gdb: move displaced stepping logic to gdbarch, allow starting concurrent displaced...
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
f9e9243a
UW
328# The ABI default bit-size and format for "half", "float", "double", and
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
ea480a30
SM
334v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 342
53375380
PA
343# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344# starting with C++11.
ea480a30 345v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 346# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 347v;int;wchar_signed;;;1;-1;1
53375380 348
9b790ce7
UW
349# Returns the floating-point format to be used for values of length LENGTH.
350# NAME, if non-NULL, is the type name, which may be used to distinguish
351# different target formats of the same length.
ea480a30 352m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 353
52204a0b
DT
354# For most targets, a pointer on the target and its representation as an
355# address in GDB have the same size and "look the same". For such a
17a912b6 356# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
357# / addr_bit will be set from it.
358#
17a912b6 359# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
360# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361# gdbarch_address_to_pointer as well.
52204a0b
DT
362#
363# ptr_bit is the size of a pointer on the target
ea480a30 364v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 365# addr_bit is the size of a target address as represented in gdb
ea480a30 366v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 367#
8da614df
CV
368# dwarf2_addr_size is the target address size as used in the Dwarf debug
369# info. For .debug_frame FDEs, this is supposed to be the target address
370# size from the associated CU header, and which is equivalent to the
371# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372# Unfortunately there is no good way to determine this value. Therefore
373# dwarf2_addr_size simply defaults to the target pointer size.
374#
375# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376# defined using the target's pointer size so far.
377#
378# Note that dwarf2_addr_size only needs to be redefined by a target if the
379# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380# and if Dwarf versions < 4 need to be supported.
ea480a30 381v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 382#
4e409299 383# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 384v;int;char_signed;;;1;-1;1
4e409299 385#
c113ed0c 386F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 387F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
388# Function for getting target's idea of a frame pointer. FIXME: GDB's
389# whole scheme for dealing with "frames" and "frame pointers" needs a
390# serious shakedown.
ea480a30 391m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 392#
849d0ba8 393M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
394# Read a register into a new struct value. If the register is wholly
395# or partly unavailable, this should call mark_value_bytes_unavailable
396# as appropriate. If this is defined, then pseudo_register_read will
397# never be called.
849d0ba8 398M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 399M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 400#
ea480a30 401v;int;num_regs;;;0;-1
0aba1244
EZ
402# This macro gives the number of pseudo-registers that live in the
403# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
404# These pseudo-registers may be aliases for other registers,
405# combinations of other registers, or they may be computed by GDB.
ea480a30 406v;int;num_pseudo_regs;;;0;0;;0
c2169756 407
175ff332
HZ
408# Assemble agent expression bytecode to collect pseudo-register REG.
409# Return -1 if something goes wrong, 0 otherwise.
ea480a30 410M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
411
412# Assemble agent expression bytecode to push the value of pseudo-register
413# REG on the interpreter stack.
414# Return -1 if something goes wrong, 0 otherwise.
ea480a30 415M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 416
012b3a21
WT
417# Some targets/architectures can do extra processing/display of
418# segmentation faults. E.g., Intel MPX boundary faults.
419# Call the architecture dependent function to handle the fault.
420# UIOUT is the output stream where the handler will place information.
ea480a30 421M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 422
c2169756
AC
423# GDB's standard (or well known) register numbers. These can map onto
424# a real register or a pseudo (computed) register or not be defined at
1200cd6e 425# all (-1).
3e8c568d 426# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
427v;int;sp_regnum;;;-1;-1;;0
428v;int;pc_regnum;;;-1;-1;;0
429v;int;ps_regnum;;;-1;-1;;0
430v;int;fp0_regnum;;;0;-1;;0
88c72b7d 431# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 432m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 433# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 434m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 435# Convert from an sdb register number to an internal gdb register number.
ea480a30 436m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 437# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 438# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
439m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440m;const char *;register_name;int regnr;regnr;;0
9c04cab7 441
7b9ee6a8
DJ
442# Return the type of a register specified by the architecture. Only
443# the register cache should call this function directly; others should
444# use "register_type".
ea480a30 445M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 446
8bcb5208
AB
447# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448# a dummy frame. A dummy frame is created before an inferior call,
449# the frame_id returned here must match the frame_id that was built
450# for the inferior call. Usually this means the returned frame_id's
451# stack address should match the address returned by
452# gdbarch_push_dummy_call, and the returned frame_id's code address
453# should match the address at which the breakpoint was set in the dummy
454# frame.
455m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 456# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 457# deprecated_fp_regnum.
ea480a30 458v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 459
cf84fa6b 460M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
461v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 463
7eb89530 464# Return true if the code of FRAME is writable.
ea480a30 465m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 466
ea480a30
SM
467m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
470# MAP a GDB RAW register number onto a simulator register number. See
471# also include/...-sim.h.
ea480a30
SM
472m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
475
476# Determine the address where a longjmp will land and save this address
477# in PC. Return nonzero on success.
478#
479# FRAME corresponds to the longjmp frame.
ea480a30 480F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 481
104c1213 482#
ea480a30 483v;int;believe_pcc_promotion;;;;;;;
104c1213 484#
ea480a30
SM
485m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 488# Construct a value representing the contents of register REGNUM in
2ed3c037 489# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
490# allocate and return a struct value with all value attributes
491# (but not the value contents) filled in.
ea480a30 492m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 493#
ea480a30
SM
494m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 497
6a3a010b
MR
498# Return the return-value convention that will be used by FUNCTION
499# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
500# case the return convention is computed based only on VALTYPE.
501#
502# If READBUF is not NULL, extract the return value and save it in this buffer.
503#
504# If WRITEBUF is not NULL, it contains a return value which will be
505# stored into the appropriate register. This can be used when we want
506# to force the value returned by a function (see the "return" command
507# for instance).
ea480a30 508M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 509
18648a37
YQ
510# Return true if the return value of function is stored in the first hidden
511# parameter. In theory, this feature should be language-dependent, specified
512# by language and its ABI, such as C++. Unfortunately, compiler may
513# implement it to a target-dependent feature. So that we need such hook here
514# to be aware of this in GDB.
ea480a30 515m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 516
ea480a30
SM
517m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
519# On some platforms, a single function may provide multiple entry points,
520# e.g. one that is used for function-pointer calls and a different one
521# that is used for direct function calls.
522# In order to ensure that breakpoints set on the function will trigger
523# no matter via which entry point the function is entered, a platform
524# may provide the skip_entrypoint callback. It is called with IP set
525# to the main entry point of a function (as determined by the symbol table),
526# and should return the address of the innermost entry point, where the
527# actual breakpoint needs to be set. Note that skip_entrypoint is used
528# by GDB common code even when debugging optimized code, where skip_prologue
529# is not used.
ea480a30 530M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 531
ea480a30
SM
532f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
534
535# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 536m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
537
538# Return the software breakpoint from KIND. KIND can have target
539# specific meaning like the Z0 kind parameter.
540# SIZE is set to the software breakpoint's length in memory.
ea480a30 541m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 542
833b7ab5
YQ
543# Return the breakpoint kind for this target based on the current
544# processor state (e.g. the current instruction mode on ARM) and the
545# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 546m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 547
ea480a30
SM
548M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
552
553# A function can be addressed by either it's "pointer" (possibly a
554# descriptor address) or "entry point" (first executable instruction).
555# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 556# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
557# a simplified subset of that functionality - the function's address
558# corresponds to the "function pointer" and the function's start
559# corresponds to the "function entry point" - and hence is redundant.
560
ea480a30 561v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 562
123dc839
DJ
563# Return the remote protocol register number associated with this
564# register. Normally the identity mapping.
ea480a30 565m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 566
b2756930 567# Fetch the target specific address used to represent a load module.
ea480a30 568F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
569
570# Return the thread-local address at OFFSET in the thread-local
571# storage for the thread PTID and the shared library or executable
572# file given by LM_ADDR. If that block of thread-local storage hasn't
573# been allocated yet, this function may throw an error. LM_ADDR may
574# be zero for statically linked multithreaded inferiors.
575
576M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 577#
ea480a30 578v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
579m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
581# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582# frame-base. Enable frame-base before frame-unwind.
ea480a30 583F;int;frame_num_args;struct frame_info *frame;frame
104c1213 584#
ea480a30
SM
585M;CORE_ADDR;frame_align;CORE_ADDR address;address
586m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587v;int;frame_red_zone_size
f0d4cc9e 588#
ea480a30 589m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
590# On some machines there are bits in addresses which are not really
591# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 592# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
593# we get a "real" address such as one would find in a symbol table.
594# This is used only for addresses of instructions, and even then I'm
595# not sure it's used in all contexts. It exists to deal with there
596# being a few stray bits in the PC which would mislead us, not as some
597# sort of generic thing to handle alignment or segmentation (it's
598# possible it should be in TARGET_READ_PC instead).
ea480a30 599m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 600
a738ea1d
YQ
601# On some machines, not all bits of an address word are significant.
602# For example, on AArch64, the top bits of an address known as the "tag"
603# are ignored by the kernel, the hardware, etc. and can be regarded as
604# additional data associated with the address.
5969f0db 605v;int;significant_addr_bit;;;;;;0
a738ea1d 606
e6590a1b
UW
607# FIXME/cagney/2001-01-18: This should be split in two. A target method that
608# indicates if the target needs software single step. An ISA method to
609# implement it.
