous
3366 * blocks as reclaim kicks in
3367 */
3368static void setup_zone_migrate_reserve(struct zone *zone)
3369{
6d3163ce 3370 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3371 struct page *page;
78986a67
MG
3372 unsigned long block_migratetype;
3373 int reserve;
56fd56b8 3374
d0215638
MH
3375 /*
3376 * Get the start pfn, end pfn and the number of blocks to reserve
3377 * We have to be careful to be aligned to pageblock_nr_pages to
3378 * make sure that we always check pfn_valid for the first page in
3379 * the block.
3380 */
56fd56b8
MG
3381 start_pfn = zone->zone_start_pfn;
3382 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3383 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3384 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3385 pageblock_order;
56fd56b8 3386
78986a67
MG
3387 /*
3388 * Reserve blocks are generally in place to help high-order atomic
3389 * allocations that are short-lived. A min_free_kbytes value that
3390 * would result in more than 2 reserve blocks for atomic allocations
3391 * is assumed to be in place to help anti-fragmentation for the
3392 * future allocation of hugepages at runtime.
3393 */
3394 reserve = min(2, reserve);
3395
d9c23400 3396 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3397 if (!pfn_valid(pfn))
3398 continue;
3399 page = pfn_to_page(pfn);
3400
344c790e
AL
3401 /* Watch out for overlapping nodes */
3402 if (page_to_nid(page) != zone_to_nid(zone))
3403 continue;
3404
56fd56b8
MG
3405 block_migratetype = get_pageblock_migratetype(page);
3406
938929f1
MG
3407 /* Only test what is necessary when the reserves are not met */
3408 if (reserve > 0) {
3409 /*
3410 * Blocks with reserved pages will never free, skip
3411 * them.
3412 */
3413 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3414 if (pageblock_is_reserved(pfn, block_end_pfn))
3415 continue;
56fd56b8 3416
938929f1
MG
3417 /* If this block is reserved, account for it */
3418 if (block_migratetype == MIGRATE_RESERVE) {
3419 reserve--;
3420 continue;
3421 }
3422
3423 /* Suitable for reserving if this block is movable */
3424 if (block_migratetype == MIGRATE_MOVABLE) {
3425 set_pageblock_migratetype(page,
3426 MIGRATE_RESERVE);
3427 move_freepages_block(zone, page,
3428 MIGRATE_RESERVE);
3429 reserve--;
3430 continue;
3431 }
56fd56b8
MG
3432 }
3433
3434 /*
3435 * If the reserve is met and this is a previous reserved block,
3436 * take it back
3437 */
3438 if (block_migratetype == MIGRATE_RESERVE) {
3439 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3440 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3441 }
3442 }
3443}
ac0e5b7a 3444
1da177e4
LT
3445/*
3446 * Initially all pages are reserved - free ones are freed
3447 * up by free_all_bootmem() once the early boot process is
3448 * done. Non-atomic initialization, single-pass.
3449 */
c09b4240 3450void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3451 unsigned long start_pfn, enum memmap_context context)
1da177e4 3452{
1da177e4 3453 struct page *page;
29751f69
AW
3454 unsigned long end_pfn = start_pfn + size;
3455 unsigned long pfn;
86051ca5 3456 struct zone *z;
1da177e4 3457
22b31eec
HD
3458 if (highest_memmap_pfn < end_pfn - 1)
3459 highest_memmap_pfn = end_pfn - 1;
3460
86051ca5 3461 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3462 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3463 /*
3464 * There can be holes in boot-time mem_map[]s
3465 * handed to this function. They do not
3466 * exist on hotplugged memory.
3467 */
3468 if (context == MEMMAP_EARLY) {
3469 if (!early_pfn_valid(pfn))
3470 continue;
3471 if (!early_pfn_in_nid(pfn, nid))
3472 continue;
3473 }
d41dee36
AW
3474 page = pfn_to_page(pfn);
3475 set_page_links(page, zone, nid, pfn);
708614e6 3476 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3477 init_page_count(page);
1da177e4
LT
3478 reset_page_mapcount(page);
3479 SetPageReserved(page);
b2a0ac88
MG
3480 /*
3481 * Mark the block movable so that blocks are reserved for
3482 * movable at startup. This will force kernel allocations
3483 * to reserve their blocks rather than leaking throughout
3484 * the address space during boot when many long-lived
56fd56b8
MG
3485 * kernel allocations are made. Later some blocks near
3486 * the start are marked MIGRATE_RESERVE by
3487 * setup_zone_migrate_reserve()
86051ca5
KH
3488 *
3489 * bitmap is created for zone's valid pfn range. but memmap
3490 * can be created for invalid pages (for alignment)
3491 * check here not to call set_pageblock_migratetype() against
3492 * pfn out of zone.
b2a0ac88 3493 */
86051ca5
KH
3494 if ((z->zone_start_pfn <= pfn)
3495 && (pfn < z->zone_start_pfn + z->spanned_pages)
3496 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3497 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3498
1da177e4
LT
3499 INIT_LIST_HEAD(&page->lru);
3500#ifdef WANT_PAGE_VIRTUAL
3501 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3502 if (!is_highmem_idx(zone))
3212c6be 3503 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3504#endif
1da177e4
LT
3505 }
3506}
3507
1e548deb 3508static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3509{
b2a0ac88
MG
3510 int order, t;
3511 for_each_migratetype_order(order, t) {
3512 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3513 zone->free_area[order].nr_free = 0;
3514 }
3515}
3516
3517#ifndef __HAVE_ARCH_MEMMAP_INIT
3518#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3519 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3520#endif
3521
1d6f4e60 3522static int zone_batchsize(struct zone *zone)
e7c8d5c9 3523{
3a6be87f 3524#ifdef CONFIG_MMU
e7c8d5c9
CL
3525 int batch;
3526
3527 /*
3528 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3529 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3530 *
3531 * OK, so we don't know how big the cache is. So guess.
3532 */
3533 batch = zone->present_pages / 1024;
ba56e91c
SR
3534 if (batch * PAGE_SIZE > 512 * 1024)
3535 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3536 batch /= 4; /* We effectively *= 4 below */
3537 if (batch < 1)
3538 batch = 1;
3539
3540 /*
0ceaacc9
NP
3541 * Clamp the batch to a 2^n - 1 value. Having a power
3542 * of 2 value was found to be more likely to have
3543 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3544 *
0ceaacc9
NP
3545 * For example if 2 tasks are alternately allocating
3546 * batches of pages, one task can end up with a lot
3547 * of pages of one half of the possible page colors
3548 * and the other with pages of the other colors.
e7c8d5c9 3549 */
9155203a 3550 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3551
e7c8d5c9 3552 return batch;
3a6be87f
DH
3553
3554#else
3555 /* The deferral and batching of frees should be suppressed under NOMMU
3556 * conditions.
3557 *
3558 * The problem is that NOMMU needs to be able to allocate large chunks
3559 * of contiguous memory as there's no hardware page translation to
3560 * assemble apparent contiguous memory from discontiguous pages.
3561 *
3562 * Queueing large contiguous runs of pages for batching, however,
3563 * causes the pages to actually be freed in smaller chunks. As there
3564 * can be a significant delay between the individual batches being
3565 * recycled, this leads to the once large chunks of space being
3566 * fragmented and becoming unavailable for high-order allocations.
3567 */
3568 return 0;
3569#endif
e7c8d5c9
CL
3570}
3571
b69a7288 3572static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3573{
3574 struct per_cpu_pages *pcp;
5f8dcc21 3575 int migratetype;
2caaad41 3576
1c6fe946
MD
3577 memset(p, 0, sizeof(*p));
3578
3dfa5721 3579 pcp = &p->pcp;
2caaad41 3580 pcp->count = 0;
2caaad41
CL
3581 pcp->high = 6 * batch;
3582 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3583 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3584 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3585}
3586
8ad4b1fb
RS
3587/*
3588 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3589 * to the value high for the pageset p.
3590 */
3591
3592static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3593 unsigned long high)
3594{
3595 struct per_cpu_pages *pcp;
3596
3dfa5721 3597 pcp = &p->pcp;
8ad4b1fb
RS
3598 pcp->high = high;
3599 pcp->batch = max(1UL, high/4);
3600 if ((high/4) > (PAGE_SHIFT * 8))
3601 pcp->batch = PAGE_SHIFT * 8;
3602}
3603
58c2ee40 3604static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3605{
3606 int cpu;
3607
3608 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3609
3610 for_each_possible_cpu(cpu) {
3611 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3612
3613 setup_pageset(pcp, zone_batchsize(zone));
3614
3615 if (percpu_pagelist_fraction)
3616 setup_pagelist_highmark(pcp,
3617 (zone->present_pages /
3618 percpu_pagelist_fraction));
3619 }
3620}
3621
2caaad41 3622/*
99dcc3e5
CL
3623 * Allocate per cpu pagesets and initialize them.
