2007-07-03 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3db64b00 3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
b49e97c9 30#include "sysdep.h"
3db64b00 31#include "bfd.h"
b49e97c9 32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69 490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
5c18022e 491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b9d58d71 496static bfd_boolean mips16_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
712
713#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 716\f
0a44bf69
RS
717/* The format of the first PLT entry in a VxWorks executable. */
718static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725};
726
727/* The format of subsequent PLT entries. */
728static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737};
738
739/* The format of the first PLT entry in a VxWorks shared object. */
740static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747};
748
749/* The format of subsequent PLT entries. */
750static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753};
754\f
b49e97c9
TS
755/* Look up an entry in a MIPS ELF linker hash table. */
756
757#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762/* Traverse a MIPS ELF linker hash table. */
763
764#define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
9719ad41 767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
768 (info)))
769
770/* Get the MIPS ELF linker hash table from a link_info structure. */
771
772#define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
0f20cc35
DJ
775/* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778#define TP_OFFSET 0x7000
779#define DTP_OFFSET 0x8000
780
781static bfd_vma
782dtprel_base (struct bfd_link_info *info)
783{
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788}
789
790static bfd_vma
791tprel_base (struct bfd_link_info *info)
792{
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797}
798
b49e97c9
TS
799/* Create an entry in a MIPS ELF linker hash table. */
800
801static struct bfd_hash_entry *
9719ad41
RS
802mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
804{
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
9719ad41
RS
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
b49e97c9
TS
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
9719ad41 819 if (ret != NULL)
b49e97c9
TS
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
b34976b6 827 ret->readonly_reloc = FALSE;
b34976b6 828 ret->no_fn_stub = FALSE;
b49e97c9 829 ret->fn_stub = NULL;
b34976b6 830 ret->need_fn_stub = FALSE;
b49e97c9
TS
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
b34976b6 833 ret->forced_local = FALSE;
0a44bf69
RS
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
0f20cc35 836 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
837 }
838
839 return (struct bfd_hash_entry *) ret;
840}
f0abc2a1
AM
841
842bfd_boolean
9719ad41 843_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 844{
f592407e
AM
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 849
f592407e
AM
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
f0abc2a1
AM
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857}
b49e97c9
TS
858\f
859/* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
b34976b6 862bfd_boolean
9719ad41
RS
863_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
b49e97c9
TS
865{
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
9719ad41 868 char *ext_hdr;
b49e97c9
TS
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
9719ad41 873 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
9719ad41 877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 878 swap->external_hdr_size))
b49e97c9
TS
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886#define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 892 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
893 if (debug->ptr == NULL) \
894 goto error_return; \
9719ad41 895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
912#undef READ
913
914 debug->fdr = NULL;
b49e97c9 915
b34976b6 916 return TRUE;
b49e97c9
TS
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
b34976b6 943 return FALSE;
b49e97c9
TS
944}
945\f
946/* Swap RPDR (runtime procedure table entry) for output. */
947
948static void
9719ad41 949ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
950{
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
962}
963
964/* Create a runtime procedure table from the .mdebug section. */
965
b34976b6 966static bfd_boolean
9719ad41
RS
967mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
b49e97c9
TS
970{
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
9719ad41 975 void *rtproc;
b49e97c9
TS
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
9719ad41 1002 epdr = bfd_malloc (size * count);
b49e97c9
TS
1003 if (epdr == NULL)
1004 goto error_return;
1005
9719ad41 1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
9719ad41 1010 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
9719ad41 1015 sv = bfd_malloc (size * count);
b49e97c9
TS
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
9719ad41 1021 esym = bfd_malloc (size * count);
b49e97c9
TS
1022 if (esym == NULL)
1023 goto error_return;
1024
9719ad41 1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1026 goto error_return;
1027
1028 count = hdr->issMax;
9719ad41 1029 ss = bfd_malloc (count);
b49e97c9
TS
1030 if (ss == NULL)
1031 goto error_return;
f075ee0c 1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
9719ad41
RS
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
9719ad41 1056 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
9719ad41 1065 erp = rtproc;
b49e97c9
TS
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
eea6121a 1080 s->size = size;
9719ad41 1081 s->contents = rtproc;
b49e97c9
TS
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
8423293d 1085 s->map_head.link_order = NULL;
b49e97c9
TS
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
b34976b6 1098 return TRUE;
b49e97c9
TS
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
b34976b6 1111 return FALSE;
b49e97c9
TS
1112}
1113
1114/* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
b34976b6 1117static bfd_boolean
9719ad41
RS
1118mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1120{
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
eea6121a 1130 h->fn_stub->size = 0;
b49e97c9
TS
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
eea6121a 1142 h->call_stub->size = 0;
b49e97c9
TS
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
eea6121a 1154 h->call_fp_stub->size = 0;
b49e97c9
TS
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
b34976b6 1160 return TRUE;
b49e97c9
TS
1161}
1162\f
d6f16593
MR
1163/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248void
1249_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251{
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273}
1274
1275void
1276_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278{
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307}
1308
b49e97c9 1309bfd_reloc_status_type
9719ad41
RS
1310_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1313{
1314 bfd_vma relocation;
a7ebbfdf 1315 bfd_signed_vma val;
30ac9238 1316 bfd_reloc_status_type status;
b49e97c9
TS
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
07515404 1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1327 return bfd_reloc_outofrange;
1328
b49e97c9 1329 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1330 val = reloc_entry->addend;
1331
30ac9238 1332 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1333
b49e97c9 1334 /* Adjust val for the final section location and GP value. If we
1049f94e 1335 are producing relocatable output, we don't want to do this for
b49e97c9 1336 an external symbol. */
1049f94e 1337 if (! relocatable
b49e97c9
TS
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
a7ebbfdf
TS
1341 if (reloc_entry->howto->partial_inplace)
1342 {
30ac9238
RS
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
a7ebbfdf
TS
1348 }
1349 else
1350 reloc_entry->addend = val;
b49e97c9 1351
1049f94e 1352 if (relocatable)
b49e97c9 1353 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1354
1355 return bfd_reloc_ok;
1356}
1357
1358/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363struct mips_hi16
1364{
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369};
1370
1371/* FIXME: This should not be a static variable. */
1372
1373static struct mips_hi16 *mips_hi16_list;
1374
1375/* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384bfd_reloc_status_type
1385_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389{
1390 struct mips_hi16 *n;
1391
07515404 1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409}
1410
1411/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415bfd_reloc_status_type
1416_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419{
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430}
1431
1432/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436bfd_reloc_status_type
1437_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440{
1441 bfd_vma vallo;
d6f16593 1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1443
07515404 1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1445 return bfd_reloc_outofrange;
1446
d6f16593
MR
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
30ac9238
RS
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
30ac9238
RS
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485}
1486
1487/* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491bfd_reloc_status_type
1492_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496{
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
07515404 1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
d6f16593
MR
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
30ac9238
RS
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
d6f16593
MR
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
30ac9238 1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
30ac9238
RS
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1557
1558 return bfd_reloc_ok;
1559}
1560\f
1561/* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564static void
9719ad41
RS
1565bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
b49e97c9
TS
1567{
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570}
1571
1572static void
9719ad41
RS
1573bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
b49e97c9
TS
1575{
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578}
1579
1580static void
9719ad41
RS
1581bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
b49e97c9
TS
1583{
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590}
1591
1592static void
9719ad41
RS
1593bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
b49e97c9
TS
1595{
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605}
b49e97c9
TS
1606\f
1607/* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611void
9719ad41
RS
1612bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
b49e97c9
TS
1614{
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621}
1622
1623void
9719ad41
RS
1624bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
b49e97c9
TS
1626{
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633}
1634
1635/* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641void
9719ad41
RS
1642bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1644{
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652}
1653
1654void
9719ad41
RS
1655bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
b49e97c9
TS
1657{
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665}
1666
1667/* Swap in an options header. */
1668
1669void
9719ad41
RS
1670bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
b49e97c9
TS
1672{
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677}
1678
1679/* Swap out an options header. */
1680
1681void
9719ad41
RS
1682bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
b49e97c9
TS
1684{
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689}
1690\f
1691/* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694static int
9719ad41 1695sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1696{
947216bf
AM
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
6870500c 1699 int diff;
b49e97c9 1700
947216bf
AM
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1703
6870500c
RS
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
b49e97c9
TS
1713}
1714
f4416af6
AO
1715/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717static int
7e3102a7
AM
1718sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1720{
7e3102a7 1721#ifdef BFD64
f4416af6
AO
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
6870500c
RS
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
7e3102a7
AM
1740#else
1741 abort ();
1742#endif
f4416af6
AO
1743}
1744
1745
b49e97c9
TS
1746/* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
b34976b6 1760static bfd_boolean
9719ad41 1761mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1762{
9719ad41 1763 struct extsym_info *einfo = data;
b34976b6 1764 bfd_boolean strip;
b49e97c9
TS
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
b34976b6 1771 strip = FALSE;
f5385ebf 1772 else if ((h->root.def_dynamic
77cfaee6
AM
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
b34976b6 1777 strip = TRUE;
b49e97c9
TS
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
b34976b6
AM
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
b49e97c9 1784 else
b34976b6 1785 strip = FALSE;
b49e97c9
TS
1786
1787 if (strip)
b34976b6 1788 return TRUE;
b49e97c9
TS
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
4a14403c 1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
f5385ebf 1894 else if (h->root.needs_plt)
b49e97c9
TS
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1897 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
b49e97c9
TS
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
b34976b6
AM
1929 einfo->failed = TRUE;
1930 return FALSE;
b49e97c9
TS
1931 }
1932
b34976b6 1933 return TRUE;
b49e97c9
TS
1934}
1935
1936/* A comparison routine used to sort .gptab entries. */
1937
1938static int
9719ad41 1939gptab_compare (const void *p1, const void *p2)
b49e97c9 1940{
9719ad41
RS
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945}
1946\f
b15e6682 1947/* Functions to manage the got entry hash table. */
f4416af6
AO
1948
1949/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952static INLINE hashval_t
9719ad41 1953mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1954{
1955#ifdef BFD64
1956 return addr + (addr >> 32);
1957#else
1958 return addr;
1959#endif
1960}
1961
1962/* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
b15e6682 1966static hashval_t
9719ad41 1967mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1968{
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
38985a1c 1971 return entry->symndx
0f20cc35 1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
b15e6682
AO
1977}
1978
1979static int
9719ad41 1980mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1981{
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
0f20cc35
DJ
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
b15e6682 1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993}
1994
1995/* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000static hashval_t
9719ad41 2001mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2002{
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
0f20cc35
DJ
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2013 : entry->d.h->root.root.root.hash);
2014}
2015
2016static int
9719ad41 2017mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2018{
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
0f20cc35
DJ
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
f4416af6
AO
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
b15e6682
AO
2035}
2036\f
0a44bf69
RS
2037/* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
f4416af6
AO
2040
2041static asection *
0a44bf69 2042mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2043{
0a44bf69 2044 const char *dname;
f4416af6 2045 asection *sreloc;
0a44bf69 2046 bfd *dynobj;
f4416af6 2047
0a44bf69
RS
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
3496cb2a
L
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
f4416af6 2060 if (sreloc == NULL
f4416af6 2061 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2063 return NULL;
2064 }
2065 return sreloc;
2066}
2067
b49e97c9
TS
2068/* Returns the GOT section for ABFD. */
2069
2070static asection *
9719ad41 2071mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2072{
f4416af6
AO
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
b49e97c9
TS
2078}
2079
2080/* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084static struct mips_got_info *
9719ad41 2085mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2086{
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
f4416af6 2090 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2091 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
f4416af6
AO
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
b49e97c9
TS
2099 return g;
2100}
2101
0f20cc35
DJ
2102/* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106static int
2107mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109{
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142}
2143
2144/* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147static int
2148mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149{
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157}
2158
2159/* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162static int
2163mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164{
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175}
2176
2177/* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180static int
2181mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182{
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190}
2191
2192/* Output a simple dynamic relocation into SRELOC. */
2193
2194static void
2195mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200{
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221}
2222
2223/* Initialize a set of TLS GOT entries for one symbol. */
2224
2225static void
2226mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231{
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
0a44bf69 2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345}
2346
2347/* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352static bfd_vma
2353mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356{
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384}
2385
0a44bf69
RS
2386/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390static bfd_vma
2391mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393{
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414}
2415
5c18022e 2416/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
b49e97c9
TS
2420
2421static bfd_vma
9719ad41 2422mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2423 bfd_vma value, unsigned long r_symndx,
0f20cc35 2424 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2425{
2426 asection *sgot;
2427 struct mips_got_info *g;
b15e6682 2428 struct mips_got_entry *entry;
b49e97c9
TS
2429
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2431
0a44bf69 2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2433 value, r_symndx, h, r_type);
0f20cc35 2434 if (!entry)
b15e6682 2435 return MINUS_ONE;
0f20cc35
DJ
2436
2437 if (TLS_RELOC_P (r_type))
ead49a57
RS
2438 {
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2447 }
0f20cc35
DJ
2448 else
2449 return entry->gotidx;
b49e97c9
TS
2450}
2451
2452/* Returns the GOT index for the global symbol indicated by H. */
2453
2454static bfd_vma
0f20cc35
DJ
2455mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2457{
2458 bfd_vma index;
2459 asection *sgot;
f4416af6 2460 struct mips_got_info *g, *gg;
d0c7ff07 2461 long global_got_dynindx = 0;
b49e97c9 2462
f4416af6
AO
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2465 {
2466 struct mips_got_entry e, *p;
143d77c5 2467
f4416af6
AO
2468 BFD_ASSERT (h->dynindx >= 0);
2469
2470 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2471 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2472 {
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2476 e.tls_type = 0;
f4416af6 2477
9719ad41 2478 p = htab_find (g->got_entries, &e);
f4416af6
AO
2479
2480 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2481
2482 if (TLS_RELOC_P (r_type))
2483 {
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2491
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2494 }
2495 else
2496 return p->gotidx;
f4416af6
AO
2497 }
2498 }
2499
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2502
0f20cc35
DJ
2503 if (TLS_RELOC_P (r_type))
2504 {
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2508
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2515
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2518 }
2519 else
2520 {
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2528 }
eea6121a 2529 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2530
2531 return index;
2532}
2533
5c18022e
RS
2534/* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2538 offset of the GOT entry from VALUE. */
b49e97c9
TS
2539
2540static bfd_vma
9719ad41 2541mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2542 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2543{
2544 asection *sgot;
2545 struct mips_got_info *g;
0a44bf69 2546 bfd_vma page, index;
b15e6682 2547 struct mips_got_entry *entry;
b49e97c9
TS
2548
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2550
0a44bf69
RS
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2553 page, 0, NULL, R_MIPS_GOT_PAGE);
b49e97c9 2554
b15e6682
AO
2555 if (!entry)
2556 return MINUS_ONE;
143d77c5 2557
b15e6682 2558 index = entry->gotidx;
b49e97c9
TS
2559
2560 if (offsetp)
f4416af6 2561 *offsetp = value - entry->d.address;
b49e97c9
TS
2562
2563 return index;
2564}
2565
5c18022e 2566/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
0a44bf69
RS
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
b49e97c9
TS
2569
2570static bfd_vma
9719ad41 2571mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2572 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2573{
2574 asection *sgot;
2575 struct mips_got_info *g;
b15e6682 2576 struct mips_got_entry *entry;
b49e97c9 2577
0a44bf69
RS
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2582 if (! external)
0a44bf69 2583 value = mips_elf_high (value) << 16;
b49e97c9
TS
2584
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2586
0a44bf69 2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2588 value, 0, NULL, R_MIPS_GOT16);
b15e6682
AO
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
b49e97c9
TS
2593}
2594
2595/* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2597
2598static bfd_vma
9719ad41
RS
2599mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2601{
2602 asection *sgot;
2603 bfd_vma gp;
f4416af6 2604 struct mips_got_info *g;
b49e97c9 2605
f4416af6
AO
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2609
f4416af6 2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2611}
2612
0a44bf69
RS
2613/* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
b49e97c9 2617
b15e6682 2618static struct mips_got_entry *
0a44bf69
RS
2619mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
5c18022e
RS
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
0f20cc35
DJ
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
b49e97c9 2625{
b15e6682 2626 struct mips_got_entry entry, **loc;
f4416af6 2627 struct mips_got_info *g;
0a44bf69
RS
2628 struct mips_elf_link_hash_table *htab;
2629
2630 htab = mips_elf_hash_table (info);
b15e6682 2631
f4416af6
AO
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
0f20cc35 2635 entry.tls_type = 0;
f4416af6
AO
2636
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2639 {
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2642 }
b15e6682 2643
0f20cc35
DJ
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
a008ac03 2648 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2649 if (TLS_RELOC_P (r_type))
2650 {
2651 struct mips_got_entry *p;
2652
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2655 {
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2659 }
2660 else if (h == NULL)
2661 {
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2664 }
2665 else
2666 entry.d.h = h;
2667
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2670
2671 BFD_ASSERT (p);
2672 return p;
2673 }
2674
b15e6682
AO
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
143d77c5 2679
b15e6682 2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2681 entry.tls_type = 0;
b15e6682
AO
2682
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2684
2685 if (! *loc)
2686 return NULL;
143d77c5 2687
b15e6682
AO
2688 memcpy (*loc, &entry, sizeof entry);
2689
b49e97c9
TS
2690 if (g->assigned_gotno >= g->local_gotno)
2691 {
f4416af6 2692 (*loc)->gotidx = -1;
b49e97c9
TS
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
b15e6682 2697 return NULL;
b49e97c9
TS
2698 }
2699
2700 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2701 (sgot->contents + entry.gotidx));
2702
5c18022e 2703 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2704 if (htab->is_vxworks)
2705 {
2706 Elf_Internal_Rela outrel;
5c18022e 2707 asection *s;
0a44bf69
RS
2708 bfd_byte *loc;
2709 bfd_vma got_address;
0a44bf69
RS
2710
2711 s = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69
RS
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2715
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
5c18022e
RS
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
0a44bf69
RS
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2721 }
2722
b15e6682 2723 return *loc;
b49e97c9
TS
2724}
2725
2726/* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2732
b34976b6 2733static bfd_boolean
9719ad41 2734mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2735{
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2739
2740 dynobj = elf_hash_table (info)->dynobj;
2741
f4416af6
AO
2742 g = mips_elf_got_info (dynobj, NULL);
2743
b49e97c9 2744 hsd.low = NULL;
143d77c5 2745 hsd.max_unref_got_dynindx =
f4416af6
AO
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2760
2761 /* There should have been enough room in the symbol table to
44c410de 2762 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2766
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
b49e97c9
TS
2769 g->global_gotsym = hsd.low;
2770
b34976b6 2771 return TRUE;
b49e97c9
TS
2772}
2773
2774/* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2777
b34976b6 2778static bfd_boolean
9719ad41 2779mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2780{
9719ad41 2781 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2782
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2785
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
b34976b6 2789 return TRUE;
b49e97c9 2790
f4416af6
AO
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2796 {
0f20cc35
DJ
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2798
f4416af6
AO
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2802 }
2803 else if (h->root.got.offset != 1)
b49e97c9
TS
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2806 {
0f20cc35
DJ
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2808
b49e97c9
TS
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2811 }
2812
b34976b6 2813 return TRUE;
b49e97c9
TS
2814}
2815
2816/* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2819
b34976b6 2820static bfd_boolean
9719ad41
RS
2821mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
b49e97c9 2825{
f4416af6
AO
2826 struct mips_got_entry entry, **loc;
2827
b49e97c9
TS
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
7c5fcef7
L
2830 if (h->dynindx == -1)
2831 {
2832 switch (ELF_ST_VISIBILITY (h->other))
2833 {
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
b34976b6 2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2837 break;
2838 }
c152c796 2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2840 return FALSE;
7c5fcef7 2841 }
b49e97c9 2842
86324f90
EC
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2845
f4416af6
AO
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2849 entry.tls_type = 0;
f4416af6
AO
2850
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2853
b49e97c9
TS
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
f4416af6 2856 if (*loc)
0f20cc35
DJ
2857 {
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2860 }
f4416af6
AO
2861
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2863
2864 if (! *loc)
2865 return FALSE;
143d77c5 2866
f4416af6 2867 entry.gotidx = -1;
0f20cc35
DJ
2868 entry.tls_type = tls_flag;
2869
f4416af6
AO
2870 memcpy (*loc, &entry, sizeof entry);
2871
b49e97c9 2872 if (h->got.offset != MINUS_ONE)
b34976b6 2873 return TRUE;
b49e97c9
TS
2874
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
b49e97c9 2880
b34976b6 2881 return TRUE;
b49e97c9 2882}
f4416af6
AO
2883
2884/* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2886
2887static bfd_boolean
9719ad41 2888mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
f4416af6
AO
2891{
2892 struct mips_got_entry entry, **loc;
2893
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
0f20cc35 2897 entry.tls_type = tls_flag;
f4416af6
AO
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2900
2901 if (*loc)
0f20cc35
DJ
2902 {
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2904 {
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2907 }
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2909 {
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2912 }
2913 return TRUE;
2914 }
f4416af6 2915
0f20cc35
DJ
2916 if (tls_flag != 0)
2917 {
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2925 {
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2928 }
2929 }
2930 else
2931 {
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2934 }
f4416af6
AO
2935
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2937
2938 if (! *loc)
2939 return FALSE;
143d77c5 2940
f4416af6
AO
2941 memcpy (*loc, &entry, sizeof entry);
2942
2943 return TRUE;
2944}
2945\f
2946/* Compute the hash value of the bfd in a bfd2got hash entry. */
2947
2948static hashval_t
9719ad41 2949mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2950{
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2953
2954 return entry->bfd->id;
2955}
2956
2957/* Check whether two hash entries have the same bfd. */
2958
2959static int
9719ad41 2960mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2961{
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2966
2967 return e1->bfd == e2->bfd;
2968}
2969
bad36eac 2970/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2971 be the master GOT data. */
2972
2973static struct mips_got_info *
9719ad41 2974mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2975{
2976 struct mips_elf_bfd2got_hash e, *p;
2977
2978 if (! g->bfd2got)
2979 return g;
2980
2981 e.bfd = ibfd;
9719ad41 2982 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2983 return p ? p->g : NULL;
2984}
2985
2986/* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2989
2990static int
9719ad41 2991mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2992{
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
143d77c5 2999
f4416af6
AO
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3005
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3009 {
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3012
3013 if (bfdgot == NULL)
3014 {
3015 arg->obfd = 0;
3016 return 0;
3017 }
3018
3019 *bfdgotp = bfdgot;
3020
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
0f20cc35
DJ
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3038 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3039 if (g->got_entries == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3047 }
3048
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
143d77c5 3053
f4416af6
AO
3054 *entryp = entry;
3055
0f20cc35
DJ
3056 if (entry->tls_type)
3057 {
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3062 }
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3067
3068 return 1;
3069}
3070
3071/* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3077
3078static int
9719ad41 3079mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3080{
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3086 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3087 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3088 bfd_boolean too_many_for_tls = FALSE;
3089
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3095 {
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3097 if (primary_total > maxcnt)
0f20cc35
DJ
3098 too_many_for_tls = TRUE;
3099 }
143d77c5 3100
f4416af6
AO
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
0f20cc35
DJ
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
f4416af6
AO
3105 {
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3108 }
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
0f20cc35
DJ
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3114 {
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
0f20cc35 3118 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3119
3120 bfd2got->g = arg->primary;
3121
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3127
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3132
caec41ff 3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3136
3137 arg->primary_count = arg->primary->local_gotno
0f20cc35 3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3139 }
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
0f20cc35 3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3143 {
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
0f20cc35 3147 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3148
3149 bfd2got->g = arg->current;
3150
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3156
3157 htab_delete (g->got_entries);
3158
caec41ff 3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3162
3163 arg->current_count = arg->current->local_gotno
0f20cc35 3164 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3165 }
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3170 {
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
143d77c5 3173
0f20cc35
DJ
3174 arg->current_count = lcount + gcount + 2 * tcount;
3175 }
3176
3177 return 1;
3178}
3179
ead49a57
RS
3180/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
0f20cc35
DJ
3182
3183static int
3184mips_elf_initialize_tls_index (void **entryp, void *p)
3185{
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
ead49a57 3188 bfd_vma next_index;
cbf2cba4 3189 unsigned char tls_type;
0f20cc35
DJ
3190
3191 /* We're only interested in TLS symbols. */
3192 if (entry->tls_type == 0)
3193 return 1;
3194
ead49a57
RS
3195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3196
3197 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3198 {
ead49a57
RS
3199 /* A type (3) got entry in the single-GOT case. We use the symbol's
3200 hash table entry to track its index. */
3201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3202 return 1;
3203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3204 entry->d.h->tls_got_offset = next_index;
cbf2cba4 3205 tls_type = entry->d.h->tls_type;
ead49a57
RS
3206 }
3207 else
3208 {
3209 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3210 {
ead49a57
RS
3211 /* There are separate mips_got_entry objects for each input bfd
3212 that requires an LDM entry. Make sure that all LDM entries in
3213 a GOT resolve to the same index. */
3214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3215 {
ead49a57 3216 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3217 return 1;
3218 }
ead49a57 3219 g->tls_ldm_offset = next_index;
0f20cc35 3220 }
ead49a57 3221 entry->gotidx = next_index;
cbf2cba4 3222 tls_type = entry->tls_type;
f4416af6
AO
3223 }
3224
ead49a57 3225 /* Account for the entries we've just allocated. */
cbf2cba4 3226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 3227 g->tls_assigned_gotno += 2;
cbf2cba4 3228 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
3229 g->tls_assigned_gotno += 1;
3230
f4416af6
AO
3231 return 1;
3232}
3233
3234/* If passed a NULL mips_got_info in the argument, set the marker used
3235 to tell whether a global symbol needs a got entry (in the primary
3236 got) to the given VALUE.
3237
3238 If passed a pointer G to a mips_got_info in the argument (it must
3239 not be the primary GOT), compute the offset from the beginning of
3240 the (primary) GOT section to the entry in G corresponding to the
3241 global symbol. G's assigned_gotno must contain the index of the
3242 first available global GOT entry in G. VALUE must contain the size
3243 of a GOT entry in bytes. For each global GOT entry that requires a
3244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3245 marked as not eligible for lazy resolution through a function
f4416af6
AO
3246 stub. */
3247static int
9719ad41 3248mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3249{
3250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3251 struct mips_elf_set_global_got_offset_arg *arg
3252 = (struct mips_elf_set_global_got_offset_arg *)p;
3253 struct mips_got_info *g = arg->g;
3254
0f20cc35
DJ
3255 if (g && entry->tls_type != GOT_NORMAL)
3256 arg->needed_relocs +=
3257 mips_tls_got_relocs (arg->info, entry->tls_type,
3258 entry->symndx == -1 ? &entry->d.h->root : NULL);
3259
f4416af6 3260 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3261 && entry->d.h->root.dynindx != -1
3262 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3263 {
3264 if (g)
3265 {
3266 BFD_ASSERT (g->global_gotsym == NULL);
3267
3268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3269 if (arg->info->shared
3270 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3271 && entry->d.h->root.def_dynamic
3272 && !entry->d.h->root.def_regular))
f4416af6
AO
3273 ++arg->needed_relocs;
3274 }
3275 else
3276 entry->d.h->root.got.offset = arg->value;
3277 }
3278
3279 return 1;
3280}
3281
0626d451
RS
3282/* Mark any global symbols referenced in the GOT we are iterating over
3283 as inelligible for lazy resolution stubs. */
3284static int
9719ad41 3285mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3286{
3287 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3288
3289 if (entry->abfd != NULL
3290 && entry->symndx == -1
3291 && entry->d.h->root.dynindx != -1)
3292 entry->d.h->no_fn_stub = TRUE;
3293
3294 return 1;
3295}
3296
f4416af6
AO
3297/* Follow indirect and warning hash entries so that each got entry
3298 points to the final symbol definition. P must point to a pointer
3299 to the hash table we're traversing. Since this traversal may
3300 modify the hash table, we set this pointer to NULL to indicate
3301 we've made a potentially-destructive change to the hash table, so
3302 the traversal must be restarted. */
3303static int
9719ad41 3304mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3305{
3306 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3307 htab_t got_entries = *(htab_t *)p;
3308
3309 if (entry->abfd != NULL && entry->symndx == -1)
3310 {
3311 struct mips_elf_link_hash_entry *h = entry->d.h;
3312
3313 while (h->root.root.type == bfd_link_hash_indirect
3314 || h->root.root.type == bfd_link_hash_warning)
3315 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3316
3317 if (entry->d.h == h)
3318 return 1;
143d77c5 3319
f4416af6
AO
3320 entry->d.h = h;
3321
3322 /* If we can't find this entry with the new bfd hash, re-insert
3323 it, and get the traversal restarted. */
3324 if (! htab_find (got_entries, entry))
3325 {
3326 htab_clear_slot (got_entries, entryp);
3327 entryp = htab_find_slot (got_entries, entry, INSERT);
3328 if (! *entryp)
3329 *entryp = entry;
3330 /* Abort the traversal, since the whole table may have
3331 moved, and leave it up to the parent to restart the
3332 process. */
3333 *(htab_t *)p = NULL;
3334 return 0;
3335 }
3336 /* We might want to decrement the global_gotno count, but it's
3337 either too early or too late for that at this point. */
3338 }
143d77c5 3339
f4416af6
AO
3340 return 1;
3341}
3342
3343/* Turn indirect got entries in a got_entries table into their final
3344 locations. */
3345static void
9719ad41 3346mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3347{
3348 htab_t got_entries;
3349
3350 do
3351 {
3352 got_entries = g->got_entries;
3353
3354 htab_traverse (got_entries,
3355 mips_elf_resolve_final_got_entry,
3356 &got_entries);
3357 }
3358 while (got_entries == NULL);
3359}
3360
3361/* Return the offset of an input bfd IBFD's GOT from the beginning of
3362 the primary GOT. */
3363static bfd_vma
9719ad41 3364mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3365{
3366 if (g->bfd2got == NULL)
3367 return 0;
3368
3369 g = mips_elf_got_for_ibfd (g, ibfd);
3370 if (! g)
3371 return 0;
3372
3373 BFD_ASSERT (g->next);
3374
3375 g = g->next;
143d77c5 3376
0f20cc35
DJ
3377 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3378 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3379}
3380
3381/* Turn a single GOT that is too big for 16-bit addressing into
3382 a sequence of GOTs, each one 16-bit addressable. */
3383
3384static bfd_boolean
9719ad41
RS
3385mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3386 struct mips_got_info *g, asection *got,
3387 bfd_size_type pages)
f4416af6
AO
3388{
3389 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3390 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3391 struct mips_got_info *gg;
3392 unsigned int assign;
3393
3394 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3395 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3396 if (g->bfd2got == NULL)
3397 return FALSE;
3398
3399 got_per_bfd_arg.bfd2got = g->bfd2got;
3400 got_per_bfd_arg.obfd = abfd;
3401 got_per_bfd_arg.info = info;
3402
3403 /* Count how many GOT entries each input bfd requires, creating a
3404 map from bfd to got info while at that. */
f4416af6
AO
3405 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3406 if (got_per_bfd_arg.obfd == NULL)
3407 return FALSE;
3408
3409 got_per_bfd_arg.current = NULL;
3410 got_per_bfd_arg.primary = NULL;
3411 /* Taking out PAGES entries is a worst-case estimate. We could
3412 compute the maximum number of pages that each separate input bfd
3413 uses, but it's probably not worth it. */
0a44bf69 3414 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3415 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3416 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3417 /* The number of globals that will be included in the primary GOT.
3418 See the calls to mips_elf_set_global_got_offset below for more
3419 information. */
3420 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3421
3422 /* Try to merge the GOTs of input bfds together, as long as they
3423 don't seem to exceed the maximum GOT size, choosing one of them
3424 to be the primary GOT. */
3425 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3426 if (got_per_bfd_arg.obfd == NULL)
3427 return FALSE;
3428
0f20cc35 3429 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3430 if (got_per_bfd_arg.primary == NULL)
3431 {
3432 g->next = (struct mips_got_info *)
3433 bfd_alloc (abfd, sizeof (struct mips_got_info));
3434 if (g->next == NULL)
3435 return FALSE;
3436
3437 g->next->global_gotsym = NULL;
3438 g->next->global_gotno = 0;
3439 g->next->local_gotno = 0;
0f20cc35 3440 g->next->tls_gotno = 0;
f4416af6 3441 g->next->assigned_gotno = 0;
0f20cc35
DJ
3442 g->next->tls_assigned_gotno = 0;
3443 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3444 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3445 mips_elf_multi_got_entry_eq,
9719ad41 3446 NULL);
f4416af6
AO
3447 if (g->next->got_entries == NULL)
3448 return FALSE;
3449 g->next->bfd2got = NULL;
3450 }
3451 else
3452 g->next = got_per_bfd_arg.primary;
3453 g->next->next = got_per_bfd_arg.current;
3454
3455 /* GG is now the master GOT, and G is the primary GOT. */
3456 gg = g;
3457 g = g->next;
3458
3459 /* Map the output bfd to the primary got. That's what we're going
3460 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3461 didn't mark in check_relocs, and we want a quick way to find it.
3462 We can't just use gg->next because we're going to reverse the
3463 list. */
3464 {
3465 struct mips_elf_bfd2got_hash *bfdgot;
3466 void **bfdgotp;
143d77c5 3467
f4416af6
AO
3468 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3469 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3470
3471 if (bfdgot == NULL)
3472 return FALSE;
3473
3474 bfdgot->bfd = abfd;
3475 bfdgot->g = g;
3476 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3477
3478 BFD_ASSERT (*bfdgotp == NULL);
3479 *bfdgotp = bfdgot;
3480 }
3481
3482 /* The IRIX dynamic linker requires every symbol that is referenced
3483 in a dynamic relocation to be present in the primary GOT, so
3484 arrange for them to appear after those that are actually
3485 referenced.
3486
3487 GNU/Linux could very well do without it, but it would slow down
3488 the dynamic linker, since it would have to resolve every dynamic
3489 symbol referenced in other GOTs more than once, without help from
3490 the cache. Also, knowing that every external symbol has a GOT
3491 helps speed up the resolution of local symbols too, so GNU/Linux
3492 follows IRIX's practice.
143d77c5 3493
f4416af6
AO
3494 The number 2 is used by mips_elf_sort_hash_table_f to count
3495 global GOT symbols that are unreferenced in the primary GOT, with
3496 an initial dynamic index computed from gg->assigned_gotno, where
3497 the number of unreferenced global entries in the primary GOT is
3498 preserved. */
3499 if (1)
3500 {
3501 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3502 g->global_gotno = gg->global_gotno;
3503 set_got_offset_arg.value = 2;
3504 }
3505 else
3506 {
3507 /* This could be used for dynamic linkers that don't optimize
3508 symbol resolution while applying relocations so as to use
3509 primary GOT entries or assuming the symbol is locally-defined.
3510 With this code, we assign lower dynamic indices to global
3511 symbols that are not referenced in the primary GOT, so that
3512 their entries can be omitted. */
3513 gg->assigned_gotno = 0;
3514 set_got_offset_arg.value = -1;
3515 }
3516
3517 /* Reorder dynamic symbols as described above (which behavior
3518 depends on the setting of VALUE). */
3519 set_got_offset_arg.g = NULL;
3520 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 set_got_offset_arg.value = 1;
3523 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3524 &set_got_offset_arg);
3525 if (! mips_elf_sort_hash_table (info, 1))
3526 return FALSE;
3527
3528 /* Now go through the GOTs assigning them offset ranges.
