static keys: Add docs better explaining the whole 'struct static_key' mechanism
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
db7e527d 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
029632fb 82#include "sched.h"
391e43da 83#include "../workqueue_sched.h"
6e0534f2 84
a8d154b0 85#define CREATE_TRACE_POINTS
ad8d75ff 86#include <trace/events/sched.h>
a8d154b0 87
029632fb 88void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 89{
58088ad0
PT
90 unsigned long delta;
91 ktime_t soft, hard, now;
d0b27fa7 92
58088ad0
PT
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
d0b27fa7 99
58088ad0
PT
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106}
107
029632fb
PZ
108DEFINE_MUTEX(sched_domains_mutex);
109DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 110
fe44d621 111static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 112
029632fb 113void update_rq_clock(struct rq *rq)
3e51f33f 114{
fe44d621 115 s64 delta;
305e6835 116
61eadef6 117 if (rq->skip_clock_update > 0)
f26f9aff 118 return;
aa483808 119
fe44d621
PZ
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
3e51f33f
PZ
123}
124
bf5c91ba
IM
125/*
126 * Debugging: various feature bits
127 */
f00b45c1 128
f00b45c1
PZ
129#define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
bf5c91ba 132const_debug unsigned int sysctl_sched_features =
391e43da 133#include "features.h"
f00b45c1
PZ
134 0;
135
136#undef SCHED_FEAT
137
138#ifdef CONFIG_SCHED_DEBUG
139#define SCHED_FEAT(name, enabled) \
140 #name ,
141
983ed7a6 142static __read_mostly char *sched_feat_names[] = {
391e43da 143#include "features.h"
f00b45c1
PZ
144 NULL
145};
146
147#undef SCHED_FEAT
148
34f3a814 149static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 150{
f00b45c1
PZ
151 int i;
152
f8b6d1cc 153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 157 }
34f3a814 158 seq_puts(m, "\n");
f00b45c1 159
34f3a814 160 return 0;
f00b45c1
PZ
161}
162
f8b6d1cc
PZ
163#ifdef HAVE_JUMP_LABEL
164
165#define jump_label_key__true jump_label_key_enabled
166#define jump_label_key__false jump_label_key_disabled
167
168#define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172#include "features.h"
173};
174
175#undef SCHED_FEAT
176
177static void sched_feat_disable(int i)
178{
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181}
182
183static void sched_feat_enable(int i)
184{
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187}
188#else
189static void sched_feat_disable(int i) { };
190static void sched_feat_enable(int i) { };
191#endif /* HAVE_JUMP_LABEL */
192
f00b45c1
PZ
193static ssize_t
194sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196{
197 char buf[64];
7740191c 198 char *cmp;
f00b45c1
PZ
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
7740191c 209 cmp = strstrip(buf);
f00b45c1 210
524429c3 211 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
212 neg = 1;
213 cmp += 3;
214 }
215
f8b6d1cc 216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 218 if (neg) {
f00b45c1 219 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
220 sched_feat_disable(i);
221 } else {
f00b45c1 222 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
223 sched_feat_enable(i);
224 }
f00b45c1
PZ
225 break;
226 }
227 }
228
f8b6d1cc 229 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
230 return -EINVAL;
231
42994724 232 *ppos += cnt;
f00b45c1
PZ
233
234 return cnt;
235}
236
34f3a814
LZ
237static int sched_feat_open(struct inode *inode, struct file *filp)
238{
239 return single_open(filp, sched_feat_show, NULL);
240}
241
828c0950 242static const struct file_operations sched_feat_fops = {
34f3a814
LZ
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
f00b45c1
PZ
248};
249
250static __init int sched_init_debug(void)
251{
f00b45c1
PZ
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256}
257late_initcall(sched_init_debug);
f8b6d1cc 258#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 259
b82d9fdd
PZ
260/*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
e9e9250b
PZ
266/*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
fa85ae24 274/*
9f0c1e56 275 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
276 * default: 1s
277 */
9f0c1e56 278unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 279
029632fb 280__read_mostly int scheduler_running;
6892b75e 281
9f0c1e56
PZ
282/*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286int sysctl_sched_rt_runtime = 950000;
fa85ae24 287
fa85ae24 288
1da177e4 289
0970d299 290/*
0122ec5b 291 * __task_rq_lock - lock the rq @p resides on.
b29739f9 292 */
70b97a7f 293static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
294 __acquires(rq->lock)
295{
0970d299
PZ
296 struct rq *rq;
297
0122ec5b
PZ
298 lockdep_assert_held(&p->pi_lock);
299
3a5c359a 300 for (;;) {
0970d299 301 rq = task_rq(p);
05fa785c 302 raw_spin_lock(&rq->lock);
65cc8e48 303 if (likely(rq == task_rq(p)))
3a5c359a 304 return rq;
05fa785c 305 raw_spin_unlock(&rq->lock);
b29739f9 306 }
b29739f9
IM
307}
308
1da177e4 309/*
0122ec5b 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 311 */
70b97a7f 312static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 313 __acquires(p->pi_lock)
1da177e4
LT
314 __acquires(rq->lock)
315{
70b97a7f 316 struct rq *rq;
1da177e4 317
3a5c359a 318 for (;;) {
0122ec5b 319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
65cc8e48 322 if (likely(rq == task_rq(p)))
3a5c359a 323 return rq;
0122ec5b
PZ
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 326 }
1da177e4
LT
327}
328
a9957449 329static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
330 __releases(rq->lock)
331{
05fa785c 332 raw_spin_unlock(&rq->lock);
b29739f9
IM
333}
334
0122ec5b
PZ
335static inline void
336task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 337 __releases(rq->lock)
0122ec5b 338 __releases(p->pi_lock)
1da177e4 339{
0122ec5b
PZ
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
342}
343
1da177e4 344/*
cc2a73b5 345 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 346 */
a9957449 347static struct rq *this_rq_lock(void)
1da177e4
LT
348 __acquires(rq->lock)
349{
70b97a7f 350 struct rq *rq;
1da177e4
LT
351
352 local_irq_disable();
353 rq = this_rq();
05fa785c 354 raw_spin_lock(&rq->lock);
1da177e4
LT
355
356 return rq;
357}
358
8f4d37ec
PZ
359#ifdef CONFIG_SCHED_HRTICK
360/*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
8f4d37ec 370
8f4d37ec
PZ
371static void hrtick_clear(struct rq *rq)
372{
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375}
376
8f4d37ec
PZ
377/*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381static enum hrtimer_restart hrtick(struct hrtimer *timer)
382{
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
05fa785c 387 raw_spin_lock(&rq->lock);
3e51f33f 388 update_rq_clock(rq);
8f4d37ec 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 390 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
391
392 return HRTIMER_NORESTART;
393}
394
95e904c7 395#ifdef CONFIG_SMP
31656519
PZ
396/*
397 * called from hardirq (IPI) context
398 */
399static void __hrtick_start(void *arg)
b328ca18 400{
31656519 401 struct rq *rq = arg;
b328ca18 402
05fa785c 403 raw_spin_lock(&rq->lock);
31656519
PZ
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
05fa785c 406 raw_spin_unlock(&rq->lock);
b328ca18
PZ
407}
408
31656519
PZ
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
029632fb 414void hrtick_start(struct rq *rq, u64 delay)
b328ca18 415{
31656519
PZ
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 418
cc584b21 419 hrtimer_set_expires(timer, time);
31656519
PZ
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
6e275637 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
425 rq->hrtick_csd_pending = 1;
426 }
b328ca18
PZ
427}
428
429static int
430hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431{
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
31656519 441 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446}
447
fa748203 448static __init void init_hrtick(void)
b328ca18
PZ
449{
450 hotcpu_notifier(hotplug_hrtick, 0);
451}
31656519
PZ
452#else
453/*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
029632fb 458void hrtick_start(struct rq *rq, u64 delay)
31656519 459{
7f1e2ca9 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 461 HRTIMER_MODE_REL_PINNED, 0);
31656519 462}
b328ca18 463
006c75f1 464static inline void init_hrtick(void)
8f4d37ec 465{
8f4d37ec 466}
31656519 467#endif /* CONFIG_SMP */
8f4d37ec 468
31656519 469static void init_rq_hrtick(struct rq *rq)
8f4d37ec 470{
31656519
PZ
471#ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
8f4d37ec 473
31656519
PZ
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477#endif
8f4d37ec 478
31656519
PZ
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
8f4d37ec 481}
006c75f1 482#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
483static inline void hrtick_clear(struct rq *rq)
484{
485}
486
8f4d37ec
PZ
487static inline void init_rq_hrtick(struct rq *rq)
488{
489}
490
b328ca18
PZ
491static inline void init_hrtick(void)
492{
493}
006c75f1 494#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 495
c24d20db
IM
496/*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503#ifdef CONFIG_SMP
504
505#ifndef tsk_is_polling
506#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507#endif
508
029632fb 509void resched_task(struct task_struct *p)
c24d20db
IM
510{
511 int cpu;
512
05fa785c 513 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 514
5ed0cec0 515 if (test_tsk_need_resched(p))
c24d20db
IM
516 return;
517
5ed0cec0 518 set_tsk_need_resched(p);
c24d20db
IM
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528}
529
029632fb 530void resched_cpu(int cpu)
c24d20db
IM
531{
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
05fa785c 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
536 return;
537 resched_task(cpu_curr(cpu));
05fa785c 538 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 539}
06d8308c
TG
540
541#ifdef CONFIG_NO_HZ
83cd4fe2
VP
542/*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550int get_nohz_timer_target(void)
551{
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
057f3fad 556 rcu_read_lock();
83cd4fe2 557 for_each_domain(cpu, sd) {
057f3fad
PZ
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
83cd4fe2 564 }
057f3fad
PZ
565unlock:
566 rcu_read_unlock();
83cd4fe2
VP
567 return cpu;
568}
06d8308c
TG
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579void wake_up_idle_cpu(int cpu)
580{
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
45bf76df 595
45bf76df 596 /*
06d8308c
TG
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
45bf76df 600 */
5ed0cec0 601 set_tsk_need_resched(rq->idle);
45bf76df 602
06d8308c
TG
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
45bf76df
IM
607}
608
ca38062e 609static inline bool got_nohz_idle_kick(void)
45bf76df 610{
1c792db7
SS
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
613}
614
ca38062e 615#else /* CONFIG_NO_HZ */
45bf76df 616
ca38062e 617static inline bool got_nohz_idle_kick(void)
2069dd75 618{
ca38062e 619 return false;
2069dd75
PZ
620}
621
6d6bc0ad 622#endif /* CONFIG_NO_HZ */
d842de87 623
029632fb 624void sched_avg_update(struct rq *rq)
18d95a28 625{
e9e9250b
PZ
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
18d95a28
PZ
638}
639
6d6bc0ad 640#else /* !CONFIG_SMP */
029632fb 641void resched_task(struct task_struct *p)
18d95a28 642{
05fa785c 643 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 644 set_tsk_need_resched(p);
18d95a28 645}
6d6bc0ad 646#endif /* CONFIG_SMP */
18d95a28 647
a790de99
PT
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 650/*
8277434e
PT
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 655 */
029632fb 656int walk_tg_tree_from(struct task_group *from,
8277434e 657 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
658{
659 struct task_group *parent, *child;
eb755805 660 int ret;
c09595f6 661
8277434e
PT
662 parent = from;
663
c09595f6 664down:
eb755805
PZ
665 ret = (*down)(parent, data);
666 if (ret)
8277434e 667 goto out;
c09595f6
PZ
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672up:
673 continue;
674 }
eb755805 675 ret = (*up)(parent, data);
8277434e
PT
676 if (ret || parent == from)
677 goto out;
c09595f6
PZ
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
8277434e 683out:
eb755805 684 return ret;
c09595f6
PZ
685}
686
029632fb 687int tg_nop(struct task_group *tg, void *data)
eb755805 688{
e2b245f8 689 return 0;
eb755805 690}
18d95a28
PZ
691#endif
692
029632fb 693void update_cpu_load(struct rq *this_rq);
9c217245 694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266 int dest_cpu;
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1272 return dest_cpu;
1273
1274 /* Any allowed, online CPU? */
fa17b507 1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1276 if (dest_cpu < nr_cpu_ids)
1277 return dest_cpu;
1278
1279 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1280 dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 /*
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1284 * leave kernel.
1285 */
1286 if (p->mm && printk_ratelimit()) {
1287 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1288 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1289 }
1290
1291 return dest_cpu;
1292}
1293
e2912009 1294/*
013fdb80 1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1296 */
970b13ba 1297static inline
7608dec2 1298int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1299{
7608dec2 1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1301
1302 /*
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 * cpu.
1306 *
1307 * Since this is common to all placement strategies, this lives here.
1308 *
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1311 */
fa17b507 1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1313 !cpu_online(cpu)))
5da9a0fb 1314 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1315
1316 return cpu;
970b13ba 1317}
09a40af5
MG
1318
1319static void update_avg(u64 *avg, u64 sample)
1320{
1321 s64 diff = sample - *avg;
1322 *avg += diff >> 3;
1323}
970b13ba
PZ
1324#endif
1325
d7c01d27 1326static void
b84cb5df 1327ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1328{
d7c01d27 1329#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1330 struct rq *rq = this_rq();
1331
d7c01d27
PZ
1332#ifdef CONFIG_SMP
1333 int this_cpu = smp_processor_id();
1334
1335 if (cpu == this_cpu) {
1336 schedstat_inc(rq, ttwu_local);
1337 schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 } else {
1339 struct sched_domain *sd;
1340
1341 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1342 rcu_read_lock();
d7c01d27
PZ
1343 for_each_domain(this_cpu, sd) {
1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 schedstat_inc(sd, ttwu_wake_remote);
1346 break;
1347 }
1348 }
057f3fad 1349 rcu_read_unlock();
d7c01d27 1350 }
f339b9dc
PZ
1351
1352 if (wake_flags & WF_MIGRATED)
1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354
d7c01d27
PZ
1355#endif /* CONFIG_SMP */
1356
1357 schedstat_inc(rq, ttwu_count);
9ed3811a 1358 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1359
1360 if (wake_flags & WF_SYNC)
9ed3811a 1361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1362
d7c01d27
PZ
1363#endif /* CONFIG_SCHEDSTATS */
1364}
1365
1366static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367{
9ed3811a 1368 activate_task(rq, p, en_flags);
fd2f4419 1369 p->on_rq = 1;
c2f7115e
PZ
1370
1371 /* if a worker is waking up, notify workqueue */
1372 if (p->flags & PF_WQ_WORKER)
1373 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1374}
1375
23f41eeb
PZ
1376/*
1377 * Mark the task runnable and perform wakeup-preemption.
1378 */
89363381 1379static void
23f41eeb 1380ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1381{
89363381 1382 trace_sched_wakeup(p, true);
9ed3811a
TH
1383 check_preempt_curr(rq, p, wake_flags);
1384
1385 p->state = TASK_RUNNING;
1386#ifdef CONFIG_SMP
1387 if (p->sched_class->task_woken)
1388 p->sched_class->task_woken(rq, p);
1389
e69c6341 1390 if (rq->idle_stamp) {
9ed3811a
TH
1391 u64 delta = rq->clock - rq->idle_stamp;
1392 u64 max = 2*sysctl_sched_migration_cost;
1393
1394 if (delta > max)
1395 rq->avg_idle = max;
1396 else
1397 update_avg(&rq->avg_idle, delta);
1398 rq->idle_stamp = 0;
1399 }
1400#endif
1401}
1402
c05fbafb
PZ
1403static void
1404ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405{
1406#ifdef CONFIG_SMP
1407 if (p->sched_contributes_to_load)
1408 rq->nr_uninterruptible--;
1409#endif
1410
1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 ttwu_do_wakeup(rq, p, wake_flags);
1413}
1414
1415/*
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1420 */
1421static int ttwu_remote(struct task_struct *p, int wake_flags)
1422{
1423 struct rq *rq;
1424 int ret = 0;
1425
1426 rq = __task_rq_lock(p);
1427 if (p->on_rq) {
1428 ttwu_do_wakeup(rq, p, wake_flags);
1429 ret = 1;
1430 }
1431 __task_rq_unlock(rq);
1432
1433 return ret;
1434}
1435
317f3941 1436#ifdef CONFIG_SMP
fa14ff4a 1437static void sched_ttwu_pending(void)
317f3941
PZ
1438{
1439 struct rq *rq = this_rq();
fa14ff4a
PZ
1440 struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 struct task_struct *p;
317f3941
PZ
1442
1443 raw_spin_lock(&rq->lock);
1444
fa14ff4a
PZ
1445 while (llist) {
1446 p = llist_entry(llist, struct task_struct, wake_entry);
1447 llist = llist_next(llist);
317f3941
PZ
1448 ttwu_do_activate(rq, p, 0);
1449 }
1450
1451 raw_spin_unlock(&rq->lock);
1452}
1453
1454void scheduler_ipi(void)
1455{
ca38062e 1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1457 return;
1458
1459 /*
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1463 * we do call them.
1464 *
1465 * Some archs already do call them, luckily irq_enter/exit nest
1466 * properly.
1467 *
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1471 */
1472 irq_enter();
fa14ff4a 1473 sched_ttwu_pending();
ca38062e
SS
1474
1475 /*
1476 * Check if someone kicked us for doing the nohz idle load balance.
1477 */
6eb57e0d
SS
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance = 1;
ca38062e 1480 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1481 }
c5d753a5 1482 irq_exit();
317f3941
PZ
1483}
1484
1485static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486{
fa14ff4a 1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1488 smp_send_reschedule(cpu);
1489}
d6aa8f85
PZ
1490
1491#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493{
1494 struct rq *rq;
1495 int ret = 0;
1496
1497 rq = __task_rq_lock(p);
1498 if (p->on_cpu) {
1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 ttwu_do_wakeup(rq, p, wake_flags);
1501 ret = 1;
1502 }
1503 __task_rq_unlock(rq);
1504
1505 return ret;
1506
1507}
1508#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623
PZ
1509
1510static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1511{
1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513}
d6aa8f85 1514#endif /* CONFIG_SMP */
317f3941 1515
c05fbafb
PZ
1516static void ttwu_queue(struct task_struct *p, int cpu)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519
17d9f311 1520#if defined(CONFIG_SMP)
518cd623 1521 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
f01114cb 1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1523 ttwu_queue_remote(p, cpu);
1524 return;
1525 }
1526#endif
1527
c05fbafb
PZ
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1531}
1532
1533/**
1da177e4 1534 * try_to_wake_up - wake up a thread
9ed3811a 1535 * @p: the thread to be awakened
1da177e4 1536 * @state: the mask of task states that can be woken
9ed3811a 1537 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
9ed3811a
TH
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1da177e4 1547 */
e4a52bcb
PZ
1548static int
1549try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1550{
1da177e4 1551 unsigned long flags;
c05fbafb 1552 int cpu, success = 0;
2398f2c6 1553
04e2f174 1554 smp_wmb();
013fdb80 1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1556 if (!(p->state & state))
1da177e4
LT
1557 goto out;
1558
c05fbafb 1559 success = 1; /* we're going to change ->state */
1da177e4 1560 cpu = task_cpu(p);
1da177e4 1561
c05fbafb
PZ
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1da177e4 1564
1da177e4 1565#ifdef CONFIG_SMP
e9c84311 1566 /*
c05fbafb
PZ
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
e9c84311 1569 */
e4a52bcb
PZ
1570 while (p->on_cpu) {
1571#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 /*
d6aa8f85
PZ
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
e4a52bcb 1578 */
d6aa8f85 1579 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1580 goto stat;
d6aa8f85 1581#else
e4a52bcb 1582 cpu_relax();
d6aa8f85 1583#endif
371fd7e7 1584 }
0970d299 1585 /*
e4a52bcb 1586 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1587 */
e4a52bcb 1588 smp_rmb();
1da177e4 1589
a8e4f2ea 1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1591 p->state = TASK_WAKING;
e7693a36 1592
e4a52bcb 1593 if (p->sched_class->task_waking)
74f8e4b2 1594 p->sched_class->task_waking(p);
efbbd05a 1595
7608dec2 1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
e4a52bcb 1599 set_task_cpu(p, cpu);
f339b9dc 1600 }
1da177e4 1601#endif /* CONFIG_SMP */
1da177e4 1602
c05fbafb
PZ
1603 ttwu_queue(p, cpu);
1604stat:
b84cb5df 1605 ttwu_stat(p, cpu, wake_flags);
1da177e4 1606out:
013fdb80 1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1608
1609 return success;
1610}
1611
21aa9af0
TH
1612/**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
2acca55e 1616 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1618 * the current task.
21aa9af0
TH
1619 */
1620static void try_to_wake_up_local(struct task_struct *p)
1621{
1622 struct rq *rq = task_rq(p);
21aa9af0
TH
1623
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1627
2acca55e
PZ
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1632 }
1633
21aa9af0 1634 if (!(p->state & TASK_NORMAL))
2acca55e 1635 goto out;
21aa9af0 1636
fd2f4419 1637 if (!p->on_rq)
d7c01d27
PZ
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
23f41eeb 1640 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1641 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1642out:
1643 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1644}
1645
50fa610a
DH
1646/**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
7ad5b3a5 1657int wake_up_process(struct task_struct *p)
1da177e4 1658{
d9514f6c 1659 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1660}
1da177e4
LT
1661EXPORT_SYMBOL(wake_up_process);
1662
7ad5b3a5 1663int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1664{
1665 return try_to_wake_up(p, state, 0);
1666}
1667
1da177e4
LT
1668/*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
dd41f596
IM
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674static void __sched_fork(struct task_struct *p)
1675{
fd2f4419
PZ
1676 p->on_rq = 0;
1677
1678 p->se.on_rq = 0;
dd41f596
IM
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
f6cf891c 1681 p->se.prev_sum_exec_runtime = 0;
6c594c21 1682 p->se.nr_migrations = 0;
da7a735e 1683 p->se.vruntime = 0;
fd2f4419 1684 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1685
1686#ifdef CONFIG_SCHEDSTATS
41acab88 1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1688#endif
476d139c 1689
fa717060 1690 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1691
e107be36
AK
1692#ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694#endif
dd41f596
IM
1695}
1696
1697/*
1698 * fork()/clone()-time setup:
1699 */
3e51e3ed 1700void sched_fork(struct task_struct *p)
dd41f596 1701{
0122ec5b 1702 unsigned long flags;
dd41f596
IM
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
06b83b5f 1706 /*
0017d735 1707 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1710 */
0017d735 1711 p->state = TASK_RUNNING;
dd41f596 1712
c350a04e
MG
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child.
1715 */
1716 p->prio = current->normal_prio;
1717
b9dc29e7
MG
1718 /*
1719 * Revert to default priority/policy on fork if requested.
1720 */
1721 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1722 if (task_has_rt_policy(p)) {
b9dc29e7 1723 p->policy = SCHED_NORMAL;
6c697bdf 1724 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1728
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
6c697bdf 1731
b9dc29e7
MG
1732 /*
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1735 */
1736 p->sched_reset_on_fork = 0;
1737 }
ca94c442 1738
2ddbf952
HS
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
b29739f9 1741
cd29fe6f
PZ
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1744
86951599
PZ
1745 /*
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1749 *
1750 * Silence PROVE_RCU.
1751 */
0122ec5b 1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1753 set_task_cpu(p, cpu);
0122ec5b 1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1755
52f17b6c 1756#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1757 if (likely(sched_info_on()))
52f17b6c 1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1759#endif
3ca7a440
PZ
1760#if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
4866cde0 1762#endif
bdd4e85d 1763#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1764 /* Want to start with kernel preemption disabled. */
a1261f54 1765 task_thread_info(p)->preempt_count = 1;
1da177e4 1766#endif
806c09a7 1767#ifdef CONFIG_SMP
917b627d 1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1769#endif
917b627d 1770
476d139c 1771 put_cpu();
1da177e4
LT
1772}
1773
1774/*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
3e51e3ed 1781void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1782{
1783 unsigned long flags;
dd41f596 1784 struct rq *rq;
fabf318e 1785
ab2515c4 1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1787#ifdef CONFIG_SMP
1788 /*
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
fabf318e 1792 */
ab2515c4 1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1794#endif
1795
ab2515c4 1796 rq = __task_rq_lock(p);
cd29fe6f 1797 activate_task(rq, p, 0);
fd2f4419 1798 p->on_rq = 1;
89363381 1799 trace_sched_wakeup_new(p, true);
a7558e01 1800 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1801#ifdef CONFIG_SMP
efbbd05a
PZ
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
9a897c5a 1804#endif
0122ec5b 1805 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1806}
1807
e107be36
AK
1808#ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810/**
80dd99b3 1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1812 * @notifier: notifier struct to register
e107be36
AK
1813 */
1814void preempt_notifier_register(struct preempt_notifier *notifier)
1815{
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817}
1818EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820/**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1822 * @notifier: notifier struct to unregister
e107be36
AK
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827{
1828 hlist_del(&notifier->link);
1829}
1830EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833{
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1836
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839}
1840
1841static void
1842fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1844{
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1847
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1850}
1851
6d6bc0ad 1852#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1853
1854static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855{
1856}
1857
1858static void
1859fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1861{
1862}
1863
6d6bc0ad 1864#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1865
4866cde0
NP
1866/**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
421cee29 1869 * @prev: the current task that is being switched out
4866cde0
NP
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
e107be36
AK
1879static inline void
1880prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
4866cde0 1882{
fe4b04fa
PZ
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
e107be36 1885 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
fe4b04fa 1888 trace_sched_switch(prev, next);
4866cde0
NP
1889}
1890
1da177e4
LT
1891/**
1892 * finish_task_switch - clean up after a task-switch
344babaa 1893 * @rq: runqueue associated with task-switch
1da177e4
LT
1894 * @prev: the thread we just switched away from.
1895 *
4866cde0
NP
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1902 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
a9957449 1906static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1907 __releases(rq->lock)
1908{
1da177e4 1909 struct mm_struct *mm = rq->prev_mm;
55a101f8 1910 long prev_state;
1da177e4
LT
1911
1912 rq->prev_mm = NULL;
1913
1914 /*
1915 * A task struct has one reference for the use as "current".
c394cc9f 1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
c394cc9f 1919 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1924 */
55a101f8 1925 prev_state = prev->state;
4866cde0 1926 finish_arch_switch(prev);
8381f65d
JI
1927#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1930 perf_event_task_sched_in(prev, current);
8381f65d
JI
1931#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1934 finish_lock_switch(rq, prev);
1ac9bc69 1935 trace_sched_stat_sleeptime(current, rq->clock);
e8fa1362 1936
e107be36 1937 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1938 if (mm)
1939 mmdrop(mm);
c394cc9f 1940 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1941 /*
1942 * Remove function-return probe instances associated with this
1943 * task and put them back on the free list.