610#
e6590a1b
UW
611# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612# target can single step. If not, then implement single step using breakpoints.
64c4637f 613#
93f9a11f
YQ
614# Return a vector of addresses on which the software single step
615# breakpoints should be inserted. NULL means software single step is
616# not used.
617# Multiple breakpoints may be inserted for some instructions such as
618# conditional branch. However, each implementation must always evaluate
619# the condition and only put the breakpoint at the branch destination if
620# the condition is true, so that we ensure forward progress when stepping
621# past a conditional branch to self.
a0ff9e1a 622F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 623
3352ef37
AC
624# Return non-zero if the processor is executing a delay slot and a
625# further single-step is needed before the instruction finishes.
ea480a30 626M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 627# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 628# disassembler. Perhaps objdump can handle it?
39503f82 629f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 630f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
631
632
cfd8ab24 633# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
634# evaluates non-zero, this is the address where the debugger will place
635# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 636m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 637# Some systems also have trampoline code for returning from shared libs.
ea480a30 638m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 639
1d509aa6
MM
640# Return true if PC lies inside an indirect branch thunk.
641m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
c12260ac
CV
643# A target might have problems with watchpoints as soon as the stack
644# frame of the current function has been destroyed. This mostly happens
c9cf6e20 645# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
646# is defined to return a non-zero value if either the given addr is one
647# instruction after the stack destroying instruction up to the trailing
648# return instruction or if we can figure out that the stack frame has
649# already been invalidated regardless of the value of addr. Targets
650# which don't suffer from that problem could just let this functionality
651# untouched.
ea480a30 652m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
653# Process an ELF symbol in the minimal symbol table in a backend-specific
654# way. Normally this hook is supposed to do nothing, however if required,
655# then this hook can be used to apply tranformations to symbols that are
656# considered special in some way. For example the MIPS backend uses it
657# to interpret \`st_other' information to mark compressed code symbols so
658# that they can be treated in the appropriate manner in the processing of
659# the main symbol table and DWARF-2 records.
ea480a30
SM
660F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
662# Process a symbol in the main symbol table in a backend-specific way.
663# Normally this hook is supposed to do nothing, however if required,
664# then this hook can be used to apply tranformations to symbols that
665# are considered special in some way. This is currently used by the
666# MIPS backend to make sure compressed code symbols have the ISA bit
667# set. This in turn is needed for symbol values seen in GDB to match
668# the values used at the runtime by the program itself, for function
669# and label references.
ea480a30 670f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
671# Adjust the address retrieved from a DWARF-2 record other than a line
672# entry in a backend-specific way. Normally this hook is supposed to
673# return the address passed unchanged, however if that is incorrect for
674# any reason, then this hook can be used to fix the address up in the
675# required manner. This is currently used by the MIPS backend to make
676# sure addresses in FDE, range records, etc. referring to compressed
677# code have the ISA bit set, matching line information and the symbol
678# table.
ea480a30 679f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
680# Adjust the address updated by a line entry in a backend-specific way.
681# Normally this hook is supposed to return the address passed unchanged,
682# however in the case of inconsistencies in these records, this hook can
683# be used to fix them up in the required manner. This is currently used
684# by the MIPS backend to make sure all line addresses in compressed code
685# are presented with the ISA bit set, which is not always the case. This
686# in turn ensures breakpoint addresses are correctly matched against the
687# stop PC.
ea480a30
SM
688f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
690# See comment in target.h about continuable, steppable and
691# non-steppable watchpoints.
ea480a30
SM
692v;int;have_nonsteppable_watchpoint;;;0;0;;0
693F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
695# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696# FS are passed from the generic execute_cfa_program function.
ea480a30 697m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
698
699# Return the appropriate type_flags for the supplied address class.
700# This function should return 1 if the address class was recognized and
701# type_flags was set, zero otherwise.
ea480a30 702M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 703# Is a register in a group
ea480a30 704m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 705# Fetch the pointer to the ith function argument.
ea480a30 706F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 707
5aa82d05
AA
708# Iterate over all supported register notes in a core file. For each
709# supported register note section, the iterator must call CB and pass
710# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711# the supported register note sections based on the current register
712# values. Otherwise it should enumerate all supported register note
713# sections.
ea480a30 714M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 715
6432734d 716# Create core file notes
ea480a30 717M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 718
35c2fab7 719# Find core file memory regions
ea480a30 720M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 721
de584861 722# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
723# core file into buffer READBUF with length LEN. Return the number of bytes read
724# (zero indicates failure).
725# failed, otherwise, return the red length of READBUF.
ea480a30 726M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 727
356a5233
JB
728# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 730# Return the number of bytes read (zero indicates failure).
ea480a30 731M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 732
c0edd9ed 733# How the core target converts a PTID from a core file to a string.
a068643d 734M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 735
4dfc5dbc 736# How the core target extracts the name of a thread from a core file.
ea480a30 737M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 738
382b69bb
JB
739# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740# from core file into buffer READBUF with length LEN. Return the number
741# of bytes read (zero indicates EOF, a negative value indicates failure).
742M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
a78c2d62 744# BFD target to use when generating a core file.
ea480a30 745V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 746
0d5de010
DJ
747# If the elements of C++ vtables are in-place function descriptors rather
748# than normal function pointers (which may point to code or a descriptor),
749# set this to one.
ea480a30 750v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
751
752# Set if the least significant bit of the delta is used instead of the least
753# significant bit of the pfn for pointers to virtual member functions.
ea480a30 754v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
755
756# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 757f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 758
1668ae25 759# The maximum length of an instruction on this architecture in bytes.
ea480a30 760V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
761
762# Copy the instruction at FROM to TO, and make any adjustments
763# necessary to single-step it at that address.
764#
765# REGS holds the state the thread's registers will have before
766# executing the copied instruction; the PC in REGS will refer to FROM,
767# not the copy at TO. The caller should update it to point at TO later.
768#
769# Return a pointer to data of the architecture's choice to be passed
770# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
771# the instruction's effects have been completely simulated, with the
772# resulting state written back to REGS.
773#
774# For a general explanation of displaced stepping and how GDB uses it,
775# see the comments in infrun.c.
776#
777# The TO area is only guaranteed to have space for
778# gdbarch_max_insn_length (arch) bytes, so this function must not
779# write more bytes than that to that area.
780#
781# If you do not provide this function, GDB assumes that the
782# architecture does not support displaced stepping.
783#
7f03bd92
PA
784# If the instruction cannot execute out of line, return NULL. The
785# core falls back to stepping past the instruction in-line instead in
786# that case.
588de28a 787M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 788
99e40580
UW
789# Return true if GDB should use hardware single-stepping to execute
790# the displaced instruction identified by CLOSURE. If false,
791# GDB will simply restart execution at the displaced instruction
792# location, and it is up to the target to ensure GDB will receive
793# control again (e.g. by placing a software breakpoint instruction
794# into the displaced instruction buffer).
795#
796# The default implementation returns false on all targets that
797# provide a gdbarch_software_single_step routine, and true otherwise.
588de28a 798m;int;displaced_step_hw_singlestep;struct displaced_step_copy_insn_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 799
237fc4c9
PA
800# Fix up the state resulting from successfully single-stepping a
801# displaced instruction, to give the result we would have gotten from
802# stepping the instruction in its original location.
803#
804# REGS is the register state resulting from single-stepping the
805# displaced instruction.
806#
807# CLOSURE is the result from the matching call to
808# gdbarch_displaced_step_copy_insn.
809#
810# If you provide gdbarch_displaced_step_copy_insn.but not this
811# function, then GDB assumes that no fixup is needed after
812# single-stepping the instruction.
813#
814# For a general explanation of displaced stepping and how GDB uses it,
815# see the comments in infrun.c.
588de28a 816M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 817
237fc4c9
PA
818# Return the address of an appropriate place to put displaced
819# instructions while we step over them. There need only be one such
820# place, since we're only stepping one thread over a breakpoint at a
821# time.
822#
823# For a general explanation of displaced stepping and how GDB uses it,
824# see the comments in infrun.c.
e088209c
SM
825#m;CORE_ADDR;displaced_step_location;thread_info *;thread;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
826#m;CORE_ADDR;displaced_step_release_location;CORE_ADDR;addr;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
827m;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread;thread;;NULL;;(! gdbarch->displaced_step_prepare) != (! gdbarch->displaced_step_copy_insn)
828m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 829
dde08ee1
PA
830# Relocate an instruction to execute at a different address. OLDLOC
831# is the address in the inferior memory where the instruction to
832# relocate is currently at. On input, TO points to the destination
833# where we want the instruction to be copied (and possibly adjusted)
834# to. On output, it points to one past the end of the resulting
835# instruction(s). The effect of executing the instruction at TO shall
836# be the same as if executing it at FROM. For example, call
837# instructions that implicitly push the return address on the stack
838# should be adjusted to return to the instruction after OLDLOC;
839# relative branches, and other PC-relative instructions need the
840# offset adjusted; etc.
ea480a30 841M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 842
1c772458 843# Refresh overlay mapped state for section OSECT.
ea480a30 844F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 845
ea480a30 846M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
847
848# Handle special encoding of static variables in stabs debug info.
ea480a30 849F;const char *;static_transform_name;const char *name;name
203c3895 850# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 851v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 852
0508c3ec
HZ
853# Parse the instruction at ADDR storing in the record execution log
854# the registers REGCACHE and memory ranges that will be affected when
855# the instruction executes, along with their current values.