3624 * Before this call only boot pagesets were available.
e7c8d5c9 3625 */
99dcc3e5 3626void __init setup_per_cpu_pageset(void)
e7c8d5c9 3627{
99dcc3e5 3628 struct zone *zone;
e7c8d5c9 3629
319774e2
WF
3630 for_each_populated_zone(zone)
3631 setup_zone_pageset(zone);
e7c8d5c9
CL
3632}
3633
577a32f6 3634static noinline __init_refok
cca448fe 3635int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3636{
3637 int i;
3638 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3639 size_t alloc_size;
ed8ece2e
DH
3640
3641 /*
3642 * The per-page waitqueue mechanism uses hashed waitqueues
3643 * per zone.
3644 */
02b694de
YG
3645 zone->wait_table_hash_nr_entries =
3646 wait_table_hash_nr_entries(zone_size_pages);
3647 zone->wait_table_bits =
3648 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3649 alloc_size = zone->wait_table_hash_nr_entries
3650 * sizeof(wait_queue_head_t);
3651
cd94b9db 3652 if (!slab_is_available()) {
cca448fe 3653 zone->wait_table = (wait_queue_head_t *)
8f389a99 3654 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3655 } else {
3656 /*
3657 * This case means that a zone whose size was 0 gets new memory
3658 * via memory hot-add.
3659 * But it may be the case that a new node was hot-added. In
3660 * this case vmalloc() will not be able to use this new node's
3661 * memory - this wait_table must be initialized to use this new
3662 * node itself as well.
3663 * To use this new node's memory, further consideration will be
3664 * necessary.
3665 */
8691f3a7 3666 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3667 }
3668 if (!zone->wait_table)
3669 return -ENOMEM;
ed8ece2e 3670
02b694de 3671 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3672 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3673
3674 return 0;
ed8ece2e
DH
3675}
3676
112067f0
SL
3677static int __zone_pcp_update(void *data)
3678{
3679 struct zone *zone = data;
3680 int cpu;
3681 unsigned long batch = zone_batchsize(zone), flags;
3682
2d30a1f6 3683 for_each_possible_cpu(cpu) {
112067f0
SL
3684 struct per_cpu_pageset *pset;
3685 struct per_cpu_pages *pcp;
3686
99dcc3e5 3687 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3688 pcp = &pset->pcp;
3689
3690 local_irq_save(flags);
5f8dcc21 3691 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3692 setup_pageset(pset, batch);
3693 local_irq_restore(flags);
3694 }
3695 return 0;
3696}
3697
3698void zone_pcp_update(struct zone *zone)
3699{
3700 stop_machine(__zone_pcp_update, zone, NULL);
3701}
3702
c09b4240 3703static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3704{
99dcc3e5
CL
3705 /*
3706 * per cpu subsystem is not up at this point. The following code
3707 * relies on the ability of the linker to provide the
3708 * offset of a (static) per cpu variable into the per cpu area.
3709 */
3710 zone->pageset = &boot_pageset;
ed8ece2e 3711
f5335c0f 3712 if (zone->present_pages)
99dcc3e5
CL
3713 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3714 zone->name, zone->present_pages,
3715 zone_batchsize(zone));
ed8ece2e
DH
3716}
3717
718127cc
YG
3718__meminit int init_currently_empty_zone(struct zone *zone,
3719 unsigned long zone_start_pfn,
a2f3aa02
DH
3720 unsigned long size,
3721 enum memmap_context context)
ed8ece2e
DH
3722{
3723 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3724 int ret;
3725 ret = zone_wait_table_init(zone, size);
3726 if (ret)
3727 return ret;
ed8ece2e
DH
3728 pgdat->nr_zones = zone_idx(zone) + 1;
3729
ed8ece2e
DH
3730 zone->zone_start_pfn = zone_start_pfn;
3731
708614e6
MG
3732 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3733 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3734 pgdat->node_id,
3735 (unsigned long)zone_idx(zone),
3736 zone_start_pfn, (zone_start_pfn + size));
3737
1e548deb 3738 zone_init_free_lists(zone);
718127cc
YG
3739
3740 return 0;
ed8ece2e
DH
3741}
3742
0ee332c1 3743#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3744#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3745/*
3746 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3747 * Architectures may implement their own version but if add_active_range()
3748 * was used and there are no special requirements, this is a convenient
3749 * alternative
3750 */
f2dbcfa7 3751int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3752{
c13291a5
TH
3753 unsigned long start_pfn, end_pfn;
3754 int i, nid;
c713216d 3755
c13291a5 3756 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3757 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3758 return nid;
cc2559bc
KH
3759 /* This is a memory hole */
3760 return -1;
c713216d
MG
3761}
3762#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3763
f2dbcfa7
KH
3764int __meminit early_pfn_to_nid(unsigned long pfn)
3765{
cc2559bc
KH
3766 int nid;
3767
3768 nid = __early_pfn_to_nid(pfn);
3769 if (nid >= 0)
3770 return nid;
3771 /* just returns 0 */
3772 return 0;
f2dbcfa7
KH
3773}
3774
cc2559bc
KH
3775#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3776bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3777{
3778 int nid;
3779
3780 nid = __early_pfn_to_nid(pfn);
3781 if (nid >= 0 && nid != node)
3782 return false;
3783 return true;
3784}
3785#endif
f2dbcfa7 3786
c713216d
MG
3787/**
3788 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3789 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3790 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3791 *
3792 * If an architecture guarantees that all ranges registered with
3793 * add_active_ranges() contain no holes and may be freed, this
3794 * this function may be used instead of calling free_bootmem() manually.
3795 */
c13291a5 3796void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 3797{
c13291a5
TH
3798 unsigned long start_pfn, end_pfn;
3799 int i, this_nid;
edbe7d23 3800
c13291a5
TH
3801 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3802 start_pfn = min(start_pfn, max_low_pfn);
3803 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 3804
c13291a5
TH
3805 if (start_pfn < end_pfn)
3806 free_bootmem_node(NODE_DATA(this_nid),
3807 PFN_PHYS(start_pfn),
3808 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 3809 }
edbe7d23 3810}
edbe7d23 3811
08677214
YL
3812int __init add_from_early_node_map(struct range *range, int az,
3813 int nr_range, int nid)
3814{
c13291a5 3815 unsigned long start_pfn, end_pfn;
08677214 3816 int i;
08677214
YL
3817
3818 /* need to go over early_node_map to find out good range for node */
c13291a5
TH
3819 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3820 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
08677214
YL
3821 return nr_range;
3822}
3823
c713216d
MG
3824/**
3825 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3826 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3827 *
3828 * If an architecture guarantees that all ranges registered with
3829 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3830 * function may be used instead of calling memory_present() manually.
c713216d
MG
3831 */
3832void __init sparse_memory_present_with_active_regions(int nid)
3833{
c13291a5
TH
3834 unsigned long start_pfn, end_pfn;
3835 int i, this_nid;
c713216d 3836
c13291a5
TH
3837 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3838 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
3839}
3840
3841/**
3842 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3843 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3844 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3845 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3846 *
3847 * It returns the start and end page frame of a node based on information
3848 * provided by an arch calling add_active_range(). If called for a node
3849 * with no available memory, a warning is printed and the start and end
88ca3b94 3850 * PFNs will be 0.