9761eea8 1944 */
c6fd91f0 1945 kprobe_flush_task(prev);
1da177e4 1946 put_task_struct(prev);
c6fd91f0 1947 }
1da177e4
LT
1948}
1949
3f029d3c
GH
1950#ifdef CONFIG_SMP
1951
1952/* assumes rq->lock is held */
1953static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1954{
1955 if (prev->sched_class->pre_schedule)
1956 prev->sched_class->pre_schedule(rq, prev);
1957}
1958
1959/* rq->lock is NOT held, but preemption is disabled */
1960static inline void post_schedule(struct rq *rq)
1961{
1962 if (rq->post_schedule) {
1963 unsigned long flags;
1964
05fa785c 1965 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1966 if (rq->curr->sched_class->post_schedule)
1967 rq->curr->sched_class->post_schedule(rq);
05fa785c 1968 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1969
1970 rq->post_schedule = 0;
1971 }
1972}
1973
1974#else
da19ab51 1975
3f029d3c
GH
1976static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1977{
1978}
1979
1980static inline void post_schedule(struct rq *rq)
1981{
1da177e4
LT
1982}
1983
3f029d3c
GH
1984#endif
1985
1da177e4
LT
1986/**
1987 * schedule_tail - first thing a freshly forked thread must call.
1988 * @prev: the thread we just switched away from.
1989 */
36c8b586 1990asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1991 __releases(rq->lock)
1992{
70b97a7f
IM
1993 struct rq *rq = this_rq();
1994
4866cde0 1995 finish_task_switch(rq, prev);
da19ab51 1996
3f029d3c
GH
1997 /*
1998 * FIXME: do we need to worry about rq being invalidated by the
1999 * task_switch?
2000 */
2001 post_schedule(rq);
70b97a7f 2002
4866cde0
NP
2003#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2004 /* In this case, finish_task_switch does not reenable preemption */
2005 preempt_enable();
2006#endif
1da177e4 2007 if (current->set_child_tid)
b488893a 2008 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2009}
2010
2011/*
2012 * context_switch - switch to the new MM and the new
2013 * thread's register state.
2014 */
dd41f596 2015static inline void
70b97a7f 2016context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2017 struct task_struct *next)
1da177e4 2018{
dd41f596 2019 struct mm_struct *mm, *oldmm;
1da177e4 2020
e107be36 2021 prepare_task_switch(rq, prev, next);
fe4b04fa 2022
dd41f596
IM
2023 mm = next->mm;
2024 oldmm = prev->active_mm;
9226d125
ZA
2025 /*
2026 * For paravirt, this is coupled with an exit in switch_to to
2027 * combine the page table reload and the switch backend into
2028 * one hypercall.
2029 */
224101ed 2030 arch_start_context_switch(prev);
9226d125 2031
31915ab4 2032 if (!mm) {
1da177e4
LT
2033 next->active_mm = oldmm;
2034 atomic_inc(&oldmm->mm_count);
2035 enter_lazy_tlb(oldmm, next);
2036 } else
2037 switch_mm(oldmm, mm, next);
2038
31915ab4 2039 if (!prev->mm) {
1da177e4 2040 prev->active_mm = NULL;
1da177e4
LT
2041 rq->prev_mm = oldmm;
2042 }
3a5f5e48
IM
2043 /*
2044 * Since the runqueue lock will be released by the next
2045 * task (which is an invalid locking op but in the case
2046 * of the scheduler it's an obvious special-case), so we
2047 * do an early lockdep release here:
2048 */
2049#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2050 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2051#endif
1da177e4
LT
2052
2053 /* Here we just switch the register state and the stack. */
2054 switch_to(prev, next, prev);
2055
dd41f596
IM
2056 barrier();
2057 /*
2058 * this_rq must be evaluated again because prev may have moved
2059 * CPUs since it called schedule(), thus the 'rq' on its stack
2060 * frame will be invalid.
2061 */
2062 finish_task_switch(this_rq(), prev);
1da177e4
LT
2063}
2064
2065/*
2066 * nr_running, nr_uninterruptible and nr_context_switches:
2067 *
2068 * externally visible scheduler statistics: current number of runnable
2069 * threads, current number of uninterruptible-sleeping threads, total
2070 * number of context switches performed since bootup.
2071 */
2072unsigned long nr_running(void)
2073{
2074 unsigned long i, sum = 0;
2075
2076 for_each_online_cpu(i)
2077 sum += cpu_rq(i)->nr_running;
2078
2079 return sum;
f711f609 2080}
1da177e4
LT
2081
2082unsigned long nr_uninterruptible(void)
f711f609 2083{
1da177e4 2084 unsigned long i, sum = 0;
f711f609 2085
0a945022 2086 for_each_possible_cpu(i)
1da177e4 2087 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2088
2089 /*
1da177e4
LT
2090 * Since we read the counters lockless, it might be slightly
2091 * inaccurate. Do not allow it to go below zero though:
f711f609 2092 */
1da177e4
LT
2093 if (unlikely((long)sum < 0))
2094 sum = 0;
f711f609 2095
1da177e4 2096 return sum;
f711f609 2097}
f711f609 2098
1da177e4 2099unsigned long long nr_context_switches(void)
46cb4b7c 2100{
cc94abfc
SR
2101 int i;
2102 unsigned long long sum = 0;
46cb4b7c 2103
0a945022 2104 for_each_possible_cpu(i)
1da177e4 2105 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2106
1da177e4
LT
2107 return sum;
2108}
483b4ee6 2109
1da177e4
LT
2110unsigned long nr_iowait(void)
2111{
2112 unsigned long i, sum = 0;
483b4ee6 2113
0a945022 2114 for_each_possible_cpu(i)
1da177e4 2115 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2116
1da177e4
LT
2117 return sum;
2118}
483b4ee6 2119
8c215bd3 2120unsigned long nr_iowait_cpu(int cpu)
69d25870 2121{
8c215bd3 2122 struct rq *this = cpu_rq(cpu);
69d25870
AV
2123 return atomic_read(&this->nr_iowait);
2124}
46cb4b7c 2125
69d25870
AV
2126unsigned long this_cpu_load(void)
2127{
2128 struct rq *this = this_rq();
2129 return this->cpu_load[0];
2130}
e790fb0b 2131
46cb4b7c 2132
dce48a84
TG
2133/* Variables and functions for calc_load */
2134static atomic_long_t calc_load_tasks;
2135static unsigned long calc_load_update;
2136unsigned long avenrun[3];
2137EXPORT_SYMBOL(avenrun);
46cb4b7c 2138
74f5187a
PZ
2139static long calc_load_fold_active(struct rq *this_rq)
2140{
2141 long nr_active, delta = 0;
2142
2143 nr_active = this_rq->nr_running;
2144 nr_active += (long) this_rq->nr_uninterruptible;
2145
2146 if (nr_active != this_rq->calc_load_active) {
2147 delta = nr_active - this_rq->calc_load_active;
2148 this_rq->calc_load_active = nr_active;
2149 }
2150
2151 return delta;
2152}
2153
0f004f5a
PZ
2154static unsigned long
2155calc_load(unsigned long load, unsigned long exp, unsigned long active)
2156{
2157 load *= exp;
2158 load += active * (FIXED_1 - exp);
2159 load += 1UL << (FSHIFT - 1);
2160 return load >> FSHIFT;
2161}
2162
74f5187a
PZ
2163#ifdef CONFIG_NO_HZ
2164/*
2165 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2166 *
2167 * When making the ILB scale, we should try to pull this in as well.
2168 */
2169static atomic_long_t calc_load_tasks_idle;
2170
029632fb 2171void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2172{
2173 long delta;
2174
2175 delta = calc_load_fold_active(this_rq);
2176 if (delta)
2177 atomic_long_add(delta, &calc_load_tasks_idle);
2178}
2179
2180static long calc_load_fold_idle(void)
2181{
2182 long delta = 0;
2183
2184 /*
2185 * Its got a race, we don't care...
2186 */
2187 if (atomic_long_read(&calc_load_tasks_idle))
2188 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2189
2190 return delta;
2191}
0f004f5a
PZ
2192
2193/**
2194 * fixed_power_int - compute: x^n, in O(log n) time
2195 *
2196 * @x: base of the power
2197 * @frac_bits: fractional bits of @x
2198 * @n: power to raise @x to.
2199 *
2200 * By exploiting the relation between the definition of the natural power
2201 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2202 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2203 * (where: n_i \elem {0, 1}, the binary vector representing n),
2204 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2205 * of course trivially computable in O(log_2 n), the length of our binary
2206 * vector.
2207 */
2208static unsigned long
2209fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2210{
2211 unsigned long result = 1UL << frac_bits;
2212
2213 if (n) for (;;) {
2214 if (n & 1) {
2215 result *= x;
2216 result += 1UL << (frac_bits - 1);
2217 result >>= frac_bits;
2218 }
2219 n >>= 1;
2220 if (!n)
2221 break;
2222 x *= x;
2223 x += 1UL << (frac_bits - 1);
2224 x >>= frac_bits;
2225 }
2226
2227 return result;
2228}
2229
2230/*
2231 * a1 = a0 * e + a * (1 - e)
2232 *
2233 * a2 = a1 * e + a * (1 - e)
2234 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2235 * = a0 * e^2 + a * (1 - e) * (1 + e)
2236 *
2237 * a3 = a2 * e + a * (1 - e)
2238 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2239 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2240 *
2241 * ...
2242 *
2243 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2244 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2245 * = a0 * e^n + a * (1 - e^n)
2246 *
2247 * [1] application of the geometric series:
2248 *
2249 * n 1 - x^(n+1)
2250 * S_n := \Sum x^i = -------------
2251 * i=0 1 - x
2252 */
2253static unsigned long
2254calc_load_n(unsigned long load, unsigned long exp,
2255 unsigned long active, unsigned int n)
2256{
2257
2258 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2259}
2260
2261/*
2262 * NO_HZ can leave us missing all per-cpu ticks calling
2263 * calc_load_account_active(), but since an idle CPU folds its delta into
2264 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2265 * in the pending idle delta if our idle period crossed a load cycle boundary.
2266 *
2267 * Once we've updated the global active value, we need to apply the exponential
2268 * weights adjusted to the number of cycles missed.
2269 */
2270static void calc_global_nohz(unsigned long ticks)
2271{
2272 long delta, active, n;
2273
2274 if (time_before(jiffies, calc_load_update))
2275 return;
2276
2277 /*
2278 * If we crossed a calc_load_update boundary, make sure to fold
2279 * any pending idle changes, the respective CPUs might have
2280 * missed the tick driven calc_load_account_active() update
2281 * due to NO_HZ.
2282 */
2283 delta = calc_load_fold_idle();
2284 if (delta)
2285 atomic_long_add(delta, &calc_load_tasks);
2286
2287 /*
2288 * If we were idle for multiple load cycles, apply them.
2289 */
2290 if (ticks >= LOAD_FREQ) {
2291 n = ticks / LOAD_FREQ;
2292
2293 active = atomic_long_read(&calc_load_tasks);
2294 active = active > 0 ? active * FIXED_1 : 0;
2295
2296 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2297 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2298 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2299
2300 calc_load_update += n * LOAD_FREQ;
2301 }
2302
2303 /*
2304 * Its possible the remainder of the above division also crosses
2305 * a LOAD_FREQ period, the regular check in calc_global_load()
2306 * which comes after this will take care of that.
2307 *
2308 * Consider us being 11 ticks before a cycle completion, and us
2309 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2310 * age us 4 cycles, and the test in calc_global_load() will
2311 * pick up the final one.
2312 */
2313}
74f5187a 2314#else
029632fb 2315void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2316{
2317}
2318
2319static inline long calc_load_fold_idle(void)
2320{
2321 return 0;
2322}
0f004f5a
PZ
2323
2324static void calc_global_nohz(unsigned long ticks)
2325{
2326}
74f5187a
PZ
2327#endif
2328
2d02494f
TG
2329/**
2330 * get_avenrun - get the load average array
2331 * @loads: pointer to dest load array
2332 * @offset: offset to add
2333 * @shift: shift count to shift the result left
2334 *
2335 * These values are estimates at best, so no need for locking.
2336 */
2337void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2338{
2339 loads[0] = (avenrun[0] + offset) << shift;
2340 loads[1] = (avenrun[1] + offset) << shift;
2341 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2342}
46cb4b7c 2343
46cb4b7c 2344/*
dce48a84
TG
2345 * calc_load - update the avenrun load estimates 10 ticks after the
2346 * CPUs have updated calc_load_tasks.
7835b98b 2347 */
0f004f5a 2348void calc_global_load(unsigned long ticks)
7835b98b 2349{
dce48a84 2350 long active;
1da177e4 2351
0f004f5a
PZ
2352 calc_global_nohz(ticks);
2353
2354 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2355 return;
1da177e4 2356
dce48a84
TG
2357 active = atomic_long_read(&calc_load_tasks);
2358 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2359
dce48a84
TG
2360 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2361 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2362 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2363
dce48a84
TG
2364 calc_load_update += LOAD_FREQ;
2365}
1da177e4 2366
dce48a84 2367/*
74f5187a
PZ
2368 * Called from update_cpu_load() to periodically update this CPU's
2369 * active count.
dce48a84
TG
2370 */
2371static void calc_load_account_active(struct rq *this_rq)
2372{
74f5187a 2373 long delta;
08c183f3 2374
74f5187a
PZ
2375 if (time_before(jiffies, this_rq->calc_load_update))
2376 return;
783609c6 2377
74f5187a
PZ
2378 delta = calc_load_fold_active(this_rq);
2379 delta += calc_load_fold_idle();
2380 if (delta)
dce48a84 2381 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2382
2383 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2384}
2385
fdf3e95d
VP
2386/*
2387 * The exact cpuload at various idx values, calculated at every tick would be
2388 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2389 *
2390 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2391 * on nth tick when cpu may be busy, then we have:
2392 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2393 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2394 *
2395 * decay_load_missed() below does efficient calculation of
2396 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2397 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2398 *
2399 * The calculation is approximated on a 128 point scale.
2400 * degrade_zero_ticks is the number of ticks after which load at any
2401 * particular idx is approximated to be zero.
2402 * degrade_factor is a precomputed table, a row for each load idx.
2403 * Each column corresponds to degradation factor for a power of two ticks,
2404 * based on 128 point scale.
2405 * Example:
2406 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2407 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2408 *
2409 * With this power of 2 load factors, we can degrade the load n times
2410 * by looking at 1 bits in n and doing as many mult/shift instead of
2411 * n mult/shifts needed by the exact degradation.
2412 */
2413#define DEGRADE_SHIFT 7
2414static const unsigned char
2415 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2416static const unsigned char
2417 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2418 {0, 0, 0, 0, 0, 0, 0, 0},
2419 {64, 32, 8, 0, 0, 0, 0, 0},
2420 {96, 72, 40, 12, 1, 0, 0},
2421 {112, 98, 75, 43, 15, 1, 0},
2422 {120, 112, 98, 76, 45, 16, 2} };
2423
2424/*
2425 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2426 * would be when CPU is idle and so we just decay the old load without
2427 * adding any new load.
2428 */
2429static unsigned long
2430decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2431{
2432 int j = 0;
2433
2434 if (!missed_updates)
2435 return load;
2436
2437 if (missed_updates >= degrade_zero_ticks[idx])
2438 return 0;
2439
2440 if (idx == 1)
2441 return load >> missed_updates;
2442
2443 while (missed_updates) {
2444 if (missed_updates % 2)
2445 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2446
2447 missed_updates >>= 1;
2448 j++;
2449 }
2450 return load;
2451}
2452
46cb4b7c 2453/*
dd41f596 2454 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2455 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2456 * every tick. We fix it up based on jiffies.
46cb4b7c 2457 */
029632fb 2458void update_cpu_load(struct rq *this_rq)
46cb4b7c 2459{
495eca49 2460 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2461 unsigned long curr_jiffies = jiffies;
2462 unsigned long pending_updates;
dd41f596 2463 int i, scale;
46cb4b7c 2464
dd41f596 2465 this_rq->nr_load_updates++;
46cb4b7c 2466
fdf3e95d
VP
2467 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2468 if (curr_jiffies == this_rq->last_load_update_tick)
2469 return;
2470
2471 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2472 this_rq->last_load_update_tick = curr_jiffies;
2473
dd41f596 2474 /* Update our load: */
fdf3e95d
VP
2475 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2476 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2477 unsigned long old_load, new_load;
7d1e6a9b 2478
dd41f596 2479 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2480
dd41f596 2481 old_load = this_rq->cpu_load[i];
fdf3e95d 2482 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2483 new_load = this_load;
a25707f3
IM
2484 /*
2485 * Round up the averaging division if load is increasing. This
2486 * prevents us from getting stuck on 9 if the load is 10, for
2487 * example.
2488 */
2489 if (new_load > old_load)
fdf3e95d
VP
2490 new_load += scale - 1;
2491
2492 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2493 }
da2b71ed
SS
2494
2495 sched_avg_update(this_rq);
fdf3e95d
VP
2496}
2497
2498static void update_cpu_load_active(struct rq *this_rq)
2499{
2500 update_cpu_load(this_rq);
46cb4b7c 2501
74f5187a 2502 calc_load_account_active(this_rq);
46cb4b7c
SS
2503}
2504
dd41f596 2505#ifdef CONFIG_SMP
8a0be9ef 2506
46cb4b7c 2507/*
38022906
PZ
2508 * sched_exec - execve() is a valuable balancing opportunity, because at
2509 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2510 */
38022906 2511void sched_exec(void)
46cb4b7c 2512{
38022906 2513 struct task_struct *p = current;
1da177e4 2514 unsigned long flags;
0017d735 2515 int dest_cpu;
46cb4b7c 2516
8f42ced9 2517 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2518 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2519 if (dest_cpu == smp_processor_id())
2520 goto unlock;
38022906 2521
8f42ced9 2522 if (likely(cpu_active(dest_cpu))) {
969c7921 2523 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2524
8f42ced9
PZ
2525 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2526 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2527 return;
2528 }
0017d735 2529unlock:
8f42ced9 2530 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2531}
dd41f596 2532
1da177e4
LT
2533#endif
2534
1da177e4 2535DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2536DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2537
2538EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2539EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2540
2541/*
c5f8d995 2542 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2543 * @p in case that task is currently running.
c5f8d995
HS
2544 *
2545 * Called with task_rq_lock() held on @rq.
1da177e4 2546 */
c5f8d995
HS
2547static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2548{
2549 u64 ns = 0;
2550
2551 if (task_current(rq, p)) {
2552 update_rq_clock(rq);
305e6835 2553 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2554 if ((s64)ns < 0)
2555 ns = 0;
2556 }
2557
2558 return ns;
2559}
2560
bb34d92f 2561unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2562{
1da177e4 2563 unsigned long flags;
41b86e9c 2564 struct rq *rq;
bb34d92f 2565 u64 ns = 0;
48f24c4d 2566
41b86e9c 2567 rq = task_rq_lock(p, &flags);
c5f8d995 2568 ns = do_task_delta_exec(p, rq);
0122ec5b 2569 task_rq_unlock(rq, p, &flags);
1508487e 2570
c5f8d995
HS
2571 return ns;
2572}
f06febc9 2573
c5f8d995
HS
2574/*
2575 * Return accounted runtime for the task.
2576 * In case the task is currently running, return the runtime plus current's
2577 * pending runtime that have not been accounted yet.
2578 */
2579unsigned long long task_sched_runtime(struct task_struct *p)
2580{
2581 unsigned long flags;
2582 struct rq *rq;
2583 u64 ns = 0;
2584
2585 rq = task_rq_lock(p, &flags);
2586 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2587 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2588
2589 return ns;
2590}
48f24c4d 2591
54c707e9
GC
2592#ifdef CONFIG_CGROUP_CPUACCT
2593struct cgroup_subsys cpuacct_subsys;
2594struct cpuacct root_cpuacct;
2595#endif
2596
be726ffd
GC
2597static inline void task_group_account_field(struct task_struct *p, int index,
2598 u64 tmp)
54c707e9
GC
2599{
2600#ifdef CONFIG_CGROUP_CPUACCT
2601 struct kernel_cpustat *kcpustat;
2602 struct cpuacct *ca;
2603#endif
2604 /*
2605 * Since all updates are sure to touch the root cgroup, we
2606 * get ourselves ahead and touch it first. If the root cgroup
2607 * is the only cgroup, then nothing else should be necessary.
2608 *
2609 */
2610 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2611
2612#ifdef CONFIG_CGROUP_CPUACCT
2613 if (unlikely(!cpuacct_subsys.active))
2614 return;
2615
2616 rcu_read_lock();
2617 ca = task_ca(p);
2618 while (ca && (ca != &root_cpuacct)) {
2619 kcpustat = this_cpu_ptr(ca->cpustat);
2620 kcpustat->cpustat[index] += tmp;
2621 ca = parent_ca(ca);
2622 }
2623 rcu_read_unlock();
2624#endif
2625}
2626
2627
1da177e4
LT
2628/*
2629 * Account user cpu time to a process.
2630 * @p: the process that the cpu time gets accounted to
1da177e4 2631 * @cputime: the cpu time spent in user space since the last update
457533a7 2632 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2633 */
457533a7
MS
2634void account_user_time(struct task_struct *p, cputime_t cputime,
2635 cputime_t cputime_scaled)
1da177e4 2636{
3292beb3 2637 int index;
1da177e4 2638
457533a7 2639 /* Add user time to process. */
64861634
MS
2640 p->utime += cputime;
2641 p->utimescaled += cputime_scaled;
f06febc9 2642 account_group_user_time(p, cputime);
1da177e4 2643
3292beb3 2644 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2645
1da177e4 2646 /* Add user time to cpustat. */
612ef28a 2647 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2648
49b5cf34
JL
2649 /* Account for user time used */
2650 acct_update_integrals(p);
1da177e4
LT
2651}
2652
94886b84
LV
2653/*
2654 * Account guest cpu time to a process.
2655 * @p: the process that the cpu time gets accounted to
2656 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2657 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2658 */
457533a7
MS
2659static void account_guest_time(struct task_struct *p, cputime_t cputime,
2660 cputime_t cputime_scaled)
94886b84 2661{
3292beb3 2662 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2663
457533a7 2664 /* Add guest time to process. */
64861634
MS
2665 p->utime += cputime;
2666 p->utimescaled += cputime_scaled;
f06febc9 2667 account_group_user_time(p, cputime);
64861634 2668 p->gtime += cputime;
94886b84 2669
457533a7 2670 /* Add guest time to cpustat. */
ce0e7b28 2671 if (TASK_NICE(p) > 0) {
612ef28a
MS
2672 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2673 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2674 } else {
612ef28a
MS
2675 cpustat[CPUTIME_USER] += (__force u64) cputime;
2676 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2677 }
94886b84
LV
2678}
2679
70a89a66
VP
2680/*
2681 * Account system cpu time to a process and desired cpustat field
2682 * @p: the process that the cpu time gets accounted to
2683 * @cputime: the cpu time spent in kernel space since the last update
2684 * @cputime_scaled: cputime scaled by cpu frequency
2685 * @target_cputime64: pointer to cpustat field that has to be updated
2686 */
2687static inline
2688void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2689 cputime_t cputime_scaled, int index)
70a89a66 2690{
70a89a66 2691 /* Add system time to process. */
64861634
MS
2692 p->stime += cputime;
2693 p->stimescaled += cputime_scaled;
70a89a66
VP
2694 account_group_system_time(p, cputime);
2695
2696 /* Add system time to cpustat. */
612ef28a 2697 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2698
2699 /* Account for system time used */
2700 acct_update_integrals(p);
2701}
2702
1da177e4
LT
2703/*
2704 * Account system cpu time to a process.
2705 * @p: the process that the cpu time gets accounted to
2706 * @hardirq_offset: the offset to subtract from hardirq_count()
2707 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2708 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2709 */
2710void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2711 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2712{
3292beb3 2713 int index;
1da177e4 2714
983ed7a6 2715 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2716 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2717 return;
2718 }
94886b84 2719
1da177e4 2720 if (hardirq_count() - hardirq_offset)
3292beb3 2721 index = CPUTIME_IRQ;
75e1056f 2722 else if (in_serving_softirq())
3292beb3 2723 index = CPUTIME_SOFTIRQ;
1da177e4 2724 else
3292beb3 2725 index = CPUTIME_SYSTEM;
ef12fefa 2726
3292beb3 2727 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2728}
2729
c66f08be 2730/*
1da177e4 2731 * Account for involuntary wait time.
544b4a1f 2732 * @cputime: the cpu time spent in involuntary wait
c66f08be 2733 */
79741dd3 2734void account_steal_time(cputime_t cputime)
c66f08be 2735{
3292beb3 2736 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2737
612ef28a 2738 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2739}
2740
1da177e4 2741/*
79741dd3
MS
2742 * Account for idle time.
2743 * @cputime: the cpu time spent in idle wait
1da177e4 2744 */
79741dd3 2745void account_idle_time(cputime_t cputime)
1da177e4 2746{
3292beb3 2747 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2748 struct rq *rq = this_rq();
1da177e4 2749
79741dd3 2750 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2751 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2752 else
612ef28a 2753 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2754}
2755
e6e6685a
GC
2756static __always_inline bool steal_account_process_tick(void)
2757{
2758#ifdef CONFIG_PARAVIRT
2759 if (static_branch(&paravirt_steal_enabled)) {
2760 u64 steal, st = 0;
2761
2762 steal = paravirt_steal_clock(smp_processor_id());
2763 steal -= this_rq()->prev_steal_time;
2764
2765 st = steal_ticks(steal);
2766 this_rq()->prev_steal_time += st * TICK_NSEC;
2767
2768 account_steal_time(st);
2769 return st;
2770 }
2771#endif
2772 return false;
2773}
2774
79741dd3
MS
2775#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2776
abb74cef
VP
2777#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2778/*
2779 * Account a tick to a process and cpustat
2780 * @p: the process that the cpu time gets accounted to
2781 * @user_tick: is the tick from userspace
2782 * @rq: the pointer to rq
2783 *
2784 * Tick demultiplexing follows the order
2785 * - pending hardirq update
2786 * - pending softirq update
2787 * - user_time
2788 * - idle_time
2789 * - system time
2790 * - check for guest_time
2791 * - else account as system_time
2792 *
2793 * Check for hardirq is done both for system and user time as there is
2794 * no timer going off while we are on hardirq and hence we may never get an
2795 * opportunity to update it solely in system time.
2796 * p->stime and friends are only updated on system time and not on irq
2797 * softirq as those do not count in task exec_runtime any more.
2798 */
2799static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2800 struct rq *rq)
2801{
2802 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2803 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2804
e6e6685a
GC
2805 if (steal_account_process_tick())
2806 return;
2807
abb74cef 2808 if (irqtime_account_hi_update()) {
612ef28a 2809 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2810 } else if (irqtime_account_si_update()) {
612ef28a 2811 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2812 } else if (this_cpu_ksoftirqd() == p) {
2813 /*
2814 * ksoftirqd time do not get accounted in cpu_softirq_time.
2815 * So, we have to handle it separately here.
2816 * Also, p->stime needs to be updated for ksoftirqd.
2817 */
2818 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2819 CPUTIME_SOFTIRQ);
abb74cef
VP
2820 } else if (user_tick) {
2821 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2822 } else if (p == rq->idle) {
2823 account_idle_time(cputime_one_jiffy);
2824 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2825 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2826 } else {
2827 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2828 CPUTIME_SYSTEM);
abb74cef
VP
2829 }
2830}
2831
2832static void irqtime_account_idle_ticks(int ticks)
2833{
2834 int i;
2835 struct rq *rq = this_rq();
2836
2837 for (i = 0; i < ticks; i++)
2838 irqtime_account_process_tick(current, 0, rq);
2839}
544b4a1f 2840#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2841static void irqtime_account_idle_ticks(int ticks) {}
2842static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2843 struct rq *rq) {}
544b4a1f 2844#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2845
2846/*
2847 * Account a single tick of cpu time.
