update copyright dates
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
aa820537 3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
23cc69b6
RS
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
0f20cc35
DJ
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
c224138d 155 /* The number of local .got entries, eventually including page entries. */
b49e97c9 156 unsigned int local_gotno;
c224138d
RS
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
b49e97c9
TS
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
b15e6682
AO
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
c224138d
RS
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
f4416af6
AO
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
0f20cc35
DJ
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
f4416af6
AO
176};
177
178/* Map an input bfd to a got in a multi-got link. */
179
180struct mips_elf_bfd2got_hash {
181 bfd *bfd;
182 struct mips_got_info *g;
183};
184
185/* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188struct mips_elf_got_per_bfd_arg
189{
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
215/* Another structure used to pass arguments for got entries traversal. */
216
217struct mips_elf_set_global_got_offset_arg
218{
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
b49e97c9
TS
223};
224
0f20cc35
DJ
225/* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
227
228struct mips_elf_count_tls_arg
229{
230 struct bfd_link_info *info;
231 unsigned int needed;
232};
233
f0abc2a1
AM
234struct _mips_elf_section_data
235{
236 struct bfd_elf_section_data elf;
237 union
238 {
f0abc2a1
AM
239 bfd_byte *tdata;
240 } u;
241};
242
243#define mips_elf_section_data(sec) \
68bfbfcc 244 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 245
d5eaccd7
RS
246#define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
250
634835ae
RS
251/* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
257
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
263 relocations only.
264
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
268#define GGA_NORMAL 0
269#define GGA_RELOC_ONLY 1
270#define GGA_NONE 2
271
861fb55a
DJ
272/* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
274
275 lui $25,%hi(func)
276 addiu $25,$25,%lo(func)
277
278 immediately before a PIC function "func". The second is to add:
279
280 lui $25,%hi(func)
281 j func
282 addiu $25,$25,%lo(func)
283
284 to a separate trampoline section.
285
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289struct mips_elf_la25_stub {
290 /* The generated section that contains this stub. */
291 asection *stub_section;
292
293 /* The offset of the stub from the start of STUB_SECTION. */
294 bfd_vma offset;
295
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry *h;
299};
300
301/* Macros for populating a mips_elf_la25_stub. */
302
303#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
306
b49e97c9
TS
307/* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
309
310struct mips_elf_hash_sort_data
311{
312 /* The symbol in the global GOT with the lowest dynamic symbol table
313 index. */
314 struct elf_link_hash_entry *low;
0f20cc35
DJ
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
b49e97c9 317 long min_got_dynindx;
f4416af6
AO
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 320 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 321 long max_unref_got_dynindx;
b49e97c9
TS
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx;
325};
326
327/* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
329
330struct mips_elf_link_hash_entry
331{
332 struct elf_link_hash_entry root;
333
334 /* External symbol information. */
335 EXTR esym;
336
861fb55a
DJ
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub *la25_stub;
339
b49e97c9
TS
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
341 this symbol. */
342 unsigned int possibly_dynamic_relocs;
343
b49e97c9
TS
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
346 asection *fn_stub;
347
b49e97c9
TS
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
350 asection *call_stub;
351
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection *call_fp_stub;
7c5fcef7 355
0f20cc35
DJ
356#define GOT_NORMAL 0
357#define GOT_TLS_GD 1
358#define GOT_TLS_LDM 2
359#define GOT_TLS_IE 4
360#define GOT_TLS_OFFSET_DONE 0x40
361#define GOT_TLS_DONE 0x80
362 unsigned char tls_type;
71782a75 363
0f20cc35
DJ
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset;
71782a75 371
634835ae
RS
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area : 2;
374
71782a75
RS
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc : 1;
378
861fb55a
DJ
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs : 1;
383
71782a75
RS
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub : 1;
389
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub : 1;
393
861fb55a
DJ
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
398
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
402};
403
404/* MIPS ELF linker hash table. */
405
406struct mips_elf_link_hash_table
407{
408 struct elf_link_hash_table root;
409#if 0
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
413#endif
861fb55a 414
b49e97c9
TS
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count;
861fb55a 417
b49e97c9
TS
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size;
861fb55a 420
b49e97c9 421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 422 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 423 bfd_boolean use_rld_obj_head;
861fb55a 424
b49e97c9
TS
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
426 bfd_vma rld_value;
861fb55a 427
b49e97c9 428 /* This is set if we see any mips16 stub sections. */
b34976b6 429 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
430
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs;
433
0a44bf69
RS
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks;
861fb55a 436
0e53d9da
AN
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported;
861fb55a 439
0a44bf69
RS
440 /* Shortcuts to some dynamic sections, or NULL if they are not
441 being used. */
442 asection *srelbss;
443 asection *sdynbss;
444 asection *srelplt;
445 asection *srelplt2;
446 asection *sgotplt;
447 asection *splt;
4e41d0d7 448 asection *sstubs;
a8028dd0 449 asection *sgot;
861fb55a 450
a8028dd0
RS
451 /* The master GOT information. */
452 struct mips_got_info *got_info;
861fb55a
DJ
453
454 /* The size of the PLT header in bytes. */
0a44bf69 455 bfd_vma plt_header_size;
861fb55a
DJ
456
457 /* The size of a PLT entry in bytes. */
0a44bf69 458 bfd_vma plt_entry_size;
861fb55a 459
33bb52fb
RS
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count;
861fb55a 462
5108fc1b
RS
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size;
861fb55a
DJ
465
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno;
468
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection *strampoline;
472
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
474 pairs. */
475 htab_t la25_stubs;
476
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
481
482 The function returns the new section on success, otherwise it
483 returns null. */
484 asection *(*add_stub_section) (const char *, asection *, asection *);
485};
486
487/* A structure used to communicate with htab_traverse callbacks. */
488struct mips_htab_traverse_info {
489 /* The usual link-wide information. */
490 struct bfd_link_info *info;
491 bfd *output_bfd;
492
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
494 bfd_boolean error;
b49e97c9
TS
495};
496
0f20cc35
DJ
497#define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
511
b49e97c9
TS
512/* Structure used to pass information to mips_elf_output_extsym. */
513
514struct extsym_info
515{
9e4aeb93
RS
516 bfd *abfd;
517 struct bfd_link_info *info;
b49e97c9
TS
518 struct ecoff_debug_info *debug;
519 const struct ecoff_debug_swap *swap;
b34976b6 520 bfd_boolean failed;
b49e97c9
TS
521};
522
8dc1a139 523/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
524
525static const char * const mips_elf_dynsym_rtproc_names[] =
526{
527 "_procedure_table",
528 "_procedure_string_table",
529 "_procedure_table_size",
530 NULL
531};
532
533/* These structures are used to generate the .compact_rel section on
8dc1a139 534 IRIX5. */
b49e97c9
TS
535
536typedef struct
537{
538 unsigned long id1; /* Always one? */
539 unsigned long num; /* Number of compact relocation entries. */
540 unsigned long id2; /* Always two? */
541 unsigned long offset; /* The file offset of the first relocation. */
542 unsigned long reserved0; /* Zero? */
543 unsigned long reserved1; /* Zero? */
544} Elf32_compact_rel;
545
546typedef struct
547{
548 bfd_byte id1[4];
549 bfd_byte num[4];
550 bfd_byte id2[4];
551 bfd_byte offset[4];
552 bfd_byte reserved0[4];
553 bfd_byte reserved1[4];
554} Elf32_External_compact_rel;
555
556typedef struct
557{
558 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype : 4; /* Relocation types. See below. */
560 unsigned int dist2to : 8;
561 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst; /* KONST field. See below. */
563 unsigned long vaddr; /* VADDR to be relocated. */
564} Elf32_crinfo;
565
566typedef struct
567{
568 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype : 4; /* Relocation types. See below. */
570 unsigned int dist2to : 8;
571 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst; /* KONST field. See below. */
573} Elf32_crinfo2;
574
575typedef struct
576{
577 bfd_byte info[4];
578 bfd_byte konst[4];
579 bfd_byte vaddr[4];
580} Elf32_External_crinfo;
581
582typedef struct
583{
584 bfd_byte info[4];
585 bfd_byte konst[4];
586} Elf32_External_crinfo2;
587
588/* These are the constants used to swap the bitfields in a crinfo. */
589
590#define CRINFO_CTYPE (0x1)
591#define CRINFO_CTYPE_SH (31)
592#define CRINFO_RTYPE (0xf)
593#define CRINFO_RTYPE_SH (27)
594#define CRINFO_DIST2TO (0xff)
595#define CRINFO_DIST2TO_SH (19)
596#define CRINFO_RELVADDR (0x7ffff)
597#define CRINFO_RELVADDR_SH (0)
598
599/* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602#define CRF_MIPS_LONG 1
603#define CRF_MIPS_SHORT 0
604
605/* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
607
608 (type) (konst)
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
613 */
614
615#define CRT_MIPS_REL32 0xa
616#define CRT_MIPS_WORD 0xb
617#define CRT_MIPS_GPHI_LO 0xc
618#define CRT_MIPS_JMPAD 0xd
619
620#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
624\f
625/* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
627
628typedef struct runtime_pdr {
ae9a127f
NC
629 bfd_vma adr; /* Memory address of start of procedure. */
630 long regmask; /* Save register mask. */
631 long regoffset; /* Save register offset. */
632 long fregmask; /* Save floating point register mask. */
633 long fregoffset; /* Save floating point register offset. */
634 long frameoffset; /* Frame size. */
635 short framereg; /* Frame pointer register. */
636 short pcreg; /* Offset or reg of return pc. */
637 long irpss; /* Index into the runtime string table. */
b49e97c9 638 long reserved;
ae9a127f 639 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
640} RPDR, *pRPDR;
641#define cbRPDR sizeof (RPDR)
642#define rpdNil ((pRPDR) 0)
643\f
b15e6682 644static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
645 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
646 struct mips_elf_link_hash_entry *, int);
b34976b6 647static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 648 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
649static bfd_vma mips_elf_high
650 (bfd_vma);
b34976b6 651static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
652 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
653 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
654 bfd_vma *, asection *);
9719ad41
RS
655static hashval_t mips_elf_got_entry_hash
656 (const void *);
f4416af6 657static bfd_vma mips_elf_adjust_gp
9719ad41 658 (bfd *, struct mips_got_info *, bfd *);
f4416af6 659static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 660 (struct mips_got_info *, bfd *);
f4416af6 661
b49e97c9
TS
662/* This will be used when we sort the dynamic relocation records. */
663static bfd *reldyn_sorting_bfd;
664
6d30f5b2
NC
665/* True if ABFD is for CPUs with load interlocking that include
666 non-MIPS1 CPUs and R3900. */
667#define LOAD_INTERLOCKS_P(abfd) \
668 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
669 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
670
cd8d5a82
CF
671/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
672 This should be safe for all architectures. We enable this predicate
673 for RM9000 for now. */
674#define JAL_TO_BAL_P(abfd) \
675 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
676
677/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
678 This should be safe for all architectures. We enable this predicate for
679 all CPUs. */
680#define JALR_TO_BAL_P(abfd) 1
681
861fb55a
DJ
682/* True if ABFD is a PIC object. */
683#define PIC_OBJECT_P(abfd) \
684 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
685
b49e97c9 686/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
687#define ABI_N32_P(abfd) \
688 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
689
4a14403c 690/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 691#define ABI_64_P(abfd) \
141ff970 692 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 693
4a14403c
TS
694/* Nonzero if ABFD is using NewABI conventions. */
695#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
696
697/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
698#define IRIX_COMPAT(abfd) \
699 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
700
b49e97c9
TS
701/* Whether we are trying to be compatible with IRIX at all. */
702#define SGI_COMPAT(abfd) \
703 (IRIX_COMPAT (abfd) != ict_none)
704
705/* The name of the options section. */
706#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 707 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 708
cc2e31b9
RS
709/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
710 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
711#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
712 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
713
943284cc
DJ
714/* Whether the section is readonly. */
715#define MIPS_ELF_READONLY_SECTION(sec) \
716 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
717 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
718
b49e97c9 719/* The name of the stub section. */
ca07892d 720#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
721
722/* The size of an external REL relocation. */
723#define MIPS_ELF_REL_SIZE(abfd) \
724 (get_elf_backend_data (abfd)->s->sizeof_rel)
725
0a44bf69
RS
726/* The size of an external RELA relocation. */
727#define MIPS_ELF_RELA_SIZE(abfd) \
728 (get_elf_backend_data (abfd)->s->sizeof_rela)
729
b49e97c9
TS
730/* The size of an external dynamic table entry. */
731#define MIPS_ELF_DYN_SIZE(abfd) \
732 (get_elf_backend_data (abfd)->s->sizeof_dyn)
733
734/* The size of a GOT entry. */
735#define MIPS_ELF_GOT_SIZE(abfd) \
736 (get_elf_backend_data (abfd)->s->arch_size / 8)
737
738/* The size of a symbol-table entry. */
739#define MIPS_ELF_SYM_SIZE(abfd) \
740 (get_elf_backend_data (abfd)->s->sizeof_sym)
741
742/* The default alignment for sections, as a power of two. */
743#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 744 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
745
746/* Get word-sized data. */
747#define MIPS_ELF_GET_WORD(abfd, ptr) \
748 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
749
750/* Put out word-sized data. */
751#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
752 (ABI_64_P (abfd) \
753 ? bfd_put_64 (abfd, val, ptr) \
754 : bfd_put_32 (abfd, val, ptr))
755
861fb55a
DJ
756/* The opcode for word-sized loads (LW or LD). */
757#define MIPS_ELF_LOAD_WORD(abfd) \
758 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
759
b49e97c9 760/* Add a dynamic symbol table-entry. */
9719ad41 761#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 762 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
763
764#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
765 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
766
4ffba85c
AO
767/* Determine whether the internal relocation of index REL_IDX is REL
768 (zero) or RELA (non-zero). The assumption is that, if there are
769 two relocation sections for this section, one of them is REL and
770 the other is RELA. If the index of the relocation we're testing is
771 in range for the first relocation section, check that the external
772 relocation size is that for RELA. It is also assumed that, if
773 rel_idx is not in range for the first section, and this first
774 section contains REL relocs, then the relocation is in the second
775 section, that is RELA. */
776#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
777 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
778 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
779 > (bfd_vma)(rel_idx)) \
780 == (elf_section_data (sec)->rel_hdr.sh_entsize \
781 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
782 : sizeof (Elf32_External_Rela))))
783
0a44bf69
RS
784/* The name of the dynamic relocation section. */
785#define MIPS_ELF_REL_DYN_NAME(INFO) \
786 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
787
b49e97c9
TS
788/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
789 from smaller values. Start with zero, widen, *then* decrement. */
790#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 791#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 792
51e38d68
RS
793/* The value to write into got[1] for SVR4 targets, to identify it is
794 a GNU object. The dynamic linker can then use got[1] to store the
795 module pointer. */
796#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
797 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
798
f4416af6 799/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
800#define ELF_MIPS_GP_OFFSET(INFO) \
801 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
802
803/* The maximum size of the GOT for it to be addressable using 16-bit
804 offsets from $gp. */
0a44bf69 805#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 806
6a691779 807/* Instructions which appear in a stub. */
3d6746ca
DD
808#define STUB_LW(abfd) \
809 ((ABI_64_P (abfd) \
810 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
811 : 0x8f998010)) /* lw t9,0x8010(gp) */
812#define STUB_MOVE(abfd) \
813 ((ABI_64_P (abfd) \
814 ? 0x03e0782d /* daddu t7,ra */ \
815 : 0x03e07821)) /* addu t7,ra */
816#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
817#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
818#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
819#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
820#define STUB_LI16S(abfd, VAL) \
821 ((ABI_64_P (abfd) \
822 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
823 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
824
5108fc1b
RS
825#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
826#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
827
828/* The name of the dynamic interpreter. This is put in the .interp
829 section. */
830
831#define ELF_DYNAMIC_INTERPRETER(abfd) \
832 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
833 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
834 : "/usr/lib/libc.so.1")
835
836#ifdef BFD64
ee6423ed
AO
837#define MNAME(bfd,pre,pos) \
838 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
839#define ELF_R_SYM(bfd, i) \
840 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
841#define ELF_R_TYPE(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
843#define ELF_R_INFO(bfd, s, t) \
844 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
845#else
ee6423ed 846#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
847#define ELF_R_SYM(bfd, i) \
848 (ELF32_R_SYM (i))
849#define ELF_R_TYPE(bfd, i) \
850 (ELF32_R_TYPE (i))
851#define ELF_R_INFO(bfd, s, t) \
852 (ELF32_R_INFO (s, t))
853#endif
854\f
855 /* The mips16 compiler uses a couple of special sections to handle
856 floating point arguments.
857
858 Section names that look like .mips16.fn.FNNAME contain stubs that
859 copy floating point arguments from the fp regs to the gp regs and
860 then jump to FNNAME. If any 32 bit function calls FNNAME, the
861 call should be redirected to the stub instead. If no 32 bit
862 function calls FNNAME, the stub should be discarded. We need to
863 consider any reference to the function, not just a call, because
864 if the address of the function is taken we will need the stub,
865 since the address might be passed to a 32 bit function.
866
867 Section names that look like .mips16.call.FNNAME contain stubs
868 that copy floating point arguments from the gp regs to the fp
869 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
870 then any 16 bit function that calls FNNAME should be redirected
871 to the stub instead. If FNNAME is not a 32 bit function, the
872 stub should be discarded.