856# Return -1 if something goes wrong, 0 otherwise.
ea480a30 857M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 858
3846b520
HZ
859# Save process state after a signal.
860# Return -1 if something goes wrong, 0 otherwise.
ea480a30 861M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 862
22203bbf 863# Signal translation: translate inferior's signal (target's) number
86b49880
PA
864# into GDB's representation. The implementation of this method must
865# be host independent. IOW, don't rely on symbols of the NAT_FILE
866# header (the nm-*.h files), the host <signal.h> header, or similar
867# headers. This is mainly used when cross-debugging core files ---
868# "Live" targets hide the translation behind the target interface
1f8cf220 869# (target_wait, target_resume, etc.).
ea480a30 870M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 871
eb14d406
SDJ
872# Signal translation: translate the GDB's internal signal number into
873# the inferior's signal (target's) representation. The implementation
874# of this method must be host independent. IOW, don't rely on symbols
875# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
876# header, or similar headers.
877# Return the target signal number if found, or -1 if the GDB internal
878# signal number is invalid.
ea480a30 879M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 880
4aa995e1
PA
881# Extra signal info inspection.
882#
883# Return a type suitable to inspect extra signal information.
ea480a30 884M;struct type *;get_siginfo_type;void;
4aa995e1 885
60c5725c 886# Record architecture-specific information from the symbol table.
ea480a30 887M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 888
a96d9b2e
SDJ
889# Function for the 'catch syscall' feature.
890
891# Get architecture-specific system calls information from registers.
00431a78 892M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 893
458c8db8 894# The filename of the XML syscall for this architecture.
ea480a30 895v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
896
897# Information about system calls from this architecture
ea480a30 898v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 899
55aa24fb
SDJ
900# SystemTap related fields and functions.
901
05c0465e
SDJ
902# A NULL-terminated array of prefixes used to mark an integer constant
903# on the architecture's assembly.
55aa24fb
SDJ
904# For example, on x86 integer constants are written as:
905#
906# \$10 ;; integer constant 10
907#
908# in this case, this prefix would be the character \`\$\'.
ea480a30 909v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 910
05c0465e
SDJ
911# A NULL-terminated array of suffixes used to mark an integer constant
912# on the architecture's assembly.
ea480a30 913v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 914
05c0465e
SDJ
915# A NULL-terminated array of prefixes used to mark a register name on
916# the architecture's assembly.
55aa24fb
SDJ
917# For example, on x86 the register name is written as:
918#
919# \%eax ;; register eax
920#
921# in this case, this prefix would be the character \`\%\'.
ea480a30 922v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 923
05c0465e
SDJ
924# A NULL-terminated array of suffixes used to mark a register name on
925# the architecture's assembly.
ea480a30 926v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of prefixes used to mark a register
929# indirection on the architecture's assembly.
55aa24fb
SDJ
930# For example, on x86 the register indirection is written as:
931#
932# \(\%eax\) ;; indirecting eax
933#
934# in this case, this prefix would be the charater \`\(\'.
935#
936# Please note that we use the indirection prefix also for register
937# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 938v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 939
05c0465e
SDJ
940# A NULL-terminated array of suffixes used to mark a register
941# indirection on the architecture's assembly.
55aa24fb
SDJ
942# For example, on x86 the register indirection is written as:
943#
944# \(\%eax\) ;; indirecting eax
945#
946# in this case, this prefix would be the charater \`\)\'.
947#
948# Please note that we use the indirection suffix also for register
949# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 950v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 951
05c0465e 952# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
953#
954# For example, on PPC a register is represented by a number in the assembly
955# language (e.g., \`10\' is the 10th general-purpose register). However,
956# inside GDB this same register has an \`r\' appended to its name, so the 10th
957# register would be represented as \`r10\' internally.
ea480a30 958v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
959
960# Suffix used to name a register using GDB's nomenclature.
ea480a30 961v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
962
963# Check if S is a single operand.
964#
965# Single operands can be:
966# \- Literal integers, e.g. \`\$10\' on x86
967# \- Register access, e.g. \`\%eax\' on x86
968# \- Register indirection, e.g. \`\(\%eax\)\' on x86
969# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
970#
971# This function should check for these patterns on the string
972# and return 1 if some were found, or zero otherwise. Please try to match
973# as much info as you can from the string, i.e., if you have to match
974# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 975M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
976
977# Function used to handle a "special case" in the parser.
978#
979# A "special case" is considered to be an unknown token, i.e., a token
980# that the parser does not know how to parse. A good example of special
981# case would be ARM's register displacement syntax:
982#
983# [R0, #4] ;; displacing R0 by 4
984#
985# Since the parser assumes that a register displacement is of the form:
986#
987# <number> <indirection_prefix> <register_name> <indirection_suffix>
988#
989# it means that it will not be able to recognize and parse this odd syntax.
990# Therefore, we should add a special case function that will handle this token.
991#
992# This function should generate the proper expression form of the expression
993# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
994# and so on). It should also return 1 if the parsing was successful, or zero
995# if the token was not recognized as a special token (in this case, returning
996# zero means that the special parser is deferring the parsing to the generic
997# parser), and should advance the buffer pointer (p->arg).
ea480a30 998M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 999
7d7571f0
SDJ
1000# Perform arch-dependent adjustments to a register name.
1001#
1002# In very specific situations, it may be necessary for the register
1003# name present in a SystemTap probe's argument to be handled in a
1004# special way. For example, on i386, GCC may over-optimize the
1005# register allocation and use smaller registers than necessary. In
1006# such cases, the client that is reading and evaluating the SystemTap
1007# probe (ourselves) will need to actually fetch values from the wider
1008# version of the register in question.
1009#
1010# To illustrate the example, consider the following probe argument
1011# (i386):
1012#
1013# 4@%ax
1014#
1015# This argument says that its value can be found at the %ax register,
1016# which is a 16-bit register. However, the argument's prefix says
1017# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1018# this case, GDB should actually fetch the probe's value from register
1019# %eax, not %ax. In this scenario, this function would actually
1020# replace the register name from %ax to %eax.
1021#
1022# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1023M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1024
8b367e17
JM
1025# DTrace related functions.
1026
1027# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1028# NARG must be >= 0.
37eedb39 1029M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1030
1031# True if the given ADDR does not contain the instruction sequence
1032# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1033M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1034
1035# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1036M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1037
1038# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1039M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1040
50c71eaf
PA
1041# True if the list of shared libraries is one and only for all
1042# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1043# This usually means that all processes, although may or may not share
1044# an address space, will see the same set of symbols at the same
1045# addresses.
ea480a30 1046v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1047
1048# On some targets, even though each inferior has its own private
1049# address space, the debug interface takes care of making breakpoints
1050# visible to all address spaces automatically. For such cases,
1051# this property should be set to true.
ea480a30 1052v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1053
1054# True if inferiors share an address space (e.g., uClinux).
ea480a30 1055m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1056
1057# True if a fast tracepoint can be set at an address.
281d762b 1058m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1059
5f034a78
MK
1060# Guess register state based on tracepoint location. Used for tracepoints
1061# where no registers have been collected, but there's only one location,
1062# allowing us to guess the PC value, and perhaps some other registers.
1063# On entry, regcache has all registers marked as unavailable.
ea480a30 1064m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1065
f870a310 1066# Return the "auto" target charset.
ea480a30 1067f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1068# Return the "auto" target wide charset.
ea480a30 1069f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1070
1071# If non-empty, this is a file extension that will be opened in place
1072# of the file extension reported by the shared library list.
1073#
1074# This is most useful for toolchains that use a post-linker tool,
1075# where the names of the files run on the target differ in extension
1076# compared to the names of the files GDB should load for debug info.
ea480a30 1077v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1078
1079# If true, the target OS has DOS-based file system semantics. That
1080# is, absolute paths include a drive name, and the backslash is
1081# considered a directory separator.
ea480a30 1082v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1083
1084# Generate bytecodes to collect the return address in a frame.
1085# Since the bytecodes run on the target, possibly with GDB not even
1086# connected, the full unwinding machinery is not available, and
1087# typically this function will issue bytecodes for one or more likely
1088# places that the return address may be found.
ea480a30 1089m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1090
3030c96e 1091# Implement the "info proc" command.
ea480a30 1092M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1093
451b7c33
TT
1094# Implement the "info proc" command for core files. Noe that there
1095# are two "info_proc"-like methods on gdbarch -- one for core files,
1096# one for live targets.
ea480a30 1097M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1098
19630284
JB
1099# Iterate over all objfiles in the order that makes the most sense
1100# for the architecture to make global symbol searches.
1101#
1102# CB is a callback function where OBJFILE is the objfile to be searched,
1103# and CB_DATA a pointer to user-defined data (the same data that is passed
1104# when calling this gdbarch method). The iteration stops if this function
1105# returns nonzero.
1106#
1107# CB_DATA is a pointer to some user-defined data to be passed to
1108# the callback.
1109#
1110# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1111# inspected when the symbol search was requested.
ea480a30 1112m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1113
7e35103a 1114# Ravenscar arch-dependent ops.
ea480a30 1115v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1116
1117# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1118m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1119
1120# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1121m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1122
1123# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1124m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1125
5133a315
LM
1126# Return true if there's a program/permanent breakpoint planted in
1127# memory at ADDRESS, return false otherwise.