3529 [assigned_gotno, local_gotno[ will be set to the range of local
3530 entries in each GOT. We can then compute the end of a GOT by
3531 adding local_gotno to global_gotno. We reverse the list and make
3532 it circular since then we'll be able to quickly compute the
3533 beginning of a GOT, by computing the end of its predecessor. To
3534 avoid special cases for the primary GOT, while still preserving
3535 assertions that are valid for both single- and multi-got links,
3536 we arrange for the main got struct to have the right number of
3537 global entries, but set its local_gotno such that the initial
3538 offset of the primary GOT is zero. Remember that the primary GOT
3539 will become the last item in the circular linked list, so it
3540 points back to the master GOT. */
3541 gg->local_gotno = -g->global_gotno;
3542 gg->global_gotno = g->global_gotno;
0f20cc35 3543 gg->tls_gotno = 0;
f4416af6
AO
3544 assign = 0;
3545 gg->next = gg;
3546
3547 do
3548 {
3549 struct mips_got_info *gn;
3550
0a44bf69 3551 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3552 g->assigned_gotno = assign;
3553 g->local_gotno += assign + pages;
0f20cc35
DJ
3554 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3555
ead49a57
RS
3556 /* Take g out of the direct list, and push it onto the reversed
3557 list that gg points to. g->next is guaranteed to be nonnull after
3558 this operation, as required by mips_elf_initialize_tls_index. */
3559 gn = g->next;
3560 g->next = gg->next;
3561 gg->next = g;
3562
0f20cc35
DJ
3563 /* Set up any TLS entries. We always place the TLS entries after
3564 all non-TLS entries. */
3565 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3566 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3567
ead49a57 3568 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3569 g = gn;
0626d451
RS
3570
3571 /* Mark global symbols in every non-primary GOT as ineligible for
3572 stubs. */
3573 if (g)
3574 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3575 }
3576 while (g);
3577
eea6121a 3578 got->size = (gg->next->local_gotno
0f20cc35
DJ
3579 + gg->next->global_gotno
3580 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3581
f4416af6
AO
3582 return TRUE;
3583}
143d77c5 3584
b49e97c9
TS
3585\f
3586/* Returns the first relocation of type r_type found, beginning with
3587 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3588
3589static const Elf_Internal_Rela *
9719ad41
RS
3590mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3591 const Elf_Internal_Rela *relocation,
3592 const Elf_Internal_Rela *relend)
b49e97c9 3593{
c000e262
TS
3594 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3595
b49e97c9
TS
3596 while (relocation < relend)
3597 {
c000e262
TS
3598 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3599 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3600 return relocation;
3601
3602 ++relocation;
3603 }
3604
3605 /* We didn't find it. */
b49e97c9
TS
3606 return NULL;
3607}
3608
3609/* Return whether a relocation is against a local symbol. */
3610
b34976b6 3611static bfd_boolean
9719ad41
RS
3612mips_elf_local_relocation_p (bfd *input_bfd,
3613 const Elf_Internal_Rela *relocation,
3614 asection **local_sections,
3615 bfd_boolean check_forced)
b49e97c9
TS
3616{
3617 unsigned long r_symndx;
3618 Elf_Internal_Shdr *symtab_hdr;
3619 struct mips_elf_link_hash_entry *h;
3620 size_t extsymoff;
3621
3622 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3623 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3624 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3625
3626 if (r_symndx < extsymoff)
b34976b6 3627 return TRUE;
b49e97c9 3628 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3629 return TRUE;
b49e97c9
TS
3630
3631 if (check_forced)
3632 {
3633 /* Look up the hash table to check whether the symbol
3634 was forced local. */
3635 h = (struct mips_elf_link_hash_entry *)
3636 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3637 /* Find the real hash-table entry for this symbol. */
3638 while (h->root.root.type == bfd_link_hash_indirect
3639 || h->root.root.type == bfd_link_hash_warning)
3640 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3641 if (h->root.forced_local)
b34976b6 3642 return TRUE;
b49e97c9
TS
3643 }
3644
b34976b6 3645 return FALSE;
b49e97c9
TS
3646}
3647\f
3648/* Sign-extend VALUE, which has the indicated number of BITS. */
3649
a7ebbfdf 3650bfd_vma
9719ad41 3651_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3652{
3653 if (value & ((bfd_vma) 1 << (bits - 1)))
3654 /* VALUE is negative. */
3655 value |= ((bfd_vma) - 1) << bits;
3656
3657 return value;
3658}
3659
3660/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3661 range expressible by a signed number with the indicated number of
b49e97c9
TS
3662 BITS. */
3663
b34976b6 3664static bfd_boolean
9719ad41 3665mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3666{
3667 bfd_signed_vma svalue = (bfd_signed_vma) value;
3668
3669 if (svalue > (1 << (bits - 1)) - 1)
3670 /* The value is too big. */
b34976b6 3671 return TRUE;
b49e97c9
TS
3672 else if (svalue < -(1 << (bits - 1)))
3673 /* The value is too small. */
b34976b6 3674 return TRUE;
b49e97c9
TS
3675
3676 /* All is well. */
b34976b6 3677 return FALSE;
b49e97c9
TS
3678}
3679
3680/* Calculate the %high function. */
3681
3682static bfd_vma
9719ad41 3683mips_elf_high (bfd_vma value)
b49e97c9
TS
3684{
3685 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3686}
3687
3688/* Calculate the %higher function. */
3689
3690static bfd_vma
9719ad41 3691mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3692{
3693#ifdef BFD64
3694 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3695#else
3696 abort ();
c5ae1840 3697 return MINUS_ONE;
b49e97c9
TS
3698#endif
3699}
3700
3701/* Calculate the %highest function. */
3702
3703static bfd_vma
9719ad41 3704mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3705{
3706#ifdef BFD64
b15e6682 3707 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3708#else
3709 abort ();
c5ae1840 3710 return MINUS_ONE;
b49e97c9
TS
3711#endif
3712}
3713\f
3714/* Create the .compact_rel section. */
3715
b34976b6 3716static bfd_boolean
9719ad41
RS
3717mips_elf_create_compact_rel_section
3718 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3719{
3720 flagword flags;
3721 register asection *s;
3722
3723 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3724 {
3725 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3726 | SEC_READONLY);
3727
3496cb2a 3728 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3729 if (s == NULL
b49e97c9
TS
3730 || ! bfd_set_section_alignment (abfd, s,
3731 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3732 return FALSE;
b49e97c9 3733
eea6121a 3734 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3735 }
3736
b34976b6 3737 return TRUE;
b49e97c9
TS
3738}
3739
3740/* Create the .got section to hold the global offset table. */
3741
b34976b6 3742static bfd_boolean
9719ad41
RS
3743mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3744 bfd_boolean maybe_exclude)
b49e97c9
TS
3745{
3746 flagword flags;
3747 register asection *s;
3748 struct elf_link_hash_entry *h;
14a793b2 3749 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3750 struct mips_got_info *g;
3751 bfd_size_type amt;
0a44bf69
RS
3752 struct mips_elf_link_hash_table *htab;
3753
3754 htab = mips_elf_hash_table (info);
b49e97c9
TS
3755
3756 /* This function may be called more than once. */
f4416af6
AO
3757 s = mips_elf_got_section (abfd, TRUE);
3758 if (s)
3759 {
3760 if (! maybe_exclude)
3761 s->flags &= ~SEC_EXCLUDE;
3762 return TRUE;
3763 }
b49e97c9
TS
3764
3765 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3766 | SEC_LINKER_CREATED);
3767
f4416af6
AO
3768 if (maybe_exclude)
3769 flags |= SEC_EXCLUDE;
3770
72b4917c
TS
3771 /* We have to use an alignment of 2**4 here because this is hardcoded
3772 in the function stub generation and in the linker script. */
3496cb2a 3773 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3774 if (s == NULL
72b4917c 3775 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3776 return FALSE;
b49e97c9
TS
3777
3778 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3779 linker script because we don't want to define the symbol if we
3780 are not creating a global offset table. */
14a793b2 3781 bh = NULL;
b49e97c9
TS
3782 if (! (_bfd_generic_link_add_one_symbol
3783 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3784 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3785 return FALSE;
14a793b2
AM
3786
3787 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3788 h->non_elf = 0;
3789 h->def_regular = 1;
b49e97c9 3790 h->type = STT_OBJECT;
d329bcd1 3791 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3792
3793 if (info->shared
c152c796 3794 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3795 return FALSE;
b49e97c9 3796
b49e97c9 3797 amt = sizeof (struct mips_got_info);
9719ad41 3798 g = bfd_alloc (abfd, amt);
b49e97c9 3799 if (g == NULL)
b34976b6 3800 return FALSE;
b49e97c9 3801 g->global_gotsym = NULL;
e3d54347 3802 g->global_gotno = 0;
0f20cc35 3803 g->tls_gotno = 0;
0a44bf69
RS
3804 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3805 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3806 g->bfd2got = NULL;
3807 g->next = NULL;
0f20cc35 3808 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3809 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3810 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3811 if (g->got_entries == NULL)
3812 return FALSE;
f0abc2a1
AM
3813 mips_elf_section_data (s)->u.got_info = g;
3814 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3815 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3816
0a44bf69
RS
3817 /* VxWorks also needs a .got.plt section. */
3818 if (htab->is_vxworks)
3819 {
3820 s = bfd_make_section_with_flags (abfd, ".got.plt",
3821 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3822 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3823 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3824 return FALSE;
3825
3826 htab->sgotplt = s;
3827 }
b34976b6 3828 return TRUE;
b49e97c9 3829}
b49e97c9 3830\f
0a44bf69
RS
3831/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3832 __GOTT_INDEX__ symbols. These symbols are only special for
3833 shared objects; they are not used in executables. */
3834
3835static bfd_boolean
3836is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3837{
3838 return (mips_elf_hash_table (info)->is_vxworks
3839 && info->shared
3840 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3841 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3842}
3843\f
b49e97c9
TS
3844/* Calculate the value produced by the RELOCATION (which comes from
3845 the INPUT_BFD). The ADDEND is the addend to use for this
3846 RELOCATION; RELOCATION->R_ADDEND is ignored.
3847
3848 The result of the relocation calculation is stored in VALUEP.
3849 REQUIRE_JALXP indicates whether or not the opcode used with this
3850 relocation must be JALX.
3851
3852 This function returns bfd_reloc_continue if the caller need take no
3853 further action regarding this relocation, bfd_reloc_notsupported if
3854 something goes dramatically wrong, bfd_reloc_overflow if an
3855 overflow occurs, and bfd_reloc_ok to indicate success. */
3856
3857static bfd_reloc_status_type
9719ad41
RS
3858mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3859 asection *input_section,
3860 struct bfd_link_info *info,
3861 const Elf_Internal_Rela *relocation,
3862 bfd_vma addend, reloc_howto_type *howto,
3863 Elf_Internal_Sym *local_syms,
3864 asection **local_sections, bfd_vma *valuep,
3865 const char **namep, bfd_boolean *require_jalxp,
3866 bfd_boolean save_addend)
b49e97c9
TS
3867{
3868 /* The eventual value we will return. */
3869 bfd_vma value;
3870 /* The address of the symbol against which the relocation is
3871 occurring. */
3872 bfd_vma symbol = 0;
3873 /* The final GP value to be used for the relocatable, executable, or
3874 shared object file being produced. */
3875 bfd_vma gp = MINUS_ONE;
3876 /* The place (section offset or address) of the storage unit being
3877 relocated. */
3878 bfd_vma p;
3879 /* The value of GP used to create the relocatable object. */
3880 bfd_vma gp0 = MINUS_ONE;
3881 /* The offset into the global offset table at which the address of
3882 the relocation entry symbol, adjusted by the addend, resides
3883 during execution. */
3884 bfd_vma g = MINUS_ONE;
3885 /* The section in which the symbol referenced by the relocation is
3886 located. */
3887 asection *sec = NULL;
3888 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3889 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3890 symbol. */
b34976b6
AM
3891 bfd_boolean local_p, was_local_p;
3892 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3893 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3894 /* TRUE if the symbol referred to by this relocation is
3895 "__gnu_local_gp". */
3896 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3897 Elf_Internal_Shdr *symtab_hdr;
3898 size_t extsymoff;
3899 unsigned long r_symndx;
3900 int r_type;
b34976b6 3901 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3902 relocation value. */
b34976b6
AM
3903 bfd_boolean overflowed_p;
3904 /* TRUE if this relocation refers to a MIPS16 function. */
3905 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3906 struct mips_elf_link_hash_table *htab;
3907 bfd *dynobj;
3908
3909 dynobj = elf_hash_table (info)->dynobj;
3910 htab = mips_elf_hash_table (info);
b49e97c9
TS
3911
3912 /* Parse the relocation. */
3913 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3914 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3915 p = (input_section->output_section->vma
3916 + input_section->output_offset
3917 + relocation->r_offset);
3918
3919 /* Assume that there will be no overflow. */
b34976b6 3920 overflowed_p = FALSE;
b49e97c9
TS
3921
3922 /* Figure out whether or not the symbol is local, and get the offset
3923 used in the array of hash table entries. */
3924 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3925 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3926 local_sections, FALSE);
bce03d3d 3927 was_local_p = local_p;
b49e97c9
TS
3928 if (! elf_bad_symtab (input_bfd))
3929 extsymoff = symtab_hdr->sh_info;
3930 else
3931 {
3932 /* The symbol table does not follow the rule that local symbols
3933 must come before globals. */
3934 extsymoff = 0;
3935 }
3936
3937 /* Figure out the value of the symbol. */
3938 if (local_p)
3939 {
3940 Elf_Internal_Sym *sym;
3941
3942 sym = local_syms + r_symndx;
3943 sec = local_sections[r_symndx];
3944
3945 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3946 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3947 || (sec->flags & SEC_MERGE))
b49e97c9 3948 symbol += sym->st_value;
d4df96e6
L
3949 if ((sec->flags & SEC_MERGE)
3950 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3951 {
3952 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3953 addend -= symbol;
3954 addend += sec->output_section->vma + sec->output_offset;
3955 }
b49e97c9
TS
3956
3957 /* MIPS16 text labels should be treated as odd. */
3958 if (sym->st_other == STO_MIPS16)
3959 ++symbol;
3960
3961 /* Record the name of this symbol, for our caller. */
3962 *namep = bfd_elf_string_from_elf_section (input_bfd,
3963 symtab_hdr->sh_link,
3964 sym->st_name);
3965 if (*namep == '\0')
3966 *namep = bfd_section_name (input_bfd, sec);
3967
3968 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3969 }
3970 else
3971 {
560e09e9
NC
3972 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3973
b49e97c9
TS
3974 /* For global symbols we look up the symbol in the hash-table. */
3975 h = ((struct mips_elf_link_hash_entry *)
3976 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3977 /* Find the real hash-table entry for this symbol. */
3978 while (h->root.root.type == bfd_link_hash_indirect
3979 || h->root.root.type == bfd_link_hash_warning)
3980 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3981
3982 /* Record the name of this symbol, for our caller. */
3983 *namep = h->root.root.root.string;
3984
3985 /* See if this is the special _gp_disp symbol. Note that such a
3986 symbol must always be a global symbol. */
560e09e9 3987 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3988 && ! NEWABI_P (input_bfd))
3989 {
3990 /* Relocations against _gp_disp are permitted only with
3991 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3992 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3993 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3994 return bfd_reloc_notsupported;
3995
b34976b6 3996 gp_disp_p = TRUE;
b49e97c9 3997 }
bbe506e8
TS
3998 /* See if this is the special _gp symbol. Note that such a
3999 symbol must always be a global symbol. */
4000 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4001 gnu_local_gp_p = TRUE;
4002
4003
b49e97c9
TS
4004 /* If this symbol is defined, calculate its address. Note that
4005 _gp_disp is a magic symbol, always implicitly defined by the
4006 linker, so it's inappropriate to check to see whether or not
4007 its defined. */
4008 else if ((h->root.root.type == bfd_link_hash_defined
4009 || h->root.root.type == bfd_link_hash_defweak)
4010 && h->root.root.u.def.section)
4011 {
4012 sec = h->root.root.u.def.section;
4013 if (sec->output_section)
4014 symbol = (h->root.root.u.def.value
4015 + sec->output_section->vma
4016 + sec->output_offset);
4017 else
4018 symbol = h->root.root.u.def.value;
4019 }
4020 else if (h->root.root.type == bfd_link_hash_undefweak)
4021 /* We allow relocations against undefined weak symbols, giving
4022 it the value zero, so that you can undefined weak functions
4023 and check to see if they exist by looking at their
4024 addresses. */
4025 symbol = 0;
59c2e50f 4026 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4027 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4028 symbol = 0;
a4d0f181
TS
4029 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4030 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4031 {
4032 /* If this is a dynamic link, we should have created a
4033 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4034 in in _bfd_mips_elf_create_dynamic_sections.
4035 Otherwise, we should define the symbol with a value of 0.
4036 FIXME: It should probably get into the symbol table
4037 somehow as well. */
4038 BFD_ASSERT (! info->shared);
4039 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4040 symbol = 0;
4041 }
5e2b0d47
NC
4042 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4043 {
4044 /* This is an optional symbol - an Irix specific extension to the
4045 ELF spec. Ignore it for now.
4046 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4047 than simply ignoring them, but we do not handle this for now.
4048 For information see the "64-bit ELF Object File Specification"
4049 which is available from here:
4050 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4051 symbol = 0;
4052 }
b49e97c9
TS
4053 else
4054 {
4055 if (! ((*info->callbacks->undefined_symbol)
4056 (info, h->root.root.root.string, input_bfd,
4057 input_section, relocation->r_offset,
59c2e50f
L
4058 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4059 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4060 return bfd_reloc_undefined;
4061 symbol = 0;
4062 }
4063
4064 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4065 }
4066
4067 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4068 need to redirect the call to the stub, unless we're already *in*
4069 a stub. */
1049f94e 4070 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4071 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4072 || (local_p
4073 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4074 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4075 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4076 {
4077 /* This is a 32- or 64-bit call to a 16-bit function. We should
4078 have already noticed that we were going to need the
4079 stub. */
4080 if (local_p)
4081 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4082 else
4083 {
4084 BFD_ASSERT (h->need_fn_stub);
4085 sec = h->fn_stub;
4086 }
4087
4088 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4089 /* The target is 16-bit, but the stub isn't. */
4090 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4091 }
4092 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4093 need to redirect the call to the stub. */
1049f94e 4094 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 4095 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
4096 || (local_p
4097 && elf_tdata (input_bfd)->local_call_stubs != NULL
4098 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4099 && !target_is_16_bit_code_p)
4100 {
b9d58d71
TS
4101 if (local_p)
4102 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4103 else
b49e97c9 4104 {
b9d58d71
TS
4105 /* If both call_stub and call_fp_stub are defined, we can figure
4106 out which one to use by checking which one appears in the input
4107 file. */
4108 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4109 {
b9d58d71
TS
4110 asection *o;
4111
4112 sec = NULL;
4113 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4114 {
b9d58d71
TS
4115 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4116 {
4117 sec = h->call_fp_stub;
4118 break;
4119 }
b49e97c9 4120 }
b9d58d71
TS
4121 if (sec == NULL)
4122 sec = h->call_stub;
b49e97c9 4123 }
b9d58d71 4124 else if (h->call_stub != NULL)
b49e97c9 4125 sec = h->call_stub;
b9d58d71
TS
4126 else
4127 sec = h->call_fp_stub;
4128 }
b49e97c9 4129
eea6121a 4130 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4131 symbol = sec->output_section->vma + sec->output_offset;
4132 }
4133
4134 /* Calls from 16-bit code to 32-bit code and vice versa require the
4135 special jalx instruction. */
1049f94e 4136 *require_jalxp = (!info->relocatable
b49e97c9
TS
4137 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4138 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4139
4140 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4141 local_sections, TRUE);
b49e97c9
TS
4142
4143 /* If we haven't already determined the GOT offset, or the GP value,
4144 and we're going to need it, get it now. */
4145 switch (r_type)
4146 {
0fdc1bf1 4147 case R_MIPS_GOT_PAGE:
93a2b7ae 4148 case R_MIPS_GOT_OFST:
d25aed71
RS
4149 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4150 bind locally. */
4151 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4152 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4153 break;
4154 /* Fall through. */
4155
b49e97c9
TS
4156 case R_MIPS_CALL16:
4157 case R_MIPS_GOT16:
4158 case R_MIPS_GOT_DISP:
4159 case R_MIPS_GOT_HI16:
4160 case R_MIPS_CALL_HI16:
4161 case R_MIPS_GOT_LO16:
4162 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4163 case R_MIPS_TLS_GD:
4164 case R_MIPS_TLS_GOTTPREL:
4165 case R_MIPS_TLS_LDM:
b49e97c9 4166 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4167 if (r_type == R_MIPS_TLS_LDM)
4168 {
0a44bf69 4169 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4170 0, 0, NULL, r_type);
0f20cc35
DJ
4171 if (g == MINUS_ONE)
4172 return bfd_reloc_outofrange;
4173 }
4174 else if (!local_p)
b49e97c9 4175 {
0a44bf69
RS
4176 /* On VxWorks, CALL relocations should refer to the .got.plt
4177 entry, which is initialized to point at the PLT stub. */
4178 if (htab->is_vxworks
4179 && (r_type == R_MIPS_CALL_HI16
4180 || r_type == R_MIPS_CALL_LO16
4181 || r_type == R_MIPS_CALL16))
4182 {
4183 BFD_ASSERT (addend == 0);
4184 BFD_ASSERT (h->root.needs_plt);
4185 g = mips_elf_gotplt_index (info, &h->root);
4186 }
4187 else
b49e97c9 4188 {
0a44bf69
RS
4189 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4190 GOT_PAGE relocation that decays to GOT_DISP because the
4191 symbol turns out to be global. The addend is then added
4192 as GOT_OFST. */
4193 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4194 g = mips_elf_global_got_index (dynobj, input_bfd,
4195 &h->root, r_type, info);
4196 if (h->tls_type == GOT_NORMAL
4197 && (! elf_hash_table(info)->dynamic_sections_created
4198 || (info->shared
4199 && (info->symbolic || h->root.forced_local)
4200 && h->root.def_regular)))
4201 {
4202 /* This is a static link or a -Bsymbolic link. The
4203 symbol is defined locally, or was forced to be local.
4204 We must initialize this entry in the GOT. */
4205 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4206 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4207 }
b49e97c9
TS
4208 }
4209 }
0a44bf69
RS
4210 else if (!htab->is_vxworks
4211 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4212 /* The calculation below does not involve "g". */
b49e97c9
TS
4213 break;
4214 else
4215 {
5c18022e 4216 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4217 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4218 if (g == MINUS_ONE)
4219 return bfd_reloc_outofrange;
4220 }
4221
4222 /* Convert GOT indices to actual offsets. */
0a44bf69 4223 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4224 break;
4225
4226 case R_MIPS_HI16:
4227 case R_MIPS_LO16:
b49e97c9
TS
4228 case R_MIPS_GPREL16:
4229 case R_MIPS_GPREL32:
4230 case R_MIPS_LITERAL:
d6f16593
MR
4231 case R_MIPS16_HI16:
4232 case R_MIPS16_LO16:
4233 case R_MIPS16_GPREL:
b49e97c9
TS
4234 gp0 = _bfd_get_gp_value (input_bfd);
4235 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4236 if (dynobj)
4237 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4238 input_bfd);
b49e97c9
TS
4239 break;
4240
4241 default:
4242 break;
4243 }
4244
bbe506e8
TS
4245 if (gnu_local_gp_p)
4246 symbol = gp;
86324f90 4247
0a44bf69
RS
4248 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4249 symbols are resolved by the loader. Add them to .rela.dyn. */
4250 if (h != NULL && is_gott_symbol (info, &h->root))
4251 {
4252 Elf_Internal_Rela outrel;
4253 bfd_byte *loc;
4254 asection *s;
4255
4256 s = mips_elf_rel_dyn_section (info, FALSE);
4257 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4258
4259 outrel.r_offset = (input_section->output_section->vma
4260 + input_section->output_offset
4261 + relocation->r_offset);
4262 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4263 outrel.r_addend = addend;
4264 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4265
4266 /* If we've written this relocation for a readonly section,
4267 we need to set DF_TEXTREL again, so that we do not delete the
4268 DT_TEXTREL tag. */
4269 if (MIPS_ELF_READONLY_SECTION (input_section))
4270 info->flags |= DF_TEXTREL;
4271
0a44bf69
RS
4272 *valuep = 0;
4273 return bfd_reloc_ok;
4274 }
4275
b49e97c9
TS
4276 /* Figure out what kind of relocation is being performed. */
4277 switch (r_type)
4278 {
4279 case R_MIPS_NONE:
4280 return bfd_reloc_continue;
4281
4282 case R_MIPS_16:
a7ebbfdf 4283 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4284 overflowed_p = mips_elf_overflow_p (value, 16);
4285 break;
4286
4287 case R_MIPS_32:
4288 case R_MIPS_REL32:
4289 case R_MIPS_64:
4290 if ((info->shared
0a44bf69
RS
4291 || (!htab->is_vxworks
4292 && htab->root.dynamic_sections_created
b49e97c9 4293 && h != NULL
f5385ebf
AM
4294 && h->root.def_dynamic
4295 && !h->root.def_regular))
b49e97c9
TS
4296 && r_symndx != 0
4297 && (input_section->flags & SEC_ALLOC) != 0)
4298 {
4299 /* If we're creating a shared library, or this relocation is
4300 against a symbol in a shared library, then we can't know
4301 where the symbol will end up. So, we create a relocation
4302 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4303 linker.
4304
4305 In VxWorks executables, references to external symbols
4306 are handled using copy relocs or PLT stubs, so there's
4307 no need to add a dynamic relocation here. */
b49e97c9
TS
4308 value = addend;
4309 if (!mips_elf_create_dynamic_relocation (abfd,
4310 info,
4311 relocation,
4312 h,
4313 sec,
4314 symbol,
4315 &value,
4316 input_section))
4317 return bfd_reloc_undefined;
4318 }
4319 else
4320 {
4321 if (r_type != R_MIPS_REL32)
4322 value = symbol + addend;
4323 else
4324 value = addend;
4325 }
4326 value &= howto->dst_mask;
092dcd75
CD
4327 break;
4328
4329 case R_MIPS_PC32:
4330 value = symbol + addend - p;
4331 value &= howto->dst_mask;
b49e97c9
TS
4332 break;
4333
b49e97c9
TS
4334 case R_MIPS16_26:
4335 /* The calculation for R_MIPS16_26 is just the same as for an
4336 R_MIPS_26. It's only the storage of the relocated field into
4337 the output file that's different. That's handled in
4338 mips_elf_perform_relocation. So, we just fall through to the
4339 R_MIPS_26 case here. */
4340 case R_MIPS_26:
4341 if (local_p)
30ac9238 4342 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4343 else
728b2f21
ILT
4344 {
4345 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4346 if (h->root.root.type != bfd_link_hash_undefweak)
4347 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4348 }
b49e97c9
TS
4349 value &= howto->dst_mask;
4350 break;
4351
0f20cc35
DJ
4352 case R_MIPS_TLS_DTPREL_HI16:
4353 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4354 & howto->dst_mask);
4355 break;
4356
4357 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
4358 case R_MIPS_TLS_DTPREL32:
4359 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
4360 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4361 break;
4362
4363 case R_MIPS_TLS_TPREL_HI16:
4364 value = (mips_elf_high (addend + symbol - tprel_base (info))
4365 & howto->dst_mask);
4366 break;
4367
4368 case R_MIPS_TLS_TPREL_LO16:
4369 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4370 break;
4371
b49e97c9 4372 case R_MIPS_HI16:
d6f16593 4373 case R_MIPS16_HI16:
b49e97c9
TS
4374 if (!gp_disp_p)
4375 {
4376 value = mips_elf_high (addend + symbol);
4377 value &= howto->dst_mask;
4378 }
4379 else
4380 {
d6f16593
MR
4381 /* For MIPS16 ABI code we generate this sequence
4382 0: li $v0,%hi(_gp_disp)
4383 4: addiupc $v1,%lo(_gp_disp)
4384 8: sll $v0,16
4385 12: addu $v0,$v1
4386 14: move $gp,$v0
4387 So the offsets of hi and lo relocs are the same, but the
4388 $pc is four higher than $t9 would be, so reduce
4389 both reloc addends by 4. */
4390 if (r_type == R_MIPS16_HI16)
4391 value = mips_elf_high (addend + gp - p - 4);
4392 else
4393 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4394 overflowed_p = mips_elf_overflow_p (value, 16);
4395 }
4396 break;
4397
4398 case R_MIPS_LO16:
d6f16593 4399 case R_MIPS16_LO16:
b49e97c9
TS
4400 if (!gp_disp_p)
4401 value = (symbol + addend) & howto->dst_mask;
4402 else
4403 {
d6f16593
MR
4404 /* See the comment for R_MIPS16_HI16 above for the reason
4405 for this conditional. */
4406 if (r_type == R_MIPS16_LO16)
4407 value = addend + gp - p;
4408 else
4409 value = addend + gp - p + 4;
b49e97c9 4410 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4411 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4412 _gp_disp are normally generated from the .cpload
4413 pseudo-op. It generates code that normally looks like
4414 this:
4415
4416 lui $gp,%hi(_gp_disp)
4417 addiu $gp,$gp,%lo(_gp_disp)
4418 addu $gp,$gp,$t9
4419
4420 Here $t9 holds the address of the function being called,
4421 as required by the MIPS ELF ABI. The R_MIPS_LO16
4422 relocation can easily overflow in this situation, but the
4423 R_MIPS_HI16 relocation will handle the overflow.
4424 Therefore, we consider this a bug in the MIPS ABI, and do
4425 not check for overflow here. */
4426 }
4427 break;
4428
4429 case R_MIPS_LITERAL:
4430 /* Because we don't merge literal sections, we can handle this
4431 just like R_MIPS_GPREL16. In the long run, we should merge
4432 shared literals, and then we will need to additional work
4433 here. */
4434
4435 /* Fall through. */
4436
4437 case R_MIPS16_GPREL:
4438 /* The R_MIPS16_GPREL performs the same calculation as
4439 R_MIPS_GPREL16, but stores the relocated bits in a different
4440 order. We don't need to do anything special here; the
4441 differences are handled in mips_elf_perform_relocation. */
4442 case R_MIPS_GPREL16:
bce03d3d
AO
4443 /* Only sign-extend the addend if it was extracted from the
4444 instruction. If the addend was separate, leave it alone,
4445 otherwise we may lose significant bits. */
4446 if (howto->partial_inplace)
a7ebbfdf 4447 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4448 value = symbol + addend - gp;
4449 /* If the symbol was local, any earlier relocatable links will
4450 have adjusted its addend with the gp offset, so compensate
4451 for that now. Don't do it for symbols forced local in this
4452 link, though, since they won't have had the gp offset applied
4453 to them before. */
4454 if (was_local_p)
4455 value += gp0;
b49e97c9
TS
4456 overflowed_p = mips_elf_overflow_p (value, 16);
4457 break;
4458
4459 case R_MIPS_GOT16:
4460 case R_MIPS_CALL16:
0a44bf69
RS
4461 /* VxWorks does not have separate local and global semantics for
4462 R_MIPS_GOT16; every relocation evaluates to "G". */
4463 if (!htab->is_vxworks && local_p)
b49e97c9 4464 {
b34976b6 4465 bfd_boolean forced;
b49e97c9 4466
b49e97c9 4467 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4468 local_sections, FALSE);
5c18022e 4469 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4470 symbol + addend, forced);
b49e97c9
TS
4471 if (value == MINUS_ONE)
4472 return bfd_reloc_outofrange;
4473 value
0a44bf69 4474 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4475 overflowed_p = mips_elf_overflow_p (value, 16);
4476 break;
4477 }
4478
4479 /* Fall through. */
4480
0f20cc35
DJ
4481 case R_MIPS_TLS_GD:
4482 case R_MIPS_TLS_GOTTPREL:
4483 case R_MIPS_TLS_LDM:
b49e97c9 4484 case R_MIPS_GOT_DISP:
0fdc1bf1 4485 got_disp:
b49e97c9
TS
4486 value = g;
4487 overflowed_p = mips_elf_overflow_p (value, 16);
4488 break;
4489
4490 case R_MIPS_GPREL32:
bce03d3d
AO
4491 value = (addend + symbol + gp0 - gp);
4492 if (!save_addend)
4493 value &= howto->dst_mask;
b49e97c9
TS
4494 break;
4495
4496 case R_MIPS_PC16:
bad36eac
DJ
4497 case R_MIPS_GNU_REL16_S2:
4498 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4499 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4500 value >>= howto->rightshift;
4501 value &= howto->dst_mask;
b49e97c9
TS
4502 break;
4503
4504 case R_MIPS_GOT_HI16:
4505 case R_MIPS_CALL_HI16:
4506 /* We're allowed to handle these two relocations identically.
4507 The dynamic linker is allowed to handle the CALL relocations
4508 differently by creating a lazy evaluation stub. */
4509 value = g;
4510 value = mips_elf_high (value);
4511 value &= howto->dst_mask;
4512 break;
4513
4514 case R_MIPS_GOT_LO16:
4515 case R_MIPS_CALL_LO16:
4516 value = g & howto->dst_mask;
4517 break;
4518
4519 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4520 /* GOT_PAGE relocations that reference non-local symbols decay
4521 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4522 0. */
93a2b7ae 4523 if (! local_p)
0fdc1bf1 4524 goto got_disp;
5c18022e 4525 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4526 if (value == MINUS_ONE)
4527 return bfd_reloc_outofrange;
0a44bf69 4528 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4529 overflowed_p = mips_elf_overflow_p (value, 16);
4530 break;
4531
4532 case R_MIPS_GOT_OFST:
93a2b7ae 4533 if (local_p)
5c18022e 4534 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
4535 else
4536 value = addend;
b49e97c9
TS
4537 overflowed_p = mips_elf_overflow_p (value, 16);
4538 break;
4539
4540 case R_MIPS_SUB:
4541 value = symbol - addend;
4542 value &= howto->dst_mask;
4543 break;
4544
4545 case R_MIPS_HIGHER:
4546 value = mips_elf_higher (addend + symbol);
4547 value &= howto->dst_mask;
4548 break;
4549
4550 case R_MIPS_HIGHEST:
4551 value = mips_elf_highest (addend + symbol);
4552 value &= howto->dst_mask;
4553 break;
4554
4555 case R_MIPS_SCN_DISP:
4556 value = symbol + addend - sec->output_offset;
4557 value &= howto->dst_mask;
4558 break;
4559
b49e97c9 4560 case R_MIPS_JALR:
1367d393
ILT
4561 /* This relocation is only a hint. In some cases, we optimize
4562 it into a bal instruction. But we don't try to optimize
4563 branches to the PLT; that will wind up wasting time. */
4564 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4565 return bfd_reloc_continue;
4566 value = symbol + addend;
4567 break;
b49e97c9 4568
1367d393 4569 case R_MIPS_PJUMP:
b49e97c9
TS
4570 case R_MIPS_GNU_VTINHERIT:
4571 case R_MIPS_GNU_VTENTRY:
4572 /* We don't do anything with these at present. */
4573 return bfd_reloc_continue;
4574
4575 default:
4576 /* An unrecognized relocation type. */
4577 return bfd_reloc_notsupported;
4578 }
4579
4580 /* Store the VALUE for our caller. */
4581 *valuep = value;
4582 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4583}
4584
4585/* Obtain the field relocated by RELOCATION. */
4586
4587static bfd_vma
9719ad41
RS
4588mips_elf_obtain_contents (reloc_howto_type *howto,
4589 const Elf_Internal_Rela *relocation,
4590 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4591{
4592 bfd_vma x;
4593 bfd_byte *location = contents + relocation->r_offset;
4594
4595 /* Obtain the bytes. */
4596 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4597
b49e97c9
TS
4598 return x;
4599}
4600
4601/* It has been determined that the result of the RELOCATION is the
4602 VALUE. Use HOWTO to place VALUE into the output file at the
4603 appropriate position. The SECTION is the section to which the
b34976b6 4604 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4605 for the relocation must be either JAL or JALX, and it is
4606 unconditionally converted to JALX.
