Linux-2.6.12-rc2
[deliverable/linux.git] / drivers / usb / core / usb.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/config.h>
25
26#ifdef CONFIG_USB_DEBUG
27 #define DEBUG
28#else
29 #undef DEBUG
30#endif
31
32#include <linux/module.h>
33#include <linux/string.h>
34#include <linux/bitops.h>
35#include <linux/slab.h>
36#include <linux/interrupt.h> /* for in_interrupt() */
37#include <linux/kmod.h>
38#include <linux/init.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/smp_lock.h>
42#include <linux/rwsem.h>
43#include <linux/usb.h>
44
45#include <asm/io.h>
46#include <asm/scatterlist.h>
47#include <linux/mm.h>
48#include <linux/dma-mapping.h>
49
50#include "hcd.h"
51#include "usb.h"
52
53extern int usb_hub_init(void);
54extern void usb_hub_cleanup(void);
55extern int usb_major_init(void);
56extern void usb_major_cleanup(void);
57extern int usb_host_init(void);
58extern void usb_host_cleanup(void);
59
60
61const char *usbcore_name = "usbcore";
62
63static int nousb; /* Disable USB when built into kernel image */
64 /* Not honored on modular build */
65
66static DECLARE_RWSEM(usb_all_devices_rwsem);
67
68
69static int generic_probe (struct device *dev)
70{
71 return 0;
72}
73static int generic_remove (struct device *dev)
74{
75 return 0;
76}
77
78static struct device_driver usb_generic_driver = {
79 .owner = THIS_MODULE,
80 .name = "usb",
81 .bus = &usb_bus_type,
82 .probe = generic_probe,
83 .remove = generic_remove,
84};
85
86static int usb_generic_driver_data;
87
88/* called from driver core with usb_bus_type.subsys writelock */
89static int usb_probe_interface(struct device *dev)
90{
91 struct usb_interface * intf = to_usb_interface(dev);
92 struct usb_driver * driver = to_usb_driver(dev->driver);
93 const struct usb_device_id *id;
94 int error = -ENODEV;
95
96 dev_dbg(dev, "%s\n", __FUNCTION__);
97
98 if (!driver->probe)
99 return error;
100 /* FIXME we'd much prefer to just resume it ... */
101 if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
102 return -EHOSTUNREACH;
103
104 id = usb_match_id (intf, driver->id_table);
105 if (id) {
106 dev_dbg (dev, "%s - got id\n", __FUNCTION__);
107 intf->condition = USB_INTERFACE_BINDING;
108 error = driver->probe (intf, id);
109 intf->condition = error ? USB_INTERFACE_UNBOUND :
110 USB_INTERFACE_BOUND;
111 }
112
113 return error;
114}
115
116/* called from driver core with usb_bus_type.subsys writelock */
117static int usb_unbind_interface(struct device *dev)
118{
119 struct usb_interface *intf = to_usb_interface(dev);
120 struct usb_driver *driver = to_usb_driver(intf->dev.driver);
121
122 intf->condition = USB_INTERFACE_UNBINDING;
123
124 /* release all urbs for this interface */
125 usb_disable_interface(interface_to_usbdev(intf), intf);
126
127 if (driver && driver->disconnect)
128 driver->disconnect(intf);
129
130 /* reset other interface state */
131 usb_set_interface(interface_to_usbdev(intf),
132 intf->altsetting[0].desc.bInterfaceNumber,
133 0);
134 usb_set_intfdata(intf, NULL);
135 intf->condition = USB_INTERFACE_UNBOUND;
136
137 return 0;
138}
139
140/**
141 * usb_register - register a USB driver
142 * @new_driver: USB operations for the driver
143 *
144 * Registers a USB driver with the USB core. The list of unattached
145 * interfaces will be rescanned whenever a new driver is added, allowing
146 * the new driver to attach to any recognized devices.
147 * Returns a negative error code on failure and 0 on success.
148 *
149 * NOTE: if you want your driver to use the USB major number, you must call
150 * usb_register_dev() to enable that functionality. This function no longer
151 * takes care of that.
152 */
153int usb_register(struct usb_driver *new_driver)
154{
155 int retval = 0;
156
157 if (nousb)
158 return -ENODEV;
159
160 new_driver->driver.name = (char *)new_driver->name;
161 new_driver->driver.bus = &usb_bus_type;
162 new_driver->driver.probe = usb_probe_interface;
163 new_driver->driver.remove = usb_unbind_interface;
164 new_driver->driver.owner = new_driver->owner;
165
166 usb_lock_all_devices();
167 retval = driver_register(&new_driver->driver);
168 usb_unlock_all_devices();
169
170 if (!retval) {
171 pr_info("%s: registered new driver %s\n",
172 usbcore_name, new_driver->name);
173 usbfs_update_special();
174 } else {
175 printk(KERN_ERR "%s: error %d registering driver %s\n",
176 usbcore_name, retval, new_driver->name);
177 }
178
179 return retval;
180}
181
182/**
183 * usb_deregister - unregister a USB driver
184 * @driver: USB operations of the driver to unregister
185 * Context: must be able to sleep
186 *
187 * Unlinks the specified driver from the internal USB driver list.
188 *
189 * NOTE: If you called usb_register_dev(), you still need to call
190 * usb_deregister_dev() to clean up your driver's allocated minor numbers,
191 * this * call will no longer do it for you.
192 */
193void usb_deregister(struct usb_driver *driver)
194{
195 pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
196
197 usb_lock_all_devices();
198 driver_unregister (&driver->driver);
199 usb_unlock_all_devices();
200
201 usbfs_update_special();
202}
203
204/**
205 * usb_ifnum_to_if - get the interface object with a given interface number
206 * @dev: the device whose current configuration is considered
207 * @ifnum: the desired interface
208 *
209 * This walks the device descriptor for the currently active configuration
210 * and returns a pointer to the interface with that particular interface
211 * number, or null.
212 *
213 * Note that configuration descriptors are not required to assign interface
214 * numbers sequentially, so that it would be incorrect to assume that
215 * the first interface in that descriptor corresponds to interface zero.
216 * This routine helps device drivers avoid such mistakes.
217 * However, you should make sure that you do the right thing with any
218 * alternate settings available for this interfaces.
219 *
220 * Don't call this function unless you are bound to one of the interfaces
221 * on this device or you have locked the device!
