bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
6f179bd0 3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
23cc69b6
RS
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
0f20cc35
DJ
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
c224138d 155 /* The number of local .got entries, eventually including page entries. */
b49e97c9 156 unsigned int local_gotno;
c224138d
RS
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
b49e97c9
TS
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
b15e6682
AO
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
c224138d
RS
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
f4416af6
AO
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
0f20cc35
DJ
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
f4416af6
AO
176};
177
178/* Map an input bfd to a got in a multi-got link. */
179
180struct mips_elf_bfd2got_hash {
181 bfd *bfd;
182 struct mips_got_info *g;
183};
184
185/* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188struct mips_elf_got_per_bfd_arg
189{
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
215/* Another structure used to pass arguments for got entries traversal. */
216
217struct mips_elf_set_global_got_offset_arg
218{
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
b49e97c9
TS
223};
224
0f20cc35
DJ
225/* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
227
228struct mips_elf_count_tls_arg
229{
230 struct bfd_link_info *info;
231 unsigned int needed;
232};
233
f0abc2a1
AM
234struct _mips_elf_section_data
235{
236 struct bfd_elf_section_data elf;
237 union
238 {
f0abc2a1
AM
239 bfd_byte *tdata;
240 } u;
241};
242
243#define mips_elf_section_data(sec) \
68bfbfcc 244 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 245
634835ae
RS
246/* The ABI says that every symbol used by dynamic relocations must have
247 a global GOT entry. Among other things, this provides the dynamic
248 linker with a free, directly-indexed cache. The GOT can therefore
249 contain symbols that are not referenced by GOT relocations themselves
250 (in other words, it may have symbols that are not referenced by things
251 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
252
253 GOT relocations are less likely to overflow if we put the associated
254 GOT entries towards the beginning. We therefore divide the global
255 GOT entries into two areas: "normal" and "reloc-only". Entries in
256 the first area can be used for both dynamic relocations and GP-relative
257 accesses, while those in the "reloc-only" area are for dynamic
258 relocations only.
259
260 These GGA_* ("Global GOT Area") values are organised so that lower
261 values are more general than higher values. Also, non-GGA_NONE
262 values are ordered by the position of the area in the GOT. */
263#define GGA_NORMAL 0
264#define GGA_RELOC_ONLY 1
265#define GGA_NONE 2
266
b49e97c9
TS
267/* This structure is passed to mips_elf_sort_hash_table_f when sorting
268 the dynamic symbols. */
269
270struct mips_elf_hash_sort_data
271{
272 /* The symbol in the global GOT with the lowest dynamic symbol table
273 index. */
274 struct elf_link_hash_entry *low;
0f20cc35
DJ
275 /* The least dynamic symbol table index corresponding to a non-TLS
276 symbol with a GOT entry. */
b49e97c9 277 long min_got_dynindx;
f4416af6
AO
278 /* The greatest dynamic symbol table index corresponding to a symbol
279 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 280 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 281 long max_unref_got_dynindx;
b49e97c9
TS
282 /* The greatest dynamic symbol table index not corresponding to a
283 symbol without a GOT entry. */
284 long max_non_got_dynindx;
285};
286
287/* The MIPS ELF linker needs additional information for each symbol in
288 the global hash table. */
289
290struct mips_elf_link_hash_entry
291{
292 struct elf_link_hash_entry root;
293
294 /* External symbol information. */
295 EXTR esym;
296
297 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
298 this symbol. */
299 unsigned int possibly_dynamic_relocs;
300
b49e97c9
TS
301 /* If there is a stub that 32 bit functions should use to call this
302 16 bit function, this points to the section containing the stub. */
303 asection *fn_stub;
304
b49e97c9
TS
305 /* If there is a stub that 16 bit functions should use to call this
306 32 bit function, this points to the section containing the stub. */
307 asection *call_stub;
308
309 /* This is like the call_stub field, but it is used if the function
310 being called returns a floating point value. */
311 asection *call_fp_stub;
7c5fcef7 312
0f20cc35
DJ
313#define GOT_NORMAL 0
314#define GOT_TLS_GD 1
315#define GOT_TLS_LDM 2
316#define GOT_TLS_IE 4
317#define GOT_TLS_OFFSET_DONE 0x40
318#define GOT_TLS_DONE 0x80
319 unsigned char tls_type;
71782a75 320
0f20cc35
DJ
321 /* This is only used in single-GOT mode; in multi-GOT mode there
322 is one mips_got_entry per GOT entry, so the offset is stored
323 there. In single-GOT mode there may be many mips_got_entry
324 structures all referring to the same GOT slot. It might be
325 possible to use root.got.offset instead, but that field is
326 overloaded already. */
327 bfd_vma tls_got_offset;
71782a75 328
634835ae
RS
329 /* The highest GGA_* value that satisfies all references to this symbol. */
330 unsigned int global_got_area : 2;
331
71782a75
RS
332 /* True if one of the relocations described by possibly_dynamic_relocs
333 is against a readonly section. */
334 unsigned int readonly_reloc : 1;
335
336 /* True if we must not create a .MIPS.stubs entry for this symbol.
337 This is set, for example, if there are relocations related to
338 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
339 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
340 unsigned int no_fn_stub : 1;
341
342 /* Whether we need the fn_stub; this is true if this symbol appears
343 in any relocs other than a 16 bit call. */
344 unsigned int need_fn_stub : 1;
345
71782a75
RS
346 /* Are we referenced by some kind of relocation? */
347 unsigned int is_relocation_target : 1;
348
349 /* Are we referenced by branch relocations? */
350 unsigned int is_branch_target : 1;
33bb52fb
RS
351
352 /* Does this symbol need a traditional MIPS lazy-binding stub
353 (as opposed to a PLT entry)? */
354 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
355};
356
357/* MIPS ELF linker hash table. */
358
359struct mips_elf_link_hash_table
360{
361 struct elf_link_hash_table root;
362#if 0
363 /* We no longer use this. */
364 /* String section indices for the dynamic section symbols. */
365 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
366#endif
367 /* The number of .rtproc entries. */
368 bfd_size_type procedure_count;
369 /* The size of the .compact_rel section (if SGI_COMPAT). */
370 bfd_size_type compact_rel_size;
371 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 372 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 373 bfd_boolean use_rld_obj_head;
b49e97c9
TS
374 /* This is the value of the __rld_map or __rld_obj_head symbol. */
375 bfd_vma rld_value;
376 /* This is set if we see any mips16 stub sections. */
b34976b6 377 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
378 /* True if we're generating code for VxWorks. */
379 bfd_boolean is_vxworks;
0e53d9da
AN
380 /* True if we already reported the small-data section overflow. */
381 bfd_boolean small_data_overflow_reported;
0a44bf69
RS
382 /* Shortcuts to some dynamic sections, or NULL if they are not
383 being used. */
384 asection *srelbss;
385 asection *sdynbss;
386 asection *srelplt;
387 asection *srelplt2;
388 asection *sgotplt;
389 asection *splt;
4e41d0d7 390 asection *sstubs;
a8028dd0
RS
391 asection *sgot;
392 /* The master GOT information. */
393 struct mips_got_info *got_info;
0a44bf69
RS
394 /* The size of the PLT header in bytes (VxWorks only). */
395 bfd_vma plt_header_size;
396 /* The size of a PLT entry in bytes (VxWorks only). */
397 bfd_vma plt_entry_size;
33bb52fb
RS
398 /* The number of functions that need a lazy-binding stub. */
399 bfd_vma lazy_stub_count;
5108fc1b
RS
400 /* The size of a function stub entry in bytes. */
401 bfd_vma function_stub_size;
b49e97c9
TS
402};
403
0f20cc35
DJ
404#define TLS_RELOC_P(r_type) \
405 (r_type == R_MIPS_TLS_DTPMOD32 \
406 || r_type == R_MIPS_TLS_DTPMOD64 \
407 || r_type == R_MIPS_TLS_DTPREL32 \
408 || r_type == R_MIPS_TLS_DTPREL64 \
409 || r_type == R_MIPS_TLS_GD \
410 || r_type == R_MIPS_TLS_LDM \
411 || r_type == R_MIPS_TLS_DTPREL_HI16 \
412 || r_type == R_MIPS_TLS_DTPREL_LO16 \
413 || r_type == R_MIPS_TLS_GOTTPREL \
414 || r_type == R_MIPS_TLS_TPREL32 \
415 || r_type == R_MIPS_TLS_TPREL64 \
416 || r_type == R_MIPS_TLS_TPREL_HI16 \
417 || r_type == R_MIPS_TLS_TPREL_LO16)
418
b49e97c9
TS
419/* Structure used to pass information to mips_elf_output_extsym. */
420
421struct extsym_info
422{
9e4aeb93
RS
423 bfd *abfd;
424 struct bfd_link_info *info;
b49e97c9
TS
425 struct ecoff_debug_info *debug;
426 const struct ecoff_debug_swap *swap;
b34976b6 427 bfd_boolean failed;
b49e97c9
TS
428};
429
8dc1a139 430/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
431
432static const char * const mips_elf_dynsym_rtproc_names[] =
433{
434 "_procedure_table",
435 "_procedure_string_table",
436 "_procedure_table_size",
437 NULL
438};
439
440/* These structures are used to generate the .compact_rel section on
8dc1a139 441 IRIX5. */
b49e97c9
TS
442
443typedef struct
444{
445 unsigned long id1; /* Always one? */
446 unsigned long num; /* Number of compact relocation entries. */
447 unsigned long id2; /* Always two? */
448 unsigned long offset; /* The file offset of the first relocation. */
449 unsigned long reserved0; /* Zero? */
450 unsigned long reserved1; /* Zero? */
451} Elf32_compact_rel;
452
453typedef struct
454{
455 bfd_byte id1[4];
456 bfd_byte num[4];
457 bfd_byte id2[4];
458 bfd_byte offset[4];
459 bfd_byte reserved0[4];
460 bfd_byte reserved1[4];
461} Elf32_External_compact_rel;
462
463typedef struct
464{
465 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
466 unsigned int rtype : 4; /* Relocation types. See below. */
467 unsigned int dist2to : 8;
468 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
469 unsigned long konst; /* KONST field. See below. */
470 unsigned long vaddr; /* VADDR to be relocated. */
471} Elf32_crinfo;
472
473typedef struct
474{
475 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
476 unsigned int rtype : 4; /* Relocation types. See below. */
477 unsigned int dist2to : 8;
478 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
479 unsigned long konst; /* KONST field. See below. */
480} Elf32_crinfo2;
481
482typedef struct
483{
484 bfd_byte info[4];
485 bfd_byte konst[4];
486 bfd_byte vaddr[4];
487} Elf32_External_crinfo;
488
489typedef struct
490{
491 bfd_byte info[4];
492 bfd_byte konst[4];
493} Elf32_External_crinfo2;
494
495/* These are the constants used to swap the bitfields in a crinfo. */
496
497#define CRINFO_CTYPE (0x1)
498#define CRINFO_CTYPE_SH (31)
499#define CRINFO_RTYPE (0xf)
500#define CRINFO_RTYPE_SH (27)
501#define CRINFO_DIST2TO (0xff)
502#define CRINFO_DIST2TO_SH (19)
503#define CRINFO_RELVADDR (0x7ffff)
504#define CRINFO_RELVADDR_SH (0)
505
506/* A compact relocation info has long (3 words) or short (2 words)
507 formats. A short format doesn't have VADDR field and relvaddr
508 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
509#define CRF_MIPS_LONG 1
510#define CRF_MIPS_SHORT 0
511
512/* There are 4 types of compact relocation at least. The value KONST
513 has different meaning for each type:
514
515 (type) (konst)
516 CT_MIPS_REL32 Address in data
517 CT_MIPS_WORD Address in word (XXX)
518 CT_MIPS_GPHI_LO GP - vaddr
519 CT_MIPS_JMPAD Address to jump
520 */
521
522#define CRT_MIPS_REL32 0xa
523#define CRT_MIPS_WORD 0xb
524#define CRT_MIPS_GPHI_LO 0xc
525#define CRT_MIPS_JMPAD 0xd
526
527#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
528#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
529#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
530#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
531\f
532/* The structure of the runtime procedure descriptor created by the
533 loader for use by the static exception system. */
534
535typedef struct runtime_pdr {
ae9a127f
NC
536 bfd_vma adr; /* Memory address of start of procedure. */
537 long regmask; /* Save register mask. */
538 long regoffset; /* Save register offset. */
539 long fregmask; /* Save floating point register mask. */
540 long fregoffset; /* Save floating point register offset. */
541 long frameoffset; /* Frame size. */
542 short framereg; /* Frame pointer register. */
543 short pcreg; /* Offset or reg of return pc. */
544 long irpss; /* Index into the runtime string table. */
b49e97c9 545 long reserved;
ae9a127f 546 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
547} RPDR, *pRPDR;
548#define cbRPDR sizeof (RPDR)
549#define rpdNil ((pRPDR) 0)
550\f
b15e6682 551static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
552 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
553 struct mips_elf_link_hash_entry *, int);
b34976b6 554static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 555 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
556static bfd_vma mips_elf_high
557 (bfd_vma);
b34976b6 558static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
559 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
560 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
561 bfd_vma *, asection *);
9719ad41
RS
562static hashval_t mips_elf_got_entry_hash
563 (const void *);
f4416af6 564static bfd_vma mips_elf_adjust_gp
9719ad41 565 (bfd *, struct mips_got_info *, bfd *);
f4416af6 566static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 567 (struct mips_got_info *, bfd *);
f4416af6 568
b49e97c9
TS
569/* This will be used when we sort the dynamic relocation records. */
570static bfd *reldyn_sorting_bfd;
571
572/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
573#define ABI_N32_P(abfd) \
574 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
575
4a14403c 576/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 577#define ABI_64_P(abfd) \
141ff970 578 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 579
4a14403c
TS
580/* Nonzero if ABFD is using NewABI conventions. */
581#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
582
583/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
584#define IRIX_COMPAT(abfd) \
585 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
586
b49e97c9
TS
587/* Whether we are trying to be compatible with IRIX at all. */
588#define SGI_COMPAT(abfd) \
589 (IRIX_COMPAT (abfd) != ict_none)
590
591/* The name of the options section. */
592#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 593 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 594
cc2e31b9
RS
595/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
596 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
597#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
598 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
599
943284cc
DJ
600/* Whether the section is readonly. */
601#define MIPS_ELF_READONLY_SECTION(sec) \
602 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
603 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
604
b49e97c9 605/* The name of the stub section. */
ca07892d 606#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
607
608/* The size of an external REL relocation. */
609#define MIPS_ELF_REL_SIZE(abfd) \
610 (get_elf_backend_data (abfd)->s->sizeof_rel)
611
0a44bf69
RS
612/* The size of an external RELA relocation. */
613#define MIPS_ELF_RELA_SIZE(abfd) \
614 (get_elf_backend_data (abfd)->s->sizeof_rela)
615
b49e97c9
TS
616/* The size of an external dynamic table entry. */
617#define MIPS_ELF_DYN_SIZE(abfd) \
618 (get_elf_backend_data (abfd)->s->sizeof_dyn)
619
620/* The size of a GOT entry. */
621#define MIPS_ELF_GOT_SIZE(abfd) \
622 (get_elf_backend_data (abfd)->s->arch_size / 8)
623
624/* The size of a symbol-table entry. */
625#define MIPS_ELF_SYM_SIZE(abfd) \
626 (get_elf_backend_data (abfd)->s->sizeof_sym)
627
628/* The default alignment for sections, as a power of two. */
629#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 630 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
631
632/* Get word-sized data. */
633#define MIPS_ELF_GET_WORD(abfd, ptr) \
634 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
635
636/* Put out word-sized data. */
637#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
638 (ABI_64_P (abfd) \
639 ? bfd_put_64 (abfd, val, ptr) \
640 : bfd_put_32 (abfd, val, ptr))
641
642/* Add a dynamic symbol table-entry. */
9719ad41 643#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 644 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
645
646#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
647 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
648
4ffba85c
AO
649/* Determine whether the internal relocation of index REL_IDX is REL
650 (zero) or RELA (non-zero). The assumption is that, if there are
651 two relocation sections for this section, one of them is REL and
652 the other is RELA. If the index of the relocation we're testing is
653 in range for the first relocation section, check that the external
654 relocation size is that for RELA. It is also assumed that, if
655 rel_idx is not in range for the first section, and this first
656 section contains REL relocs, then the relocation is in the second
657 section, that is RELA. */
658#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
659 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
660 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
661 > (bfd_vma)(rel_idx)) \
662 == (elf_section_data (sec)->rel_hdr.sh_entsize \
663 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
664 : sizeof (Elf32_External_Rela))))
665
0a44bf69
RS
666/* The name of the dynamic relocation section. */
667#define MIPS_ELF_REL_DYN_NAME(INFO) \
668 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
669
b49e97c9
TS
670/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
671 from smaller values. Start with zero, widen, *then* decrement. */
672#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 673#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
674
675/* The number of local .got entries we reserve. */
0a44bf69
RS
676#define MIPS_RESERVED_GOTNO(INFO) \
677 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 678
51e38d68
RS
679/* The value to write into got[1] for SVR4 targets, to identify it is
680 a GNU object. The dynamic linker can then use got[1] to store the
681 module pointer. */
682#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
683 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
684
f4416af6 685/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
686#define ELF_MIPS_GP_OFFSET(INFO) \
687 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
688
689/* The maximum size of the GOT for it to be addressable using 16-bit
690 offsets from $gp. */
0a44bf69 691#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 692
6a691779 693/* Instructions which appear in a stub. */
3d6746ca
DD
694#define STUB_LW(abfd) \
695 ((ABI_64_P (abfd) \
696 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
697 : 0x8f998010)) /* lw t9,0x8010(gp) */
698#define STUB_MOVE(abfd) \
699 ((ABI_64_P (abfd) \
700 ? 0x03e0782d /* daddu t7,ra */ \
701 : 0x03e07821)) /* addu t7,ra */
702#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
703#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
704#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
705#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
706#define STUB_LI16S(abfd, VAL) \
707 ((ABI_64_P (abfd) \
708 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
709 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
710
5108fc1b
RS
711#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
712#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
713
714/* The name of the dynamic interpreter. This is put in the .interp
715 section. */
716
717#define ELF_DYNAMIC_INTERPRETER(abfd) \
718 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
719 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
720 : "/usr/lib/libc.so.1")
721
722#ifdef BFD64
ee6423ed
AO
723#define MNAME(bfd,pre,pos) \
724 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
725#define ELF_R_SYM(bfd, i) \
726 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
727#define ELF_R_TYPE(bfd, i) \
728 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
729#define ELF_R_INFO(bfd, s, t) \
730 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
731#else
ee6423ed 732#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
733#define ELF_R_SYM(bfd, i) \
734 (ELF32_R_SYM (i))
735#define ELF_R_TYPE(bfd, i) \
736 (ELF32_R_TYPE (i))
737#define ELF_R_INFO(bfd, s, t) \
738 (ELF32_R_INFO (s, t))
739#endif
740\f
741 /* The mips16 compiler uses a couple of special sections to handle
742 floating point arguments.
743
744 Section names that look like .mips16.fn.FNNAME contain stubs that
745 copy floating point arguments from the fp regs to the gp regs and
746 then jump to FNNAME. If any 32 bit function calls FNNAME, the
747 call should be redirected to the stub instead. If no 32 bit
748 function calls FNNAME, the stub should be discarded. We need to
749 consider any reference to the function, not just a call, because
750 if the address of the function is taken we will need the stub,
751 since the address might be passed to a 32 bit function.
752
753 Section names that look like .mips16.call.FNNAME contain stubs
754 that copy floating point arguments from the gp regs to the fp
755 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
756 then any 16 bit function that calls FNNAME should be redirected
757 to the stub instead. If FNNAME is not a 32 bit function, the
758 stub should be discarded.
759
760 .mips16.call.fp.FNNAME sections are similar, but contain stubs
761 which call FNNAME and then copy the return value from the fp regs
762 to the gp regs. These stubs store the return value in $18 while
763 calling FNNAME; any function which might call one of these stubs
764 must arrange to save $18 around the call. (This case is not
765 needed for 32 bit functions that call 16 bit functions, because
766 16 bit functions always return floating point values in both
767 $f0/$f1 and $2/$3.)
768
769 Note that in all cases FNNAME might be defined statically.
770 Therefore, FNNAME is not used literally. Instead, the relocation
771 information will indicate which symbol the section is for.
772
773 We record any stubs that we find in the symbol table. */
774
775#define FN_STUB ".mips16.fn."
776#define CALL_STUB ".mips16.call."
777#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
778
779#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
780#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
781#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 782\f
0a44bf69
RS
783/* The format of the first PLT entry in a VxWorks executable. */
784static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
785 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
786 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
787 0x8f390008, /* lw t9, 8(t9) */
788 0x00000000, /* nop */
789 0x03200008, /* jr t9 */
790 0x00000000 /* nop */
791};
792
793/* The format of subsequent PLT entries. */
794static const bfd_vma mips_vxworks_exec_plt_entry[] = {
795 0x10000000, /* b .PLT_resolver */
796 0x24180000, /* li t8, <pltindex> */
797 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
798 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
799 0x8f390000, /* lw t9, 0(t9) */
800 0x00000000, /* nop */
801 0x03200008, /* jr t9 */
802 0x00000000 /* nop */
803};
804
805/* The format of the first PLT entry in a VxWorks shared object. */
806static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
807 0x8f990008, /* lw t9, 8(gp) */
808 0x00000000, /* nop */
809 0x03200008, /* jr t9 */
810 0x00000000, /* nop */
811 0x00000000, /* nop */
812 0x00000000 /* nop */
813};
814
815/* The format of subsequent PLT entries. */
816static const bfd_vma mips_vxworks_shared_plt_entry[] = {
817 0x10000000, /* b .PLT_resolver */
818 0x24180000 /* li t8, <pltindex> */
819};
820\f
b49e97c9
TS
821/* Look up an entry in a MIPS ELF linker hash table. */
822
823#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
824 ((struct mips_elf_link_hash_entry *) \
825 elf_link_hash_lookup (&(table)->root, (string), (create), \
826 (copy), (follow)))
827
828/* Traverse a MIPS ELF linker hash table. */
829
830#define mips_elf_link_hash_traverse(table, func, info) \
831 (elf_link_hash_traverse \
832 (&(table)->root, \
9719ad41 833 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
834 (info)))
835
836/* Get the MIPS ELF linker hash table from a link_info structure. */
837
838#define mips_elf_hash_table(p) \
839 ((struct mips_elf_link_hash_table *) ((p)->hash))
840
0f20cc35
DJ
841/* Find the base offsets for thread-local storage in this object,
842 for GD/LD and IE/LE respectively. */
843
844#define TP_OFFSET 0x7000
845#define DTP_OFFSET 0x8000
846
847static bfd_vma
848dtprel_base (struct bfd_link_info *info)
849{
850 /* If tls_sec is NULL, we should have signalled an error already. */
851 if (elf_hash_table (info)->tls_sec == NULL)
852 return 0;
853 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
854}
855
856static bfd_vma
857tprel_base (struct bfd_link_info *info)
858{
859 /* If tls_sec is NULL, we should have signalled an error already. */
860 if (elf_hash_table (info)->tls_sec == NULL)
861 return 0;
862 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
863}
864
b49e97c9
TS
865/* Create an entry in a MIPS ELF linker hash table. */
866
867static struct bfd_hash_entry *
9719ad41
RS
868mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
869 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
870{
871 struct mips_elf_link_hash_entry *ret =
872 (struct mips_elf_link_hash_entry *) entry;
873
874 /* Allocate the structure if it has not already been allocated by a
875 subclass. */
9719ad41
RS
876 if (ret == NULL)
877 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
878 if (ret == NULL)
b49e97c9
TS
879 return (struct bfd_hash_entry *) ret;
880
881 /* Call the allocation method of the superclass. */
882 ret = ((struct mips_elf_link_hash_entry *)
883 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
884 table, string));
9719ad41 885 if (ret != NULL)
b49e97c9
TS
886 {
887 /* Set local fields. */
888 memset (&ret->esym, 0, sizeof (EXTR));
889 /* We use -2 as a marker to indicate that the information has
890 not been set. -1 means there is no associated ifd. */
891 ret->esym.ifd = -2;
892 ret->possibly_dynamic_relocs = 0;
b49e97c9 893 ret->fn_stub = NULL;
b49e97c9
TS
894 ret->call_stub = NULL;
895 ret->call_fp_stub = NULL;
71782a75 896 ret->tls_type = GOT_NORMAL;
634835ae 897 ret->global_got_area = GGA_NONE;
71782a75
RS
898 ret->readonly_reloc = FALSE;
899 ret->no_fn_stub = FALSE;
900 ret->need_fn_stub = FALSE;
0a44bf69 901 ret->is_relocation_target = FALSE;
71782a75 902 ret->is_branch_target = FALSE;
33bb52fb 903 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
904 }
905
906 return (struct bfd_hash_entry *) ret;
907}
f0abc2a1
AM
908
909bfd_boolean
9719ad41 910_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 911{
f592407e
AM
912 if (!sec->used_by_bfd)
913 {
914 struct _mips_elf_section_data *sdata;
915 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 916
f592407e
AM
917 sdata = bfd_zalloc (abfd, amt);
918 if (sdata == NULL)
919 return FALSE;
920 sec->used_by_bfd = sdata;
921 }
f0abc2a1
AM
922
923 return _bfd_elf_new_section_hook (abfd, sec);
924}
b49e97c9
TS
925\f
926/* Read ECOFF debugging information from a .mdebug section into a
927 ecoff_debug_info structure. */
928
b34976b6 929bfd_boolean
9719ad41
RS
930_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
931 struct ecoff_debug_info *debug)
b49e97c9
TS
932{
933 HDRR *symhdr;
934 const struct ecoff_debug_swap *swap;
9719ad41 935 char *ext_hdr;
b49e97c9
TS
936
937 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
938 memset (debug, 0, sizeof (*debug));
939
9719ad41 940 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
941 if (ext_hdr == NULL && swap->external_hdr_size != 0)
942 goto error_return;
943
9719ad41 944 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 945 swap->external_hdr_size))
b49e97c9
TS
946 goto error_return;
947
948 symhdr = &debug->symbolic_header;
949 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
950
951 /* The symbolic header contains absolute file offsets and sizes to
952 read. */
953#define READ(ptr, offset, count, size, type) \
954 if (symhdr->count == 0) \
955 debug->ptr = NULL; \
956 else \
957 { \
958 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 959 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
960 if (debug->ptr == NULL) \
961 goto error_return; \
9719ad41 962 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
963 || bfd_bread (debug->ptr, amt, abfd) != amt) \
964 goto error_return; \
965 }
966
967 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
968 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
969 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
970 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
971 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
972 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
973 union aux_ext *);
974 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
975 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
976 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
977 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
978 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
979#undef READ
980
981 debug->fdr = NULL;
b49e97c9 982
b34976b6 983 return TRUE;
b49e97c9
TS
984
985 error_return:
986 if (ext_hdr != NULL)
987 free (ext_hdr);
988 if (debug->line != NULL)
989 free (debug->line);
990 if (debug->external_dnr != NULL)
991 free (debug->external_dnr);
992 if (debug->external_pdr != NULL)
993 free (debug->external_pdr);
994 if (debug->external_sym != NULL)
995 free (debug->external_sym);
996 if (debug->external_opt != NULL)
997 free (debug->external_opt);
998 if (debug->external_aux != NULL)
999 free (debug->external_aux);
1000 if (debug->ss != NULL)
1001 free (debug->ss);
1002 if (debug->ssext != NULL)
1003 free (debug->ssext);
1004 if (debug->external_fdr != NULL)
1005 free (debug->external_fdr);
1006 if (debug->external_rfd != NULL)
1007 free (debug->external_rfd);
1008 if (debug->external_ext != NULL)
1009 free (debug->external_ext);
b34976b6 1010 return FALSE;
b49e97c9
TS
1011}
1012\f
1013/* Swap RPDR (runtime procedure table entry) for output. */
1014
1015static void
9719ad41 1016ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1017{
1018 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1019 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1020 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1021 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1022 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1023 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1024
1025 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1026 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1027
1028 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1029}
1030
1031/* Create a runtime procedure table from the .mdebug section. */
1032
b34976b6 1033static bfd_boolean
9719ad41
RS
1034mips_elf_create_procedure_table (void *handle, bfd *abfd,
1035 struct bfd_link_info *info, asection *s,
1036 struct ecoff_debug_info *debug)
b49e97c9
TS
1037{
1038 const struct ecoff_debug_swap *swap;
1039 HDRR *hdr = &debug->symbolic_header;
1040 RPDR *rpdr, *rp;
1041 struct rpdr_ext *erp;
9719ad41 1042 void *rtproc;
b49e97c9
TS
1043 struct pdr_ext *epdr;
1044 struct sym_ext *esym;
1045 char *ss, **sv;
1046 char *str;
1047 bfd_size_type size;
1048 bfd_size_type count;
1049 unsigned long sindex;
1050 unsigned long i;
1051 PDR pdr;
1052 SYMR sym;
1053 const char *no_name_func = _("static procedure (no name)");
1054
1055 epdr = NULL;
1056 rpdr = NULL;
1057 esym = NULL;
1058 ss = NULL;
1059 sv = NULL;
1060
1061 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1062
1063 sindex = strlen (no_name_func) + 1;
1064 count = hdr->ipdMax;
1065 if (count > 0)
1066 {
1067 size = swap->external_pdr_size;
1068
9719ad41 1069 epdr = bfd_malloc (size * count);
b49e97c9
TS
1070 if (epdr == NULL)
1071 goto error_return;
1072
9719ad41 1073 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1074 goto error_return;
1075
1076 size = sizeof (RPDR);
9719ad41 1077 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1078 if (rpdr == NULL)
1079 goto error_return;
1080
1081 size = sizeof (char *);
9719ad41 1082 sv = bfd_malloc (size * count);
b49e97c9
TS
1083 if (sv == NULL)
1084 goto error_return;
1085
1086 count = hdr->isymMax;
1087 size = swap->external_sym_size;
9719ad41 1088 esym = bfd_malloc (size * count);
b49e97c9
TS
1089 if (esym == NULL)
1090 goto error_return;
1091
9719ad41 1092 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1093 goto error_return;
1094
1095 count = hdr->issMax;
9719ad41 1096 ss = bfd_malloc (count);
b49e97c9
TS
1097 if (ss == NULL)
1098 goto error_return;
f075ee0c 1099 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1100 goto error_return;
1101
1102 count = hdr->ipdMax;
1103 for (i = 0; i < (unsigned long) count; i++, rp++)
1104 {
9719ad41
RS
1105 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1106 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1107 rp->adr = sym.value;
1108 rp->regmask = pdr.regmask;
1109 rp->regoffset = pdr.regoffset;
1110 rp->fregmask = pdr.fregmask;
1111 rp->fregoffset = pdr.fregoffset;
1112 rp->frameoffset = pdr.frameoffset;
1113 rp->framereg = pdr.framereg;
1114 rp->pcreg = pdr.pcreg;
1115 rp->irpss = sindex;
1116 sv[i] = ss + sym.iss;
1117 sindex += strlen (sv[i]) + 1;
1118 }
1119 }
1120
1121 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1122 size = BFD_ALIGN (size, 16);
9719ad41 1123 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1124 if (rtproc == NULL)
1125 {
1126 mips_elf_hash_table (info)->procedure_count = 0;
1127 goto error_return;
1128 }
1129
1130 mips_elf_hash_table (info)->procedure_count = count + 2;
1131
9719ad41 1132 erp = rtproc;
b49e97c9
TS
1133 memset (erp, 0, sizeof (struct rpdr_ext));
1134 erp++;
1135 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1136 strcpy (str, no_name_func);
1137 str += strlen (no_name_func) + 1;
1138 for (i = 0; i < count; i++)
1139 {
1140 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1141 strcpy (str, sv[i]);
1142 str += strlen (sv[i]) + 1;
1143 }
1144 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1145
1146 /* Set the size and contents of .rtproc section. */
eea6121a 1147 s->size = size;
9719ad41 1148 s->contents = rtproc;
b49e97c9
TS
1149
1150 /* Skip this section later on (I don't think this currently
1151 matters, but someday it might). */
8423293d 1152 s->map_head.link_order = NULL;
b49e97c9
TS
1153
1154 if (epdr != NULL)
1155 free (epdr);
1156 if (rpdr != NULL)
1157 free (rpdr);
1158 if (esym != NULL)
1159 free (esym);
1160 if (ss != NULL)
1161 free (ss);
1162 if (sv != NULL)
1163 free (sv);
1164
b34976b6 1165 return TRUE;
b49e97c9
TS
1166
1167 error_return:
1168 if (epdr != NULL)
1169 free (epdr);
1170 if (rpdr != NULL)
1171 free (rpdr);
1172 if (esym != NULL)
1173 free (esym);
1174 if (ss != NULL)
1175 free (ss);
1176 if (sv != NULL)
1177 free (sv);
b34976b6 1178 return FALSE;
b49e97c9 1179}
738e5348
RS
1180\f
1181/* We're about to redefine H. Create a symbol to represent H's
1182 current value and size, to help make the disassembly easier
1183 to read. */
1184
1185static bfd_boolean
1186mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1187 struct mips_elf_link_hash_entry *h,
1188 const char *prefix)
1189{
1190 struct bfd_link_hash_entry *bh;
1191 struct elf_link_hash_entry *elfh;
1192 const char *name;
1193 asection *s;
1194 bfd_vma value;
1195
1196 /* Read the symbol's value. */
1197 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1198 || h->root.root.type == bfd_link_hash_defweak);
1199 s = h->root.root.u.def.section;
1200 value = h->root.root.u.def.value;
1201
1202 /* Create a new symbol. */
1203 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1204 bh = NULL;
1205 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1206 BSF_LOCAL, s, value, NULL,
1207 TRUE, FALSE, &bh))
1208 return FALSE;
1209
1210 /* Make it local and copy the other attributes from H. */
1211 elfh = (struct elf_link_hash_entry *) bh;
1212 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1213 elfh->other = h->root.other;
1214 elfh->size = h->root.size;
1215 elfh->forced_local = 1;
1216 return TRUE;
1217}
1218
1219/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1220 function rather than to a hard-float stub. */
1221
1222static bfd_boolean
1223section_allows_mips16_refs_p (asection *section)
1224{
1225 const char *name;
1226
1227 name = bfd_get_section_name (section->owner, section);
1228 return (FN_STUB_P (name)
1229 || CALL_STUB_P (name)
1230 || CALL_FP_STUB_P (name)
1231 || strcmp (name, ".pdr") == 0);
1232}
1233
1234/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1235 stub section of some kind. Return the R_SYMNDX of the target
1236 function, or 0 if we can't decide which function that is. */
1237
1238static unsigned long
1239mips16_stub_symndx (asection *sec, const Elf_Internal_Rela *relocs,
1240 const Elf_Internal_Rela *relend)
1241{
1242 const Elf_Internal_Rela *rel;
1243
1244 /* Trust the first R_MIPS_NONE relocation, if any. */
1245 for (rel = relocs; rel < relend; rel++)
1246 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1247 return ELF_R_SYM (sec->owner, rel->r_info);
1248
1249 /* Otherwise trust the first relocation, whatever its kind. This is
1250 the traditional behavior. */
1251 if (relocs < relend)
1252 return ELF_R_SYM (sec->owner, relocs->r_info);
1253
1254 return 0;
1255}
b49e97c9
TS
1256
1257/* Check the mips16 stubs for a particular symbol, and see if we can
1258 discard them. */
1259
b34976b6 1260static bfd_boolean
738e5348 1261mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1262{
738e5348
RS
1263 struct bfd_link_info *info;
1264
1265 info = (struct bfd_link_info *) data;
b49e97c9
TS
1266 if (h->root.root.type == bfd_link_hash_warning)
1267 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1268
738e5348
RS
1269 /* Dynamic symbols must use the standard call interface, in case other
1270 objects try to call them. */
1271 if (h->fn_stub != NULL
1272 && h->root.dynindx != -1)
1273 {
1274 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1275 h->need_fn_stub = TRUE;
1276 }
1277
b49e97c9
TS
1278 if (h->fn_stub != NULL
1279 && ! h->need_fn_stub)
1280 {
1281 /* We don't need the fn_stub; the only references to this symbol
1282 are 16 bit calls. Clobber the size to 0 to prevent it from
1283 being included in the link. */
eea6121a 1284 h->fn_stub->size = 0;
b49e97c9
TS
1285 h->fn_stub->flags &= ~SEC_RELOC;
1286 h->fn_stub->reloc_count = 0;
1287 h->fn_stub->flags |= SEC_EXCLUDE;
1288 }
1289
1290 if (h->call_stub != NULL
30c09090 1291 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1292 {
1293 /* We don't need the call_stub; this is a 16 bit function, so
1294 calls from other 16 bit functions are OK. Clobber the size
1295 to 0 to prevent it from being included in the link. */
eea6121a 1296 h->call_stub->size = 0;
b49e97c9
TS
1297 h->call_stub->flags &= ~SEC_RELOC;
1298 h->call_stub->reloc_count = 0;
1299 h->call_stub->flags |= SEC_EXCLUDE;
1300 }
1301
1302 if (h->call_fp_stub != NULL
30c09090 1303 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1304 {
1305 /* We don't need the call_stub; this is a 16 bit function, so
1306 calls from other 16 bit functions are OK. Clobber the size
1307 to 0 to prevent it from being included in the link. */
eea6121a 1308 h->call_fp_stub->size = 0;
b49e97c9
TS
1309 h->call_fp_stub->flags &= ~SEC_RELOC;
1310 h->call_fp_stub->reloc_count = 0;
1311 h->call_fp_stub->flags |= SEC_EXCLUDE;
1312 }
1313
b34976b6 1314 return TRUE;
b49e97c9
TS
1315}
1316\f
d6f16593
MR
1317/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1318 Most mips16 instructions are 16 bits, but these instructions
1319 are 32 bits.
1320
1321 The format of these instructions is:
1322
1323 +--------------+--------------------------------+
1324 | JALX | X| Imm 20:16 | Imm 25:21 |
1325 +--------------+--------------------------------+
1326 | Immediate 15:0 |
1327 +-----------------------------------------------+
1328
1329 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1330 Note that the immediate value in the first word is swapped.
1331
1332 When producing a relocatable object file, R_MIPS16_26 is
1333 handled mostly like R_MIPS_26. In particular, the addend is
1334 stored as a straight 26-bit value in a 32-bit instruction.
1335 (gas makes life simpler for itself by never adjusting a
1336 R_MIPS16_26 reloc to be against a section, so the addend is
1337 always zero). However, the 32 bit instruction is stored as 2
1338 16-bit values, rather than a single 32-bit value. In a
1339 big-endian file, the result is the same; in a little-endian
1340 file, the two 16-bit halves of the 32 bit value are swapped.
1341 This is so that a disassembler can recognize the jal
1342 instruction.
1343
1344 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1345 instruction stored as two 16-bit values. The addend A is the
1346 contents of the targ26 field. The calculation is the same as
1347 R_MIPS_26. When storing the calculated value, reorder the
1348 immediate value as shown above, and don't forget to store the
1349 value as two 16-bit values.
1350
1351 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1352 defined as
1353
1354 big-endian:
1355 +--------+----------------------+
1356 | | |
1357 | | targ26-16 |
1358 |31 26|25 0|
1359 +--------+----------------------+
1360
1361 little-endian:
1362 +----------+------+-------------+
1363 | | | |
1364 | sub1 | | sub2 |
1365 |0 9|10 15|16 31|
1366 +----------+--------------------+
1367 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1368 ((sub1 << 16) | sub2)).
1369
1370 When producing a relocatable object file, the calculation is
1371 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1372 When producing a fully linked file, the calculation is
1373 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1374 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1375
738e5348
RS
1376 The table below lists the other MIPS16 instruction relocations.
1377 Each one is calculated in the same way as the non-MIPS16 relocation
1378 given on the right, but using the extended MIPS16 layout of 16-bit
1379 immediate fields:
1380
1381 R_MIPS16_GPREL R_MIPS_GPREL16
1382 R_MIPS16_GOT16 R_MIPS_GOT16
1383 R_MIPS16_CALL16 R_MIPS_CALL16
1384 R_MIPS16_HI16 R_MIPS_HI16
1385 R_MIPS16_LO16 R_MIPS_LO16
1386
1387 A typical instruction will have a format like this:
d6f16593
MR
1388
1389 +--------------+--------------------------------+
1390 | EXTEND | Imm 10:5 | Imm 15:11 |
1391 +--------------+--------------------------------+
1392 | Major | rx | ry | Imm 4:0 |
1393 +--------------+--------------------------------+
1394
1395 EXTEND is the five bit value 11110. Major is the instruction
1396 opcode.
1397
738e5348
RS
1398 All we need to do here is shuffle the bits appropriately.
1399 As above, the two 16-bit halves must be swapped on a
1400 little-endian system. */
1401
1402static inline bfd_boolean
1403mips16_reloc_p (int r_type)
1404{
1405 switch (r_type)
1406 {
1407 case R_MIPS16_26:
1408 case R_MIPS16_GPREL:
1409 case R_MIPS16_GOT16:
1410 case R_MIPS16_CALL16:
1411 case R_MIPS16_HI16:
1412 case R_MIPS16_LO16:
1413 return TRUE;
1414
1415 default:
1416 return FALSE;
1417 }
1418}
1419
1420static inline bfd_boolean
1421got16_reloc_p (int r_type)
1422{
1423 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1424}
1425
1426static inline bfd_boolean
1427call16_reloc_p (int r_type)
1428{
1429 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1430}
1431
1432static inline bfd_boolean
1433hi16_reloc_p (int r_type)
1434{
1435 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1436}
d6f16593 1437
738e5348
RS
1438static inline bfd_boolean
1439lo16_reloc_p (int r_type)
1440{
1441 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1442}
1443
1444static inline bfd_boolean
1445mips16_call_reloc_p (int r_type)
1446{
1447 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1448}
d6f16593 1449
d6f16593
MR
1450void
1451_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1452 bfd_boolean jal_shuffle, bfd_byte *data)
1453{
1454 bfd_vma extend, insn, val;
1455
738e5348 1456 if (!mips16_reloc_p (r_type))
d6f16593
MR
1457 return;
1458
1459 /* Pick up the mips16 extend instruction and the real instruction. */
1460 extend = bfd_get_16 (abfd, data);
1461 insn = bfd_get_16 (abfd, data + 2);
1462 if (r_type == R_MIPS16_26)
1463 {
1464 if (jal_shuffle)
1465 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1466 | ((extend & 0x1f) << 21) | insn;
1467 else
1468 val = extend << 16 | insn;
1469 }
1470 else
1471 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1472 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1473 bfd_put_32 (abfd, val, data);
1474}
1475
1476void
1477_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1478 bfd_boolean jal_shuffle, bfd_byte *data)
1479{
1480 bfd_vma extend, insn, val;
1481
738e5348 1482 if (!mips16_reloc_p (r_type))
d6f16593
MR
1483 return;
1484
1485 val = bfd_get_32 (abfd, data);
1486 if (r_type == R_MIPS16_26)
1487 {
1488 if (jal_shuffle)
1489 {
1490 insn = val & 0xffff;
1491 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1492 | ((val >> 21) & 0x1f);
1493 }
1494 else
1495 {
1496 insn = val & 0xffff;
1497 extend = val >> 16;
1498 }
1499 }
1500 else
1501 {
1502 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1503 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1504 }
1505 bfd_put_16 (abfd, insn, data + 2);
1506 bfd_put_16 (abfd, extend, data);
1507}
1508
b49e97c9 1509bfd_reloc_status_type
9719ad41
RS
1510_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1511 arelent *reloc_entry, asection *input_section,
1512 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1513{
1514 bfd_vma relocation;
a7ebbfdf 1515 bfd_signed_vma val;
30ac9238 1516 bfd_reloc_status_type status;
b49e97c9
TS
1517
1518 if (bfd_is_com_section (symbol->section))
1519 relocation = 0;
1520 else
1521 relocation = symbol->value;
1522
1523 relocation += symbol->section->output_section->vma;
1524 relocation += symbol->section->output_offset;
1525
07515404 1526 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1527 return bfd_reloc_outofrange;
1528
b49e97c9 1529 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1530 val = reloc_entry->addend;
1531
30ac9238 1532 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1533
b49e97c9 1534 /* Adjust val for the final section location and GP value. If we
1049f94e 1535 are producing relocatable output, we don't want to do this for
b49e97c9 1536 an external symbol. */
1049f94e 1537 if (! relocatable
b49e97c9
TS
1538 || (symbol->flags & BSF_SECTION_SYM) != 0)
1539 val += relocation - gp;
1540
a7ebbfdf
TS
1541 if (reloc_entry->howto->partial_inplace)
1542 {
30ac9238
RS
1543 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1544 (bfd_byte *) data
1545 + reloc_entry->address);
1546 if (status != bfd_reloc_ok)
1547 return status;
a7ebbfdf
TS
1548 }
1549 else
1550 reloc_entry->addend = val;
b49e97c9 1551
1049f94e 1552 if (relocatable)
b49e97c9 1553 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1554
1555 return bfd_reloc_ok;
1556}
1557
1558/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1559 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1560 that contains the relocation field and DATA points to the start of
1561 INPUT_SECTION. */
1562
1563struct mips_hi16
1564{
1565 struct mips_hi16 *next;
1566 bfd_byte *data;
1567 asection *input_section;
1568 arelent rel;
1569};
1570
1571/* FIXME: This should not be a static variable. */
1572
1573static struct mips_hi16 *mips_hi16_list;
1574
1575/* A howto special_function for REL *HI16 relocations. We can only
1576 calculate the correct value once we've seen the partnering
1577 *LO16 relocation, so just save the information for later.