c713216d 3851 */
a3142c8e 3852void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3853 unsigned long *start_pfn, unsigned long *end_pfn)
3854{
c13291a5 3855 unsigned long this_start_pfn, this_end_pfn;
c713216d 3856 int i;
c13291a5 3857
c713216d
MG
3858 *start_pfn = -1UL;
3859 *end_pfn = 0;
3860
c13291a5
TH
3861 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3862 *start_pfn = min(*start_pfn, this_start_pfn);
3863 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
3864 }
3865
633c0666 3866 if (*start_pfn == -1UL)
c713216d 3867 *start_pfn = 0;
c713216d
MG
3868}
3869
2a1e274a
MG
3870/*
3871 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3872 * assumption is made that zones within a node are ordered in monotonic
3873 * increasing memory addresses so that the "highest" populated zone is used
3874 */
b69a7288 3875static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3876{
3877 int zone_index;
3878 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3879 if (zone_index == ZONE_MOVABLE)
3880 continue;
3881
3882 if (arch_zone_highest_possible_pfn[zone_index] >
3883 arch_zone_lowest_possible_pfn[zone_index])
3884 break;
3885 }
3886
3887 VM_BUG_ON(zone_index == -1);
3888 movable_zone = zone_index;
3889}
3890
3891/*
3892 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 3893 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
3894 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3895 * in each node depending on the size of each node and how evenly kernelcore
3896 * is distributed. This helper function adjusts the zone ranges
3897 * provided by the architecture for a given node by using the end of the
3898 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3899 * zones within a node are in order of monotonic increases memory addresses
3900 */
b69a7288 3901static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3902 unsigned long zone_type,
3903 unsigned long node_start_pfn,
3904 unsigned long node_end_pfn,
3905 unsigned long *zone_start_pfn,
3906 unsigned long *zone_end_pfn)
3907{
3908 /* Only adjust if ZONE_MOVABLE is on this node */
3909 if (zone_movable_pfn[nid]) {
3910 /* Size ZONE_MOVABLE */
3911 if (zone_type == ZONE_MOVABLE) {
3912 *zone_start_pfn = zone_movable_pfn[nid];
3913 *zone_end_pfn = min(node_end_pfn,
3914 arch_zone_highest_possible_pfn[movable_zone]);
3915
3916 /* Adjust for ZONE_MOVABLE starting within this range */
3917 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3918 *zone_end_pfn > zone_movable_pfn[nid]) {
3919 *zone_end_pfn = zone_movable_pfn[nid];
3920
3921 /* Check if this whole range is within ZONE_MOVABLE */
3922 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3923 *zone_start_pfn = *zone_end_pfn;
3924 }
3925}
3926
c713216d
MG
3927/*
3928 * Return the number of pages a zone spans in a node, including holes
3929 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3930 */
6ea6e688 3931static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3932 unsigned long zone_type,
3933 unsigned long *ignored)
3934{
3935 unsigned long node_start_pfn, node_end_pfn;
3936 unsigned long zone_start_pfn, zone_end_pfn;
3937
3938 /* Get the start and end of the node and zone */
3939 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3940 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3941 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3942 adjust_zone_range_for_zone_movable(nid, zone_type,
3943 node_start_pfn, node_end_pfn,
3944 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3945
3946 /* Check that this node has pages within the zone's required range */
3947 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3948 return 0;
3949
3950 /* Move the zone boundaries inside the node if necessary */
3951 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3952 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3953
3954 /* Return the spanned pages */
3955 return zone_end_pfn - zone_start_pfn;
3956}
3957
3958/*
3959 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3960 * then all holes in the requested range will be accounted for.
c713216d 3961 */
32996250 3962unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3963 unsigned long range_start_pfn,
3964 unsigned long range_end_pfn)
3965{
96e907d1
TH
3966 unsigned long nr_absent = range_end_pfn - range_start_pfn;
3967 unsigned long start_pfn, end_pfn;
3968 int i;
c713216d 3969
96e907d1
TH
3970 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3971 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
3972 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
3973 nr_absent -= end_pfn - start_pfn;
c713216d 3974 }
96e907d1 3975 return nr_absent;
c713216d
MG
3976}
3977
3978/**
3979 * absent_pages_in_range - Return number of page frames in holes within a range
3980 * @start_pfn: The start PFN to start searching for holes
3981 * @end_pfn: The end PFN to stop searching for holes
3982 *
88ca3b94 3983 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3984 */
3985unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3986 unsigned long end_pfn)
3987{
3988 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3989}
3990
3991/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3992static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3993 unsigned long zone_type,
3994 unsigned long *ignored)
3995{
96e907d1
TH
3996 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
3997 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
3998 unsigned long node_start_pfn, node_end_pfn;
3999 unsigned long zone_start_pfn, zone_end_pfn;
4000
4001 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4002 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4003 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4004
2a1e274a
MG
4005 adjust_zone_range_for_zone_movable(nid, zone_type,
4006 node_start_pfn, node_end_pfn,
4007 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4008 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4009}
0e0b864e 4010
0ee332c1 4011#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4012static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4013 unsigned long zone_type,
4014 unsigned long *zones_size)
4015{
4016 return zones_size[zone_type];
4017}
4018
6ea6e688 4019static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4020 unsigned long zone_type,
4021 unsigned long *zholes_size)
4022{
4023 if (!zholes_size)
4024 return 0;
4025
4026 return zholes_size[zone_type];
4027}
0e0b864e 4028
0ee332c1 4029#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4030
a3142c8e 4031static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4032 unsigned long *zones_size, unsigned long *zholes_size)
4033{
4034 unsigned long realtotalpages, totalpages = 0;
4035 enum zone_type i;
4036
4037 for (i = 0; i < MAX_NR_ZONES; i++)
4038 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4039 zones_size);
4040 pgdat->node_spanned_pages = totalpages;
4041
4042 realtotalpages = totalpages;
4043 for (i = 0; i < MAX_NR_ZONES; i++)
4044 realtotalpages -=
4045 zone_absent_pages_in_node(pgdat->node_id, i,
4046 zholes_size);
4047 pgdat->node_present_pages = realtotalpages;
4048 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4049 realtotalpages);
4050}
4051
835c134e
MG
4052#ifndef CONFIG_SPARSEMEM
4053/*
4054 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4055 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4056 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4057 * round what is now in bits to nearest long in bits, then return it in
4058 * bytes.
4059 */
4060static unsigned long __init usemap_size(unsigned long zonesize)
4061{
4062 unsigned long usemapsize;
4063
d9c23400
MG
4064 usemapsize = roundup(zonesize, pageblock_nr_pages);
4065 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4066 usemapsize *= NR_PAGEBLOCK_BITS;
4067 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4068
4069 return usemapsize / 8;
4070}
4071
4072static void __init setup_usemap(struct pglist_data *pgdat,
4073 struct zone *zone, unsigned long zonesize)
4074{
4075 unsigned long usemapsize = usemap_size(zonesize);
4076 zone->pageblock_flags = NULL;
58a01a45 4077 if (usemapsize)
8f389a99
YL
4078 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4079 usemapsize);
835c134e
MG
4080}
4081#else
fa9f90be 4082static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4083 struct zone *zone, unsigned long zonesize) {}
4084#endif /* CONFIG_SPARSEMEM */
4085
d9c23400 4086#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4087
4088/* Return a sensible default order for the pageblock size. */
4089static inline int pageblock_default_order(void)
4090{
4091 if (HPAGE_SHIFT > PAGE_SHIFT)
4092 return HUGETLB_PAGE_ORDER;
4093
4094 return MAX_ORDER-1;
4095}
4096
d9c23400
MG
4097/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4098static inline void __init set_pageblock_order(unsigned int order)
4099{
4100 /* Check that pageblock_nr_pages has not already been setup */
4101 if (pageblock_order)
4102 return;
4103
4104 /*
4105 * Assume the largest contiguous order of interest is a huge page.