1128m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1129
27a48a92
MK
1130# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1131# Return 0 if *READPTR is already at the end of the buffer.
1132# Return -1 if there is insufficient buffer for a whole entry.
1133# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1134M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1135
2faa3447
JB
1136# Print the description of a single auxv entry described by TYPE and VAL
1137# to FILE.
ea480a30 1138m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1139
3437254d
PA
1140# Find the address range of the current inferior's vsyscall/vDSO, and
1141# write it to *RANGE. If the vsyscall's length can't be determined, a
1142# range with zero length is returned. Returns true if the vsyscall is
1143# found, false otherwise.
ea480a30 1144m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1145
1146# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1147# PROT has GDB_MMAP_PROT_* bitmask format.
1148# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1149f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1150
7f361056
JK
1151# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1152# Print a warning if it is not possible.
ea480a30 1153f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1154
f208eee0
JK
1155# Return string (caller has to use xfree for it) with options for GCC
1156# to produce code for this target, typically "-m64", "-m32" or "-m31".
1157# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1158# they can override it.
1159m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1160
1161# Return a regular expression that matches names used by this
1162# architecture in GNU configury triplets. The result is statically
1163# allocated and must not be freed. The default implementation simply
1164# returns the BFD architecture name, which is correct in nearly every
1165# case.
ea480a30 1166m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1167
1168# Return the size in 8-bit bytes of an addressable memory unit on this
1169# architecture. This corresponds to the number of 8-bit bytes associated to
1170# each address in memory.
ea480a30 1171m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1172
65b48a81 1173# Functions for allowing a target to modify its disassembler options.
471b9d15 1174v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1175v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1176v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1177
5561fc30
AB
1178# Type alignment override method. Return the architecture specific
1179# alignment required for TYPE. If there is no special handling
1180# required for TYPE then return the value 0, GDB will then apply the
1181# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1182m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1183
aa7ca1bb
AH
1184# Return a string containing any flags for the given PC in the given FRAME.
1185f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1186
104c1213 1187EOF
104c1213
JM
1188}
1189
0b8f9e4d
AC
1190#
1191# The .log file
1192#
41a77cba 1193exec > gdbarch.log
34620563 1194function_list | while do_read
0b8f9e4d
AC
1195do
1196 cat <<EOF
1207375d 1197${class} ${returntype:-} ${function} (${formal:-})
104c1213 1198EOF
3d9a5942
AC
1199 for r in ${read}
1200 do
a6fc5ffc 1201 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1202 done
f0d4cc9e 1203 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1204 then
66d659b1 1205 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1206 kill $$
1207 exit 1
1208 fi
759cea5e 1209 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1210 then
1211 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1212 kill $$
1213 exit 1
1214 fi
a72293e2
AC
1215 if class_is_multiarch_p
1216 then
1217 if class_is_predicate_p ; then :
1218 elif test "x${predefault}" = "x"
1219 then
2f9b146e 1220 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1221 kill $$
1222 exit 1
1223 fi
1224 fi
3d9a5942 1225 echo ""
0b8f9e4d
AC
1226done
1227
1228exec 1>&2
0b8f9e4d 1229
104c1213
JM
1230
1231copyright ()
1232{
1233cat <<EOF
c4bfde41
JK
1234/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1235/* vi:set ro: */
59233f88 1236
104c1213 1237/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1238
e5d78223 1239 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1240
1241 This file is part of GDB.
1242
1243 This program is free software; you can redistribute it and/or modify
1244 it under the terms of the GNU General Public License as published by
50efebf8 1245 the Free Software Foundation; either version 3 of the License, or
104c1213 1246 (at your option) any later version.
618f726f 1247
104c1213
JM
1248 This program is distributed in the hope that it will be useful,
1249 but WITHOUT ANY WARRANTY; without even the implied warranty of
1250 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1251 GNU General Public License for more details.
618f726f 1252
104c1213 1253 You should have received a copy of the GNU General Public License
50efebf8 1254 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1255
41a77cba 1256/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1257
1258EOF
1259}
1260
1261#
1262# The .h file
1263#
1264
1265exec > new-gdbarch.h
1266copyright
1267cat <<EOF
1268#ifndef GDBARCH_H
1269#define GDBARCH_H
1270
a0ff9e1a 1271#include <vector>
eb7a547a 1272#include "frame.h"
65b48a81 1273#include "dis-asm.h"
284a0e3c 1274#include "gdb_obstack.h"
fdb61c6c 1275#include "infrun.h"
fe4b2ee6 1276#include "osabi.h"
e088209c 1277#include "displaced-stepping.h"
eb7a547a 1278
da3331ec
AC
1279struct floatformat;
1280struct ui_file;
104c1213 1281struct value;
b6af0555 1282struct objfile;
1c772458 1283struct obj_section;
a2cf933a 1284struct minimal_symbol;
049ee0e4 1285struct regcache;
b59ff9d5 1286struct reggroup;
6ce6d90f 1287struct regset;
a89aa300 1288struct disassemble_info;
e2d0e7eb 1289struct target_ops;
030f20e1 1290struct obstack;
8181d85f 1291struct bp_target_info;
424163ea 1292struct target_desc;
3e29f34a 1293struct symbol;
a96d9b2e 1294struct syscall;
175ff332 1295struct agent_expr;
6710bf39 1296struct axs_value;
55aa24fb 1297struct stap_parse_info;
37eedb39 1298struct expr_builder;
7e35103a 1299struct ravenscar_arch_ops;
3437254d 1300struct mem_range;
458c8db8 1301struct syscalls_info;
4dfc5dbc 1302struct thread_info;
012b3a21 1303struct ui_out;
104c1213 1304
8a526fa6
PA
1305#include "regcache.h"
1306
6ecd4729
PA
1307/* The architecture associated with the inferior through the
1308 connection to the target.
1309
1310 The architecture vector provides some information that is really a
1311 property of the inferior, accessed through a particular target:
1312 ptrace operations; the layout of certain RSP packets; the solib_ops
1313 vector; etc. To differentiate architecture accesses to
1314 per-inferior/target properties from
1315 per-thread/per-frame/per-objfile properties, accesses to
1316 per-inferior/target properties should be made through this
1317 gdbarch. */
1318
1319/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1320extern struct gdbarch *target_gdbarch (void);
6ecd4729 1321
19630284
JB
1322/* Callback type for the 'iterate_over_objfiles_in_search_order'
1323 gdbarch method. */
1324
1325typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1326 (struct objfile *objfile, void *cb_data);
5aa82d05 1327
1528345d
AA
1328/* Callback type for regset section iterators. The callback usually
1329 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1330 pass a buffer - for collects this buffer will need to be created using
1331 COLLECT_SIZE, for supply the existing buffer being read from should
1332 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1333 is used for diagnostic messages. CB_DATA should have been passed
1334 unchanged through the iterator. */
1528345d 1335
5aa82d05 1336typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1337 (const char *sect_name, int supply_size, int collect_size,
1338 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1339
1340/* For a function call, does the function return a value using a
1341 normal value return or a structure return - passing a hidden
1342 argument pointing to storage. For the latter, there are two
1343 cases: language-mandated structure return and target ABI
1344 structure return. */
1345
1346enum function_call_return_method
1347{
1348 /* Standard value return. */
1349 return_method_normal = 0,
1350
1351 /* Language ABI structure return. This is handled
1352 by passing the return location as the first parameter to
1353 the function, even preceding "this". */
1354 return_method_hidden_param,
1355
1356 /* Target ABI struct return. This is target-specific; for instance,
1357 on ia64 the first argument is passed in out0 but the hidden
1358 structure return pointer would normally be passed in r8. */
1359 return_method_struct,
1360};
1361
104c1213
JM
1362EOF
1363
1364# function typedef's
3d9a5942
AC
1365printf "\n"
1366printf "\n"
0963b4bd 1367printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1368function_list | while do_read
104c1213 1369do
2ada493a
AC
1370 if class_is_info_p
1371 then
3d9a5942 1372 printf "\n"
8d113d13
SM
1373 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1374 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1375 fi
104c1213
JM
1376done
1377
1378# function typedef's
3d9a5942
AC
1379printf "\n"
1380printf "\n"
0963b4bd 1381printf "/* The following are initialized by the target dependent code. */\n"
34620563 1382function_list | while do_read
104c1213 1383do
72e74a21 1384 if [ -n "${comment}" ]
34620563
AC
1385 then
1386 echo "${comment}" | sed \
1387 -e '2 s,#,/*,' \
1388 -e '3,$ s,#, ,' \
1389 -e '$ s,$, */,'
1390 fi
412d5987
AC
1391
1392 if class_is_predicate_p
2ada493a 1393 then
412d5987 1394 printf "\n"
8d113d13 1395 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1396 fi
2ada493a
AC
1397 if class_is_variable_p
1398 then
3d9a5942 1399 printf "\n"
8d113d13
SM
1400 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1401 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1402 fi
1403 if class_is_function_p
1404 then
3d9a5942 1405 printf "\n"
72e74a21 1406 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1407 then
8d113d13 1408 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1409 elif class_is_multiarch_p
1410 then
8d113d13 1411 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1412 else
8d113d13 1413 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1414 fi
72e74a21 1415 if [ "x${formal}" = "xvoid" ]
104c1213 1416 then
8d113d13 1417 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1418 else
8d113d13 1419 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1420 fi
8d113d13 1421 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1422 fi
104c1213
JM
1423done
1424
1425# close it off
1426cat <<EOF
1427
1428extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1429
1430
1431/* Mechanism for co-ordinating the selection of a specific
1432 architecture.