1578
1579 The ABI requires that the *LO16 immediately follow the *HI16.
1580 However, as a GNU extension, we permit an arbitrary number of
1581 *HI16s to be associated with a single *LO16. This significantly
1582 simplies the relocation handling in gcc. */
1583
1584bfd_reloc_status_type
1585_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1586 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1587 asection *input_section, bfd *output_bfd,
1588 char **error_message ATTRIBUTE_UNUSED)
1589{
1590 struct mips_hi16 *n;
1591
07515404 1592 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1593 return bfd_reloc_outofrange;
1594
1595 n = bfd_malloc (sizeof *n);
1596 if (n == NULL)
1597 return bfd_reloc_outofrange;
1598
1599 n->next = mips_hi16_list;
1600 n->data = data;
1601 n->input_section = input_section;
1602 n->rel = *reloc_entry;
1603 mips_hi16_list = n;
1604
1605 if (output_bfd != NULL)
1606 reloc_entry->address += input_section->output_offset;
1607
1608 return bfd_reloc_ok;
1609}
1610
738e5348 1611/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
1612 like any other 16-bit relocation when applied to global symbols, but is
1613 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1614
1615bfd_reloc_status_type
1616_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1617 void *data, asection *input_section,
1618 bfd *output_bfd, char **error_message)
1619{
1620 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1621 || bfd_is_und_section (bfd_get_section (symbol))
1622 || bfd_is_com_section (bfd_get_section (symbol)))
1623 /* The relocation is against a global symbol. */
1624 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1625 input_section, output_bfd,
1626 error_message);
1627
1628 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1629 input_section, output_bfd, error_message);
1630}
1631
1632/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1633 is a straightforward 16 bit inplace relocation, but we must deal with
1634 any partnering high-part relocations as well. */
1635
1636bfd_reloc_status_type
1637_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1638 void *data, asection *input_section,
1639 bfd *output_bfd, char **error_message)
1640{
1641 bfd_vma vallo;
d6f16593 1642 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1643
07515404 1644 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1645 return bfd_reloc_outofrange;
1646
d6f16593
MR
1647 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1648 location);
1649 vallo = bfd_get_32 (abfd, location);
1650 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1651 location);
1652
30ac9238
RS
1653 while (mips_hi16_list != NULL)
1654 {
1655 bfd_reloc_status_type ret;
1656 struct mips_hi16 *hi;
1657
1658 hi = mips_hi16_list;
1659
738e5348
RS
1660 /* R_MIPS*_GOT16 relocations are something of a special case. We
1661 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
1662 relocation (with a rightshift of 16). However, since GOT16
1663 relocations can also be used with global symbols, their howto
1664 has a rightshift of 0. */
1665 if (hi->rel.howto->type == R_MIPS_GOT16)
1666 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
1667 else if (hi->rel.howto->type == R_MIPS16_GOT16)
1668 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
30ac9238
RS
1669
1670 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1671 carry or borrow will induce a change of +1 or -1 in the high part. */
1672 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1673
30ac9238
RS
1674 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1675 hi->input_section, output_bfd,
1676 error_message);
1677 if (ret != bfd_reloc_ok)
1678 return ret;
1679
1680 mips_hi16_list = hi->next;
1681 free (hi);
1682 }
1683
1684 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1685 input_section, output_bfd,
1686 error_message);
1687}
1688
1689/* A generic howto special_function. This calculates and installs the
1690 relocation itself, thus avoiding the oft-discussed problems in
1691 bfd_perform_relocation and bfd_install_relocation. */
1692
1693bfd_reloc_status_type
1694_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1695 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1696 asection *input_section, bfd *output_bfd,
1697 char **error_message ATTRIBUTE_UNUSED)
1698{
1699 bfd_signed_vma val;
1700 bfd_reloc_status_type status;
1701 bfd_boolean relocatable;
1702
1703 relocatable = (output_bfd != NULL);
1704
07515404 1705 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1706 return bfd_reloc_outofrange;
1707
1708 /* Build up the field adjustment in VAL. */
1709 val = 0;
1710 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1711 {
1712 /* Either we're calculating the final field value or we have a
1713 relocation against a section symbol. Add in the section's
1714 offset or address. */
1715 val += symbol->section->output_section->vma;
1716 val += symbol->section->output_offset;
1717 }
1718
1719 if (!relocatable)
1720 {
1721 /* We're calculating the final field value. Add in the symbol's value
1722 and, if pc-relative, subtract the address of the field itself. */
1723 val += symbol->value;
1724 if (reloc_entry->howto->pc_relative)
1725 {
1726 val -= input_section->output_section->vma;
1727 val -= input_section->output_offset;
1728 val -= reloc_entry->address;
1729 }
1730 }
1731
1732 /* VAL is now the final adjustment. If we're keeping this relocation
1733 in the output file, and if the relocation uses a separate addend,
1734 we just need to add VAL to that addend. Otherwise we need to add
1735 VAL to the relocation field itself. */
1736 if (relocatable && !reloc_entry->howto->partial_inplace)
1737 reloc_entry->addend += val;
1738 else
1739 {
d6f16593
MR
1740 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1741
30ac9238
RS
1742 /* Add in the separate addend, if any. */
1743 val += reloc_entry->addend;
1744
1745 /* Add VAL to the relocation field. */
d6f16593
MR
1746 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1747 location);
30ac9238 1748 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1749 location);
1750 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1751 location);
1752
30ac9238
RS
1753 if (status != bfd_reloc_ok)
1754 return status;
1755 }
1756
1757 if (relocatable)
1758 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1759
1760 return bfd_reloc_ok;
1761}
1762\f
1763/* Swap an entry in a .gptab section. Note that these routines rely
1764 on the equivalence of the two elements of the union. */
1765
1766static void
9719ad41
RS
1767bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1768 Elf32_gptab *in)
b49e97c9
TS
1769{
1770 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1771 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1772}
1773
1774static void
9719ad41
RS
1775bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1776 Elf32_External_gptab *ex)
b49e97c9
TS
1777{
1778 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1779 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1780}
1781
1782static void
9719ad41
RS
1783bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1784 Elf32_External_compact_rel *ex)
b49e97c9
TS
1785{
1786 H_PUT_32 (abfd, in->id1, ex->id1);
1787 H_PUT_32 (abfd, in->num, ex->num);
1788 H_PUT_32 (abfd, in->id2, ex->id2);
1789 H_PUT_32 (abfd, in->offset, ex->offset);
1790 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1791 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1792}
1793
1794static void
9719ad41
RS
1795bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1796 Elf32_External_crinfo *ex)
b49e97c9
TS
1797{
1798 unsigned long l;
1799
1800 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1801 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1802 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1803 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1804 H_PUT_32 (abfd, l, ex->info);
1805 H_PUT_32 (abfd, in->konst, ex->konst);
1806 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1807}
b49e97c9
TS
1808\f
1809/* A .reginfo section holds a single Elf32_RegInfo structure. These
1810 routines swap this structure in and out. They are used outside of
1811 BFD, so they are globally visible. */
1812
1813void
9719ad41
RS
1814bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1815 Elf32_RegInfo *in)
b49e97c9
TS
1816{
1817 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1818 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1819 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1820 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1821 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1822 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1823}
1824
1825void
9719ad41
RS
1826bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1827 Elf32_External_RegInfo *ex)
b49e97c9
TS
1828{
1829 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1830 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1831 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1832 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1833 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1834 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1835}
1836
1837/* In the 64 bit ABI, the .MIPS.options section holds register
1838 information in an Elf64_Reginfo structure. These routines swap
1839 them in and out. They are globally visible because they are used
1840 outside of BFD. These routines are here so that gas can call them
1841 without worrying about whether the 64 bit ABI has been included. */
1842
1843void
9719ad41
RS
1844bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1845 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1846{
1847 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1848 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1849 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1850 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1851 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1852 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1853 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1854}
1855
1856void
9719ad41
RS
1857bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1858 Elf64_External_RegInfo *ex)
b49e97c9
TS
1859{
1860 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1861 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1862 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1863 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1864 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1865 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1866 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1867}
1868
1869/* Swap in an options header. */
1870
1871void
9719ad41
RS
1872bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1873 Elf_Internal_Options *in)
b49e97c9
TS
1874{
1875 in->kind = H_GET_8 (abfd, ex->kind);
1876 in->size = H_GET_8 (abfd, ex->size);
1877 in->section = H_GET_16 (abfd, ex->section);
1878 in->info = H_GET_32 (abfd, ex->info);
1879}
1880
1881/* Swap out an options header. */
1882
1883void
9719ad41
RS
1884bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1885 Elf_External_Options *ex)
b49e97c9
TS
1886{
1887 H_PUT_8 (abfd, in->kind, ex->kind);
1888 H_PUT_8 (abfd, in->size, ex->size);
1889 H_PUT_16 (abfd, in->section, ex->section);
1890 H_PUT_32 (abfd, in->info, ex->info);
1891}
1892\f
1893/* This function is called via qsort() to sort the dynamic relocation
1894 entries by increasing r_symndx value. */
1895
1896static int
9719ad41 1897sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1898{
947216bf
AM
1899 Elf_Internal_Rela int_reloc1;
1900 Elf_Internal_Rela int_reloc2;
6870500c 1901 int diff;
b49e97c9 1902
947216bf
AM
1903 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1904 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1905
6870500c
RS
1906 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1907 if (diff != 0)
1908 return diff;
1909
1910 if (int_reloc1.r_offset < int_reloc2.r_offset)
1911 return -1;
1912 if (int_reloc1.r_offset > int_reloc2.r_offset)
1913 return 1;
1914 return 0;
b49e97c9
TS
1915}
1916
f4416af6
AO
1917/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1918
1919static int
7e3102a7
AM
1920sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1921 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1922{
7e3102a7 1923#ifdef BFD64
f4416af6
AO
1924 Elf_Internal_Rela int_reloc1[3];
1925 Elf_Internal_Rela int_reloc2[3];
1926
1927 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1928 (reldyn_sorting_bfd, arg1, int_reloc1);
1929 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1930 (reldyn_sorting_bfd, arg2, int_reloc2);
1931
6870500c
RS
1932 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1933 return -1;
1934 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1935 return 1;
1936
1937 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1938 return -1;
1939 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1940 return 1;
1941 return 0;
7e3102a7
AM
1942#else
1943 abort ();
1944#endif
f4416af6
AO
1945}
1946
1947
b49e97c9
TS
1948/* This routine is used to write out ECOFF debugging external symbol
1949 information. It is called via mips_elf_link_hash_traverse. The
1950 ECOFF external symbol information must match the ELF external
1951 symbol information. Unfortunately, at this point we don't know
1952 whether a symbol is required by reloc information, so the two
1953 tables may wind up being different. We must sort out the external
1954 symbol information before we can set the final size of the .mdebug
1955 section, and we must set the size of the .mdebug section before we
1956 can relocate any sections, and we can't know which symbols are
1957 required by relocation until we relocate the sections.
1958 Fortunately, it is relatively unlikely that any symbol will be
1959 stripped but required by a reloc. In particular, it can not happen
1960 when generating a final executable. */
1961
b34976b6 1962static bfd_boolean
9719ad41 1963mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1964{
9719ad41 1965 struct extsym_info *einfo = data;
b34976b6 1966 bfd_boolean strip;
b49e97c9
TS
1967 asection *sec, *output_section;
1968
1969 if (h->root.root.type == bfd_link_hash_warning)
1970 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1971
1972 if (h->root.indx == -2)
b34976b6 1973 strip = FALSE;
f5385ebf 1974 else if ((h->root.def_dynamic
77cfaee6
AM
1975 || h->root.ref_dynamic
1976 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1977 && !h->root.def_regular
1978 && !h->root.ref_regular)
b34976b6 1979 strip = TRUE;
b49e97c9
TS
1980 else if (einfo->info->strip == strip_all
1981 || (einfo->info->strip == strip_some
1982 && bfd_hash_lookup (einfo->info->keep_hash,
1983 h->root.root.root.string,
b34976b6
AM
1984 FALSE, FALSE) == NULL))
1985 strip = TRUE;
b49e97c9 1986 else
b34976b6 1987 strip = FALSE;
b49e97c9
TS
1988
1989 if (strip)
b34976b6 1990 return TRUE;
b49e97c9
TS
1991
1992 if (h->esym.ifd == -2)
1993 {
1994 h->esym.jmptbl = 0;
1995 h->esym.cobol_main = 0;
1996 h->esym.weakext = 0;
1997 h->esym.reserved = 0;
1998 h->esym.ifd = ifdNil;
1999 h->esym.asym.value = 0;
2000 h->esym.asym.st = stGlobal;
2001
2002 if (h->root.root.type == bfd_link_hash_undefined
2003 || h->root.root.type == bfd_link_hash_undefweak)
2004 {
2005 const char *name;
2006
2007 /* Use undefined class. Also, set class and type for some
2008 special symbols. */
2009 name = h->root.root.root.string;
2010 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2011 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2012 {
2013 h->esym.asym.sc = scData;
2014 h->esym.asym.st = stLabel;
2015 h->esym.asym.value = 0;
2016 }
2017 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2018 {
2019 h->esym.asym.sc = scAbs;
2020 h->esym.asym.st = stLabel;
2021 h->esym.asym.value =
2022 mips_elf_hash_table (einfo->info)->procedure_count;
2023 }
4a14403c 2024 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2025 {
2026 h->esym.asym.sc = scAbs;
2027 h->esym.asym.st = stLabel;
2028 h->esym.asym.value = elf_gp (einfo->abfd);
2029 }
2030 else
2031 h->esym.asym.sc = scUndefined;
2032 }
2033 else if (h->root.root.type != bfd_link_hash_defined
2034 && h->root.root.type != bfd_link_hash_defweak)
2035 h->esym.asym.sc = scAbs;
2036 else
2037 {
2038 const char *name;
2039
2040 sec = h->root.root.u.def.section;
2041 output_section = sec->output_section;
2042
2043 /* When making a shared library and symbol h is the one from
2044 the another shared library, OUTPUT_SECTION may be null. */
2045 if (output_section == NULL)
2046 h->esym.asym.sc = scUndefined;
2047 else
2048 {
2049 name = bfd_section_name (output_section->owner, output_section);
2050
2051 if (strcmp (name, ".text") == 0)
2052 h->esym.asym.sc = scText;
2053 else if (strcmp (name, ".data") == 0)
2054 h->esym.asym.sc = scData;
2055 else if (strcmp (name, ".sdata") == 0)
2056 h->esym.asym.sc = scSData;
2057 else if (strcmp (name, ".rodata") == 0
2058 || strcmp (name, ".rdata") == 0)
2059 h->esym.asym.sc = scRData;
2060 else if (strcmp (name, ".bss") == 0)
2061 h->esym.asym.sc = scBss;
2062 else if (strcmp (name, ".sbss") == 0)
2063 h->esym.asym.sc = scSBss;
2064 else if (strcmp (name, ".init") == 0)
2065 h->esym.asym.sc = scInit;
2066 else if (strcmp (name, ".fini") == 0)
2067 h->esym.asym.sc = scFini;
2068 else
2069 h->esym.asym.sc = scAbs;
2070 }
2071 }
2072
2073 h->esym.asym.reserved = 0;
2074 h->esym.asym.index = indexNil;
2075 }
2076
2077 if (h->root.root.type == bfd_link_hash_common)
2078 h->esym.asym.value = h->root.root.u.c.size;
2079 else if (h->root.root.type == bfd_link_hash_defined
2080 || h->root.root.type == bfd_link_hash_defweak)
2081 {
2082 if (h->esym.asym.sc == scCommon)
2083 h->esym.asym.sc = scBss;
2084 else if (h->esym.asym.sc == scSCommon)
2085 h->esym.asym.sc = scSBss;
2086
2087 sec = h->root.root.u.def.section;
2088 output_section = sec->output_section;
2089 if (output_section != NULL)
2090 h->esym.asym.value = (h->root.root.u.def.value
2091 + sec->output_offset
2092 + output_section->vma);
2093 else
2094 h->esym.asym.value = 0;
2095 }
33bb52fb 2096 else
b49e97c9
TS
2097 {
2098 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2099
2100 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2101 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2102
33bb52fb 2103 if (hd->needs_lazy_stub)
b49e97c9
TS
2104 {
2105 /* Set type and value for a symbol with a function stub. */
2106 h->esym.asym.st = stProc;
2107 sec = hd->root.root.u.def.section;
2108 if (sec == NULL)
2109 h->esym.asym.value = 0;
2110 else
2111 {
2112 output_section = sec->output_section;
2113 if (output_section != NULL)
2114 h->esym.asym.value = (hd->root.plt.offset
2115 + sec->output_offset
2116 + output_section->vma);
2117 else
2118 h->esym.asym.value = 0;
2119 }
b49e97c9
TS
2120 }
2121 }
2122
2123 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2124 h->root.root.root.string,
2125 &h->esym))
2126 {
b34976b6
AM
2127 einfo->failed = TRUE;
2128 return FALSE;
b49e97c9
TS
2129 }
2130
b34976b6 2131 return TRUE;
b49e97c9
TS
2132}
2133
2134/* A comparison routine used to sort .gptab entries. */
2135
2136static int
9719ad41 2137gptab_compare (const void *p1, const void *p2)
b49e97c9 2138{
9719ad41
RS
2139 const Elf32_gptab *a1 = p1;
2140 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2141
2142 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2143}
2144\f
b15e6682 2145/* Functions to manage the got entry hash table. */
f4416af6
AO
2146
2147/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2148 hash number. */
2149
2150static INLINE hashval_t
9719ad41 2151mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2152{
2153#ifdef BFD64
2154 return addr + (addr >> 32);
2155#else
2156 return addr;
2157#endif
2158}
2159
2160/* got_entries only match if they're identical, except for gotidx, so
2161 use all fields to compute the hash, and compare the appropriate
2162 union members. */
2163
b15e6682 2164static hashval_t
9719ad41 2165mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2166{
2167 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2168
38985a1c 2169 return entry->symndx
0f20cc35 2170 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2171 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2172 : entry->abfd->id
2173 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2174 : entry->d.h->root.root.root.hash));
b15e6682
AO
2175}
2176
2177static int
9719ad41 2178mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2179{
2180 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2181 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2182
0f20cc35
DJ
2183 /* An LDM entry can only match another LDM entry. */
2184 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2185 return 0;
2186
b15e6682 2187 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2188 && (! e1->abfd ? e1->d.address == e2->d.address
2189 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2190 : e1->d.h == e2->d.h);
2191}
2192
2193/* multi_got_entries are still a match in the case of global objects,
2194 even if the input bfd in which they're referenced differs, so the
2195 hash computation and compare functions are adjusted
2196 accordingly. */
2197
2198static hashval_t
9719ad41 2199mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2200{
2201 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2202
2203 return entry->symndx
2204 + (! entry->abfd
2205 ? mips_elf_hash_bfd_vma (entry->d.address)
2206 : entry->symndx >= 0
0f20cc35
DJ
2207 ? ((entry->tls_type & GOT_TLS_LDM)
2208 ? (GOT_TLS_LDM << 17)
2209 : (entry->abfd->id
2210 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2211 : entry->d.h->root.root.root.hash);
2212}
2213
2214static int
9719ad41 2215mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2216{
2217 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2218 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2219
0f20cc35
DJ
2220 /* Any two LDM entries match. */
2221 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2222 return 1;
2223
2224 /* Nothing else matches an LDM entry. */
2225 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2226 return 0;
2227
f4416af6
AO
2228 return e1->symndx == e2->symndx
2229 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2230 : e1->abfd == NULL || e2->abfd == NULL
2231 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2232 : e1->d.h == e2->d.h);
b15e6682 2233}
c224138d
RS
2234
2235static hashval_t
2236mips_got_page_entry_hash (const void *entry_)
2237{
2238 const struct mips_got_page_entry *entry;
2239
2240 entry = (const struct mips_got_page_entry *) entry_;
2241 return entry->abfd->id + entry->symndx;
2242}
2243
2244static int
2245mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2246{
2247 const struct mips_got_page_entry *entry1, *entry2;
2248
2249 entry1 = (const struct mips_got_page_entry *) entry1_;
2250 entry2 = (const struct mips_got_page_entry *) entry2_;
2251 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2252}
b15e6682 2253\f
0a44bf69
RS
2254/* Return the dynamic relocation section. If it doesn't exist, try to
2255 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2256 if creation fails. */
f4416af6
AO
2257
2258static asection *
0a44bf69 2259mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2260{
0a44bf69 2261 const char *dname;
f4416af6 2262 asection *sreloc;
0a44bf69 2263 bfd *dynobj;
f4416af6 2264
0a44bf69
RS
2265 dname = MIPS_ELF_REL_DYN_NAME (info);
2266 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2267 sreloc = bfd_get_section_by_name (dynobj, dname);
2268 if (sreloc == NULL && create_p)
2269 {
3496cb2a
L
2270 sreloc = bfd_make_section_with_flags (dynobj, dname,
2271 (SEC_ALLOC
2272 | SEC_LOAD
2273 | SEC_HAS_CONTENTS
2274 | SEC_IN_MEMORY
2275 | SEC_LINKER_CREATED
2276 | SEC_READONLY));
f4416af6 2277 if (sreloc == NULL
f4416af6 2278 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2279 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2280 return NULL;
2281 }
2282 return sreloc;
2283}
2284
0f20cc35
DJ
2285/* Count the number of relocations needed for a TLS GOT entry, with
2286 access types from TLS_TYPE, and symbol H (or a local symbol if H
2287 is NULL). */
2288
2289static int
2290mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2291 struct elf_link_hash_entry *h)
2292{
2293 int indx = 0;
2294 int ret = 0;
2295 bfd_boolean need_relocs = FALSE;
2296 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2297
2298 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2299 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2300 indx = h->dynindx;
2301
2302 if ((info->shared || indx != 0)
2303 && (h == NULL
2304 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2305 || h->root.type != bfd_link_hash_undefweak))
2306 need_relocs = TRUE;
2307
2308 if (!need_relocs)
2309 return FALSE;
2310
2311 if (tls_type & GOT_TLS_GD)
2312 {
2313 ret++;
2314 if (indx != 0)
2315 ret++;
2316 }
2317
2318 if (tls_type & GOT_TLS_IE)
2319 ret++;
2320
2321 if ((tls_type & GOT_TLS_LDM) && info->shared)
2322 ret++;
2323
2324 return ret;
2325}
2326
2327/* Count the number of TLS relocations required for the GOT entry in
2328 ARG1, if it describes a local symbol. */
2329
2330static int
2331mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2332{
2333 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2334 struct mips_elf_count_tls_arg *arg = arg2;
2335
2336 if (entry->abfd != NULL && entry->symndx != -1)
2337 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2338
2339 return 1;
2340}
2341
2342/* Count the number of TLS GOT entries required for the global (or
2343 forced-local) symbol in ARG1. */
2344
2345static int
2346mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2347{
2348 struct mips_elf_link_hash_entry *hm
2349 = (struct mips_elf_link_hash_entry *) arg1;
2350 struct mips_elf_count_tls_arg *arg = arg2;
2351
2352 if (hm->tls_type & GOT_TLS_GD)
2353 arg->needed += 2;
2354 if (hm->tls_type & GOT_TLS_IE)
2355 arg->needed += 1;
2356
2357 return 1;
2358}
2359
2360/* Count the number of TLS relocations required for the global (or
2361 forced-local) symbol in ARG1. */
2362
2363static int
2364mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2365{
2366 struct mips_elf_link_hash_entry *hm
2367 = (struct mips_elf_link_hash_entry *) arg1;
2368 struct mips_elf_count_tls_arg *arg = arg2;
2369
2370 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2371
2372 return 1;
2373}
2374
2375/* Output a simple dynamic relocation into SRELOC. */
2376
2377static void
2378mips_elf_output_dynamic_relocation (bfd *output_bfd,
2379 asection *sreloc,
2380 unsigned long indx,
2381 int r_type,
2382 bfd_vma offset)
2383{
2384 Elf_Internal_Rela rel[3];
2385
2386 memset (rel, 0, sizeof (rel));
2387
2388 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2389 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2390
2391 if (ABI_64_P (output_bfd))
2392 {
2393 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2394 (output_bfd, &rel[0],
2395 (sreloc->contents
2396 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2397 }
2398 else
2399 bfd_elf32_swap_reloc_out
2400 (output_bfd, &rel[0],
2401 (sreloc->contents
2402 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2403 ++sreloc->reloc_count;
2404}
2405
2406/* Initialize a set of TLS GOT entries for one symbol. */
2407
2408static void
2409mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2410 unsigned char *tls_type_p,
2411 struct bfd_link_info *info,
2412 struct mips_elf_link_hash_entry *h,
2413 bfd_vma value)
2414{
23cc69b6 2415 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
2416 int indx;
2417 asection *sreloc, *sgot;
2418 bfd_vma offset, offset2;
0f20cc35
DJ
2419 bfd_boolean need_relocs = FALSE;
2420
23cc69b6
RS
2421 htab = mips_elf_hash_table (info);
2422 sgot = htab->sgot;
0f20cc35
DJ
2423
2424 indx = 0;
2425 if (h != NULL)
2426 {
2427 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2428
2429 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2430 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2431 indx = h->root.dynindx;
2432 }
2433
2434 if (*tls_type_p & GOT_TLS_DONE)
2435 return;
2436
2437 if ((info->shared || indx != 0)
2438 && (h == NULL
2439 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2440 || h->root.type != bfd_link_hash_undefweak))
2441 need_relocs = TRUE;
2442
2443 /* MINUS_ONE means the symbol is not defined in this object. It may not
2444 be defined at all; assume that the value doesn't matter in that
2445 case. Otherwise complain if we would use the value. */
2446 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2447 || h->root.root.type == bfd_link_hash_undefweak);
2448
2449 /* Emit necessary relocations. */
0a44bf69 2450 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2451
2452 /* General Dynamic. */
2453 if (*tls_type_p & GOT_TLS_GD)
2454 {
2455 offset = got_offset;
2456 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2457
2458 if (need_relocs)
2459 {
2460 mips_elf_output_dynamic_relocation
2461 (abfd, sreloc, indx,
2462 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2463 sgot->output_offset + sgot->output_section->vma + offset);
2464
2465 if (indx)
2466 mips_elf_output_dynamic_relocation
2467 (abfd, sreloc, indx,
2468 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2469 sgot->output_offset + sgot->output_section->vma + offset2);
2470 else
2471 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2472 sgot->contents + offset2);
2473 }
2474 else
2475 {
2476 MIPS_ELF_PUT_WORD (abfd, 1,
2477 sgot->contents + offset);
2478 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2479 sgot->contents + offset2);
2480 }
2481
2482 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2483 }
2484
2485 /* Initial Exec model. */
2486 if (*tls_type_p & GOT_TLS_IE)
2487 {
2488 offset = got_offset;
2489
2490 if (need_relocs)
2491 {
2492 if (indx == 0)
2493 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2494 sgot->contents + offset);
2495 else
2496 MIPS_ELF_PUT_WORD (abfd, 0,
2497 sgot->contents + offset);
2498
2499 mips_elf_output_dynamic_relocation
2500 (abfd, sreloc, indx,
2501 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2502 sgot->output_offset + sgot->output_section->vma + offset);
2503 }
2504 else
2505 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2506 sgot->contents + offset);
2507 }
2508
2509 if (*tls_type_p & GOT_TLS_LDM)
2510 {
2511 /* The initial offset is zero, and the LD offsets will include the
2512 bias by DTP_OFFSET. */
2513 MIPS_ELF_PUT_WORD (abfd, 0,
2514 sgot->contents + got_offset
2515 + MIPS_ELF_GOT_SIZE (abfd));
2516
2517 if (!info->shared)
2518 MIPS_ELF_PUT_WORD (abfd, 1,
2519 sgot->contents + got_offset);
2520 else
2521 mips_elf_output_dynamic_relocation
2522 (abfd, sreloc, indx,
2523 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2524 sgot->output_offset + sgot->output_section->vma + got_offset);
2525 }
2526
2527 *tls_type_p |= GOT_TLS_DONE;
2528}
2529
2530/* Return the GOT index to use for a relocation of type R_TYPE against
2531 a symbol accessed using TLS_TYPE models. The GOT entries for this
2532 symbol in this GOT start at GOT_INDEX. This function initializes the
2533 GOT entries and corresponding relocations. */
2534
2535static bfd_vma
2536mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2537 int r_type, struct bfd_link_info *info,
2538 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2539{
2540 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2541 || r_type == R_MIPS_TLS_LDM);
2542
2543 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2544
2545 if (r_type == R_MIPS_TLS_GOTTPREL)
2546 {
2547 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2548 if (*tls_type & GOT_TLS_GD)
2549 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2550 else
2551 return got_index;
2552 }
2553
2554 if (r_type == R_MIPS_TLS_GD)
2555 {
2556 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2557 return got_index;
2558 }
2559
2560 if (r_type == R_MIPS_TLS_LDM)
2561 {
2562 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2563 return got_index;
2564 }
2565
2566 return got_index;
2567}
2568
0a44bf69
RS
2569/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2570 for global symbol H. .got.plt comes before the GOT, so the offset
2571 will be negative. */
2572
2573static bfd_vma
2574mips_elf_gotplt_index (struct bfd_link_info *info,
2575 struct elf_link_hash_entry *h)
2576{
2577 bfd_vma plt_index, got_address, got_value;
2578 struct mips_elf_link_hash_table *htab;
2579
2580 htab = mips_elf_hash_table (info);
2581 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2582
2583 /* Calculate the index of the symbol's PLT entry. */
2584 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2585
2586 /* Calculate the address of the associated .got.plt entry. */
2587 got_address = (htab->sgotplt->output_section->vma
2588 + htab->sgotplt->output_offset
2589 + plt_index * 4);
2590
2591 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2592 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2593 + htab->root.hgot->root.u.def.section->output_offset
2594 + htab->root.hgot->root.u.def.value);
2595
2596 return got_address - got_value;
2597}
2598
5c18022e 2599/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2600 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2601 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2602 offset can be found. */
b49e97c9
TS
2603
2604static bfd_vma
9719ad41 2605mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2606 bfd_vma value, unsigned long r_symndx,
0f20cc35 2607 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 2608{
a8028dd0 2609 struct mips_elf_link_hash_table *htab;
b15e6682 2610 struct mips_got_entry *entry;
b49e97c9 2611
a8028dd0
RS
2612 htab = mips_elf_hash_table (info);
2613 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
2614 r_symndx, h, r_type);
0f20cc35 2615 if (!entry)
b15e6682 2616 return MINUS_ONE;
0f20cc35
DJ
2617
2618 if (TLS_RELOC_P (r_type))
ead49a57 2619 {
a8028dd0 2620 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
2621 /* A type (3) entry in the single-GOT case. We use the symbol's
2622 hash table entry to track the index. */
2623 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2624 r_type, info, h, value);
2625 else
2626 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2627 r_type, info, h, value);
2628 }
0f20cc35
DJ
2629 else
2630 return entry->gotidx;
b49e97c9
TS
2631}
2632
2633/* Returns the GOT index for the global symbol indicated by H. */
2634
2635static bfd_vma
0f20cc35
DJ
2636mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2637 int r_type, struct bfd_link_info *info)
b49e97c9 2638{
a8028dd0 2639 struct mips_elf_link_hash_table *htab;
b49e97c9 2640 bfd_vma index;
f4416af6 2641 struct mips_got_info *g, *gg;
d0c7ff07 2642 long global_got_dynindx = 0;
b49e97c9 2643
a8028dd0
RS
2644 htab = mips_elf_hash_table (info);
2645 gg = g = htab->got_info;
f4416af6
AO
2646 if (g->bfd2got && ibfd)
2647 {
2648 struct mips_got_entry e, *p;
143d77c5 2649
f4416af6
AO
2650 BFD_ASSERT (h->dynindx >= 0);
2651
2652 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2653 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2654 {
2655 e.abfd = ibfd;
2656 e.symndx = -1;
2657 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2658 e.tls_type = 0;
f4416af6 2659
9719ad41 2660 p = htab_find (g->got_entries, &e);
f4416af6
AO
2661
2662 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2663
2664 if (TLS_RELOC_P (r_type))
2665 {
2666 bfd_vma value = MINUS_ONE;
2667 if ((h->root.type == bfd_link_hash_defined
2668 || h->root.type == bfd_link_hash_defweak)
2669 && h->root.u.def.section->output_section)
2670 value = (h->root.u.def.value
2671 + h->root.u.def.section->output_offset
2672 + h->root.u.def.section->output_section->vma);
2673
2674 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2675 info, e.d.h, value);
2676 }
2677 else
2678 return p->gotidx;
f4416af6
AO
2679 }
2680 }
2681
2682 if (gg->global_gotsym != NULL)
2683 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2684
0f20cc35
DJ
2685 if (TLS_RELOC_P (r_type))
2686 {
2687 struct mips_elf_link_hash_entry *hm
2688 = (struct mips_elf_link_hash_entry *) h;
2689 bfd_vma value = MINUS_ONE;
2690
2691 if ((h->root.type == bfd_link_hash_defined
2692 || h->root.type == bfd_link_hash_defweak)
2693 && h->root.u.def.section->output_section)
2694 value = (h->root.u.def.value
2695 + h->root.u.def.section->output_offset
2696 + h->root.u.def.section->output_section->vma);
2697
2698 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2699 r_type, info, hm, value);
2700 }
2701 else
2702 {
2703 /* Once we determine the global GOT entry with the lowest dynamic
2704 symbol table index, we must put all dynamic symbols with greater
2705 indices into the GOT. That makes it easy to calculate the GOT
2706 offset. */
2707 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2708 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2709 * MIPS_ELF_GOT_SIZE (abfd));
2710 }
a8028dd0 2711 BFD_ASSERT (index < htab->sgot->size);
b49e97c9
TS
2712
2713 return index;
2714}
2715
5c18022e
RS
2716/* Find a GOT page entry that points to within 32KB of VALUE. These
2717 entries are supposed to be placed at small offsets in the GOT, i.e.,
2718 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2719 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2720 offset of the GOT entry from VALUE. */
b49e97c9
TS
2721
2722static bfd_vma
9719ad41 2723mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2724 bfd_vma value, bfd_vma *offsetp)
b49e97c9 2725{
0a44bf69 2726 bfd_vma page, index;
b15e6682 2727 struct mips_got_entry *entry;
b49e97c9 2728
0a44bf69 2729 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
2730 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
2731 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2732
b15e6682
AO
2733 if (!entry)
2734 return MINUS_ONE;
143d77c5 2735
b15e6682 2736 index = entry->gotidx;
b49e97c9
TS
2737
2738 if (offsetp)
f4416af6 2739 *offsetp = value - entry->d.address;
b49e97c9
TS
2740
2741 return index;
2742}
2743
738e5348 2744/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
0a44bf69
RS
2745 EXTERNAL is true if the relocation was against a global symbol
2746 that has been forced local. */
b49e97c9
TS
2747
2748static bfd_vma
9719ad41 2749mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2750 bfd_vma value, bfd_boolean external)
b49e97c9 2751{
b15e6682 2752 struct mips_got_entry *entry;
b49e97c9 2753
0a44bf69
RS
2754 /* GOT16 relocations against local symbols are followed by a LO16
2755 relocation; those against global symbols are not. Thus if the
2756 symbol was originally local, the GOT16 relocation should load the
2757 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2758 if (! external)
0a44bf69 2759 value = mips_elf_high (value) << 16;
b49e97c9 2760
738e5348
RS
2761 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
2762 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
2763 same in all cases. */
a8028dd0
RS
2764 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
2765 NULL, R_MIPS_GOT16);
b15e6682
AO
2766 if (entry)
2767 return entry->gotidx;
2768 else
2769 return MINUS_ONE;
b49e97c9
TS
2770}
2771
2772/* Returns the offset for the entry at the INDEXth position
2773 in the GOT. */
2774
2775static bfd_vma
a8028dd0 2776mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
9719ad41 2777 bfd *input_bfd, bfd_vma index)
b49e97c9 2778{
a8028dd0 2779 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
2780 asection *sgot;
2781 bfd_vma gp;
2782
a8028dd0
RS
2783 htab = mips_elf_hash_table (info);
2784 sgot = htab->sgot;
f4416af6 2785 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 2786 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 2787
f4416af6 2788 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2789}
2790
0a44bf69
RS
2791/* Create and return a local GOT entry for VALUE, which was calculated
2792 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2793 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2794 instead. */
b49e97c9 2795
b15e6682 2796static struct mips_got_entry *
0a44bf69 2797mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 2798 bfd *ibfd, bfd_vma value,
5c18022e 2799 unsigned long r_symndx,
0f20cc35
DJ
2800 struct mips_elf_link_hash_entry *h,
2801 int r_type)
b49e97c9 2802{
b15e6682 2803 struct mips_got_entry entry, **loc;
f4416af6 2804 struct mips_got_info *g;
0a44bf69
RS
2805 struct mips_elf_link_hash_table *htab;
2806
2807 htab = mips_elf_hash_table (info);
b15e6682 2808
f4416af6
AO
2809 entry.abfd = NULL;
2810 entry.symndx = -1;
2811 entry.d.address = value;
0f20cc35 2812 entry.tls_type = 0;
f4416af6 2813
a8028dd0 2814 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
2815 if (g == NULL)
2816 {
a8028dd0 2817 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
2818 BFD_ASSERT (g != NULL);
2819 }
b15e6682 2820
0f20cc35
DJ
2821 /* We might have a symbol, H, if it has been forced local. Use the
2822 global entry then. It doesn't matter whether an entry is local
2823 or global for TLS, since the dynamic linker does not
2824 automatically relocate TLS GOT entries. */
a008ac03 2825 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2826 if (TLS_RELOC_P (r_type))
2827 {
2828 struct mips_got_entry *p;
2829
2830 entry.abfd = ibfd;
2831 if (r_type == R_MIPS_TLS_LDM)
2832 {
2833 entry.tls_type = GOT_TLS_LDM;
2834 entry.symndx = 0;
2835 entry.d.addend = 0;
2836 }
2837 else if (h == NULL)
2838 {
2839 entry.symndx = r_symndx;
2840 entry.d.addend = 0;
2841 }
2842 else
2843 entry.d.h = h;
2844
2845 p = (struct mips_got_entry *)
2846 htab_find (g->got_entries, &entry);
2847
2848 BFD_ASSERT (p);
2849 return p;
2850 }
2851
b15e6682
AO
2852 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2853 INSERT);
2854 if (*loc)
2855 return *loc;
143d77c5 2856
b15e6682 2857 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2858 entry.tls_type = 0;
b15e6682
AO
2859
2860 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2861
2862 if (! *loc)
2863 return NULL;
143d77c5 2864
b15e6682
AO
2865 memcpy (*loc, &entry, sizeof entry);
2866
8275b357 2867 if (g->assigned_gotno > g->local_gotno)
b49e97c9 2868 {
f4416af6 2869 (*loc)->gotidx = -1;
b49e97c9
TS
2870 /* We didn't allocate enough space in the GOT. */
2871 (*_bfd_error_handler)
2872 (_("not enough GOT space for local GOT entries"));
2873 bfd_set_error (bfd_error_bad_value);
b15e6682 2874 return NULL;
b49e97c9
TS
2875 }
2876
2877 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 2878 (htab->sgot->contents + entry.gotidx));
b15e6682 2879
5c18022e 2880 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2881 if (htab->is_vxworks)
2882 {
2883 Elf_Internal_Rela outrel;
5c18022e 2884 asection *s;
0a44bf69
RS
2885 bfd_byte *loc;
2886 bfd_vma got_address;
0a44bf69
RS
2887
2888 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
2889 got_address = (htab->sgot->output_section->vma
2890 + htab->sgot->output_offset
0a44bf69
RS
2891 + entry.gotidx);
2892
2893 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2894 outrel.r_offset = got_address;
5c18022e
RS
2895 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2896 outrel.r_addend = value;
0a44bf69
RS
2897 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2898 }
2899
b15e6682 2900 return *loc;
b49e97c9
TS
2901}
2902
d4596a51
RS
2903/* Return the number of dynamic section symbols required by OUTPUT_BFD.
2904 The number might be exact or a worst-case estimate, depending on how
2905 much information is available to elf_backend_omit_section_dynsym at
2906 the current linking stage. */
2907
2908static bfd_size_type
2909count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
2910{
2911 bfd_size_type count;
2912
2913 count = 0;
2914 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
2915 {
2916 asection *p;
2917 const struct elf_backend_data *bed;
2918
2919 bed = get_elf_backend_data (output_bfd);
2920 for (p = output_bfd->sections; p ; p = p->next)
2921 if ((p->flags & SEC_EXCLUDE) == 0
2922 && (p->flags & SEC_ALLOC) != 0
2923 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
2924 ++count;
2925 }
2926 return count;
2927}
2928
b49e97c9 2929/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 2930 appear towards the end. */
b49e97c9 2931
b34976b6 2932static bfd_boolean
d4596a51 2933mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 2934{
a8028dd0 2935 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
2936 struct mips_elf_hash_sort_data hsd;
2937 struct mips_got_info *g;
b49e97c9 2938
d4596a51
RS
2939 if (elf_hash_table (info)->dynsymcount == 0)
2940 return TRUE;
2941
a8028dd0
RS
2942 htab = mips_elf_hash_table (info);
2943 g = htab->got_info;
d4596a51
RS
2944 if (g == NULL)
2945 return TRUE;
f4416af6 2946
b49e97c9 2947 hsd.low = NULL;
23cc69b6
RS
2948 hsd.max_unref_got_dynindx
2949 = hsd.min_got_dynindx
2950 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 2951 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
2952 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2953 elf_hash_table (info)),
2954 mips_elf_sort_hash_table_f,
2955 &hsd);
2956
2957 /* There should have been enough room in the symbol table to
44c410de 2958 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2959 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
2960 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
2961 == elf_hash_table (info)->dynsymcount);
2962 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
2963 == g->global_gotno);
b49e97c9
TS
2964
2965 /* Now we know which dynamic symbol has the lowest dynamic symbol
2966 table index in the GOT. */
b49e97c9
TS
2967 g->global_gotsym = hsd.low;
2968
b34976b6 2969 return TRUE;
b49e97c9
TS
2970}
2971
2972/* If H needs a GOT entry, assign it the highest available dynamic
2973 index. Otherwise, assign it the lowest available dynamic
2974 index. */
2975
b34976b6 2976static bfd_boolean
9719ad41 2977mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2978{
9719ad41 2979 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2980
2981 if (h->root.root.type == bfd_link_hash_warning)
2982 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2983
2984 /* Symbols without dynamic symbol table entries aren't interesting
2985 at all. */
2986 if (h->root.dynindx == -1)
b34976b6 2987 return TRUE;
b49e97c9 2988
634835ae 2989 switch (h->global_got_area)
f4416af6 2990 {
634835ae
RS
2991 case GGA_NONE:
2992 h->root.dynindx = hsd->max_non_got_dynindx++;
2993 break;
0f20cc35 2994
634835ae 2995 case GGA_NORMAL:
0f20cc35
DJ
2996 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2997
b49e97c9
TS
2998 h->root.dynindx = --hsd->min_got_dynindx;
2999 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3000 break;
3001
3002 case GGA_RELOC_ONLY:
3003 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3004
3005 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3006 hsd->low = (struct elf_link_hash_entry *) h;
3007 h->root.dynindx = hsd->max_unref_got_dynindx++;
3008 break;
b49e97c9
TS
3009 }
3010
b34976b6 3011 return TRUE;
b49e97c9
TS
3012}
3013
3014/* If H is a symbol that needs a global GOT entry, but has a dynamic
3015 symbol table index lower than any we've seen to date, record it for
3016 posterity. */
3017
b34976b6 3018static bfd_boolean
9719ad41
RS
3019mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3020 bfd *abfd, struct bfd_link_info *info,
0f20cc35 3021 unsigned char tls_flag)
b49e97c9 3022{
a8028dd0 3023 struct mips_elf_link_hash_table *htab;
634835ae 3024 struct mips_elf_link_hash_entry *hmips;
f4416af6 3025 struct mips_got_entry entry, **loc;
a8028dd0
RS
3026 struct mips_got_info *g;
3027
3028 htab = mips_elf_hash_table (info);
634835ae 3029 hmips = (struct mips_elf_link_hash_entry *) h;
f4416af6 3030
b49e97c9
TS
3031 /* A global symbol in the GOT must also be in the dynamic symbol
3032 table. */
7c5fcef7
L
3033 if (h->dynindx == -1)
3034 {
3035 switch (ELF_ST_VISIBILITY (h->other))
3036 {
3037 case STV_INTERNAL:
3038 case STV_HIDDEN:
33bb52fb 3039 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3040 break;
3041 }
c152c796 3042 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3043 return FALSE;
7c5fcef7 3044 }
b49e97c9 3045
86324f90 3046 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3047 g = htab->got_info;
86324f90
EC
3048 BFD_ASSERT (g != NULL);
3049
f4416af6
AO
3050 entry.abfd = abfd;
3051 entry.symndx = -1;
3052 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 3053 entry.tls_type = 0;
f4416af6
AO
3054
3055 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3056 INSERT);
3057
b49e97c9
TS
3058 /* If we've already marked this entry as needing GOT space, we don't
3059 need to do it again. */
f4416af6 3060 if (*loc)
0f20cc35
DJ
3061 {
3062 (*loc)->tls_type |= tls_flag;
3063 return TRUE;
3064 }
f4416af6
AO
3065
3066 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3067
3068 if (! *loc)
3069 return FALSE;
143d77c5 3070
f4416af6 3071 entry.gotidx = -1;
0f20cc35
DJ
3072 entry.tls_type = tls_flag;
3073
f4416af6
AO
3074 memcpy (*loc, &entry, sizeof entry);
3075
0f20cc35 3076 if (tls_flag == 0)
634835ae 3077 hmips->global_got_area = GGA_NORMAL;
b49e97c9 3078
b34976b6 3079 return TRUE;
b49e97c9 3080}
f4416af6
AO
3081
3082/* Reserve space in G for a GOT entry containing the value of symbol
3083 SYMNDX in input bfd ABDF, plus ADDEND. */
3084
3085static bfd_boolean
9719ad41 3086mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
a8028dd0 3087 struct bfd_link_info *info,
0f20cc35 3088 unsigned char tls_flag)
f4416af6 3089{
a8028dd0
RS
3090 struct mips_elf_link_hash_table *htab;
3091 struct mips_got_info *g;
f4416af6
AO
3092 struct mips_got_entry entry, **loc;
3093
a8028dd0
RS
3094 htab = mips_elf_hash_table (info);
3095 g = htab->got_info;
3096 BFD_ASSERT (g != NULL);
3097
f4416af6
AO
3098 entry.abfd = abfd;
3099 entry.symndx = symndx;
3100 entry.d.addend = addend;
0f20cc35 3101 entry.tls_type = tls_flag;
f4416af6
AO
3102 loc = (struct mips_got_entry **)
3103 htab_find_slot (g->got_entries, &entry, INSERT);
3104
3105 if (*loc)
0f20cc35
DJ
3106 {
3107 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3108 {
3109 g->tls_gotno += 2;
3110 (*loc)->tls_type |= tls_flag;
3111 }
3112 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3113 {
3114 g->tls_gotno += 1;
3115 (*loc)->tls_type |= tls_flag;
3116 }
3117 return TRUE;
3118 }
f4416af6 3119
0f20cc35
DJ
3120 if (tls_flag != 0)
3121 {
3122 entry.gotidx = -1;
3123 entry.tls_type = tls_flag;
3124 if (tls_flag == GOT_TLS_IE)
3125 g->tls_gotno += 1;
3126 else if (tls_flag == GOT_TLS_GD)
3127 g->tls_gotno += 2;
3128 else if (g->tls_ldm_offset == MINUS_ONE)
3129 {
3130 g->tls_ldm_offset = MINUS_TWO;
3131 g->tls_gotno += 2;
3132 }
3133 }
3134 else
3135 {
3136 entry.gotidx = g->local_gotno++;
3137 entry.tls_type = 0;
3138 }
f4416af6
AO
3139
3140 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3141
3142 if (! *loc)
3143 return FALSE;
143d77c5 3144
f4416af6
AO
3145 memcpy (*loc, &entry, sizeof entry);
3146
3147 return TRUE;
3148}
c224138d
RS
3149
3150/* Return the maximum number of GOT page entries required for RANGE. */
3151
3152static bfd_vma
3153mips_elf_pages_for_range (const struct mips_got_page_range *range)
3154{
3155 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3156}
3157
3a3b6725 3158/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3159 that ADDEND is the addend for that relocation.
