mm: disable zone_reclaim_mode by default
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
d230dec1
KS
298static void bad_page(struct page *page, const char *reason,
299 unsigned long bad_flags)
1da177e4 300{
d936cf9b
HD
301 static unsigned long resume;
302 static unsigned long nr_shown;
303 static unsigned long nr_unshown;
304
2a7684a2
WF
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page)) {
22b751c3 307 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
308 return;
309 }
310
d936cf9b
HD
311 /*
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
314 */
315 if (nr_shown == 60) {
316 if (time_before(jiffies, resume)) {
317 nr_unshown++;
318 goto out;
319 }
320 if (nr_unshown) {
1e9e6365
HD
321 printk(KERN_ALERT
322 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
323 nr_unshown);
324 nr_unshown = 0;
325 }
326 nr_shown = 0;
327 }
328 if (nr_shown++ == 0)
329 resume = jiffies + 60 * HZ;
330
1e9e6365 331 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 332 current->comm, page_to_pfn(page));
f0b791a3 333 dump_page_badflags(page, reason, bad_flags);
3dc14741 334
4f31888c 335 print_modules();
1da177e4 336 dump_stack();
d936cf9b 337out:
8cc3b392 338 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 339 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 340 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
341}
342
1da177e4
LT
343/*
344 * Higher-order pages are called "compound pages". They are structured thusly:
345 *
346 * The first PAGE_SIZE page is called the "head page".
347 *
348 * The remaining PAGE_SIZE pages are called "tail pages".
349 *
6416b9fa
WSH
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
1da177e4 352 *
41d78ba5
HD
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
1da177e4 356 */
d98c7a09
HD
357
358static void free_compound_page(struct page *page)
359{
d85f3385 360 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
361}
362
01ad1c08 363void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
364{
365 int i;
366 int nr_pages = 1 << order;
367
368 set_compound_page_dtor(page, free_compound_page);
369 set_compound_order(page, order);
370 __SetPageHead(page);
371 for (i = 1; i < nr_pages; i++) {
372 struct page *p = page + i;
58a84aa9 373 set_page_count(p, 0);
18229df5 374 p->first_page = page;
668f9abb
DR
375 /* Make sure p->first_page is always valid for PageTail() */
376 smp_wmb();
377 __SetPageTail(p);
18229df5
AW
378 }
379}
380
59ff4216 381/* update __split_huge_page_refcount if you change this function */
8cc3b392 382static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
383{
384 int i;
385 int nr_pages = 1 << order;
8cc3b392 386 int bad = 0;
1da177e4 387
0bb2c763 388 if (unlikely(compound_order(page) != order)) {
f0b791a3 389 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
390 bad++;
391 }
1da177e4 392
6d777953 393 __ClearPageHead(page);
8cc3b392 394
18229df5
AW
395 for (i = 1; i < nr_pages; i++) {
396 struct page *p = page + i;
1da177e4 397
f0b791a3
DH
398 if (unlikely(!PageTail(p))) {
399 bad_page(page, "PageTail not set", 0);
400 bad++;
401 } else if (unlikely(p->first_page != page)) {
402 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
403 bad++;
404 }
d85f3385 405 __ClearPageTail(p);
1da177e4 406 }
8cc3b392
HD
407
408 return bad;
1da177e4 409}
1da177e4 410
17cf4406
NP
411static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
412{
413 int i;
414
6626c5d5
AM
415 /*
416 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
417 * and __GFP_HIGHMEM from hard or soft interrupt context.
418 */
725d704e 419 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
420 for (i = 0; i < (1 << order); i++)
421 clear_highpage(page + i);
422}
423
c0a32fc5
SG
424#ifdef CONFIG_DEBUG_PAGEALLOC
425unsigned int _debug_guardpage_minorder;
426
427static int __init debug_guardpage_minorder_setup(char *buf)
428{
429 unsigned long res;
430
431 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
432 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
433 return 0;
434 }
435 _debug_guardpage_minorder = res;
436 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
437 return 0;
438}
439__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
440
441static inline void set_page_guard_flag(struct page *page)
442{
443 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
444}
445
446static inline void clear_page_guard_flag(struct page *page)
447{
448 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
449}
450#else
451static inline void set_page_guard_flag(struct page *page) { }
452static inline void clear_page_guard_flag(struct page *page) { }
453#endif
454
6aa3001b
AM
455static inline void set_page_order(struct page *page, int order)
456{
4c21e2f2 457 set_page_private(page, order);
676165a8 458 __SetPageBuddy(page);
1da177e4
LT
459}
460
461static inline void rmv_page_order(struct page *page)
462{
676165a8 463 __ClearPageBuddy(page);
4c21e2f2 464 set_page_private(page, 0);
1da177e4
LT
465}
466
467/*
468 * Locate the struct page for both the matching buddy in our
469 * pair (buddy1) and the combined O(n+1) page they form (page).
470 *
471 * 1) Any buddy B1 will have an order O twin B2 which satisfies
472 * the following equation:
473 * B2 = B1 ^ (1 << O)
474 * For example, if the starting buddy (buddy2) is #8 its order
475 * 1 buddy is #10:
476 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
477 *
478 * 2) Any buddy B will have an order O+1 parent P which
479 * satisfies the following equation:
480 * P = B & ~(1 << O)
481 *
d6e05edc 482 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 483 */
1da177e4 484static inline unsigned long
43506fad 485__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 486{
43506fad 487 return page_idx ^ (1 << order);
1da177e4
LT
488}
489
490/*
491 * This function checks whether a page is free && is the buddy
492 * we can do coalesce a page and its buddy if
13e7444b 493 * (a) the buddy is not in a hole &&
676165a8 494 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
495 * (c) a page and its buddy have the same order &&
496 * (d) a page and its buddy are in the same zone.
676165a8 497 *
cf6fe945
WSH
498 * For recording whether a page is in the buddy system, we set ->_mapcount
499 * PAGE_BUDDY_MAPCOUNT_VALUE.
500 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
501 * serialized by zone->lock.
1da177e4 502 *
676165a8 503 * For recording page's order, we use page_private(page).
1da177e4 504 */
cb2b95e1
AW
505static inline int page_is_buddy(struct page *page, struct page *buddy,
506 int order)
1da177e4 507{
14e07298 508 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 509 return 0;
13e7444b 510
cb2b95e1
AW
511 if (page_zone_id(page) != page_zone_id(buddy))
512 return 0;
513
c0a32fc5 514 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
c0a32fc5
SG
516 return 1;
517 }
518
cb2b95e1 519 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 520 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
6aa3001b 521 return 1;
676165a8 522 }
6aa3001b 523 return 0;
1da177e4
LT
524}
525
526/*
527 * Freeing function for a buddy system allocator.
528 *
529 * The concept of a buddy system is to maintain direct-mapped table
530 * (containing bit values) for memory blocks of various "orders".
531 * The bottom level table contains the map for the smallest allocatable
532 * units of memory (here, pages), and each level above it describes
533 * pairs of units from the levels below, hence, "buddies".
534 * At a high level, all that happens here is marking the table entry
535 * at the bottom level available, and propagating the changes upward
536 * as necessary, plus some accounting needed to play nicely with other
537 * parts of the VM system.
538 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
539 * free pages of length of (1 << order) and marked with _mapcount
540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
541 * field.
1da177e4 542 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
543 * other. That is, if we allocate a small block, and both were
544 * free, the remainder of the region must be split into blocks.
1da177e4 545 * If a block is freed, and its buddy is also free, then this
5f63b720 546 * triggers coalescing into a block of larger size.
1da177e4 547 *
6d49e352 548 * -- nyc
1da177e4
LT
549 */
550
48db57f8 551static inline void __free_one_page(struct page *page,
ed0ae21d
MG
552 struct zone *zone, unsigned int order,
553 int migratetype)
1da177e4
LT
554{
555 unsigned long page_idx;
6dda9d55 556 unsigned long combined_idx;
43506fad 557 unsigned long uninitialized_var(buddy_idx);
6dda9d55 558 struct page *buddy;
1da177e4 559
d29bb978
CS
560 VM_BUG_ON(!zone_is_initialized(zone));
561
224abf92 562 if (unlikely(PageCompound(page)))
8cc3b392
HD
563 if (unlikely(destroy_compound_page(page, order)))
564 return;
1da177e4 565
ed0ae21d
MG
566 VM_BUG_ON(migratetype == -1);
567
1da177e4
LT
568 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
569
309381fe
SL
570 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
571 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 572
1da177e4 573 while (order < MAX_ORDER-1) {
43506fad
KC
574 buddy_idx = __find_buddy_index(page_idx, order);
575 buddy = page + (buddy_idx - page_idx);
cb2b95e1 576 if (!page_is_buddy(page, buddy, order))
3c82d0ce 577 break;
c0a32fc5
SG
578 /*
579 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
580 * merge with it and move up one order.
581 */
582 if (page_is_guard(buddy)) {
583 clear_page_guard_flag(buddy);
584 set_page_private(page, 0);
d1ce749a
BZ
585 __mod_zone_freepage_state(zone, 1 << order,
586 migratetype);
c0a32fc5
SG
587 } else {
588 list_del(&buddy->lru);
589 zone->free_area[order].nr_free--;
590 rmv_page_order(buddy);
591 }
43506fad 592 combined_idx = buddy_idx & page_idx;
1da177e4
LT
593 page = page + (combined_idx - page_idx);
594 page_idx = combined_idx;
595 order++;
596 }
597 set_page_order(page, order);
6dda9d55
CZ
598
599 /*
600 * If this is not the largest possible page, check if the buddy
601 * of the next-highest order is free. If it is, it's possible
602 * that pages are being freed that will coalesce soon. In case,
603 * that is happening, add the free page to the tail of the list
604 * so it's less likely to be used soon and more likely to be merged
605 * as a higher order page
606 */
b7f50cfa 607 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 608 struct page *higher_page, *higher_buddy;
43506fad
KC
609 combined_idx = buddy_idx & page_idx;
610 higher_page = page + (combined_idx - page_idx);
611 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 612 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
613 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
614 list_add_tail(&page->lru,
615 &zone->free_area[order].free_list[migratetype]);
616 goto out;
617 }
618 }
619
620 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
621out:
1da177e4
LT
622 zone->free_area[order].nr_free++;
623}
624
224abf92 625static inline int free_pages_check(struct page *page)
1da177e4 626{
d230dec1 627 const char *bad_reason = NULL;
f0b791a3
DH
628 unsigned long bad_flags = 0;
629
630 if (unlikely(page_mapcount(page)))
631 bad_reason = "nonzero mapcount";
632 if (unlikely(page->mapping != NULL))
633 bad_reason = "non-NULL mapping";
634 if (unlikely(atomic_read(&page->_count) != 0))
635 bad_reason = "nonzero _count";
636 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
637 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
638 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
639 }
640 if (unlikely(mem_cgroup_bad_page_check(page)))
641 bad_reason = "cgroup check failed";
642 if (unlikely(bad_reason)) {
643 bad_page(page, bad_reason, bad_flags);
79f4b7bf 644 return 1;
8cc3b392 645 }
90572890 646 page_cpupid_reset_last(page);
79f4b7bf
HD
647 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
648 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
649 return 0;
1da177e4
LT
650}
651
652/*
5f8dcc21 653 * Frees a number of pages from the PCP lists
1da177e4 654 * Assumes all pages on list are in same zone, and of same order.
207f36ee 655 * count is the number of pages to free.
1da177e4
LT
656 *
657 * If the zone was previously in an "all pages pinned" state then look to
658 * see if this freeing clears that state.
659 *
660 * And clear the zone's pages_scanned counter, to hold off the "all pages are
661 * pinned" detection logic.
662 */
5f8dcc21
MG
663static void free_pcppages_bulk(struct zone *zone, int count,
664 struct per_cpu_pages *pcp)
1da177e4 665{
5f8dcc21 666 int migratetype = 0;
a6f9edd6 667 int batch_free = 0;
72853e29 668 int to_free = count;
5f8dcc21 669
c54ad30c 670 spin_lock(&zone->lock);
1da177e4 671 zone->pages_scanned = 0;
f2260e6b 672
72853e29 673 while (to_free) {
48db57f8 674 struct page *page;
5f8dcc21
MG
675 struct list_head *list;
676
677 /*
a6f9edd6
MG
678 * Remove pages from lists in a round-robin fashion. A
679 * batch_free count is maintained that is incremented when an
680 * empty list is encountered. This is so more pages are freed
681 * off fuller lists instead of spinning excessively around empty
682 * lists
5f8dcc21
MG
683 */
684 do {
a6f9edd6 685 batch_free++;
5f8dcc21
MG
686 if (++migratetype == MIGRATE_PCPTYPES)
687 migratetype = 0;
688 list = &pcp->lists[migratetype];
689 } while (list_empty(list));
48db57f8 690
1d16871d
NK
691 /* This is the only non-empty list. Free them all. */
692 if (batch_free == MIGRATE_PCPTYPES)
693 batch_free = to_free;
694
a6f9edd6 695 do {
770c8aaa
BZ
696 int mt; /* migratetype of the to-be-freed page */
697
a6f9edd6
MG
698 page = list_entry(list->prev, struct page, lru);
699 /* must delete as __free_one_page list manipulates */
700 list_del(&page->lru);
b12c4ad1 701 mt = get_freepage_migratetype(page);
a7016235 702 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
703 __free_one_page(page, zone, 0, mt);
704 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 705 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
706 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
707 if (is_migrate_cma(mt))
708 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
709 }
72853e29 710 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 711 }
c54ad30c 712 spin_unlock(&zone->lock);
1da177e4
LT
713}
714
ed0ae21d
MG
715static void free_one_page(struct zone *zone, struct page *page, int order,
716 int migratetype)
1da177e4 717{
006d22d9 718 spin_lock(&zone->lock);
006d22d9 719 zone->pages_scanned = 0;
f2260e6b 720
ed0ae21d 721 __free_one_page(page, zone, order, migratetype);
194159fb 722 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 723 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 724 spin_unlock(&zone->lock);
48db57f8
NP
725}
726
ec95f53a 727static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 728{
1da177e4 729 int i;
8cc3b392 730 int bad = 0;
1da177e4 731
b413d48a 732 trace_mm_page_free(page, order);
b1eeab67
VN
733 kmemcheck_free_shadow(page, order);
734
8dd60a3a
AA
735 if (PageAnon(page))
736 page->mapping = NULL;
737 for (i = 0; i < (1 << order); i++)
738 bad += free_pages_check(page + i);
8cc3b392 739 if (bad)
ec95f53a 740 return false;
689bcebf 741
3ac7fe5a 742 if (!PageHighMem(page)) {
b8af2941
PK
743 debug_check_no_locks_freed(page_address(page),
744 PAGE_SIZE << order);
3ac7fe5a
TG
745 debug_check_no_obj_freed(page_address(page),
746 PAGE_SIZE << order);
747 }
dafb1367 748 arch_free_page(page, order);
48db57f8 749 kernel_map_pages(page, 1 << order, 0);
dafb1367 750
ec95f53a
KM
751 return true;
752}
753
754static void __free_pages_ok(struct page *page, unsigned int order)
755{
756 unsigned long flags;
95e34412 757 int migratetype;
ec95f53a
KM
758
759 if (!free_pages_prepare(page, order))
760 return;
761
c54ad30c 762 local_irq_save(flags);
f8891e5e 763 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
764 migratetype = get_pageblock_migratetype(page);
765 set_freepage_migratetype(page, migratetype);
766 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 767 local_irq_restore(flags);
1da177e4
LT
768}
769
170a5a7e 770void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 771{
c3993076 772 unsigned int nr_pages = 1 << order;
e2d0bd2b 773 struct page *p = page;
c3993076 774 unsigned int loop;
a226f6c8 775
e2d0bd2b
YL
776 prefetchw(p);
777 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
778 prefetchw(p + 1);
c3993076
JW
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
a226f6c8 781 }
e2d0bd2b
YL
782 __ClearPageReserved(p);
783 set_page_count(p, 0);
c3993076 784
e2d0bd2b 785 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
786 set_page_refcounted(page);
787 __free_pages(page, order);
a226f6c8
DH
788}
789
47118af0 790#ifdef CONFIG_CMA
9cf510a5 791/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
792void __init init_cma_reserved_pageblock(struct page *page)
793{
794 unsigned i = pageblock_nr_pages;
795 struct page *p = page;
796
797 do {
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
800 } while (++p, --i);
801
802 set_page_refcounted(page);
803 set_pageblock_migratetype(page, MIGRATE_CMA);
804 __free_pages(page, pageblock_order);
3dcc0571 805 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
806}
807#endif
1da177e4
LT
808
809/*
810 * The order of subdivision here is critical for the IO subsystem.
811 * Please do not alter this order without good reasons and regression
812 * testing. Specifically, as large blocks of memory are subdivided,
813 * the order in which smaller blocks are delivered depends on the order
814 * they're subdivided in this function. This is the primary factor
815 * influencing the order in which pages are delivered to the IO
816 * subsystem according to empirical testing, and this is also justified
817 * by considering the behavior of a buddy system containing a single
818 * large block of memory acted on by a series of small allocations.
819 * This behavior is a critical factor in sglist merging's success.
820 *
6d49e352 821 * -- nyc
1da177e4 822 */
085cc7d5 823static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
824 int low, int high, struct free_area *area,
825 int migratetype)
1da177e4
LT
826{
827 unsigned long size = 1 << high;
828
829 while (high > low) {
830 area--;
831 high--;
832 size >>= 1;
309381fe 833 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
834
835#ifdef CONFIG_DEBUG_PAGEALLOC
836 if (high < debug_guardpage_minorder()) {
837 /*
838 * Mark as guard pages (or page), that will allow to
839 * merge back to allocator when buddy will be freed.
840 * Corresponding page table entries will not be touched,
841 * pages will stay not present in virtual address space
842 */
843 INIT_LIST_HEAD(&page[size].lru);
844 set_page_guard_flag(&page[size]);
845 set_page_private(&page[size], high);
846 /* Guard pages are not available for any usage */
d1ce749a
BZ
847 __mod_zone_freepage_state(zone, -(1 << high),
848 migratetype);
c0a32fc5
SG
849 continue;
850 }
851#endif
b2a0ac88 852 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
853 area->nr_free++;
854 set_page_order(&page[size], high);
855 }
1da177e4
LT
856}
857
1da177e4
LT
858/*
859 * This page is about to be returned from the page allocator
860 */
2a7684a2 861static inline int check_new_page(struct page *page)
1da177e4 862{
d230dec1 863 const char *bad_reason = NULL;
f0b791a3
DH
864 unsigned long bad_flags = 0;
865
866 if (unlikely(page_mapcount(page)))
867 bad_reason = "nonzero mapcount";
868 if (unlikely(page->mapping != NULL))
869 bad_reason = "non-NULL mapping";
870 if (unlikely(atomic_read(&page->_count) != 0))
871 bad_reason = "nonzero _count";
872 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
873 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
874 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
875 }
876 if (unlikely(mem_cgroup_bad_page_check(page)))
877 bad_reason = "cgroup check failed";
878 if (unlikely(bad_reason)) {
879 bad_page(page, bad_reason, bad_flags);
689bcebf 880 return 1;
8cc3b392 881 }
2a7684a2
WF
882 return 0;
883}
884
885static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
886{
887 int i;
888
889 for (i = 0; i < (1 << order); i++) {
890 struct page *p = page + i;
891 if (unlikely(check_new_page(p)))
892 return 1;
893 }
689bcebf 894
4c21e2f2 895 set_page_private(page, 0);
7835e98b 896 set_page_refcounted(page);
cc102509
NP
897
898 arch_alloc_page(page, order);
1da177e4 899 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
900
901 if (gfp_flags & __GFP_ZERO)
902 prep_zero_page(page, order, gfp_flags);
903
904 if (order && (gfp_flags & __GFP_COMP))
905 prep_compound_page(page, order);
906
689bcebf 907 return 0;
1da177e4
LT
908}
909
56fd56b8
MG
910/*
911 * Go through the free lists for the given migratetype and remove
912 * the smallest available page from the freelists
913 */
728ec980
MG
914static inline
915struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
916 int migratetype)
917{
918 unsigned int current_order;
b8af2941 919 struct free_area *area;
56fd56b8
MG
920 struct page *page;
921
922 /* Find a page of the appropriate size in the preferred list */
923 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
924 area = &(zone->free_area[current_order]);
925 if (list_empty(&area->free_list[migratetype]))
926 continue;
927
928 page = list_entry(area->free_list[migratetype].next,
929 struct page, lru);
930 list_del(&page->lru);
931 rmv_page_order(page);
932 area->nr_free--;
56fd56b8
MG
933 expand(zone, page, order, current_order, area, migratetype);
934 return page;
935 }
936
937 return NULL;
938}
939
940
b2a0ac88
MG
941/*
942 * This array describes the order lists are fallen back to when
943 * the free lists for the desirable migrate type are depleted
944 */
47118af0
MN
945static int fallbacks[MIGRATE_TYPES][4] = {
946 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
947 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
948#ifdef CONFIG_CMA
949 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
950 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
951#else
952 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
953#endif
6d4a4916 954 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 955#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 956 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 957#endif
b2a0ac88
MG
958};
959
c361be55
MG
960/*
961 * Move the free pages in a range to the free lists of the requested type.
d9c23400 962 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
963 * boundary. If alignment is required, use move_freepages_block()
964 */
435b405c 965int move_freepages(struct zone *zone,
b69a7288
AB
966 struct page *start_page, struct page *end_page,
967 int migratetype)
c361be55
MG
968{
969 struct page *page;
970 unsigned long order;
d100313f 971 int pages_moved = 0;
c361be55
MG
972
973#ifndef CONFIG_HOLES_IN_ZONE
974 /*
975 * page_zone is not safe to call in this context when
976 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
977 * anyway as we check zone boundaries in move_freepages_block().
978 * Remove at a later date when no bug reports exist related to
ac0e5b7a 979 * grouping pages by mobility
c361be55
MG
980 */
981 BUG_ON(page_zone(start_page) != page_zone(end_page));
982#endif
983
984 for (page = start_page; page <= end_page;) {
344c790e 985 /* Make sure we are not inadvertently changing nodes */
309381fe 986 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 987
c361be55
MG
988 if (!pfn_valid_within(page_to_pfn(page))) {
989 page++;
990 continue;
991 }
992
993 if (!PageBuddy(page)) {
994 page++;
995 continue;
996 }
997
998 order = page_order(page);
84be48d8
KS
999 list_move(&page->lru,
1000 &zone->free_area[order].free_list[migratetype]);
95e34412 1001 set_freepage_migratetype(page, migratetype);
c361be55 1002 page += 1 << order;
d100313f 1003 pages_moved += 1 << order;
c361be55
MG
1004 }
1005
d100313f 1006 return pages_moved;
c361be55
MG
1007}
1008
ee6f509c 1009int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1010 int migratetype)
c361be55
MG
1011{
1012 unsigned long start_pfn, end_pfn;
1013 struct page *start_page, *end_page;
1014
1015 start_pfn = page_to_pfn(page);
d9c23400 1016 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1017 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1018 end_page = start_page + pageblock_nr_pages - 1;
1019 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1020
1021 /* Do not cross zone boundaries */
108bcc96 1022 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1023 start_page = page;
108bcc96 1024 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1025 return 0;
1026
1027 return move_freepages(zone, start_page, end_page, migratetype);
1028}
1029
2f66a68f
MG
1030static void change_pageblock_range(struct page *pageblock_page,
1031 int start_order, int migratetype)
1032{
1033 int nr_pageblocks = 1 << (start_order - pageblock_order);
1034
1035 while (nr_pageblocks--) {
1036 set_pageblock_migratetype(pageblock_page, migratetype);
1037 pageblock_page += pageblock_nr_pages;
1038 }
1039}
1040
fef903ef
SB
1041/*
1042 * If breaking a large block of pages, move all free pages to the preferred
1043 * allocation list. If falling back for a reclaimable kernel allocation, be
1044 * more aggressive about taking ownership of free pages.
1045 *
1046 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1047 * nor move CMA pages to different free lists. We don't want unmovable pages
1048 * to be allocated from MIGRATE_CMA areas.
1049 *
1050 * Returns the new migratetype of the pageblock (or the same old migratetype
1051 * if it was unchanged).
1052 */
1053static int try_to_steal_freepages(struct zone *zone, struct page *page,
1054 int start_type, int fallback_type)
1055{
1056 int current_order = page_order(page);
1057
0cbef29a
KM
1058 /*
1059 * When borrowing from MIGRATE_CMA, we need to release the excess
1060 * buddy pages to CMA itself.