222 */
223struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
224{
225 struct usb_host_config *config = dev->actconfig;
226 int i;
227
228 if (!config)
229 return NULL;
230 for (i = 0; i < config->desc.bNumInterfaces; i++)
231 if (config->interface[i]->altsetting[0]
232 .desc.bInterfaceNumber == ifnum)
233 return config->interface[i];
234
235 return NULL;
236}
237
238/**
239 * usb_altnum_to_altsetting - get the altsetting structure with a given
240 * alternate setting number.
241 * @intf: the interface containing the altsetting in question
242 * @altnum: the desired alternate setting number
243 *
244 * This searches the altsetting array of the specified interface for
245 * an entry with the correct bAlternateSetting value and returns a pointer
246 * to that entry, or null.
247 *
248 * Note that altsettings need not be stored sequentially by number, so
249 * it would be incorrect to assume that the first altsetting entry in
250 * the array corresponds to altsetting zero. This routine helps device
251 * drivers avoid such mistakes.
252 *
253 * Don't call this function unless you are bound to the intf interface
254 * or you have locked the device!
255 */
256struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
257 unsigned int altnum)
258{
259 int i;
260
261 for (i = 0; i < intf->num_altsetting; i++) {
262 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
263 return &intf->altsetting[i];
264 }
265 return NULL;
266}
267
268/**
269 * usb_driver_claim_interface - bind a driver to an interface
270 * @driver: the driver to be bound
271 * @iface: the interface to which it will be bound; must be in the
272 * usb device's active configuration
273 * @priv: driver data associated with that interface
274 *
275 * This is used by usb device drivers that need to claim more than one
276 * interface on a device when probing (audio and acm are current examples).
277 * No device driver should directly modify internal usb_interface or
278 * usb_device structure members.
279 *
280 * Few drivers should need to use this routine, since the most natural
281 * way to bind to an interface is to return the private data from
282 * the driver's probe() method.
283 *
284 * Callers must own the device lock and the driver model's usb_bus_type.subsys
285 * writelock. So driver probe() entries don't need extra locking,
286 * but other call contexts may need to explicitly claim those locks.
287 */
288int usb_driver_claim_interface(struct usb_driver *driver,
289 struct usb_interface *iface, void* priv)
290{
291 struct device *dev = &iface->dev;
292
293 if (dev->driver)
294 return -EBUSY;
295
296 dev->driver = &driver->driver;
297 usb_set_intfdata(iface, priv);
298 iface->condition = USB_INTERFACE_BOUND;
299
300 /* if interface was already added, bind now; else let
301 * the future device_add() bind it, bypassing probe()
302 */
303 if (!list_empty (&dev->bus_list))
304 device_bind_driver(dev);
305
306 return 0;
307}
308
309/**
310 * usb_driver_release_interface - unbind a driver from an interface
311 * @driver: the driver to be unbound
312 * @iface: the interface from which it will be unbound
313 *
314 * This can be used by drivers to release an interface without waiting
315 * for their disconnect() methods to be called. In typical cases this
316 * also causes the driver disconnect() method to be called.
317 *
318 * This call is synchronous, and may not be used in an interrupt context.
319 * Callers must own the device lock and the driver model's usb_bus_type.subsys
320 * writelock. So driver disconnect() entries don't need extra locking,
321 * but other call contexts may need to explicitly claim those locks.
322 */
323void usb_driver_release_interface(struct usb_driver *driver,
324 struct usb_interface *iface)
325{
326 struct device *dev = &iface->dev;
327
328 /* this should never happen, don't release something that's not ours */
329 if (!dev->driver || dev->driver != &driver->driver)
330 return;
331
332 /* don't disconnect from disconnect(), or before dev_add() */
333 if (!list_empty (&dev->driver_list) && !list_empty (&dev->bus_list))
334 device_release_driver(dev);
335
336 dev->driver = NULL;
337 usb_set_intfdata(iface, NULL);
338 iface->condition = USB_INTERFACE_UNBOUND;
339}
340
341/**
342 * usb_match_id - find first usb_device_id matching device or interface
343 * @interface: the interface of interest
344 * @id: array of usb_device_id structures, terminated by zero entry
345 *
346 * usb_match_id searches an array of usb_device_id's and returns
347 * the first one matching the device or interface, or null.
348 * This is used when binding (or rebinding) a driver to an interface.
349 * Most USB device drivers will use this indirectly, through the usb core,
350 * but some layered driver frameworks use it directly.
351 * These device tables are exported with MODULE_DEVICE_TABLE, through
352 * modutils and "modules.usbmap", to support the driver loading
353 * functionality of USB hotplugging.
354 *
355 * What Matches:
356 *
357 * The "match_flags" element in a usb_device_id controls which
358 * members are used. If the corresponding bit is set, the
359 * value in the device_id must match its corresponding member
360 * in the device or interface descriptor, or else the device_id
361 * does not match.
362 *
363 * "driver_info" is normally used only by device drivers,
364 * but you can create a wildcard "matches anything" usb_device_id
365 * as a driver's "modules.usbmap" entry if you provide an id with
366 * only a nonzero "driver_info" field. If you do this, the USB device
367 * driver's probe() routine should use additional intelligence to
368 * decide whether to bind to the specified interface.
369 *
370 * What Makes Good usb_device_id Tables:
371 *
372 * The match algorithm is very simple, so that intelligence in
373 * driver selection must come from smart driver id records.
374 * Unless you have good reasons to use another selection policy,
375 * provide match elements only in related groups, and order match
376 * specifiers from specific to general. Use the macros provided
377 * for that purpose if you can.
378 *
379 * The most specific match specifiers use device descriptor
380 * data. These are commonly used with product-specific matches;
381 * the USB_DEVICE macro lets you provide vendor and product IDs,
382 * and you can also match against ranges of product revisions.
383 * These are widely used for devices with application or vendor
384 * specific bDeviceClass values.
385 *
386 * Matches based on device class/subclass/protocol specifications
387 * are slightly more general; use the USB_DEVICE_INFO macro, or
388 * its siblings. These are used with single-function devices
389 * where bDeviceClass doesn't specify that each interface has
390 * its own class.
391 *
392 * Matches based on interface class/subclass/protocol are the
393 * most general; they let drivers bind to any interface on a
394 * multiple-function device. Use the USB_INTERFACE_INFO
395 * macro, or its siblings, to match class-per-interface style
396 * devices (as recorded in bDeviceClass).