2848 * @p: the process that the cpu time gets accounted to
2849 * @user_tick: indicates if the tick is a user or a system tick
2850 */
2851void account_process_tick(struct task_struct *p, int user_tick)
2852{
a42548a1 2853 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2854 struct rq *rq = this_rq();
2855
abb74cef
VP
2856 if (sched_clock_irqtime) {
2857 irqtime_account_process_tick(p, user_tick, rq);
2858 return;
2859 }
2860
e6e6685a
GC
2861 if (steal_account_process_tick())
2862 return;
2863
79741dd3 2864 if (user_tick)
a42548a1 2865 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2866 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2867 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2868 one_jiffy_scaled);
2869 else
a42548a1 2870 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2871}
2872
2873/*
2874 * Account multiple ticks of steal time.
2875 * @p: the process from which the cpu time has been stolen
2876 * @ticks: number of stolen ticks
2877 */
2878void account_steal_ticks(unsigned long ticks)
2879{
2880 account_steal_time(jiffies_to_cputime(ticks));
2881}
2882
2883/*
2884 * Account multiple ticks of idle time.
2885 * @ticks: number of stolen ticks
2886 */
2887void account_idle_ticks(unsigned long ticks)
2888{
abb74cef
VP
2889
2890 if (sched_clock_irqtime) {
2891 irqtime_account_idle_ticks(ticks);
2892 return;
2893 }
2894
79741dd3 2895 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2896}
2897
79741dd3
MS
2898#endif
2899
49048622
BS
2900/*
2901 * Use precise platform statistics if available:
2902 */
2903#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2904void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2905{
d99ca3b9
HS
2906 *ut = p->utime;
2907 *st = p->stime;
49048622
BS
2908}
2909
0cf55e1e 2910void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2911{
0cf55e1e
HS
2912 struct task_cputime cputime;
2913
2914 thread_group_cputime(p, &cputime);
2915
2916 *ut = cputime.utime;
2917 *st = cputime.stime;
49048622
BS
2918}
2919#else
761b1d26
HS
2920
2921#ifndef nsecs_to_cputime
b7b20df9 2922# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2923#endif
2924
d180c5bc 2925void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2926{
64861634 2927 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2928
2929 /*
2930 * Use CFS's precise accounting:
2931 */
d180c5bc 2932 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2933
2934 if (total) {
64861634 2935 u64 temp = (__force u64) rtime;
d180c5bc 2936
64861634
MS
2937 temp *= (__force u64) utime;
2938 do_div(temp, (__force u32) total);
2939 utime = (__force cputime_t) temp;
d180c5bc
HS
2940 } else
2941 utime = rtime;
49048622 2942
d180c5bc
HS
2943 /*
2944 * Compare with previous values, to keep monotonicity:
2945 */
761b1d26 2946 p->prev_utime = max(p->prev_utime, utime);
64861634 2947 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2948
d99ca3b9
HS
2949 *ut = p->prev_utime;
2950 *st = p->prev_stime;
49048622
BS
2951}
2952
0cf55e1e
HS
2953/*
2954 * Must be called with siglock held.
2955 */
2956void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2957{
0cf55e1e
HS
2958 struct signal_struct *sig = p->signal;
2959 struct task_cputime cputime;
2960 cputime_t rtime, utime, total;
49048622 2961
0cf55e1e 2962 thread_group_cputime(p, &cputime);
49048622 2963
64861634 2964 total = cputime.utime + cputime.stime;
0cf55e1e 2965 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2966
0cf55e1e 2967 if (total) {
64861634 2968 u64 temp = (__force u64) rtime;
49048622 2969
64861634
MS
2970 temp *= (__force u64) cputime.utime;
2971 do_div(temp, (__force u32) total);
2972 utime = (__force cputime_t) temp;
0cf55e1e
HS
2973 } else
2974 utime = rtime;
2975
2976 sig->prev_utime = max(sig->prev_utime, utime);
64861634 2977 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
2978
2979 *ut = sig->prev_utime;
2980 *st = sig->prev_stime;
49048622 2981}
49048622 2982#endif
49048622 2983
7835b98b
CL
2984/*
2985 * This function gets called by the timer code, with HZ frequency.
2986 * We call it with interrupts disabled.
7835b98b
CL
2987 */
2988void scheduler_tick(void)
2989{
7835b98b
CL
2990 int cpu = smp_processor_id();
2991 struct rq *rq = cpu_rq(cpu);
dd41f596 2992 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2993
2994 sched_clock_tick();
dd41f596 2995
05fa785c 2996 raw_spin_lock(&rq->lock);
3e51f33f 2997 update_rq_clock(rq);
fdf3e95d 2998 update_cpu_load_active(rq);
fa85ae24 2999 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3000 raw_spin_unlock(&rq->lock);
7835b98b 3001
e9d2b064 3002 perf_event_task_tick();
e220d2dc 3003
e418e1c2 3004#ifdef CONFIG_SMP
6eb57e0d 3005 rq->idle_balance = idle_cpu(cpu);
dd41f596 3006 trigger_load_balance(rq, cpu);
e418e1c2 3007#endif
1da177e4
LT
3008}
3009
132380a0 3010notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3011{
3012 if (in_lock_functions(addr)) {
3013 addr = CALLER_ADDR2;
3014 if (in_lock_functions(addr))
3015 addr = CALLER_ADDR3;
3016 }
3017 return addr;
3018}
1da177e4 3019
7e49fcce
SR
3020#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3021 defined(CONFIG_PREEMPT_TRACER))
3022
43627582 3023void __kprobes add_preempt_count(int val)
1da177e4 3024{
6cd8a4bb 3025#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3026 /*
3027 * Underflow?
3028 */
9a11b49a
IM
3029 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3030 return;
6cd8a4bb 3031#endif
1da177e4 3032 preempt_count() += val;
6cd8a4bb 3033#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3034 /*
3035 * Spinlock count overflowing soon?
3036 */
33859f7f
MOS
3037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3038 PREEMPT_MASK - 10);
6cd8a4bb
SR
3039#endif
3040 if (preempt_count() == val)
3041 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3042}
3043EXPORT_SYMBOL(add_preempt_count);
3044
43627582 3045void __kprobes sub_preempt_count(int val)
1da177e4 3046{
6cd8a4bb 3047#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3048 /*
3049 * Underflow?
3050 */
01e3eb82 3051 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3052 return;
1da177e4
LT
3053 /*
3054 * Is the spinlock portion underflowing?
3055 */
9a11b49a
IM
3056 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3057 !(preempt_count() & PREEMPT_MASK)))
3058 return;
6cd8a4bb 3059#endif
9a11b49a 3060
6cd8a4bb
SR
3061 if (preempt_count() == val)
3062 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3063 preempt_count() -= val;
3064}
3065EXPORT_SYMBOL(sub_preempt_count);
3066
3067#endif
3068
3069/*
dd41f596 3070 * Print scheduling while atomic bug:
1da177e4 3071 */
dd41f596 3072static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3073{
838225b4
SS
3074 struct pt_regs *regs = get_irq_regs();
3075
664dfa65
DJ
3076 if (oops_in_progress)
3077 return;
3078
3df0fc5b
PZ
3079 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3080 prev->comm, prev->pid, preempt_count());
838225b4 3081
dd41f596 3082 debug_show_held_locks(prev);
e21f5b15 3083 print_modules();
dd41f596
IM
3084 if (irqs_disabled())
3085 print_irqtrace_events(prev);
838225b4
SS
3086
3087 if (regs)
3088 show_regs(regs);
3089 else
3090 dump_stack();
dd41f596 3091}
1da177e4 3092
dd41f596
IM
3093/*
3094 * Various schedule()-time debugging checks and statistics:
3095 */
3096static inline void schedule_debug(struct task_struct *prev)
3097{
1da177e4 3098 /*
41a2d6cf 3099 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3100 * schedule() atomically, we ignore that path for now.
3101 * Otherwise, whine if we are scheduling when we should not be.
3102 */
3f33a7ce 3103 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3104 __schedule_bug(prev);
b3fbab05 3105 rcu_sleep_check();
dd41f596 3106
1da177e4
LT
3107 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3108
2d72376b 3109 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3110}
3111
6cecd084 3112static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3113{
61eadef6 3114 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3115 update_rq_clock(rq);
6cecd084 3116 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3117}
3118
dd41f596
IM
3119/*
3120 * Pick up the highest-prio task:
3121 */
3122static inline struct task_struct *
b67802ea 3123pick_next_task(struct rq *rq)
dd41f596 3124{
5522d5d5 3125 const struct sched_class *class;
dd41f596 3126 struct task_struct *p;
1da177e4
LT
3127
3128 /*
dd41f596
IM
3129 * Optimization: we know that if all tasks are in
3130 * the fair class we can call that function directly:
1da177e4 3131 */
953bfcd1 3132 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3133 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3134 if (likely(p))
3135 return p;
1da177e4
LT
3136 }
3137
34f971f6 3138 for_each_class(class) {
fb8d4724 3139 p = class->pick_next_task(rq);
dd41f596
IM
3140 if (p)
3141 return p;
dd41f596 3142 }
34f971f6
PZ
3143
3144 BUG(); /* the idle class will always have a runnable task */
dd41f596 3145}
1da177e4 3146
dd41f596 3147/*
c259e01a 3148 * __schedule() is the main scheduler function.
dd41f596 3149 */
c259e01a 3150static void __sched __schedule(void)
dd41f596
IM
3151{
3152 struct task_struct *prev, *next;
67ca7bde 3153 unsigned long *switch_count;
dd41f596 3154 struct rq *rq;
31656519 3155 int cpu;
dd41f596 3156
ff743345
PZ
3157need_resched:
3158 preempt_disable();
dd41f596
IM
3159 cpu = smp_processor_id();
3160 rq = cpu_rq(cpu);
25502a6c 3161 rcu_note_context_switch(cpu);
dd41f596 3162 prev = rq->curr;
dd41f596 3163
dd41f596 3164 schedule_debug(prev);
1da177e4 3165
31656519 3166 if (sched_feat(HRTICK))
f333fdc9 3167 hrtick_clear(rq);
8f4d37ec 3168
05fa785c 3169 raw_spin_lock_irq(&rq->lock);
1da177e4 3170
246d86b5 3171 switch_count = &prev->nivcsw;
1da177e4 3172 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3173 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3174 prev->state = TASK_RUNNING;
21aa9af0 3175 } else {
2acca55e
PZ
3176 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3177 prev->on_rq = 0;
3178
21aa9af0 3179 /*
2acca55e
PZ
3180 * If a worker went to sleep, notify and ask workqueue
3181 * whether it wants to wake up a task to maintain
3182 * concurrency.
21aa9af0
TH
3183 */
3184 if (prev->flags & PF_WQ_WORKER) {
3185 struct task_struct *to_wakeup;
3186
3187 to_wakeup = wq_worker_sleeping(prev, cpu);
3188 if (to_wakeup)
3189 try_to_wake_up_local(to_wakeup);
3190 }
21aa9af0 3191 }
dd41f596 3192 switch_count = &prev->nvcsw;
1da177e4
LT
3193 }
3194
3f029d3c 3195 pre_schedule(rq, prev);
f65eda4f 3196
dd41f596 3197 if (unlikely(!rq->nr_running))
1da177e4 3198 idle_balance(cpu, rq);
1da177e4 3199
df1c99d4 3200 put_prev_task(rq, prev);
b67802ea 3201 next = pick_next_task(rq);
f26f9aff
MG
3202 clear_tsk_need_resched(prev);
3203 rq->skip_clock_update = 0;
1da177e4 3204
1da177e4 3205 if (likely(prev != next)) {
1da177e4
LT
3206 rq->nr_switches++;
3207 rq->curr = next;
3208 ++*switch_count;
3209
dd41f596 3210 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3211 /*
246d86b5
ON
3212 * The context switch have flipped the stack from under us
3213 * and restored the local variables which were saved when
3214 * this task called schedule() in the past. prev == current
3215 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3216 */
3217 cpu = smp_processor_id();
3218 rq = cpu_rq(cpu);
1da177e4 3219 } else
05fa785c 3220 raw_spin_unlock_irq(&rq->lock);
1da177e4 3221
3f029d3c 3222 post_schedule(rq);
1da177e4 3223
1da177e4 3224 preempt_enable_no_resched();
ff743345 3225 if (need_resched())
1da177e4
LT
3226 goto need_resched;
3227}
c259e01a 3228
9c40cef2
TG
3229static inline void sched_submit_work(struct task_struct *tsk)
3230{
3231 if (!tsk->state)
3232 return;
3233 /*
3234 * If we are going to sleep and we have plugged IO queued,
3235 * make sure to submit it to avoid deadlocks.
3236 */
3237 if (blk_needs_flush_plug(tsk))
3238 blk_schedule_flush_plug(tsk);
3239}
3240
6ebbe7a0 3241asmlinkage void __sched schedule(void)
c259e01a 3242{
9c40cef2
TG
3243 struct task_struct *tsk = current;
3244
3245 sched_submit_work(tsk);
c259e01a
TG
3246 __schedule();
3247}
1da177e4
LT
3248EXPORT_SYMBOL(schedule);
3249
c08f7829 3250#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3251
c6eb3dda
PZ
3252static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3253{
c6eb3dda 3254 if (lock->owner != owner)
307bf980 3255 return false;
0d66bf6d
PZ
3256
3257 /*
c6eb3dda
PZ
3258 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3259 * lock->owner still matches owner, if that fails, owner might
3260 * point to free()d memory, if it still matches, the rcu_read_lock()
3261 * ensures the memory stays valid.
0d66bf6d 3262 */
c6eb3dda 3263 barrier();
0d66bf6d 3264
307bf980 3265 return owner->on_cpu;
c6eb3dda 3266}
0d66bf6d 3267
c6eb3dda
PZ
3268/*
3269 * Look out! "owner" is an entirely speculative pointer
3270 * access and not reliable.
3271 */
3272int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3273{
3274 if (!sched_feat(OWNER_SPIN))
3275 return 0;
0d66bf6d 3276
307bf980 3277 rcu_read_lock();
c6eb3dda
PZ
3278 while (owner_running(lock, owner)) {
3279 if (need_resched())
307bf980 3280 break;
0d66bf6d 3281
335d7afb 3282 arch_mutex_cpu_relax();
0d66bf6d 3283 }
307bf980 3284 rcu_read_unlock();
4b402210 3285
c6eb3dda 3286 /*
307bf980
TG
3287 * We break out the loop above on need_resched() and when the
3288 * owner changed, which is a sign for heavy contention. Return
3289 * success only when lock->owner is NULL.
c6eb3dda 3290 */
307bf980 3291 return lock->owner == NULL;
0d66bf6d
PZ
3292}
3293#endif
3294
1da177e4
LT
3295#ifdef CONFIG_PREEMPT
3296/*
2ed6e34f 3297 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3298 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3299 * occur there and call schedule directly.
3300 */
d1f74e20 3301asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3302{
3303 struct thread_info *ti = current_thread_info();
6478d880 3304
1da177e4
LT
3305 /*
3306 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3307 * we do not want to preempt the current task. Just return..
1da177e4 3308 */
beed33a8 3309 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3310 return;
3311
3a5c359a 3312 do {
d1f74e20 3313 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3314 __schedule();
d1f74e20 3315 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3316
3a5c359a
AK
3317 /*
3318 * Check again in case we missed a preemption opportunity
3319 * between schedule and now.
3320 */
3321 barrier();
5ed0cec0 3322 } while (need_resched());
1da177e4 3323}
1da177e4
LT
3324EXPORT_SYMBOL(preempt_schedule);
3325
3326/*
2ed6e34f 3327 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3328 * off of irq context.
3329 * Note, that this is called and return with irqs disabled. This will
3330 * protect us against recursive calling from irq.
3331 */
3332asmlinkage void __sched preempt_schedule_irq(void)
3333{
3334 struct thread_info *ti = current_thread_info();
6478d880 3335
2ed6e34f 3336 /* Catch callers which need to be fixed */
1da177e4
LT
3337 BUG_ON(ti->preempt_count || !irqs_disabled());
3338
3a5c359a
AK
3339 do {
3340 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3341 local_irq_enable();
c259e01a 3342 __schedule();
3a5c359a 3343 local_irq_disable();
3a5c359a 3344 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3345
3a5c359a
AK
3346 /*
3347 * Check again in case we missed a preemption opportunity
3348 * between schedule and now.
3349 */
3350 barrier();
5ed0cec0 3351 } while (need_resched());
1da177e4
LT
3352}
3353
3354#endif /* CONFIG_PREEMPT */
3355
63859d4f 3356int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3357 void *key)
1da177e4 3358{
63859d4f 3359 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3360}
1da177e4
LT
3361EXPORT_SYMBOL(default_wake_function);
3362
3363/*
41a2d6cf
IM
3364 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3365 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3366 * number) then we wake all the non-exclusive tasks and one exclusive task.
3367 *
3368 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3369 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3370 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3371 */
78ddb08f 3372static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3373 int nr_exclusive, int wake_flags, void *key)
1da177e4 3374{
2e45874c 3375 wait_queue_t *curr, *next;
1da177e4 3376
2e45874c 3377 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3378 unsigned flags = curr->flags;
3379
63859d4f 3380 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3381 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3382 break;
3383 }
3384}
3385
3386/**
3387 * __wake_up - wake up threads blocked on a waitqueue.
3388 * @q: the waitqueue
3389 * @mode: which threads
3390 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3391 * @key: is directly passed to the wakeup function
50fa610a
DH
3392 *
3393 * It may be assumed that this function implies a write memory barrier before
3394 * changing the task state if and only if any tasks are woken up.
1da177e4 3395 */
7ad5b3a5 3396void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3397 int nr_exclusive, void *key)
1da177e4
LT
3398{
3399 unsigned long flags;
3400
3401 spin_lock_irqsave(&q->lock, flags);
3402 __wake_up_common(q, mode, nr_exclusive, 0, key);
3403 spin_unlock_irqrestore(&q->lock, flags);
3404}
1da177e4
LT
3405EXPORT_SYMBOL(__wake_up);
3406
3407/*
3408 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3409 */
7ad5b3a5 3410void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3411{
3412 __wake_up_common(q, mode, 1, 0, NULL);
3413}
22c43c81 3414EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3415
4ede816a
DL
3416void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3417{
3418 __wake_up_common(q, mode, 1, 0, key);
3419}
bf294b41 3420EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3421
1da177e4 3422/**
4ede816a 3423 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3424 * @q: the waitqueue
3425 * @mode: which threads
3426 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3427 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3428 *
3429 * The sync wakeup differs that the waker knows that it will schedule
3430 * away soon, so while the target thread will be woken up, it will not
3431 * be migrated to another CPU - ie. the two threads are 'synchronized'
3432 * with each other. This can prevent needless bouncing between CPUs.
3433 *
3434 * On UP it can prevent extra preemption.
50fa610a
DH
3435 *
3436 * It may be assumed that this function implies a write memory barrier before
3437 * changing the task state if and only if any tasks are woken up.
1da177e4 3438 */
4ede816a
DL
3439void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3440 int nr_exclusive, void *key)
1da177e4
LT
3441{
3442 unsigned long flags;
7d478721 3443 int wake_flags = WF_SYNC;
1da177e4
LT
3444
3445 if (unlikely(!q))
3446 return;
3447
3448 if (unlikely(!nr_exclusive))
7d478721 3449 wake_flags = 0;
1da177e4
LT
3450
3451 spin_lock_irqsave(&q->lock, flags);
7d478721 3452 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3453 spin_unlock_irqrestore(&q->lock, flags);
3454}
4ede816a
DL
3455EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3456
3457/*
3458 * __wake_up_sync - see __wake_up_sync_key()
3459 */
3460void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3461{
3462 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3463}
1da177e4
LT
3464EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3465
65eb3dc6
KD
3466/**
3467 * complete: - signals a single thread waiting on this completion
3468 * @x: holds the state of this particular completion
3469 *
3470 * This will wake up a single thread waiting on this completion. Threads will be
3471 * awakened in the same order in which they were queued.
3472 *
3473 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3474 *
3475 * It may be assumed that this function implies a write memory barrier before
3476 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3477 */
b15136e9 3478void complete(struct completion *x)
1da177e4
LT
3479{
3480 unsigned long flags;
3481
3482 spin_lock_irqsave(&x->wait.lock, flags);
3483 x->done++;
d9514f6c 3484 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3485 spin_unlock_irqrestore(&x->wait.lock, flags);
3486}
3487EXPORT_SYMBOL(complete);
3488
65eb3dc6
KD
3489/**
3490 * complete_all: - signals all threads waiting on this completion
3491 * @x: holds the state of this particular completion
3492 *
3493 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3494 *
3495 * It may be assumed that this function implies a write memory barrier before
3496 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3497 */
b15136e9 3498void complete_all(struct completion *x)
1da177e4
LT
3499{
3500 unsigned long flags;
3501
3502 spin_lock_irqsave(&x->wait.lock, flags);
3503 x->done += UINT_MAX/2;
d9514f6c 3504 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3505 spin_unlock_irqrestore(&x->wait.lock, flags);
3506}
3507EXPORT_SYMBOL(complete_all);
3508
8cbbe86d
AK
3509static inline long __sched
3510do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3511{
1da177e4
LT
3512 if (!x->done) {
3513 DECLARE_WAITQUEUE(wait, current);
3514
a93d2f17 3515 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3516 do {
94d3d824 3517 if (signal_pending_state(state, current)) {
ea71a546
ON
3518 timeout = -ERESTARTSYS;
3519 break;
8cbbe86d
AK
3520 }
3521 __set_current_state(state);
1da177e4
LT
3522 spin_unlock_irq(&x->wait.lock);
3523 timeout = schedule_timeout(timeout);
3524 spin_lock_irq(&x->wait.lock);
ea71a546 3525 } while (!x->done && timeout);
1da177e4 3526 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3527 if (!x->done)
3528 return timeout;
1da177e4
LT
3529 }
3530 x->done--;
ea71a546 3531 return timeout ?: 1;
1da177e4 3532}
1da177e4 3533
8cbbe86d
AK
3534static long __sched
3535wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3536{
1da177e4
LT
3537 might_sleep();
3538
3539 spin_lock_irq(&x->wait.lock);
8cbbe86d 3540 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3541 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3542 return timeout;
3543}
1da177e4 3544
65eb3dc6
KD
3545/**
3546 * wait_for_completion: - waits for completion of a task
3547 * @x: holds the state of this particular completion
3548 *
3549 * This waits to be signaled for completion of a specific task. It is NOT
3550 * interruptible and there is no timeout.
3551 *
3552 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3553 * and interrupt capability. Also see complete().
3554 */
b15136e9 3555void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3556{
3557 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3558}
8cbbe86d 3559EXPORT_SYMBOL(wait_for_completion);
1da177e4 3560
65eb3dc6
KD
3561/**
3562 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3563 * @x: holds the state of this particular completion
3564 * @timeout: timeout value in jiffies
3565 *
3566 * This waits for either a completion of a specific task to be signaled or for a
3567 * specified timeout to expire. The timeout is in jiffies. It is not
3568 * interruptible.
c6dc7f05
BF
3569 *
3570 * The return value is 0 if timed out, and positive (at least 1, or number of
3571 * jiffies left till timeout) if completed.
65eb3dc6 3572 */
b15136e9 3573unsigned long __sched
8cbbe86d 3574wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3575{
8cbbe86d 3576 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3577}
8cbbe86d 3578EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3579
65eb3dc6
KD
3580/**
3581 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3582 * @x: holds the state of this particular completion
3583 *
3584 * This waits for completion of a specific task to be signaled. It is
3585 * interruptible.
c6dc7f05
BF
3586 *
3587 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3588 */
8cbbe86d 3589int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3590{
51e97990
AK
3591 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3592 if (t == -ERESTARTSYS)
3593 return t;
3594 return 0;
0fec171c 3595}
8cbbe86d 3596EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3597
65eb3dc6
KD
3598/**
3599 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3600 * @x: holds the state of this particular completion
3601 * @timeout: timeout value in jiffies
3602 *
3603 * This waits for either a completion of a specific task to be signaled or for a
3604 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3605 *
3606 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3607 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3608 */
6bf41237 3609long __sched
8cbbe86d
AK
3610wait_for_completion_interruptible_timeout(struct completion *x,
3611 unsigned long timeout)
0fec171c 3612{
8cbbe86d 3613 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3614}
8cbbe86d 3615EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3616
65eb3dc6
KD
3617/**
3618 * wait_for_completion_killable: - waits for completion of a task (killable)
3619 * @x: holds the state of this particular completion
3620 *
3621 * This waits to be signaled for completion of a specific task. It can be
3622 * interrupted by a kill signal.
c6dc7f05
BF
3623 *
3624 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3625 */
009e577e
MW
3626int __sched wait_for_completion_killable(struct completion *x)
3627{
3628 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3629 if (t == -ERESTARTSYS)
3630 return t;
3631 return 0;
3632}
3633EXPORT_SYMBOL(wait_for_completion_killable);
3634
0aa12fb4
SW
3635/**
3636 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3637 * @x: holds the state of this particular completion
3638 * @timeout: timeout value in jiffies
3639 *
3640 * This waits for either a completion of a specific task to be
3641 * signaled or for a specified timeout to expire. It can be
3642 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3643 *
3644 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3645 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3646 */
6bf41237 3647long __sched
0aa12fb4
SW
3648wait_for_completion_killable_timeout(struct completion *x,
3649 unsigned long timeout)
3650{
3651 return wait_for_common(x, timeout, TASK_KILLABLE);
3652}
3653EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3654
be4de352
DC
3655/**
3656 * try_wait_for_completion - try to decrement a completion without blocking
3657 * @x: completion structure
3658 *
3659 * Returns: 0 if a decrement cannot be done without blocking
3660 * 1 if a decrement succeeded.
3661 *
3662 * If a completion is being used as a counting completion,
3663 * attempt to decrement the counter without blocking. This
3664 * enables us to avoid waiting if the resource the completion
3665 * is protecting is not available.
3666 */
3667bool try_wait_for_completion(struct completion *x)
3668{
7539a3b3 3669 unsigned long flags;
be4de352
DC
3670 int ret = 1;
3671
7539a3b3 3672 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3673 if (!x->done)
3674 ret = 0;
3675 else
3676 x->done--;
7539a3b3 3677 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3678 return ret;
3679}
3680EXPORT_SYMBOL(try_wait_for_completion);
3681
3682/**
3683 * completion_done - Test to see if a completion has any waiters
3684 * @x: completion structure
3685 *
3686 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3687 * 1 if there are no waiters.