4607
b34976b6 4608 Returns FALSE if anything goes wrong. */
b49e97c9 4609
b34976b6 4610static bfd_boolean
9719ad41
RS
4611mips_elf_perform_relocation (struct bfd_link_info *info,
4612 reloc_howto_type *howto,
4613 const Elf_Internal_Rela *relocation,
4614 bfd_vma value, bfd *input_bfd,
4615 asection *input_section, bfd_byte *contents,
4616 bfd_boolean require_jalx)
b49e97c9
TS
4617{
4618 bfd_vma x;
4619 bfd_byte *location;
4620 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4621
4622 /* Figure out where the relocation is occurring. */
4623 location = contents + relocation->r_offset;
4624
d6f16593
MR
4625 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4626
b49e97c9
TS
4627 /* Obtain the current value. */
4628 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4629
4630 /* Clear the field we are setting. */
4631 x &= ~howto->dst_mask;
4632
b49e97c9
TS
4633 /* Set the field. */
4634 x |= (value & howto->dst_mask);
4635
4636 /* If required, turn JAL into JALX. */
4637 if (require_jalx)
4638 {
b34976b6 4639 bfd_boolean ok;
b49e97c9
TS
4640 bfd_vma opcode = x >> 26;
4641 bfd_vma jalx_opcode;
4642
4643 /* Check to see if the opcode is already JAL or JALX. */
4644 if (r_type == R_MIPS16_26)
4645 {
4646 ok = ((opcode == 0x6) || (opcode == 0x7));
4647 jalx_opcode = 0x7;
4648 }
4649 else
4650 {
4651 ok = ((opcode == 0x3) || (opcode == 0x1d));
4652 jalx_opcode = 0x1d;
4653 }
4654
4655 /* If the opcode is not JAL or JALX, there's a problem. */
4656 if (!ok)
4657 {
4658 (*_bfd_error_handler)
d003868e
AM
4659 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4660 input_bfd,
4661 input_section,
b49e97c9
TS
4662 (unsigned long) relocation->r_offset);
4663 bfd_set_error (bfd_error_bad_value);
b34976b6 4664 return FALSE;
b49e97c9
TS
4665 }
4666
4667 /* Make this the JALX opcode. */
4668 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4669 }
4670
1367d393
ILT
4671 /* On the RM9000, bal is faster than jal, because bal uses branch
4672 prediction hardware. If we are linking for the RM9000, and we
4673 see jal, and bal fits, use it instead. Note that this
4674 transformation should be safe for all architectures. */
4675 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4676 && !info->relocatable
4677 && !require_jalx
4678 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4679 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4680 {
4681 bfd_vma addr;
4682 bfd_vma dest;
4683 bfd_signed_vma off;
4684
4685 addr = (input_section->output_section->vma
4686 + input_section->output_offset
4687 + relocation->r_offset
4688 + 4);
4689 if (r_type == R_MIPS_26)
4690 dest = (value << 2) | ((addr >> 28) << 28);
4691 else
4692 dest = value;
4693 off = dest - addr;
4694 if (off <= 0x1ffff && off >= -0x20000)
4695 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4696 }
4697
b49e97c9
TS
4698 /* Put the value into the output. */
4699 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4700
4701 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4702 location);
4703
b34976b6 4704 return TRUE;
b49e97c9
TS
4705}
4706
b34976b6 4707/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4708
b34976b6 4709static bfd_boolean
b9d58d71 4710mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4711{
4712 const char *name = bfd_get_section_name (abfd, section);
4713
b9d58d71 4714 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4715}
4716\f
0a44bf69 4717/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4718
4719static void
0a44bf69
RS
4720mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4721 unsigned int n)
b49e97c9
TS
4722{
4723 asection *s;
0a44bf69 4724 struct mips_elf_link_hash_table *htab;
b49e97c9 4725
0a44bf69
RS
4726 htab = mips_elf_hash_table (info);
4727 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4728 BFD_ASSERT (s != NULL);
4729
0a44bf69
RS
4730 if (htab->is_vxworks)
4731 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4732 else
b49e97c9 4733 {
0a44bf69
RS
4734 if (s->size == 0)
4735 {
4736 /* Make room for a null element. */
4737 s->size += MIPS_ELF_REL_SIZE (abfd);
4738 ++s->reloc_count;
4739 }
4740 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4741 }
b49e97c9
TS
4742}
4743
4744/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4745 is the original relocation, which is now being transformed into a
4746 dynamic relocation. The ADDENDP is adjusted if necessary; the
4747 caller should store the result in place of the original addend. */
4748
b34976b6 4749static bfd_boolean
9719ad41
RS
4750mips_elf_create_dynamic_relocation (bfd *output_bfd,
4751 struct bfd_link_info *info,
4752 const Elf_Internal_Rela *rel,
4753 struct mips_elf_link_hash_entry *h,
4754 asection *sec, bfd_vma symbol,
4755 bfd_vma *addendp, asection *input_section)
b49e97c9 4756{
947216bf 4757 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4758 asection *sreloc;
4759 bfd *dynobj;
4760 int r_type;
5d41f0b6
RS
4761 long indx;
4762 bfd_boolean defined_p;
0a44bf69 4763 struct mips_elf_link_hash_table *htab;
b49e97c9 4764
0a44bf69 4765 htab = mips_elf_hash_table (info);
b49e97c9
TS
4766 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4767 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4768 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4769 BFD_ASSERT (sreloc != NULL);
4770 BFD_ASSERT (sreloc->contents != NULL);
4771 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4772 < sreloc->size);
b49e97c9 4773
b49e97c9
TS
4774 outrel[0].r_offset =
4775 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
4776 if (ABI_64_P (output_bfd))
4777 {
4778 outrel[1].r_offset =
4779 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4780 outrel[2].r_offset =
4781 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4782 }
b49e97c9 4783
c5ae1840 4784 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4785 /* The relocation field has been deleted. */
5d41f0b6
RS
4786 return TRUE;
4787
4788 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4789 {
4790 /* The relocation field has been converted into a relative value of
4791 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4792 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4793 *addendp += symbol;
5d41f0b6 4794 return TRUE;
0d591ff7 4795 }
b49e97c9 4796
5d41f0b6
RS
4797 /* We must now calculate the dynamic symbol table index to use
4798 in the relocation. */
4799 if (h != NULL
6ece8836
TS
4800 && (!h->root.def_regular
4801 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4802 {
4803 indx = h->root.dynindx;
4804 if (SGI_COMPAT (output_bfd))
4805 defined_p = h->root.def_regular;
4806 else
4807 /* ??? glibc's ld.so just adds the final GOT entry to the
4808 relocation field. It therefore treats relocs against
4809 defined symbols in the same way as relocs against
4810 undefined symbols. */
4811 defined_p = FALSE;
4812 }
b49e97c9
TS
4813 else
4814 {
5d41f0b6
RS
4815 if (sec != NULL && bfd_is_abs_section (sec))
4816 indx = 0;
4817 else if (sec == NULL || sec->owner == NULL)
fdd07405 4818 {
5d41f0b6
RS
4819 bfd_set_error (bfd_error_bad_value);
4820 return FALSE;
b49e97c9
TS
4821 }
4822 else
4823 {
5d41f0b6 4824 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4825 if (indx == 0)
4826 {
4827 asection *osec = htab->root.text_index_section;
4828 indx = elf_section_data (osec)->dynindx;
4829 }
5d41f0b6
RS
4830 if (indx == 0)
4831 abort ();
b49e97c9
TS
4832 }
4833
5d41f0b6
RS
4834 /* Instead of generating a relocation using the section
4835 symbol, we may as well make it a fully relative
4836 relocation. We want to avoid generating relocations to
4837 local symbols because we used to generate them
4838 incorrectly, without adding the original symbol value,
4839 which is mandated by the ABI for section symbols. In
4840 order to give dynamic loaders and applications time to
4841 phase out the incorrect use, we refrain from emitting
4842 section-relative relocations. It's not like they're
4843 useful, after all. This should be a bit more efficient
4844 as well. */
4845 /* ??? Although this behavior is compatible with glibc's ld.so,
4846 the ABI says that relocations against STN_UNDEF should have
4847 a symbol value of 0. Irix rld honors this, so relocations
4848 against STN_UNDEF have no effect. */
4849 if (!SGI_COMPAT (output_bfd))
4850 indx = 0;
4851 defined_p = TRUE;
b49e97c9
TS
4852 }
4853
5d41f0b6
RS
4854 /* If the relocation was previously an absolute relocation and
4855 this symbol will not be referred to by the relocation, we must
4856 adjust it by the value we give it in the dynamic symbol table.
4857 Otherwise leave the job up to the dynamic linker. */
4858 if (defined_p && r_type != R_MIPS_REL32)
4859 *addendp += symbol;
4860
0a44bf69
RS
4861 if (htab->is_vxworks)
4862 /* VxWorks uses non-relative relocations for this. */
4863 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4864 else
4865 /* The relocation is always an REL32 relocation because we don't
4866 know where the shared library will wind up at load-time. */
4867 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4868 R_MIPS_REL32);
4869
5d41f0b6
RS
4870 /* For strict adherence to the ABI specification, we should
4871 generate a R_MIPS_64 relocation record by itself before the
4872 _REL32/_64 record as well, such that the addend is read in as
4873 a 64-bit value (REL32 is a 32-bit relocation, after all).
4874 However, since none of the existing ELF64 MIPS dynamic
4875 loaders seems to care, we don't waste space with these
4876 artificial relocations. If this turns out to not be true,
4877 mips_elf_allocate_dynamic_relocation() should be tweaked so
4878 as to make room for a pair of dynamic relocations per
4879 invocation if ABI_64_P, and here we should generate an
4880 additional relocation record with R_MIPS_64 by itself for a
4881 NULL symbol before this relocation record. */
4882 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4883 ABI_64_P (output_bfd)
4884 ? R_MIPS_64
4885 : R_MIPS_NONE);
4886 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4887
4888 /* Adjust the output offset of the relocation to reference the
4889 correct location in the output file. */
4890 outrel[0].r_offset += (input_section->output_section->vma
4891 + input_section->output_offset);
4892 outrel[1].r_offset += (input_section->output_section->vma
4893 + input_section->output_offset);
4894 outrel[2].r_offset += (input_section->output_section->vma
4895 + input_section->output_offset);
4896
b49e97c9
TS
4897 /* Put the relocation back out. We have to use the special
4898 relocation outputter in the 64-bit case since the 64-bit
4899 relocation format is non-standard. */
4900 if (ABI_64_P (output_bfd))
4901 {
4902 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4903 (output_bfd, &outrel[0],
4904 (sreloc->contents
4905 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4906 }
0a44bf69
RS
4907 else if (htab->is_vxworks)
4908 {
4909 /* VxWorks uses RELA rather than REL dynamic relocations. */
4910 outrel[0].r_addend = *addendp;
4911 bfd_elf32_swap_reloca_out
4912 (output_bfd, &outrel[0],
4913 (sreloc->contents
4914 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4915 }
b49e97c9 4916 else
947216bf
AM
4917 bfd_elf32_swap_reloc_out
4918 (output_bfd, &outrel[0],
4919 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4920
b49e97c9
TS
4921 /* We've now added another relocation. */
4922 ++sreloc->reloc_count;
4923
4924 /* Make sure the output section is writable. The dynamic linker
4925 will be writing to it. */
4926 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4927 |= SHF_WRITE;
4928
4929 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4930 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4931 {
4932 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4933 bfd_byte *cr;
4934
4935 if (scpt)
4936 {
4937 Elf32_crinfo cptrel;
4938
4939 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4940 cptrel.vaddr = (rel->r_offset
4941 + input_section->output_section->vma
4942 + input_section->output_offset);
4943 if (r_type == R_MIPS_REL32)
4944 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4945 else
4946 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4947 mips_elf_set_cr_dist2to (cptrel, 0);
4948 cptrel.konst = *addendp;
4949
4950 cr = (scpt->contents
4951 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4952 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4953 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4954 ((Elf32_External_crinfo *) cr
4955 + scpt->reloc_count));
4956 ++scpt->reloc_count;
4957 }
4958 }
4959
943284cc
DJ
4960 /* If we've written this relocation for a readonly section,
4961 we need to set DF_TEXTREL again, so that we do not delete the
4962 DT_TEXTREL tag. */
4963 if (MIPS_ELF_READONLY_SECTION (input_section))
4964 info->flags |= DF_TEXTREL;
4965
b34976b6 4966 return TRUE;
b49e97c9
TS
4967}
4968\f
b49e97c9
TS
4969/* Return the MACH for a MIPS e_flags value. */
4970
4971unsigned long
9719ad41 4972_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4973{
4974 switch (flags & EF_MIPS_MACH)
4975 {
4976 case E_MIPS_MACH_3900:
4977 return bfd_mach_mips3900;
4978
4979 case E_MIPS_MACH_4010:
4980 return bfd_mach_mips4010;
4981
4982 case E_MIPS_MACH_4100:
4983 return bfd_mach_mips4100;
4984
4985 case E_MIPS_MACH_4111:
4986 return bfd_mach_mips4111;
4987
00707a0e
RS
4988 case E_MIPS_MACH_4120:
4989 return bfd_mach_mips4120;
4990
b49e97c9
TS
4991 case E_MIPS_MACH_4650:
4992 return bfd_mach_mips4650;
4993
00707a0e
RS
4994 case E_MIPS_MACH_5400:
4995 return bfd_mach_mips5400;
4996
4997 case E_MIPS_MACH_5500:
4998 return bfd_mach_mips5500;
4999
0d2e43ed
ILT
5000 case E_MIPS_MACH_9000:
5001 return bfd_mach_mips9000;
5002
b49e97c9
TS
5003 case E_MIPS_MACH_SB1:
5004 return bfd_mach_mips_sb1;
5005
5006 default:
5007 switch (flags & EF_MIPS_ARCH)
5008 {
5009 default:
5010 case E_MIPS_ARCH_1:
5011 return bfd_mach_mips3000;
b49e97c9
TS
5012
5013 case E_MIPS_ARCH_2:
5014 return bfd_mach_mips6000;
b49e97c9
TS
5015
5016 case E_MIPS_ARCH_3:
5017 return bfd_mach_mips4000;
b49e97c9
TS
5018
5019 case E_MIPS_ARCH_4:
5020 return bfd_mach_mips8000;
b49e97c9
TS
5021
5022 case E_MIPS_ARCH_5:
5023 return bfd_mach_mips5;
b49e97c9
TS
5024
5025 case E_MIPS_ARCH_32:
5026 return bfd_mach_mipsisa32;
b49e97c9
TS
5027
5028 case E_MIPS_ARCH_64:
5029 return bfd_mach_mipsisa64;
af7ee8bf
CD
5030
5031 case E_MIPS_ARCH_32R2:
5032 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5033
5034 case E_MIPS_ARCH_64R2:
5035 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5036 }
5037 }
5038
5039 return 0;
5040}
5041
5042/* Return printable name for ABI. */
5043
5044static INLINE char *
9719ad41 5045elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5046{
5047 flagword flags;
5048
5049 flags = elf_elfheader (abfd)->e_flags;
5050 switch (flags & EF_MIPS_ABI)
5051 {
5052 case 0:
5053 if (ABI_N32_P (abfd))
5054 return "N32";
5055 else if (ABI_64_P (abfd))
5056 return "64";
5057 else
5058 return "none";
5059 case E_MIPS_ABI_O32:
5060 return "O32";
5061 case E_MIPS_ABI_O64:
5062 return "O64";
5063 case E_MIPS_ABI_EABI32:
5064 return "EABI32";
5065 case E_MIPS_ABI_EABI64:
5066 return "EABI64";
5067 default:
5068 return "unknown abi";
5069 }
5070}
5071\f
5072/* MIPS ELF uses two common sections. One is the usual one, and the
5073 other is for small objects. All the small objects are kept
5074 together, and then referenced via the gp pointer, which yields
5075 faster assembler code. This is what we use for the small common
5076 section. This approach is copied from ecoff.c. */
5077static asection mips_elf_scom_section;
5078static asymbol mips_elf_scom_symbol;
5079static asymbol *mips_elf_scom_symbol_ptr;
5080
5081/* MIPS ELF also uses an acommon section, which represents an
5082 allocated common symbol which may be overridden by a
5083 definition in a shared library. */
5084static asection mips_elf_acom_section;
5085static asymbol mips_elf_acom_symbol;
5086static asymbol *mips_elf_acom_symbol_ptr;
5087
5088/* Handle the special MIPS section numbers that a symbol may use.
5089 This is used for both the 32-bit and the 64-bit ABI. */
5090
5091void
9719ad41 5092_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5093{
5094 elf_symbol_type *elfsym;
5095
5096 elfsym = (elf_symbol_type *) asym;
5097 switch (elfsym->internal_elf_sym.st_shndx)
5098 {
5099 case SHN_MIPS_ACOMMON:
5100 /* This section is used in a dynamically linked executable file.
5101 It is an allocated common section. The dynamic linker can
5102 either resolve these symbols to something in a shared
5103 library, or it can just leave them here. For our purposes,
5104 we can consider these symbols to be in a new section. */
5105 if (mips_elf_acom_section.name == NULL)
5106 {
5107 /* Initialize the acommon section. */
5108 mips_elf_acom_section.name = ".acommon";
5109 mips_elf_acom_section.flags = SEC_ALLOC;
5110 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5111 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5112 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5113 mips_elf_acom_symbol.name = ".acommon";
5114 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5115 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5116 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5117 }
5118 asym->section = &mips_elf_acom_section;
5119 break;
5120
5121 case SHN_COMMON:
5122 /* Common symbols less than the GP size are automatically
5123 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5124 if (asym->value > elf_gp_size (abfd)
b59eed79 5125 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5126 || IRIX_COMPAT (abfd) == ict_irix6)
5127 break;
5128 /* Fall through. */
5129 case SHN_MIPS_SCOMMON:
5130 if (mips_elf_scom_section.name == NULL)
5131 {
5132 /* Initialize the small common section. */
5133 mips_elf_scom_section.name = ".scommon";
5134 mips_elf_scom_section.flags = SEC_IS_COMMON;
5135 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5136 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5137 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5138 mips_elf_scom_symbol.name = ".scommon";
5139 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5140 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5141 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5142 }
5143 asym->section = &mips_elf_scom_section;
5144 asym->value = elfsym->internal_elf_sym.st_size;
5145 break;
5146
5147 case SHN_MIPS_SUNDEFINED:
5148 asym->section = bfd_und_section_ptr;
5149 break;
5150
b49e97c9 5151 case SHN_MIPS_TEXT:
00b4930b
TS
5152 {
5153 asection *section = bfd_get_section_by_name (abfd, ".text");
5154
5155 BFD_ASSERT (SGI_COMPAT (abfd));
5156 if (section != NULL)
5157 {
5158 asym->section = section;
5159 /* MIPS_TEXT is a bit special, the address is not an offset
5160 to the base of the .text section. So substract the section
5161 base address to make it an offset. */
5162 asym->value -= section->vma;
5163 }
5164 }
b49e97c9
TS
5165 break;
5166
5167 case SHN_MIPS_DATA:
00b4930b
TS
5168 {
5169 asection *section = bfd_get_section_by_name (abfd, ".data");
5170
5171 BFD_ASSERT (SGI_COMPAT (abfd));
5172 if (section != NULL)
5173 {
5174 asym->section = section;
5175 /* MIPS_DATA is a bit special, the address is not an offset
5176 to the base of the .data section. So substract the section
5177 base address to make it an offset. */
5178 asym->value -= section->vma;
5179 }
5180 }
b49e97c9 5181 break;
b49e97c9
TS
5182 }
5183}
5184\f
8c946ed5
RS
5185/* Implement elf_backend_eh_frame_address_size. This differs from
5186 the default in the way it handles EABI64.
5187
5188 EABI64 was originally specified as an LP64 ABI, and that is what
5189 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5190 historically accepted the combination of -mabi=eabi and -mlong32,
5191 and this ILP32 variation has become semi-official over time.
5192 Both forms use elf32 and have pointer-sized FDE addresses.
5193
5194 If an EABI object was generated by GCC 4.0 or above, it will have
5195 an empty .gcc_compiled_longXX section, where XX is the size of longs
5196 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5197 have no special marking to distinguish them from LP64 objects.
5198
5199 We don't want users of the official LP64 ABI to be punished for the
5200 existence of the ILP32 variant, but at the same time, we don't want
5201 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5202 We therefore take the following approach:
5203
5204 - If ABFD contains a .gcc_compiled_longXX section, use it to
5205 determine the pointer size.
5206
5207 - Otherwise check the type of the first relocation. Assume that
5208 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5209
5210 - Otherwise punt.
5211
5212 The second check is enough to detect LP64 objects generated by pre-4.0
5213 compilers because, in the kind of output generated by those compilers,
5214 the first relocation will be associated with either a CIE personality
5215 routine or an FDE start address. Furthermore, the compilers never
5216 used a special (non-pointer) encoding for this ABI.
5217
5218 Checking the relocation type should also be safe because there is no
5219 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5220 did so. */
5221
5222unsigned int
5223_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5224{
5225 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5226 return 8;
5227 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5228 {
5229 bfd_boolean long32_p, long64_p;
5230
5231 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5232 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5233 if (long32_p && long64_p)
5234 return 0;
5235 if (long32_p)
5236 return 4;
5237 if (long64_p)
5238 return 8;
5239
5240 if (sec->reloc_count > 0
5241 && elf_section_data (sec)->relocs != NULL
5242 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5243 == R_MIPS_64))
5244 return 8;
5245
5246 return 0;
5247 }
5248 return 4;
5249}
5250\f
174fd7f9
RS
5251/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5252 relocations against two unnamed section symbols to resolve to the
5253 same address. For example, if we have code like:
5254
5255 lw $4,%got_disp(.data)($gp)
5256 lw $25,%got_disp(.text)($gp)
5257 jalr $25
5258
5259 then the linker will resolve both relocations to .data and the program
5260 will jump there rather than to .text.
5261
5262 We can work around this problem by giving names to local section symbols.
5263 This is also what the MIPSpro tools do. */
5264
5265bfd_boolean
5266_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5267{
5268 return SGI_COMPAT (abfd);
5269}
5270\f
b49e97c9
TS
5271/* Work over a section just before writing it out. This routine is
5272 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5273 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5274 a better way. */
5275
b34976b6 5276bfd_boolean
9719ad41 5277_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5278{
5279 if (hdr->sh_type == SHT_MIPS_REGINFO
5280 && hdr->sh_size > 0)
5281 {
5282 bfd_byte buf[4];
5283
5284 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5285 BFD_ASSERT (hdr->contents == NULL);
5286
5287 if (bfd_seek (abfd,
5288 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5289 SEEK_SET) != 0)
b34976b6 5290 return FALSE;
b49e97c9 5291 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5292 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5293 return FALSE;
b49e97c9
TS
5294 }
5295
5296 if (hdr->sh_type == SHT_MIPS_OPTIONS
5297 && hdr->bfd_section != NULL
f0abc2a1
AM
5298 && mips_elf_section_data (hdr->bfd_section) != NULL
5299 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5300 {
5301 bfd_byte *contents, *l, *lend;
5302
f0abc2a1
AM
5303 /* We stored the section contents in the tdata field in the
5304 set_section_contents routine. We save the section contents
5305 so that we don't have to read them again.
b49e97c9
TS
5306 At this point we know that elf_gp is set, so we can look
5307 through the section contents to see if there is an
5308 ODK_REGINFO structure. */
5309
f0abc2a1 5310 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5311 l = contents;
5312 lend = contents + hdr->sh_size;
5313 while (l + sizeof (Elf_External_Options) <= lend)
5314 {
5315 Elf_Internal_Options intopt;
5316
5317 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5318 &intopt);
1bc8074d
MR
5319 if (intopt.size < sizeof (Elf_External_Options))
5320 {
5321 (*_bfd_error_handler)
5322 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5323 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5324 break;
5325 }
b49e97c9
TS
5326 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5327 {
5328 bfd_byte buf[8];
5329
5330 if (bfd_seek (abfd,
5331 (hdr->sh_offset
5332 + (l - contents)
5333 + sizeof (Elf_External_Options)
5334 + (sizeof (Elf64_External_RegInfo) - 8)),
5335 SEEK_SET) != 0)
b34976b6 5336 return FALSE;
b49e97c9 5337 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5338 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5339 return FALSE;
b49e97c9
TS
5340 }
5341 else if (intopt.kind == ODK_REGINFO)
5342 {
5343 bfd_byte buf[4];
5344
5345 if (bfd_seek (abfd,
5346 (hdr->sh_offset
5347 + (l - contents)
5348 + sizeof (Elf_External_Options)
5349 + (sizeof (Elf32_External_RegInfo) - 4)),
5350 SEEK_SET) != 0)
b34976b6 5351 return FALSE;
b49e97c9 5352 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5353 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5354 return FALSE;
b49e97c9
TS
5355 }
5356 l += intopt.size;
5357 }
5358 }
5359
5360 if (hdr->bfd_section != NULL)
5361 {
5362 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5363
5364 if (strcmp (name, ".sdata") == 0
5365 || strcmp (name, ".lit8") == 0
5366 || strcmp (name, ".lit4") == 0)
5367 {
5368 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5369 hdr->sh_type = SHT_PROGBITS;
5370 }
5371 else if (strcmp (name, ".sbss") == 0)
5372 {
5373 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5374 hdr->sh_type = SHT_NOBITS;
5375 }
5376 else if (strcmp (name, ".srdata") == 0)
5377 {
5378 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5379 hdr->sh_type = SHT_PROGBITS;
5380 }
5381 else if (strcmp (name, ".compact_rel") == 0)
5382 {
5383 hdr->sh_flags = 0;
5384 hdr->sh_type = SHT_PROGBITS;
5385 }
5386 else if (strcmp (name, ".rtproc") == 0)
5387 {
5388 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5389 {
5390 unsigned int adjust;
5391
5392 adjust = hdr->sh_size % hdr->sh_addralign;
5393 if (adjust != 0)
5394 hdr->sh_size += hdr->sh_addralign - adjust;
5395 }
5396 }
5397 }
5398
b34976b6 5399 return TRUE;
b49e97c9
TS
5400}
5401
5402/* Handle a MIPS specific section when reading an object file. This
5403 is called when elfcode.h finds a section with an unknown type.
5404 This routine supports both the 32-bit and 64-bit ELF ABI.
5405
5406 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5407 how to. */
5408
b34976b6 5409bfd_boolean
6dc132d9
L
5410_bfd_mips_elf_section_from_shdr (bfd *abfd,
5411 Elf_Internal_Shdr *hdr,
5412 const char *name,
5413 int shindex)
b49e97c9
TS
5414{
5415 flagword flags = 0;
5416
5417 /* There ought to be a place to keep ELF backend specific flags, but
5418 at the moment there isn't one. We just keep track of the
5419 sections by their name, instead. Fortunately, the ABI gives
5420 suggested names for all the MIPS specific sections, so we will
5421 probably get away with this. */
5422 switch (hdr->sh_type)
5423 {
5424 case SHT_MIPS_LIBLIST:
5425 if (strcmp (name, ".liblist") != 0)
b34976b6 5426 return FALSE;
b49e97c9
TS
5427 break;
5428 case SHT_MIPS_MSYM:
5429 if (strcmp (name, ".msym") != 0)
b34976b6 5430 return FALSE;
b49e97c9
TS
5431 break;
5432 case SHT_MIPS_CONFLICT:
5433 if (strcmp (name, ".conflict") != 0)
b34976b6 5434 return FALSE;
b49e97c9
TS
5435 break;
5436 case SHT_MIPS_GPTAB:
0112cd26 5437 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5438 return FALSE;
b49e97c9
TS
5439 break;
5440 case SHT_MIPS_UCODE:
5441 if (strcmp (name, ".ucode") != 0)
b34976b6 5442 return FALSE;
b49e97c9
TS
5443 break;
5444 case SHT_MIPS_DEBUG:
5445 if (strcmp (name, ".mdebug") != 0)
b34976b6 5446 return FALSE;
b49e97c9
TS
5447 flags = SEC_DEBUGGING;
5448 break;
5449 case SHT_MIPS_REGINFO:
5450 if (strcmp (name, ".reginfo") != 0
5451 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5452 return FALSE;
b49e97c9
TS
5453 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5454 break;
5455 case SHT_MIPS_IFACE:
5456 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5457 return FALSE;
b49e97c9
TS
5458 break;
5459 case SHT_MIPS_CONTENT:
0112cd26 5460 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5461 return FALSE;
b49e97c9
TS
5462 break;
5463 case SHT_MIPS_OPTIONS:
cc2e31b9 5464 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5465 return FALSE;
b49e97c9
TS
5466 break;
5467 case SHT_MIPS_DWARF:
0112cd26 5468 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5469 return FALSE;
b49e97c9
TS
5470 break;
5471 case SHT_MIPS_SYMBOL_LIB:
5472 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5473 return FALSE;
b49e97c9
TS
5474 break;
5475 case SHT_MIPS_EVENTS:
0112cd26
NC
5476 if (! CONST_STRNEQ (name, ".MIPS.events")
5477 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5478 return FALSE;
b49e97c9
TS
5479 break;
5480 default:
cc2e31b9 5481 break;
b49e97c9
TS
5482 }
5483
6dc132d9 5484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5485 return FALSE;
b49e97c9
TS
5486
5487 if (flags)
5488 {
5489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5490 (bfd_get_section_flags (abfd,
5491 hdr->bfd_section)
5492 | flags)))
b34976b6 5493 return FALSE;
b49e97c9
TS
5494 }
5495
5496 /* FIXME: We should record sh_info for a .gptab section. */
5497
5498 /* For a .reginfo section, set the gp value in the tdata information
5499 from the contents of this section. We need the gp value while
5500 processing relocs, so we just get it now. The .reginfo section
5501 is not used in the 64-bit MIPS ELF ABI. */
5502 if (hdr->sh_type == SHT_MIPS_REGINFO)
5503 {
5504 Elf32_External_RegInfo ext;
5505 Elf32_RegInfo s;
5506
9719ad41
RS
5507 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5508 &ext, 0, sizeof ext))
b34976b6 5509 return FALSE;
b49e97c9
TS
5510 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5511 elf_gp (abfd) = s.ri_gp_value;
5512 }
5513
5514 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5515 set the gp value based on what we find. We may see both
5516 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5517 they should agree. */
5518 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5519 {
5520 bfd_byte *contents, *l, *lend;
5521
9719ad41 5522 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5523 if (contents == NULL)
b34976b6 5524 return FALSE;
b49e97c9 5525 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5526 0, hdr->sh_size))
b49e97c9
TS
5527 {
5528 free (contents);
b34976b6 5529 return FALSE;
b49e97c9
TS
5530 }
5531 l = contents;
5532 lend = contents + hdr->sh_size;
5533 while (l + sizeof (Elf_External_Options) <= lend)
5534 {
5535 Elf_Internal_Options intopt;
5536
5537 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5538 &intopt);
1bc8074d
MR
5539 if (intopt.size < sizeof (Elf_External_Options))
5540 {
5541 (*_bfd_error_handler)
5542 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5543 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5544 break;
5545 }
b49e97c9
TS
5546 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5547 {
5548 Elf64_Internal_RegInfo intreg;
5549
5550 bfd_mips_elf64_swap_reginfo_in
5551 (abfd,
5552 ((Elf64_External_RegInfo *)
5553 (l + sizeof (Elf_External_Options))),
5554 &intreg);
5555 elf_gp (abfd) = intreg.ri_gp_value;
5556 }
5557 else if (intopt.kind == ODK_REGINFO)
5558 {
5559 Elf32_RegInfo intreg;
5560
5561 bfd_mips_elf32_swap_reginfo_in
5562 (abfd,
5563 ((Elf32_External_RegInfo *)
5564 (l + sizeof (Elf_External_Options))),
5565 &intreg);
5566 elf_gp (abfd) = intreg.ri_gp_value;
5567 }
5568 l += intopt.size;
5569 }
5570 free (contents);
5571 }
5572
b34976b6 5573 return TRUE;
b49e97c9
TS
5574}
5575
5576/* Set the correct type for a MIPS ELF section. We do this by the
5577 section name, which is a hack, but ought to work. This routine is
5578 used by both the 32-bit and the 64-bit ABI. */
5579
b34976b6 5580bfd_boolean
9719ad41 5581_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5582{
0414f35b 5583 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5584
5585 if (strcmp (name, ".liblist") == 0)
5586 {
5587 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5588 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5589 /* The sh_link field is set in final_write_processing. */
5590 }
5591 else if (strcmp (name, ".conflict") == 0)
5592 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5593 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5594 {
5595 hdr->sh_type = SHT_MIPS_GPTAB;
5596 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5597 /* The sh_info field is set in final_write_processing. */
5598 }
5599 else if (strcmp (name, ".ucode") == 0)
5600 hdr->sh_type = SHT_MIPS_UCODE;
5601 else if (strcmp (name, ".mdebug") == 0)
5602 {
5603 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5604 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5605 entsize of 0. FIXME: Does this matter? */
5606 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5607 hdr->sh_entsize = 0;
5608 else
5609 hdr->sh_entsize = 1;
5610 }
5611 else if (strcmp (name, ".reginfo") == 0)
5612 {
5613 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5614 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5615 entsize of 0x18. FIXME: Does this matter? */
5616 if (SGI_COMPAT (abfd))
5617 {
5618 if ((abfd->flags & DYNAMIC) != 0)
5619 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5620 else
5621 hdr->sh_entsize = 1;
5622 }
5623 else
5624 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5625 }
5626 else if (SGI_COMPAT (abfd)
5627 && (strcmp (name, ".hash") == 0
5628 || strcmp (name, ".dynamic") == 0
5629 || strcmp (name, ".dynstr") == 0))
5630 {
5631 if (SGI_COMPAT (abfd))
5632 hdr->sh_entsize = 0;
5633#if 0
8dc1a139 5634 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5635 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5636#endif
5637 }
5638 else if (strcmp (name, ".got") == 0
5639 || strcmp (name, ".srdata") == 0
5640 || strcmp (name, ".sdata") == 0
5641 || strcmp (name, ".sbss") == 0
5642 || strcmp (name, ".lit4") == 0
5643 || strcmp (name, ".lit8") == 0)
5644 hdr->sh_flags |= SHF_MIPS_GPREL;
5645 else if (strcmp (name, ".MIPS.interfaces") == 0)
5646 {
5647 hdr->sh_type = SHT_MIPS_IFACE;
5648 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5649 }
0112cd26 5650 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5651 {
5652 hdr->sh_type = SHT_MIPS_CONTENT;
5653 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5654 /* The sh_info field is set in final_write_processing. */
5655 }
cc2e31b9 5656 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5657 {
5658 hdr->sh_type = SHT_MIPS_OPTIONS;
5659 hdr->sh_entsize = 1;
5660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5661 }
0112cd26 5662 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5663 hdr->sh_type = SHT_MIPS_DWARF;
5664 else if (strcmp (name, ".MIPS.symlib") == 0)
5665 {
5666 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5667 /* The sh_link and sh_info fields are set in
5668 final_write_processing. */
5669 }
0112cd26
NC
5670 else if (CONST_STRNEQ (name, ".MIPS.events")
5671 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5672 {
5673 hdr->sh_type = SHT_MIPS_EVENTS;
5674 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5675 /* The sh_link field is set in final_write_processing. */
5676 }
5677 else if (strcmp (name, ".msym") == 0)
5678 {
5679 hdr->sh_type = SHT_MIPS_MSYM;
5680 hdr->sh_flags |= SHF_ALLOC;
5681 hdr->sh_entsize = 8;
5682 }
5683
7a79a000
TS
5684 /* The generic elf_fake_sections will set up REL_HDR using the default
5685 kind of relocations. We used to set up a second header for the
5686 non-default kind of relocations here, but only NewABI would use
5687 these, and the IRIX ld doesn't like resulting empty RELA sections.
5688 Thus we create those header only on demand now. */
b49e97c9 5689
b34976b6 5690 return TRUE;
b49e97c9
TS
5691}
5692
5693/* Given a BFD section, try to locate the corresponding ELF section
5694 index. This is used by both the 32-bit and the 64-bit ABI.