1061 */
fef903ef
SB
1062 if (is_migrate_cma(fallback_type))
1063 return fallback_type;
1064
1065 /* Take ownership for orders >= pageblock_order */
1066 if (current_order >= pageblock_order) {
1067 change_pageblock_range(page, current_order, start_type);
1068 return start_type;
1069 }
1070
1071 if (current_order >= pageblock_order / 2 ||
1072 start_type == MIGRATE_RECLAIMABLE ||
1073 page_group_by_mobility_disabled) {
1074 int pages;
1075
1076 pages = move_freepages_block(zone, page, start_type);
1077
1078 /* Claim the whole block if over half of it is free */
1079 if (pages >= (1 << (pageblock_order-1)) ||
1080 page_group_by_mobility_disabled) {
1081
1082 set_pageblock_migratetype(page, start_type);
1083 return start_type;
1084 }
1085
1086 }
1087
1088 return fallback_type;
1089}
1090
b2a0ac88 1091/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1092static inline struct page *
1093__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1094{
b8af2941 1095 struct free_area *area;
b2a0ac88
MG
1096 int current_order;
1097 struct page *page;
fef903ef 1098 int migratetype, new_type, i;
b2a0ac88
MG
1099
1100 /* Find the largest possible block of pages in the other list */
1101 for (current_order = MAX_ORDER-1; current_order >= order;
1102 --current_order) {
6d4a4916 1103 for (i = 0;; i++) {
b2a0ac88
MG
1104 migratetype = fallbacks[start_migratetype][i];
1105
56fd56b8
MG
1106 /* MIGRATE_RESERVE handled later if necessary */
1107 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1108 break;
e010487d 1109
b2a0ac88
MG
1110 area = &(zone->free_area[current_order]);
1111 if (list_empty(&area->free_list[migratetype]))
1112 continue;
1113
1114 page = list_entry(area->free_list[migratetype].next,
1115 struct page, lru);
1116 area->nr_free--;
1117
fef903ef
SB
1118 new_type = try_to_steal_freepages(zone, page,
1119 start_migratetype,
1120 migratetype);
b2a0ac88
MG
1121
1122 /* Remove the page from the freelists */
1123 list_del(&page->lru);
1124 rmv_page_order(page);
b2a0ac88 1125
47118af0 1126 expand(zone, page, order, current_order, area,
0cbef29a 1127 new_type);
e0fff1bd 1128
52c8f6a5
KM
1129 trace_mm_page_alloc_extfrag(page, order, current_order,
1130 start_migratetype, migratetype, new_type);
e0fff1bd 1131
b2a0ac88
MG
1132 return page;
1133 }
1134 }
1135
728ec980 1136 return NULL;
b2a0ac88
MG
1137}
1138
56fd56b8 1139/*
1da177e4
LT
1140 * Do the hard work of removing an element from the buddy allocator.
1141 * Call me with the zone->lock already held.
1142 */
b2a0ac88
MG
1143static struct page *__rmqueue(struct zone *zone, unsigned int order,
1144 int migratetype)
1da177e4 1145{
1da177e4
LT
1146 struct page *page;
1147
728ec980 1148retry_reserve:
56fd56b8 1149 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1150
728ec980 1151 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1152 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1153
728ec980
MG
1154 /*
1155 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1156 * is used because __rmqueue_smallest is an inline function
1157 * and we want just one call site
1158 */
1159 if (!page) {
1160 migratetype = MIGRATE_RESERVE;
1161 goto retry_reserve;
1162 }
1163 }
1164
0d3d062a 1165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1166 return page;
1da177e4
LT
1167}
1168
5f63b720 1169/*
1da177e4
LT
1170 * Obtain a specified number of elements from the buddy allocator, all under
1171 * a single hold of the lock, for efficiency. Add them to the supplied list.
1172 * Returns the number of new pages which were placed at *list.
1173 */
5f63b720 1174static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1175 unsigned long count, struct list_head *list,
e084b2d9 1176 int migratetype, int cold)
1da177e4 1177{
47118af0 1178 int mt = migratetype, i;
5f63b720 1179
c54ad30c 1180 spin_lock(&zone->lock);
1da177e4 1181 for (i = 0; i < count; ++i) {
b2a0ac88 1182 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1183 if (unlikely(page == NULL))
1da177e4 1184 break;
81eabcbe
MG
1185
1186 /*
1187 * Split buddy pages returned by expand() are received here
1188 * in physical page order. The page is added to the callers and
1189 * list and the list head then moves forward. From the callers
1190 * perspective, the linked list is ordered by page number in
1191 * some conditions. This is useful for IO devices that can
1192 * merge IO requests if the physical pages are ordered
1193 * properly.
1194 */
e084b2d9
MG
1195 if (likely(cold == 0))
1196 list_add(&page->lru, list);
1197 else
1198 list_add_tail(&page->lru, list);
47118af0
MN
1199 if (IS_ENABLED(CONFIG_CMA)) {
1200 mt = get_pageblock_migratetype(page);
194159fb 1201 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1202 mt = migratetype;
1203 }
b12c4ad1 1204 set_freepage_migratetype(page, mt);
81eabcbe 1205 list = &page->lru;
d1ce749a
BZ
1206 if (is_migrate_cma(mt))
1207 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1208 -(1 << order));
1da177e4 1209 }
f2260e6b 1210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1211 spin_unlock(&zone->lock);
085cc7d5 1212 return i;
1da177e4
LT
1213}
1214
4ae7c039 1215#ifdef CONFIG_NUMA
8fce4d8e 1216/*
4037d452
CL
1217 * Called from the vmstat counter updater to drain pagesets of this
1218 * currently executing processor on remote nodes after they have
1219 * expired.
1220 *
879336c3
CL
1221 * Note that this function must be called with the thread pinned to
1222 * a single processor.
8fce4d8e 1223 */
4037d452 1224void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1225{
4ae7c039 1226 unsigned long flags;
4037d452 1227 int to_drain;
998d39cb 1228 unsigned long batch;
4ae7c039 1229
4037d452 1230 local_irq_save(flags);
998d39cb
CS
1231 batch = ACCESS_ONCE(pcp->batch);
1232 if (pcp->count >= batch)
1233 to_drain = batch;
4037d452
CL
1234 else
1235 to_drain = pcp->count;
2a13515c
KM
1236 if (to_drain > 0) {
1237 free_pcppages_bulk(zone, to_drain, pcp);
1238 pcp->count -= to_drain;
1239 }
4037d452 1240 local_irq_restore(flags);
4ae7c039
CL
1241}
1242#endif
1243
9f8f2172
CL
1244/*
1245 * Drain pages of the indicated processor.
1246 *
1247 * The processor must either be the current processor and the
1248 * thread pinned to the current processor or a processor that
1249 * is not online.
1250 */
1251static void drain_pages(unsigned int cpu)
1da177e4 1252{
c54ad30c 1253 unsigned long flags;
1da177e4 1254 struct zone *zone;
1da177e4 1255
ee99c71c 1256 for_each_populated_zone(zone) {
1da177e4 1257 struct per_cpu_pageset *pset;
3dfa5721 1258 struct per_cpu_pages *pcp;
1da177e4 1259
99dcc3e5
CL
1260 local_irq_save(flags);
1261 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1262
1263 pcp = &pset->pcp;
2ff754fa
DR
1264 if (pcp->count) {
1265 free_pcppages_bulk(zone, pcp->count, pcp);
1266 pcp->count = 0;
1267 }
3dfa5721 1268 local_irq_restore(flags);
1da177e4
LT
1269 }
1270}
1da177e4 1271
9f8f2172
CL
1272/*
1273 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1274 */
1275void drain_local_pages(void *arg)
1276{
1277 drain_pages(smp_processor_id());
1278}
1279
1280/*
74046494
GBY
1281 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1282 *
1283 * Note that this code is protected against sending an IPI to an offline
1284 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1285 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1286 * nothing keeps CPUs from showing up after we populated the cpumask and
1287 * before the call to on_each_cpu_mask().
9f8f2172
CL
1288 */
1289void drain_all_pages(void)
1290{
74046494
GBY
1291 int cpu;
1292 struct per_cpu_pageset *pcp;
1293 struct zone *zone;
1294
1295 /*
1296 * Allocate in the BSS so we wont require allocation in
1297 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1298 */
1299 static cpumask_t cpus_with_pcps;
1300
1301 /*
1302 * We don't care about racing with CPU hotplug event
1303 * as offline notification will cause the notified
1304 * cpu to drain that CPU pcps and on_each_cpu_mask
1305 * disables preemption as part of its processing
1306 */
1307 for_each_online_cpu(cpu) {
1308 bool has_pcps = false;
1309 for_each_populated_zone(zone) {
1310 pcp = per_cpu_ptr(zone->pageset, cpu);
1311 if (pcp->pcp.count) {
1312 has_pcps = true;
1313 break;
1314 }
1315 }
1316 if (has_pcps)
1317 cpumask_set_cpu(cpu, &cpus_with_pcps);
1318 else
1319 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1320 }
1321 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1322}
1323
296699de 1324#ifdef CONFIG_HIBERNATION
1da177e4
LT
1325
1326void mark_free_pages(struct zone *zone)
1327{
f623f0db
RW
1328 unsigned long pfn, max_zone_pfn;
1329 unsigned long flags;
b2a0ac88 1330 int order, t;
1da177e4
LT
1331 struct list_head *curr;
1332
8080fc03 1333 if (zone_is_empty(zone))
1da177e4
LT
1334 return;
1335
1336 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1337
108bcc96 1338 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1339 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1340 if (pfn_valid(pfn)) {
1341 struct page *page = pfn_to_page(pfn);
1342
7be98234
RW
1343 if (!swsusp_page_is_forbidden(page))
1344 swsusp_unset_page_free(page);
f623f0db 1345 }
1da177e4 1346
b2a0ac88
MG
1347 for_each_migratetype_order(order, t) {
1348 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1349 unsigned long i;
1da177e4 1350
f623f0db
RW
1351 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1352 for (i = 0; i < (1UL << order); i++)
7be98234 1353 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1354 }
b2a0ac88 1355 }
1da177e4
LT
1356 spin_unlock_irqrestore(&zone->lock, flags);
1357}
e2c55dc8 1358#endif /* CONFIG_PM */
1da177e4 1359
1da177e4
LT
1360/*
1361 * Free a 0-order page
fc91668e 1362 * cold == 1 ? free a cold page : free a hot page
1da177e4 1363 */
fc91668e 1364void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1365{
1366 struct zone *zone = page_zone(page);
1367 struct per_cpu_pages *pcp;
1368 unsigned long flags;
5f8dcc21 1369 int migratetype;
1da177e4 1370
ec95f53a 1371 if (!free_pages_prepare(page, 0))
689bcebf
HD
1372 return;
1373
5f8dcc21 1374 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1375 set_freepage_migratetype(page, migratetype);
1da177e4 1376 local_irq_save(flags);
f8891e5e 1377 __count_vm_event(PGFREE);
da456f14 1378
5f8dcc21
MG
1379 /*
1380 * We only track unmovable, reclaimable and movable on pcp lists.
1381 * Free ISOLATE pages back to the allocator because they are being
1382 * offlined but treat RESERVE as movable pages so we can get those
1383 * areas back if necessary. Otherwise, we may have to free
1384 * excessively into the page allocator
1385 */
1386 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1387 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1388 free_one_page(zone, page, 0, migratetype);
1389 goto out;
1390 }
1391 migratetype = MIGRATE_MOVABLE;
1392 }
1393
99dcc3e5 1394 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1395 if (cold)
5f8dcc21 1396 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1397 else
5f8dcc21 1398 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1399 pcp->count++;
48db57f8 1400 if (pcp->count >= pcp->high) {
998d39cb
CS
1401 unsigned long batch = ACCESS_ONCE(pcp->batch);
1402 free_pcppages_bulk(zone, batch, pcp);
1403 pcp->count -= batch;
48db57f8 1404 }
5f8dcc21
MG
1405
1406out:
1da177e4 1407 local_irq_restore(flags);
1da177e4
LT
1408}
1409
cc59850e
KK
1410/*
1411 * Free a list of 0-order pages
1412 */
1413void free_hot_cold_page_list(struct list_head *list, int cold)
1414{
1415 struct page *page, *next;
1416
1417 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1418 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1419 free_hot_cold_page(page, cold);
1420 }
1421}
1422
8dfcc9ba
NP
1423/*
1424 * split_page takes a non-compound higher-order page, and splits it into
1425 * n (1<<order) sub-pages: page[0..n]
1426 * Each sub-page must be freed individually.
1427 *
1428 * Note: this is probably too low level an operation for use in drivers.
1429 * Please consult with lkml before using this in your driver.
1430 */
1431void split_page(struct page *page, unsigned int order)
1432{
1433 int i;
1434
309381fe
SL
1435 VM_BUG_ON_PAGE(PageCompound(page), page);
1436 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1437
1438#ifdef CONFIG_KMEMCHECK
1439 /*
1440 * Split shadow pages too, because free(page[0]) would
1441 * otherwise free the whole shadow.
1442 */
1443 if (kmemcheck_page_is_tracked(page))
1444 split_page(virt_to_page(page[0].shadow), order);
1445#endif
1446
7835e98b
NP
1447 for (i = 1; i < (1 << order); i++)
1448 set_page_refcounted(page + i);
8dfcc9ba 1449}
5853ff23 1450EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1451
8fb74b9f 1452static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1453{
748446bb
MG
1454 unsigned long watermark;
1455 struct zone *zone;
2139cbe6 1456 int mt;
748446bb
MG
1457
1458 BUG_ON(!PageBuddy(page));
1459
1460 zone = page_zone(page);
2e30abd1 1461 mt = get_pageblock_migratetype(page);
748446bb 1462
194159fb 1463 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1464 /* Obey watermarks as if the page was being allocated */
1465 watermark = low_wmark_pages(zone) + (1 << order);
1466 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1467 return 0;
1468
8fb74b9f 1469 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1470 }
748446bb
MG
1471
1472 /* Remove page from free list */
1473 list_del(&page->lru);
1474 zone->free_area[order].nr_free--;
1475 rmv_page_order(page);
2139cbe6 1476
8fb74b9f 1477 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1478 if (order >= pageblock_order - 1) {
1479 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1480 for (; page < endpage; page += pageblock_nr_pages) {
1481 int mt = get_pageblock_migratetype(page);
194159fb 1482 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1483 set_pageblock_migratetype(page,
1484 MIGRATE_MOVABLE);
1485 }
748446bb
MG
1486 }
1487
8fb74b9f 1488 return 1UL << order;
1fb3f8ca
MG
1489}
1490
1491/*
1492 * Similar to split_page except the page is already free. As this is only
1493 * being used for migration, the migratetype of the block also changes.
1494 * As this is called with interrupts disabled, the caller is responsible
1495 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1496 * are enabled.
1497 *
1498 * Note: this is probably too low level an operation for use in drivers.
1499 * Please consult with lkml before using this in your driver.
1500 */
1501int split_free_page(struct page *page)
1502{
1503 unsigned int order;
1504 int nr_pages;
1505
1fb3f8ca
MG
1506 order = page_order(page);
1507
8fb74b9f 1508 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1509 if (!nr_pages)
1510 return 0;
1511
1512 /* Split into individual pages */
1513 set_page_refcounted(page);
1514 split_page(page, order);
1515 return nr_pages;
748446bb
MG
1516}
1517
1da177e4
LT
1518/*
1519 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1520 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1521 * or two.
1522 */
0a15c3e9
MG
1523static inline
1524struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1525 struct zone *zone, int order, gfp_t gfp_flags,
1526 int migratetype)
1da177e4
LT
1527{
1528 unsigned long flags;
689bcebf 1529 struct page *page;
1da177e4
LT
1530 int cold = !!(gfp_flags & __GFP_COLD);
1531
689bcebf 1532again:
48db57f8 1533 if (likely(order == 0)) {
1da177e4 1534 struct per_cpu_pages *pcp;
5f8dcc21 1535 struct list_head *list;
1da177e4 1536
1da177e4 1537 local_irq_save(flags);
99dcc3e5
CL
1538 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1539 list = &pcp->lists[migratetype];
5f8dcc21 1540 if (list_empty(list)) {
535131e6 1541 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1542 pcp->batch, list,
e084b2d9 1543 migratetype, cold);
5f8dcc21 1544 if (unlikely(list_empty(list)))
6fb332fa 1545 goto failed;
535131e6 1546 }
b92a6edd 1547
5f8dcc21
MG
1548 if (cold)
1549 page = list_entry(list->prev, struct page, lru);
1550 else
1551 page = list_entry(list->next, struct page, lru);
1552
b92a6edd
MG
1553 list_del(&page->lru);
1554 pcp->count--;
7fb1d9fc 1555 } else {
dab48dab
AM
1556 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1557 /*
1558 * __GFP_NOFAIL is not to be used in new code.
1559 *
1560 * All __GFP_NOFAIL callers should be fixed so that they
1561 * properly detect and handle allocation failures.
1562 *
1563 * We most definitely don't want callers attempting to
4923abf9 1564 * allocate greater than order-1 page units with
dab48dab
AM
1565 * __GFP_NOFAIL.
1566 */
4923abf9 1567 WARN_ON_ONCE(order > 1);
dab48dab 1568 }
1da177e4 1569 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1570 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1571 spin_unlock(&zone->lock);
1572 if (!page)
1573 goto failed;
d1ce749a
BZ
1574 __mod_zone_freepage_state(zone, -(1 << order),
1575 get_pageblock_migratetype(page));
1da177e4
LT
1576 }
1577
3a025760 1578 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1579
f8891e5e 1580 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1581 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1582 local_irq_restore(flags);
1da177e4 1583
309381fe 1584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1585 if (prep_new_page(page, order, gfp_flags))
a74609fa 1586 goto again;
1da177e4 1587 return page;
a74609fa
NP
1588
1589failed:
1590 local_irq_restore(flags);
a74609fa 1591 return NULL;
1da177e4
LT
1592}
1593
933e312e
AM
1594#ifdef CONFIG_FAIL_PAGE_ALLOC
1595
b2588c4b 1596static struct {
933e312e
AM
1597 struct fault_attr attr;
1598
1599 u32 ignore_gfp_highmem;
1600 u32 ignore_gfp_wait;
54114994 1601 u32 min_order;
933e312e
AM
1602} fail_page_alloc = {
1603 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1604 .ignore_gfp_wait = 1,
1605 .ignore_gfp_highmem = 1,
54114994 1606 .min_order = 1,
933e312e
AM
1607};
1608
1609static int __init setup_fail_page_alloc(char *str)
1610{
1611 return setup_fault_attr(&fail_page_alloc.attr, str);
1612}
1613__setup("fail_page_alloc=", setup_fail_page_alloc);
1614
deaf386e 1615static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1616{
54114994 1617 if (order < fail_page_alloc.min_order)
deaf386e 1618 return false;
933e312e 1619 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1620 return false;
933e312e 1621 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1622 return false;
933e312e 1623 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1624 return false;
933e312e
AM
1625
1626 return should_fail(&fail_page_alloc.attr, 1 << order);
1627}
1628
1629#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1630
1631static int __init fail_page_alloc_debugfs(void)
1632{
f4ae40a6 1633 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1634 struct dentry *dir;
933e312e 1635
dd48c085
AM
1636 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1637 &fail_page_alloc.attr);
1638 if (IS_ERR(dir))
1639 return PTR_ERR(dir);
933e312e 1640
b2588c4b
AM
1641 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1642 &fail_page_alloc.ignore_gfp_wait))
1643 goto fail;
1644 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1645 &fail_page_alloc.ignore_gfp_highmem))
1646 goto fail;
1647 if (!debugfs_create_u32("min-order", mode, dir,
1648 &fail_page_alloc.min_order))
1649 goto fail;
1650
1651 return 0;
1652fail:
dd48c085 1653 debugfs_remove_recursive(dir);
933e312e 1654
b2588c4b 1655 return -ENOMEM;
933e312e
AM
1656}
1657
1658late_initcall(fail_page_alloc_debugfs);
1659
1660#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1661
1662#else /* CONFIG_FAIL_PAGE_ALLOC */
1663
deaf386e 1664static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1665{
deaf386e 1666 return false;
933e312e
AM
1667}
1668
1669#endif /* CONFIG_FAIL_PAGE_ALLOC */
1670
1da177e4 1671/*
88f5acf8 1672 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1673 * of the allocation.
1674 */
88f5acf8
MG
1675static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1677{
1678 /* free_pages my go negative - that's OK */
d23ad423 1679 long min = mark;
2cfed075 1680 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1681 int o;
026b0814 1682 long free_cma = 0;
1da177e4 1683
df0a6daa 1684 free_pages -= (1 << order) - 1;
7fb1d9fc 1685 if (alloc_flags & ALLOC_HIGH)
1da177e4 1686 min -= min / 2;
7fb1d9fc 1687 if (alloc_flags & ALLOC_HARDER)
1da177e4 1688 min -= min / 4;
d95ea5d1
BZ
1689#ifdef CONFIG_CMA
1690 /* If allocation can't use CMA areas don't use free CMA pages */
1691 if (!(alloc_flags & ALLOC_CMA))
026b0814 1692 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1693#endif
026b0814
TS
1694
1695 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1696 return false;
1da177e4
LT
1697 for (o = 0; o < order; o++) {
1698 /* At the next order, this order's pages become unavailable */
1699 free_pages -= z->free_area[o].nr_free << o;
1700
1701 /* Require fewer higher order pages to be free */
1702 min >>= 1;
1703
1704 if (free_pages <= min)
88f5acf8 1705 return false;
1da177e4 1706 }
88f5acf8
MG
1707 return true;
1708}
1709
1710bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1711 int classzone_idx, int alloc_flags)
1712{
1713 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1714 zone_page_state(z, NR_FREE_PAGES));
1715}
1716
1717bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1718 int classzone_idx, int alloc_flags)
1719{
1720 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1721
1722 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1723 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1724
1725 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1726 free_pages);
1da177e4
LT
1727}
1728
9276b1bc
PJ
1729#ifdef CONFIG_NUMA
1730/*
1731 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1732 * skip over zones that are not allowed by the cpuset, or that have
1733 * been recently (in last second) found to be nearly full. See further
1734 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1735 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1736 *
a1aeb65a 1737 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1738 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1739 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1740 *
1741 * If the zonelist cache is not available for this zonelist, does
1742 * nothing and returns NULL.
1743 *
1744 * If the fullzones BITMAP in the zonelist cache is stale (more than
1745 * a second since last zap'd) then we zap it out (clear its bits.)
1746 *
1747 * We hold off even calling zlc_setup, until after we've checked the
1748 * first zone in the zonelist, on the theory that most allocations will
1749 * be satisfied from that first zone, so best to examine that zone as
1750 * quickly as we can.
1751 */
1752static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1753{
1754 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1755 nodemask_t *allowednodes; /* zonelist_cache approximation */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return NULL;
1760
f05111f5 1761 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1762 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1763 zlc->last_full_zap = jiffies;
1764 }
1765
1766 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1767 &cpuset_current_mems_allowed :
4b0ef1fe 1768 &node_states[N_MEMORY];
9276b1bc
PJ
1769 return allowednodes;
1770}
1771
1772/*
1773 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1774 * if it is worth looking at further for free memory:
1775 * 1) Check that the zone isn't thought to be full (doesn't have its
1776 * bit set in the zonelist_cache fullzones BITMAP).
1777 * 2) Check that the zones node (obtained from the zonelist_cache
1778 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1779 * Return true (non-zero) if zone is worth looking at further, or
1780 * else return false (zero) if it is not.
1781 *
1782 * This check -ignores- the distinction between various watermarks,
1783 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1784 * found to be full for any variation of these watermarks, it will
1785 * be considered full for up to one second by all requests, unless
1786 * we are so low on memory on all allowed nodes that we are forced
1787 * into the second scan of the zonelist.
1788 *
1789 * In the second scan we ignore this zonelist cache and exactly
1790 * apply the watermarks to all zones, even it is slower to do so.
1791 * We are low on memory in the second scan, and should leave no stone
1792 * unturned looking for a free page.
1793 */
dd1a239f 1794static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1795 nodemask_t *allowednodes)
1796{
1797 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1798 int i; /* index of *z in zonelist zones */
1799 int n; /* node that zone *z is on */
1800
1801 zlc = zonelist->zlcache_ptr;
1802 if (!zlc)
1803 return 1;
1804
dd1a239f 1805 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1806 n = zlc->z_to_n[i];
1807
1808 /* This zone is worth trying if it is allowed but not full */
1809 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1810}
1811
1812/*
1813 * Given 'z' scanning a zonelist, set the corresponding bit in
1814 * zlc->fullzones, so that subsequent attempts to allocate a page
1815 * from that zone don't waste time re-examining it.
1816 */
dd1a239f 1817static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1818{
1819 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1820 int i; /* index of *z in zonelist zones */
1821
1822 zlc = zonelist->zlcache_ptr;
1823 if (!zlc)
1824 return;
1825
dd1a239f 1826 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1827
1828 set_bit(i, zlc->fullzones);
1829}
1830
76d3fbf8
MG
1831/*
1832 * clear all zones full, called after direct reclaim makes progress so that
1833 * a zone that was recently full is not skipped over for up to a second
1834 */
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1838
1839 zlc = zonelist->zlcache_ptr;
1840 if (!zlc)
1841 return;
1842
1843 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1844}
1845
81c0a2bb
JW
1846static bool zone_local(struct zone *local_zone, struct zone *zone)
1847{
fff4068c 1848 return local_zone->node == zone->node;
81c0a2bb
JW
1849}
1850
957f822a
DR
1851static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1852{
1853 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1854}
1855
1856static void __paginginit init_zone_allows_reclaim(int nid)
1857{
1858 int i;
1859
70ef57e6 1860 for_each_node_state(i, N_MEMORY)
6b187d02 1861 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1862 node_set(i, NODE_DATA(nid)->reclaim_nodes);
957f822a
DR
1863}
1864
9276b1bc
PJ
1865#else /* CONFIG_NUMA */
1866
1867static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1868{
1869 return NULL;
1870}
1871
dd1a239f 1872static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1873 nodemask_t *allowednodes)
1874{
1875 return 1;
1876}
1877
dd1a239f 1878static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1879{
1880}
76d3fbf8
MG
1881
1882static void zlc_clear_zones_full(struct zonelist *zonelist)
1883{
1884}
957f822a 1885
81c0a2bb
JW
1886static bool zone_local(struct zone *local_zone, struct zone *zone)
1887{
1888 return true;
1889}
1890
957f822a
DR
1891static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1892{
1893 return true;
1894}
1895
1896static inline void init_zone_allows_reclaim(int nid)
1897{
1898}
9276b1bc
PJ
1899#endif /* CONFIG_NUMA */
1900
7fb1d9fc 1901/*
0798e519 1902 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1903 * a page.