873
874 .mips16.call.fp.FNNAME sections are similar, but contain stubs
875 which call FNNAME and then copy the return value from the fp regs
876 to the gp regs. These stubs store the return value in $18 while
877 calling FNNAME; any function which might call one of these stubs
878 must arrange to save $18 around the call. (This case is not
879 needed for 32 bit functions that call 16 bit functions, because
880 16 bit functions always return floating point values in both
881 $f0/$f1 and $2/$3.)
882
883 Note that in all cases FNNAME might be defined statically.
884 Therefore, FNNAME is not used literally. Instead, the relocation
885 information will indicate which symbol the section is for.
886
887 We record any stubs that we find in the symbol table. */
888
889#define FN_STUB ".mips16.fn."
890#define CALL_STUB ".mips16.call."
891#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
892
893#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
894#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
895#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 896\f
861fb55a 897/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
898static const bfd_vma mips_o32_exec_plt0_entry[] =
899{
861fb55a
DJ
900 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
901 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
902 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
903 0x031cc023, /* subu $24, $24, $28 */
904 0x03e07821, /* move $15, $31 */
905 0x0018c082, /* srl $24, $24, 2 */
906 0x0320f809, /* jalr $25 */
907 0x2718fffe /* subu $24, $24, 2 */
908};
909
910/* The format of the first PLT entry in an N32 executable. Different
911 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
912static const bfd_vma mips_n32_exec_plt0_entry[] =
913{
861fb55a
DJ
914 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
915 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
916 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
917 0x030ec023, /* subu $24, $24, $14 */
918 0x03e07821, /* move $15, $31 */
919 0x0018c082, /* srl $24, $24, 2 */
920 0x0320f809, /* jalr $25 */
921 0x2718fffe /* subu $24, $24, 2 */
922};
923
924/* The format of the first PLT entry in an N64 executable. Different
925 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
926static const bfd_vma mips_n64_exec_plt0_entry[] =
927{
861fb55a
DJ
928 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
929 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
930 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
931 0x030ec023, /* subu $24, $24, $14 */
932 0x03e07821, /* move $15, $31 */
933 0x0018c0c2, /* srl $24, $24, 3 */
934 0x0320f809, /* jalr $25 */
935 0x2718fffe /* subu $24, $24, 2 */
936};
937
938/* The format of subsequent PLT entries. */
6d30f5b2
NC
939static const bfd_vma mips_exec_plt_entry[] =
940{
861fb55a
DJ
941 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
942 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
943 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
944 0x03200008 /* jr $25 */
945};
946
0a44bf69 947/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
948static const bfd_vma mips_vxworks_exec_plt0_entry[] =
949{
0a44bf69
RS
950 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
951 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
952 0x8f390008, /* lw t9, 8(t9) */
953 0x00000000, /* nop */
954 0x03200008, /* jr t9 */
955 0x00000000 /* nop */
956};
957
958/* The format of subsequent PLT entries. */
6d30f5b2
NC
959static const bfd_vma mips_vxworks_exec_plt_entry[] =
960{
0a44bf69
RS
961 0x10000000, /* b .PLT_resolver */
962 0x24180000, /* li t8, <pltindex> */
963 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
964 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
965 0x8f390000, /* lw t9, 0(t9) */
966 0x00000000, /* nop */
967 0x03200008, /* jr t9 */
968 0x00000000 /* nop */
969};
970
971/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
972static const bfd_vma mips_vxworks_shared_plt0_entry[] =
973{
0a44bf69
RS
974 0x8f990008, /* lw t9, 8(gp) */
975 0x00000000, /* nop */
976 0x03200008, /* jr t9 */
977 0x00000000, /* nop */
978 0x00000000, /* nop */
979 0x00000000 /* nop */
980};
981
982/* The format of subsequent PLT entries. */
6d30f5b2
NC
983static const bfd_vma mips_vxworks_shared_plt_entry[] =
984{
0a44bf69
RS
985 0x10000000, /* b .PLT_resolver */
986 0x24180000 /* li t8, <pltindex> */
987};
988\f
b49e97c9
TS
989/* Look up an entry in a MIPS ELF linker hash table. */
990
991#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
992 ((struct mips_elf_link_hash_entry *) \
993 elf_link_hash_lookup (&(table)->root, (string), (create), \
994 (copy), (follow)))
995
996/* Traverse a MIPS ELF linker hash table. */
997
998#define mips_elf_link_hash_traverse(table, func, info) \
999 (elf_link_hash_traverse \
1000 (&(table)->root, \
9719ad41 1001 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1002 (info)))
1003
1004/* Get the MIPS ELF linker hash table from a link_info structure. */
1005
1006#define mips_elf_hash_table(p) \
1007 ((struct mips_elf_link_hash_table *) ((p)->hash))
1008
0f20cc35
DJ
1009/* Find the base offsets for thread-local storage in this object,
1010 for GD/LD and IE/LE respectively. */
1011
1012#define TP_OFFSET 0x7000
1013#define DTP_OFFSET 0x8000
1014
1015static bfd_vma
1016dtprel_base (struct bfd_link_info *info)
1017{
1018 /* If tls_sec is NULL, we should have signalled an error already. */
1019 if (elf_hash_table (info)->tls_sec == NULL)
1020 return 0;
1021 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1022}
1023
1024static bfd_vma
1025tprel_base (struct bfd_link_info *info)
1026{
1027 /* If tls_sec is NULL, we should have signalled an error already. */
1028 if (elf_hash_table (info)->tls_sec == NULL)
1029 return 0;
1030 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1031}
1032
b49e97c9
TS
1033/* Create an entry in a MIPS ELF linker hash table. */
1034
1035static struct bfd_hash_entry *
9719ad41
RS
1036mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1037 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1038{
1039 struct mips_elf_link_hash_entry *ret =
1040 (struct mips_elf_link_hash_entry *) entry;
1041
1042 /* Allocate the structure if it has not already been allocated by a
1043 subclass. */
9719ad41
RS
1044 if (ret == NULL)
1045 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1046 if (ret == NULL)
b49e97c9
TS
1047 return (struct bfd_hash_entry *) ret;
1048
1049 /* Call the allocation method of the superclass. */
1050 ret = ((struct mips_elf_link_hash_entry *)
1051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1052 table, string));
9719ad41 1053 if (ret != NULL)
b49e97c9
TS
1054 {
1055 /* Set local fields. */
1056 memset (&ret->esym, 0, sizeof (EXTR));
1057 /* We use -2 as a marker to indicate that the information has
1058 not been set. -1 means there is no associated ifd. */
1059 ret->esym.ifd = -2;
861fb55a 1060 ret->la25_stub = 0;
b49e97c9 1061 ret->possibly_dynamic_relocs = 0;
b49e97c9 1062 ret->fn_stub = NULL;
b49e97c9
TS
1063 ret->call_stub = NULL;
1064 ret->call_fp_stub = NULL;
71782a75 1065 ret->tls_type = GOT_NORMAL;
634835ae 1066 ret->global_got_area = GGA_NONE;
71782a75 1067 ret->readonly_reloc = FALSE;
861fb55a 1068 ret->has_static_relocs = FALSE;
71782a75
RS
1069 ret->no_fn_stub = FALSE;
1070 ret->need_fn_stub = FALSE;
861fb55a 1071 ret->has_nonpic_branches = FALSE;
33bb52fb 1072 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1073 }
1074
1075 return (struct bfd_hash_entry *) ret;
1076}
f0abc2a1
AM
1077
1078bfd_boolean
9719ad41 1079_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1080{
f592407e
AM
1081 if (!sec->used_by_bfd)
1082 {
1083 struct _mips_elf_section_data *sdata;
1084 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1085
f592407e
AM
1086 sdata = bfd_zalloc (abfd, amt);
1087 if (sdata == NULL)
1088 return FALSE;
1089 sec->used_by_bfd = sdata;
1090 }
f0abc2a1
AM
1091
1092 return _bfd_elf_new_section_hook (abfd, sec);
1093}
b49e97c9
TS
1094\f
1095/* Read ECOFF debugging information from a .mdebug section into a
1096 ecoff_debug_info structure. */
1097
b34976b6 1098bfd_boolean
9719ad41
RS
1099_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1100 struct ecoff_debug_info *debug)
b49e97c9
TS
1101{
1102 HDRR *symhdr;
1103 const struct ecoff_debug_swap *swap;
9719ad41 1104 char *ext_hdr;
b49e97c9
TS
1105
1106 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1107 memset (debug, 0, sizeof (*debug));
1108
9719ad41 1109 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1110 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1111 goto error_return;
1112
9719ad41 1113 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1114 swap->external_hdr_size))
b49e97c9
TS
1115 goto error_return;
1116
1117 symhdr = &debug->symbolic_header;
1118 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1119
1120 /* The symbolic header contains absolute file offsets and sizes to
1121 read. */
1122#define READ(ptr, offset, count, size, type) \
1123 if (symhdr->count == 0) \
1124 debug->ptr = NULL; \
1125 else \
1126 { \
1127 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1128 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1129 if (debug->ptr == NULL) \
1130 goto error_return; \
9719ad41 1131 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1132 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1133 goto error_return; \
1134 }
1135
1136 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1137 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1138 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1139 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1140 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1141 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1142 union aux_ext *);
1143 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1144 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1145 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1146 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1147 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1148#undef READ
1149
1150 debug->fdr = NULL;
b49e97c9 1151
b34976b6 1152 return TRUE;
b49e97c9
TS
1153
1154 error_return:
1155 if (ext_hdr != NULL)
1156 free (ext_hdr);
1157 if (debug->line != NULL)
1158 free (debug->line);
1159 if (debug->external_dnr != NULL)
1160 free (debug->external_dnr);
1161 if (debug->external_pdr != NULL)
1162 free (debug->external_pdr);
1163 if (debug->external_sym != NULL)
1164 free (debug->external_sym);
1165 if (debug->external_opt != NULL)
1166 free (debug->external_opt);
1167 if (debug->external_aux != NULL)
1168 free (debug->external_aux);
1169 if (debug->ss != NULL)
1170 free (debug->ss);
1171 if (debug->ssext != NULL)
1172 free (debug->ssext);
1173 if (debug->external_fdr != NULL)
1174 free (debug->external_fdr);
1175 if (debug->external_rfd != NULL)
1176 free (debug->external_rfd);
1177 if (debug->external_ext != NULL)
1178 free (debug->external_ext);
b34976b6 1179 return FALSE;
b49e97c9
TS
1180}
1181\f
1182/* Swap RPDR (runtime procedure table entry) for output. */
1183
1184static void
9719ad41 1185ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1186{
1187 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1188 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1189 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1190 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1191 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1192 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1193
1194 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1195 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1196
1197 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1198}
1199
1200/* Create a runtime procedure table from the .mdebug section. */
1201
b34976b6 1202static bfd_boolean
9719ad41
RS
1203mips_elf_create_procedure_table (void *handle, bfd *abfd,
1204 struct bfd_link_info *info, asection *s,
1205 struct ecoff_debug_info *debug)
b49e97c9
TS
1206{
1207 const struct ecoff_debug_swap *swap;
1208 HDRR *hdr = &debug->symbolic_header;
1209 RPDR *rpdr, *rp;
1210 struct rpdr_ext *erp;
9719ad41 1211 void *rtproc;
b49e97c9
TS
1212 struct pdr_ext *epdr;
1213 struct sym_ext *esym;
1214 char *ss, **sv;
1215 char *str;
1216 bfd_size_type size;
1217 bfd_size_type count;
1218 unsigned long sindex;
1219 unsigned long i;
1220 PDR pdr;
1221 SYMR sym;
1222 const char *no_name_func = _("static procedure (no name)");
1223
1224 epdr = NULL;
1225 rpdr = NULL;
1226 esym = NULL;
1227 ss = NULL;
1228 sv = NULL;
1229
1230 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1231
1232 sindex = strlen (no_name_func) + 1;
1233 count = hdr->ipdMax;
1234 if (count > 0)
1235 {
1236 size = swap->external_pdr_size;
1237
9719ad41 1238 epdr = bfd_malloc (size * count);
b49e97c9
TS
1239 if (epdr == NULL)
1240 goto error_return;
1241
9719ad41 1242 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1243 goto error_return;
1244
1245 size = sizeof (RPDR);
9719ad41 1246 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1247 if (rpdr == NULL)
1248 goto error_return;
1249
1250 size = sizeof (char *);
9719ad41 1251 sv = bfd_malloc (size * count);
b49e97c9
TS
1252 if (sv == NULL)
1253 goto error_return;
1254
1255 count = hdr->isymMax;
1256 size = swap->external_sym_size;
9719ad41 1257 esym = bfd_malloc (size * count);
b49e97c9
TS
1258 if (esym == NULL)
1259 goto error_return;
1260
9719ad41 1261 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1262 goto error_return;
1263
1264 count = hdr->issMax;
9719ad41 1265 ss = bfd_malloc (count);
b49e97c9
TS
1266 if (ss == NULL)
1267 goto error_return;
f075ee0c 1268 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1269 goto error_return;
1270
1271 count = hdr->ipdMax;
1272 for (i = 0; i < (unsigned long) count; i++, rp++)
1273 {
9719ad41
RS
1274 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1275 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1276 rp->adr = sym.value;
1277 rp->regmask = pdr.regmask;
1278 rp->regoffset = pdr.regoffset;
1279 rp->fregmask = pdr.fregmask;
1280 rp->fregoffset = pdr.fregoffset;
1281 rp->frameoffset = pdr.frameoffset;
1282 rp->framereg = pdr.framereg;
1283 rp->pcreg = pdr.pcreg;
1284 rp->irpss = sindex;
1285 sv[i] = ss + sym.iss;
1286 sindex += strlen (sv[i]) + 1;
1287 }
1288 }
1289
1290 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1291 size = BFD_ALIGN (size, 16);
9719ad41 1292 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1293 if (rtproc == NULL)
1294 {
1295 mips_elf_hash_table (info)->procedure_count = 0;
1296 goto error_return;
1297 }
1298
1299 mips_elf_hash_table (info)->procedure_count = count + 2;
1300
9719ad41 1301 erp = rtproc;
b49e97c9
TS
1302 memset (erp, 0, sizeof (struct rpdr_ext));
1303 erp++;
1304 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1305 strcpy (str, no_name_func);
1306 str += strlen (no_name_func) + 1;
1307 for (i = 0; i < count; i++)
1308 {
1309 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1310 strcpy (str, sv[i]);
1311 str += strlen (sv[i]) + 1;
1312 }
1313 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1314
1315 /* Set the size and contents of .rtproc section. */
eea6121a 1316 s->size = size;
9719ad41 1317 s->contents = rtproc;
b49e97c9
TS
1318
1319 /* Skip this section later on (I don't think this currently
1320 matters, but someday it might). */
8423293d 1321 s->map_head.link_order = NULL;
b49e97c9
TS
1322
1323 if (epdr != NULL)
1324 free (epdr);
1325 if (rpdr != NULL)
1326 free (rpdr);
1327 if (esym != NULL)
1328 free (esym);
1329 if (ss != NULL)
1330 free (ss);
1331 if (sv != NULL)
1332 free (sv);
1333
b34976b6 1334 return TRUE;
b49e97c9
TS
1335
1336 error_return:
1337 if (epdr != NULL)
1338 free (epdr);
1339 if (rpdr != NULL)
1340 free (rpdr);
1341 if (esym != NULL)
1342 free (esym);
1343 if (ss != NULL)
1344 free (ss);
1345 if (sv != NULL)
1346 free (sv);
b34976b6 1347 return FALSE;
b49e97c9 1348}
738e5348 1349\f
861fb55a
DJ
1350/* We're going to create a stub for H. Create a symbol for the stub's
1351 value and size, to help make the disassembly easier to read. */
1352
1353static bfd_boolean
1354mips_elf_create_stub_symbol (struct bfd_link_info *info,
1355 struct mips_elf_link_hash_entry *h,
1356 const char *prefix, asection *s, bfd_vma value,
1357 bfd_vma size)
1358{
1359 struct bfd_link_hash_entry *bh;
1360 struct elf_link_hash_entry *elfh;
1361 const char *name;
1362
1363 /* Create a new symbol. */
1364 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1365 bh = NULL;
1366 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1367 BSF_LOCAL, s, value, NULL,
1368 TRUE, FALSE, &bh))
1369 return FALSE;
1370
1371 /* Make it a local function. */
1372 elfh = (struct elf_link_hash_entry *) bh;
1373 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1374 elfh->size = size;
1375 elfh->forced_local = 1;
1376 return TRUE;
1377}
1378
738e5348
RS
1379/* We're about to redefine H. Create a symbol to represent H's
1380 current value and size, to help make the disassembly easier
1381 to read. */
1382
1383static bfd_boolean
1384mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1385 struct mips_elf_link_hash_entry *h,
1386 const char *prefix)
1387{
1388 struct bfd_link_hash_entry *bh;
1389 struct elf_link_hash_entry *elfh;
1390 const char *name;
1391 asection *s;
1392 bfd_vma value;
1393
1394 /* Read the symbol's value. */
1395 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1396 || h->root.root.type == bfd_link_hash_defweak);
1397 s = h->root.root.u.def.section;
1398 value = h->root.root.u.def.value;
1399
1400 /* Create a new symbol. */
1401 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1402 bh = NULL;
1403 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1404 BSF_LOCAL, s, value, NULL,
1405 TRUE, FALSE, &bh))
1406 return FALSE;
1407
1408 /* Make it local and copy the other attributes from H. */
1409 elfh = (struct elf_link_hash_entry *) bh;
1410 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1411 elfh->other = h->root.other;
1412 elfh->size = h->root.size;
1413 elfh->forced_local = 1;
1414 return TRUE;
1415}
1416
1417/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1418 function rather than to a hard-float stub. */
1419
1420static bfd_boolean
1421section_allows_mips16_refs_p (asection *section)
1422{
1423 const char *name;
1424
1425 name = bfd_get_section_name (section->owner, section);
1426 return (FN_STUB_P (name)