5695 Actually, it's not clear to me that the 64-bit ABI supports these,
5696 but for non-PIC objects we will certainly want support for at least
5697 the .scommon section. */
5698
b34976b6 5699bfd_boolean
9719ad41
RS
5700_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5701 asection *sec, int *retval)
b49e97c9
TS
5702{
5703 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5704 {
5705 *retval = SHN_MIPS_SCOMMON;
b34976b6 5706 return TRUE;
b49e97c9
TS
5707 }
5708 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5709 {
5710 *retval = SHN_MIPS_ACOMMON;
b34976b6 5711 return TRUE;
b49e97c9 5712 }
b34976b6 5713 return FALSE;
b49e97c9
TS
5714}
5715\f
5716/* Hook called by the linker routine which adds symbols from an object
5717 file. We must handle the special MIPS section numbers here. */
5718
b34976b6 5719bfd_boolean
9719ad41 5720_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5721 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5722 flagword *flagsp ATTRIBUTE_UNUSED,
5723 asection **secp, bfd_vma *valp)
b49e97c9
TS
5724{
5725 if (SGI_COMPAT (abfd)
5726 && (abfd->flags & DYNAMIC) != 0
5727 && strcmp (*namep, "_rld_new_interface") == 0)
5728 {
8dc1a139 5729 /* Skip IRIX5 rld entry name. */
b49e97c9 5730 *namep = NULL;
b34976b6 5731 return TRUE;
b49e97c9
TS
5732 }
5733
eedecc07
DD
5734 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5735 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5736 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5737 a magic symbol resolved by the linker, we ignore this bogus definition
5738 of _gp_disp. New ABI objects do not suffer from this problem so this
5739 is not done for them. */
5740 if (!NEWABI_P(abfd)
5741 && (sym->st_shndx == SHN_ABS)
5742 && (strcmp (*namep, "_gp_disp") == 0))
5743 {
5744 *namep = NULL;
5745 return TRUE;
5746 }
5747
b49e97c9
TS
5748 switch (sym->st_shndx)
5749 {
5750 case SHN_COMMON:
5751 /* Common symbols less than the GP size are automatically
5752 treated as SHN_MIPS_SCOMMON symbols. */
5753 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5754 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5755 || IRIX_COMPAT (abfd) == ict_irix6)
5756 break;
5757 /* Fall through. */
5758 case SHN_MIPS_SCOMMON:
5759 *secp = bfd_make_section_old_way (abfd, ".scommon");
5760 (*secp)->flags |= SEC_IS_COMMON;
5761 *valp = sym->st_size;
5762 break;
5763
5764 case SHN_MIPS_TEXT:
5765 /* This section is used in a shared object. */
5766 if (elf_tdata (abfd)->elf_text_section == NULL)
5767 {
5768 asymbol *elf_text_symbol;
5769 asection *elf_text_section;
5770 bfd_size_type amt = sizeof (asection);
5771
5772 elf_text_section = bfd_zalloc (abfd, amt);
5773 if (elf_text_section == NULL)
b34976b6 5774 return FALSE;
b49e97c9
TS
5775
5776 amt = sizeof (asymbol);
5777 elf_text_symbol = bfd_zalloc (abfd, amt);
5778 if (elf_text_symbol == NULL)
b34976b6 5779 return FALSE;
b49e97c9
TS
5780
5781 /* Initialize the section. */
5782
5783 elf_tdata (abfd)->elf_text_section = elf_text_section;
5784 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5785
5786 elf_text_section->symbol = elf_text_symbol;
5787 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5788
5789 elf_text_section->name = ".text";
5790 elf_text_section->flags = SEC_NO_FLAGS;
5791 elf_text_section->output_section = NULL;
5792 elf_text_section->owner = abfd;
5793 elf_text_symbol->name = ".text";
5794 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5795 elf_text_symbol->section = elf_text_section;
5796 }
5797 /* This code used to do *secp = bfd_und_section_ptr if
5798 info->shared. I don't know why, and that doesn't make sense,
5799 so I took it out. */
5800 *secp = elf_tdata (abfd)->elf_text_section;
5801 break;
5802
5803 case SHN_MIPS_ACOMMON:
5804 /* Fall through. XXX Can we treat this as allocated data? */
5805 case SHN_MIPS_DATA:
5806 /* This section is used in a shared object. */
5807 if (elf_tdata (abfd)->elf_data_section == NULL)
5808 {
5809 asymbol *elf_data_symbol;
5810 asection *elf_data_section;
5811 bfd_size_type amt = sizeof (asection);
5812
5813 elf_data_section = bfd_zalloc (abfd, amt);
5814 if (elf_data_section == NULL)
b34976b6 5815 return FALSE;
b49e97c9
TS
5816
5817 amt = sizeof (asymbol);
5818 elf_data_symbol = bfd_zalloc (abfd, amt);
5819 if (elf_data_symbol == NULL)
b34976b6 5820 return FALSE;
b49e97c9
TS
5821
5822 /* Initialize the section. */
5823
5824 elf_tdata (abfd)->elf_data_section = elf_data_section;
5825 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5826
5827 elf_data_section->symbol = elf_data_symbol;
5828 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5829
5830 elf_data_section->name = ".data";
5831 elf_data_section->flags = SEC_NO_FLAGS;
5832 elf_data_section->output_section = NULL;
5833 elf_data_section->owner = abfd;
5834 elf_data_symbol->name = ".data";
5835 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5836 elf_data_symbol->section = elf_data_section;
5837 }
5838 /* This code used to do *secp = bfd_und_section_ptr if
5839 info->shared. I don't know why, and that doesn't make sense,
5840 so I took it out. */
5841 *secp = elf_tdata (abfd)->elf_data_section;
5842 break;
5843
5844 case SHN_MIPS_SUNDEFINED:
5845 *secp = bfd_und_section_ptr;
5846 break;
5847 }
5848
5849 if (SGI_COMPAT (abfd)
5850 && ! info->shared
5851 && info->hash->creator == abfd->xvec
5852 && strcmp (*namep, "__rld_obj_head") == 0)
5853 {
5854 struct elf_link_hash_entry *h;
14a793b2 5855 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5856
5857 /* Mark __rld_obj_head as dynamic. */
14a793b2 5858 bh = NULL;
b49e97c9 5859 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5860 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5861 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5862 return FALSE;
14a793b2
AM
5863
5864 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5865 h->non_elf = 0;
5866 h->def_regular = 1;
b49e97c9
TS
5867 h->type = STT_OBJECT;
5868
c152c796 5869 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5870 return FALSE;
b49e97c9 5871
b34976b6 5872 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5873 }
5874
5875 /* If this is a mips16 text symbol, add 1 to the value to make it
5876 odd. This will cause something like .word SYM to come up with
5877 the right value when it is loaded into the PC. */
5878 if (sym->st_other == STO_MIPS16)
5879 ++*valp;
5880
b34976b6 5881 return TRUE;
b49e97c9
TS
5882}
5883
5884/* This hook function is called before the linker writes out a global
5885 symbol. We mark symbols as small common if appropriate. This is
5886 also where we undo the increment of the value for a mips16 symbol. */
5887
b34976b6 5888bfd_boolean
9719ad41
RS
5889_bfd_mips_elf_link_output_symbol_hook
5890 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5891 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5892 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5893{
5894 /* If we see a common symbol, which implies a relocatable link, then
5895 if a symbol was small common in an input file, mark it as small
5896 common in the output file. */
5897 if (sym->st_shndx == SHN_COMMON
5898 && strcmp (input_sec->name, ".scommon") == 0)
5899 sym->st_shndx = SHN_MIPS_SCOMMON;
5900
79cda7cf
FF
5901 if (sym->st_other == STO_MIPS16)
5902 sym->st_value &= ~1;
b49e97c9 5903
b34976b6 5904 return TRUE;
b49e97c9
TS
5905}
5906\f
5907/* Functions for the dynamic linker. */
5908
5909/* Create dynamic sections when linking against a dynamic object. */
5910
b34976b6 5911bfd_boolean
9719ad41 5912_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5913{
5914 struct elf_link_hash_entry *h;
14a793b2 5915 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5916 flagword flags;
5917 register asection *s;
5918 const char * const *namep;
0a44bf69 5919 struct mips_elf_link_hash_table *htab;
b49e97c9 5920
0a44bf69 5921 htab = mips_elf_hash_table (info);
b49e97c9
TS
5922 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5923 | SEC_LINKER_CREATED | SEC_READONLY);
5924
0a44bf69
RS
5925 /* The psABI requires a read-only .dynamic section, but the VxWorks
5926 EABI doesn't. */
5927 if (!htab->is_vxworks)
b49e97c9 5928 {
0a44bf69
RS
5929 s = bfd_get_section_by_name (abfd, ".dynamic");
5930 if (s != NULL)
5931 {
5932 if (! bfd_set_section_flags (abfd, s, flags))
5933 return FALSE;
5934 }
b49e97c9
TS
5935 }
5936
5937 /* We need to create .got section. */
f4416af6
AO
5938 if (! mips_elf_create_got_section (abfd, info, FALSE))
5939 return FALSE;
5940
0a44bf69 5941 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5942 return FALSE;
b49e97c9 5943
b49e97c9
TS
5944 /* Create .stub section. */
5945 if (bfd_get_section_by_name (abfd,
5946 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5947 {
3496cb2a
L
5948 s = bfd_make_section_with_flags (abfd,
5949 MIPS_ELF_STUB_SECTION_NAME (abfd),
5950 flags | SEC_CODE);
b49e97c9 5951 if (s == NULL
b49e97c9
TS
5952 || ! bfd_set_section_alignment (abfd, s,
5953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5954 return FALSE;
b49e97c9
TS
5955 }
5956
5957 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5958 && !info->shared
5959 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5960 {
3496cb2a
L
5961 s = bfd_make_section_with_flags (abfd, ".rld_map",
5962 flags &~ (flagword) SEC_READONLY);
b49e97c9 5963 if (s == NULL
b49e97c9
TS
5964 || ! bfd_set_section_alignment (abfd, s,
5965 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5966 return FALSE;
b49e97c9
TS
5967 }
5968
5969 /* On IRIX5, we adjust add some additional symbols and change the
5970 alignments of several sections. There is no ABI documentation
5971 indicating that this is necessary on IRIX6, nor any evidence that
5972 the linker takes such action. */
5973 if (IRIX_COMPAT (abfd) == ict_irix5)
5974 {
5975 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5976 {
14a793b2 5977 bh = NULL;
b49e97c9 5978 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5979 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5980 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5981 return FALSE;
14a793b2
AM
5982
5983 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5984 h->non_elf = 0;
5985 h->def_regular = 1;
b49e97c9
TS
5986 h->type = STT_SECTION;
5987
c152c796 5988 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5989 return FALSE;
b49e97c9
TS
5990 }
5991
5992 /* We need to create a .compact_rel section. */
5993 if (SGI_COMPAT (abfd))
5994 {
5995 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5996 return FALSE;
b49e97c9
TS
5997 }
5998
44c410de 5999 /* Change alignments of some sections. */
b49e97c9
TS
6000 s = bfd_get_section_by_name (abfd, ".hash");
6001 if (s != NULL)
d80dcc6a 6002 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6003 s = bfd_get_section_by_name (abfd, ".dynsym");
6004 if (s != NULL)
d80dcc6a 6005 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6006 s = bfd_get_section_by_name (abfd, ".dynstr");
6007 if (s != NULL)
d80dcc6a 6008 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6009 s = bfd_get_section_by_name (abfd, ".reginfo");
6010 if (s != NULL)
d80dcc6a 6011 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6012 s = bfd_get_section_by_name (abfd, ".dynamic");
6013 if (s != NULL)
d80dcc6a 6014 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6015 }
6016
6017 if (!info->shared)
6018 {
14a793b2
AM
6019 const char *name;
6020
6021 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6022 bh = NULL;
6023 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6024 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6025 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6026 return FALSE;
14a793b2
AM
6027
6028 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6029 h->non_elf = 0;
6030 h->def_regular = 1;
b49e97c9
TS
6031 h->type = STT_SECTION;
6032
c152c796 6033 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6034 return FALSE;
b49e97c9
TS
6035
6036 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6037 {
6038 /* __rld_map is a four byte word located in the .data section
6039 and is filled in by the rtld to contain a pointer to
6040 the _r_debug structure. Its symbol value will be set in
6041 _bfd_mips_elf_finish_dynamic_symbol. */
6042 s = bfd_get_section_by_name (abfd, ".rld_map");
6043 BFD_ASSERT (s != NULL);
6044
14a793b2
AM
6045 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6046 bh = NULL;
6047 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6048 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6049 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6050 return FALSE;
14a793b2
AM
6051
6052 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6053 h->non_elf = 0;
6054 h->def_regular = 1;
b49e97c9
TS
6055 h->type = STT_OBJECT;
6056
c152c796 6057 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6058 return FALSE;
b49e97c9
TS
6059 }
6060 }
6061
0a44bf69
RS
6062 if (htab->is_vxworks)
6063 {
6064 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6065 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6066 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6067 return FALSE;
6068
6069 /* Cache the sections created above. */
6070 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6071 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6072 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6073 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6074 if (!htab->sdynbss
6075 || (!htab->srelbss && !info->shared)
6076 || !htab->srelplt
6077 || !htab->splt)
6078 abort ();
6079
6080 /* Do the usual VxWorks handling. */
6081 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6082 return FALSE;
6083
6084 /* Work out the PLT sizes. */
6085 if (info->shared)
6086 {
6087 htab->plt_header_size
6088 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6089 htab->plt_entry_size
6090 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6091 }
6092 else
6093 {
6094 htab->plt_header_size
6095 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6096 htab->plt_entry_size
6097 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6098 }
6099 }
6100
b34976b6 6101 return TRUE;
b49e97c9
TS
6102}
6103\f
6104/* Look through the relocs for a section during the first phase, and
6105 allocate space in the global offset table. */
6106
b34976b6 6107bfd_boolean
9719ad41
RS
6108_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6109 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6110{
6111 const char *name;
6112 bfd *dynobj;
6113 Elf_Internal_Shdr *symtab_hdr;
6114 struct elf_link_hash_entry **sym_hashes;
6115 struct mips_got_info *g;
6116 size_t extsymoff;
6117 const Elf_Internal_Rela *rel;
6118 const Elf_Internal_Rela *rel_end;
6119 asection *sgot;
6120 asection *sreloc;
9c5bfbb7 6121 const struct elf_backend_data *bed;
0a44bf69 6122 struct mips_elf_link_hash_table *htab;
b49e97c9 6123
1049f94e 6124 if (info->relocatable)
b34976b6 6125 return TRUE;
b49e97c9 6126
0a44bf69 6127 htab = mips_elf_hash_table (info);
b49e97c9
TS
6128 dynobj = elf_hash_table (info)->dynobj;
6129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6130 sym_hashes = elf_sym_hashes (abfd);
6131 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6132
6133 /* Check for the mips16 stub sections. */
6134
6135 name = bfd_get_section_name (abfd, sec);
b9d58d71 6136 if (FN_STUB_P (name))
b49e97c9
TS
6137 {
6138 unsigned long r_symndx;
6139
6140 /* Look at the relocation information to figure out which symbol
6141 this is for. */
6142
6143 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6144
6145 if (r_symndx < extsymoff
6146 || sym_hashes[r_symndx - extsymoff] == NULL)
6147 {
6148 asection *o;
6149
6150 /* This stub is for a local symbol. This stub will only be
6151 needed if there is some relocation in this BFD, other
6152 than a 16 bit function call, which refers to this symbol. */
6153 for (o = abfd->sections; o != NULL; o = o->next)
6154 {
6155 Elf_Internal_Rela *sec_relocs;
6156 const Elf_Internal_Rela *r, *rend;
6157
6158 /* We can ignore stub sections when looking for relocs. */
6159 if ((o->flags & SEC_RELOC) == 0
6160 || o->reloc_count == 0
b9d58d71 6161 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6162 continue;
6163
45d6a902 6164 sec_relocs
9719ad41 6165 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6166 info->keep_memory);
b49e97c9 6167 if (sec_relocs == NULL)
b34976b6 6168 return FALSE;
b49e97c9
TS
6169
6170 rend = sec_relocs + o->reloc_count;
6171 for (r = sec_relocs; r < rend; r++)
6172 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6173 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6174 break;
6175
6cdc0ccc 6176 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6177 free (sec_relocs);
6178
6179 if (r < rend)
6180 break;
6181 }
6182
6183 if (o == NULL)
6184 {
6185 /* There is no non-call reloc for this stub, so we do
6186 not need it. Since this function is called before
6187 the linker maps input sections to output sections, we
6188 can easily discard it by setting the SEC_EXCLUDE
6189 flag. */
6190 sec->flags |= SEC_EXCLUDE;
b34976b6 6191 return TRUE;
b49e97c9
TS
6192 }
6193
6194 /* Record this stub in an array of local symbol stubs for
6195 this BFD. */
6196 if (elf_tdata (abfd)->local_stubs == NULL)
6197 {
6198 unsigned long symcount;
6199 asection **n;
6200 bfd_size_type amt;
6201
6202 if (elf_bad_symtab (abfd))
6203 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6204 else
6205 symcount = symtab_hdr->sh_info;
6206 amt = symcount * sizeof (asection *);
9719ad41 6207 n = bfd_zalloc (abfd, amt);
b49e97c9 6208 if (n == NULL)
b34976b6 6209 return FALSE;
b49e97c9
TS
6210 elf_tdata (abfd)->local_stubs = n;
6211 }
6212
b9d58d71 6213 sec->flags |= SEC_KEEP;
b49e97c9
TS
6214 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6215
6216 /* We don't need to set mips16_stubs_seen in this case.
6217 That flag is used to see whether we need to look through
6218 the global symbol table for stubs. We don't need to set
6219 it here, because we just have a local stub. */
6220 }
6221 else
6222 {
6223 struct mips_elf_link_hash_entry *h;
6224
6225 h = ((struct mips_elf_link_hash_entry *)
6226 sym_hashes[r_symndx - extsymoff]);
6227
973a3492
L
6228 while (h->root.root.type == bfd_link_hash_indirect
6229 || h->root.root.type == bfd_link_hash_warning)
6230 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6231
b49e97c9
TS
6232 /* H is the symbol this stub is for. */
6233
b9d58d71
TS
6234 /* If we already have an appropriate stub for this function, we
6235 don't need another one, so we can discard this one. Since
6236 this function is called before the linker maps input sections
6237 to output sections, we can easily discard it by setting the
6238 SEC_EXCLUDE flag. */
6239 if (h->fn_stub != NULL)
6240 {
6241 sec->flags |= SEC_EXCLUDE;
6242 return TRUE;
6243 }
6244
6245 sec->flags |= SEC_KEEP;
b49e97c9 6246 h->fn_stub = sec;
b34976b6 6247 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6248 }
6249 }
b9d58d71 6250 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6251 {
6252 unsigned long r_symndx;
6253 struct mips_elf_link_hash_entry *h;
6254 asection **loc;
6255
6256 /* Look at the relocation information to figure out which symbol
6257 this is for. */
6258
6259 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6260
6261 if (r_symndx < extsymoff
6262 || sym_hashes[r_symndx - extsymoff] == NULL)
6263 {
b9d58d71 6264 asection *o;
b49e97c9 6265
b9d58d71
TS
6266 /* This stub is for a local symbol. This stub will only be
6267 needed if there is some relocation (R_MIPS16_26) in this BFD
6268 that refers to this symbol. */
6269 for (o = abfd->sections; o != NULL; o = o->next)
6270 {
6271 Elf_Internal_Rela *sec_relocs;
6272 const Elf_Internal_Rela *r, *rend;
6273
6274 /* We can ignore stub sections when looking for relocs. */
6275 if ((o->flags & SEC_RELOC) == 0
6276 || o->reloc_count == 0
6277 || mips16_stub_section_p (abfd, o))
6278 continue;
6279
6280 sec_relocs
6281 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6282 info->keep_memory);
6283 if (sec_relocs == NULL)
6284 return FALSE;
6285
6286 rend = sec_relocs + o->reloc_count;
6287 for (r = sec_relocs; r < rend; r++)
6288 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6289 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6290 break;
6291
6292 if (elf_section_data (o)->relocs != sec_relocs)
6293 free (sec_relocs);
6294
6295 if (r < rend)
6296 break;
6297 }
6298
6299 if (o == NULL)
6300 {
6301 /* There is no non-call reloc for this stub, so we do
6302 not need it. Since this function is called before
6303 the linker maps input sections to output sections, we
6304 can easily discard it by setting the SEC_EXCLUDE
6305 flag. */
6306 sec->flags |= SEC_EXCLUDE;
6307 return TRUE;
6308 }
6309
6310 /* Record this stub in an array of local symbol call_stubs for
6311 this BFD. */
6312 if (elf_tdata (abfd)->local_call_stubs == NULL)
6313 {
6314 unsigned long symcount;
6315 asection **n;
6316 bfd_size_type amt;
6317
6318 if (elf_bad_symtab (abfd))
6319 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6320 else
6321 symcount = symtab_hdr->sh_info;
6322 amt = symcount * sizeof (asection *);
6323 n = bfd_zalloc (abfd, amt);
6324 if (n == NULL)
6325 return FALSE;
6326 elf_tdata (abfd)->local_call_stubs = n;
6327 }
b49e97c9 6328
b9d58d71
TS
6329 sec->flags |= SEC_KEEP;
6330 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6331
b9d58d71
TS
6332 /* We don't need to set mips16_stubs_seen in this case.
6333 That flag is used to see whether we need to look through
6334 the global symbol table for stubs. We don't need to set
6335 it here, because we just have a local stub. */
6336 }
b49e97c9 6337 else
b49e97c9 6338 {
b9d58d71
TS
6339 h = ((struct mips_elf_link_hash_entry *)
6340 sym_hashes[r_symndx - extsymoff]);
6341
6342 /* H is the symbol this stub is for. */
6343
6344 if (CALL_FP_STUB_P (name))
6345 loc = &h->call_fp_stub;
6346 else
6347 loc = &h->call_stub;
6348
6349 /* If we already have an appropriate stub for this function, we
6350 don't need another one, so we can discard this one. Since
6351 this function is called before the linker maps input sections
6352 to output sections, we can easily discard it by setting the
6353 SEC_EXCLUDE flag. */
6354 if (*loc != NULL)
6355 {
6356 sec->flags |= SEC_EXCLUDE;
6357 return TRUE;
6358 }
b49e97c9 6359
b9d58d71
TS
6360 sec->flags |= SEC_KEEP;
6361 *loc = sec;
6362 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6363 }
b49e97c9
TS
6364 }
6365
6366 if (dynobj == NULL)
6367 {
6368 sgot = NULL;
6369 g = NULL;
6370 }
6371 else
6372 {
f4416af6 6373 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6374 if (sgot == NULL)
6375 g = NULL;
6376 else
6377 {
f0abc2a1
AM
6378 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6379 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6380 BFD_ASSERT (g != NULL);
6381 }
6382 }
6383
6384 sreloc = NULL;
6385 bed = get_elf_backend_data (abfd);
6386 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6387 for (rel = relocs; rel < rel_end; ++rel)
6388 {
6389 unsigned long r_symndx;
6390 unsigned int r_type;
6391 struct elf_link_hash_entry *h;
6392
6393 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6394 r_type = ELF_R_TYPE (abfd, rel->r_info);
6395
6396 if (r_symndx < extsymoff)
6397 h = NULL;
6398 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6399 {
6400 (*_bfd_error_handler)
d003868e
AM
6401 (_("%B: Malformed reloc detected for section %s"),
6402 abfd, name);
b49e97c9 6403 bfd_set_error (bfd_error_bad_value);
b34976b6 6404 return FALSE;
b49e97c9
TS
6405 }
6406 else
6407 {
6408 h = sym_hashes[r_symndx - extsymoff];
6409
6410 /* This may be an indirect symbol created because of a version. */
6411 if (h != NULL)
6412 {
6413 while (h->root.type == bfd_link_hash_indirect)
6414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6415 }
6416 }
6417
6418 /* Some relocs require a global offset table. */
6419 if (dynobj == NULL || sgot == NULL)
6420 {
6421 switch (r_type)
6422 {
6423 case R_MIPS_GOT16:
6424 case R_MIPS_CALL16:
6425 case R_MIPS_CALL_HI16:
6426 case R_MIPS_CALL_LO16:
6427 case R_MIPS_GOT_HI16:
6428 case R_MIPS_GOT_LO16:
6429 case R_MIPS_GOT_PAGE:
6430 case R_MIPS_GOT_OFST:
6431 case R_MIPS_GOT_DISP:
86324f90 6432 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6433 case R_MIPS_TLS_GD:
6434 case R_MIPS_TLS_LDM:
b49e97c9
TS
6435 if (dynobj == NULL)
6436 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6437 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6438 return FALSE;
b49e97c9 6439 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6440 if (htab->is_vxworks && !info->shared)
6441 {
6442 (*_bfd_error_handler)
6443 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6444 abfd, (unsigned long) rel->r_offset);
6445 bfd_set_error (bfd_error_bad_value);
6446 return FALSE;
6447 }
b49e97c9
TS
6448 break;
6449
6450 case R_MIPS_32:
6451 case R_MIPS_REL32:
6452 case R_MIPS_64:
0a44bf69
RS
6453 /* In VxWorks executables, references to external symbols
6454 are handled using copy relocs or PLT stubs, so there's
6455 no need to add a dynamic relocation here. */
b49e97c9 6456 if (dynobj == NULL
0a44bf69 6457 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6458 && (sec->flags & SEC_ALLOC) != 0)
6459 elf_hash_table (info)->dynobj = dynobj = abfd;
6460 break;
6461
6462 default:
6463 break;
6464 }
6465 }
6466
0a44bf69
RS
6467 if (h)
6468 {
6469 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6470
6471 /* Relocations against the special VxWorks __GOTT_BASE__ and
6472 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6473 room for them in .rela.dyn. */
6474 if (is_gott_symbol (info, h))
6475 {
6476 if (sreloc == NULL)
6477 {
6478 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6479 if (sreloc == NULL)
6480 return FALSE;
6481 }
6482 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6483 if (MIPS_ELF_READONLY_SECTION (sec))
6484 /* We tell the dynamic linker that there are
6485 relocations against the text segment. */
6486 info->flags |= DF_TEXTREL;
0a44bf69
RS
6487 }
6488 }
6489 else if (r_type == R_MIPS_CALL_LO16
6490 || r_type == R_MIPS_GOT_LO16
6491 || r_type == R_MIPS_GOT_DISP
6492 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6493 {
6494 /* We may need a local GOT entry for this relocation. We
6495 don't count R_MIPS_GOT_PAGE because we can estimate the
6496 maximum number of pages needed by looking at the size of
6497 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6498 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6499 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6500 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6501 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6502 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6503 rel->r_addend, g, 0))
f4416af6 6504 return FALSE;
b49e97c9
TS
6505 }
6506
6507 switch (r_type)
6508 {
6509 case R_MIPS_CALL16:
6510 if (h == NULL)
6511 {
6512 (*_bfd_error_handler)
d003868e
AM
6513 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6514 abfd, (unsigned long) rel->r_offset);
b49e97c9 6515 bfd_set_error (bfd_error_bad_value);
b34976b6 6516 return FALSE;
b49e97c9
TS
6517 }
6518 /* Fall through. */
6519
6520 case R_MIPS_CALL_HI16:
6521 case R_MIPS_CALL_LO16:
6522 if (h != NULL)
6523 {
0a44bf69
RS
6524 /* VxWorks call relocations point the function's .got.plt
6525 entry, which will be allocated by adjust_dynamic_symbol.
6526 Otherwise, this symbol requires a global GOT entry. */
6527 if (!htab->is_vxworks
6528 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6529 return FALSE;
b49e97c9
TS
6530
6531 /* We need a stub, not a plt entry for the undefined
6532 function. But we record it as if it needs plt. See
c152c796 6533 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6534 h->needs_plt = 1;
b49e97c9
TS
6535 h->type = STT_FUNC;
6536 }
6537 break;
6538
0fdc1bf1
AO
6539 case R_MIPS_GOT_PAGE:
6540 /* If this is a global, overridable symbol, GOT_PAGE will
6541 decay to GOT_DISP, so we'll need a GOT entry for it. */
6542 if (h == NULL)
6543 break;
6544 else
6545 {
6546 struct mips_elf_link_hash_entry *hmips =
6547 (struct mips_elf_link_hash_entry *) h;
143d77c5 6548
0fdc1bf1
AO
6549 while (hmips->root.root.type == bfd_link_hash_indirect
6550 || hmips->root.root.type == bfd_link_hash_warning)
6551 hmips = (struct mips_elf_link_hash_entry *)
6552 hmips->root.root.u.i.link;
143d77c5 6553
f5385ebf 6554 if (hmips->root.def_regular
0fdc1bf1 6555 && ! (info->shared && ! info->symbolic
f5385ebf 6556 && ! hmips->root.forced_local))
0fdc1bf1
AO
6557 break;
6558 }
6559 /* Fall through. */
6560
b49e97c9
TS
6561 case R_MIPS_GOT16:
6562 case R_MIPS_GOT_HI16:
6563 case R_MIPS_GOT_LO16:
6564 case R_MIPS_GOT_DISP:
0f20cc35 6565 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6566 return FALSE;
b49e97c9
TS
6567 break;
6568
0f20cc35
DJ
6569 case R_MIPS_TLS_GOTTPREL:
6570 if (info->shared)
6571 info->flags |= DF_STATIC_TLS;
6572 /* Fall through */
6573
6574 case R_MIPS_TLS_LDM:
6575 if (r_type == R_MIPS_TLS_LDM)
6576 {
6577 r_symndx = 0;
6578 h = NULL;
6579 }
6580 /* Fall through */
6581
6582 case R_MIPS_TLS_GD:
6583 /* This symbol requires a global offset table entry, or two
6584 for TLS GD relocations. */
6585 {
6586 unsigned char flag = (r_type == R_MIPS_TLS_GD
6587 ? GOT_TLS_GD
6588 : r_type == R_MIPS_TLS_LDM
6589 ? GOT_TLS_LDM
6590 : GOT_TLS_IE);
6591 if (h != NULL)
6592 {
6593 struct mips_elf_link_hash_entry *hmips =
6594 (struct mips_elf_link_hash_entry *) h;
6595 hmips->tls_type |= flag;
6596
6597 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6598 return FALSE;
6599 }
6600 else
6601 {
6602 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6603
6604 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6605 rel->r_addend, g, flag))
6606 return FALSE;
6607 }
6608 }
6609 break;
6610
b49e97c9
TS
6611 case R_MIPS_32:
6612 case R_MIPS_REL32:
6613 case R_MIPS_64:
0a44bf69
RS
6614 /* In VxWorks executables, references to external symbols
6615 are handled using copy relocs or PLT stubs, so there's
6616 no need to add a .rela.dyn entry for this relocation. */
6617 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6618 && (sec->flags & SEC_ALLOC) != 0)
6619 {
6620 if (sreloc == NULL)
6621 {
0a44bf69 6622 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6623 if (sreloc == NULL)
f4416af6 6624 return FALSE;
b49e97c9 6625 }
b49e97c9 6626 if (info->shared)
82f0cfbd
EC
6627 {
6628 /* When creating a shared object, we must copy these
6629 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6630 relocs. Make room for this reloc in .rel(a).dyn. */
6631 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6632 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6633 /* We tell the dynamic linker that there are
6634 relocations against the text segment. */
6635 info->flags |= DF_TEXTREL;
6636 }
b49e97c9
TS
6637 else
6638 {
6639 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6640
b49e97c9
TS
6641 /* We only need to copy this reloc if the symbol is
6642 defined in a dynamic object. */
6643 hmips = (struct mips_elf_link_hash_entry *) h;
6644 ++hmips->possibly_dynamic_relocs;
943284cc 6645 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6646 /* We need it to tell the dynamic linker if there
6647 are relocations against the text segment. */
6648 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6649 }
6650
6651 /* Even though we don't directly need a GOT entry for
6652 this symbol, a symbol must have a dynamic symbol
6653 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6654 dynamic relocations against it. This does not apply
6655 to VxWorks, which does not have the usual coupling
6656 between global GOT entries and .dynsym entries. */
6657 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6658 {
6659 if (dynobj == NULL)
6660 elf_hash_table (info)->dynobj = dynobj = abfd;
6661 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6662 return FALSE;
6663 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6664 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6665 return FALSE;
6666 }
b49e97c9
TS
6667 }
6668
6669 if (SGI_COMPAT (abfd))
6670 mips_elf_hash_table (info)->compact_rel_size +=
6671 sizeof (Elf32_External_crinfo);
6672 break;
6673
0a44bf69
RS
6674 case R_MIPS_PC16:
6675 if (h)
6676 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6677 break;
6678
b49e97c9 6679 case R_MIPS_26:
0a44bf69
RS
6680 if (h)
6681 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6682 /* Fall through. */
6683
b49e97c9
TS
6684 case R_MIPS_GPREL16:
6685 case R_MIPS_LITERAL:
6686 case R_MIPS_GPREL32:
6687 if (SGI_COMPAT (abfd))
6688 mips_elf_hash_table (info)->compact_rel_size +=
6689 sizeof (Elf32_External_crinfo);
6690 break;
6691
6692 /* This relocation describes the C++ object vtable hierarchy.
6693 Reconstruct it for later use during GC. */
6694 case R_MIPS_GNU_VTINHERIT:
c152c796 6695 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6696 return FALSE;
b49e97c9
TS
6697 break;
6698
6699 /* This relocation describes which C++ vtable entries are actually
6700 used. Record for later use during GC. */
6701 case R_MIPS_GNU_VTENTRY:
c152c796 6702 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6703 return FALSE;
b49e97c9
TS
6704 break;
6705
6706 default:
6707 break;
6708 }
6709
6710 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6711 related to taking the function's address. This doesn't apply to
6712 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6713 a normal .got entry. */
6714 if (!htab->is_vxworks && h != NULL)
6715 switch (r_type)
6716 {
6717 default:
6718 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6719 break;
6720 case R_MIPS_CALL16:
6721 case R_MIPS_CALL_HI16:
6722 case R_MIPS_CALL_LO16:
6723 case R_MIPS_JALR:
6724 break;
6725 }
b49e97c9
TS
6726
6727 /* If this reloc is not a 16 bit call, and it has a global
6728 symbol, then we will need the fn_stub if there is one.
6729 References from a stub section do not count. */
6730 if (h != NULL
6731 && r_type != R_MIPS16_26
b9d58d71 6732 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6733 {
6734 struct mips_elf_link_hash_entry *mh;
6735
6736 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6737 mh->need_fn_stub = TRUE;
b49e97c9
TS
6738 }
6739 }
6740
b34976b6 6741 return TRUE;
b49e97c9
TS
6742}
6743\f
d0647110 6744bfd_boolean
9719ad41
RS
6745_bfd_mips_relax_section (bfd *abfd, asection *sec,
6746 struct bfd_link_info *link_info,
6747 bfd_boolean *again)
d0647110
AO
6748{
6749 Elf_Internal_Rela *internal_relocs;
6750 Elf_Internal_Rela *irel, *irelend;
6751 Elf_Internal_Shdr *symtab_hdr;
6752 bfd_byte *contents = NULL;
d0647110
AO
6753 size_t extsymoff;
6754 bfd_boolean changed_contents = FALSE;
6755 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6756 Elf_Internal_Sym *isymbuf = NULL;
6757
6758 /* We are not currently changing any sizes, so only one pass. */
6759 *again = FALSE;
6760
1049f94e 6761 if (link_info->relocatable)
d0647110
AO
6762 return TRUE;
6763
9719ad41 6764 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6765 link_info->keep_memory);
d0647110
AO
6766 if (internal_relocs == NULL)
6767 return TRUE;
6768
6769 irelend = internal_relocs + sec->reloc_count
6770 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6771 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6772 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6773
6774 for (irel = internal_relocs; irel < irelend; irel++)
6775 {
6776 bfd_vma symval;
6777 bfd_signed_vma sym_offset;
6778 unsigned int r_type;
6779 unsigned long r_symndx;
6780 asection *sym_sec;
6781 unsigned long instruction;
6782
6783 /* Turn jalr into bgezal, and jr into beq, if they're marked
6784 with a JALR relocation, that indicate where they jump to.