1904 */
1905static struct page *
19770b32 1906get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1907 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1908 struct zone *preferred_zone, int migratetype)
753ee728 1909{
dd1a239f 1910 struct zoneref *z;
7fb1d9fc 1911 struct page *page = NULL;
54a6eb5c 1912 int classzone_idx;
5117f45d 1913 struct zone *zone;
9276b1bc
PJ
1914 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1915 int zlc_active = 0; /* set if using zonelist_cache */
1916 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1917
19770b32 1918 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1919zonelist_scan:
7fb1d9fc 1920 /*
9276b1bc 1921 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1922 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1923 */
19770b32
MG
1924 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1925 high_zoneidx, nodemask) {
e085dbc5
JW
1926 unsigned long mark;
1927
e5adfffc 1928 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1929 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1930 continue;
7fb1d9fc 1931 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1932 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1933 continue;
e085dbc5 1934 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1935 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1936 goto try_this_zone;
81c0a2bb
JW
1937 /*
1938 * Distribute pages in proportion to the individual
1939 * zone size to ensure fair page aging. The zone a
1940 * page was allocated in should have no effect on the
1941 * time the page has in memory before being reclaimed.
81c0a2bb 1942 */
3a025760 1943 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1944 if (!zone_local(preferred_zone, zone))
81c0a2bb 1945 continue;
3a025760
JW
1946 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1947 continue;
81c0a2bb 1948 }
a756cf59
JW
1949 /*
1950 * When allocating a page cache page for writing, we
1951 * want to get it from a zone that is within its dirty
1952 * limit, such that no single zone holds more than its
1953 * proportional share of globally allowed dirty pages.
1954 * The dirty limits take into account the zone's
1955 * lowmem reserves and high watermark so that kswapd
1956 * should be able to balance it without having to
1957 * write pages from its LRU list.
1958 *
1959 * This may look like it could increase pressure on
1960 * lower zones by failing allocations in higher zones
1961 * before they are full. But the pages that do spill
1962 * over are limited as the lower zones are protected
1963 * by this very same mechanism. It should not become
1964 * a practical burden to them.
1965 *
1966 * XXX: For now, allow allocations to potentially
1967 * exceed the per-zone dirty limit in the slowpath
1968 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1969 * which is important when on a NUMA setup the allowed
1970 * zones are together not big enough to reach the
1971 * global limit. The proper fix for these situations
1972 * will require awareness of zones in the
1973 * dirty-throttling and the flusher threads.
1974 */
1975 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1976 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1977 goto this_zone_full;
7fb1d9fc 1978
e085dbc5
JW
1979 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1980 if (!zone_watermark_ok(zone, order, mark,
1981 classzone_idx, alloc_flags)) {
fa5e084e
MG
1982 int ret;
1983
e5adfffc
KS
1984 if (IS_ENABLED(CONFIG_NUMA) &&
1985 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1986 /*
1987 * we do zlc_setup if there are multiple nodes
1988 * and before considering the first zone allowed
1989 * by the cpuset.
1990 */
1991 allowednodes = zlc_setup(zonelist, alloc_flags);
1992 zlc_active = 1;
1993 did_zlc_setup = 1;
1994 }
1995
957f822a
DR
1996 if (zone_reclaim_mode == 0 ||
1997 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1998 goto this_zone_full;
1999
cd38b115
MG
2000 /*
2001 * As we may have just activated ZLC, check if the first
2002 * eligible zone has failed zone_reclaim recently.
2003 */
e5adfffc 2004 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2005 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2006 continue;
2007
fa5e084e
MG
2008 ret = zone_reclaim(zone, gfp_mask, order);
2009 switch (ret) {
2010 case ZONE_RECLAIM_NOSCAN:
2011 /* did not scan */
cd38b115 2012 continue;
fa5e084e
MG
2013 case ZONE_RECLAIM_FULL:
2014 /* scanned but unreclaimable */
cd38b115 2015 continue;
fa5e084e
MG
2016 default:
2017 /* did we reclaim enough */
fed2719e 2018 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2019 classzone_idx, alloc_flags))
fed2719e
MG
2020 goto try_this_zone;
2021
2022 /*
2023 * Failed to reclaim enough to meet watermark.
2024 * Only mark the zone full if checking the min
2025 * watermark or if we failed to reclaim just
2026 * 1<<order pages or else the page allocator
2027 * fastpath will prematurely mark zones full
2028 * when the watermark is between the low and
2029 * min watermarks.
2030 */
2031 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2032 ret == ZONE_RECLAIM_SOME)
9276b1bc 2033 goto this_zone_full;
fed2719e
MG
2034
2035 continue;
0798e519 2036 }
7fb1d9fc
RS
2037 }
2038
fa5e084e 2039try_this_zone:
3dd28266
MG
2040 page = buffered_rmqueue(preferred_zone, zone, order,
2041 gfp_mask, migratetype);
0798e519 2042 if (page)
7fb1d9fc 2043 break;
9276b1bc 2044this_zone_full:
e5adfffc 2045 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2046 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2047 }
9276b1bc 2048
e5adfffc 2049 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2050 /* Disable zlc cache for second zonelist scan */
2051 zlc_active = 0;
2052 goto zonelist_scan;
2053 }
b121186a
AS
2054
2055 if (page)
2056 /*
2057 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2058 * necessary to allocate the page. The expectation is
2059 * that the caller is taking steps that will free more
2060 * memory. The caller should avoid the page being used
2061 * for !PFMEMALLOC purposes.
2062 */
2063 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2064
7fb1d9fc 2065 return page;
753ee728
MH
2066}
2067
29423e77
DR
2068/*
2069 * Large machines with many possible nodes should not always dump per-node
2070 * meminfo in irq context.
2071 */
2072static inline bool should_suppress_show_mem(void)
2073{
2074 bool ret = false;
2075
2076#if NODES_SHIFT > 8
2077 ret = in_interrupt();
2078#endif
2079 return ret;
2080}
2081
a238ab5b
DH
2082static DEFINE_RATELIMIT_STATE(nopage_rs,
2083 DEFAULT_RATELIMIT_INTERVAL,
2084 DEFAULT_RATELIMIT_BURST);
2085
2086void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2087{
a238ab5b
DH
2088 unsigned int filter = SHOW_MEM_FILTER_NODES;
2089
c0a32fc5
SG
2090 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2091 debug_guardpage_minorder() > 0)
a238ab5b
DH
2092 return;
2093
2094 /*
2095 * This documents exceptions given to allocations in certain
2096 * contexts that are allowed to allocate outside current's set
2097 * of allowed nodes.
2098 */
2099 if (!(gfp_mask & __GFP_NOMEMALLOC))
2100 if (test_thread_flag(TIF_MEMDIE) ||
2101 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2102 filter &= ~SHOW_MEM_FILTER_NODES;
2103 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2104 filter &= ~SHOW_MEM_FILTER_NODES;
2105
2106 if (fmt) {
3ee9a4f0
JP
2107 struct va_format vaf;
2108 va_list args;
2109
a238ab5b 2110 va_start(args, fmt);
3ee9a4f0
JP
2111
2112 vaf.fmt = fmt;
2113 vaf.va = &args;
2114
2115 pr_warn("%pV", &vaf);
2116
a238ab5b
DH
2117 va_end(args);
2118 }
2119
3ee9a4f0
JP
2120 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2121 current->comm, order, gfp_mask);
a238ab5b
DH
2122
2123 dump_stack();
2124 if (!should_suppress_show_mem())
2125 show_mem(filter);
2126}
2127
11e33f6a
MG
2128static inline int
2129should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2130 unsigned long did_some_progress,
11e33f6a 2131 unsigned long pages_reclaimed)
1da177e4 2132{
11e33f6a
MG
2133 /* Do not loop if specifically requested */
2134 if (gfp_mask & __GFP_NORETRY)
2135 return 0;
1da177e4 2136
f90ac398
MG
2137 /* Always retry if specifically requested */
2138 if (gfp_mask & __GFP_NOFAIL)
2139 return 1;
2140
2141 /*
2142 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2143 * making forward progress without invoking OOM. Suspend also disables
2144 * storage devices so kswapd will not help. Bail if we are suspending.
2145 */
2146 if (!did_some_progress && pm_suspended_storage())
2147 return 0;
2148
11e33f6a
MG
2149 /*
2150 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2151 * means __GFP_NOFAIL, but that may not be true in other
2152 * implementations.
2153 */
2154 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2155 return 1;
2156
2157 /*
2158 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2159 * specified, then we retry until we no longer reclaim any pages
2160 * (above), or we've reclaimed an order of pages at least as
2161 * large as the allocation's order. In both cases, if the
2162 * allocation still fails, we stop retrying.
2163 */
2164 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2165 return 1;
cf40bd16 2166
11e33f6a
MG
2167 return 0;
2168}
933e312e 2169
11e33f6a
MG
2170static inline struct page *
2171__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2172 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2173 nodemask_t *nodemask, struct zone *preferred_zone,
2174 int migratetype)
11e33f6a
MG
2175{
2176 struct page *page;
2177
2178 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2179 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2180 schedule_timeout_uninterruptible(1);
1da177e4
LT
2181 return NULL;
2182 }
6b1de916 2183
11e33f6a
MG
2184 /*
2185 * Go through the zonelist yet one more time, keep very high watermark
2186 * here, this is only to catch a parallel oom killing, we must fail if
2187 * we're still under heavy pressure.
2188 */
2189 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2190 order, zonelist, high_zoneidx,
5117f45d 2191 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2192 preferred_zone, migratetype);
7fb1d9fc 2193 if (page)
11e33f6a
MG
2194 goto out;
2195
4365a567
KH
2196 if (!(gfp_mask & __GFP_NOFAIL)) {
2197 /* The OOM killer will not help higher order allocs */
2198 if (order > PAGE_ALLOC_COSTLY_ORDER)
2199 goto out;
03668b3c
DR
2200 /* The OOM killer does not needlessly kill tasks for lowmem */
2201 if (high_zoneidx < ZONE_NORMAL)
2202 goto out;
4365a567
KH
2203 /*
2204 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2205 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2206 * The caller should handle page allocation failure by itself if
2207 * it specifies __GFP_THISNODE.
2208 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2209 */
2210 if (gfp_mask & __GFP_THISNODE)
2211 goto out;
2212 }
11e33f6a 2213 /* Exhausted what can be done so it's blamo time */
08ab9b10 2214 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2215
2216out:
2217 clear_zonelist_oom(zonelist, gfp_mask);
2218 return page;
2219}
2220
56de7263
MG
2221#ifdef CONFIG_COMPACTION
2222/* Try memory compaction for high-order allocations before reclaim */
2223static struct page *
2224__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2225 struct zonelist *zonelist, enum zone_type high_zoneidx,
2226 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2227 int migratetype, bool sync_migration,
c67fe375 2228 bool *contended_compaction, bool *deferred_compaction,
66199712 2229 unsigned long *did_some_progress)
56de7263 2230{
66199712 2231 if (!order)
56de7263
MG
2232 return NULL;
2233
aff62249 2234 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2235 *deferred_compaction = true;
2236 return NULL;
2237 }
2238
c06b1fca 2239 current->flags |= PF_MEMALLOC;
56de7263 2240 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2241 nodemask, sync_migration,
8fb74b9f 2242 contended_compaction);
c06b1fca 2243 current->flags &= ~PF_MEMALLOC;
56de7263 2244
1fb3f8ca 2245 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2246 struct page *page;
2247
56de7263
MG
2248 /* Page migration frees to the PCP lists but we want merging */
2249 drain_pages(get_cpu());
2250 put_cpu();
2251
2252 page = get_page_from_freelist(gfp_mask, nodemask,
2253 order, zonelist, high_zoneidx,
cfd19c5a
MG
2254 alloc_flags & ~ALLOC_NO_WATERMARKS,
2255 preferred_zone, migratetype);
56de7263 2256 if (page) {
62997027 2257 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2258 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2259 count_vm_event(COMPACTSUCCESS);
2260 return page;
2261 }
2262
2263 /*
2264 * It's bad if compaction run occurs and fails.
2265 * The most likely reason is that pages exist,
2266 * but not enough to satisfy watermarks.
2267 */
2268 count_vm_event(COMPACTFAIL);
66199712
MG
2269
2270 /*
2271 * As async compaction considers a subset of pageblocks, only
2272 * defer if the failure was a sync compaction failure.
2273 */
2274 if (sync_migration)
aff62249 2275 defer_compaction(preferred_zone, order);
56de7263
MG
2276
2277 cond_resched();
2278 }
2279
2280 return NULL;
2281}
2282#else
2283static inline struct page *
2284__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2285 struct zonelist *zonelist, enum zone_type high_zoneidx,
2286 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2287 int migratetype, bool sync_migration,
c67fe375 2288 bool *contended_compaction, bool *deferred_compaction,
66199712 2289 unsigned long *did_some_progress)
56de7263
MG
2290{
2291 return NULL;
2292}
2293#endif /* CONFIG_COMPACTION */
2294
bba90710
MS
2295/* Perform direct synchronous page reclaim */
2296static int
2297__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2298 nodemask_t *nodemask)
11e33f6a 2299{
11e33f6a 2300 struct reclaim_state reclaim_state;
bba90710 2301 int progress;
11e33f6a
MG
2302
2303 cond_resched();
2304
2305 /* We now go into synchronous reclaim */
2306 cpuset_memory_pressure_bump();
c06b1fca 2307 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2308 lockdep_set_current_reclaim_state(gfp_mask);
2309 reclaim_state.reclaimed_slab = 0;
c06b1fca 2310 current->reclaim_state = &reclaim_state;
11e33f6a 2311
bba90710 2312 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2313
c06b1fca 2314 current->reclaim_state = NULL;
11e33f6a 2315 lockdep_clear_current_reclaim_state();
c06b1fca 2316 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2317
2318 cond_resched();
2319
bba90710
MS
2320 return progress;
2321}
2322
2323/* The really slow allocator path where we enter direct reclaim */
2324static inline struct page *
2325__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2326 struct zonelist *zonelist, enum zone_type high_zoneidx,
2327 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2328 int migratetype, unsigned long *did_some_progress)
2329{
2330 struct page *page = NULL;
2331 bool drained = false;
2332
2333 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2334 nodemask);
9ee493ce
MG
2335 if (unlikely(!(*did_some_progress)))
2336 return NULL;
11e33f6a 2337
76d3fbf8 2338 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2339 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2340 zlc_clear_zones_full(zonelist);
2341
9ee493ce
MG
2342retry:
2343 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2344 zonelist, high_zoneidx,
cfd19c5a
MG
2345 alloc_flags & ~ALLOC_NO_WATERMARKS,
2346 preferred_zone, migratetype);
9ee493ce
MG
2347
2348 /*
2349 * If an allocation failed after direct reclaim, it could be because
2350 * pages are pinned on the per-cpu lists. Drain them and try again
2351 */
2352 if (!page && !drained) {
2353 drain_all_pages();
2354 drained = true;
2355 goto retry;
2356 }
2357
11e33f6a
MG
2358 return page;
2359}
2360
1da177e4 2361/*
11e33f6a
MG
2362 * This is called in the allocator slow-path if the allocation request is of
2363 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2364 */
11e33f6a
MG
2365static inline struct page *
2366__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2367 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2368 nodemask_t *nodemask, struct zone *preferred_zone,
2369 int migratetype)
11e33f6a
MG
2370{
2371 struct page *page;
2372
2373 do {
2374 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2375 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2376 preferred_zone, migratetype);
11e33f6a
MG
2377
2378 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2379 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2380 } while (!page && (gfp_mask & __GFP_NOFAIL));
2381
2382 return page;
2383}
2384
3a025760
JW
2385static void reset_alloc_batches(struct zonelist *zonelist,
2386 enum zone_type high_zoneidx,
2387 struct zone *preferred_zone)
1da177e4 2388{
dd1a239f
MG
2389 struct zoneref *z;
2390 struct zone *zone;
1da177e4 2391
81c0a2bb 2392 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2393 /*
2394 * Only reset the batches of zones that were actually
3a025760
JW
2395 * considered in the fairness pass, we don't want to
2396 * trash fairness information for zones that are not
81c0a2bb
JW
2397 * actually part of this zonelist's round-robin cycle.
2398 */
fff4068c 2399 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2400 continue;
2401 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2402 high_wmark_pages(zone) - low_wmark_pages(zone) -
2403 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2404 }
11e33f6a 2405}
cf40bd16 2406
3a025760
JW
2407static void wake_all_kswapds(unsigned int order,
2408 struct zonelist *zonelist,
2409 enum zone_type high_zoneidx,
2410 struct zone *preferred_zone)
2411{
2412 struct zoneref *z;
2413 struct zone *zone;
2414
2415 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2416 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2417}
2418
341ce06f
PZ
2419static inline int
2420gfp_to_alloc_flags(gfp_t gfp_mask)
2421{
341ce06f
PZ
2422 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2423 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2424
a56f57ff 2425 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2426 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2427
341ce06f
PZ
2428 /*
2429 * The caller may dip into page reserves a bit more if the caller
2430 * cannot run direct reclaim, or if the caller has realtime scheduling
2431 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2432 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2433 */
e6223a3b 2434 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2435
341ce06f 2436 if (!wait) {
5c3240d9
AA
2437 /*
2438 * Not worth trying to allocate harder for
2439 * __GFP_NOMEMALLOC even if it can't schedule.
2440 */
2441 if (!(gfp_mask & __GFP_NOMEMALLOC))
2442 alloc_flags |= ALLOC_HARDER;
523b9458 2443 /*
341ce06f
PZ
2444 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2445 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2446 */
341ce06f 2447 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2448 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2449 alloc_flags |= ALLOC_HARDER;
2450
b37f1dd0
MG
2451 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2452 if (gfp_mask & __GFP_MEMALLOC)
2453 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2454 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2455 alloc_flags |= ALLOC_NO_WATERMARKS;
2456 else if (!in_interrupt() &&
2457 ((current->flags & PF_MEMALLOC) ||
2458 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2459 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2460 }
d95ea5d1
BZ
2461#ifdef CONFIG_CMA
2462 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2463 alloc_flags |= ALLOC_CMA;
2464#endif
341ce06f
PZ
2465 return alloc_flags;
2466}
2467
072bb0aa
MG
2468bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2469{
b37f1dd0 2470 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2471}
2472
11e33f6a
MG
2473static inline struct page *
2474__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2475 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2476 nodemask_t *nodemask, struct zone *preferred_zone,
2477 int migratetype)
11e33f6a
MG
2478{
2479 const gfp_t wait = gfp_mask & __GFP_WAIT;
2480 struct page *page = NULL;
2481 int alloc_flags;
2482 unsigned long pages_reclaimed = 0;
2483 unsigned long did_some_progress;
77f1fe6b 2484 bool sync_migration = false;
66199712 2485 bool deferred_compaction = false;
c67fe375 2486 bool contended_compaction = false;
1da177e4 2487
72807a74
MG
2488 /*
2489 * In the slowpath, we sanity check order to avoid ever trying to
2490 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2491 * be using allocators in order of preference for an area that is
2492 * too large.
2493 */
1fc28b70
MG
2494 if (order >= MAX_ORDER) {
2495 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2496 return NULL;
1fc28b70 2497 }
1da177e4 2498
952f3b51
CL
2499 /*
2500 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2501 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2502 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2503 * using a larger set of nodes after it has established that the
2504 * allowed per node queues are empty and that nodes are
2505 * over allocated.
2506 */
3a025760
JW
2507 if (IS_ENABLED(CONFIG_NUMA) &&
2508 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2509 goto nopage;
2510
cc4a6851 2511restart:
3a025760
JW
2512 if (!(gfp_mask & __GFP_NO_KSWAPD))
2513 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2514
9bf2229f 2515 /*
7fb1d9fc
RS
2516 * OK, we're below the kswapd watermark and have kicked background
2517 * reclaim. Now things get more complex, so set up alloc_flags according
2518 * to how we want to proceed.
9bf2229f 2519 */
341ce06f 2520 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2521
f33261d7
DR
2522 /*
2523 * Find the true preferred zone if the allocation is unconstrained by
2524 * cpusets.
2525 */
2526 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2527 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2528 &preferred_zone);
2529
cfa54a0f 2530rebalance:
341ce06f 2531 /* This is the last chance, in general, before the goto nopage. */
19770b32 2532 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2533 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2534 preferred_zone, migratetype);
7fb1d9fc
RS
2535 if (page)
2536 goto got_pg;
1da177e4 2537
11e33f6a 2538 /* Allocate without watermarks if the context allows */
341ce06f 2539 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2540 /*
2541 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2542 * the allocation is high priority and these type of
2543 * allocations are system rather than user orientated
2544 */
2545 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2546
341ce06f
PZ
2547 page = __alloc_pages_high_priority(gfp_mask, order,
2548 zonelist, high_zoneidx, nodemask,
2549 preferred_zone, migratetype);
cfd19c5a 2550 if (page) {
341ce06f 2551 goto got_pg;
cfd19c5a 2552 }
1da177e4
LT
2553 }
2554
2555 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2556 if (!wait) {
2557 /*
2558 * All existing users of the deprecated __GFP_NOFAIL are
2559 * blockable, so warn of any new users that actually allow this
2560 * type of allocation to fail.
2561 */
2562 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2563 goto nopage;
aed0a0e3 2564 }
1da177e4 2565
341ce06f 2566 /* Avoid recursion of direct reclaim */
c06b1fca 2567 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2568 goto nopage;
2569
6583bb64
DR
2570 /* Avoid allocations with no watermarks from looping endlessly */
2571 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2572 goto nopage;
2573
77f1fe6b
MG
2574 /*
2575 * Try direct compaction. The first pass is asynchronous. Subsequent
2576 * attempts after direct reclaim are synchronous
2577 */
56de7263
MG
2578 page = __alloc_pages_direct_compact(gfp_mask, order,
2579 zonelist, high_zoneidx,
2580 nodemask,
2581 alloc_flags, preferred_zone,
66199712 2582 migratetype, sync_migration,
c67fe375 2583 &contended_compaction,
66199712
MG
2584 &deferred_compaction,
2585 &did_some_progress);
56de7263
MG
2586 if (page)
2587 goto got_pg;
c6a140bf 2588 sync_migration = true;
56de7263 2589
31f8d42d
LT
2590 /*
2591 * If compaction is deferred for high-order allocations, it is because
2592 * sync compaction recently failed. In this is the case and the caller
2593 * requested a movable allocation that does not heavily disrupt the
2594 * system then fail the allocation instead of entering direct reclaim.
2595 */
2596 if ((deferred_compaction || contended_compaction) &&
caf49191 2597 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2598 goto nopage;
66199712 2599
11e33f6a
MG
2600 /* Try direct reclaim and then allocating */
2601 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2602 zonelist, high_zoneidx,
2603 nodemask,
5117f45d 2604 alloc_flags, preferred_zone,
3dd28266 2605 migratetype, &did_some_progress);
11e33f6a
MG
2606 if (page)
2607 goto got_pg;
1da177e4 2608
e33c3b5e 2609 /*
11e33f6a
MG
2610 * If we failed to make any progress reclaiming, then we are
2611 * running out of options and have to consider going OOM
e33c3b5e 2612 */
11e33f6a 2613 if (!did_some_progress) {
b9921ecd 2614 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2615 if (oom_killer_disabled)
2616 goto nopage;
29fd66d2
DR
2617 /* Coredumps can quickly deplete all memory reserves */
2618 if ((current->flags & PF_DUMPCORE) &&
2619 !(gfp_mask & __GFP_NOFAIL))
2620 goto nopage;
11e33f6a
MG
2621 page = __alloc_pages_may_oom(gfp_mask, order,
2622 zonelist, high_zoneidx,
3dd28266
MG
2623 nodemask, preferred_zone,
2624 migratetype);
11e33f6a
MG
2625 if (page)
2626 goto got_pg;
1da177e4 2627
03668b3c
DR
2628 if (!(gfp_mask & __GFP_NOFAIL)) {
2629 /*
2630 * The oom killer is not called for high-order
2631 * allocations that may fail, so if no progress
2632 * is being made, there are no other options and
2633 * retrying is unlikely to help.
2634 */
2635 if (order > PAGE_ALLOC_COSTLY_ORDER)
2636 goto nopage;
2637 /*
2638 * The oom killer is not called for lowmem
2639 * allocations to prevent needlessly killing
2640 * innocent tasks.