397 *
398 * Within those groups, remember that not all combinations are
399 * meaningful. For example, don't give a product version range
400 * without vendor and product IDs; or specify a protocol without
401 * its associated class and subclass.
402 */
403const struct usb_device_id *
404usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
405{
406 struct usb_host_interface *intf;
407 struct usb_device *dev;
408
409 /* proc_connectinfo in devio.c may call us with id == NULL. */
410 if (id == NULL)
411 return NULL;
412
413 intf = interface->cur_altsetting;
414 dev = interface_to_usbdev(interface);
415
416 /* It is important to check that id->driver_info is nonzero,
417 since an entry that is all zeroes except for a nonzero
418 id->driver_info is the way to create an entry that
419 indicates that the driver want to examine every
420 device and interface. */
421 for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
422 id->driver_info; id++) {
423
424 if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
425 id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
426 continue;
427
428 if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
429 id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
430 continue;
431
432 /* No need to test id->bcdDevice_lo != 0, since 0 is never
433 greater than any unsigned number. */
434 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
435 (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
436 continue;
437
438 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
439 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
440 continue;
441
442 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
443 (id->bDeviceClass != dev->descriptor.bDeviceClass))
444 continue;
445
446 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
447 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
448 continue;
449
450 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
451 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
452 continue;
453
454 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
455 (id->bInterfaceClass != intf->desc.bInterfaceClass))
456 continue;
457
458 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
459 (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
460 continue;
461
462 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
463 (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
464 continue;
465
466 return id;
467 }
468
469 return NULL;
470}
471
472/**
473 * usb_find_interface - find usb_interface pointer for driver and device
474 * @drv: the driver whose current configuration is considered
475 * @minor: the minor number of the desired device
476 *
477 * This walks the driver device list and returns a pointer to the interface
478 * with the matching minor. Note, this only works for devices that share the
479 * USB major number.
480 */
481struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
482{
483 struct list_head *entry;
484 struct device *dev;
485 struct usb_interface *intf;
486
487 list_for_each(entry, &drv->driver.devices) {
488 dev = container_of(entry, struct device, driver_list);
489
490 /* can't look at usb devices, only interfaces */
491 if (dev->driver == &usb_generic_driver)
492 continue;
493
494 intf = to_usb_interface(dev);
495 if (intf->minor == -1)
496 continue;
497 if (intf->minor == minor)
498 return intf;
499 }
500
501 /* no device found that matches */
502 return NULL;
503}
504
505static int usb_device_match (struct device *dev, struct device_driver *drv)
506{
507 struct usb_interface *intf;
508 struct usb_driver *usb_drv;
509 const struct usb_device_id *id;
510
511 /* check for generic driver, which we don't match any device with */
512 if (drv == &usb_generic_driver)
513 return 0;
514
515 intf = to_usb_interface(dev);
516 usb_drv = to_usb_driver(drv);
517
518 id = usb_match_id (intf, usb_drv->id_table);
519 if (id)
520 return 1;
521
522 return 0;
523}
524
525
526#ifdef CONFIG_HOTPLUG
527
528/*
529 * USB hotplugging invokes what /proc/sys/kernel/hotplug says
530 * (normally /sbin/hotplug) when USB devices get added or removed.
531 *
532 * This invokes a user mode policy agent, typically helping to load driver
533 * or other modules, configure the device, and more. Drivers can provide
534 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
535 *
536 * We're called either from khubd (the typical case) or from root hub
537 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
538 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the
539 * device (and this configuration!) are still present.
540 */
541static int usb_hotplug (struct device *dev, char **envp, int num_envp,
542 char *buffer, int buffer_size)
543{
544 struct usb_interface *intf;
545 struct usb_device *usb_dev;
546 int i = 0;
547 int length = 0;
548
549 if (!dev)
550 return -ENODEV;
551
552 /* driver is often null here; dev_dbg() would oops */
553 pr_debug ("usb %s: hotplug\n", dev->bus_id);
554
555 /* Must check driver_data here, as on remove driver is always NULL */
556 if ((dev->driver == &usb_generic_driver) ||
557 (dev->driver_data == &usb_generic_driver_data))
558 return 0;
559
560 intf = to_usb_interface(dev);
561 usb_dev = interface_to_usbdev (intf);
562
563 if (usb_dev->devnum < 0) {
564 pr_debug ("usb %s: already deleted?\n", dev->bus_id);
565 return -ENODEV;
566 }
567 if (!usb_dev->bus) {
568 pr_debug ("usb %s: bus removed?\n", dev->bus_id);
569 return -ENODEV;
570 }
571
572#ifdef CONFIG_USB_DEVICEFS
573 /* If this is available, userspace programs can directly read
574 * all the device descriptors we don't tell them about. Or
575 * even act as usermode drivers.
576 *
577 * FIXME reduce hardwired intelligence here
578 */
579 if (add_hotplug_env_var(envp, num_envp, &i,
580 buffer, buffer_size, &length,
581 "DEVICE=/proc/bus/usb/%03d/%03d",
582 usb_dev->bus->busnum, usb_dev->devnum))
583 return -ENOMEM;
584#endif
585
586 /* per-device configurations are common */
587 if (add_hotplug_env_var(envp, num_envp, &i,
588 buffer, buffer_size, &length,
589 "PRODUCT=%x/%x/%x",
590 le16_to_cpu(usb_dev->descriptor.idVendor),
591 le16_to_cpu(usb_dev->descriptor.idProduct),
592 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
593 return -ENOMEM;
594
595 /* class-based driver binding models */
596 if (add_hotplug_env_var(envp, num_envp, &i,
597 buffer, buffer_size, &length,
598 "TYPE=%d/%d/%d",
599 usb_dev->descriptor.bDeviceClass,
600 usb_dev->descriptor.bDeviceSubClass,
601 usb_dev->descriptor.bDeviceProtocol))
602 return -ENOMEM;
603
604 if (usb_dev->descriptor.bDeviceClass == 0) {
605 struct usb_host_interface *alt = intf->cur_altsetting;
606
607 /* 2.4 only exposed interface zero. in 2.5, hotplug
608 * agents are called for all interfaces, and can use
609 * $DEVPATH/bInterfaceNumber if necessary.