6785 This saves some pipeline bubbles. */
6786 r_type = ELF_R_TYPE (abfd, irel->r_info);
6787 if (r_type != R_MIPS_JALR)
6788 continue;
6789
6790 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6791 /* Compute the address of the jump target. */
6792 if (r_symndx >= extsymoff)
6793 {
6794 struct mips_elf_link_hash_entry *h
6795 = ((struct mips_elf_link_hash_entry *)
6796 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6797
6798 while (h->root.root.type == bfd_link_hash_indirect
6799 || h->root.root.type == bfd_link_hash_warning)
6800 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6801
d0647110
AO
6802 /* If a symbol is undefined, or if it may be overridden,
6803 skip it. */
6804 if (! ((h->root.root.type == bfd_link_hash_defined
6805 || h->root.root.type == bfd_link_hash_defweak)
6806 && h->root.root.u.def.section)
6807 || (link_info->shared && ! link_info->symbolic
f5385ebf 6808 && !h->root.forced_local))
d0647110
AO
6809 continue;
6810
6811 sym_sec = h->root.root.u.def.section;
6812 if (sym_sec->output_section)
6813 symval = (h->root.root.u.def.value
6814 + sym_sec->output_section->vma
6815 + sym_sec->output_offset);
6816 else
6817 symval = h->root.root.u.def.value;
6818 }
6819 else
6820 {
6821 Elf_Internal_Sym *isym;
6822
6823 /* Read this BFD's symbols if we haven't done so already. */
6824 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6825 {
6826 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6827 if (isymbuf == NULL)
6828 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6829 symtab_hdr->sh_info, 0,
6830 NULL, NULL, NULL);
6831 if (isymbuf == NULL)
6832 goto relax_return;
6833 }
6834
6835 isym = isymbuf + r_symndx;
6836 if (isym->st_shndx == SHN_UNDEF)
6837 continue;
6838 else if (isym->st_shndx == SHN_ABS)
6839 sym_sec = bfd_abs_section_ptr;
6840 else if (isym->st_shndx == SHN_COMMON)
6841 sym_sec = bfd_com_section_ptr;
6842 else
6843 sym_sec
6844 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6845 symval = isym->st_value
6846 + sym_sec->output_section->vma
6847 + sym_sec->output_offset;
6848 }
6849
6850 /* Compute branch offset, from delay slot of the jump to the
6851 branch target. */
6852 sym_offset = (symval + irel->r_addend)
6853 - (sec_start + irel->r_offset + 4);
6854
6855 /* Branch offset must be properly aligned. */
6856 if ((sym_offset & 3) != 0)
6857 continue;
6858
6859 sym_offset >>= 2;
6860
6861 /* Check that it's in range. */
6862 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6863 continue;
143d77c5 6864
d0647110
AO
6865 /* Get the section contents if we haven't done so already. */
6866 if (contents == NULL)
6867 {
6868 /* Get cached copy if it exists. */
6869 if (elf_section_data (sec)->this_hdr.contents != NULL)
6870 contents = elf_section_data (sec)->this_hdr.contents;
6871 else
6872 {
eea6121a 6873 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6874 goto relax_return;
6875 }
6876 }
6877
6878 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6879
6880 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6881 if ((instruction & 0xfc1fffff) == 0x0000f809)
6882 instruction = 0x04110000;
6883 /* If it was jr <reg>, turn it into b <target>. */
6884 else if ((instruction & 0xfc1fffff) == 0x00000008)
6885 instruction = 0x10000000;
6886 else
6887 continue;
6888
6889 instruction |= (sym_offset & 0xffff);
6890 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6891 changed_contents = TRUE;
6892 }
6893
6894 if (contents != NULL
6895 && elf_section_data (sec)->this_hdr.contents != contents)
6896 {
6897 if (!changed_contents && !link_info->keep_memory)
6898 free (contents);
6899 else
6900 {
6901 /* Cache the section contents for elf_link_input_bfd. */
6902 elf_section_data (sec)->this_hdr.contents = contents;
6903 }
6904 }
6905 return TRUE;
6906
143d77c5 6907 relax_return:
eea6121a
AM
6908 if (contents != NULL
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6910 free (contents);
d0647110
AO
6911 return FALSE;
6912}
6913\f
b49e97c9
TS
6914/* Adjust a symbol defined by a dynamic object and referenced by a
6915 regular object. The current definition is in some section of the
6916 dynamic object, but we're not including those sections. We have to
6917 change the definition to something the rest of the link can
6918 understand. */
6919
b34976b6 6920bfd_boolean
9719ad41
RS
6921_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6922 struct elf_link_hash_entry *h)
b49e97c9
TS
6923{
6924 bfd *dynobj;
6925 struct mips_elf_link_hash_entry *hmips;
6926 asection *s;
5108fc1b 6927 struct mips_elf_link_hash_table *htab;
b49e97c9 6928
5108fc1b 6929 htab = mips_elf_hash_table (info);
b49e97c9
TS
6930 dynobj = elf_hash_table (info)->dynobj;
6931
6932 /* Make sure we know what is going on here. */
6933 BFD_ASSERT (dynobj != NULL
f5385ebf 6934 && (h->needs_plt
f6e332e6 6935 || h->u.weakdef != NULL
f5385ebf
AM
6936 || (h->def_dynamic
6937 && h->ref_regular
6938 && !h->def_regular)));
b49e97c9
TS
6939
6940 /* If this symbol is defined in a dynamic object, we need to copy
6941 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6942 file. */
6943 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6944 if (! info->relocatable
b49e97c9
TS
6945 && hmips->possibly_dynamic_relocs != 0
6946 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6947 || !h->def_regular))
b49e97c9 6948 {
0a44bf69
RS
6949 mips_elf_allocate_dynamic_relocations
6950 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6951 if (hmips->readonly_reloc)
b49e97c9
TS
6952 /* We tell the dynamic linker that there are relocations
6953 against the text segment. */
6954 info->flags |= DF_TEXTREL;
6955 }
6956
6957 /* For a function, create a stub, if allowed. */
6958 if (! hmips->no_fn_stub
f5385ebf 6959 && h->needs_plt)
b49e97c9
TS
6960 {
6961 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6962 return TRUE;
b49e97c9
TS
6963
6964 /* If this symbol is not defined in a regular file, then set
6965 the symbol to the stub location. This is required to make
6966 function pointers compare as equal between the normal
6967 executable and the shared library. */
f5385ebf 6968 if (!h->def_regular)
b49e97c9
TS
6969 {
6970 /* We need .stub section. */
6971 s = bfd_get_section_by_name (dynobj,
6972 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6973 BFD_ASSERT (s != NULL);
6974
6975 h->root.u.def.section = s;
eea6121a 6976 h->root.u.def.value = s->size;
b49e97c9
TS
6977
6978 /* XXX Write this stub address somewhere. */
eea6121a 6979 h->plt.offset = s->size;
b49e97c9
TS
6980
6981 /* Make room for this stub code. */
5108fc1b 6982 s->size += htab->function_stub_size;
b49e97c9
TS
6983
6984 /* The last half word of the stub will be filled with the index
6985 of this symbol in .dynsym section. */
b34976b6 6986 return TRUE;
b49e97c9
TS
6987 }
6988 }
6989 else if ((h->type == STT_FUNC)
f5385ebf 6990 && !h->needs_plt)
b49e97c9
TS
6991 {
6992 /* This will set the entry for this symbol in the GOT to 0, and
6993 the dynamic linker will take care of this. */
6994 h->root.u.def.value = 0;
b34976b6 6995 return TRUE;
b49e97c9
TS
6996 }
6997
6998 /* If this is a weak symbol, and there is a real definition, the
6999 processor independent code will have arranged for us to see the
7000 real definition first, and we can just use the same value. */
f6e332e6 7001 if (h->u.weakdef != NULL)
b49e97c9 7002 {
f6e332e6
AM
7003 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7004 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7005 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7006 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7007 return TRUE;
b49e97c9
TS
7008 }
7009
7010 /* This is a reference to a symbol defined by a dynamic object which
7011 is not a function. */
7012
b34976b6 7013 return TRUE;
b49e97c9 7014}
0a44bf69
RS
7015
7016/* Likewise, for VxWorks. */
7017
7018bfd_boolean
7019_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7020 struct elf_link_hash_entry *h)
7021{
7022 bfd *dynobj;
7023 struct mips_elf_link_hash_entry *hmips;
7024 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7025
7026 htab = mips_elf_hash_table (info);
7027 dynobj = elf_hash_table (info)->dynobj;
7028 hmips = (struct mips_elf_link_hash_entry *) h;
7029
7030 /* Make sure we know what is going on here. */
7031 BFD_ASSERT (dynobj != NULL
7032 && (h->needs_plt
7033 || h->needs_copy
7034 || h->u.weakdef != NULL
7035 || (h->def_dynamic
7036 && h->ref_regular
7037 && !h->def_regular)));
7038
7039 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7040 either (a) we want to branch to the symbol or (b) we're linking an
7041 executable that needs a canonical function address. In the latter
7042 case, the canonical address will be the address of the executable's
7043 load stub. */
7044 if ((hmips->is_branch_target
7045 || (!info->shared
7046 && h->type == STT_FUNC
7047 && hmips->is_relocation_target))
7048 && h->def_dynamic
7049 && h->ref_regular
7050 && !h->def_regular
7051 && !h->forced_local)
7052 h->needs_plt = 1;
7053
7054 /* Locally-binding symbols do not need a PLT stub; we can refer to
7055 the functions directly. */
7056 else if (h->needs_plt
7057 && (SYMBOL_CALLS_LOCAL (info, h)
7058 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7059 && h->root.type == bfd_link_hash_undefweak)))
7060 {
7061 h->needs_plt = 0;
7062 return TRUE;
7063 }
7064
7065 if (h->needs_plt)
7066 {
7067 /* If this is the first symbol to need a PLT entry, allocate room
7068 for the header, and for the header's .rela.plt.unloaded entries. */
7069 if (htab->splt->size == 0)
7070 {
7071 htab->splt->size += htab->plt_header_size;
7072 if (!info->shared)
7073 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7074 }
7075
7076 /* Assign the next .plt entry to this symbol. */
7077 h->plt.offset = htab->splt->size;
7078 htab->splt->size += htab->plt_entry_size;
7079
7080 /* If the output file has no definition of the symbol, set the
7081 symbol's value to the address of the stub. For executables,
7082 point at the PLT load stub rather than the lazy resolution stub;
7083 this stub will become the canonical function address. */
7084 if (!h->def_regular)
7085 {
7086 h->root.u.def.section = htab->splt;
7087 h->root.u.def.value = h->plt.offset;
7088 if (!info->shared)
7089 h->root.u.def.value += 8;
7090 }
7091
7092 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7093 htab->sgotplt->size += 4;
7094 htab->srelplt->size += sizeof (Elf32_External_Rela);
7095
7096 /* Make room for the .rela.plt.unloaded relocations. */
7097 if (!info->shared)
7098 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7099
7100 return TRUE;
7101 }
7102
7103 /* If a function symbol is defined by a dynamic object, and we do not
7104 need a PLT stub for it, the symbol's value should be zero. */
7105 if (h->type == STT_FUNC
7106 && h->def_dynamic
7107 && h->ref_regular
7108 && !h->def_regular)
7109 {
7110 h->root.u.def.value = 0;
7111 return TRUE;
7112 }
7113
7114 /* If this is a weak symbol, and there is a real definition, the
7115 processor independent code will have arranged for us to see the
7116 real definition first, and we can just use the same value. */
7117 if (h->u.weakdef != NULL)
7118 {
7119 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7120 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7121 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7122 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7123 return TRUE;
7124 }
7125
7126 /* This is a reference to a symbol defined by a dynamic object which
7127 is not a function. */
7128 if (info->shared)
7129 return TRUE;
7130
7131 /* We must allocate the symbol in our .dynbss section, which will
7132 become part of the .bss section of the executable. There will be
7133 an entry for this symbol in the .dynsym section. The dynamic
7134 object will contain position independent code, so all references
7135 from the dynamic object to this symbol will go through the global
7136 offset table. The dynamic linker will use the .dynsym entry to
7137 determine the address it must put in the global offset table, so
7138 both the dynamic object and the regular object will refer to the
7139 same memory location for the variable. */
7140
7141 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7142 {
7143 htab->srelbss->size += sizeof (Elf32_External_Rela);
7144 h->needs_copy = 1;
7145 }
7146
027297b7 7147 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7148}
b49e97c9 7149\f
5108fc1b
RS
7150/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7151 The number might be exact or a worst-case estimate, depending on how
7152 much information is available to elf_backend_omit_section_dynsym at
7153 the current linking stage. */
7154
7155static bfd_size_type
7156count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7157{
7158 bfd_size_type count;
7159
7160 count = 0;
7161 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7162 {
7163 asection *p;
7164 const struct elf_backend_data *bed;
7165
7166 bed = get_elf_backend_data (output_bfd);
7167 for (p = output_bfd->sections; p ; p = p->next)
7168 if ((p->flags & SEC_EXCLUDE) == 0
7169 && (p->flags & SEC_ALLOC) != 0
7170 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7171 ++count;
7172 }
7173 return count;
7174}
7175
b49e97c9
TS
7176/* This function is called after all the input files have been read,
7177 and the input sections have been assigned to output sections. We
7178 check for any mips16 stub sections that we can discard. */
7179
b34976b6 7180bfd_boolean
9719ad41
RS
7181_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7182 struct bfd_link_info *info)
b49e97c9
TS
7183{
7184 asection *ri;
7185
f4416af6
AO
7186 bfd *dynobj;
7187 asection *s;
7188 struct mips_got_info *g;
7189 int i;
7190 bfd_size_type loadable_size = 0;
7191 bfd_size_type local_gotno;
5108fc1b 7192 bfd_size_type dynsymcount;
f4416af6 7193 bfd *sub;
0f20cc35 7194 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7195 struct mips_elf_link_hash_table *htab;
7196
7197 htab = mips_elf_hash_table (info);
f4416af6 7198
b49e97c9
TS
7199 /* The .reginfo section has a fixed size. */
7200 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7201 if (ri != NULL)
9719ad41 7202 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7203
1049f94e 7204 if (! (info->relocatable
f4416af6
AO
7205 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7206 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7207 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7208
7209 dynobj = elf_hash_table (info)->dynobj;
7210 if (dynobj == NULL)
7211 /* Relocatable links don't have it. */
7212 return TRUE;
143d77c5 7213
f4416af6
AO
7214 g = mips_elf_got_info (dynobj, &s);
7215 if (s == NULL)
b34976b6 7216 return TRUE;
b49e97c9 7217
f4416af6
AO
7218 /* Calculate the total loadable size of the output. That
7219 will give us the maximum number of GOT_PAGE entries
7220 required. */
7221 for (sub = info->input_bfds; sub; sub = sub->link_next)
7222 {
7223 asection *subsection;
7224
7225 for (subsection = sub->sections;
7226 subsection;
7227 subsection = subsection->next)
7228 {
7229 if ((subsection->flags & SEC_ALLOC) == 0)
7230 continue;
eea6121a 7231 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7232 &~ (bfd_size_type) 0xf);
7233 }
7234 }
7235
7236 /* There has to be a global GOT entry for every symbol with
7237 a dynamic symbol table index of DT_MIPS_GOTSYM or
7238 higher. Therefore, it make sense to put those symbols
7239 that need GOT entries at the end of the symbol table. We
7240 do that here. */
7241 if (! mips_elf_sort_hash_table (info, 1))
7242 return FALSE;
7243
7244 if (g->global_gotsym != NULL)
7245 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7246 else
7247 /* If there are no global symbols, or none requiring
7248 relocations, then GLOBAL_GOTSYM will be NULL. */
7249 i = 0;
7250
5108fc1b
RS
7251 /* Get a worst-case estimate of the number of dynamic symbols needed.
7252 At this point, dynsymcount does not account for section symbols
7253 and count_section_dynsyms may overestimate the number that will
7254 be needed. */
7255 dynsymcount = (elf_hash_table (info)->dynsymcount
7256 + count_section_dynsyms (output_bfd, info));
7257
7258 /* Determine the size of one stub entry. */
7259 htab->function_stub_size = (dynsymcount > 0x10000
7260 ? MIPS_FUNCTION_STUB_BIG_SIZE
7261 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7262
f4416af6
AO
7263 /* In the worst case, we'll get one stub per dynamic symbol, plus
7264 one to account for the dummy entry at the end required by IRIX
7265 rld. */
5108fc1b 7266 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7267
0a44bf69
RS
7268 if (htab->is_vxworks)
7269 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7270 relocations against local symbols evaluate to "G", and the EABI does
7271 not include R_MIPS_GOT_PAGE. */
7272 local_gotno = 0;
7273 else
7274 /* Assume there are two loadable segments consisting of contiguous
7275 sections. Is 5 enough? */
7276 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7277
7278 g->local_gotno += local_gotno;
eea6121a 7279 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7280
7281 g->global_gotno = i;
eea6121a 7282 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7283
0f20cc35
DJ
7284 /* We need to calculate tls_gotno for global symbols at this point
7285 instead of building it up earlier, to avoid doublecounting
7286 entries for one global symbol from multiple input files. */
7287 count_tls_arg.info = info;
7288 count_tls_arg.needed = 0;
7289 elf_link_hash_traverse (elf_hash_table (info),
7290 mips_elf_count_global_tls_entries,
7291 &count_tls_arg);
7292 g->tls_gotno += count_tls_arg.needed;
7293 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7294
7295 mips_elf_resolve_final_got_entries (g);
7296
0a44bf69
RS
7297 /* VxWorks does not support multiple GOTs. It initializes $gp to
7298 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7299 dynamic loader. */
7300 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7301 {
7302 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7303 return FALSE;
7304 }
7305 else
7306 {
7307 /* Set up TLS entries for the first GOT. */
7308 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7309 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7310 }
b49e97c9 7311
b34976b6 7312 return TRUE;
b49e97c9
TS
7313}
7314
7315/* Set the sizes of the dynamic sections. */
7316
b34976b6 7317bfd_boolean
9719ad41
RS
7318_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7319 struct bfd_link_info *info)
b49e97c9
TS
7320{
7321 bfd *dynobj;
0a44bf69 7322 asection *s, *sreldyn;
b34976b6 7323 bfd_boolean reltext;
0a44bf69 7324 struct mips_elf_link_hash_table *htab;
b49e97c9 7325
0a44bf69 7326 htab = mips_elf_hash_table (info);
b49e97c9
TS
7327 dynobj = elf_hash_table (info)->dynobj;
7328 BFD_ASSERT (dynobj != NULL);
7329
7330 if (elf_hash_table (info)->dynamic_sections_created)
7331 {
7332 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7333 if (info->executable)
b49e97c9
TS
7334 {
7335 s = bfd_get_section_by_name (dynobj, ".interp");
7336 BFD_ASSERT (s != NULL);
eea6121a 7337 s->size
b49e97c9
TS
7338 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7339 s->contents
7340 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7341 }
7342 }
7343
7344 /* The check_relocs and adjust_dynamic_symbol entry points have
7345 determined the sizes of the various dynamic sections. Allocate
7346 memory for them. */
b34976b6 7347 reltext = FALSE;
0a44bf69 7348 sreldyn = NULL;
b49e97c9
TS
7349 for (s = dynobj->sections; s != NULL; s = s->next)
7350 {
7351 const char *name;
b49e97c9
TS
7352
7353 /* It's OK to base decisions on the section name, because none
7354 of the dynobj section names depend upon the input files. */
7355 name = bfd_get_section_name (dynobj, s);
7356
7357 if ((s->flags & SEC_LINKER_CREATED) == 0)
7358 continue;
7359
0112cd26 7360 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7361 {
c456f082 7362 if (s->size != 0)
b49e97c9
TS
7363 {
7364 const char *outname;
7365 asection *target;
7366
7367 /* If this relocation section applies to a read only
7368 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7369 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7370 assert a DT_TEXTREL entry rather than testing whether
7371 there exists a relocation to a read only section or
7372 not. */
7373 outname = bfd_get_section_name (output_bfd,
7374 s->output_section);
7375 target = bfd_get_section_by_name (output_bfd, outname + 4);
7376 if ((target != NULL
7377 && (target->flags & SEC_READONLY) != 0
7378 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7379 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7380 reltext = TRUE;
b49e97c9
TS
7381
7382 /* We use the reloc_count field as a counter if we need
7383 to copy relocs into the output file. */
0a44bf69 7384 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7385 s->reloc_count = 0;
f4416af6
AO
7386
7387 /* If combreloc is enabled, elf_link_sort_relocs() will
7388 sort relocations, but in a different way than we do,
7389 and before we're done creating relocations. Also, it
7390 will move them around between input sections'
7391 relocation's contents, so our sorting would be
7392 broken, so don't let it run. */
7393 info->combreloc = 0;
b49e97c9
TS
7394 }
7395 }
0a44bf69
RS
7396 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7397 {
7398 /* Executables do not need a GOT. */
7399 if (info->shared)
7400 {
7401 /* Allocate relocations for all but the reserved entries. */
7402 struct mips_got_info *g;
7403 unsigned int count;
7404
7405 g = mips_elf_got_info (dynobj, NULL);
7406 count = (g->global_gotno
7407 + g->local_gotno
7408 - MIPS_RESERVED_GOTNO (info));
7409 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7410 }
7411 }
0112cd26 7412 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7413 {
f4416af6
AO
7414 /* _bfd_mips_elf_always_size_sections() has already done
7415 most of the work, but some symbols may have been mapped
7416 to versions that we must now resolve in the got_entries
7417 hash tables. */
7418 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7419 struct mips_got_info *g = gg;
7420 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7421 unsigned int needed_relocs = 0;
143d77c5 7422
f4416af6 7423 if (gg->next)
b49e97c9 7424 {
f4416af6
AO
7425 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7426 set_got_offset_arg.info = info;
b49e97c9 7427
0f20cc35
DJ
7428 /* NOTE 2005-02-03: How can this call, or the next, ever
7429 find any indirect entries to resolve? They were all
7430 resolved in mips_elf_multi_got. */
f4416af6
AO
7431 mips_elf_resolve_final_got_entries (gg);
7432 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7433 {
f4416af6
AO
7434 unsigned int save_assign;
7435
7436 mips_elf_resolve_final_got_entries (g);
7437
7438 /* Assign offsets to global GOT entries. */
7439 save_assign = g->assigned_gotno;
7440 g->assigned_gotno = g->local_gotno;
7441 set_got_offset_arg.g = g;
7442 set_got_offset_arg.needed_relocs = 0;
7443 htab_traverse (g->got_entries,
7444 mips_elf_set_global_got_offset,
7445 &set_got_offset_arg);
7446 needed_relocs += set_got_offset_arg.needed_relocs;
7447 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7448 <= g->global_gotno);
7449
7450 g->assigned_gotno = save_assign;
7451 if (info->shared)
7452 {
7453 needed_relocs += g->local_gotno - g->assigned_gotno;
7454 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7455 + g->next->global_gotno
0f20cc35 7456 + g->next->tls_gotno
0a44bf69 7457 + MIPS_RESERVED_GOTNO (info));
f4416af6 7458 }
b49e97c9 7459 }
0f20cc35
DJ
7460 }
7461 else
7462 {
7463 struct mips_elf_count_tls_arg arg;
7464 arg.info = info;
7465 arg.needed = 0;
b49e97c9 7466
0f20cc35
DJ
7467 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7468 &arg);
7469 elf_link_hash_traverse (elf_hash_table (info),
7470 mips_elf_count_global_tls_relocs,
7471 &arg);
7472
7473 needed_relocs += arg.needed;
f4416af6 7474 }
0f20cc35
DJ
7475
7476 if (needed_relocs)
0a44bf69
RS
7477 mips_elf_allocate_dynamic_relocations (dynobj, info,
7478 needed_relocs);
b49e97c9
TS
7479 }
7480 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7481 {
8dc1a139 7482 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7483 of .text section. So put a dummy. XXX */
7484 s->size += htab->function_stub_size;
b49e97c9
TS
7485 }
7486 else if (! info->shared
7487 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7488 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7489 {
5108fc1b 7490 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7491 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7492 s->size += 4;
b49e97c9
TS
7493 }
7494 else if (SGI_COMPAT (output_bfd)
0112cd26 7495 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7496 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7497 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7498 && s != htab->sgotplt
7499 && s != htab->splt)
b49e97c9
TS
7500 {
7501 /* It's not one of our sections, so don't allocate space. */
7502 continue;
7503 }
7504
c456f082 7505 if (s->size == 0)
b49e97c9 7506 {
8423293d 7507 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7508 continue;
7509 }
7510
c456f082
AM
7511 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7512 continue;
7513
0a44bf69
RS
7514 /* Allocate memory for this section last, since we may increase its
7515 size above. */
7516 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7517 {
7518 sreldyn = s;
7519 continue;
7520 }
7521
b49e97c9 7522 /* Allocate memory for the section contents. */
eea6121a 7523 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7524 if (s->contents == NULL)
b49e97c9
TS
7525 {
7526 bfd_set_error (bfd_error_no_memory);
b34976b6 7527 return FALSE;
b49e97c9
TS
7528 }
7529 }
7530
0a44bf69
RS
7531 /* Allocate memory for the .rel(a).dyn section. */
7532 if (sreldyn != NULL)
7533 {
7534 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7535 if (sreldyn->contents == NULL)
7536 {
7537 bfd_set_error (bfd_error_no_memory);
7538 return FALSE;
7539 }
7540 }
7541
b49e97c9
TS
7542 if (elf_hash_table (info)->dynamic_sections_created)
7543 {
7544 /* Add some entries to the .dynamic section. We fill in the
7545 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7546 must add the entries now so that we get the correct size for
5750dcec 7547 the .dynamic section. */
af5978fb
RS
7548
7549 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7550 DT_MIPS_RLD_MAP entry. This must come first because glibc
7551 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7552 looks at the first one it sees. */
af5978fb
RS
7553 if (!info->shared
7554 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7555 return FALSE;
b49e97c9 7556
5750dcec
DJ
7557 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7558 used by the debugger. */
7559 if (info->executable
7560 && !SGI_COMPAT (output_bfd)
7561 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7562 return FALSE;
7563
0a44bf69 7564 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7565 info->flags |= DF_TEXTREL;
7566
7567 if ((info->flags & DF_TEXTREL) != 0)
7568 {
7569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7570 return FALSE;
943284cc
DJ
7571
7572 /* Clear the DF_TEXTREL flag. It will be set again if we
7573 write out an actual text relocation; we may not, because
7574 at this point we do not know whether e.g. any .eh_frame
7575 absolute relocations have been converted to PC-relative. */
7576 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7577 }
7578
7579 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7580 return FALSE;
b49e97c9 7581
0a44bf69 7582 if (htab->is_vxworks)
b49e97c9 7583 {
0a44bf69
RS
7584 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7585 use any of the DT_MIPS_* tags. */
7586 if (mips_elf_rel_dyn_section (info, FALSE))
7587 {
7588 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7589 return FALSE;
b49e97c9 7590
0a44bf69
RS
7591 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7592 return FALSE;
b49e97c9 7593
0a44bf69
RS
7594 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7595 return FALSE;
7596 }
7597 if (htab->splt->size > 0)
7598 {
7599 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7600 return FALSE;
7601
7602 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7603 return FALSE;
7604
7605 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7606 return FALSE;
7607 }
b49e97c9 7608 }
0a44bf69
RS
7609 else
7610 {
7611 if (mips_elf_rel_dyn_section (info, FALSE))
7612 {
7613 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7614 return FALSE;
b49e97c9 7615
0a44bf69
RS
7616 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7617 return FALSE;
b49e97c9 7618
0a44bf69
RS
7619 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7620 return FALSE;
7621 }
b49e97c9 7622
0a44bf69
RS
7623 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7624 return FALSE;
b49e97c9 7625
0a44bf69
RS
7626 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7627 return FALSE;
b49e97c9 7628
0a44bf69
RS
7629 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7630 return FALSE;
b49e97c9 7631
0a44bf69
RS
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7633 return FALSE;
b49e97c9 7634
0a44bf69
RS
7635 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7636 return FALSE;
b49e97c9 7637
0a44bf69
RS
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7639 return FALSE;
b49e97c9 7640
0a44bf69
RS
7641 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7642 return FALSE;
7643
7644 if (IRIX_COMPAT (dynobj) == ict_irix5
7645 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7646 return FALSE;
7647
7648 if (IRIX_COMPAT (dynobj) == ict_irix6
7649 && (bfd_get_section_by_name
7650 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7651 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7652 return FALSE;
7653 }
b49e97c9
TS
7654 }
7655
b34976b6 7656 return TRUE;
b49e97c9
TS
7657}
7658\f
81d43bff
RS
7659/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7660 Adjust its R_ADDEND field so that it is correct for the output file.
7661 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7662 and sections respectively; both use symbol indexes. */
7663
7664static void
7665mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7666 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7667 asection **local_sections, Elf_Internal_Rela *rel)
7668{
7669 unsigned int r_type, r_symndx;
7670 Elf_Internal_Sym *sym;
7671 asection *sec;
7672
7673 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7674 {
7675 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7676 if (r_type == R_MIPS16_GPREL
7677 || r_type == R_MIPS_GPREL16
7678 || r_type == R_MIPS_GPREL32
7679 || r_type == R_MIPS_LITERAL)
7680 {
7681 rel->r_addend += _bfd_get_gp_value (input_bfd);
7682 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7683 }
7684
7685 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7686 sym = local_syms + r_symndx;
7687
7688 /* Adjust REL's addend to account for section merging. */
7689 if (!info->relocatable)
7690 {
7691 sec = local_sections[r_symndx];
7692 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7693 }
7694
7695 /* This would normally be done by the rela_normal code in elflink.c. */
7696 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7697 rel->r_addend += local_sections[r_symndx]->output_offset;
7698 }
7699}
7700
b49e97c9
TS
7701/* Relocate a MIPS ELF section. */
7702
b34976b6 7703bfd_boolean
9719ad41
RS
7704_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7705 bfd *input_bfd, asection *input_section,
7706 bfd_byte *contents, Elf_Internal_Rela *relocs,
7707 Elf_Internal_Sym *local_syms,
7708 asection **local_sections)
b49e97c9
TS
7709{
7710 Elf_Internal_Rela *rel;
7711 const Elf_Internal_Rela *relend;
7712 bfd_vma addend = 0;
b34976b6 7713 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7714 const struct elf_backend_data *bed;
b49e97c9
TS
7715
7716 bed = get_elf_backend_data (output_bfd);
7717 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7718 for (rel = relocs; rel < relend; ++rel)
7719 {
7720 const char *name;
c9adbffe 7721 bfd_vma value = 0;
b49e97c9 7722 reloc_howto_type *howto;
b34976b6
AM
7723 bfd_boolean require_jalx;
7724 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7725 REL relocation. */
b34976b6 7726 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7727 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7728 const char *msg;
ab96bf03
AM
7729 unsigned long r_symndx;
7730 asection *sec;
749b8d9d
L
7731 Elf_Internal_Shdr *symtab_hdr;
7732 struct elf_link_hash_entry *h;
b49e97c9
TS
7733
7734 /* Find the relocation howto for this relocation. */
ab96bf03
AM
7735 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7736 NEWABI_P (input_bfd)
7737 && (MIPS_RELOC_RELA_P
7738 (input_bfd, input_section,
7739 rel - relocs)));
7740
7741 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 7742 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 7743 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
7744 {
7745 sec = local_sections[r_symndx];
7746 h = NULL;
7747 }
ab96bf03
AM
7748 else
7749 {
ab96bf03 7750 unsigned long extsymoff;
ab96bf03 7751
ab96bf03
AM
7752 extsymoff = 0;
7753 if (!elf_bad_symtab (input_bfd))
7754 extsymoff = symtab_hdr->sh_info;
7755 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7756 while (h->root.type == bfd_link_hash_indirect
7757 || h->root.type == bfd_link_hash_warning)
7758 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7759
7760 sec = NULL;
7761 if (h->root.type == bfd_link_hash_defined
7762 || h->root.type == bfd_link_hash_defweak)
7763 sec = h->root.u.def.section;
7764 }
7765
7766 if (sec != NULL && elf_discarded_section (sec))
7767 {
7768 /* For relocs against symbols from removed linkonce sections,
7769 or sections discarded by a linker script, we just want the
7770 section contents zeroed. Avoid any special processing. */
7771 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7772 rel->r_info = 0;
7773 rel->r_addend = 0;
7774 continue;
7775 }
7776
4a14403c 7777 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7778 {
7779 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7780 64-bit code, but make sure all their addresses are in the
7781 lowermost or uppermost 32-bit section of the 64-bit address
7782 space. Thus, when they use an R_MIPS_64 they mean what is
7783 usually meant by R_MIPS_32, with the exception that the
7784 stored value is sign-extended to 64 bits. */
b34976b6 7785 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7786
7787 /* On big-endian systems, we need to lie about the position
7788 of the reloc. */
7789 if (bfd_big_endian (input_bfd))
7790 rel->r_offset += 4;
7791 }
b49e97c9
TS
7792
7793 if (!use_saved_addend_p)
7794 {
7795 Elf_Internal_Shdr *rel_hdr;
7796
7797 /* If these relocations were originally of the REL variety,
7798 we must pull the addend out of the field that will be
7799 relocated. Otherwise, we simply use the contents of the
7800 RELA relocation. To determine which flavor or relocation
7801 this is, we depend on the fact that the INPUT_SECTION's
7802 REL_HDR is read before its REL_HDR2. */
7803 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7804 if ((size_t) (rel - relocs)
7805 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7806 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7807 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7808 {
d6f16593
MR
7809 bfd_byte *location = contents + rel->r_offset;
7810
b49e97c9 7811 /* Note that this is a REL relocation. */
b34976b6 7812 rela_relocation_p = FALSE;
b49e97c9
TS
7813
7814 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7815 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7816 location);
b49e97c9
TS
7817 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7818 contents);
d6f16593
MR
7819 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7820 location);
7821
b49e97c9
TS
7822 addend &= howto->src_mask;
7823
7824 /* For some kinds of relocations, the ADDEND is a
7825 combination of the addend stored in two different
7826 relocations. */
d6f16593 7827 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7828 || (r_type == R_MIPS_GOT16
7829 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7830 local_sections, FALSE)))
b49e97c9 7831 {
b49e97c9
TS
7832 const Elf_Internal_Rela *lo16_relocation;
7833 reloc_howto_type *lo16_howto;
d6f16593
MR
7834 int lo16_type;
7835
7836 if (r_type == R_MIPS16_HI16)
7837 lo16_type = R_MIPS16_LO16;
7838 else
7839 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7840
7841 /* The combined value is the sum of the HI16 addend,
7842 left-shifted by sixteen bits, and the LO16
7843 addend, sign extended. (Usually, the code does
7844 a `lui' of the HI16 value, and then an `addiu' of
7845 the LO16 value.)
7846
4030e8f6
CD
7847 Scan ahead to find a matching LO16 relocation.
7848
7849 According to the MIPS ELF ABI, the R_MIPS_LO16
7850 relocation must be immediately following.
7851 However, for the IRIX6 ABI, the next relocation
7852 may be a composed relocation consisting of
7853 several relocations for the same address. In
7854 that case, the R_MIPS_LO16 relocation may occur
7855 as one of these. We permit a similar extension
2d82d84d
TS
7856 in general, as that is useful for GCC.