1427 || CALL_STUB_P (name)
1428 || CALL_FP_STUB_P (name)
1429 || strcmp (name, ".pdr") == 0);
1430}
1431
1432/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1433 stub section of some kind. Return the R_SYMNDX of the target
1434 function, or 0 if we can't decide which function that is. */
1435
1436static unsigned long
502e814e
TT
1437mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1438 const Elf_Internal_Rela *relocs,
738e5348
RS
1439 const Elf_Internal_Rela *relend)
1440{
1441 const Elf_Internal_Rela *rel;
1442
1443 /* Trust the first R_MIPS_NONE relocation, if any. */
1444 for (rel = relocs; rel < relend; rel++)
1445 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1446 return ELF_R_SYM (sec->owner, rel->r_info);
1447
1448 /* Otherwise trust the first relocation, whatever its kind. This is
1449 the traditional behavior. */
1450 if (relocs < relend)
1451 return ELF_R_SYM (sec->owner, relocs->r_info);
1452
1453 return 0;
1454}
b49e97c9
TS
1455
1456/* Check the mips16 stubs for a particular symbol, and see if we can
1457 discard them. */
1458
861fb55a
DJ
1459static void
1460mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1461 struct mips_elf_link_hash_entry *h)
b49e97c9 1462{
738e5348
RS
1463 /* Dynamic symbols must use the standard call interface, in case other
1464 objects try to call them. */
1465 if (h->fn_stub != NULL
1466 && h->root.dynindx != -1)
1467 {
1468 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1469 h->need_fn_stub = TRUE;
1470 }
1471
b49e97c9
TS
1472 if (h->fn_stub != NULL
1473 && ! h->need_fn_stub)
1474 {
1475 /* We don't need the fn_stub; the only references to this symbol
1476 are 16 bit calls. Clobber the size to 0 to prevent it from
1477 being included in the link. */
eea6121a 1478 h->fn_stub->size = 0;
b49e97c9
TS
1479 h->fn_stub->flags &= ~SEC_RELOC;
1480 h->fn_stub->reloc_count = 0;
1481 h->fn_stub->flags |= SEC_EXCLUDE;
1482 }
1483
1484 if (h->call_stub != NULL
30c09090 1485 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1486 {
1487 /* We don't need the call_stub; this is a 16 bit function, so
1488 calls from other 16 bit functions are OK. Clobber the size
1489 to 0 to prevent it from being included in the link. */
eea6121a 1490 h->call_stub->size = 0;
b49e97c9
TS
1491 h->call_stub->flags &= ~SEC_RELOC;
1492 h->call_stub->reloc_count = 0;
1493 h->call_stub->flags |= SEC_EXCLUDE;
1494 }
1495
1496 if (h->call_fp_stub != NULL
30c09090 1497 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1498 {
1499 /* We don't need the call_stub; this is a 16 bit function, so
1500 calls from other 16 bit functions are OK. Clobber the size
1501 to 0 to prevent it from being included in the link. */
eea6121a 1502 h->call_fp_stub->size = 0;
b49e97c9
TS
1503 h->call_fp_stub->flags &= ~SEC_RELOC;
1504 h->call_fp_stub->reloc_count = 0;
1505 h->call_fp_stub->flags |= SEC_EXCLUDE;
1506 }
861fb55a
DJ
1507}
1508
1509/* Hashtable callbacks for mips_elf_la25_stubs. */
1510
1511static hashval_t
1512mips_elf_la25_stub_hash (const void *entry_)
1513{
1514 const struct mips_elf_la25_stub *entry;
1515
1516 entry = (struct mips_elf_la25_stub *) entry_;
1517 return entry->h->root.root.u.def.section->id
1518 + entry->h->root.root.u.def.value;
1519}
1520
1521static int
1522mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1523{
1524 const struct mips_elf_la25_stub *entry1, *entry2;
1525
1526 entry1 = (struct mips_elf_la25_stub *) entry1_;
1527 entry2 = (struct mips_elf_la25_stub *) entry2_;
1528 return ((entry1->h->root.root.u.def.section
1529 == entry2->h->root.root.u.def.section)
1530 && (entry1->h->root.root.u.def.value
1531 == entry2->h->root.root.u.def.value));
1532}
1533
1534/* Called by the linker to set up the la25 stub-creation code. FN is
1535 the linker's implementation of add_stub_function. Return true on
1536 success. */
1537
1538bfd_boolean
1539_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1540 asection *(*fn) (const char *, asection *,
1541 asection *))
1542{
1543 struct mips_elf_link_hash_table *htab;
1544
1545 htab = mips_elf_hash_table (info);
1546 htab->add_stub_section = fn;
1547 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1548 mips_elf_la25_stub_eq, NULL);
1549 if (htab->la25_stubs == NULL)
1550 return FALSE;
1551
1552 return TRUE;
1553}
1554
1555/* Return true if H is a locally-defined PIC function, in the sense
1556 that it might need $25 to be valid on entry. Note that MIPS16
1557 functions never need $25 to be valid on entry; they set up $gp
1558 using PC-relative instructions instead. */
1559
1560static bfd_boolean
1561mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1562{
1563 return ((h->root.root.type == bfd_link_hash_defined
1564 || h->root.root.type == bfd_link_hash_defweak)
1565 && h->root.def_regular
1566 && !bfd_is_abs_section (h->root.root.u.def.section)
1567 && !ELF_ST_IS_MIPS16 (h->root.other)
1568 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1569 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1570}
1571
1572/* STUB describes an la25 stub that we have decided to implement
1573 by inserting an LUI/ADDIU pair before the target function.
1574 Create the section and redirect the function symbol to it. */
1575
1576static bfd_boolean
1577mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1578 struct bfd_link_info *info)
1579{
1580 struct mips_elf_link_hash_table *htab;
1581 char *name;
1582 asection *s, *input_section;
1583 unsigned int align;
1584
1585 htab = mips_elf_hash_table (info);
1586
1587 /* Create a unique name for the new section. */
1588 name = bfd_malloc (11 + sizeof (".text.stub."));
1589 if (name == NULL)
1590 return FALSE;
1591 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1592
1593 /* Create the section. */
1594 input_section = stub->h->root.root.u.def.section;
1595 s = htab->add_stub_section (name, input_section,
1596 input_section->output_section);
1597 if (s == NULL)
1598 return FALSE;
1599
1600 /* Make sure that any padding goes before the stub. */
1601 align = input_section->alignment_power;
1602 if (!bfd_set_section_alignment (s->owner, s, align))
1603 return FALSE;
1604 if (align > 3)
1605 s->size = (1 << align) - 8;
1606
1607 /* Create a symbol for the stub. */
1608 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1609 stub->stub_section = s;
1610 stub->offset = s->size;
1611
1612 /* Allocate room for it. */
1613 s->size += 8;
1614 return TRUE;
1615}
1616
1617/* STUB describes an la25 stub that we have decided to implement
1618 with a separate trampoline. Allocate room for it and redirect
1619 the function symbol to it. */
1620
1621static bfd_boolean
1622mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1623 struct bfd_link_info *info)
1624{
1625 struct mips_elf_link_hash_table *htab;
1626 asection *s;
1627
1628 htab = mips_elf_hash_table (info);
1629
1630 /* Create a trampoline section, if we haven't already. */
1631 s = htab->strampoline;
1632 if (s == NULL)
1633 {
1634 asection *input_section = stub->h->root.root.u.def.section;
1635 s = htab->add_stub_section (".text", NULL,
1636 input_section->output_section);
1637 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1638 return FALSE;
1639 htab->strampoline = s;
1640 }
1641
1642 /* Create a symbol for the stub. */
1643 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1644 stub->stub_section = s;
1645 stub->offset = s->size;
1646
1647 /* Allocate room for it. */
1648 s->size += 16;
1649 return TRUE;
1650}
1651
1652/* H describes a symbol that needs an la25 stub. Make sure that an
1653 appropriate stub exists and point H at it. */
1654
1655static bfd_boolean
1656mips_elf_add_la25_stub (struct bfd_link_info *info,
1657 struct mips_elf_link_hash_entry *h)
1658{
1659 struct mips_elf_link_hash_table *htab;
1660 struct mips_elf_la25_stub search, *stub;
1661 bfd_boolean use_trampoline_p;
1662 asection *s;
1663 bfd_vma value;
1664 void **slot;
1665
1666 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1667 of the section and if we would need no more than 2 nops. */
1668 s = h->root.root.u.def.section;
1669 value = h->root.root.u.def.value;
1670 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1671
1672 /* Describe the stub we want. */
1673 search.stub_section = NULL;
1674 search.offset = 0;
1675 search.h = h;
1676
1677 /* See if we've already created an equivalent stub. */
1678 htab = mips_elf_hash_table (info);
1679 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1680 if (slot == NULL)
1681 return FALSE;
1682
1683 stub = (struct mips_elf_la25_stub *) *slot;
1684 if (stub != NULL)
1685 {
1686 /* We can reuse the existing stub. */
1687 h->la25_stub = stub;
1688 return TRUE;
1689 }
1690
1691 /* Create a permanent copy of ENTRY and add it to the hash table. */
1692 stub = bfd_malloc (sizeof (search));
1693 if (stub == NULL)
1694 return FALSE;
1695 *stub = search;
1696 *slot = stub;
1697
1698 h->la25_stub = stub;
1699 return (use_trampoline_p
1700 ? mips_elf_add_la25_trampoline (stub, info)
1701 : mips_elf_add_la25_intro (stub, info));
1702}
1703
1704/* A mips_elf_link_hash_traverse callback that is called before sizing
1705 sections. DATA points to a mips_htab_traverse_info structure. */
1706
1707static bfd_boolean
1708mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1709{
1710 struct mips_htab_traverse_info *hti;
1711
1712 hti = (struct mips_htab_traverse_info *) data;
1713 if (h->root.root.type == bfd_link_hash_warning)
1714 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1715
1716 if (!hti->info->relocatable)
1717 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1718
861fb55a
DJ
1719 if (mips_elf_local_pic_function_p (h))
1720 {
1721 /* H is a function that might need $25 to be valid on entry.
1722 If we're creating a non-PIC relocatable object, mark H as
1723 being PIC. If we're creating a non-relocatable object with
1724 non-PIC branches and jumps to H, make sure that H has an la25
1725 stub. */
1726 if (hti->info->relocatable)
1727 {
1728 if (!PIC_OBJECT_P (hti->output_bfd))
1729 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1730 }
1731 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1732 {
1733 hti->error = TRUE;
1734 return FALSE;
1735 }
1736 }
b34976b6 1737 return TRUE;
b49e97c9
TS
1738}
1739\f
d6f16593
MR
1740/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1741 Most mips16 instructions are 16 bits, but these instructions
1742 are 32 bits.
1743
1744 The format of these instructions is:
1745
1746 +--------------+--------------------------------+
1747 | JALX | X| Imm 20:16 | Imm 25:21 |
1748 +--------------+--------------------------------+
1749 | Immediate 15:0 |
1750 +-----------------------------------------------+
1751
1752 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1753 Note that the immediate value in the first word is swapped.
1754
1755 When producing a relocatable object file, R_MIPS16_26 is
1756 handled mostly like R_MIPS_26. In particular, the addend is
1757 stored as a straight 26-bit value in a 32-bit instruction.
1758 (gas makes life simpler for itself by never adjusting a
1759 R_MIPS16_26 reloc to be against a section, so the addend is
1760 always zero). However, the 32 bit instruction is stored as 2
1761 16-bit values, rather than a single 32-bit value. In a
1762 big-endian file, the result is the same; in a little-endian
1763 file, the two 16-bit halves of the 32 bit value are swapped.
1764 This is so that a disassembler can recognize the jal
1765 instruction.
1766
1767 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1768 instruction stored as two 16-bit values. The addend A is the
1769 contents of the targ26 field. The calculation is the same as
1770 R_MIPS_26. When storing the calculated value, reorder the
1771 immediate value as shown above, and don't forget to store the
1772 value as two 16-bit values.
1773
1774 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1775 defined as
1776
1777 big-endian:
1778 +--------+----------------------+
1779 | | |
1780 | | targ26-16 |
1781 |31 26|25 0|
1782 +--------+----------------------+
1783
1784 little-endian:
1785 +----------+------+-------------+
1786 | | | |
1787 | sub1 | | sub2 |
1788 |0 9|10 15|16 31|
1789 +----------+--------------------+
1790 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1791 ((sub1 << 16) | sub2)).
1792
1793 When producing a relocatable object file, the calculation is
1794 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1795 When producing a fully linked file, the calculation is
1796 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1797 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1798
738e5348
RS
1799 The table below lists the other MIPS16 instruction relocations.
1800 Each one is calculated in the same way as the non-MIPS16 relocation
1801 given on the right, but using the extended MIPS16 layout of 16-bit
1802 immediate fields:
1803
1804 R_MIPS16_GPREL R_MIPS_GPREL16
1805 R_MIPS16_GOT16 R_MIPS_GOT16
1806 R_MIPS16_CALL16 R_MIPS_CALL16
1807 R_MIPS16_HI16 R_MIPS_HI16
1808 R_MIPS16_LO16 R_MIPS_LO16
1809
1810 A typical instruction will have a format like this:
d6f16593
MR
1811
1812 +--------------+--------------------------------+
1813 | EXTEND | Imm 10:5 | Imm 15:11 |
1814 +--------------+--------------------------------+
1815 | Major | rx | ry | Imm 4:0 |
1816 +--------------+--------------------------------+
1817
1818 EXTEND is the five bit value 11110. Major is the instruction
1819 opcode.
1820
738e5348
RS
1821 All we need to do here is shuffle the bits appropriately.
1822 As above, the two 16-bit halves must be swapped on a
1823 little-endian system. */
1824
1825static inline bfd_boolean
1826mips16_reloc_p (int r_type)
1827{
1828 switch (r_type)
1829 {
1830 case R_MIPS16_26:
1831 case R_MIPS16_GPREL:
1832 case R_MIPS16_GOT16:
1833 case R_MIPS16_CALL16:
1834 case R_MIPS16_HI16:
1835 case R_MIPS16_LO16:
1836 return TRUE;
1837
1838 default:
1839 return FALSE;
1840 }
1841}
1842
1843static inline bfd_boolean
1844got16_reloc_p (int r_type)
1845{
1846 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1847}
1848
1849static inline bfd_boolean
1850call16_reloc_p (int r_type)
1851{
1852 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1853}
1854
1855static inline bfd_boolean
1856hi16_reloc_p (int r_type)
1857{
1858 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1859}
d6f16593 1860
738e5348
RS
1861static inline bfd_boolean
1862lo16_reloc_p (int r_type)
1863{
1864 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1865}
1866
1867static inline bfd_boolean
1868mips16_call_reloc_p (int r_type)
1869{
1870 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1871}
d6f16593 1872
d6f16593
MR
1873void
1874_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1875 bfd_boolean jal_shuffle, bfd_byte *data)
1876{
1877 bfd_vma extend, insn, val;
1878
738e5348 1879 if (!mips16_reloc_p (r_type))
d6f16593
MR
1880 return;
1881
1882 /* Pick up the mips16 extend instruction and the real instruction. */
1883 extend = bfd_get_16 (abfd, data);
1884 insn = bfd_get_16 (abfd, data + 2);
1885 if (r_type == R_MIPS16_26)
1886 {
1887 if (jal_shuffle)
1888 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1889 | ((extend & 0x1f) << 21) | insn;
1890 else
1891 val = extend << 16 | insn;
1892 }
1893 else
1894 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1895 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1896 bfd_put_32 (abfd, val, data);
1897}
1898
1899void
1900_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1901 bfd_boolean jal_shuffle, bfd_byte *data)
1902{
1903 bfd_vma extend, insn, val;
1904
738e5348 1905 if (!mips16_reloc_p (r_type))
d6f16593
MR
1906 return;
1907
1908 val = bfd_get_32 (abfd, data);
1909 if (r_type == R_MIPS16_26)
1910 {
1911 if (jal_shuffle)
1912 {
1913 insn = val & 0xffff;
1914 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1915 | ((val >> 21) & 0x1f);
1916 }
1917 else
1918 {
1919 insn = val & 0xffff;
1920 extend = val >> 16;
1921 }
1922 }
1923 else
1924 {
1925 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1926 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1927 }
1928 bfd_put_16 (abfd, insn, data + 2);
1929 bfd_put_16 (abfd, extend, data);
1930}
1931
b49e97c9 1932bfd_reloc_status_type
9719ad41
RS
1933_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1934 arelent *reloc_entry, asection *input_section,
1935 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1936{
1937 bfd_vma relocation;
a7ebbfdf 1938 bfd_signed_vma val;
30ac9238 1939 bfd_reloc_status_type status;
b49e97c9
TS
1940
1941 if (bfd_is_com_section (symbol->section))
1942 relocation = 0;
1943 else
1944 relocation = symbol->value;
1945
1946 relocation += symbol->section->output_section->vma;
1947 relocation += symbol->section->output_offset;
1948
07515404 1949 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1950 return bfd_reloc_outofrange;
1951
b49e97c9 1952 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1953 val = reloc_entry->addend;
1954
30ac9238 1955 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1956
b49e97c9 1957 /* Adjust val for the final section location and GP value. If we
1049f94e 1958 are producing relocatable output, we don't want to do this for
b49e97c9 1959 an external symbol. */
1049f94e 1960 if (! relocatable
b49e97c9
TS
1961 || (symbol->flags & BSF_SECTION_SYM) != 0)
1962 val += relocation - gp;
1963
a7ebbfdf
TS
1964 if (reloc_entry->howto->partial_inplace)
1965 {
30ac9238
RS
1966 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1967 (bfd_byte *) data
1968 + reloc_entry->address);
1969 if (status != bfd_reloc_ok)
1970 return status;
a7ebbfdf
TS
1971 }
1972 else
1973 reloc_entry->addend = val;
b49e97c9 1974
1049f94e 1975 if (relocatable)
b49e97c9 1976 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1977
1978 return bfd_reloc_ok;
1979}
1980
1981/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1982 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1983 that contains the relocation field and DATA points to the start of
1984 INPUT_SECTION. */
1985
1986struct mips_hi16
1987{
1988 struct mips_hi16 *next;
1989 bfd_byte *data;
1990 asection *input_section;
1991 arelent rel;
1992};
1993
1994/* FIXME: This should not be a static variable. */
1995
1996static struct mips_hi16 *mips_hi16_list;
1997
1998/* A howto special_function for REL *HI16 relocations. We can only
1999 calculate the correct value once we've seen the partnering
2000 *LO16 relocation, so just save the information for later.