2641 */
2642 if (high_zoneidx < ZONE_NORMAL)
2643 goto nopage;
2644 }
e2c55dc8 2645
ff0ceb9d
DR
2646 goto restart;
2647 }
1da177e4
LT
2648 }
2649
11e33f6a 2650 /* Check if we should retry the allocation */
a41f24ea 2651 pages_reclaimed += did_some_progress;
f90ac398
MG
2652 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2653 pages_reclaimed)) {
11e33f6a 2654 /* Wait for some write requests to complete then retry */
0e093d99 2655 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2656 goto rebalance;
3e7d3449
MG
2657 } else {
2658 /*
2659 * High-order allocations do not necessarily loop after
2660 * direct reclaim and reclaim/compaction depends on compaction
2661 * being called after reclaim so call directly if necessary
2662 */
2663 page = __alloc_pages_direct_compact(gfp_mask, order,
2664 zonelist, high_zoneidx,
2665 nodemask,
2666 alloc_flags, preferred_zone,
66199712 2667 migratetype, sync_migration,
c67fe375 2668 &contended_compaction,
66199712
MG
2669 &deferred_compaction,
2670 &did_some_progress);
3e7d3449
MG
2671 if (page)
2672 goto got_pg;
1da177e4
LT
2673 }
2674
2675nopage:
a238ab5b 2676 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2677 return page;
1da177e4 2678got_pg:
b1eeab67
VN
2679 if (kmemcheck_enabled)
2680 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2681
072bb0aa 2682 return page;
1da177e4 2683}
11e33f6a
MG
2684
2685/*
2686 * This is the 'heart' of the zoned buddy allocator.
2687 */
2688struct page *
2689__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2690 struct zonelist *zonelist, nodemask_t *nodemask)
2691{
2692 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2693 struct zone *preferred_zone;
cc9a6c87 2694 struct page *page = NULL;
3dd28266 2695 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2696 unsigned int cpuset_mems_cookie;
3a025760 2697 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
11e33f6a 2698
dcce284a
BH
2699 gfp_mask &= gfp_allowed_mask;
2700
11e33f6a
MG
2701 lockdep_trace_alloc(gfp_mask);
2702
2703 might_sleep_if(gfp_mask & __GFP_WAIT);
2704
2705 if (should_fail_alloc_page(gfp_mask, order))
2706 return NULL;
2707
2708 /*
2709 * Check the zones suitable for the gfp_mask contain at least one
2710 * valid zone. It's possible to have an empty zonelist as a result
2711 * of GFP_THISNODE and a memoryless node
2712 */
2713 if (unlikely(!zonelist->_zonerefs->zone))
2714 return NULL;
2715
cc9a6c87 2716retry_cpuset:
d26914d1 2717 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2718
5117f45d 2719 /* The preferred zone is used for statistics later */
f33261d7
DR
2720 first_zones_zonelist(zonelist, high_zoneidx,
2721 nodemask ? : &cpuset_current_mems_allowed,
2722 &preferred_zone);
cc9a6c87
MG
2723 if (!preferred_zone)
2724 goto out;
5117f45d 2725
d95ea5d1
BZ
2726#ifdef CONFIG_CMA
2727 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2728 alloc_flags |= ALLOC_CMA;
2729#endif
3a025760 2730retry:
5117f45d 2731 /* First allocation attempt */
11e33f6a 2732 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2733 zonelist, high_zoneidx, alloc_flags,
3dd28266 2734 preferred_zone, migratetype);
21caf2fc 2735 if (unlikely(!page)) {
3a025760
JW
2736 /*
2737 * The first pass makes sure allocations are spread
2738 * fairly within the local node. However, the local
2739 * node might have free pages left after the fairness
2740 * batches are exhausted, and remote zones haven't
2741 * even been considered yet. Try once more without
2742 * fairness, and include remote zones now, before
2743 * entering the slowpath and waking kswapd: prefer
2744 * spilling to a remote zone over swapping locally.
2745 */
2746 if (alloc_flags & ALLOC_FAIR) {
2747 reset_alloc_batches(zonelist, high_zoneidx,
2748 preferred_zone);
2749 alloc_flags &= ~ALLOC_FAIR;
2750 goto retry;
2751 }
21caf2fc
ML
2752 /*
2753 * Runtime PM, block IO and its error handling path
2754 * can deadlock because I/O on the device might not
2755 * complete.
2756 */
2757 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2758 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2759 zonelist, high_zoneidx, nodemask,
3dd28266 2760 preferred_zone, migratetype);
21caf2fc 2761 }
11e33f6a 2762
4b4f278c 2763 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2764
2765out:
2766 /*
2767 * When updating a task's mems_allowed, it is possible to race with
2768 * parallel threads in such a way that an allocation can fail while
2769 * the mask is being updated. If a page allocation is about to fail,
2770 * check if the cpuset changed during allocation and if so, retry.
2771 */
d26914d1 2772 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2773 goto retry_cpuset;
2774
11e33f6a 2775 return page;
1da177e4 2776}
d239171e 2777EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2778
2779/*
2780 * Common helper functions.
2781 */
920c7a5d 2782unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2783{
945a1113
AM
2784 struct page *page;
2785
2786 /*
2787 * __get_free_pages() returns a 32-bit address, which cannot represent
2788 * a highmem page
2789 */
2790 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2791
1da177e4
LT
2792 page = alloc_pages(gfp_mask, order);
2793 if (!page)
2794 return 0;
2795 return (unsigned long) page_address(page);
2796}
1da177e4
LT
2797EXPORT_SYMBOL(__get_free_pages);
2798
920c7a5d 2799unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2800{
945a1113 2801 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2802}
1da177e4
LT
2803EXPORT_SYMBOL(get_zeroed_page);
2804
920c7a5d 2805void __free_pages(struct page *page, unsigned int order)
1da177e4 2806{
b5810039 2807 if (put_page_testzero(page)) {
1da177e4 2808 if (order == 0)
fc91668e 2809 free_hot_cold_page(page, 0);
1da177e4
LT
2810 else
2811 __free_pages_ok(page, order);
2812 }
2813}
2814
2815EXPORT_SYMBOL(__free_pages);
2816
920c7a5d 2817void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2818{
2819 if (addr != 0) {
725d704e 2820 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2821 __free_pages(virt_to_page((void *)addr), order);
2822 }
2823}
2824
2825EXPORT_SYMBOL(free_pages);
2826
6a1a0d3b 2827/*
52383431
VD
2828 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2829 * of the current memory cgroup.
6a1a0d3b 2830 *
52383431
VD
2831 * It should be used when the caller would like to use kmalloc, but since the
2832 * allocation is large, it has to fall back to the page allocator.
2833 */
2834struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2835{
2836 struct page *page;
2837 struct mem_cgroup *memcg = NULL;
2838
2839 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2840 return NULL;
2841 page = alloc_pages(gfp_mask, order);
2842 memcg_kmem_commit_charge(page, memcg, order);
2843 return page;
2844}
2845
2846struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2847{
2848 struct page *page;
2849 struct mem_cgroup *memcg = NULL;
2850
2851 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2852 return NULL;
2853 page = alloc_pages_node(nid, gfp_mask, order);
2854 memcg_kmem_commit_charge(page, memcg, order);
2855 return page;
2856}
2857
2858/*
2859 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2860 * alloc_kmem_pages.
6a1a0d3b 2861 */
52383431 2862void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2863{
2864 memcg_kmem_uncharge_pages(page, order);
2865 __free_pages(page, order);
2866}
2867
52383431 2868void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2869{
2870 if (addr != 0) {
2871 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2872 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2873 }
2874}
2875
ee85c2e1
AK
2876static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2877{
2878 if (addr) {
2879 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2880 unsigned long used = addr + PAGE_ALIGN(size);
2881
2882 split_page(virt_to_page((void *)addr), order);
2883 while (used < alloc_end) {
2884 free_page(used);
2885 used += PAGE_SIZE;
2886 }
2887 }
2888 return (void *)addr;
2889}
2890
2be0ffe2
TT
2891/**
2892 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2893 * @size: the number of bytes to allocate
2894 * @gfp_mask: GFP flags for the allocation
2895 *
2896 * This function is similar to alloc_pages(), except that it allocates the
2897 * minimum number of pages to satisfy the request. alloc_pages() can only
2898 * allocate memory in power-of-two pages.
2899 *
2900 * This function is also limited by MAX_ORDER.
2901 *
2902 * Memory allocated by this function must be released by free_pages_exact().
2903 */
2904void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2905{
2906 unsigned int order = get_order(size);
2907 unsigned long addr;
2908
2909 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2910 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2911}
2912EXPORT_SYMBOL(alloc_pages_exact);
2913
ee85c2e1
AK
2914/**
2915 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2916 * pages on a node.
b5e6ab58 2917 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2918 * @size: the number of bytes to allocate
2919 * @gfp_mask: GFP flags for the allocation
2920 *
2921 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2922 * back.
2923 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2924 * but is not exact.
2925 */
2926void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2927{
2928 unsigned order = get_order(size);
2929 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2930 if (!p)
2931 return NULL;
2932 return make_alloc_exact((unsigned long)page_address(p), order, size);
2933}
2934EXPORT_SYMBOL(alloc_pages_exact_nid);
2935
2be0ffe2
TT
2936/**
2937 * free_pages_exact - release memory allocated via alloc_pages_exact()
2938 * @virt: the value returned by alloc_pages_exact.
2939 * @size: size of allocation, same value as passed to alloc_pages_exact().
2940 *
2941 * Release the memory allocated by a previous call to alloc_pages_exact.
2942 */
2943void free_pages_exact(void *virt, size_t size)
2944{
2945 unsigned long addr = (unsigned long)virt;
2946 unsigned long end = addr + PAGE_ALIGN(size);
2947
2948 while (addr < end) {
2949 free_page(addr);
2950 addr += PAGE_SIZE;
2951 }
2952}
2953EXPORT_SYMBOL(free_pages_exact);
2954
e0fb5815
ZY
2955/**
2956 * nr_free_zone_pages - count number of pages beyond high watermark
2957 * @offset: The zone index of the highest zone
2958 *
2959 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2960 * high watermark within all zones at or below a given zone index. For each
2961 * zone, the number of pages is calculated as:
834405c3 2962 * managed_pages - high_pages
e0fb5815 2963 */
ebec3862 2964static unsigned long nr_free_zone_pages(int offset)
1da177e4 2965{
dd1a239f 2966 struct zoneref *z;
54a6eb5c
MG
2967 struct zone *zone;
2968
e310fd43 2969 /* Just pick one node, since fallback list is circular */
ebec3862 2970 unsigned long sum = 0;
1da177e4 2971
0e88460d 2972 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2973
54a6eb5c 2974 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2975 unsigned long size = zone->managed_pages;
41858966 2976 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2977 if (size > high)
2978 sum += size - high;
1da177e4
LT
2979 }
2980
2981 return sum;
2982}
2983
e0fb5815
ZY
2984/**
2985 * nr_free_buffer_pages - count number of pages beyond high watermark
2986 *
2987 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2988 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2989 */
ebec3862 2990unsigned long nr_free_buffer_pages(void)
1da177e4 2991{
af4ca457 2992 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2993}
c2f1a551 2994EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2995
e0fb5815
ZY
2996/**
2997 * nr_free_pagecache_pages - count number of pages beyond high watermark
2998 *
2999 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3000 * high watermark within all zones.
1da177e4 3001 */
ebec3862 3002unsigned long nr_free_pagecache_pages(void)
1da177e4 3003{
2a1e274a 3004 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3005}
08e0f6a9
CL
3006
3007static inline void show_node(struct zone *zone)
1da177e4 3008{
e5adfffc 3009 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3010 printk("Node %d ", zone_to_nid(zone));
1da177e4 3011}
1da177e4 3012
1da177e4
LT
3013void si_meminfo(struct sysinfo *val)
3014{
3015 val->totalram = totalram_pages;
3016 val->sharedram = 0;
d23ad423 3017 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3018 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3019 val->totalhigh = totalhigh_pages;
3020 val->freehigh = nr_free_highpages();
1da177e4
LT
3021 val->mem_unit = PAGE_SIZE;
3022}
3023
3024EXPORT_SYMBOL(si_meminfo);
3025
3026#ifdef CONFIG_NUMA
3027void si_meminfo_node(struct sysinfo *val, int nid)
3028{
cdd91a77
JL
3029 int zone_type; /* needs to be signed */
3030 unsigned long managed_pages = 0;
1da177e4
LT
3031 pg_data_t *pgdat = NODE_DATA(nid);
3032
cdd91a77
JL
3033 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3034 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3035 val->totalram = managed_pages;
d23ad423 3036 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3037#ifdef CONFIG_HIGHMEM
b40da049 3038 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3039 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3040 NR_FREE_PAGES);
98d2b0eb
CL
3041#else
3042 val->totalhigh = 0;
3043 val->freehigh = 0;
3044#endif
1da177e4
LT
3045 val->mem_unit = PAGE_SIZE;
3046}
3047#endif
3048
ddd588b5 3049/*
7bf02ea2
DR
3050 * Determine whether the node should be displayed or not, depending on whether
3051 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3052 */
7bf02ea2 3053bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3054{
3055 bool ret = false;
cc9a6c87 3056 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3057
3058 if (!(flags & SHOW_MEM_FILTER_NODES))
3059 goto out;
3060
cc9a6c87 3061 do {
d26914d1 3062 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3063 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3064 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3065out:
3066 return ret;
3067}
3068
1da177e4
LT
3069#define K(x) ((x) << (PAGE_SHIFT-10))
3070
377e4f16
RV
3071static void show_migration_types(unsigned char type)
3072{
3073 static const char types[MIGRATE_TYPES] = {
3074 [MIGRATE_UNMOVABLE] = 'U',
3075 [MIGRATE_RECLAIMABLE] = 'E',
3076 [MIGRATE_MOVABLE] = 'M',
3077 [MIGRATE_RESERVE] = 'R',
3078#ifdef CONFIG_CMA
3079 [MIGRATE_CMA] = 'C',
3080#endif
194159fb 3081#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3082 [MIGRATE_ISOLATE] = 'I',
194159fb 3083#endif
377e4f16
RV
3084 };
3085 char tmp[MIGRATE_TYPES + 1];
3086 char *p = tmp;
3087 int i;
3088
3089 for (i = 0; i < MIGRATE_TYPES; i++) {
3090 if (type & (1 << i))
3091 *p++ = types[i];
3092 }
3093
3094 *p = '\0';
3095 printk("(%s) ", tmp);
3096}
3097
1da177e4
LT
3098/*
3099 * Show free area list (used inside shift_scroll-lock stuff)
3100 * We also calculate the percentage fragmentation. We do this by counting the
3101 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3102 * Suppresses nodes that are not allowed by current's cpuset if
3103 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3104 */
7bf02ea2 3105void show_free_areas(unsigned int filter)
1da177e4 3106{
c7241913 3107 int cpu;
1da177e4
LT
3108 struct zone *zone;
3109
ee99c71c 3110 for_each_populated_zone(zone) {
7bf02ea2 3111 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3112 continue;
c7241913
JS
3113 show_node(zone);
3114 printk("%s per-cpu:\n", zone->name);
1da177e4 3115
6b482c67 3116 for_each_online_cpu(cpu) {
1da177e4
LT
3117 struct per_cpu_pageset *pageset;
3118
99dcc3e5 3119 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3120
3dfa5721
CL
3121 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3122 cpu, pageset->pcp.high,
3123 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3124 }
3125 }
3126
a731286d
KM
3127 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3128 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3129 " unevictable:%lu"
b76146ed 3130 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3131 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3132 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3133 " free_cma:%lu\n",
4f98a2fe 3134 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3135 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3136 global_page_state(NR_ISOLATED_ANON),
3137 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3138 global_page_state(NR_INACTIVE_FILE),
a731286d 3139 global_page_state(NR_ISOLATED_FILE),
7b854121 3140 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3141 global_page_state(NR_FILE_DIRTY),
ce866b34 3142 global_page_state(NR_WRITEBACK),
fd39fc85 3143 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3144 global_page_state(NR_FREE_PAGES),
3701b033
KM
3145 global_page_state(NR_SLAB_RECLAIMABLE),
3146 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3147 global_page_state(NR_FILE_MAPPED),
4b02108a 3148 global_page_state(NR_SHMEM),
a25700a5 3149 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3150 global_page_state(NR_BOUNCE),
3151 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3152
ee99c71c 3153 for_each_populated_zone(zone) {
1da177e4
LT
3154 int i;
3155
7bf02ea2 3156 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3157 continue;
1da177e4
LT
3158 show_node(zone);
3159 printk("%s"
3160 " free:%lukB"
3161 " min:%lukB"
3162 " low:%lukB"
3163 " high:%lukB"
4f98a2fe
RR
3164 " active_anon:%lukB"
3165 " inactive_anon:%lukB"
3166 " active_file:%lukB"
3167 " inactive_file:%lukB"
7b854121 3168 " unevictable:%lukB"
a731286d
KM
3169 " isolated(anon):%lukB"
3170 " isolated(file):%lukB"
1da177e4 3171 " present:%lukB"
9feedc9d 3172 " managed:%lukB"
4a0aa73f
KM
3173 " mlocked:%lukB"
3174 " dirty:%lukB"
3175 " writeback:%lukB"
3176 " mapped:%lukB"
4b02108a 3177 " shmem:%lukB"
4a0aa73f
KM
3178 " slab_reclaimable:%lukB"
3179 " slab_unreclaimable:%lukB"
c6a7f572 3180 " kernel_stack:%lukB"
4a0aa73f
KM
3181 " pagetables:%lukB"
3182 " unstable:%lukB"
3183 " bounce:%lukB"
d1ce749a 3184 " free_cma:%lukB"
4a0aa73f 3185 " writeback_tmp:%lukB"
1da177e4
LT
3186 " pages_scanned:%lu"
3187 " all_unreclaimable? %s"
3188 "\n",
3189 zone->name,
88f5acf8 3190 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3191 K(min_wmark_pages(zone)),
3192 K(low_wmark_pages(zone)),
3193 K(high_wmark_pages(zone)),
4f98a2fe
RR
3194 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3195 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3196 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3197 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3198 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3199 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3200 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3201 K(zone->present_pages),
9feedc9d 3202 K(zone->managed_pages),
4a0aa73f
KM
3203 K(zone_page_state(zone, NR_MLOCK)),
3204 K(zone_page_state(zone, NR_FILE_DIRTY)),
3205 K(zone_page_state(zone, NR_WRITEBACK)),
3206 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3207 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3208 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3209 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3210 zone_page_state(zone, NR_KERNEL_STACK) *
3211 THREAD_SIZE / 1024,
4a0aa73f
KM
3212 K(zone_page_state(zone, NR_PAGETABLE)),
3213 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3214 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3215 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3216 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3217 zone->pages_scanned,
6e543d57 3218 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3219 );
3220 printk("lowmem_reserve[]:");
3221 for (i = 0; i < MAX_NR_ZONES; i++)
3222 printk(" %lu", zone->lowmem_reserve[i]);
3223 printk("\n");
3224 }
3225
ee99c71c 3226 for_each_populated_zone(zone) {
b8af2941 3227 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3228 unsigned char types[MAX_ORDER];
1da177e4 3229
7bf02ea2 3230 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3231 continue;
1da177e4
LT
3232 show_node(zone);
3233 printk("%s: ", zone->name);
1da177e4
LT
3234
3235 spin_lock_irqsave(&zone->lock, flags);
3236 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3237 struct free_area *area = &zone->free_area[order];
3238 int type;
3239
3240 nr[order] = area->nr_free;
8f9de51a 3241 total += nr[order] << order;
377e4f16
RV
3242
3243 types[order] = 0;
3244 for (type = 0; type < MIGRATE_TYPES; type++) {
3245 if (!list_empty(&area->free_list[type]))
3246 types[order] |= 1 << type;
3247 }
1da177e4
LT
3248 }
3249 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3250 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3251 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3252 if (nr[order])
3253 show_migration_types(types[order]);
3254 }
1da177e4
LT
3255 printk("= %lukB\n", K(total));
3256 }
3257
949f7ec5
DR
3258 hugetlb_show_meminfo();
3259
e6f3602d
LW
3260 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3261
1da177e4
LT
3262 show_swap_cache_info();
3263}
3264
19770b32
MG
3265static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3266{
3267 zoneref->zone = zone;
3268 zoneref->zone_idx = zone_idx(zone);
3269}
3270
1da177e4
LT
3271/*
3272 * Builds allocation fallback zone lists.
1a93205b
CL
3273 *
3274 * Add all populated zones of a node to the zonelist.
1da177e4 3275 */
f0c0b2b8 3276static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3277 int nr_zones)
1da177e4 3278{
1a93205b 3279 struct zone *zone;
bc732f1d 3280 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3281
3282 do {
2f6726e5 3283 zone_type--;
070f8032 3284 zone = pgdat->node_zones + zone_type;
1a93205b 3285 if (populated_zone(zone)) {
dd1a239f
MG
3286 zoneref_set_zone(zone,
3287 &zonelist->_zonerefs[nr_zones++]);
070f8032 3288 check_highest_zone(zone_type);
1da177e4 3289 }
2f6726e5 3290 } while (zone_type);
bc732f1d 3291
070f8032 3292 return nr_zones;
1da177e4
LT
3293}
3294
f0c0b2b8
KH
3295
3296/*
3297 * zonelist_order:
3298 * 0 = automatic detection of better ordering.
3299 * 1 = order by ([node] distance, -zonetype)
3300 * 2 = order by (-zonetype, [node] distance)
3301 *
3302 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3303 * the same zonelist. So only NUMA can configure this param.
3304 */
3305#define ZONELIST_ORDER_DEFAULT 0
3306#define ZONELIST_ORDER_NODE 1
3307#define ZONELIST_ORDER_ZONE 2
3308
3309/* zonelist order in the kernel.
3310 * set_zonelist_order() will set this to NODE or ZONE.
3311 */
3312static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3313static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3314
3315
1da177e4 3316#ifdef CONFIG_NUMA
f0c0b2b8
KH
3317/* The value user specified ....changed by config */
3318static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3319/* string for sysctl */
3320#define NUMA_ZONELIST_ORDER_LEN 16
3321char numa_zonelist_order[16] = "default";
3322
3323/*
3324 * interface for configure zonelist ordering.
3325 * command line option "numa_zonelist_order"
3326 * = "[dD]efault - default, automatic configuration.
3327 * = "[nN]ode - order by node locality, then by zone within node
3328 * = "[zZ]one - order by zone, then by locality within zone
3329 */
3330
3331static int __parse_numa_zonelist_order(char *s)
3332{
3333 if (*s == 'd' || *s == 'D') {
3334 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3335 } else if (*s == 'n' || *s == 'N') {
3336 user_zonelist_order = ZONELIST_ORDER_NODE;
3337 } else if (*s == 'z' || *s == 'Z') {
3338 user_zonelist_order = ZONELIST_ORDER_ZONE;
3339 } else {
3340 printk(KERN_WARNING
3341 "Ignoring invalid numa_zonelist_order value: "
3342 "%s\n", s);
3343 return -EINVAL;
3344 }
3345 return 0;
3346}
3347
3348static __init int setup_numa_zonelist_order(char *s)
3349{
ecb256f8
VL
3350 int ret;
3351
3352 if (!s)
3353 return 0;
3354
3355 ret = __parse_numa_zonelist_order(s);
3356 if (ret == 0)
3357 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3358
3359 return ret;
f0c0b2b8
KH
3360}
3361early_param("numa_zonelist_order", setup_numa_zonelist_order);
3362
3363/*
3364 * sysctl handler for numa_zonelist_order
3365 */
3366int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3367 void __user *buffer, size_t *length,
f0c0b2b8
KH
3368 loff_t *ppos)
3369{
3370 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3371 int ret;
443c6f14 3372 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3373
443c6f14 3374 mutex_lock(&zl_order_mutex);
dacbde09
CG
3375 if (write) {
3376 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3377 ret = -EINVAL;
3378 goto out;
3379 }
3380 strcpy(saved_string, (char *)table->data);
3381 }
8d65af78 3382 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3383 if (ret)
443c6f14 3384 goto out;
f0c0b2b8
KH
3385 if (write) {
3386 int oldval = user_zonelist_order;
dacbde09
CG
3387
3388 ret = __parse_numa_zonelist_order((char *)table->data);
3389 if (ret) {
f0c0b2b8
KH
3390 /*
3391 * bogus value. restore saved string
3392 */
dacbde09 3393 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3394 NUMA_ZONELIST_ORDER_LEN);
3395 user_zonelist_order = oldval;
4eaf3f64
HL
3396 } else if (oldval != user_zonelist_order) {
3397 mutex_lock(&zonelists_mutex);
9adb62a5 3398 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3399 mutex_unlock(&zonelists_mutex);
3400 }
f0c0b2b8 3401 }
443c6f14
AK
3402out:
3403 mutex_unlock(&zl_order_mutex);
3404 return ret;
f0c0b2b8
KH
3405}
3406
3407
62bc62a8 3408#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3409static int node_load[MAX_NUMNODES];
3410
1da177e4 3411/**
4dc3b16b 3412 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3413 * @node: node whose fallback list we're appending
3414 * @used_node_mask: nodemask_t of already used nodes
3415 *
3416 * We use a number of factors to determine which is the next node that should
3417 * appear on a given node's fallback list. The node should not have appeared
3418 * already in @node's fallback list, and it should be the next closest node
3419 * according to the distance array (which contains arbitrary distance values
3420 * from each node to each node in the system), and should also prefer nodes
3421 * with no CPUs, since presumably they'll have very little allocation pressure
3422 * on them otherwise.
3423 * It returns -1 if no node is found.