7857
7858 In some cases GCC dead code elimination removes
7859 the LO16 but keeps the corresponding HI16. This
7860 is strictly speaking a violation of the ABI but
7861 not immediately harmful. */
4030e8f6 7862 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7863 lo16_type,
b49e97c9
TS
7864 rel, relend);
7865 if (lo16_relocation == NULL)
749b8d9d
L
7866 {
7867 const char *name;
7868
7869 if (h)
7870 name = h->root.root.string;
7871 else
7872 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7873 local_syms + r_symndx,
7874 sec);
7875 (*_bfd_error_handler)
7876 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7877 input_bfd, input_section, name, howto->name,
7878 rel->r_offset);
749b8d9d 7879 }
2d82d84d
TS
7880 else
7881 {
7882 bfd_byte *lo16_location;
7883 bfd_vma l;
7884
7885 lo16_location = contents + lo16_relocation->r_offset;
7886
7887 /* Obtain the addend kept there. */
7888 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7889 lo16_type, FALSE);
7890 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7891 FALSE, lo16_location);
7892 l = mips_elf_obtain_contents (lo16_howto,
7893 lo16_relocation,
7894 input_bfd, contents);
7895 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7896 FALSE, lo16_location);
7897 l &= lo16_howto->src_mask;
7898 l <<= lo16_howto->rightshift;
7899 l = _bfd_mips_elf_sign_extend (l, 16);
7900
7901 addend <<= 16;
7902
7903 /* Compute the combined addend. */
7904 addend += l;
7905 }
b49e97c9 7906 }
30ac9238
RS
7907 else
7908 addend <<= howto->rightshift;
b49e97c9
TS
7909 }
7910 else
7911 addend = rel->r_addend;
81d43bff
RS
7912 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7913 local_syms, local_sections, rel);
b49e97c9
TS
7914 }
7915
1049f94e 7916 if (info->relocatable)
b49e97c9 7917 {
4a14403c 7918 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7919 && bfd_big_endian (input_bfd))
7920 rel->r_offset -= 4;
7921
81d43bff 7922 if (!rela_relocation_p && rel->r_addend)
5a659663 7923 {
81d43bff 7924 addend += rel->r_addend;
30ac9238 7925 if (r_type == R_MIPS_HI16
4030e8f6 7926 || r_type == R_MIPS_GOT16)
5a659663
TS
7927 addend = mips_elf_high (addend);
7928 else if (r_type == R_MIPS_HIGHER)
7929 addend = mips_elf_higher (addend);
7930 else if (r_type == R_MIPS_HIGHEST)
7931 addend = mips_elf_highest (addend);
30ac9238
RS
7932 else
7933 addend >>= howto->rightshift;
b49e97c9 7934
30ac9238
RS
7935 /* We use the source mask, rather than the destination
7936 mask because the place to which we are writing will be
7937 source of the addend in the final link. */
b49e97c9
TS
7938 addend &= howto->src_mask;
7939
5a659663 7940 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7941 /* See the comment above about using R_MIPS_64 in the 32-bit
7942 ABI. Here, we need to update the addend. It would be
7943 possible to get away with just using the R_MIPS_32 reloc
7944 but for endianness. */
7945 {
7946 bfd_vma sign_bits;
7947 bfd_vma low_bits;
7948 bfd_vma high_bits;
7949
7950 if (addend & ((bfd_vma) 1 << 31))
7951#ifdef BFD64
7952 sign_bits = ((bfd_vma) 1 << 32) - 1;
7953#else
7954 sign_bits = -1;
7955#endif
7956 else
7957 sign_bits = 0;
7958
7959 /* If we don't know that we have a 64-bit type,
7960 do two separate stores. */
7961 if (bfd_big_endian (input_bfd))
7962 {
7963 /* Store the sign-bits (which are most significant)
7964 first. */
7965 low_bits = sign_bits;
7966 high_bits = addend;
7967 }
7968 else
7969 {
7970 low_bits = addend;
7971 high_bits = sign_bits;
7972 }
7973 bfd_put_32 (input_bfd, low_bits,
7974 contents + rel->r_offset);
7975 bfd_put_32 (input_bfd, high_bits,
7976 contents + rel->r_offset + 4);
7977 continue;
7978 }
7979
7980 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7981 input_bfd, input_section,
b34976b6
AM
7982 contents, FALSE))
7983 return FALSE;
b49e97c9
TS
7984 }
7985
7986 /* Go on to the next relocation. */
7987 continue;
7988 }
7989
7990 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7991 relocations for the same offset. In that case we are
7992 supposed to treat the output of each relocation as the addend
7993 for the next. */
7994 if (rel + 1 < relend
7995 && rel->r_offset == rel[1].r_offset
7996 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7997 use_saved_addend_p = TRUE;
b49e97c9 7998 else
b34976b6 7999 use_saved_addend_p = FALSE;
b49e97c9
TS
8000
8001 /* Figure out what value we are supposed to relocate. */
8002 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8003 input_section, info, rel,
8004 addend, howto, local_syms,
8005 local_sections, &value,
bce03d3d
AO
8006 &name, &require_jalx,
8007 use_saved_addend_p))
b49e97c9
TS
8008 {
8009 case bfd_reloc_continue:
8010 /* There's nothing to do. */
8011 continue;
8012
8013 case bfd_reloc_undefined:
8014 /* mips_elf_calculate_relocation already called the
8015 undefined_symbol callback. There's no real point in
8016 trying to perform the relocation at this point, so we
8017 just skip ahead to the next relocation. */
8018 continue;
8019
8020 case bfd_reloc_notsupported:
8021 msg = _("internal error: unsupported relocation error");
8022 info->callbacks->warning
8023 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8024 return FALSE;
b49e97c9
TS
8025
8026 case bfd_reloc_overflow:
8027 if (use_saved_addend_p)
8028 /* Ignore overflow until we reach the last relocation for
8029 a given location. */
8030 ;
8031 else
8032 {
8033 BFD_ASSERT (name != NULL);
8034 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8035 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8036 input_bfd, input_section, rel->r_offset)))
b34976b6 8037 return FALSE;
b49e97c9
TS
8038 }
8039 break;
8040
8041 case bfd_reloc_ok:
8042 break;
8043
8044 default:
8045 abort ();
8046 break;
8047 }
8048
8049 /* If we've got another relocation for the address, keep going
8050 until we reach the last one. */
8051 if (use_saved_addend_p)
8052 {
8053 addend = value;
8054 continue;
8055 }
8056
4a14403c 8057 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8058 /* See the comment above about using R_MIPS_64 in the 32-bit
8059 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8060 that calculated the right value. Now, however, we
8061 sign-extend the 32-bit result to 64-bits, and store it as a
8062 64-bit value. We are especially generous here in that we
8063 go to extreme lengths to support this usage on systems with
8064 only a 32-bit VMA. */
8065 {
8066 bfd_vma sign_bits;
8067 bfd_vma low_bits;
8068 bfd_vma high_bits;
8069
8070 if (value & ((bfd_vma) 1 << 31))
8071#ifdef BFD64
8072 sign_bits = ((bfd_vma) 1 << 32) - 1;
8073#else
8074 sign_bits = -1;
8075#endif
8076 else
8077 sign_bits = 0;
8078
8079 /* If we don't know that we have a 64-bit type,
8080 do two separate stores. */
8081 if (bfd_big_endian (input_bfd))
8082 {
8083 /* Undo what we did above. */
8084 rel->r_offset -= 4;
8085 /* Store the sign-bits (which are most significant)
8086 first. */
8087 low_bits = sign_bits;
8088 high_bits = value;
8089 }
8090 else
8091 {
8092 low_bits = value;
8093 high_bits = sign_bits;
8094 }
8095 bfd_put_32 (input_bfd, low_bits,
8096 contents + rel->r_offset);
8097 bfd_put_32 (input_bfd, high_bits,
8098 contents + rel->r_offset + 4);
8099 continue;
8100 }
8101
8102 /* Actually perform the relocation. */
8103 if (! mips_elf_perform_relocation (info, howto, rel, value,
8104 input_bfd, input_section,
8105 contents, require_jalx))
b34976b6 8106 return FALSE;
b49e97c9
TS
8107 }
8108
b34976b6 8109 return TRUE;
b49e97c9
TS
8110}
8111\f
8112/* If NAME is one of the special IRIX6 symbols defined by the linker,
8113 adjust it appropriately now. */
8114
8115static void
9719ad41
RS
8116mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8117 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8118{
8119 /* The linker script takes care of providing names and values for
8120 these, but we must place them into the right sections. */
8121 static const char* const text_section_symbols[] = {
8122 "_ftext",
8123 "_etext",
8124 "__dso_displacement",
8125 "__elf_header",
8126 "__program_header_table",
8127 NULL
8128 };
8129
8130 static const char* const data_section_symbols[] = {
8131 "_fdata",
8132 "_edata",
8133 "_end",
8134 "_fbss",
8135 NULL
8136 };
8137
8138 const char* const *p;
8139 int i;
8140
8141 for (i = 0; i < 2; ++i)
8142 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8143 *p;
8144 ++p)
8145 if (strcmp (*p, name) == 0)
8146 {
8147 /* All of these symbols are given type STT_SECTION by the
8148 IRIX6 linker. */
8149 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8150 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8151
8152 /* The IRIX linker puts these symbols in special sections. */
8153 if (i == 0)
8154 sym->st_shndx = SHN_MIPS_TEXT;
8155 else
8156 sym->st_shndx = SHN_MIPS_DATA;
8157
8158 break;
8159 }
8160}
8161
8162/* Finish up dynamic symbol handling. We set the contents of various
8163 dynamic sections here. */
8164
b34976b6 8165bfd_boolean
9719ad41
RS
8166_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8167 struct bfd_link_info *info,
8168 struct elf_link_hash_entry *h,
8169 Elf_Internal_Sym *sym)
b49e97c9
TS
8170{
8171 bfd *dynobj;
b49e97c9 8172 asection *sgot;
f4416af6 8173 struct mips_got_info *g, *gg;
b49e97c9 8174 const char *name;
3d6746ca 8175 int idx;
5108fc1b 8176 struct mips_elf_link_hash_table *htab;
b49e97c9 8177
5108fc1b 8178 htab = mips_elf_hash_table (info);
b49e97c9 8179 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8180
c5ae1840 8181 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8182 {
8183 asection *s;
5108fc1b 8184 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8185
8186 /* This symbol has a stub. Set it up. */
8187
8188 BFD_ASSERT (h->dynindx != -1);
8189
8190 s = bfd_get_section_by_name (dynobj,
8191 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8192 BFD_ASSERT (s != NULL);
8193
5108fc1b
RS
8194 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8195 || (h->dynindx <= 0xffff));
3d6746ca
DD
8196
8197 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8198 sign extension at runtime in the stub, resulting in a negative
8199 index value. */
8200 if (h->dynindx & ~0x7fffffff)
b34976b6 8201 return FALSE;
b49e97c9
TS
8202
8203 /* Fill the stub. */
3d6746ca
DD
8204 idx = 0;
8205 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8206 idx += 4;
8207 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8208 idx += 4;
5108fc1b 8209 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8210 {
5108fc1b 8211 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8212 stub + idx);
8213 idx += 4;
8214 }
8215 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8216 idx += 4;
b49e97c9 8217
3d6746ca
DD
8218 /* If a large stub is not required and sign extension is not a
8219 problem, then use legacy code in the stub. */
5108fc1b
RS
8220 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8221 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8222 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8223 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8224 else
5108fc1b
RS
8225 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8226 stub + idx);
8227
eea6121a 8228 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8229 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8230
8231 /* Mark the symbol as undefined. plt.offset != -1 occurs
8232 only for the referenced symbol. */
8233 sym->st_shndx = SHN_UNDEF;
8234
8235 /* The run-time linker uses the st_value field of the symbol
8236 to reset the global offset table entry for this external
8237 to its stub address when unlinking a shared object. */
c5ae1840
TS
8238 sym->st_value = (s->output_section->vma + s->output_offset
8239 + h->plt.offset);
b49e97c9
TS
8240 }
8241
8242 BFD_ASSERT (h->dynindx != -1
f5385ebf 8243 || h->forced_local);
b49e97c9 8244
f4416af6 8245 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8246 BFD_ASSERT (sgot != NULL);
f4416af6 8247 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8248 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8249 BFD_ASSERT (g != NULL);
8250
8251 /* Run through the global symbol table, creating GOT entries for all
8252 the symbols that need them. */
8253 if (g->global_gotsym != NULL
8254 && h->dynindx >= g->global_gotsym->dynindx)
8255 {
8256 bfd_vma offset;
8257 bfd_vma value;
8258
6eaa6adc 8259 value = sym->st_value;
0f20cc35 8260 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8261 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8262 }
8263
0f20cc35 8264 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8265 {
8266 struct mips_got_entry e, *p;
0626d451 8267 bfd_vma entry;
f4416af6 8268 bfd_vma offset;
f4416af6
AO
8269
8270 gg = g;
8271
8272 e.abfd = output_bfd;
8273 e.symndx = -1;
8274 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8275 e.tls_type = 0;
143d77c5 8276
f4416af6
AO
8277 for (g = g->next; g->next != gg; g = g->next)
8278 {
8279 if (g->got_entries
8280 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8281 &e)))
8282 {
8283 offset = p->gotidx;
0626d451
RS
8284 if (info->shared
8285 || (elf_hash_table (info)->dynamic_sections_created
8286 && p->d.h != NULL
f5385ebf
AM
8287 && p->d.h->root.def_dynamic
8288 && !p->d.h->root.def_regular))
0626d451
RS
8289 {
8290 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8291 the various compatibility problems, it's easier to mock
8292 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8293 mips_elf_create_dynamic_relocation to calculate the
8294 appropriate addend. */
8295 Elf_Internal_Rela rel[3];
8296
8297 memset (rel, 0, sizeof (rel));
8298 if (ABI_64_P (output_bfd))
8299 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8300 else
8301 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8302 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8303
8304 entry = 0;
8305 if (! (mips_elf_create_dynamic_relocation
8306 (output_bfd, info, rel,
8307 e.d.h, NULL, sym->st_value, &entry, sgot)))
8308 return FALSE;
8309 }
8310 else
8311 entry = sym->st_value;
8312 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8313 }
8314 }
8315 }
8316
b49e97c9
TS
8317 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8318 name = h->root.root.string;
8319 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8320 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8321 sym->st_shndx = SHN_ABS;
8322 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8323 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8324 {
8325 sym->st_shndx = SHN_ABS;
8326 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8327 sym->st_value = 1;
8328 }
4a14403c 8329 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8330 {
8331 sym->st_shndx = SHN_ABS;
8332 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8333 sym->st_value = elf_gp (output_bfd);
8334 }
8335 else if (SGI_COMPAT (output_bfd))
8336 {
8337 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8338 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8339 {
8340 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8341 sym->st_other = STO_PROTECTED;
8342 sym->st_value = 0;
8343 sym->st_shndx = SHN_MIPS_DATA;
8344 }
8345 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8346 {
8347 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8348 sym->st_other = STO_PROTECTED;
8349 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8350 sym->st_shndx = SHN_ABS;
8351 }
8352 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8353 {
8354 if (h->type == STT_FUNC)
8355 sym->st_shndx = SHN_MIPS_TEXT;
8356 else if (h->type == STT_OBJECT)
8357 sym->st_shndx = SHN_MIPS_DATA;
8358 }
8359 }
8360
8361 /* Handle the IRIX6-specific symbols. */
8362 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8363 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8364
8365 if (! info->shared)
8366 {
8367 if (! mips_elf_hash_table (info)->use_rld_obj_head
8368 && (strcmp (name, "__rld_map") == 0
8369 || strcmp (name, "__RLD_MAP") == 0))
8370 {
8371 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8372 BFD_ASSERT (s != NULL);
8373 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8374 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8375 if (mips_elf_hash_table (info)->rld_value == 0)
8376 mips_elf_hash_table (info)->rld_value = sym->st_value;
8377 }
8378 else if (mips_elf_hash_table (info)->use_rld_obj_head
8379 && strcmp (name, "__rld_obj_head") == 0)
8380 {
8381 /* IRIX6 does not use a .rld_map section. */
8382 if (IRIX_COMPAT (output_bfd) == ict_irix5
8383 || IRIX_COMPAT (output_bfd) == ict_none)
8384 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8385 != NULL);
8386 mips_elf_hash_table (info)->rld_value = sym->st_value;
8387 }
8388 }
8389
8390 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8391 if (sym->st_other == STO_MIPS16)
8392 sym->st_value &= ~1;
b49e97c9 8393
b34976b6 8394 return TRUE;
b49e97c9
TS
8395}
8396
0a44bf69
RS
8397/* Likewise, for VxWorks. */
8398
8399bfd_boolean
8400_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8401 struct bfd_link_info *info,
8402 struct elf_link_hash_entry *h,
8403 Elf_Internal_Sym *sym)
8404{
8405 bfd *dynobj;
8406 asection *sgot;
8407 struct mips_got_info *g;
8408 struct mips_elf_link_hash_table *htab;
8409
8410 htab = mips_elf_hash_table (info);
8411 dynobj = elf_hash_table (info)->dynobj;
8412
8413 if (h->plt.offset != (bfd_vma) -1)
8414 {
6d79d2ed 8415 bfd_byte *loc;
0a44bf69
RS
8416 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8417 Elf_Internal_Rela rel;
8418 static const bfd_vma *plt_entry;
8419
8420 BFD_ASSERT (h->dynindx != -1);
8421 BFD_ASSERT (htab->splt != NULL);
8422 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8423
8424 /* Calculate the address of the .plt entry. */
8425 plt_address = (htab->splt->output_section->vma
8426 + htab->splt->output_offset
8427 + h->plt.offset);
8428
8429 /* Calculate the index of the entry. */
8430 plt_index = ((h->plt.offset - htab->plt_header_size)
8431 / htab->plt_entry_size);
8432
8433 /* Calculate the address of the .got.plt entry. */
8434 got_address = (htab->sgotplt->output_section->vma
8435 + htab->sgotplt->output_offset
8436 + plt_index * 4);
8437
8438 /* Calculate the offset of the .got.plt entry from
8439 _GLOBAL_OFFSET_TABLE_. */
8440 got_offset = mips_elf_gotplt_index (info, h);
8441
8442 /* Calculate the offset for the branch at the start of the PLT
8443 entry. The branch jumps to the beginning of .plt. */
8444 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8445
8446 /* Fill in the initial value of the .got.plt entry. */
8447 bfd_put_32 (output_bfd, plt_address,
8448 htab->sgotplt->contents + plt_index * 4);
8449
8450 /* Find out where the .plt entry should go. */
8451 loc = htab->splt->contents + h->plt.offset;
8452
8453 if (info->shared)
8454 {
8455 plt_entry = mips_vxworks_shared_plt_entry;
8456 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8457 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8458 }
8459 else
8460 {
8461 bfd_vma got_address_high, got_address_low;
8462
8463 plt_entry = mips_vxworks_exec_plt_entry;
8464 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8465 got_address_low = got_address & 0xffff;
8466
8467 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8468 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8469 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8470 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8471 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8472 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8473 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8474 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8475
8476 loc = (htab->srelplt2->contents
8477 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8478
8479 /* Emit a relocation for the .got.plt entry. */
8480 rel.r_offset = got_address;
8481 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8482 rel.r_addend = h->plt.offset;
8483 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8484
8485 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8486 loc += sizeof (Elf32_External_Rela);
8487 rel.r_offset = plt_address + 8;
8488 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8489 rel.r_addend = got_offset;
8490 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8491
8492 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8493 loc += sizeof (Elf32_External_Rela);
8494 rel.r_offset += 4;
8495 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8496 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8497 }
8498
8499 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8500 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8501 rel.r_offset = got_address;
8502 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8503 rel.r_addend = 0;
8504 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8505
8506 if (!h->def_regular)
8507 sym->st_shndx = SHN_UNDEF;
8508 }
8509
8510 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8511
8512 sgot = mips_elf_got_section (dynobj, FALSE);
8513 BFD_ASSERT (sgot != NULL);
8514 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8515 g = mips_elf_section_data (sgot)->u.got_info;
8516 BFD_ASSERT (g != NULL);
8517
8518 /* See if this symbol has an entry in the GOT. */
8519 if (g->global_gotsym != NULL
8520 && h->dynindx >= g->global_gotsym->dynindx)
8521 {
8522 bfd_vma offset;
8523 Elf_Internal_Rela outrel;
8524 bfd_byte *loc;
8525 asection *s;
8526
8527 /* Install the symbol value in the GOT. */
8528 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8529 R_MIPS_GOT16, info);
8530 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8531
8532 /* Add a dynamic relocation for it. */
8533 s = mips_elf_rel_dyn_section (info, FALSE);
8534 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8535 outrel.r_offset = (sgot->output_section->vma
8536 + sgot->output_offset
8537 + offset);
8538 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8539 outrel.r_addend = 0;
8540 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8541 }
8542
8543 /* Emit a copy reloc, if needed. */
8544 if (h->needs_copy)
8545 {
8546 Elf_Internal_Rela rel;
8547
8548 BFD_ASSERT (h->dynindx != -1);
8549
8550 rel.r_offset = (h->root.u.def.section->output_section->vma
8551 + h->root.u.def.section->output_offset
8552 + h->root.u.def.value);
8553 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8554 rel.r_addend = 0;
8555 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8556 htab->srelbss->contents
8557 + (htab->srelbss->reloc_count
8558 * sizeof (Elf32_External_Rela)));
8559 ++htab->srelbss->reloc_count;
8560 }
8561
8562 /* If this is a mips16 symbol, force the value to be even. */
8563 if (sym->st_other == STO_MIPS16)
8564 sym->st_value &= ~1;
8565
8566 return TRUE;
8567}
8568
8569/* Install the PLT header for a VxWorks executable and finalize the
8570 contents of .rela.plt.unloaded. */
8571
8572static void
8573mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8574{
8575 Elf_Internal_Rela rela;
8576 bfd_byte *loc;
8577 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8578 static const bfd_vma *plt_entry;
8579 struct mips_elf_link_hash_table *htab;
8580
8581 htab = mips_elf_hash_table (info);
8582 plt_entry = mips_vxworks_exec_plt0_entry;
8583
8584 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8585 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8586 + htab->root.hgot->root.u.def.section->output_offset
8587 + htab->root.hgot->root.u.def.value);
8588
8589 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8590 got_value_low = got_value & 0xffff;
8591
8592 /* Calculate the address of the PLT header. */
8593 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8594
8595 /* Install the PLT header. */
8596 loc = htab->splt->contents;
8597 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8598 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8599 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8600 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8601 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8602 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8603
8604 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8605 loc = htab->srelplt2->contents;
8606 rela.r_offset = plt_address;
8607 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8608 rela.r_addend = 0;
8609 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8610 loc += sizeof (Elf32_External_Rela);
8611
8612 /* Output the relocation for the following addiu of
8613 %lo(_GLOBAL_OFFSET_TABLE_). */
8614 rela.r_offset += 4;
8615 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8616 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8617 loc += sizeof (Elf32_External_Rela);
8618
8619 /* Fix up the remaining relocations. They may have the wrong
8620 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8621 in which symbols were output. */
8622 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8623 {
8624 Elf_Internal_Rela rel;
8625
8626 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8627 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8628 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8629 loc += sizeof (Elf32_External_Rela);
8630
8631 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8632 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8633 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8634 loc += sizeof (Elf32_External_Rela);
8635
8636 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8637 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8638 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8639 loc += sizeof (Elf32_External_Rela);
8640 }
8641}
8642
8643/* Install the PLT header for a VxWorks shared library. */
8644
8645static void
8646mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8647{
8648 unsigned int i;
8649 struct mips_elf_link_hash_table *htab;
8650
8651 htab = mips_elf_hash_table (info);
8652
8653 /* We just need to copy the entry byte-by-byte. */
8654 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8655 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8656 htab->splt->contents + i * 4);
8657}
8658
b49e97c9
TS
8659/* Finish up the dynamic sections. */
8660
b34976b6 8661bfd_boolean
9719ad41
RS
8662_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8663 struct bfd_link_info *info)
b49e97c9
TS
8664{
8665 bfd *dynobj;
8666 asection *sdyn;
8667 asection *sgot;
f4416af6 8668 struct mips_got_info *gg, *g;
0a44bf69 8669 struct mips_elf_link_hash_table *htab;
b49e97c9 8670
0a44bf69 8671 htab = mips_elf_hash_table (info);
b49e97c9
TS
8672 dynobj = elf_hash_table (info)->dynobj;
8673
8674 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8675
f4416af6 8676 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8677 if (sgot == NULL)
f4416af6 8678 gg = g = NULL;
b49e97c9
TS
8679 else
8680 {
f4416af6
AO
8681 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8682 gg = mips_elf_section_data (sgot)->u.got_info;
8683 BFD_ASSERT (gg != NULL);
8684 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8685 BFD_ASSERT (g != NULL);
8686 }
8687
8688 if (elf_hash_table (info)->dynamic_sections_created)
8689 {
8690 bfd_byte *b;
943284cc 8691 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8692
8693 BFD_ASSERT (sdyn != NULL);
8694 BFD_ASSERT (g != NULL);
8695
8696 for (b = sdyn->contents;
eea6121a 8697 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8698 b += MIPS_ELF_DYN_SIZE (dynobj))
8699 {
8700 Elf_Internal_Dyn dyn;
8701 const char *name;
8702 size_t elemsize;
8703 asection *s;
b34976b6 8704 bfd_boolean swap_out_p;
b49e97c9
TS
8705
8706 /* Read in the current dynamic entry. */
8707 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8708
8709 /* Assume that we're going to modify it and write it out. */
b34976b6 8710 swap_out_p = TRUE;
b49e97c9
TS
8711
8712 switch (dyn.d_tag)
8713 {
8714 case DT_RELENT:
b49e97c9
TS
8715 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8716 break;
8717
0a44bf69
RS
8718 case DT_RELAENT:
8719 BFD_ASSERT (htab->is_vxworks);
8720 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8721 break;
8722
b49e97c9
TS
8723 case DT_STRSZ:
8724 /* Rewrite DT_STRSZ. */
8725 dyn.d_un.d_val =
8726 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8727 break;
8728
8729 case DT_PLTGOT:
8730 name = ".got";
0a44bf69
RS
8731 if (htab->is_vxworks)
8732 {
8733 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8734 of the ".got" section in DYNOBJ. */
8735 s = bfd_get_section_by_name (dynobj, name);
8736 BFD_ASSERT (s != NULL);
8737 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8738 }
8739 else
8740 {
8741 s = bfd_get_section_by_name (output_bfd, name);
8742 BFD_ASSERT (s != NULL);
8743 dyn.d_un.d_ptr = s->vma;
8744 }
b49e97c9
TS
8745 break;
8746
8747 case DT_MIPS_RLD_VERSION:
8748 dyn.d_un.d_val = 1; /* XXX */
8749 break;
8750
8751 case DT_MIPS_FLAGS:
8752 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8753 break;
8754
b49e97c9 8755 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8756 {
8757 time_t t;
8758 time (&t);
8759 dyn.d_un.d_val = t;
8760 }
b49e97c9
TS
8761 break;
8762
8763 case DT_MIPS_ICHECKSUM:
8764 /* XXX FIXME: */
b34976b6 8765 swap_out_p = FALSE;
b49e97c9
TS
8766 break;
8767
8768 case DT_MIPS_IVERSION:
8769 /* XXX FIXME: */
b34976b6 8770 swap_out_p = FALSE;
b49e97c9
TS
8771 break;
8772
8773 case DT_MIPS_BASE_ADDRESS:
8774 s = output_bfd->sections;
8775 BFD_ASSERT (s != NULL);
8776 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8777 break;
8778
8779 case DT_MIPS_LOCAL_GOTNO:
8780 dyn.d_un.d_val = g->local_gotno;
8781 break;
8782
8783 case DT_MIPS_UNREFEXTNO:
8784 /* The index into the dynamic symbol table which is the
8785 entry of the first external symbol that is not
8786 referenced within the same object. */
8787 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8788 break;
8789
8790 case DT_MIPS_GOTSYM:
f4416af6 8791 if (gg->global_gotsym)
b49e97c9 8792 {
f4416af6 8793 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8794 break;
8795 }
8796 /* In case if we don't have global got symbols we default
8797 to setting DT_MIPS_GOTSYM to the same value as
8798 DT_MIPS_SYMTABNO, so we just fall through. */
8799
8800 case DT_MIPS_SYMTABNO:
8801 name = ".dynsym";
8802 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8803 s = bfd_get_section_by_name (output_bfd, name);
8804 BFD_ASSERT (s != NULL);
8805
eea6121a 8806 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8807 break;
8808
8809 case DT_MIPS_HIPAGENO:
0a44bf69 8810 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8811 break;
8812
8813 case DT_MIPS_RLD_MAP:
8814 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8815 break;
8816
8817 case DT_MIPS_OPTIONS:
8818 s = (bfd_get_section_by_name
8819 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8820 dyn.d_un.d_ptr = s->vma;
8821 break;
8822
0a44bf69
RS
8823 case DT_RELASZ:
8824 BFD_ASSERT (htab->is_vxworks);
8825 /* The count does not include the JUMP_SLOT relocations. */
8826 if (htab->srelplt)
8827 dyn.d_un.d_val -= htab->srelplt->size;
8828 break;
8829
8830 case DT_PLTREL:
8831 BFD_ASSERT (htab->is_vxworks);
8832 dyn.d_un.d_val = DT_RELA;
8833 break;
8834
8835 case DT_PLTRELSZ:
8836 BFD_ASSERT (htab->is_vxworks);
8837 dyn.d_un.d_val = htab->srelplt->size;
8838 break;
8839
8840 case DT_JMPREL:
8841 BFD_ASSERT (htab->is_vxworks);
8842 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8843 + htab->srelplt->output_offset);
8844 break;
8845
943284cc
DJ
8846 case DT_TEXTREL:
8847 /* If we didn't need any text relocations after all, delete
8848 the dynamic tag. */
8849 if (!(info->flags & DF_TEXTREL))
8850 {
8851 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8852 swap_out_p = FALSE;
8853 }
8854 break;
8855
8856 case DT_FLAGS:
8857 /* If we didn't need any text relocations after all, clear
8858 DF_TEXTREL from DT_FLAGS. */
8859 if (!(info->flags & DF_TEXTREL))
8860 dyn.d_un.d_val &= ~DF_TEXTREL;
8861 else
8862 swap_out_p = FALSE;
8863 break;
8864
b49e97c9 8865 default:
b34976b6 8866 swap_out_p = FALSE;
b49e97c9
TS
8867 break;
8868 }
8869
943284cc 8870 if (swap_out_p || dyn_skipped)
b49e97c9 8871 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8872 (dynobj, &dyn, b - dyn_skipped);
8873
8874 if (dyn_to_skip)
8875 {
8876 dyn_skipped += dyn_to_skip;
8877 dyn_to_skip = 0;
8878 }
b49e97c9 8879 }
943284cc
DJ
8880
8881 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8882 if (dyn_skipped > 0)
8883 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8884 }
8885
eea6121a 8886 if (sgot != NULL && sgot->size > 0)
b49e97c9 8887 {
0a44bf69
RS
8888 if (htab->is_vxworks)
8889 {
8890 /* The first entry of the global offset table points to the
8891 ".dynamic" section. The second is initialized by the
8892 loader and contains the shared library identifier.
8893 The third is also initialized by the loader and points
8894 to the lazy resolution stub. */
8895 MIPS_ELF_PUT_WORD (output_bfd,
8896 sdyn->output_offset + sdyn->output_section->vma,
8897 sgot->contents);
8898 MIPS_ELF_PUT_WORD (output_bfd, 0,
8899 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8900 MIPS_ELF_PUT_WORD (output_bfd, 0,
8901 sgot->contents
8902 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8903 }
8904 else
8905 {
8906 /* The first entry of the global offset table will be filled at
8907 runtime. The second entry will be used by some runtime loaders.