2001
2002 The ABI requires that the *LO16 immediately follow the *HI16.
2003 However, as a GNU extension, we permit an arbitrary number of
2004 *HI16s to be associated with a single *LO16. This significantly
2005 simplies the relocation handling in gcc. */
2006
2007bfd_reloc_status_type
2008_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2009 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2010 asection *input_section, bfd *output_bfd,
2011 char **error_message ATTRIBUTE_UNUSED)
2012{
2013 struct mips_hi16 *n;
2014
07515404 2015 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2016 return bfd_reloc_outofrange;
2017
2018 n = bfd_malloc (sizeof *n);
2019 if (n == NULL)
2020 return bfd_reloc_outofrange;
2021
2022 n->next = mips_hi16_list;
2023 n->data = data;
2024 n->input_section = input_section;
2025 n->rel = *reloc_entry;
2026 mips_hi16_list = n;
2027
2028 if (output_bfd != NULL)
2029 reloc_entry->address += input_section->output_offset;
2030
2031 return bfd_reloc_ok;
2032}
2033
738e5348 2034/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2035 like any other 16-bit relocation when applied to global symbols, but is
2036 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2037
2038bfd_reloc_status_type
2039_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2040 void *data, asection *input_section,
2041 bfd *output_bfd, char **error_message)
2042{
2043 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2044 || bfd_is_und_section (bfd_get_section (symbol))
2045 || bfd_is_com_section (bfd_get_section (symbol)))
2046 /* The relocation is against a global symbol. */
2047 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2048 input_section, output_bfd,
2049 error_message);
2050
2051 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2052 input_section, output_bfd, error_message);
2053}
2054
2055/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2056 is a straightforward 16 bit inplace relocation, but we must deal with
2057 any partnering high-part relocations as well. */
2058
2059bfd_reloc_status_type
2060_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2061 void *data, asection *input_section,
2062 bfd *output_bfd, char **error_message)
2063{
2064 bfd_vma vallo;
d6f16593 2065 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2066
07515404 2067 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2068 return bfd_reloc_outofrange;
2069
d6f16593
MR
2070 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2071 location);
2072 vallo = bfd_get_32 (abfd, location);
2073 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2074 location);
2075
30ac9238
RS
2076 while (mips_hi16_list != NULL)
2077 {
2078 bfd_reloc_status_type ret;
2079 struct mips_hi16 *hi;
2080
2081 hi = mips_hi16_list;
2082
738e5348
RS
2083 /* R_MIPS*_GOT16 relocations are something of a special case. We
2084 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2085 relocation (with a rightshift of 16). However, since GOT16
2086 relocations can also be used with global symbols, their howto
2087 has a rightshift of 0. */
2088 if (hi->rel.howto->type == R_MIPS_GOT16)
2089 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2090 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2091 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
30ac9238
RS
2092
2093 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2094 carry or borrow will induce a change of +1 or -1 in the high part. */
2095 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2096
30ac9238
RS
2097 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2098 hi->input_section, output_bfd,
2099 error_message);
2100 if (ret != bfd_reloc_ok)
2101 return ret;
2102
2103 mips_hi16_list = hi->next;
2104 free (hi);
2105 }
2106
2107 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2108 input_section, output_bfd,
2109 error_message);
2110}
2111
2112/* A generic howto special_function. This calculates and installs the
2113 relocation itself, thus avoiding the oft-discussed problems in
2114 bfd_perform_relocation and bfd_install_relocation. */
2115
2116bfd_reloc_status_type
2117_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2118 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2119 asection *input_section, bfd *output_bfd,
2120 char **error_message ATTRIBUTE_UNUSED)
2121{
2122 bfd_signed_vma val;
2123 bfd_reloc_status_type status;
2124 bfd_boolean relocatable;
2125
2126 relocatable = (output_bfd != NULL);
2127
07515404 2128 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2129 return bfd_reloc_outofrange;
2130
2131 /* Build up the field adjustment in VAL. */
2132 val = 0;
2133 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2134 {
2135 /* Either we're calculating the final field value or we have a
2136 relocation against a section symbol. Add in the section's
2137 offset or address. */
2138 val += symbol->section->output_section->vma;
2139 val += symbol->section->output_offset;
2140 }
2141
2142 if (!relocatable)
2143 {
2144 /* We're calculating the final field value. Add in the symbol's value
2145 and, if pc-relative, subtract the address of the field itself. */
2146 val += symbol->value;
2147 if (reloc_entry->howto->pc_relative)
2148 {
2149 val -= input_section->output_section->vma;
2150 val -= input_section->output_offset;
2151 val -= reloc_entry->address;
2152 }
2153 }
2154
2155 /* VAL is now the final adjustment. If we're keeping this relocation
2156 in the output file, and if the relocation uses a separate addend,
2157 we just need to add VAL to that addend. Otherwise we need to add
2158 VAL to the relocation field itself. */
2159 if (relocatable && !reloc_entry->howto->partial_inplace)
2160 reloc_entry->addend += val;
2161 else
2162 {
d6f16593
MR
2163 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2164
30ac9238
RS
2165 /* Add in the separate addend, if any. */
2166 val += reloc_entry->addend;
2167
2168 /* Add VAL to the relocation field. */
d6f16593
MR
2169 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2170 location);
30ac9238 2171 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
2172 location);
2173 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2174 location);
2175
30ac9238
RS
2176 if (status != bfd_reloc_ok)
2177 return status;
2178 }
2179
2180 if (relocatable)
2181 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2182
2183 return bfd_reloc_ok;
2184}
2185\f
2186/* Swap an entry in a .gptab section. Note that these routines rely
2187 on the equivalence of the two elements of the union. */
2188
2189static void
9719ad41
RS
2190bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2191 Elf32_gptab *in)
b49e97c9
TS
2192{
2193 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2194 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2195}
2196
2197static void
9719ad41
RS
2198bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2199 Elf32_External_gptab *ex)
b49e97c9
TS
2200{
2201 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2202 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2203}
2204
2205static void
9719ad41
RS
2206bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2207 Elf32_External_compact_rel *ex)
b49e97c9
TS
2208{
2209 H_PUT_32 (abfd, in->id1, ex->id1);
2210 H_PUT_32 (abfd, in->num, ex->num);
2211 H_PUT_32 (abfd, in->id2, ex->id2);
2212 H_PUT_32 (abfd, in->offset, ex->offset);
2213 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2214 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2215}
2216
2217static void
9719ad41
RS
2218bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2219 Elf32_External_crinfo *ex)
b49e97c9
TS
2220{
2221 unsigned long l;
2222
2223 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2224 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2225 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2226 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2227 H_PUT_32 (abfd, l, ex->info);
2228 H_PUT_32 (abfd, in->konst, ex->konst);
2229 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2230}
b49e97c9
TS
2231\f
2232/* A .reginfo section holds a single Elf32_RegInfo structure. These
2233 routines swap this structure in and out. They are used outside of
2234 BFD, so they are globally visible. */
2235
2236void
9719ad41
RS
2237bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2238 Elf32_RegInfo *in)
b49e97c9
TS
2239{
2240 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2241 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2242 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2243 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2244 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2245 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2246}
2247
2248void
9719ad41
RS
2249bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2250 Elf32_External_RegInfo *ex)
b49e97c9
TS
2251{
2252 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2253 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2254 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2255 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2256 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2257 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2258}
2259
2260/* In the 64 bit ABI, the .MIPS.options section holds register
2261 information in an Elf64_Reginfo structure. These routines swap
2262 them in and out. They are globally visible because they are used
2263 outside of BFD. These routines are here so that gas can call them
2264 without worrying about whether the 64 bit ABI has been included. */
2265
2266void
9719ad41
RS
2267bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2268 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2269{
2270 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2271 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2272 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2273 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2274 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2275 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2276 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2277}
2278
2279void
9719ad41
RS
2280bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2281 Elf64_External_RegInfo *ex)
b49e97c9
TS
2282{
2283 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2284 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2285 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2286 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2287 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2288 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2289 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2290}
2291
2292/* Swap in an options header. */
2293
2294void
9719ad41
RS
2295bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2296 Elf_Internal_Options *in)
b49e97c9
TS
2297{
2298 in->kind = H_GET_8 (abfd, ex->kind);
2299 in->size = H_GET_8 (abfd, ex->size);
2300 in->section = H_GET_16 (abfd, ex->section);
2301 in->info = H_GET_32 (abfd, ex->info);
2302}
2303
2304/* Swap out an options header. */
2305
2306void
9719ad41
RS
2307bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2308 Elf_External_Options *ex)
b49e97c9
TS
2309{
2310 H_PUT_8 (abfd, in->kind, ex->kind);
2311 H_PUT_8 (abfd, in->size, ex->size);
2312 H_PUT_16 (abfd, in->section, ex->section);
2313 H_PUT_32 (abfd, in->info, ex->info);
2314}
2315\f
2316/* This function is called via qsort() to sort the dynamic relocation
2317 entries by increasing r_symndx value. */
2318
2319static int
9719ad41 2320sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2321{
947216bf
AM
2322 Elf_Internal_Rela int_reloc1;
2323 Elf_Internal_Rela int_reloc2;
6870500c 2324 int diff;
b49e97c9 2325
947216bf
AM
2326 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2327 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2328
6870500c
RS
2329 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2330 if (diff != 0)
2331 return diff;
2332
2333 if (int_reloc1.r_offset < int_reloc2.r_offset)
2334 return -1;
2335 if (int_reloc1.r_offset > int_reloc2.r_offset)
2336 return 1;
2337 return 0;
b49e97c9
TS
2338}
2339
f4416af6
AO
2340/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2341
2342static int
7e3102a7
AM
2343sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2344 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2345{
7e3102a7 2346#ifdef BFD64
f4416af6
AO
2347 Elf_Internal_Rela int_reloc1[3];
2348 Elf_Internal_Rela int_reloc2[3];
2349
2350 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2351 (reldyn_sorting_bfd, arg1, int_reloc1);
2352 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2353 (reldyn_sorting_bfd, arg2, int_reloc2);
2354
6870500c
RS
2355 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2356 return -1;
2357 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2358 return 1;
2359
2360 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2361 return -1;
2362 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2363 return 1;
2364 return 0;
7e3102a7
AM
2365#else
2366 abort ();
2367#endif
f4416af6
AO
2368}
2369
2370
b49e97c9
TS
2371/* This routine is used to write out ECOFF debugging external symbol
2372 information. It is called via mips_elf_link_hash_traverse. The
2373 ECOFF external symbol information must match the ELF external
2374 symbol information. Unfortunately, at this point we don't know
2375 whether a symbol is required by reloc information, so the two
2376 tables may wind up being different. We must sort out the external
2377 symbol information before we can set the final size of the .mdebug
2378 section, and we must set the size of the .mdebug section before we
2379 can relocate any sections, and we can't know which symbols are
2380 required by relocation until we relocate the sections.