3160
3161 This function creates an upper bound on the number of GOT slots
3162 required; no attempt is made to combine references to non-overridable
3163 global symbols across multiple input files. */
c224138d
RS
3164
3165static bfd_boolean
a8028dd0
RS
3166mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3167 long symndx, bfd_signed_vma addend)
c224138d 3168{
a8028dd0
RS
3169 struct mips_elf_link_hash_table *htab;
3170 struct mips_got_info *g;
c224138d
RS
3171 struct mips_got_page_entry lookup, *entry;
3172 struct mips_got_page_range **range_ptr, *range;
3173 bfd_vma old_pages, new_pages;
3174 void **loc;
3175
a8028dd0
RS
3176 htab = mips_elf_hash_table (info);
3177 g = htab->got_info;
3178 BFD_ASSERT (g != NULL);
3179
c224138d
RS
3180 /* Find the mips_got_page_entry hash table entry for this symbol. */
3181 lookup.abfd = abfd;
3182 lookup.symndx = symndx;
3183 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3184 if (loc == NULL)
3185 return FALSE;
3186
3187 /* Create a mips_got_page_entry if this is the first time we've
3188 seen the symbol. */
3189 entry = (struct mips_got_page_entry *) *loc;
3190 if (!entry)
3191 {
3192 entry = bfd_alloc (abfd, sizeof (*entry));
3193 if (!entry)
3194 return FALSE;
3195
3196 entry->abfd = abfd;
3197 entry->symndx = symndx;
3198 entry->ranges = NULL;
3199 entry->num_pages = 0;
3200 *loc = entry;
3201 }
3202
3203 /* Skip over ranges whose maximum extent cannot share a page entry
3204 with ADDEND. */
3205 range_ptr = &entry->ranges;
3206 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3207 range_ptr = &(*range_ptr)->next;
3208
3209 /* If we scanned to the end of the list, or found a range whose
3210 minimum extent cannot share a page entry with ADDEND, create
3211 a new singleton range. */
3212 range = *range_ptr;
3213 if (!range || addend < range->min_addend - 0xffff)
3214 {
3215 range = bfd_alloc (abfd, sizeof (*range));
3216 if (!range)
3217 return FALSE;
3218
3219 range->next = *range_ptr;
3220 range->min_addend = addend;
3221 range->max_addend = addend;
3222
3223 *range_ptr = range;
3224 entry->num_pages++;
3225 g->page_gotno++;
3226 return TRUE;
3227 }
3228
3229 /* Remember how many pages the old range contributed. */
3230 old_pages = mips_elf_pages_for_range (range);
3231
3232 /* Update the ranges. */
3233 if (addend < range->min_addend)
3234 range->min_addend = addend;
3235 else if (addend > range->max_addend)
3236 {
3237 if (range->next && addend >= range->next->min_addend - 0xffff)
3238 {
3239 old_pages += mips_elf_pages_for_range (range->next);
3240 range->max_addend = range->next->max_addend;
3241 range->next = range->next->next;
3242 }
3243 else
3244 range->max_addend = addend;
3245 }
3246
3247 /* Record any change in the total estimate. */
3248 new_pages = mips_elf_pages_for_range (range);
3249 if (old_pages != new_pages)
3250 {
3251 entry->num_pages += new_pages - old_pages;
3252 g->page_gotno += new_pages - old_pages;
3253 }
3254
3255 return TRUE;
3256}
33bb52fb
RS
3257
3258/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3259
3260static void
3261mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3262 unsigned int n)
3263{
3264 asection *s;
3265 struct mips_elf_link_hash_table *htab;
3266
3267 htab = mips_elf_hash_table (info);
3268 s = mips_elf_rel_dyn_section (info, FALSE);
3269 BFD_ASSERT (s != NULL);
3270
3271 if (htab->is_vxworks)
3272 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3273 else
3274 {
3275 if (s->size == 0)
3276 {
3277 /* Make room for a null element. */
3278 s->size += MIPS_ELF_REL_SIZE (abfd);
3279 ++s->reloc_count;
3280 }
3281 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3282 }
3283}
3284\f
3285/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3286 if the GOT entry is for an indirect or warning symbol. */
3287
3288static int
3289mips_elf_check_recreate_got (void **entryp, void *data)
3290{
3291 struct mips_got_entry *entry;
3292 bfd_boolean *must_recreate;
3293
3294 entry = (struct mips_got_entry *) *entryp;
3295 must_recreate = (bfd_boolean *) data;
3296 if (entry->abfd != NULL && entry->symndx == -1)
3297 {
3298 struct mips_elf_link_hash_entry *h;
3299
3300 h = entry->d.h;
3301 if (h->root.root.type == bfd_link_hash_indirect
3302 || h->root.root.type == bfd_link_hash_warning)
3303 {
3304 *must_recreate = TRUE;
3305 return 0;
3306 }
3307 }
3308 return 1;
3309}
3310
3311/* A htab_traverse callback for GOT entries. Add all entries to
3312 hash table *DATA, converting entries for indirect and warning
3313 symbols into entries for the target symbol. Set *DATA to null
3314 on error. */
3315
3316static int
3317mips_elf_recreate_got (void **entryp, void *data)
3318{
3319 htab_t *new_got;
3320 struct mips_got_entry *entry;
3321 void **slot;
3322
3323 new_got = (htab_t *) data;
3324 entry = (struct mips_got_entry *) *entryp;
3325 if (entry->abfd != NULL && entry->symndx == -1)
3326 {
3327 struct mips_elf_link_hash_entry *h;
3328
3329 h = entry->d.h;
3330 while (h->root.root.type == bfd_link_hash_indirect
3331 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
3332 {
3333 BFD_ASSERT (h->global_got_area == GGA_NONE);
3334 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3335 }
33bb52fb
RS
3336 entry->d.h = h;
3337 }
3338 slot = htab_find_slot (*new_got, entry, INSERT);
3339 if (slot == NULL)
3340 {
3341 *new_got = NULL;
3342 return 0;
3343 }
3344 if (*slot == NULL)
3345 *slot = entry;
3346 else
3347 free (entry);
3348 return 1;
3349}
3350
3351/* If any entries in G->got_entries are for indirect or warning symbols,
3352 replace them with entries for the target symbol. */
3353
3354static bfd_boolean
3355mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3356{
3357 bfd_boolean must_recreate;
3358 htab_t new_got;
3359
3360 must_recreate = FALSE;
3361 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3362 if (must_recreate)
3363 {
3364 new_got = htab_create (htab_size (g->got_entries),
3365 mips_elf_got_entry_hash,
3366 mips_elf_got_entry_eq, NULL);
3367 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3368 if (new_got == NULL)
3369 return FALSE;
3370
3371 /* Each entry in g->got_entries has either been copied to new_got
3372 or freed. Now delete the hash table itself. */
3373 htab_delete (g->got_entries);
3374 g->got_entries = new_got;
3375 }
3376 return TRUE;
3377}
3378
634835ae 3379/* A mips_elf_link_hash_traverse callback for which DATA points
d4596a51 3380 to a mips_got_info. Count the number of type (3) entries. */
33bb52fb
RS
3381
3382static int
d4596a51 3383mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb
RS
3384{
3385 struct mips_got_info *g;
3386
3387 g = (struct mips_got_info *) data;
d4596a51 3388 if (h->global_got_area != GGA_NONE)
33bb52fb 3389 {
d4596a51
RS
3390 if (h->root.forced_local || h->root.dynindx == -1)
3391 {
3392 /* We no longer need this entry if it was only used for
3393 relocations; those relocations will be against the
3394 null or section symbol instead of H. */
3395 if (h->global_got_area != GGA_RELOC_ONLY)
3396 g->local_gotno++;
3397 h->global_got_area = GGA_NONE;
3398 }
3399 else
23cc69b6
RS
3400 {
3401 g->global_gotno++;
3402 if (h->global_got_area == GGA_RELOC_ONLY)
3403 g->reloc_only_gotno++;
3404 }
33bb52fb
RS
3405 }
3406 return 1;
3407}
f4416af6
AO
3408\f
3409/* Compute the hash value of the bfd in a bfd2got hash entry. */
3410
3411static hashval_t
9719ad41 3412mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
3413{
3414 const struct mips_elf_bfd2got_hash *entry
3415 = (struct mips_elf_bfd2got_hash *)entry_;
3416
3417 return entry->bfd->id;
3418}
3419
3420/* Check whether two hash entries have the same bfd. */
3421
3422static int
9719ad41 3423mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3424{
3425 const struct mips_elf_bfd2got_hash *e1
3426 = (const struct mips_elf_bfd2got_hash *)entry1;
3427 const struct mips_elf_bfd2got_hash *e2
3428 = (const struct mips_elf_bfd2got_hash *)entry2;
3429
3430 return e1->bfd == e2->bfd;
3431}
3432
bad36eac 3433/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
3434 be the master GOT data. */
3435
3436static struct mips_got_info *
9719ad41 3437mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3438{
3439 struct mips_elf_bfd2got_hash e, *p;
3440
3441 if (! g->bfd2got)
3442 return g;
3443
3444 e.bfd = ibfd;
9719ad41 3445 p = htab_find (g->bfd2got, &e);
f4416af6
AO
3446 return p ? p->g : NULL;
3447}
3448
c224138d
RS
3449/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3450 Return NULL if an error occured. */
f4416af6 3451
c224138d
RS
3452static struct mips_got_info *
3453mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3454 bfd *input_bfd)
f4416af6 3455{
f4416af6 3456 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 3457 struct mips_got_info *g;
f4416af6 3458 void **bfdgotp;
143d77c5 3459
c224138d 3460 bfdgot_entry.bfd = input_bfd;
f4416af6 3461 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 3462 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 3463
c224138d 3464 if (bfdgot == NULL)
f4416af6 3465 {
c224138d
RS
3466 bfdgot = ((struct mips_elf_bfd2got_hash *)
3467 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 3468 if (bfdgot == NULL)
c224138d 3469 return NULL;
f4416af6
AO
3470
3471 *bfdgotp = bfdgot;
3472
c224138d
RS
3473 g = ((struct mips_got_info *)
3474 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 3475 if (g == NULL)
c224138d
RS
3476 return NULL;
3477
3478 bfdgot->bfd = input_bfd;
3479 bfdgot->g = g;
f4416af6
AO
3480
3481 g->global_gotsym = NULL;
3482 g->global_gotno = 0;
23cc69b6 3483 g->reloc_only_gotno = 0;
f4416af6 3484 g->local_gotno = 0;
c224138d 3485 g->page_gotno = 0;
f4416af6 3486 g->assigned_gotno = -1;
0f20cc35
DJ
3487 g->tls_gotno = 0;
3488 g->tls_assigned_gotno = 0;
3489 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3490 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3491 mips_elf_multi_got_entry_eq, NULL);
f4416af6 3492 if (g->got_entries == NULL)
c224138d
RS
3493 return NULL;
3494
3495 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3496 mips_got_page_entry_eq, NULL);
3497 if (g->got_page_entries == NULL)
3498 return NULL;
f4416af6
AO
3499
3500 g->bfd2got = NULL;
3501 g->next = NULL;
3502 }
3503
c224138d
RS
3504 return bfdgot->g;
3505}
3506
3507/* A htab_traverse callback for the entries in the master got.
3508 Create one separate got for each bfd that has entries in the global
3509 got, such that we can tell how many local and global entries each
3510 bfd requires. */
3511
3512static int
3513mips_elf_make_got_per_bfd (void **entryp, void *p)
3514{
3515 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3516 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3517 struct mips_got_info *g;
3518
3519 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3520 if (g == NULL)
3521 {
3522 arg->obfd = NULL;
3523 return 0;
3524 }
3525
f4416af6
AO
3526 /* Insert the GOT entry in the bfd's got entry hash table. */
3527 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3528 if (*entryp != NULL)
3529 return 1;
143d77c5 3530
f4416af6
AO
3531 *entryp = entry;
3532
0f20cc35
DJ
3533 if (entry->tls_type)
3534 {
3535 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3536 g->tls_gotno += 2;
3537 if (entry->tls_type & GOT_TLS_IE)
3538 g->tls_gotno += 1;
3539 }
33bb52fb 3540 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
f4416af6
AO
3541 ++g->local_gotno;
3542 else
3543 ++g->global_gotno;
3544
3545 return 1;
3546}
3547
c224138d
RS
3548/* A htab_traverse callback for the page entries in the master got.
3549 Associate each page entry with the bfd's got. */
3550
3551static int
3552mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3553{
3554 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3555 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3556 struct mips_got_info *g;
3557
3558 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3559 if (g == NULL)
3560 {
3561 arg->obfd = NULL;
3562 return 0;
3563 }
3564
3565 /* Insert the GOT entry in the bfd's got entry hash table. */
3566 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3567 if (*entryp != NULL)
3568 return 1;
3569
3570 *entryp = entry;
3571 g->page_gotno += entry->num_pages;
3572 return 1;
3573}
3574
3575/* Consider merging the got described by BFD2GOT with TO, using the
3576 information given by ARG. Return -1 if this would lead to overflow,
3577 1 if they were merged successfully, and 0 if a merge failed due to
3578 lack of memory. (These values are chosen so that nonnegative return
3579 values can be returned by a htab_traverse callback.) */
3580
3581static int
3582mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3583 struct mips_got_info *to,
3584 struct mips_elf_got_per_bfd_arg *arg)
3585{
3586 struct mips_got_info *from = bfd2got->g;
3587 unsigned int estimate;
3588
3589 /* Work out how many page entries we would need for the combined GOT. */
3590 estimate = arg->max_pages;
3591 if (estimate >= from->page_gotno + to->page_gotno)
3592 estimate = from->page_gotno + to->page_gotno;
3593
3594 /* And conservatively estimate how many local, global and TLS entries
3595 would be needed. */
3596 estimate += (from->local_gotno
3597 + from->global_gotno
3598 + from->tls_gotno
3599 + to->local_gotno
3600 + to->global_gotno
3601 + to->tls_gotno);
3602
3603 /* Bail out if the combined GOT might be too big. */
3604 if (estimate > arg->max_count)
3605 return -1;
3606
3607 /* Commit to the merge. Record that TO is now the bfd for this got. */
3608 bfd2got->g = to;
3609
3610 /* Transfer the bfd's got information from FROM to TO. */
3611 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3612 if (arg->obfd == NULL)
3613 return 0;
3614
3615 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3616 if (arg->obfd == NULL)
3617 return 0;
3618
3619 /* We don't have to worry about releasing memory of the actual
3620 got entries, since they're all in the master got_entries hash
3621 table anyway. */
3622 htab_delete (from->got_entries);
3623 htab_delete (from->got_page_entries);
3624 return 1;
3625}
3626
f4416af6
AO
3627/* Attempt to merge gots of different input bfds. Try to use as much
3628 as possible of the primary got, since it doesn't require explicit
3629 dynamic relocations, but don't use bfds that would reference global
3630 symbols out of the addressable range. Failing the primary got,
3631 attempt to merge with the current got, or finish the current got
3632 and then make make the new got current. */
3633
3634static int
9719ad41 3635mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3636{
3637 struct mips_elf_bfd2got_hash *bfd2got
3638 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3639 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
3640 struct mips_got_info *g;
3641 unsigned int estimate;
3642 int result;
3643
3644 g = bfd2got->g;
3645
3646 /* Work out the number of page, local and TLS entries. */
3647 estimate = arg->max_pages;
3648 if (estimate > g->page_gotno)
3649 estimate = g->page_gotno;
3650 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
3651
3652 /* We place TLS GOT entries after both locals and globals. The globals
3653 for the primary GOT may overflow the normal GOT size limit, so be
3654 sure not to merge a GOT which requires TLS with the primary GOT in that
3655 case. This doesn't affect non-primary GOTs. */
c224138d 3656 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 3657
c224138d 3658 if (estimate <= arg->max_count)
f4416af6 3659 {
c224138d
RS
3660 /* If we don't have a primary GOT, use it as
3661 a starting point for the primary GOT. */
3662 if (!arg->primary)
3663 {
3664 arg->primary = bfd2got->g;
3665 return 1;
3666 }
f4416af6 3667
c224138d
RS
3668 /* Try merging with the primary GOT. */
3669 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3670 if (result >= 0)
3671 return result;
f4416af6 3672 }
c224138d 3673
f4416af6 3674 /* If we can merge with the last-created got, do it. */
c224138d 3675 if (arg->current)
f4416af6 3676 {
c224138d
RS
3677 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3678 if (result >= 0)
3679 return result;
f4416af6 3680 }
c224138d 3681
f4416af6
AO
3682 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3683 fits; if it turns out that it doesn't, we'll get relocation
3684 overflows anyway. */
c224138d
RS
3685 g->next = arg->current;
3686 arg->current = g;
0f20cc35
DJ
3687
3688 return 1;
3689}
3690
ead49a57
RS
3691/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3692 is null iff there is just a single GOT. */
0f20cc35
DJ
3693
3694static int
3695mips_elf_initialize_tls_index (void **entryp, void *p)
3696{
3697 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3698 struct mips_got_info *g = p;
ead49a57 3699 bfd_vma next_index;
cbf2cba4 3700 unsigned char tls_type;
0f20cc35
DJ
3701
3702 /* We're only interested in TLS symbols. */
3703 if (entry->tls_type == 0)
3704 return 1;
3705
ead49a57
RS
3706 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3707
3708 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3709 {
ead49a57
RS
3710 /* A type (3) got entry in the single-GOT case. We use the symbol's
3711 hash table entry to track its index. */
3712 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3713 return 1;
3714 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3715 entry->d.h->tls_got_offset = next_index;
cbf2cba4 3716 tls_type = entry->d.h->tls_type;
ead49a57
RS
3717 }
3718 else
3719 {
3720 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3721 {
ead49a57
RS
3722 /* There are separate mips_got_entry objects for each input bfd
3723 that requires an LDM entry. Make sure that all LDM entries in
3724 a GOT resolve to the same index. */
3725 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3726 {
ead49a57 3727 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3728 return 1;
3729 }
ead49a57 3730 g->tls_ldm_offset = next_index;
0f20cc35 3731 }
ead49a57 3732 entry->gotidx = next_index;
cbf2cba4 3733 tls_type = entry->tls_type;
f4416af6
AO
3734 }
3735
ead49a57 3736 /* Account for the entries we've just allocated. */
cbf2cba4 3737 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 3738 g->tls_assigned_gotno += 2;
cbf2cba4 3739 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
3740 g->tls_assigned_gotno += 1;
3741
f4416af6
AO
3742 return 1;
3743}
3744
3745/* If passed a NULL mips_got_info in the argument, set the marker used
3746 to tell whether a global symbol needs a got entry (in the primary
3747 got) to the given VALUE.
3748
3749 If passed a pointer G to a mips_got_info in the argument (it must
3750 not be the primary GOT), compute the offset from the beginning of
3751 the (primary) GOT section to the entry in G corresponding to the
3752 global symbol. G's assigned_gotno must contain the index of the
3753 first available global GOT entry in G. VALUE must contain the size
3754 of a GOT entry in bytes. For each global GOT entry that requires a
3755 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3756 marked as not eligible for lazy resolution through a function
f4416af6
AO
3757 stub. */
3758static int
9719ad41 3759mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3760{
3761 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3762 struct mips_elf_set_global_got_offset_arg *arg
3763 = (struct mips_elf_set_global_got_offset_arg *)p;
3764 struct mips_got_info *g = arg->g;
3765
0f20cc35
DJ
3766 if (g && entry->tls_type != GOT_NORMAL)
3767 arg->needed_relocs +=
3768 mips_tls_got_relocs (arg->info, entry->tls_type,
3769 entry->symndx == -1 ? &entry->d.h->root : NULL);
3770
634835ae
RS
3771 if (entry->abfd != NULL
3772 && entry->symndx == -1
3773 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
3774 {
3775 if (g)
3776 {
3777 BFD_ASSERT (g->global_gotsym == NULL);
3778
3779 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3780 if (arg->info->shared
3781 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3782 && entry->d.h->root.def_dynamic
3783 && !entry->d.h->root.def_regular))
f4416af6
AO
3784 ++arg->needed_relocs;
3785 }
3786 else
634835ae 3787 entry->d.h->global_got_area = arg->value;
f4416af6
AO
3788 }
3789
3790 return 1;
3791}
3792
33bb52fb
RS
3793/* A htab_traverse callback for GOT entries for which DATA is the
3794 bfd_link_info. Forbid any global symbols from having traditional
3795 lazy-binding stubs. */
3796
0626d451 3797static int
33bb52fb 3798mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 3799{
33bb52fb
RS
3800 struct bfd_link_info *info;
3801 struct mips_elf_link_hash_table *htab;
3802 struct mips_got_entry *entry;
0626d451 3803
33bb52fb
RS
3804 entry = (struct mips_got_entry *) *entryp;
3805 info = (struct bfd_link_info *) data;
3806 htab = mips_elf_hash_table (info);
0626d451
RS
3807 if (entry->abfd != NULL
3808 && entry->symndx == -1
33bb52fb 3809 && entry->d.h->needs_lazy_stub)
f4416af6 3810 {
33bb52fb
RS
3811 entry->d.h->needs_lazy_stub = FALSE;
3812 htab->lazy_stub_count--;
f4416af6 3813 }
143d77c5 3814
f4416af6
AO
3815 return 1;
3816}
3817
f4416af6
AO
3818/* Return the offset of an input bfd IBFD's GOT from the beginning of
3819 the primary GOT. */
3820static bfd_vma
9719ad41 3821mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3822{
3823 if (g->bfd2got == NULL)
3824 return 0;
3825
3826 g = mips_elf_got_for_ibfd (g, ibfd);
3827 if (! g)
3828 return 0;
3829
3830 BFD_ASSERT (g->next);
3831
3832 g = g->next;
143d77c5 3833
0f20cc35
DJ
3834 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3835 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3836}
3837
3838/* Turn a single GOT that is too big for 16-bit addressing into
3839 a sequence of GOTs, each one 16-bit addressable. */
3840
3841static bfd_boolean
9719ad41 3842mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3843 asection *got, bfd_size_type pages)
f4416af6 3844{
a8028dd0 3845 struct mips_elf_link_hash_table *htab;
f4416af6
AO
3846 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3847 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 3848 struct mips_got_info *g, *gg;
33bb52fb
RS
3849 unsigned int assign, needed_relocs;
3850 bfd *dynobj;
f4416af6 3851
33bb52fb 3852 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
3853 htab = mips_elf_hash_table (info);
3854 g = htab->got_info;
f4416af6 3855 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3856 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3857 if (g->bfd2got == NULL)
3858 return FALSE;
3859
3860 got_per_bfd_arg.bfd2got = g->bfd2got;
3861 got_per_bfd_arg.obfd = abfd;
3862 got_per_bfd_arg.info = info;
3863
3864 /* Count how many GOT entries each input bfd requires, creating a
3865 map from bfd to got info while at that. */
f4416af6
AO
3866 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3867 if (got_per_bfd_arg.obfd == NULL)
3868 return FALSE;
3869
c224138d
RS
3870 /* Also count how many page entries each input bfd requires. */
3871 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3872 &got_per_bfd_arg);
3873 if (got_per_bfd_arg.obfd == NULL)
3874 return FALSE;
3875
f4416af6
AO
3876 got_per_bfd_arg.current = NULL;
3877 got_per_bfd_arg.primary = NULL;
0a44bf69 3878 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3879 / MIPS_ELF_GOT_SIZE (abfd))
c224138d
RS
3880 - MIPS_RESERVED_GOTNO (info));
3881 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
3882 /* The number of globals that will be included in the primary GOT.
3883 See the calls to mips_elf_set_global_got_offset below for more
3884 information. */
3885 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3886
3887 /* Try to merge the GOTs of input bfds together, as long as they
3888 don't seem to exceed the maximum GOT size, choosing one of them
3889 to be the primary GOT. */
3890 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3891 if (got_per_bfd_arg.obfd == NULL)
3892 return FALSE;
3893
0f20cc35 3894 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3895 if (got_per_bfd_arg.primary == NULL)
3896 {
3897 g->next = (struct mips_got_info *)
3898 bfd_alloc (abfd, sizeof (struct mips_got_info));
3899 if (g->next == NULL)
3900 return FALSE;
3901
3902 g->next->global_gotsym = NULL;
3903 g->next->global_gotno = 0;
23cc69b6 3904 g->next->reloc_only_gotno = 0;
f4416af6 3905 g->next->local_gotno = 0;
c224138d 3906 g->next->page_gotno = 0;
0f20cc35 3907 g->next->tls_gotno = 0;
f4416af6 3908 g->next->assigned_gotno = 0;
0f20cc35
DJ
3909 g->next->tls_assigned_gotno = 0;
3910 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3911 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3912 mips_elf_multi_got_entry_eq,
9719ad41 3913 NULL);
f4416af6
AO
3914 if (g->next->got_entries == NULL)
3915 return FALSE;
c224138d
RS
3916 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3917 mips_got_page_entry_eq,
3918 NULL);
3919 if (g->next->got_page_entries == NULL)
3920 return FALSE;
f4416af6
AO
3921 g->next->bfd2got = NULL;
3922 }
3923 else
3924 g->next = got_per_bfd_arg.primary;
3925 g->next->next = got_per_bfd_arg.current;
3926
3927 /* GG is now the master GOT, and G is the primary GOT. */
3928 gg = g;
3929 g = g->next;
3930
3931 /* Map the output bfd to the primary got. That's what we're going
3932 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3933 didn't mark in check_relocs, and we want a quick way to find it.
3934 We can't just use gg->next because we're going to reverse the
3935 list. */
3936 {
3937 struct mips_elf_bfd2got_hash *bfdgot;
3938 void **bfdgotp;
143d77c5 3939
f4416af6
AO
3940 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3941 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3942
3943 if (bfdgot == NULL)
3944 return FALSE;
3945
3946 bfdgot->bfd = abfd;
3947 bfdgot->g = g;
3948 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3949
3950 BFD_ASSERT (*bfdgotp == NULL);
3951 *bfdgotp = bfdgot;
3952 }
3953
634835ae
RS
3954 /* Every symbol that is referenced in a dynamic relocation must be
3955 present in the primary GOT, so arrange for them to appear after
3956 those that are actually referenced. */
23cc69b6 3957 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 3958 g->global_gotno = gg->global_gotno;
f4416af6 3959
f4416af6 3960 set_got_offset_arg.g = NULL;
634835ae 3961 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
3962 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3963 &set_got_offset_arg);
634835ae 3964 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
3965 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3966 &set_got_offset_arg);
f4416af6
AO
3967
3968 /* Now go through the GOTs assigning them offset ranges.
3969 [assigned_gotno, local_gotno[ will be set to the range of local
3970 entries in each GOT. We can then compute the end of a GOT by
3971 adding local_gotno to global_gotno. We reverse the list and make
3972 it circular since then we'll be able to quickly compute the
3973 beginning of a GOT, by computing the end of its predecessor. To
3974 avoid special cases for the primary GOT, while still preserving
3975 assertions that are valid for both single- and multi-got links,
3976 we arrange for the main got struct to have the right number of
3977 global entries, but set its local_gotno such that the initial
3978 offset of the primary GOT is zero. Remember that the primary GOT
3979 will become the last item in the circular linked list, so it
3980 points back to the master GOT. */
3981 gg->local_gotno = -g->global_gotno;
3982 gg->global_gotno = g->global_gotno;
0f20cc35 3983 gg->tls_gotno = 0;
f4416af6
AO
3984 assign = 0;
3985 gg->next = gg;
3986
3987 do
3988 {
3989 struct mips_got_info *gn;
3990
0a44bf69 3991 assign += MIPS_RESERVED_GOTNO (info);
f4416af6 3992 g->assigned_gotno = assign;
c224138d
RS
3993 g->local_gotno += assign;
3994 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
3995 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3996
ead49a57
RS
3997 /* Take g out of the direct list, and push it onto the reversed
3998 list that gg points to. g->next is guaranteed to be nonnull after
3999 this operation, as required by mips_elf_initialize_tls_index. */
4000 gn = g->next;
4001 g->next = gg->next;
4002 gg->next = g;
4003
0f20cc35
DJ
4004 /* Set up any TLS entries. We always place the TLS entries after
4005 all non-TLS entries. */
4006 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4007 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 4008
ead49a57 4009 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4010 g = gn;
0626d451 4011
33bb52fb
RS
4012 /* Forbid global symbols in every non-primary GOT from having
4013 lazy-binding stubs. */
0626d451 4014 if (g)
33bb52fb 4015 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4016 }
4017 while (g);
4018
eea6121a 4019 got->size = (gg->next->local_gotno
33bb52fb
RS
4020 + gg->next->global_gotno
4021 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4022
4023 needed_relocs = 0;
4024 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4025 set_got_offset_arg.info = info;
4026 for (g = gg->next; g && g->next != gg; g = g->next)
4027 {
4028 unsigned int save_assign;
4029
4030 /* Assign offsets to global GOT entries. */
4031 save_assign = g->assigned_gotno;
4032 g->assigned_gotno = g->local_gotno;
4033 set_got_offset_arg.g = g;
4034 set_got_offset_arg.needed_relocs = 0;
4035 htab_traverse (g->got_entries,
4036 mips_elf_set_global_got_offset,
4037 &set_got_offset_arg);
4038 needed_relocs += set_got_offset_arg.needed_relocs;
4039 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4040
4041 g->assigned_gotno = save_assign;
4042 if (info->shared)
4043 {
4044 needed_relocs += g->local_gotno - g->assigned_gotno;
4045 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4046 + g->next->global_gotno
4047 + g->next->tls_gotno
4048 + MIPS_RESERVED_GOTNO (info));
4049 }
4050 }
4051
4052 if (needed_relocs)
4053 mips_elf_allocate_dynamic_relocations (dynobj, info,
4054 needed_relocs);
143d77c5 4055
f4416af6
AO
4056 return TRUE;
4057}
143d77c5 4058
b49e97c9
TS
4059\f
4060/* Returns the first relocation of type r_type found, beginning with
4061 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4062
4063static const Elf_Internal_Rela *
9719ad41
RS
4064mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4065 const Elf_Internal_Rela *relocation,
4066 const Elf_Internal_Rela *relend)
b49e97c9 4067{
c000e262
TS
4068 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4069
b49e97c9
TS
4070 while (relocation < relend)
4071 {
c000e262
TS
4072 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4073 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4074 return relocation;
4075
4076 ++relocation;
4077 }
4078
4079 /* We didn't find it. */
b49e97c9
TS
4080 return NULL;
4081}
4082
4083/* Return whether a relocation is against a local symbol. */
4084
b34976b6 4085static bfd_boolean
9719ad41
RS
4086mips_elf_local_relocation_p (bfd *input_bfd,
4087 const Elf_Internal_Rela *relocation,
4088 asection **local_sections,
4089 bfd_boolean check_forced)
b49e97c9
TS
4090{
4091 unsigned long r_symndx;
4092 Elf_Internal_Shdr *symtab_hdr;
4093 struct mips_elf_link_hash_entry *h;
4094 size_t extsymoff;
4095
4096 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4097 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4098 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4099
4100 if (r_symndx < extsymoff)
b34976b6 4101 return TRUE;
b49e97c9 4102 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4103 return TRUE;
b49e97c9
TS
4104
4105 if (check_forced)
4106 {
4107 /* Look up the hash table to check whether the symbol
4108 was forced local. */
4109 h = (struct mips_elf_link_hash_entry *)
4110 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4111 /* Find the real hash-table entry for this symbol. */
4112 while (h->root.root.type == bfd_link_hash_indirect
4113 || h->root.root.type == bfd_link_hash_warning)
4114 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 4115 if (h->root.forced_local)
b34976b6 4116 return TRUE;
b49e97c9
TS
4117 }
4118
b34976b6 4119 return FALSE;
b49e97c9
TS
4120}
4121\f
4122/* Sign-extend VALUE, which has the indicated number of BITS. */
4123
a7ebbfdf 4124bfd_vma
9719ad41 4125_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4126{
4127 if (value & ((bfd_vma) 1 << (bits - 1)))
4128 /* VALUE is negative. */
4129 value |= ((bfd_vma) - 1) << bits;
4130
4131 return value;
4132}
4133
4134/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4135 range expressible by a signed number with the indicated number of
b49e97c9
TS
4136 BITS. */
4137
b34976b6 4138static bfd_boolean
9719ad41 4139mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4140{
4141 bfd_signed_vma svalue = (bfd_signed_vma) value;
4142
4143 if (svalue > (1 << (bits - 1)) - 1)
4144 /* The value is too big. */
b34976b6 4145 return TRUE;
b49e97c9
TS
4146 else if (svalue < -(1 << (bits - 1)))
4147 /* The value is too small. */
b34976b6 4148 return TRUE;
b49e97c9
TS
4149
4150 /* All is well. */
b34976b6 4151 return FALSE;
b49e97c9
TS
4152}
4153
4154/* Calculate the %high function. */
4155
4156static bfd_vma
9719ad41 4157mips_elf_high (bfd_vma value)
b49e97c9
TS
4158{
4159 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4160}
4161
4162/* Calculate the %higher function. */
4163
4164static bfd_vma
9719ad41 4165mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4166{
4167#ifdef BFD64
4168 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4169#else
4170 abort ();
c5ae1840 4171 return MINUS_ONE;
b49e97c9
TS
4172#endif
4173}
4174
4175/* Calculate the %highest function. */
4176
4177static bfd_vma
9719ad41 4178mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4179{
4180#ifdef BFD64
b15e6682 4181 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4182#else
4183 abort ();
c5ae1840 4184 return MINUS_ONE;
b49e97c9
TS
4185#endif
4186}
4187\f
4188/* Create the .compact_rel section. */
4189
b34976b6 4190static bfd_boolean
9719ad41
RS
4191mips_elf_create_compact_rel_section
4192 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4193{
4194 flagword flags;
4195 register asection *s;
4196
4197 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4198 {
4199 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4200 | SEC_READONLY);
4201
3496cb2a 4202 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4203 if (s == NULL
b49e97c9
TS
4204 || ! bfd_set_section_alignment (abfd, s,
4205 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4206 return FALSE;
b49e97c9 4207
eea6121a 4208 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4209 }
4210
b34976b6 4211 return TRUE;
b49e97c9
TS
4212}
4213
4214/* Create the .got section to hold the global offset table. */
4215
b34976b6 4216static bfd_boolean
23cc69b6 4217mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4218{
4219 flagword flags;
4220 register asection *s;
4221 struct elf_link_hash_entry *h;
14a793b2 4222 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4223 struct mips_got_info *g;
4224 bfd_size_type amt;
0a44bf69
RS
4225 struct mips_elf_link_hash_table *htab;
4226
4227 htab = mips_elf_hash_table (info);
b49e97c9
TS
4228
4229 /* This function may be called more than once. */
23cc69b6
RS
4230 if (htab->sgot)
4231 return TRUE;
b49e97c9
TS
4232
4233 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4234 | SEC_LINKER_CREATED);
4235
72b4917c
TS
4236 /* We have to use an alignment of 2**4 here because this is hardcoded
4237 in the function stub generation and in the linker script. */
3496cb2a 4238 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 4239 if (s == NULL
72b4917c 4240 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4241 return FALSE;
a8028dd0 4242 htab->sgot = s;
b49e97c9
TS
4243
4244 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4245 linker script because we don't want to define the symbol if we
4246 are not creating a global offset table. */
14a793b2 4247 bh = NULL;
b49e97c9
TS
4248 if (! (_bfd_generic_link_add_one_symbol
4249 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4250 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4251 return FALSE;
14a793b2
AM
4252
4253 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4254 h->non_elf = 0;
4255 h->def_regular = 1;
b49e97c9 4256 h->type = STT_OBJECT;
d329bcd1 4257 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4258
4259 if (info->shared
c152c796 4260 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4261 return FALSE;
b49e97c9 4262
b49e97c9 4263 amt = sizeof (struct mips_got_info);
9719ad41 4264 g = bfd_alloc (abfd, amt);
b49e97c9 4265 if (g == NULL)
b34976b6 4266 return FALSE;
b49e97c9 4267 g->global_gotsym = NULL;
e3d54347 4268 g->global_gotno = 0;
23cc69b6 4269 g->reloc_only_gotno = 0;
0f20cc35 4270 g->tls_gotno = 0;
0a44bf69 4271 g->local_gotno = MIPS_RESERVED_GOTNO (info);
c224138d 4272 g->page_gotno = 0;
0a44bf69 4273 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
4274 g->bfd2got = NULL;
4275 g->next = NULL;
0f20cc35 4276 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4277 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4278 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4279 if (g->got_entries == NULL)
4280 return FALSE;
c224138d
RS
4281 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4282 mips_got_page_entry_eq, NULL);
4283 if (g->got_page_entries == NULL)
4284 return FALSE;
a8028dd0 4285 htab->got_info = g;
f0abc2a1 4286 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4287 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4288
0a44bf69
RS
4289 /* VxWorks also needs a .got.plt section. */
4290 if (htab->is_vxworks)
4291 {
4292 s = bfd_make_section_with_flags (abfd, ".got.plt",
4293 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4294 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4295 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4296 return FALSE;
4297
4298 htab->sgotplt = s;
4299 }
b34976b6 4300 return TRUE;
b49e97c9 4301}
b49e97c9 4302\f
0a44bf69
RS
4303/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4304 __GOTT_INDEX__ symbols. These symbols are only special for
4305 shared objects; they are not used in executables. */
4306
4307static bfd_boolean
4308is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4309{
4310 return (mips_elf_hash_table (info)->is_vxworks
4311 && info->shared
4312 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4313 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4314}
4315\f
b49e97c9
TS
4316/* Calculate the value produced by the RELOCATION (which comes from
4317 the INPUT_BFD). The ADDEND is the addend to use for this
4318 RELOCATION; RELOCATION->R_ADDEND is ignored.
4319
4320 The result of the relocation calculation is stored in VALUEP.
4321 REQUIRE_JALXP indicates whether or not the opcode used with this
4322 relocation must be JALX.
4323
4324 This function returns bfd_reloc_continue if the caller need take no
4325 further action regarding this relocation, bfd_reloc_notsupported if
4326 something goes dramatically wrong, bfd_reloc_overflow if an
4327 overflow occurs, and bfd_reloc_ok to indicate success. */
4328
4329static bfd_reloc_status_type
9719ad41
RS
4330mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4331 asection *input_section,
4332 struct bfd_link_info *info,
4333 const Elf_Internal_Rela *relocation,
4334 bfd_vma addend, reloc_howto_type *howto,
4335 Elf_Internal_Sym *local_syms,
4336 asection **local_sections, bfd_vma *valuep,
4337 const char **namep, bfd_boolean *require_jalxp,
4338 bfd_boolean save_addend)
b49e97c9
TS
4339{
4340 /* The eventual value we will return. */
4341 bfd_vma value;
4342 /* The address of the symbol against which the relocation is
4343 occurring. */
4344 bfd_vma symbol = 0;
4345 /* The final GP value to be used for the relocatable, executable, or
4346 shared object file being produced. */
0a61c8c2 4347 bfd_vma gp;
b49e97c9
TS
4348 /* The place (section offset or address) of the storage unit being
4349 relocated. */
4350 bfd_vma p;
4351 /* The value of GP used to create the relocatable object. */
0a61c8c2 4352 bfd_vma gp0;
b49e97c9
TS
4353 /* The offset into the global offset table at which the address of
4354 the relocation entry symbol, adjusted by the addend, resides
4355 during execution. */
4356 bfd_vma g = MINUS_ONE;
4357 /* The section in which the symbol referenced by the relocation is
4358 located. */
4359 asection *sec = NULL;
4360 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4361 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4362 symbol. */
b34976b6
AM
4363 bfd_boolean local_p, was_local_p;
4364 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4365 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
4366 /* TRUE if the symbol referred to by this relocation is
4367 "__gnu_local_gp". */
4368 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
4369 Elf_Internal_Shdr *symtab_hdr;
4370 size_t extsymoff;
4371 unsigned long r_symndx;
4372 int r_type;
b34976b6 4373 /* TRUE if overflow occurred during the calculation of the
b49e97c9 4374 relocation value. */
b34976b6
AM
4375 bfd_boolean overflowed_p;
4376 /* TRUE if this relocation refers to a MIPS16 function. */
4377 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
4378 struct mips_elf_link_hash_table *htab;
4379 bfd *dynobj;
4380
4381 dynobj = elf_hash_table (info)->dynobj;
4382 htab = mips_elf_hash_table (info);
b49e97c9
TS
4383
4384 /* Parse the relocation. */
4385 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4386 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4387 p = (input_section->output_section->vma
4388 + input_section->output_offset
4389 + relocation->r_offset);
4390
4391 /* Assume that there will be no overflow. */
b34976b6 4392 overflowed_p = FALSE;
b49e97c9
TS
4393
4394 /* Figure out whether or not the symbol is local, and get the offset
4395 used in the array of hash table entries. */
4396 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4397 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4398 local_sections, FALSE);
bce03d3d 4399 was_local_p = local_p;
b49e97c9
TS
4400 if (! elf_bad_symtab (input_bfd))
4401 extsymoff = symtab_hdr->sh_info;
4402 else
4403 {
4404 /* The symbol table does not follow the rule that local symbols
4405 must come before globals. */
4406 extsymoff = 0;
4407 }
4408
4409 /* Figure out the value of the symbol. */
4410 if (local_p)
4411 {
4412 Elf_Internal_Sym *sym;
4413
4414 sym = local_syms + r_symndx;
4415 sec = local_sections[r_symndx];
4416
4417 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
4418 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4419 || (sec->flags & SEC_MERGE))
b49e97c9 4420 symbol += sym->st_value;
d4df96e6
L
4421 if ((sec->flags & SEC_MERGE)
4422 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4423 {
4424 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4425 addend -= symbol;
4426 addend += sec->output_section->vma + sec->output_offset;
4427 }
b49e97c9
TS
4428
4429 /* MIPS16 text labels should be treated as odd. */
30c09090 4430 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
4431 ++symbol;
4432
4433 /* Record the name of this symbol, for our caller. */
4434 *namep = bfd_elf_string_from_elf_section (input_bfd,
4435 symtab_hdr->sh_link,
4436 sym->st_name);
4437 if (*namep == '\0')
4438 *namep = bfd_section_name (input_bfd, sec);
4439
30c09090 4440 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
b49e97c9
TS
4441 }
4442 else
4443 {
560e09e9
NC
4444 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4445
b49e97c9
TS
4446 /* For global symbols we look up the symbol in the hash-table. */
4447 h = ((struct mips_elf_link_hash_entry *)
4448 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4449 /* Find the real hash-table entry for this symbol. */
4450 while (h->root.root.type == bfd_link_hash_indirect
4451 || h->root.root.type == bfd_link_hash_warning)
4452 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4453
4454 /* Record the name of this symbol, for our caller. */
4455 *namep = h->root.root.root.string;
4456
4457 /* See if this is the special _gp_disp symbol. Note that such a
4458 symbol must always be a global symbol. */
560e09e9 4459 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4460 && ! NEWABI_P (input_bfd))
4461 {
4462 /* Relocations against _gp_disp are permitted only with
4463 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 4464 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
4465 return bfd_reloc_notsupported;
4466
b34976b6 4467 gp_disp_p = TRUE;
b49e97c9 4468 }
bbe506e8
TS
4469 /* See if this is the special _gp symbol. Note that such a
4470 symbol must always be a global symbol. */
4471 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4472 gnu_local_gp_p = TRUE;
4473
4474
b49e97c9
TS
4475 /* If this symbol is defined, calculate its address. Note that
4476 _gp_disp is a magic symbol, always implicitly defined by the
4477 linker, so it's inappropriate to check to see whether or not
4478 its defined. */
4479 else if ((h->root.root.type == bfd_link_hash_defined
4480 || h->root.root.type == bfd_link_hash_defweak)
4481 && h->root.root.u.def.section)
4482 {
4483 sec = h->root.root.u.def.section;
4484 if (sec->output_section)
4485 symbol = (h->root.root.u.def.value
4486 + sec->output_section->vma
4487 + sec->output_offset);
4488 else
4489 symbol = h->root.root.u.def.value;
4490 }
4491 else if (h->root.root.type == bfd_link_hash_undefweak)
4492 /* We allow relocations against undefined weak symbols, giving
4493 it the value zero, so that you can undefined weak functions
4494 and check to see if they exist by looking at their
4495 addresses. */
4496 symbol = 0;
59c2e50f 4497 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4498 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4499 symbol = 0;
a4d0f181
TS
4500 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4501 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4502 {
4503 /* If this is a dynamic link, we should have created a
4504 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4505 in in _bfd_mips_elf_create_dynamic_sections.
4506 Otherwise, we should define the symbol with a value of 0.
4507 FIXME: It should probably get into the symbol table
4508 somehow as well. */
4509 BFD_ASSERT (! info->shared);
4510 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4511 symbol = 0;
4512 }
5e2b0d47
NC
4513 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4514 {
4515 /* This is an optional symbol - an Irix specific extension to the
4516 ELF spec. Ignore it for now.
4517 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4518 than simply ignoring them, but we do not handle this for now.
4519 For information see the "64-bit ELF Object File Specification"
4520 which is available from here:
4521 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4522 symbol = 0;
4523 }
b49e97c9
TS
4524 else
4525 {
4526 if (! ((*info->callbacks->undefined_symbol)
4527 (info, h->root.root.root.string, input_bfd,
4528 input_section, relocation->r_offset,
59c2e50f
L
4529 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4530 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4531 return bfd_reloc_undefined;
4532 symbol = 0;
4533 }
4534
30c09090 4535 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
b49e97c9
TS
4536 }
4537
738e5348
RS
4538 /* If this is a reference to a 16-bit function with a stub, we need
4539 to redirect the relocation to the stub unless:
4540
4541 (a) the relocation is for a MIPS16 JAL;
4542
4543 (b) the relocation is for a MIPS16 PIC call, and there are no
4544 non-MIPS16 uses of the GOT slot; or
4545
4546 (c) the section allows direct references to MIPS16 functions. */
4547 if (r_type != R_MIPS16_26
4548 && !info->relocatable
4549 && ((h != NULL
4550 && h->fn_stub != NULL
4551 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
4552 || (local_p
4553 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4554 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 4555 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
4556 {
4557 /* This is a 32- or 64-bit call to a 16-bit function. We should
4558 have already noticed that we were going to need the
4559 stub. */
4560 if (local_p)
4561 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4562 else
4563 {
4564 BFD_ASSERT (h->need_fn_stub);
4565 sec = h->fn_stub;
4566 }
4567
4568 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4569 /* The target is 16-bit, but the stub isn't. */
4570 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4571 }
4572 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
4573 need to redirect the call to the stub. Note that we specifically
4574 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
4575 use an indirect stub instead. */
1049f94e 4576 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 4577 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
4578 || (local_p
4579 && elf_tdata (input_bfd)->local_call_stubs != NULL
4580 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4581 && !target_is_16_bit_code_p)
4582 {
b9d58d71
TS
4583 if (local_p)
4584 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4585 else
b49e97c9 4586 {
b9d58d71
TS
4587 /* If both call_stub and call_fp_stub are defined, we can figure
4588 out which one to use by checking which one appears in the input
4589 file. */
4590 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4591 {
b9d58d71
TS
4592 asection *o;
4593
4594 sec = NULL;
4595 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4596 {
b9d58d71
TS
4597 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4598 {
4599 sec = h->call_fp_stub;
4600 break;
4601 }
b49e97c9 4602 }
b9d58d71
TS
4603 if (sec == NULL)
4604 sec = h->call_stub;
b49e97c9 4605 }
b9d58d71 4606 else if (h->call_stub != NULL)
b49e97c9 4607 sec = h->call_stub;
b9d58d71
TS
4608 else
4609 sec = h->call_fp_stub;
4610 }
b49e97c9 4611
eea6121a 4612 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4613 symbol = sec->output_section->vma + sec->output_offset;
4614 }
4615
4616 /* Calls from 16-bit code to 32-bit code and vice versa require the
4617 special jalx instruction. */
1049f94e 4618 *require_jalxp = (!info->relocatable
b49e97c9
TS
4619 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4620 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4621
4622 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4623 local_sections, TRUE);
b49e97c9 4624
0a61c8c2
RS
4625 gp0 = _bfd_get_gp_value (input_bfd);
4626 gp = _bfd_get_gp_value (abfd);
23cc69b6 4627 if (htab->got_info)
a8028dd0 4628 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
4629
4630 if (gnu_local_gp_p)
4631 symbol = gp;
4632
4633 /* If we haven't already determined the GOT offset, oand we're going
4634 to need it, get it now. */
b49e97c9
TS
4635 switch (r_type)
4636 {
0fdc1bf1 4637 case R_MIPS_GOT_PAGE:
93a2b7ae 4638 case R_MIPS_GOT_OFST:
d25aed71
RS
4639 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4640 bind locally. */
4641 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4642 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4643 break;
4644 /* Fall through. */
4645
738e5348
RS
4646 case R_MIPS16_CALL16:
4647 case R_MIPS16_GOT16:
b49e97c9
TS
4648 case R_MIPS_CALL16:
4649 case R_MIPS_GOT16:
4650 case R_MIPS_GOT_DISP:
4651 case R_MIPS_GOT_HI16:
4652 case R_MIPS_CALL_HI16:
4653 case R_MIPS_GOT_LO16:
4654 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4655 case R_MIPS_TLS_GD:
4656 case R_MIPS_TLS_GOTTPREL:
4657 case R_MIPS_TLS_LDM:
b49e97c9 4658 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4659 if (r_type == R_MIPS_TLS_LDM)
4660 {
0a44bf69 4661 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4662 0, 0, NULL, r_type);
0f20cc35
DJ
4663 if (g == MINUS_ONE)
4664 return bfd_reloc_outofrange;
4665 }
4666 else if (!local_p)
b49e97c9 4667 {
0a44bf69
RS
4668 /* On VxWorks, CALL relocations should refer to the .got.plt
4669 entry, which is initialized to point at the PLT stub. */
4670 if (htab->is_vxworks
4671 && (r_type == R_MIPS_CALL_HI16
4672 || r_type == R_MIPS_CALL_LO16
738e5348 4673 || call16_reloc_p (r_type)))
0a44bf69
RS
4674 {
4675 BFD_ASSERT (addend == 0);
4676 BFD_ASSERT (h->root.needs_plt);
4677 g = mips_elf_gotplt_index (info, &h->root);
4678 }
4679 else
b49e97c9 4680 {
0a44bf69
RS
4681 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4682 GOT_PAGE relocation that decays to GOT_DISP because the
4683 symbol turns out to be global. The addend is then added
4684 as GOT_OFST. */
4685 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4686 g = mips_elf_global_got_index (dynobj, input_bfd,
4687 &h->root, r_type, info);
4688 if (h->tls_type == GOT_NORMAL
4689 && (! elf_hash_table(info)->dynamic_sections_created
4690 || (info->shared
4691 && (info->symbolic || h->root.forced_local)
4692 && h->root.def_regular)))
a8028dd0
RS
4693 /* This is a static link or a -Bsymbolic link. The
4694 symbol is defined locally, or was forced to be local.