3688 *
3689 */
3690bool completion_done(struct completion *x)
3691{
7539a3b3 3692 unsigned long flags;
be4de352
DC
3693 int ret = 1;
3694
7539a3b3 3695 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3696 if (!x->done)
3697 ret = 0;
7539a3b3 3698 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3699 return ret;
3700}
3701EXPORT_SYMBOL(completion_done);
3702
8cbbe86d
AK
3703static long __sched
3704sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3705{
0fec171c
IM
3706 unsigned long flags;
3707 wait_queue_t wait;
3708
3709 init_waitqueue_entry(&wait, current);
1da177e4 3710
8cbbe86d 3711 __set_current_state(state);
1da177e4 3712
8cbbe86d
AK
3713 spin_lock_irqsave(&q->lock, flags);
3714 __add_wait_queue(q, &wait);
3715 spin_unlock(&q->lock);
3716 timeout = schedule_timeout(timeout);
3717 spin_lock_irq(&q->lock);
3718 __remove_wait_queue(q, &wait);
3719 spin_unlock_irqrestore(&q->lock, flags);
3720
3721 return timeout;
3722}
3723
3724void __sched interruptible_sleep_on(wait_queue_head_t *q)
3725{
3726 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3727}
1da177e4
LT
3728EXPORT_SYMBOL(interruptible_sleep_on);
3729
0fec171c 3730long __sched
95cdf3b7 3731interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3732{
8cbbe86d 3733 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3734}
1da177e4
LT
3735EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3736
0fec171c 3737void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3738{
8cbbe86d 3739 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3740}
1da177e4
LT
3741EXPORT_SYMBOL(sleep_on);
3742
0fec171c 3743long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3744{
8cbbe86d 3745 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3746}
1da177e4
LT
3747EXPORT_SYMBOL(sleep_on_timeout);
3748
b29739f9
IM
3749#ifdef CONFIG_RT_MUTEXES
3750
3751/*
3752 * rt_mutex_setprio - set the current priority of a task
3753 * @p: task
3754 * @prio: prio value (kernel-internal form)
3755 *
3756 * This function changes the 'effective' priority of a task. It does
3757 * not touch ->normal_prio like __setscheduler().
3758 *
3759 * Used by the rt_mutex code to implement priority inheritance logic.
3760 */
36c8b586 3761void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3762{
83b699ed 3763 int oldprio, on_rq, running;
70b97a7f 3764 struct rq *rq;
83ab0aa0 3765 const struct sched_class *prev_class;
b29739f9
IM
3766
3767 BUG_ON(prio < 0 || prio > MAX_PRIO);
3768
0122ec5b 3769 rq = __task_rq_lock(p);
b29739f9 3770
a8027073 3771 trace_sched_pi_setprio(p, prio);
d5f9f942 3772 oldprio = p->prio;
83ab0aa0 3773 prev_class = p->sched_class;
fd2f4419 3774 on_rq = p->on_rq;
051a1d1a 3775 running = task_current(rq, p);
0e1f3483 3776 if (on_rq)
69be72c1 3777 dequeue_task(rq, p, 0);
0e1f3483
HS
3778 if (running)
3779 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3780
3781 if (rt_prio(prio))
3782 p->sched_class = &rt_sched_class;
3783 else
3784 p->sched_class = &fair_sched_class;
3785
b29739f9
IM
3786 p->prio = prio;
3787
0e1f3483
HS
3788 if (running)
3789 p->sched_class->set_curr_task(rq);
da7a735e 3790 if (on_rq)
371fd7e7 3791 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3792
da7a735e 3793 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3794 __task_rq_unlock(rq);
b29739f9
IM
3795}
3796
3797#endif
3798
36c8b586 3799void set_user_nice(struct task_struct *p, long nice)
1da177e4 3800{
dd41f596 3801 int old_prio, delta, on_rq;
1da177e4 3802 unsigned long flags;
70b97a7f 3803 struct rq *rq;
1da177e4
LT
3804
3805 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3806 return;
3807 /*
3808 * We have to be careful, if called from sys_setpriority(),
3809 * the task might be in the middle of scheduling on another CPU.
3810 */
3811 rq = task_rq_lock(p, &flags);
3812 /*
3813 * The RT priorities are set via sched_setscheduler(), but we still
3814 * allow the 'normal' nice value to be set - but as expected
3815 * it wont have any effect on scheduling until the task is
dd41f596 3816 * SCHED_FIFO/SCHED_RR:
1da177e4 3817 */
e05606d3 3818 if (task_has_rt_policy(p)) {
1da177e4
LT
3819 p->static_prio = NICE_TO_PRIO(nice);
3820 goto out_unlock;
3821 }
fd2f4419 3822 on_rq = p->on_rq;
c09595f6 3823 if (on_rq)
69be72c1 3824 dequeue_task(rq, p, 0);
1da177e4 3825
1da177e4 3826 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3827 set_load_weight(p);
b29739f9
IM
3828 old_prio = p->prio;
3829 p->prio = effective_prio(p);
3830 delta = p->prio - old_prio;
1da177e4 3831
dd41f596 3832 if (on_rq) {
371fd7e7 3833 enqueue_task(rq, p, 0);
1da177e4 3834 /*
d5f9f942
AM
3835 * If the task increased its priority or is running and
3836 * lowered its priority, then reschedule its CPU:
1da177e4 3837 */
d5f9f942 3838 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3839 resched_task(rq->curr);
3840 }
3841out_unlock:
0122ec5b 3842 task_rq_unlock(rq, p, &flags);
1da177e4 3843}
1da177e4
LT
3844EXPORT_SYMBOL(set_user_nice);
3845
e43379f1
MM
3846/*
3847 * can_nice - check if a task can reduce its nice value
3848 * @p: task
3849 * @nice: nice value
3850 */
36c8b586 3851int can_nice(const struct task_struct *p, const int nice)
e43379f1 3852{
024f4747
MM
3853 /* convert nice value [19,-20] to rlimit style value [1,40] */
3854 int nice_rlim = 20 - nice;
48f24c4d 3855
78d7d407 3856 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3857 capable(CAP_SYS_NICE));
3858}
3859
1da177e4
LT
3860#ifdef __ARCH_WANT_SYS_NICE
3861
3862/*
3863 * sys_nice - change the priority of the current process.
3864 * @increment: priority increment
3865 *
3866 * sys_setpriority is a more generic, but much slower function that
3867 * does similar things.
3868 */
5add95d4 3869SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3870{
48f24c4d 3871 long nice, retval;
1da177e4
LT
3872
3873 /*
3874 * Setpriority might change our priority at the same moment.
3875 * We don't have to worry. Conceptually one call occurs first
3876 * and we have a single winner.
3877 */
e43379f1
MM
3878 if (increment < -40)
3879 increment = -40;
1da177e4
LT
3880 if (increment > 40)
3881 increment = 40;
3882
2b8f836f 3883 nice = TASK_NICE(current) + increment;
1da177e4
LT
3884 if (nice < -20)
3885 nice = -20;
3886 if (nice > 19)
3887 nice = 19;
3888
e43379f1
MM
3889 if (increment < 0 && !can_nice(current, nice))
3890 return -EPERM;
3891
1da177e4
LT
3892 retval = security_task_setnice(current, nice);
3893 if (retval)
3894 return retval;
3895
3896 set_user_nice(current, nice);
3897 return 0;
3898}
3899
3900#endif
3901
3902/**
3903 * task_prio - return the priority value of a given task.
3904 * @p: the task in question.
3905 *
3906 * This is the priority value as seen by users in /proc.
3907 * RT tasks are offset by -200. Normal tasks are centered
3908 * around 0, value goes from -16 to +15.
3909 */
36c8b586 3910int task_prio(const struct task_struct *p)
1da177e4
LT
3911{
3912 return p->prio - MAX_RT_PRIO;
3913}
3914
3915/**
3916 * task_nice - return the nice value of a given task.
3917 * @p: the task in question.
3918 */
36c8b586 3919int task_nice(const struct task_struct *p)
1da177e4
LT
3920{
3921 return TASK_NICE(p);
3922}
150d8bed 3923EXPORT_SYMBOL(task_nice);
1da177e4
LT
3924
3925/**
3926 * idle_cpu - is a given cpu idle currently?
3927 * @cpu: the processor in question.
3928 */
3929int idle_cpu(int cpu)
3930{
908a3283
TG
3931 struct rq *rq = cpu_rq(cpu);
3932
3933 if (rq->curr != rq->idle)
3934 return 0;
3935
3936 if (rq->nr_running)
3937 return 0;
3938
3939#ifdef CONFIG_SMP
3940 if (!llist_empty(&rq->wake_list))
3941 return 0;
3942#endif
3943
3944 return 1;
1da177e4
LT
3945}
3946
1da177e4
LT
3947/**
3948 * idle_task - return the idle task for a given cpu.
3949 * @cpu: the processor in question.
3950 */
36c8b586 3951struct task_struct *idle_task(int cpu)
1da177e4
LT
3952{
3953 return cpu_rq(cpu)->idle;
3954}
3955
3956/**
3957 * find_process_by_pid - find a process with a matching PID value.
3958 * @pid: the pid in question.
3959 */
a9957449 3960static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3961{
228ebcbe 3962 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3963}
3964
3965/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3966static void
3967__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3968{
1da177e4
LT
3969 p->policy = policy;
3970 p->rt_priority = prio;
b29739f9
IM
3971 p->normal_prio = normal_prio(p);
3972 /* we are holding p->pi_lock already */
3973 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3974 if (rt_prio(p->prio))
3975 p->sched_class = &rt_sched_class;
3976 else
3977 p->sched_class = &fair_sched_class;
2dd73a4f 3978 set_load_weight(p);
1da177e4
LT
3979}
3980
c69e8d9c
DH
3981/*
3982 * check the target process has a UID that matches the current process's
3983 */
3984static bool check_same_owner(struct task_struct *p)
3985{
3986 const struct cred *cred = current_cred(), *pcred;
3987 bool match;
3988
3989 rcu_read_lock();
3990 pcred = __task_cred(p);
b0e77598
SH
3991 if (cred->user->user_ns == pcred->user->user_ns)
3992 match = (cred->euid == pcred->euid ||
3993 cred->euid == pcred->uid);
3994 else
3995 match = false;
c69e8d9c
DH
3996 rcu_read_unlock();
3997 return match;
3998}
3999
961ccddd 4000static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4001 const struct sched_param *param, bool user)
1da177e4 4002{
83b699ed 4003 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4004 unsigned long flags;
83ab0aa0 4005 const struct sched_class *prev_class;
70b97a7f 4006 struct rq *rq;
ca94c442 4007 int reset_on_fork;
1da177e4 4008
66e5393a
SR
4009 /* may grab non-irq protected spin_locks */
4010 BUG_ON(in_interrupt());
1da177e4
LT
4011recheck:
4012 /* double check policy once rq lock held */
ca94c442
LP
4013 if (policy < 0) {
4014 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4015 policy = oldpolicy = p->policy;
ca94c442
LP
4016 } else {
4017 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4018 policy &= ~SCHED_RESET_ON_FORK;
4019
4020 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4021 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4022 policy != SCHED_IDLE)
4023 return -EINVAL;
4024 }
4025
1da177e4
LT
4026 /*
4027 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4028 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4029 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4030 */
4031 if (param->sched_priority < 0 ||
95cdf3b7 4032 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4033 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4034 return -EINVAL;
e05606d3 4035 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4036 return -EINVAL;
4037
37e4ab3f
OC
4038 /*
4039 * Allow unprivileged RT tasks to decrease priority:
4040 */
961ccddd 4041 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4042 if (rt_policy(policy)) {
a44702e8
ON
4043 unsigned long rlim_rtprio =
4044 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4045
4046 /* can't set/change the rt policy */
4047 if (policy != p->policy && !rlim_rtprio)
4048 return -EPERM;
4049
4050 /* can't increase priority */
4051 if (param->sched_priority > p->rt_priority &&
4052 param->sched_priority > rlim_rtprio)
4053 return -EPERM;
4054 }
c02aa73b 4055
dd41f596 4056 /*
c02aa73b
DH
4057 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4058 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4059 */
c02aa73b
DH
4060 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4061 if (!can_nice(p, TASK_NICE(p)))
4062 return -EPERM;
4063 }
5fe1d75f 4064
37e4ab3f 4065 /* can't change other user's priorities */
c69e8d9c 4066 if (!check_same_owner(p))
37e4ab3f 4067 return -EPERM;
ca94c442
LP
4068
4069 /* Normal users shall not reset the sched_reset_on_fork flag */
4070 if (p->sched_reset_on_fork && !reset_on_fork)
4071 return -EPERM;
37e4ab3f 4072 }
1da177e4 4073
725aad24 4074 if (user) {
b0ae1981 4075 retval = security_task_setscheduler(p);
725aad24
JF
4076 if (retval)
4077 return retval;
4078 }
4079
b29739f9
IM
4080 /*
4081 * make sure no PI-waiters arrive (or leave) while we are
4082 * changing the priority of the task:
0122ec5b 4083 *
25985edc 4084 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4085 * runqueue lock must be held.
4086 */
0122ec5b 4087 rq = task_rq_lock(p, &flags);
dc61b1d6 4088
34f971f6
PZ
4089 /*
4090 * Changing the policy of the stop threads its a very bad idea
4091 */
4092 if (p == rq->stop) {
0122ec5b 4093 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4094 return -EINVAL;
4095 }
4096
a51e9198
DF
4097 /*
4098 * If not changing anything there's no need to proceed further:
4099 */
4100 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4101 param->sched_priority == p->rt_priority))) {
4102
4103 __task_rq_unlock(rq);
4104 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4105 return 0;
4106 }
4107
dc61b1d6
PZ
4108#ifdef CONFIG_RT_GROUP_SCHED
4109 if (user) {
4110 /*
4111 * Do not allow realtime tasks into groups that have no runtime
4112 * assigned.
4113 */
4114 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4115 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4116 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4117 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4118 return -EPERM;
4119 }
4120 }
4121#endif
4122
1da177e4
LT
4123 /* recheck policy now with rq lock held */
4124 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4125 policy = oldpolicy = -1;
0122ec5b 4126 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4127 goto recheck;
4128 }
fd2f4419 4129 on_rq = p->on_rq;
051a1d1a 4130 running = task_current(rq, p);
0e1f3483 4131 if (on_rq)
4ca9b72b 4132 dequeue_task(rq, p, 0);
0e1f3483
HS
4133 if (running)
4134 p->sched_class->put_prev_task(rq, p);
f6b53205 4135
ca94c442
LP
4136 p->sched_reset_on_fork = reset_on_fork;
4137
1da177e4 4138 oldprio = p->prio;
83ab0aa0 4139 prev_class = p->sched_class;
dd41f596 4140 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4141
0e1f3483
HS
4142 if (running)
4143 p->sched_class->set_curr_task(rq);
da7a735e 4144 if (on_rq)
4ca9b72b 4145 enqueue_task(rq, p, 0);
cb469845 4146
da7a735e 4147 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4148 task_rq_unlock(rq, p, &flags);
b29739f9 4149
95e02ca9
TG
4150 rt_mutex_adjust_pi(p);
4151
1da177e4
LT
4152 return 0;
4153}
961ccddd
RR
4154
4155/**
4156 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4157 * @p: the task in question.
4158 * @policy: new policy.
4159 * @param: structure containing the new RT priority.
4160 *
4161 * NOTE that the task may be already dead.
4162 */
4163int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4164 const struct sched_param *param)
961ccddd
RR
4165{
4166 return __sched_setscheduler(p, policy, param, true);
4167}
1da177e4
LT
4168EXPORT_SYMBOL_GPL(sched_setscheduler);
4169
961ccddd
RR
4170/**
4171 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4172 * @p: the task in question.
4173 * @policy: new policy.
4174 * @param: structure containing the new RT priority.
4175 *
4176 * Just like sched_setscheduler, only don't bother checking if the
4177 * current context has permission. For example, this is needed in
4178 * stop_machine(): we create temporary high priority worker threads,
4179 * but our caller might not have that capability.
4180 */
4181int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4182 const struct sched_param *param)
961ccddd
RR
4183{
4184 return __sched_setscheduler(p, policy, param, false);
4185}
4186
95cdf3b7
IM
4187static int
4188do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4189{
1da177e4
LT
4190 struct sched_param lparam;
4191 struct task_struct *p;
36c8b586 4192 int retval;
1da177e4
LT
4193
4194 if (!param || pid < 0)
4195 return -EINVAL;
4196 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4197 return -EFAULT;
5fe1d75f
ON
4198
4199 rcu_read_lock();
4200 retval = -ESRCH;
1da177e4 4201 p = find_process_by_pid(pid);
5fe1d75f
ON
4202 if (p != NULL)
4203 retval = sched_setscheduler(p, policy, &lparam);
4204 rcu_read_unlock();
36c8b586 4205
1da177e4
LT
4206 return retval;
4207}
4208
4209/**
4210 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4211 * @pid: the pid in question.
4212 * @policy: new policy.
4213 * @param: structure containing the new RT priority.
4214 */
5add95d4
HC
4215SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4216 struct sched_param __user *, param)
1da177e4 4217{
c21761f1
JB
4218 /* negative values for policy are not valid */
4219 if (policy < 0)
4220 return -EINVAL;
4221
1da177e4
LT
4222 return do_sched_setscheduler(pid, policy, param);
4223}
4224
4225/**
4226 * sys_sched_setparam - set/change the RT priority of a thread
4227 * @pid: the pid in question.
4228 * @param: structure containing the new RT priority.
4229 */
5add95d4 4230SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4231{
4232 return do_sched_setscheduler(pid, -1, param);
4233}
4234
4235/**
4236 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4237 * @pid: the pid in question.
4238 */
5add95d4 4239SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4240{
36c8b586 4241 struct task_struct *p;
3a5c359a 4242 int retval;
1da177e4
LT
4243
4244 if (pid < 0)
3a5c359a 4245 return -EINVAL;
1da177e4
LT
4246
4247 retval = -ESRCH;
5fe85be0 4248 rcu_read_lock();
1da177e4
LT
4249 p = find_process_by_pid(pid);
4250 if (p) {
4251 retval = security_task_getscheduler(p);
4252 if (!retval)
ca94c442
LP
4253 retval = p->policy
4254 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4255 }
5fe85be0 4256 rcu_read_unlock();
1da177e4
LT
4257 return retval;
4258}
4259
4260/**
ca94c442 4261 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4262 * @pid: the pid in question.
4263 * @param: structure containing the RT priority.
4264 */
5add95d4 4265SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4266{
4267 struct sched_param lp;
36c8b586 4268 struct task_struct *p;
3a5c359a 4269 int retval;
1da177e4
LT
4270
4271 if (!param || pid < 0)
3a5c359a 4272 return -EINVAL;
1da177e4 4273
5fe85be0 4274 rcu_read_lock();
1da177e4
LT
4275 p = find_process_by_pid(pid);
4276 retval = -ESRCH;
4277 if (!p)
4278 goto out_unlock;
4279
4280 retval = security_task_getscheduler(p);
4281 if (retval)
4282 goto out_unlock;
4283
4284 lp.sched_priority = p->rt_priority;
5fe85be0 4285 rcu_read_unlock();
1da177e4
LT
4286
4287 /*
4288 * This one might sleep, we cannot do it with a spinlock held ...
4289 */
4290 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4291
1da177e4
LT
4292 return retval;
4293
4294out_unlock:
5fe85be0 4295 rcu_read_unlock();
1da177e4
LT
4296 return retval;
4297}
4298
96f874e2 4299long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4300{
5a16f3d3 4301 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4302 struct task_struct *p;
4303 int retval;
1da177e4 4304
95402b38 4305 get_online_cpus();
23f5d142 4306 rcu_read_lock();
1da177e4
LT
4307
4308 p = find_process_by_pid(pid);
4309 if (!p) {
23f5d142 4310 rcu_read_unlock();
95402b38 4311 put_online_cpus();
1da177e4
LT
4312 return -ESRCH;
4313 }
4314
23f5d142 4315 /* Prevent p going away */
1da177e4 4316 get_task_struct(p);
23f5d142 4317 rcu_read_unlock();
1da177e4 4318
5a16f3d3
RR
4319 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4320 retval = -ENOMEM;
4321 goto out_put_task;
4322 }
4323 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4324 retval = -ENOMEM;
4325 goto out_free_cpus_allowed;
4326 }
1da177e4 4327 retval = -EPERM;
f1c84dae 4328 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4329 goto out_unlock;
4330
b0ae1981 4331 retval = security_task_setscheduler(p);
e7834f8f
DQ
4332 if (retval)
4333 goto out_unlock;
4334
5a16f3d3
RR
4335 cpuset_cpus_allowed(p, cpus_allowed);
4336 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4337again:
5a16f3d3 4338 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4339
8707d8b8 4340 if (!retval) {
5a16f3d3
RR
4341 cpuset_cpus_allowed(p, cpus_allowed);
4342 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4343 /*
4344 * We must have raced with a concurrent cpuset
4345 * update. Just reset the cpus_allowed to the
4346 * cpuset's cpus_allowed
4347 */
5a16f3d3 4348 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4349 goto again;
4350 }
4351 }
1da177e4 4352out_unlock:
5a16f3d3
RR
4353 free_cpumask_var(new_mask);
4354out_free_cpus_allowed:
4355 free_cpumask_var(cpus_allowed);
4356out_put_task:
1da177e4 4357 put_task_struct(p);
95402b38 4358 put_online_cpus();
1da177e4
LT
4359 return retval;
4360}
4361
4362static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4363 struct cpumask *new_mask)
1da177e4 4364{
96f874e2
RR
4365 if (len < cpumask_size())
4366 cpumask_clear(new_mask);
4367 else if (len > cpumask_size())
4368 len = cpumask_size();
4369
1da177e4
LT
4370 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4371}
4372
4373/**
4374 * sys_sched_setaffinity - set the cpu affinity of a process
4375 * @pid: pid of the process
4376 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4377 * @user_mask_ptr: user-space pointer to the new cpu mask
4378 */
5add95d4
HC
4379SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4380 unsigned long __user *, user_mask_ptr)
1da177e4 4381{
5a16f3d3 4382 cpumask_var_t new_mask;
1da177e4
LT
4383 int retval;
4384
5a16f3d3
RR
4385 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4386 return -ENOMEM;
1da177e4 4387
5a16f3d3
RR
4388 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4389 if (retval == 0)
4390 retval = sched_setaffinity(pid, new_mask);
4391 free_cpumask_var(new_mask);
4392 return retval;
1da177e4
LT
4393}
4394
96f874e2 4395long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4396{
36c8b586 4397 struct task_struct *p;
31605683 4398 unsigned long flags;
1da177e4 4399 int retval;
1da177e4 4400
95402b38 4401 get_online_cpus();
23f5d142 4402 rcu_read_lock();
1da177e4
LT
4403
4404 retval = -ESRCH;
4405 p = find_process_by_pid(pid);
4406 if (!p)
4407 goto out_unlock;
4408
e7834f8f
DQ
4409 retval = security_task_getscheduler(p);
4410 if (retval)
4411 goto out_unlock;
4412
013fdb80 4413 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4414 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4415 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4416
4417out_unlock:
23f5d142 4418 rcu_read_unlock();
95402b38 4419 put_online_cpus();
1da177e4 4420
9531b62f 4421 return retval;
1da177e4
LT
4422}
4423
4424/**
4425 * sys_sched_getaffinity - get the cpu affinity of a process
4426 * @pid: pid of the process
4427 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4428 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4429 */
5add95d4
HC
4430SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4431 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4432{
4433 int ret;
f17c8607 4434 cpumask_var_t mask;
1da177e4 4435
84fba5ec 4436 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4437 return -EINVAL;
4438 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4439 return -EINVAL;
4440
f17c8607
RR
4441 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4442 return -ENOMEM;
1da177e4 4443
f17c8607
RR
4444 ret = sched_getaffinity(pid, mask);
4445 if (ret == 0) {
8bc037fb 4446 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4447
4448 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4449 ret = -EFAULT;
4450 else
cd3d8031 4451 ret = retlen;
f17c8607
RR
4452 }
4453 free_cpumask_var(mask);
1da177e4 4454
f17c8607 4455 return ret;
1da177e4
LT
4456}
4457
4458/**
4459 * sys_sched_yield - yield the current processor to other threads.
4460 *
dd41f596
IM
4461 * This function yields the current CPU to other tasks. If there are no
4462 * other threads running on this CPU then this function will return.
1da177e4 4463 */
5add95d4 4464SYSCALL_DEFINE0(sched_yield)
1da177e4 4465{
70b97a7f 4466 struct rq *rq = this_rq_lock();
1da177e4 4467
2d72376b 4468 schedstat_inc(rq, yld_count);
4530d7ab 4469 current->sched_class->yield_task(rq);
1da177e4
LT
4470
4471 /*
4472 * Since we are going to call schedule() anyway, there's
4473 * no need to preempt or enable interrupts:
4474 */
4475 __release(rq->lock);
8a25d5de 4476 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4477 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4478 preempt_enable_no_resched();
4479
4480 schedule();
4481
4482 return 0;
4483}
4484
d86ee480
PZ
4485static inline int should_resched(void)
4486{
4487 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4488}
4489
e7b38404 4490static void __cond_resched(void)
1da177e4 4491{
e7aaaa69 4492 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4493 __schedule();
e7aaaa69 4494 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4495}
4496
02b67cc3 4497int __sched _cond_resched(void)
1da177e4 4498{
d86ee480 4499 if (should_resched()) {
1da177e4
LT
4500 __cond_resched();
4501 return 1;
4502 }
4503 return 0;
4504}
02b67cc3 4505EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4506
4507/*
613afbf8 4508 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4509 * call schedule, and on return reacquire the lock.
4510 *
41a2d6cf 4511 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4512 * operations here to prevent schedule() from being called twice (once via
4513 * spin_unlock(), once by hand).
4514 */
613afbf8 4515int __cond_resched_lock(spinlock_t *lock)
1da177e4 4516{
d86ee480 4517 int resched = should_resched();
6df3cecb
JK
4518 int ret = 0;
4519
f607c668
PZ
4520 lockdep_assert_held(lock);
4521
95c354fe 4522 if (spin_needbreak(lock) || resched) {
1da177e4 4523 spin_unlock(lock);
d86ee480 4524 if (resched)
95c354fe
NP
4525 __cond_resched();
4526 else
4527 cpu_relax();
6df3cecb 4528 ret = 1;
1da177e4 4529 spin_lock(lock);
1da177e4 4530 }
6df3cecb 4531 return ret;
1da177e4 4532}
613afbf8 4533EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4534
613afbf8 4535int __sched __cond_resched_softirq(void)
1da177e4
LT
4536{
4537 BUG_ON(!in_softirq());
4538
d86ee480 4539 if (should_resched()) {
98d82567 4540 local_bh_enable();
1da177e4
LT
4541 __cond_resched();
4542 local_bh_disable();
4543 return 1;
4544 }
4545 return 0;
4546}
613afbf8 4547EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4548
1da177e4
LT
4549/**
4550 * yield - yield the current processor to other threads.
4551 *
72fd4a35 4552 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4553 * thread runnable and calls sys_sched_yield().
4554 */
4555void __sched yield(void)
4556{
4557 set_current_state(TASK_RUNNING);
4558 sys_sched_yield();
4559}
1da177e4
LT
4560EXPORT_SYMBOL(yield);
4561
d95f4122
MG
4562/**
4563 * yield_to - yield the current processor to another thread in
4564 * your thread group, or accelerate that thread toward the
4565 * processor it's on.