4106 * This value may be variable depending on boot parameters on IA64
4107 */
4108 pageblock_order = order;
4109}
4110#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4111
ba72cb8c
MG
4112/*
4113 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4114 * and pageblock_default_order() are unused as pageblock_order is set
4115 * at compile-time. See include/linux/pageblock-flags.h for the values of
4116 * pageblock_order based on the kernel config
4117 */
4118static inline int pageblock_default_order(unsigned int order)
4119{
4120 return MAX_ORDER-1;
4121}
d9c23400
MG
4122#define set_pageblock_order(x) do {} while (0)
4123
4124#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4125
1da177e4
LT
4126/*
4127 * Set up the zone data structures:
4128 * - mark all pages reserved
4129 * - mark all memory queues empty
4130 * - clear the memory bitmaps
4131 */
b5a0e011 4132static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4133 unsigned long *zones_size, unsigned long *zholes_size)
4134{
2f1b6248 4135 enum zone_type j;
ed8ece2e 4136 int nid = pgdat->node_id;
1da177e4 4137 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4138 int ret;
1da177e4 4139
208d54e5 4140 pgdat_resize_init(pgdat);
1da177e4
LT
4141 pgdat->nr_zones = 0;
4142 init_waitqueue_head(&pgdat->kswapd_wait);
4143 pgdat->kswapd_max_order = 0;
52d4b9ac 4144 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4145
4146 for (j = 0; j < MAX_NR_ZONES; j++) {
4147 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4148 unsigned long size, realsize, memmap_pages;
b69408e8 4149 enum lru_list l;
1da177e4 4150
c713216d
MG
4151 size = zone_spanned_pages_in_node(nid, j, zones_size);
4152 realsize = size - zone_absent_pages_in_node(nid, j,
4153 zholes_size);
1da177e4 4154
0e0b864e
MG
4155 /*
4156 * Adjust realsize so that it accounts for how much memory
4157 * is used by this zone for memmap. This affects the watermark
4158 * and per-cpu initialisations
4159 */
f7232154
JW
4160 memmap_pages =
4161 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4162 if (realsize >= memmap_pages) {
4163 realsize -= memmap_pages;
5594c8c8
YL
4164 if (memmap_pages)
4165 printk(KERN_DEBUG
4166 " %s zone: %lu pages used for memmap\n",
4167 zone_names[j], memmap_pages);
0e0b864e
MG
4168 } else
4169 printk(KERN_WARNING
4170 " %s zone: %lu pages exceeds realsize %lu\n",
4171 zone_names[j], memmap_pages, realsize);
4172
6267276f
CL
4173 /* Account for reserved pages */
4174 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4175 realsize -= dma_reserve;
d903ef9f 4176 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4177 zone_names[0], dma_reserve);
0e0b864e
MG
4178 }
4179
98d2b0eb 4180 if (!is_highmem_idx(j))
1da177e4
LT
4181 nr_kernel_pages += realsize;
4182 nr_all_pages += realsize;
4183
4184 zone->spanned_pages = size;
4185 zone->present_pages = realsize;
9614634f 4186#ifdef CONFIG_NUMA
d5f541ed 4187 zone->node = nid;
8417bba4 4188 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4189 / 100;
0ff38490 4190 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4191#endif
1da177e4
LT
4192 zone->name = zone_names[j];
4193 spin_lock_init(&zone->lock);
4194 spin_lock_init(&zone->lru_lock);
bdc8cb98 4195 zone_seqlock_init(zone);
1da177e4 4196 zone->zone_pgdat = pgdat;
1da177e4 4197
ed8ece2e 4198 zone_pcp_init(zone);
246e87a9 4199 for_each_lru(l)
b69408e8 4200 INIT_LIST_HEAD(&zone->lru[l].list);
6e901571
KM
4201 zone->reclaim_stat.recent_rotated[0] = 0;
4202 zone->reclaim_stat.recent_rotated[1] = 0;
4203 zone->reclaim_stat.recent_scanned[0] = 0;
4204 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4205 zap_zone_vm_stats(zone);
e815af95 4206 zone->flags = 0;
1da177e4
LT
4207 if (!size)
4208 continue;
4209
ba72cb8c 4210 set_pageblock_order(pageblock_default_order());
835c134e 4211 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4212 ret = init_currently_empty_zone(zone, zone_start_pfn,
4213 size, MEMMAP_EARLY);
718127cc 4214 BUG_ON(ret);
76cdd58e 4215 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4216 zone_start_pfn += size;
1da177e4
LT
4217 }
4218}
4219
577a32f6 4220static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4221{
1da177e4
LT
4222 /* Skip empty nodes */
4223 if (!pgdat->node_spanned_pages)
4224 return;
4225
d41dee36 4226#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4227 /* ia64 gets its own node_mem_map, before this, without bootmem */
4228 if (!pgdat->node_mem_map) {
e984bb43 4229 unsigned long size, start, end;
d41dee36
AW
4230 struct page *map;
4231
e984bb43
BP
4232 /*
4233 * The zone's endpoints aren't required to be MAX_ORDER
4234 * aligned but the node_mem_map endpoints must be in order
4235 * for the buddy allocator to function correctly.
4236 */
4237 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4238 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4239 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4240 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4241 map = alloc_remap(pgdat->node_id, size);
4242 if (!map)
8f389a99 4243 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4244 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4245 }
12d810c1 4246#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4247 /*
4248 * With no DISCONTIG, the global mem_map is just set as node 0's
4249 */
c713216d 4250 if (pgdat == NODE_DATA(0)) {
1da177e4 4251 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4252#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4253 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4254 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4255#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4256 }
1da177e4 4257#endif
d41dee36 4258#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4259}
4260
9109fb7b
JW
4261void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4262 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4263{
9109fb7b
JW
4264 pg_data_t *pgdat = NODE_DATA(nid);
4265
1da177e4
LT
4266 pgdat->node_id = nid;
4267 pgdat->node_start_pfn = node_start_pfn;
c713216d 4268 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4269
4270 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4271#ifdef CONFIG_FLAT_NODE_MEM_MAP
4272 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4273 nid, (unsigned long)pgdat,
4274 (unsigned long)pgdat->node_mem_map);
4275#endif
1da177e4
LT
4276
4277 free_area_init_core(pgdat, zones_size, zholes_size);
4278}
4279
0ee332c1 4280#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4281
4282#if MAX_NUMNODES > 1
4283/*
4284 * Figure out the number of possible node ids.
4285 */
4286static void __init setup_nr_node_ids(void)
4287{
4288 unsigned int node;
4289 unsigned int highest = 0;
4290
4291 for_each_node_mask(node, node_possible_map)
4292 highest = node;
4293 nr_node_ids = highest + 1;
4294}
4295#else
4296static inline void setup_nr_node_ids(void)
4297{
4298}
4299#endif
4300
1e01979c
TH
4301/**
4302 * node_map_pfn_alignment - determine the maximum internode alignment
4303 *
4304 * This function should be called after node map is populated and sorted.
4305 * It calculates the maximum power of two alignment which can distinguish
4306 * all the nodes.
4307 *
4308 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4309 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4310 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4311 * shifted, 1GiB is enough and this function will indicate so.
4312 *
4313 * This is used to test whether pfn -> nid mapping of the chosen memory
4314 * model has fine enough granularity to avoid incorrect mapping for the
4315 * populated node map.
4316 *
4317 * Returns the determined alignment in pfn's. 0 if there is no alignment
4318 * requirement (single node).
4319 */
4320unsigned long __init node_map_pfn_alignment(void)
4321{
4322 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4323 unsigned long start, end, mask;
1e01979c 4324 int last_nid = -1;
c13291a5 4325 int i, nid;
1e01979c 4326
c13291a5 4327 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4328 if (!start || last_nid < 0 || last_nid == nid) {
4329 last_nid = nid;
4330 last_end = end;
4331 continue;
4332 }
4333
4334 /*
4335 * Start with a mask granular enough to pin-point to the
4336 * start pfn and tick off bits one-by-one until it becomes
4337 * too coarse to separate the current node from the last.
4338 */
4339 mask = ~((1 << __ffs(start)) - 1);
4340 while (mask && last_end <= (start & (mask << 1)))
4341 mask <<= 1;
4342
4343 /* accumulate all internode masks */
4344 accl_mask |= mask;
4345 }
4346
4347 /* convert mask to number of pages */
4348 return ~accl_mask + 1;
4349}
4350
a6af2bc3 4351/* Find the lowest pfn for a node */
b69a7288 4352static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4353{
a6af2bc3 4354 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4355 unsigned long start_pfn;
4356 int i;
1abbfb41 4357
c13291a5
TH
4358 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4359 min_pfn = min(min_pfn, start_pfn);
c713216d 4360
a6af2bc3
MG
4361 if (min_pfn == ULONG_MAX) {
4362 printk(KERN_WARNING
2bc0d261 4363 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4364 return 0;
4365 }
4366
4367 return min_pfn;
c713216d
MG
4368}
4369
4370/**
4371 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4372 *
4373 * It returns the minimum PFN based on information provided via
88ca3b94 4374 * add_active_range().
c713216d
MG
4375 */
4376unsigned long __init find_min_pfn_with_active_regions(void)
4377{
4378 return find_min_pfn_for_node(MAX_NUMNODES);
4379}
4380
37b07e41
LS
4381/*
4382 * early_calculate_totalpages()
4383 * Sum pages in active regions for movable zone.
4384 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4385 */
484f51f8 4386static unsigned long __init early_calculate_totalpages(void)
7e63efef 4387{
7e63efef 4388 unsigned long totalpages = 0;
c13291a5
TH
4389 unsigned long start_pfn, end_pfn;
4390 int i, nid;
4391
4392 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4393 unsigned long pages = end_pfn - start_pfn;
7e63efef 4394
37b07e41
LS
4395 totalpages += pages;
4396 if (pages)
c13291a5 4397 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4398 }
4399 return totalpages;
7e63efef
MG
4400}
4401
2a1e274a
MG
4402/*
4403 * Find the PFN the Movable zone begins in each node. Kernel memory
4404 * is spread evenly between nodes as long as the nodes have enough
4405 * memory. When they don't, some nodes will have more kernelcore than
4406 * others
4407 */
b69a7288 4408static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4409{
4410 int i, nid;
4411 unsigned long usable_startpfn;
4412 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4413 /* save the state before borrow the nodemask */
4414 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4415 unsigned long totalpages = early_calculate_totalpages();
4416 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4417
7e63efef
MG
4418 /*
4419 * If movablecore was specified, calculate what size of
4420 * kernelcore that corresponds so that memory usable for
4421 * any allocation type is evenly spread. If both kernelcore
4422 * and movablecore are specified, then the value of kernelcore
4423 * will be used for required_kernelcore if it's greater than
4424 * what movablecore would have allowed.