4695 We must initialize this entry in the GOT. */
4696 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
4697 }
4698 }
0a44bf69 4699 else if (!htab->is_vxworks
738e5348 4700 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 4701 /* The calculation below does not involve "g". */
b49e97c9
TS
4702 break;
4703 else
4704 {
5c18022e 4705 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4706 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4707 if (g == MINUS_ONE)
4708 return bfd_reloc_outofrange;
4709 }
4710
4711 /* Convert GOT indices to actual offsets. */
a8028dd0 4712 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 4713 break;
b49e97c9
TS
4714 }
4715
0a44bf69
RS
4716 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4717 symbols are resolved by the loader. Add them to .rela.dyn. */
4718 if (h != NULL && is_gott_symbol (info, &h->root))
4719 {
4720 Elf_Internal_Rela outrel;
4721 bfd_byte *loc;
4722 asection *s;
4723
4724 s = mips_elf_rel_dyn_section (info, FALSE);
4725 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4726
4727 outrel.r_offset = (input_section->output_section->vma
4728 + input_section->output_offset
4729 + relocation->r_offset);
4730 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4731 outrel.r_addend = addend;
4732 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4733
4734 /* If we've written this relocation for a readonly section,
4735 we need to set DF_TEXTREL again, so that we do not delete the
4736 DT_TEXTREL tag. */
4737 if (MIPS_ELF_READONLY_SECTION (input_section))
4738 info->flags |= DF_TEXTREL;
4739
0a44bf69
RS
4740 *valuep = 0;
4741 return bfd_reloc_ok;
4742 }
4743
b49e97c9
TS
4744 /* Figure out what kind of relocation is being performed. */
4745 switch (r_type)
4746 {
4747 case R_MIPS_NONE:
4748 return bfd_reloc_continue;
4749
4750 case R_MIPS_16:
a7ebbfdf 4751 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4752 overflowed_p = mips_elf_overflow_p (value, 16);
4753 break;
4754
4755 case R_MIPS_32:
4756 case R_MIPS_REL32:
4757 case R_MIPS_64:
4758 if ((info->shared
0a44bf69
RS
4759 || (!htab->is_vxworks
4760 && htab->root.dynamic_sections_created
b49e97c9 4761 && h != NULL
f5385ebf
AM
4762 && h->root.def_dynamic
4763 && !h->root.def_regular))
b49e97c9 4764 && r_symndx != 0
9a59ad6b
DJ
4765 && (h == NULL
4766 || h->root.root.type != bfd_link_hash_undefweak
4767 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
4768 && (input_section->flags & SEC_ALLOC) != 0)
4769 {
4770 /* If we're creating a shared library, or this relocation is
4771 against a symbol in a shared library, then we can't know
4772 where the symbol will end up. So, we create a relocation
4773 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4774 linker.
4775
4776 In VxWorks executables, references to external symbols
4777 are handled using copy relocs or PLT stubs, so there's
4778 no need to add a dynamic relocation here. */
b49e97c9
TS
4779 value = addend;
4780 if (!mips_elf_create_dynamic_relocation (abfd,
4781 info,
4782 relocation,
4783 h,
4784 sec,
4785 symbol,
4786 &value,
4787 input_section))
4788 return bfd_reloc_undefined;
4789 }
4790 else
4791 {
4792 if (r_type != R_MIPS_REL32)
4793 value = symbol + addend;
4794 else
4795 value = addend;
4796 }
4797 value &= howto->dst_mask;
092dcd75
CD
4798 break;
4799
4800 case R_MIPS_PC32:
4801 value = symbol + addend - p;
4802 value &= howto->dst_mask;
b49e97c9
TS
4803 break;
4804
b49e97c9
TS
4805 case R_MIPS16_26:
4806 /* The calculation for R_MIPS16_26 is just the same as for an
4807 R_MIPS_26. It's only the storage of the relocated field into
4808 the output file that's different. That's handled in
4809 mips_elf_perform_relocation. So, we just fall through to the
4810 R_MIPS_26 case here. */
4811 case R_MIPS_26:
4812 if (local_p)
30ac9238 4813 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4814 else
728b2f21
ILT
4815 {
4816 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4817 if (h->root.root.type != bfd_link_hash_undefweak)
4818 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4819 }
b49e97c9
TS
4820 value &= howto->dst_mask;
4821 break;
4822
0f20cc35
DJ
4823 case R_MIPS_TLS_DTPREL_HI16:
4824 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4825 & howto->dst_mask);
4826 break;
4827
4828 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
4829 case R_MIPS_TLS_DTPREL32:
4830 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
4831 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4832 break;
4833
4834 case R_MIPS_TLS_TPREL_HI16:
4835 value = (mips_elf_high (addend + symbol - tprel_base (info))
4836 & howto->dst_mask);
4837 break;
4838
4839 case R_MIPS_TLS_TPREL_LO16:
4840 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4841 break;
4842
b49e97c9 4843 case R_MIPS_HI16:
d6f16593 4844 case R_MIPS16_HI16:
b49e97c9
TS
4845 if (!gp_disp_p)
4846 {
4847 value = mips_elf_high (addend + symbol);
4848 value &= howto->dst_mask;
4849 }
4850 else
4851 {
d6f16593
MR
4852 /* For MIPS16 ABI code we generate this sequence
4853 0: li $v0,%hi(_gp_disp)
4854 4: addiupc $v1,%lo(_gp_disp)
4855 8: sll $v0,16
4856 12: addu $v0,$v1
4857 14: move $gp,$v0
4858 So the offsets of hi and lo relocs are the same, but the
4859 $pc is four higher than $t9 would be, so reduce
4860 both reloc addends by 4. */
4861 if (r_type == R_MIPS16_HI16)
4862 value = mips_elf_high (addend + gp - p - 4);
4863 else
4864 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4865 overflowed_p = mips_elf_overflow_p (value, 16);
4866 }
4867 break;
4868
4869 case R_MIPS_LO16:
d6f16593 4870 case R_MIPS16_LO16:
b49e97c9
TS
4871 if (!gp_disp_p)
4872 value = (symbol + addend) & howto->dst_mask;
4873 else
4874 {
d6f16593
MR
4875 /* See the comment for R_MIPS16_HI16 above for the reason
4876 for this conditional. */
4877 if (r_type == R_MIPS16_LO16)
4878 value = addend + gp - p;
4879 else
4880 value = addend + gp - p + 4;
b49e97c9 4881 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4882 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4883 _gp_disp are normally generated from the .cpload
4884 pseudo-op. It generates code that normally looks like
4885 this:
4886
4887 lui $gp,%hi(_gp_disp)
4888 addiu $gp,$gp,%lo(_gp_disp)
4889 addu $gp,$gp,$t9
4890
4891 Here $t9 holds the address of the function being called,
4892 as required by the MIPS ELF ABI. The R_MIPS_LO16
4893 relocation can easily overflow in this situation, but the
4894 R_MIPS_HI16 relocation will handle the overflow.
4895 Therefore, we consider this a bug in the MIPS ABI, and do
4896 not check for overflow here. */
4897 }
4898 break;
4899
4900 case R_MIPS_LITERAL:
4901 /* Because we don't merge literal sections, we can handle this
4902 just like R_MIPS_GPREL16. In the long run, we should merge
4903 shared literals, and then we will need to additional work
4904 here. */
4905
4906 /* Fall through. */
4907
4908 case R_MIPS16_GPREL:
4909 /* The R_MIPS16_GPREL performs the same calculation as
4910 R_MIPS_GPREL16, but stores the relocated bits in a different
4911 order. We don't need to do anything special here; the
4912 differences are handled in mips_elf_perform_relocation. */
4913 case R_MIPS_GPREL16:
bce03d3d
AO
4914 /* Only sign-extend the addend if it was extracted from the
4915 instruction. If the addend was separate, leave it alone,
4916 otherwise we may lose significant bits. */
4917 if (howto->partial_inplace)
a7ebbfdf 4918 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4919 value = symbol + addend - gp;
4920 /* If the symbol was local, any earlier relocatable links will
4921 have adjusted its addend with the gp offset, so compensate
4922 for that now. Don't do it for symbols forced local in this
4923 link, though, since they won't have had the gp offset applied
4924 to them before. */
4925 if (was_local_p)
4926 value += gp0;
b49e97c9
TS
4927 overflowed_p = mips_elf_overflow_p (value, 16);
4928 break;
4929
738e5348
RS
4930 case R_MIPS16_GOT16:
4931 case R_MIPS16_CALL16:
b49e97c9
TS
4932 case R_MIPS_GOT16:
4933 case R_MIPS_CALL16:
0a44bf69 4934 /* VxWorks does not have separate local and global semantics for
738e5348 4935 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 4936 if (!htab->is_vxworks && local_p)
b49e97c9 4937 {
b34976b6 4938 bfd_boolean forced;
b49e97c9 4939
b49e97c9 4940 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4941 local_sections, FALSE);
5c18022e 4942 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4943 symbol + addend, forced);
b49e97c9
TS
4944 if (value == MINUS_ONE)
4945 return bfd_reloc_outofrange;
4946 value
a8028dd0 4947 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
4948 overflowed_p = mips_elf_overflow_p (value, 16);
4949 break;
4950 }
4951
4952 /* Fall through. */
4953
0f20cc35
DJ
4954 case R_MIPS_TLS_GD:
4955 case R_MIPS_TLS_GOTTPREL:
4956 case R_MIPS_TLS_LDM:
b49e97c9 4957 case R_MIPS_GOT_DISP:
0fdc1bf1 4958 got_disp:
b49e97c9
TS
4959 value = g;
4960 overflowed_p = mips_elf_overflow_p (value, 16);
4961 break;
4962
4963 case R_MIPS_GPREL32:
bce03d3d
AO
4964 value = (addend + symbol + gp0 - gp);
4965 if (!save_addend)
4966 value &= howto->dst_mask;
b49e97c9
TS
4967 break;
4968
4969 case R_MIPS_PC16:
bad36eac
DJ
4970 case R_MIPS_GNU_REL16_S2:
4971 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4972 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4973 value >>= howto->rightshift;
4974 value &= howto->dst_mask;
b49e97c9
TS
4975 break;
4976
4977 case R_MIPS_GOT_HI16:
4978 case R_MIPS_CALL_HI16:
4979 /* We're allowed to handle these two relocations identically.
4980 The dynamic linker is allowed to handle the CALL relocations
4981 differently by creating a lazy evaluation stub. */
4982 value = g;
4983 value = mips_elf_high (value);
4984 value &= howto->dst_mask;
4985 break;
4986
4987 case R_MIPS_GOT_LO16:
4988 case R_MIPS_CALL_LO16:
4989 value = g & howto->dst_mask;
4990 break;
4991
4992 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4993 /* GOT_PAGE relocations that reference non-local symbols decay
4994 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4995 0. */
93a2b7ae 4996 if (! local_p)
0fdc1bf1 4997 goto got_disp;
5c18022e 4998 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4999 if (value == MINUS_ONE)
5000 return bfd_reloc_outofrange;
a8028dd0 5001 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5002 overflowed_p = mips_elf_overflow_p (value, 16);
5003 break;
5004
5005 case R_MIPS_GOT_OFST:
93a2b7ae 5006 if (local_p)
5c18022e 5007 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5008 else
5009 value = addend;
b49e97c9
TS
5010 overflowed_p = mips_elf_overflow_p (value, 16);
5011 break;
5012
5013 case R_MIPS_SUB:
5014 value = symbol - addend;
5015 value &= howto->dst_mask;
5016 break;
5017
5018 case R_MIPS_HIGHER:
5019 value = mips_elf_higher (addend + symbol);
5020 value &= howto->dst_mask;
5021 break;
5022
5023 case R_MIPS_HIGHEST:
5024 value = mips_elf_highest (addend + symbol);
5025 value &= howto->dst_mask;
5026 break;
5027
5028 case R_MIPS_SCN_DISP:
5029 value = symbol + addend - sec->output_offset;
5030 value &= howto->dst_mask;
5031 break;
5032
b49e97c9 5033 case R_MIPS_JALR:
1367d393
ILT
5034 /* This relocation is only a hint. In some cases, we optimize
5035 it into a bal instruction. But we don't try to optimize
5036 branches to the PLT; that will wind up wasting time. */
5037 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
5038 return bfd_reloc_continue;
5039 value = symbol + addend;
5040 break;
b49e97c9 5041
1367d393 5042 case R_MIPS_PJUMP:
b49e97c9
TS
5043 case R_MIPS_GNU_VTINHERIT:
5044 case R_MIPS_GNU_VTENTRY:
5045 /* We don't do anything with these at present. */
5046 return bfd_reloc_continue;
5047
5048 default:
5049 /* An unrecognized relocation type. */
5050 return bfd_reloc_notsupported;
5051 }
5052
5053 /* Store the VALUE for our caller. */
5054 *valuep = value;
5055 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5056}
5057
5058/* Obtain the field relocated by RELOCATION. */
5059
5060static bfd_vma
9719ad41
RS
5061mips_elf_obtain_contents (reloc_howto_type *howto,
5062 const Elf_Internal_Rela *relocation,
5063 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5064{
5065 bfd_vma x;
5066 bfd_byte *location = contents + relocation->r_offset;
5067
5068 /* Obtain the bytes. */
5069 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5070
b49e97c9
TS
5071 return x;
5072}
5073
5074/* It has been determined that the result of the RELOCATION is the
5075 VALUE. Use HOWTO to place VALUE into the output file at the
5076 appropriate position. The SECTION is the section to which the
b34976b6 5077 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
5078 for the relocation must be either JAL or JALX, and it is
5079 unconditionally converted to JALX.
5080
b34976b6 5081 Returns FALSE if anything goes wrong. */
b49e97c9 5082
b34976b6 5083static bfd_boolean
9719ad41
RS
5084mips_elf_perform_relocation (struct bfd_link_info *info,
5085 reloc_howto_type *howto,
5086 const Elf_Internal_Rela *relocation,
5087 bfd_vma value, bfd *input_bfd,
5088 asection *input_section, bfd_byte *contents,
5089 bfd_boolean require_jalx)
b49e97c9
TS
5090{
5091 bfd_vma x;
5092 bfd_byte *location;
5093 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5094
5095 /* Figure out where the relocation is occurring. */
5096 location = contents + relocation->r_offset;
5097
d6f16593
MR
5098 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5099
b49e97c9
TS
5100 /* Obtain the current value. */
5101 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5102
5103 /* Clear the field we are setting. */
5104 x &= ~howto->dst_mask;
5105
b49e97c9
TS
5106 /* Set the field. */
5107 x |= (value & howto->dst_mask);
5108
5109 /* If required, turn JAL into JALX. */
5110 if (require_jalx)
5111 {
b34976b6 5112 bfd_boolean ok;
b49e97c9
TS
5113 bfd_vma opcode = x >> 26;
5114 bfd_vma jalx_opcode;
5115
5116 /* Check to see if the opcode is already JAL or JALX. */
5117 if (r_type == R_MIPS16_26)
5118 {
5119 ok = ((opcode == 0x6) || (opcode == 0x7));
5120 jalx_opcode = 0x7;
5121 }
5122 else
5123 {
5124 ok = ((opcode == 0x3) || (opcode == 0x1d));
5125 jalx_opcode = 0x1d;
5126 }
5127
5128 /* If the opcode is not JAL or JALX, there's a problem. */
5129 if (!ok)
5130 {
5131 (*_bfd_error_handler)
d003868e
AM
5132 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5133 input_bfd,
5134 input_section,
b49e97c9
TS
5135 (unsigned long) relocation->r_offset);
5136 bfd_set_error (bfd_error_bad_value);
b34976b6 5137 return FALSE;
b49e97c9
TS
5138 }
5139
5140 /* Make this the JALX opcode. */
5141 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5142 }
5143
1367d393
ILT
5144 /* On the RM9000, bal is faster than jal, because bal uses branch
5145 prediction hardware. If we are linking for the RM9000, and we
5146 see jal, and bal fits, use it instead. Note that this
5147 transformation should be safe for all architectures. */
5148 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
5149 && !info->relocatable
5150 && !require_jalx
5151 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
5152 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
5153 {
5154 bfd_vma addr;
5155 bfd_vma dest;
5156 bfd_signed_vma off;
5157
5158 addr = (input_section->output_section->vma
5159 + input_section->output_offset
5160 + relocation->r_offset
5161 + 4);
5162 if (r_type == R_MIPS_26)
5163 dest = (value << 2) | ((addr >> 28) << 28);
5164 else
5165 dest = value;
5166 off = dest - addr;
5167 if (off <= 0x1ffff && off >= -0x20000)
5168 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5169 }
5170
b49e97c9
TS
5171 /* Put the value into the output. */
5172 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
5173
5174 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5175 location);
5176
b34976b6 5177 return TRUE;
b49e97c9 5178}
b49e97c9 5179\f
b49e97c9
TS
5180/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5181 is the original relocation, which is now being transformed into a
5182 dynamic relocation. The ADDENDP is adjusted if necessary; the
5183 caller should store the result in place of the original addend. */
5184
b34976b6 5185static bfd_boolean
9719ad41
RS
5186mips_elf_create_dynamic_relocation (bfd *output_bfd,
5187 struct bfd_link_info *info,
5188 const Elf_Internal_Rela *rel,
5189 struct mips_elf_link_hash_entry *h,
5190 asection *sec, bfd_vma symbol,
5191 bfd_vma *addendp, asection *input_section)
b49e97c9 5192{
947216bf 5193 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5194 asection *sreloc;
5195 bfd *dynobj;
5196 int r_type;
5d41f0b6
RS
5197 long indx;
5198 bfd_boolean defined_p;
0a44bf69 5199 struct mips_elf_link_hash_table *htab;
b49e97c9 5200
0a44bf69 5201 htab = mips_elf_hash_table (info);
b49e97c9
TS
5202 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5203 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5204 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5205 BFD_ASSERT (sreloc != NULL);
5206 BFD_ASSERT (sreloc->contents != NULL);
5207 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5208 < sreloc->size);
b49e97c9 5209
b49e97c9
TS
5210 outrel[0].r_offset =
5211 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5212 if (ABI_64_P (output_bfd))
5213 {
5214 outrel[1].r_offset =
5215 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5216 outrel[2].r_offset =
5217 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5218 }
b49e97c9 5219
c5ae1840 5220 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 5221 /* The relocation field has been deleted. */
5d41f0b6
RS
5222 return TRUE;
5223
5224 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
5225 {
5226 /* The relocation field has been converted into a relative value of
5227 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5228 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 5229 *addendp += symbol;
5d41f0b6 5230 return TRUE;
0d591ff7 5231 }
b49e97c9 5232
5d41f0b6
RS
5233 /* We must now calculate the dynamic symbol table index to use
5234 in the relocation. */
5235 if (h != NULL
6ece8836
TS
5236 && (!h->root.def_regular
5237 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
5238 {
5239 indx = h->root.dynindx;
5240 if (SGI_COMPAT (output_bfd))
5241 defined_p = h->root.def_regular;
5242 else
5243 /* ??? glibc's ld.so just adds the final GOT entry to the
5244 relocation field. It therefore treats relocs against
5245 defined symbols in the same way as relocs against
5246 undefined symbols. */
5247 defined_p = FALSE;
5248 }
b49e97c9
TS
5249 else
5250 {
5d41f0b6
RS
5251 if (sec != NULL && bfd_is_abs_section (sec))
5252 indx = 0;
5253 else if (sec == NULL || sec->owner == NULL)
fdd07405 5254 {
5d41f0b6
RS
5255 bfd_set_error (bfd_error_bad_value);
5256 return FALSE;
b49e97c9
TS
5257 }
5258 else
5259 {
5d41f0b6 5260 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
5261 if (indx == 0)
5262 {
5263 asection *osec = htab->root.text_index_section;
5264 indx = elf_section_data (osec)->dynindx;
5265 }
5d41f0b6
RS
5266 if (indx == 0)
5267 abort ();
b49e97c9
TS
5268 }
5269
5d41f0b6
RS
5270 /* Instead of generating a relocation using the section
5271 symbol, we may as well make it a fully relative
5272 relocation. We want to avoid generating relocations to
5273 local symbols because we used to generate them
5274 incorrectly, without adding the original symbol value,
5275 which is mandated by the ABI for section symbols. In
5276 order to give dynamic loaders and applications time to
5277 phase out the incorrect use, we refrain from emitting
5278 section-relative relocations. It's not like they're
5279 useful, after all. This should be a bit more efficient
5280 as well. */
5281 /* ??? Although this behavior is compatible with glibc's ld.so,
5282 the ABI says that relocations against STN_UNDEF should have
5283 a symbol value of 0. Irix rld honors this, so relocations
5284 against STN_UNDEF have no effect. */
5285 if (!SGI_COMPAT (output_bfd))
5286 indx = 0;
5287 defined_p = TRUE;
b49e97c9
TS
5288 }
5289
5d41f0b6
RS
5290 /* If the relocation was previously an absolute relocation and
5291 this symbol will not be referred to by the relocation, we must
5292 adjust it by the value we give it in the dynamic symbol table.
5293 Otherwise leave the job up to the dynamic linker. */
5294 if (defined_p && r_type != R_MIPS_REL32)
5295 *addendp += symbol;
5296
0a44bf69
RS
5297 if (htab->is_vxworks)
5298 /* VxWorks uses non-relative relocations for this. */
5299 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5300 else
5301 /* The relocation is always an REL32 relocation because we don't
5302 know where the shared library will wind up at load-time. */
5303 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5304 R_MIPS_REL32);
5305
5d41f0b6
RS
5306 /* For strict adherence to the ABI specification, we should
5307 generate a R_MIPS_64 relocation record by itself before the
5308 _REL32/_64 record as well, such that the addend is read in as
5309 a 64-bit value (REL32 is a 32-bit relocation, after all).
5310 However, since none of the existing ELF64 MIPS dynamic
5311 loaders seems to care, we don't waste space with these
5312 artificial relocations. If this turns out to not be true,
5313 mips_elf_allocate_dynamic_relocation() should be tweaked so
5314 as to make room for a pair of dynamic relocations per
5315 invocation if ABI_64_P, and here we should generate an
5316 additional relocation record with R_MIPS_64 by itself for a
5317 NULL symbol before this relocation record. */
5318 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5319 ABI_64_P (output_bfd)
5320 ? R_MIPS_64
5321 : R_MIPS_NONE);
5322 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5323
5324 /* Adjust the output offset of the relocation to reference the
5325 correct location in the output file. */
5326 outrel[0].r_offset += (input_section->output_section->vma
5327 + input_section->output_offset);
5328 outrel[1].r_offset += (input_section->output_section->vma
5329 + input_section->output_offset);
5330 outrel[2].r_offset += (input_section->output_section->vma
5331 + input_section->output_offset);
5332
b49e97c9
TS
5333 /* Put the relocation back out. We have to use the special
5334 relocation outputter in the 64-bit case since the 64-bit
5335 relocation format is non-standard. */
5336 if (ABI_64_P (output_bfd))
5337 {
5338 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5339 (output_bfd, &outrel[0],
5340 (sreloc->contents
5341 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5342 }
0a44bf69
RS
5343 else if (htab->is_vxworks)
5344 {
5345 /* VxWorks uses RELA rather than REL dynamic relocations. */
5346 outrel[0].r_addend = *addendp;
5347 bfd_elf32_swap_reloca_out
5348 (output_bfd, &outrel[0],
5349 (sreloc->contents
5350 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5351 }
b49e97c9 5352 else
947216bf
AM
5353 bfd_elf32_swap_reloc_out
5354 (output_bfd, &outrel[0],
5355 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 5356
b49e97c9
TS
5357 /* We've now added another relocation. */
5358 ++sreloc->reloc_count;
5359
5360 /* Make sure the output section is writable. The dynamic linker
5361 will be writing to it. */
5362 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5363 |= SHF_WRITE;
5364
5365 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 5366 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
5367 {
5368 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5369 bfd_byte *cr;
5370
5371 if (scpt)
5372 {
5373 Elf32_crinfo cptrel;
5374
5375 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5376 cptrel.vaddr = (rel->r_offset
5377 + input_section->output_section->vma
5378 + input_section->output_offset);
5379 if (r_type == R_MIPS_REL32)
5380 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5381 else
5382 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5383 mips_elf_set_cr_dist2to (cptrel, 0);
5384 cptrel.konst = *addendp;
5385
5386 cr = (scpt->contents
5387 + sizeof (Elf32_External_compact_rel));
abc0f8d0 5388 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
5389 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5390 ((Elf32_External_crinfo *) cr
5391 + scpt->reloc_count));
5392 ++scpt->reloc_count;
5393 }
5394 }
5395
943284cc
DJ
5396 /* If we've written this relocation for a readonly section,
5397 we need to set DF_TEXTREL again, so that we do not delete the
5398 DT_TEXTREL tag. */
5399 if (MIPS_ELF_READONLY_SECTION (input_section))
5400 info->flags |= DF_TEXTREL;
5401
b34976b6 5402 return TRUE;
b49e97c9
TS
5403}
5404\f
b49e97c9
TS
5405/* Return the MACH for a MIPS e_flags value. */
5406
5407unsigned long
9719ad41 5408_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
5409{
5410 switch (flags & EF_MIPS_MACH)
5411 {
5412 case E_MIPS_MACH_3900:
5413 return bfd_mach_mips3900;
5414
5415 case E_MIPS_MACH_4010:
5416 return bfd_mach_mips4010;
5417
5418 case E_MIPS_MACH_4100:
5419 return bfd_mach_mips4100;
5420
5421 case E_MIPS_MACH_4111:
5422 return bfd_mach_mips4111;
5423
00707a0e
RS
5424 case E_MIPS_MACH_4120:
5425 return bfd_mach_mips4120;
5426
b49e97c9
TS
5427 case E_MIPS_MACH_4650:
5428 return bfd_mach_mips4650;
5429
00707a0e
RS
5430 case E_MIPS_MACH_5400:
5431 return bfd_mach_mips5400;
5432
5433 case E_MIPS_MACH_5500:
5434 return bfd_mach_mips5500;
5435
0d2e43ed
ILT
5436 case E_MIPS_MACH_9000:
5437 return bfd_mach_mips9000;
5438
b49e97c9
TS
5439 case E_MIPS_MACH_SB1:
5440 return bfd_mach_mips_sb1;
5441
350cc38d
MS
5442 case E_MIPS_MACH_LS2E:
5443 return bfd_mach_mips_loongson_2e;
5444
5445 case E_MIPS_MACH_LS2F:
5446 return bfd_mach_mips_loongson_2f;
5447
6f179bd0
AN
5448 case E_MIPS_MACH_OCTEON:
5449 return bfd_mach_mips_octeon;
5450
b49e97c9
TS
5451 default:
5452 switch (flags & EF_MIPS_ARCH)
5453 {
5454 default:
5455 case E_MIPS_ARCH_1:
5456 return bfd_mach_mips3000;
b49e97c9
TS
5457
5458 case E_MIPS_ARCH_2:
5459 return bfd_mach_mips6000;
b49e97c9
TS
5460
5461 case E_MIPS_ARCH_3:
5462 return bfd_mach_mips4000;
b49e97c9
TS
5463
5464 case E_MIPS_ARCH_4:
5465 return bfd_mach_mips8000;
b49e97c9
TS
5466
5467 case E_MIPS_ARCH_5:
5468 return bfd_mach_mips5;
b49e97c9
TS
5469
5470 case E_MIPS_ARCH_32:
5471 return bfd_mach_mipsisa32;
b49e97c9
TS
5472
5473 case E_MIPS_ARCH_64:
5474 return bfd_mach_mipsisa64;
af7ee8bf
CD
5475
5476 case E_MIPS_ARCH_32R2:
5477 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5478
5479 case E_MIPS_ARCH_64R2:
5480 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5481 }
5482 }
5483
5484 return 0;
5485}
5486
5487/* Return printable name for ABI. */
5488
5489static INLINE char *
9719ad41 5490elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5491{
5492 flagword flags;
5493
5494 flags = elf_elfheader (abfd)->e_flags;
5495 switch (flags & EF_MIPS_ABI)
5496 {
5497 case 0:
5498 if (ABI_N32_P (abfd))
5499 return "N32";
5500 else if (ABI_64_P (abfd))
5501 return "64";
5502 else
5503 return "none";
5504 case E_MIPS_ABI_O32:
5505 return "O32";
5506 case E_MIPS_ABI_O64:
5507 return "O64";
5508 case E_MIPS_ABI_EABI32:
5509 return "EABI32";
5510 case E_MIPS_ABI_EABI64:
5511 return "EABI64";
5512 default:
5513 return "unknown abi";
5514 }
5515}
5516\f
5517/* MIPS ELF uses two common sections. One is the usual one, and the
5518 other is for small objects. All the small objects are kept
5519 together, and then referenced via the gp pointer, which yields
5520 faster assembler code. This is what we use for the small common
5521 section. This approach is copied from ecoff.c. */
5522static asection mips_elf_scom_section;
5523static asymbol mips_elf_scom_symbol;
5524static asymbol *mips_elf_scom_symbol_ptr;
5525
5526/* MIPS ELF also uses an acommon section, which represents an
5527 allocated common symbol which may be overridden by a
5528 definition in a shared library. */
5529static asection mips_elf_acom_section;
5530static asymbol mips_elf_acom_symbol;
5531static asymbol *mips_elf_acom_symbol_ptr;
5532
738e5348 5533/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
5534
5535void
9719ad41 5536_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5537{
5538 elf_symbol_type *elfsym;
5539
738e5348 5540 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
5541 elfsym = (elf_symbol_type *) asym;
5542 switch (elfsym->internal_elf_sym.st_shndx)
5543 {
5544 case SHN_MIPS_ACOMMON:
5545 /* This section is used in a dynamically linked executable file.
5546 It is an allocated common section. The dynamic linker can
5547 either resolve these symbols to something in a shared
5548 library, or it can just leave them here. For our purposes,
5549 we can consider these symbols to be in a new section. */
5550 if (mips_elf_acom_section.name == NULL)
5551 {
5552 /* Initialize the acommon section. */
5553 mips_elf_acom_section.name = ".acommon";
5554 mips_elf_acom_section.flags = SEC_ALLOC;
5555 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5556 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5557 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5558 mips_elf_acom_symbol.name = ".acommon";
5559 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5560 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5561 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5562 }
5563 asym->section = &mips_elf_acom_section;
5564 break;
5565
5566 case SHN_COMMON:
5567 /* Common symbols less than the GP size are automatically
5568 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5569 if (asym->value > elf_gp_size (abfd)
b59eed79 5570 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5571 || IRIX_COMPAT (abfd) == ict_irix6)
5572 break;
5573 /* Fall through. */
5574 case SHN_MIPS_SCOMMON:
5575 if (mips_elf_scom_section.name == NULL)
5576 {
5577 /* Initialize the small common section. */
5578 mips_elf_scom_section.name = ".scommon";
5579 mips_elf_scom_section.flags = SEC_IS_COMMON;
5580 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5581 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5582 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5583 mips_elf_scom_symbol.name = ".scommon";
5584 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5585 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5586 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5587 }
5588 asym->section = &mips_elf_scom_section;
5589 asym->value = elfsym->internal_elf_sym.st_size;
5590 break;
5591
5592 case SHN_MIPS_SUNDEFINED:
5593 asym->section = bfd_und_section_ptr;
5594 break;
5595
b49e97c9 5596 case SHN_MIPS_TEXT:
00b4930b
TS
5597 {
5598 asection *section = bfd_get_section_by_name (abfd, ".text");
5599
5600 BFD_ASSERT (SGI_COMPAT (abfd));
5601 if (section != NULL)
5602 {
5603 asym->section = section;
5604 /* MIPS_TEXT is a bit special, the address is not an offset
5605 to the base of the .text section. So substract the section
5606 base address to make it an offset. */
5607 asym->value -= section->vma;
5608 }
5609 }
b49e97c9
TS
5610 break;
5611
5612 case SHN_MIPS_DATA:
00b4930b
TS
5613 {
5614 asection *section = bfd_get_section_by_name (abfd, ".data");
5615
5616 BFD_ASSERT (SGI_COMPAT (abfd));
5617 if (section != NULL)
5618 {
5619 asym->section = section;
5620 /* MIPS_DATA is a bit special, the address is not an offset
5621 to the base of the .data section. So substract the section
5622 base address to make it an offset. */
5623 asym->value -= section->vma;
5624 }
5625 }
b49e97c9 5626 break;
b49e97c9 5627 }
738e5348
RS
5628
5629 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
5630 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
5631 && (asym->value & 1) != 0)
5632 {
5633 asym->value--;
5634 elfsym->internal_elf_sym.st_other
5635 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
5636 }
b49e97c9
TS
5637}
5638\f
8c946ed5
RS
5639/* Implement elf_backend_eh_frame_address_size. This differs from
5640 the default in the way it handles EABI64.
5641
5642 EABI64 was originally specified as an LP64 ABI, and that is what
5643 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5644 historically accepted the combination of -mabi=eabi and -mlong32,
5645 and this ILP32 variation has become semi-official over time.
5646 Both forms use elf32 and have pointer-sized FDE addresses.
5647
5648 If an EABI object was generated by GCC 4.0 or above, it will have
5649 an empty .gcc_compiled_longXX section, where XX is the size of longs
5650 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5651 have no special marking to distinguish them from LP64 objects.
5652
5653 We don't want users of the official LP64 ABI to be punished for the
5654 existence of the ILP32 variant, but at the same time, we don't want
5655 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5656 We therefore take the following approach:
5657
5658 - If ABFD contains a .gcc_compiled_longXX section, use it to
5659 determine the pointer size.
5660
5661 - Otherwise check the type of the first relocation. Assume that
5662 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5663
5664 - Otherwise punt.
5665
5666 The second check is enough to detect LP64 objects generated by pre-4.0
5667 compilers because, in the kind of output generated by those compilers,
5668 the first relocation will be associated with either a CIE personality
5669 routine or an FDE start address. Furthermore, the compilers never
5670 used a special (non-pointer) encoding for this ABI.
5671
5672 Checking the relocation type should also be safe because there is no
5673 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5674 did so. */
5675
5676unsigned int
5677_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5678{
5679 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5680 return 8;
5681 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5682 {
5683 bfd_boolean long32_p, long64_p;
5684
5685 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5686 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5687 if (long32_p && long64_p)
5688 return 0;
5689 if (long32_p)
5690 return 4;
5691 if (long64_p)
5692 return 8;
5693
5694 if (sec->reloc_count > 0
5695 && elf_section_data (sec)->relocs != NULL
5696 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5697 == R_MIPS_64))
5698 return 8;
5699
5700 return 0;
5701 }
5702 return 4;
5703}
5704\f
174fd7f9
RS
5705/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5706 relocations against two unnamed section symbols to resolve to the
5707 same address. For example, if we have code like:
5708
5709 lw $4,%got_disp(.data)($gp)
5710 lw $25,%got_disp(.text)($gp)
5711 jalr $25
5712
5713 then the linker will resolve both relocations to .data and the program
5714 will jump there rather than to .text.
5715
5716 We can work around this problem by giving names to local section symbols.
5717 This is also what the MIPSpro tools do. */
5718
5719bfd_boolean
5720_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5721{
5722 return SGI_COMPAT (abfd);
5723}
5724\f
b49e97c9
TS
5725/* Work over a section just before writing it out. This routine is
5726 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5727 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5728 a better way. */
5729
b34976b6 5730bfd_boolean
9719ad41 5731_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5732{
5733 if (hdr->sh_type == SHT_MIPS_REGINFO
5734 && hdr->sh_size > 0)
5735 {
5736 bfd_byte buf[4];
5737
5738 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5739 BFD_ASSERT (hdr->contents == NULL);
5740
5741 if (bfd_seek (abfd,
5742 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5743 SEEK_SET) != 0)
b34976b6 5744 return FALSE;
b49e97c9 5745 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5746 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5747 return FALSE;
b49e97c9
TS
5748 }
5749
5750 if (hdr->sh_type == SHT_MIPS_OPTIONS
5751 && hdr->bfd_section != NULL
f0abc2a1
AM
5752 && mips_elf_section_data (hdr->bfd_section) != NULL
5753 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5754 {
5755 bfd_byte *contents, *l, *lend;
5756
f0abc2a1
AM
5757 /* We stored the section contents in the tdata field in the
5758 set_section_contents routine. We save the section contents
5759 so that we don't have to read them again.
b49e97c9
TS
5760 At this point we know that elf_gp is set, so we can look
5761 through the section contents to see if there is an
5762 ODK_REGINFO structure. */
5763
f0abc2a1 5764 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5765 l = contents;
5766 lend = contents + hdr->sh_size;
5767 while (l + sizeof (Elf_External_Options) <= lend)
5768 {
5769 Elf_Internal_Options intopt;
5770
5771 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5772 &intopt);
1bc8074d
MR
5773 if (intopt.size < sizeof (Elf_External_Options))
5774 {
5775 (*_bfd_error_handler)
5776 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5777 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5778 break;
5779 }
b49e97c9
TS
5780 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5781 {
5782 bfd_byte buf[8];
5783
5784 if (bfd_seek (abfd,
5785 (hdr->sh_offset
5786 + (l - contents)
5787 + sizeof (Elf_External_Options)
5788 + (sizeof (Elf64_External_RegInfo) - 8)),
5789 SEEK_SET) != 0)
b34976b6 5790 return FALSE;
b49e97c9 5791 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5792 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5793 return FALSE;
b49e97c9
TS
5794 }
5795 else if (intopt.kind == ODK_REGINFO)
5796 {
5797 bfd_byte buf[4];
5798
5799 if (bfd_seek (abfd,
5800 (hdr->sh_offset
5801 + (l - contents)
5802 + sizeof (Elf_External_Options)
5803 + (sizeof (Elf32_External_RegInfo) - 4)),
5804 SEEK_SET) != 0)
b34976b6 5805 return FALSE;
b49e97c9 5806 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5807 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5808 return FALSE;
b49e97c9
TS
5809 }
5810 l += intopt.size;
5811 }
5812 }
5813
5814 if (hdr->bfd_section != NULL)
5815 {
5816 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5817
5818 if (strcmp (name, ".sdata") == 0
5819 || strcmp (name, ".lit8") == 0
5820 || strcmp (name, ".lit4") == 0)
5821 {
5822 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5823 hdr->sh_type = SHT_PROGBITS;
5824 }
5825 else if (strcmp (name, ".sbss") == 0)
5826 {
5827 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5828 hdr->sh_type = SHT_NOBITS;
5829 }
5830 else if (strcmp (name, ".srdata") == 0)
5831 {
5832 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5833 hdr->sh_type = SHT_PROGBITS;
5834 }
5835 else if (strcmp (name, ".compact_rel") == 0)
5836 {
5837 hdr->sh_flags = 0;
5838 hdr->sh_type = SHT_PROGBITS;
5839 }
5840 else if (strcmp (name, ".rtproc") == 0)
5841 {
5842 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5843 {
5844 unsigned int adjust;
5845
5846 adjust = hdr->sh_size % hdr->sh_addralign;
5847 if (adjust != 0)
5848 hdr->sh_size += hdr->sh_addralign - adjust;
5849 }
5850 }
5851 }
5852
b34976b6 5853 return TRUE;
b49e97c9
TS
5854}
5855
5856/* Handle a MIPS specific section when reading an object file. This
5857 is called when elfcode.h finds a section with an unknown type.
5858 This routine supports both the 32-bit and 64-bit ELF ABI.
5859
5860 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5861 how to. */
5862
b34976b6 5863bfd_boolean
6dc132d9
L
5864_bfd_mips_elf_section_from_shdr (bfd *abfd,
5865 Elf_Internal_Shdr *hdr,
5866 const char *name,
5867 int shindex)
b49e97c9
TS
5868{
5869 flagword flags = 0;
5870
5871 /* There ought to be a place to keep ELF backend specific flags, but
5872 at the moment there isn't one. We just keep track of the
5873 sections by their name, instead. Fortunately, the ABI gives
5874 suggested names for all the MIPS specific sections, so we will
5875 probably get away with this. */
5876 switch (hdr->sh_type)
5877 {
5878 case SHT_MIPS_LIBLIST:
5879 if (strcmp (name, ".liblist") != 0)
b34976b6 5880 return FALSE;
b49e97c9
TS
5881 break;
5882 case SHT_MIPS_MSYM:
5883 if (strcmp (name, ".msym") != 0)
b34976b6 5884 return FALSE;
b49e97c9
TS
5885 break;
5886 case SHT_MIPS_CONFLICT:
5887 if (strcmp (name, ".conflict") != 0)
b34976b6 5888 return FALSE;
b49e97c9
TS
5889 break;
5890 case SHT_MIPS_GPTAB:
0112cd26 5891 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5892 return FALSE;
b49e97c9
TS
5893 break;
5894 case SHT_MIPS_UCODE:
5895 if (strcmp (name, ".ucode") != 0)
b34976b6 5896 return FALSE;
b49e97c9
TS
5897 break;
5898 case SHT_MIPS_DEBUG:
5899 if (strcmp (name, ".mdebug") != 0)
b34976b6 5900 return FALSE;
b49e97c9
TS
5901 flags = SEC_DEBUGGING;
5902 break;
5903 case SHT_MIPS_REGINFO:
5904 if (strcmp (name, ".reginfo") != 0
5905 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5906 return FALSE;
b49e97c9
TS
5907 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5908 break;
5909 case SHT_MIPS_IFACE:
5910 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5911 return FALSE;
b49e97c9
TS
5912 break;
5913 case SHT_MIPS_CONTENT:
0112cd26 5914 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5915 return FALSE;
b49e97c9
TS
5916 break;
5917 case SHT_MIPS_OPTIONS:
cc2e31b9 5918 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5919 return FALSE;
b49e97c9
TS
5920 break;
5921 case SHT_MIPS_DWARF:
1b315056 5922 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 5923 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 5924 return FALSE;
b49e97c9
TS
5925 break;
5926 case SHT_MIPS_SYMBOL_LIB:
5927 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5928 return FALSE;
b49e97c9
TS
5929 break;
5930 case SHT_MIPS_EVENTS:
0112cd26
NC
5931 if (! CONST_STRNEQ (name, ".MIPS.events")
5932 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5933 return FALSE;
b49e97c9
TS
5934 break;
5935 default:
cc2e31b9 5936 break;
b49e97c9
TS
5937 }
5938
6dc132d9 5939 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5940 return FALSE;
b49e97c9
TS
5941
5942 if (flags)
5943 {
5944 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5945 (bfd_get_section_flags (abfd,
5946 hdr->bfd_section)
5947 | flags)))
b34976b6 5948 return FALSE;
b49e97c9
TS
5949 }
5950
5951 /* FIXME: We should record sh_info for a .gptab section. */
5952
5953 /* For a .reginfo section, set the gp value in the tdata information
5954 from the contents of this section. We need the gp value while
5955 processing relocs, so we just get it now. The .reginfo section
5956 is not used in the 64-bit MIPS ELF ABI. */
5957 if (hdr->sh_type == SHT_MIPS_REGINFO)
5958 {
5959 Elf32_External_RegInfo ext;
5960 Elf32_RegInfo s;
5961
9719ad41
RS
5962 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5963 &ext, 0, sizeof ext))
b34976b6 5964 return FALSE;
b49e97c9
TS
5965 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5966 elf_gp (abfd) = s.ri_gp_value;
5967 }
5968
5969 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5970 set the gp value based on what we find. We may see both
5971 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5972 they should agree. */
5973 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5974 {
5975 bfd_byte *contents, *l, *lend;
5976
9719ad41 5977 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5978 if (contents == NULL)
b34976b6 5979 return FALSE;
b49e97c9 5980 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5981 0, hdr->sh_size))
b49e97c9
TS
5982 {
5983 free (contents);
b34976b6 5984 return FALSE;
b49e97c9
TS
5985 }
5986 l = contents;
5987 lend = contents + hdr->sh_size;
5988 while (l + sizeof (Elf_External_Options) <= lend)
5989 {
5990 Elf_Internal_Options intopt;
5991
5992 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5993 &intopt);
1bc8074d
MR
5994 if (intopt.size < sizeof (Elf_External_Options))
5995 {
5996 (*_bfd_error_handler)
5997 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5998 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5999 break;
6000 }
b49e97c9
TS
6001 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6002 {
6003 Elf64_Internal_RegInfo intreg;
6004
6005 bfd_mips_elf64_swap_reginfo_in
6006 (abfd,
6007 ((Elf64_External_RegInfo *)
6008 (l + sizeof (Elf_External_Options))),
6009 &intreg);
6010 elf_gp (abfd) = intreg.ri_gp_value;
6011 }
6012 else if (intopt.kind == ODK_REGINFO)
6013 {
6014 Elf32_RegInfo intreg;
6015
6016 bfd_mips_elf32_swap_reginfo_in
6017 (abfd,
6018 ((Elf32_External_RegInfo *)
6019 (l + sizeof (Elf_External_Options))),
6020 &intreg);
6021 elf_gp (abfd) = intreg.ri_gp_value;
6022 }
6023 l += intopt.size;
6024 }
6025 free (contents);
6026 }
6027
b34976b6 6028 return TRUE;
b49e97c9
TS
6029}
6030
6031/* Set the correct type for a MIPS ELF section. We do this by the
6032 section name, which is a hack, but ought to work. This routine is
6033 used by both the 32-bit and the 64-bit ABI. */
6034
b34976b6 6035bfd_boolean
9719ad41 6036_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6037{
0414f35b 6038 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6039
6040 if (strcmp (name, ".liblist") == 0)
6041 {
6042 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6043 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6044 /* The sh_link field is set in final_write_processing. */
6045 }
6046 else if (strcmp (name, ".conflict") == 0)
6047 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6048 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6049 {
6050 hdr->sh_type = SHT_MIPS_GPTAB;
6051 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6052 /* The sh_info field is set in final_write_processing. */
6053 }
6054 else if (strcmp (name, ".ucode") == 0)
6055 hdr->sh_type = SHT_MIPS_UCODE;
6056 else if (strcmp (name, ".mdebug") == 0)
6057 {
6058 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6059 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6060 entsize of 0. FIXME: Does this matter? */
6061 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6062 hdr->sh_entsize = 0;
6063 else
6064 hdr->sh_entsize = 1;
6065 }
6066 else if (strcmp (name, ".reginfo") == 0)
6067 {
6068 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6069 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6070 entsize of 0x18. FIXME: Does this matter? */
6071 if (SGI_COMPAT (abfd))
6072 {
6073 if ((abfd->flags & DYNAMIC) != 0)
6074 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6075 else
6076 hdr->sh_entsize = 1;
6077 }
6078 else
6079 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6080 }
6081 else if (SGI_COMPAT (abfd)
6082 && (strcmp (name, ".hash") == 0
6083 || strcmp (name, ".dynamic") == 0
6084 || strcmp (name, ".dynstr") == 0))
6085 {
6086 if (SGI_COMPAT (abfd))
6087 hdr->sh_entsize = 0;
6088#if 0
8dc1a139 6089 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6090 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6091#endif
6092 }
6093 else if (strcmp (name, ".got") == 0
6094 || strcmp (name, ".srdata") == 0
6095 || strcmp (name, ".sdata") == 0
6096 || strcmp (name, ".sbss") == 0
6097 || strcmp (name, ".lit4") == 0
6098 || strcmp (name, ".lit8") == 0)
6099 hdr->sh_flags |= SHF_MIPS_GPREL;
6100 else if (strcmp (name, ".MIPS.interfaces") == 0)
6101 {
6102 hdr->sh_type = SHT_MIPS_IFACE;
6103 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6104 }
0112cd26 6105 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6106 {
6107 hdr->sh_type = SHT_MIPS_CONTENT;
6108 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6109 /* The sh_info field is set in final_write_processing. */
6110 }
cc2e31b9 6111 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6112 {
6113 hdr->sh_type = SHT_MIPS_OPTIONS;
6114 hdr->sh_entsize = 1;
6115 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6116 }
1b315056
CS
6117 else if (CONST_STRNEQ (name, ".debug_")
6118 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6119 {
6120 hdr->sh_type = SHT_MIPS_DWARF;
6121
6122 /* Irix facilities such as libexc expect a single .debug_frame
6123 per executable, the system ones have NOSTRIP set and the linker
6124 doesn't merge sections with different flags so ... */
6125 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6126 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6127 }
b49e97c9
TS
6128 else if (strcmp (name, ".MIPS.symlib") == 0)
6129 {
6130 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6131 /* The sh_link and sh_info fields are set in
6132 final_write_processing. */
6133 }
0112cd26
NC
6134 else if (CONST_STRNEQ (name, ".MIPS.events")
6135 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6136 {
6137 hdr->sh_type = SHT_MIPS_EVENTS;
6138 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6139 /* The sh_link field is set in final_write_processing. */
6140 }
6141 else if (strcmp (name, ".msym") == 0)
6142 {
6143 hdr->sh_type = SHT_MIPS_MSYM;
6144 hdr->sh_flags |= SHF_ALLOC;
6145 hdr->sh_entsize = 8;
6146 }
6147
7a79a000
TS
6148 /* The generic elf_fake_sections will set up REL_HDR using the default
6149 kind of relocations. We used to set up a second header for the
6150 non-default kind of relocations here, but only NewABI would use
6151 these, and the IRIX ld doesn't like resulting empty RELA sections.