16addf95
RD
4566 * @p: target task
4567 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4568 *
4569 * It's the caller's job to ensure that the target task struct
4570 * can't go away on us before we can do any checks.
4571 *
4572 * Returns true if we indeed boosted the target task.
4573 */
4574bool __sched yield_to(struct task_struct *p, bool preempt)
4575{
4576 struct task_struct *curr = current;
4577 struct rq *rq, *p_rq;
4578 unsigned long flags;
4579 bool yielded = 0;
4580
4581 local_irq_save(flags);
4582 rq = this_rq();
4583
4584again:
4585 p_rq = task_rq(p);
4586 double_rq_lock(rq, p_rq);
4587 while (task_rq(p) != p_rq) {
4588 double_rq_unlock(rq, p_rq);
4589 goto again;
4590 }
4591
4592 if (!curr->sched_class->yield_to_task)
4593 goto out;
4594
4595 if (curr->sched_class != p->sched_class)
4596 goto out;
4597
4598 if (task_running(p_rq, p) || p->state)
4599 goto out;
4600
4601 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4602 if (yielded) {
d95f4122 4603 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4604 /*
4605 * Make p's CPU reschedule; pick_next_entity takes care of
4606 * fairness.
4607 */
4608 if (preempt && rq != p_rq)
4609 resched_task(p_rq->curr);
916671c0
MG
4610 } else {
4611 /*
4612 * We might have set it in task_yield_fair(), but are
4613 * not going to schedule(), so don't want to skip
4614 * the next update.
4615 */
4616 rq->skip_clock_update = 0;
6d1cafd8 4617 }
d95f4122
MG
4618
4619out:
4620 double_rq_unlock(rq, p_rq);
4621 local_irq_restore(flags);
4622
4623 if (yielded)
4624 schedule();
4625
4626 return yielded;
4627}
4628EXPORT_SYMBOL_GPL(yield_to);
4629
1da177e4 4630/*
41a2d6cf 4631 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4632 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4633 */
4634void __sched io_schedule(void)
4635{
54d35f29 4636 struct rq *rq = raw_rq();
1da177e4 4637
0ff92245 4638 delayacct_blkio_start();
1da177e4 4639 atomic_inc(&rq->nr_iowait);
73c10101 4640 blk_flush_plug(current);
8f0dfc34 4641 current->in_iowait = 1;
1da177e4 4642 schedule();
8f0dfc34 4643 current->in_iowait = 0;
1da177e4 4644 atomic_dec(&rq->nr_iowait);
0ff92245 4645 delayacct_blkio_end();
1da177e4 4646}
1da177e4
LT
4647EXPORT_SYMBOL(io_schedule);
4648
4649long __sched io_schedule_timeout(long timeout)
4650{
54d35f29 4651 struct rq *rq = raw_rq();
1da177e4
LT
4652 long ret;
4653
0ff92245 4654 delayacct_blkio_start();
1da177e4 4655 atomic_inc(&rq->nr_iowait);
73c10101 4656 blk_flush_plug(current);
8f0dfc34 4657 current->in_iowait = 1;
1da177e4 4658 ret = schedule_timeout(timeout);
8f0dfc34 4659 current->in_iowait = 0;
1da177e4 4660 atomic_dec(&rq->nr_iowait);
0ff92245 4661 delayacct_blkio_end();
1da177e4
LT
4662 return ret;
4663}
4664
4665/**
4666 * sys_sched_get_priority_max - return maximum RT priority.
4667 * @policy: scheduling class.
4668 *
4669 * this syscall returns the maximum rt_priority that can be used
4670 * by a given scheduling class.
4671 */
5add95d4 4672SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4673{
4674 int ret = -EINVAL;
4675
4676 switch (policy) {
4677 case SCHED_FIFO:
4678 case SCHED_RR:
4679 ret = MAX_USER_RT_PRIO-1;
4680 break;
4681 case SCHED_NORMAL:
b0a9499c 4682 case SCHED_BATCH:
dd41f596 4683 case SCHED_IDLE:
1da177e4
LT
4684 ret = 0;
4685 break;
4686 }
4687 return ret;
4688}
4689
4690/**
4691 * sys_sched_get_priority_min - return minimum RT priority.
4692 * @policy: scheduling class.
4693 *
4694 * this syscall returns the minimum rt_priority that can be used
4695 * by a given scheduling class.
4696 */
5add95d4 4697SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4698{
4699 int ret = -EINVAL;
4700
4701 switch (policy) {
4702 case SCHED_FIFO:
4703 case SCHED_RR:
4704 ret = 1;
4705 break;
4706 case SCHED_NORMAL:
b0a9499c 4707 case SCHED_BATCH:
dd41f596 4708 case SCHED_IDLE:
1da177e4
LT
4709 ret = 0;
4710 }
4711 return ret;
4712}
4713
4714/**
4715 * sys_sched_rr_get_interval - return the default timeslice of a process.
4716 * @pid: pid of the process.
4717 * @interval: userspace pointer to the timeslice value.
4718 *
4719 * this syscall writes the default timeslice value of a given process
4720 * into the user-space timespec buffer. A value of '0' means infinity.
4721 */
17da2bd9 4722SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4723 struct timespec __user *, interval)
1da177e4 4724{
36c8b586 4725 struct task_struct *p;
a4ec24b4 4726 unsigned int time_slice;
dba091b9
TG
4727 unsigned long flags;
4728 struct rq *rq;
3a5c359a 4729 int retval;
1da177e4 4730 struct timespec t;
1da177e4
LT
4731
4732 if (pid < 0)
3a5c359a 4733 return -EINVAL;
1da177e4
LT
4734
4735 retval = -ESRCH;
1a551ae7 4736 rcu_read_lock();
1da177e4
LT
4737 p = find_process_by_pid(pid);
4738 if (!p)
4739 goto out_unlock;
4740
4741 retval = security_task_getscheduler(p);
4742 if (retval)
4743 goto out_unlock;
4744
dba091b9
TG
4745 rq = task_rq_lock(p, &flags);
4746 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4747 task_rq_unlock(rq, p, &flags);
a4ec24b4 4748
1a551ae7 4749 rcu_read_unlock();
a4ec24b4 4750 jiffies_to_timespec(time_slice, &t);
1da177e4 4751 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4752 return retval;
3a5c359a 4753
1da177e4 4754out_unlock:
1a551ae7 4755 rcu_read_unlock();
1da177e4
LT
4756 return retval;
4757}
4758
7c731e0a 4759static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4760
82a1fcb9 4761void sched_show_task(struct task_struct *p)
1da177e4 4762{
1da177e4 4763 unsigned long free = 0;
36c8b586 4764 unsigned state;
1da177e4 4765
1da177e4 4766 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4767 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4768 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4769#if BITS_PER_LONG == 32
1da177e4 4770 if (state == TASK_RUNNING)
3df0fc5b 4771 printk(KERN_CONT " running ");
1da177e4 4772 else
3df0fc5b 4773 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4774#else
4775 if (state == TASK_RUNNING)
3df0fc5b 4776 printk(KERN_CONT " running task ");
1da177e4 4777 else
3df0fc5b 4778 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4779#endif
4780#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4781 free = stack_not_used(p);
1da177e4 4782#endif
3df0fc5b 4783 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4784 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4785 (unsigned long)task_thread_info(p)->flags);
1da177e4 4786
5fb5e6de 4787 show_stack(p, NULL);
1da177e4
LT
4788}
4789
e59e2ae2 4790void show_state_filter(unsigned long state_filter)
1da177e4 4791{
36c8b586 4792 struct task_struct *g, *p;
1da177e4 4793
4bd77321 4794#if BITS_PER_LONG == 32
3df0fc5b
PZ
4795 printk(KERN_INFO
4796 " task PC stack pid father\n");
1da177e4 4797#else
3df0fc5b
PZ
4798 printk(KERN_INFO
4799 " task PC stack pid father\n");
1da177e4 4800#endif
510f5acc 4801 rcu_read_lock();
1da177e4
LT
4802 do_each_thread(g, p) {
4803 /*
4804 * reset the NMI-timeout, listing all files on a slow
25985edc 4805 * console might take a lot of time:
1da177e4
LT
4806 */
4807 touch_nmi_watchdog();
39bc89fd 4808 if (!state_filter || (p->state & state_filter))
82a1fcb9 4809 sched_show_task(p);
1da177e4
LT
4810 } while_each_thread(g, p);
4811
04c9167f
JF
4812 touch_all_softlockup_watchdogs();
4813
dd41f596
IM
4814#ifdef CONFIG_SCHED_DEBUG
4815 sysrq_sched_debug_show();
4816#endif
510f5acc 4817 rcu_read_unlock();
e59e2ae2
IM
4818 /*
4819 * Only show locks if all tasks are dumped:
4820 */
93335a21 4821 if (!state_filter)
e59e2ae2 4822 debug_show_all_locks();
1da177e4
LT
4823}
4824
1df21055
IM
4825void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4826{
dd41f596 4827 idle->sched_class = &idle_sched_class;
1df21055
IM
4828}
4829
f340c0d1
IM
4830/**
4831 * init_idle - set up an idle thread for a given CPU
4832 * @idle: task in question
4833 * @cpu: cpu the idle task belongs to
4834 *
4835 * NOTE: this function does not set the idle thread's NEED_RESCHED
4836 * flag, to make booting more robust.
4837 */
5c1e1767 4838void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4839{
70b97a7f 4840 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4841 unsigned long flags;
4842
05fa785c 4843 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4844
dd41f596 4845 __sched_fork(idle);
06b83b5f 4846 idle->state = TASK_RUNNING;
dd41f596
IM
4847 idle->se.exec_start = sched_clock();
4848
1e1b6c51 4849 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4850 /*
4851 * We're having a chicken and egg problem, even though we are
4852 * holding rq->lock, the cpu isn't yet set to this cpu so the
4853 * lockdep check in task_group() will fail.
4854 *
4855 * Similar case to sched_fork(). / Alternatively we could
4856 * use task_rq_lock() here and obtain the other rq->lock.
4857 *
4858 * Silence PROVE_RCU
4859 */
4860 rcu_read_lock();
dd41f596 4861 __set_task_cpu(idle, cpu);
6506cf6c 4862 rcu_read_unlock();
1da177e4 4863
1da177e4 4864 rq->curr = rq->idle = idle;
3ca7a440
PZ
4865#if defined(CONFIG_SMP)
4866 idle->on_cpu = 1;
4866cde0 4867#endif
05fa785c 4868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4869
4870 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4871 task_thread_info(idle)->preempt_count = 0;
55cd5340 4872
dd41f596
IM
4873 /*
4874 * The idle tasks have their own, simple scheduling class:
4875 */
4876 idle->sched_class = &idle_sched_class;
868baf07 4877 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4878#if defined(CONFIG_SMP)
4879 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4880#endif
19978ca6
IM
4881}
4882
1da177e4 4883#ifdef CONFIG_SMP
1e1b6c51
KM
4884void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4885{
4886 if (p->sched_class && p->sched_class->set_cpus_allowed)
4887 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4888
4889 cpumask_copy(&p->cpus_allowed, new_mask);
4890 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4891}
4892
1da177e4
LT
4893/*
4894 * This is how migration works:
4895 *
969c7921
TH
4896 * 1) we invoke migration_cpu_stop() on the target CPU using
4897 * stop_one_cpu().
4898 * 2) stopper starts to run (implicitly forcing the migrated thread
4899 * off the CPU)
4900 * 3) it checks whether the migrated task is still in the wrong runqueue.
4901 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4902 * it and puts it into the right queue.
969c7921
TH
4903 * 5) stopper completes and stop_one_cpu() returns and the migration
4904 * is done.
1da177e4
LT
4905 */
4906
4907/*
4908 * Change a given task's CPU affinity. Migrate the thread to a
4909 * proper CPU and schedule it away if the CPU it's executing on
4910 * is removed from the allowed bitmask.
4911 *
4912 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4913 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4914 * call is not atomic; no spinlocks may be held.
4915 */
96f874e2 4916int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4917{
4918 unsigned long flags;
70b97a7f 4919 struct rq *rq;
969c7921 4920 unsigned int dest_cpu;
48f24c4d 4921 int ret = 0;
1da177e4
LT
4922
4923 rq = task_rq_lock(p, &flags);
e2912009 4924
db44fc01
YZ
4925 if (cpumask_equal(&p->cpus_allowed, new_mask))
4926 goto out;
4927
6ad4c188 4928 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4929 ret = -EINVAL;
4930 goto out;
4931 }
4932
db44fc01 4933 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4934 ret = -EINVAL;
4935 goto out;
4936 }
4937
1e1b6c51 4938 do_set_cpus_allowed(p, new_mask);
73fe6aae 4939
1da177e4 4940 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4941 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4942 goto out;
4943
969c7921 4944 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4945 if (p->on_rq) {
969c7921 4946 struct migration_arg arg = { p, dest_cpu };
1da177e4 4947 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4948 task_rq_unlock(rq, p, &flags);
969c7921 4949 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4950 tlb_migrate_finish(p->mm);
4951 return 0;
4952 }
4953out:
0122ec5b 4954 task_rq_unlock(rq, p, &flags);
48f24c4d 4955
1da177e4
LT
4956 return ret;
4957}
cd8ba7cd 4958EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4959
4960/*
41a2d6cf 4961 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4962 * this because either it can't run here any more (set_cpus_allowed()
4963 * away from this CPU, or CPU going down), or because we're
4964 * attempting to rebalance this task on exec (sched_exec).
4965 *
4966 * So we race with normal scheduler movements, but that's OK, as long
4967 * as the task is no longer on this CPU.
efc30814
KK
4968 *
4969 * Returns non-zero if task was successfully migrated.
1da177e4 4970 */
efc30814 4971static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4972{
70b97a7f 4973 struct rq *rq_dest, *rq_src;
e2912009 4974 int ret = 0;
1da177e4 4975
e761b772 4976 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4977 return ret;
1da177e4
LT
4978
4979 rq_src = cpu_rq(src_cpu);
4980 rq_dest = cpu_rq(dest_cpu);
4981
0122ec5b 4982 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4983 double_rq_lock(rq_src, rq_dest);
4984 /* Already moved. */
4985 if (task_cpu(p) != src_cpu)
b1e38734 4986 goto done;
1da177e4 4987 /* Affinity changed (again). */
fa17b507 4988 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4989 goto fail;
1da177e4 4990
e2912009
PZ
4991 /*
4992 * If we're not on a rq, the next wake-up will ensure we're
4993 * placed properly.
4994 */
fd2f4419 4995 if (p->on_rq) {
4ca9b72b 4996 dequeue_task(rq_src, p, 0);
e2912009 4997 set_task_cpu(p, dest_cpu);
4ca9b72b 4998 enqueue_task(rq_dest, p, 0);
15afe09b 4999 check_preempt_curr(rq_dest, p, 0);
1da177e4 5000 }
b1e38734 5001done:
efc30814 5002 ret = 1;
b1e38734 5003fail:
1da177e4 5004 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5005 raw_spin_unlock(&p->pi_lock);
efc30814 5006 return ret;
1da177e4
LT
5007}
5008
5009/*
969c7921
TH
5010 * migration_cpu_stop - this will be executed by a highprio stopper thread
5011 * and performs thread migration by bumping thread off CPU then
5012 * 'pushing' onto another runqueue.
1da177e4 5013 */
969c7921 5014static int migration_cpu_stop(void *data)
1da177e4 5015{
969c7921 5016 struct migration_arg *arg = data;
f7b4cddc 5017
969c7921
TH
5018 /*
5019 * The original target cpu might have gone down and we might
5020 * be on another cpu but it doesn't matter.
5021 */
f7b4cddc 5022 local_irq_disable();
969c7921 5023 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5024 local_irq_enable();
1da177e4 5025 return 0;
f7b4cddc
ON
5026}
5027
1da177e4 5028#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5029
054b9108 5030/*
48c5ccae
PZ
5031 * Ensures that the idle task is using init_mm right before its cpu goes
5032 * offline.
054b9108 5033 */
48c5ccae 5034void idle_task_exit(void)
1da177e4 5035{
48c5ccae 5036 struct mm_struct *mm = current->active_mm;
e76bd8d9 5037
48c5ccae 5038 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5039
48c5ccae
PZ
5040 if (mm != &init_mm)
5041 switch_mm(mm, &init_mm, current);
5042 mmdrop(mm);
1da177e4
LT
5043}
5044
5045/*
5046 * While a dead CPU has no uninterruptible tasks queued at this point,
5047 * it might still have a nonzero ->nr_uninterruptible counter, because
5048 * for performance reasons the counter is not stricly tracking tasks to
5049 * their home CPUs. So we just add the counter to another CPU's counter,
5050 * to keep the global sum constant after CPU-down:
5051 */
70b97a7f 5052static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5053{
6ad4c188 5054 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5055
1da177e4
LT
5056 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5057 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5058}
5059
dd41f596 5060/*
48c5ccae 5061 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5062 */
48c5ccae 5063static void calc_global_load_remove(struct rq *rq)
1da177e4 5064{
48c5ccae
PZ
5065 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5066 rq->calc_load_active = 0;
1da177e4
LT
5067}
5068
48f24c4d 5069/*
48c5ccae
PZ
5070 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5071 * try_to_wake_up()->select_task_rq().
5072 *
5073 * Called with rq->lock held even though we'er in stop_machine() and
5074 * there's no concurrency possible, we hold the required locks anyway
5075 * because of lock validation efforts.
1da177e4 5076 */
48c5ccae 5077static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5078{
70b97a7f 5079 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5080 struct task_struct *next, *stop = rq->stop;
5081 int dest_cpu;
1da177e4
LT
5082
5083 /*
48c5ccae
PZ
5084 * Fudge the rq selection such that the below task selection loop
5085 * doesn't get stuck on the currently eligible stop task.
5086 *
5087 * We're currently inside stop_machine() and the rq is either stuck
5088 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5089 * either way we should never end up calling schedule() until we're
5090 * done here.
1da177e4 5091 */
48c5ccae 5092 rq->stop = NULL;
48f24c4d 5093
8cb120d3
PT
5094 /* Ensure any throttled groups are reachable by pick_next_task */
5095 unthrottle_offline_cfs_rqs(rq);
5096
dd41f596 5097 for ( ; ; ) {
48c5ccae
PZ
5098 /*
5099 * There's this thread running, bail when that's the only
5100 * remaining thread.
5101 */
5102 if (rq->nr_running == 1)
dd41f596 5103 break;
48c5ccae 5104
b67802ea 5105 next = pick_next_task(rq);
48c5ccae 5106 BUG_ON(!next);
79c53799 5107 next->sched_class->put_prev_task(rq, next);
e692ab53 5108
48c5ccae
PZ
5109 /* Find suitable destination for @next, with force if needed. */
5110 dest_cpu = select_fallback_rq(dead_cpu, next);
5111 raw_spin_unlock(&rq->lock);
5112
5113 __migrate_task(next, dead_cpu, dest_cpu);
5114
5115 raw_spin_lock(&rq->lock);
1da177e4 5116 }
dce48a84 5117
48c5ccae 5118 rq->stop = stop;
dce48a84 5119}
48c5ccae 5120
1da177e4
LT
5121#endif /* CONFIG_HOTPLUG_CPU */
5122
e692ab53
NP
5123#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5124
5125static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5126 {
5127 .procname = "sched_domain",
c57baf1e 5128 .mode = 0555,
e0361851 5129 },
56992309 5130 {}
e692ab53
NP
5131};
5132
5133static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5134 {
5135 .procname = "kernel",
c57baf1e 5136 .mode = 0555,
e0361851
AD
5137 .child = sd_ctl_dir,
5138 },
56992309 5139 {}
e692ab53
NP
5140};
5141
5142static struct ctl_table *sd_alloc_ctl_entry(int n)
5143{
5144 struct ctl_table *entry =
5cf9f062 5145 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5146
e692ab53
NP
5147 return entry;
5148}
5149
6382bc90
MM
5150static void sd_free_ctl_entry(struct ctl_table **tablep)
5151{
cd790076 5152 struct ctl_table *entry;
6382bc90 5153
cd790076
MM
5154 /*
5155 * In the intermediate directories, both the child directory and
5156 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5157 * will always be set. In the lowest directory the names are
cd790076
MM
5158 * static strings and all have proc handlers.
5159 */
5160 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5161 if (entry->child)
5162 sd_free_ctl_entry(&entry->child);
cd790076
MM
5163 if (entry->proc_handler == NULL)
5164 kfree(entry->procname);
5165 }
6382bc90
MM
5166
5167 kfree(*tablep);
5168 *tablep = NULL;
5169}
5170
e692ab53 5171static void
e0361851 5172set_table_entry(struct ctl_table *entry,
e692ab53 5173 const char *procname, void *data, int maxlen,
36fcb589 5174 umode_t mode, proc_handler *proc_handler)
e692ab53 5175{
e692ab53
NP
5176 entry->procname = procname;
5177 entry->data = data;
5178 entry->maxlen = maxlen;
5179 entry->mode = mode;
5180 entry->proc_handler = proc_handler;
5181}
5182
5183static struct ctl_table *
5184sd_alloc_ctl_domain_table(struct sched_domain *sd)
5185{
a5d8c348 5186 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5187
ad1cdc1d
MM
5188 if (table == NULL)
5189 return NULL;
5190
e0361851 5191 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5192 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5193 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5194 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5195 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5196 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5197 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5198 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5199 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5200 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5201 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5202 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5203 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5204 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5205 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5206 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5207 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5208 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5209 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5210 &sd->cache_nice_tries,
5211 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5212 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5213 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5214 set_table_entry(&table[11], "name", sd->name,
5215 CORENAME_MAX_SIZE, 0444, proc_dostring);
5216 /* &table[12] is terminator */
e692ab53
NP
5217
5218 return table;
5219}
5220
9a4e7159 5221static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5222{
5223 struct ctl_table *entry, *table;
5224 struct sched_domain *sd;
5225 int domain_num = 0, i;
5226 char buf[32];
5227
5228 for_each_domain(cpu, sd)
5229 domain_num++;
5230 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5231 if (table == NULL)
5232 return NULL;
e692ab53
NP
5233
5234 i = 0;
5235 for_each_domain(cpu, sd) {
5236 snprintf(buf, 32, "domain%d", i);
e692ab53 5237 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5238 entry->mode = 0555;
e692ab53
NP
5239 entry->child = sd_alloc_ctl_domain_table(sd);
5240 entry++;
5241 i++;
5242 }
5243 return table;
5244}
5245
5246static struct ctl_table_header *sd_sysctl_header;
6382bc90 5247static void register_sched_domain_sysctl(void)
e692ab53 5248{
6ad4c188 5249 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5250 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5251 char buf[32];
5252
7378547f
MM
5253 WARN_ON(sd_ctl_dir[0].child);
5254 sd_ctl_dir[0].child = entry;
5255
ad1cdc1d
MM
5256 if (entry == NULL)
5257 return;
5258
6ad4c188 5259 for_each_possible_cpu(i) {
e692ab53 5260 snprintf(buf, 32, "cpu%d", i);
e692ab53 5261 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5262 entry->mode = 0555;
e692ab53 5263 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5264 entry++;
e692ab53 5265 }
7378547f
MM
5266
5267 WARN_ON(sd_sysctl_header);
e692ab53
NP
5268 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5269}
6382bc90 5270
7378547f 5271/* may be called multiple times per register */
6382bc90
MM
5272static void unregister_sched_domain_sysctl(void)
5273{
7378547f
MM
5274 if (sd_sysctl_header)
5275 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5276 sd_sysctl_header = NULL;
7378547f
MM
5277 if (sd_ctl_dir[0].child)
5278 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5279}
e692ab53 5280#else
6382bc90
MM
5281static void register_sched_domain_sysctl(void)
5282{
5283}
5284static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5285{
5286}
5287#endif
5288
1f11eb6a
GH
5289static void set_rq_online(struct rq *rq)
5290{
5291 if (!rq->online) {
5292 const struct sched_class *class;
5293
c6c4927b 5294 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5295 rq->online = 1;
5296
5297 for_each_class(class) {
5298 if (class->rq_online)
5299 class->rq_online(rq);
5300 }
5301 }
5302}
5303
5304static void set_rq_offline(struct rq *rq)
5305{
5306 if (rq->online) {
5307 const struct sched_class *class;
5308
5309 for_each_class(class) {
5310 if (class->rq_offline)
5311 class->rq_offline(rq);
5312 }
5313
c6c4927b 5314 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5315 rq->online = 0;
5316 }
5317}
5318
1da177e4
LT
5319/*
5320 * migration_call - callback that gets triggered when a CPU is added.
5321 * Here we can start up the necessary migration thread for the new CPU.
5322 */
48f24c4d
IM
5323static int __cpuinit
5324migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5325{
48f24c4d 5326 int cpu = (long)hcpu;
1da177e4 5327 unsigned long flags;
969c7921 5328 struct rq *rq = cpu_rq(cpu);
1da177e4 5329
48c5ccae 5330 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5331
1da177e4 5332 case CPU_UP_PREPARE:
a468d389 5333 rq->calc_load_update = calc_load_update;
1da177e4 5334 break;
48f24c4d 5335
1da177e4 5336 case CPU_ONLINE:
1f94ef59 5337 /* Update our root-domain */
05fa785c 5338 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5339 if (rq->rd) {
c6c4927b 5340 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5341
5342 set_rq_online(rq);
1f94ef59 5343 }
05fa785c 5344 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5345 break;
48f24c4d 5346
1da177e4 5347#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5348 case CPU_DYING:
317f3941 5349 sched_ttwu_pending();
57d885fe 5350 /* Update our root-domain */
05fa785c 5351 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5352 if (rq->rd) {
c6c4927b 5353 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5354 set_rq_offline(rq);
57d885fe 5355 }
48c5ccae
PZ
5356 migrate_tasks(cpu);
5357 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5358 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5359
5360 migrate_nr_uninterruptible(rq);
5361 calc_global_load_remove(rq);
57d885fe 5362 break;
1da177e4
LT
5363#endif
5364 }
49c022e6
PZ
5365
5366 update_max_interval();
5367
1da177e4
LT
5368 return NOTIFY_OK;
5369}
5370
f38b0820
PM
5371/*
5372 * Register at high priority so that task migration (migrate_all_tasks)
5373 * happens before everything else. This has to be lower priority than
cdd6c482 5374 * the notifier in the perf_event subsystem, though.