1433
1434 GDB targets (*-tdep.c) can register an interest in a specific
1435 architecture. Other GDB components can register a need to maintain
1436 per-architecture data.
1437
1438 The mechanisms below ensures that there is only a loose connection
1439 between the set-architecture command and the various GDB
0fa6923a 1440 components. Each component can independently register their need
104c1213
JM
1441 to maintain architecture specific data with gdbarch.
1442
1443 Pragmatics:
1444
1445 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1446 didn't scale.
1447
1448 The more traditional mega-struct containing architecture specific
1449 data for all the various GDB components was also considered. Since
0fa6923a 1450 GDB is built from a variable number of (fairly independent)
104c1213 1451 components it was determined that the global aproach was not
0963b4bd 1452 applicable. */
104c1213
JM
1453
1454
1455/* Register a new architectural family with GDB.
1456
1457 Register support for the specified ARCHITECTURE with GDB. When
1458 gdbarch determines that the specified architecture has been
1459 selected, the corresponding INIT function is called.
1460
1461 --
1462
1463 The INIT function takes two parameters: INFO which contains the
1464 information available to gdbarch about the (possibly new)
1465 architecture; ARCHES which is a list of the previously created
1466 \`\`struct gdbarch'' for this architecture.
1467
0f79675b 1468 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1469 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1470
1471 The ARCHES parameter is a linked list (sorted most recently used)
1472 of all the previously created architures for this architecture
1473 family. The (possibly NULL) ARCHES->gdbarch can used to access
1474 values from the previously selected architecture for this
59837fe0 1475 architecture family.
104c1213
JM
1476
1477 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1478 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1479 gdbarch'' from the ARCHES list - indicating that the new
1480 architecture is just a synonym for an earlier architecture (see
1481 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1482 - that describes the selected architecture (see gdbarch_alloc()).
1483
1484 The DUMP_TDEP function shall print out all target specific values.
1485 Care should be taken to ensure that the function works in both the
0963b4bd 1486 multi-arch and non- multi-arch cases. */
104c1213
JM
1487
1488struct gdbarch_list
1489{
1490 struct gdbarch *gdbarch;
1491 struct gdbarch_list *next;
1492};
1493
1494struct gdbarch_info
1495{
0963b4bd 1496 /* Use default: NULL (ZERO). */
104c1213
JM
1497 const struct bfd_arch_info *bfd_arch_info;
1498
428721aa 1499 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1500 enum bfd_endian byte_order;
104c1213 1501
94123b4f 1502 enum bfd_endian byte_order_for_code;
9d4fde75 1503
0963b4bd 1504 /* Use default: NULL (ZERO). */
104c1213
JM
1505 bfd *abfd;
1506
0963b4bd 1507 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1508 union
1509 {
1510 /* Architecture-specific information. The generic form for targets
1511 that have extra requirements. */
1512 struct gdbarch_tdep_info *tdep_info;
1513
1514 /* Architecture-specific target description data. Numerous targets
1515 need only this, so give them an easy way to hold it. */
1516 struct tdesc_arch_data *tdesc_data;
1517
1518 /* SPU file system ID. This is a single integer, so using the
1519 generic form would only complicate code. Other targets may
1520 reuse this member if suitable. */
1521 int *id;
1522 };
4be87837
DJ
1523
1524 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1525 enum gdb_osabi osabi;
424163ea
DJ
1526
1527 /* Use default: NULL (ZERO). */
1528 const struct target_desc *target_desc;
104c1213
JM
1529};
1530
1531typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1532typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1533
4b9b3959 1534/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1535extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1536
4b9b3959
AC
1537extern void gdbarch_register (enum bfd_architecture architecture,
1538 gdbarch_init_ftype *,
1539 gdbarch_dump_tdep_ftype *);
1540
104c1213 1541
b4a20239
AC
1542/* Return a freshly allocated, NULL terminated, array of the valid
1543 architecture names. Since architectures are registered during the
1544 _initialize phase this function only returns useful information
0963b4bd 1545 once initialization has been completed. */
b4a20239
AC
1546
1547extern const char **gdbarch_printable_names (void);
1548
1549
104c1213 1550/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1551 matches the information provided by INFO. */
104c1213 1552
424163ea 1553extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1554
1555
1556/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1557 basic initialization using values obtained from the INFO and TDEP
104c1213 1558 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1559 initialization of the object. */
104c1213
JM
1560
1561extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1562
1563
4b9b3959
AC
1564/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1565 It is assumed that the caller freeds the \`\`struct
0963b4bd 1566 gdbarch_tdep''. */
4b9b3959 1567
058f20d5
JB
1568extern void gdbarch_free (struct gdbarch *);
1569
284a0e3c
SM
1570/* Get the obstack owned by ARCH. */
1571
1572extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1573
aebd7893
AC
1574/* Helper function. Allocate memory from the \`\`struct gdbarch''
1575 obstack. The memory is freed when the corresponding architecture
1576 is also freed. */
1577
284a0e3c
SM
1578#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1579 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1580
1581#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1582 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1583
6c214e7c
PP
1584/* Duplicate STRING, returning an equivalent string that's allocated on the
1585 obstack associated with GDBARCH. The string is freed when the corresponding
1586 architecture is also freed. */
1587
1588extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1589
0963b4bd 1590/* Helper function. Force an update of the current architecture.
104c1213 1591
b732d07d
AC
1592 The actual architecture selected is determined by INFO, \`\`(gdb) set
1593 architecture'' et.al., the existing architecture and BFD's default
1594 architecture. INFO should be initialized to zero and then selected
1595 fields should be updated.
104c1213 1596
0963b4bd 1597 Returns non-zero if the update succeeds. */
16f33e29
AC
1598
1599extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1600
1601
ebdba546
AC
1602/* Helper function. Find an architecture matching info.
1603
1604 INFO should be initialized using gdbarch_info_init, relevant fields
1605 set, and then finished using gdbarch_info_fill.
1606
1607 Returns the corresponding architecture, or NULL if no matching
59837fe0 1608 architecture was found. */
ebdba546
AC
1609
1610extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1611
1612
aff68abb 1613/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1614
aff68abb 1615extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1616
104c1213
JM
1617
1618/* Register per-architecture data-pointer.
1619
1620 Reserve space for a per-architecture data-pointer. An identifier
1621 for the reserved data-pointer is returned. That identifer should
95160752 1622 be saved in a local static variable.
104c1213 1623
fcc1c85c
AC
1624 Memory for the per-architecture data shall be allocated using
1625 gdbarch_obstack_zalloc. That memory will be deleted when the
1626 corresponding architecture object is deleted.
104c1213 1627
95160752
AC
1628 When a previously created architecture is re-selected, the
1629 per-architecture data-pointer for that previous architecture is
76860b5f 1630 restored. INIT() is not re-called.