6152 Thus we create those header only on demand now. */
b49e97c9 6153
b34976b6 6154 return TRUE;
b49e97c9
TS
6155}
6156
6157/* Given a BFD section, try to locate the corresponding ELF section
6158 index. This is used by both the 32-bit and the 64-bit ABI.
6159 Actually, it's not clear to me that the 64-bit ABI supports these,
6160 but for non-PIC objects we will certainly want support for at least
6161 the .scommon section. */
6162
b34976b6 6163bfd_boolean
9719ad41
RS
6164_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6165 asection *sec, int *retval)
b49e97c9
TS
6166{
6167 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6168 {
6169 *retval = SHN_MIPS_SCOMMON;
b34976b6 6170 return TRUE;
b49e97c9
TS
6171 }
6172 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6173 {
6174 *retval = SHN_MIPS_ACOMMON;
b34976b6 6175 return TRUE;
b49e97c9 6176 }
b34976b6 6177 return FALSE;
b49e97c9
TS
6178}
6179\f
6180/* Hook called by the linker routine which adds symbols from an object
6181 file. We must handle the special MIPS section numbers here. */
6182
b34976b6 6183bfd_boolean
9719ad41 6184_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6185 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6186 flagword *flagsp ATTRIBUTE_UNUSED,
6187 asection **secp, bfd_vma *valp)
b49e97c9
TS
6188{
6189 if (SGI_COMPAT (abfd)
6190 && (abfd->flags & DYNAMIC) != 0
6191 && strcmp (*namep, "_rld_new_interface") == 0)
6192 {
8dc1a139 6193 /* Skip IRIX5 rld entry name. */
b49e97c9 6194 *namep = NULL;
b34976b6 6195 return TRUE;
b49e97c9
TS
6196 }
6197
eedecc07
DD
6198 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6199 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6200 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6201 a magic symbol resolved by the linker, we ignore this bogus definition
6202 of _gp_disp. New ABI objects do not suffer from this problem so this
6203 is not done for them. */
6204 if (!NEWABI_P(abfd)
6205 && (sym->st_shndx == SHN_ABS)
6206 && (strcmp (*namep, "_gp_disp") == 0))
6207 {
6208 *namep = NULL;
6209 return TRUE;
6210 }
6211
b49e97c9
TS
6212 switch (sym->st_shndx)
6213 {
6214 case SHN_COMMON:
6215 /* Common symbols less than the GP size are automatically
6216 treated as SHN_MIPS_SCOMMON symbols. */
6217 if (sym->st_size > elf_gp_size (abfd)
b59eed79 6218 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
6219 || IRIX_COMPAT (abfd) == ict_irix6)
6220 break;
6221 /* Fall through. */
6222 case SHN_MIPS_SCOMMON:
6223 *secp = bfd_make_section_old_way (abfd, ".scommon");
6224 (*secp)->flags |= SEC_IS_COMMON;
6225 *valp = sym->st_size;
6226 break;
6227
6228 case SHN_MIPS_TEXT:
6229 /* This section is used in a shared object. */
6230 if (elf_tdata (abfd)->elf_text_section == NULL)
6231 {
6232 asymbol *elf_text_symbol;
6233 asection *elf_text_section;
6234 bfd_size_type amt = sizeof (asection);
6235
6236 elf_text_section = bfd_zalloc (abfd, amt);
6237 if (elf_text_section == NULL)
b34976b6 6238 return FALSE;
b49e97c9
TS
6239
6240 amt = sizeof (asymbol);
6241 elf_text_symbol = bfd_zalloc (abfd, amt);
6242 if (elf_text_symbol == NULL)
b34976b6 6243 return FALSE;
b49e97c9
TS
6244
6245 /* Initialize the section. */
6246
6247 elf_tdata (abfd)->elf_text_section = elf_text_section;
6248 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6249
6250 elf_text_section->symbol = elf_text_symbol;
6251 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6252
6253 elf_text_section->name = ".text";
6254 elf_text_section->flags = SEC_NO_FLAGS;
6255 elf_text_section->output_section = NULL;
6256 elf_text_section->owner = abfd;
6257 elf_text_symbol->name = ".text";
6258 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6259 elf_text_symbol->section = elf_text_section;
6260 }
6261 /* This code used to do *secp = bfd_und_section_ptr if
6262 info->shared. I don't know why, and that doesn't make sense,
6263 so I took it out. */
6264 *secp = elf_tdata (abfd)->elf_text_section;
6265 break;
6266
6267 case SHN_MIPS_ACOMMON:
6268 /* Fall through. XXX Can we treat this as allocated data? */
6269 case SHN_MIPS_DATA:
6270 /* This section is used in a shared object. */
6271 if (elf_tdata (abfd)->elf_data_section == NULL)
6272 {
6273 asymbol *elf_data_symbol;
6274 asection *elf_data_section;
6275 bfd_size_type amt = sizeof (asection);
6276
6277 elf_data_section = bfd_zalloc (abfd, amt);
6278 if (elf_data_section == NULL)
b34976b6 6279 return FALSE;
b49e97c9
TS
6280
6281 amt = sizeof (asymbol);
6282 elf_data_symbol = bfd_zalloc (abfd, amt);
6283 if (elf_data_symbol == NULL)
b34976b6 6284 return FALSE;
b49e97c9
TS
6285
6286 /* Initialize the section. */
6287
6288 elf_tdata (abfd)->elf_data_section = elf_data_section;
6289 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6290
6291 elf_data_section->symbol = elf_data_symbol;
6292 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6293
6294 elf_data_section->name = ".data";
6295 elf_data_section->flags = SEC_NO_FLAGS;
6296 elf_data_section->output_section = NULL;
6297 elf_data_section->owner = abfd;
6298 elf_data_symbol->name = ".data";
6299 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6300 elf_data_symbol->section = elf_data_section;
6301 }
6302 /* This code used to do *secp = bfd_und_section_ptr if
6303 info->shared. I don't know why, and that doesn't make sense,
6304 so I took it out. */
6305 *secp = elf_tdata (abfd)->elf_data_section;
6306 break;
6307
6308 case SHN_MIPS_SUNDEFINED:
6309 *secp = bfd_und_section_ptr;
6310 break;
6311 }
6312
6313 if (SGI_COMPAT (abfd)
6314 && ! info->shared
f13a99db 6315 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
6316 && strcmp (*namep, "__rld_obj_head") == 0)
6317 {
6318 struct elf_link_hash_entry *h;
14a793b2 6319 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6320
6321 /* Mark __rld_obj_head as dynamic. */
14a793b2 6322 bh = NULL;
b49e97c9 6323 if (! (_bfd_generic_link_add_one_symbol
9719ad41 6324 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 6325 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6326 return FALSE;
14a793b2
AM
6327
6328 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6329 h->non_elf = 0;
6330 h->def_regular = 1;
b49e97c9
TS
6331 h->type = STT_OBJECT;
6332
c152c796 6333 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6334 return FALSE;
b49e97c9 6335
b34976b6 6336 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
6337 }
6338
6339 /* If this is a mips16 text symbol, add 1 to the value to make it
6340 odd. This will cause something like .word SYM to come up with
6341 the right value when it is loaded into the PC. */
30c09090 6342 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
6343 ++*valp;
6344
b34976b6 6345 return TRUE;
b49e97c9
TS
6346}
6347
6348/* This hook function is called before the linker writes out a global
6349 symbol. We mark symbols as small common if appropriate. This is
6350 also where we undo the increment of the value for a mips16 symbol. */
6351
b34976b6 6352bfd_boolean
9719ad41
RS
6353_bfd_mips_elf_link_output_symbol_hook
6354 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6355 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6356 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
6357{
6358 /* If we see a common symbol, which implies a relocatable link, then
6359 if a symbol was small common in an input file, mark it as small
6360 common in the output file. */
6361 if (sym->st_shndx == SHN_COMMON
6362 && strcmp (input_sec->name, ".scommon") == 0)
6363 sym->st_shndx = SHN_MIPS_SCOMMON;
6364
30c09090 6365 if (ELF_ST_IS_MIPS16 (sym->st_other))
79cda7cf 6366 sym->st_value &= ~1;
b49e97c9 6367
b34976b6 6368 return TRUE;
b49e97c9
TS
6369}
6370\f
6371/* Functions for the dynamic linker. */
6372
6373/* Create dynamic sections when linking against a dynamic object. */
6374
b34976b6 6375bfd_boolean
9719ad41 6376_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
6377{
6378 struct elf_link_hash_entry *h;
14a793b2 6379 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6380 flagword flags;
6381 register asection *s;
6382 const char * const *namep;
0a44bf69 6383 struct mips_elf_link_hash_table *htab;
b49e97c9 6384
0a44bf69 6385 htab = mips_elf_hash_table (info);
b49e97c9
TS
6386 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6387 | SEC_LINKER_CREATED | SEC_READONLY);
6388
0a44bf69
RS
6389 /* The psABI requires a read-only .dynamic section, but the VxWorks
6390 EABI doesn't. */
6391 if (!htab->is_vxworks)
b49e97c9 6392 {
0a44bf69
RS
6393 s = bfd_get_section_by_name (abfd, ".dynamic");
6394 if (s != NULL)
6395 {
6396 if (! bfd_set_section_flags (abfd, s, flags))
6397 return FALSE;
6398 }
b49e97c9
TS
6399 }
6400
6401 /* We need to create .got section. */
23cc69b6 6402 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
6403 return FALSE;
6404
0a44bf69 6405 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 6406 return FALSE;
b49e97c9 6407
b49e97c9 6408 /* Create .stub section. */
4e41d0d7
RS
6409 s = bfd_make_section_with_flags (abfd,
6410 MIPS_ELF_STUB_SECTION_NAME (abfd),
6411 flags | SEC_CODE);
6412 if (s == NULL
6413 || ! bfd_set_section_alignment (abfd, s,
6414 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6415 return FALSE;
6416 htab->sstubs = s;
b49e97c9
TS
6417
6418 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6419 && !info->shared
6420 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6421 {
3496cb2a
L
6422 s = bfd_make_section_with_flags (abfd, ".rld_map",
6423 flags &~ (flagword) SEC_READONLY);
b49e97c9 6424 if (s == NULL
b49e97c9
TS
6425 || ! bfd_set_section_alignment (abfd, s,
6426 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6427 return FALSE;
b49e97c9
TS
6428 }
6429
6430 /* On IRIX5, we adjust add some additional symbols and change the
6431 alignments of several sections. There is no ABI documentation
6432 indicating that this is necessary on IRIX6, nor any evidence that
6433 the linker takes such action. */
6434 if (IRIX_COMPAT (abfd) == ict_irix5)
6435 {
6436 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6437 {
14a793b2 6438 bh = NULL;
b49e97c9 6439 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
6440 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6441 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6442 return FALSE;
14a793b2
AM
6443
6444 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6445 h->non_elf = 0;
6446 h->def_regular = 1;
b49e97c9
TS
6447 h->type = STT_SECTION;
6448
c152c796 6449 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6450 return FALSE;
b49e97c9
TS
6451 }
6452
6453 /* We need to create a .compact_rel section. */
6454 if (SGI_COMPAT (abfd))
6455 {
6456 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6457 return FALSE;
b49e97c9
TS
6458 }
6459
44c410de 6460 /* Change alignments of some sections. */
b49e97c9
TS
6461 s = bfd_get_section_by_name (abfd, ".hash");
6462 if (s != NULL)
d80dcc6a 6463 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6464 s = bfd_get_section_by_name (abfd, ".dynsym");
6465 if (s != NULL)
d80dcc6a 6466 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6467 s = bfd_get_section_by_name (abfd, ".dynstr");
6468 if (s != NULL)
d80dcc6a 6469 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6470 s = bfd_get_section_by_name (abfd, ".reginfo");
6471 if (s != NULL)
d80dcc6a 6472 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6473 s = bfd_get_section_by_name (abfd, ".dynamic");
6474 if (s != NULL)
d80dcc6a 6475 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6476 }
6477
6478 if (!info->shared)
6479 {
14a793b2
AM
6480 const char *name;
6481
6482 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6483 bh = NULL;
6484 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6485 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6486 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6487 return FALSE;
14a793b2
AM
6488
6489 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6490 h->non_elf = 0;
6491 h->def_regular = 1;
b49e97c9
TS
6492 h->type = STT_SECTION;
6493
c152c796 6494 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6495 return FALSE;
b49e97c9
TS
6496
6497 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6498 {
6499 /* __rld_map is a four byte word located in the .data section
6500 and is filled in by the rtld to contain a pointer to
6501 the _r_debug structure. Its symbol value will be set in
6502 _bfd_mips_elf_finish_dynamic_symbol. */
6503 s = bfd_get_section_by_name (abfd, ".rld_map");
6504 BFD_ASSERT (s != NULL);
6505
14a793b2
AM
6506 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6507 bh = NULL;
6508 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6509 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6510 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6511 return FALSE;
14a793b2
AM
6512
6513 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6514 h->non_elf = 0;
6515 h->def_regular = 1;
b49e97c9
TS
6516 h->type = STT_OBJECT;
6517
c152c796 6518 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6519 return FALSE;
b49e97c9
TS
6520 }
6521 }
6522
0a44bf69
RS
6523 if (htab->is_vxworks)
6524 {
6525 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6526 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6527 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6528 return FALSE;
6529
6530 /* Cache the sections created above. */
6531 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6532 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6533 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6534 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6535 if (!htab->sdynbss
6536 || (!htab->srelbss && !info->shared)
6537 || !htab->srelplt
6538 || !htab->splt)
6539 abort ();
6540
6541 /* Do the usual VxWorks handling. */
6542 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6543 return FALSE;
6544
6545 /* Work out the PLT sizes. */
6546 if (info->shared)
6547 {
6548 htab->plt_header_size
6549 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6550 htab->plt_entry_size
6551 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6552 }
6553 else
6554 {
6555 htab->plt_header_size
6556 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6557 htab->plt_entry_size
6558 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6559 }
6560 }
6561
b34976b6 6562 return TRUE;
b49e97c9
TS
6563}
6564\f
c224138d
RS
6565/* Return true if relocation REL against section SEC is a REL rather than
6566 RELA relocation. RELOCS is the first relocation in the section and
6567 ABFD is the bfd that contains SEC. */
6568
6569static bfd_boolean
6570mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6571 const Elf_Internal_Rela *relocs,
6572 const Elf_Internal_Rela *rel)
6573{
6574 Elf_Internal_Shdr *rel_hdr;
6575 const struct elf_backend_data *bed;
6576
6577 /* To determine which flavor or relocation this is, we depend on the
6578 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6579 rel_hdr = &elf_section_data (sec)->rel_hdr;
6580 bed = get_elf_backend_data (abfd);
6581 if ((size_t) (rel - relocs)
6582 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6583 rel_hdr = elf_section_data (sec)->rel_hdr2;
6584 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6585}
6586
6587/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6588 HOWTO is the relocation's howto and CONTENTS points to the contents
6589 of the section that REL is against. */
6590
6591static bfd_vma
6592mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6593 reloc_howto_type *howto, bfd_byte *contents)
6594{
6595 bfd_byte *location;
6596 unsigned int r_type;
6597 bfd_vma addend;
6598
6599 r_type = ELF_R_TYPE (abfd, rel->r_info);
6600 location = contents + rel->r_offset;
6601
6602 /* Get the addend, which is stored in the input file. */
6603 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6604 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6605 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6606
6607 return addend & howto->src_mask;
6608}
6609
6610/* REL is a relocation in ABFD that needs a partnering LO16 relocation
6611 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6612 and update *ADDEND with the final addend. Return true on success
6613 or false if the LO16 could not be found. RELEND is the exclusive
6614 upper bound on the relocations for REL's section. */
6615
6616static bfd_boolean
6617mips_elf_add_lo16_rel_addend (bfd *abfd,
6618 const Elf_Internal_Rela *rel,
6619 const Elf_Internal_Rela *relend,
6620 bfd_byte *contents, bfd_vma *addend)
6621{
6622 unsigned int r_type, lo16_type;
6623 const Elf_Internal_Rela *lo16_relocation;
6624 reloc_howto_type *lo16_howto;
6625 bfd_vma l;
6626
6627 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 6628 if (mips16_reloc_p (r_type))
c224138d
RS
6629 lo16_type = R_MIPS16_LO16;
6630 else
6631 lo16_type = R_MIPS_LO16;
6632
6633 /* The combined value is the sum of the HI16 addend, left-shifted by
6634 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6635 code does a `lui' of the HI16 value, and then an `addiu' of the
6636 LO16 value.)
6637
6638 Scan ahead to find a matching LO16 relocation.
6639
6640 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6641 be immediately following. However, for the IRIX6 ABI, the next
6642 relocation may be a composed relocation consisting of several
6643 relocations for the same address. In that case, the R_MIPS_LO16
6644 relocation may occur as one of these. We permit a similar
6645 extension in general, as that is useful for GCC.
6646
6647 In some cases GCC dead code elimination removes the LO16 but keeps
6648 the corresponding HI16. This is strictly speaking a violation of
6649 the ABI but not immediately harmful. */
6650 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6651 if (lo16_relocation == NULL)
6652 return FALSE;
6653
6654 /* Obtain the addend kept there. */
6655 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6656 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6657
6658 l <<= lo16_howto->rightshift;
6659 l = _bfd_mips_elf_sign_extend (l, 16);
6660
6661 *addend <<= 16;
6662 *addend += l;
6663 return TRUE;
6664}
6665
6666/* Try to read the contents of section SEC in bfd ABFD. Return true and
6667 store the contents in *CONTENTS on success. Assume that *CONTENTS
6668 already holds the contents if it is nonull on entry. */
6669
6670static bfd_boolean
6671mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6672{
6673 if (*contents)
6674 return TRUE;
6675
6676 /* Get cached copy if it exists. */
6677 if (elf_section_data (sec)->this_hdr.contents != NULL)
6678 {
6679 *contents = elf_section_data (sec)->this_hdr.contents;
6680 return TRUE;
6681 }
6682
6683 return bfd_malloc_and_get_section (abfd, sec, contents);
6684}
6685
b49e97c9
TS
6686/* Look through the relocs for a section during the first phase, and
6687 allocate space in the global offset table. */
6688
b34976b6 6689bfd_boolean
9719ad41
RS
6690_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6691 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6692{
6693 const char *name;
6694 bfd *dynobj;
6695 Elf_Internal_Shdr *symtab_hdr;
6696 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
6697 size_t extsymoff;
6698 const Elf_Internal_Rela *rel;
6699 const Elf_Internal_Rela *rel_end;
b49e97c9 6700 asection *sreloc;
9c5bfbb7 6701 const struct elf_backend_data *bed;
0a44bf69 6702 struct mips_elf_link_hash_table *htab;
c224138d
RS
6703 bfd_byte *contents;
6704 bfd_vma addend;
6705 reloc_howto_type *howto;
b49e97c9 6706
1049f94e 6707 if (info->relocatable)
b34976b6 6708 return TRUE;
b49e97c9 6709
0a44bf69 6710 htab = mips_elf_hash_table (info);
b49e97c9
TS
6711 dynobj = elf_hash_table (info)->dynobj;
6712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6713 sym_hashes = elf_sym_hashes (abfd);
6714 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6715
738e5348
RS
6716 bed = get_elf_backend_data (abfd);
6717 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6718
b49e97c9
TS
6719 /* Check for the mips16 stub sections. */
6720
6721 name = bfd_get_section_name (abfd, sec);
b9d58d71 6722 if (FN_STUB_P (name))
b49e97c9
TS
6723 {
6724 unsigned long r_symndx;
6725
6726 /* Look at the relocation information to figure out which symbol
6727 this is for. */
6728
738e5348
RS
6729 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6730 if (r_symndx == 0)
6731 {
6732 (*_bfd_error_handler)
6733 (_("%B: Warning: cannot determine the target function for"
6734 " stub section `%s'"),
6735 abfd, name);
6736 bfd_set_error (bfd_error_bad_value);
6737 return FALSE;
6738 }
b49e97c9
TS
6739
6740 if (r_symndx < extsymoff
6741 || sym_hashes[r_symndx - extsymoff] == NULL)
6742 {
6743 asection *o;
6744
6745 /* This stub is for a local symbol. This stub will only be
6746 needed if there is some relocation in this BFD, other
6747 than a 16 bit function call, which refers to this symbol. */
6748 for (o = abfd->sections; o != NULL; o = o->next)
6749 {
6750 Elf_Internal_Rela *sec_relocs;
6751 const Elf_Internal_Rela *r, *rend;
6752
6753 /* We can ignore stub sections when looking for relocs. */
6754 if ((o->flags & SEC_RELOC) == 0
6755 || o->reloc_count == 0
738e5348 6756 || section_allows_mips16_refs_p (o))
b49e97c9
TS
6757 continue;
6758
45d6a902 6759 sec_relocs
9719ad41 6760 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6761 info->keep_memory);
b49e97c9 6762 if (sec_relocs == NULL)
b34976b6 6763 return FALSE;
b49e97c9
TS
6764
6765 rend = sec_relocs + o->reloc_count;
6766 for (r = sec_relocs; r < rend; r++)
6767 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 6768 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
6769 break;
6770
6cdc0ccc 6771 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6772 free (sec_relocs);
6773
6774 if (r < rend)
6775 break;
6776 }
6777
6778 if (o == NULL)
6779 {
6780 /* There is no non-call reloc for this stub, so we do
6781 not need it. Since this function is called before
6782 the linker maps input sections to output sections, we
6783 can easily discard it by setting the SEC_EXCLUDE
6784 flag. */
6785 sec->flags |= SEC_EXCLUDE;
b34976b6 6786 return TRUE;
b49e97c9
TS
6787 }
6788
6789 /* Record this stub in an array of local symbol stubs for
6790 this BFD. */
6791 if (elf_tdata (abfd)->local_stubs == NULL)
6792 {
6793 unsigned long symcount;
6794 asection **n;
6795 bfd_size_type amt;
6796
6797 if (elf_bad_symtab (abfd))
6798 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6799 else
6800 symcount = symtab_hdr->sh_info;
6801 amt = symcount * sizeof (asection *);
9719ad41 6802 n = bfd_zalloc (abfd, amt);
b49e97c9 6803 if (n == NULL)
b34976b6 6804 return FALSE;
b49e97c9
TS
6805 elf_tdata (abfd)->local_stubs = n;
6806 }
6807
b9d58d71 6808 sec->flags |= SEC_KEEP;
b49e97c9
TS
6809 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6810
6811 /* We don't need to set mips16_stubs_seen in this case.
6812 That flag is used to see whether we need to look through
6813 the global symbol table for stubs. We don't need to set
6814 it here, because we just have a local stub. */
6815 }
6816 else
6817 {
6818 struct mips_elf_link_hash_entry *h;
6819
6820 h = ((struct mips_elf_link_hash_entry *)
6821 sym_hashes[r_symndx - extsymoff]);
6822
973a3492
L
6823 while (h->root.root.type == bfd_link_hash_indirect
6824 || h->root.root.type == bfd_link_hash_warning)
6825 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6826
b49e97c9
TS
6827 /* H is the symbol this stub is for. */
6828
b9d58d71
TS
6829 /* If we already have an appropriate stub for this function, we
6830 don't need another one, so we can discard this one. Since
6831 this function is called before the linker maps input sections
6832 to output sections, we can easily discard it by setting the
6833 SEC_EXCLUDE flag. */
6834 if (h->fn_stub != NULL)
6835 {
6836 sec->flags |= SEC_EXCLUDE;
6837 return TRUE;
6838 }
6839
6840 sec->flags |= SEC_KEEP;
b49e97c9 6841 h->fn_stub = sec;
b34976b6 6842 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6843 }
6844 }
b9d58d71 6845 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6846 {
6847 unsigned long r_symndx;
6848 struct mips_elf_link_hash_entry *h;
6849 asection **loc;
6850
6851 /* Look at the relocation information to figure out which symbol
6852 this is for. */
6853
738e5348
RS
6854 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6855 if (r_symndx == 0)
6856 {
6857 (*_bfd_error_handler)
6858 (_("%B: Warning: cannot determine the target function for"
6859 " stub section `%s'"),
6860 abfd, name);
6861 bfd_set_error (bfd_error_bad_value);
6862 return FALSE;
6863 }
b49e97c9
TS
6864
6865 if (r_symndx < extsymoff
6866 || sym_hashes[r_symndx - extsymoff] == NULL)
6867 {
b9d58d71 6868 asection *o;
b49e97c9 6869
b9d58d71
TS
6870 /* This stub is for a local symbol. This stub will only be
6871 needed if there is some relocation (R_MIPS16_26) in this BFD
6872 that refers to this symbol. */
6873 for (o = abfd->sections; o != NULL; o = o->next)
6874 {
6875 Elf_Internal_Rela *sec_relocs;
6876 const Elf_Internal_Rela *r, *rend;
6877
6878 /* We can ignore stub sections when looking for relocs. */
6879 if ((o->flags & SEC_RELOC) == 0
6880 || o->reloc_count == 0
738e5348 6881 || section_allows_mips16_refs_p (o))
b9d58d71
TS
6882 continue;
6883
6884 sec_relocs
6885 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6886 info->keep_memory);
6887 if (sec_relocs == NULL)
6888 return FALSE;
6889
6890 rend = sec_relocs + o->reloc_count;
6891 for (r = sec_relocs; r < rend; r++)
6892 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6893 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6894 break;
6895
6896 if (elf_section_data (o)->relocs != sec_relocs)
6897 free (sec_relocs);
6898
6899 if (r < rend)
6900 break;
6901 }
6902
6903 if (o == NULL)
6904 {
6905 /* There is no non-call reloc for this stub, so we do
6906 not need it. Since this function is called before
6907 the linker maps input sections to output sections, we
6908 can easily discard it by setting the SEC_EXCLUDE
6909 flag. */
6910 sec->flags |= SEC_EXCLUDE;
6911 return TRUE;
6912 }
6913
6914 /* Record this stub in an array of local symbol call_stubs for
6915 this BFD. */
6916 if (elf_tdata (abfd)->local_call_stubs == NULL)
6917 {
6918 unsigned long symcount;
6919 asection **n;
6920 bfd_size_type amt;
6921
6922 if (elf_bad_symtab (abfd))
6923 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6924 else
6925 symcount = symtab_hdr->sh_info;
6926 amt = symcount * sizeof (asection *);
6927 n = bfd_zalloc (abfd, amt);
6928 if (n == NULL)
6929 return FALSE;
6930 elf_tdata (abfd)->local_call_stubs = n;
6931 }
b49e97c9 6932
b9d58d71
TS
6933 sec->flags |= SEC_KEEP;
6934 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6935
b9d58d71
TS
6936 /* We don't need to set mips16_stubs_seen in this case.
6937 That flag is used to see whether we need to look through
6938 the global symbol table for stubs. We don't need to set
6939 it here, because we just have a local stub. */
6940 }
b49e97c9 6941 else
b49e97c9 6942 {
b9d58d71
TS
6943 h = ((struct mips_elf_link_hash_entry *)
6944 sym_hashes[r_symndx - extsymoff]);
6945
6946 /* H is the symbol this stub is for. */
6947
6948 if (CALL_FP_STUB_P (name))
6949 loc = &h->call_fp_stub;
6950 else
6951 loc = &h->call_stub;
6952
6953 /* If we already have an appropriate stub for this function, we
6954 don't need another one, so we can discard this one. Since
6955 this function is called before the linker maps input sections
6956 to output sections, we can easily discard it by setting the
6957 SEC_EXCLUDE flag. */
6958 if (*loc != NULL)
6959 {
6960 sec->flags |= SEC_EXCLUDE;
6961 return TRUE;
6962 }
b49e97c9 6963
b9d58d71
TS
6964 sec->flags |= SEC_KEEP;
6965 *loc = sec;
6966 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6967 }
b49e97c9
TS
6968 }
6969
b49e97c9 6970 sreloc = NULL;
c224138d 6971 contents = NULL;
b49e97c9
TS
6972 for (rel = relocs; rel < rel_end; ++rel)
6973 {
6974 unsigned long r_symndx;
6975 unsigned int r_type;
6976 struct elf_link_hash_entry *h;
6977
6978 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6979 r_type = ELF_R_TYPE (abfd, rel->r_info);
6980
6981 if (r_symndx < extsymoff)
6982 h = NULL;
6983 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6984 {
6985 (*_bfd_error_handler)
d003868e
AM
6986 (_("%B: Malformed reloc detected for section %s"),
6987 abfd, name);
b49e97c9 6988 bfd_set_error (bfd_error_bad_value);
b34976b6 6989 return FALSE;
b49e97c9
TS
6990 }
6991 else
6992 {
6993 h = sym_hashes[r_symndx - extsymoff];
6994
6995 /* This may be an indirect symbol created because of a version. */
6996 if (h != NULL)
6997 {
6998 while (h->root.type == bfd_link_hash_indirect)
6999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7000 }
7001 }
7002
7003 /* Some relocs require a global offset table. */
a8028dd0 7004 if (dynobj == NULL || htab->sgot == NULL)
b49e97c9
TS
7005 {
7006 switch (r_type)
7007 {
738e5348
RS
7008 case R_MIPS16_GOT16:
7009 case R_MIPS16_CALL16:
b49e97c9
TS
7010 case R_MIPS_GOT16:
7011 case R_MIPS_CALL16:
7012 case R_MIPS_CALL_HI16:
7013 case R_MIPS_CALL_LO16:
7014 case R_MIPS_GOT_HI16:
7015 case R_MIPS_GOT_LO16:
7016 case R_MIPS_GOT_PAGE:
7017 case R_MIPS_GOT_OFST:
7018 case R_MIPS_GOT_DISP:
86324f90 7019 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
7020 case R_MIPS_TLS_GD:
7021 case R_MIPS_TLS_LDM:
b49e97c9
TS
7022 if (dynobj == NULL)
7023 elf_hash_table (info)->dynobj = dynobj = abfd;
23cc69b6 7024 if (!mips_elf_create_got_section (dynobj, info))
b34976b6 7025 return FALSE;
0a44bf69
RS
7026 if (htab->is_vxworks && !info->shared)
7027 {
7028 (*_bfd_error_handler)
7029 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7030 abfd, (unsigned long) rel->r_offset);
7031 bfd_set_error (bfd_error_bad_value);
7032 return FALSE;
7033 }
b49e97c9
TS
7034 break;
7035
7036 case R_MIPS_32:
7037 case R_MIPS_REL32:
7038 case R_MIPS_64:
0a44bf69
RS
7039 /* In VxWorks executables, references to external symbols
7040 are handled using copy relocs or PLT stubs, so there's
7041 no need to add a dynamic relocation here. */
b49e97c9 7042 if (dynobj == NULL
0a44bf69 7043 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
7044 && (sec->flags & SEC_ALLOC) != 0)
7045 elf_hash_table (info)->dynobj = dynobj = abfd;
7046 break;
7047
7048 default:
7049 break;
7050 }
7051 }
7052
0a44bf69
RS
7053 if (h)
7054 {
7055 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
7056
7057 /* Relocations against the special VxWorks __GOTT_BASE__ and
7058 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7059 room for them in .rela.dyn. */
7060 if (is_gott_symbol (info, h))
7061 {
7062 if (sreloc == NULL)
7063 {
7064 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7065 if (sreloc == NULL)
7066 return FALSE;
7067 }
7068 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7069 if (MIPS_ELF_READONLY_SECTION (sec))
7070 /* We tell the dynamic linker that there are
7071 relocations against the text segment. */
7072 info->flags |= DF_TEXTREL;
0a44bf69
RS
7073 }
7074 }
7075 else if (r_type == R_MIPS_CALL_LO16
7076 || r_type == R_MIPS_GOT_LO16
7077 || r_type == R_MIPS_GOT_DISP
738e5348 7078 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7079 {
7080 /* We may need a local GOT entry for this relocation. We
7081 don't count R_MIPS_GOT_PAGE because we can estimate the
7082 maximum number of pages needed by looking at the size of
738e5348
RS
7083 the segment. Similar comments apply to R_MIPS*_GOT16 and
7084 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7085 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7086 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7087 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0
RS
7088 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7089 rel->r_addend, info, 0))
f4416af6 7090 return FALSE;
b49e97c9
TS
7091 }
7092
7093 switch (r_type)
7094 {
7095 case R_MIPS_CALL16:
738e5348 7096 case R_MIPS16_CALL16:
b49e97c9
TS
7097 if (h == NULL)
7098 {
7099 (*_bfd_error_handler)
d003868e
AM
7100 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7101 abfd, (unsigned long) rel->r_offset);
b49e97c9 7102 bfd_set_error (bfd_error_bad_value);
b34976b6 7103 return FALSE;
b49e97c9
TS
7104 }
7105 /* Fall through. */
7106
7107 case R_MIPS_CALL_HI16:
7108 case R_MIPS_CALL_LO16:
7109 if (h != NULL)
7110 {
0a44bf69
RS
7111 /* VxWorks call relocations point the function's .got.plt
7112 entry, which will be allocated by adjust_dynamic_symbol.
7113 Otherwise, this symbol requires a global GOT entry. */
8275b357 7114 if ((!htab->is_vxworks || h->forced_local)
a8028dd0 7115 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7116 return FALSE;
b49e97c9
TS
7117
7118 /* We need a stub, not a plt entry for the undefined
7119 function. But we record it as if it needs plt. See
c152c796 7120 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 7121 h->needs_plt = 1;
b49e97c9
TS
7122 h->type = STT_FUNC;
7123 }
7124 break;
7125
0fdc1bf1
AO
7126 case R_MIPS_GOT_PAGE:
7127 /* If this is a global, overridable symbol, GOT_PAGE will
7128 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 7129 if (h)
0fdc1bf1
AO
7130 {
7131 struct mips_elf_link_hash_entry *hmips =
7132 (struct mips_elf_link_hash_entry *) h;
143d77c5 7133
0fdc1bf1
AO
7134 while (hmips->root.root.type == bfd_link_hash_indirect
7135 || hmips->root.root.type == bfd_link_hash_warning)
7136 hmips = (struct mips_elf_link_hash_entry *)
7137 hmips->root.root.u.i.link;
143d77c5 7138
3a3b6725 7139 /* This symbol is definitely not overridable. */
f5385ebf 7140 if (hmips->root.def_regular
0fdc1bf1 7141 && ! (info->shared && ! info->symbolic
f5385ebf 7142 && ! hmips->root.forced_local))
c224138d 7143 h = NULL;
0fdc1bf1
AO
7144 }
7145 /* Fall through. */
7146
738e5348 7147 case R_MIPS16_GOT16:
b49e97c9
TS
7148 case R_MIPS_GOT16:
7149 case R_MIPS_GOT_HI16:
7150 case R_MIPS_GOT_LO16:
3a3b6725 7151 if (!h || r_type == R_MIPS_GOT_PAGE)
c224138d 7152 {
3a3b6725
DJ
7153 /* This relocation needs (or may need, if h != NULL) a
7154 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7155 know for sure until we know whether the symbol is
7156 preemptible. */
c224138d
RS
7157 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7158 {
7159 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7160 return FALSE;
7161 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7162 addend = mips_elf_read_rel_addend (abfd, rel,
7163 howto, contents);
7164 if (r_type == R_MIPS_GOT16)
7165 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7166 contents, &addend);
7167 else
7168 addend <<= howto->rightshift;
7169 }
7170 else
7171 addend = rel->r_addend;
a8028dd0
RS
7172 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7173 addend))
c224138d
RS
7174 return FALSE;
7175 break;
7176 }
7177 /* Fall through. */
7178
b49e97c9 7179 case R_MIPS_GOT_DISP:
a8028dd0 7180 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7181 return FALSE;
b49e97c9
TS
7182 break;
7183
0f20cc35
DJ
7184 case R_MIPS_TLS_GOTTPREL:
7185 if (info->shared)
7186 info->flags |= DF_STATIC_TLS;
7187 /* Fall through */
7188
7189 case R_MIPS_TLS_LDM:
7190 if (r_type == R_MIPS_TLS_LDM)
7191 {
7192 r_symndx = 0;
7193 h = NULL;
7194 }
7195 /* Fall through */
7196
7197 case R_MIPS_TLS_GD:
7198 /* This symbol requires a global offset table entry, or two
7199 for TLS GD relocations. */
7200 {
7201 unsigned char flag = (r_type == R_MIPS_TLS_GD
7202 ? GOT_TLS_GD
7203 : r_type == R_MIPS_TLS_LDM
7204 ? GOT_TLS_LDM
7205 : GOT_TLS_IE);
7206 if (h != NULL)
7207 {
7208 struct mips_elf_link_hash_entry *hmips =
7209 (struct mips_elf_link_hash_entry *) h;
7210 hmips->tls_type |= flag;
7211
a8028dd0
RS
7212 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7213 info, flag))
0f20cc35
DJ
7214 return FALSE;
7215 }
7216 else
7217 {
7218 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7219
a8028dd0
RS
7220 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7221 rel->r_addend,
7222 info, flag))
0f20cc35
DJ
7223 return FALSE;
7224 }
7225 }
7226 break;
7227
b49e97c9
TS
7228 case R_MIPS_32:
7229 case R_MIPS_REL32:
7230 case R_MIPS_64:
0a44bf69
RS
7231 /* In VxWorks executables, references to external symbols
7232 are handled using copy relocs or PLT stubs, so there's
7233 no need to add a .rela.dyn entry for this relocation. */
7234 if ((info->shared || (h != NULL && !htab->is_vxworks))
738e5348 7235 && !(h && strcmp (h->root.root.string, "__gnu_local_gp") == 0)
b49e97c9
TS
7236 && (sec->flags & SEC_ALLOC) != 0)
7237 {
7238 if (sreloc == NULL)
7239 {
0a44bf69 7240 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 7241 if (sreloc == NULL)
f4416af6 7242 return FALSE;
b49e97c9 7243 }
9a59ad6b 7244 if (info->shared && h == NULL)
82f0cfbd
EC
7245 {
7246 /* When creating a shared object, we must copy these
7247 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
7248 relocs. Make room for this reloc in .rel(a).dyn. */
7249 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 7250 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7251 /* We tell the dynamic linker that there are
7252 relocations against the text segment. */
7253 info->flags |= DF_TEXTREL;
7254 }
b49e97c9
TS
7255 else
7256 {
7257 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 7258
9a59ad6b
DJ
7259 /* For a shared object, we must copy this relocation
7260 unless the symbol turns out to be undefined and
7261 weak with non-default visibility, in which case
7262 it will be left as zero.
7263
7264 We could elide R_MIPS_REL32 for locally binding symbols
7265 in shared libraries, but do not yet do so.
7266
7267 For an executable, we only need to copy this
7268 reloc if the symbol is defined in a dynamic
7269 object. */
b49e97c9
TS
7270 hmips = (struct mips_elf_link_hash_entry *) h;
7271 ++hmips->possibly_dynamic_relocs;
943284cc 7272 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7273 /* We need it to tell the dynamic linker if there
7274 are relocations against the text segment. */
7275 hmips->readonly_reloc = TRUE;
b49e97c9
TS
7276 }
7277
7278 /* Even though we don't directly need a GOT entry for
7279 this symbol, a symbol must have a dynamic symbol
7280 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
7281 dynamic relocations against it. This does not apply
7282 to VxWorks, which does not have the usual coupling
7283 between global GOT entries and .dynsym entries. */
7284 if (h != NULL && !htab->is_vxworks)
f4416af6 7285 {
23cc69b6
RS
7286 struct mips_elf_link_hash_entry *hmips;
7287
7288 hmips = (struct mips_elf_link_hash_entry *) h;
7289 if (hmips->global_got_area > GGA_RELOC_ONLY)
7290 hmips->global_got_area = GGA_RELOC_ONLY;
f4416af6 7291 }
b49e97c9
TS
7292 }
7293
7294 if (SGI_COMPAT (abfd))
7295 mips_elf_hash_table (info)->compact_rel_size +=
7296 sizeof (Elf32_External_crinfo);
7297 break;
7298
0a44bf69
RS
7299 case R_MIPS_PC16:
7300 if (h)
7301 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7302 break;
7303
b49e97c9 7304 case R_MIPS_26:
0a44bf69
RS
7305 if (h)
7306 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7307 /* Fall through. */
7308
b49e97c9
TS
7309 case R_MIPS_GPREL16:
7310 case R_MIPS_LITERAL:
7311 case R_MIPS_GPREL32:
7312 if (SGI_COMPAT (abfd))
7313 mips_elf_hash_table (info)->compact_rel_size +=
7314 sizeof (Elf32_External_crinfo);
7315 break;
7316
7317 /* This relocation describes the C++ object vtable hierarchy.
7318 Reconstruct it for later use during GC. */
7319 case R_MIPS_GNU_VTINHERIT:
c152c796 7320 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 7321 return FALSE;
b49e97c9
TS
7322 break;
7323
7324 /* This relocation describes which C++ vtable entries are actually
7325 used. Record for later use during GC. */
7326 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
7327 BFD_ASSERT (h != NULL);
7328 if (h != NULL
7329 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 7330 return FALSE;
b49e97c9
TS
7331 break;
7332
7333 default:
7334 break;
7335 }
7336
7337 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
7338 related to taking the function's address. This doesn't apply to
7339 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7340 a normal .got entry. */
7341 if (!htab->is_vxworks && h != NULL)
7342 switch (r_type)
7343 {
7344 default:
7345 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7346 break;
738e5348 7347 case R_MIPS16_CALL16:
0a44bf69
RS
7348 case R_MIPS_CALL16:
7349 case R_MIPS_CALL_HI16:
7350 case R_MIPS_CALL_LO16:
7351 case R_MIPS_JALR:
7352 break;
7353 }
b49e97c9 7354
738e5348
RS
7355 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7356 if there is one. We only need to handle global symbols here;
7357 we decide whether to keep or delete stubs for local symbols
7358 when processing the stub's relocations. */
b49e97c9 7359 if (h != NULL
738e5348
RS
7360 && !mips16_call_reloc_p (r_type)
7361 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
7362 {
7363 struct mips_elf_link_hash_entry *mh;
7364
7365 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 7366 mh->need_fn_stub = TRUE;
b49e97c9
TS
7367 }
7368 }
7369
b34976b6 7370 return TRUE;
b49e97c9
TS
7371}
7372\f
d0647110 7373bfd_boolean
9719ad41
RS
7374_bfd_mips_relax_section (bfd *abfd, asection *sec,
7375 struct bfd_link_info *link_info,
7376 bfd_boolean *again)
d0647110
AO
7377{
7378 Elf_Internal_Rela *internal_relocs;
7379 Elf_Internal_Rela *irel, *irelend;
7380 Elf_Internal_Shdr *symtab_hdr;
7381 bfd_byte *contents = NULL;
d0647110
AO
7382 size_t extsymoff;
7383 bfd_boolean changed_contents = FALSE;
7384 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7385 Elf_Internal_Sym *isymbuf = NULL;
7386
7387 /* We are not currently changing any sizes, so only one pass. */
7388 *again = FALSE;
7389
1049f94e 7390 if (link_info->relocatable)
d0647110
AO
7391 return TRUE;
7392
9719ad41 7393 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 7394 link_info->keep_memory);
d0647110
AO
7395 if (internal_relocs == NULL)
7396 return TRUE;
7397
7398 irelend = internal_relocs + sec->reloc_count
7399 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7400 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7401 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7402
7403 for (irel = internal_relocs; irel < irelend; irel++)
7404 {
7405 bfd_vma symval;
7406 bfd_signed_vma sym_offset;
7407 unsigned int r_type;
7408 unsigned long r_symndx;
7409 asection *sym_sec;
7410 unsigned long instruction;
7411
7412 /* Turn jalr into bgezal, and jr into beq, if they're marked
7413 with a JALR relocation, that indicate where they jump to.