3424 */
f0c0b2b8 3425static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3426{
4cf808eb 3427 int n, val;
1da177e4 3428 int min_val = INT_MAX;
00ef2d2f 3429 int best_node = NUMA_NO_NODE;
a70f7302 3430 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3431
4cf808eb
LT
3432 /* Use the local node if we haven't already */
3433 if (!node_isset(node, *used_node_mask)) {
3434 node_set(node, *used_node_mask);
3435 return node;
3436 }
1da177e4 3437
4b0ef1fe 3438 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3439
3440 /* Don't want a node to appear more than once */
3441 if (node_isset(n, *used_node_mask))
3442 continue;
3443
1da177e4
LT
3444 /* Use the distance array to find the distance */
3445 val = node_distance(node, n);
3446
4cf808eb
LT
3447 /* Penalize nodes under us ("prefer the next node") */
3448 val += (n < node);
3449
1da177e4 3450 /* Give preference to headless and unused nodes */
a70f7302
RR
3451 tmp = cpumask_of_node(n);
3452 if (!cpumask_empty(tmp))
1da177e4
LT
3453 val += PENALTY_FOR_NODE_WITH_CPUS;
3454
3455 /* Slight preference for less loaded node */
3456 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3457 val += node_load[n];
3458
3459 if (val < min_val) {
3460 min_val = val;
3461 best_node = n;
3462 }
3463 }
3464
3465 if (best_node >= 0)
3466 node_set(best_node, *used_node_mask);
3467
3468 return best_node;
3469}
3470
f0c0b2b8
KH
3471
3472/*
3473 * Build zonelists ordered by node and zones within node.
3474 * This results in maximum locality--normal zone overflows into local
3475 * DMA zone, if any--but risks exhausting DMA zone.
3476 */
3477static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3478{
f0c0b2b8 3479 int j;
1da177e4 3480 struct zonelist *zonelist;
f0c0b2b8 3481
54a6eb5c 3482 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3483 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3484 ;
bc732f1d 3485 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3486 zonelist->_zonerefs[j].zone = NULL;
3487 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3488}
3489
523b9458
CL
3490/*
3491 * Build gfp_thisnode zonelists
3492 */
3493static void build_thisnode_zonelists(pg_data_t *pgdat)
3494{
523b9458
CL
3495 int j;
3496 struct zonelist *zonelist;
3497
54a6eb5c 3498 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3499 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3500 zonelist->_zonerefs[j].zone = NULL;
3501 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3502}
3503
f0c0b2b8
KH
3504/*
3505 * Build zonelists ordered by zone and nodes within zones.
3506 * This results in conserving DMA zone[s] until all Normal memory is
3507 * exhausted, but results in overflowing to remote node while memory
3508 * may still exist in local DMA zone.
3509 */
3510static int node_order[MAX_NUMNODES];
3511
3512static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3513{
f0c0b2b8
KH
3514 int pos, j, node;
3515 int zone_type; /* needs to be signed */
3516 struct zone *z;
3517 struct zonelist *zonelist;
3518
54a6eb5c
MG
3519 zonelist = &pgdat->node_zonelists[0];
3520 pos = 0;
3521 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3522 for (j = 0; j < nr_nodes; j++) {
3523 node = node_order[j];
3524 z = &NODE_DATA(node)->node_zones[zone_type];
3525 if (populated_zone(z)) {
dd1a239f
MG
3526 zoneref_set_zone(z,
3527 &zonelist->_zonerefs[pos++]);
54a6eb5c 3528 check_highest_zone(zone_type);
f0c0b2b8
KH
3529 }
3530 }
f0c0b2b8 3531 }
dd1a239f
MG
3532 zonelist->_zonerefs[pos].zone = NULL;
3533 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3534}
3535
3536static int default_zonelist_order(void)
3537{
3538 int nid, zone_type;
b8af2941 3539 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3540 struct zone *z;
3541 int average_size;
3542 /*
b8af2941 3543 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3544 * If they are really small and used heavily, the system can fall
3545 * into OOM very easily.
e325c90f 3546 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3547 */
3548 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3549 low_kmem_size = 0;
3550 total_size = 0;
3551 for_each_online_node(nid) {
3552 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3553 z = &NODE_DATA(nid)->node_zones[zone_type];
3554 if (populated_zone(z)) {
3555 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3556 low_kmem_size += z->managed_pages;
3557 total_size += z->managed_pages;
e325c90f
DR
3558 } else if (zone_type == ZONE_NORMAL) {
3559 /*
3560 * If any node has only lowmem, then node order
3561 * is preferred to allow kernel allocations
3562 * locally; otherwise, they can easily infringe
3563 * on other nodes when there is an abundance of
3564 * lowmem available to allocate from.
3565 */
3566 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3567 }
3568 }
3569 }
3570 if (!low_kmem_size || /* there are no DMA area. */
3571 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3572 return ZONELIST_ORDER_NODE;
3573 /*
3574 * look into each node's config.
b8af2941
PK
3575 * If there is a node whose DMA/DMA32 memory is very big area on
3576 * local memory, NODE_ORDER may be suitable.
3577 */
37b07e41 3578 average_size = total_size /
4b0ef1fe 3579 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3580 for_each_online_node(nid) {
3581 low_kmem_size = 0;
3582 total_size = 0;
3583 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3584 z = &NODE_DATA(nid)->node_zones[zone_type];
3585 if (populated_zone(z)) {
3586 if (zone_type < ZONE_NORMAL)
3587 low_kmem_size += z->present_pages;
3588 total_size += z->present_pages;
3589 }
3590 }
3591 if (low_kmem_size &&
3592 total_size > average_size && /* ignore small node */
3593 low_kmem_size > total_size * 70/100)
3594 return ZONELIST_ORDER_NODE;
3595 }
3596 return ZONELIST_ORDER_ZONE;
3597}
3598
3599static void set_zonelist_order(void)
3600{
3601 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3602 current_zonelist_order = default_zonelist_order();
3603 else
3604 current_zonelist_order = user_zonelist_order;
3605}
3606
3607static void build_zonelists(pg_data_t *pgdat)
3608{
3609 int j, node, load;
3610 enum zone_type i;
1da177e4 3611 nodemask_t used_mask;
f0c0b2b8
KH
3612 int local_node, prev_node;
3613 struct zonelist *zonelist;
3614 int order = current_zonelist_order;
1da177e4
LT
3615
3616 /* initialize zonelists */
523b9458 3617 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3618 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3619 zonelist->_zonerefs[0].zone = NULL;
3620 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3621 }
3622
3623 /* NUMA-aware ordering of nodes */
3624 local_node = pgdat->node_id;
62bc62a8 3625 load = nr_online_nodes;
1da177e4
LT
3626 prev_node = local_node;
3627 nodes_clear(used_mask);
f0c0b2b8 3628
f0c0b2b8
KH
3629 memset(node_order, 0, sizeof(node_order));
3630 j = 0;
3631
1da177e4
LT
3632 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3633 /*
3634 * We don't want to pressure a particular node.
3635 * So adding penalty to the first node in same
3636 * distance group to make it round-robin.
3637 */
957f822a
DR
3638 if (node_distance(local_node, node) !=
3639 node_distance(local_node, prev_node))
f0c0b2b8
KH
3640 node_load[node] = load;
3641
1da177e4
LT
3642 prev_node = node;
3643 load--;
f0c0b2b8
KH
3644 if (order == ZONELIST_ORDER_NODE)
3645 build_zonelists_in_node_order(pgdat, node);
3646 else
3647 node_order[j++] = node; /* remember order */
3648 }
1da177e4 3649
f0c0b2b8
KH
3650 if (order == ZONELIST_ORDER_ZONE) {
3651 /* calculate node order -- i.e., DMA last! */
3652 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3653 }
523b9458
CL
3654
3655 build_thisnode_zonelists(pgdat);
1da177e4
LT
3656}
3657
9276b1bc 3658/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3659static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3660{
54a6eb5c
MG
3661 struct zonelist *zonelist;
3662 struct zonelist_cache *zlc;
dd1a239f 3663 struct zoneref *z;
9276b1bc 3664
54a6eb5c
MG
3665 zonelist = &pgdat->node_zonelists[0];
3666 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3667 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3668 for (z = zonelist->_zonerefs; z->zone; z++)
3669 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3670}
3671
7aac7898
LS
3672#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3673/*
3674 * Return node id of node used for "local" allocations.
3675 * I.e., first node id of first zone in arg node's generic zonelist.
3676 * Used for initializing percpu 'numa_mem', which is used primarily
3677 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3678 */
3679int local_memory_node(int node)
3680{
3681 struct zone *zone;
3682
3683 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3684 gfp_zone(GFP_KERNEL),
3685 NULL,
3686 &zone);
3687 return zone->node;
3688}
3689#endif
f0c0b2b8 3690
1da177e4
LT
3691#else /* CONFIG_NUMA */
3692
f0c0b2b8
KH
3693static void set_zonelist_order(void)
3694{
3695 current_zonelist_order = ZONELIST_ORDER_ZONE;
3696}
3697
3698static void build_zonelists(pg_data_t *pgdat)
1da177e4 3699{
19655d34 3700 int node, local_node;
54a6eb5c
MG
3701 enum zone_type j;
3702 struct zonelist *zonelist;
1da177e4
LT
3703
3704 local_node = pgdat->node_id;
1da177e4 3705
54a6eb5c 3706 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3707 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3708
54a6eb5c
MG
3709 /*
3710 * Now we build the zonelist so that it contains the zones
3711 * of all the other nodes.
3712 * We don't want to pressure a particular node, so when
3713 * building the zones for node N, we make sure that the
3714 * zones coming right after the local ones are those from
3715 * node N+1 (modulo N)
3716 */
3717 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3718 if (!node_online(node))
3719 continue;
bc732f1d 3720 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3721 }
54a6eb5c
MG
3722 for (node = 0; node < local_node; node++) {
3723 if (!node_online(node))
3724 continue;
bc732f1d 3725 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3726 }
3727
dd1a239f
MG
3728 zonelist->_zonerefs[j].zone = NULL;
3729 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3730}
3731
9276b1bc 3732/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3733static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3734{
54a6eb5c 3735 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3736}
3737
1da177e4
LT
3738#endif /* CONFIG_NUMA */
3739
99dcc3e5
CL
3740/*
3741 * Boot pageset table. One per cpu which is going to be used for all
3742 * zones and all nodes. The parameters will be set in such a way
3743 * that an item put on a list will immediately be handed over to
3744 * the buddy list. This is safe since pageset manipulation is done
3745 * with interrupts disabled.
3746 *
3747 * The boot_pagesets must be kept even after bootup is complete for
3748 * unused processors and/or zones. They do play a role for bootstrapping
3749 * hotplugged processors.
3750 *
3751 * zoneinfo_show() and maybe other functions do
3752 * not check if the processor is online before following the pageset pointer.
3753 * Other parts of the kernel may not check if the zone is available.
3754 */
3755static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3756static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3757static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3758
4eaf3f64
HL
3759/*
3760 * Global mutex to protect against size modification of zonelists
3761 * as well as to serialize pageset setup for the new populated zone.
3762 */
3763DEFINE_MUTEX(zonelists_mutex);
3764
9b1a4d38 3765/* return values int ....just for stop_machine() */
4ed7e022 3766static int __build_all_zonelists(void *data)
1da177e4 3767{
6811378e 3768 int nid;
99dcc3e5 3769 int cpu;
9adb62a5 3770 pg_data_t *self = data;
9276b1bc 3771
7f9cfb31
BL
3772#ifdef CONFIG_NUMA
3773 memset(node_load, 0, sizeof(node_load));
3774#endif
9adb62a5
JL
3775
3776 if (self && !node_online(self->node_id)) {
3777 build_zonelists(self);
3778 build_zonelist_cache(self);
3779 }
3780
9276b1bc 3781 for_each_online_node(nid) {
7ea1530a
CL
3782 pg_data_t *pgdat = NODE_DATA(nid);
3783
3784 build_zonelists(pgdat);
3785 build_zonelist_cache(pgdat);
9276b1bc 3786 }
99dcc3e5
CL
3787
3788 /*
3789 * Initialize the boot_pagesets that are going to be used
3790 * for bootstrapping processors. The real pagesets for
3791 * each zone will be allocated later when the per cpu
3792 * allocator is available.
3793 *
3794 * boot_pagesets are used also for bootstrapping offline
3795 * cpus if the system is already booted because the pagesets
3796 * are needed to initialize allocators on a specific cpu too.
3797 * F.e. the percpu allocator needs the page allocator which
3798 * needs the percpu allocator in order to allocate its pagesets
3799 * (a chicken-egg dilemma).
3800 */
7aac7898 3801 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3802 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3803
7aac7898
LS
3804#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3805 /*
3806 * We now know the "local memory node" for each node--
3807 * i.e., the node of the first zone in the generic zonelist.
3808 * Set up numa_mem percpu variable for on-line cpus. During
3809 * boot, only the boot cpu should be on-line; we'll init the
3810 * secondary cpus' numa_mem as they come on-line. During
3811 * node/memory hotplug, we'll fixup all on-line cpus.
3812 */
3813 if (cpu_online(cpu))
3814 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3815#endif
3816 }
3817
6811378e
YG
3818 return 0;
3819}
3820
4eaf3f64
HL
3821/*
3822 * Called with zonelists_mutex held always
3823 * unless system_state == SYSTEM_BOOTING.
3824 */
9adb62a5 3825void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3826{
f0c0b2b8
KH
3827 set_zonelist_order();
3828
6811378e 3829 if (system_state == SYSTEM_BOOTING) {
423b41d7 3830 __build_all_zonelists(NULL);
68ad8df4 3831 mminit_verify_zonelist();
6811378e
YG
3832 cpuset_init_current_mems_allowed();
3833 } else {
e9959f0f 3834#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3835 if (zone)
3836 setup_zone_pageset(zone);
e9959f0f 3837#endif
dd1895e2
CS
3838 /* we have to stop all cpus to guarantee there is no user
3839 of zonelist */
9adb62a5 3840 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3841 /* cpuset refresh routine should be here */
3842 }
bd1e22b8 3843 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3844 /*
3845 * Disable grouping by mobility if the number of pages in the
3846 * system is too low to allow the mechanism to work. It would be
3847 * more accurate, but expensive to check per-zone. This check is
3848 * made on memory-hotadd so a system can start with mobility
3849 * disabled and enable it later
3850 */
d9c23400 3851 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3852 page_group_by_mobility_disabled = 1;
3853 else
3854 page_group_by_mobility_disabled = 0;
3855
3856 printk("Built %i zonelists in %s order, mobility grouping %s. "
3857 "Total pages: %ld\n",
62bc62a8 3858 nr_online_nodes,
f0c0b2b8 3859 zonelist_order_name[current_zonelist_order],
9ef9acb0 3860 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3861 vm_total_pages);
3862#ifdef CONFIG_NUMA
3863 printk("Policy zone: %s\n", zone_names[policy_zone]);
3864#endif
1da177e4
LT
3865}
3866
3867/*
3868 * Helper functions to size the waitqueue hash table.
3869 * Essentially these want to choose hash table sizes sufficiently
3870 * large so that collisions trying to wait on pages are rare.
3871 * But in fact, the number of active page waitqueues on typical
3872 * systems is ridiculously low, less than 200. So this is even
3873 * conservative, even though it seems large.
3874 *
3875 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3876 * waitqueues, i.e. the size of the waitq table given the number of pages.
3877 */
3878#define PAGES_PER_WAITQUEUE 256
3879
cca448fe 3880#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3881static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3882{
3883 unsigned long size = 1;
3884
3885 pages /= PAGES_PER_WAITQUEUE;
3886
3887 while (size < pages)
3888 size <<= 1;
3889
3890 /*
3891 * Once we have dozens or even hundreds of threads sleeping
3892 * on IO we've got bigger problems than wait queue collision.
3893 * Limit the size of the wait table to a reasonable size.
3894 */
3895 size = min(size, 4096UL);
3896
3897 return max(size, 4UL);
3898}
cca448fe
YG
3899#else
3900/*
3901 * A zone's size might be changed by hot-add, so it is not possible to determine
3902 * a suitable size for its wait_table. So we use the maximum size now.
3903 *
3904 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3905 *
3906 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3907 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3908 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3909 *
3910 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3911 * or more by the traditional way. (See above). It equals:
3912 *
3913 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3914 * ia64(16K page size) : = ( 8G + 4M)byte.
3915 * powerpc (64K page size) : = (32G +16M)byte.
3916 */
3917static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3918{
3919 return 4096UL;
3920}
3921#endif
1da177e4
LT
3922
3923/*
3924 * This is an integer logarithm so that shifts can be used later
3925 * to extract the more random high bits from the multiplicative
3926 * hash function before the remainder is taken.
3927 */
3928static inline unsigned long wait_table_bits(unsigned long size)
3929{
3930 return ffz(~size);
3931}
3932
6d3163ce
AH
3933/*
3934 * Check if a pageblock contains reserved pages
3935 */
3936static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3937{
3938 unsigned long pfn;
3939
3940 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3941 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3942 return 1;
3943 }
3944 return 0;
3945}
3946
56fd56b8 3947/*
d9c23400 3948 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3949 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3950 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3951 * higher will lead to a bigger reserve which will get freed as contiguous
3952 * blocks as reclaim kicks in
3953 */
3954static void setup_zone_migrate_reserve(struct zone *zone)
3955{
6d3163ce 3956 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3957 struct page *page;
78986a67
MG
3958 unsigned long block_migratetype;
3959 int reserve;
943dca1a 3960 int old_reserve;
56fd56b8 3961
d0215638
MH
3962 /*
3963 * Get the start pfn, end pfn and the number of blocks to reserve
3964 * We have to be careful to be aligned to pageblock_nr_pages to
3965 * make sure that we always check pfn_valid for the first page in
3966 * the block.
3967 */
56fd56b8 3968 start_pfn = zone->zone_start_pfn;
108bcc96 3969 end_pfn = zone_end_pfn(zone);
d0215638 3970 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3971 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3972 pageblock_order;
56fd56b8 3973
78986a67
MG
3974 /*
3975 * Reserve blocks are generally in place to help high-order atomic
3976 * allocations that are short-lived. A min_free_kbytes value that
3977 * would result in more than 2 reserve blocks for atomic allocations
3978 * is assumed to be in place to help anti-fragmentation for the
3979 * future allocation of hugepages at runtime.
3980 */
3981 reserve = min(2, reserve);
943dca1a
YI
3982 old_reserve = zone->nr_migrate_reserve_block;
3983
3984 /* When memory hot-add, we almost always need to do nothing */
3985 if (reserve == old_reserve)
3986 return;
3987 zone->nr_migrate_reserve_block = reserve;
78986a67 3988
d9c23400 3989 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3990 if (!pfn_valid(pfn))
3991 continue;
3992 page = pfn_to_page(pfn);
3993
344c790e
AL
3994 /* Watch out for overlapping nodes */
3995 if (page_to_nid(page) != zone_to_nid(zone))
3996 continue;
3997
56fd56b8
MG
3998 block_migratetype = get_pageblock_migratetype(page);
3999
938929f1
MG
4000 /* Only test what is necessary when the reserves are not met */
4001 if (reserve > 0) {
4002 /*
4003 * Blocks with reserved pages will never free, skip
4004 * them.
4005 */
4006 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4007 if (pageblock_is_reserved(pfn, block_end_pfn))
4008 continue;
56fd56b8 4009
938929f1
MG
4010 /* If this block is reserved, account for it */
4011 if (block_migratetype == MIGRATE_RESERVE) {
4012 reserve--;
4013 continue;
4014 }
4015
4016 /* Suitable for reserving if this block is movable */
4017 if (block_migratetype == MIGRATE_MOVABLE) {
4018 set_pageblock_migratetype(page,
4019 MIGRATE_RESERVE);
4020 move_freepages_block(zone, page,
4021 MIGRATE_RESERVE);
4022 reserve--;
4023 continue;
4024 }
943dca1a
YI
4025 } else if (!old_reserve) {
4026 /*
4027 * At boot time we don't need to scan the whole zone
4028 * for turning off MIGRATE_RESERVE.
4029 */
4030 break;
56fd56b8
MG
4031 }
4032
4033 /*
4034 * If the reserve is met and this is a previous reserved block,
4035 * take it back
4036 */
4037 if (block_migratetype == MIGRATE_RESERVE) {
4038 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4039 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4040 }
4041 }
4042}
ac0e5b7a 4043
1da177e4
LT
4044/*
4045 * Initially all pages are reserved - free ones are freed
4046 * up by free_all_bootmem() once the early boot process is
4047 * done. Non-atomic initialization, single-pass.
4048 */
c09b4240 4049void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4050 unsigned long start_pfn, enum memmap_context context)
1da177e4 4051{
1da177e4 4052 struct page *page;
29751f69
AW
4053 unsigned long end_pfn = start_pfn + size;
4054 unsigned long pfn;
86051ca5 4055 struct zone *z;
1da177e4 4056
22b31eec
HD
4057 if (highest_memmap_pfn < end_pfn - 1)
4058 highest_memmap_pfn = end_pfn - 1;
4059
86051ca5 4060 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4061 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4062 /*
4063 * There can be holes in boot-time mem_map[]s
4064 * handed to this function. They do not
4065 * exist on hotplugged memory.
4066 */
4067 if (context == MEMMAP_EARLY) {
4068 if (!early_pfn_valid(pfn))
4069 continue;
4070 if (!early_pfn_in_nid(pfn, nid))
4071 continue;
4072 }
d41dee36
AW
4073 page = pfn_to_page(pfn);
4074 set_page_links(page, zone, nid, pfn);
708614e6 4075 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4076 init_page_count(page);
22b751c3 4077 page_mapcount_reset(page);
90572890 4078 page_cpupid_reset_last(page);
1da177e4 4079 SetPageReserved(page);
b2a0ac88
MG
4080 /*
4081 * Mark the block movable so that blocks are reserved for
4082 * movable at startup. This will force kernel allocations
4083 * to reserve their blocks rather than leaking throughout
4084 * the address space during boot when many long-lived
56fd56b8
MG
4085 * kernel allocations are made. Later some blocks near
4086 * the start are marked MIGRATE_RESERVE by
4087 * setup_zone_migrate_reserve()
86051ca5
KH
4088 *
4089 * bitmap is created for zone's valid pfn range. but memmap
4090 * can be created for invalid pages (for alignment)
4091 * check here not to call set_pageblock_migratetype() against
4092 * pfn out of zone.
b2a0ac88 4093 */
86051ca5 4094 if ((z->zone_start_pfn <= pfn)
108bcc96 4095 && (pfn < zone_end_pfn(z))
86051ca5 4096 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4097 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4098
1da177e4
LT
4099 INIT_LIST_HEAD(&page->lru);
4100#ifdef WANT_PAGE_VIRTUAL
4101 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4102 if (!is_highmem_idx(zone))
3212c6be 4103 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4104#endif
1da177e4
LT
4105 }
4106}
4107
1e548deb 4108static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4109{
b2a0ac88
MG
4110 int order, t;
4111 for_each_migratetype_order(order, t) {
4112 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4113 zone->free_area[order].nr_free = 0;
4114 }
4115}
4116
4117#ifndef __HAVE_ARCH_MEMMAP_INIT
4118#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4119 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4120#endif
4121
4ed7e022 4122static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4123{
3a6be87f 4124#ifdef CONFIG_MMU
e7c8d5c9
CL
4125 int batch;
4126
4127 /*
4128 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4129 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4130 *
4131 * OK, so we don't know how big the cache is. So guess.
4132 */
b40da049 4133 batch = zone->managed_pages / 1024;
ba56e91c
SR
4134 if (batch * PAGE_SIZE > 512 * 1024)
4135 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4136 batch /= 4; /* We effectively *= 4 below */
4137 if (batch < 1)
4138 batch = 1;
4139
4140 /*
0ceaacc9
NP
4141 * Clamp the batch to a 2^n - 1 value. Having a power
4142 * of 2 value was found to be more likely to have
4143 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4144 *
0ceaacc9
NP
4145 * For example if 2 tasks are alternately allocating
4146 * batches of pages, one task can end up with a lot
4147 * of pages of one half of the possible page colors
4148 * and the other with pages of the other colors.
e7c8d5c9 4149 */
9155203a 4150 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4151
e7c8d5c9 4152 return batch;
3a6be87f
DH
4153
4154#else
4155 /* The deferral and batching of frees should be suppressed under NOMMU
4156 * conditions.
4157 *
4158 * The problem is that NOMMU needs to be able to allocate large chunks
4159 * of contiguous memory as there's no hardware page translation to
4160 * assemble apparent contiguous memory from discontiguous pages.
4161 *
4162 * Queueing large contiguous runs of pages for batching, however,
4163 * causes the pages to actually be freed in smaller chunks. As there
4164 * can be a significant delay between the individual batches being
4165 * recycled, this leads to the once large chunks of space being
4166 * fragmented and becoming unavailable for high-order allocations.
4167 */
4168 return 0;
4169#endif
e7c8d5c9
CL
4170}
4171
8d7a8fa9
CS
4172/*
4173 * pcp->high and pcp->batch values are related and dependent on one another:
4174 * ->batch must never be higher then ->high.
4175 * The following function updates them in a safe manner without read side
4176 * locking.
4177 *
4178 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4179 * those fields changing asynchronously (acording the the above rule).
4180 *
4181 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4182 * outside of boot time (or some other assurance that no concurrent updaters
4183 * exist).
4184 */
4185static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4186 unsigned long batch)
4187{
4188 /* start with a fail safe value for batch */
4189 pcp->batch = 1;
4190 smp_wmb();
4191
4192 /* Update high, then batch, in order */
4193 pcp->high = high;
4194 smp_wmb();
4195
4196 pcp->batch = batch;
4197}
4198
3664033c 4199/* a companion to pageset_set_high() */
4008bab7
CS
4200static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4201{
8d7a8fa9 4202 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4203}
4204
88c90dbc 4205static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4206{
4207 struct per_cpu_pages *pcp;
5f8dcc21 4208 int migratetype;
2caaad41 4209
1c6fe946
MD
4210 memset(p, 0, sizeof(*p));
4211
3dfa5721 4212 pcp = &p->pcp;
2caaad41 4213 pcp->count = 0;
5f8dcc21
MG
4214 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4215 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4216}
4217
88c90dbc
CS
4218static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4219{
4220 pageset_init(p);
4221 pageset_set_batch(p, batch);
4222}
4223
8ad4b1fb 4224/*
3664033c 4225 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4226 * to the value high for the pageset p.