104c1213
JM
1631
1632 Multiple registrarants for any architecture are allowed (and
1633 strongly encouraged). */
1634
95160752 1635struct gdbarch_data;
104c1213 1636
030f20e1
AC
1637typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1638extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1639typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1640extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1641extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1642 struct gdbarch_data *data,
1643 void *pointer);
104c1213 1644
451fbdda 1645extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1646
1647
0fa6923a 1648/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1649 byte-order, ...) using information found in the BFD. */
104c1213
JM
1650
1651extern void set_gdbarch_from_file (bfd *);
1652
1653
e514a9d6
JM
1654/* Initialize the current architecture to the "first" one we find on
1655 our list. */
1656
1657extern void initialize_current_architecture (void);
1658
104c1213 1659/* gdbarch trace variable */
ccce17b0 1660extern unsigned int gdbarch_debug;
104c1213 1661
4b9b3959 1662extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1663
f6efe3f8
SM
1664/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1665
1666static inline int
1667gdbarch_num_cooked_regs (gdbarch *arch)
1668{
1669 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1670}
1671
104c1213
JM
1672#endif
1673EOF
1674exec 1>&2
41a77cba
SM
1675../move-if-change new-gdbarch.h gdbarch.h
1676rm -f new-gdbarch.h
104c1213
JM
1677
1678
1679#
1680# C file
1681#
1682
1683exec > new-gdbarch.c
1684copyright
1685cat <<EOF
1686
1687#include "defs.h"
7355ddba 1688#include "arch-utils.h"
104c1213 1689
104c1213 1690#include "gdbcmd.h"
faaf634c 1691#include "inferior.h"
104c1213
JM
1692#include "symcat.h"
1693
f0d4cc9e 1694#include "floatformat.h"
b59ff9d5 1695#include "reggroups.h"
4be87837 1696#include "osabi.h"
aebd7893 1697#include "gdb_obstack.h"
0bee6dd4 1698#include "observable.h"
a3ecef73 1699#include "regcache.h"
19630284 1700#include "objfiles.h"
2faa3447 1701#include "auxv.h"
8bcb5208
AB
1702#include "frame-unwind.h"
1703#include "dummy-frame.h"
95160752 1704
104c1213
JM
1705/* Static function declarations */
1706
b3cc3077 1707static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1708
104c1213
JM
1709/* Non-zero if we want to trace architecture code. */
1710
1711#ifndef GDBARCH_DEBUG
1712#define GDBARCH_DEBUG 0
1713#endif
ccce17b0 1714unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1715static void
1716show_gdbarch_debug (struct ui_file *file, int from_tty,
1717 struct cmd_list_element *c, const char *value)
1718{
1719 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1720}
104c1213 1721
456fcf94 1722static const char *
8da61cc4 1723pformat (const struct floatformat **format)
456fcf94
AC
1724{
1725 if (format == NULL)
1726 return "(null)";
1727 else
8da61cc4
DJ
1728 /* Just print out one of them - this is only for diagnostics. */
1729 return format[0]->name;
456fcf94
AC
1730}
1731
08105857
PA
1732static const char *
1733pstring (const char *string)
1734{
1735 if (string == NULL)
1736 return "(null)";
1737 return string;
05c0465e
SDJ
1738}
1739
a121b7c1 1740static const char *
f7bb4e3a
PB
1741pstring_ptr (char **string)
1742{
1743 if (string == NULL || *string == NULL)
1744 return "(null)";
1745 return *string;
1746}
1747
05c0465e
SDJ
1748/* Helper function to print a list of strings, represented as "const
1749 char *const *". The list is printed comma-separated. */
1750
a121b7c1 1751static const char *
05c0465e
SDJ
1752pstring_list (const char *const *list)
1753{
1754 static char ret[100];
1755 const char *const *p;
1756 size_t offset = 0;
1757
1758 if (list == NULL)
1759 return "(null)";
1760
1761 ret[0] = '\0';
1762 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1763 {
1764 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1765 offset += 2 + s;
1766 }
1767
1768 if (offset > 0)
1769 {
1770 gdb_assert (offset - 2 < sizeof (ret));
1771 ret[offset - 2] = '\0';
1772 }
1773
1774 return ret;
08105857
PA
1775}
1776
104c1213
JM
1777EOF
1778
1779# gdbarch open the gdbarch object
3d9a5942 1780printf "\n"
0963b4bd 1781printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1782printf "\n"
1783printf "struct gdbarch\n"
1784printf "{\n"
76860b5f
AC
1785printf " /* Has this architecture been fully initialized? */\n"
1786printf " int initialized_p;\n"
aebd7893
AC
1787printf "\n"
1788printf " /* An obstack bound to the lifetime of the architecture. */\n"
1789printf " struct obstack *obstack;\n"
1790printf "\n"
0963b4bd 1791printf " /* basic architectural information. */\n"
34620563 1792function_list | while do_read
104c1213 1793do
2ada493a
AC
1794 if class_is_info_p
1795 then
8d113d13 1796 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1797 fi
104c1213 1798done
3d9a5942 1799printf "\n"
0963b4bd 1800printf " /* target specific vector. */\n"
3d9a5942
AC
1801printf " struct gdbarch_tdep *tdep;\n"
1802printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1803printf "\n"
0963b4bd 1804printf " /* per-architecture data-pointers. */\n"
95160752 1805printf " unsigned nr_data;\n"
3d9a5942
AC
1806printf " void **data;\n"
1807printf "\n"
104c1213
JM
1808cat <<EOF
1809 /* Multi-arch values.
1810
1811 When extending this structure you must:
1812
1813 Add the field below.
1814
1815 Declare set/get functions and define the corresponding
1816 macro in gdbarch.h.
1817
1818 gdbarch_alloc(): If zero/NULL is not a suitable default,
1819 initialize the new field.
1820
1821 verify_gdbarch(): Confirm that the target updated the field
1822 correctly.
1823
7e73cedf 1824 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1825 field is dumped out
1826
104c1213
JM
1827 get_gdbarch(): Implement the set/get functions (probably using
1828 the macro's as shortcuts).
1829
1830 */
1831
1832EOF
34620563 1833function_list | while do_read
104c1213 1834do
2ada493a
AC
1835 if class_is_variable_p
1836 then
8d113d13 1837 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1838 elif class_is_function_p
1839 then
8d113d13 1840 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1841 fi
104c1213 1842done
3d9a5942 1843printf "};\n"
104c1213 1844
104c1213 1845# Create a new gdbarch struct
104c1213 1846cat <<EOF
7de2341d 1847
66b43ecb 1848/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1849 \`\`struct gdbarch_info''. */
104c1213 1850EOF
3d9a5942 1851printf "\n"
104c1213
JM
1852cat <<EOF
1853struct gdbarch *
1854gdbarch_alloc (const struct gdbarch_info *info,
1855 struct gdbarch_tdep *tdep)
1856{
be7811ad 1857 struct gdbarch *gdbarch;
aebd7893
AC
1858
1859 /* Create an obstack for allocating all the per-architecture memory,
1860 then use that to allocate the architecture vector. */
70ba0933 1861 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1862 obstack_init (obstack);
8d749320 1863 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1864 memset (gdbarch, 0, sizeof (*gdbarch));
1865 gdbarch->obstack = obstack;
85de9627 1866
be7811ad 1867 alloc_gdbarch_data (gdbarch);
85de9627 1868
be7811ad 1869 gdbarch->tdep = tdep;
104c1213 1870EOF
3d9a5942 1871printf "\n"
34620563 1872function_list | while do_read
104c1213 1873do
2ada493a
AC
1874 if class_is_info_p
1875 then
8d113d13 1876 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1877 fi
104c1213 1878done
3d9a5942 1879printf "\n"
0963b4bd 1880printf " /* Force the explicit initialization of these. */\n"
34620563 1881function_list | while do_read
104c1213 1882do
2ada493a
AC
1883 if class_is_function_p || class_is_variable_p
1884 then
759cea5e 1885 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1886 then
8d113d13 1887 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1888 fi
2ada493a 1889 fi
104c1213
JM
1890done
1891cat <<EOF
1892 /* gdbarch_alloc() */
1893
be7811ad 1894 return gdbarch;
104c1213
JM
1895}
1896EOF
1897
058f20d5 1898# Free a gdbarch struct.
3d9a5942
AC
1899printf "\n"
1900printf "\n"
058f20d5 1901cat <<EOF
aebd7893 1902
284a0e3c 1903obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1904{
284a0e3c 1905 return arch->obstack;
aebd7893
AC
1906}
1907
6c214e7c
PP
1908/* See gdbarch.h. */
1909
1910char *
1911gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1912{
1913 return obstack_strdup (arch->obstack, string);
1914}
1915
aebd7893 1916
058f20d5
JB
1917/* Free a gdbarch struct. This should never happen in normal
1918 operation --- once you've created a gdbarch, you keep it around.
1919 However, if an architecture's init function encounters an error
1920 building the structure, it may need to clean up a partially
1921 constructed gdbarch. */
4b9b3959 1922
058f20d5
JB
1923void
1924gdbarch_free (struct gdbarch *arch)
1925{
aebd7893 1926 struct obstack *obstack;
05c547f6 1927
95160752 1928 gdb_assert (arch != NULL);
aebd7893
AC
1929 gdb_assert (!arch->initialized_p);
1930 obstack = arch->obstack;
1931 obstack_free (obstack, 0); /* Includes the ARCH. */
1932 xfree (obstack);
058f20d5
JB
1933}
1934EOF
1935
104c1213 1936# verify a new architecture
104c1213 1937cat <<EOF
db446970
AC
1938
1939
1940/* Ensure that all values in a GDBARCH are reasonable. */
1941
104c1213 1942static void
be7811ad 1943verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1944{
d7e74731 1945 string_file log;
05c547f6 1946
104c1213 1947 /* fundamental */
be7811ad 1948 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1949 log.puts ("\n\tbyte-order");
be7811ad 1950 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1951 log.puts ("\n\tbfd_arch_info");
0963b4bd 1952 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1953EOF
34620563 1954function_list | while do_read
104c1213 1955do
2ada493a
AC
1956 if class_is_function_p || class_is_variable_p
1957 then
72e74a21 1958 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1959 then
8d113d13 1960 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1961 elif class_is_predicate_p
1962 then
8d113d13 1963 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1964 # FIXME: See do_read for potential simplification
759cea5e 1965 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1966 then
8d113d13
SM
1967 printf " if (%s)\n" "$invalid_p"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1969 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1970 then
8d113d13
SM
1971 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1972 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1973 elif [ -n "${postdefault}" ]
f0d4cc9e 1974 then
8d113d13
SM
1975 printf " if (gdbarch->%s == 0)\n" "$function"
1976 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1977 elif [ -n "${invalid_p}" ]
104c1213 1978 then
8d113d13
SM
1979 printf " if (%s)\n" "$invalid_p"
1980 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1981 elif [ -n "${predefault}" ]
104c1213 1982 then
8d113d13
SM
1983 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1984 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1985 fi
2ada493a 1986 fi
104c1213
JM
1987done
1988cat <<EOF
d7e74731 1989 if (!log.empty ())
f16a1923 1990 internal_error (__FILE__, __LINE__,
85c07804 1991 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1992 log.c_str ());
104c1213
JM
1993}
1994EOF
1995
1996# dump the structure
3d9a5942
AC
1997printf "\n"
1998printf "\n"
104c1213 1999cat <<EOF
0963b4bd 2000/* Print out the details of the current architecture. */
4b9b3959 2001
104c1213 2002void
be7811ad 2003gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2004{
b78960be 2005 const char *gdb_nm_file = "<not-defined>";
05c547f6 2006
b78960be
AC
2007#if defined (GDB_NM_FILE)
2008 gdb_nm_file = GDB_NM_FILE;
2009#endif
2010 fprintf_unfiltered (file,
2011 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2012 gdb_nm_file);
104c1213 2013EOF
ea480a30 2014function_list | sort '-t;' -k 3 | while do_read
104c1213 2015do
1e9f55d0
AC
2016 # First the predicate
2017 if class_is_predicate_p
2018 then
7996bcec 2019 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2020 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2021 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2022 fi
48f7351b 2023 # Print the corresponding value.