610 */
611 if (add_hotplug_env_var(envp, num_envp, &i,
612 buffer, buffer_size, &length,
613 "INTERFACE=%d/%d/%d",
614 alt->desc.bInterfaceClass,
615 alt->desc.bInterfaceSubClass,
616 alt->desc.bInterfaceProtocol))
617 return -ENOMEM;
618
619 if (add_hotplug_env_var(envp, num_envp, &i,
620 buffer, buffer_size, &length,
621 "MODALIAS=usb:v%04Xp%04Xdl%04Xdh%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
622 le16_to_cpu(usb_dev->descriptor.idVendor),
623 le16_to_cpu(usb_dev->descriptor.idProduct),
624 le16_to_cpu(usb_dev->descriptor.bcdDevice),
625 le16_to_cpu(usb_dev->descriptor.bcdDevice),
626 usb_dev->descriptor.bDeviceClass,
627 usb_dev->descriptor.bDeviceSubClass,
628 usb_dev->descriptor.bDeviceProtocol,
629 alt->desc.bInterfaceClass,
630 alt->desc.bInterfaceSubClass,
631 alt->desc.bInterfaceProtocol))
632 return -ENOMEM;
633 } else {
634 if (add_hotplug_env_var(envp, num_envp, &i,
635 buffer, buffer_size, &length,
636 "MODALIAS=usb:v%04Xp%04Xdl%04Xdh%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
637 le16_to_cpu(usb_dev->descriptor.idVendor),
638 le16_to_cpu(usb_dev->descriptor.idProduct),
639 le16_to_cpu(usb_dev->descriptor.bcdDevice),
640 le16_to_cpu(usb_dev->descriptor.bcdDevice),
641 usb_dev->descriptor.bDeviceClass,
642 usb_dev->descriptor.bDeviceSubClass,
643 usb_dev->descriptor.bDeviceProtocol))
644 return -ENOMEM;
645 }
646
647 envp[i] = NULL;
648
649 return 0;
650}
651
652#else
653
654static int usb_hotplug (struct device *dev, char **envp,
655 int num_envp, char *buffer, int buffer_size)
656{
657 return -ENODEV;
658}
659
660#endif /* CONFIG_HOTPLUG */
661
662/**
663 * usb_release_dev - free a usb device structure when all users of it are finished.
664 * @dev: device that's been disconnected
665 *
666 * Will be called only by the device core when all users of this usb device are
667 * done.
668 */
669static void usb_release_dev(struct device *dev)
670{
671 struct usb_device *udev;
672
673 udev = to_usb_device(dev);
674
675 usb_destroy_configuration(udev);
676 usb_bus_put(udev->bus);
677 kfree(udev->product);
678 kfree(udev->manufacturer);
679 kfree(udev->serial);
680 kfree(udev);
681}
682
683/**
684 * usb_alloc_dev - usb device constructor (usbcore-internal)
685 * @parent: hub to which device is connected; null to allocate a root hub
686 * @bus: bus used to access the device
687 * @port1: one-based index of port; ignored for root hubs
688 * Context: !in_interrupt ()
689 *
690 * Only hub drivers (including virtual root hub drivers for host
691 * controllers) should ever call this.
692 *
693 * This call may not be used in a non-sleeping context.
694 */
695struct usb_device *
696usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
697{
698 struct usb_device *dev;
699
700 dev = kmalloc(sizeof(*dev), GFP_KERNEL);
701 if (!dev)
702 return NULL;
703
704 memset(dev, 0, sizeof(*dev));
705
706 bus = usb_bus_get(bus);
707 if (!bus) {
708 kfree(dev);
709 return NULL;
710 }
711
712 device_initialize(&dev->dev);
713 dev->dev.bus = &usb_bus_type;
714 dev->dev.dma_mask = bus->controller->dma_mask;
715 dev->dev.driver_data = &usb_generic_driver_data;
716 dev->dev.driver = &usb_generic_driver;
717 dev->dev.release = usb_release_dev;
718 dev->state = USB_STATE_ATTACHED;
719
720 INIT_LIST_HEAD(&dev->ep0.urb_list);
721 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
722 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
723 /* ep0 maxpacket comes later, from device descriptor */
724 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
725
726 /* Save readable and stable topology id, distinguishing devices
727 * by location for diagnostics, tools, driver model, etc. The
728 * string is a path along hub ports, from the root. Each device's
729 * dev->devpath will be stable until USB is re-cabled, and hubs
730 * are often labeled with these port numbers. The bus_id isn't
731 * as stable: bus->busnum changes easily from modprobe order,
732 * cardbus or pci hotplugging, and so on.
733 */
734 if (unlikely (!parent)) {
735 dev->devpath [0] = '0';
736
737 dev->dev.parent = bus->controller;
738 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
739 } else {
740 /* match any labeling on the hubs; it's one-based */
741 if (parent->devpath [0] == '0')
742 snprintf (dev->devpath, sizeof dev->devpath,
743 "%d", port1);
744 else
745 snprintf (dev->devpath, sizeof dev->devpath,
746 "%s.%d", parent->devpath, port1);
747
748 dev->dev.parent = &parent->dev;
749 sprintf (&dev->dev.bus_id[0], "%d-%s",
750 bus->busnum, dev->devpath);
751
752 /* hub driver sets up TT records */
753 }
754
755 dev->bus = bus;
756 dev->parent = parent;
757 INIT_LIST_HEAD(&dev->filelist);
758
759 init_MUTEX(&dev->serialize);
760
761 return dev;
762}
763
764/**
765 * usb_get_dev - increments the reference count of the usb device structure
766 * @dev: the device being referenced
767 *
768 * Each live reference to a device should be refcounted.
769 *
770 * Drivers for USB interfaces should normally record such references in
771 * their probe() methods, when they bind to an interface, and release
772 * them by calling usb_put_dev(), in their disconnect() methods.
773 *
774 * A pointer to the device with the incremented reference counter is returned.
775 */
776struct usb_device *usb_get_dev(struct usb_device *dev)
777{
778 if (dev)
779 get_device(&dev->dev);
780 return dev;
781}
782
783/**
784 * usb_put_dev - release a use of the usb device structure
785 * @dev: device that's been disconnected
786 *
787 * Must be called when a user of a device is finished with it. When the last
788 * user of the device calls this function, the memory of the device is freed.