2381 Fortunately, it is relatively unlikely that any symbol will be
2382 stripped but required by a reloc. In particular, it can not happen
2383 when generating a final executable. */
2384
b34976b6 2385static bfd_boolean
9719ad41 2386mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2387{
9719ad41 2388 struct extsym_info *einfo = data;
b34976b6 2389 bfd_boolean strip;
b49e97c9
TS
2390 asection *sec, *output_section;
2391
2392 if (h->root.root.type == bfd_link_hash_warning)
2393 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2394
2395 if (h->root.indx == -2)
b34976b6 2396 strip = FALSE;
f5385ebf 2397 else if ((h->root.def_dynamic
77cfaee6
AM
2398 || h->root.ref_dynamic
2399 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2400 && !h->root.def_regular
2401 && !h->root.ref_regular)
b34976b6 2402 strip = TRUE;
b49e97c9
TS
2403 else if (einfo->info->strip == strip_all
2404 || (einfo->info->strip == strip_some
2405 && bfd_hash_lookup (einfo->info->keep_hash,
2406 h->root.root.root.string,
b34976b6
AM
2407 FALSE, FALSE) == NULL))
2408 strip = TRUE;
b49e97c9 2409 else
b34976b6 2410 strip = FALSE;
b49e97c9
TS
2411
2412 if (strip)
b34976b6 2413 return TRUE;
b49e97c9
TS
2414
2415 if (h->esym.ifd == -2)
2416 {
2417 h->esym.jmptbl = 0;
2418 h->esym.cobol_main = 0;
2419 h->esym.weakext = 0;
2420 h->esym.reserved = 0;
2421 h->esym.ifd = ifdNil;
2422 h->esym.asym.value = 0;
2423 h->esym.asym.st = stGlobal;
2424
2425 if (h->root.root.type == bfd_link_hash_undefined
2426 || h->root.root.type == bfd_link_hash_undefweak)
2427 {
2428 const char *name;
2429
2430 /* Use undefined class. Also, set class and type for some
2431 special symbols. */
2432 name = h->root.root.root.string;
2433 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2434 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2435 {
2436 h->esym.asym.sc = scData;
2437 h->esym.asym.st = stLabel;
2438 h->esym.asym.value = 0;
2439 }
2440 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2441 {
2442 h->esym.asym.sc = scAbs;
2443 h->esym.asym.st = stLabel;
2444 h->esym.asym.value =
2445 mips_elf_hash_table (einfo->info)->procedure_count;
2446 }
4a14403c 2447 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2448 {
2449 h->esym.asym.sc = scAbs;
2450 h->esym.asym.st = stLabel;
2451 h->esym.asym.value = elf_gp (einfo->abfd);
2452 }
2453 else
2454 h->esym.asym.sc = scUndefined;
2455 }
2456 else if (h->root.root.type != bfd_link_hash_defined
2457 && h->root.root.type != bfd_link_hash_defweak)
2458 h->esym.asym.sc = scAbs;
2459 else
2460 {
2461 const char *name;
2462
2463 sec = h->root.root.u.def.section;
2464 output_section = sec->output_section;
2465
2466 /* When making a shared library and symbol h is the one from
2467 the another shared library, OUTPUT_SECTION may be null. */
2468 if (output_section == NULL)
2469 h->esym.asym.sc = scUndefined;
2470 else
2471 {
2472 name = bfd_section_name (output_section->owner, output_section);
2473
2474 if (strcmp (name, ".text") == 0)
2475 h->esym.asym.sc = scText;
2476 else if (strcmp (name, ".data") == 0)
2477 h->esym.asym.sc = scData;
2478 else if (strcmp (name, ".sdata") == 0)
2479 h->esym.asym.sc = scSData;
2480 else if (strcmp (name, ".rodata") == 0
2481 || strcmp (name, ".rdata") == 0)
2482 h->esym.asym.sc = scRData;
2483 else if (strcmp (name, ".bss") == 0)
2484 h->esym.asym.sc = scBss;
2485 else if (strcmp (name, ".sbss") == 0)
2486 h->esym.asym.sc = scSBss;
2487 else if (strcmp (name, ".init") == 0)
2488 h->esym.asym.sc = scInit;
2489 else if (strcmp (name, ".fini") == 0)
2490 h->esym.asym.sc = scFini;
2491 else
2492 h->esym.asym.sc = scAbs;
2493 }
2494 }
2495
2496 h->esym.asym.reserved = 0;
2497 h->esym.asym.index = indexNil;
2498 }
2499
2500 if (h->root.root.type == bfd_link_hash_common)
2501 h->esym.asym.value = h->root.root.u.c.size;
2502 else if (h->root.root.type == bfd_link_hash_defined
2503 || h->root.root.type == bfd_link_hash_defweak)
2504 {
2505 if (h->esym.asym.sc == scCommon)
2506 h->esym.asym.sc = scBss;
2507 else if (h->esym.asym.sc == scSCommon)
2508 h->esym.asym.sc = scSBss;
2509
2510 sec = h->root.root.u.def.section;
2511 output_section = sec->output_section;
2512 if (output_section != NULL)
2513 h->esym.asym.value = (h->root.root.u.def.value
2514 + sec->output_offset
2515 + output_section->vma);
2516 else
2517 h->esym.asym.value = 0;
2518 }
33bb52fb 2519 else
b49e97c9
TS
2520 {
2521 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2522
2523 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2524 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2525
33bb52fb 2526 if (hd->needs_lazy_stub)
b49e97c9
TS
2527 {
2528 /* Set type and value for a symbol with a function stub. */
2529 h->esym.asym.st = stProc;
2530 sec = hd->root.root.u.def.section;
2531 if (sec == NULL)
2532 h->esym.asym.value = 0;
2533 else
2534 {
2535 output_section = sec->output_section;
2536 if (output_section != NULL)
2537 h->esym.asym.value = (hd->root.plt.offset
2538 + sec->output_offset
2539 + output_section->vma);
2540 else
2541 h->esym.asym.value = 0;
2542 }
b49e97c9
TS
2543 }
2544 }
2545
2546 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2547 h->root.root.root.string,
2548 &h->esym))
2549 {
b34976b6
AM
2550 einfo->failed = TRUE;
2551 return FALSE;
b49e97c9
TS
2552 }
2553
b34976b6 2554 return TRUE;
b49e97c9
TS
2555}
2556
2557/* A comparison routine used to sort .gptab entries. */
2558
2559static int
9719ad41 2560gptab_compare (const void *p1, const void *p2)
b49e97c9 2561{
9719ad41
RS
2562 const Elf32_gptab *a1 = p1;
2563 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2564
2565 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2566}
2567\f
b15e6682 2568/* Functions to manage the got entry hash table. */
f4416af6
AO
2569
2570/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2571 hash number. */
2572
2573static INLINE hashval_t
9719ad41 2574mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2575{
2576#ifdef BFD64
2577 return addr + (addr >> 32);
2578#else
2579 return addr;
2580#endif
2581}
2582
2583/* got_entries only match if they're identical, except for gotidx, so
2584 use all fields to compute the hash, and compare the appropriate
2585 union members. */
2586
b15e6682 2587static hashval_t
9719ad41 2588mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2589{
2590 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2591
38985a1c 2592 return entry->symndx
0f20cc35 2593 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2594 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2595 : entry->abfd->id
2596 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2597 : entry->d.h->root.root.root.hash));
b15e6682
AO
2598}
2599
2600static int
9719ad41 2601mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2602{
2603 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2604 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2605
0f20cc35
DJ
2606 /* An LDM entry can only match another LDM entry. */
2607 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2608 return 0;
2609
b15e6682 2610 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2611 && (! e1->abfd ? e1->d.address == e2->d.address
2612 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2613 : e1->d.h == e2->d.h);
2614}
2615
2616/* multi_got_entries are still a match in the case of global objects,
2617 even if the input bfd in which they're referenced differs, so the
2618 hash computation and compare functions are adjusted
2619 accordingly. */
2620
2621static hashval_t
9719ad41 2622mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2623{
2624 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2625
2626 return entry->symndx
2627 + (! entry->abfd
2628 ? mips_elf_hash_bfd_vma (entry->d.address)
2629 : entry->symndx >= 0
0f20cc35
DJ
2630 ? ((entry->tls_type & GOT_TLS_LDM)
2631 ? (GOT_TLS_LDM << 17)
2632 : (entry->abfd->id
2633 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2634 : entry->d.h->root.root.root.hash);
2635}
2636
2637static int
9719ad41 2638mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2639{
2640 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2641 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2642
0f20cc35
DJ
2643 /* Any two LDM entries match. */
2644 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2645 return 1;
2646
2647 /* Nothing else matches an LDM entry. */
2648 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2649 return 0;
2650
f4416af6
AO
2651 return e1->symndx == e2->symndx
2652 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2653 : e1->abfd == NULL || e2->abfd == NULL
2654 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2655 : e1->d.h == e2->d.h);
b15e6682 2656}
c224138d
RS
2657
2658static hashval_t
2659mips_got_page_entry_hash (const void *entry_)
2660{
2661 const struct mips_got_page_entry *entry;
2662
2663 entry = (const struct mips_got_page_entry *) entry_;
2664 return entry->abfd->id + entry->symndx;
2665}
2666
2667static int
2668mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2669{
2670 const struct mips_got_page_entry *entry1, *entry2;
2671
2672 entry1 = (const struct mips_got_page_entry *) entry1_;
2673 entry2 = (const struct mips_got_page_entry *) entry2_;
2674 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2675}
b15e6682 2676\f
0a44bf69
RS
2677/* Return the dynamic relocation section. If it doesn't exist, try to
2678 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2679 if creation fails. */
f4416af6
AO
2680
2681static asection *
0a44bf69 2682mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2683{
0a44bf69 2684 const char *dname;
f4416af6 2685 asection *sreloc;
0a44bf69 2686 bfd *dynobj;
f4416af6 2687
0a44bf69
RS
2688 dname = MIPS_ELF_REL_DYN_NAME (info);
2689 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2690 sreloc = bfd_get_section_by_name (dynobj, dname);
2691 if (sreloc == NULL && create_p)
2692 {
3496cb2a
L
2693 sreloc = bfd_make_section_with_flags (dynobj, dname,
2694 (SEC_ALLOC
2695 | SEC_LOAD
2696 | SEC_HAS_CONTENTS
2697 | SEC_IN_MEMORY
2698 | SEC_LINKER_CREATED
2699 | SEC_READONLY));
f4416af6 2700 if (sreloc == NULL
f4416af6 2701 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2702 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2703 return NULL;
2704 }
2705 return sreloc;
2706}
2707
0f20cc35
DJ
2708/* Count the number of relocations needed for a TLS GOT entry, with
2709 access types from TLS_TYPE, and symbol H (or a local symbol if H
2710 is NULL). */
2711
2712static int
2713mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2714 struct elf_link_hash_entry *h)
2715{
2716 int indx = 0;
2717 int ret = 0;
2718 bfd_boolean need_relocs = FALSE;
2719 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2720
2721 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2722 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2723 indx = h->dynindx;
2724
2725 if ((info->shared || indx != 0)
2726 && (h == NULL
2727 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2728 || h->root.type != bfd_link_hash_undefweak))
2729 need_relocs = TRUE;
2730
2731 if (!need_relocs)
2732 return FALSE;
2733
2734 if (tls_type & GOT_TLS_GD)
2735 {
2736 ret++;
2737 if (indx != 0)
2738 ret++;
2739 }
2740
2741 if (tls_type & GOT_TLS_IE)
2742 ret++;
2743
2744 if ((tls_type & GOT_TLS_LDM) && info->shared)
2745 ret++;
2746
2747 return ret;
2748}
2749
2750/* Count the number of TLS relocations required for the GOT entry in
2751 ARG1, if it describes a local symbol. */
2752
2753static int
2754mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2755{
2756 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2757 struct mips_elf_count_tls_arg *arg = arg2;
2758
2759 if (entry->abfd != NULL && entry->symndx != -1)
2760 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2761
2762 return 1;
2763}
2764
2765/* Count the number of TLS GOT entries required for the global (or
2766 forced-local) symbol in ARG1. */
2767
2768static int
2769mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2770{
2771 struct mips_elf_link_hash_entry *hm
2772 = (struct mips_elf_link_hash_entry *) arg1;
2773 struct mips_elf_count_tls_arg *arg = arg2;
2774
2775 if (hm->tls_type & GOT_TLS_GD)
2776 arg->needed += 2;
2777 if (hm->tls_type & GOT_TLS_IE)
2778 arg->needed += 1;
2779
2780 return 1;
2781}
2782
2783/* Count the number of TLS relocations required for the global (or
2784 forced-local) symbol in ARG1. */
2785
2786static int
2787mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2788{
2789 struct mips_elf_link_hash_entry *hm
2790 = (struct mips_elf_link_hash_entry *) arg1;
2791 struct mips_elf_count_tls_arg *arg = arg2;
2792
2793 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2794
2795 return 1;
2796}
2797
2798/* Output a simple dynamic relocation into SRELOC. */
2799
2800static void
2801mips_elf_output_dynamic_relocation (bfd *output_bfd,
2802 asection *sreloc,
861fb55a 2803 unsigned long reloc_index,
0f20cc35
DJ
2804 unsigned long indx,
2805 int r_type,
2806 bfd_vma offset)
2807{
2808 Elf_Internal_Rela rel[3];
2809
2810 memset (rel, 0, sizeof (rel));
2811
2812 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2813 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2814
2815 if (ABI_64_P (output_bfd))
2816 {
2817 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2818 (output_bfd, &rel[0],
2819 (sreloc->contents
861fb55a 2820 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
2821 }
2822 else
2823 bfd_elf32_swap_reloc_out
2824 (output_bfd, &rel[0],
2825 (sreloc->contents
861fb55a 2826 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
2827}
2828
2829/* Initialize a set of TLS GOT entries for one symbol. */
2830
2831static void
2832mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2833 unsigned char *tls_type_p,
2834 struct bfd_link_info *info,
2835 struct mips_elf_link_hash_entry *h,
2836 bfd_vma value)
2837{
23cc69b6 2838 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
2839 int indx;
2840 asection *sreloc, *sgot;
2841 bfd_vma offset, offset2;
0f20cc35
DJ
2842 bfd_boolean need_relocs = FALSE;
2843
23cc69b6
RS
2844 htab = mips_elf_hash_table (info);
2845 sgot = htab->sgot;
0f20cc35
DJ
2846
2847 indx = 0;
2848 if (h != NULL)
2849 {
2850 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2851
2852 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2853 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2854 indx = h->root.dynindx;
2855 }
2856
2857 if (*tls_type_p & GOT_TLS_DONE)
2858 return;
2859
2860 if ((info->shared || indx != 0)
2861 && (h == NULL
2862 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2863 || h->root.type != bfd_link_hash_undefweak))
2864 need_relocs = TRUE;
2865
2866 /* MINUS_ONE means the symbol is not defined in this object. It may not
2867 be defined at all; assume that the value doesn't matter in that
2868 case. Otherwise complain if we would use the value. */
2869 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2870 || h->root.root.type == bfd_link_hash_undefweak);
2871
2872 /* Emit necessary relocations. */
0a44bf69 2873 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2874
2875 /* General Dynamic. */
2876 if (*tls_type_p & GOT_TLS_GD)
2877 {
2878 offset = got_offset;
2879 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2880
2881 if (need_relocs)
2882 {
2883 mips_elf_output_dynamic_relocation
861fb55a 2884 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2885 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2886 sgot->output_offset + sgot->output_section->vma + offset);
2887
2888 if (indx)
2889 mips_elf_output_dynamic_relocation
861fb55a 2890 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2891 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2892 sgot->output_offset + sgot->output_section->vma + offset2);
2893 else
2894 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2895 sgot->contents + offset2);
2896 }
2897 else
2898 {
2899 MIPS_ELF_PUT_WORD (abfd, 1,
2900 sgot->contents + offset);
2901 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2902 sgot->contents + offset2);
2903 }
2904
2905 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2906 }
2907
2908 /* Initial Exec model. */
2909 if (*tls_type_p & GOT_TLS_IE)
2910 {
2911 offset = got_offset;
2912
2913 if (need_relocs)
2914 {
2915 if (indx == 0)
2916 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2917 sgot->contents + offset);
2918 else
2919 MIPS_ELF_PUT_WORD (abfd, 0,
2920 sgot->contents + offset);
2921
2922 mips_elf_output_dynamic_relocation
861fb55a 2923 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2924 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2925 sgot->output_offset + sgot->output_section->vma + offset);
2926 }
2927 else
2928 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2929 sgot->contents + offset);
2930 }
2931
2932 if (*tls_type_p & GOT_TLS_LDM)
2933 {
2934 /* The initial offset is zero, and the LD offsets will include the
2935 bias by DTP_OFFSET. */
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + got_offset
2938 + MIPS_ELF_GOT_SIZE (abfd));
2939
2940 if (!info->shared)
2941 MIPS_ELF_PUT_WORD (abfd, 1,
2942 sgot->contents + got_offset);
2943 else
2944 mips_elf_output_dynamic_relocation
861fb55a 2945 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2946 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2947 sgot->output_offset + sgot->output_section->vma + got_offset);
2948 }
2949
2950 *tls_type_p |= GOT_TLS_DONE;
2951}
2952
2953/* Return the GOT index to use for a relocation of type R_TYPE against
2954 a symbol accessed using TLS_TYPE models. The GOT entries for this
2955 symbol in this GOT start at GOT_INDEX. This function initializes the
2956 GOT entries and corresponding relocations. */
2957
2958static bfd_vma
2959mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2960 int r_type, struct bfd_link_info *info,
2961 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2962{
2963 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2964 || r_type == R_MIPS_TLS_LDM);
2965
2966 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2967
2968 if (r_type == R_MIPS_TLS_GOTTPREL)
2969 {
2970 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2971 if (*tls_type & GOT_TLS_GD)
2972 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2973 else
2974 return got_index;
2975 }
2976
2977 if (r_type == R_MIPS_TLS_GD)
2978 {
2979 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2980 return got_index;
2981 }
2982
2983 if (r_type == R_MIPS_TLS_LDM)
2984 {
2985 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2986 return got_index;
2987 }
2988
2989 return got_index;
2990}
2991
0a44bf69
RS
2992/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2993 for global symbol H. .got.plt comes before the GOT, so the offset
2994 will be negative. */
2995
2996static bfd_vma
2997mips_elf_gotplt_index (struct bfd_link_info *info,
2998 struct elf_link_hash_entry *h)
2999{
3000 bfd_vma plt_index, got_address, got_value;
3001 struct mips_elf_link_hash_table *htab;
3002
3003 htab = mips_elf_hash_table (info);