4425 */
4426 if (required_movablecore) {
7e63efef
MG
4427 unsigned long corepages;
4428
4429 /*
4430 * Round-up so that ZONE_MOVABLE is at least as large as what
4431 * was requested by the user
4432 */
4433 required_movablecore =
4434 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4435 corepages = totalpages - required_movablecore;
4436
4437 required_kernelcore = max(required_kernelcore, corepages);
4438 }
4439
2a1e274a
MG
4440 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4441 if (!required_kernelcore)
66918dcd 4442 goto out;
2a1e274a
MG
4443
4444 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4445 find_usable_zone_for_movable();
4446 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4447
4448restart:
4449 /* Spread kernelcore memory as evenly as possible throughout nodes */
4450 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4451 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4452 unsigned long start_pfn, end_pfn;
4453
2a1e274a
MG
4454 /*
4455 * Recalculate kernelcore_node if the division per node
4456 * now exceeds what is necessary to satisfy the requested
4457 * amount of memory for the kernel
4458 */
4459 if (required_kernelcore < kernelcore_node)
4460 kernelcore_node = required_kernelcore / usable_nodes;
4461
4462 /*
4463 * As the map is walked, we track how much memory is usable
4464 * by the kernel using kernelcore_remaining. When it is
4465 * 0, the rest of the node is usable by ZONE_MOVABLE
4466 */
4467 kernelcore_remaining = kernelcore_node;
4468
4469 /* Go through each range of PFNs within this node */
c13291a5 4470 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4471 unsigned long size_pages;
4472
c13291a5 4473 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4474 if (start_pfn >= end_pfn)
4475 continue;
4476
4477 /* Account for what is only usable for kernelcore */
4478 if (start_pfn < usable_startpfn) {
4479 unsigned long kernel_pages;
4480 kernel_pages = min(end_pfn, usable_startpfn)
4481 - start_pfn;
4482
4483 kernelcore_remaining -= min(kernel_pages,
4484 kernelcore_remaining);
4485 required_kernelcore -= min(kernel_pages,
4486 required_kernelcore);
4487
4488 /* Continue if range is now fully accounted */
4489 if (end_pfn <= usable_startpfn) {
4490
4491 /*
4492 * Push zone_movable_pfn to the end so
4493 * that if we have to rebalance
4494 * kernelcore across nodes, we will
4495 * not double account here
4496 */
4497 zone_movable_pfn[nid] = end_pfn;
4498 continue;
4499 }
4500 start_pfn = usable_startpfn;
4501 }
4502
4503 /*
4504 * The usable PFN range for ZONE_MOVABLE is from
4505 * start_pfn->end_pfn. Calculate size_pages as the
4506 * number of pages used as kernelcore
4507 */
4508 size_pages = end_pfn - start_pfn;
4509 if (size_pages > kernelcore_remaining)
4510 size_pages = kernelcore_remaining;
4511 zone_movable_pfn[nid] = start_pfn + size_pages;
4512
4513 /*
4514 * Some kernelcore has been met, update counts and
4515 * break if the kernelcore for this node has been
4516 * satisified
4517 */
4518 required_kernelcore -= min(required_kernelcore,
4519 size_pages);
4520 kernelcore_remaining -= size_pages;
4521 if (!kernelcore_remaining)
4522 break;
4523 }
4524 }
4525
4526 /*
4527 * If there is still required_kernelcore, we do another pass with one
4528 * less node in the count. This will push zone_movable_pfn[nid] further
4529 * along on the nodes that still have memory until kernelcore is
4530 * satisified
4531 */
4532 usable_nodes--;
4533 if (usable_nodes && required_kernelcore > usable_nodes)
4534 goto restart;
4535
4536 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4537 for (nid = 0; nid < MAX_NUMNODES; nid++)
4538 zone_movable_pfn[nid] =
4539 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4540
4541out:
4542 /* restore the node_state */
4543 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4544}
4545
37b07e41
LS
4546/* Any regular memory on that node ? */
4547static void check_for_regular_memory(pg_data_t *pgdat)
4548{
4549#ifdef CONFIG_HIGHMEM
4550 enum zone_type zone_type;
4551
4552 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4553 struct zone *zone = &pgdat->node_zones[zone_type];
4554 if (zone->present_pages)
4555 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4556 }
4557#endif
4558}
4559
c713216d
MG
4560/**
4561 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4562 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4563 *
4564 * This will call free_area_init_node() for each active node in the system.
4565 * Using the page ranges provided by add_active_range(), the size of each
4566 * zone in each node and their holes is calculated. If the maximum PFN
4567 * between two adjacent zones match, it is assumed that the zone is empty.
4568 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4569 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4570 * starts where the previous one ended. For example, ZONE_DMA32 starts
4571 * at arch_max_dma_pfn.
4572 */
4573void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4574{
c13291a5
TH
4575 unsigned long start_pfn, end_pfn;
4576 int i, nid;
a6af2bc3 4577
c713216d
MG
4578 /* Record where the zone boundaries are */
4579 memset(arch_zone_lowest_possible_pfn, 0,
4580 sizeof(arch_zone_lowest_possible_pfn));
4581 memset(arch_zone_highest_possible_pfn, 0,
4582 sizeof(arch_zone_highest_possible_pfn));
4583 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4584 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4585 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4586 if (i == ZONE_MOVABLE)
4587 continue;
c713216d
MG
4588 arch_zone_lowest_possible_pfn[i] =
4589 arch_zone_highest_possible_pfn[i-1];
4590 arch_zone_highest_possible_pfn[i] =
4591 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4592 }
2a1e274a
MG
4593 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4594 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4595
4596 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4597 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4598 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4599
c713216d
MG
4600 /* Print out the zone ranges */
4601 printk("Zone PFN ranges:\n");
2a1e274a
MG
4602 for (i = 0; i < MAX_NR_ZONES; i++) {
4603 if (i == ZONE_MOVABLE)
4604 continue;
72f0ba02
DR
4605 printk(" %-8s ", zone_names[i]);
4606 if (arch_zone_lowest_possible_pfn[i] ==
4607 arch_zone_highest_possible_pfn[i])
4608 printk("empty\n");
4609 else
4610 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4611 arch_zone_lowest_possible_pfn[i],
4612 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4613 }
4614
4615 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4616 printk("Movable zone start PFN for each node\n");
4617 for (i = 0; i < MAX_NUMNODES; i++) {
4618 if (zone_movable_pfn[i])
4619 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4620 }
c713216d
MG
4621
4622 /* Print out the early_node_map[] */
c13291a5
TH
4623 printk("Early memory PFN ranges\n");
4624 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4625 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
c713216d
MG
4626
4627 /* Initialise every node */
708614e6 4628 mminit_verify_pageflags_layout();
8ef82866 4629 setup_nr_node_ids();
c713216d
MG
4630 for_each_online_node(nid) {
4631 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4632 free_area_init_node(nid, NULL,
c713216d 4633 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4634
4635 /* Any memory on that node */
4636 if (pgdat->node_present_pages)
4637 node_set_state(nid, N_HIGH_MEMORY);
4638 check_for_regular_memory(pgdat);
c713216d
MG
4639 }
4640}
2a1e274a 4641
7e63efef 4642static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4643{
4644 unsigned long long coremem;
4645 if (!p)
4646 return -EINVAL;
4647
4648 coremem = memparse(p, &p);
7e63efef 4649 *core = coremem >> PAGE_SHIFT;
2a1e274a 4650
7e63efef 4651 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4652 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4653
4654 return 0;
4655}
ed7ed365 4656
7e63efef
MG
4657/*
4658 * kernelcore=size sets the amount of memory for use for allocations that
4659 * cannot be reclaimed or migrated.
4660 */
4661static int __init cmdline_parse_kernelcore(char *p)
4662{
4663 return cmdline_parse_core(p, &required_kernelcore);
4664}
4665
4666/*
4667 * movablecore=size sets the amount of memory for use for allocations that
4668 * can be reclaimed or migrated.
4669 */
4670static int __init cmdline_parse_movablecore(char *p)
4671{
4672 return cmdline_parse_core(p, &required_movablecore);
4673}
4674
ed7ed365 4675early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4676early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4677
0ee332c1 4678#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4679
0e0b864e 4680/**
88ca3b94
RD
4681 * set_dma_reserve - set the specified number of pages reserved in the first zone
4682 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4683 *
4684 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4685 * In the DMA zone, a significant percentage may be consumed by kernel image
4686 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4687 * function may optionally be used to account for unfreeable pages in the
4688 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4689 * smaller per-cpu batchsize.