8908 This isn't the case of IRIX rld. */
8909 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8910 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8911 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8912 }
b49e97c9 8913
54938e2a
TS
8914 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8915 = MIPS_ELF_GOT_SIZE (output_bfd);
8916 }
b49e97c9 8917
f4416af6
AO
8918 /* Generate dynamic relocations for the non-primary gots. */
8919 if (gg != NULL && gg->next)
8920 {
8921 Elf_Internal_Rela rel[3];
8922 bfd_vma addend = 0;
8923
8924 memset (rel, 0, sizeof (rel));
8925 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8926
8927 for (g = gg->next; g->next != gg; g = g->next)
8928 {
0f20cc35
DJ
8929 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8930 + g->next->tls_gotno;
f4416af6 8931
9719ad41 8932 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8933 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8934 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8935 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8936
8937 if (! info->shared)
8938 continue;
8939
8940 while (index < g->assigned_gotno)
8941 {
8942 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8943 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8944 if (!(mips_elf_create_dynamic_relocation
8945 (output_bfd, info, rel, NULL,
8946 bfd_abs_section_ptr,
8947 0, &addend, sgot)))
8948 return FALSE;
8949 BFD_ASSERT (addend == 0);
8950 }
8951 }
8952 }
8953
3133ddbf
DJ
8954 /* The generation of dynamic relocations for the non-primary gots
8955 adds more dynamic relocations. We cannot count them until
8956 here. */
8957
8958 if (elf_hash_table (info)->dynamic_sections_created)
8959 {
8960 bfd_byte *b;
8961 bfd_boolean swap_out_p;
8962
8963 BFD_ASSERT (sdyn != NULL);
8964
8965 for (b = sdyn->contents;
8966 b < sdyn->contents + sdyn->size;
8967 b += MIPS_ELF_DYN_SIZE (dynobj))
8968 {
8969 Elf_Internal_Dyn dyn;
8970 asection *s;
8971
8972 /* Read in the current dynamic entry. */
8973 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8974
8975 /* Assume that we're going to modify it and write it out. */
8976 swap_out_p = TRUE;
8977
8978 switch (dyn.d_tag)
8979 {
8980 case DT_RELSZ:
8981 /* Reduce DT_RELSZ to account for any relocations we
8982 decided not to make. This is for the n64 irix rld,
8983 which doesn't seem to apply any relocations if there
8984 are trailing null entries. */
0a44bf69 8985 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8986 dyn.d_un.d_val = (s->reloc_count
8987 * (ABI_64_P (output_bfd)
8988 ? sizeof (Elf64_Mips_External_Rel)
8989 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
8990 /* Adjust the section size too. Tools like the prelinker
8991 can reasonably expect the values to the same. */
8992 elf_section_data (s->output_section)->this_hdr.sh_size
8993 = dyn.d_un.d_val;
3133ddbf
DJ
8994 break;
8995
8996 default:
8997 swap_out_p = FALSE;
8998 break;
8999 }
9000
9001 if (swap_out_p)
9002 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9003 (dynobj, &dyn, b);
9004 }
9005 }
9006
b49e97c9 9007 {
b49e97c9
TS
9008 asection *s;
9009 Elf32_compact_rel cpt;
9010
b49e97c9
TS
9011 if (SGI_COMPAT (output_bfd))
9012 {
9013 /* Write .compact_rel section out. */
9014 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9015 if (s != NULL)
9016 {
9017 cpt.id1 = 1;
9018 cpt.num = s->reloc_count;
9019 cpt.id2 = 2;
9020 cpt.offset = (s->output_section->filepos
9021 + sizeof (Elf32_External_compact_rel));
9022 cpt.reserved0 = 0;
9023 cpt.reserved1 = 0;
9024 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9025 ((Elf32_External_compact_rel *)
9026 s->contents));
9027
9028 /* Clean up a dummy stub function entry in .text. */
9029 s = bfd_get_section_by_name (dynobj,
9030 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9031 if (s != NULL)
9032 {
9033 file_ptr dummy_offset;
9034
5108fc1b
RS
9035 BFD_ASSERT (s->size >= htab->function_stub_size);
9036 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9037 memset (s->contents + dummy_offset, 0,
5108fc1b 9038 htab->function_stub_size);
b49e97c9
TS
9039 }
9040 }
9041 }
9042
0a44bf69
RS
9043 /* The psABI says that the dynamic relocations must be sorted in
9044 increasing order of r_symndx. The VxWorks EABI doesn't require
9045 this, and because the code below handles REL rather than RELA
9046 relocations, using it for VxWorks would be outright harmful. */
9047 if (!htab->is_vxworks)
b49e97c9 9048 {
0a44bf69
RS
9049 s = mips_elf_rel_dyn_section (info, FALSE);
9050 if (s != NULL
9051 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9052 {
9053 reldyn_sorting_bfd = output_bfd;
b49e97c9 9054
0a44bf69
RS
9055 if (ABI_64_P (output_bfd))
9056 qsort ((Elf64_External_Rel *) s->contents + 1,
9057 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9058 sort_dynamic_relocs_64);
9059 else
9060 qsort ((Elf32_External_Rel *) s->contents + 1,
9061 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9062 sort_dynamic_relocs);
9063 }
b49e97c9 9064 }
b49e97c9
TS
9065 }
9066
0a44bf69
RS
9067 if (htab->is_vxworks && htab->splt->size > 0)
9068 {
9069 if (info->shared)
9070 mips_vxworks_finish_shared_plt (output_bfd, info);
9071 else
9072 mips_vxworks_finish_exec_plt (output_bfd, info);
9073 }
b34976b6 9074 return TRUE;
b49e97c9
TS
9075}
9076
b49e97c9 9077
64543e1a
RS
9078/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9079
9080static void
9719ad41 9081mips_set_isa_flags (bfd *abfd)
b49e97c9 9082{
64543e1a 9083 flagword val;
b49e97c9
TS
9084
9085 switch (bfd_get_mach (abfd))
9086 {
9087 default:
9088 case bfd_mach_mips3000:
9089 val = E_MIPS_ARCH_1;
9090 break;
9091
9092 case bfd_mach_mips3900:
9093 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9094 break;
9095
9096 case bfd_mach_mips6000:
9097 val = E_MIPS_ARCH_2;
9098 break;
9099
9100 case bfd_mach_mips4000:
9101 case bfd_mach_mips4300:
9102 case bfd_mach_mips4400:
9103 case bfd_mach_mips4600:
9104 val = E_MIPS_ARCH_3;
9105 break;
9106
9107 case bfd_mach_mips4010:
9108 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9109 break;
9110
9111 case bfd_mach_mips4100:
9112 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9113 break;
9114
9115 case bfd_mach_mips4111:
9116 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9117 break;
9118
00707a0e
RS
9119 case bfd_mach_mips4120:
9120 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9121 break;
9122
b49e97c9
TS
9123 case bfd_mach_mips4650:
9124 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9125 break;
9126
00707a0e
RS
9127 case bfd_mach_mips5400:
9128 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9129 break;
9130
9131 case bfd_mach_mips5500:
9132 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9133 break;
9134
0d2e43ed
ILT
9135 case bfd_mach_mips9000:
9136 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9137 break;
9138
b49e97c9 9139 case bfd_mach_mips5000:
5a7ea749 9140 case bfd_mach_mips7000:
b49e97c9
TS
9141 case bfd_mach_mips8000:
9142 case bfd_mach_mips10000:
9143 case bfd_mach_mips12000:
9144 val = E_MIPS_ARCH_4;
9145 break;
9146
9147 case bfd_mach_mips5:
9148 val = E_MIPS_ARCH_5;
9149 break;
9150
9151 case bfd_mach_mips_sb1:
9152 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9153 break;
9154
9155 case bfd_mach_mipsisa32:
9156 val = E_MIPS_ARCH_32;
9157 break;
9158
9159 case bfd_mach_mipsisa64:
9160 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9161 break;
9162
9163 case bfd_mach_mipsisa32r2:
9164 val = E_MIPS_ARCH_32R2;
9165 break;
5f74bc13
CD
9166
9167 case bfd_mach_mipsisa64r2:
9168 val = E_MIPS_ARCH_64R2;
9169 break;
b49e97c9 9170 }
b49e97c9
TS
9171 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9172 elf_elfheader (abfd)->e_flags |= val;
9173
64543e1a
RS
9174}
9175
9176
9177/* The final processing done just before writing out a MIPS ELF object
9178 file. This gets the MIPS architecture right based on the machine
9179 number. This is used by both the 32-bit and the 64-bit ABI. */
9180
9181void
9719ad41
RS
9182_bfd_mips_elf_final_write_processing (bfd *abfd,
9183 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9184{
9185 unsigned int i;
9186 Elf_Internal_Shdr **hdrpp;
9187 const char *name;
9188 asection *sec;
9189
9190 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9191 is nonzero. This is for compatibility with old objects, which used
9192 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9193 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9194 mips_set_isa_flags (abfd);
9195
b49e97c9
TS
9196 /* Set the sh_info field for .gptab sections and other appropriate
9197 info for each special section. */
9198 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9199 i < elf_numsections (abfd);
9200 i++, hdrpp++)
9201 {
9202 switch ((*hdrpp)->sh_type)
9203 {
9204 case SHT_MIPS_MSYM:
9205 case SHT_MIPS_LIBLIST:
9206 sec = bfd_get_section_by_name (abfd, ".dynstr");
9207 if (sec != NULL)
9208 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9209 break;
9210
9211 case SHT_MIPS_GPTAB:
9212 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9213 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9214 BFD_ASSERT (name != NULL
0112cd26 9215 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9216 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9217 BFD_ASSERT (sec != NULL);
9218 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9219 break;
9220
9221 case SHT_MIPS_CONTENT:
9222 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9223 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9224 BFD_ASSERT (name != NULL
0112cd26 9225 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9226 sec = bfd_get_section_by_name (abfd,
9227 name + sizeof ".MIPS.content" - 1);
9228 BFD_ASSERT (sec != NULL);
9229 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9230 break;
9231
9232 case SHT_MIPS_SYMBOL_LIB:
9233 sec = bfd_get_section_by_name (abfd, ".dynsym");
9234 if (sec != NULL)
9235 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9236 sec = bfd_get_section_by_name (abfd, ".liblist");
9237 if (sec != NULL)
9238 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9239 break;
9240
9241 case SHT_MIPS_EVENTS:
9242 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9243 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9244 BFD_ASSERT (name != NULL);
0112cd26 9245 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9246 sec = bfd_get_section_by_name (abfd,
9247 name + sizeof ".MIPS.events" - 1);
9248 else
9249 {
0112cd26 9250 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9251 sec = bfd_get_section_by_name (abfd,
9252 (name
9253 + sizeof ".MIPS.post_rel" - 1));
9254 }
9255 BFD_ASSERT (sec != NULL);
9256 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9257 break;
9258
9259 }
9260 }
9261}
9262\f
8dc1a139 9263/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9264 segments. */
9265
9266int
a6b96beb
AM
9267_bfd_mips_elf_additional_program_headers (bfd *abfd,
9268 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9269{
9270 asection *s;
9271 int ret = 0;
9272
9273 /* See if we need a PT_MIPS_REGINFO segment. */
9274 s = bfd_get_section_by_name (abfd, ".reginfo");
9275 if (s && (s->flags & SEC_LOAD))
9276 ++ret;
9277
9278 /* See if we need a PT_MIPS_OPTIONS segment. */
9279 if (IRIX_COMPAT (abfd) == ict_irix6
9280 && bfd_get_section_by_name (abfd,
9281 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9282 ++ret;
9283
9284 /* See if we need a PT_MIPS_RTPROC segment. */
9285 if (IRIX_COMPAT (abfd) == ict_irix5
9286 && bfd_get_section_by_name (abfd, ".dynamic")
9287 && bfd_get_section_by_name (abfd, ".mdebug"))
9288 ++ret;
9289
98c904a8
RS
9290 /* Allocate a PT_NULL header in dynamic objects. See
9291 _bfd_mips_elf_modify_segment_map for details. */
9292 if (!SGI_COMPAT (abfd)
9293 && bfd_get_section_by_name (abfd, ".dynamic"))
9294 ++ret;
9295
b49e97c9
TS
9296 return ret;
9297}
9298
8dc1a139 9299/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9300
b34976b6 9301bfd_boolean
9719ad41
RS
9302_bfd_mips_elf_modify_segment_map (bfd *abfd,
9303 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9304{
9305 asection *s;
9306 struct elf_segment_map *m, **pm;
9307 bfd_size_type amt;
9308
9309 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9310 segment. */
9311 s = bfd_get_section_by_name (abfd, ".reginfo");
9312 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9313 {
9314 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9315 if (m->p_type == PT_MIPS_REGINFO)
9316 break;
9317 if (m == NULL)
9318 {
9319 amt = sizeof *m;
9719ad41 9320 m = bfd_zalloc (abfd, amt);
b49e97c9 9321 if (m == NULL)
b34976b6 9322 return FALSE;
b49e97c9
TS
9323
9324 m->p_type = PT_MIPS_REGINFO;
9325 m->count = 1;
9326 m->sections[0] = s;
9327
9328 /* We want to put it after the PHDR and INTERP segments. */
9329 pm = &elf_tdata (abfd)->segment_map;
9330 while (*pm != NULL
9331 && ((*pm)->p_type == PT_PHDR
9332 || (*pm)->p_type == PT_INTERP))
9333 pm = &(*pm)->next;
9334
9335 m->next = *pm;
9336 *pm = m;
9337 }
9338 }
9339
9340 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9341 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9342 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9343 table. */
c1fd6598
AO
9344 if (NEWABI_P (abfd)
9345 /* On non-IRIX6 new abi, we'll have already created a segment
9346 for this section, so don't create another. I'm not sure this
9347 is not also the case for IRIX 6, but I can't test it right
9348 now. */
9349 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9350 {
9351 for (s = abfd->sections; s; s = s->next)
9352 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9353 break;
9354
9355 if (s)
9356 {
9357 struct elf_segment_map *options_segment;
9358
98a8deaf
RS
9359 pm = &elf_tdata (abfd)->segment_map;
9360 while (*pm != NULL
9361 && ((*pm)->p_type == PT_PHDR
9362 || (*pm)->p_type == PT_INTERP))
9363 pm = &(*pm)->next;
b49e97c9 9364
8ded5a0f
AM
9365 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9366 {
9367 amt = sizeof (struct elf_segment_map);
9368 options_segment = bfd_zalloc (abfd, amt);
9369 options_segment->next = *pm;
9370 options_segment->p_type = PT_MIPS_OPTIONS;
9371 options_segment->p_flags = PF_R;
9372 options_segment->p_flags_valid = TRUE;
9373 options_segment->count = 1;
9374 options_segment->sections[0] = s;
9375 *pm = options_segment;
9376 }
b49e97c9
TS
9377 }
9378 }
9379 else
9380 {
9381 if (IRIX_COMPAT (abfd) == ict_irix5)
9382 {
9383 /* If there are .dynamic and .mdebug sections, we make a room
9384 for the RTPROC header. FIXME: Rewrite without section names. */
9385 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9386 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9387 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9388 {
9389 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9390 if (m->p_type == PT_MIPS_RTPROC)
9391 break;
9392 if (m == NULL)
9393 {
9394 amt = sizeof *m;
9719ad41 9395 m = bfd_zalloc (abfd, amt);
b49e97c9 9396 if (m == NULL)
b34976b6 9397 return FALSE;
b49e97c9
TS
9398
9399 m->p_type = PT_MIPS_RTPROC;
9400
9401 s = bfd_get_section_by_name (abfd, ".rtproc");
9402 if (s == NULL)
9403 {
9404 m->count = 0;
9405 m->p_flags = 0;
9406 m->p_flags_valid = 1;
9407 }
9408 else
9409 {
9410 m->count = 1;
9411 m->sections[0] = s;
9412 }
9413
9414 /* We want to put it after the DYNAMIC segment. */
9415 pm = &elf_tdata (abfd)->segment_map;
9416 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9417 pm = &(*pm)->next;
9418 if (*pm != NULL)
9419 pm = &(*pm)->next;
9420
9421 m->next = *pm;
9422 *pm = m;
9423 }
9424 }
9425 }
8dc1a139 9426 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9427 .dynstr, .dynsym, and .hash sections, and everything in
9428 between. */
9429 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9430 pm = &(*pm)->next)
9431 if ((*pm)->p_type == PT_DYNAMIC)
9432 break;
9433 m = *pm;
9434 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9435 {
9436 /* For a normal mips executable the permissions for the PT_DYNAMIC
9437 segment are read, write and execute. We do that here since
9438 the code in elf.c sets only the read permission. This matters
9439 sometimes for the dynamic linker. */
9440 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9441 {
9442 m->p_flags = PF_R | PF_W | PF_X;
9443 m->p_flags_valid = 1;
9444 }
9445 }
f6f62d6f
RS
9446 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9447 glibc's dynamic linker has traditionally derived the number of
9448 tags from the p_filesz field, and sometimes allocates stack
9449 arrays of that size. An overly-big PT_DYNAMIC segment can
9450 be actively harmful in such cases. Making PT_DYNAMIC contain
9451 other sections can also make life hard for the prelinker,
9452 which might move one of the other sections to a different
9453 PT_LOAD segment. */
9454 if (SGI_COMPAT (abfd)
9455 && m != NULL
9456 && m->count == 1
9457 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9458 {
9459 static const char *sec_names[] =
9460 {
9461 ".dynamic", ".dynstr", ".dynsym", ".hash"
9462 };
9463 bfd_vma low, high;
9464 unsigned int i, c;
9465 struct elf_segment_map *n;
9466
792b4a53 9467 low = ~(bfd_vma) 0;
b49e97c9
TS
9468 high = 0;
9469 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9470 {
9471 s = bfd_get_section_by_name (abfd, sec_names[i]);
9472 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9473 {
9474 bfd_size_type sz;
9475
9476 if (low > s->vma)
9477 low = s->vma;
eea6121a 9478 sz = s->size;
b49e97c9
TS
9479 if (high < s->vma + sz)
9480 high = s->vma + sz;
9481 }
9482 }
9483
9484 c = 0;
9485 for (s = abfd->sections; s != NULL; s = s->next)
9486 if ((s->flags & SEC_LOAD) != 0
9487 && s->vma >= low
eea6121a 9488 && s->vma + s->size <= high)
b49e97c9
TS
9489 ++c;
9490
9491 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9492 n = bfd_zalloc (abfd, amt);
b49e97c9 9493 if (n == NULL)
b34976b6 9494 return FALSE;
b49e97c9
TS
9495 *n = *m;
9496 n->count = c;
9497
9498 i = 0;
9499 for (s = abfd->sections; s != NULL; s = s->next)
9500 {
9501 if ((s->flags & SEC_LOAD) != 0
9502 && s->vma >= low
eea6121a 9503 && s->vma + s->size <= high)
b49e97c9
TS
9504 {
9505 n->sections[i] = s;
9506 ++i;
9507 }
9508 }
9509
9510 *pm = n;
9511 }
9512 }
9513
98c904a8
RS
9514 /* Allocate a spare program header in dynamic objects so that tools
9515 like the prelinker can add an extra PT_LOAD entry.
9516
9517 If the prelinker needs to make room for a new PT_LOAD entry, its
9518 standard procedure is to move the first (read-only) sections into
9519 the new (writable) segment. However, the MIPS ABI requires
9520 .dynamic to be in a read-only segment, and the section will often
9521 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9522
9523 Although the prelinker could in principle move .dynamic to a
9524 writable segment, it seems better to allocate a spare program
9525 header instead, and avoid the need to move any sections.
9526 There is a long tradition of allocating spare dynamic tags,
9527 so allocating a spare program header seems like a natural
9528 extension. */
9529 if (!SGI_COMPAT (abfd)
9530 && bfd_get_section_by_name (abfd, ".dynamic"))
9531 {
9532 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9533 if ((*pm)->p_type == PT_NULL)
9534 break;
9535 if (*pm == NULL)
9536 {
9537 m = bfd_zalloc (abfd, sizeof (*m));
9538 if (m == NULL)
9539 return FALSE;
9540
9541 m->p_type = PT_NULL;
9542 *pm = m;
9543 }
9544 }
9545
b34976b6 9546 return TRUE;
b49e97c9
TS
9547}
9548\f
9549/* Return the section that should be marked against GC for a given
9550 relocation. */
9551
9552asection *
9719ad41 9553_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9554 struct bfd_link_info *info,
9719ad41
RS
9555 Elf_Internal_Rela *rel,
9556 struct elf_link_hash_entry *h,
9557 Elf_Internal_Sym *sym)
b49e97c9
TS
9558{
9559 /* ??? Do mips16 stub sections need to be handled special? */
9560
9561 if (h != NULL)
07adf181
AM
9562 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9563 {
9564 case R_MIPS_GNU_VTINHERIT:
9565 case R_MIPS_GNU_VTENTRY:
9566 return NULL;
9567 }
b49e97c9 9568
07adf181 9569 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9570}
9571
9572/* Update the got entry reference counts for the section being removed. */
9573
b34976b6 9574bfd_boolean
9719ad41
RS
9575_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9576 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9577 asection *sec ATTRIBUTE_UNUSED,
9578 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9579{
9580#if 0
9581 Elf_Internal_Shdr *symtab_hdr;
9582 struct elf_link_hash_entry **sym_hashes;
9583 bfd_signed_vma *local_got_refcounts;
9584 const Elf_Internal_Rela *rel, *relend;
9585 unsigned long r_symndx;
9586 struct elf_link_hash_entry *h;
9587
9588 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9589 sym_hashes = elf_sym_hashes (abfd);
9590 local_got_refcounts = elf_local_got_refcounts (abfd);
9591
9592 relend = relocs + sec->reloc_count;
9593 for (rel = relocs; rel < relend; rel++)
9594 switch (ELF_R_TYPE (abfd, rel->r_info))
9595 {
9596 case R_MIPS_GOT16:
9597 case R_MIPS_CALL16:
9598 case R_MIPS_CALL_HI16:
9599 case R_MIPS_CALL_LO16:
9600 case R_MIPS_GOT_HI16:
9601 case R_MIPS_GOT_LO16:
4a14403c
TS
9602 case R_MIPS_GOT_DISP:
9603 case R_MIPS_GOT_PAGE:
9604 case R_MIPS_GOT_OFST:
b49e97c9
TS
9605 /* ??? It would seem that the existing MIPS code does no sort
9606 of reference counting or whatnot on its GOT and PLT entries,
9607 so it is not possible to garbage collect them at this time. */
9608 break;
9609
9610 default:
9611 break;
9612 }
9613#endif
9614
b34976b6 9615 return TRUE;
b49e97c9
TS
9616}
9617\f
9618/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9619 hiding the old indirect symbol. Process additional relocation
9620 information. Also called for weakdefs, in which case we just let
9621 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9622
9623void
fcfa13d2 9624_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9625 struct elf_link_hash_entry *dir,
9626 struct elf_link_hash_entry *ind)
b49e97c9
TS
9627{
9628 struct mips_elf_link_hash_entry *dirmips, *indmips;
9629
fcfa13d2 9630 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9631
9632 if (ind->root.type != bfd_link_hash_indirect)
9633 return;
9634
9635 dirmips = (struct mips_elf_link_hash_entry *) dir;
9636 indmips = (struct mips_elf_link_hash_entry *) ind;
9637 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9638 if (indmips->readonly_reloc)
b34976b6 9639 dirmips->readonly_reloc = TRUE;
b49e97c9 9640 if (indmips->no_fn_stub)
b34976b6 9641 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9642
9643 if (dirmips->tls_type == 0)
9644 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9645}
9646
9647void
9719ad41
RS
9648_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9649 struct elf_link_hash_entry *entry,
9650 bfd_boolean force_local)
b49e97c9
TS
9651{
9652 bfd *dynobj;
9653 asection *got;
9654 struct mips_got_info *g;
9655 struct mips_elf_link_hash_entry *h;
7c5fcef7 9656
b49e97c9 9657 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9658 if (h->forced_local)
9659 return;
4b555070 9660 h->forced_local = force_local;
7c5fcef7 9661
b49e97c9 9662 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9663 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9664 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9665 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9666 {
c45a316a
AM
9667 if (g->next)
9668 {
9669 struct mips_got_entry e;
9670 struct mips_got_info *gg = g;
9671
9672 /* Since we're turning what used to be a global symbol into a
9673 local one, bump up the number of local entries of each GOT
9674 that had an entry for it. This will automatically decrease
9675 the number of global entries, since global_gotno is actually
9676 the upper limit of global entries. */
9677 e.abfd = dynobj;
9678 e.symndx = -1;
9679 e.d.h = h;
0f20cc35 9680 e.tls_type = 0;
c45a316a
AM
9681
9682 for (g = g->next; g != gg; g = g->next)
9683 if (htab_find (g->got_entries, &e))
9684 {
9685 BFD_ASSERT (g->global_gotno > 0);
9686 g->local_gotno++;
9687 g->global_gotno--;
9688 }
b49e97c9 9689
c45a316a
AM
9690 /* If this was a global symbol forced into the primary GOT, we
9691 no longer need an entry for it. We can't release the entry
9692 at this point, but we must at least stop counting it as one
9693 of the symbols that required a forced got entry. */
9694 if (h->root.got.offset == 2)
9695 {
9696 BFD_ASSERT (gg->assigned_gotno > 0);
9697 gg->assigned_gotno--;
9698 }
9699 }
9700 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9701 /* If we haven't got through GOT allocation yet, just bump up the
9702 number of local entries, as this symbol won't be counted as
9703 global. */
9704 g->local_gotno++;
9705 else if (h->root.got.offset == 1)
f4416af6 9706 {
c45a316a
AM
9707 /* If we're past non-multi-GOT allocation and this symbol had
9708 been marked for a global got entry, give it a local entry
9709 instead. */
9710 BFD_ASSERT (g->global_gotno > 0);
9711 g->local_gotno++;
9712 g->global_gotno--;
f4416af6
AO
9713 }
9714 }
f4416af6
AO
9715
9716 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9717}
9718\f
d01414a5
TS
9719#define PDR_SIZE 32
9720
b34976b6 9721bfd_boolean
9719ad41
RS
9722_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9723 struct bfd_link_info *info)
d01414a5
TS
9724{
9725 asection *o;
b34976b6 9726 bfd_boolean ret = FALSE;
d01414a5
TS
9727 unsigned char *tdata;
9728 size_t i, skip;
9729
9730 o = bfd_get_section_by_name (abfd, ".pdr");
9731 if (! o)
b34976b6 9732 return FALSE;
eea6121a 9733 if (o->size == 0)
b34976b6 9734 return FALSE;
eea6121a 9735 if (o->size % PDR_SIZE != 0)
b34976b6 9736 return FALSE;
d01414a5
TS
9737 if (o->output_section != NULL
9738 && bfd_is_abs_section (o->output_section))
b34976b6 9739 return FALSE;
d01414a5 9740
eea6121a 9741 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9742 if (! tdata)
b34976b6 9743 return FALSE;
d01414a5 9744
9719ad41 9745 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9746 info->keep_memory);
d01414a5
TS
9747 if (!cookie->rels)
9748 {
9749 free (tdata);
b34976b6 9750 return FALSE;
d01414a5
TS
9751 }
9752
9753 cookie->rel = cookie->rels;
9754 cookie->relend = cookie->rels + o->reloc_count;
9755
eea6121a 9756 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9757 {
c152c796 9758 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9759 {
9760 tdata[i] = 1;
9761 skip ++;
9762 }
9763 }
9764
9765 if (skip != 0)
9766 {
f0abc2a1 9767 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9768 o->size -= skip * PDR_SIZE;
b34976b6 9769 ret = TRUE;
d01414a5
TS
9770 }
9771 else
9772 free (tdata);
9773
9774 if (! info->keep_memory)
9775 free (cookie->rels);
9776
9777 return ret;
9778}
9779
b34976b6 9780bfd_boolean
9719ad41 9781_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9782{
9783 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9784 return TRUE;
9785 return FALSE;
53bfd6b4 9786}
d01414a5 9787
b34976b6 9788bfd_boolean
c7b8f16e
JB
9789_bfd_mips_elf_write_section (bfd *output_bfd,
9790 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9791 asection *sec, bfd_byte *contents)
d01414a5
TS
9792{
9793 bfd_byte *to, *from, *end;
9794 int i;
9795
9796 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9797 return FALSE;
d01414a5 9798
f0abc2a1 9799 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9800 return FALSE;
d01414a5
TS
9801
9802 to = contents;
eea6121a 9803 end = contents + sec->size;
d01414a5
TS
9804 for (from = contents, i = 0;
9805 from < end;
9806 from += PDR_SIZE, i++)
9807 {
f0abc2a1 9808 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9809 continue;
9810 if (to != from)
9811 memcpy (to, from, PDR_SIZE);
9812 to += PDR_SIZE;
9813 }
9814 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9815 sec->output_offset, sec->size);
b34976b6 9816 return TRUE;
d01414a5 9817}
53bfd6b4 9818\f
b49e97c9
TS
9819/* MIPS ELF uses a special find_nearest_line routine in order the
9820 handle the ECOFF debugging information. */
9821
9822struct mips_elf_find_line
9823{
9824 struct ecoff_debug_info d;
9825 struct ecoff_find_line i;
9826};
9827
b34976b6 9828bfd_boolean
9719ad41
RS
9829_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9830 asymbol **symbols, bfd_vma offset,
9831 const char **filename_ptr,
9832 const char **functionname_ptr,
9833 unsigned int *line_ptr)
b49e97c9
TS
9834{
9835 asection *msec;
9836
9837 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9838 filename_ptr, functionname_ptr,
9839 line_ptr))
b34976b6 9840 return TRUE;
b49e97c9
TS
9841
9842 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9843 filename_ptr, functionname_ptr,
9719ad41 9844 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9845 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9846 return TRUE;
b49e97c9
TS
9847
9848 msec = bfd_get_section_by_name (abfd, ".mdebug");
9849 if (msec != NULL)
9850 {
9851 flagword origflags;
9852 struct mips_elf_find_line *fi;
9853 const struct ecoff_debug_swap * const swap =
9854 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9855
9856 /* If we are called during a link, mips_elf_final_link may have
9857 cleared the SEC_HAS_CONTENTS field. We force it back on here
9858 if appropriate (which it normally will be). */
9859 origflags = msec->flags;
9860 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9861 msec->flags |= SEC_HAS_CONTENTS;
9862
9863 fi = elf_tdata (abfd)->find_line_info;
9864 if (fi == NULL)
9865 {
9866 bfd_size_type external_fdr_size;
9867 char *fraw_src;
9868 char *fraw_end;
9869 struct fdr *fdr_ptr;
9870 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9871
9719ad41 9872 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9873 if (fi == NULL)
9874 {
9875 msec->flags = origflags;
b34976b6 9876 return FALSE;
b49e97c9
TS
9877 }
9878
9879 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9880 {
9881 msec->flags = origflags;
b34976b6 9882 return FALSE;
b49e97c9
TS
9883 }
9884
9885 /* Swap in the FDR information. */
9886 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9887 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9888 if (fi->d.fdr == NULL)
9889 {
9890 msec->flags = origflags;
b34976b6 9891 return FALSE;
b49e97c9
TS
9892 }
9893 external_fdr_size = swap->external_fdr_size;
9894 fdr_ptr = fi->d.fdr;
9895 fraw_src = (char *) fi->d.external_fdr;
9896 fraw_end = (fraw_src
9897 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9898 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9899 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9900
9901 elf_tdata (abfd)->find_line_info = fi;
9902
9903 /* Note that we don't bother to ever free this information.
9904 find_nearest_line is either called all the time, as in
9905 objdump -l, so the information should be saved, or it is
9906 rarely called, as in ld error messages, so the memory
9907 wasted is unimportant. Still, it would probably be a
9908 good idea for free_cached_info to throw it away. */
9909 }
9910
9911 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9912 &fi->i, filename_ptr, functionname_ptr,
9913 line_ptr))
9914 {
9915 msec->flags = origflags;
b34976b6 9916 return TRUE;
b49e97c9
TS
9917 }
9918
9919 msec->flags = origflags;
9920 }
9921
9922 /* Fall back on the generic ELF find_nearest_line routine. */
9923
9924 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9925 filename_ptr, functionname_ptr,
9926 line_ptr);
9927}
4ab527b0
FF
9928
9929bfd_boolean
9930_bfd_mips_elf_find_inliner_info (bfd *abfd,
9931 const char **filename_ptr,
9932 const char **functionname_ptr,
9933 unsigned int *line_ptr)
9934{
9935 bfd_boolean found;
9936 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9937 functionname_ptr, line_ptr,
9938 & elf_tdata (abfd)->dwarf2_find_line_info);
9939 return found;
9940}
9941
b49e97c9
TS
9942\f
9943/* When are writing out the .options or .MIPS.options section,
9944 remember the bytes we are writing out, so that we can install the
9945 GP value in the section_processing routine. */
9946
b34976b6 9947bfd_boolean
9719ad41
RS
9948_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9949 const void *location,
9950 file_ptr offset, bfd_size_type count)
b49e97c9 9951{
cc2e31b9 9952 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9953 {
9954 bfd_byte *c;
9955
9956 if (elf_section_data (section) == NULL)
9957 {
9958 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9959 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9960 if (elf_section_data (section) == NULL)
b34976b6 9961 return FALSE;
b49e97c9 9962 }
f0abc2a1 9963 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9964 if (c == NULL)
9965 {
eea6121a 9966 c = bfd_zalloc (abfd, section->size);
b49e97c9 9967 if (c == NULL)
b34976b6 9968 return FALSE;
f0abc2a1 9969 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9970 }
9971
9719ad41 9972 memcpy (c + offset, location, count);
b49e97c9
TS
9973 }
9974
9975 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9976 count);
9977}
9978
9979/* This is almost identical to bfd_generic_get_... except that some
9980 MIPS relocations need to be handled specially. Sigh. */
9981
9982bfd_byte *
9719ad41
RS
9983_bfd_elf_mips_get_relocated_section_contents
9984 (bfd *abfd,
9985 struct bfd_link_info *link_info,
9986 struct bfd_link_order *link_order,
9987 bfd_byte *data,
9988 bfd_boolean relocatable,
9989 asymbol **symbols)
b49e97c9
TS
9990{
9991 /* Get enough memory to hold the stuff */
9992 bfd *input_bfd = link_order->u.indirect.section->owner;
9993 asection *input_section = link_order->u.indirect.section;
eea6121a 9994 bfd_size_type sz;
b49e97c9
TS
9995
9996 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9997 arelent **reloc_vector = NULL;
9998 long reloc_count;
9999
10000 if (reloc_size < 0)
10001 goto error_return;
10002
9719ad41 10003 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10004 if (reloc_vector == NULL && reloc_size != 0)
10005 goto error_return;
10006
10007 /* read in the section */
eea6121a
AM
10008 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10009 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10010 goto error_return;
10011
b49e97c9
TS
10012 reloc_count = bfd_canonicalize_reloc (input_bfd,
10013 input_section,
10014 reloc_vector,
10015 symbols);
10016 if (reloc_count < 0)
10017 goto error_return;
10018
10019 if (reloc_count > 0)
10020 {
10021 arelent **parent;
10022 /* for mips */
10023 int gp_found;
10024 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10025
10026 {
10027 struct bfd_hash_entry *h;
10028 struct bfd_link_hash_entry *lh;
10029 /* Skip all this stuff if we aren't mixing formats. */
10030 if (abfd && input_bfd
10031 && abfd->xvec == input_bfd->xvec)
10032 lh = 0;
10033 else
10034 {
b34976b6 10035 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10036 lh = (struct bfd_link_hash_entry *) h;
10037 }
10038 lookup:
10039 if (lh)
10040 {
10041 switch (lh->type)
10042 {
10043 case bfd_link_hash_undefined:
10044 case bfd_link_hash_undefweak:
10045 case bfd_link_hash_common:
10046 gp_found = 0;
10047 break;
10048 case bfd_link_hash_defined:
10049 case bfd_link_hash_defweak:
10050 gp_found = 1;
10051 gp = lh->u.def.value;
10052 break;
10053 case bfd_link_hash_indirect:
10054 case bfd_link_hash_warning:
10055 lh = lh->u.i.link;
10056 /* @@FIXME ignoring warning for now */
10057 goto lookup;
10058 case bfd_link_hash_new:
10059 default:
10060 abort ();
10061 }
10062 }
10063 else
10064 gp_found = 0;
10065 }
10066 /* end mips */
9719ad41 10067 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10068 {
9719ad41 10069 char *error_message = NULL;
b49e97c9
TS
10070 bfd_reloc_status_type r;
10071
10072 /* Specific to MIPS: Deal with relocation types that require
10073 knowing the gp of the output bfd. */
10074 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10075
8236346f
EC
10076 /* If we've managed to find the gp and have a special
10077 function for the relocation then go ahead, else default
10078 to the generic handling. */
10079 if (gp_found
10080 && (*parent)->howto->special_function
10081 == _bfd_mips_elf32_gprel16_reloc)
10082 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10083 input_section, relocatable,
10084 data, gp);
10085 else
86324f90 10086 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10087 input_section,
10088 relocatable ? abfd : NULL,
10089 &error_message);
b49e97c9 10090
1049f94e 10091 if (relocatable)
b49e97c9
TS
10092 {
10093 asection *os = input_section->output_section;
10094
10095 /* A partial link, so keep the relocs */
10096 os->orelocation[os->reloc_count] = *parent;
10097 os->reloc_count++;
10098 }
10099
10100 if (r != bfd_reloc_ok)
10101 {
10102 switch (r)
10103 {
10104 case bfd_reloc_undefined:
10105 if (!((*link_info->callbacks->undefined_symbol)
10106 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10107 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10108 goto error_return;
10109 break;
10110 case bfd_reloc_dangerous:
9719ad41 10111 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10112 if (!((*link_info->callbacks->reloc_dangerous)
10113 (link_info, error_message, input_bfd, input_section,
10114 (*parent)->address)))
10115 goto error_return;
10116 break;
10117 case bfd_reloc_overflow:
10118 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10119 (link_info, NULL,
10120 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10121 (*parent)->howto->name, (*parent)->addend,
10122 input_bfd, input_section, (*parent)->address)))
10123 goto error_return;
10124 break;
10125 case bfd_reloc_outofrange:
10126 default:
10127 abort ();
10128 break;
10129 }
10130
10131 }
10132 }
10133 }
10134 if (reloc_vector != NULL)
10135 free (reloc_vector);
10136 return data;
10137
10138error_return:
10139 if (reloc_vector != NULL)
10140 free (reloc_vector);
10141 return NULL;
10142}
10143\f
10144/* Create a MIPS ELF linker hash table. */
10145
10146struct bfd_link_hash_table *
9719ad41 10147_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10148{
10149 struct mips_elf_link_hash_table *ret;
10150 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10151
9719ad41
RS
10152 ret = bfd_malloc (amt);
10153 if (ret == NULL)
b49e97c9
TS
10154 return NULL;
10155
66eb6687
AM
10156 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10157 mips_elf_link_hash_newfunc,
10158 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10159 {
e2d34d7d 10160 free (ret);
b49e97c9
TS
10161 return NULL;
10162 }
10163
10164#if 0
10165 /* We no longer use this. */
10166 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10167 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10168#endif
10169 ret->procedure_count = 0;
10170 ret->compact_rel_size = 0;
b34976b6 10171 ret->use_rld_obj_head = FALSE;
b49e97c9 10172 ret->rld_value = 0;
b34976b6 10173 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10174 ret->is_vxworks = FALSE;
10175 ret->srelbss = NULL;
10176 ret->sdynbss = NULL;
10177 ret->srelplt = NULL;
10178 ret->srelplt2 = NULL;
10179 ret->sgotplt = NULL;
10180 ret->splt = NULL;
10181 ret->plt_header_size = 0;
10182 ret->plt_entry_size = 0;
5108fc1b 10183 ret->function_stub_size = 0;
b49e97c9
TS
10184
10185 return &ret->root.root;
10186}
0a44bf69
RS
10187
10188/* Likewise, but indicate that the target is VxWorks. */
10189
10190struct bfd_link_hash_table *
10191_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10192{
10193 struct bfd_link_hash_table *ret;
10194
10195 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10196 if (ret)
10197 {
10198 struct mips_elf_link_hash_table *htab;
10199
10200 htab = (struct mips_elf_link_hash_table *) ret;
10201 htab->is_vxworks = 1;
10202 }
10203 return ret;
10204}
b49e97c9
TS
10205\f
10206/* We need to use a special link routine to handle the .reginfo and
10207 the .mdebug sections. We need to merge all instances of these
10208 sections together, not write them all out sequentially. */
10209
b34976b6 10210bfd_boolean
9719ad41 10211_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10212{
b49e97c9
TS
10213 asection *o;
10214 struct bfd_link_order *p;
10215 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10216 asection *rtproc_sec;
10217 Elf32_RegInfo reginfo;
10218 struct ecoff_debug_info debug;
7a2a6943
NC
10219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10220 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10221 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10222 void *mdebug_handle = NULL;
b49e97c9
TS
10223 asection *s;
10224 EXTR esym;
10225 unsigned int i;
10226 bfd_size_type amt;
0a44bf69 10227 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10228
10229 static const char * const secname[] =
10230 {
10231 ".text", ".init", ".fini", ".data",
10232 ".rodata", ".sdata", ".sbss", ".bss"
10233 };
10234 static const int sc[] =
10235 {
10236 scText, scInit, scFini, scData,
10237 scRData, scSData, scSBss, scBss
10238 };
10239
b49e97c9
TS
10240 /* We'd carefully arranged the dynamic symbol indices, and then the
10241 generic size_dynamic_sections renumbered them out from under us.