3004 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3005
861fb55a
DJ
3006 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3007 section starts with reserved entries. */
3008 BFD_ASSERT (htab->is_vxworks);
3009
0a44bf69
RS
3010 /* Calculate the index of the symbol's PLT entry. */
3011 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3012
3013 /* Calculate the address of the associated .got.plt entry. */
3014 got_address = (htab->sgotplt->output_section->vma
3015 + htab->sgotplt->output_offset
3016 + plt_index * 4);
3017
3018 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3019 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3020 + htab->root.hgot->root.u.def.section->output_offset
3021 + htab->root.hgot->root.u.def.value);
3022
3023 return got_address - got_value;
3024}
3025
5c18022e 3026/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3027 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3028 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3029 offset can be found. */
b49e97c9
TS
3030
3031static bfd_vma
9719ad41 3032mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3033 bfd_vma value, unsigned long r_symndx,
0f20cc35 3034 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3035{
a8028dd0 3036 struct mips_elf_link_hash_table *htab;
b15e6682 3037 struct mips_got_entry *entry;
b49e97c9 3038
a8028dd0
RS
3039 htab = mips_elf_hash_table (info);
3040 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3041 r_symndx, h, r_type);
0f20cc35 3042 if (!entry)
b15e6682 3043 return MINUS_ONE;
0f20cc35
DJ
3044
3045 if (TLS_RELOC_P (r_type))
ead49a57 3046 {
a8028dd0 3047 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3048 /* A type (3) entry in the single-GOT case. We use the symbol's
3049 hash table entry to track the index. */
3050 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3051 r_type, info, h, value);
3052 else
3053 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3054 r_type, info, h, value);
3055 }
0f20cc35
DJ
3056 else
3057 return entry->gotidx;
b49e97c9
TS
3058}
3059
3060/* Returns the GOT index for the global symbol indicated by H. */
3061
3062static bfd_vma
0f20cc35
DJ
3063mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3064 int r_type, struct bfd_link_info *info)
b49e97c9 3065{
a8028dd0 3066 struct mips_elf_link_hash_table *htab;
b49e97c9 3067 bfd_vma index;
f4416af6 3068 struct mips_got_info *g, *gg;
d0c7ff07 3069 long global_got_dynindx = 0;
b49e97c9 3070
a8028dd0
RS
3071 htab = mips_elf_hash_table (info);
3072 gg = g = htab->got_info;
f4416af6
AO
3073 if (g->bfd2got && ibfd)
3074 {
3075 struct mips_got_entry e, *p;
143d77c5 3076
f4416af6
AO
3077 BFD_ASSERT (h->dynindx >= 0);
3078
3079 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3080 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3081 {
3082 e.abfd = ibfd;
3083 e.symndx = -1;
3084 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 3085 e.tls_type = 0;
f4416af6 3086
9719ad41 3087 p = htab_find (g->got_entries, &e);
f4416af6
AO
3088
3089 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
3090
3091 if (TLS_RELOC_P (r_type))
3092 {
3093 bfd_vma value = MINUS_ONE;
3094 if ((h->root.type == bfd_link_hash_defined
3095 || h->root.type == bfd_link_hash_defweak)
3096 && h->root.u.def.section->output_section)
3097 value = (h->root.u.def.value
3098 + h->root.u.def.section->output_offset
3099 + h->root.u.def.section->output_section->vma);
3100
3101 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3102 info, e.d.h, value);
3103 }
3104 else
3105 return p->gotidx;
f4416af6
AO
3106 }
3107 }
3108
3109 if (gg->global_gotsym != NULL)
3110 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 3111
0f20cc35
DJ
3112 if (TLS_RELOC_P (r_type))
3113 {
3114 struct mips_elf_link_hash_entry *hm
3115 = (struct mips_elf_link_hash_entry *) h;
3116 bfd_vma value = MINUS_ONE;
3117
3118 if ((h->root.type == bfd_link_hash_defined
3119 || h->root.type == bfd_link_hash_defweak)
3120 && h->root.u.def.section->output_section)
3121 value = (h->root.u.def.value
3122 + h->root.u.def.section->output_offset
3123 + h->root.u.def.section->output_section->vma);
3124
3125 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3126 r_type, info, hm, value);
3127 }
3128 else
3129 {
3130 /* Once we determine the global GOT entry with the lowest dynamic
3131 symbol table index, we must put all dynamic symbols with greater
3132 indices into the GOT. That makes it easy to calculate the GOT
3133 offset. */
3134 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3135 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3136 * MIPS_ELF_GOT_SIZE (abfd));
3137 }
a8028dd0 3138 BFD_ASSERT (index < htab->sgot->size);
b49e97c9
TS
3139
3140 return index;
3141}
3142
5c18022e
RS
3143/* Find a GOT page entry that points to within 32KB of VALUE. These
3144 entries are supposed to be placed at small offsets in the GOT, i.e.,
3145 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3146 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3147 offset of the GOT entry from VALUE. */
b49e97c9
TS
3148
3149static bfd_vma
9719ad41 3150mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3151 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3152{
0a44bf69 3153 bfd_vma page, index;
b15e6682 3154 struct mips_got_entry *entry;
b49e97c9 3155
0a44bf69 3156 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3157 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3158 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3159
b15e6682
AO
3160 if (!entry)
3161 return MINUS_ONE;
143d77c5 3162
b15e6682 3163 index = entry->gotidx;
b49e97c9
TS
3164
3165 if (offsetp)
f4416af6 3166 *offsetp = value - entry->d.address;
b49e97c9
TS
3167
3168 return index;
3169}
3170
738e5348 3171/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
0a44bf69
RS
3172 EXTERNAL is true if the relocation was against a global symbol
3173 that has been forced local. */
b49e97c9
TS
3174
3175static bfd_vma
9719ad41 3176mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3177 bfd_vma value, bfd_boolean external)
b49e97c9 3178{
b15e6682 3179 struct mips_got_entry *entry;
b49e97c9 3180
0a44bf69
RS
3181 /* GOT16 relocations against local symbols are followed by a LO16
3182 relocation; those against global symbols are not. Thus if the
3183 symbol was originally local, the GOT16 relocation should load the
3184 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3185 if (! external)
0a44bf69 3186 value = mips_elf_high (value) << 16;
b49e97c9 3187
738e5348
RS
3188 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3189 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3190 same in all cases. */
a8028dd0
RS
3191 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3192 NULL, R_MIPS_GOT16);
b15e6682
AO
3193 if (entry)
3194 return entry->gotidx;
3195 else
3196 return MINUS_ONE;
b49e97c9
TS
3197}
3198
3199/* Returns the offset for the entry at the INDEXth position
3200 in the GOT. */
3201
3202static bfd_vma
a8028dd0 3203mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
9719ad41 3204 bfd *input_bfd, bfd_vma index)
b49e97c9 3205{
a8028dd0 3206 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3207 asection *sgot;
3208 bfd_vma gp;
3209
a8028dd0
RS
3210 htab = mips_elf_hash_table (info);
3211 sgot = htab->sgot;
f4416af6 3212 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3213 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3214
f4416af6 3215 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
3216}
3217
0a44bf69
RS
3218/* Create and return a local GOT entry for VALUE, which was calculated
3219 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3220 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3221 instead. */
b49e97c9 3222
b15e6682 3223static struct mips_got_entry *
0a44bf69 3224mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3225 bfd *ibfd, bfd_vma value,
5c18022e 3226 unsigned long r_symndx,
0f20cc35
DJ
3227 struct mips_elf_link_hash_entry *h,
3228 int r_type)
b49e97c9 3229{
b15e6682 3230 struct mips_got_entry entry, **loc;
f4416af6 3231 struct mips_got_info *g;
0a44bf69
RS
3232 struct mips_elf_link_hash_table *htab;
3233
3234 htab = mips_elf_hash_table (info);
b15e6682 3235
f4416af6
AO
3236 entry.abfd = NULL;
3237 entry.symndx = -1;
3238 entry.d.address = value;
0f20cc35 3239 entry.tls_type = 0;
f4416af6 3240
a8028dd0 3241 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3242 if (g == NULL)
3243 {
a8028dd0 3244 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3245 BFD_ASSERT (g != NULL);
3246 }
b15e6682 3247
0f20cc35
DJ
3248 /* We might have a symbol, H, if it has been forced local. Use the
3249 global entry then. It doesn't matter whether an entry is local
3250 or global for TLS, since the dynamic linker does not
3251 automatically relocate TLS GOT entries. */
a008ac03 3252 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
3253 if (TLS_RELOC_P (r_type))
3254 {
3255 struct mips_got_entry *p;
3256
3257 entry.abfd = ibfd;
3258 if (r_type == R_MIPS_TLS_LDM)
3259 {
3260 entry.tls_type = GOT_TLS_LDM;
3261 entry.symndx = 0;
3262 entry.d.addend = 0;
3263 }
3264 else if (h == NULL)
3265 {
3266 entry.symndx = r_symndx;
3267 entry.d.addend = 0;
3268 }
3269 else
3270 entry.d.h = h;
3271
3272 p = (struct mips_got_entry *)
3273 htab_find (g->got_entries, &entry);
3274
3275 BFD_ASSERT (p);
3276 return p;
3277 }
3278
b15e6682
AO
3279 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3280 INSERT);
3281 if (*loc)
3282 return *loc;
143d77c5 3283
b15e6682 3284 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 3285 entry.tls_type = 0;
b15e6682
AO
3286
3287 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3288
3289 if (! *loc)
3290 return NULL;
143d77c5 3291
b15e6682
AO
3292 memcpy (*loc, &entry, sizeof entry);
3293
8275b357 3294 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3295 {
f4416af6 3296 (*loc)->gotidx = -1;
b49e97c9
TS
3297 /* We didn't allocate enough space in the GOT. */
3298 (*_bfd_error_handler)
3299 (_("not enough GOT space for local GOT entries"));
3300 bfd_set_error (bfd_error_bad_value);
b15e6682 3301 return NULL;
b49e97c9
TS
3302 }
3303
3304 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3305 (htab->sgot->contents + entry.gotidx));
b15e6682 3306
5c18022e 3307 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3308 if (htab->is_vxworks)
3309 {
3310 Elf_Internal_Rela outrel;
5c18022e 3311 asection *s;
0a44bf69
RS
3312 bfd_byte *loc;
3313 bfd_vma got_address;
0a44bf69
RS
3314
3315 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3316 got_address = (htab->sgot->output_section->vma
3317 + htab->sgot->output_offset
0a44bf69
RS
3318 + entry.gotidx);
3319
3320 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3321 outrel.r_offset = got_address;
5c18022e
RS
3322 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3323 outrel.r_addend = value;
0a44bf69
RS
3324 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
3325 }
3326
b15e6682 3327 return *loc;
b49e97c9
TS
3328}
3329
d4596a51
RS
3330/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3331 The number might be exact or a worst-case estimate, depending on how
3332 much information is available to elf_backend_omit_section_dynsym at
3333 the current linking stage. */
3334
3335static bfd_size_type
3336count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3337{
3338 bfd_size_type count;
3339
3340 count = 0;
3341 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3342 {
3343 asection *p;
3344 const struct elf_backend_data *bed;
3345
3346 bed = get_elf_backend_data (output_bfd);
3347 for (p = output_bfd->sections; p ; p = p->next)
3348 if ((p->flags & SEC_EXCLUDE) == 0
3349 && (p->flags & SEC_ALLOC) != 0
3350 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3351 ++count;
3352 }
3353 return count;
3354}
3355
b49e97c9 3356/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3357 appear towards the end. */
b49e97c9 3358
b34976b6 3359static bfd_boolean
d4596a51 3360mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3361{
a8028dd0 3362 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3363 struct mips_elf_hash_sort_data hsd;
3364 struct mips_got_info *g;
b49e97c9 3365
d4596a51
RS
3366 if (elf_hash_table (info)->dynsymcount == 0)
3367 return TRUE;
3368
a8028dd0
RS
3369 htab = mips_elf_hash_table (info);
3370 g = htab->got_info;
d4596a51
RS
3371 if (g == NULL)
3372 return TRUE;
f4416af6 3373
b49e97c9 3374 hsd.low = NULL;
23cc69b6
RS
3375 hsd.max_unref_got_dynindx
3376 = hsd.min_got_dynindx
3377 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3378 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3379 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3380 elf_hash_table (info)),
3381 mips_elf_sort_hash_table_f,
3382 &hsd);
3383
3384 /* There should have been enough room in the symbol table to
44c410de 3385 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3386 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3387 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3388 == elf_hash_table (info)->dynsymcount);
3389 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3390 == g->global_gotno);
b49e97c9
TS
3391
3392 /* Now we know which dynamic symbol has the lowest dynamic symbol
3393 table index in the GOT. */
b49e97c9
TS
3394 g->global_gotsym = hsd.low;
3395
b34976b6 3396 return TRUE;
b49e97c9
TS
3397}
3398
3399/* If H needs a GOT entry, assign it the highest available dynamic
3400 index. Otherwise, assign it the lowest available dynamic
3401 index. */
3402
b34976b6 3403static bfd_boolean
9719ad41 3404mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3405{
9719ad41 3406 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
3407
3408 if (h->root.root.type == bfd_link_hash_warning)
3409 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3410
3411 /* Symbols without dynamic symbol table entries aren't interesting
3412 at all. */
3413 if (h->root.dynindx == -1)
b34976b6 3414 return TRUE;
b49e97c9 3415
634835ae 3416 switch (h->global_got_area)
f4416af6 3417 {
634835ae
RS
3418 case GGA_NONE:
3419 h->root.dynindx = hsd->max_non_got_dynindx++;
3420 break;
0f20cc35 3421
634835ae 3422 case GGA_NORMAL:
0f20cc35
DJ
3423 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3424
b49e97c9
TS
3425 h->root.dynindx = --hsd->min_got_dynindx;
3426 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3427 break;
3428
3429 case GGA_RELOC_ONLY:
3430 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3431
3432 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3433 hsd->low = (struct elf_link_hash_entry *) h;
3434 h->root.dynindx = hsd->max_unref_got_dynindx++;
3435 break;
b49e97c9
TS
3436 }
3437
b34976b6 3438 return TRUE;
b49e97c9
TS
3439}
3440
3441/* If H is a symbol that needs a global GOT entry, but has a dynamic
3442 symbol table index lower than any we've seen to date, record it for
3443 posterity. */
3444
b34976b6 3445static bfd_boolean
9719ad41
RS
3446mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3447 bfd *abfd, struct bfd_link_info *info,
0f20cc35 3448 unsigned char tls_flag)
b49e97c9 3449{
a8028dd0 3450 struct mips_elf_link_hash_table *htab;
634835ae 3451 struct mips_elf_link_hash_entry *hmips;
f4416af6 3452 struct mips_got_entry entry, **loc;
a8028dd0
RS
3453 struct mips_got_info *g;
3454
3455 htab = mips_elf_hash_table (info);
634835ae 3456 hmips = (struct mips_elf_link_hash_entry *) h;
f4416af6 3457
b49e97c9
TS
3458 /* A global symbol in the GOT must also be in the dynamic symbol
3459 table. */
7c5fcef7
L
3460 if (h->dynindx == -1)
3461 {
3462 switch (ELF_ST_VISIBILITY (h->other))
3463 {
3464 case STV_INTERNAL:
3465 case STV_HIDDEN:
33bb52fb 3466 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3467 break;
3468 }
c152c796 3469 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3470 return FALSE;
7c5fcef7 3471 }
b49e97c9 3472
86324f90 3473 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3474 g = htab->got_info;
86324f90
EC
3475 BFD_ASSERT (g != NULL);
3476
f4416af6
AO
3477 entry.abfd = abfd;
3478 entry.symndx = -1;
3479 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 3480 entry.tls_type = 0;
f4416af6
AO
3481
3482 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3483 INSERT);
3484
b49e97c9
TS
3485 /* If we've already marked this entry as needing GOT space, we don't
3486 need to do it again. */
f4416af6 3487 if (*loc)
0f20cc35
DJ
3488 {
3489 (*loc)->tls_type |= tls_flag;
3490 return TRUE;
3491 }
f4416af6
AO
3492
3493 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3494
3495 if (! *loc)
3496 return FALSE;
143d77c5 3497
f4416af6 3498 entry.gotidx = -1;
0f20cc35
DJ
3499 entry.tls_type = tls_flag;
3500
f4416af6
AO
3501 memcpy (*loc, &entry, sizeof entry);
3502
0f20cc35 3503 if (tls_flag == 0)
634835ae 3504 hmips->global_got_area = GGA_NORMAL;
b49e97c9 3505
b34976b6 3506 return TRUE;
b49e97c9 3507}
f4416af6
AO
3508
3509/* Reserve space in G for a GOT entry containing the value of symbol
3510 SYMNDX in input bfd ABDF, plus ADDEND. */
3511
3512static bfd_boolean
9719ad41 3513mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
a8028dd0 3514 struct bfd_link_info *info,
0f20cc35 3515 unsigned char tls_flag)
f4416af6 3516{
a8028dd0
RS
3517 struct mips_elf_link_hash_table *htab;
3518 struct mips_got_info *g;
f4416af6
AO
3519 struct mips_got_entry entry, **loc;
3520
a8028dd0
RS
3521 htab = mips_elf_hash_table (info);
3522 g = htab->got_info;
3523 BFD_ASSERT (g != NULL);
3524
f4416af6
AO
3525 entry.abfd = abfd;
3526 entry.symndx = symndx;
3527 entry.d.addend = addend;
0f20cc35 3528 entry.tls_type = tls_flag;
f4416af6
AO
3529 loc = (struct mips_got_entry **)
3530 htab_find_slot (g->got_entries, &entry, INSERT);
3531
3532 if (*loc)
0f20cc35
DJ
3533 {
3534 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3535 {
3536 g->tls_gotno += 2;
3537 (*loc)->tls_type |= tls_flag;
3538 }
3539 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3540 {
3541 g->tls_gotno += 1;
3542 (*loc)->tls_type |= tls_flag;
3543 }
3544 return TRUE;
3545 }
f4416af6 3546
0f20cc35
DJ
3547 if (tls_flag != 0)
3548 {
3549 entry.gotidx = -1;
3550 entry.tls_type = tls_flag;
3551 if (tls_flag == GOT_TLS_IE)
3552 g->tls_gotno += 1;
3553 else if (tls_flag == GOT_TLS_GD)
3554 g->tls_gotno += 2;
3555 else if (g->tls_ldm_offset == MINUS_ONE)
3556 {
3557 g->tls_ldm_offset = MINUS_TWO;
3558 g->tls_gotno += 2;
3559 }
3560 }
3561 else
3562 {
3563 entry.gotidx = g->local_gotno++;
3564 entry.tls_type = 0;
3565 }
f4416af6
AO
3566
3567 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3568
3569 if (! *loc)
3570 return FALSE;
143d77c5 3571
f4416af6
AO
3572 memcpy (*loc, &entry, sizeof entry);
3573
3574 return TRUE;
3575}
c224138d
RS
3576
3577/* Return the maximum number of GOT page entries required for RANGE. */
3578
3579static bfd_vma
3580mips_elf_pages_for_range (const struct mips_got_page_range *range)
3581{
3582 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3583}
3584
3a3b6725 3585/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3586 that ADDEND is the addend for that relocation.