789 */
790void usb_put_dev(struct usb_device *dev)
791{
792 if (dev)
793 put_device(&dev->dev);
794}
795
796/**
797 * usb_get_intf - increments the reference count of the usb interface structure
798 * @intf: the interface being referenced
799 *
800 * Each live reference to a interface must be refcounted.
801 *
802 * Drivers for USB interfaces should normally record such references in
803 * their probe() methods, when they bind to an interface, and release
804 * them by calling usb_put_intf(), in their disconnect() methods.
805 *
806 * A pointer to the interface with the incremented reference counter is
807 * returned.
808 */
809struct usb_interface *usb_get_intf(struct usb_interface *intf)
810{
811 if (intf)
812 get_device(&intf->dev);
813 return intf;
814}
815
816/**
817 * usb_put_intf - release a use of the usb interface structure
818 * @intf: interface that's been decremented
819 *
820 * Must be called when a user of an interface is finished with it. When the
821 * last user of the interface calls this function, the memory of the interface
822 * is freed.
823 */
824void usb_put_intf(struct usb_interface *intf)
825{
826 if (intf)
827 put_device(&intf->dev);
828}
829
830
831/* USB device locking
832 *
833 * Although locking USB devices should be straightforward, it is
834 * complicated by the way the driver-model core works. When a new USB
835 * driver is registered or unregistered, the core will automatically
836 * probe or disconnect all matching interfaces on all USB devices while
837 * holding the USB subsystem writelock. There's no good way for us to
838 * tell which devices will be used or to lock them beforehand; our only
839 * option is to effectively lock all the USB devices.
840 *
841 * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
842 * When locking an individual device you must first acquire the rwsem's
843 * readlock. When a driver is registered or unregistered the writelock
844 * must be held. These actions are encapsulated in the subroutines
845 * below, so all a driver needs to do is call usb_lock_device() and
846 * usb_unlock_device().
847 *
848 * Complications arise when several devices are to be locked at the same
849 * time. Only hub-aware drivers that are part of usbcore ever have to
850 * do this; nobody else needs to worry about it. The problem is that
851 * usb_lock_device() must not be called to lock a second device since it
852 * would acquire the rwsem's readlock reentrantly, leading to deadlock if
853 * another thread was waiting for the writelock. The solution is simple:
854 *
855 * When locking more than one device, call usb_lock_device()
856 * to lock the first one. Lock the others by calling
857 * down(&udev->serialize) directly.
858 *
859 * When unlocking multiple devices, use up(&udev->serialize)
860 * to unlock all but the last one. Unlock the last one by
861 * calling usb_unlock_device().
862 *
863 * When locking both a device and its parent, always lock the
864 * the parent first.
865 */
866
867/**
868 * usb_lock_device - acquire the lock for a usb device structure
869 * @udev: device that's being locked
870 *
871 * Use this routine when you don't hold any other device locks;
872 * to acquire nested inner locks call down(&udev->serialize) directly.
873 * This is necessary for proper interaction with usb_lock_all_devices().
874 */
875void usb_lock_device(struct usb_device *udev)
876{
877 down_read(&usb_all_devices_rwsem);
878 down(&udev->serialize);
879}
880
881/**
882 * usb_trylock_device - attempt to acquire the lock for a usb device structure
883 * @udev: device that's being locked
884 *
885 * Don't use this routine if you already hold a device lock;
886 * use down_trylock(&udev->serialize) instead.
887 * This is necessary for proper interaction with usb_lock_all_devices().
888 *
889 * Returns 1 if successful, 0 if contention.
890 */
891int usb_trylock_device(struct usb_device *udev)
892{
893 if (!down_read_trylock(&usb_all_devices_rwsem))
894 return 0;
895 if (down_trylock(&udev->serialize)) {
896 up_read(&usb_all_devices_rwsem);
897 return 0;
898 }
899 return 1;
900}
901
902/**
903 * usb_lock_device_for_reset - cautiously acquire the lock for a
904 * usb device structure
905 * @udev: device that's being locked
906 * @iface: interface bound to the driver making the request (optional)
907 *
908 * Attempts to acquire the device lock, but fails if the device is
909 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
910 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
911 * lock, the routine polls repeatedly. This is to prevent deadlock with
912 * disconnect; in some drivers (such as usb-storage) the disconnect()
913 * callback will block waiting for a device reset to complete.
914 *
915 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
916 * that the device will or will not have to be unlocked. (0 can be
917 * returned when an interface is given and is BINDING, because in that
918 * case the driver already owns the device lock.)
919 */
920int usb_lock_device_for_reset(struct usb_device *udev,
921 struct usb_interface *iface)
922{
923 if (udev->state == USB_STATE_NOTATTACHED)
924 return -ENODEV;
925 if (udev->state == USB_STATE_SUSPENDED)
926 return -EHOSTUNREACH;
927 if (iface) {
928 switch (iface->condition) {
929 case USB_INTERFACE_BINDING:
930 return 0;
931 case USB_INTERFACE_BOUND:
932 break;
933 default:
934 return -EINTR;
935 }
936 }
937
938 while (!usb_trylock_device(udev)) {
939 msleep(15);
940 if (udev->state == USB_STATE_NOTATTACHED)
941 return -ENODEV;
942 if (udev->state == USB_STATE_SUSPENDED)
943 return -EHOSTUNREACH;
944 if (iface && iface->condition != USB_INTERFACE_BOUND)
945 return -EINTR;
946 }
947 return 1;
948}
949
950/**
951 * usb_unlock_device - release the lock for a usb device structure
952 * @udev: device that's being unlocked
953 *
954 * Use this routine when releasing the only device lock you hold;
955 * to release inner nested locks call up(&udev->serialize) directly.
956 * This is necessary for proper interaction with usb_lock_all_devices().
957 */
958void usb_unlock_device(struct usb_device *udev)
959{
960 up(&udev->serialize);
961 up_read(&usb_all_devices_rwsem);
962}
963
964/**
965 * usb_lock_all_devices - acquire the lock for all usb device structures
966 *
967 * This is necessary when registering a new driver or probing a bus,
968 * since the driver-model core may try to use any usb_device.