0e0b864e
MG
4690 */
4691void __init set_dma_reserve(unsigned long new_dma_reserve)
4692{
4693 dma_reserve = new_dma_reserve;
4694}
4695
1da177e4
LT
4696void __init free_area_init(unsigned long *zones_size)
4697{
9109fb7b 4698 free_area_init_node(0, zones_size,
1da177e4
LT
4699 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4700}
1da177e4 4701
1da177e4
LT
4702static int page_alloc_cpu_notify(struct notifier_block *self,
4703 unsigned long action, void *hcpu)
4704{
4705 int cpu = (unsigned long)hcpu;
1da177e4 4706
8bb78442 4707 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4708 drain_pages(cpu);
4709
4710 /*
4711 * Spill the event counters of the dead processor
4712 * into the current processors event counters.
4713 * This artificially elevates the count of the current
4714 * processor.
4715 */
f8891e5e 4716 vm_events_fold_cpu(cpu);
9f8f2172
CL
4717
4718 /*
4719 * Zero the differential counters of the dead processor
4720 * so that the vm statistics are consistent.
4721 *
4722 * This is only okay since the processor is dead and cannot
4723 * race with what we are doing.
4724 */
2244b95a 4725 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4726 }
4727 return NOTIFY_OK;
4728}
1da177e4
LT
4729
4730void __init page_alloc_init(void)
4731{
4732 hotcpu_notifier(page_alloc_cpu_notify, 0);
4733}
4734
cb45b0e9
HA
4735/*
4736 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4737 * or min_free_kbytes changes.
4738 */
4739static void calculate_totalreserve_pages(void)
4740{
4741 struct pglist_data *pgdat;
4742 unsigned long reserve_pages = 0;
2f6726e5 4743 enum zone_type i, j;
cb45b0e9
HA
4744
4745 for_each_online_pgdat(pgdat) {
4746 for (i = 0; i < MAX_NR_ZONES; i++) {
4747 struct zone *zone = pgdat->node_zones + i;
4748 unsigned long max = 0;
4749
4750 /* Find valid and maximum lowmem_reserve in the zone */
4751 for (j = i; j < MAX_NR_ZONES; j++) {
4752 if (zone->lowmem_reserve[j] > max)
4753 max = zone->lowmem_reserve[j];
4754 }
4755
41858966
MG
4756 /* we treat the high watermark as reserved pages. */
4757 max += high_wmark_pages(zone);
cb45b0e9
HA
4758
4759 if (max > zone->present_pages)
4760 max = zone->present_pages;
4761 reserve_pages += max;
4762 }
4763 }
4764 totalreserve_pages = reserve_pages;
4765}
4766
1da177e4
LT
4767/*
4768 * setup_per_zone_lowmem_reserve - called whenever
4769 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4770 * has a correct pages reserved value, so an adequate number of
4771 * pages are left in the zone after a successful __alloc_pages().
4772 */
4773static void setup_per_zone_lowmem_reserve(void)
4774{
4775 struct pglist_data *pgdat;
2f6726e5 4776 enum zone_type j, idx;
1da177e4 4777
ec936fc5 4778 for_each_online_pgdat(pgdat) {
1da177e4
LT
4779 for (j = 0; j < MAX_NR_ZONES; j++) {
4780 struct zone *zone = pgdat->node_zones + j;
4781 unsigned long present_pages = zone->present_pages;
4782
4783 zone->lowmem_reserve[j] = 0;
4784
2f6726e5
CL
4785 idx = j;
4786 while (idx) {
1da177e4
LT
4787 struct zone *lower_zone;
4788
2f6726e5
CL
4789 idx--;
4790
1da177e4
LT
4791 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4792 sysctl_lowmem_reserve_ratio[idx] = 1;
4793
4794 lower_zone = pgdat->node_zones + idx;
4795 lower_zone->lowmem_reserve[j] = present_pages /
4796 sysctl_lowmem_reserve_ratio[idx];
4797 present_pages += lower_zone->present_pages;
4798 }
4799 }
4800 }
cb45b0e9
HA
4801
4802 /* update totalreserve_pages */
4803 calculate_totalreserve_pages();
1da177e4
LT
4804}
4805
88ca3b94 4806/**
bc75d33f 4807 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4808 * or when memory is hot-{added|removed}
88ca3b94 4809 *
bc75d33f
MK
4810 * Ensures that the watermark[min,low,high] values for each zone are set
4811 * correctly with respect to min_free_kbytes.
1da177e4 4812 */
bc75d33f 4813void setup_per_zone_wmarks(void)
1da177e4
LT
4814{
4815 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4816 unsigned long lowmem_pages = 0;
4817 struct zone *zone;
4818 unsigned long flags;
4819
4820 /* Calculate total number of !ZONE_HIGHMEM pages */
4821 for_each_zone(zone) {
4822 if (!is_highmem(zone))
4823 lowmem_pages += zone->present_pages;
4824 }
4825
4826 for_each_zone(zone) {
ac924c60
AM
4827 u64 tmp;
4828
1125b4e3 4829 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4830 tmp = (u64)pages_min * zone->present_pages;
4831 do_div(tmp, lowmem_pages);
1da177e4
LT
4832 if (is_highmem(zone)) {
4833 /*
669ed175
NP
4834 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4835 * need highmem pages, so cap pages_min to a small
4836 * value here.
4837 *
41858966 4838 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4839 * deltas controls asynch page reclaim, and so should
4840 * not be capped for highmem.
1da177e4
LT
4841 */
4842 int min_pages;
4843
4844 min_pages = zone->present_pages / 1024;
4845 if (min_pages < SWAP_CLUSTER_MAX)
4846 min_pages = SWAP_CLUSTER_MAX;
4847 if (min_pages > 128)
4848 min_pages = 128;
41858966 4849 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4850 } else {
669ed175
NP
4851 /*
4852 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4853 * proportionate to the zone's size.
4854 */
41858966 4855 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4856 }
4857
41858966
MG
4858 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4859 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4860 setup_zone_migrate_reserve(zone);
1125b4e3 4861 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4862 }
cb45b0e9
HA
4863
4864 /* update totalreserve_pages */
4865 calculate_totalreserve_pages();
1da177e4
LT
4866}
4867
55a4462a 4868/*
556adecb
RR
4869 * The inactive anon list should be small enough that the VM never has to
4870 * do too much work, but large enough that each inactive page has a chance
4871 * to be referenced again before it is swapped out.
4872 *
4873 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4874 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4875 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4876 * the anonymous pages are kept on the inactive list.
4877 *
4878 * total target max
4879 * memory ratio inactive anon
4880 * -------------------------------------
4881 * 10MB 1 5MB
4882 * 100MB 1 50MB
4883 * 1GB 3 250MB
4884 * 10GB 10 0.9GB
4885 * 100GB 31 3GB
4886 * 1TB 101 10GB
4887 * 10TB 320 32GB
4888 */
1b79acc9 4889static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4890{
96cb4df5 4891 unsigned int gb, ratio;
556adecb 4892
96cb4df5
MK
4893 /* Zone size in gigabytes */
4894 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4895 if (gb)
556adecb 4896 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4897 else
4898 ratio = 1;
556adecb 4899
96cb4df5
MK
4900 zone->inactive_ratio = ratio;
4901}
556adecb 4902
839a4fcc 4903static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
4904{
4905 struct zone *zone;
4906
4907 for_each_zone(zone)
4908 calculate_zone_inactive_ratio(zone);
556adecb
RR
4909}
4910
1da177e4
LT
4911/*
4912 * Initialise min_free_kbytes.
4913 *
4914 * For small machines we want it small (128k min). For large machines
4915 * we want it large (64MB max). But it is not linear, because network
4916 * bandwidth does not increase linearly with machine size. We use
4917 *
4918 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4919 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4920 *
4921 * which yields
4922 *
4923 * 16MB: 512k
4924 * 32MB: 724k
4925 * 64MB: 1024k
4926 * 128MB: 1448k
4927 * 256MB: 2048k
4928 * 512MB: 2896k
4929 * 1024MB: 4096k
4930 * 2048MB: 5792k
4931 * 4096MB: 8192k
4932 * 8192MB: 11584k
4933 * 16384MB: 16384k
4934 */
1b79acc9 4935int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
4936{
4937 unsigned long lowmem_kbytes;
4938
4939 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4940
4941 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4942 if (min_free_kbytes < 128)
4943 min_free_kbytes = 128;
4944 if (min_free_kbytes > 65536)
4945 min_free_kbytes = 65536;
bc75d33f 4946 setup_per_zone_wmarks();
a6cccdc3 4947 refresh_zone_stat_thresholds();
1da177e4 4948 setup_per_zone_lowmem_reserve();
556adecb 4949 setup_per_zone_inactive_ratio();
1da177e4
LT
4950 return 0;
4951}
bc75d33f 4952module_init(init_per_zone_wmark_min)
1da177e4
LT
4953
4954/*
4955 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4956 * that we can call two helper functions whenever min_free_kbytes
4957 * changes.