3587
3588 This function creates an upper bound on the number of GOT slots
3589 required; no attempt is made to combine references to non-overridable
3590 global symbols across multiple input files. */
c224138d
RS
3591
3592static bfd_boolean
a8028dd0
RS
3593mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3594 long symndx, bfd_signed_vma addend)
c224138d 3595{
a8028dd0
RS
3596 struct mips_elf_link_hash_table *htab;
3597 struct mips_got_info *g;
c224138d
RS
3598 struct mips_got_page_entry lookup, *entry;
3599 struct mips_got_page_range **range_ptr, *range;
3600 bfd_vma old_pages, new_pages;
3601 void **loc;
3602
a8028dd0
RS
3603 htab = mips_elf_hash_table (info);
3604 g = htab->got_info;
3605 BFD_ASSERT (g != NULL);
3606
c224138d
RS
3607 /* Find the mips_got_page_entry hash table entry for this symbol. */
3608 lookup.abfd = abfd;
3609 lookup.symndx = symndx;
3610 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3611 if (loc == NULL)
3612 return FALSE;
3613
3614 /* Create a mips_got_page_entry if this is the first time we've
3615 seen the symbol. */
3616 entry = (struct mips_got_page_entry *) *loc;
3617 if (!entry)
3618 {
3619 entry = bfd_alloc (abfd, sizeof (*entry));
3620 if (!entry)
3621 return FALSE;
3622
3623 entry->abfd = abfd;
3624 entry->symndx = symndx;
3625 entry->ranges = NULL;
3626 entry->num_pages = 0;
3627 *loc = entry;
3628 }
3629
3630 /* Skip over ranges whose maximum extent cannot share a page entry
3631 with ADDEND. */
3632 range_ptr = &entry->ranges;
3633 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3634 range_ptr = &(*range_ptr)->next;
3635
3636 /* If we scanned to the end of the list, or found a range whose
3637 minimum extent cannot share a page entry with ADDEND, create
3638 a new singleton range. */
3639 range = *range_ptr;
3640 if (!range || addend < range->min_addend - 0xffff)
3641 {
3642 range = bfd_alloc (abfd, sizeof (*range));
3643 if (!range)
3644 return FALSE;
3645
3646 range->next = *range_ptr;
3647 range->min_addend = addend;
3648 range->max_addend = addend;
3649
3650 *range_ptr = range;
3651 entry->num_pages++;
3652 g->page_gotno++;
3653 return TRUE;
3654 }
3655
3656 /* Remember how many pages the old range contributed. */
3657 old_pages = mips_elf_pages_for_range (range);
3658
3659 /* Update the ranges. */
3660 if (addend < range->min_addend)
3661 range->min_addend = addend;
3662 else if (addend > range->max_addend)
3663 {
3664 if (range->next && addend >= range->next->min_addend - 0xffff)
3665 {
3666 old_pages += mips_elf_pages_for_range (range->next);
3667 range->max_addend = range->next->max_addend;
3668 range->next = range->next->next;
3669 }
3670 else
3671 range->max_addend = addend;
3672 }
3673
3674 /* Record any change in the total estimate. */
3675 new_pages = mips_elf_pages_for_range (range);
3676 if (old_pages != new_pages)
3677 {
3678 entry->num_pages += new_pages - old_pages;
3679 g->page_gotno += new_pages - old_pages;
3680 }
3681
3682 return TRUE;
3683}
33bb52fb
RS
3684
3685/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3686
3687static void
3688mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3689 unsigned int n)
3690{
3691 asection *s;
3692 struct mips_elf_link_hash_table *htab;
3693
3694 htab = mips_elf_hash_table (info);
3695 s = mips_elf_rel_dyn_section (info, FALSE);
3696 BFD_ASSERT (s != NULL);
3697
3698 if (htab->is_vxworks)
3699 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3700 else
3701 {
3702 if (s->size == 0)
3703 {
3704 /* Make room for a null element. */
3705 s->size += MIPS_ELF_REL_SIZE (abfd);
3706 ++s->reloc_count;
3707 }
3708 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3709 }
3710}
3711\f
3712/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3713 if the GOT entry is for an indirect or warning symbol. */
3714
3715static int
3716mips_elf_check_recreate_got (void **entryp, void *data)
3717{
3718 struct mips_got_entry *entry;
3719 bfd_boolean *must_recreate;
3720
3721 entry = (struct mips_got_entry *) *entryp;
3722 must_recreate = (bfd_boolean *) data;
3723 if (entry->abfd != NULL && entry->symndx == -1)
3724 {
3725 struct mips_elf_link_hash_entry *h;
3726
3727 h = entry->d.h;
3728 if (h->root.root.type == bfd_link_hash_indirect
3729 || h->root.root.type == bfd_link_hash_warning)
3730 {
3731 *must_recreate = TRUE;
3732 return 0;
3733 }
3734 }
3735 return 1;
3736}
3737
3738/* A htab_traverse callback for GOT entries. Add all entries to
3739 hash table *DATA, converting entries for indirect and warning
3740 symbols into entries for the target symbol. Set *DATA to null
3741 on error. */
3742
3743static int
3744mips_elf_recreate_got (void **entryp, void *data)
3745{
3746 htab_t *new_got;
3747 struct mips_got_entry *entry;
3748 void **slot;
3749
3750 new_got = (htab_t *) data;
3751 entry = (struct mips_got_entry *) *entryp;
3752 if (entry->abfd != NULL && entry->symndx == -1)
3753 {
3754 struct mips_elf_link_hash_entry *h;
3755
3756 h = entry->d.h;
3757 while (h->root.root.type == bfd_link_hash_indirect
3758 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
3759 {
3760 BFD_ASSERT (h->global_got_area == GGA_NONE);
3761 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3762 }
33bb52fb
RS
3763 entry->d.h = h;
3764 }
3765 slot = htab_find_slot (*new_got, entry, INSERT);
3766 if (slot == NULL)
3767 {
3768 *new_got = NULL;
3769 return 0;
3770 }
3771 if (*slot == NULL)
3772 *slot = entry;
3773 else
3774 free (entry);
3775 return 1;
3776}
3777
3778/* If any entries in G->got_entries are for indirect or warning symbols,
3779 replace them with entries for the target symbol. */
3780
3781static bfd_boolean
3782mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3783{
3784 bfd_boolean must_recreate;
3785 htab_t new_got;
3786
3787 must_recreate = FALSE;
3788 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3789 if (must_recreate)
3790 {
3791 new_got = htab_create (htab_size (g->got_entries),
3792 mips_elf_got_entry_hash,
3793 mips_elf_got_entry_eq, NULL);
3794 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3795 if (new_got == NULL)
3796 return FALSE;
3797
3798 /* Each entry in g->got_entries has either been copied to new_got
3799 or freed. Now delete the hash table itself. */
3800 htab_delete (g->got_entries);
3801 g->got_entries = new_got;
3802 }
3803 return TRUE;
3804}
3805
634835ae 3806/* A mips_elf_link_hash_traverse callback for which DATA points
d4596a51 3807 to a mips_got_info. Count the number of type (3) entries. */
33bb52fb
RS
3808
3809static int
d4596a51 3810mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb
RS
3811{
3812 struct mips_got_info *g;
3813
3814 g = (struct mips_got_info *) data;
d4596a51 3815 if (h->global_got_area != GGA_NONE)
33bb52fb 3816 {
d4596a51
RS
3817 if (h->root.forced_local || h->root.dynindx == -1)
3818 {
3819 /* We no longer need this entry if it was only used for
3820 relocations; those relocations will be against the
3821 null or section symbol instead of H. */
3822 if (h->global_got_area != GGA_RELOC_ONLY)
3823 g->local_gotno++;
3824 h->global_got_area = GGA_NONE;
3825 }
3826 else
23cc69b6
RS
3827 {
3828 g->global_gotno++;
3829 if (h->global_got_area == GGA_RELOC_ONLY)
3830 g->reloc_only_gotno++;
3831 }
33bb52fb
RS
3832 }
3833 return 1;
3834}
f4416af6
AO
3835\f
3836/* Compute the hash value of the bfd in a bfd2got hash entry. */
3837
3838static hashval_t
9719ad41 3839mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
3840{
3841 const struct mips_elf_bfd2got_hash *entry
3842 = (struct mips_elf_bfd2got_hash *)entry_;
3843
3844 return entry->bfd->id;
3845}
3846
3847/* Check whether two hash entries have the same bfd. */
3848
3849static int
9719ad41 3850mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3851{
3852 const struct mips_elf_bfd2got_hash *e1
3853 = (const struct mips_elf_bfd2got_hash *)entry1;
3854 const struct mips_elf_bfd2got_hash *e2
3855 = (const struct mips_elf_bfd2got_hash *)entry2;
3856
3857 return e1->bfd == e2->bfd;
3858}
3859
bad36eac 3860/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
3861 be the master GOT data. */
3862
3863static struct mips_got_info *
9719ad41 3864mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3865{
3866 struct mips_elf_bfd2got_hash e, *p;
3867
3868 if (! g->bfd2got)
3869 return g;
3870
3871 e.bfd = ibfd;
9719ad41 3872 p = htab_find (g->bfd2got, &e);
f4416af6
AO
3873 return p ? p->g : NULL;
3874}
3875
c224138d
RS
3876/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3877 Return NULL if an error occured. */
f4416af6 3878
c224138d
RS
3879static struct mips_got_info *
3880mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3881 bfd *input_bfd)
f4416af6 3882{
f4416af6 3883 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 3884 struct mips_got_info *g;
f4416af6 3885 void **bfdgotp;
143d77c5 3886
c224138d 3887 bfdgot_entry.bfd = input_bfd;
f4416af6 3888 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 3889 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 3890
c224138d 3891 if (bfdgot == NULL)
f4416af6 3892 {
c224138d
RS
3893 bfdgot = ((struct mips_elf_bfd2got_hash *)
3894 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 3895 if (bfdgot == NULL)
c224138d 3896 return NULL;
f4416af6
AO
3897
3898 *bfdgotp = bfdgot;
3899
c224138d
RS
3900 g = ((struct mips_got_info *)
3901 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 3902 if (g == NULL)
c224138d
RS
3903 return NULL;
3904
3905 bfdgot->bfd = input_bfd;
3906 bfdgot->g = g;
f4416af6
AO
3907
3908 g->global_gotsym = NULL;
3909 g->global_gotno = 0;
23cc69b6 3910 g->reloc_only_gotno = 0;
f4416af6 3911 g->local_gotno = 0;
c224138d 3912 g->page_gotno = 0;
f4416af6 3913 g->assigned_gotno = -1;
0f20cc35
DJ
3914 g->tls_gotno = 0;
3915 g->tls_assigned_gotno = 0;
3916 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3917 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3918 mips_elf_multi_got_entry_eq, NULL);
f4416af6 3919 if (g->got_entries == NULL)
c224138d
RS
3920 return NULL;
3921
3922 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3923 mips_got_page_entry_eq, NULL);
3924 if (g->got_page_entries == NULL)
3925 return NULL;
f4416af6
AO
3926
3927 g->bfd2got = NULL;
3928 g->next = NULL;
3929 }
3930
c224138d
RS
3931 return bfdgot->g;
3932}
3933
3934/* A htab_traverse callback for the entries in the master got.
3935 Create one separate got for each bfd that has entries in the global
3936 got, such that we can tell how many local and global entries each
3937 bfd requires. */
3938
3939static int
3940mips_elf_make_got_per_bfd (void **entryp, void *p)
3941{
3942 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3943 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3944 struct mips_got_info *g;
3945
3946 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3947 if (g == NULL)
3948 {
3949 arg->obfd = NULL;
3950 return 0;
3951 }
3952
f4416af6
AO
3953 /* Insert the GOT entry in the bfd's got entry hash table. */
3954 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3955 if (*entryp != NULL)
3956 return 1;
143d77c5 3957
f4416af6
AO
3958 *entryp = entry;
3959
0f20cc35
DJ
3960 if (entry->tls_type)
3961 {
3962 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3963 g->tls_gotno += 2;
3964 if (entry->tls_type & GOT_TLS_IE)
3965 g->tls_gotno += 1;
3966 }
33bb52fb 3967 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
f4416af6
AO
3968 ++g->local_gotno;
3969 else
3970 ++g->global_gotno;
3971
3972 return 1;
3973}
3974
c224138d
RS
3975/* A htab_traverse callback for the page entries in the master got.
3976 Associate each page entry with the bfd's got. */
3977
3978static int
3979mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3980{
3981 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3982 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3983 struct mips_got_info *g;
3984
3985 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3986 if (g == NULL)
3987 {
3988 arg->obfd = NULL;
3989 return 0;
3990 }
3991
3992 /* Insert the GOT entry in the bfd's got entry hash table. */
3993 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3994 if (*entryp != NULL)
3995 return 1;
3996
3997 *entryp = entry;
3998 g->page_gotno += entry->num_pages;
3999 return 1;
4000}
4001
4002/* Consider merging the got described by BFD2GOT with TO, using the
4003 information given by ARG. Return -1 if this would lead to overflow,
4004 1 if they were merged successfully, and 0 if a merge failed due to
4005 lack of memory. (These values are chosen so that nonnegative return
4006 values can be returned by a htab_traverse callback.) */
4007
4008static int
4009mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4010 struct mips_got_info *to,
4011 struct mips_elf_got_per_bfd_arg *arg)
4012{
4013 struct mips_got_info *from = bfd2got->g;
4014 unsigned int estimate;
4015
4016 /* Work out how many page entries we would need for the combined GOT. */
4017 estimate = arg->max_pages;
4018 if (estimate >= from->page_gotno + to->page_gotno)
4019 estimate = from->page_gotno + to->page_gotno;
4020
4021 /* And conservatively estimate how many local, global and TLS entries
4022 would be needed. */
4023 estimate += (from->local_gotno
4024 + from->global_gotno
4025 + from->tls_gotno
4026 + to->local_gotno
4027 + to->global_gotno
4028 + to->tls_gotno);
4029
4030 /* Bail out if the combined GOT might be too big. */
4031 if (estimate > arg->max_count)
4032 return -1;
4033
4034 /* Commit to the merge. Record that TO is now the bfd for this got. */
4035 bfd2got->g = to;
4036
4037 /* Transfer the bfd's got information from FROM to TO. */
4038 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4039 if (arg->obfd == NULL)
4040 return 0;
4041
4042 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4043 if (arg->obfd == NULL)
4044 return 0;
4045
4046 /* We don't have to worry about releasing memory of the actual
4047 got entries, since they're all in the master got_entries hash
4048 table anyway. */
4049 htab_delete (from->got_entries);
4050 htab_delete (from->got_page_entries);
4051 return 1;
4052}
4053
f4416af6
AO
4054/* Attempt to merge gots of different input bfds. Try to use as much
4055 as possible of the primary got, since it doesn't require explicit
4056 dynamic relocations, but don't use bfds that would reference global
4057 symbols out of the addressable range. Failing the primary got,
4058 attempt to merge with the current got, or finish the current got
4059 and then make make the new got current. */
4060
4061static int
9719ad41 4062mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4063{
4064 struct mips_elf_bfd2got_hash *bfd2got
4065 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4066 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4067 struct mips_got_info *g;
4068 unsigned int estimate;
4069 int result;
4070
4071 g = bfd2got->g;
4072
4073 /* Work out the number of page, local and TLS entries. */
4074 estimate = arg->max_pages;
4075 if (estimate > g->page_gotno)
4076 estimate = g->page_gotno;
4077 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4078
4079 /* We place TLS GOT entries after both locals and globals. The globals
4080 for the primary GOT may overflow the normal GOT size limit, so be
4081 sure not to merge a GOT which requires TLS with the primary GOT in that
4082 case. This doesn't affect non-primary GOTs. */
c224138d 4083 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4084
c224138d 4085 if (estimate <= arg->max_count)
f4416af6 4086 {
c224138d
RS
4087 /* If we don't have a primary GOT, use it as
4088 a starting point for the primary GOT. */
4089 if (!arg->primary)
4090 {
4091 arg->primary = bfd2got->g;
4092 return 1;
4093 }
f4416af6 4094
c224138d
RS
4095 /* Try merging with the primary GOT. */
4096 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4097 if (result >= 0)
4098 return result;
f4416af6 4099 }
c224138d 4100
f4416af6 4101 /* If we can merge with the last-created got, do it. */
c224138d 4102 if (arg->current)
f4416af6 4103 {
c224138d
RS
4104 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4105 if (result >= 0)
4106 return result;
f4416af6 4107 }
c224138d 4108
f4416af6
AO
4109 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4110 fits; if it turns out that it doesn't, we'll get relocation
4111 overflows anyway. */
c224138d
RS
4112 g->next = arg->current;
4113 arg->current = g;
0f20cc35
DJ
4114
4115 return 1;
4116}
4117
ead49a57
RS
4118/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4119 is null iff there is just a single GOT. */
0f20cc35
DJ
4120
4121static int
4122mips_elf_initialize_tls_index (void **entryp, void *p)
4123{
4124 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4125 struct mips_got_info *g = p;
ead49a57 4126 bfd_vma next_index;
cbf2cba4 4127 unsigned char tls_type;
0f20cc35
DJ
4128
4129 /* We're only interested in TLS symbols. */
4130 if (entry->tls_type == 0)
4131 return 1;
4132
ead49a57
RS
4133 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4134
4135 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4136 {
ead49a57
RS
4137 /* A type (3) got entry in the single-GOT case. We use the symbol's
4138 hash table entry to track its index. */
4139 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4140 return 1;
4141 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4142 entry->d.h->tls_got_offset = next_index;
cbf2cba4 4143 tls_type = entry->d.h->tls_type;
ead49a57
RS
4144 }
4145 else
4146 {
4147 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 4148 {
ead49a57
RS
4149 /* There are separate mips_got_entry objects for each input bfd
4150 that requires an LDM entry. Make sure that all LDM entries in
4151 a GOT resolve to the same index. */
4152 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4153 {
ead49a57 4154 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4155 return 1;
4156 }
ead49a57 4157 g->tls_ldm_offset = next_index;
0f20cc35 4158 }
ead49a57 4159 entry->gotidx = next_index;
cbf2cba4 4160 tls_type = entry->tls_type;
f4416af6
AO
4161 }
4162
ead49a57 4163 /* Account for the entries we've just allocated. */
cbf2cba4 4164 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 4165 g->tls_assigned_gotno += 2;
cbf2cba4 4166 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
4167 g->tls_assigned_gotno += 1;
4168
f4416af6
AO
4169 return 1;
4170}
4171
4172/* If passed a NULL mips_got_info in the argument, set the marker used
4173 to tell whether a global symbol needs a got entry (in the primary
4174 got) to the given VALUE.