969 */
970void usb_lock_all_devices(void)
971{
972 down_write(&usb_all_devices_rwsem);
973}
974
975/**
976 * usb_unlock_all_devices - release the lock for all usb device structures
977 */
978void usb_unlock_all_devices(void)
979{
980 up_write(&usb_all_devices_rwsem);
981}
982
983
984static struct usb_device *match_device(struct usb_device *dev,
985 u16 vendor_id, u16 product_id)
986{
987 struct usb_device *ret_dev = NULL;
988 int child;
989
990 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
991 le16_to_cpu(dev->descriptor.idVendor),
992 le16_to_cpu(dev->descriptor.idProduct));
993
994 /* see if this device matches */
995 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
996 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
997 dev_dbg (&dev->dev, "matched this device!\n");
998 ret_dev = usb_get_dev(dev);
999 goto exit;
1000 }
1001
1002 /* look through all of the children of this device */
1003 for (child = 0; child < dev->maxchild; ++child) {
1004 if (dev->children[child]) {
1005 down(&dev->children[child]->serialize);
1006 ret_dev = match_device(dev->children[child],
1007 vendor_id, product_id);
1008 up(&dev->children[child]->serialize);
1009 if (ret_dev)
1010 goto exit;
1011 }
1012 }
1013exit:
1014 return ret_dev;
1015}
1016
1017/**
1018 * usb_find_device - find a specific usb device in the system
1019 * @vendor_id: the vendor id of the device to find
1020 * @product_id: the product id of the device to find
1021 *
1022 * Returns a pointer to a struct usb_device if such a specified usb
1023 * device is present in the system currently. The usage count of the
1024 * device will be incremented if a device is found. Make sure to call
1025 * usb_put_dev() when the caller is finished with the device.
1026 *
1027 * If a device with the specified vendor and product id is not found,
1028 * NULL is returned.
1029 */
1030struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1031{
1032 struct list_head *buslist;
1033 struct usb_bus *bus;
1034 struct usb_device *dev = NULL;
1035
1036 down(&usb_bus_list_lock);
1037 for (buslist = usb_bus_list.next;
1038 buslist != &usb_bus_list;
1039 buslist = buslist->next) {
1040 bus = container_of(buslist, struct usb_bus, bus_list);
1041 if (!bus->root_hub)
1042 continue;
1043 usb_lock_device(bus->root_hub);
1044 dev = match_device(bus->root_hub, vendor_id, product_id);
1045 usb_unlock_device(bus->root_hub);
1046 if (dev)
1047 goto exit;
1048 }
1049exit:
1050 up(&usb_bus_list_lock);
1051 return dev;
1052}
1053
1054/**
1055 * usb_get_current_frame_number - return current bus frame number
1056 * @dev: the device whose bus is being queried
1057 *
1058 * Returns the current frame number for the USB host controller
1059 * used with the given USB device. This can be used when scheduling
1060 * isochronous requests.
1061 *
1062 * Note that different kinds of host controller have different
1063 * "scheduling horizons". While one type might support scheduling only
1064 * 32 frames into the future, others could support scheduling up to
1065 * 1024 frames into the future.
1066 */
1067int usb_get_current_frame_number(struct usb_device *dev)
1068{
1069 return dev->bus->op->get_frame_number (dev);
1070}
1071
1072/*-------------------------------------------------------------------*/
1073/*
1074 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1075 * extra field of the interface and endpoint descriptor structs.
1076 */
1077
1078int __usb_get_extra_descriptor(char *buffer, unsigned size,
1079 unsigned char type, void **ptr)
1080{
1081 struct usb_descriptor_header *header;
1082
1083 while (size >= sizeof(struct usb_descriptor_header)) {
1084 header = (struct usb_descriptor_header *)buffer;
1085
1086 if (header->bLength < 2) {
1087 printk(KERN_ERR
1088 "%s: bogus descriptor, type %d length %d\n",
1089 usbcore_name,
1090 header->bDescriptorType,
1091 header->bLength);
1092 return -1;
1093 }
1094
1095 if (header->bDescriptorType == type) {
1096 *ptr = header;
1097 return 0;
1098 }
1099
1100 buffer += header->bLength;
1101 size -= header->bLength;
1102 }
1103 return -1;
1104}
1105
1106/**
1107 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1108 * @dev: device the buffer will be used with
1109 * @size: requested buffer size
1110 * @mem_flags: affect whether allocation may block
1111 * @dma: used to return DMA address of buffer
1112 *
1113 * Return value is either null (indicating no buffer could be allocated), or
1114 * the cpu-space pointer to a buffer that may be used to perform DMA to the
1115 * specified device. Such cpu-space buffers are returned along with the DMA
1116 * address (through the pointer provided).
1117 *
1118 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1119 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1120 * mapping hardware for long idle periods. The implementation varies between
1121 * platforms, depending on details of how DMA will work to this device.
1122 * Using these buffers also helps prevent cacheline sharing problems on
1123 * architectures where CPU caches are not DMA-coherent.
1124 *
1125 * When the buffer is no longer used, free it with usb_buffer_free().
1126 */
1127void *usb_buffer_alloc (
1128 struct usb_device *dev,
1129 size_t size,
1130 int mem_flags,
1131 dma_addr_t *dma
1132)
1133{
1134 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1135 return NULL;
1136 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1137}
1138
1139/**
1140 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1141 * @dev: device the buffer was used with
1142 * @size: requested buffer size
1143 * @addr: CPU address of buffer
1144 * @dma: DMA address of buffer
1145 *
1146 * This reclaims an I/O buffer, letting it be reused. The memory must have
1147 * been allocated using usb_buffer_alloc(), and the parameters must match
1148 * those provided in that allocation request.
1149 */
1150void usb_buffer_free (
1151 struct usb_device *dev,
1152 size_t size,
1153 void *addr,
1154 dma_addr_t dma
1155)
1156{
1157 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1158 return;
1159 dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1160}
1161
1162/**
1163 * usb_buffer_map - create DMA mapping(s) for an urb
1164 * @urb: urb whose transfer_buffer/setup_packet will be mapped
1165 *
1166 * Return value is either null (indicating no buffer could be mapped), or
1167 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1168 * added to urb->transfer_flags if the operation succeeds. If the device
1169 * is connected to this system through a non-DMA controller, this operation
1170 * always succeeds.
1171 *
1172 * This call would normally be used for an urb which is reused, perhaps
1173 * as the target of a large periodic transfer, with usb_buffer_dmasync()
1174 * calls to synchronize memory and dma state.
1175 *
1176 * Reverse the effect of this call with usb_buffer_unmap().