4958 */
4959int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4960 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4961{
8d65af78 4962 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4963 if (write)
bc75d33f 4964 setup_per_zone_wmarks();
1da177e4
LT
4965 return 0;
4966}
4967
9614634f
CL
4968#ifdef CONFIG_NUMA
4969int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4970 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4971{
4972 struct zone *zone;
4973 int rc;
4974
8d65af78 4975 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4976 if (rc)
4977 return rc;
4978
4979 for_each_zone(zone)
8417bba4 4980 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4981 sysctl_min_unmapped_ratio) / 100;
4982 return 0;
4983}
0ff38490
CL
4984
4985int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4986 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4987{
4988 struct zone *zone;
4989 int rc;
4990
8d65af78 4991 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4992 if (rc)
4993 return rc;
4994
4995 for_each_zone(zone)
4996 zone->min_slab_pages = (zone->present_pages *
4997 sysctl_min_slab_ratio) / 100;
4998 return 0;
4999}
9614634f
CL
5000#endif
5001
1da177e4
LT
5002/*
5003 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5004 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5005 * whenever sysctl_lowmem_reserve_ratio changes.
5006 *
5007 * The reserve ratio obviously has absolutely no relation with the
41858966 5008 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5009 * if in function of the boot time zone sizes.
5010 */
5011int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5012 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5013{
8d65af78 5014 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5015 setup_per_zone_lowmem_reserve();
5016 return 0;
5017}
5018
8ad4b1fb
RS
5019/*
5020 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5021 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5022 * can have before it gets flushed back to buddy allocator.
5023 */
5024
5025int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5026 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5027{
5028 struct zone *zone;
5029 unsigned int cpu;
5030 int ret;
5031
8d65af78 5032 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5033 if (!write || (ret == -EINVAL))
5034 return ret;
364df0eb 5035 for_each_populated_zone(zone) {
99dcc3e5 5036 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5037 unsigned long high;
5038 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5039 setup_pagelist_highmark(
5040 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5041 }
5042 }
5043 return 0;
5044}
5045
f034b5d4 5046int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5047
5048#ifdef CONFIG_NUMA
5049static int __init set_hashdist(char *str)
5050{
5051 if (!str)
5052 return 0;
5053 hashdist = simple_strtoul(str, &str, 0);
5054 return 1;
5055}
5056__setup("hashdist=", set_hashdist);
5057#endif
5058
5059/*
5060 * allocate a large system hash table from bootmem
5061 * - it is assumed that the hash table must contain an exact power-of-2
5062 * quantity of entries
5063 * - limit is the number of hash buckets, not the total allocation size
5064 */
5065void *__init alloc_large_system_hash(const char *tablename,
5066 unsigned long bucketsize,
5067 unsigned long numentries,
5068 int scale,
5069 int flags,
5070 unsigned int *_hash_shift,
5071 unsigned int *_hash_mask,
5072 unsigned long limit)
5073{
5074 unsigned long long max = limit;
5075 unsigned long log2qty, size;
5076 void *table = NULL;
5077
5078 /* allow the kernel cmdline to have a say */
5079 if (!numentries) {
5080 /* round applicable memory size up to nearest megabyte */
04903664 5081 numentries = nr_kernel_pages;
1da177e4
LT
5082 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5083 numentries >>= 20 - PAGE_SHIFT;
5084 numentries <<= 20 - PAGE_SHIFT;
5085
5086 /* limit to 1 bucket per 2^scale bytes of low memory */
5087 if (scale > PAGE_SHIFT)
5088 numentries >>= (scale - PAGE_SHIFT);
5089 else
5090 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5091
5092 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5093 if (unlikely(flags & HASH_SMALL)) {
5094 /* Makes no sense without HASH_EARLY */
5095 WARN_ON(!(flags & HASH_EARLY));
5096 if (!(numentries >> *_hash_shift)) {
5097 numentries = 1UL << *_hash_shift;
5098 BUG_ON(!numentries);
5099 }
5100 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5101 numentries = PAGE_SIZE / bucketsize;
1da177e4 5102 }
6e692ed3 5103 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5104
5105 /* limit allocation size to 1/16 total memory by default */
5106 if (max == 0) {
5107 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5108 do_div(max, bucketsize);
5109 }
5110
5111 if (numentries > max)
5112 numentries = max;
5113
f0d1b0b3 5114 log2qty = ilog2(numentries);
1da177e4
LT
5115
5116 do {
5117 size = bucketsize << log2qty;
5118 if (flags & HASH_EARLY)
74768ed8 5119 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5120 else if (hashdist)
5121 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5122 else {
1037b83b
ED
5123 /*
5124 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5125 * some pages at the end of hash table which
5126 * alloc_pages_exact() automatically does
1037b83b 5127 */
264ef8a9 5128 if (get_order(size) < MAX_ORDER) {
a1dd268c 5129 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5130 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5131 }
1da177e4
LT
5132 }
5133 } while (!table && size > PAGE_SIZE && --log2qty);
5134
5135 if (!table)
5136 panic("Failed to allocate %s hash table\n", tablename);
5137
f241e660 5138 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5139 tablename,
f241e660 5140 (1UL << log2qty),
f0d1b0b3 5141 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5142 size);
5143
5144 if (_hash_shift)
5145 *_hash_shift = log2qty;
5146 if (_hash_mask)
5147 *_hash_mask = (1 << log2qty) - 1;
5148
5149 return table;
5150}
a117e66e 5151
835c134e
MG
5152/* Return a pointer to the bitmap storing bits affecting a block of pages */
5153static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5154 unsigned long pfn)
5155{
5156#ifdef CONFIG_SPARSEMEM
5157 return __pfn_to_section(pfn)->pageblock_flags;
5158#else
5159 return zone->pageblock_flags;
5160#endif /* CONFIG_SPARSEMEM */
5161}
5162
5163static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5164{
5165#ifdef CONFIG_SPARSEMEM
5166 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5167 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5168#else
5169 pfn = pfn - zone->zone_start_pfn;
d9c23400 5170 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5171#endif /* CONFIG_SPARSEMEM */
5172}
5173
5174/**
d9c23400 5175 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5176 * @page: The page within the block of interest
5177 * @start_bitidx: The first bit of interest to retrieve
5178 * @end_bitidx: The last bit of interest
5179 * returns pageblock_bits flags
5180 */
5181unsigned long get_pageblock_flags_group(struct page *page,
5182 int start_bitidx, int end_bitidx)
5183{
5184 struct zone *zone;
5185 unsigned long *bitmap;
5186 unsigned long pfn, bitidx;
5187 unsigned long flags = 0;
5188 unsigned long value = 1;
5189
5190 zone = page_zone(page);
5191 pfn = page_to_pfn(page);
5192 bitmap = get_pageblock_bitmap(zone, pfn);
5193 bitidx = pfn_to_bitidx(zone, pfn);
5194
5195 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5196 if (test_bit(bitidx + start_bitidx, bitmap))
5197 flags |= value;
6220ec78 5198
835c134e
MG
5199 return flags;
5200}
5201
5202/**
d9c23400 5203 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5204 * @page: The page within the block of interest
5205 * @start_bitidx: The first bit of interest
5206 * @end_bitidx: The last bit of interest
5207 * @flags: The flags to set
5208 */
5209void set_pageblock_flags_group(struct page *page, unsigned long flags,
5210 int start_bitidx, int end_bitidx)
5211{
5212 struct zone *zone;
5213 unsigned long *bitmap;
5214 unsigned long pfn, bitidx;
5215 unsigned long value = 1;
5216
5217 zone = page_zone(page);
5218 pfn = page_to_pfn(page);
5219 bitmap = get_pageblock_bitmap(zone, pfn);
5220 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5221 VM_BUG_ON(pfn < zone->zone_start_pfn);
5222 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5223
5224 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5225 if (flags & value)
5226 __set_bit(bitidx + start_bitidx, bitmap);
5227 else
5228 __clear_bit(bitidx + start_bitidx, bitmap);
5229}
a5d76b54
KH
5230
5231/*
5232 * This is designed as sub function...plz see page_isolation.c also.
5233 * set/clear page block's type to be ISOLATE.
5234 * page allocater never alloc memory from ISOLATE block.
5235 */
5236
49ac8255
KH
5237static int
5238__count_immobile_pages(struct zone *zone, struct page *page, int count)
5239{
5240 unsigned long pfn, iter, found;
5241 /*
5242 * For avoiding noise data, lru_add_drain_all() should be called
5243 * If ZONE_MOVABLE, the zone never contains immobile pages
5244 */
5245 if (zone_idx(zone) == ZONE_MOVABLE)
5246 return true;
5247
5248 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5249 return true;
5250
5251 pfn = page_to_pfn(page);
5252 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5253 unsigned long check = pfn + iter;
5254
29723fcc 5255 if (!pfn_valid_within(check))
49ac8255 5256 continue;
29723fcc 5257
49ac8255
KH
5258 page = pfn_to_page(check);
5259 if (!page_count(page)) {
5260 if (PageBuddy(page))
5261 iter += (1 << page_order(page)) - 1;
5262 continue;
5263 }
5264 if (!PageLRU(page))
5265 found++;
5266 /*
5267 * If there are RECLAIMABLE pages, we need to check it.