7414 This saves some pipeline bubbles. */
7415 r_type = ELF_R_TYPE (abfd, irel->r_info);
7416 if (r_type != R_MIPS_JALR)
7417 continue;
7418
7419 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7420 /* Compute the address of the jump target. */
7421 if (r_symndx >= extsymoff)
7422 {
7423 struct mips_elf_link_hash_entry *h
7424 = ((struct mips_elf_link_hash_entry *)
7425 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7426
7427 while (h->root.root.type == bfd_link_hash_indirect
7428 || h->root.root.type == bfd_link_hash_warning)
7429 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 7430
d0647110
AO
7431 /* If a symbol is undefined, or if it may be overridden,
7432 skip it. */
7433 if (! ((h->root.root.type == bfd_link_hash_defined
7434 || h->root.root.type == bfd_link_hash_defweak)
7435 && h->root.root.u.def.section)
7436 || (link_info->shared && ! link_info->symbolic
f5385ebf 7437 && !h->root.forced_local))
d0647110
AO
7438 continue;
7439
7440 sym_sec = h->root.root.u.def.section;
7441 if (sym_sec->output_section)
7442 symval = (h->root.root.u.def.value
7443 + sym_sec->output_section->vma
7444 + sym_sec->output_offset);
7445 else
7446 symval = h->root.root.u.def.value;
7447 }
7448 else
7449 {
7450 Elf_Internal_Sym *isym;
7451
7452 /* Read this BFD's symbols if we haven't done so already. */
7453 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7454 {
7455 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7456 if (isymbuf == NULL)
7457 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7458 symtab_hdr->sh_info, 0,
7459 NULL, NULL, NULL);
7460 if (isymbuf == NULL)
7461 goto relax_return;
7462 }
7463
7464 isym = isymbuf + r_symndx;
7465 if (isym->st_shndx == SHN_UNDEF)
7466 continue;
7467 else if (isym->st_shndx == SHN_ABS)
7468 sym_sec = bfd_abs_section_ptr;
7469 else if (isym->st_shndx == SHN_COMMON)
7470 sym_sec = bfd_com_section_ptr;
7471 else
7472 sym_sec
7473 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7474 symval = isym->st_value
7475 + sym_sec->output_section->vma
7476 + sym_sec->output_offset;
7477 }
7478
7479 /* Compute branch offset, from delay slot of the jump to the
7480 branch target. */
7481 sym_offset = (symval + irel->r_addend)
7482 - (sec_start + irel->r_offset + 4);
7483
7484 /* Branch offset must be properly aligned. */
7485 if ((sym_offset & 3) != 0)
7486 continue;
7487
7488 sym_offset >>= 2;
7489
7490 /* Check that it's in range. */
7491 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7492 continue;
143d77c5 7493
d0647110 7494 /* Get the section contents if we haven't done so already. */
c224138d
RS
7495 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7496 goto relax_return;
d0647110
AO
7497
7498 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7499
7500 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7501 if ((instruction & 0xfc1fffff) == 0x0000f809)
7502 instruction = 0x04110000;
7503 /* If it was jr <reg>, turn it into b <target>. */
7504 else if ((instruction & 0xfc1fffff) == 0x00000008)
7505 instruction = 0x10000000;
7506 else
7507 continue;
7508
7509 instruction |= (sym_offset & 0xffff);
7510 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7511 changed_contents = TRUE;
7512 }
7513
7514 if (contents != NULL
7515 && elf_section_data (sec)->this_hdr.contents != contents)
7516 {
7517 if (!changed_contents && !link_info->keep_memory)
7518 free (contents);
7519 else
7520 {
7521 /* Cache the section contents for elf_link_input_bfd. */
7522 elf_section_data (sec)->this_hdr.contents = contents;
7523 }
7524 }
7525 return TRUE;
7526
143d77c5 7527 relax_return:
eea6121a
AM
7528 if (contents != NULL
7529 && elf_section_data (sec)->this_hdr.contents != contents)
7530 free (contents);
d0647110
AO
7531 return FALSE;
7532}
7533\f
9a59ad6b
DJ
7534/* Allocate space for global sym dynamic relocs. */
7535
7536static bfd_boolean
7537allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7538{
7539 struct bfd_link_info *info = inf;
7540 bfd *dynobj;
7541 struct mips_elf_link_hash_entry *hmips;
7542 struct mips_elf_link_hash_table *htab;
7543
7544 htab = mips_elf_hash_table (info);
7545 dynobj = elf_hash_table (info)->dynobj;
7546 hmips = (struct mips_elf_link_hash_entry *) h;
7547
7548 /* VxWorks executables are handled elsewhere; we only need to
7549 allocate relocations in shared objects. */
7550 if (htab->is_vxworks && !info->shared)
7551 return TRUE;
7552
63897e2c
RS
7553 /* Ignore indirect and warning symbols. All relocations against
7554 such symbols will be redirected to the target symbol. */
7555 if (h->root.type == bfd_link_hash_indirect
7556 || h->root.type == bfd_link_hash_warning)
7557 return TRUE;
7558
9a59ad6b
DJ
7559 /* If this symbol is defined in a dynamic object, or we are creating
7560 a shared library, we will need to copy any R_MIPS_32 or
7561 R_MIPS_REL32 relocs against it into the output file. */
7562 if (! info->relocatable
7563 && hmips->possibly_dynamic_relocs != 0
7564 && (h->root.type == bfd_link_hash_defweak
7565 || !h->def_regular
7566 || info->shared))
7567 {
7568 bfd_boolean do_copy = TRUE;
7569
7570 if (h->root.type == bfd_link_hash_undefweak)
7571 {
7572 /* Do not copy relocations for undefined weak symbols with
7573 non-default visibility. */
7574 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7575 do_copy = FALSE;
7576
7577 /* Make sure undefined weak symbols are output as a dynamic
7578 symbol in PIEs. */
7579 else if (h->dynindx == -1 && !h->forced_local)
7580 {
7581 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7582 return FALSE;
7583 }
7584 }
7585
7586 if (do_copy)
7587 {
7588 mips_elf_allocate_dynamic_relocations
7589 (dynobj, info, hmips->possibly_dynamic_relocs);
7590 if (hmips->readonly_reloc)
7591 /* We tell the dynamic linker that there are relocations
7592 against the text segment. */
7593 info->flags |= DF_TEXTREL;
7594 }
7595 }
7596
7597 return TRUE;
7598}
7599
b49e97c9
TS
7600/* Adjust a symbol defined by a dynamic object and referenced by a
7601 regular object. The current definition is in some section of the
7602 dynamic object, but we're not including those sections. We have to
7603 change the definition to something the rest of the link can
7604 understand. */
7605
b34976b6 7606bfd_boolean
9719ad41
RS
7607_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7608 struct elf_link_hash_entry *h)
b49e97c9
TS
7609{
7610 bfd *dynobj;
7611 struct mips_elf_link_hash_entry *hmips;
5108fc1b 7612 struct mips_elf_link_hash_table *htab;
b49e97c9 7613
5108fc1b 7614 htab = mips_elf_hash_table (info);
b49e97c9
TS
7615 dynobj = elf_hash_table (info)->dynobj;
7616
7617 /* Make sure we know what is going on here. */
7618 BFD_ASSERT (dynobj != NULL
f5385ebf 7619 && (h->needs_plt
f6e332e6 7620 || h->u.weakdef != NULL
f5385ebf
AM
7621 || (h->def_dynamic
7622 && h->ref_regular
7623 && !h->def_regular)));
b49e97c9 7624
b49e97c9 7625 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
7626
7627 /* For a function, create a stub, if allowed. */
7628 if (! hmips->no_fn_stub
f5385ebf 7629 && h->needs_plt)
b49e97c9
TS
7630 {
7631 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 7632 return TRUE;
b49e97c9
TS
7633
7634 /* If this symbol is not defined in a regular file, then set
7635 the symbol to the stub location. This is required to make
7636 function pointers compare as equal between the normal
7637 executable and the shared library. */
f5385ebf 7638 if (!h->def_regular)
b49e97c9 7639 {
33bb52fb
RS
7640 hmips->needs_lazy_stub = TRUE;
7641 htab->lazy_stub_count++;
b34976b6 7642 return TRUE;
b49e97c9
TS
7643 }
7644 }
7645 else if ((h->type == STT_FUNC)
f5385ebf 7646 && !h->needs_plt)
b49e97c9
TS
7647 {
7648 /* This will set the entry for this symbol in the GOT to 0, and
7649 the dynamic linker will take care of this. */
7650 h->root.u.def.value = 0;
b34976b6 7651 return TRUE;
b49e97c9
TS
7652 }
7653
7654 /* If this is a weak symbol, and there is a real definition, the
7655 processor independent code will have arranged for us to see the
7656 real definition first, and we can just use the same value. */
f6e332e6 7657 if (h->u.weakdef != NULL)
b49e97c9 7658 {
f6e332e6
AM
7659 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7660 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7661 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7662 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7663 return TRUE;
b49e97c9
TS
7664 }
7665
7666 /* This is a reference to a symbol defined by a dynamic object which
7667 is not a function. */
7668
b34976b6 7669 return TRUE;
b49e97c9 7670}
0a44bf69
RS
7671
7672/* Likewise, for VxWorks. */
7673
7674bfd_boolean
7675_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7676 struct elf_link_hash_entry *h)
7677{
7678 bfd *dynobj;
7679 struct mips_elf_link_hash_entry *hmips;
7680 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7681
7682 htab = mips_elf_hash_table (info);
7683 dynobj = elf_hash_table (info)->dynobj;
7684 hmips = (struct mips_elf_link_hash_entry *) h;
7685
7686 /* Make sure we know what is going on here. */
7687 BFD_ASSERT (dynobj != NULL
7688 && (h->needs_plt
7689 || h->needs_copy
7690 || h->u.weakdef != NULL
7691 || (h->def_dynamic
7692 && h->ref_regular
7693 && !h->def_regular)));
7694
7695 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7696 either (a) we want to branch to the symbol or (b) we're linking an
7697 executable that needs a canonical function address. In the latter
7698 case, the canonical address will be the address of the executable's
7699 load stub. */
7700 if ((hmips->is_branch_target
7701 || (!info->shared
7702 && h->type == STT_FUNC
7703 && hmips->is_relocation_target))
7704 && h->def_dynamic
7705 && h->ref_regular
7706 && !h->def_regular
7707 && !h->forced_local)
7708 h->needs_plt = 1;
7709
7710 /* Locally-binding symbols do not need a PLT stub; we can refer to
7711 the functions directly. */
7712 else if (h->needs_plt
7713 && (SYMBOL_CALLS_LOCAL (info, h)
7714 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7715 && h->root.type == bfd_link_hash_undefweak)))
7716 {
7717 h->needs_plt = 0;
7718 return TRUE;
7719 }
7720
7721 if (h->needs_plt)
7722 {
7723 /* If this is the first symbol to need a PLT entry, allocate room
7724 for the header, and for the header's .rela.plt.unloaded entries. */
7725 if (htab->splt->size == 0)
7726 {
7727 htab->splt->size += htab->plt_header_size;
7728 if (!info->shared)
7729 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7730 }
7731
7732 /* Assign the next .plt entry to this symbol. */
7733 h->plt.offset = htab->splt->size;
7734 htab->splt->size += htab->plt_entry_size;
7735
7736 /* If the output file has no definition of the symbol, set the
131eb6b7
NS
7737 symbol's value to the address of the stub. Point at the PLT
7738 load stub rather than the lazy resolution stub; this stub
7739 will become the canonical function address. */
7740 if (!info->shared && !h->def_regular)
0a44bf69
RS
7741 {
7742 h->root.u.def.section = htab->splt;
7743 h->root.u.def.value = h->plt.offset;
131eb6b7 7744 h->root.u.def.value += 8;
0a44bf69
RS
7745 }
7746
7747 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7748 htab->sgotplt->size += 4;
7749 htab->srelplt->size += sizeof (Elf32_External_Rela);
7750
7751 /* Make room for the .rela.plt.unloaded relocations. */
7752 if (!info->shared)
7753 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7754
7755 return TRUE;
7756 }
7757
7758 /* If a function symbol is defined by a dynamic object, and we do not
7759 need a PLT stub for it, the symbol's value should be zero. */
7760 if (h->type == STT_FUNC
7761 && h->def_dynamic
7762 && h->ref_regular
7763 && !h->def_regular)
7764 {
7765 h->root.u.def.value = 0;
7766 return TRUE;
7767 }
7768
7769 /* If this is a weak symbol, and there is a real definition, the
7770 processor independent code will have arranged for us to see the
7771 real definition first, and we can just use the same value. */
7772 if (h->u.weakdef != NULL)
7773 {
7774 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7775 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7776 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7777 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7778 return TRUE;
7779 }
7780
7781 /* This is a reference to a symbol defined by a dynamic object which
7782 is not a function. */
7783 if (info->shared)
7784 return TRUE;
7785
7786 /* We must allocate the symbol in our .dynbss section, which will
7787 become part of the .bss section of the executable. There will be
7788 an entry for this symbol in the .dynsym section. The dynamic
7789 object will contain position independent code, so all references
7790 from the dynamic object to this symbol will go through the global
7791 offset table. The dynamic linker will use the .dynsym entry to
7792 determine the address it must put in the global offset table, so
7793 both the dynamic object and the regular object will refer to the
7794 same memory location for the variable. */
7795
7796 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7797 {
7798 htab->srelbss->size += sizeof (Elf32_External_Rela);
7799 h->needs_copy = 1;
7800 }
7801
027297b7 7802 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7803}
b49e97c9
TS
7804\f
7805/* This function is called after all the input files have been read,
7806 and the input sections have been assigned to output sections. We
7807 check for any mips16 stub sections that we can discard. */
7808
b34976b6 7809bfd_boolean
9719ad41
RS
7810_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7811 struct bfd_link_info *info)
b49e97c9
TS
7812{
7813 asection *ri;
0a44bf69
RS
7814 struct mips_elf_link_hash_table *htab;
7815
7816 htab = mips_elf_hash_table (info);
f4416af6 7817
b49e97c9
TS
7818 /* The .reginfo section has a fixed size. */
7819 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7820 if (ri != NULL)
9719ad41 7821 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7822
1049f94e 7823 if (! (info->relocatable
f4416af6
AO
7824 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7825 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
738e5348 7826 mips_elf_check_mips16_stubs, info);
f4416af6 7827
33bb52fb
RS
7828 return TRUE;
7829}
7830
7831/* If the link uses a GOT, lay it out and work out its size. */
7832
7833static bfd_boolean
7834mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
7835{
7836 bfd *dynobj;
7837 asection *s;
7838 struct mips_got_info *g;
33bb52fb
RS
7839 bfd_size_type loadable_size = 0;
7840 bfd_size_type page_gotno;
7841 bfd *sub;
7842 struct mips_elf_count_tls_arg count_tls_arg;
7843 struct mips_elf_link_hash_table *htab;
7844
7845 htab = mips_elf_hash_table (info);
a8028dd0 7846 s = htab->sgot;
f4416af6 7847 if (s == NULL)
b34976b6 7848 return TRUE;
b49e97c9 7849
33bb52fb 7850 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
7851 g = htab->got_info;
7852
33bb52fb
RS
7853 /* Replace entries for indirect and warning symbols with entries for
7854 the target symbol. */
7855 if (!mips_elf_resolve_final_got_entries (g))
7856 return FALSE;
f4416af6 7857
d4596a51
RS
7858 /* Count the number of GOT symbols. */
7859 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
f4416af6 7860
33bb52fb
RS
7861 /* Calculate the total loadable size of the output. That
7862 will give us the maximum number of GOT_PAGE entries
7863 required. */
7864 for (sub = info->input_bfds; sub; sub = sub->link_next)
7865 {
7866 asection *subsection;
5108fc1b 7867
33bb52fb
RS
7868 for (subsection = sub->sections;
7869 subsection;
7870 subsection = subsection->next)
7871 {
7872 if ((subsection->flags & SEC_ALLOC) == 0)
7873 continue;
7874 loadable_size += ((subsection->size + 0xf)
7875 &~ (bfd_size_type) 0xf);
7876 }
7877 }
f4416af6 7878
0a44bf69 7879 if (htab->is_vxworks)
738e5348 7880 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
7881 relocations against local symbols evaluate to "G", and the EABI does
7882 not include R_MIPS_GOT_PAGE. */
c224138d 7883 page_gotno = 0;
0a44bf69
RS
7884 else
7885 /* Assume there are two loadable segments consisting of contiguous
7886 sections. Is 5 enough? */
c224138d
RS
7887 page_gotno = (loadable_size >> 16) + 5;
7888
7889 /* Choose the smaller of the two estimates; both are intended to be
7890 conservative. */
7891 if (page_gotno > g->page_gotno)
7892 page_gotno = g->page_gotno;
f4416af6 7893
c224138d 7894 g->local_gotno += page_gotno;
eea6121a 7895 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 7896 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7897
0f20cc35
DJ
7898 /* We need to calculate tls_gotno for global symbols at this point
7899 instead of building it up earlier, to avoid doublecounting
7900 entries for one global symbol from multiple input files. */
7901 count_tls_arg.info = info;
7902 count_tls_arg.needed = 0;
7903 elf_link_hash_traverse (elf_hash_table (info),
7904 mips_elf_count_global_tls_entries,
7905 &count_tls_arg);
7906 g->tls_gotno += count_tls_arg.needed;
7907 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7908
0a44bf69
RS
7909 /* VxWorks does not support multiple GOTs. It initializes $gp to
7910 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7911 dynamic loader. */
33bb52fb
RS
7912 if (htab->is_vxworks)
7913 {
7914 /* VxWorks executables do not need a GOT. */
7915 if (info->shared)
7916 {
7917 /* Each VxWorks GOT entry needs an explicit relocation. */
7918 unsigned int count;
7919
7920 count = g->global_gotno + g->local_gotno - MIPS_RESERVED_GOTNO (info);
7921 if (count)
7922 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7923 }
7924 }
7925 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 7926 {
a8028dd0 7927 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
7928 return FALSE;
7929 }
7930 else
7931 {
33bb52fb
RS
7932 struct mips_elf_count_tls_arg arg;
7933
7934 /* Set up TLS entries. */
0f20cc35
DJ
7935 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7936 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
33bb52fb
RS
7937
7938 /* Allocate room for the TLS relocations. */
7939 arg.info = info;
7940 arg.needed = 0;
7941 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
7942 elf_link_hash_traverse (elf_hash_table (info),
7943 mips_elf_count_global_tls_relocs,
7944 &arg);
7945 if (arg.needed)
7946 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 7947 }
b49e97c9 7948
b34976b6 7949 return TRUE;
b49e97c9
TS
7950}
7951
33bb52fb
RS
7952/* Estimate the size of the .MIPS.stubs section. */
7953
7954static void
7955mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
7956{
7957 struct mips_elf_link_hash_table *htab;
7958 bfd_size_type dynsymcount;
7959
7960 htab = mips_elf_hash_table (info);
7961 if (htab->lazy_stub_count == 0)
7962 return;
7963
7964 /* IRIX rld assumes that a function stub isn't at the end of the .text
7965 section, so add a dummy entry to the end. */
7966 htab->lazy_stub_count++;
7967
7968 /* Get a worst-case estimate of the number of dynamic symbols needed.
7969 At this point, dynsymcount does not account for section symbols
7970 and count_section_dynsyms may overestimate the number that will
7971 be needed. */
7972 dynsymcount = (elf_hash_table (info)->dynsymcount
7973 + count_section_dynsyms (output_bfd, info));
7974
7975 /* Determine the size of one stub entry. */
7976 htab->function_stub_size = (dynsymcount > 0x10000
7977 ? MIPS_FUNCTION_STUB_BIG_SIZE
7978 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7979
7980 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
7981}
7982
7983/* A mips_elf_link_hash_traverse callback for which DATA points to the
7984 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
7985 allocate an entry in the stubs section. */
7986
7987static bfd_boolean
7988mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
7989{
7990 struct mips_elf_link_hash_table *htab;
7991
7992 htab = (struct mips_elf_link_hash_table *) data;
7993 if (h->needs_lazy_stub)
7994 {
7995 h->root.root.u.def.section = htab->sstubs;
7996 h->root.root.u.def.value = htab->sstubs->size;
7997 h->root.plt.offset = htab->sstubs->size;
7998 htab->sstubs->size += htab->function_stub_size;
7999 }
8000 return TRUE;
8001}
8002
8003/* Allocate offsets in the stubs section to each symbol that needs one.
8004 Set the final size of the .MIPS.stub section. */
8005
8006static void
8007mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8008{
8009 struct mips_elf_link_hash_table *htab;
8010
8011 htab = mips_elf_hash_table (info);
8012 if (htab->lazy_stub_count == 0)
8013 return;
8014
8015 htab->sstubs->size = 0;
8016 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8017 mips_elf_allocate_lazy_stub, htab);
8018 htab->sstubs->size += htab->function_stub_size;
8019 BFD_ASSERT (htab->sstubs->size
8020 == htab->lazy_stub_count * htab->function_stub_size);
8021}
8022
b49e97c9
TS
8023/* Set the sizes of the dynamic sections. */
8024
b34976b6 8025bfd_boolean
9719ad41
RS
8026_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8027 struct bfd_link_info *info)
b49e97c9
TS
8028{
8029 bfd *dynobj;
33bb52fb 8030 asection *s;
b34976b6 8031 bfd_boolean reltext;
0a44bf69 8032 struct mips_elf_link_hash_table *htab;
b49e97c9 8033
0a44bf69 8034 htab = mips_elf_hash_table (info);
b49e97c9
TS
8035 dynobj = elf_hash_table (info)->dynobj;
8036 BFD_ASSERT (dynobj != NULL);
8037
8038 if (elf_hash_table (info)->dynamic_sections_created)
8039 {
8040 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8041 if (info->executable)
b49e97c9
TS
8042 {
8043 s = bfd_get_section_by_name (dynobj, ".interp");
8044 BFD_ASSERT (s != NULL);
eea6121a 8045 s->size
b49e97c9
TS
8046 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8047 s->contents
8048 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8049 }
4e41d0d7
RS
8050 }
8051
9a59ad6b
DJ
8052 /* Allocate space for global sym dynamic relocs. */
8053 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8054
33bb52fb
RS
8055 mips_elf_estimate_stub_size (output_bfd, info);
8056
8057 if (!mips_elf_lay_out_got (output_bfd, info))
8058 return FALSE;
8059
8060 mips_elf_lay_out_lazy_stubs (info);
8061
b49e97c9
TS
8062 /* The check_relocs and adjust_dynamic_symbol entry points have
8063 determined the sizes of the various dynamic sections. Allocate
8064 memory for them. */
b34976b6 8065 reltext = FALSE;
b49e97c9
TS
8066 for (s = dynobj->sections; s != NULL; s = s->next)
8067 {
8068 const char *name;
b49e97c9
TS
8069
8070 /* It's OK to base decisions on the section name, because none
8071 of the dynobj section names depend upon the input files. */
8072 name = bfd_get_section_name (dynobj, s);
8073
8074 if ((s->flags & SEC_LINKER_CREATED) == 0)
8075 continue;
8076
0112cd26 8077 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 8078 {
c456f082 8079 if (s->size != 0)
b49e97c9
TS
8080 {
8081 const char *outname;
8082 asection *target;
8083
8084 /* If this relocation section applies to a read only
8085 section, then we probably need a DT_TEXTREL entry.
0a44bf69 8086 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
8087 assert a DT_TEXTREL entry rather than testing whether
8088 there exists a relocation to a read only section or
8089 not. */
8090 outname = bfd_get_section_name (output_bfd,
8091 s->output_section);
8092 target = bfd_get_section_by_name (output_bfd, outname + 4);
8093 if ((target != NULL
8094 && (target->flags & SEC_READONLY) != 0
8095 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 8096 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 8097 reltext = TRUE;
b49e97c9
TS
8098
8099 /* We use the reloc_count field as a counter if we need
8100 to copy relocs into the output file. */
0a44bf69 8101 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 8102 s->reloc_count = 0;
f4416af6
AO
8103
8104 /* If combreloc is enabled, elf_link_sort_relocs() will
8105 sort relocations, but in a different way than we do,
8106 and before we're done creating relocations. Also, it
8107 will move them around between input sections'
8108 relocation's contents, so our sorting would be
8109 broken, so don't let it run. */
8110 info->combreloc = 0;
b49e97c9
TS
8111 }
8112 }
b49e97c9
TS
8113 else if (! info->shared
8114 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 8115 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 8116 {
5108fc1b 8117 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 8118 rtld to contain a pointer to the _r_debug structure. */
eea6121a 8119 s->size += 4;
b49e97c9
TS
8120 }
8121 else if (SGI_COMPAT (output_bfd)
0112cd26 8122 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 8123 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 8124 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 8125 && s != htab->sgot
0a44bf69 8126 && s != htab->sgotplt
4e41d0d7
RS
8127 && s != htab->splt
8128 && s != htab->sstubs)
b49e97c9
TS
8129 {
8130 /* It's not one of our sections, so don't allocate space. */
8131 continue;
8132 }
8133
c456f082 8134 if (s->size == 0)
b49e97c9 8135 {
8423293d 8136 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
8137 continue;
8138 }
8139
c456f082
AM
8140 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8141 continue;
8142
b49e97c9 8143 /* Allocate memory for the section contents. */
eea6121a 8144 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 8145 if (s->contents == NULL)
b49e97c9
TS
8146 {
8147 bfd_set_error (bfd_error_no_memory);
b34976b6 8148 return FALSE;
b49e97c9
TS
8149 }
8150 }
8151
8152 if (elf_hash_table (info)->dynamic_sections_created)
8153 {
8154 /* Add some entries to the .dynamic section. We fill in the
8155 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8156 must add the entries now so that we get the correct size for
5750dcec 8157 the .dynamic section. */
af5978fb
RS
8158
8159 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
8160 DT_MIPS_RLD_MAP entry. This must come first because glibc
8161 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8162 looks at the first one it sees. */
af5978fb
RS
8163 if (!info->shared
8164 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8165 return FALSE;
b49e97c9 8166
5750dcec
DJ
8167 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8168 used by the debugger. */
8169 if (info->executable
8170 && !SGI_COMPAT (output_bfd)
8171 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8172 return FALSE;
8173
0a44bf69 8174 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
8175 info->flags |= DF_TEXTREL;
8176
8177 if ((info->flags & DF_TEXTREL) != 0)
8178 {
8179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 8180 return FALSE;
943284cc
DJ
8181
8182 /* Clear the DF_TEXTREL flag. It will be set again if we
8183 write out an actual text relocation; we may not, because
8184 at this point we do not know whether e.g. any .eh_frame
8185 absolute relocations have been converted to PC-relative. */
8186 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
8187 }
8188
8189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 8190 return FALSE;
b49e97c9 8191
0a44bf69 8192 if (htab->is_vxworks)
b49e97c9 8193 {
0a44bf69
RS
8194 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8195 use any of the DT_MIPS_* tags. */
8196 if (mips_elf_rel_dyn_section (info, FALSE))
8197 {
8198 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8199 return FALSE;
b49e97c9 8200
0a44bf69
RS
8201 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8202 return FALSE;
b49e97c9 8203
0a44bf69
RS
8204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8205 return FALSE;
8206 }
8207 if (htab->splt->size > 0)
8208 {
8209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8210 return FALSE;
8211
8212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8213 return FALSE;
8214
8215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8216 return FALSE;
8217 }
b49e97c9 8218 }
0a44bf69
RS
8219 else
8220 {
8221 if (mips_elf_rel_dyn_section (info, FALSE))
8222 {
8223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8224 return FALSE;
b49e97c9 8225
0a44bf69
RS
8226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8227 return FALSE;
b49e97c9 8228
0a44bf69
RS
8229 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8230 return FALSE;
8231 }
b49e97c9 8232
0a44bf69
RS
8233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8234 return FALSE;
b49e97c9 8235
0a44bf69
RS
8236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8237 return FALSE;
b49e97c9 8238
0a44bf69
RS
8239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8240 return FALSE;
b49e97c9 8241
0a44bf69
RS
8242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8243 return FALSE;
b49e97c9 8244
0a44bf69
RS
8245 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8246 return FALSE;
b49e97c9 8247
0a44bf69
RS
8248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8249 return FALSE;
b49e97c9 8250
0a44bf69
RS
8251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8252 return FALSE;
8253
8254 if (IRIX_COMPAT (dynobj) == ict_irix5
8255 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8256 return FALSE;
8257
8258 if (IRIX_COMPAT (dynobj) == ict_irix6
8259 && (bfd_get_section_by_name
8260 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8261 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8262 return FALSE;
8263 }
7a2b07ff
NS
8264 if (htab->is_vxworks
8265 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8266 return FALSE;
b49e97c9
TS
8267 }
8268
b34976b6 8269 return TRUE;
b49e97c9
TS
8270}
8271\f
81d43bff
RS
8272/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8273 Adjust its R_ADDEND field so that it is correct for the output file.
8274 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8275 and sections respectively; both use symbol indexes. */
8276
8277static void
8278mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8279 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8280 asection **local_sections, Elf_Internal_Rela *rel)
8281{
8282 unsigned int r_type, r_symndx;
8283 Elf_Internal_Sym *sym;
8284 asection *sec;
8285
8286 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8287 {
8288 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8289 if (r_type == R_MIPS16_GPREL
8290 || r_type == R_MIPS_GPREL16
8291 || r_type == R_MIPS_GPREL32
8292 || r_type == R_MIPS_LITERAL)
8293 {
8294 rel->r_addend += _bfd_get_gp_value (input_bfd);
8295 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8296 }
8297
8298 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8299 sym = local_syms + r_symndx;
8300
8301 /* Adjust REL's addend to account for section merging. */
8302 if (!info->relocatable)
8303 {
8304 sec = local_sections[r_symndx];
8305 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8306 }
8307
8308 /* This would normally be done by the rela_normal code in elflink.c. */
8309 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8310 rel->r_addend += local_sections[r_symndx]->output_offset;
8311 }
8312}
8313
b49e97c9
TS
8314/* Relocate a MIPS ELF section. */
8315
b34976b6 8316bfd_boolean
9719ad41
RS
8317_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8318 bfd *input_bfd, asection *input_section,
8319 bfd_byte *contents, Elf_Internal_Rela *relocs,
8320 Elf_Internal_Sym *local_syms,
8321 asection **local_sections)
b49e97c9
TS
8322{
8323 Elf_Internal_Rela *rel;
8324 const Elf_Internal_Rela *relend;
8325 bfd_vma addend = 0;
b34976b6 8326 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 8327 const struct elf_backend_data *bed;
b49e97c9
TS
8328
8329 bed = get_elf_backend_data (output_bfd);
8330 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8331 for (rel = relocs; rel < relend; ++rel)
8332 {
8333 const char *name;
c9adbffe 8334 bfd_vma value = 0;
b49e97c9 8335 reloc_howto_type *howto;
b34976b6
AM
8336 bfd_boolean require_jalx;
8337 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 8338 REL relocation. */
b34976b6 8339 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 8340 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 8341 const char *msg;
ab96bf03
AM
8342 unsigned long r_symndx;
8343 asection *sec;
749b8d9d
L
8344 Elf_Internal_Shdr *symtab_hdr;
8345 struct elf_link_hash_entry *h;
b49e97c9
TS
8346
8347 /* Find the relocation howto for this relocation. */
ab96bf03
AM
8348 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8349 NEWABI_P (input_bfd)
8350 && (MIPS_RELOC_RELA_P
8351 (input_bfd, input_section,
8352 rel - relocs)));
8353
8354 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 8355 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 8356 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
8357 {
8358 sec = local_sections[r_symndx];
8359 h = NULL;
8360 }
ab96bf03
AM
8361 else
8362 {
ab96bf03 8363 unsigned long extsymoff;
ab96bf03 8364
ab96bf03
AM
8365 extsymoff = 0;
8366 if (!elf_bad_symtab (input_bfd))
8367 extsymoff = symtab_hdr->sh_info;
8368 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8369 while (h->root.type == bfd_link_hash_indirect
8370 || h->root.type == bfd_link_hash_warning)
8371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8372
8373 sec = NULL;
8374 if (h->root.type == bfd_link_hash_defined
8375 || h->root.type == bfd_link_hash_defweak)
8376 sec = h->root.u.def.section;
8377 }
8378
8379 if (sec != NULL && elf_discarded_section (sec))
8380 {
8381 /* For relocs against symbols from removed linkonce sections,
8382 or sections discarded by a linker script, we just want the
8383 section contents zeroed. Avoid any special processing. */
8384 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8385 rel->r_info = 0;
8386 rel->r_addend = 0;
8387 continue;
8388 }
8389
4a14403c 8390 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
8391 {
8392 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8393 64-bit code, but make sure all their addresses are in the
8394 lowermost or uppermost 32-bit section of the 64-bit address
8395 space. Thus, when they use an R_MIPS_64 they mean what is
8396 usually meant by R_MIPS_32, with the exception that the
8397 stored value is sign-extended to 64 bits. */
b34976b6 8398 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
8399
8400 /* On big-endian systems, we need to lie about the position
8401 of the reloc. */
8402 if (bfd_big_endian (input_bfd))
8403 rel->r_offset += 4;
8404 }
b49e97c9
TS
8405
8406 if (!use_saved_addend_p)
8407 {
b49e97c9
TS
8408 /* If these relocations were originally of the REL variety,
8409 we must pull the addend out of the field that will be
8410 relocated. Otherwise, we simply use the contents of the
c224138d
RS
8411 RELA relocation. */
8412 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8413 relocs, rel))
b49e97c9 8414 {
b34976b6 8415 rela_relocation_p = FALSE;
c224138d
RS
8416 addend = mips_elf_read_rel_addend (input_bfd, rel,
8417 howto, contents);
738e5348
RS
8418 if (hi16_reloc_p (r_type)
8419 || (got16_reloc_p (r_type)
b49e97c9 8420 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 8421 local_sections, FALSE)))
b49e97c9 8422 {
c224138d
RS
8423 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8424 contents, &addend))
749b8d9d
L
8425 {
8426 const char *name;
8427
8428 if (h)
8429 name = h->root.root.string;
8430 else
8431 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8432 local_syms + r_symndx,
8433 sec);
8434 (*_bfd_error_handler)
8435 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8436 input_bfd, input_section, name, howto->name,
8437 rel->r_offset);
749b8d9d 8438 }
b49e97c9 8439 }
30ac9238
RS
8440 else
8441 addend <<= howto->rightshift;
b49e97c9
TS
8442 }
8443 else
8444 addend = rel->r_addend;
81d43bff
RS
8445 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8446 local_syms, local_sections, rel);
b49e97c9
TS
8447 }
8448
1049f94e 8449 if (info->relocatable)
b49e97c9 8450 {
4a14403c 8451 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
8452 && bfd_big_endian (input_bfd))
8453 rel->r_offset -= 4;
8454
81d43bff 8455 if (!rela_relocation_p && rel->r_addend)
5a659663 8456 {
81d43bff 8457 addend += rel->r_addend;
738e5348 8458 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
8459 addend = mips_elf_high (addend);
8460 else if (r_type == R_MIPS_HIGHER)
8461 addend = mips_elf_higher (addend);
8462 else if (r_type == R_MIPS_HIGHEST)
8463 addend = mips_elf_highest (addend);
30ac9238
RS
8464 else
8465 addend >>= howto->rightshift;
b49e97c9 8466
30ac9238
RS
8467 /* We use the source mask, rather than the destination
8468 mask because the place to which we are writing will be
8469 source of the addend in the final link. */
b49e97c9
TS
8470 addend &= howto->src_mask;
8471
5a659663 8472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8473 /* See the comment above about using R_MIPS_64 in the 32-bit
8474 ABI. Here, we need to update the addend. It would be
8475 possible to get away with just using the R_MIPS_32 reloc
8476 but for endianness. */
8477 {
8478 bfd_vma sign_bits;
8479 bfd_vma low_bits;
8480 bfd_vma high_bits;
8481
8482 if (addend & ((bfd_vma) 1 << 31))
8483#ifdef BFD64
8484 sign_bits = ((bfd_vma) 1 << 32) - 1;
8485#else
8486 sign_bits = -1;
8487#endif
8488 else
8489 sign_bits = 0;
8490
8491 /* If we don't know that we have a 64-bit type,
8492 do two separate stores. */
8493 if (bfd_big_endian (input_bfd))
8494 {
8495 /* Store the sign-bits (which are most significant)
8496 first. */
8497 low_bits = sign_bits;
8498 high_bits = addend;
8499 }
8500 else
8501 {
8502 low_bits = addend;
8503 high_bits = sign_bits;
8504 }
8505 bfd_put_32 (input_bfd, low_bits,
8506 contents + rel->r_offset);
8507 bfd_put_32 (input_bfd, high_bits,
8508 contents + rel->r_offset + 4);
8509 continue;
8510 }
8511
8512 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8513 input_bfd, input_section,
b34976b6
AM
8514 contents, FALSE))
8515 return FALSE;
b49e97c9
TS
8516 }
8517
8518 /* Go on to the next relocation. */
8519 continue;
8520 }
8521
8522 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8523 relocations for the same offset. In that case we are
8524 supposed to treat the output of each relocation as the addend
8525 for the next. */
8526 if (rel + 1 < relend
8527 && rel->r_offset == rel[1].r_offset
8528 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 8529 use_saved_addend_p = TRUE;
b49e97c9 8530 else
b34976b6 8531 use_saved_addend_p = FALSE;
b49e97c9
TS
8532
8533 /* Figure out what value we are supposed to relocate. */
8534 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8535 input_section, info, rel,
8536 addend, howto, local_syms,
8537 local_sections, &value,
bce03d3d
AO
8538 &name, &require_jalx,
8539 use_saved_addend_p))
b49e97c9
TS
8540 {
8541 case bfd_reloc_continue:
8542 /* There's nothing to do. */
8543 continue;
8544
8545 case bfd_reloc_undefined:
8546 /* mips_elf_calculate_relocation already called the
8547 undefined_symbol callback. There's no real point in
8548 trying to perform the relocation at this point, so we
8549 just skip ahead to the next relocation. */
8550 continue;
8551
8552 case bfd_reloc_notsupported:
8553 msg = _("internal error: unsupported relocation error");
8554 info->callbacks->warning
8555 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8556 return FALSE;
b49e97c9
TS
8557
8558 case bfd_reloc_overflow:
8559 if (use_saved_addend_p)
8560 /* Ignore overflow until we reach the last relocation for
8561 a given location. */
8562 ;
8563 else
8564 {
0e53d9da
AN
8565 struct mips_elf_link_hash_table *htab;
8566
8567 htab = mips_elf_hash_table (info);
b49e97c9 8568 BFD_ASSERT (name != NULL);
0e53d9da
AN
8569 if (!htab->small_data_overflow_reported
8570 && (howto->type == R_MIPS_GPREL16
8571 || howto->type == R_MIPS_LITERAL))
8572 {
8573 const char *msg =
8574 _("small-data section exceeds 64KB;"
8575 " lower small-data size limit (see option -G)");
8576
8577 htab->small_data_overflow_reported = TRUE;
8578 (*info->callbacks->einfo) ("%P: %s\n", msg);
8579 }
b49e97c9 8580 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8581 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8582 input_bfd, input_section, rel->r_offset)))
b34976b6 8583 return FALSE;
b49e97c9
TS
8584 }
8585 break;
8586
8587 case bfd_reloc_ok:
8588 break;
8589
8590 default:
8591 abort ();
8592 break;
8593 }
8594
8595 /* If we've got another relocation for the address, keep going
8596 until we reach the last one. */
8597 if (use_saved_addend_p)
8598 {
8599 addend = value;
8600 continue;
8601 }
8602
4a14403c 8603 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8604 /* See the comment above about using R_MIPS_64 in the 32-bit
8605 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8606 that calculated the right value. Now, however, we
8607 sign-extend the 32-bit result to 64-bits, and store it as a
8608 64-bit value. We are especially generous here in that we
8609 go to extreme lengths to support this usage on systems with
8610 only a 32-bit VMA. */
8611 {
8612 bfd_vma sign_bits;
8613 bfd_vma low_bits;
8614 bfd_vma high_bits;
8615
8616 if (value & ((bfd_vma) 1 << 31))
8617#ifdef BFD64
8618 sign_bits = ((bfd_vma) 1 << 32) - 1;
8619#else
8620 sign_bits = -1;
8621#endif
8622 else
8623 sign_bits = 0;
8624
8625 /* If we don't know that we have a 64-bit type,
8626 do two separate stores. */
8627 if (bfd_big_endian (input_bfd))
8628 {
8629 /* Undo what we did above. */
8630 rel->r_offset -= 4;
8631 /* Store the sign-bits (which are most significant)
8632 first. */
8633 low_bits = sign_bits;
8634 high_bits = value;
8635 }
8636 else
8637 {
8638 low_bits = value;
8639 high_bits = sign_bits;
8640 }
8641 bfd_put_32 (input_bfd, low_bits,
8642 contents + rel->r_offset);
8643 bfd_put_32 (input_bfd, high_bits,
8644 contents + rel->r_offset + 4);
8645 continue;
8646 }
8647
8648 /* Actually perform the relocation. */
8649 if (! mips_elf_perform_relocation (info, howto, rel, value,
8650 input_bfd, input_section,
8651 contents, require_jalx))
b34976b6 8652 return FALSE;
b49e97c9
TS
8653 }
8654
b34976b6 8655 return TRUE;
b49e97c9
TS
8656}
8657\f
8658/* If NAME is one of the special IRIX6 symbols defined by the linker,
8659 adjust it appropriately now. */
8660
8661static void
9719ad41
RS
8662mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8663 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8664{
8665 /* The linker script takes care of providing names and values for
8666 these, but we must place them into the right sections. */
8667 static const char* const text_section_symbols[] = {
8668 "_ftext",
8669 "_etext",
8670 "__dso_displacement",
8671 "__elf_header",
8672 "__program_header_table",
8673 NULL
8674 };
8675
8676 static const char* const data_section_symbols[] = {
8677 "_fdata",
8678 "_edata",
8679 "_end",
8680 "_fbss",
8681 NULL
8682 };
8683
8684 const char* const *p;
8685 int i;
8686
8687 for (i = 0; i < 2; ++i)
8688 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8689 *p;
8690 ++p)
8691 if (strcmp (*p, name) == 0)
8692 {
8693 /* All of these symbols are given type STT_SECTION by the
8694 IRIX6 linker. */
8695 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8696 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8697
8698 /* The IRIX linker puts these symbols in special sections. */
8699 if (i == 0)
8700 sym->st_shndx = SHN_MIPS_TEXT;
8701 else
8702 sym->st_shndx = SHN_MIPS_DATA;
8703
8704 break;
8705 }
8706}
8707
8708/* Finish up dynamic symbol handling. We set the contents of various
8709 dynamic sections here. */
8710
b34976b6 8711bfd_boolean
9719ad41
RS
8712_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8713 struct bfd_link_info *info,
8714 struct elf_link_hash_entry *h,
8715 Elf_Internal_Sym *sym)
b49e97c9
TS
8716{
8717 bfd *dynobj;
b49e97c9 8718 asection *sgot;
f4416af6 8719 struct mips_got_info *g, *gg;
b49e97c9 8720 const char *name;
3d6746ca 8721 int idx;
5108fc1b 8722 struct mips_elf_link_hash_table *htab;
738e5348 8723 struct mips_elf_link_hash_entry *hmips;
b49e97c9 8724
5108fc1b 8725 htab = mips_elf_hash_table (info);
b49e97c9 8726 dynobj = elf_hash_table (info)->dynobj;
738e5348 8727 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8728
c5ae1840 8729 if (h->plt.offset != MINUS_ONE)
b49e97c9 8730 {
5108fc1b 8731 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8732
8733 /* This symbol has a stub. Set it up. */
8734
8735 BFD_ASSERT (h->dynindx != -1);
8736
5108fc1b
RS
8737 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8738 || (h->dynindx <= 0xffff));
3d6746ca
DD
8739
8740 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8741 sign extension at runtime in the stub, resulting in a negative
8742 index value. */
8743 if (h->dynindx & ~0x7fffffff)
b34976b6 8744 return FALSE;
b49e97c9
TS
8745
8746 /* Fill the stub. */
3d6746ca
DD
8747 idx = 0;
8748 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8749 idx += 4;
8750 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8751 idx += 4;
5108fc1b 8752 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8753 {
5108fc1b 8754 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8755 stub + idx);
8756 idx += 4;
8757 }
8758 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8759 idx += 4;
b49e97c9 8760
3d6746ca
DD
8761 /* If a large stub is not required and sign extension is not a
8762 problem, then use legacy code in the stub. */
5108fc1b
RS
8763 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8764 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8765 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8766 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8767 else
5108fc1b
RS
8768 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8769 stub + idx);
8770
4e41d0d7
RS
8771 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
8772 memcpy (htab->sstubs->contents + h->plt.offset,
8773 stub, htab->function_stub_size);
b49e97c9
TS
8774
8775 /* Mark the symbol as undefined. plt.offset != -1 occurs
8776 only for the referenced symbol. */
8777 sym->st_shndx = SHN_UNDEF;
8778
8779 /* The run-time linker uses the st_value field of the symbol
8780 to reset the global offset table entry for this external
8781 to its stub address when unlinking a shared object. */
4e41d0d7
RS
8782 sym->st_value = (htab->sstubs->output_section->vma
8783 + htab->sstubs->output_offset
c5ae1840 8784 + h->plt.offset);
b49e97c9
TS
8785 }
8786
738e5348
RS
8787 /* If we have a MIPS16 function with a stub, the dynamic symbol must
8788 refer to the stub, since only the stub uses the standard calling
8789 conventions. */
8790 if (h->dynindx != -1 && hmips->fn_stub != NULL)
8791 {
8792 BFD_ASSERT (hmips->need_fn_stub);
8793 sym->st_value = (hmips->fn_stub->output_section->vma
8794 + hmips->fn_stub->output_offset);
8795 sym->st_size = hmips->fn_stub->size;
8796 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
8797 }
8798
b49e97c9 8799 BFD_ASSERT (h->dynindx != -1
f5385ebf 8800 || h->forced_local);
b49e97c9 8801
23cc69b6 8802 sgot = htab->sgot;
a8028dd0 8803 g = htab->got_info;
b49e97c9
TS
8804 BFD_ASSERT (g != NULL);
8805
8806 /* Run through the global symbol table, creating GOT entries for all
8807 the symbols that need them. */
8808 if (g->global_gotsym != NULL
8809 && h->dynindx >= g->global_gotsym->dynindx)
8810 {
8811 bfd_vma offset;
8812 bfd_vma value;
8813
6eaa6adc 8814 value = sym->st_value;
738e5348
RS
8815 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8816 R_MIPS_GOT16, info);
b49e97c9
TS
8817 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8818 }
8819
0f20cc35 8820 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8821 {
8822 struct mips_got_entry e, *p;
0626d451 8823 bfd_vma entry;
f4416af6 8824 bfd_vma offset;
f4416af6
AO
8825
8826 gg = g;
8827
8828 e.abfd = output_bfd;
8829 e.symndx = -1;
738e5348 8830 e.d.h = hmips;
0f20cc35 8831 e.tls_type = 0;
143d77c5 8832
f4416af6
AO
8833 for (g = g->next; g->next != gg; g = g->next)
8834 {
8835 if (g->got_entries
8836 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8837 &e)))
8838 {
8839 offset = p->gotidx;
0626d451
RS
8840 if (info->shared
8841 || (elf_hash_table (info)->dynamic_sections_created
8842 && p->d.h != NULL
f5385ebf
AM
8843 && p->d.h->root.def_dynamic
8844 && !p->d.h->root.def_regular))
0626d451
RS
8845 {
8846 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8847 the various compatibility problems, it's easier to mock
8848 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8849 mips_elf_create_dynamic_relocation to calculate the
8850 appropriate addend. */
8851 Elf_Internal_Rela rel[3];
8852
8853 memset (rel, 0, sizeof (rel));
8854 if (ABI_64_P (output_bfd))
8855 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8856 else
8857 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8858 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8859
8860 entry = 0;
8861 if (! (mips_elf_create_dynamic_relocation
8862 (output_bfd, info, rel,
8863 e.d.h, NULL, sym->st_value, &entry, sgot)))
8864 return FALSE;
8865 }
8866 else
8867 entry = sym->st_value;
8868 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8869 }
8870 }
8871 }
8872
b49e97c9
TS
8873 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8874 name = h->root.root.string;
8875 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8876 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8877 sym->st_shndx = SHN_ABS;
8878 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8879 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8880 {
8881 sym->st_shndx = SHN_ABS;
8882 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8883 sym->st_value = 1;
8884 }
4a14403c 8885 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8886 {
8887 sym->st_shndx = SHN_ABS;
8888 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8889 sym->st_value = elf_gp (output_bfd);
8890 }
8891 else if (SGI_COMPAT (output_bfd))
8892 {
8893 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8894 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8895 {
8896 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8897 sym->st_other = STO_PROTECTED;
8898 sym->st_value = 0;
8899 sym->st_shndx = SHN_MIPS_DATA;
8900 }
8901 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8902 {
8903 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8904 sym->st_other = STO_PROTECTED;
8905 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8906 sym->st_shndx = SHN_ABS;
8907 }
8908 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8909 {
8910 if (h->type == STT_FUNC)
8911 sym->st_shndx = SHN_MIPS_TEXT;
8912 else if (h->type == STT_OBJECT)
8913 sym->st_shndx = SHN_MIPS_DATA;
8914 }
8915 }
8916
8917 /* Handle the IRIX6-specific symbols. */
8918 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8919 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8920
8921 if (! info->shared)
8922 {
8923 if (! mips_elf_hash_table (info)->use_rld_obj_head
8924 && (strcmp (name, "__rld_map") == 0
8925 || strcmp (name, "__RLD_MAP") == 0))
8926 {
8927 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8928 BFD_ASSERT (s != NULL);
8929 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8930 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8931 if (mips_elf_hash_table (info)->rld_value == 0)
8932 mips_elf_hash_table (info)->rld_value = sym->st_value;
8933 }
8934 else if (mips_elf_hash_table (info)->use_rld_obj_head
8935 && strcmp (name, "__rld_obj_head") == 0)
8936 {
8937 /* IRIX6 does not use a .rld_map section. */
8938 if (IRIX_COMPAT (output_bfd) == ict_irix5
8939 || IRIX_COMPAT (output_bfd) == ict_none)
8940 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8941 != NULL);
8942 mips_elf_hash_table (info)->rld_value = sym->st_value;
8943 }
8944 }
8945
738e5348
RS
8946 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
8947 treat MIPS16 symbols like any other. */
30c09090 8948 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
8949 {
8950 BFD_ASSERT (sym->st_value & 1);
8951 sym->st_other -= STO_MIPS16;
8952 }
b49e97c9 8953
b34976b6 8954 return TRUE;
b49e97c9
TS
8955}
8956
0a44bf69
RS
8957/* Likewise, for VxWorks. */
8958
8959bfd_boolean
8960_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8961 struct bfd_link_info *info,
8962 struct elf_link_hash_entry *h,
8963 Elf_Internal_Sym *sym)
8964{
8965 bfd *dynobj;
8966 asection *sgot;
8967 struct mips_got_info *g;
8968 struct mips_elf_link_hash_table *htab;
8969
8970 htab = mips_elf_hash_table (info);
8971 dynobj = elf_hash_table (info)->dynobj;
8972
8973 if (h->plt.offset != (bfd_vma) -1)
8974 {
6d79d2ed 8975 bfd_byte *loc;
0a44bf69
RS
8976 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8977 Elf_Internal_Rela rel;
8978 static const bfd_vma *plt_entry;
8979
8980 BFD_ASSERT (h->dynindx != -1);
8981 BFD_ASSERT (htab->splt != NULL);
8982 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8983
8984 /* Calculate the address of the .plt entry. */
8985 plt_address = (htab->splt->output_section->vma
8986 + htab->splt->output_offset
8987 + h->plt.offset);
8988
8989 /* Calculate the index of the entry. */
8990 plt_index = ((h->plt.offset - htab->plt_header_size)
8991 / htab->plt_entry_size);
8992
8993 /* Calculate the address of the .got.plt entry. */
8994 got_address = (htab->sgotplt->output_section->vma
8995 + htab->sgotplt->output_offset
8996 + plt_index * 4);
8997
8998 /* Calculate the offset of the .got.plt entry from
8999 _GLOBAL_OFFSET_TABLE_. */
9000 got_offset = mips_elf_gotplt_index (info, h);
9001
9002 /* Calculate the offset for the branch at the start of the PLT
9003 entry. The branch jumps to the beginning of .plt. */
9004 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9005
9006 /* Fill in the initial value of the .got.plt entry. */
9007 bfd_put_32 (output_bfd, plt_address,
9008 htab->sgotplt->contents + plt_index * 4);
9009
9010 /* Find out where the .plt entry should go. */
9011 loc = htab->splt->contents + h->plt.offset;
9012
9013 if (info->shared)
9014 {
9015 plt_entry = mips_vxworks_shared_plt_entry;
9016 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9017 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9018 }
9019 else
9020 {
9021 bfd_vma got_address_high, got_address_low;
9022
9023 plt_entry = mips_vxworks_exec_plt_entry;
9024 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9025 got_address_low = got_address & 0xffff;
9026
9027 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9028 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9029 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9030 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9031 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9032 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9033 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9034 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9035
9036 loc = (htab->srelplt2->contents
9037 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9038
9039 /* Emit a relocation for the .got.plt entry. */
9040 rel.r_offset = got_address;
9041 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9042 rel.r_addend = h->plt.offset;
9043 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9044
9045 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9046 loc += sizeof (Elf32_External_Rela);
9047 rel.r_offset = plt_address + 8;
9048 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9049 rel.r_addend = got_offset;
9050 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9051
9052 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9053 loc += sizeof (Elf32_External_Rela);
9054 rel.r_offset += 4;
9055 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9056 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9057 }
9058
9059 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9060 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9061 rel.r_offset = got_address;
9062 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9063 rel.r_addend = 0;
9064 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9065
9066 if (!h->def_regular)
9067 sym->st_shndx = SHN_UNDEF;
9068 }
9069
9070 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9071
23cc69b6 9072 sgot = htab->sgot;
a8028dd0 9073 g = htab->got_info;
0a44bf69
RS
9074 BFD_ASSERT (g != NULL);
9075
9076 /* See if this symbol has an entry in the GOT. */
9077 if (g->global_gotsym != NULL
9078 && h->dynindx >= g->global_gotsym->dynindx)
9079 {
9080 bfd_vma offset;
9081 Elf_Internal_Rela outrel;
9082 bfd_byte *loc;
9083 asection *s;
9084
9085 /* Install the symbol value in the GOT. */
9086 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9087 R_MIPS_GOT16, info);
9088 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9089
9090 /* Add a dynamic relocation for it. */
9091 s = mips_elf_rel_dyn_section (info, FALSE);
9092 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9093 outrel.r_offset = (sgot->output_section->vma
9094 + sgot->output_offset
9095 + offset);
9096 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9097 outrel.r_addend = 0;
9098 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9099 }
9100
9101 /* Emit a copy reloc, if needed. */
9102 if (h->needs_copy)
9103 {
9104 Elf_Internal_Rela rel;
9105
9106 BFD_ASSERT (h->dynindx != -1);
9107
9108 rel.r_offset = (h->root.u.def.section->output_section->vma
9109 + h->root.u.def.section->output_offset
9110 + h->root.u.def.value);
9111 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9112 rel.r_addend = 0;
9113 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9114 htab->srelbss->contents
9115 + (htab->srelbss->reloc_count
9116 * sizeof (Elf32_External_Rela)));
9117 ++htab->srelbss->reloc_count;
9118 }
9119
9120 /* If this is a mips16 symbol, force the value to be even. */
30c09090 9121 if (ELF_ST_IS_MIPS16 (sym->st_other))
0a44bf69
RS
9122 sym->st_value &= ~1;
9123
9124 return TRUE;
9125}
9126
9127/* Install the PLT header for a VxWorks executable and finalize the
9128 contents of .rela.plt.unloaded. */
9129
9130static void
9131mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9132{
9133 Elf_Internal_Rela rela;
9134 bfd_byte *loc;
9135 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9136 static const bfd_vma *plt_entry;
9137 struct mips_elf_link_hash_table *htab;
9138
9139 htab = mips_elf_hash_table (info);
9140 plt_entry = mips_vxworks_exec_plt0_entry;
9141
9142 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9143 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9144 + htab->root.hgot->root.u.def.section->output_offset
9145 + htab->root.hgot->root.u.def.value);
9146
9147 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9148 got_value_low = got_value & 0xffff;
9149
9150 /* Calculate the address of the PLT header. */
9151 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9152
9153 /* Install the PLT header. */
9154 loc = htab->splt->contents;
9155 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9156 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9157 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9158 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9159 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9160 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9161
9162 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9163 loc = htab->srelplt2->contents;
9164 rela.r_offset = plt_address;
9165 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9166 rela.r_addend = 0;
9167 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9168 loc += sizeof (Elf32_External_Rela);
9169
9170 /* Output the relocation for the following addiu of
9171 %lo(_GLOBAL_OFFSET_TABLE_). */
9172 rela.r_offset += 4;
9173 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9174 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9175 loc += sizeof (Elf32_External_Rela);
9176
9177 /* Fix up the remaining relocations. They may have the wrong
9178 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9179 in which symbols were output. */
9180 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9181 {
9182 Elf_Internal_Rela rel;
9183
9184 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9185 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9186 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9187 loc += sizeof (Elf32_External_Rela);
9188
9189 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9190 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9191 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9192 loc += sizeof (Elf32_External_Rela);
9193
9194 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9195 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9196 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9197 loc += sizeof (Elf32_External_Rela);
9198 }
9199}
9200
9201/* Install the PLT header for a VxWorks shared library. */
9202
9203static void
9204mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9205{
9206 unsigned int i;
9207 struct mips_elf_link_hash_table *htab;
9208
9209 htab = mips_elf_hash_table (info);
9210
9211 /* We just need to copy the entry byte-by-byte. */
9212 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9213 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9214 htab->splt->contents + i * 4);
9215}
9216
b49e97c9
TS
9217/* Finish up the dynamic sections. */
9218
b34976b6 9219bfd_boolean
9719ad41
RS
9220_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9221 struct bfd_link_info *info)
b49e97c9
TS
9222{
9223 bfd *dynobj;
9224 asection *sdyn;
9225 asection *sgot;
f4416af6 9226 struct mips_got_info *gg, *g;
0a44bf69 9227 struct mips_elf_link_hash_table *htab;
b49e97c9 9228
0a44bf69 9229 htab = mips_elf_hash_table (info);
b49e97c9
TS
9230 dynobj = elf_hash_table (info)->dynobj;
9231
9232 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9233
23cc69b6
RS
9234 sgot = htab->sgot;
9235 gg = htab->got_info;
b49e97c9
TS
9236
9237 if (elf_hash_table (info)->dynamic_sections_created)
9238 {
9239 bfd_byte *b;
943284cc 9240 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
9241
9242 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
9243 BFD_ASSERT (gg != NULL);
9244
9245 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
9246 BFD_ASSERT (g != NULL);
9247
9248 for (b = sdyn->contents;
eea6121a 9249 b < sdyn->contents + sdyn->size;
b49e97c9
TS
9250 b += MIPS_ELF_DYN_SIZE (dynobj))
9251 {
9252 Elf_Internal_Dyn dyn;
9253 const char *name;
9254 size_t elemsize;
9255 asection *s;
b34976b6 9256 bfd_boolean swap_out_p;
b49e97c9
TS
9257
9258 /* Read in the current dynamic entry. */
9259 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9260
9261 /* Assume that we're going to modify it and write it out. */
b34976b6 9262 swap_out_p = TRUE;
b49e97c9
TS
9263
9264 switch (dyn.d_tag)
9265 {
9266 case DT_RELENT:
b49e97c9
TS
9267 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9268 break;
9269
0a44bf69
RS
9270 case DT_RELAENT:
9271 BFD_ASSERT (htab->is_vxworks);
9272 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9273 break;
9274
b49e97c9
TS
9275 case DT_STRSZ:
9276 /* Rewrite DT_STRSZ. */
9277 dyn.d_un.d_val =
9278 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9279 break;
9280
9281 case DT_PLTGOT:
9282 name = ".got";
0a44bf69
RS
9283 if (htab->is_vxworks)
9284 {
9285 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9286 of the ".got" section in DYNOBJ. */
9287 s = bfd_get_section_by_name (dynobj, name);
9288 BFD_ASSERT (s != NULL);
9289 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9290 }
9291 else
9292 {
9293 s = bfd_get_section_by_name (output_bfd, name);
9294 BFD_ASSERT (s != NULL);
9295 dyn.d_un.d_ptr = s->vma;
9296 }
b49e97c9
TS
9297 break;
9298
9299 case DT_MIPS_RLD_VERSION:
9300 dyn.d_un.d_val = 1; /* XXX */
9301 break;
9302
9303 case DT_MIPS_FLAGS:
9304 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9305 break;
9306
b49e97c9 9307 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
9308 {
9309 time_t t;
9310 time (&t);
9311 dyn.d_un.d_val = t;
9312 }
b49e97c9
TS
9313 break;
9314
9315 case DT_MIPS_ICHECKSUM:
9316 /* XXX FIXME: */
b34976b6 9317 swap_out_p = FALSE;
b49e97c9
TS
9318 break;
9319
9320 case DT_MIPS_IVERSION:
9321 /* XXX FIXME: */
b34976b6 9322 swap_out_p = FALSE;
b49e97c9
TS
9323 break;
9324
9325 case DT_MIPS_BASE_ADDRESS:
9326 s = output_bfd->sections;
9327 BFD_ASSERT (s != NULL);
9328 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9329 break;
9330
9331 case DT_MIPS_LOCAL_GOTNO:
9332 dyn.d_un.d_val = g->local_gotno;
9333 break;
9334
9335 case DT_MIPS_UNREFEXTNO:
9336 /* The index into the dynamic symbol table which is the
9337 entry of the first external symbol that is not
9338 referenced within the same object. */
9339 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9340 break;
9341
9342 case DT_MIPS_GOTSYM:
f4416af6 9343 if (gg->global_gotsym)
b49e97c9 9344 {
f4416af6 9345 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
9346 break;
9347 }
9348 /* In case if we don't have global got symbols we default
9349 to setting DT_MIPS_GOTSYM to the same value as
9350 DT_MIPS_SYMTABNO, so we just fall through. */
9351
9352 case DT_MIPS_SYMTABNO:
9353 name = ".dynsym";
9354 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9355 s = bfd_get_section_by_name (output_bfd, name);
9356 BFD_ASSERT (s != NULL);
9357
eea6121a 9358 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
9359 break;
9360
9361 case DT_MIPS_HIPAGENO:
0a44bf69 9362 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
9363 break;
9364
9365 case DT_MIPS_RLD_MAP:
9366 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9367 break;
9368
9369 case DT_MIPS_OPTIONS:
9370 s = (bfd_get_section_by_name
9371 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9372 dyn.d_un.d_ptr = s->vma;
9373 break;
9374
0a44bf69
RS
9375 case DT_RELASZ:
9376 BFD_ASSERT (htab->is_vxworks);
9377 /* The count does not include the JUMP_SLOT relocations. */
9378 if (htab->srelplt)
9379 dyn.d_un.d_val -= htab->srelplt->size;
9380 break;
9381
9382 case DT_PLTREL:
9383 BFD_ASSERT (htab->is_vxworks);
9384 dyn.d_un.d_val = DT_RELA;
9385 break;
9386
9387 case DT_PLTRELSZ:
9388 BFD_ASSERT (htab->is_vxworks);
9389 dyn.d_un.d_val = htab->srelplt->size;
9390 break;
9391
9392 case DT_JMPREL:
9393 BFD_ASSERT (htab->is_vxworks);
9394 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9395 + htab->srelplt->output_offset);
9396 break;
9397
943284cc
DJ
9398 case DT_TEXTREL:
9399 /* If we didn't need any text relocations after all, delete
9400 the dynamic tag. */
9401 if (!(info->flags & DF_TEXTREL))
9402 {
9403 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9404 swap_out_p = FALSE;
9405 }
9406 break;
9407
9408 case DT_FLAGS:
9409 /* If we didn't need any text relocations after all, clear
9410 DF_TEXTREL from DT_FLAGS. */
9411 if (!(info->flags & DF_TEXTREL))
9412 dyn.d_un.d_val &= ~DF_TEXTREL;
9413 else
9414 swap_out_p = FALSE;
9415 break;
9416
b49e97c9 9417 default:
b34976b6 9418 swap_out_p = FALSE;
7a2b07ff
NS
9419 if (htab->is_vxworks
9420 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9421 swap_out_p = TRUE;
b49e97c9
TS
9422 break;
9423 }
9424
943284cc 9425 if (swap_out_p || dyn_skipped)
b49e97c9 9426 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
9427 (dynobj, &dyn, b - dyn_skipped);
9428
9429 if (dyn_to_skip)
9430 {
9431 dyn_skipped += dyn_to_skip;
9432 dyn_to_skip = 0;
9433 }
b49e97c9 9434 }
943284cc
DJ
9435
9436 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9437 if (dyn_skipped > 0)
9438 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
9439 }
9440
b55fd4d4
DJ
9441 if (sgot != NULL && sgot->size > 0
9442 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 9443 {
0a44bf69
RS
9444 if (htab->is_vxworks)
9445 {
9446 /* The first entry of the global offset table points to the
9447 ".dynamic" section. The second is initialized by the
9448 loader and contains the shared library identifier.