4227 */
3664033c 4228static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4229 unsigned long high)
4230{
8d7a8fa9
CS
4231 unsigned long batch = max(1UL, high / 4);
4232 if ((high / 4) > (PAGE_SHIFT * 8))
4233 batch = PAGE_SHIFT * 8;
8ad4b1fb 4234
8d7a8fa9 4235 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4236}
4237
169f6c19
CS
4238static void __meminit pageset_set_high_and_batch(struct zone *zone,
4239 struct per_cpu_pageset *pcp)
56cef2b8 4240{
56cef2b8 4241 if (percpu_pagelist_fraction)
3664033c 4242 pageset_set_high(pcp,
56cef2b8
CS
4243 (zone->managed_pages /
4244 percpu_pagelist_fraction));
4245 else
4246 pageset_set_batch(pcp, zone_batchsize(zone));
4247}
4248
169f6c19
CS
4249static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4250{
4251 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4252
4253 pageset_init(pcp);
4254 pageset_set_high_and_batch(zone, pcp);
4255}
4256
4ed7e022 4257static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4258{
4259 int cpu;
319774e2 4260 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4261 for_each_possible_cpu(cpu)
4262 zone_pageset_init(zone, cpu);
319774e2
WF
4263}
4264
2caaad41 4265/*
99dcc3e5
CL
4266 * Allocate per cpu pagesets and initialize them.
4267 * Before this call only boot pagesets were available.
e7c8d5c9 4268 */
99dcc3e5 4269void __init setup_per_cpu_pageset(void)
e7c8d5c9 4270{
99dcc3e5 4271 struct zone *zone;
e7c8d5c9 4272
319774e2
WF
4273 for_each_populated_zone(zone)
4274 setup_zone_pageset(zone);
e7c8d5c9
CL
4275}
4276
577a32f6 4277static noinline __init_refok
cca448fe 4278int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4279{
4280 int i;
cca448fe 4281 size_t alloc_size;
ed8ece2e
DH
4282
4283 /*
4284 * The per-page waitqueue mechanism uses hashed waitqueues
4285 * per zone.
4286 */
02b694de
YG
4287 zone->wait_table_hash_nr_entries =
4288 wait_table_hash_nr_entries(zone_size_pages);
4289 zone->wait_table_bits =
4290 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4291 alloc_size = zone->wait_table_hash_nr_entries
4292 * sizeof(wait_queue_head_t);
4293
cd94b9db 4294 if (!slab_is_available()) {
cca448fe 4295 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4296 memblock_virt_alloc_node_nopanic(
4297 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4298 } else {
4299 /*
4300 * This case means that a zone whose size was 0 gets new memory
4301 * via memory hot-add.
4302 * But it may be the case that a new node was hot-added. In
4303 * this case vmalloc() will not be able to use this new node's
4304 * memory - this wait_table must be initialized to use this new
4305 * node itself as well.
4306 * To use this new node's memory, further consideration will be
4307 * necessary.
4308 */
8691f3a7 4309 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4310 }
4311 if (!zone->wait_table)
4312 return -ENOMEM;
ed8ece2e 4313
b8af2941 4314 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4315 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4316
4317 return 0;
ed8ece2e
DH
4318}
4319
c09b4240 4320static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4321{
99dcc3e5
CL
4322 /*
4323 * per cpu subsystem is not up at this point. The following code
4324 * relies on the ability of the linker to provide the
4325 * offset of a (static) per cpu variable into the per cpu area.
4326 */
4327 zone->pageset = &boot_pageset;
ed8ece2e 4328
b38a8725 4329 if (populated_zone(zone))
99dcc3e5
CL
4330 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4331 zone->name, zone->present_pages,
4332 zone_batchsize(zone));
ed8ece2e
DH
4333}
4334
4ed7e022 4335int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4336 unsigned long zone_start_pfn,
a2f3aa02
DH
4337 unsigned long size,
4338 enum memmap_context context)
ed8ece2e
DH
4339{
4340 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4341 int ret;
4342 ret = zone_wait_table_init(zone, size);
4343 if (ret)
4344 return ret;
ed8ece2e
DH
4345 pgdat->nr_zones = zone_idx(zone) + 1;
4346
ed8ece2e
DH
4347 zone->zone_start_pfn = zone_start_pfn;
4348
708614e6
MG
4349 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4350 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4351 pgdat->node_id,
4352 (unsigned long)zone_idx(zone),
4353 zone_start_pfn, (zone_start_pfn + size));
4354
1e548deb 4355 zone_init_free_lists(zone);
718127cc
YG
4356
4357 return 0;
ed8ece2e
DH
4358}
4359
0ee332c1 4360#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4361#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4362/*
4363 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4364 * Architectures may implement their own version but if add_active_range()
4365 * was used and there are no special requirements, this is a convenient
4366 * alternative
4367 */
f2dbcfa7 4368int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4369{
c13291a5 4370 unsigned long start_pfn, end_pfn;
e76b63f8 4371 int nid;
7c243c71
RA
4372 /*
4373 * NOTE: The following SMP-unsafe globals are only used early in boot
4374 * when the kernel is running single-threaded.
4375 */
4376 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4377 static int __meminitdata last_nid;
4378
4379 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4380 return last_nid;
c713216d 4381
e76b63f8
YL
4382 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4383 if (nid != -1) {
4384 last_start_pfn = start_pfn;
4385 last_end_pfn = end_pfn;
4386 last_nid = nid;
4387 }
4388
4389 return nid;
c713216d
MG
4390}
4391#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4392
f2dbcfa7
KH
4393int __meminit early_pfn_to_nid(unsigned long pfn)
4394{
cc2559bc
KH
4395 int nid;
4396
4397 nid = __early_pfn_to_nid(pfn);
4398 if (nid >= 0)
4399 return nid;
4400 /* just returns 0 */
4401 return 0;
f2dbcfa7
KH
4402}
4403
cc2559bc
KH
4404#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4405bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4406{
4407 int nid;
4408
4409 nid = __early_pfn_to_nid(pfn);
4410 if (nid >= 0 && nid != node)
4411 return false;
4412 return true;
4413}
4414#endif
f2dbcfa7 4415
c713216d 4416/**
6782832e 4417 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4418 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4419 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4420 *
4421 * If an architecture guarantees that all ranges registered with
4422 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4423 * this function may be used instead of calling memblock_free_early_nid()
4424 * manually.
c713216d 4425 */
c13291a5 4426void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4427{
c13291a5
TH
4428 unsigned long start_pfn, end_pfn;
4429 int i, this_nid;
edbe7d23 4430
c13291a5
TH
4431 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4432 start_pfn = min(start_pfn, max_low_pfn);
4433 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4434
c13291a5 4435 if (start_pfn < end_pfn)
6782832e
SS
4436 memblock_free_early_nid(PFN_PHYS(start_pfn),
4437 (end_pfn - start_pfn) << PAGE_SHIFT,
4438 this_nid);
edbe7d23 4439 }
edbe7d23 4440}
edbe7d23 4441
c713216d
MG
4442/**
4443 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4444 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4445 *
4446 * If an architecture guarantees that all ranges registered with
4447 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4448 * function may be used instead of calling memory_present() manually.
c713216d
MG
4449 */
4450void __init sparse_memory_present_with_active_regions(int nid)
4451{
c13291a5
TH
4452 unsigned long start_pfn, end_pfn;
4453 int i, this_nid;
c713216d 4454
c13291a5
TH
4455 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4456 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4457}
4458
4459/**
4460 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4461 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4462 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4463 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4464 *
4465 * It returns the start and end page frame of a node based on information
4466 * provided by an arch calling add_active_range(). If called for a node
4467 * with no available memory, a warning is printed and the start and end
88ca3b94 4468 * PFNs will be 0.
c713216d 4469 */
a3142c8e 4470void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4471 unsigned long *start_pfn, unsigned long *end_pfn)
4472{
c13291a5 4473 unsigned long this_start_pfn, this_end_pfn;
c713216d 4474 int i;
c13291a5 4475
c713216d
MG
4476 *start_pfn = -1UL;
4477 *end_pfn = 0;
4478
c13291a5
TH
4479 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4480 *start_pfn = min(*start_pfn, this_start_pfn);
4481 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4482 }
4483
633c0666 4484 if (*start_pfn == -1UL)
c713216d 4485 *start_pfn = 0;
c713216d
MG
4486}
4487
2a1e274a
MG
4488/*
4489 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4490 * assumption is made that zones within a node are ordered in monotonic
4491 * increasing memory addresses so that the "highest" populated zone is used
4492 */
b69a7288 4493static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4494{
4495 int zone_index;
4496 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4497 if (zone_index == ZONE_MOVABLE)
4498 continue;
4499
4500 if (arch_zone_highest_possible_pfn[zone_index] >
4501 arch_zone_lowest_possible_pfn[zone_index])
4502 break;
4503 }
4504
4505 VM_BUG_ON(zone_index == -1);
4506 movable_zone = zone_index;
4507}
4508
4509/*
4510 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4511 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4512 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4513 * in each node depending on the size of each node and how evenly kernelcore
4514 * is distributed. This helper function adjusts the zone ranges
4515 * provided by the architecture for a given node by using the end of the
4516 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4517 * zones within a node are in order of monotonic increases memory addresses
4518 */
b69a7288 4519static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4520 unsigned long zone_type,
4521 unsigned long node_start_pfn,
4522 unsigned long node_end_pfn,
4523 unsigned long *zone_start_pfn,
4524 unsigned long *zone_end_pfn)
4525{
4526 /* Only adjust if ZONE_MOVABLE is on this node */
4527 if (zone_movable_pfn[nid]) {
4528 /* Size ZONE_MOVABLE */
4529 if (zone_type == ZONE_MOVABLE) {
4530 *zone_start_pfn = zone_movable_pfn[nid];
4531 *zone_end_pfn = min(node_end_pfn,
4532 arch_zone_highest_possible_pfn[movable_zone]);
4533
4534 /* Adjust for ZONE_MOVABLE starting within this range */
4535 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4536 *zone_end_pfn > zone_movable_pfn[nid]) {
4537 *zone_end_pfn = zone_movable_pfn[nid];
4538
4539 /* Check if this whole range is within ZONE_MOVABLE */
4540 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4541 *zone_start_pfn = *zone_end_pfn;
4542 }
4543}
4544
c713216d
MG
4545/*
4546 * Return the number of pages a zone spans in a node, including holes
4547 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4548 */
6ea6e688 4549static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4550 unsigned long zone_type,
7960aedd
ZY
4551 unsigned long node_start_pfn,
4552 unsigned long node_end_pfn,
c713216d
MG
4553 unsigned long *ignored)
4554{
c713216d
MG
4555 unsigned long zone_start_pfn, zone_end_pfn;
4556
7960aedd 4557 /* Get the start and end of the zone */
c713216d
MG
4558 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4559 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4560 adjust_zone_range_for_zone_movable(nid, zone_type,
4561 node_start_pfn, node_end_pfn,
4562 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4563
4564 /* Check that this node has pages within the zone's required range */
4565 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4566 return 0;
4567
4568 /* Move the zone boundaries inside the node if necessary */
4569 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4570 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4571
4572 /* Return the spanned pages */
4573 return zone_end_pfn - zone_start_pfn;
4574}
4575
4576/*
4577 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4578 * then all holes in the requested range will be accounted for.
c713216d 4579 */
32996250 4580unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4581 unsigned long range_start_pfn,
4582 unsigned long range_end_pfn)
4583{
96e907d1
TH
4584 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4585 unsigned long start_pfn, end_pfn;
4586 int i;
c713216d 4587
96e907d1
TH
4588 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4589 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4590 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4591 nr_absent -= end_pfn - start_pfn;
c713216d 4592 }
96e907d1 4593 return nr_absent;
c713216d
MG
4594}
4595
4596/**
4597 * absent_pages_in_range - Return number of page frames in holes within a range
4598 * @start_pfn: The start PFN to start searching for holes
4599 * @end_pfn: The end PFN to stop searching for holes
4600 *
88ca3b94 4601 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4602 */
4603unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4604 unsigned long end_pfn)
4605{
4606 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4607}
4608
4609/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4610static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4611 unsigned long zone_type,
7960aedd
ZY
4612 unsigned long node_start_pfn,
4613 unsigned long node_end_pfn,
c713216d
MG
4614 unsigned long *ignored)
4615{
96e907d1
TH
4616 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4617 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4618 unsigned long zone_start_pfn, zone_end_pfn;
4619
96e907d1
TH
4620 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4621 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4622
2a1e274a
MG
4623 adjust_zone_range_for_zone_movable(nid, zone_type,
4624 node_start_pfn, node_end_pfn,
4625 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4626 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4627}
0e0b864e 4628
0ee332c1 4629#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4630static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4631 unsigned long zone_type,
7960aedd
ZY
4632 unsigned long node_start_pfn,
4633 unsigned long node_end_pfn,
c713216d
MG
4634 unsigned long *zones_size)
4635{
4636 return zones_size[zone_type];
4637}
4638
6ea6e688 4639static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4640 unsigned long zone_type,
7960aedd
ZY
4641 unsigned long node_start_pfn,
4642 unsigned long node_end_pfn,
c713216d
MG
4643 unsigned long *zholes_size)
4644{
4645 if (!zholes_size)
4646 return 0;
4647
4648 return zholes_size[zone_type];
4649}
20e6926d 4650
0ee332c1 4651#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4652
a3142c8e 4653static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4654 unsigned long node_start_pfn,
4655 unsigned long node_end_pfn,
4656 unsigned long *zones_size,
4657 unsigned long *zholes_size)
c713216d
MG
4658{
4659 unsigned long realtotalpages, totalpages = 0;
4660 enum zone_type i;
4661
4662 for (i = 0; i < MAX_NR_ZONES; i++)
4663 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4664 node_start_pfn,
4665 node_end_pfn,
4666 zones_size);
c713216d
MG
4667 pgdat->node_spanned_pages = totalpages;
4668
4669 realtotalpages = totalpages;
4670 for (i = 0; i < MAX_NR_ZONES; i++)
4671 realtotalpages -=
4672 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4673 node_start_pfn, node_end_pfn,
4674 zholes_size);
c713216d
MG
4675 pgdat->node_present_pages = realtotalpages;
4676 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4677 realtotalpages);
4678}
4679
835c134e
MG
4680#ifndef CONFIG_SPARSEMEM
4681/*
4682 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4683 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4684 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4685 * round what is now in bits to nearest long in bits, then return it in
4686 * bytes.
4687 */
7c45512d 4688static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4689{
4690 unsigned long usemapsize;
4691
7c45512d 4692 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4693 usemapsize = roundup(zonesize, pageblock_nr_pages);
4694 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4695 usemapsize *= NR_PAGEBLOCK_BITS;
4696 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4697
4698 return usemapsize / 8;
4699}
4700
4701static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4702 struct zone *zone,
4703 unsigned long zone_start_pfn,
4704 unsigned long zonesize)
835c134e 4705{
7c45512d 4706 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4707 zone->pageblock_flags = NULL;
58a01a45 4708 if (usemapsize)
6782832e
SS
4709 zone->pageblock_flags =
4710 memblock_virt_alloc_node_nopanic(usemapsize,
4711 pgdat->node_id);
835c134e
MG
4712}
4713#else
7c45512d
LT
4714static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4715 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4716#endif /* CONFIG_SPARSEMEM */
4717
d9c23400 4718#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4719
d9c23400 4720/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4721void __paginginit set_pageblock_order(void)
d9c23400 4722{
955c1cd7
AM
4723 unsigned int order;
4724
d9c23400
MG
4725 /* Check that pageblock_nr_pages has not already been setup */
4726 if (pageblock_order)
4727 return;
4728
955c1cd7
AM
4729 if (HPAGE_SHIFT > PAGE_SHIFT)
4730 order = HUGETLB_PAGE_ORDER;
4731 else
4732 order = MAX_ORDER - 1;
4733
d9c23400
MG
4734 /*
4735 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4736 * This value may be variable depending on boot parameters on IA64 and
4737 * powerpc.
d9c23400
MG
4738 */
4739 pageblock_order = order;
4740}
4741#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4742
ba72cb8c
MG
4743/*
4744 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4745 * is unused as pageblock_order is set at compile-time. See
4746 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4747 * the kernel config
ba72cb8c 4748 */
15ca220e 4749void __paginginit set_pageblock_order(void)
ba72cb8c 4750{
ba72cb8c 4751}
d9c23400
MG
4752
4753#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4754
01cefaef
JL
4755static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4756 unsigned long present_pages)
4757{
4758 unsigned long pages = spanned_pages;
4759
4760 /*
4761 * Provide a more accurate estimation if there are holes within
4762 * the zone and SPARSEMEM is in use. If there are holes within the
4763 * zone, each populated memory region may cost us one or two extra
4764 * memmap pages due to alignment because memmap pages for each
4765 * populated regions may not naturally algined on page boundary.
4766 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4767 */
4768 if (spanned_pages > present_pages + (present_pages >> 4) &&
4769 IS_ENABLED(CONFIG_SPARSEMEM))
4770 pages = present_pages;
4771
4772 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4773}
4774
1da177e4
LT
4775/*
4776 * Set up the zone data structures:
4777 * - mark all pages reserved
4778 * - mark all memory queues empty
4779 * - clear the memory bitmaps
6527af5d
MK
4780 *
4781 * NOTE: pgdat should get zeroed by caller.
1da177e4 4782 */
b5a0e011 4783static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4784 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4785 unsigned long *zones_size, unsigned long *zholes_size)
4786{
2f1b6248 4787 enum zone_type j;
ed8ece2e 4788 int nid = pgdat->node_id;
1da177e4 4789 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4790 int ret;
1da177e4 4791
208d54e5 4792 pgdat_resize_init(pgdat);
8177a420
AA
4793#ifdef CONFIG_NUMA_BALANCING
4794 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4795 pgdat->numabalancing_migrate_nr_pages = 0;
4796 pgdat->numabalancing_migrate_next_window = jiffies;
4797#endif
1da177e4 4798 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4799 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4800 pgdat_page_cgroup_init(pgdat);
5f63b720 4801
1da177e4
LT
4802 for (j = 0; j < MAX_NR_ZONES; j++) {
4803 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4804 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4805
7960aedd
ZY
4806 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4807 node_end_pfn, zones_size);
9feedc9d 4808 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4809 node_start_pfn,
4810 node_end_pfn,
c713216d 4811 zholes_size);
1da177e4 4812
0e0b864e 4813 /*
9feedc9d 4814 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4815 * is used by this zone for memmap. This affects the watermark
4816 * and per-cpu initialisations
4817 */
01cefaef 4818 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4819 if (freesize >= memmap_pages) {
4820 freesize -= memmap_pages;
5594c8c8
YL
4821 if (memmap_pages)
4822 printk(KERN_DEBUG
4823 " %s zone: %lu pages used for memmap\n",
4824 zone_names[j], memmap_pages);
0e0b864e
MG
4825 } else
4826 printk(KERN_WARNING
9feedc9d
JL
4827 " %s zone: %lu pages exceeds freesize %lu\n",
4828 zone_names[j], memmap_pages, freesize);
0e0b864e 4829
6267276f 4830 /* Account for reserved pages */
9feedc9d
JL
4831 if (j == 0 && freesize > dma_reserve) {
4832 freesize -= dma_reserve;
d903ef9f 4833 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4834 zone_names[0], dma_reserve);
0e0b864e
MG
4835 }
4836
98d2b0eb 4837 if (!is_highmem_idx(j))
9feedc9d 4838 nr_kernel_pages += freesize;
01cefaef
JL
4839 /* Charge for highmem memmap if there are enough kernel pages */
4840 else if (nr_kernel_pages > memmap_pages * 2)
4841 nr_kernel_pages -= memmap_pages;
9feedc9d 4842 nr_all_pages += freesize;
1da177e4
LT
4843
4844 zone->spanned_pages = size;
306f2e9e 4845 zone->present_pages = realsize;
9feedc9d
JL
4846 /*
4847 * Set an approximate value for lowmem here, it will be adjusted
4848 * when the bootmem allocator frees pages into the buddy system.
4849 * And all highmem pages will be managed by the buddy system.
4850 */
4851 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4852#ifdef CONFIG_NUMA
d5f541ed 4853 zone->node = nid;
9feedc9d 4854 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4855 / 100;
9feedc9d 4856 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4857#endif
1da177e4
LT
4858 zone->name = zone_names[j];
4859 spin_lock_init(&zone->lock);
4860 spin_lock_init(&zone->lru_lock);
bdc8cb98 4861 zone_seqlock_init(zone);
1da177e4 4862 zone->zone_pgdat = pgdat;
ed8ece2e 4863 zone_pcp_init(zone);
81c0a2bb
JW
4864
4865 /* For bootup, initialized properly in watermark setup */
4866 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4867
bea8c150 4868 lruvec_init(&zone->lruvec);
1da177e4
LT
4869 if (!size)
4870 continue;
4871
955c1cd7 4872 set_pageblock_order();
7c45512d 4873 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4874 ret = init_currently_empty_zone(zone, zone_start_pfn,
4875 size, MEMMAP_EARLY);
718127cc 4876 BUG_ON(ret);
76cdd58e 4877 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4878 zone_start_pfn += size;
1da177e4
LT
4879 }
4880}
4881
577a32f6 4882static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4883{
1da177e4
LT
4884 /* Skip empty nodes */
4885 if (!pgdat->node_spanned_pages)
4886 return;
4887
d41dee36 4888#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4889 /* ia64 gets its own node_mem_map, before this, without bootmem */
4890 if (!pgdat->node_mem_map) {
e984bb43 4891 unsigned long size, start, end;
d41dee36
AW
4892 struct page *map;
4893
e984bb43
BP
4894 /*
4895 * The zone's endpoints aren't required to be MAX_ORDER
4896 * aligned but the node_mem_map endpoints must be in order
4897 * for the buddy allocator to function correctly.
4898 */
4899 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4900 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4901 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4902 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4903 map = alloc_remap(pgdat->node_id, size);
4904 if (!map)
6782832e
SS
4905 map = memblock_virt_alloc_node_nopanic(size,
4906 pgdat->node_id);
e984bb43 4907 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4908 }
12d810c1 4909#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4910 /*
4911 * With no DISCONTIG, the global mem_map is just set as node 0's
4912 */
c713216d 4913 if (pgdat == NODE_DATA(0)) {
1da177e4 4914 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4915#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4916 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4917 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4918#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4919 }
1da177e4 4920#endif
d41dee36 4921#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4922}
4923
9109fb7b
JW
4924void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4925 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4926{
9109fb7b 4927 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4928 unsigned long start_pfn = 0;
4929 unsigned long end_pfn = 0;
9109fb7b 4930
88fdf75d 4931 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4932 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4933
1da177e4
LT
4934 pgdat->node_id = nid;
4935 pgdat->node_start_pfn = node_start_pfn;
70ef57e6
MH
4936 if (node_state(nid, N_MEMORY))
4937 init_zone_allows_reclaim(nid);
7960aedd
ZY
4938#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4939 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4940#endif
4941 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4942 zones_size, zholes_size);
1da177e4
LT
4943
4944 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4945#ifdef CONFIG_FLAT_NODE_MEM_MAP
4946 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4947 nid, (unsigned long)pgdat,
4948 (unsigned long)pgdat->node_mem_map);
4949#endif
1da177e4 4950
7960aedd
ZY
4951 free_area_init_core(pgdat, start_pfn, end_pfn,
4952 zones_size, zholes_size);
1da177e4
LT
4953}
4954
0ee332c1 4955#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4956
4957#if MAX_NUMNODES > 1
4958/*
4959 * Figure out the number of possible node ids.
4960 */
f9872caf 4961void __init setup_nr_node_ids(void)
418508c1
MS
4962{
4963 unsigned int node;
4964 unsigned int highest = 0;
4965
4966 for_each_node_mask(node, node_possible_map)
4967 highest = node;
4968 nr_node_ids = highest + 1;
4969}
418508c1
MS
4970#endif
4971
1e01979c
TH
4972/**
4973 * node_map_pfn_alignment - determine the maximum internode alignment
4974 *
4975 * This function should be called after node map is populated and sorted.
4976 * It calculates the maximum power of two alignment which can distinguish
4977 * all the nodes.
4978 *
4979 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4980 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4981 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4982 * shifted, 1GiB is enough and this function will indicate so.
4983 *
4984 * This is used to test whether pfn -> nid mapping of the chosen memory
4985 * model has fine enough granularity to avoid incorrect mapping for the
4986 * populated node map.
4987 *
4988 * Returns the determined alignment in pfn's. 0 if there is no alignment
4989 * requirement (single node).
4990 */
4991unsigned long __init node_map_pfn_alignment(void)
4992{
4993 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4994 unsigned long start, end, mask;
1e01979c 4995 int last_nid = -1;
c13291a5 4996 int i, nid;
1e01979c 4997
c13291a5 4998 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4999 if (!start || last_nid < 0 || last_nid == nid) {
5000 last_nid = nid;
5001 last_end = end;
5002 continue;
5003 }
5004
5005 /*
5006 * Start with a mask granular enough to pin-point to the
5007 * start pfn and tick off bits one-by-one until it becomes
5008 * too coarse to separate the current node from the last.