1da177e4 5375 */
26c2143b 5376static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5377 .notifier_call = migration_call,
50a323b7 5378 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5379};
5380
3a101d05
TH
5381static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5382 unsigned long action, void *hcpu)
5383{
5384 switch (action & ~CPU_TASKS_FROZEN) {
5385 case CPU_ONLINE:
5386 case CPU_DOWN_FAILED:
5387 set_cpu_active((long)hcpu, true);
5388 return NOTIFY_OK;
5389 default:
5390 return NOTIFY_DONE;
5391 }
5392}
5393
5394static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5395 unsigned long action, void *hcpu)
5396{
5397 switch (action & ~CPU_TASKS_FROZEN) {
5398 case CPU_DOWN_PREPARE:
5399 set_cpu_active((long)hcpu, false);
5400 return NOTIFY_OK;
5401 default:
5402 return NOTIFY_DONE;
5403 }
5404}
5405
7babe8db 5406static int __init migration_init(void)
1da177e4
LT
5407{
5408 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5409 int err;
48f24c4d 5410
3a101d05 5411 /* Initialize migration for the boot CPU */
07dccf33
AM
5412 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5413 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5414 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5415 register_cpu_notifier(&migration_notifier);
7babe8db 5416
3a101d05
TH
5417 /* Register cpu active notifiers */
5418 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5419 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5420
a004cd42 5421 return 0;
1da177e4 5422}
7babe8db 5423early_initcall(migration_init);
1da177e4
LT
5424#endif
5425
5426#ifdef CONFIG_SMP
476f3534 5427
4cb98839
PZ
5428static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5429
3e9830dc 5430#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5431
f6630114
MT
5432static __read_mostly int sched_domain_debug_enabled;
5433
5434static int __init sched_domain_debug_setup(char *str)
5435{
5436 sched_domain_debug_enabled = 1;
5437
5438 return 0;
5439}
5440early_param("sched_debug", sched_domain_debug_setup);
5441
7c16ec58 5442static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5443 struct cpumask *groupmask)
1da177e4 5444{
4dcf6aff 5445 struct sched_group *group = sd->groups;
434d53b0 5446 char str[256];
1da177e4 5447
968ea6d8 5448 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5449 cpumask_clear(groupmask);
4dcf6aff
IM
5450
5451 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5452
5453 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5454 printk("does not load-balance\n");
4dcf6aff 5455 if (sd->parent)
3df0fc5b
PZ
5456 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5457 " has parent");
4dcf6aff 5458 return -1;
41c7ce9a
NP
5459 }
5460
3df0fc5b 5461 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5462
758b2cdc 5463 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5464 printk(KERN_ERR "ERROR: domain->span does not contain "
5465 "CPU%d\n", cpu);
4dcf6aff 5466 }
758b2cdc 5467 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5468 printk(KERN_ERR "ERROR: domain->groups does not contain"
5469 " CPU%d\n", cpu);
4dcf6aff 5470 }
1da177e4 5471
4dcf6aff 5472 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5473 do {
4dcf6aff 5474 if (!group) {
3df0fc5b
PZ
5475 printk("\n");
5476 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5477 break;
5478 }
5479
9c3f75cb 5480 if (!group->sgp->power) {
3df0fc5b
PZ
5481 printk(KERN_CONT "\n");
5482 printk(KERN_ERR "ERROR: domain->cpu_power not "
5483 "set\n");
4dcf6aff
IM
5484 break;
5485 }
1da177e4 5486
758b2cdc 5487 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5488 printk(KERN_CONT "\n");
5489 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5490 break;
5491 }
1da177e4 5492
758b2cdc 5493 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5494 printk(KERN_CONT "\n");
5495 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5496 break;
5497 }
1da177e4 5498
758b2cdc 5499 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5500
968ea6d8 5501 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5502
3df0fc5b 5503 printk(KERN_CONT " %s", str);
9c3f75cb 5504 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5505 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5506 group->sgp->power);
381512cf 5507 }
1da177e4 5508
4dcf6aff
IM
5509 group = group->next;
5510 } while (group != sd->groups);
3df0fc5b 5511 printk(KERN_CONT "\n");
1da177e4 5512
758b2cdc 5513 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5514 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5515
758b2cdc
RR
5516 if (sd->parent &&
5517 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5518 printk(KERN_ERR "ERROR: parent span is not a superset "
5519 "of domain->span\n");
4dcf6aff
IM
5520 return 0;
5521}
1da177e4 5522
4dcf6aff
IM
5523static void sched_domain_debug(struct sched_domain *sd, int cpu)
5524{
5525 int level = 0;
1da177e4 5526
f6630114
MT
5527 if (!sched_domain_debug_enabled)
5528 return;
5529
4dcf6aff
IM
5530 if (!sd) {
5531 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5532 return;
5533 }
1da177e4 5534
4dcf6aff
IM
5535 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5536
5537 for (;;) {
4cb98839 5538 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5539 break;
1da177e4
LT
5540 level++;
5541 sd = sd->parent;
33859f7f 5542 if (!sd)
4dcf6aff
IM
5543 break;
5544 }
1da177e4 5545}
6d6bc0ad 5546#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5547# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5548#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5549
1a20ff27 5550static int sd_degenerate(struct sched_domain *sd)
245af2c7 5551{
758b2cdc 5552 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5553 return 1;
5554
5555 /* Following flags need at least 2 groups */
5556 if (sd->flags & (SD_LOAD_BALANCE |
5557 SD_BALANCE_NEWIDLE |
5558 SD_BALANCE_FORK |
89c4710e
SS
5559 SD_BALANCE_EXEC |
5560 SD_SHARE_CPUPOWER |
5561 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5562 if (sd->groups != sd->groups->next)
5563 return 0;
5564 }
5565
5566 /* Following flags don't use groups */
c88d5910 5567 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5568 return 0;
5569
5570 return 1;
5571}
5572
48f24c4d
IM
5573static int
5574sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5575{
5576 unsigned long cflags = sd->flags, pflags = parent->flags;
5577
5578 if (sd_degenerate(parent))
5579 return 1;
5580
758b2cdc 5581 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5582 return 0;
5583
245af2c7
SS
5584 /* Flags needing groups don't count if only 1 group in parent */
5585 if (parent->groups == parent->groups->next) {
5586 pflags &= ~(SD_LOAD_BALANCE |
5587 SD_BALANCE_NEWIDLE |
5588 SD_BALANCE_FORK |
89c4710e
SS
5589 SD_BALANCE_EXEC |
5590 SD_SHARE_CPUPOWER |
5591 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5592 if (nr_node_ids == 1)
5593 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5594 }
5595 if (~cflags & pflags)
5596 return 0;
5597
5598 return 1;
5599}
5600
dce840a0 5601static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5602{
dce840a0 5603 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5604
68e74568 5605 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5606 free_cpumask_var(rd->rto_mask);
5607 free_cpumask_var(rd->online);
5608 free_cpumask_var(rd->span);
5609 kfree(rd);
5610}
5611
57d885fe
GH
5612static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5613{
a0490fa3 5614 struct root_domain *old_rd = NULL;
57d885fe 5615 unsigned long flags;
57d885fe 5616
05fa785c 5617 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5618
5619 if (rq->rd) {
a0490fa3 5620 old_rd = rq->rd;
57d885fe 5621
c6c4927b 5622 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5623 set_rq_offline(rq);
57d885fe 5624
c6c4927b 5625 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5626
a0490fa3
IM
5627 /*
5628 * If we dont want to free the old_rt yet then
5629 * set old_rd to NULL to skip the freeing later
5630 * in this function:
5631 */
5632 if (!atomic_dec_and_test(&old_rd->refcount))
5633 old_rd = NULL;
57d885fe
GH
5634 }
5635
5636 atomic_inc(&rd->refcount);
5637 rq->rd = rd;
5638
c6c4927b 5639 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5640 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5641 set_rq_online(rq);
57d885fe 5642
05fa785c 5643 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5644
5645 if (old_rd)
dce840a0 5646 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5647}
5648
68c38fc3 5649static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5650{
5651 memset(rd, 0, sizeof(*rd));
5652
68c38fc3 5653 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5654 goto out;
68c38fc3 5655 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5656 goto free_span;
68c38fc3 5657 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5658 goto free_online;
6e0534f2 5659
68c38fc3 5660 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5661 goto free_rto_mask;
c6c4927b 5662 return 0;
6e0534f2 5663
68e74568
RR
5664free_rto_mask:
5665 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5666free_online:
5667 free_cpumask_var(rd->online);
5668free_span:
5669 free_cpumask_var(rd->span);
0c910d28 5670out:
c6c4927b 5671 return -ENOMEM;
57d885fe
GH
5672}
5673
029632fb
PZ
5674/*
5675 * By default the system creates a single root-domain with all cpus as
5676 * members (mimicking the global state we have today).
5677 */
5678struct root_domain def_root_domain;
5679
57d885fe
GH
5680static void init_defrootdomain(void)
5681{
68c38fc3 5682 init_rootdomain(&def_root_domain);
c6c4927b 5683
57d885fe
GH
5684 atomic_set(&def_root_domain.refcount, 1);
5685}
5686
dc938520 5687static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5688{
5689 struct root_domain *rd;
5690
5691 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5692 if (!rd)
5693 return NULL;
5694
68c38fc3 5695 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5696 kfree(rd);
5697 return NULL;
5698 }
57d885fe
GH
5699
5700 return rd;
5701}
5702
e3589f6c
PZ
5703static void free_sched_groups(struct sched_group *sg, int free_sgp)
5704{
5705 struct sched_group *tmp, *first;
5706
5707 if (!sg)
5708 return;
5709
5710 first = sg;
5711 do {
5712 tmp = sg->next;
5713
5714 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5715 kfree(sg->sgp);
5716
5717 kfree(sg);
5718 sg = tmp;
5719 } while (sg != first);
5720}
5721
dce840a0
PZ
5722static void free_sched_domain(struct rcu_head *rcu)
5723{
5724 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5725
5726 /*
5727 * If its an overlapping domain it has private groups, iterate and
5728 * nuke them all.
5729 */
5730 if (sd->flags & SD_OVERLAP) {
5731 free_sched_groups(sd->groups, 1);
5732 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5733 kfree(sd->groups->sgp);
dce840a0 5734 kfree(sd->groups);
9c3f75cb 5735 }
dce840a0
PZ
5736 kfree(sd);
5737}
5738
5739static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5740{
5741 call_rcu(&sd->rcu, free_sched_domain);
5742}
5743
5744static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5745{
5746 for (; sd; sd = sd->parent)
5747 destroy_sched_domain(sd, cpu);
5748}
5749
518cd623
PZ
5750/*
5751 * Keep a special pointer to the highest sched_domain that has
5752 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5753 * allows us to avoid some pointer chasing select_idle_sibling().
5754 *
5755 * Also keep a unique ID per domain (we use the first cpu number in
5756 * the cpumask of the domain), this allows us to quickly tell if
5757 * two cpus are in the same cache domain, see ttwu_share_cache().
5758 */
5759DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5760DEFINE_PER_CPU(int, sd_llc_id);
5761
5762static void update_top_cache_domain(int cpu)
5763{
5764 struct sched_domain *sd;
5765 int id = cpu;
5766
5767 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5768 if (sd)
5769 id = cpumask_first(sched_domain_span(sd));
5770
5771 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5772 per_cpu(sd_llc_id, cpu) = id;
5773}
5774
1da177e4 5775/*
0eab9146 5776 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5777 * hold the hotplug lock.
5778 */
0eab9146
IM
5779static void
5780cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5781{
70b97a7f 5782 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5783 struct sched_domain *tmp;
5784
5785 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5786 for (tmp = sd; tmp; ) {
245af2c7
SS
5787 struct sched_domain *parent = tmp->parent;
5788 if (!parent)
5789 break;
f29c9b1c 5790
1a848870 5791 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5792 tmp->parent = parent->parent;
1a848870
SS
5793 if (parent->parent)
5794 parent->parent->child = tmp;
dce840a0 5795 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5796 } else
5797 tmp = tmp->parent;
245af2c7
SS
5798 }
5799
1a848870 5800 if (sd && sd_degenerate(sd)) {
dce840a0 5801 tmp = sd;
245af2c7 5802 sd = sd->parent;
dce840a0 5803 destroy_sched_domain(tmp, cpu);
1a848870
SS
5804 if (sd)
5805 sd->child = NULL;
5806 }
1da177e4 5807
4cb98839 5808 sched_domain_debug(sd, cpu);
1da177e4 5809
57d885fe 5810 rq_attach_root(rq, rd);
dce840a0 5811 tmp = rq->sd;
674311d5 5812 rcu_assign_pointer(rq->sd, sd);
dce840a0 5813 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5814
5815 update_top_cache_domain(cpu);
1da177e4
LT
5816}
5817
5818/* cpus with isolated domains */
dcc30a35 5819static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5820
5821/* Setup the mask of cpus configured for isolated domains */
5822static int __init isolated_cpu_setup(char *str)
5823{
bdddd296 5824 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5825 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5826 return 1;
5827}
5828
8927f494 5829__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5830
9c1cfda2 5831#ifdef CONFIG_NUMA
198e2f18 5832
9c1cfda2
JH
5833/**
5834 * find_next_best_node - find the next node to include in a sched_domain
5835 * @node: node whose sched_domain we're building
5836 * @used_nodes: nodes already in the sched_domain
5837 *
41a2d6cf 5838 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5839 * finds the closest node not already in the @used_nodes map.
5840 *
5841 * Should use nodemask_t.
5842 */
c5f59f08 5843static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5844{
7142d17e 5845 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5846
5847 min_val = INT_MAX;
5848
076ac2af 5849 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5850 /* Start at @node */
076ac2af 5851 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5852
5853 if (!nr_cpus_node(n))
5854 continue;
5855
5856 /* Skip already used nodes */
c5f59f08 5857 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5858 continue;
5859
5860 /* Simple min distance search */
5861 val = node_distance(node, n);
5862
5863 if (val < min_val) {
5864 min_val = val;
5865 best_node = n;
5866 }
5867 }
5868
7142d17e
HD
5869 if (best_node != -1)
5870 node_set(best_node, *used_nodes);
9c1cfda2
JH
5871 return best_node;
5872}
5873
5874/**
5875 * sched_domain_node_span - get a cpumask for a node's sched_domain
5876 * @node: node whose cpumask we're constructing
73486722 5877 * @span: resulting cpumask
9c1cfda2 5878 *
41a2d6cf 5879 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5880 * should be one that prevents unnecessary balancing, but also spreads tasks
5881 * out optimally.
5882 */
96f874e2 5883static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5884{
c5f59f08 5885 nodemask_t used_nodes;
48f24c4d 5886 int i;
9c1cfda2 5887
6ca09dfc 5888 cpumask_clear(span);
c5f59f08 5889 nodes_clear(used_nodes);
9c1cfda2 5890
6ca09dfc 5891 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5892 node_set(node, used_nodes);
9c1cfda2
JH
5893
5894 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5895 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5896 if (next_node < 0)
5897 break;
6ca09dfc 5898 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5899 }
9c1cfda2 5900}
d3081f52
PZ
5901
5902static const struct cpumask *cpu_node_mask(int cpu)
5903{
5904 lockdep_assert_held(&sched_domains_mutex);
5905
5906 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5907
5908 return sched_domains_tmpmask;
5909}
2c402dc3
PZ
5910
5911static const struct cpumask *cpu_allnodes_mask(int cpu)
5912{
5913 return cpu_possible_mask;
5914}
6d6bc0ad 5915#endif /* CONFIG_NUMA */
9c1cfda2 5916
d3081f52
PZ
5917static const struct cpumask *cpu_cpu_mask(int cpu)
5918{
5919 return cpumask_of_node(cpu_to_node(cpu));
5920}
5921
5c45bf27 5922int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5923
dce840a0
PZ
5924struct sd_data {
5925 struct sched_domain **__percpu sd;
5926 struct sched_group **__percpu sg;
9c3f75cb 5927 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5928};
5929
49a02c51 5930struct s_data {
21d42ccf 5931 struct sched_domain ** __percpu sd;
49a02c51
AH
5932 struct root_domain *rd;
5933};
5934
2109b99e 5935enum s_alloc {
2109b99e 5936 sa_rootdomain,
21d42ccf 5937 sa_sd,
dce840a0 5938 sa_sd_storage,
2109b99e
AH
5939 sa_none,
5940};
5941
54ab4ff4
PZ
5942struct sched_domain_topology_level;
5943
5944typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5945typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5946
e3589f6c
PZ
5947#define SDTL_OVERLAP 0x01
5948
eb7a74e6 5949struct sched_domain_topology_level {
2c402dc3
PZ
5950 sched_domain_init_f init;
5951 sched_domain_mask_f mask;
e3589f6c 5952 int flags;
54ab4ff4 5953 struct sd_data data;
eb7a74e6
PZ
5954};
5955
e3589f6c
PZ
5956static int
5957build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5958{
5959 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5960 const struct cpumask *span = sched_domain_span(sd);
5961 struct cpumask *covered = sched_domains_tmpmask;
5962 struct sd_data *sdd = sd->private;
5963 struct sched_domain *child;
5964 int i;
5965
5966 cpumask_clear(covered);
5967
5968 for_each_cpu(i, span) {
5969 struct cpumask *sg_span;
5970
5971 if (cpumask_test_cpu(i, covered))
5972 continue;
5973
5974 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5975 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5976
5977 if (!sg)
5978 goto fail;
5979
5980 sg_span = sched_group_cpus(sg);
5981
5982 child = *per_cpu_ptr(sdd->sd, i);
5983 if (child->child) {
5984 child = child->child;
5985 cpumask_copy(sg_span, sched_domain_span(child));
5986 } else
5987 cpumask_set_cpu(i, sg_span);
5988
5989 cpumask_or(covered, covered, sg_span);
5990
5991 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5992 atomic_inc(&sg->sgp->ref);
5993
5994 if (cpumask_test_cpu(cpu, sg_span))
5995 groups = sg;
5996
5997 if (!first)
5998 first = sg;
5999 if (last)
6000 last->next = sg;
6001 last = sg;
6002 last->next = first;
6003 }
6004 sd->groups = groups;
6005
6006 return 0;
6007
6008fail:
6009 free_sched_groups(first, 0);
6010
6011 return -ENOMEM;
6012}
6013
dce840a0 6014static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6015{
dce840a0
PZ
6016 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6017 struct sched_domain *child = sd->child;
1da177e4 6018
dce840a0
PZ
6019 if (child)
6020 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6021
9c3f75cb 6022 if (sg) {
dce840a0 6023 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6024 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6025 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6026 }
dce840a0
PZ
6027
6028 return cpu;
1e9f28fa 6029}
1e9f28fa 6030
01a08546 6031/*
dce840a0
PZ
6032 * build_sched_groups will build a circular linked list of the groups
6033 * covered by the given span, and will set each group's ->cpumask correctly,
6034 * and ->cpu_power to 0.
e3589f6c
PZ
6035 *
6036 * Assumes the sched_domain tree is fully constructed
01a08546 6037 */
e3589f6c
PZ
6038static int
6039build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6040{
dce840a0
PZ
6041 struct sched_group *first = NULL, *last = NULL;
6042 struct sd_data *sdd = sd->private;
6043 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6044 struct cpumask *covered;
dce840a0 6045 int i;
9c1cfda2 6046
e3589f6c
PZ
6047 get_group(cpu, sdd, &sd->groups);
6048 atomic_inc(&sd->groups->ref);
6049
6050 if (cpu != cpumask_first(sched_domain_span(sd)))
6051 return 0;
6052
f96225fd
PZ
6053 lockdep_assert_held(&sched_domains_mutex);
6054 covered = sched_domains_tmpmask;
6055
dce840a0 6056 cpumask_clear(covered);
6711cab4 6057
dce840a0
PZ
6058 for_each_cpu(i, span) {
6059 struct sched_group *sg;
6060 int group = get_group(i, sdd, &sg);
6061 int j;
6711cab4 6062
dce840a0
PZ
6063 if (cpumask_test_cpu(i, covered))
6064 continue;
6711cab4 6065
dce840a0 6066 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6067 sg->sgp->power = 0;
0601a88d 6068
dce840a0
PZ
6069 for_each_cpu(j, span) {
6070 if (get_group(j, sdd, NULL) != group)
6071 continue;
0601a88d 6072
dce840a0
PZ
6073 cpumask_set_cpu(j, covered);
6074 cpumask_set_cpu(j, sched_group_cpus(sg));
6075 }
0601a88d 6076
dce840a0
PZ
6077 if (!first)
6078 first = sg;
6079 if (last)
6080 last->next = sg;
6081 last = sg;
6082 }
6083 last->next = first;
e3589f6c
PZ
6084
6085 return 0;
0601a88d 6086}
51888ca2 6087
89c4710e
SS
6088/*
6089 * Initialize sched groups cpu_power.
6090 *
6091 * cpu_power indicates the capacity of sched group, which is used while
6092 * distributing the load between different sched groups in a sched domain.
6093 * Typically cpu_power for all the groups in a sched domain will be same unless
6094 * there are asymmetries in the topology. If there are asymmetries, group
6095 * having more cpu_power will pickup more load compared to the group having
6096 * less cpu_power.
89c4710e
SS
6097 */
6098static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6099{
e3589f6c 6100 struct sched_group *sg = sd->groups;
89c4710e 6101
e3589f6c
PZ
6102 WARN_ON(!sd || !sg);
6103
6104 do {
6105 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6106 sg = sg->next;
6107 } while (sg != sd->groups);
89c4710e 6108
e3589f6c
PZ
6109 if (cpu != group_first_cpu(sg))
6110 return;
aae6d3dd 6111
d274cb30 6112 update_group_power(sd, cpu);
69e1e811 6113 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6114}
6115
029632fb
PZ
6116int __weak arch_sd_sibling_asym_packing(void)
6117{
6118 return 0*SD_ASYM_PACKING;
89c4710e
SS
6119}
6120
7c16ec58
MT
6121/*
6122 * Initializers for schedule domains
6123 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6124 */
6125
a5d8c348
IM
6126#ifdef CONFIG_SCHED_DEBUG
6127# define SD_INIT_NAME(sd, type) sd->name = #type
6128#else
6129# define SD_INIT_NAME(sd, type) do { } while (0)
6130#endif
6131
54ab4ff4
PZ
6132#define SD_INIT_FUNC(type) \
6133static noinline struct sched_domain * \
6134sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6135{ \
6136 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6137 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6138 SD_INIT_NAME(sd, type); \
6139 sd->private = &tl->data; \
6140 return sd; \
7c16ec58
MT
6141}
6142
6143SD_INIT_FUNC(CPU)
6144#ifdef CONFIG_NUMA
6145 SD_INIT_FUNC(ALLNODES)
6146 SD_INIT_FUNC(NODE)
6147#endif
6148#ifdef CONFIG_SCHED_SMT
6149 SD_INIT_FUNC(SIBLING)
6150#endif
6151#ifdef CONFIG_SCHED_MC
6152 SD_INIT_FUNC(MC)
6153#endif
01a08546
HC
6154#ifdef CONFIG_SCHED_BOOK
6155 SD_INIT_FUNC(BOOK)
6156#endif
7c16ec58 6157
1d3504fc 6158static int default_relax_domain_level = -1;
60495e77 6159int sched_domain_level_max;
1d3504fc
HS
6160
6161static int __init setup_relax_domain_level(char *str)
6162{
30e0e178
LZ
6163 unsigned long val;
6164
6165 val = simple_strtoul(str, NULL, 0);
60495e77 6166 if (val < sched_domain_level_max)
30e0e178
LZ
6167 default_relax_domain_level = val;
6168
1d3504fc
HS
6169 return 1;
6170}
6171__setup("relax_domain_level=", setup_relax_domain_level);
6172
6173static void set_domain_attribute(struct sched_domain *sd,
6174 struct sched_domain_attr *attr)
6175{
6176 int request;
6177
6178 if (!attr || attr->relax_domain_level < 0) {
6179 if (default_relax_domain_level < 0)
6180 return;
6181 else
6182 request = default_relax_domain_level;
6183 } else
6184 request = attr->relax_domain_level;
6185 if (request < sd->level) {
6186 /* turn off idle balance on this domain */
c88d5910 6187 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6188 } else {
6189 /* turn on idle balance on this domain */
c88d5910 6190 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6191 }
6192}
6193
54ab4ff4
PZ
6194static void __sdt_free(const struct cpumask *cpu_map);
6195static int __sdt_alloc(const struct cpumask *cpu_map);
6196
2109b99e
AH
6197static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6198 const struct cpumask *cpu_map)
6199{
6200 switch (what) {
2109b99e 6201 case sa_rootdomain:
822ff793
PZ
6202 if (!atomic_read(&d->rd->refcount))
6203 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6204 case sa_sd:
6205 free_percpu(d->sd); /* fall through */
dce840a0 6206 case sa_sd_storage:
54ab4ff4 6207 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6208 case sa_none:
6209 break;
6210 }
6211}
3404c8d9 6212
2109b99e
AH
6213static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6214 const struct cpumask *cpu_map)
6215{
dce840a0
PZ
6216 memset(d, 0, sizeof(*d));
6217
54ab4ff4
PZ
6218 if (__sdt_alloc(cpu_map))
6219 return sa_sd_storage;
dce840a0
PZ
6220 d->sd = alloc_percpu(struct sched_domain *);
6221 if (!d->sd)
6222 return sa_sd_storage;
2109b99e 6223 d->rd = alloc_rootdomain();
dce840a0 6224 if (!d->rd)
21d42ccf 6225 return sa_sd;
2109b99e
AH
6226 return sa_rootdomain;
6227}
57d885fe 6228
dce840a0
PZ
6229/*
6230 * NULL the sd_data elements we've used to build the sched_domain and
6231 * sched_group structure so that the subsequent __free_domain_allocs()
6232 * will not free the data we're using.
6233 */
6234static void claim_allocations(int cpu, struct sched_domain *sd)
6235{
6236 struct sd_data *sdd = sd->private;
dce840a0
PZ
6237
6238 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6239 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6240
e3589f6c 6241 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6242 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6243
6244 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6245 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6246}
6247
2c402dc3
PZ
6248#ifdef CONFIG_SCHED_SMT
6249static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6250{
2c402dc3 6251 return topology_thread_cpumask(cpu);
3bd65a80 6252}
2c402dc3 6253#endif
7f4588f3 6254
d069b916
PZ
6255/*
6256 * Topology list, bottom-up.