9449 The third is also initialized by the loader and points
9450 to the lazy resolution stub. */
9451 MIPS_ELF_PUT_WORD (output_bfd,
9452 sdyn->output_offset + sdyn->output_section->vma,
9453 sgot->contents);
9454 MIPS_ELF_PUT_WORD (output_bfd, 0,
9455 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9456 MIPS_ELF_PUT_WORD (output_bfd, 0,
9457 sgot->contents
9458 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9459 }
9460 else
9461 {
9462 /* The first entry of the global offset table will be filled at
9463 runtime. The second entry will be used by some runtime loaders.
9464 This isn't the case of IRIX rld. */
9465 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 9466 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
9467 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9468 }
b49e97c9 9469
54938e2a
TS
9470 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9471 = MIPS_ELF_GOT_SIZE (output_bfd);
9472 }
b49e97c9 9473
f4416af6
AO
9474 /* Generate dynamic relocations for the non-primary gots. */
9475 if (gg != NULL && gg->next)
9476 {
9477 Elf_Internal_Rela rel[3];
9478 bfd_vma addend = 0;
9479
9480 memset (rel, 0, sizeof (rel));
9481 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9482
9483 for (g = gg->next; g->next != gg; g = g->next)
9484 {
0f20cc35
DJ
9485 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9486 + g->next->tls_gotno;
f4416af6 9487
9719ad41 9488 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 9489 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
9490 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9491 sgot->contents
f4416af6
AO
9492 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9493
9494 if (! info->shared)
9495 continue;
9496
9497 while (index < g->assigned_gotno)
9498 {
9499 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9500 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9501 if (!(mips_elf_create_dynamic_relocation
9502 (output_bfd, info, rel, NULL,
9503 bfd_abs_section_ptr,
9504 0, &addend, sgot)))
9505 return FALSE;
9506 BFD_ASSERT (addend == 0);
9507 }
9508 }
9509 }
9510
3133ddbf
DJ
9511 /* The generation of dynamic relocations for the non-primary gots
9512 adds more dynamic relocations. We cannot count them until
9513 here. */
9514
9515 if (elf_hash_table (info)->dynamic_sections_created)
9516 {
9517 bfd_byte *b;
9518 bfd_boolean swap_out_p;
9519
9520 BFD_ASSERT (sdyn != NULL);
9521
9522 for (b = sdyn->contents;
9523 b < sdyn->contents + sdyn->size;
9524 b += MIPS_ELF_DYN_SIZE (dynobj))
9525 {
9526 Elf_Internal_Dyn dyn;
9527 asection *s;
9528
9529 /* Read in the current dynamic entry. */
9530 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9531
9532 /* Assume that we're going to modify it and write it out. */
9533 swap_out_p = TRUE;
9534
9535 switch (dyn.d_tag)
9536 {
9537 case DT_RELSZ:
9538 /* Reduce DT_RELSZ to account for any relocations we
9539 decided not to make. This is for the n64 irix rld,
9540 which doesn't seem to apply any relocations if there
9541 are trailing null entries. */
0a44bf69 9542 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
9543 dyn.d_un.d_val = (s->reloc_count
9544 * (ABI_64_P (output_bfd)
9545 ? sizeof (Elf64_Mips_External_Rel)
9546 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
9547 /* Adjust the section size too. Tools like the prelinker
9548 can reasonably expect the values to the same. */
9549 elf_section_data (s->output_section)->this_hdr.sh_size
9550 = dyn.d_un.d_val;
3133ddbf
DJ
9551 break;
9552
9553 default:
9554 swap_out_p = FALSE;
9555 break;
9556 }
9557
9558 if (swap_out_p)
9559 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9560 (dynobj, &dyn, b);
9561 }
9562 }
9563
b49e97c9 9564 {
b49e97c9
TS
9565 asection *s;
9566 Elf32_compact_rel cpt;
9567
b49e97c9
TS
9568 if (SGI_COMPAT (output_bfd))
9569 {
9570 /* Write .compact_rel section out. */
9571 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9572 if (s != NULL)
9573 {
9574 cpt.id1 = 1;
9575 cpt.num = s->reloc_count;
9576 cpt.id2 = 2;
9577 cpt.offset = (s->output_section->filepos
9578 + sizeof (Elf32_External_compact_rel));
9579 cpt.reserved0 = 0;
9580 cpt.reserved1 = 0;
9581 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9582 ((Elf32_External_compact_rel *)
9583 s->contents));
9584
9585 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 9586 if (htab->sstubs != NULL)
b49e97c9
TS
9587 {
9588 file_ptr dummy_offset;
9589
4e41d0d7
RS
9590 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
9591 dummy_offset = htab->sstubs->size - htab->function_stub_size;
9592 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 9593 htab->function_stub_size);
b49e97c9
TS
9594 }
9595 }
9596 }
9597
0a44bf69
RS
9598 /* The psABI says that the dynamic relocations must be sorted in
9599 increasing order of r_symndx. The VxWorks EABI doesn't require
9600 this, and because the code below handles REL rather than RELA
9601 relocations, using it for VxWorks would be outright harmful. */
9602 if (!htab->is_vxworks)
b49e97c9 9603 {
0a44bf69
RS
9604 s = mips_elf_rel_dyn_section (info, FALSE);
9605 if (s != NULL
9606 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9607 {
9608 reldyn_sorting_bfd = output_bfd;
b49e97c9 9609
0a44bf69
RS
9610 if (ABI_64_P (output_bfd))
9611 qsort ((Elf64_External_Rel *) s->contents + 1,
9612 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9613 sort_dynamic_relocs_64);
9614 else
9615 qsort ((Elf32_External_Rel *) s->contents + 1,
9616 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9617 sort_dynamic_relocs);
9618 }
b49e97c9 9619 }
b49e97c9
TS
9620 }
9621
0a44bf69
RS
9622 if (htab->is_vxworks && htab->splt->size > 0)
9623 {
9624 if (info->shared)
9625 mips_vxworks_finish_shared_plt (output_bfd, info);
9626 else
9627 mips_vxworks_finish_exec_plt (output_bfd, info);
9628 }
b34976b6 9629 return TRUE;
b49e97c9
TS
9630}
9631
b49e97c9 9632
64543e1a
RS
9633/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9634
9635static void
9719ad41 9636mips_set_isa_flags (bfd *abfd)
b49e97c9 9637{
64543e1a 9638 flagword val;
b49e97c9
TS
9639
9640 switch (bfd_get_mach (abfd))
9641 {
9642 default:
9643 case bfd_mach_mips3000:
9644 val = E_MIPS_ARCH_1;
9645 break;
9646
9647 case bfd_mach_mips3900:
9648 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9649 break;
9650
9651 case bfd_mach_mips6000:
9652 val = E_MIPS_ARCH_2;
9653 break;
9654
9655 case bfd_mach_mips4000:
9656 case bfd_mach_mips4300:
9657 case bfd_mach_mips4400:
9658 case bfd_mach_mips4600:
9659 val = E_MIPS_ARCH_3;
9660 break;
9661
9662 case bfd_mach_mips4010:
9663 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9664 break;
9665
9666 case bfd_mach_mips4100:
9667 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9668 break;
9669
9670 case bfd_mach_mips4111:
9671 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9672 break;
9673
00707a0e
RS
9674 case bfd_mach_mips4120:
9675 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9676 break;
9677
b49e97c9
TS
9678 case bfd_mach_mips4650:
9679 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9680 break;
9681
00707a0e
RS
9682 case bfd_mach_mips5400:
9683 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9684 break;
9685
9686 case bfd_mach_mips5500:
9687 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9688 break;
9689
0d2e43ed
ILT
9690 case bfd_mach_mips9000:
9691 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9692 break;
9693
b49e97c9 9694 case bfd_mach_mips5000:
5a7ea749 9695 case bfd_mach_mips7000:
b49e97c9
TS
9696 case bfd_mach_mips8000:
9697 case bfd_mach_mips10000:
9698 case bfd_mach_mips12000:
9699 val = E_MIPS_ARCH_4;
9700 break;
9701
9702 case bfd_mach_mips5:
9703 val = E_MIPS_ARCH_5;
9704 break;
9705
350cc38d
MS
9706 case bfd_mach_mips_loongson_2e:
9707 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9708 break;
9709
9710 case bfd_mach_mips_loongson_2f:
9711 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9712 break;
9713
b49e97c9
TS
9714 case bfd_mach_mips_sb1:
9715 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9716 break;
9717
6f179bd0
AN
9718 case bfd_mach_mips_octeon:
9719 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9720 break;
9721
b49e97c9
TS
9722 case bfd_mach_mipsisa32:
9723 val = E_MIPS_ARCH_32;
9724 break;
9725
9726 case bfd_mach_mipsisa64:
9727 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9728 break;
9729
9730 case bfd_mach_mipsisa32r2:
9731 val = E_MIPS_ARCH_32R2;
9732 break;
5f74bc13
CD
9733
9734 case bfd_mach_mipsisa64r2:
9735 val = E_MIPS_ARCH_64R2;
9736 break;
b49e97c9 9737 }
b49e97c9
TS
9738 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9739 elf_elfheader (abfd)->e_flags |= val;
9740
64543e1a
RS
9741}
9742
9743
9744/* The final processing done just before writing out a MIPS ELF object
9745 file. This gets the MIPS architecture right based on the machine
9746 number. This is used by both the 32-bit and the 64-bit ABI. */
9747
9748void
9719ad41
RS
9749_bfd_mips_elf_final_write_processing (bfd *abfd,
9750 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9751{
9752 unsigned int i;
9753 Elf_Internal_Shdr **hdrpp;
9754 const char *name;
9755 asection *sec;
9756
9757 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9758 is nonzero. This is for compatibility with old objects, which used
9759 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9760 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9761 mips_set_isa_flags (abfd);
9762
b49e97c9
TS
9763 /* Set the sh_info field for .gptab sections and other appropriate
9764 info for each special section. */
9765 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9766 i < elf_numsections (abfd);
9767 i++, hdrpp++)
9768 {
9769 switch ((*hdrpp)->sh_type)
9770 {
9771 case SHT_MIPS_MSYM:
9772 case SHT_MIPS_LIBLIST:
9773 sec = bfd_get_section_by_name (abfd, ".dynstr");
9774 if (sec != NULL)
9775 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9776 break;
9777
9778 case SHT_MIPS_GPTAB:
9779 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9780 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9781 BFD_ASSERT (name != NULL
0112cd26 9782 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9783 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9784 BFD_ASSERT (sec != NULL);
9785 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9786 break;
9787
9788 case SHT_MIPS_CONTENT:
9789 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9790 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9791 BFD_ASSERT (name != NULL
0112cd26 9792 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9793 sec = bfd_get_section_by_name (abfd,
9794 name + sizeof ".MIPS.content" - 1);
9795 BFD_ASSERT (sec != NULL);
9796 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9797 break;
9798
9799 case SHT_MIPS_SYMBOL_LIB:
9800 sec = bfd_get_section_by_name (abfd, ".dynsym");
9801 if (sec != NULL)
9802 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9803 sec = bfd_get_section_by_name (abfd, ".liblist");
9804 if (sec != NULL)
9805 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9806 break;
9807
9808 case SHT_MIPS_EVENTS:
9809 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9810 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9811 BFD_ASSERT (name != NULL);
0112cd26 9812 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9813 sec = bfd_get_section_by_name (abfd,
9814 name + sizeof ".MIPS.events" - 1);
9815 else
9816 {
0112cd26 9817 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9818 sec = bfd_get_section_by_name (abfd,
9819 (name
9820 + sizeof ".MIPS.post_rel" - 1));
9821 }
9822 BFD_ASSERT (sec != NULL);
9823 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9824 break;
9825
9826 }
9827 }
9828}
9829\f
8dc1a139 9830/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9831 segments. */
9832
9833int
a6b96beb
AM
9834_bfd_mips_elf_additional_program_headers (bfd *abfd,
9835 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9836{
9837 asection *s;
9838 int ret = 0;
9839
9840 /* See if we need a PT_MIPS_REGINFO segment. */
9841 s = bfd_get_section_by_name (abfd, ".reginfo");
9842 if (s && (s->flags & SEC_LOAD))
9843 ++ret;
9844
9845 /* See if we need a PT_MIPS_OPTIONS segment. */
9846 if (IRIX_COMPAT (abfd) == ict_irix6
9847 && bfd_get_section_by_name (abfd,
9848 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9849 ++ret;
9850
9851 /* See if we need a PT_MIPS_RTPROC segment. */
9852 if (IRIX_COMPAT (abfd) == ict_irix5
9853 && bfd_get_section_by_name (abfd, ".dynamic")
9854 && bfd_get_section_by_name (abfd, ".mdebug"))
9855 ++ret;
9856
98c904a8
RS
9857 /* Allocate a PT_NULL header in dynamic objects. See
9858 _bfd_mips_elf_modify_segment_map for details. */
9859 if (!SGI_COMPAT (abfd)
9860 && bfd_get_section_by_name (abfd, ".dynamic"))
9861 ++ret;
9862
b49e97c9
TS
9863 return ret;
9864}
9865
8dc1a139 9866/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9867
b34976b6 9868bfd_boolean
9719ad41 9869_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 9870 struct bfd_link_info *info)
b49e97c9
TS
9871{
9872 asection *s;
9873 struct elf_segment_map *m, **pm;
9874 bfd_size_type amt;
9875
9876 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9877 segment. */
9878 s = bfd_get_section_by_name (abfd, ".reginfo");
9879 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9880 {
9881 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9882 if (m->p_type == PT_MIPS_REGINFO)
9883 break;
9884 if (m == NULL)
9885 {
9886 amt = sizeof *m;
9719ad41 9887 m = bfd_zalloc (abfd, amt);
b49e97c9 9888 if (m == NULL)
b34976b6 9889 return FALSE;
b49e97c9
TS
9890
9891 m->p_type = PT_MIPS_REGINFO;
9892 m->count = 1;
9893 m->sections[0] = s;
9894
9895 /* We want to put it after the PHDR and INTERP segments. */
9896 pm = &elf_tdata (abfd)->segment_map;
9897 while (*pm != NULL
9898 && ((*pm)->p_type == PT_PHDR
9899 || (*pm)->p_type == PT_INTERP))
9900 pm = &(*pm)->next;
9901
9902 m->next = *pm;
9903 *pm = m;
9904 }
9905 }
9906
9907 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9908 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9909 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9910 table. */
c1fd6598
AO
9911 if (NEWABI_P (abfd)
9912 /* On non-IRIX6 new abi, we'll have already created a segment
9913 for this section, so don't create another. I'm not sure this
9914 is not also the case for IRIX 6, but I can't test it right
9915 now. */
9916 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9917 {
9918 for (s = abfd->sections; s; s = s->next)
9919 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9920 break;
9921
9922 if (s)
9923 {
9924 struct elf_segment_map *options_segment;
9925
98a8deaf
RS
9926 pm = &elf_tdata (abfd)->segment_map;
9927 while (*pm != NULL
9928 && ((*pm)->p_type == PT_PHDR
9929 || (*pm)->p_type == PT_INTERP))
9930 pm = &(*pm)->next;
b49e97c9 9931
8ded5a0f
AM
9932 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9933 {
9934 amt = sizeof (struct elf_segment_map);
9935 options_segment = bfd_zalloc (abfd, amt);
9936 options_segment->next = *pm;
9937 options_segment->p_type = PT_MIPS_OPTIONS;
9938 options_segment->p_flags = PF_R;
9939 options_segment->p_flags_valid = TRUE;
9940 options_segment->count = 1;
9941 options_segment->sections[0] = s;
9942 *pm = options_segment;
9943 }
b49e97c9
TS
9944 }
9945 }
9946 else
9947 {
9948 if (IRIX_COMPAT (abfd) == ict_irix5)
9949 {
9950 /* If there are .dynamic and .mdebug sections, we make a room
9951 for the RTPROC header. FIXME: Rewrite without section names. */
9952 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9953 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9954 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9955 {
9956 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9957 if (m->p_type == PT_MIPS_RTPROC)
9958 break;
9959 if (m == NULL)
9960 {
9961 amt = sizeof *m;
9719ad41 9962 m = bfd_zalloc (abfd, amt);
b49e97c9 9963 if (m == NULL)
b34976b6 9964 return FALSE;
b49e97c9
TS
9965
9966 m->p_type = PT_MIPS_RTPROC;
9967
9968 s = bfd_get_section_by_name (abfd, ".rtproc");
9969 if (s == NULL)
9970 {
9971 m->count = 0;
9972 m->p_flags = 0;
9973 m->p_flags_valid = 1;
9974 }
9975 else
9976 {
9977 m->count = 1;
9978 m->sections[0] = s;
9979 }
9980
9981 /* We want to put it after the DYNAMIC segment. */
9982 pm = &elf_tdata (abfd)->segment_map;
9983 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9984 pm = &(*pm)->next;
9985 if (*pm != NULL)
9986 pm = &(*pm)->next;
9987
9988 m->next = *pm;
9989 *pm = m;
9990 }
9991 }
9992 }
8dc1a139 9993 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9994 .dynstr, .dynsym, and .hash sections, and everything in
9995 between. */
9996 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9997 pm = &(*pm)->next)
9998 if ((*pm)->p_type == PT_DYNAMIC)
9999 break;
10000 m = *pm;
10001 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10002 {
10003 /* For a normal mips executable the permissions for the PT_DYNAMIC
10004 segment are read, write and execute. We do that here since
10005 the code in elf.c sets only the read permission. This matters
10006 sometimes for the dynamic linker. */
10007 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10008 {
10009 m->p_flags = PF_R | PF_W | PF_X;
10010 m->p_flags_valid = 1;
10011 }
10012 }
f6f62d6f
RS
10013 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10014 glibc's dynamic linker has traditionally derived the number of
10015 tags from the p_filesz field, and sometimes allocates stack
10016 arrays of that size. An overly-big PT_DYNAMIC segment can
10017 be actively harmful in such cases. Making PT_DYNAMIC contain
10018 other sections can also make life hard for the prelinker,
10019 which might move one of the other sections to a different
10020 PT_LOAD segment. */
10021 if (SGI_COMPAT (abfd)
10022 && m != NULL
10023 && m->count == 1
10024 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
10025 {
10026 static const char *sec_names[] =
10027 {
10028 ".dynamic", ".dynstr", ".dynsym", ".hash"
10029 };
10030 bfd_vma low, high;
10031 unsigned int i, c;
10032 struct elf_segment_map *n;
10033
792b4a53 10034 low = ~(bfd_vma) 0;
b49e97c9
TS
10035 high = 0;
10036 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10037 {
10038 s = bfd_get_section_by_name (abfd, sec_names[i]);
10039 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10040 {
10041 bfd_size_type sz;
10042
10043 if (low > s->vma)
10044 low = s->vma;
eea6121a 10045 sz = s->size;
b49e97c9
TS
10046 if (high < s->vma + sz)
10047 high = s->vma + sz;
10048 }
10049 }
10050
10051 c = 0;
10052 for (s = abfd->sections; s != NULL; s = s->next)
10053 if ((s->flags & SEC_LOAD) != 0
10054 && s->vma >= low
eea6121a 10055 && s->vma + s->size <= high)
b49e97c9
TS
10056 ++c;
10057
10058 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 10059 n = bfd_zalloc (abfd, amt);
b49e97c9 10060 if (n == NULL)
b34976b6 10061 return FALSE;
b49e97c9
TS
10062 *n = *m;
10063 n->count = c;
10064
10065 i = 0;
10066 for (s = abfd->sections; s != NULL; s = s->next)
10067 {
10068 if ((s->flags & SEC_LOAD) != 0
10069 && s->vma >= low
eea6121a 10070 && s->vma + s->size <= high)
b49e97c9
TS
10071 {
10072 n->sections[i] = s;
10073 ++i;
10074 }
10075 }
10076
10077 *pm = n;
10078 }
10079 }
10080
98c904a8
RS
10081 /* Allocate a spare program header in dynamic objects so that tools
10082 like the prelinker can add an extra PT_LOAD entry.
10083
10084 If the prelinker needs to make room for a new PT_LOAD entry, its
10085 standard procedure is to move the first (read-only) sections into
10086 the new (writable) segment. However, the MIPS ABI requires
10087 .dynamic to be in a read-only segment, and the section will often
10088 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10089
10090 Although the prelinker could in principle move .dynamic to a
10091 writable segment, it seems better to allocate a spare program
10092 header instead, and avoid the need to move any sections.
10093 There is a long tradition of allocating spare dynamic tags,
10094 so allocating a spare program header seems like a natural
7c8b76cc
JM
10095 extension.
10096
10097 If INFO is NULL, we may be copying an already prelinked binary
10098 with objcopy or strip, so do not add this header. */
10099 if (info != NULL
10100 && !SGI_COMPAT (abfd)
98c904a8
RS
10101 && bfd_get_section_by_name (abfd, ".dynamic"))
10102 {
10103 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10104 if ((*pm)->p_type == PT_NULL)
10105 break;
10106 if (*pm == NULL)
10107 {
10108 m = bfd_zalloc (abfd, sizeof (*m));
10109 if (m == NULL)
10110 return FALSE;
10111
10112 m->p_type = PT_NULL;
10113 *pm = m;
10114 }
10115 }
10116
b34976b6 10117 return TRUE;
b49e97c9
TS
10118}
10119\f
10120/* Return the section that should be marked against GC for a given
10121 relocation. */
10122
10123asection *
9719ad41 10124_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 10125 struct bfd_link_info *info,
9719ad41
RS
10126 Elf_Internal_Rela *rel,
10127 struct elf_link_hash_entry *h,
10128 Elf_Internal_Sym *sym)
b49e97c9
TS
10129{
10130 /* ??? Do mips16 stub sections need to be handled special? */
10131
10132 if (h != NULL)
07adf181
AM
10133 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10134 {
10135 case R_MIPS_GNU_VTINHERIT:
10136 case R_MIPS_GNU_VTENTRY:
10137 return NULL;
10138 }
b49e97c9 10139
07adf181 10140 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
10141}
10142
10143/* Update the got entry reference counts for the section being removed. */
10144
b34976b6 10145bfd_boolean
9719ad41
RS
10146_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10147 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10148 asection *sec ATTRIBUTE_UNUSED,
10149 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
10150{
10151#if 0
10152 Elf_Internal_Shdr *symtab_hdr;
10153 struct elf_link_hash_entry **sym_hashes;
10154 bfd_signed_vma *local_got_refcounts;
10155 const Elf_Internal_Rela *rel, *relend;
10156 unsigned long r_symndx;
10157 struct elf_link_hash_entry *h;
10158
7dda2462
TG
10159 if (info->relocatable)
10160 return TRUE;
10161
b49e97c9
TS
10162 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10163 sym_hashes = elf_sym_hashes (abfd);
10164 local_got_refcounts = elf_local_got_refcounts (abfd);
10165
10166 relend = relocs + sec->reloc_count;
10167 for (rel = relocs; rel < relend; rel++)
10168 switch (ELF_R_TYPE (abfd, rel->r_info))
10169 {
738e5348
RS
10170 case R_MIPS16_GOT16:
10171 case R_MIPS16_CALL16:
b49e97c9
TS
10172 case R_MIPS_GOT16:
10173 case R_MIPS_CALL16:
10174 case R_MIPS_CALL_HI16:
10175 case R_MIPS_CALL_LO16:
10176 case R_MIPS_GOT_HI16:
10177 case R_MIPS_GOT_LO16:
4a14403c
TS
10178 case R_MIPS_GOT_DISP:
10179 case R_MIPS_GOT_PAGE:
10180 case R_MIPS_GOT_OFST:
b49e97c9
TS
10181 /* ??? It would seem that the existing MIPS code does no sort
10182 of reference counting or whatnot on its GOT and PLT entries,
10183 so it is not possible to garbage collect them at this time. */
10184 break;
10185
10186 default:
10187 break;
10188 }
10189#endif
10190
b34976b6 10191 return TRUE;
b49e97c9
TS
10192}
10193\f
10194/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10195 hiding the old indirect symbol. Process additional relocation
10196 information. Also called for weakdefs, in which case we just let
10197 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10198
10199void
fcfa13d2 10200_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
10201 struct elf_link_hash_entry *dir,
10202 struct elf_link_hash_entry *ind)
b49e97c9
TS
10203{
10204 struct mips_elf_link_hash_entry *dirmips, *indmips;
10205
fcfa13d2 10206 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
10207
10208 if (ind->root.type != bfd_link_hash_indirect)
10209 return;
10210
10211 dirmips = (struct mips_elf_link_hash_entry *) dir;
10212 indmips = (struct mips_elf_link_hash_entry *) ind;
10213 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10214 if (indmips->readonly_reloc)
b34976b6 10215 dirmips->readonly_reloc = TRUE;
b49e97c9 10216 if (indmips->no_fn_stub)
b34976b6 10217 dirmips->no_fn_stub = TRUE;
634835ae
RS
10218 if (indmips->global_got_area < dirmips->global_got_area)
10219 dirmips->global_got_area = indmips->global_got_area;
10220 if (indmips->global_got_area < GGA_NONE)
10221 indmips->global_got_area = GGA_NONE;
0f20cc35
DJ
10222
10223 if (dirmips->tls_type == 0)
10224 dirmips->tls_type = indmips->tls_type;
b49e97c9 10225}
b49e97c9 10226\f
d01414a5
TS
10227#define PDR_SIZE 32
10228
b34976b6 10229bfd_boolean
9719ad41
RS
10230_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10231 struct bfd_link_info *info)
d01414a5
TS
10232{
10233 asection *o;
b34976b6 10234 bfd_boolean ret = FALSE;
d01414a5
TS
10235 unsigned char *tdata;
10236 size_t i, skip;
10237
10238 o = bfd_get_section_by_name (abfd, ".pdr");
10239 if (! o)
b34976b6 10240 return FALSE;
eea6121a 10241 if (o->size == 0)
b34976b6 10242 return FALSE;
eea6121a 10243 if (o->size % PDR_SIZE != 0)
b34976b6 10244 return FALSE;
d01414a5
TS
10245 if (o->output_section != NULL
10246 && bfd_is_abs_section (o->output_section))
b34976b6 10247 return FALSE;
d01414a5 10248
eea6121a 10249 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 10250 if (! tdata)
b34976b6 10251 return FALSE;
d01414a5 10252
9719ad41 10253 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 10254 info->keep_memory);
d01414a5
TS
10255 if (!cookie->rels)
10256 {
10257 free (tdata);
b34976b6 10258 return FALSE;
d01414a5
TS
10259 }
10260
10261 cookie->rel = cookie->rels;
10262 cookie->relend = cookie->rels + o->reloc_count;
10263
eea6121a 10264 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 10265 {
c152c796 10266 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
10267 {
10268 tdata[i] = 1;
10269 skip ++;
10270 }
10271 }
10272
10273 if (skip != 0)
10274 {
f0abc2a1 10275 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 10276 o->size -= skip * PDR_SIZE;
b34976b6 10277 ret = TRUE;
d01414a5
TS
10278 }
10279 else
10280 free (tdata);
10281
10282 if (! info->keep_memory)
10283 free (cookie->rels);
10284
10285 return ret;
10286}
10287
b34976b6 10288bfd_boolean
9719ad41 10289_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
10290{
10291 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
10292 return TRUE;
10293 return FALSE;
53bfd6b4 10294}
d01414a5 10295
b34976b6 10296bfd_boolean
c7b8f16e
JB
10297_bfd_mips_elf_write_section (bfd *output_bfd,
10298 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10299 asection *sec, bfd_byte *contents)
d01414a5
TS
10300{
10301 bfd_byte *to, *from, *end;
10302 int i;
10303
10304 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 10305 return FALSE;
d01414a5 10306
f0abc2a1 10307 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 10308 return FALSE;
d01414a5
TS
10309
10310 to = contents;
eea6121a 10311 end = contents + sec->size;
d01414a5
TS
10312 for (from = contents, i = 0;
10313 from < end;
10314 from += PDR_SIZE, i++)
10315 {
f0abc2a1 10316 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
10317 continue;
10318 if (to != from)
10319 memcpy (to, from, PDR_SIZE);
10320 to += PDR_SIZE;
10321 }
10322 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 10323 sec->output_offset, sec->size);
b34976b6 10324 return TRUE;
d01414a5 10325}
53bfd6b4 10326\f
b49e97c9
TS
10327/* MIPS ELF uses a special find_nearest_line routine in order the
10328 handle the ECOFF debugging information. */
10329
10330struct mips_elf_find_line
10331{
10332 struct ecoff_debug_info d;
10333 struct ecoff_find_line i;
10334};
10335
b34976b6 10336bfd_boolean
9719ad41
RS
10337_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10338 asymbol **symbols, bfd_vma offset,
10339 const char **filename_ptr,
10340 const char **functionname_ptr,
10341 unsigned int *line_ptr)
b49e97c9
TS
10342{
10343 asection *msec;
10344
10345 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10346 filename_ptr, functionname_ptr,
10347 line_ptr))
b34976b6 10348 return TRUE;
b49e97c9
TS
10349
10350 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10351 filename_ptr, functionname_ptr,
9719ad41 10352 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 10353 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 10354 return TRUE;
b49e97c9
TS
10355
10356 msec = bfd_get_section_by_name (abfd, ".mdebug");
10357 if (msec != NULL)
10358 {
10359 flagword origflags;
10360 struct mips_elf_find_line *fi;
10361 const struct ecoff_debug_swap * const swap =
10362 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10363
10364 /* If we are called during a link, mips_elf_final_link may have
10365 cleared the SEC_HAS_CONTENTS field. We force it back on here
10366 if appropriate (which it normally will be). */
10367 origflags = msec->flags;
10368 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10369 msec->flags |= SEC_HAS_CONTENTS;
10370
10371 fi = elf_tdata (abfd)->find_line_info;
10372 if (fi == NULL)
10373 {
10374 bfd_size_type external_fdr_size;
10375 char *fraw_src;
10376 char *fraw_end;
10377 struct fdr *fdr_ptr;
10378 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10379
9719ad41 10380 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
10381 if (fi == NULL)
10382 {
10383 msec->flags = origflags;
b34976b6 10384 return FALSE;
b49e97c9
TS
10385 }
10386
10387 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10388 {
10389 msec->flags = origflags;
b34976b6 10390 return FALSE;
b49e97c9
TS
10391 }
10392
10393 /* Swap in the FDR information. */
10394 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 10395 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
10396 if (fi->d.fdr == NULL)
10397 {
10398 msec->flags = origflags;
b34976b6 10399 return FALSE;
b49e97c9
TS
10400 }
10401 external_fdr_size = swap->external_fdr_size;
10402 fdr_ptr = fi->d.fdr;
10403 fraw_src = (char *) fi->d.external_fdr;
10404 fraw_end = (fraw_src
10405 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10406 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 10407 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
10408
10409 elf_tdata (abfd)->find_line_info = fi;
10410
10411 /* Note that we don't bother to ever free this information.