5009 */
5010 mask = ~((1 << __ffs(start)) - 1);
5011 while (mask && last_end <= (start & (mask << 1)))
5012 mask <<= 1;
5013
5014 /* accumulate all internode masks */
5015 accl_mask |= mask;
5016 }
5017
5018 /* convert mask to number of pages */
5019 return ~accl_mask + 1;
5020}
5021
a6af2bc3 5022/* Find the lowest pfn for a node */
b69a7288 5023static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5024{
a6af2bc3 5025 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5026 unsigned long start_pfn;
5027 int i;
1abbfb41 5028
c13291a5
TH
5029 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5030 min_pfn = min(min_pfn, start_pfn);
c713216d 5031
a6af2bc3
MG
5032 if (min_pfn == ULONG_MAX) {
5033 printk(KERN_WARNING
2bc0d261 5034 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5035 return 0;
5036 }
5037
5038 return min_pfn;
c713216d
MG
5039}
5040
5041/**
5042 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5043 *
5044 * It returns the minimum PFN based on information provided via
88ca3b94 5045 * add_active_range().
c713216d
MG
5046 */
5047unsigned long __init find_min_pfn_with_active_regions(void)
5048{
5049 return find_min_pfn_for_node(MAX_NUMNODES);
5050}
5051
37b07e41
LS
5052/*
5053 * early_calculate_totalpages()
5054 * Sum pages in active regions for movable zone.
4b0ef1fe 5055 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5056 */
484f51f8 5057static unsigned long __init early_calculate_totalpages(void)
7e63efef 5058{
7e63efef 5059 unsigned long totalpages = 0;
c13291a5
TH
5060 unsigned long start_pfn, end_pfn;
5061 int i, nid;
5062
5063 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5064 unsigned long pages = end_pfn - start_pfn;
7e63efef 5065
37b07e41
LS
5066 totalpages += pages;
5067 if (pages)
4b0ef1fe 5068 node_set_state(nid, N_MEMORY);
37b07e41 5069 }
b8af2941 5070 return totalpages;
7e63efef
MG
5071}
5072
2a1e274a
MG
5073/*
5074 * Find the PFN the Movable zone begins in each node. Kernel memory
5075 * is spread evenly between nodes as long as the nodes have enough
5076 * memory. When they don't, some nodes will have more kernelcore than
5077 * others
5078 */
b224ef85 5079static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5080{
5081 int i, nid;
5082 unsigned long usable_startpfn;
5083 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5084 /* save the state before borrow the nodemask */
4b0ef1fe 5085 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5086 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5087 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5088 struct memblock_region *r;
b2f3eebe
TC
5089
5090 /* Need to find movable_zone earlier when movable_node is specified. */
5091 find_usable_zone_for_movable();
5092
5093 /*
5094 * If movable_node is specified, ignore kernelcore and movablecore
5095 * options.
5096 */
5097 if (movable_node_is_enabled()) {
136199f0
EM
5098 for_each_memblock(memory, r) {
5099 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5100 continue;
5101
136199f0 5102 nid = r->nid;
b2f3eebe 5103
136199f0 5104 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5105 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5106 min(usable_startpfn, zone_movable_pfn[nid]) :
5107 usable_startpfn;
5108 }
5109
5110 goto out2;
5111 }
2a1e274a 5112
7e63efef 5113 /*
b2f3eebe 5114 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5115 * kernelcore that corresponds so that memory usable for
5116 * any allocation type is evenly spread. If both kernelcore
5117 * and movablecore are specified, then the value of kernelcore
5118 * will be used for required_kernelcore if it's greater than
5119 * what movablecore would have allowed.
5120 */
5121 if (required_movablecore) {
7e63efef
MG
5122 unsigned long corepages;
5123
5124 /*
5125 * Round-up so that ZONE_MOVABLE is at least as large as what
5126 * was requested by the user
5127 */
5128 required_movablecore =
5129 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5130 corepages = totalpages - required_movablecore;
5131
5132 required_kernelcore = max(required_kernelcore, corepages);
5133 }
5134
20e6926d
YL
5135 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5136 if (!required_kernelcore)
66918dcd 5137 goto out;
2a1e274a
MG
5138
5139 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5140 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5141
5142restart:
5143 /* Spread kernelcore memory as evenly as possible throughout nodes */
5144 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5145 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5146 unsigned long start_pfn, end_pfn;
5147
2a1e274a
MG
5148 /*
5149 * Recalculate kernelcore_node if the division per node
5150 * now exceeds what is necessary to satisfy the requested
5151 * amount of memory for the kernel
5152 */
5153 if (required_kernelcore < kernelcore_node)
5154 kernelcore_node = required_kernelcore / usable_nodes;
5155
5156 /*
5157 * As the map is walked, we track how much memory is usable
5158 * by the kernel using kernelcore_remaining. When it is
5159 * 0, the rest of the node is usable by ZONE_MOVABLE
5160 */
5161 kernelcore_remaining = kernelcore_node;
5162
5163 /* Go through each range of PFNs within this node */
c13291a5 5164 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5165 unsigned long size_pages;
5166
c13291a5 5167 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5168 if (start_pfn >= end_pfn)
5169 continue;
5170
5171 /* Account for what is only usable for kernelcore */
5172 if (start_pfn < usable_startpfn) {
5173 unsigned long kernel_pages;
5174 kernel_pages = min(end_pfn, usable_startpfn)
5175 - start_pfn;
5176
5177 kernelcore_remaining -= min(kernel_pages,
5178 kernelcore_remaining);
5179 required_kernelcore -= min(kernel_pages,
5180 required_kernelcore);
5181
5182 /* Continue if range is now fully accounted */
5183 if (end_pfn <= usable_startpfn) {
5184
5185 /*
5186 * Push zone_movable_pfn to the end so
5187 * that if we have to rebalance
5188 * kernelcore across nodes, we will
5189 * not double account here
5190 */
5191 zone_movable_pfn[nid] = end_pfn;
5192 continue;
5193 }
5194 start_pfn = usable_startpfn;
5195 }
5196
5197 /*
5198 * The usable PFN range for ZONE_MOVABLE is from
5199 * start_pfn->end_pfn. Calculate size_pages as the
5200 * number of pages used as kernelcore
5201 */
5202 size_pages = end_pfn - start_pfn;
5203 if (size_pages > kernelcore_remaining)
5204 size_pages = kernelcore_remaining;
5205 zone_movable_pfn[nid] = start_pfn + size_pages;
5206
5207 /*
5208 * Some kernelcore has been met, update counts and
5209 * break if the kernelcore for this node has been
b8af2941 5210 * satisfied
2a1e274a
MG
5211 */
5212 required_kernelcore -= min(required_kernelcore,
5213 size_pages);
5214 kernelcore_remaining -= size_pages;
5215 if (!kernelcore_remaining)
5216 break;
5217 }
5218 }
5219
5220 /*
5221 * If there is still required_kernelcore, we do another pass with one
5222 * less node in the count. This will push zone_movable_pfn[nid] further
5223 * along on the nodes that still have memory until kernelcore is
b8af2941 5224 * satisfied
2a1e274a
MG
5225 */
5226 usable_nodes--;
5227 if (usable_nodes && required_kernelcore > usable_nodes)
5228 goto restart;
5229
b2f3eebe 5230out2:
2a1e274a
MG
5231 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5232 for (nid = 0; nid < MAX_NUMNODES; nid++)
5233 zone_movable_pfn[nid] =
5234 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5235
20e6926d 5236out:
66918dcd 5237 /* restore the node_state */
4b0ef1fe 5238 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5239}
5240
4b0ef1fe
LJ
5241/* Any regular or high memory on that node ? */
5242static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5243{
37b07e41
LS
5244 enum zone_type zone_type;
5245
4b0ef1fe
LJ
5246 if (N_MEMORY == N_NORMAL_MEMORY)
5247 return;
5248
5249 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5250 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5251 if (populated_zone(zone)) {
4b0ef1fe
LJ
5252 node_set_state(nid, N_HIGH_MEMORY);
5253 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5254 zone_type <= ZONE_NORMAL)
5255 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5256 break;
5257 }
37b07e41 5258 }
37b07e41
LS
5259}
5260
c713216d
MG
5261/**
5262 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5263 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5264 *
5265 * This will call free_area_init_node() for each active node in the system.
5266 * Using the page ranges provided by add_active_range(), the size of each
5267 * zone in each node and their holes is calculated. If the maximum PFN
5268 * between two adjacent zones match, it is assumed that the zone is empty.
5269 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5270 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5271 * starts where the previous one ended. For example, ZONE_DMA32 starts
5272 * at arch_max_dma_pfn.
5273 */
5274void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5275{
c13291a5
TH
5276 unsigned long start_pfn, end_pfn;
5277 int i, nid;
a6af2bc3 5278
c713216d
MG
5279 /* Record where the zone boundaries are */
5280 memset(arch_zone_lowest_possible_pfn, 0,
5281 sizeof(arch_zone_lowest_possible_pfn));
5282 memset(arch_zone_highest_possible_pfn, 0,
5283 sizeof(arch_zone_highest_possible_pfn));
5284 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5285 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5286 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5287 if (i == ZONE_MOVABLE)
5288 continue;
c713216d
MG
5289 arch_zone_lowest_possible_pfn[i] =
5290 arch_zone_highest_possible_pfn[i-1];
5291 arch_zone_highest_possible_pfn[i] =
5292 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5293 }
2a1e274a
MG
5294 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5295 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5296
5297 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5298 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5299 find_zone_movable_pfns_for_nodes();
c713216d 5300
c713216d 5301 /* Print out the zone ranges */
a62e2f4f 5302 printk("Zone ranges:\n");
2a1e274a
MG
5303 for (i = 0; i < MAX_NR_ZONES; i++) {
5304 if (i == ZONE_MOVABLE)
5305 continue;
155cbfc8 5306 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5307 if (arch_zone_lowest_possible_pfn[i] ==
5308 arch_zone_highest_possible_pfn[i])
155cbfc8 5309 printk(KERN_CONT "empty\n");
72f0ba02 5310 else
a62e2f4f
BH
5311 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5312 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5313 (arch_zone_highest_possible_pfn[i]
5314 << PAGE_SHIFT) - 1);
2a1e274a
MG
5315 }
5316
5317 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5318 printk("Movable zone start for each node\n");
2a1e274a
MG
5319 for (i = 0; i < MAX_NUMNODES; i++) {
5320 if (zone_movable_pfn[i])
a62e2f4f
BH
5321 printk(" Node %d: %#010lx\n", i,
5322 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5323 }
c713216d 5324
f2d52fe5 5325 /* Print out the early node map */
a62e2f4f 5326 printk("Early memory node ranges\n");
c13291a5 5327 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5328 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5329 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5330
5331 /* Initialise every node */
708614e6 5332 mminit_verify_pageflags_layout();
8ef82866 5333 setup_nr_node_ids();
c713216d
MG
5334 for_each_online_node(nid) {
5335 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5336 free_area_init_node(nid, NULL,
c713216d 5337 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5338
5339 /* Any memory on that node */
5340 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5341 node_set_state(nid, N_MEMORY);
5342 check_for_memory(pgdat, nid);
c713216d
MG
5343 }
5344}
2a1e274a 5345
7e63efef 5346static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5347{
5348 unsigned long long coremem;
5349 if (!p)
5350 return -EINVAL;
5351
5352 coremem = memparse(p, &p);
7e63efef 5353 *core = coremem >> PAGE_SHIFT;
2a1e274a 5354
7e63efef 5355 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5356 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5357
5358 return 0;
5359}
ed7ed365 5360
7e63efef
MG
5361/*
5362 * kernelcore=size sets the amount of memory for use for allocations that
5363 * cannot be reclaimed or migrated.
5364 */
5365static int __init cmdline_parse_kernelcore(char *p)
5366{
5367 return cmdline_parse_core(p, &required_kernelcore);
5368}
5369
5370/*
5371 * movablecore=size sets the amount of memory for use for allocations that
5372 * can be reclaimed or migrated.
5373 */
5374static int __init cmdline_parse_movablecore(char *p)
5375{
5376 return cmdline_parse_core(p, &required_movablecore);
5377}
5378
ed7ed365 5379early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5380early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5381
0ee332c1 5382#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5383
c3d5f5f0
JL
5384void adjust_managed_page_count(struct page *page, long count)
5385{
5386 spin_lock(&managed_page_count_lock);
5387 page_zone(page)->managed_pages += count;
5388 totalram_pages += count;
3dcc0571
JL
5389#ifdef CONFIG_HIGHMEM
5390 if (PageHighMem(page))
5391 totalhigh_pages += count;
5392#endif
c3d5f5f0
JL
5393 spin_unlock(&managed_page_count_lock);
5394}
3dcc0571 5395EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5396
11199692 5397unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5398{
11199692
JL
5399 void *pos;
5400 unsigned long pages = 0;
69afade7 5401
11199692
JL
5402 start = (void *)PAGE_ALIGN((unsigned long)start);
5403 end = (void *)((unsigned long)end & PAGE_MASK);
5404 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5405 if ((unsigned int)poison <= 0xFF)
11199692
JL
5406 memset(pos, poison, PAGE_SIZE);
5407 free_reserved_page(virt_to_page(pos));
69afade7
JL
5408 }
5409
5410 if (pages && s)
11199692 5411 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5412 s, pages << (PAGE_SHIFT - 10), start, end);
5413
5414 return pages;
5415}
11199692 5416EXPORT_SYMBOL(free_reserved_area);
69afade7 5417
cfa11e08
JL
5418#ifdef CONFIG_HIGHMEM
5419void free_highmem_page(struct page *page)
5420{
5421 __free_reserved_page(page);
5422 totalram_pages++;
7b4b2a0d 5423 page_zone(page)->managed_pages++;
cfa11e08
JL
5424 totalhigh_pages++;
5425}
5426#endif
5427
7ee3d4e8
JL
5428
5429void __init mem_init_print_info(const char *str)
5430{
5431 unsigned long physpages, codesize, datasize, rosize, bss_size;
5432 unsigned long init_code_size, init_data_size;
5433
5434 physpages = get_num_physpages();
5435 codesize = _etext - _stext;
5436 datasize = _edata - _sdata;
5437 rosize = __end_rodata - __start_rodata;
5438 bss_size = __bss_stop - __bss_start;
5439 init_data_size = __init_end - __init_begin;
5440 init_code_size = _einittext - _sinittext;
5441
5442 /*
5443 * Detect special cases and adjust section sizes accordingly:
5444 * 1) .init.* may be embedded into .data sections
5445 * 2) .init.text.* may be out of [__init_begin, __init_end],
5446 * please refer to arch/tile/kernel/vmlinux.lds.S.
5447 * 3) .rodata.* may be embedded into .text or .data sections.
5448 */
5449#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5450 do { \
5451 if (start <= pos && pos < end && size > adj) \
5452 size -= adj; \
5453 } while (0)
7ee3d4e8
JL
5454
5455 adj_init_size(__init_begin, __init_end, init_data_size,
5456 _sinittext, init_code_size);
5457 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5458 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5459 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5460 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5461
5462#undef adj_init_size
5463
5464 printk("Memory: %luK/%luK available "
5465 "(%luK kernel code, %luK rwdata, %luK rodata, "
5466 "%luK init, %luK bss, %luK reserved"
5467#ifdef CONFIG_HIGHMEM
5468 ", %luK highmem"
5469#endif
5470 "%s%s)\n",
5471 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5472 codesize >> 10, datasize >> 10, rosize >> 10,
5473 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5474 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5475#ifdef CONFIG_HIGHMEM
5476 totalhigh_pages << (PAGE_SHIFT-10),
5477#endif
5478 str ? ", " : "", str ? str : "");
5479}
5480
0e0b864e 5481/**
88ca3b94
RD
5482 * set_dma_reserve - set the specified number of pages reserved in the first zone
5483 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5484 *
5485 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5486 * In the DMA zone, a significant percentage may be consumed by kernel image
5487 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5488 * function may optionally be used to account for unfreeable pages in the
5489 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5490 * smaller per-cpu batchsize.
0e0b864e
MG
5491 */
5492void __init set_dma_reserve(unsigned long new_dma_reserve)
5493{
5494 dma_reserve = new_dma_reserve;
5495}
5496
1da177e4
LT
5497void __init free_area_init(unsigned long *zones_size)
5498{
9109fb7b 5499 free_area_init_node(0, zones_size,
1da177e4
LT
5500 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5501}
1da177e4 5502
1da177e4
LT
5503static int page_alloc_cpu_notify(struct notifier_block *self,
5504 unsigned long action, void *hcpu)
5505{
5506 int cpu = (unsigned long)hcpu;
1da177e4 5507
8bb78442 5508 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5509 lru_add_drain_cpu(cpu);
9f8f2172
CL
5510 drain_pages(cpu);
5511
5512 /*
5513 * Spill the event counters of the dead processor
5514 * into the current processors event counters.
5515 * This artificially elevates the count of the current
5516 * processor.
5517 */
f8891e5e 5518 vm_events_fold_cpu(cpu);
9f8f2172
CL
5519
5520 /*
5521 * Zero the differential counters of the dead processor
5522 * so that the vm statistics are consistent.
5523 *
5524 * This is only okay since the processor is dead and cannot
5525 * race with what we are doing.
5526 */
2bb921e5 5527 cpu_vm_stats_fold(cpu);
1da177e4
LT
5528 }
5529 return NOTIFY_OK;
5530}
1da177e4
LT
5531
5532void __init page_alloc_init(void)
5533{
5534 hotcpu_notifier(page_alloc_cpu_notify, 0);
5535}
5536
cb45b0e9
HA
5537/*
5538 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5539 * or min_free_kbytes changes.
5540 */
5541static void calculate_totalreserve_pages(void)
5542{
5543 struct pglist_data *pgdat;
5544 unsigned long reserve_pages = 0;
2f6726e5 5545 enum zone_type i, j;
cb45b0e9
HA
5546
5547 for_each_online_pgdat(pgdat) {
5548 for (i = 0; i < MAX_NR_ZONES; i++) {
5549 struct zone *zone = pgdat->node_zones + i;
5550 unsigned long max = 0;
5551
5552 /* Find valid and maximum lowmem_reserve in the zone */
5553 for (j = i; j < MAX_NR_ZONES; j++) {
5554 if (zone->lowmem_reserve[j] > max)
5555 max = zone->lowmem_reserve[j];
5556 }
5557
41858966
MG
5558 /* we treat the high watermark as reserved pages. */
5559 max += high_wmark_pages(zone);
cb45b0e9 5560
b40da049
JL
5561 if (max > zone->managed_pages)
5562 max = zone->managed_pages;
cb45b0e9 5563 reserve_pages += max;
ab8fabd4
JW
5564 /*
5565 * Lowmem reserves are not available to
5566 * GFP_HIGHUSER page cache allocations and
5567 * kswapd tries to balance zones to their high
5568 * watermark. As a result, neither should be
5569 * regarded as dirtyable memory, to prevent a
5570 * situation where reclaim has to clean pages
5571 * in order to balance the zones.
5572 */
5573 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5574 }
5575 }
ab8fabd4 5576 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5577 totalreserve_pages = reserve_pages;
5578}
5579
1da177e4
LT
5580/*
5581 * setup_per_zone_lowmem_reserve - called whenever
5582 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5583 * has a correct pages reserved value, so an adequate number of
5584 * pages are left in the zone after a successful __alloc_pages().
5585 */
5586static void setup_per_zone_lowmem_reserve(void)
5587{
5588 struct pglist_data *pgdat;
2f6726e5 5589 enum zone_type j, idx;
1da177e4 5590
ec936fc5 5591 for_each_online_pgdat(pgdat) {
1da177e4
LT
5592 for (j = 0; j < MAX_NR_ZONES; j++) {
5593 struct zone *zone = pgdat->node_zones + j;
b40da049 5594 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5595
5596 zone->lowmem_reserve[j] = 0;
5597
2f6726e5
CL
5598 idx = j;
5599 while (idx) {
1da177e4
LT
5600 struct zone *lower_zone;
5601
2f6726e5
CL
5602 idx--;
5603
1da177e4
LT
5604 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5605 sysctl_lowmem_reserve_ratio[idx] = 1;
5606
5607 lower_zone = pgdat->node_zones + idx;
b40da049 5608 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5609 sysctl_lowmem_reserve_ratio[idx];
b40da049 5610 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5611 }
5612 }
5613 }
cb45b0e9
HA
5614
5615 /* update totalreserve_pages */
5616 calculate_totalreserve_pages();
1da177e4
LT
5617}
5618
cfd3da1e 5619static void __setup_per_zone_wmarks(void)
1da177e4
LT
5620{
5621 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5622 unsigned long lowmem_pages = 0;
5623 struct zone *zone;
5624 unsigned long flags;
5625
5626 /* Calculate total number of !ZONE_HIGHMEM pages */
5627 for_each_zone(zone) {
5628 if (!is_highmem(zone))
b40da049 5629 lowmem_pages += zone->managed_pages;
1da177e4
LT
5630 }
5631
5632 for_each_zone(zone) {
ac924c60
AM
5633 u64 tmp;
5634
1125b4e3 5635 spin_lock_irqsave(&zone->lock, flags);
b40da049 5636 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5637 do_div(tmp, lowmem_pages);
1da177e4
LT
5638 if (is_highmem(zone)) {
5639 /*
669ed175
NP
5640 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5641 * need highmem pages, so cap pages_min to a small
5642 * value here.
5643 *
41858966 5644 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5645 * deltas controls asynch page reclaim, and so should
5646 * not be capped for highmem.
1da177e4 5647 */
90ae8d67 5648 unsigned long min_pages;
1da177e4 5649
b40da049 5650 min_pages = zone->managed_pages / 1024;
90ae8d67 5651 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5652 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5653 } else {
669ed175
NP
5654 /*
5655 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5656 * proportionate to the zone's size.
5657 */
41858966 5658 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5659 }
5660
41858966
MG
5661 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5662 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5663
81c0a2bb
JW
5664 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5665 high_wmark_pages(zone) -
5666 low_wmark_pages(zone) -
5667 zone_page_state(zone, NR_ALLOC_BATCH));
5668
56fd56b8 5669 setup_zone_migrate_reserve(zone);
1125b4e3 5670 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5671 }
cb45b0e9
HA
5672
5673 /* update totalreserve_pages */
5674 calculate_totalreserve_pages();
1da177e4
LT
5675}
5676
cfd3da1e
MG
5677/**
5678 * setup_per_zone_wmarks - called when min_free_kbytes changes
5679 * or when memory is hot-{added|removed}
5680 *
5681 * Ensures that the watermark[min,low,high] values for each zone are set
5682 * correctly with respect to min_free_kbytes.
5683 */
5684void setup_per_zone_wmarks(void)
5685{
5686 mutex_lock(&zonelists_mutex);
5687 __setup_per_zone_wmarks();
5688 mutex_unlock(&zonelists_mutex);
5689}
5690
55a4462a 5691/*
556adecb
RR
5692 * The inactive anon list should be small enough that the VM never has to
5693 * do too much work, but large enough that each inactive page has a chance
5694 * to be referenced again before it is swapped out.
5695 *
5696 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5697 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5698 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5699 * the anonymous pages are kept on the inactive list.
5700 *
5701 * total target max
5702 * memory ratio inactive anon
5703 * -------------------------------------
5704 * 10MB 1 5MB
5705 * 100MB 1 50MB
5706 * 1GB 3 250MB
5707 * 10GB 10 0.9GB
5708 * 100GB 31 3GB
5709 * 1TB 101 10GB
5710 * 10TB 320 32GB
5711 */
1b79acc9 5712static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5713{
96cb4df5 5714 unsigned int gb, ratio;
556adecb 5715
96cb4df5 5716 /* Zone size in gigabytes */
b40da049 5717 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5718 if (gb)
556adecb 5719 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5720 else
5721 ratio = 1;
556adecb 5722
96cb4df5
MK
5723 zone->inactive_ratio = ratio;
5724}
556adecb 5725
839a4fcc 5726static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5727{
5728 struct zone *zone;
5729
5730 for_each_zone(zone)
5731 calculate_zone_inactive_ratio(zone);
556adecb
RR
5732}
5733
1da177e4
LT
5734/*
5735 * Initialise min_free_kbytes.
5736 *
5737 * For small machines we want it small (128k min). For large machines
5738 * we want it large (64MB max). But it is not linear, because network
5739 * bandwidth does not increase linearly with machine size. We use
5740 *
b8af2941 5741 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5742 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5743 *
5744 * which yields
5745 *
5746 * 16MB: 512k
5747 * 32MB: 724k
5748 * 64MB: 1024k
5749 * 128MB: 1448k
5750 * 256MB: 2048k
5751 * 512MB: 2896k
5752 * 1024MB: 4096k
5753 * 2048MB: 5792k
5754 * 4096MB: 8192k
5755 * 8192MB: 11584k
5756 * 16384MB: 16384k
5757 */
1b79acc9 5758int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5759{
5760 unsigned long lowmem_kbytes;
5f12733e 5761 int new_min_free_kbytes;
1da177e4
LT
5762
5763 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5764 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5765
5766 if (new_min_free_kbytes > user_min_free_kbytes) {
5767 min_free_kbytes = new_min_free_kbytes;
5768 if (min_free_kbytes < 128)
5769 min_free_kbytes = 128;
5770 if (min_free_kbytes > 65536)
5771 min_free_kbytes = 65536;
5772 } else {
5773 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5774 new_min_free_kbytes, user_min_free_kbytes);
5775 }
bc75d33f 5776 setup_per_zone_wmarks();
a6cccdc3 5777 refresh_zone_stat_thresholds();
1da177e4 5778 setup_per_zone_lowmem_reserve();
556adecb 5779 setup_per_zone_inactive_ratio();
1da177e4
LT
5780 return 0;
5781}
bc75d33f 5782module_init(init_per_zone_wmark_min)
1da177e4
LT
5783
5784/*
b8af2941 5785 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5786 * that we can call two helper functions whenever min_free_kbytes
5787 * changes.