283354d8 2024 if class_is_function_p
4b9b3959 2025 then
7996bcec 2026 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2027 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2028 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2029 else
48f7351b 2030 # It is a variable
2f9b146e
AC
2031 case "${print}:${returntype}" in
2032 :CORE_ADDR )
0b1553bc
UW
2033 fmt="%s"
2034 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2035 ;;
2f9b146e 2036 :* )
48f7351b 2037 fmt="%s"
623d3eb1 2038 print="plongest (gdbarch->${function})"
48f7351b
AC
2039 ;;
2040 * )
2f9b146e 2041 fmt="%s"
48f7351b
AC
2042 ;;
2043 esac
3d9a5942 2044 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2045 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2046 printf " %s);\n" "$print"
2ada493a 2047 fi
104c1213 2048done
381323f4 2049cat <<EOF
be7811ad
MD
2050 if (gdbarch->dump_tdep != NULL)
2051 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2052}
2053EOF
104c1213
JM
2054
2055
2056# GET/SET
3d9a5942 2057printf "\n"
104c1213
JM
2058cat <<EOF
2059struct gdbarch_tdep *
2060gdbarch_tdep (struct gdbarch *gdbarch)
2061{
2062 if (gdbarch_debug >= 2)
3d9a5942 2063 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2064 return gdbarch->tdep;
2065}
2066EOF
3d9a5942 2067printf "\n"
34620563 2068function_list | while do_read
104c1213 2069do
2ada493a
AC
2070 if class_is_predicate_p
2071 then
3d9a5942
AC
2072 printf "\n"
2073 printf "int\n"
8d113d13 2074 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2075 printf "{\n"
8de9bdc4 2076 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2077 printf " return %s;\n" "$predicate"
3d9a5942 2078 printf "}\n"
2ada493a
AC
2079 fi
2080 if class_is_function_p
2081 then
3d9a5942 2082 printf "\n"
8d113d13 2083 printf "%s\n" "$returntype"
72e74a21 2084 if [ "x${formal}" = "xvoid" ]
104c1213 2085 then
8d113d13 2086 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2087 else
8d113d13 2088 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2089 fi
3d9a5942 2090 printf "{\n"
8de9bdc4 2091 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2092 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2093 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2094 then
2095 # Allow a call to a function with a predicate.
8d113d13 2096 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2097 fi
3d9a5942 2098 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2099 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2100 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2101 then
2102 if class_is_multiarch_p
2103 then
2104 params="gdbarch"
2105 else
2106 params=""
2107 fi
2108 else
2109 if class_is_multiarch_p
2110 then
2111 params="gdbarch, ${actual}"
2112 else
2113 params="${actual}"
2114 fi
2115 fi
72e74a21 2116 if [ "x${returntype}" = "xvoid" ]
104c1213 2117 then
8d113d13 2118 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2119 else
8d113d13 2120 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2121 fi
3d9a5942
AC
2122 printf "}\n"
2123 printf "\n"
2124 printf "void\n"
8d113d13 2125 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2126 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2127 printf "{\n"
8d113d13 2128 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2129 printf "}\n"
2ada493a
AC
2130 elif class_is_variable_p
2131 then
3d9a5942 2132 printf "\n"
8d113d13
SM
2133 printf "%s\n" "$returntype"
2134 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2135 printf "{\n"
8de9bdc4 2136 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2137 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2138 then
8d113d13 2139 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2140 elif [ -n "${invalid_p}" ]
104c1213 2141 then
956ac328 2142 printf " /* Check variable is valid. */\n"
8d113d13 2143 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2144 elif [ -n "${predefault}" ]
104c1213 2145 then
956ac328 2146 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2147 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2148 fi
3d9a5942 2149 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2150 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2151 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2152 printf "}\n"
2153 printf "\n"
2154 printf "void\n"
8d113d13 2155 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2156 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2157 printf "{\n"
8d113d13 2158 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2159 printf "}\n"
2ada493a
AC
2160 elif class_is_info_p
2161 then
3d9a5942 2162 printf "\n"
8d113d13
SM
2163 printf "%s\n" "$returntype"
2164 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2165 printf "{\n"
8de9bdc4 2166 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2167 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2168 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2169 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2170 printf "}\n"
2ada493a 2171 fi
104c1213
JM
2172done
2173
2174# All the trailing guff
2175cat <<EOF
2176
2177
f44c642f 2178/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2179 modules. */
104c1213
JM
2180
2181struct gdbarch_data
2182{
95160752 2183 unsigned index;
76860b5f 2184 int init_p;
030f20e1
AC
2185 gdbarch_data_pre_init_ftype *pre_init;
2186 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2187};
2188
2189struct gdbarch_data_registration
2190{
104c1213
JM
2191 struct gdbarch_data *data;
2192 struct gdbarch_data_registration *next;
2193};
2194
f44c642f 2195struct gdbarch_data_registry
104c1213 2196{
95160752 2197 unsigned nr;
104c1213
JM
2198 struct gdbarch_data_registration *registrations;
2199};
2200
f44c642f 2201struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2202{
2203 0, NULL,
2204};
2205
030f20e1
AC
2206static struct gdbarch_data *
2207gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2208 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2209{
2210 struct gdbarch_data_registration **curr;
05c547f6
MS
2211
2212 /* Append the new registration. */
f44c642f 2213 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2214 (*curr) != NULL;
2215 curr = &(*curr)->next);
70ba0933 2216 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2217 (*curr)->next = NULL;
70ba0933 2218 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2219 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2220 (*curr)->data->pre_init = pre_init;
2221 (*curr)->data->post_init = post_init;
76860b5f 2222 (*curr)->data->init_p = 1;
104c1213
JM
2223 return (*curr)->data;
2224}
2225
030f20e1
AC
2226struct gdbarch_data *
2227gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2228{
2229 return gdbarch_data_register (pre_init, NULL);
2230}
2231
2232struct gdbarch_data *
2233gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2234{
2235 return gdbarch_data_register (NULL, post_init);
2236}
104c1213 2237
0963b4bd 2238/* Create/delete the gdbarch data vector. */
95160752
AC
2239
2240static void
b3cc3077 2241alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2242{
b3cc3077
JB
2243 gdb_assert (gdbarch->data == NULL);
2244 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2245 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2246}
3c875b6f 2247
76860b5f 2248/* Initialize the current value of the specified per-architecture
0963b4bd 2249 data-pointer. */
b3cc3077 2250
95160752 2251void
030f20e1
AC
2252deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2253 struct gdbarch_data *data,
2254 void *pointer)
95160752
AC
2255{
2256 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2257 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2258 gdb_assert (data->pre_init == NULL);
95160752
AC
2259 gdbarch->data[data->index] = pointer;
2260}
2261
104c1213 2262/* Return the current value of the specified per-architecture
0963b4bd 2263 data-pointer. */
104c1213
JM
2264
2265void *
451fbdda 2266gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2267{
451fbdda 2268 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2269 if (gdbarch->data[data->index] == NULL)
76860b5f 2270 {
030f20e1
AC
2271 /* The data-pointer isn't initialized, call init() to get a
2272 value. */
2273 if (data->pre_init != NULL)
2274 /* Mid architecture creation: pass just the obstack, and not
2275 the entire architecture, as that way it isn't possible for
2276 pre-init code to refer to undefined architecture
2277 fields. */
2278 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2279 else if (gdbarch->initialized_p
2280 && data->post_init != NULL)
2281 /* Post architecture creation: pass the entire architecture
2282 (as all fields are valid), but be careful to also detect
2283 recursive references. */
2284 {
2285 gdb_assert (data->init_p);
2286 data->init_p = 0;
2287 gdbarch->data[data->index] = data->post_init (gdbarch);
2288 data->init_p = 1;
2289 }
2290 else
2291 /* The architecture initialization hasn't completed - punt -
2292 hope that the caller knows what they are doing. Once
2293 deprecated_set_gdbarch_data has been initialized, this can be
2294 changed to an internal error. */
2295 return NULL;
76860b5f
AC
2296 gdb_assert (gdbarch->data[data->index] != NULL);
2297 }
451fbdda 2298 return gdbarch->data[data->index];
104c1213
JM
2299}
2300
2301
0963b4bd 2302/* Keep a registry of the architectures known by GDB. */
104c1213 2303
4b9b3959 2304struct gdbarch_registration
104c1213
JM
2305{
2306 enum bfd_architecture bfd_architecture;
2307 gdbarch_init_ftype *init;
4b9b3959 2308 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2309 struct gdbarch_list *arches;
4b9b3959 2310 struct gdbarch_registration *next;