6257 */
2c402dc3 6258static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6259#ifdef CONFIG_SCHED_SMT
6260 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6261#endif
1e9f28fa 6262#ifdef CONFIG_SCHED_MC
2c402dc3 6263 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6264#endif
d069b916
PZ
6265#ifdef CONFIG_SCHED_BOOK
6266 { sd_init_BOOK, cpu_book_mask, },
6267#endif
6268 { sd_init_CPU, cpu_cpu_mask, },
6269#ifdef CONFIG_NUMA
e3589f6c 6270 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6271 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6272#endif
eb7a74e6
PZ
6273 { NULL, },
6274};
6275
6276static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6277
54ab4ff4
PZ
6278static int __sdt_alloc(const struct cpumask *cpu_map)
6279{
6280 struct sched_domain_topology_level *tl;
6281 int j;
6282
6283 for (tl = sched_domain_topology; tl->init; tl++) {
6284 struct sd_data *sdd = &tl->data;
6285
6286 sdd->sd = alloc_percpu(struct sched_domain *);
6287 if (!sdd->sd)
6288 return -ENOMEM;
6289
6290 sdd->sg = alloc_percpu(struct sched_group *);
6291 if (!sdd->sg)
6292 return -ENOMEM;
6293
9c3f75cb
PZ
6294 sdd->sgp = alloc_percpu(struct sched_group_power *);
6295 if (!sdd->sgp)
6296 return -ENOMEM;
6297
54ab4ff4
PZ
6298 for_each_cpu(j, cpu_map) {
6299 struct sched_domain *sd;
6300 struct sched_group *sg;
9c3f75cb 6301 struct sched_group_power *sgp;
54ab4ff4
PZ
6302
6303 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6304 GFP_KERNEL, cpu_to_node(j));
6305 if (!sd)
6306 return -ENOMEM;
6307
6308 *per_cpu_ptr(sdd->sd, j) = sd;
6309
6310 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6311 GFP_KERNEL, cpu_to_node(j));
6312 if (!sg)
6313 return -ENOMEM;
6314
6315 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6316
6317 sgp = kzalloc_node(sizeof(struct sched_group_power),
6318 GFP_KERNEL, cpu_to_node(j));
6319 if (!sgp)
6320 return -ENOMEM;
6321
6322 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6323 }
6324 }
6325
6326 return 0;
6327}
6328
6329static void __sdt_free(const struct cpumask *cpu_map)
6330{
6331 struct sched_domain_topology_level *tl;
6332 int j;
6333
6334 for (tl = sched_domain_topology; tl->init; tl++) {
6335 struct sd_data *sdd = &tl->data;
6336
6337 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6338 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6339 if (sd && (sd->flags & SD_OVERLAP))
6340 free_sched_groups(sd->groups, 0);
feff8fa0 6341 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6342 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6343 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6344 }
6345 free_percpu(sdd->sd);
6346 free_percpu(sdd->sg);
9c3f75cb 6347 free_percpu(sdd->sgp);
54ab4ff4
PZ
6348 }
6349}
6350
2c402dc3
PZ
6351struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6352 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6353 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6354 int cpu)
6355{
54ab4ff4 6356 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6357 if (!sd)
d069b916 6358 return child;
2c402dc3
PZ
6359
6360 set_domain_attribute(sd, attr);
6361 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6362 if (child) {
6363 sd->level = child->level + 1;
6364 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6365 child->parent = sd;
60495e77 6366 }
d069b916 6367 sd->child = child;
2c402dc3
PZ
6368
6369 return sd;
6370}
6371
2109b99e
AH
6372/*
6373 * Build sched domains for a given set of cpus and attach the sched domains
6374 * to the individual cpus
6375 */
dce840a0
PZ
6376static int build_sched_domains(const struct cpumask *cpu_map,
6377 struct sched_domain_attr *attr)
2109b99e
AH
6378{
6379 enum s_alloc alloc_state = sa_none;
dce840a0 6380 struct sched_domain *sd;
2109b99e 6381 struct s_data d;
822ff793 6382 int i, ret = -ENOMEM;
9c1cfda2 6383
2109b99e
AH
6384 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6385 if (alloc_state != sa_rootdomain)
6386 goto error;
9c1cfda2 6387
dce840a0 6388 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6389 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6390 struct sched_domain_topology_level *tl;
6391
3bd65a80 6392 sd = NULL;
e3589f6c 6393 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6394 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6395 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6396 sd->flags |= SD_OVERLAP;
d110235d
PZ
6397 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6398 break;
e3589f6c 6399 }
d274cb30 6400
d069b916
PZ
6401 while (sd->child)
6402 sd = sd->child;
6403
21d42ccf 6404 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6405 }
6406
6407 /* Build the groups for the domains */
6408 for_each_cpu(i, cpu_map) {
6409 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6410 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6411 if (sd->flags & SD_OVERLAP) {
6412 if (build_overlap_sched_groups(sd, i))
6413 goto error;
6414 } else {
6415 if (build_sched_groups(sd, i))
6416 goto error;
6417 }
1cf51902 6418 }
a06dadbe 6419 }
9c1cfda2 6420
1da177e4 6421 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6422 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6423 if (!cpumask_test_cpu(i, cpu_map))
6424 continue;
9c1cfda2 6425
dce840a0
PZ
6426 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6427 claim_allocations(i, sd);
cd4ea6ae 6428 init_sched_groups_power(i, sd);
dce840a0 6429 }
f712c0c7 6430 }
9c1cfda2 6431
1da177e4 6432 /* Attach the domains */
dce840a0 6433 rcu_read_lock();
abcd083a 6434 for_each_cpu(i, cpu_map) {
21d42ccf 6435 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6436 cpu_attach_domain(sd, d.rd, i);
1da177e4 6437 }
dce840a0 6438 rcu_read_unlock();
51888ca2 6439
822ff793 6440 ret = 0;
51888ca2 6441error:
2109b99e 6442 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6443 return ret;
1da177e4 6444}
029190c5 6445
acc3f5d7 6446static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6447static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6448static struct sched_domain_attr *dattr_cur;
6449 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6450
6451/*
6452 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6453 * cpumask) fails, then fallback to a single sched domain,
6454 * as determined by the single cpumask fallback_doms.
029190c5 6455 */
4212823f 6456static cpumask_var_t fallback_doms;
029190c5 6457
ee79d1bd
HC
6458/*
6459 * arch_update_cpu_topology lets virtualized architectures update the
6460 * cpu core maps. It is supposed to return 1 if the topology changed
6461 * or 0 if it stayed the same.
6462 */
6463int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6464{
ee79d1bd 6465 return 0;
22e52b07
HC
6466}
6467
acc3f5d7
RR
6468cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6469{
6470 int i;
6471 cpumask_var_t *doms;
6472
6473 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6474 if (!doms)
6475 return NULL;
6476 for (i = 0; i < ndoms; i++) {
6477 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6478 free_sched_domains(doms, i);
6479 return NULL;
6480 }
6481 }
6482 return doms;
6483}
6484
6485void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6486{
6487 unsigned int i;
6488 for (i = 0; i < ndoms; i++)
6489 free_cpumask_var(doms[i]);
6490 kfree(doms);
6491}
6492
1a20ff27 6493/*
41a2d6cf 6494 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6495 * For now this just excludes isolated cpus, but could be used to
6496 * exclude other special cases in the future.
1a20ff27 6497 */
c4a8849a 6498static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6499{
7378547f
MM
6500 int err;
6501
22e52b07 6502 arch_update_cpu_topology();
029190c5 6503 ndoms_cur = 1;
acc3f5d7 6504 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6505 if (!doms_cur)
acc3f5d7
RR
6506 doms_cur = &fallback_doms;
6507 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6508 dattr_cur = NULL;
dce840a0 6509 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6510 register_sched_domain_sysctl();
7378547f
MM
6511
6512 return err;
1a20ff27
DG
6513}
6514
1a20ff27
DG
6515/*
6516 * Detach sched domains from a group of cpus specified in cpu_map
6517 * These cpus will now be attached to the NULL domain
6518 */
96f874e2 6519static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6520{
6521 int i;
6522
dce840a0 6523 rcu_read_lock();
abcd083a 6524 for_each_cpu(i, cpu_map)
57d885fe 6525 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6526 rcu_read_unlock();
1a20ff27
DG
6527}
6528
1d3504fc
HS
6529/* handle null as "default" */
6530static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6531 struct sched_domain_attr *new, int idx_new)
6532{
6533 struct sched_domain_attr tmp;
6534
6535 /* fast path */
6536 if (!new && !cur)
6537 return 1;
6538
6539 tmp = SD_ATTR_INIT;
6540 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6541 new ? (new + idx_new) : &tmp,
6542 sizeof(struct sched_domain_attr));
6543}
6544
029190c5
PJ
6545/*
6546 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6547 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6548 * doms_new[] to the current sched domain partitioning, doms_cur[].
6549 * It destroys each deleted domain and builds each new domain.
6550 *
acc3f5d7 6551 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6552 * The masks don't intersect (don't overlap.) We should setup one
6553 * sched domain for each mask. CPUs not in any of the cpumasks will
6554 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6555 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6556 * it as it is.
6557 *
acc3f5d7
RR
6558 * The passed in 'doms_new' should be allocated using
6559 * alloc_sched_domains. This routine takes ownership of it and will
6560 * free_sched_domains it when done with it. If the caller failed the
6561 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6562 * and partition_sched_domains() will fallback to the single partition
6563 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6564 *
96f874e2 6565 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6566 * ndoms_new == 0 is a special case for destroying existing domains,
6567 * and it will not create the default domain.
dfb512ec 6568 *
029190c5
PJ
6569 * Call with hotplug lock held
6570 */
acc3f5d7 6571void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6572 struct sched_domain_attr *dattr_new)
029190c5 6573{
dfb512ec 6574 int i, j, n;
d65bd5ec 6575 int new_topology;
029190c5 6576
712555ee 6577 mutex_lock(&sched_domains_mutex);
a1835615 6578
7378547f
MM
6579 /* always unregister in case we don't destroy any domains */
6580 unregister_sched_domain_sysctl();
6581
d65bd5ec
HC
6582 /* Let architecture update cpu core mappings. */
6583 new_topology = arch_update_cpu_topology();
6584
dfb512ec 6585 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6586
6587 /* Destroy deleted domains */
6588 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6589 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6590 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6591 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6592 goto match1;
6593 }
6594 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6595 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6596match1:
6597 ;
6598 }
6599
e761b772
MK
6600 if (doms_new == NULL) {
6601 ndoms_cur = 0;
acc3f5d7 6602 doms_new = &fallback_doms;
6ad4c188 6603 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6604 WARN_ON_ONCE(dattr_new);
e761b772
MK
6605 }
6606
029190c5
PJ
6607 /* Build new domains */
6608 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6609 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6610 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6611 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6612 goto match2;
6613 }
6614 /* no match - add a new doms_new */
dce840a0 6615 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6616match2:
6617 ;
6618 }
6619
6620 /* Remember the new sched domains */
acc3f5d7
RR
6621 if (doms_cur != &fallback_doms)
6622 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6623 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6624 doms_cur = doms_new;
1d3504fc 6625 dattr_cur = dattr_new;
029190c5 6626 ndoms_cur = ndoms_new;
7378547f
MM
6627
6628 register_sched_domain_sysctl();
a1835615 6629
712555ee 6630 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6631}
6632
5c45bf27 6633#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6634static void reinit_sched_domains(void)
5c45bf27 6635{
95402b38 6636 get_online_cpus();
dfb512ec
MK
6637
6638 /* Destroy domains first to force the rebuild */
6639 partition_sched_domains(0, NULL, NULL);
6640
e761b772 6641 rebuild_sched_domains();
95402b38 6642 put_online_cpus();
5c45bf27
SS
6643}
6644
6645static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6646{
afb8a9b7 6647 unsigned int level = 0;
5c45bf27 6648
afb8a9b7
GS
6649 if (sscanf(buf, "%u", &level) != 1)
6650 return -EINVAL;
6651
6652 /*
6653 * level is always be positive so don't check for
6654 * level < POWERSAVINGS_BALANCE_NONE which is 0
6655 * What happens on 0 or 1 byte write,
6656 * need to check for count as well?
6657 */
6658
6659 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6660 return -EINVAL;
6661
6662 if (smt)
afb8a9b7 6663 sched_smt_power_savings = level;
5c45bf27 6664 else
afb8a9b7 6665 sched_mc_power_savings = level;
5c45bf27 6666
c4a8849a 6667 reinit_sched_domains();
5c45bf27 6668
c70f22d2 6669 return count;
5c45bf27
SS
6670}
6671
5c45bf27 6672#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6673static ssize_t sched_mc_power_savings_show(struct device *dev,
6674 struct device_attribute *attr,
6675 char *buf)
5c45bf27 6676{
8a25a2fd 6677 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6678}
8a25a2fd
KS
6679static ssize_t sched_mc_power_savings_store(struct device *dev,
6680 struct device_attribute *attr,
48f24c4d 6681 const char *buf, size_t count)
5c45bf27
SS
6682{
6683 return sched_power_savings_store(buf, count, 0);
6684}
8a25a2fd
KS
6685static DEVICE_ATTR(sched_mc_power_savings, 0644,
6686 sched_mc_power_savings_show,
6687 sched_mc_power_savings_store);
5c45bf27
SS
6688#endif
6689
6690#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6691static ssize_t sched_smt_power_savings_show(struct device *dev,
6692 struct device_attribute *attr,
6693 char *buf)
5c45bf27 6694{
8a25a2fd 6695 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6696}
8a25a2fd
KS
6697static ssize_t sched_smt_power_savings_store(struct device *dev,
6698 struct device_attribute *attr,
48f24c4d 6699 const char *buf, size_t count)
5c45bf27
SS
6700{
6701 return sched_power_savings_store(buf, count, 1);
6702}
8a25a2fd 6703static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6704 sched_smt_power_savings_show,
6707de00
AB
6705 sched_smt_power_savings_store);
6706#endif
6707
8a25a2fd 6708int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6709{
6710 int err = 0;
6711
6712#ifdef CONFIG_SCHED_SMT
6713 if (smt_capable())
8a25a2fd 6714 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6715#endif
6716#ifdef CONFIG_SCHED_MC
6717 if (!err && mc_capable())
8a25a2fd 6718 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6719#endif
6720 return err;
6721}
6d6bc0ad 6722#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6723
1da177e4 6724/*
3a101d05
TH
6725 * Update cpusets according to cpu_active mask. If cpusets are
6726 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6727 * around partition_sched_domains().
1da177e4 6728 */
0b2e918a
TH
6729static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6730 void *hcpu)
e761b772 6731{
3a101d05 6732 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6733 case CPU_ONLINE:
6ad4c188 6734 case CPU_DOWN_FAILED:
3a101d05 6735 cpuset_update_active_cpus();
e761b772 6736 return NOTIFY_OK;
3a101d05
TH
6737 default:
6738 return NOTIFY_DONE;
6739 }
6740}
e761b772 6741
0b2e918a
TH
6742static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6743 void *hcpu)
3a101d05
TH
6744{
6745 switch (action & ~CPU_TASKS_FROZEN) {
6746 case CPU_DOWN_PREPARE:
6747 cpuset_update_active_cpus();
6748 return NOTIFY_OK;
e761b772
MK
6749 default:
6750 return NOTIFY_DONE;
6751 }
6752}
e761b772 6753
1da177e4
LT
6754void __init sched_init_smp(void)
6755{
dcc30a35
RR
6756 cpumask_var_t non_isolated_cpus;
6757
6758 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6759 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6760
95402b38 6761 get_online_cpus();
712555ee 6762 mutex_lock(&sched_domains_mutex);
c4a8849a 6763 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6764 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6765 if (cpumask_empty(non_isolated_cpus))
6766 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6767 mutex_unlock(&sched_domains_mutex);
95402b38 6768 put_online_cpus();
e761b772 6769
3a101d05
TH
6770 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6771 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6772
6773 /* RT runtime code needs to handle some hotplug events */
6774 hotcpu_notifier(update_runtime, 0);
6775
b328ca18 6776 init_hrtick();
5c1e1767
NP
6777
6778 /* Move init over to a non-isolated CPU */
dcc30a35 6779 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6780 BUG();
19978ca6 6781 sched_init_granularity();
dcc30a35 6782 free_cpumask_var(non_isolated_cpus);
4212823f 6783
0e3900e6 6784 init_sched_rt_class();
1da177e4
LT
6785}
6786#else
6787void __init sched_init_smp(void)
6788{
19978ca6 6789 sched_init_granularity();
1da177e4
LT
6790}
6791#endif /* CONFIG_SMP */
6792
cd1bb94b
AB
6793const_debug unsigned int sysctl_timer_migration = 1;
6794
1da177e4
LT
6795int in_sched_functions(unsigned long addr)
6796{
1da177e4
LT
6797 return in_lock_functions(addr) ||
6798 (addr >= (unsigned long)__sched_text_start
6799 && addr < (unsigned long)__sched_text_end);
6800}
6801
029632fb
PZ
6802#ifdef CONFIG_CGROUP_SCHED
6803struct task_group root_task_group;
052f1dc7 6804#endif
6f505b16 6805
029632fb 6806DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6807
1da177e4
LT
6808void __init sched_init(void)
6809{
dd41f596 6810 int i, j;
434d53b0
MT
6811 unsigned long alloc_size = 0, ptr;
6812
6813#ifdef CONFIG_FAIR_GROUP_SCHED
6814 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6815#endif
6816#ifdef CONFIG_RT_GROUP_SCHED
6817 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6818#endif
df7c8e84 6819#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6820 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6821#endif
434d53b0 6822 if (alloc_size) {
36b7b6d4 6823 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6824
6825#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6826 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6827 ptr += nr_cpu_ids * sizeof(void **);
6828
07e06b01 6829 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6830 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6831
6d6bc0ad 6832#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6833#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6834 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6835 ptr += nr_cpu_ids * sizeof(void **);
6836
07e06b01 6837 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6838 ptr += nr_cpu_ids * sizeof(void **);
6839
6d6bc0ad 6840#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6841#ifdef CONFIG_CPUMASK_OFFSTACK
6842 for_each_possible_cpu(i) {
6843 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6844 ptr += cpumask_size();
6845 }
6846#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6847 }
dd41f596 6848
57d885fe
GH
6849#ifdef CONFIG_SMP
6850 init_defrootdomain();
6851#endif
6852
d0b27fa7
PZ
6853 init_rt_bandwidth(&def_rt_bandwidth,
6854 global_rt_period(), global_rt_runtime());
6855
6856#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6857 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6858 global_rt_period(), global_rt_runtime());
6d6bc0ad 6859#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6860
7c941438 6861#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6862 list_add(&root_task_group.list, &task_groups);
6863 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6864 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6865 autogroup_init(&init_task);
54c707e9 6866
7c941438 6867#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6868
54c707e9
GC
6869#ifdef CONFIG_CGROUP_CPUACCT
6870 root_cpuacct.cpustat = &kernel_cpustat;
6871 root_cpuacct.cpuusage = alloc_percpu(u64);
6872 /* Too early, not expected to fail */
6873 BUG_ON(!root_cpuacct.cpuusage);
6874#endif
0a945022 6875 for_each_possible_cpu(i) {
70b97a7f 6876 struct rq *rq;
1da177e4
LT
6877
6878 rq = cpu_rq(i);
05fa785c 6879 raw_spin_lock_init(&rq->lock);
7897986b 6880 rq->nr_running = 0;
dce48a84
TG
6881 rq->calc_load_active = 0;
6882 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6883 init_cfs_rq(&rq->cfs);
6f505b16 6884 init_rt_rq(&rq->rt, rq);
dd41f596 6885#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6886 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6887 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6888 /*
07e06b01 6889 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6890 *
6891 * In case of task-groups formed thr' the cgroup filesystem, it
6892 * gets 100% of the cpu resources in the system. This overall
6893 * system cpu resource is divided among the tasks of
07e06b01 6894 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6895 * based on each entity's (task or task-group's) weight
6896 * (se->load.weight).
6897 *
07e06b01 6898 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6899 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6900 * then A0's share of the cpu resource is:
6901 *
0d905bca 6902 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6903 *
07e06b01
YZ
6904 * We achieve this by letting root_task_group's tasks sit
6905 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6906 */
ab84d31e 6907 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6908 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6909#endif /* CONFIG_FAIR_GROUP_SCHED */
6910
6911 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6912#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6913 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6914 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6915#endif
1da177e4 6916
dd41f596
IM
6917 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6918 rq->cpu_load[j] = 0;
fdf3e95d
VP
6919
6920 rq->last_load_update_tick = jiffies;
6921
1da177e4 6922#ifdef CONFIG_SMP
41c7ce9a 6923 rq->sd = NULL;
57d885fe 6924 rq->rd = NULL;
1399fa78 6925 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6926 rq->post_schedule = 0;
1da177e4 6927 rq->active_balance = 0;
dd41f596 6928 rq->next_balance = jiffies;
1da177e4 6929 rq->push_cpu = 0;
0a2966b4 6930 rq->cpu = i;
1f11eb6a 6931 rq->online = 0;
eae0c9df
MG
6932 rq->idle_stamp = 0;
6933 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 6934 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6935#ifdef CONFIG_NO_HZ
1c792db7 6936 rq->nohz_flags = 0;
83cd4fe2 6937#endif
1da177e4 6938#endif
8f4d37ec 6939 init_rq_hrtick(rq);
1da177e4 6940 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6941 }
6942
2dd73a4f 6943 set_load_weight(&init_task);
b50f60ce 6944
e107be36
AK
6945#ifdef CONFIG_PREEMPT_NOTIFIERS
6946 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6947#endif
6948
b50f60ce 6949#ifdef CONFIG_RT_MUTEXES
732375c6 6950 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6951#endif
6952
1da177e4
LT
6953 /*
6954 * The boot idle thread does lazy MMU switching as well:
6955 */
6956 atomic_inc(&init_mm.mm_count);
6957 enter_lazy_tlb(&init_mm, current);
6958
6959 /*
6960 * Make us the idle thread. Technically, schedule() should not be
6961 * called from this thread, however somewhere below it might be,
6962 * but because we are the idle thread, we just pick up running again
6963 * when this runqueue becomes "idle".
6964 */
6965 init_idle(current, smp_processor_id());
dce48a84
TG
6966
6967 calc_load_update = jiffies + LOAD_FREQ;
6968
dd41f596
IM
6969 /*
6970 * During early bootup we pretend to be a normal task:
6971 */
6972 current->sched_class = &fair_sched_class;
6892b75e 6973
bf4d83f6 6974#ifdef CONFIG_SMP
4cb98839 6975 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6976 /* May be allocated at isolcpus cmdline parse time */
6977 if (cpu_isolated_map == NULL)
6978 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
6979#endif
6980 init_sched_fair_class();
6a7b3dc3 6981
6892b75e 6982 scheduler_running = 1;
1da177e4
LT
6983}
6984
d902db1e 6985#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6986static inline int preempt_count_equals(int preempt_offset)
6987{
234da7bc 6988 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6989
4ba8216c 6990 return (nested == preempt_offset);
e4aafea2
FW
6991}
6992
d894837f 6993void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6994{
1da177e4
LT
6995 static unsigned long prev_jiffy; /* ratelimiting */
6996
b3fbab05 6997 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6998 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6999 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7000 return;
7001 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7002 return;
7003 prev_jiffy = jiffies;
7004
3df0fc5b
PZ
7005 printk(KERN_ERR
7006 "BUG: sleeping function called from invalid context at %s:%d\n",
7007 file, line);
7008 printk(KERN_ERR
7009 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7010 in_atomic(), irqs_disabled(),
7011 current->pid, current->comm);
aef745fc
IM
7012
7013 debug_show_held_locks(current);
7014 if (irqs_disabled())
7015 print_irqtrace_events(current);
7016 dump_stack();
1da177e4
LT
7017}
7018EXPORT_SYMBOL(__might_sleep);
7019#endif
7020
7021#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7022static void normalize_task(struct rq *rq, struct task_struct *p)
7023{
da7a735e
PZ
7024 const struct sched_class *prev_class = p->sched_class;
7025 int old_prio = p->prio;
3a5e4dc1 7026 int on_rq;
3e51f33f 7027
fd2f4419 7028 on_rq = p->on_rq;
3a5e4dc1 7029 if (on_rq)
4ca9b72b 7030 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7031 __setscheduler(rq, p, SCHED_NORMAL, 0);
7032 if (on_rq) {
4ca9b72b 7033 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7034 resched_task(rq->curr);
7035 }
da7a735e
PZ
7036
7037 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7038}
7039
1da177e4
LT
7040void normalize_rt_tasks(void)
7041{
a0f98a1c 7042 struct task_struct *g, *p;
1da177e4 7043 unsigned long flags;
70b97a7f 7044 struct rq *rq;
1da177e4 7045
4cf5d77a 7046 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7047 do_each_thread(g, p) {
178be793
IM
7048 /*
7049 * Only normalize user tasks:
7050 */
7051 if (!p->mm)
7052 continue;
7053
6cfb0d5d 7054 p->se.exec_start = 0;
6cfb0d5d 7055#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7056 p->se.statistics.wait_start = 0;
7057 p->se.statistics.sleep_start = 0;
7058 p->se.statistics.block_start = 0;
6cfb0d5d 7059#endif
dd41f596
IM
7060
7061 if (!rt_task(p)) {
7062 /*
7063 * Renice negative nice level userspace
7064 * tasks back to 0:
7065 */
7066 if (TASK_NICE(p) < 0 && p->mm)
7067 set_user_nice(p, 0);
1da177e4 7068 continue;
dd41f596 7069 }
1da177e4 7070
1d615482 7071 raw_spin_lock(&p->pi_lock);
b29739f9 7072 rq = __task_rq_lock(p);
1da177e4 7073
178be793 7074 normalize_task(rq, p);
3a5e4dc1 7075
b29739f9 7076 __task_rq_unlock(rq);
1d615482 7077 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7078 } while_each_thread(g, p);
7079
4cf5d77a 7080 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7081}
7082
7083#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7084
67fc4e0c 7085#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7086/*
67fc4e0c 7087 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7088 *
7089 * They can only be called when the whole system has been
7090 * stopped - every CPU needs to be quiescent, and no scheduling
7091 * activity can take place. Using them for anything else would
7092 * be a serious bug, and as a result, they aren't even visible
7093 * under any other configuration.
7094 */
7095
7096/**
7097 * curr_task - return the current task for a given cpu.
7098 * @cpu: the processor in question.
7099 *
7100 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7101 */
36c8b586 7102struct task_struct *curr_task(int cpu)
1df5c10a
LT
7103{
7104 return cpu_curr(cpu);
7105}
7106
67fc4e0c
JW
7107#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7108
7109#ifdef CONFIG_IA64
1df5c10a
LT
7110/**
7111 * set_curr_task - set the current task for a given cpu.
7112 * @cpu: the processor in question.
7113 * @p: the task pointer to set.
7114 *
7115 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7116 * are serviced on a separate stack. It allows the architecture to switch the
7117 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7118 * must be called with all CPU's synchronized, and interrupts disabled, the
7119 * and caller must save the original value of the current task (see
7120 * curr_task() above) and restore that value before reenabling interrupts and
7121 * re-starting the system.
7122 *
7123 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7124 */
36c8b586 7125void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7126{
7127 cpu_curr(cpu) = p;
7128}
7129
7130#endif
29f59db3 7131
7c941438 7132#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7133/* task_group_lock serializes the addition/removal of task groups */
7134static DEFINE_SPINLOCK(task_group_lock);
7135
bccbe08a
PZ
7136static void free_sched_group(struct task_group *tg)
7137{
7138 free_fair_sched_group(tg);
7139 free_rt_sched_group(tg);
e9aa1dd1 7140 autogroup_free(tg);
bccbe08a
PZ
7141 kfree(tg);
7142}
7143
7144/* allocate runqueue etc for a new task group */
ec7dc8ac 7145struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7146{
7147 struct task_group *tg;
7148 unsigned long flags;
bccbe08a
PZ
7149
7150 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7151 if (!tg)
7152 return ERR_PTR(-ENOMEM);
7153
ec7dc8ac 7154 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7155 goto err;
7156
ec7dc8ac 7157 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7158 goto err;
7159
8ed36996 7160 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7161 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7162
7163 WARN_ON(!parent); /* root should already exist */
7164
7165 tg->parent = parent;
f473aa5e 7166 INIT_LIST_HEAD(&tg->children);
09f2724a 7167 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7168 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7169
9b5b7751 7170 return tg;
29f59db3
SV
7171
7172err:
6f505b16 7173 free_sched_group(tg);
29f59db3
SV
7174 return ERR_PTR(-ENOMEM);
7175}
7176
9b5b7751 7177/* rcu callback to free various structures associated with a task group */
6f505b16 7178static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7179{
29f59db3 7180 /* now it should be safe to free those cfs_rqs */
6f505b16 7181 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7182}
7183
9b5b7751 7184/* Destroy runqueue etc associated with a task group */
4cf86d77 7185void sched_destroy_group(struct task_group *tg)
29f59db3 7186{
8ed36996 7187 unsigned long flags;
9b5b7751 7188 int i;
29f59db3 7189
3d4b47b4
PZ
7190 /* end participation in shares distribution */
7191 for_each_possible_cpu(i)
bccbe08a 7192 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7193
7194 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7195 list_del_rcu(&tg->list);
f473aa5e 7196 list_del_rcu(&tg->siblings);
8ed36996 7197 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7198
9b5b7751 7199 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7200 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7201}
7202
9b5b7751 7203/* change task's runqueue when it moves between groups.