5788 */
b8af2941 5789int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5790 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5791{
da8c757b
HP
5792 int rc;
5793
5794 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5795 if (rc)
5796 return rc;
5797
5f12733e
MH
5798 if (write) {
5799 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5800 setup_per_zone_wmarks();
5f12733e 5801 }
1da177e4
LT
5802 return 0;
5803}
5804
9614634f
CL
5805#ifdef CONFIG_NUMA
5806int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5807 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5808{
5809 struct zone *zone;
5810 int rc;
5811
8d65af78 5812 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5813 if (rc)
5814 return rc;
5815
5816 for_each_zone(zone)
b40da049 5817 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5818 sysctl_min_unmapped_ratio) / 100;
5819 return 0;
5820}
0ff38490
CL
5821
5822int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5823 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5824{
5825 struct zone *zone;
5826 int rc;
5827
8d65af78 5828 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5829 if (rc)
5830 return rc;
5831
5832 for_each_zone(zone)
b40da049 5833 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5834 sysctl_min_slab_ratio) / 100;
5835 return 0;
5836}
9614634f
CL
5837#endif
5838
1da177e4
LT
5839/*
5840 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5841 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5842 * whenever sysctl_lowmem_reserve_ratio changes.
5843 *
5844 * The reserve ratio obviously has absolutely no relation with the
41858966 5845 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5846 * if in function of the boot time zone sizes.
5847 */
5848int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5849 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5850{
8d65af78 5851 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5852 setup_per_zone_lowmem_reserve();
5853 return 0;
5854}
5855
8ad4b1fb
RS
5856/*
5857 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5858 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5859 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5860 */
8ad4b1fb 5861int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5862 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5863{
5864 struct zone *zone;
5865 unsigned int cpu;
5866 int ret;
5867
8d65af78 5868 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5869 if (!write || (ret < 0))
8ad4b1fb 5870 return ret;
c8e251fa
CS
5871
5872 mutex_lock(&pcp_batch_high_lock);
364df0eb 5873 for_each_populated_zone(zone) {
22a7f12b
CS
5874 unsigned long high;
5875 high = zone->managed_pages / percpu_pagelist_fraction;
5876 for_each_possible_cpu(cpu)
3664033c
CS
5877 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5878 high);
8ad4b1fb 5879 }
c8e251fa 5880 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5881 return 0;
5882}
5883
f034b5d4 5884int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5885
5886#ifdef CONFIG_NUMA
5887static int __init set_hashdist(char *str)
5888{
5889 if (!str)
5890 return 0;
5891 hashdist = simple_strtoul(str, &str, 0);
5892 return 1;
5893}
5894__setup("hashdist=", set_hashdist);
5895#endif
5896
5897/*
5898 * allocate a large system hash table from bootmem
5899 * - it is assumed that the hash table must contain an exact power-of-2
5900 * quantity of entries
5901 * - limit is the number of hash buckets, not the total allocation size
5902 */
5903void *__init alloc_large_system_hash(const char *tablename,
5904 unsigned long bucketsize,
5905 unsigned long numentries,
5906 int scale,
5907 int flags,
5908 unsigned int *_hash_shift,
5909 unsigned int *_hash_mask,
31fe62b9
TB
5910 unsigned long low_limit,
5911 unsigned long high_limit)
1da177e4 5912{
31fe62b9 5913 unsigned long long max = high_limit;
1da177e4
LT
5914 unsigned long log2qty, size;
5915 void *table = NULL;
5916
5917 /* allow the kernel cmdline to have a say */
5918 if (!numentries) {
5919 /* round applicable memory size up to nearest megabyte */
04903664 5920 numentries = nr_kernel_pages;
a7e83318
JZ
5921
5922 /* It isn't necessary when PAGE_SIZE >= 1MB */
5923 if (PAGE_SHIFT < 20)
5924 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5925
5926 /* limit to 1 bucket per 2^scale bytes of low memory */
5927 if (scale > PAGE_SHIFT)
5928 numentries >>= (scale - PAGE_SHIFT);
5929 else
5930 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5931
5932 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5933 if (unlikely(flags & HASH_SMALL)) {
5934 /* Makes no sense without HASH_EARLY */
5935 WARN_ON(!(flags & HASH_EARLY));
5936 if (!(numentries >> *_hash_shift)) {
5937 numentries = 1UL << *_hash_shift;
5938 BUG_ON(!numentries);
5939 }
5940 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5941 numentries = PAGE_SIZE / bucketsize;
1da177e4 5942 }
6e692ed3 5943 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5944
5945 /* limit allocation size to 1/16 total memory by default */
5946 if (max == 0) {
5947 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5948 do_div(max, bucketsize);
5949 }
074b8517 5950 max = min(max, 0x80000000ULL);
1da177e4 5951
31fe62b9
TB
5952 if (numentries < low_limit)
5953 numentries = low_limit;
1da177e4
LT
5954 if (numentries > max)
5955 numentries = max;
5956
f0d1b0b3 5957 log2qty = ilog2(numentries);
1da177e4
LT
5958
5959 do {
5960 size = bucketsize << log2qty;
5961 if (flags & HASH_EARLY)
6782832e 5962 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5963 else if (hashdist)
5964 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5965 else {
1037b83b
ED
5966 /*
5967 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5968 * some pages at the end of hash table which
5969 * alloc_pages_exact() automatically does
1037b83b 5970 */
264ef8a9 5971 if (get_order(size) < MAX_ORDER) {
a1dd268c 5972 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5973 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5974 }
1da177e4
LT
5975 }
5976 } while (!table && size > PAGE_SIZE && --log2qty);
5977
5978 if (!table)
5979 panic("Failed to allocate %s hash table\n", tablename);
5980
f241e660 5981 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5982 tablename,
f241e660 5983 (1UL << log2qty),
f0d1b0b3 5984 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5985 size);
5986
5987 if (_hash_shift)
5988 *_hash_shift = log2qty;
5989 if (_hash_mask)
5990 *_hash_mask = (1 << log2qty) - 1;
5991
5992 return table;
5993}
a117e66e 5994
835c134e
MG
5995/* Return a pointer to the bitmap storing bits affecting a block of pages */
5996static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5997 unsigned long pfn)
5998{
5999#ifdef CONFIG_SPARSEMEM
6000 return __pfn_to_section(pfn)->pageblock_flags;
6001#else
6002 return zone->pageblock_flags;
6003#endif /* CONFIG_SPARSEMEM */
6004}
6005
6006static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6007{
6008#ifdef CONFIG_SPARSEMEM
6009 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6010 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6011#else
c060f943 6012 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6013 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6014#endif /* CONFIG_SPARSEMEM */
6015}
6016
6017/**
d9c23400 6018 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6019 * @page: The page within the block of interest
6020 * @start_bitidx: The first bit of interest to retrieve
6021 * @end_bitidx: The last bit of interest
6022 * returns pageblock_bits flags
6023 */
6024unsigned long get_pageblock_flags_group(struct page *page,
6025 int start_bitidx, int end_bitidx)
6026{
6027 struct zone *zone;
6028 unsigned long *bitmap;
6029 unsigned long pfn, bitidx;
6030 unsigned long flags = 0;
6031 unsigned long value = 1;
6032
6033 zone = page_zone(page);
6034 pfn = page_to_pfn(page);
6035 bitmap = get_pageblock_bitmap(zone, pfn);
6036 bitidx = pfn_to_bitidx(zone, pfn);
6037
6038 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6039 if (test_bit(bitidx + start_bitidx, bitmap))
6040 flags |= value;
6220ec78 6041
835c134e
MG
6042 return flags;
6043}
6044
6045/**
d9c23400 6046 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6047 * @page: The page within the block of interest
6048 * @start_bitidx: The first bit of interest
6049 * @end_bitidx: The last bit of interest
6050 * @flags: The flags to set
6051 */
6052void set_pageblock_flags_group(struct page *page, unsigned long flags,
6053 int start_bitidx, int end_bitidx)
6054{
6055 struct zone *zone;
6056 unsigned long *bitmap;
6057 unsigned long pfn, bitidx;
6058 unsigned long value = 1;
6059
6060 zone = page_zone(page);
6061 pfn = page_to_pfn(page);
6062 bitmap = get_pageblock_bitmap(zone, pfn);
6063 bitidx = pfn_to_bitidx(zone, pfn);
309381fe 6064 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e
MG
6065
6066 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6067 if (flags & value)
6068 __set_bit(bitidx + start_bitidx, bitmap);
6069 else
6070 __clear_bit(bitidx + start_bitidx, bitmap);
6071}
a5d76b54
KH
6072
6073/*
80934513
MK
6074 * This function checks whether pageblock includes unmovable pages or not.
6075 * If @count is not zero, it is okay to include less @count unmovable pages
6076 *
b8af2941 6077 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6078 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6079 * expect this function should be exact.
a5d76b54 6080 */
b023f468
WC
6081bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6082 bool skip_hwpoisoned_pages)
49ac8255
KH
6083{
6084 unsigned long pfn, iter, found;
47118af0
MN
6085 int mt;
6086
49ac8255
KH
6087 /*
6088 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6089 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6090 */
6091 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6092 return false;
47118af0
MN
6093 mt = get_pageblock_migratetype(page);
6094 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6095 return false;
49ac8255
KH
6096
6097 pfn = page_to_pfn(page);
6098 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6099 unsigned long check = pfn + iter;
6100
29723fcc 6101 if (!pfn_valid_within(check))
49ac8255 6102 continue;
29723fcc 6103
49ac8255 6104 page = pfn_to_page(check);
c8721bbb
NH
6105
6106 /*
6107 * Hugepages are not in LRU lists, but they're movable.
6108 * We need not scan over tail pages bacause we don't
6109 * handle each tail page individually in migration.
6110 */
6111 if (PageHuge(page)) {
6112 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6113 continue;
6114 }
6115
97d255c8
MK
6116 /*
6117 * We can't use page_count without pin a page
6118 * because another CPU can free compound page.
6119 * This check already skips compound tails of THP
6120 * because their page->_count is zero at all time.
6121 */
6122 if (!atomic_read(&page->_count)) {
49ac8255
KH
6123 if (PageBuddy(page))
6124 iter += (1 << page_order(page)) - 1;
6125 continue;
6126 }
97d255c8 6127
b023f468
WC
6128 /*
6129 * The HWPoisoned page may be not in buddy system, and
6130 * page_count() is not 0.
6131 */
6132 if (skip_hwpoisoned_pages && PageHWPoison(page))
6133 continue;
6134
49ac8255
KH
6135 if (!PageLRU(page))
6136 found++;
6137 /*
6138 * If there are RECLAIMABLE pages, we need to check it.
6139 * But now, memory offline itself doesn't call shrink_slab()
6140 * and it still to be fixed.
6141 */
6142 /*
6143 * If the page is not RAM, page_count()should be 0.
6144 * we don't need more check. This is an _used_ not-movable page.
6145 *
6146 * The problematic thing here is PG_reserved pages. PG_reserved
6147 * is set to both of a memory hole page and a _used_ kernel
6148 * page at boot.
6149 */
6150 if (found > count)
80934513 6151 return true;
49ac8255 6152 }
80934513 6153 return false;
49ac8255
KH
6154}
6155
6156bool is_pageblock_removable_nolock(struct page *page)
6157{
656a0706
MH
6158 struct zone *zone;
6159 unsigned long pfn;
687875fb
MH
6160
6161 /*
6162 * We have to be careful here because we are iterating over memory
6163 * sections which are not zone aware so we might end up outside of
6164 * the zone but still within the section.
656a0706
MH
6165 * We have to take care about the node as well. If the node is offline
6166 * its NODE_DATA will be NULL - see page_zone.
687875fb 6167 */
656a0706
MH
6168 if (!node_online(page_to_nid(page)))
6169 return false;
6170
6171 zone = page_zone(page);
6172 pfn = page_to_pfn(page);
108bcc96 6173 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6174 return false;
6175
b023f468 6176 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6177}
0c0e6195 6178
041d3a8c
MN
6179#ifdef CONFIG_CMA
6180
6181static unsigned long pfn_max_align_down(unsigned long pfn)
6182{
6183 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6184 pageblock_nr_pages) - 1);
6185}
6186
6187static unsigned long pfn_max_align_up(unsigned long pfn)
6188{
6189 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6190 pageblock_nr_pages));
6191}
6192
041d3a8c 6193/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6194static int __alloc_contig_migrate_range(struct compact_control *cc,
6195 unsigned long start, unsigned long end)
041d3a8c
MN
6196{
6197 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6198 unsigned long nr_reclaimed;
041d3a8c
MN
6199 unsigned long pfn = start;
6200 unsigned int tries = 0;
6201 int ret = 0;
6202
be49a6e1 6203 migrate_prep();
041d3a8c 6204
bb13ffeb 6205 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6206 if (fatal_signal_pending(current)) {
6207 ret = -EINTR;
6208 break;
6209 }
6210
bb13ffeb
MG
6211 if (list_empty(&cc->migratepages)) {
6212 cc->nr_migratepages = 0;
6213 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6214 pfn, end, true);
041d3a8c
MN
6215 if (!pfn) {
6216 ret = -EINTR;
6217 break;
6218 }
6219 tries = 0;
6220 } else if (++tries == 5) {
6221 ret = ret < 0 ? ret : -EBUSY;
6222 break;
6223 }
6224
beb51eaa
MK
6225 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6226 &cc->migratepages);
6227 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6228
9c620e2b
HD
6229 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6230 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6231 }
2a6f5124
SP
6232 if (ret < 0) {
6233 putback_movable_pages(&cc->migratepages);
6234 return ret;
6235 }
6236 return 0;
041d3a8c
MN
6237}
6238
6239/**
6240 * alloc_contig_range() -- tries to allocate given range of pages
6241 * @start: start PFN to allocate
6242 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6243 * @migratetype: migratetype of the underlaying pageblocks (either
6244 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6245 * in range must have the same migratetype and it must
6246 * be either of the two.
041d3a8c
MN
6247 *
6248 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6249 * aligned, however it's the caller's responsibility to guarantee that
6250 * we are the only thread that changes migrate type of pageblocks the
6251 * pages fall in.
6252 *
6253 * The PFN range must belong to a single zone.
6254 *
6255 * Returns zero on success or negative error code. On success all
6256 * pages which PFN is in [start, end) are allocated for the caller and
6257 * need to be freed with free_contig_range().
6258 */
0815f3d8
MN
6259int alloc_contig_range(unsigned long start, unsigned long end,
6260 unsigned migratetype)
041d3a8c 6261{
041d3a8c
MN
6262 unsigned long outer_start, outer_end;
6263 int ret = 0, order;
6264
bb13ffeb
MG
6265 struct compact_control cc = {
6266 .nr_migratepages = 0,
6267 .order = -1,
6268 .zone = page_zone(pfn_to_page(start)),
6269 .sync = true,
6270 .ignore_skip_hint = true,
6271 };
6272 INIT_LIST_HEAD(&cc.migratepages);
6273
041d3a8c
MN
6274 /*
6275 * What we do here is we mark all pageblocks in range as
6276 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6277 * have different sizes, and due to the way page allocator
6278 * work, we align the range to biggest of the two pages so
6279 * that page allocator won't try to merge buddies from
6280 * different pageblocks and change MIGRATE_ISOLATE to some
6281 * other migration type.
6282 *
6283 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6284 * migrate the pages from an unaligned range (ie. pages that
6285 * we are interested in). This will put all the pages in
6286 * range back to page allocator as MIGRATE_ISOLATE.
6287 *
6288 * When this is done, we take the pages in range from page
6289 * allocator removing them from the buddy system. This way
6290 * page allocator will never consider using them.
6291 *
6292 * This lets us mark the pageblocks back as
6293 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6294 * aligned range but not in the unaligned, original range are
6295 * put back to page allocator so that buddy can use them.
6296 */
6297
6298 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6299 pfn_max_align_up(end), migratetype,
6300 false);
041d3a8c 6301 if (ret)
86a595f9 6302 return ret;
041d3a8c 6303
bb13ffeb 6304 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6305 if (ret)
6306 goto done;
6307
6308 /*
6309 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6310 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6311 * more, all pages in [start, end) are free in page allocator.
6312 * What we are going to do is to allocate all pages from
6313 * [start, end) (that is remove them from page allocator).
6314 *
6315 * The only problem is that pages at the beginning and at the
6316 * end of interesting range may be not aligned with pages that
6317 * page allocator holds, ie. they can be part of higher order
6318 * pages. Because of this, we reserve the bigger range and
6319 * once this is done free the pages we are not interested in.
6320 *
6321 * We don't have to hold zone->lock here because the pages are
6322 * isolated thus they won't get removed from buddy.
6323 */
6324
6325 lru_add_drain_all();
6326 drain_all_pages();
6327
6328 order = 0;
6329 outer_start = start;
6330 while (!PageBuddy(pfn_to_page(outer_start))) {
6331 if (++order >= MAX_ORDER) {
6332 ret = -EBUSY;
6333 goto done;
6334 }
6335 outer_start &= ~0UL << order;
6336 }
6337
6338 /* Make sure the range is really isolated. */
b023f468 6339 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6340 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6341 outer_start, end);
6342 ret = -EBUSY;
6343 goto done;
6344 }
6345
49f223a9
MS
6346
6347 /* Grab isolated pages from freelists. */
bb13ffeb 6348 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6349 if (!outer_end) {
6350 ret = -EBUSY;
6351 goto done;
6352 }
6353
6354 /* Free head and tail (if any) */
6355 if (start != outer_start)
6356 free_contig_range(outer_start, start - outer_start);
6357 if (end != outer_end)
6358 free_contig_range(end, outer_end - end);
6359
6360done:
6361 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6362 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6363 return ret;
6364}
6365
6366void free_contig_range(unsigned long pfn, unsigned nr_pages)
6367{
bcc2b02f
MS
6368 unsigned int count = 0;
6369
6370 for (; nr_pages--; pfn++) {
6371 struct page *page = pfn_to_page(pfn);
6372
6373 count += page_count(page) != 1;
6374 __free_page(page);
6375 }
6376 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6377}
6378#endif
6379
4ed7e022 6380#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6381/*
6382 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6383 * page high values need to be recalulated.
6384 */
4ed7e022
JL
6385void __meminit zone_pcp_update(struct zone *zone)
6386{
0a647f38 6387 unsigned cpu;
c8e251fa 6388 mutex_lock(&pcp_batch_high_lock);
0a647f38 6389 for_each_possible_cpu(cpu)
169f6c19
CS
6390 pageset_set_high_and_batch(zone,
6391 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6392 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6393}
6394#endif
6395
340175b7
JL
6396void zone_pcp_reset(struct zone *zone)
6397{
6398 unsigned long flags;
5a883813
MK
6399 int cpu;
6400 struct per_cpu_pageset *pset;
340175b7
JL
6401
6402 /* avoid races with drain_pages() */
6403 local_irq_save(flags);
6404 if (zone->pageset != &boot_pageset) {
5a883813
MK
6405 for_each_online_cpu(cpu) {
6406 pset = per_cpu_ptr(zone->pageset, cpu);
6407 drain_zonestat(zone, pset);
6408 }
340175b7
JL
6409 free_percpu(zone->pageset);
6410 zone->pageset = &boot_pageset;
6411 }
6412 local_irq_restore(flags);
6413}
6414
6dcd73d7 6415#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6416/*
6417 * All pages in the range must be isolated before calling this.
6418 */
6419void
6420__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6421{
6422 struct page *page;
6423 struct zone *zone;
6424 int order, i;
6425 unsigned long pfn;
6426 unsigned long flags;
6427 /* find the first valid pfn */
6428 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6429 if (pfn_valid(pfn))
6430 break;
6431 if (pfn == end_pfn)
6432 return;
6433 zone = page_zone(pfn_to_page(pfn));
6434 spin_lock_irqsave(&zone->lock, flags);
6435 pfn = start_pfn;
6436 while (pfn < end_pfn) {
6437 if (!pfn_valid(pfn)) {
6438 pfn++;
6439 continue;
6440 }
6441 page = pfn_to_page(pfn);
b023f468
WC
6442 /*
6443 * The HWPoisoned page may be not in buddy system, and
6444 * page_count() is not 0.
6445 */
6446 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6447 pfn++;
6448 SetPageReserved(page);
6449 continue;
6450 }
6451
0c0e6195
KH
6452 BUG_ON(page_count(page));
6453 BUG_ON(!PageBuddy(page));
6454 order = page_order(page);
6455#ifdef CONFIG_DEBUG_VM
6456 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6457 pfn, 1 << order, end_pfn);
6458#endif
6459 list_del(&page->lru);
6460 rmv_page_order(page);
6461 zone->free_area[order].nr_free--;
0c0e6195
KH
6462 for (i = 0; i < (1 << order); i++)
6463 SetPageReserved((page+i));
6464 pfn += (1 << order);
6465 }
6466 spin_unlock_irqrestore(&zone->lock, flags);
6467}
6468#endif
8d22ba1b
WF
6469
6470#ifdef CONFIG_MEMORY_FAILURE
6471bool is_free_buddy_page(struct page *page)
6472{
6473 struct zone *zone = page_zone(page);
6474 unsigned long pfn = page_to_pfn(page);
6475 unsigned long flags;
6476 int order;
6477
6478 spin_lock_irqsave(&zone->lock, flags);
6479 for (order = 0; order < MAX_ORDER; order++) {
6480 struct page *page_head = page - (pfn & ((1 << order) - 1));
6481
6482 if (PageBuddy(page_head) && page_order(page_head) >= order)
6483 break;
6484 }
6485 spin_unlock_irqrestore(&zone->lock, flags);
6486
6487 return order < MAX_ORDER;
6488}
6489#endif
718a3821 6490
51300cef 6491static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6492 {1UL << PG_locked, "locked" },
6493 {1UL << PG_error, "error" },
6494 {1UL << PG_referenced, "referenced" },
6495 {1UL << PG_uptodate, "uptodate" },
6496 {1UL << PG_dirty, "dirty" },
6497 {1UL << PG_lru, "lru" },
6498 {1UL << PG_active, "active" },
6499 {1UL << PG_slab, "slab" },
6500 {1UL << PG_owner_priv_1, "owner_priv_1" },
6501 {1UL << PG_arch_1, "arch_1" },
6502 {1UL << PG_reserved, "reserved" },
6503 {1UL << PG_private, "private" },
6504 {1UL << PG_private_2, "private_2" },
6505 {1UL << PG_writeback, "writeback" },
6506#ifdef CONFIG_PAGEFLAGS_EXTENDED
6507 {1UL << PG_head, "head" },
6508 {1UL << PG_tail, "tail" },
6509#else
6510 {1UL << PG_compound, "compound" },
6511#endif
6512 {1UL << PG_swapcache, "swapcache" },
6513 {1UL << PG_mappedtodisk, "mappedtodisk" },
6514 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6515 {1UL << PG_swapbacked, "swapbacked" },
6516 {1UL << PG_unevictable, "unevictable" },
6517#ifdef CONFIG_MMU
6518 {1UL << PG_mlocked, "mlocked" },
6519#endif
6520#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6521 {1UL << PG_uncached, "uncached" },
6522#endif
6523#ifdef CONFIG_MEMORY_FAILURE
6524 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6525#endif
6526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6527 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6528#endif
718a3821
WF
6529};
6530
6531static void dump_page_flags(unsigned long flags)
6532{
6533 const char *delim = "";
6534 unsigned long mask;
6535 int i;
6536
51300cef 6537 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6538
718a3821
WF
6539 printk(KERN_ALERT "page flags: %#lx(", flags);
6540
6541 /* remove zone id */
6542 flags &= (1UL << NR_PAGEFLAGS) - 1;
6543
51300cef 6544 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6545
6546 mask = pageflag_names[i].mask;
6547 if ((flags & mask) != mask)
6548 continue;
6549
6550 flags &= ~mask;
6551 printk("%s%s", delim, pageflag_names[i].name);
6552 delim = "|";
6553 }
6554
6555 /* check for left over flags */
6556 if (flags)
6557 printk("%s%#lx", delim, flags);
6558
6559 printk(")\n");
6560}
6561
d230dec1
KS
6562void dump_page_badflags(struct page *page, const char *reason,
6563 unsigned long badflags)
718a3821
WF
6564{
6565 printk(KERN_ALERT
6566 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6567 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6568 page->mapping, page->index);
6569 dump_page_flags(page->flags);
f0b791a3
DH
6570 if (reason)
6571 pr_alert("page dumped because: %s\n", reason);
6572 if (page->flags & badflags) {
6573 pr_alert("bad because of flags:\n");
6574 dump_page_flags(page->flags & badflags);
6575 }
f212ad7c 6576 mem_cgroup_print_bad_page(page);
718a3821 6577}
f0b791a3 6578
d230dec1 6579void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6580{
6581 dump_page_badflags(page, reason, 0);
6582}
ed12d845 6583EXPORT_SYMBOL(dump_page);
This page took 1.546803 seconds and 5 git commands to generate.