104c1213
JM
2311};
2312
f44c642f 2313static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2314
b4a20239
AC
2315static void
2316append_name (const char ***buf, int *nr, const char *name)
2317{
1dc7a623 2318 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2319 (*buf)[*nr] = name;
2320 *nr += 1;
2321}
2322
2323const char **
2324gdbarch_printable_names (void)
2325{
7996bcec 2326 /* Accumulate a list of names based on the registed list of
0963b4bd 2327 architectures. */
7996bcec
AC
2328 int nr_arches = 0;
2329 const char **arches = NULL;
2330 struct gdbarch_registration *rego;
05c547f6 2331
7996bcec
AC
2332 for (rego = gdbarch_registry;
2333 rego != NULL;
2334 rego = rego->next)
b4a20239 2335 {
7996bcec
AC
2336 const struct bfd_arch_info *ap;
2337 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2338 if (ap == NULL)
2339 internal_error (__FILE__, __LINE__,
85c07804 2340 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2341 do
2342 {
2343 append_name (&arches, &nr_arches, ap->printable_name);
2344 ap = ap->next;
2345 }
2346 while (ap != NULL);
b4a20239 2347 }
7996bcec
AC
2348 append_name (&arches, &nr_arches, NULL);
2349 return arches;
b4a20239
AC
2350}
2351
2352
104c1213 2353void
4b9b3959
AC
2354gdbarch_register (enum bfd_architecture bfd_architecture,
2355 gdbarch_init_ftype *init,
2356 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2357{
4b9b3959 2358 struct gdbarch_registration **curr;
104c1213 2359 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2360
ec3d358c 2361 /* Check that BFD recognizes this architecture */
104c1213
JM
2362 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2363 if (bfd_arch_info == NULL)
2364 {
8e65ff28 2365 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2366 _("gdbarch: Attempt to register "
2367 "unknown architecture (%d)"),
8e65ff28 2368 bfd_architecture);
104c1213 2369 }
0963b4bd 2370 /* Check that we haven't seen this architecture before. */
f44c642f 2371 for (curr = &gdbarch_registry;
104c1213
JM
2372 (*curr) != NULL;
2373 curr = &(*curr)->next)
2374 {
2375 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2376 internal_error (__FILE__, __LINE__,
64b9b334 2377 _("gdbarch: Duplicate registration "
0963b4bd 2378 "of architecture (%s)"),
8e65ff28 2379 bfd_arch_info->printable_name);
104c1213
JM
2380 }
2381 /* log it */
2382 if (gdbarch_debug)
30737ed9 2383 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2384 bfd_arch_info->printable_name,
30737ed9 2385 host_address_to_string (init));
104c1213 2386 /* Append it */
70ba0933 2387 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2388 (*curr)->bfd_architecture = bfd_architecture;
2389 (*curr)->init = init;
4b9b3959 2390 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2391 (*curr)->arches = NULL;
2392 (*curr)->next = NULL;
4b9b3959
AC
2393}
2394
2395void
2396register_gdbarch_init (enum bfd_architecture bfd_architecture,
2397 gdbarch_init_ftype *init)
2398{
2399 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2400}
104c1213
JM
2401
2402
424163ea 2403/* Look for an architecture using gdbarch_info. */
104c1213
JM
2404
2405struct gdbarch_list *
2406gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2407 const struct gdbarch_info *info)
2408{
2409 for (; arches != NULL; arches = arches->next)
2410 {
2411 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2412 continue;
2413 if (info->byte_order != arches->gdbarch->byte_order)
2414 continue;
4be87837
DJ
2415 if (info->osabi != arches->gdbarch->osabi)
2416 continue;
424163ea
DJ
2417 if (info->target_desc != arches->gdbarch->target_desc)
2418 continue;
104c1213
JM
2419 return arches;
2420 }
2421 return NULL;
2422}
2423
2424
ebdba546 2425/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2426 architecture if needed. Return that new architecture. */
104c1213 2427
59837fe0
UW
2428struct gdbarch *
2429gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2430{
2431 struct gdbarch *new_gdbarch;
4b9b3959 2432 struct gdbarch_registration *rego;
104c1213 2433
b732d07d 2434 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2435 sources: "set ..."; INFOabfd supplied; and the global
2436 defaults. */
2437 gdbarch_info_fill (&info);
4be87837 2438
0963b4bd 2439 /* Must have found some sort of architecture. */
b732d07d 2440 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2441
2442 if (gdbarch_debug)
2443 {
2444 fprintf_unfiltered (gdb_stdlog,
59837fe0 2445 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2446 (info.bfd_arch_info != NULL
2447 ? info.bfd_arch_info->printable_name
2448 : "(null)"));
2449 fprintf_unfiltered (gdb_stdlog,
59837fe0 2450 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2451 info.byte_order,
d7449b42 2452 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2453 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2454 : "default"));
4be87837 2455 fprintf_unfiltered (gdb_stdlog,
59837fe0 2456 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2457 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2458 fprintf_unfiltered (gdb_stdlog,
59837fe0 2459 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2460 host_address_to_string (info.abfd));
104c1213 2461 fprintf_unfiltered (gdb_stdlog,
59837fe0 2462 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2463 host_address_to_string (info.tdep_info));
104c1213
JM
2464 }
2465
ebdba546 2466 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2467 for (rego = gdbarch_registry;
2468 rego != NULL;
2469 rego = rego->next)
2470 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2471 break;
2472 if (rego == NULL)
2473 {
2474 if (gdbarch_debug)
59837fe0 2475 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2476 "No matching architecture\n");
b732d07d
AC
2477 return 0;
2478 }
2479
ebdba546 2480 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2481 new_gdbarch = rego->init (info, rego->arches);
2482
ebdba546
AC
2483 /* Did the tdep code like it? No. Reject the change and revert to
2484 the old architecture. */
104c1213
JM
2485 if (new_gdbarch == NULL)
2486 {
2487 if (gdbarch_debug)
59837fe0 2488 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2489 "Target rejected architecture\n");
2490 return NULL;
104c1213
JM
2491 }
2492
ebdba546
AC
2493 /* Is this a pre-existing architecture (as determined by already
2494 being initialized)? Move it to the front of the architecture
2495 list (keeping the list sorted Most Recently Used). */
2496 if (new_gdbarch->initialized_p)
104c1213 2497 {
ebdba546 2498 struct gdbarch_list **list;
fe978cb0 2499 struct gdbarch_list *self;
104c1213 2500 if (gdbarch_debug)
59837fe0 2501 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2502 "Previous architecture %s (%s) selected\n",
2503 host_address_to_string (new_gdbarch),
104c1213 2504 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2505 /* Find the existing arch in the list. */
2506 for (list = &rego->arches;
2507 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2508 list = &(*list)->next);
2509 /* It had better be in the list of architectures. */
2510 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2511 /* Unlink SELF. */
2512 self = (*list);
2513 (*list) = self->next;
2514 /* Insert SELF at the front. */
2515 self->next = rego->arches;
2516 rego->arches = self;
ebdba546
AC
2517 /* Return it. */
2518 return new_gdbarch;
104c1213
JM
2519 }
2520
ebdba546
AC
2521 /* It's a new architecture. */
2522 if (gdbarch_debug)
59837fe0 2523 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2524 "New architecture %s (%s) selected\n",
2525 host_address_to_string (new_gdbarch),
ebdba546
AC
2526 new_gdbarch->bfd_arch_info->printable_name);
2527
2528 /* Insert the new architecture into the front of the architecture
2529 list (keep the list sorted Most Recently Used). */
0f79675b 2530 {
fe978cb0
PA
2531 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2532 self->next = rego->arches;
2533 self->gdbarch = new_gdbarch;
2534 rego->arches = self;
0f79675b 2535 }
104c1213 2536
4b9b3959
AC
2537 /* Check that the newly installed architecture is valid. Plug in
2538 any post init values. */
2539 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2540 verify_gdbarch (new_gdbarch);
ebdba546 2541 new_gdbarch->initialized_p = 1;
104c1213 2542
4b9b3959 2543 if (gdbarch_debug)
ebdba546
AC
2544 gdbarch_dump (new_gdbarch, gdb_stdlog);
2545
2546 return new_gdbarch;
2547}
2548
e487cc15 2549/* Make the specified architecture current. */
ebdba546
AC
2550
2551void
aff68abb 2552set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2553{
2554 gdb_assert (new_gdbarch != NULL);
ebdba546 2555 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2556 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2557 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2558 registers_changed ();
ebdba546 2559}
104c1213 2560
f5656ead 2561/* Return the current inferior's arch. */
6ecd4729
PA
2562
2563struct gdbarch *
f5656ead 2564target_gdbarch (void)
6ecd4729
PA
2565{
2566 return current_inferior ()->gdbarch;
2567}
2568
a1237872 2569void _initialize_gdbarch ();
104c1213 2570void
a1237872 2571_initialize_gdbarch ()
104c1213 2572{
ccce17b0 2573 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2574Set architecture debugging."), _("\\
2575Show architecture debugging."), _("\\
2576When non-zero, architecture debugging is enabled."),
2577 NULL,
920d2a44 2578 show_gdbarch_debug,
85c07804 2579 &setdebuglist, &showdebuglist);
104c1213
JM
2580}
2581EOF
2582
2583# close things off
2584exec 1>&2
41a77cba
SM
2585../move-if-change new-gdbarch.c gdbarch.c
2586rm -f new-gdbarch.c
This page took 1.833238 seconds and 4 git commands to generate.