10242 Rather than trying somehow to prevent the renumbering, just do
10243 the sort again. */
0a44bf69 10244 htab = mips_elf_hash_table (info);
b49e97c9
TS
10245 if (elf_hash_table (info)->dynamic_sections_created)
10246 {
10247 bfd *dynobj;
10248 asection *got;
10249 struct mips_got_info *g;
7a2a6943 10250 bfd_size_type dynsecsymcount;
b49e97c9
TS
10251
10252 /* When we resort, we must tell mips_elf_sort_hash_table what
10253 the lowest index it may use is. That's the number of section
10254 symbols we're going to add. The generic ELF linker only
10255 adds these symbols when building a shared object. Note that
10256 we count the sections after (possibly) removing the .options
10257 section above. */
7a2a6943 10258
5108fc1b 10259 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10260 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10261 return FALSE;
b49e97c9
TS
10262
10263 /* Make sure we didn't grow the global .got region. */
10264 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10265 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10266 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10267
10268 if (g->global_gotsym != NULL)
10269 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10270 - g->global_gotsym->dynindx)
10271 <= g->global_gotno);
10272 }
10273
b49e97c9
TS
10274 /* Get a value for the GP register. */
10275 if (elf_gp (abfd) == 0)
10276 {
10277 struct bfd_link_hash_entry *h;
10278
b34976b6 10279 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10280 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10281 elf_gp (abfd) = (h->u.def.value
10282 + h->u.def.section->output_section->vma
10283 + h->u.def.section->output_offset);
0a44bf69
RS
10284 else if (htab->is_vxworks
10285 && (h = bfd_link_hash_lookup (info->hash,
10286 "_GLOBAL_OFFSET_TABLE_",
10287 FALSE, FALSE, TRUE))
10288 && h->type == bfd_link_hash_defined)
10289 elf_gp (abfd) = (h->u.def.section->output_section->vma
10290 + h->u.def.section->output_offset
10291 + h->u.def.value);
1049f94e 10292 else if (info->relocatable)
b49e97c9
TS
10293 {
10294 bfd_vma lo = MINUS_ONE;
10295
10296 /* Find the GP-relative section with the lowest offset. */
9719ad41 10297 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10298 if (o->vma < lo
10299 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10300 lo = o->vma;
10301
10302 /* And calculate GP relative to that. */
0a44bf69 10303 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10304 }
10305 else
10306 {
10307 /* If the relocate_section function needs to do a reloc
10308 involving the GP value, it should make a reloc_dangerous
10309 callback to warn that GP is not defined. */
10310 }
10311 }
10312
10313 /* Go through the sections and collect the .reginfo and .mdebug
10314 information. */
10315 reginfo_sec = NULL;
10316 mdebug_sec = NULL;
10317 gptab_data_sec = NULL;
10318 gptab_bss_sec = NULL;
9719ad41 10319 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10320 {
10321 if (strcmp (o->name, ".reginfo") == 0)
10322 {
10323 memset (&reginfo, 0, sizeof reginfo);
10324
10325 /* We have found the .reginfo section in the output file.
10326 Look through all the link_orders comprising it and merge
10327 the information together. */
8423293d 10328 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10329 {
10330 asection *input_section;
10331 bfd *input_bfd;
10332 Elf32_External_RegInfo ext;
10333 Elf32_RegInfo sub;
10334
10335 if (p->type != bfd_indirect_link_order)
10336 {
10337 if (p->type == bfd_data_link_order)
10338 continue;
10339 abort ();
10340 }
10341
10342 input_section = p->u.indirect.section;
10343 input_bfd = input_section->owner;
10344
b49e97c9 10345 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10346 &ext, 0, sizeof ext))
b34976b6 10347 return FALSE;
b49e97c9
TS
10348
10349 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10350
10351 reginfo.ri_gprmask |= sub.ri_gprmask;
10352 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10353 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10354 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10355 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10356
10357 /* ri_gp_value is set by the function
10358 mips_elf32_section_processing when the section is
10359 finally written out. */
10360
10361 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10362 elf_link_input_bfd ignores this section. */
10363 input_section->flags &= ~SEC_HAS_CONTENTS;
10364 }
10365
10366 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10367 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10368
10369 /* Skip this section later on (I don't think this currently
10370 matters, but someday it might). */
8423293d 10371 o->map_head.link_order = NULL;
b49e97c9
TS
10372
10373 reginfo_sec = o;
10374 }
10375
10376 if (strcmp (o->name, ".mdebug") == 0)
10377 {
10378 struct extsym_info einfo;
10379 bfd_vma last;
10380
10381 /* We have found the .mdebug section in the output file.
10382 Look through all the link_orders comprising it and merge
10383 the information together. */
10384 symhdr->magic = swap->sym_magic;
10385 /* FIXME: What should the version stamp be? */
10386 symhdr->vstamp = 0;
10387 symhdr->ilineMax = 0;
10388 symhdr->cbLine = 0;
10389 symhdr->idnMax = 0;
10390 symhdr->ipdMax = 0;
10391 symhdr->isymMax = 0;
10392 symhdr->ioptMax = 0;
10393 symhdr->iauxMax = 0;
10394 symhdr->issMax = 0;
10395 symhdr->issExtMax = 0;
10396 symhdr->ifdMax = 0;
10397 symhdr->crfd = 0;
10398 symhdr->iextMax = 0;
10399
10400 /* We accumulate the debugging information itself in the
10401 debug_info structure. */
10402 debug.line = NULL;
10403 debug.external_dnr = NULL;
10404 debug.external_pdr = NULL;
10405 debug.external_sym = NULL;
10406 debug.external_opt = NULL;
10407 debug.external_aux = NULL;
10408 debug.ss = NULL;
10409 debug.ssext = debug.ssext_end = NULL;
10410 debug.external_fdr = NULL;
10411 debug.external_rfd = NULL;
10412 debug.external_ext = debug.external_ext_end = NULL;
10413
10414 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10415 if (mdebug_handle == NULL)
b34976b6 10416 return FALSE;
b49e97c9
TS
10417
10418 esym.jmptbl = 0;
10419 esym.cobol_main = 0;
10420 esym.weakext = 0;
10421 esym.reserved = 0;
10422 esym.ifd = ifdNil;
10423 esym.asym.iss = issNil;
10424 esym.asym.st = stLocal;
10425 esym.asym.reserved = 0;
10426 esym.asym.index = indexNil;
10427 last = 0;
10428 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10429 {
10430 esym.asym.sc = sc[i];
10431 s = bfd_get_section_by_name (abfd, secname[i]);
10432 if (s != NULL)
10433 {
10434 esym.asym.value = s->vma;
eea6121a 10435 last = s->vma + s->size;
b49e97c9
TS
10436 }
10437 else
10438 esym.asym.value = last;
10439 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10440 secname[i], &esym))
b34976b6 10441 return FALSE;
b49e97c9
TS
10442 }
10443
8423293d 10444 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10445 {
10446 asection *input_section;
10447 bfd *input_bfd;
10448 const struct ecoff_debug_swap *input_swap;
10449 struct ecoff_debug_info input_debug;
10450 char *eraw_src;
10451 char *eraw_end;
10452
10453 if (p->type != bfd_indirect_link_order)
10454 {
10455 if (p->type == bfd_data_link_order)
10456 continue;
10457 abort ();
10458 }
10459
10460 input_section = p->u.indirect.section;
10461 input_bfd = input_section->owner;
10462
10463 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10464 || (get_elf_backend_data (input_bfd)
10465 ->elf_backend_ecoff_debug_swap) == NULL)
10466 {
10467 /* I don't know what a non MIPS ELF bfd would be
10468 doing with a .mdebug section, but I don't really
10469 want to deal with it. */
10470 continue;
10471 }
10472
10473 input_swap = (get_elf_backend_data (input_bfd)
10474 ->elf_backend_ecoff_debug_swap);
10475
eea6121a 10476 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10477
10478 /* The ECOFF linking code expects that we have already
10479 read in the debugging information and set up an
10480 ecoff_debug_info structure, so we do that now. */
10481 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10482 &input_debug))
b34976b6 10483 return FALSE;
b49e97c9
TS
10484
10485 if (! (bfd_ecoff_debug_accumulate
10486 (mdebug_handle, abfd, &debug, swap, input_bfd,
10487 &input_debug, input_swap, info)))
b34976b6 10488 return FALSE;
b49e97c9
TS
10489
10490 /* Loop through the external symbols. For each one with
10491 interesting information, try to find the symbol in
10492 the linker global hash table and save the information
10493 for the output external symbols. */
10494 eraw_src = input_debug.external_ext;
10495 eraw_end = (eraw_src
10496 + (input_debug.symbolic_header.iextMax
10497 * input_swap->external_ext_size));
10498 for (;
10499 eraw_src < eraw_end;
10500 eraw_src += input_swap->external_ext_size)
10501 {
10502 EXTR ext;
10503 const char *name;
10504 struct mips_elf_link_hash_entry *h;
10505
9719ad41 10506 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10507 if (ext.asym.sc == scNil
10508 || ext.asym.sc == scUndefined
10509 || ext.asym.sc == scSUndefined)
10510 continue;
10511
10512 name = input_debug.ssext + ext.asym.iss;
10513 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10514 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10515 if (h == NULL || h->esym.ifd != -2)
10516 continue;
10517
10518 if (ext.ifd != -1)
10519 {
10520 BFD_ASSERT (ext.ifd
10521 < input_debug.symbolic_header.ifdMax);
10522 ext.ifd = input_debug.ifdmap[ext.ifd];
10523 }
10524
10525 h->esym = ext;
10526 }
10527
10528 /* Free up the information we just read. */
10529 free (input_debug.line);
10530 free (input_debug.external_dnr);
10531 free (input_debug.external_pdr);
10532 free (input_debug.external_sym);
10533 free (input_debug.external_opt);
10534 free (input_debug.external_aux);
10535 free (input_debug.ss);
10536 free (input_debug.ssext);
10537 free (input_debug.external_fdr);
10538 free (input_debug.external_rfd);
10539 free (input_debug.external_ext);
10540
10541 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10542 elf_link_input_bfd ignores this section. */
10543 input_section->flags &= ~SEC_HAS_CONTENTS;
10544 }
10545
10546 if (SGI_COMPAT (abfd) && info->shared)
10547 {
10548 /* Create .rtproc section. */
10549 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10550 if (rtproc_sec == NULL)
10551 {
10552 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10553 | SEC_LINKER_CREATED | SEC_READONLY);
10554
3496cb2a
L
10555 rtproc_sec = bfd_make_section_with_flags (abfd,
10556 ".rtproc",
10557 flags);
b49e97c9 10558 if (rtproc_sec == NULL
b49e97c9 10559 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10560 return FALSE;
b49e97c9
TS
10561 }
10562
10563 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10564 info, rtproc_sec,
10565 &debug))
b34976b6 10566 return FALSE;
b49e97c9
TS
10567 }
10568
10569 /* Build the external symbol information. */
10570 einfo.abfd = abfd;
10571 einfo.info = info;
10572 einfo.debug = &debug;
10573 einfo.swap = swap;
b34976b6 10574 einfo.failed = FALSE;
b49e97c9 10575 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10576 mips_elf_output_extsym, &einfo);
b49e97c9 10577 if (einfo.failed)
b34976b6 10578 return FALSE;
b49e97c9
TS
10579
10580 /* Set the size of the .mdebug section. */
eea6121a 10581 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10582
10583 /* Skip this section later on (I don't think this currently
10584 matters, but someday it might). */
8423293d 10585 o->map_head.link_order = NULL;
b49e97c9
TS
10586
10587 mdebug_sec = o;
10588 }
10589
0112cd26 10590 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10591 {
10592 const char *subname;
10593 unsigned int c;
10594 Elf32_gptab *tab;
10595 Elf32_External_gptab *ext_tab;
10596 unsigned int j;
10597
10598 /* The .gptab.sdata and .gptab.sbss sections hold
10599 information describing how the small data area would
10600 change depending upon the -G switch. These sections
10601 not used in executables files. */
1049f94e 10602 if (! info->relocatable)
b49e97c9 10603 {
8423293d 10604 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10605 {
10606 asection *input_section;
10607
10608 if (p->type != bfd_indirect_link_order)
10609 {
10610 if (p->type == bfd_data_link_order)
10611 continue;
10612 abort ();
10613 }
10614
10615 input_section = p->u.indirect.section;
10616
10617 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10618 elf_link_input_bfd ignores this section. */
10619 input_section->flags &= ~SEC_HAS_CONTENTS;
10620 }
10621
10622 /* Skip this section later on (I don't think this
10623 currently matters, but someday it might). */
8423293d 10624 o->map_head.link_order = NULL;
b49e97c9
TS
10625
10626 /* Really remove the section. */
5daa8fe7 10627 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10628 --abfd->section_count;
10629
10630 continue;
10631 }
10632
10633 /* There is one gptab for initialized data, and one for
10634 uninitialized data. */
10635 if (strcmp (o->name, ".gptab.sdata") == 0)
10636 gptab_data_sec = o;
10637 else if (strcmp (o->name, ".gptab.sbss") == 0)
10638 gptab_bss_sec = o;
10639 else
10640 {
10641 (*_bfd_error_handler)
10642 (_("%s: illegal section name `%s'"),
10643 bfd_get_filename (abfd), o->name);
10644 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10645 return FALSE;
b49e97c9
TS
10646 }
10647
10648 /* The linker script always combines .gptab.data and
10649 .gptab.sdata into .gptab.sdata, and likewise for
10650 .gptab.bss and .gptab.sbss. It is possible that there is
10651 no .sdata or .sbss section in the output file, in which
10652 case we must change the name of the output section. */
10653 subname = o->name + sizeof ".gptab" - 1;
10654 if (bfd_get_section_by_name (abfd, subname) == NULL)
10655 {
10656 if (o == gptab_data_sec)
10657 o->name = ".gptab.data";
10658 else
10659 o->name = ".gptab.bss";
10660 subname = o->name + sizeof ".gptab" - 1;
10661 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10662 }
10663
10664 /* Set up the first entry. */
10665 c = 1;
10666 amt = c * sizeof (Elf32_gptab);
9719ad41 10667 tab = bfd_malloc (amt);
b49e97c9 10668 if (tab == NULL)
b34976b6 10669 return FALSE;
b49e97c9
TS
10670 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10671 tab[0].gt_header.gt_unused = 0;
10672
10673 /* Combine the input sections. */
8423293d 10674 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10675 {
10676 asection *input_section;
10677 bfd *input_bfd;
10678 bfd_size_type size;
10679 unsigned long last;
10680 bfd_size_type gpentry;
10681
10682 if (p->type != bfd_indirect_link_order)
10683 {
10684 if (p->type == bfd_data_link_order)
10685 continue;
10686 abort ();
10687 }
10688
10689 input_section = p->u.indirect.section;
10690 input_bfd = input_section->owner;
10691
10692 /* Combine the gptab entries for this input section one
10693 by one. We know that the input gptab entries are
10694 sorted by ascending -G value. */
eea6121a 10695 size = input_section->size;
b49e97c9
TS
10696 last = 0;
10697 for (gpentry = sizeof (Elf32_External_gptab);
10698 gpentry < size;
10699 gpentry += sizeof (Elf32_External_gptab))
10700 {
10701 Elf32_External_gptab ext_gptab;
10702 Elf32_gptab int_gptab;
10703 unsigned long val;
10704 unsigned long add;
b34976b6 10705 bfd_boolean exact;
b49e97c9
TS
10706 unsigned int look;
10707
10708 if (! (bfd_get_section_contents
9719ad41
RS
10709 (input_bfd, input_section, &ext_gptab, gpentry,
10710 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10711 {
10712 free (tab);
b34976b6 10713 return FALSE;
b49e97c9
TS
10714 }
10715
10716 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10717 &int_gptab);
10718 val = int_gptab.gt_entry.gt_g_value;
10719 add = int_gptab.gt_entry.gt_bytes - last;
10720
b34976b6 10721 exact = FALSE;
b49e97c9
TS
10722 for (look = 1; look < c; look++)
10723 {
10724 if (tab[look].gt_entry.gt_g_value >= val)
10725 tab[look].gt_entry.gt_bytes += add;
10726
10727 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10728 exact = TRUE;
b49e97c9
TS
10729 }
10730
10731 if (! exact)
10732 {
10733 Elf32_gptab *new_tab;
10734 unsigned int max;
10735
10736 /* We need a new table entry. */
10737 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10738 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10739 if (new_tab == NULL)
10740 {
10741 free (tab);
b34976b6 10742 return FALSE;
b49e97c9
TS
10743 }
10744 tab = new_tab;
10745 tab[c].gt_entry.gt_g_value = val;
10746 tab[c].gt_entry.gt_bytes = add;
10747
10748 /* Merge in the size for the next smallest -G
10749 value, since that will be implied by this new
10750 value. */
10751 max = 0;
10752 for (look = 1; look < c; look++)
10753 {
10754 if (tab[look].gt_entry.gt_g_value < val
10755 && (max == 0
10756 || (tab[look].gt_entry.gt_g_value
10757 > tab[max].gt_entry.gt_g_value)))
10758 max = look;
10759 }
10760 if (max != 0)
10761 tab[c].gt_entry.gt_bytes +=
10762 tab[max].gt_entry.gt_bytes;
10763
10764 ++c;
10765 }
10766
10767 last = int_gptab.gt_entry.gt_bytes;
10768 }
10769
10770 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10771 elf_link_input_bfd ignores this section. */
10772 input_section->flags &= ~SEC_HAS_CONTENTS;
10773 }
10774
10775 /* The table must be sorted by -G value. */
10776 if (c > 2)
10777 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10778
10779 /* Swap out the table. */
10780 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10781 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10782 if (ext_tab == NULL)
10783 {
10784 free (tab);
b34976b6 10785 return FALSE;
b49e97c9
TS
10786 }
10787
10788 for (j = 0; j < c; j++)
10789 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10790 free (tab);
10791
eea6121a 10792 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10793 o->contents = (bfd_byte *) ext_tab;
10794
10795 /* Skip this section later on (I don't think this currently
10796 matters, but someday it might). */
8423293d 10797 o->map_head.link_order = NULL;
b49e97c9
TS
10798 }
10799 }
10800
10801 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10802 if (!bfd_elf_final_link (abfd, info))
b34976b6 10803 return FALSE;
b49e97c9
TS
10804
10805 /* Now write out the computed sections. */
10806
9719ad41 10807 if (reginfo_sec != NULL)
b49e97c9
TS
10808 {
10809 Elf32_External_RegInfo ext;
10810
10811 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10812 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10813 return FALSE;
b49e97c9
TS
10814 }
10815
9719ad41 10816 if (mdebug_sec != NULL)
b49e97c9
TS
10817 {
10818 BFD_ASSERT (abfd->output_has_begun);
10819 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10820 swap, info,
10821 mdebug_sec->filepos))
b34976b6 10822 return FALSE;
b49e97c9
TS
10823
10824 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10825 }
10826
9719ad41 10827 if (gptab_data_sec != NULL)
b49e97c9
TS
10828 {
10829 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10830 gptab_data_sec->contents,
eea6121a 10831 0, gptab_data_sec->size))
b34976b6 10832 return FALSE;
b49e97c9
TS
10833 }
10834
9719ad41 10835 if (gptab_bss_sec != NULL)
b49e97c9
TS
10836 {
10837 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10838 gptab_bss_sec->contents,
eea6121a 10839 0, gptab_bss_sec->size))
b34976b6 10840 return FALSE;
b49e97c9
TS
10841 }
10842
10843 if (SGI_COMPAT (abfd))
10844 {
10845 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10846 if (rtproc_sec != NULL)
10847 {
10848 if (! bfd_set_section_contents (abfd, rtproc_sec,
10849 rtproc_sec->contents,
eea6121a 10850 0, rtproc_sec->size))
b34976b6 10851 return FALSE;
b49e97c9
TS
10852 }
10853 }
10854
b34976b6 10855 return TRUE;
b49e97c9
TS
10856}
10857\f
64543e1a
RS
10858/* Structure for saying that BFD machine EXTENSION extends BASE. */
10859
10860struct mips_mach_extension {
10861 unsigned long extension, base;
10862};
10863
10864
10865/* An array describing how BFD machines relate to one another. The entries
10866 are ordered topologically with MIPS I extensions listed last. */
10867
10868static const struct mips_mach_extension mips_mach_extensions[] = {
10869 /* MIPS64 extensions. */
5f74bc13 10870 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10871 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10872
10873 /* MIPS V extensions. */
10874 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10875
10876 /* R10000 extensions. */
10877 { bfd_mach_mips12000, bfd_mach_mips10000 },
10878
10879 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10880 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10881 better to allow vr5400 and vr5500 code to be merged anyway, since
10882 many libraries will just use the core ISA. Perhaps we could add
10883 some sort of ASE flag if this ever proves a problem. */
10884 { bfd_mach_mips5500, bfd_mach_mips5400 },
10885 { bfd_mach_mips5400, bfd_mach_mips5000 },
10886
10887 /* MIPS IV extensions. */
10888 { bfd_mach_mips5, bfd_mach_mips8000 },
10889 { bfd_mach_mips10000, bfd_mach_mips8000 },
10890 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10891 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10892 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10893
10894 /* VR4100 extensions. */
10895 { bfd_mach_mips4120, bfd_mach_mips4100 },
10896 { bfd_mach_mips4111, bfd_mach_mips4100 },
10897
10898 /* MIPS III extensions. */
10899 { bfd_mach_mips8000, bfd_mach_mips4000 },
10900 { bfd_mach_mips4650, bfd_mach_mips4000 },
10901 { bfd_mach_mips4600, bfd_mach_mips4000 },
10902 { bfd_mach_mips4400, bfd_mach_mips4000 },
10903 { bfd_mach_mips4300, bfd_mach_mips4000 },
10904 { bfd_mach_mips4100, bfd_mach_mips4000 },
10905 { bfd_mach_mips4010, bfd_mach_mips4000 },
10906
10907 /* MIPS32 extensions. */
10908 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10909
10910 /* MIPS II extensions. */
10911 { bfd_mach_mips4000, bfd_mach_mips6000 },
10912 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10913
10914 /* MIPS I extensions. */
10915 { bfd_mach_mips6000, bfd_mach_mips3000 },
10916 { bfd_mach_mips3900, bfd_mach_mips3000 }
10917};
10918
10919
10920/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10921
10922static bfd_boolean
9719ad41 10923mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10924{
10925 size_t i;
10926
c5211a54
RS
10927 if (extension == base)
10928 return TRUE;
10929
10930 if (base == bfd_mach_mipsisa32
10931 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10932 return TRUE;
10933
10934 if (base == bfd_mach_mipsisa32r2
10935 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10936 return TRUE;
10937
10938 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10939 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10940 {
10941 extension = mips_mach_extensions[i].base;
10942 if (extension == base)
10943 return TRUE;
10944 }
64543e1a 10945
c5211a54 10946 return FALSE;
64543e1a
RS
10947}
10948
10949
10950/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10951
b34976b6 10952static bfd_boolean
9719ad41 10953mips_32bit_flags_p (flagword flags)
00707a0e 10954{
64543e1a
RS
10955 return ((flags & EF_MIPS_32BITMODE) != 0
10956 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10957 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10958 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10959 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10960 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10961 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10962}
10963
64543e1a 10964
2cf19d5c
JM
10965/* Merge object attributes from IBFD into OBFD. Raise an error if
10966 there are conflicting attributes. */
10967static bfd_boolean
10968mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
10969{
10970 obj_attribute *in_attr;
10971 obj_attribute *out_attr;
10972
10973 if (!elf_known_obj_attributes_proc (obfd)[0].i)
10974 {
10975 /* This is the first object. Copy the attributes. */
10976 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10977
10978 /* Use the Tag_null value to indicate the attributes have been
10979 initialized. */
10980 elf_known_obj_attributes_proc (obfd)[0].i = 1;
10981
10982 return TRUE;
10983 }
10984
10985 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
10986 non-conflicting ones. */
10987 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
10988 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
10989 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
10990 {
10991 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
10992 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
10993 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
10994 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
10995 ;
10996 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
10997 _bfd_error_handler
10998 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
10999 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11000 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11001 _bfd_error_handler
11002 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11003 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11004 else
11005 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11006 {
11007 case 1:
11008 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11009 {
11010 case 2:
11011 _bfd_error_handler
11012 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11013 obfd, ibfd);
11014
11015 case 3:
11016 _bfd_error_handler
11017 (_("Warning: %B uses hard float, %B uses soft float"),
11018 obfd, ibfd);
11019 break;
11020
11021 default:
11022 abort ();
11023 }
11024 break;
11025
11026 case 2:
11027 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11028 {
11029 case 1:
11030 _bfd_error_handler
11031 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11032 ibfd, obfd);
11033
11034 case 3:
11035 _bfd_error_handler
11036 (_("Warning: %B uses hard float, %B uses soft float"),
11037 obfd, ibfd);
11038 break;
11039
11040 default:
11041 abort ();
11042 }
11043 break;
11044
11045 case 3:
11046 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11047 {
11048 case 1:
11049 case 2:
11050 _bfd_error_handler
11051 (_("Warning: %B uses hard float, %B uses soft float"),
11052 ibfd, obfd);
11053 break;
11054
11055 default:
11056 abort ();
11057 }
11058 break;
11059
11060 default:
11061 abort ();
11062 }
11063 }
11064
11065 /* Merge Tag_compatibility attributes and any common GNU ones. */
11066 _bfd_elf_merge_object_attributes (ibfd, obfd);
11067
11068 return TRUE;
11069}
11070
b49e97c9
TS
11071/* Merge backend specific data from an object file to the output
11072 object file when linking. */
11073
b34976b6 11074bfd_boolean
9719ad41 11075_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
11076{
11077 flagword old_flags;
11078 flagword new_flags;
b34976b6
AM
11079 bfd_boolean ok;
11080 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
11081 asection *sec;
11082
11083 /* Check if we have the same endianess */
82e51918 11084 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
11085 {
11086 (*_bfd_error_handler)
d003868e
AM
11087 (_("%B: endianness incompatible with that of the selected emulation"),
11088 ibfd);
aa701218
AO
11089 return FALSE;
11090 }
b49e97c9
TS
11091
11092 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11093 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 11094 return TRUE;
b49e97c9 11095
aa701218
AO
11096 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11097 {
11098 (*_bfd_error_handler)
d003868e
AM
11099 (_("%B: ABI is incompatible with that of the selected emulation"),
11100 ibfd);
aa701218
AO
11101 return FALSE;
11102 }
11103
2cf19d5c
JM
11104 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11105 return FALSE;
11106
b49e97c9
TS
11107 new_flags = elf_elfheader (ibfd)->e_flags;
11108 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11109 old_flags = elf_elfheader (obfd)->e_flags;
11110
11111 if (! elf_flags_init (obfd))
11112 {
b34976b6 11113 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11114 elf_elfheader (obfd)->e_flags = new_flags;
11115 elf_elfheader (obfd)->e_ident[EI_CLASS]
11116 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11117
11118 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11119 && (bfd_get_arch_info (obfd)->the_default
11120 || mips_mach_extends_p (bfd_get_mach (obfd),
11121 bfd_get_mach (ibfd))))
b49e97c9
TS
11122 {
11123 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11124 bfd_get_mach (ibfd)))
b34976b6 11125 return FALSE;
b49e97c9
TS
11126 }
11127
b34976b6 11128 return TRUE;
b49e97c9
TS
11129 }
11130
11131 /* Check flag compatibility. */
11132
11133 new_flags &= ~EF_MIPS_NOREORDER;
11134 old_flags &= ~EF_MIPS_NOREORDER;
11135
f4416af6
AO
11136 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11137 doesn't seem to matter. */
11138 new_flags &= ~EF_MIPS_XGOT;
11139 old_flags &= ~EF_MIPS_XGOT;
11140
98a8deaf
RS
11141 /* MIPSpro generates ucode info in n64 objects. Again, we should
11142 just be able to ignore this. */
11143 new_flags &= ~EF_MIPS_UCODE;
11144 old_flags &= ~EF_MIPS_UCODE;
11145
0a44bf69
RS
11146 /* Don't care about the PIC flags from dynamic objects; they are
11147 PIC by design. */
11148 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11149 && (ibfd->flags & DYNAMIC) != 0)
11150 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11151
b49e97c9 11152 if (new_flags == old_flags)
b34976b6 11153 return TRUE;
b49e97c9
TS
11154
11155 /* Check to see if the input BFD actually contains any sections.
11156 If not, its flags may not have been initialised either, but it cannot
11157 actually cause any incompatibility. */
11158 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11159 {
11160 /* Ignore synthetic sections and empty .text, .data and .bss sections
11161 which are automatically generated by gas. */
11162 if (strcmp (sec->name, ".reginfo")
11163 && strcmp (sec->name, ".mdebug")
eea6121a 11164 && (sec->size != 0
d13d89fa
NS
11165 || (strcmp (sec->name, ".text")
11166 && strcmp (sec->name, ".data")
11167 && strcmp (sec->name, ".bss"))))
b49e97c9 11168 {
b34976b6 11169 null_input_bfd = FALSE;
b49e97c9
TS
11170 break;
11171 }
11172 }
11173 if (null_input_bfd)
b34976b6 11174 return TRUE;
b49e97c9 11175
b34976b6 11176 ok = TRUE;
b49e97c9 11177
143d77c5
EC
11178 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11179 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11180 {
b49e97c9 11181 (*_bfd_error_handler)
d003868e
AM
11182 (_("%B: warning: linking PIC files with non-PIC files"),
11183 ibfd);
143d77c5 11184 ok = TRUE;
b49e97c9
TS
11185 }
11186
143d77c5
EC
11187 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11188 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11189 if (! (new_flags & EF_MIPS_PIC))
11190 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11191
11192 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11193 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11194
64543e1a
RS
11195 /* Compare the ISAs. */
11196 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11197 {
64543e1a 11198 (*_bfd_error_handler)
d003868e
AM
11199 (_("%B: linking 32-bit code with 64-bit code"),
11200 ibfd);
64543e1a
RS
11201 ok = FALSE;
11202 }
11203 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11204 {
11205 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11206 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11207 {
64543e1a
RS
11208 /* Copy the architecture info from IBFD to OBFD. Also copy
11209 the 32-bit flag (if set) so that we continue to recognise
11210 OBFD as a 32-bit binary. */
11211 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11212 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11213 elf_elfheader (obfd)->e_flags
11214 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11215
11216 /* Copy across the ABI flags if OBFD doesn't use them
11217 and if that was what caused us to treat IBFD as 32-bit. */
11218 if ((old_flags & EF_MIPS_ABI) == 0
11219 && mips_32bit_flags_p (new_flags)
11220 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11221 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11222 }
11223 else
11224 {
64543e1a 11225 /* The ISAs aren't compatible. */
b49e97c9 11226 (*_bfd_error_handler)
d003868e
AM
11227 (_("%B: linking %s module with previous %s modules"),
11228 ibfd,
64543e1a
RS
11229 bfd_printable_name (ibfd),
11230 bfd_printable_name (obfd));
b34976b6 11231 ok = FALSE;
b49e97c9 11232 }
b49e97c9
TS
11233 }
11234
64543e1a
RS
11235 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11236 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11237
11238 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11239 does set EI_CLASS differently from any 32-bit ABI. */
11240 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11241 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11242 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11243 {
11244 /* Only error if both are set (to different values). */
11245 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11246 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11247 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11248 {
11249 (*_bfd_error_handler)
d003868e
AM
11250 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11251 ibfd,
b49e97c9
TS
11252 elf_mips_abi_name (ibfd),
11253 elf_mips_abi_name (obfd));
b34976b6 11254 ok = FALSE;
b49e97c9
TS
11255 }
11256 new_flags &= ~EF_MIPS_ABI;
11257 old_flags &= ~EF_MIPS_ABI;
11258 }
11259
fb39dac1
RS
11260 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11261 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11262 {
11263 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11264
11265 new_flags &= ~ EF_MIPS_ARCH_ASE;
11266 old_flags &= ~ EF_MIPS_ARCH_ASE;
11267 }
11268
b49e97c9
TS
11269 /* Warn about any other mismatches */
11270 if (new_flags != old_flags)
11271 {
11272 (*_bfd_error_handler)
d003868e
AM
11273 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11274 ibfd, (unsigned long) new_flags,
b49e97c9 11275 (unsigned long) old_flags);
b34976b6 11276 ok = FALSE;
b49e97c9
TS
11277 }
11278
11279 if (! ok)
11280 {
11281 bfd_set_error (bfd_error_bad_value);
b34976b6 11282 return FALSE;
b49e97c9
TS
11283 }
11284
b34976b6 11285 return TRUE;
b49e97c9
TS
11286}
11287
11288/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11289
b34976b6 11290bfd_boolean
9719ad41 11291_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11292{
11293 BFD_ASSERT (!elf_flags_init (abfd)
11294 || elf_elfheader (abfd)->e_flags == flags);
11295
11296 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11297 elf_flags_init (abfd) = TRUE;
11298 return TRUE;
b49e97c9
TS
11299}
11300
b34976b6 11301bfd_boolean
9719ad41 11302_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11303{
9719ad41 11304 FILE *file = ptr;
b49e97c9
TS
11305
11306 BFD_ASSERT (abfd != NULL && ptr != NULL);
11307
11308 /* Print normal ELF private data. */
11309 _bfd_elf_print_private_bfd_data (abfd, ptr);
11310
11311 /* xgettext:c-format */
11312 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11313
11314 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11315 fprintf (file, _(" [abi=O32]"));
11316 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11317 fprintf (file, _(" [abi=O64]"));
11318 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11319 fprintf (file, _(" [abi=EABI32]"));
11320 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11321 fprintf (file, _(" [abi=EABI64]"));
11322 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11323 fprintf (file, _(" [abi unknown]"));
11324 else if (ABI_N32_P (abfd))
11325 fprintf (file, _(" [abi=N32]"));
11326 else if (ABI_64_P (abfd))
11327 fprintf (file, _(" [abi=64]"));
11328 else
11329 fprintf (file, _(" [no abi set]"));
11330
11331 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11332 fprintf (file, " [mips1]");
b49e97c9 11333 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11334 fprintf (file, " [mips2]");
b49e97c9 11335 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11336 fprintf (file, " [mips3]");
b49e97c9 11337 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11338 fprintf (file, " [mips4]");
b49e97c9 11339 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11340 fprintf (file, " [mips5]");
b49e97c9 11341 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11342 fprintf (file, " [mips32]");
b49e97c9 11343 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11344 fprintf (file, " [mips64]");
af7ee8bf 11345 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11346 fprintf (file, " [mips32r2]");
5f74bc13 11347 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11348 fprintf (file, " [mips64r2]");
b49e97c9
TS
11349 else
11350 fprintf (file, _(" [unknown ISA]"));
11351
40d32fc6 11352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11353 fprintf (file, " [mdmx]");
40d32fc6
CD
11354
11355 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11356 fprintf (file, " [mips16]");
40d32fc6 11357
b49e97c9 11358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11359 fprintf (file, " [32bitmode]");
b49e97c9
TS
11360 else
11361 fprintf (file, _(" [not 32bitmode]"));
11362
c0e3f241 11363 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11364 fprintf (file, " [noreorder]");
c0e3f241
CD
11365
11366 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11367 fprintf (file, " [PIC]");
c0e3f241
CD
11368
11369 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11370 fprintf (file, " [CPIC]");
c0e3f241
CD
11371
11372 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11373 fprintf (file, " [XGOT]");
c0e3f241
CD
11374
11375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11376 fprintf (file, " [UCODE]");
c0e3f241 11377
b49e97c9
TS
11378 fputc ('\n', file);
11379
b34976b6 11380 return TRUE;
b49e97c9 11381}
2f89ff8d 11382
b35d266b 11383const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11384{
0112cd26
NC
11385 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11386 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11387 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11388 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11389 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11390 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11391 { NULL, 0, 0, 0, 0 }
2f89ff8d 11392};
5e2b0d47 11393
8992f0d7
TS
11394/* Merge non visibility st_other attributes. Ensure that the
11395 STO_OPTIONAL flag is copied into h->other, even if this is not a
11396 definiton of the symbol. */
5e2b0d47
NC
11397void
11398_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11399 const Elf_Internal_Sym *isym,
11400 bfd_boolean definition,
11401 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11402{
8992f0d7
TS
11403 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11404 {
11405 unsigned char other;
11406
11407 other = (definition ? isym->st_other : h->other);
11408 other &= ~ELF_ST_VISIBILITY (-1);
11409 h->other = other | ELF_ST_VISIBILITY (h->other);
11410 }
11411
11412 if (!definition
5e2b0d47
NC
11413 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11414 h->other |= STO_OPTIONAL;
11415}
12ac1cf5
NC
11416
11417/* Decide whether an undefined symbol is special and can be ignored.
11418 This is the case for OPTIONAL symbols on IRIX. */
11419bfd_boolean
11420_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11421{
11422 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11423}
e0764319
NC
11424
11425bfd_boolean
11426_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11427{
11428 return (sym->st_shndx == SHN_COMMON
11429 || sym->st_shndx == SHN_MIPS_ACOMMON
11430 || sym->st_shndx == SHN_MIPS_SCOMMON);
11431}
This page took 1.577865 seconds and 4 git commands to generate.