5268 * But now, memory offline itself doesn't call shrink_slab()
5269 * and it still to be fixed.
5270 */
5271 /*
5272 * If the page is not RAM, page_count()should be 0.
5273 * we don't need more check. This is an _used_ not-movable page.
5274 *
5275 * The problematic thing here is PG_reserved pages. PG_reserved
5276 * is set to both of a memory hole page and a _used_ kernel
5277 * page at boot.
5278 */
5279 if (found > count)
5280 return false;
5281 }
5282 return true;
5283}
5284
5285bool is_pageblock_removable_nolock(struct page *page)
5286{
5287 struct zone *zone = page_zone(page);
5288 return __count_immobile_pages(zone, page, 0);
5289}
5290
a5d76b54
KH
5291int set_migratetype_isolate(struct page *page)
5292{
5293 struct zone *zone;
49ac8255 5294 unsigned long flags, pfn;
925cc71e
RJ
5295 struct memory_isolate_notify arg;
5296 int notifier_ret;
a5d76b54
KH
5297 int ret = -EBUSY;
5298
5299 zone = page_zone(page);
925cc71e 5300
a5d76b54 5301 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5302
5303 pfn = page_to_pfn(page);
5304 arg.start_pfn = pfn;
5305 arg.nr_pages = pageblock_nr_pages;
5306 arg.pages_found = 0;
5307
a5d76b54 5308 /*
925cc71e
RJ
5309 * It may be possible to isolate a pageblock even if the
5310 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5311 * notifier chain is used by balloon drivers to return the
5312 * number of pages in a range that are held by the balloon
5313 * driver to shrink memory. If all the pages are accounted for
5314 * by balloons, are free, or on the LRU, isolation can continue.
5315 * Later, for example, when memory hotplug notifier runs, these
5316 * pages reported as "can be isolated" should be isolated(freed)
5317 * by the balloon driver through the memory notifier chain.
a5d76b54 5318 */
925cc71e
RJ
5319 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5320 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5321 if (notifier_ret)
a5d76b54 5322 goto out;
49ac8255
KH
5323 /*
5324 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5325 * We just check MOVABLE pages.
5326 */
5327 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5328 ret = 0;
5329
49ac8255
KH
5330 /*
5331 * immobile means "not-on-lru" paes. If immobile is larger than
5332 * removable-by-driver pages reported by notifier, we'll fail.
5333 */
5334
a5d76b54 5335out:
925cc71e
RJ
5336 if (!ret) {
5337 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5338 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5339 }
5340
a5d76b54
KH
5341 spin_unlock_irqrestore(&zone->lock, flags);
5342 if (!ret)
9f8f2172 5343 drain_all_pages();
a5d76b54
KH
5344 return ret;
5345}
5346
5347void unset_migratetype_isolate(struct page *page)
5348{
5349 struct zone *zone;
5350 unsigned long flags;
5351 zone = page_zone(page);
5352 spin_lock_irqsave(&zone->lock, flags);
5353 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5354 goto out;
5355 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5356 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5357out:
5358 spin_unlock_irqrestore(&zone->lock, flags);
5359}
0c0e6195
KH
5360
5361#ifdef CONFIG_MEMORY_HOTREMOVE
5362/*
5363 * All pages in the range must be isolated before calling this.
5364 */
5365void
5366__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5367{
5368 struct page *page;
5369 struct zone *zone;
5370 int order, i;
5371 unsigned long pfn;
5372 unsigned long flags;
5373 /* find the first valid pfn */
5374 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5375 if (pfn_valid(pfn))
5376 break;
5377 if (pfn == end_pfn)
5378 return;
5379 zone = page_zone(pfn_to_page(pfn));
5380 spin_lock_irqsave(&zone->lock, flags);
5381 pfn = start_pfn;
5382 while (pfn < end_pfn) {
5383 if (!pfn_valid(pfn)) {
5384 pfn++;
5385 continue;
5386 }
5387 page = pfn_to_page(pfn);
5388 BUG_ON(page_count(page));
5389 BUG_ON(!PageBuddy(page));
5390 order = page_order(page);
5391#ifdef CONFIG_DEBUG_VM
5392 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5393 pfn, 1 << order, end_pfn);
5394#endif
5395 list_del(&page->lru);
5396 rmv_page_order(page);
5397 zone->free_area[order].nr_free--;
5398 __mod_zone_page_state(zone, NR_FREE_PAGES,
5399 - (1UL << order));
5400 for (i = 0; i < (1 << order); i++)
5401 SetPageReserved((page+i));
5402 pfn += (1 << order);
5403 }
5404 spin_unlock_irqrestore(&zone->lock, flags);
5405}
5406#endif
8d22ba1b
WF
5407
5408#ifdef CONFIG_MEMORY_FAILURE
5409bool is_free_buddy_page(struct page *page)
5410{
5411 struct zone *zone = page_zone(page);
5412 unsigned long pfn = page_to_pfn(page);
5413 unsigned long flags;
5414 int order;
5415
5416 spin_lock_irqsave(&zone->lock, flags);
5417 for (order = 0; order < MAX_ORDER; order++) {
5418 struct page *page_head = page - (pfn & ((1 << order) - 1));
5419
5420 if (PageBuddy(page_head) && page_order(page_head) >= order)
5421 break;
5422 }
5423 spin_unlock_irqrestore(&zone->lock, flags);
5424
5425 return order < MAX_ORDER;
5426}
5427#endif
718a3821
WF
5428
5429static struct trace_print_flags pageflag_names[] = {
5430 {1UL << PG_locked, "locked" },
5431 {1UL << PG_error, "error" },
5432 {1UL << PG_referenced, "referenced" },
5433 {1UL << PG_uptodate, "uptodate" },
5434 {1UL << PG_dirty, "dirty" },
5435 {1UL << PG_lru, "lru" },
5436 {1UL << PG_active, "active" },
5437 {1UL << PG_slab, "slab" },
5438 {1UL << PG_owner_priv_1, "owner_priv_1" },
5439 {1UL << PG_arch_1, "arch_1" },
5440 {1UL << PG_reserved, "reserved" },
5441 {1UL << PG_private, "private" },
5442 {1UL << PG_private_2, "private_2" },
5443 {1UL << PG_writeback, "writeback" },
5444#ifdef CONFIG_PAGEFLAGS_EXTENDED
5445 {1UL << PG_head, "head" },
5446 {1UL << PG_tail, "tail" },
5447#else
5448 {1UL << PG_compound, "compound" },
5449#endif
5450 {1UL << PG_swapcache, "swapcache" },
5451 {1UL << PG_mappedtodisk, "mappedtodisk" },
5452 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5453 {1UL << PG_swapbacked, "swapbacked" },
5454 {1UL << PG_unevictable, "unevictable" },
5455#ifdef CONFIG_MMU
5456 {1UL << PG_mlocked, "mlocked" },
5457#endif
5458#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5459 {1UL << PG_uncached, "uncached" },
5460#endif
5461#ifdef CONFIG_MEMORY_FAILURE
5462 {1UL << PG_hwpoison, "hwpoison" },
5463#endif
5464 {-1UL, NULL },
5465};
5466
5467static void dump_page_flags(unsigned long flags)
5468{
5469 const char *delim = "";
5470 unsigned long mask;
5471 int i;
5472
5473 printk(KERN_ALERT "page flags: %#lx(", flags);
5474
5475 /* remove zone id */
5476 flags &= (1UL << NR_PAGEFLAGS) - 1;
5477
5478 for (i = 0; pageflag_names[i].name && flags; i++) {
5479
5480 mask = pageflag_names[i].mask;
5481 if ((flags & mask) != mask)
5482 continue;
5483
5484 flags &= ~mask;
5485 printk("%s%s", delim, pageflag_names[i].name);
5486 delim = "|";
5487 }
5488
5489 /* check for left over flags */
5490 if (flags)
5491 printk("%s%#lx", delim, flags);
5492
5493 printk(")\n");
5494}
5495
5496void dump_page(struct page *page)
5497{
5498 printk(KERN_ALERT
5499 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5500 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5501 page->mapping, page->index);
5502 dump_page_flags(page->flags);
f212ad7c 5503 mem_cgroup_print_bad_page(page);
718a3821 5504}
This page took 1.043701 seconds and 5 git commands to generate.