10412 find_nearest_line is either called all the time, as in
10413 objdump -l, so the information should be saved, or it is
10414 rarely called, as in ld error messages, so the memory
10415 wasted is unimportant. Still, it would probably be a
10416 good idea for free_cached_info to throw it away. */
10417 }
10418
10419 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10420 &fi->i, filename_ptr, functionname_ptr,
10421 line_ptr))
10422 {
10423 msec->flags = origflags;
b34976b6 10424 return TRUE;
b49e97c9
TS
10425 }
10426
10427 msec->flags = origflags;
10428 }
10429
10430 /* Fall back on the generic ELF find_nearest_line routine. */
10431
10432 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10433 filename_ptr, functionname_ptr,
10434 line_ptr);
10435}
4ab527b0
FF
10436
10437bfd_boolean
10438_bfd_mips_elf_find_inliner_info (bfd *abfd,
10439 const char **filename_ptr,
10440 const char **functionname_ptr,
10441 unsigned int *line_ptr)
10442{
10443 bfd_boolean found;
10444 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10445 functionname_ptr, line_ptr,
10446 & elf_tdata (abfd)->dwarf2_find_line_info);
10447 return found;
10448}
10449
b49e97c9
TS
10450\f
10451/* When are writing out the .options or .MIPS.options section,
10452 remember the bytes we are writing out, so that we can install the
10453 GP value in the section_processing routine. */
10454
b34976b6 10455bfd_boolean
9719ad41
RS
10456_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10457 const void *location,
10458 file_ptr offset, bfd_size_type count)
b49e97c9 10459{
cc2e31b9 10460 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
10461 {
10462 bfd_byte *c;
10463
10464 if (elf_section_data (section) == NULL)
10465 {
10466 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 10467 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 10468 if (elf_section_data (section) == NULL)
b34976b6 10469 return FALSE;
b49e97c9 10470 }
f0abc2a1 10471 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
10472 if (c == NULL)
10473 {
eea6121a 10474 c = bfd_zalloc (abfd, section->size);
b49e97c9 10475 if (c == NULL)
b34976b6 10476 return FALSE;
f0abc2a1 10477 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
10478 }
10479
9719ad41 10480 memcpy (c + offset, location, count);
b49e97c9
TS
10481 }
10482
10483 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10484 count);
10485}
10486
10487/* This is almost identical to bfd_generic_get_... except that some
10488 MIPS relocations need to be handled specially. Sigh. */
10489
10490bfd_byte *
9719ad41
RS
10491_bfd_elf_mips_get_relocated_section_contents
10492 (bfd *abfd,
10493 struct bfd_link_info *link_info,
10494 struct bfd_link_order *link_order,
10495 bfd_byte *data,
10496 bfd_boolean relocatable,
10497 asymbol **symbols)
b49e97c9
TS
10498{
10499 /* Get enough memory to hold the stuff */
10500 bfd *input_bfd = link_order->u.indirect.section->owner;
10501 asection *input_section = link_order->u.indirect.section;
eea6121a 10502 bfd_size_type sz;
b49e97c9
TS
10503
10504 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10505 arelent **reloc_vector = NULL;
10506 long reloc_count;
10507
10508 if (reloc_size < 0)
10509 goto error_return;
10510
9719ad41 10511 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10512 if (reloc_vector == NULL && reloc_size != 0)
10513 goto error_return;
10514
10515 /* read in the section */
eea6121a
AM
10516 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10517 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10518 goto error_return;
10519
b49e97c9
TS
10520 reloc_count = bfd_canonicalize_reloc (input_bfd,
10521 input_section,
10522 reloc_vector,
10523 symbols);
10524 if (reloc_count < 0)
10525 goto error_return;
10526
10527 if (reloc_count > 0)
10528 {
10529 arelent **parent;
10530 /* for mips */
10531 int gp_found;
10532 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10533
10534 {
10535 struct bfd_hash_entry *h;
10536 struct bfd_link_hash_entry *lh;
10537 /* Skip all this stuff if we aren't mixing formats. */
10538 if (abfd && input_bfd
10539 && abfd->xvec == input_bfd->xvec)
10540 lh = 0;
10541 else
10542 {
b34976b6 10543 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10544 lh = (struct bfd_link_hash_entry *) h;
10545 }
10546 lookup:
10547 if (lh)
10548 {
10549 switch (lh->type)
10550 {
10551 case bfd_link_hash_undefined:
10552 case bfd_link_hash_undefweak:
10553 case bfd_link_hash_common:
10554 gp_found = 0;
10555 break;
10556 case bfd_link_hash_defined:
10557 case bfd_link_hash_defweak:
10558 gp_found = 1;
10559 gp = lh->u.def.value;
10560 break;
10561 case bfd_link_hash_indirect:
10562 case bfd_link_hash_warning:
10563 lh = lh->u.i.link;
10564 /* @@FIXME ignoring warning for now */
10565 goto lookup;
10566 case bfd_link_hash_new:
10567 default:
10568 abort ();
10569 }
10570 }
10571 else
10572 gp_found = 0;
10573 }
10574 /* end mips */
9719ad41 10575 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10576 {
9719ad41 10577 char *error_message = NULL;
b49e97c9
TS
10578 bfd_reloc_status_type r;
10579
10580 /* Specific to MIPS: Deal with relocation types that require
10581 knowing the gp of the output bfd. */
10582 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10583
8236346f
EC
10584 /* If we've managed to find the gp and have a special
10585 function for the relocation then go ahead, else default
10586 to the generic handling. */
10587 if (gp_found
10588 && (*parent)->howto->special_function
10589 == _bfd_mips_elf32_gprel16_reloc)
10590 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10591 input_section, relocatable,
10592 data, gp);
10593 else
86324f90 10594 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10595 input_section,
10596 relocatable ? abfd : NULL,
10597 &error_message);
b49e97c9 10598
1049f94e 10599 if (relocatable)
b49e97c9
TS
10600 {
10601 asection *os = input_section->output_section;
10602
10603 /* A partial link, so keep the relocs */
10604 os->orelocation[os->reloc_count] = *parent;
10605 os->reloc_count++;
10606 }
10607
10608 if (r != bfd_reloc_ok)
10609 {
10610 switch (r)
10611 {
10612 case bfd_reloc_undefined:
10613 if (!((*link_info->callbacks->undefined_symbol)
10614 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10615 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10616 goto error_return;
10617 break;
10618 case bfd_reloc_dangerous:
9719ad41 10619 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10620 if (!((*link_info->callbacks->reloc_dangerous)
10621 (link_info, error_message, input_bfd, input_section,
10622 (*parent)->address)))
10623 goto error_return;
10624 break;
10625 case bfd_reloc_overflow:
10626 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10627 (link_info, NULL,
10628 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10629 (*parent)->howto->name, (*parent)->addend,
10630 input_bfd, input_section, (*parent)->address)))
10631 goto error_return;
10632 break;
10633 case bfd_reloc_outofrange:
10634 default:
10635 abort ();
10636 break;
10637 }
10638
10639 }
10640 }
10641 }
10642 if (reloc_vector != NULL)
10643 free (reloc_vector);
10644 return data;
10645
10646error_return:
10647 if (reloc_vector != NULL)
10648 free (reloc_vector);
10649 return NULL;
10650}
10651\f
10652/* Create a MIPS ELF linker hash table. */
10653
10654struct bfd_link_hash_table *
9719ad41 10655_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10656{
10657 struct mips_elf_link_hash_table *ret;
10658 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10659
9719ad41
RS
10660 ret = bfd_malloc (amt);
10661 if (ret == NULL)
b49e97c9
TS
10662 return NULL;
10663
66eb6687
AM
10664 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10665 mips_elf_link_hash_newfunc,
10666 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10667 {
e2d34d7d 10668 free (ret);
b49e97c9
TS
10669 return NULL;
10670 }
10671
10672#if 0
10673 /* We no longer use this. */
10674 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10675 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10676#endif
10677 ret->procedure_count = 0;
10678 ret->compact_rel_size = 0;
b34976b6 10679 ret->use_rld_obj_head = FALSE;
b49e97c9 10680 ret->rld_value = 0;
b34976b6 10681 ret->mips16_stubs_seen = FALSE;
0a44bf69 10682 ret->is_vxworks = FALSE;
0e53d9da 10683 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
10684 ret->srelbss = NULL;
10685 ret->sdynbss = NULL;
10686 ret->srelplt = NULL;
10687 ret->srelplt2 = NULL;
10688 ret->sgotplt = NULL;
10689 ret->splt = NULL;
4e41d0d7 10690 ret->sstubs = NULL;
a8028dd0
RS
10691 ret->sgot = NULL;
10692 ret->got_info = NULL;
0a44bf69
RS
10693 ret->plt_header_size = 0;
10694 ret->plt_entry_size = 0;
33bb52fb 10695 ret->lazy_stub_count = 0;
5108fc1b 10696 ret->function_stub_size = 0;
b49e97c9
TS
10697
10698 return &ret->root.root;
10699}
0a44bf69
RS
10700
10701/* Likewise, but indicate that the target is VxWorks. */
10702
10703struct bfd_link_hash_table *
10704_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10705{
10706 struct bfd_link_hash_table *ret;
10707
10708 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10709 if (ret)
10710 {
10711 struct mips_elf_link_hash_table *htab;
10712
10713 htab = (struct mips_elf_link_hash_table *) ret;
10714 htab->is_vxworks = 1;
10715 }
10716 return ret;
10717}
b49e97c9
TS
10718\f
10719/* We need to use a special link routine to handle the .reginfo and
10720 the .mdebug sections. We need to merge all instances of these
10721 sections together, not write them all out sequentially. */
10722
b34976b6 10723bfd_boolean
9719ad41 10724_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10725{
b49e97c9
TS
10726 asection *o;
10727 struct bfd_link_order *p;
10728 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10729 asection *rtproc_sec;
10730 Elf32_RegInfo reginfo;
10731 struct ecoff_debug_info debug;
7a2a6943
NC
10732 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10733 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10734 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10735 void *mdebug_handle = NULL;
b49e97c9
TS
10736 asection *s;
10737 EXTR esym;
10738 unsigned int i;
10739 bfd_size_type amt;
0a44bf69 10740 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10741
10742 static const char * const secname[] =
10743 {
10744 ".text", ".init", ".fini", ".data",
10745 ".rodata", ".sdata", ".sbss", ".bss"
10746 };
10747 static const int sc[] =
10748 {
10749 scText, scInit, scFini, scData,
10750 scRData, scSData, scSBss, scBss
10751 };
10752
d4596a51
RS
10753 /* Sort the dynamic symbols so that those with GOT entries come after
10754 those without. */
0a44bf69 10755 htab = mips_elf_hash_table (info);
d4596a51
RS
10756 if (!mips_elf_sort_hash_table (abfd, info))
10757 return FALSE;
b49e97c9 10758
b49e97c9
TS
10759 /* Get a value for the GP register. */
10760 if (elf_gp (abfd) == 0)
10761 {
10762 struct bfd_link_hash_entry *h;
10763
b34976b6 10764 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10765 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10766 elf_gp (abfd) = (h->u.def.value
10767 + h->u.def.section->output_section->vma
10768 + h->u.def.section->output_offset);
0a44bf69
RS
10769 else if (htab->is_vxworks
10770 && (h = bfd_link_hash_lookup (info->hash,
10771 "_GLOBAL_OFFSET_TABLE_",
10772 FALSE, FALSE, TRUE))
10773 && h->type == bfd_link_hash_defined)
10774 elf_gp (abfd) = (h->u.def.section->output_section->vma
10775 + h->u.def.section->output_offset
10776 + h->u.def.value);
1049f94e 10777 else if (info->relocatable)
b49e97c9
TS
10778 {
10779 bfd_vma lo = MINUS_ONE;
10780
10781 /* Find the GP-relative section with the lowest offset. */
9719ad41 10782 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10783 if (o->vma < lo
10784 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10785 lo = o->vma;
10786
10787 /* And calculate GP relative to that. */
0a44bf69 10788 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10789 }
10790 else
10791 {
10792 /* If the relocate_section function needs to do a reloc
10793 involving the GP value, it should make a reloc_dangerous
10794 callback to warn that GP is not defined. */
10795 }
10796 }
10797
10798 /* Go through the sections and collect the .reginfo and .mdebug
10799 information. */
10800 reginfo_sec = NULL;
10801 mdebug_sec = NULL;
10802 gptab_data_sec = NULL;
10803 gptab_bss_sec = NULL;
9719ad41 10804 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10805 {
10806 if (strcmp (o->name, ".reginfo") == 0)
10807 {
10808 memset (&reginfo, 0, sizeof reginfo);
10809
10810 /* We have found the .reginfo section in the output file.
10811 Look through all the link_orders comprising it and merge
10812 the information together. */
8423293d 10813 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10814 {
10815 asection *input_section;
10816 bfd *input_bfd;
10817 Elf32_External_RegInfo ext;
10818 Elf32_RegInfo sub;
10819
10820 if (p->type != bfd_indirect_link_order)
10821 {
10822 if (p->type == bfd_data_link_order)
10823 continue;
10824 abort ();
10825 }
10826
10827 input_section = p->u.indirect.section;
10828 input_bfd = input_section->owner;
10829
b49e97c9 10830 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10831 &ext, 0, sizeof ext))
b34976b6 10832 return FALSE;
b49e97c9
TS
10833
10834 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10835
10836 reginfo.ri_gprmask |= sub.ri_gprmask;
10837 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10838 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10839 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10840 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10841
10842 /* ri_gp_value is set by the function
10843 mips_elf32_section_processing when the section is
10844 finally written out. */
10845
10846 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10847 elf_link_input_bfd ignores this section. */
10848 input_section->flags &= ~SEC_HAS_CONTENTS;
10849 }
10850
10851 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10852 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10853
10854 /* Skip this section later on (I don't think this currently
10855 matters, but someday it might). */
8423293d 10856 o->map_head.link_order = NULL;
b49e97c9
TS
10857
10858 reginfo_sec = o;
10859 }
10860
10861 if (strcmp (o->name, ".mdebug") == 0)
10862 {
10863 struct extsym_info einfo;
10864 bfd_vma last;
10865
10866 /* We have found the .mdebug section in the output file.
10867 Look through all the link_orders comprising it and merge
10868 the information together. */
10869 symhdr->magic = swap->sym_magic;
10870 /* FIXME: What should the version stamp be? */
10871 symhdr->vstamp = 0;
10872 symhdr->ilineMax = 0;
10873 symhdr->cbLine = 0;
10874 symhdr->idnMax = 0;
10875 symhdr->ipdMax = 0;
10876 symhdr->isymMax = 0;
10877 symhdr->ioptMax = 0;
10878 symhdr->iauxMax = 0;
10879 symhdr->issMax = 0;
10880 symhdr->issExtMax = 0;
10881 symhdr->ifdMax = 0;
10882 symhdr->crfd = 0;
10883 symhdr->iextMax = 0;
10884
10885 /* We accumulate the debugging information itself in the
10886 debug_info structure. */
10887 debug.line = NULL;
10888 debug.external_dnr = NULL;
10889 debug.external_pdr = NULL;
10890 debug.external_sym = NULL;
10891 debug.external_opt = NULL;
10892 debug.external_aux = NULL;
10893 debug.ss = NULL;
10894 debug.ssext = debug.ssext_end = NULL;
10895 debug.external_fdr = NULL;
10896 debug.external_rfd = NULL;
10897 debug.external_ext = debug.external_ext_end = NULL;
10898
10899 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10900 if (mdebug_handle == NULL)
b34976b6 10901 return FALSE;
b49e97c9
TS
10902
10903 esym.jmptbl = 0;
10904 esym.cobol_main = 0;
10905 esym.weakext = 0;
10906 esym.reserved = 0;
10907 esym.ifd = ifdNil;
10908 esym.asym.iss = issNil;
10909 esym.asym.st = stLocal;
10910 esym.asym.reserved = 0;
10911 esym.asym.index = indexNil;
10912 last = 0;
10913 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10914 {
10915 esym.asym.sc = sc[i];
10916 s = bfd_get_section_by_name (abfd, secname[i]);
10917 if (s != NULL)
10918 {
10919 esym.asym.value = s->vma;
eea6121a 10920 last = s->vma + s->size;
b49e97c9
TS
10921 }
10922 else
10923 esym.asym.value = last;
10924 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10925 secname[i], &esym))
b34976b6 10926 return FALSE;
b49e97c9
TS
10927 }
10928
8423293d 10929 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10930 {
10931 asection *input_section;
10932 bfd *input_bfd;
10933 const struct ecoff_debug_swap *input_swap;
10934 struct ecoff_debug_info input_debug;
10935 char *eraw_src;
10936 char *eraw_end;
10937
10938 if (p->type != bfd_indirect_link_order)
10939 {
10940 if (p->type == bfd_data_link_order)
10941 continue;
10942 abort ();
10943 }
10944
10945 input_section = p->u.indirect.section;
10946 input_bfd = input_section->owner;
10947
10948 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10949 || (get_elf_backend_data (input_bfd)
10950 ->elf_backend_ecoff_debug_swap) == NULL)
10951 {
10952 /* I don't know what a non MIPS ELF bfd would be
10953 doing with a .mdebug section, but I don't really
10954 want to deal with it. */
10955 continue;
10956 }
10957
10958 input_swap = (get_elf_backend_data (input_bfd)
10959 ->elf_backend_ecoff_debug_swap);
10960
eea6121a 10961 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10962
10963 /* The ECOFF linking code expects that we have already
10964 read in the debugging information and set up an
10965 ecoff_debug_info structure, so we do that now. */
10966 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10967 &input_debug))
b34976b6 10968 return FALSE;
b49e97c9
TS
10969
10970 if (! (bfd_ecoff_debug_accumulate
10971 (mdebug_handle, abfd, &debug, swap, input_bfd,
10972 &input_debug, input_swap, info)))
b34976b6 10973 return FALSE;
b49e97c9
TS
10974
10975 /* Loop through the external symbols. For each one with
10976 interesting information, try to find the symbol in
10977 the linker global hash table and save the information
10978 for the output external symbols. */
10979 eraw_src = input_debug.external_ext;
10980 eraw_end = (eraw_src
10981 + (input_debug.symbolic_header.iextMax
10982 * input_swap->external_ext_size));
10983 for (;
10984 eraw_src < eraw_end;
10985 eraw_src += input_swap->external_ext_size)
10986 {
10987 EXTR ext;
10988 const char *name;
10989 struct mips_elf_link_hash_entry *h;
10990
9719ad41 10991 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10992 if (ext.asym.sc == scNil
10993 || ext.asym.sc == scUndefined
10994 || ext.asym.sc == scSUndefined)
10995 continue;
10996
10997 name = input_debug.ssext + ext.asym.iss;
10998 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10999 name, FALSE, FALSE, TRUE);
b49e97c9
TS
11000 if (h == NULL || h->esym.ifd != -2)
11001 continue;
11002
11003 if (ext.ifd != -1)
11004 {
11005 BFD_ASSERT (ext.ifd
11006 < input_debug.symbolic_header.ifdMax);
11007 ext.ifd = input_debug.ifdmap[ext.ifd];
11008 }
11009
11010 h->esym = ext;
11011 }
11012
11013 /* Free up the information we just read. */
11014 free (input_debug.line);
11015 free (input_debug.external_dnr);
11016 free (input_debug.external_pdr);
11017 free (input_debug.external_sym);
11018 free (input_debug.external_opt);
11019 free (input_debug.external_aux);
11020 free (input_debug.ss);
11021 free (input_debug.ssext);
11022 free (input_debug.external_fdr);
11023 free (input_debug.external_rfd);
11024 free (input_debug.external_ext);
11025
11026 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11027 elf_link_input_bfd ignores this section. */
11028 input_section->flags &= ~SEC_HAS_CONTENTS;
11029 }
11030
11031 if (SGI_COMPAT (abfd) && info->shared)
11032 {
11033 /* Create .rtproc section. */
11034 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11035 if (rtproc_sec == NULL)
11036 {
11037 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11038 | SEC_LINKER_CREATED | SEC_READONLY);
11039
3496cb2a
L
11040 rtproc_sec = bfd_make_section_with_flags (abfd,
11041 ".rtproc",
11042 flags);
b49e97c9 11043 if (rtproc_sec == NULL
b49e97c9 11044 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 11045 return FALSE;
b49e97c9
TS
11046 }
11047
11048 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11049 info, rtproc_sec,
11050 &debug))
b34976b6 11051 return FALSE;
b49e97c9
TS
11052 }
11053
11054 /* Build the external symbol information. */
11055 einfo.abfd = abfd;
11056 einfo.info = info;
11057 einfo.debug = &debug;
11058 einfo.swap = swap;
b34976b6 11059 einfo.failed = FALSE;
b49e97c9 11060 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 11061 mips_elf_output_extsym, &einfo);
b49e97c9 11062 if (einfo.failed)
b34976b6 11063 return FALSE;
b49e97c9
TS
11064
11065 /* Set the size of the .mdebug section. */
eea6121a 11066 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
11067
11068 /* Skip this section later on (I don't think this currently
11069 matters, but someday it might). */
8423293d 11070 o->map_head.link_order = NULL;
b49e97c9
TS
11071
11072 mdebug_sec = o;
11073 }
11074
0112cd26 11075 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
11076 {
11077 const char *subname;
11078 unsigned int c;
11079 Elf32_gptab *tab;
11080 Elf32_External_gptab *ext_tab;
11081 unsigned int j;
11082
11083 /* The .gptab.sdata and .gptab.sbss sections hold
11084 information describing how the small data area would
11085 change depending upon the -G switch. These sections
11086 not used in executables files. */
1049f94e 11087 if (! info->relocatable)
b49e97c9 11088 {
8423293d 11089 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11090 {
11091 asection *input_section;
11092
11093 if (p->type != bfd_indirect_link_order)
11094 {
11095 if (p->type == bfd_data_link_order)
11096 continue;
11097 abort ();
11098 }
11099
11100 input_section = p->u.indirect.section;
11101
11102 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11103 elf_link_input_bfd ignores this section. */
11104 input_section->flags &= ~SEC_HAS_CONTENTS;
11105 }
11106
11107 /* Skip this section later on (I don't think this
11108 currently matters, but someday it might). */
8423293d 11109 o->map_head.link_order = NULL;
b49e97c9
TS
11110
11111 /* Really remove the section. */
5daa8fe7 11112 bfd_section_list_remove (abfd, o);
b49e97c9
TS
11113 --abfd->section_count;
11114
11115 continue;
11116 }
11117
11118 /* There is one gptab for initialized data, and one for
11119 uninitialized data. */
11120 if (strcmp (o->name, ".gptab.sdata") == 0)
11121 gptab_data_sec = o;
11122 else if (strcmp (o->name, ".gptab.sbss") == 0)
11123 gptab_bss_sec = o;
11124 else
11125 {
11126 (*_bfd_error_handler)
11127 (_("%s: illegal section name `%s'"),
11128 bfd_get_filename (abfd), o->name);
11129 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 11130 return FALSE;
b49e97c9
TS
11131 }
11132
11133 /* The linker script always combines .gptab.data and
11134 .gptab.sdata into .gptab.sdata, and likewise for
11135 .gptab.bss and .gptab.sbss. It is possible that there is
11136 no .sdata or .sbss section in the output file, in which
11137 case we must change the name of the output section. */
11138 subname = o->name + sizeof ".gptab" - 1;
11139 if (bfd_get_section_by_name (abfd, subname) == NULL)
11140 {
11141 if (o == gptab_data_sec)
11142 o->name = ".gptab.data";
11143 else
11144 o->name = ".gptab.bss";
11145 subname = o->name + sizeof ".gptab" - 1;
11146 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11147 }
11148
11149 /* Set up the first entry. */
11150 c = 1;
11151 amt = c * sizeof (Elf32_gptab);
9719ad41 11152 tab = bfd_malloc (amt);
b49e97c9 11153 if (tab == NULL)
b34976b6 11154 return FALSE;
b49e97c9
TS
11155 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11156 tab[0].gt_header.gt_unused = 0;
11157
11158 /* Combine the input sections. */
8423293d 11159 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11160 {
11161 asection *input_section;
11162 bfd *input_bfd;
11163 bfd_size_type size;
11164 unsigned long last;
11165 bfd_size_type gpentry;
11166
11167 if (p->type != bfd_indirect_link_order)
11168 {
11169 if (p->type == bfd_data_link_order)
11170 continue;
11171 abort ();
11172 }
11173
11174 input_section = p->u.indirect.section;
11175 input_bfd = input_section->owner;
11176
11177 /* Combine the gptab entries for this input section one
11178 by one. We know that the input gptab entries are
11179 sorted by ascending -G value. */
eea6121a 11180 size = input_section->size;
b49e97c9
TS
11181 last = 0;
11182 for (gpentry = sizeof (Elf32_External_gptab);
11183 gpentry < size;
11184 gpentry += sizeof (Elf32_External_gptab))
11185 {
11186 Elf32_External_gptab ext_gptab;
11187 Elf32_gptab int_gptab;
11188 unsigned long val;
11189 unsigned long add;
b34976b6 11190 bfd_boolean exact;
b49e97c9
TS
11191 unsigned int look;
11192
11193 if (! (bfd_get_section_contents
9719ad41
RS
11194 (input_bfd, input_section, &ext_gptab, gpentry,
11195 sizeof (Elf32_External_gptab))))
b49e97c9
TS
11196 {
11197 free (tab);
b34976b6 11198 return FALSE;
b49e97c9
TS
11199 }
11200
11201 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11202 &int_gptab);
11203 val = int_gptab.gt_entry.gt_g_value;
11204 add = int_gptab.gt_entry.gt_bytes - last;
11205
b34976b6 11206 exact = FALSE;
b49e97c9
TS
11207 for (look = 1; look < c; look++)
11208 {
11209 if (tab[look].gt_entry.gt_g_value >= val)
11210 tab[look].gt_entry.gt_bytes += add;
11211
11212 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 11213 exact = TRUE;
b49e97c9
TS
11214 }
11215
11216 if (! exact)
11217 {
11218 Elf32_gptab *new_tab;
11219 unsigned int max;
11220
11221 /* We need a new table entry. */
11222 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 11223 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
11224 if (new_tab == NULL)
11225 {
11226 free (tab);
b34976b6 11227 return FALSE;
b49e97c9
TS
11228 }
11229 tab = new_tab;
11230 tab[c].gt_entry.gt_g_value = val;
11231 tab[c].gt_entry.gt_bytes = add;
11232
11233 /* Merge in the size for the next smallest -G
11234 value, since that will be implied by this new
11235 value. */
11236 max = 0;
11237 for (look = 1; look < c; look++)
11238 {
11239 if (tab[look].gt_entry.gt_g_value < val
11240 && (max == 0
11241 || (tab[look].gt_entry.gt_g_value
11242 > tab[max].gt_entry.gt_g_value)))
11243 max = look;
11244 }
11245 if (max != 0)
11246 tab[c].gt_entry.gt_bytes +=
11247 tab[max].gt_entry.gt_bytes;
11248
11249 ++c;
11250 }
11251
11252 last = int_gptab.gt_entry.gt_bytes;
11253 }
11254
11255 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11256 elf_link_input_bfd ignores this section. */
11257 input_section->flags &= ~SEC_HAS_CONTENTS;
11258 }
11259
11260 /* The table must be sorted by -G value. */
11261 if (c > 2)
11262 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11263
11264 /* Swap out the table. */
11265 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 11266 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
11267 if (ext_tab == NULL)
11268 {
11269 free (tab);
b34976b6 11270 return FALSE;
b49e97c9
TS
11271 }
11272
11273 for (j = 0; j < c; j++)
11274 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11275 free (tab);
11276
eea6121a 11277 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
11278 o->contents = (bfd_byte *) ext_tab;
11279
11280 /* Skip this section later on (I don't think this currently
11281 matters, but someday it might). */
8423293d 11282 o->map_head.link_order = NULL;
b49e97c9
TS
11283 }
11284 }
11285
11286 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 11287 if (!bfd_elf_final_link (abfd, info))
b34976b6 11288 return FALSE;
b49e97c9
TS
11289
11290 /* Now write out the computed sections. */
11291
9719ad41 11292 if (reginfo_sec != NULL)
b49e97c9
TS
11293 {
11294 Elf32_External_RegInfo ext;
11295
11296 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 11297 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 11298 return FALSE;
b49e97c9
TS
11299 }
11300
9719ad41 11301 if (mdebug_sec != NULL)
b49e97c9
TS
11302 {
11303 BFD_ASSERT (abfd->output_has_begun);
11304 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11305 swap, info,
11306 mdebug_sec->filepos))
b34976b6 11307 return FALSE;
b49e97c9
TS
11308
11309 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11310 }
11311
9719ad41 11312 if (gptab_data_sec != NULL)
b49e97c9
TS
11313 {
11314 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11315 gptab_data_sec->contents,
eea6121a 11316 0, gptab_data_sec->size))
b34976b6 11317 return FALSE;
b49e97c9
TS
11318 }
11319
9719ad41 11320 if (gptab_bss_sec != NULL)
b49e97c9
TS
11321 {
11322 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11323 gptab_bss_sec->contents,
eea6121a 11324 0, gptab_bss_sec->size))
b34976b6 11325 return FALSE;
b49e97c9
TS
11326 }
11327
11328 if (SGI_COMPAT (abfd))
11329 {
11330 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11331 if (rtproc_sec != NULL)
11332 {
11333 if (! bfd_set_section_contents (abfd, rtproc_sec,
11334 rtproc_sec->contents,
eea6121a 11335 0, rtproc_sec->size))
b34976b6 11336 return FALSE;
b49e97c9
TS
11337 }
11338 }
11339
b34976b6 11340 return TRUE;
b49e97c9
TS
11341}
11342\f
64543e1a
RS
11343/* Structure for saying that BFD machine EXTENSION extends BASE. */
11344
11345struct mips_mach_extension {
11346 unsigned long extension, base;
11347};
11348
11349
11350/* An array describing how BFD machines relate to one another. The entries
11351 are ordered topologically with MIPS I extensions listed last. */
11352
11353static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0
AN
11354 /* MIPS64r2 extensions. */
11355 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
11356
64543e1a 11357 /* MIPS64 extensions. */
5f74bc13 11358 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
11359 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11360
11361 /* MIPS V extensions. */
11362 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11363
11364 /* R10000 extensions. */
11365 { bfd_mach_mips12000, bfd_mach_mips10000 },
11366
11367 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11368 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11369 better to allow vr5400 and vr5500 code to be merged anyway, since
11370 many libraries will just use the core ISA. Perhaps we could add
11371 some sort of ASE flag if this ever proves a problem. */
11372 { bfd_mach_mips5500, bfd_mach_mips5400 },
11373 { bfd_mach_mips5400, bfd_mach_mips5000 },
11374
11375 /* MIPS IV extensions. */
11376 { bfd_mach_mips5, bfd_mach_mips8000 },
11377 { bfd_mach_mips10000, bfd_mach_mips8000 },
11378 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 11379 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 11380 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
11381
11382 /* VR4100 extensions. */
11383 { bfd_mach_mips4120, bfd_mach_mips4100 },
11384 { bfd_mach_mips4111, bfd_mach_mips4100 },
11385
11386 /* MIPS III extensions. */
350cc38d
MS
11387 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11388 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
11389 { bfd_mach_mips8000, bfd_mach_mips4000 },
11390 { bfd_mach_mips4650, bfd_mach_mips4000 },
11391 { bfd_mach_mips4600, bfd_mach_mips4000 },
11392 { bfd_mach_mips4400, bfd_mach_mips4000 },
11393 { bfd_mach_mips4300, bfd_mach_mips4000 },
11394 { bfd_mach_mips4100, bfd_mach_mips4000 },
11395 { bfd_mach_mips4010, bfd_mach_mips4000 },
11396
11397 /* MIPS32 extensions. */
11398 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11399
11400 /* MIPS II extensions. */
11401 { bfd_mach_mips4000, bfd_mach_mips6000 },
11402 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11403
11404 /* MIPS I extensions. */
11405 { bfd_mach_mips6000, bfd_mach_mips3000 },
11406 { bfd_mach_mips3900, bfd_mach_mips3000 }
11407};
11408
11409
11410/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11411
11412static bfd_boolean
9719ad41 11413mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
11414{
11415 size_t i;
11416
c5211a54
RS
11417 if (extension == base)
11418 return TRUE;
11419
11420 if (base == bfd_mach_mipsisa32
11421 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11422 return TRUE;
11423
11424 if (base == bfd_mach_mipsisa32r2
11425 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11426 return TRUE;
11427
11428 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 11429 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
11430 {
11431 extension = mips_mach_extensions[i].base;
11432 if (extension == base)
11433 return TRUE;
11434 }
64543e1a 11435
c5211a54 11436 return FALSE;
64543e1a
RS
11437}
11438
11439
11440/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 11441
b34976b6 11442static bfd_boolean
9719ad41 11443mips_32bit_flags_p (flagword flags)
00707a0e 11444{
64543e1a
RS
11445 return ((flags & EF_MIPS_32BITMODE) != 0
11446 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11447 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11448 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11449 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11450 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11451 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
11452}
11453
64543e1a 11454
2cf19d5c
JM
11455/* Merge object attributes from IBFD into OBFD. Raise an error if
11456 there are conflicting attributes. */
11457static bfd_boolean
11458mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11459{
11460 obj_attribute *in_attr;
11461 obj_attribute *out_attr;
11462
11463 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11464 {
11465 /* This is the first object. Copy the attributes. */
11466 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11467
11468 /* Use the Tag_null value to indicate the attributes have been
11469 initialized. */
11470 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11471
11472 return TRUE;
11473 }
11474
11475 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11476 non-conflicting ones. */
11477 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11478 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11479 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11480 {
11481 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11482 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11483 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11484 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11485 ;
42554f6a 11486 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
11487 _bfd_error_handler
11488 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11489 in_attr[Tag_GNU_MIPS_ABI_FP].i);
42554f6a 11490 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
11491 _bfd_error_handler
11492 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11493 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11494 else
11495 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11496 {
11497 case 1:
11498 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11499 {
11500 case 2:
11501 _bfd_error_handler
11502 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11503 obfd, ibfd);
51a0dd31 11504 break;
2cf19d5c
JM
11505
11506 case 3:
11507 _bfd_error_handler
11508 (_("Warning: %B uses hard float, %B uses soft float"),
11509 obfd, ibfd);
11510 break;
11511
42554f6a
TS
11512 case 4:
11513 _bfd_error_handler
11514 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11515 obfd, ibfd);
11516 break;
11517
2cf19d5c
JM
11518 default:
11519 abort ();
11520 }
11521 break;
11522
11523 case 2:
11524 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11525 {
11526 case 1:
11527 _bfd_error_handler
11528 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11529 ibfd, obfd);
51a0dd31 11530 break;
2cf19d5c
JM
11531
11532 case 3:
11533 _bfd_error_handler
11534 (_("Warning: %B uses hard float, %B uses soft float"),
11535 obfd, ibfd);
11536 break;
11537
42554f6a
TS
11538 case 4:
11539 _bfd_error_handler
11540 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11541 obfd, ibfd);
11542 break;
11543
2cf19d5c
JM
11544 default:
11545 abort ();
11546 }
11547 break;
11548
11549 case 3:
11550 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11551 {
11552 case 1:
11553 case 2:
42554f6a 11554 case 4:
2cf19d5c
JM
11555 _bfd_error_handler
11556 (_("Warning: %B uses hard float, %B uses soft float"),
11557 ibfd, obfd);
11558 break;
11559
11560 default:
11561 abort ();
11562 }
11563 break;
11564
42554f6a
TS
11565 case 4:
11566 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11567 {
11568 case 1:
11569 _bfd_error_handler
11570 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11571 ibfd, obfd);
11572 break;
11573
11574 case 2:
11575 _bfd_error_handler
11576 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11577 ibfd, obfd);
11578 break;
11579
11580 case 3:
11581 _bfd_error_handler
11582 (_("Warning: %B uses hard float, %B uses soft float"),
11583 obfd, ibfd);
11584 break;
11585
11586 default:
11587 abort ();
11588 }
11589 break;
11590
2cf19d5c
JM
11591 default:
11592 abort ();
11593 }
11594 }
11595
11596 /* Merge Tag_compatibility attributes and any common GNU ones. */
11597 _bfd_elf_merge_object_attributes (ibfd, obfd);
11598
11599 return TRUE;
11600}
11601
b49e97c9
TS
11602/* Merge backend specific data from an object file to the output
11603 object file when linking. */
11604
b34976b6 11605bfd_boolean
9719ad41 11606_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
11607{
11608 flagword old_flags;
11609 flagword new_flags;
b34976b6
AM
11610 bfd_boolean ok;
11611 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
11612 asection *sec;
11613
11614 /* Check if we have the same endianess */
82e51918 11615 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
11616 {
11617 (*_bfd_error_handler)
d003868e
AM
11618 (_("%B: endianness incompatible with that of the selected emulation"),
11619 ibfd);
aa701218
AO
11620 return FALSE;
11621 }
b49e97c9
TS
11622
11623 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11624 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 11625 return TRUE;
b49e97c9 11626
aa701218
AO
11627 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11628 {
11629 (*_bfd_error_handler)
d003868e
AM
11630 (_("%B: ABI is incompatible with that of the selected emulation"),
11631 ibfd);
aa701218
AO
11632 return FALSE;
11633 }
11634
2cf19d5c
JM
11635 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11636 return FALSE;
11637
b49e97c9
TS
11638 new_flags = elf_elfheader (ibfd)->e_flags;
11639 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11640 old_flags = elf_elfheader (obfd)->e_flags;
11641
11642 if (! elf_flags_init (obfd))
11643 {
b34976b6 11644 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11645 elf_elfheader (obfd)->e_flags = new_flags;
11646 elf_elfheader (obfd)->e_ident[EI_CLASS]
11647 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11648
11649 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11650 && (bfd_get_arch_info (obfd)->the_default
11651 || mips_mach_extends_p (bfd_get_mach (obfd),
11652 bfd_get_mach (ibfd))))
b49e97c9
TS
11653 {
11654 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11655 bfd_get_mach (ibfd)))
b34976b6 11656 return FALSE;
b49e97c9
TS
11657 }
11658
b34976b6 11659 return TRUE;
b49e97c9
TS
11660 }
11661
11662 /* Check flag compatibility. */
11663
11664 new_flags &= ~EF_MIPS_NOREORDER;
11665 old_flags &= ~EF_MIPS_NOREORDER;
11666
f4416af6
AO
11667 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11668 doesn't seem to matter. */
11669 new_flags &= ~EF_MIPS_XGOT;
11670 old_flags &= ~EF_MIPS_XGOT;
11671
98a8deaf
RS
11672 /* MIPSpro generates ucode info in n64 objects. Again, we should
11673 just be able to ignore this. */
11674 new_flags &= ~EF_MIPS_UCODE;
11675 old_flags &= ~EF_MIPS_UCODE;
11676
0a44bf69
RS
11677 /* Don't care about the PIC flags from dynamic objects; they are
11678 PIC by design. */
11679 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11680 && (ibfd->flags & DYNAMIC) != 0)
11681 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11682
b49e97c9 11683 if (new_flags == old_flags)
b34976b6 11684 return TRUE;
b49e97c9
TS
11685
11686 /* Check to see if the input BFD actually contains any sections.
11687 If not, its flags may not have been initialised either, but it cannot
11688 actually cause any incompatibility. */
11689 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11690 {
11691 /* Ignore synthetic sections and empty .text, .data and .bss sections
11692 which are automatically generated by gas. */
11693 if (strcmp (sec->name, ".reginfo")
11694 && strcmp (sec->name, ".mdebug")
eea6121a 11695 && (sec->size != 0
d13d89fa
NS
11696 || (strcmp (sec->name, ".text")
11697 && strcmp (sec->name, ".data")
11698 && strcmp (sec->name, ".bss"))))
b49e97c9 11699 {
b34976b6 11700 null_input_bfd = FALSE;
b49e97c9
TS
11701 break;
11702 }
11703 }
11704 if (null_input_bfd)
b34976b6 11705 return TRUE;
b49e97c9 11706
b34976b6 11707 ok = TRUE;
b49e97c9 11708
143d77c5
EC
11709 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11710 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11711 {
b49e97c9 11712 (*_bfd_error_handler)
d003868e
AM
11713 (_("%B: warning: linking PIC files with non-PIC files"),
11714 ibfd);
143d77c5 11715 ok = TRUE;
b49e97c9
TS
11716 }
11717
143d77c5
EC
11718 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11719 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11720 if (! (new_flags & EF_MIPS_PIC))
11721 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11722
11723 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11724 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11725
64543e1a
RS
11726 /* Compare the ISAs. */
11727 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11728 {
64543e1a 11729 (*_bfd_error_handler)
d003868e
AM
11730 (_("%B: linking 32-bit code with 64-bit code"),
11731 ibfd);
64543e1a
RS
11732 ok = FALSE;
11733 }
11734 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11735 {
11736 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11737 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11738 {
64543e1a
RS
11739 /* Copy the architecture info from IBFD to OBFD. Also copy
11740 the 32-bit flag (if set) so that we continue to recognise
11741 OBFD as a 32-bit binary. */
11742 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11743 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11744 elf_elfheader (obfd)->e_flags
11745 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11746
11747 /* Copy across the ABI flags if OBFD doesn't use them
11748 and if that was what caused us to treat IBFD as 32-bit. */
11749 if ((old_flags & EF_MIPS_ABI) == 0
11750 && mips_32bit_flags_p (new_flags)
11751 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11752 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11753 }
11754 else
11755 {
64543e1a 11756 /* The ISAs aren't compatible. */
b49e97c9 11757 (*_bfd_error_handler)
d003868e
AM
11758 (_("%B: linking %s module with previous %s modules"),
11759 ibfd,
64543e1a
RS
11760 bfd_printable_name (ibfd),
11761 bfd_printable_name (obfd));
b34976b6 11762 ok = FALSE;
b49e97c9 11763 }
b49e97c9
TS
11764 }
11765
64543e1a
RS
11766 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11767 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11768
11769 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11770 does set EI_CLASS differently from any 32-bit ABI. */
11771 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11772 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11773 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11774 {
11775 /* Only error if both are set (to different values). */
11776 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11777 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11778 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11779 {
11780 (*_bfd_error_handler)
d003868e
AM
11781 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11782 ibfd,
b49e97c9
TS
11783 elf_mips_abi_name (ibfd),
11784 elf_mips_abi_name (obfd));
b34976b6 11785 ok = FALSE;
b49e97c9
TS
11786 }
11787 new_flags &= ~EF_MIPS_ABI;
11788 old_flags &= ~EF_MIPS_ABI;
11789 }
11790
fb39dac1
RS
11791 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11792 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11793 {
11794 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11795
11796 new_flags &= ~ EF_MIPS_ARCH_ASE;
11797 old_flags &= ~ EF_MIPS_ARCH_ASE;
11798 }
11799
b49e97c9
TS
11800 /* Warn about any other mismatches */
11801 if (new_flags != old_flags)
11802 {
11803 (*_bfd_error_handler)
d003868e
AM
11804 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11805 ibfd, (unsigned long) new_flags,
b49e97c9 11806 (unsigned long) old_flags);
b34976b6 11807 ok = FALSE;
b49e97c9
TS
11808 }
11809
11810 if (! ok)
11811 {
11812 bfd_set_error (bfd_error_bad_value);
b34976b6 11813 return FALSE;
b49e97c9
TS
11814 }
11815
b34976b6 11816 return TRUE;
b49e97c9
TS
11817}
11818
11819/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11820
b34976b6 11821bfd_boolean
9719ad41 11822_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11823{
11824 BFD_ASSERT (!elf_flags_init (abfd)
11825 || elf_elfheader (abfd)->e_flags == flags);
11826
11827 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11828 elf_flags_init (abfd) = TRUE;
11829 return TRUE;
b49e97c9
TS
11830}
11831
ad9563d6
CM
11832char *
11833_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
11834{
11835 switch (dtag)
11836 {
11837 default: return "";
11838 case DT_MIPS_RLD_VERSION:
11839 return "MIPS_RLD_VERSION";
11840 case DT_MIPS_TIME_STAMP:
11841 return "MIPS_TIME_STAMP";
11842 case DT_MIPS_ICHECKSUM:
11843 return "MIPS_ICHECKSUM";
11844 case DT_MIPS_IVERSION:
11845 return "MIPS_IVERSION";
11846 case DT_MIPS_FLAGS:
11847 return "MIPS_FLAGS";
11848 case DT_MIPS_BASE_ADDRESS:
11849 return "MIPS_BASE_ADDRESS";
11850 case DT_MIPS_MSYM:
11851 return "MIPS_MSYM";
11852 case DT_MIPS_CONFLICT:
11853 return "MIPS_CONFLICT";
11854 case DT_MIPS_LIBLIST:
11855 return "MIPS_LIBLIST";
11856 case DT_MIPS_LOCAL_GOTNO:
11857 return "MIPS_LOCAL_GOTNO";
11858 case DT_MIPS_CONFLICTNO:
11859 return "MIPS_CONFLICTNO";
11860 case DT_MIPS_LIBLISTNO:
11861 return "MIPS_LIBLISTNO";
11862 case DT_MIPS_SYMTABNO:
11863 return "MIPS_SYMTABNO";
11864 case DT_MIPS_UNREFEXTNO:
11865 return "MIPS_UNREFEXTNO";
11866 case DT_MIPS_GOTSYM:
11867 return "MIPS_GOTSYM";
11868 case DT_MIPS_HIPAGENO:
11869 return "MIPS_HIPAGENO";
11870 case DT_MIPS_RLD_MAP:
11871 return "MIPS_RLD_MAP";
11872 case DT_MIPS_DELTA_CLASS:
11873 return "MIPS_DELTA_CLASS";
11874 case DT_MIPS_DELTA_CLASS_NO:
11875 return "MIPS_DELTA_CLASS_NO";
11876 case DT_MIPS_DELTA_INSTANCE:
11877 return "MIPS_DELTA_INSTANCE";
11878 case DT_MIPS_DELTA_INSTANCE_NO:
11879 return "MIPS_DELTA_INSTANCE_NO";
11880 case DT_MIPS_DELTA_RELOC:
11881 return "MIPS_DELTA_RELOC";
11882 case DT_MIPS_DELTA_RELOC_NO:
11883 return "MIPS_DELTA_RELOC_NO";
11884 case DT_MIPS_DELTA_SYM:
11885 return "MIPS_DELTA_SYM";
11886 case DT_MIPS_DELTA_SYM_NO:
11887 return "MIPS_DELTA_SYM_NO";
11888 case DT_MIPS_DELTA_CLASSSYM:
11889 return "MIPS_DELTA_CLASSSYM";
11890 case DT_MIPS_DELTA_CLASSSYM_NO:
11891 return "MIPS_DELTA_CLASSSYM_NO";
11892 case DT_MIPS_CXX_FLAGS:
11893 return "MIPS_CXX_FLAGS";
11894 case DT_MIPS_PIXIE_INIT:
11895 return "MIPS_PIXIE_INIT";
11896 case DT_MIPS_SYMBOL_LIB:
11897 return "MIPS_SYMBOL_LIB";
11898 case DT_MIPS_LOCALPAGE_GOTIDX:
11899 return "MIPS_LOCALPAGE_GOTIDX";
11900 case DT_MIPS_LOCAL_GOTIDX:
11901 return "MIPS_LOCAL_GOTIDX";
11902 case DT_MIPS_HIDDEN_GOTIDX:
11903 return "MIPS_HIDDEN_GOTIDX";
11904 case DT_MIPS_PROTECTED_GOTIDX:
11905 return "MIPS_PROTECTED_GOT_IDX";
11906 case DT_MIPS_OPTIONS:
11907 return "MIPS_OPTIONS";
11908 case DT_MIPS_INTERFACE:
11909 return "MIPS_INTERFACE";
11910 case DT_MIPS_DYNSTR_ALIGN:
11911 return "DT_MIPS_DYNSTR_ALIGN";
11912 case DT_MIPS_INTERFACE_SIZE:
11913 return "DT_MIPS_INTERFACE_SIZE";
11914 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
11915 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
11916 case DT_MIPS_PERF_SUFFIX:
11917 return "DT_MIPS_PERF_SUFFIX";
11918 case DT_MIPS_COMPACT_SIZE:
11919 return "DT_MIPS_COMPACT_SIZE";
11920 case DT_MIPS_GP_VALUE:
11921 return "DT_MIPS_GP_VALUE";
11922 case DT_MIPS_AUX_DYNAMIC:
11923 return "DT_MIPS_AUX_DYNAMIC";
11924 }
11925}
11926
b34976b6 11927bfd_boolean
9719ad41 11928_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11929{
9719ad41 11930 FILE *file = ptr;
b49e97c9
TS
11931
11932 BFD_ASSERT (abfd != NULL && ptr != NULL);
11933
11934 /* Print normal ELF private data. */
11935 _bfd_elf_print_private_bfd_data (abfd, ptr);
11936
11937 /* xgettext:c-format */
11938 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11939
11940 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11941 fprintf (file, _(" [abi=O32]"));
11942 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11943 fprintf (file, _(" [abi=O64]"));
11944 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11945 fprintf (file, _(" [abi=EABI32]"));
11946 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11947 fprintf (file, _(" [abi=EABI64]"));
11948 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11949 fprintf (file, _(" [abi unknown]"));
11950 else if (ABI_N32_P (abfd))
11951 fprintf (file, _(" [abi=N32]"));
11952 else if (ABI_64_P (abfd))
11953 fprintf (file, _(" [abi=64]"));
11954 else
11955 fprintf (file, _(" [no abi set]"));
11956
11957 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11958 fprintf (file, " [mips1]");
b49e97c9 11959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11960 fprintf (file, " [mips2]");
b49e97c9 11961 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11962 fprintf (file, " [mips3]");
b49e97c9 11963 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11964 fprintf (file, " [mips4]");
b49e97c9 11965 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11966 fprintf (file, " [mips5]");
b49e97c9 11967 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11968 fprintf (file, " [mips32]");
b49e97c9 11969 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11970 fprintf (file, " [mips64]");
af7ee8bf 11971 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11972 fprintf (file, " [mips32r2]");
5f74bc13 11973 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11974 fprintf (file, " [mips64r2]");
b49e97c9
TS
11975 else
11976 fprintf (file, _(" [unknown ISA]"));
11977
40d32fc6 11978 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11979 fprintf (file, " [mdmx]");
40d32fc6
CD
11980
11981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11982 fprintf (file, " [mips16]");
40d32fc6 11983
b49e97c9 11984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11985 fprintf (file, " [32bitmode]");
b49e97c9
TS
11986 else
11987 fprintf (file, _(" [not 32bitmode]"));
11988
c0e3f241 11989 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11990 fprintf (file, " [noreorder]");
c0e3f241
CD
11991
11992 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11993 fprintf (file, " [PIC]");
c0e3f241
CD
11994
11995 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11996 fprintf (file, " [CPIC]");
c0e3f241
CD
11997
11998 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11999 fprintf (file, " [XGOT]");
c0e3f241
CD
12000
12001 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 12002 fprintf (file, " [UCODE]");
c0e3f241 12003
b49e97c9
TS
12004 fputc ('\n', file);
12005
b34976b6 12006 return TRUE;
b49e97c9 12007}
2f89ff8d 12008
b35d266b 12009const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 12010{
0112cd26
NC
12011 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12012 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12013 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12014 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12015 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12016 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12017 { NULL, 0, 0, 0, 0 }
2f89ff8d 12018};
5e2b0d47 12019
8992f0d7
TS
12020/* Merge non visibility st_other attributes. Ensure that the
12021 STO_OPTIONAL flag is copied into h->other, even if this is not a
12022 definiton of the symbol. */
5e2b0d47
NC
12023void
12024_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12025 const Elf_Internal_Sym *isym,
12026 bfd_boolean definition,
12027 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12028{
8992f0d7
TS
12029 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12030 {
12031 unsigned char other;
12032
12033 other = (definition ? isym->st_other : h->other);
12034 other &= ~ELF_ST_VISIBILITY (-1);
12035 h->other = other | ELF_ST_VISIBILITY (h->other);
12036 }
12037
12038 if (!definition
5e2b0d47
NC
12039 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12040 h->other |= STO_OPTIONAL;
12041}
12ac1cf5
NC
12042
12043/* Decide whether an undefined symbol is special and can be ignored.
12044 This is the case for OPTIONAL symbols on IRIX. */
12045bfd_boolean
12046_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12047{
12048 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12049}
e0764319
NC
12050
12051bfd_boolean
12052_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12053{
12054 return (sym->st_shndx == SHN_COMMON
12055 || sym->st_shndx == SHN_MIPS_ACOMMON
12056 || sym->st_shndx == SHN_MIPS_SCOMMON);
12057}
This page took 1.459919 seconds and 4 git commands to generate.