3a252015
IM
7204 * The caller of this function should have put the task in its new group
7205 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7206 * reflect its new group.
9b5b7751
SV
7207 */
7208void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7209{
7210 int on_rq, running;
7211 unsigned long flags;
7212 struct rq *rq;
7213
7214 rq = task_rq_lock(tsk, &flags);
7215
051a1d1a 7216 running = task_current(rq, tsk);
fd2f4419 7217 on_rq = tsk->on_rq;
29f59db3 7218
0e1f3483 7219 if (on_rq)
29f59db3 7220 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7221 if (unlikely(running))
7222 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7223
810b3817 7224#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7225 if (tsk->sched_class->task_move_group)
7226 tsk->sched_class->task_move_group(tsk, on_rq);
7227 else
810b3817 7228#endif
b2b5ce02 7229 set_task_rq(tsk, task_cpu(tsk));
810b3817 7230
0e1f3483
HS
7231 if (unlikely(running))
7232 tsk->sched_class->set_curr_task(rq);
7233 if (on_rq)
371fd7e7 7234 enqueue_task(rq, tsk, 0);
29f59db3 7235
0122ec5b 7236 task_rq_unlock(rq, tsk, &flags);
29f59db3 7237}
7c941438 7238#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7239
a790de99 7240#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7241static unsigned long to_ratio(u64 period, u64 runtime)
7242{
7243 if (runtime == RUNTIME_INF)
9a7e0b18 7244 return 1ULL << 20;
9f0c1e56 7245
9a7e0b18 7246 return div64_u64(runtime << 20, period);
9f0c1e56 7247}
a790de99
PT
7248#endif
7249
7250#ifdef CONFIG_RT_GROUP_SCHED
7251/*
7252 * Ensure that the real time constraints are schedulable.
7253 */
7254static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7255
9a7e0b18
PZ
7256/* Must be called with tasklist_lock held */
7257static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7258{
9a7e0b18 7259 struct task_struct *g, *p;
b40b2e8e 7260
9a7e0b18 7261 do_each_thread(g, p) {
029632fb 7262 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7263 return 1;
7264 } while_each_thread(g, p);
b40b2e8e 7265
9a7e0b18
PZ
7266 return 0;
7267}
b40b2e8e 7268
9a7e0b18
PZ
7269struct rt_schedulable_data {
7270 struct task_group *tg;
7271 u64 rt_period;
7272 u64 rt_runtime;
7273};
b40b2e8e 7274
a790de99 7275static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7276{
7277 struct rt_schedulable_data *d = data;
7278 struct task_group *child;
7279 unsigned long total, sum = 0;
7280 u64 period, runtime;
b40b2e8e 7281
9a7e0b18
PZ
7282 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7283 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7284
9a7e0b18
PZ
7285 if (tg == d->tg) {
7286 period = d->rt_period;
7287 runtime = d->rt_runtime;
b40b2e8e 7288 }
b40b2e8e 7289
4653f803
PZ
7290 /*
7291 * Cannot have more runtime than the period.
7292 */
7293 if (runtime > period && runtime != RUNTIME_INF)
7294 return -EINVAL;
6f505b16 7295
4653f803
PZ
7296 /*
7297 * Ensure we don't starve existing RT tasks.
7298 */
9a7e0b18
PZ
7299 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7300 return -EBUSY;
6f505b16 7301
9a7e0b18 7302 total = to_ratio(period, runtime);
6f505b16 7303
4653f803
PZ
7304 /*
7305 * Nobody can have more than the global setting allows.
7306 */
7307 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7308 return -EINVAL;
6f505b16 7309
4653f803
PZ
7310 /*
7311 * The sum of our children's runtime should not exceed our own.
7312 */
9a7e0b18
PZ
7313 list_for_each_entry_rcu(child, &tg->children, siblings) {
7314 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7315 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7316
9a7e0b18
PZ
7317 if (child == d->tg) {
7318 period = d->rt_period;
7319 runtime = d->rt_runtime;
7320 }
6f505b16 7321
9a7e0b18 7322 sum += to_ratio(period, runtime);
9f0c1e56 7323 }
6f505b16 7324
9a7e0b18
PZ
7325 if (sum > total)
7326 return -EINVAL;
7327
7328 return 0;
6f505b16
PZ
7329}
7330
9a7e0b18 7331static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7332{
8277434e
PT
7333 int ret;
7334
9a7e0b18
PZ
7335 struct rt_schedulable_data data = {
7336 .tg = tg,
7337 .rt_period = period,
7338 .rt_runtime = runtime,
7339 };
7340
8277434e
PT
7341 rcu_read_lock();
7342 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7343 rcu_read_unlock();
7344
7345 return ret;
521f1a24
DG
7346}
7347
ab84d31e 7348static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7349 u64 rt_period, u64 rt_runtime)
6f505b16 7350{
ac086bc2 7351 int i, err = 0;
9f0c1e56 7352
9f0c1e56 7353 mutex_lock(&rt_constraints_mutex);
521f1a24 7354 read_lock(&tasklist_lock);
9a7e0b18
PZ
7355 err = __rt_schedulable(tg, rt_period, rt_runtime);
7356 if (err)
9f0c1e56 7357 goto unlock;
ac086bc2 7358
0986b11b 7359 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7360 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7361 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7362
7363 for_each_possible_cpu(i) {
7364 struct rt_rq *rt_rq = tg->rt_rq[i];
7365
0986b11b 7366 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7367 rt_rq->rt_runtime = rt_runtime;
0986b11b 7368 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7369 }
0986b11b 7370 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7371unlock:
521f1a24 7372 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7373 mutex_unlock(&rt_constraints_mutex);
7374
7375 return err;
6f505b16
PZ
7376}
7377
d0b27fa7
PZ
7378int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7379{
7380 u64 rt_runtime, rt_period;
7381
7382 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7383 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7384 if (rt_runtime_us < 0)
7385 rt_runtime = RUNTIME_INF;
7386
ab84d31e 7387 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7388}
7389
9f0c1e56
PZ
7390long sched_group_rt_runtime(struct task_group *tg)
7391{
7392 u64 rt_runtime_us;
7393
d0b27fa7 7394 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7395 return -1;
7396
d0b27fa7 7397 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7398 do_div(rt_runtime_us, NSEC_PER_USEC);
7399 return rt_runtime_us;
7400}
d0b27fa7
PZ
7401
7402int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7403{
7404 u64 rt_runtime, rt_period;
7405
7406 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7407 rt_runtime = tg->rt_bandwidth.rt_runtime;
7408
619b0488
R
7409 if (rt_period == 0)
7410 return -EINVAL;
7411
ab84d31e 7412 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7413}
7414
7415long sched_group_rt_period(struct task_group *tg)
7416{
7417 u64 rt_period_us;
7418
7419 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7420 do_div(rt_period_us, NSEC_PER_USEC);
7421 return rt_period_us;
7422}
7423
7424static int sched_rt_global_constraints(void)
7425{
4653f803 7426 u64 runtime, period;
d0b27fa7
PZ
7427 int ret = 0;
7428
ec5d4989
HS
7429 if (sysctl_sched_rt_period <= 0)
7430 return -EINVAL;
7431
4653f803
PZ
7432 runtime = global_rt_runtime();
7433 period = global_rt_period();
7434
7435 /*
7436 * Sanity check on the sysctl variables.
7437 */
7438 if (runtime > period && runtime != RUNTIME_INF)
7439 return -EINVAL;
10b612f4 7440
d0b27fa7 7441 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7442 read_lock(&tasklist_lock);
4653f803 7443 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7444 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7445 mutex_unlock(&rt_constraints_mutex);
7446
7447 return ret;
7448}
54e99124
DG
7449
7450int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7451{
7452 /* Don't accept realtime tasks when there is no way for them to run */
7453 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7454 return 0;
7455
7456 return 1;
7457}
7458
6d6bc0ad 7459#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7460static int sched_rt_global_constraints(void)
7461{
ac086bc2
PZ
7462 unsigned long flags;
7463 int i;
7464
ec5d4989
HS
7465 if (sysctl_sched_rt_period <= 0)
7466 return -EINVAL;
7467
60aa605d
PZ
7468 /*
7469 * There's always some RT tasks in the root group
7470 * -- migration, kstopmachine etc..
7471 */
7472 if (sysctl_sched_rt_runtime == 0)
7473 return -EBUSY;
7474
0986b11b 7475 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7476 for_each_possible_cpu(i) {
7477 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7478
0986b11b 7479 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7480 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7481 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7482 }
0986b11b 7483 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7484
d0b27fa7
PZ
7485 return 0;
7486}
6d6bc0ad 7487#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7488
7489int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7490 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7491 loff_t *ppos)
7492{
7493 int ret;
7494 int old_period, old_runtime;
7495 static DEFINE_MUTEX(mutex);
7496
7497 mutex_lock(&mutex);
7498 old_period = sysctl_sched_rt_period;
7499 old_runtime = sysctl_sched_rt_runtime;
7500
8d65af78 7501 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7502
7503 if (!ret && write) {
7504 ret = sched_rt_global_constraints();
7505 if (ret) {
7506 sysctl_sched_rt_period = old_period;
7507 sysctl_sched_rt_runtime = old_runtime;
7508 } else {
7509 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7510 def_rt_bandwidth.rt_period =
7511 ns_to_ktime(global_rt_period());
7512 }
7513 }
7514 mutex_unlock(&mutex);
7515
7516 return ret;
7517}
68318b8e 7518
052f1dc7 7519#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7520
7521/* return corresponding task_group object of a cgroup */
2b01dfe3 7522static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7523{
2b01dfe3
PM
7524 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7525 struct task_group, css);
68318b8e
SV
7526}
7527
7528static struct cgroup_subsys_state *
2b01dfe3 7529cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7530{
ec7dc8ac 7531 struct task_group *tg, *parent;
68318b8e 7532
2b01dfe3 7533 if (!cgrp->parent) {
68318b8e 7534 /* This is early initialization for the top cgroup */
07e06b01 7535 return &root_task_group.css;
68318b8e
SV
7536 }
7537
ec7dc8ac
DG
7538 parent = cgroup_tg(cgrp->parent);
7539 tg = sched_create_group(parent);
68318b8e
SV
7540 if (IS_ERR(tg))
7541 return ERR_PTR(-ENOMEM);
7542
68318b8e
SV
7543 return &tg->css;
7544}
7545
41a2d6cf
IM
7546static void
7547cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7548{
2b01dfe3 7549 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7550
7551 sched_destroy_group(tg);
7552}
7553
bb9d97b6
TH
7554static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7555 struct cgroup_taskset *tset)
68318b8e 7556{
bb9d97b6
TH
7557 struct task_struct *task;
7558
7559 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7560#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7561 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7562 return -EINVAL;
b68aa230 7563#else
bb9d97b6
TH
7564 /* We don't support RT-tasks being in separate groups */
7565 if (task->sched_class != &fair_sched_class)
7566 return -EINVAL;
b68aa230 7567#endif
bb9d97b6 7568 }
be367d09
BB
7569 return 0;
7570}
68318b8e 7571
bb9d97b6
TH
7572static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7573 struct cgroup_taskset *tset)
68318b8e 7574{
bb9d97b6
TH
7575 struct task_struct *task;
7576
7577 cgroup_taskset_for_each(task, cgrp, tset)
7578 sched_move_task(task);
68318b8e
SV
7579}
7580
068c5cc5 7581static void
d41d5a01
PZ
7582cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7583 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7584{
7585 /*
7586 * cgroup_exit() is called in the copy_process() failure path.
7587 * Ignore this case since the task hasn't ran yet, this avoids
7588 * trying to poke a half freed task state from generic code.
7589 */
7590 if (!(task->flags & PF_EXITING))
7591 return;
7592
7593 sched_move_task(task);
7594}
7595
052f1dc7 7596#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7597static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7598 u64 shareval)
68318b8e 7599{
c8b28116 7600 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7601}
7602
f4c753b7 7603static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7604{
2b01dfe3 7605 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7606
c8b28116 7607 return (u64) scale_load_down(tg->shares);
68318b8e 7608}
ab84d31e
PT
7609
7610#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7611static DEFINE_MUTEX(cfs_constraints_mutex);
7612
ab84d31e
PT
7613const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7614const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7615
a790de99
PT
7616static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7617
ab84d31e
PT
7618static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7619{
56f570e5 7620 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7621 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7622
7623 if (tg == &root_task_group)
7624 return -EINVAL;
7625
7626 /*
7627 * Ensure we have at some amount of bandwidth every period. This is
7628 * to prevent reaching a state of large arrears when throttled via
7629 * entity_tick() resulting in prolonged exit starvation.
7630 */
7631 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7632 return -EINVAL;
7633
7634 /*
7635 * Likewise, bound things on the otherside by preventing insane quota
7636 * periods. This also allows us to normalize in computing quota
7637 * feasibility.
7638 */
7639 if (period > max_cfs_quota_period)
7640 return -EINVAL;
7641
a790de99
PT
7642 mutex_lock(&cfs_constraints_mutex);
7643 ret = __cfs_schedulable(tg, period, quota);
7644 if (ret)
7645 goto out_unlock;
7646
58088ad0 7647 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7648 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7649 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7650 raw_spin_lock_irq(&cfs_b->lock);
7651 cfs_b->period = ns_to_ktime(period);
7652 cfs_b->quota = quota;
58088ad0 7653
a9cf55b2 7654 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7655 /* restart the period timer (if active) to handle new period expiry */
7656 if (runtime_enabled && cfs_b->timer_active) {
7657 /* force a reprogram */
7658 cfs_b->timer_active = 0;
7659 __start_cfs_bandwidth(cfs_b);
7660 }
ab84d31e
PT
7661 raw_spin_unlock_irq(&cfs_b->lock);
7662
7663 for_each_possible_cpu(i) {
7664 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7665 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7666
7667 raw_spin_lock_irq(&rq->lock);
58088ad0 7668 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7669 cfs_rq->runtime_remaining = 0;
671fd9da 7670
029632fb 7671 if (cfs_rq->throttled)
671fd9da 7672 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7673 raw_spin_unlock_irq(&rq->lock);
7674 }
a790de99
PT
7675out_unlock:
7676 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7677
a790de99 7678 return ret;
ab84d31e
PT
7679}
7680
7681int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7682{
7683 u64 quota, period;
7684
029632fb 7685 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7686 if (cfs_quota_us < 0)
7687 quota = RUNTIME_INF;
7688 else
7689 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7690
7691 return tg_set_cfs_bandwidth(tg, period, quota);
7692}
7693
7694long tg_get_cfs_quota(struct task_group *tg)
7695{
7696 u64 quota_us;
7697
029632fb 7698 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7699 return -1;
7700
029632fb 7701 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7702 do_div(quota_us, NSEC_PER_USEC);
7703
7704 return quota_us;
7705}
7706
7707int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7708{
7709 u64 quota, period;
7710
7711 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7712 quota = tg->cfs_bandwidth.quota;
ab84d31e 7713
ab84d31e
PT
7714 return tg_set_cfs_bandwidth(tg, period, quota);
7715}
7716
7717long tg_get_cfs_period(struct task_group *tg)
7718{
7719 u64 cfs_period_us;
7720
029632fb 7721 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7722 do_div(cfs_period_us, NSEC_PER_USEC);
7723
7724 return cfs_period_us;
7725}
7726
7727static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7728{
7729 return tg_get_cfs_quota(cgroup_tg(cgrp));
7730}
7731
7732static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7733 s64 cfs_quota_us)
7734{
7735 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7736}
7737
7738static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7739{
7740 return tg_get_cfs_period(cgroup_tg(cgrp));
7741}
7742
7743static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7744 u64 cfs_period_us)
7745{
7746 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7747}
7748
a790de99
PT
7749struct cfs_schedulable_data {
7750 struct task_group *tg;
7751 u64 period, quota;
7752};
7753
7754/*
7755 * normalize group quota/period to be quota/max_period
7756 * note: units are usecs
7757 */
7758static u64 normalize_cfs_quota(struct task_group *tg,
7759 struct cfs_schedulable_data *d)
7760{
7761 u64 quota, period;
7762
7763 if (tg == d->tg) {
7764 period = d->period;
7765 quota = d->quota;
7766 } else {
7767 period = tg_get_cfs_period(tg);
7768 quota = tg_get_cfs_quota(tg);
7769 }
7770
7771 /* note: these should typically be equivalent */
7772 if (quota == RUNTIME_INF || quota == -1)
7773 return RUNTIME_INF;
7774
7775 return to_ratio(period, quota);
7776}
7777
7778static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7779{
7780 struct cfs_schedulable_data *d = data;
029632fb 7781 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7782 s64 quota = 0, parent_quota = -1;
7783
7784 if (!tg->parent) {
7785 quota = RUNTIME_INF;
7786 } else {
029632fb 7787 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7788
7789 quota = normalize_cfs_quota(tg, d);
7790 parent_quota = parent_b->hierarchal_quota;
7791
7792 /*
7793 * ensure max(child_quota) <= parent_quota, inherit when no
7794 * limit is set
7795 */
7796 if (quota == RUNTIME_INF)
7797 quota = parent_quota;
7798 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7799 return -EINVAL;
7800 }
7801 cfs_b->hierarchal_quota = quota;
7802
7803 return 0;
7804}
7805
7806static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7807{
8277434e 7808 int ret;
a790de99
PT
7809 struct cfs_schedulable_data data = {
7810 .tg = tg,
7811 .period = period,
7812 .quota = quota,
7813 };
7814
7815 if (quota != RUNTIME_INF) {
7816 do_div(data.period, NSEC_PER_USEC);
7817 do_div(data.quota, NSEC_PER_USEC);
7818 }
7819
8277434e
PT
7820 rcu_read_lock();
7821 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7822 rcu_read_unlock();
7823
7824 return ret;
a790de99 7825}
e8da1b18
NR
7826
7827static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7828 struct cgroup_map_cb *cb)
7829{
7830 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7831 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7832
7833 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7834 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7835 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7836
7837 return 0;
7838}
ab84d31e 7839#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7840#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7841
052f1dc7 7842#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7843static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7844 s64 val)
6f505b16 7845{
06ecb27c 7846 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7847}
7848
06ecb27c 7849static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7850{
06ecb27c 7851 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7852}
d0b27fa7
PZ
7853
7854static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7855 u64 rt_period_us)
7856{
7857 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7858}
7859
7860static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7861{
7862 return sched_group_rt_period(cgroup_tg(cgrp));
7863}
6d6bc0ad 7864#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7865
fe5c7cc2 7866static struct cftype cpu_files[] = {
052f1dc7 7867#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7868 {
7869 .name = "shares",
f4c753b7
PM
7870 .read_u64 = cpu_shares_read_u64,
7871 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7872 },
052f1dc7 7873#endif
ab84d31e
PT
7874#ifdef CONFIG_CFS_BANDWIDTH
7875 {
7876 .name = "cfs_quota_us",
7877 .read_s64 = cpu_cfs_quota_read_s64,
7878 .write_s64 = cpu_cfs_quota_write_s64,
7879 },
7880 {
7881 .name = "cfs_period_us",
7882 .read_u64 = cpu_cfs_period_read_u64,
7883 .write_u64 = cpu_cfs_period_write_u64,
7884 },
e8da1b18
NR
7885 {
7886 .name = "stat",
7887 .read_map = cpu_stats_show,
7888 },
ab84d31e 7889#endif
052f1dc7 7890#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7891 {
9f0c1e56 7892 .name = "rt_runtime_us",
06ecb27c
PM
7893 .read_s64 = cpu_rt_runtime_read,
7894 .write_s64 = cpu_rt_runtime_write,
6f505b16 7895 },
d0b27fa7
PZ
7896 {
7897 .name = "rt_period_us",
f4c753b7
PM
7898 .read_u64 = cpu_rt_period_read_uint,
7899 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7900 },
052f1dc7 7901#endif
68318b8e
SV
7902};
7903
7904static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7905{
fe5c7cc2 7906 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7907}
7908
7909struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7910 .name = "cpu",
7911 .create = cpu_cgroup_create,
7912 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7913 .can_attach = cpu_cgroup_can_attach,
7914 .attach = cpu_cgroup_attach,
068c5cc5 7915 .exit = cpu_cgroup_exit,
38605cae
IM
7916 .populate = cpu_cgroup_populate,
7917 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7918 .early_init = 1,
7919};
7920
052f1dc7 7921#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7922
7923#ifdef CONFIG_CGROUP_CPUACCT
7924
7925/*
7926 * CPU accounting code for task groups.
7927 *
7928 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7929 * (balbir@in.ibm.com).
7930 */
7931
d842de87
SV
7932/* create a new cpu accounting group */
7933static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7934 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7935{
54c707e9 7936 struct cpuacct *ca;
d842de87 7937
54c707e9
GC
7938 if (!cgrp->parent)
7939 return &root_cpuacct.css;
7940
7941 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7942 if (!ca)
ef12fefa 7943 goto out;
d842de87
SV
7944
7945 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7946 if (!ca->cpuusage)
7947 goto out_free_ca;
7948
54c707e9
GC
7949 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7950 if (!ca->cpustat)
7951 goto out_free_cpuusage;
934352f2 7952
d842de87 7953 return &ca->css;
ef12fefa 7954
54c707e9 7955out_free_cpuusage:
ef12fefa
BR
7956 free_percpu(ca->cpuusage);
7957out_free_ca:
7958 kfree(ca);
7959out:
7960 return ERR_PTR(-ENOMEM);
d842de87
SV
7961}
7962
7963/* destroy an existing cpu accounting group */
41a2d6cf 7964static void
32cd756a 7965cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7966{
32cd756a 7967 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7968
54c707e9 7969 free_percpu(ca->cpustat);
d842de87
SV
7970 free_percpu(ca->cpuusage);
7971 kfree(ca);
7972}
7973
720f5498
KC
7974static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7975{
b36128c8 7976 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7977 u64 data;
7978
7979#ifndef CONFIG_64BIT
7980 /*
7981 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7982 */
05fa785c 7983 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7984 data = *cpuusage;
05fa785c 7985 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7986#else
7987 data = *cpuusage;
7988#endif
7989
7990 return data;
7991}
7992
7993static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7994{
b36128c8 7995 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7996
7997#ifndef CONFIG_64BIT
7998 /*
7999 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8000 */
05fa785c 8001 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8002 *cpuusage = val;
05fa785c 8003 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8004#else
8005 *cpuusage = val;
8006#endif
8007}
8008
d842de87 8009/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8010static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8011{
32cd756a 8012 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8013 u64 totalcpuusage = 0;
8014 int i;
8015
720f5498
KC
8016 for_each_present_cpu(i)
8017 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8018
8019 return totalcpuusage;
8020}
8021
0297b803
DG
8022static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8023 u64 reset)
8024{
8025 struct cpuacct *ca = cgroup_ca(cgrp);
8026 int err = 0;
8027 int i;
8028
8029 if (reset) {
8030 err = -EINVAL;
8031 goto out;
8032 }
8033
720f5498
KC
8034 for_each_present_cpu(i)
8035 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8036
0297b803
DG
8037out:
8038 return err;
8039}
8040
e9515c3c
KC
8041static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8042 struct seq_file *m)
8043{
8044 struct cpuacct *ca = cgroup_ca(cgroup);
8045 u64 percpu;
8046 int i;
8047
8048 for_each_present_cpu(i) {
8049 percpu = cpuacct_cpuusage_read(ca, i);
8050 seq_printf(m, "%llu ", (unsigned long long) percpu);
8051 }
8052 seq_printf(m, "\n");
8053 return 0;
8054}
8055
ef12fefa
BR
8056static const char *cpuacct_stat_desc[] = {
8057 [CPUACCT_STAT_USER] = "user",
8058 [CPUACCT_STAT_SYSTEM] = "system",
8059};
8060
8061static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8062 struct cgroup_map_cb *cb)
ef12fefa
BR
8063{
8064 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8065 int cpu;
8066 s64 val = 0;
ef12fefa 8067
54c707e9
GC
8068 for_each_online_cpu(cpu) {
8069 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8070 val += kcpustat->cpustat[CPUTIME_USER];
8071 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8072 }
54c707e9
GC
8073 val = cputime64_to_clock_t(val);
8074 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8075
54c707e9
GC
8076 val = 0;
8077 for_each_online_cpu(cpu) {
8078 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8079 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8080 val += kcpustat->cpustat[CPUTIME_IRQ];
8081 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8082 }
54c707e9
GC
8083
8084 val = cputime64_to_clock_t(val);
8085 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8086
ef12fefa
BR
8087 return 0;
8088}
8089
d842de87
SV
8090static struct cftype files[] = {
8091 {
8092 .name = "usage",
f4c753b7
PM
8093 .read_u64 = cpuusage_read,
8094 .write_u64 = cpuusage_write,
d842de87 8095 },
e9515c3c
KC
8096 {
8097 .name = "usage_percpu",
8098 .read_seq_string = cpuacct_percpu_seq_read,
8099 },
ef12fefa
BR
8100 {
8101 .name = "stat",
8102 .read_map = cpuacct_stats_show,
8103 },
d842de87
SV
8104};
8105
32cd756a 8106static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8107{
32cd756a 8108 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8109}
8110
8111/*
8112 * charge this task's execution time to its accounting group.
8113 *
8114 * called with rq->lock held.
8115 */
029632fb 8116void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8117{
8118 struct cpuacct *ca;
934352f2 8119 int cpu;
d842de87 8120
c40c6f85 8121 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8122 return;
8123
934352f2 8124 cpu = task_cpu(tsk);
a18b83b7
BR
8125
8126 rcu_read_lock();
8127
d842de87 8128 ca = task_ca(tsk);
d842de87 8129
44252e42 8130 for (; ca; ca = parent_ca(ca)) {
b36128c8 8131 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8132 *cpuusage += cputime;
8133 }
a18b83b7
BR
8134
8135 rcu_read_unlock();
d842de87
SV
8136}
8137
8138struct cgroup_subsys cpuacct_subsys = {
8139 .name = "cpuacct",
8140 .create = cpuacct_create,
8141 .destroy = cpuacct_destroy,
8142 .populate = cpuacct_populate,
8143 .subsys_id = cpuacct_subsys_id,
8144};
8145#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.136817 seconds and 5 git commands to generate.