1177 */
1178#if 0
1179struct urb *usb_buffer_map (struct urb *urb)
1180{
1181 struct usb_bus *bus;
1182 struct device *controller;
1183
1184 if (!urb
1185 || !urb->dev
1186 || !(bus = urb->dev->bus)
1187 || !(controller = bus->controller))
1188 return NULL;
1189
1190 if (controller->dma_mask) {
1191 urb->transfer_dma = dma_map_single (controller,
1192 urb->transfer_buffer, urb->transfer_buffer_length,
1193 usb_pipein (urb->pipe)
1194 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1195 if (usb_pipecontrol (urb->pipe))
1196 urb->setup_dma = dma_map_single (controller,
1197 urb->setup_packet,
1198 sizeof (struct usb_ctrlrequest),
1199 DMA_TO_DEVICE);
1200 // FIXME generic api broken like pci, can't report errors
1201 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1202 } else
1203 urb->transfer_dma = ~0;
1204 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1205 | URB_NO_SETUP_DMA_MAP);
1206 return urb;
1207}
1208#endif /* 0 */
1209
1210/* XXX DISABLED, no users currently. If you wish to re-enable this
1211 * XXX please determine whether the sync is to transfer ownership of
1212 * XXX the buffer from device to cpu or vice verse, and thusly use the
1213 * XXX appropriate _for_{cpu,device}() method. -DaveM
1214 */
1215#if 0
1216
1217/**
1218 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1219 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1220 */
1221void usb_buffer_dmasync (struct urb *urb)
1222{
1223 struct usb_bus *bus;
1224 struct device *controller;
1225
1226 if (!urb
1227 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1228 || !urb->dev
1229 || !(bus = urb->dev->bus)
1230 || !(controller = bus->controller))
1231 return;
1232
1233 if (controller->dma_mask) {
1234 dma_sync_single (controller,
1235 urb->transfer_dma, urb->transfer_buffer_length,
1236 usb_pipein (urb->pipe)
1237 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1238 if (usb_pipecontrol (urb->pipe))
1239 dma_sync_single (controller,
1240 urb->setup_dma,
1241 sizeof (struct usb_ctrlrequest),
1242 DMA_TO_DEVICE);
1243 }
1244}
1245#endif
1246
1247/**
1248 * usb_buffer_unmap - free DMA mapping(s) for an urb
1249 * @urb: urb whose transfer_buffer will be unmapped
1250 *
1251 * Reverses the effect of usb_buffer_map().
1252 */
1253#if 0
1254void usb_buffer_unmap (struct urb *urb)
1255{
1256 struct usb_bus *bus;
1257 struct device *controller;
1258
1259 if (!urb
1260 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1261 || !urb->dev
1262 || !(bus = urb->dev->bus)
1263 || !(controller = bus->controller))
1264 return;
1265
1266 if (controller->dma_mask) {
1267 dma_unmap_single (controller,
1268 urb->transfer_dma, urb->transfer_buffer_length,
1269 usb_pipein (urb->pipe)
1270 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1271 if (usb_pipecontrol (urb->pipe))
1272 dma_unmap_single (controller,
1273 urb->setup_dma,
1274 sizeof (struct usb_ctrlrequest),
1275 DMA_TO_DEVICE);
1276 }
1277 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1278 | URB_NO_SETUP_DMA_MAP);
1279}
1280#endif /* 0 */
1281
1282/**
1283 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1284 * @dev: device to which the scatterlist will be mapped
1285 * @pipe: endpoint defining the mapping direction
1286 * @sg: the scatterlist to map
1287 * @nents: the number of entries in the scatterlist
1288 *
1289 * Return value is either < 0 (indicating no buffers could be mapped), or
1290 * the number of DMA mapping array entries in the scatterlist.
1291 *
1292 * The caller is responsible for placing the resulting DMA addresses from
1293 * the scatterlist into URB transfer buffer pointers, and for setting the
1294 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1295 *
1296 * Top I/O rates come from queuing URBs, instead of waiting for each one
1297 * to complete before starting the next I/O. This is particularly easy
1298 * to do with scatterlists. Just allocate and submit one URB for each DMA
1299 * mapping entry returned, stopping on the first error or when all succeed.
1300 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1301 *
1302 * This call would normally be used when translating scatterlist requests,
1303 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1304 * may be able to coalesce mappings for improved I/O efficiency.
1305 *
1306 * Reverse the effect of this call with usb_buffer_unmap_sg().
1307 */
1308int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1309 struct scatterlist *sg, int nents)
1310{
1311 struct usb_bus *bus;
1312 struct device *controller;
1313
1314 if (!dev
1315 || usb_pipecontrol (pipe)
1316 || !(bus = dev->bus)
1317 || !(controller = bus->controller)
1318 || !controller->dma_mask)
1319 return -1;
1320
1321 // FIXME generic api broken like pci, can't report errors
1322 return dma_map_sg (controller, sg, nents,
1323 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1324}
1325
1326/* XXX DISABLED, no users currently. If you wish to re-enable this
1327 * XXX please determine whether the sync is to transfer ownership of
1328 * XXX the buffer from device to cpu or vice verse, and thusly use the
1329 * XXX appropriate _for_{cpu,device}() method. -DaveM
1330 */
1331#if 0
1332
1333/**
1334 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1335 * @dev: device to which the scatterlist will be mapped
1336 * @pipe: endpoint defining the mapping direction
1337 * @sg: the scatterlist to synchronize
1338 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1339 *
1340 * Use this when you are re-using a scatterlist's data buffers for
1341 * another USB request.
1342 */
1343void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1344 struct scatterlist *sg, int n_hw_ents)
1345{
1346 struct usb_bus *bus;
1347 struct device *controller;
1348
1349 if (!dev
1350 || !(bus = dev->bus)
1351 || !(controller = bus->controller)
1352 || !controller->dma_mask)
1353 return;
1354
1355 dma_sync_sg (controller, sg, n_hw_ents,
1356 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1357}
1358#endif
1359
1360/**
1361 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1362 * @dev: device to which the scatterlist will be mapped
1363 * @pipe: endpoint defining the mapping direction
1364 * @sg: the scatterlist to unmap
1365 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1366 *
1367 * Reverses the effect of usb_buffer_map_sg().
1368 */
1369void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1370 struct scatterlist *sg, int n_hw_ents)
1371{
1372 struct usb_bus *bus;
1373 struct device *controller;
1374
1375 if (!dev
1376 || !(bus = dev->bus)
1377 || !(controller = bus->controller)
1378 || !controller->dma_mask)
1379 return;
1380
1381 dma_unmap_sg (controller, sg, n_hw_ents,
1382 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1383}
1384
1385static int usb_generic_suspend(struct device *dev, u32 state)
1386{
1387 struct usb_interface *intf;
1388 struct usb_driver *driver;
1389
1390 if (dev->driver == &usb_generic_driver)
1391 return usb_suspend_device (to_usb_device(dev), state);
1392
1393 if ((dev->driver == NULL) ||
1394 (dev->driver_data == &usb_generic_driver_data))
1395 return 0;
1396
1397 intf = to_usb_interface(dev);
1398 driver = to_usb_driver(dev->driver);
1399
1400 /* there's only one USB suspend state */
1401 if (intf->dev.power.power_state)
1402 return 0;
1403
1404 if (driver->suspend)
1405 return driver->suspend(intf, state);
1406 return 0;
1407}
1408
1409static int usb_generic_resume(struct device *dev)
1410{
1411 struct usb_interface *intf;
1412 struct usb_driver *driver;
1413
1414 /* devices resume through their hub */
1415 if (dev->driver == &usb_generic_driver)
1416 return usb_resume_device (to_usb_device(dev));
1417
1418 if ((dev->driver == NULL) ||
1419 (dev->driver_data == &usb_generic_driver_data))
1420 return 0;
1421
1422 intf = to_usb_interface(dev);
1423 driver = to_usb_driver(dev->driver);
1424
1425 if (driver->resume)
1426 return driver->resume(intf);
1427 return 0;
1428}
1429
1430struct bus_type usb_bus_type = {
1431 .name = "usb",
1432 .match = usb_device_match,
1433 .hotplug = usb_hotplug,
1434 .suspend = usb_generic_suspend,
1435 .resume = usb_generic_resume,
1436};
1437
1438#ifndef MODULE
1439
1440static int __init usb_setup_disable(char *str)
1441{
1442 nousb = 1;
1443 return 1;
1444}
1445
1446/* format to disable USB on kernel command line is: nousb */
1447__setup("nousb", usb_setup_disable);
1448
1449#endif
1450
1451/*
1452 * for external read access to <nousb>
1453 */
1454int usb_disabled(void)
1455{
1456 return nousb;
1457}
1458
1459/*
1460 * Init
1461 */
1462static int __init usb_init(void)
1463{
1464 int retval;
1465 if (nousb) {
1466 pr_info ("%s: USB support disabled\n", usbcore_name);
1467 return 0;
1468 }
1469
1470 retval = bus_register(&usb_bus_type);
1471 if (retval)
1472 goto out;
1473 retval = usb_host_init();
1474 if (retval)
1475 goto host_init_failed;
1476 retval = usb_major_init();
1477 if (retval)
1478 goto major_init_failed;
1479 retval = usbfs_init();
1480 if (retval)
1481 goto fs_init_failed;
1482 retval = usb_hub_init();
1483 if (retval)
1484 goto hub_init_failed;
1485
1486 retval = driver_register(&usb_generic_driver);
1487 if (!retval)
1488 goto out;
1489
1490 usb_hub_cleanup();
1491hub_init_failed:
1492 usbfs_cleanup();
1493fs_init_failed:
1494 usb_major_cleanup();
1495major_init_failed:
1496 usb_host_cleanup();
1497host_init_failed:
1498 bus_unregister(&usb_bus_type);
1499out:
1500 return retval;
1501}
1502
1503/*
1504 * Cleanup
1505 */
1506static void __exit usb_exit(void)
1507{
1508 /* This will matter if shutdown/reboot does exitcalls. */
1509 if (nousb)
1510 return;
1511
1512 driver_unregister(&usb_generic_driver);
1513 usb_major_cleanup();
1514 usbfs_cleanup();
1515 usb_hub_cleanup();
1516 usb_host_cleanup();
1517 bus_unregister(&usb_bus_type);
1518}
1519
1520subsys_initcall(usb_init);
1521module_exit(usb_exit);
1522
1523/*
1524 * USB may be built into the kernel or be built as modules.
1525 * These symbols are exported for device (or host controller)
1526 * driver modules to use.
1527 */
1528
1529EXPORT_SYMBOL(usb_register);
1530EXPORT_SYMBOL(usb_deregister);
1531EXPORT_SYMBOL(usb_disabled);
1532
1533EXPORT_SYMBOL(usb_alloc_dev);
1534EXPORT_SYMBOL(usb_put_dev);
1535EXPORT_SYMBOL(usb_get_dev);
1536EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1537
1538EXPORT_SYMBOL(usb_lock_device);
1539EXPORT_SYMBOL(usb_trylock_device);
1540EXPORT_SYMBOL(usb_lock_device_for_reset);
1541EXPORT_SYMBOL(usb_unlock_device);
1542
1543EXPORT_SYMBOL(usb_driver_claim_interface);
1544EXPORT_SYMBOL(usb_driver_release_interface);
1545EXPORT_SYMBOL(usb_match_id);
1546EXPORT_SYMBOL(usb_find_interface);
1547EXPORT_SYMBOL(usb_ifnum_to_if);
1548EXPORT_SYMBOL(usb_altnum_to_altsetting);
1549
1550EXPORT_SYMBOL(usb_reset_device);
1551EXPORT_SYMBOL(usb_disconnect);
1552
1553EXPORT_SYMBOL(__usb_get_extra_descriptor);
1554
1555EXPORT_SYMBOL(usb_find_device);
1556EXPORT_SYMBOL(usb_get_current_frame_number);
1557
1558EXPORT_SYMBOL (usb_buffer_alloc);
1559EXPORT_SYMBOL (usb_buffer_free);
1560
1561#if 0
1562EXPORT_SYMBOL (usb_buffer_map);
1563EXPORT_SYMBOL (usb_buffer_dmasync);
1564EXPORT_SYMBOL (usb_buffer_unmap);
1565#endif
1566
1567EXPORT_SYMBOL (usb_buffer_map_sg);
1568#if 0
1569EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1570#endif
1571EXPORT_SYMBOL (usb_buffer_unmap_sg);
1572
1573MODULE_LICENSE("GPL");
This page took 0.080623 seconds and 5 git commands to generate.