4175
4176 If passed a pointer G to a mips_got_info in the argument (it must
4177 not be the primary GOT), compute the offset from the beginning of
4178 the (primary) GOT section to the entry in G corresponding to the
4179 global symbol. G's assigned_gotno must contain the index of the
4180 first available global GOT entry in G. VALUE must contain the size
4181 of a GOT entry in bytes. For each global GOT entry that requires a
4182 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 4183 marked as not eligible for lazy resolution through a function
f4416af6
AO
4184 stub. */
4185static int
9719ad41 4186mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
4187{
4188 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4189 struct mips_elf_set_global_got_offset_arg *arg
4190 = (struct mips_elf_set_global_got_offset_arg *)p;
4191 struct mips_got_info *g = arg->g;
4192
0f20cc35
DJ
4193 if (g && entry->tls_type != GOT_NORMAL)
4194 arg->needed_relocs +=
4195 mips_tls_got_relocs (arg->info, entry->tls_type,
4196 entry->symndx == -1 ? &entry->d.h->root : NULL);
4197
634835ae
RS
4198 if (entry->abfd != NULL
4199 && entry->symndx == -1
4200 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
4201 {
4202 if (g)
4203 {
4204 BFD_ASSERT (g->global_gotsym == NULL);
4205
4206 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
4207 if (arg->info->shared
4208 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
4209 && entry->d.h->root.def_dynamic
4210 && !entry->d.h->root.def_regular))
f4416af6
AO
4211 ++arg->needed_relocs;
4212 }
4213 else
634835ae 4214 entry->d.h->global_got_area = arg->value;
f4416af6
AO
4215 }
4216
4217 return 1;
4218}
4219
33bb52fb
RS
4220/* A htab_traverse callback for GOT entries for which DATA is the
4221 bfd_link_info. Forbid any global symbols from having traditional
4222 lazy-binding stubs. */
4223
0626d451 4224static int
33bb52fb 4225mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4226{
33bb52fb
RS
4227 struct bfd_link_info *info;
4228 struct mips_elf_link_hash_table *htab;
4229 struct mips_got_entry *entry;
0626d451 4230
33bb52fb
RS
4231 entry = (struct mips_got_entry *) *entryp;
4232 info = (struct bfd_link_info *) data;
4233 htab = mips_elf_hash_table (info);
0626d451
RS
4234 if (entry->abfd != NULL
4235 && entry->symndx == -1
33bb52fb 4236 && entry->d.h->needs_lazy_stub)
f4416af6 4237 {
33bb52fb
RS
4238 entry->d.h->needs_lazy_stub = FALSE;
4239 htab->lazy_stub_count--;
f4416af6 4240 }
143d77c5 4241
f4416af6
AO
4242 return 1;
4243}
4244
f4416af6
AO
4245/* Return the offset of an input bfd IBFD's GOT from the beginning of
4246 the primary GOT. */
4247static bfd_vma
9719ad41 4248mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4249{
4250 if (g->bfd2got == NULL)
4251 return 0;
4252
4253 g = mips_elf_got_for_ibfd (g, ibfd);
4254 if (! g)
4255 return 0;
4256
4257 BFD_ASSERT (g->next);
4258
4259 g = g->next;
143d77c5 4260
0f20cc35
DJ
4261 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4262 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4263}
4264
4265/* Turn a single GOT that is too big for 16-bit addressing into
4266 a sequence of GOTs, each one 16-bit addressable. */
4267
4268static bfd_boolean
9719ad41 4269mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4270 asection *got, bfd_size_type pages)
f4416af6 4271{
a8028dd0 4272 struct mips_elf_link_hash_table *htab;
f4416af6
AO
4273 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4274 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 4275 struct mips_got_info *g, *gg;
33bb52fb
RS
4276 unsigned int assign, needed_relocs;
4277 bfd *dynobj;
f4416af6 4278
33bb52fb 4279 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
4280 htab = mips_elf_hash_table (info);
4281 g = htab->got_info;
f4416af6 4282 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4283 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4284 if (g->bfd2got == NULL)
4285 return FALSE;
4286
4287 got_per_bfd_arg.bfd2got = g->bfd2got;
4288 got_per_bfd_arg.obfd = abfd;
4289 got_per_bfd_arg.info = info;
4290
4291 /* Count how many GOT entries each input bfd requires, creating a
4292 map from bfd to got info while at that. */
f4416af6
AO
4293 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4294 if (got_per_bfd_arg.obfd == NULL)
4295 return FALSE;
4296
c224138d
RS
4297 /* Also count how many page entries each input bfd requires. */
4298 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4299 &got_per_bfd_arg);
4300 if (got_per_bfd_arg.obfd == NULL)
4301 return FALSE;
4302
f4416af6
AO
4303 got_per_bfd_arg.current = NULL;
4304 got_per_bfd_arg.primary = NULL;
0a44bf69 4305 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4306 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4307 - htab->reserved_gotno);
c224138d 4308 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
4309 /* The number of globals that will be included in the primary GOT.
4310 See the calls to mips_elf_set_global_got_offset below for more
4311 information. */
4312 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4313
4314 /* Try to merge the GOTs of input bfds together, as long as they
4315 don't seem to exceed the maximum GOT size, choosing one of them
4316 to be the primary GOT. */
4317 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4318 if (got_per_bfd_arg.obfd == NULL)
4319 return FALSE;
4320
0f20cc35 4321 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
4322 if (got_per_bfd_arg.primary == NULL)
4323 {
4324 g->next = (struct mips_got_info *)
4325 bfd_alloc (abfd, sizeof (struct mips_got_info));
4326 if (g->next == NULL)
4327 return FALSE;
4328
4329 g->next->global_gotsym = NULL;
4330 g->next->global_gotno = 0;
23cc69b6 4331 g->next->reloc_only_gotno = 0;
f4416af6 4332 g->next->local_gotno = 0;
c224138d 4333 g->next->page_gotno = 0;
0f20cc35 4334 g->next->tls_gotno = 0;
f4416af6 4335 g->next->assigned_gotno = 0;
0f20cc35
DJ
4336 g->next->tls_assigned_gotno = 0;
4337 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
4338 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4339 mips_elf_multi_got_entry_eq,
9719ad41 4340 NULL);
f4416af6
AO
4341 if (g->next->got_entries == NULL)
4342 return FALSE;
c224138d
RS
4343 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4344 mips_got_page_entry_eq,
4345 NULL);
4346 if (g->next->got_page_entries == NULL)
4347 return FALSE;
f4416af6
AO
4348 g->next->bfd2got = NULL;
4349 }
4350 else
4351 g->next = got_per_bfd_arg.primary;
4352 g->next->next = got_per_bfd_arg.current;
4353
4354 /* GG is now the master GOT, and G is the primary GOT. */
4355 gg = g;
4356 g = g->next;
4357
4358 /* Map the output bfd to the primary got. That's what we're going
4359 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4360 didn't mark in check_relocs, and we want a quick way to find it.
4361 We can't just use gg->next because we're going to reverse the
4362 list. */
4363 {
4364 struct mips_elf_bfd2got_hash *bfdgot;
4365 void **bfdgotp;
143d77c5 4366
f4416af6
AO
4367 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4368 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4369
4370 if (bfdgot == NULL)
4371 return FALSE;
4372
4373 bfdgot->bfd = abfd;
4374 bfdgot->g = g;
4375 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4376
4377 BFD_ASSERT (*bfdgotp == NULL);
4378 *bfdgotp = bfdgot;
4379 }
4380
634835ae
RS
4381 /* Every symbol that is referenced in a dynamic relocation must be
4382 present in the primary GOT, so arrange for them to appear after
4383 those that are actually referenced. */
23cc69b6 4384 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4385 g->global_gotno = gg->global_gotno;
f4416af6 4386
f4416af6 4387 set_got_offset_arg.g = NULL;
634835ae 4388 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
4389 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4390 &set_got_offset_arg);
634835ae 4391 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
4392 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4393 &set_got_offset_arg);
f4416af6
AO
4394
4395 /* Now go through the GOTs assigning them offset ranges.
4396 [assigned_gotno, local_gotno[ will be set to the range of local
4397 entries in each GOT. We can then compute the end of a GOT by
4398 adding local_gotno to global_gotno. We reverse the list and make
4399 it circular since then we'll be able to quickly compute the
4400 beginning of a GOT, by computing the end of its predecessor. To
4401 avoid special cases for the primary GOT, while still preserving
4402 assertions that are valid for both single- and multi-got links,
4403 we arrange for the main got struct to have the right number of
4404 global entries, but set its local_gotno such that the initial
4405 offset of the primary GOT is zero. Remember that the primary GOT
4406 will become the last item in the circular linked list, so it
4407 points back to the master GOT. */
4408 gg->local_gotno = -g->global_gotno;
4409 gg->global_gotno = g->global_gotno;
0f20cc35 4410 gg->tls_gotno = 0;
f4416af6
AO
4411 assign = 0;
4412 gg->next = gg;
4413
4414 do
4415 {
4416 struct mips_got_info *gn;
4417
861fb55a 4418 assign += htab->reserved_gotno;
f4416af6 4419 g->assigned_gotno = assign;
c224138d
RS
4420 g->local_gotno += assign;
4421 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4422 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4423
ead49a57
RS
4424 /* Take g out of the direct list, and push it onto the reversed
4425 list that gg points to. g->next is guaranteed to be nonnull after
4426 this operation, as required by mips_elf_initialize_tls_index. */
4427 gn = g->next;
4428 g->next = gg->next;
4429 gg->next = g;
4430
0f20cc35
DJ
4431 /* Set up any TLS entries. We always place the TLS entries after
4432 all non-TLS entries. */
4433 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4434 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 4435
ead49a57 4436 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4437 g = gn;
0626d451 4438
33bb52fb
RS
4439 /* Forbid global symbols in every non-primary GOT from having
4440 lazy-binding stubs. */
0626d451 4441 if (g)
33bb52fb 4442 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4443 }
4444 while (g);
4445
eea6121a 4446 got->size = (gg->next->local_gotno
33bb52fb
RS
4447 + gg->next->global_gotno
4448 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4449
4450 needed_relocs = 0;
4451 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4452 set_got_offset_arg.info = info;
4453 for (g = gg->next; g && g->next != gg; g = g->next)
4454 {
4455 unsigned int save_assign;
4456
4457 /* Assign offsets to global GOT entries. */
4458 save_assign = g->assigned_gotno;
4459 g->assigned_gotno = g->local_gotno;
4460 set_got_offset_arg.g = g;
4461 set_got_offset_arg.needed_relocs = 0;
4462 htab_traverse (g->got_entries,
4463 mips_elf_set_global_got_offset,
4464 &set_got_offset_arg);
4465 needed_relocs += set_got_offset_arg.needed_relocs;
4466 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4467
4468 g->assigned_gotno = save_assign;
4469 if (info->shared)
4470 {
4471 needed_relocs += g->local_gotno - g->assigned_gotno;
4472 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4473 + g->next->global_gotno
4474 + g->next->tls_gotno
861fb55a 4475 + htab->reserved_gotno);
33bb52fb
RS
4476 }
4477 }
4478
4479 if (needed_relocs)
4480 mips_elf_allocate_dynamic_relocations (dynobj, info,
4481 needed_relocs);
143d77c5 4482
f4416af6
AO
4483 return TRUE;
4484}
143d77c5 4485
b49e97c9
TS
4486\f
4487/* Returns the first relocation of type r_type found, beginning with
4488 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4489
4490static const Elf_Internal_Rela *
9719ad41
RS
4491mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4492 const Elf_Internal_Rela *relocation,
4493 const Elf_Internal_Rela *relend)
b49e97c9 4494{
c000e262
TS
4495 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4496
b49e97c9
TS
4497 while (relocation < relend)
4498 {
c000e262
TS
4499 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4500 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4501 return relocation;
4502
4503 ++relocation;
4504 }
4505
4506 /* We didn't find it. */
b49e97c9
TS
4507 return NULL;
4508}
4509
4510/* Return whether a relocation is against a local symbol. */
4511
b34976b6 4512static bfd_boolean
9719ad41
RS
4513mips_elf_local_relocation_p (bfd *input_bfd,
4514 const Elf_Internal_Rela *relocation,
4515 asection **local_sections,
4516 bfd_boolean check_forced)
b49e97c9
TS
4517{
4518 unsigned long r_symndx;
4519 Elf_Internal_Shdr *symtab_hdr;
4520 struct mips_elf_link_hash_entry *h;
4521 size_t extsymoff;
4522
4523 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4524 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4525 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4526
4527 if (r_symndx < extsymoff)
b34976b6 4528 return TRUE;
b49e97c9 4529 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4530 return TRUE;
b49e97c9
TS
4531
4532 if (check_forced)
4533 {
4534 /* Look up the hash table to check whether the symbol
4535 was forced local. */
4536 h = (struct mips_elf_link_hash_entry *)
4537 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4538 /* Find the real hash-table entry for this symbol. */
4539 while (h->root.root.type == bfd_link_hash_indirect
4540 || h->root.root.type == bfd_link_hash_warning)
4541 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 4542 if (h->root.forced_local)
b34976b6 4543 return TRUE;
b49e97c9
TS
4544 }
4545
b34976b6 4546 return FALSE;
b49e97c9
TS
4547}
4548\f
4549/* Sign-extend VALUE, which has the indicated number of BITS. */
4550
a7ebbfdf 4551bfd_vma
9719ad41 4552_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4553{
4554 if (value & ((bfd_vma) 1 << (bits - 1)))
4555 /* VALUE is negative. */
4556 value |= ((bfd_vma) - 1) << bits;
4557
4558 return value;
4559}
4560
4561/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4562 range expressible by a signed number with the indicated number of
b49e97c9
TS
4563 BITS. */
4564
b34976b6 4565static bfd_boolean
9719ad41 4566mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4567{
4568 bfd_signed_vma svalue = (bfd_signed_vma) value;
4569
4570 if (svalue > (1 << (bits - 1)) - 1)
4571 /* The value is too big. */
b34976b6 4572 return TRUE;
b49e97c9
TS
4573 else if (svalue < -(1 << (bits - 1)))
4574 /* The value is too small. */
b34976b6 4575 return TRUE;
b49e97c9
TS
4576
4577 /* All is well. */
b34976b6 4578 return FALSE;
b49e97c9
TS
4579}
4580
4581/* Calculate the %high function. */
4582
4583static bfd_vma
9719ad41 4584mips_elf_high (bfd_vma value)
b49e97c9
TS
4585{
4586 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4587}
4588
4589/* Calculate the %higher function. */
4590
4591static bfd_vma
9719ad41 4592mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4593{
4594#ifdef BFD64
4595 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4596#else
4597 abort ();
c5ae1840 4598 return MINUS_ONE;
b49e97c9
TS
4599#endif
4600}
4601
4602/* Calculate the %highest function. */
4603
4604static bfd_vma
9719ad41 4605mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4606{
4607#ifdef BFD64
b15e6682 4608 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4609#else
4610 abort ();
c5ae1840 4611 return MINUS_ONE;
b49e97c9
TS
4612#endif
4613}
4614\f
4615/* Create the .compact_rel section. */
4616
b34976b6 4617static bfd_boolean
9719ad41
RS
4618mips_elf_create_compact_rel_section
4619 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4620{
4621 flagword flags;
4622 register asection *s;
4623
4624 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4625 {
4626 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4627 | SEC_READONLY);
4628
3496cb2a 4629 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4630 if (s == NULL
b49e97c9
TS
4631 || ! bfd_set_section_alignment (abfd, s,
4632 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4633 return FALSE;
b49e97c9 4634
eea6121a 4635 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4636 }
4637
b34976b6 4638 return TRUE;
b49e97c9
TS
4639}
4640
4641/* Create the .got section to hold the global offset table. */
4642
b34976b6 4643static bfd_boolean
23cc69b6 4644mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4645{
4646 flagword flags;
4647 register asection *s;
4648 struct elf_link_hash_entry *h;
14a793b2 4649 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4650 struct mips_got_info *g;
4651 bfd_size_type amt;
0a44bf69
RS
4652 struct mips_elf_link_hash_table *htab;
4653
4654 htab = mips_elf_hash_table (info);
b49e97c9
TS
4655
4656 /* This function may be called more than once. */
23cc69b6
RS
4657 if (htab->sgot)
4658 return TRUE;
b49e97c9
TS
4659
4660 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4661 | SEC_LINKER_CREATED);
4662
72b4917c
TS
4663 /* We have to use an alignment of 2**4 here because this is hardcoded
4664 in the function stub generation and in the linker script. */
3496cb2a 4665 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 4666 if (s == NULL
72b4917c 4667 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4668 return FALSE;
a8028dd0 4669 htab->sgot = s;
b49e97c9
TS
4670
4671 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4672 linker script because we don't want to define the symbol if we
4673 are not creating a global offset table. */
14a793b2 4674 bh = NULL;
b49e97c9
TS
4675 if (! (_bfd_generic_link_add_one_symbol
4676 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4677 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4678 return FALSE;
14a793b2
AM
4679
4680 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4681 h->non_elf = 0;
4682 h->def_regular = 1;
b49e97c9 4683 h->type = STT_OBJECT;
d329bcd1 4684 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4685
4686 if (info->shared
c152c796 4687 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4688 return FALSE;
b49e97c9 4689
b49e97c9 4690 amt = sizeof (struct mips_got_info);
9719ad41 4691 g = bfd_alloc (abfd, amt);
b49e97c9 4692 if (g == NULL)
b34976b6 4693 return FALSE;
b49e97c9 4694 g->global_gotsym = NULL;
e3d54347 4695 g->global_gotno = 0;
23cc69b6 4696 g->reloc_only_gotno = 0;
0f20cc35 4697 g->tls_gotno = 0;
861fb55a 4698 g->local_gotno = 0;
c224138d 4699 g->page_gotno = 0;
861fb55a 4700 g->assigned_gotno = 0;
f4416af6
AO
4701 g->bfd2got = NULL;
4702 g->next = NULL;
0f20cc35 4703 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4704 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4705 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4706 if (g->got_entries == NULL)
4707 return FALSE;
c224138d
RS
4708 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4709 mips_got_page_entry_eq, NULL);
4710 if (g->got_page_entries == NULL)
4711 return FALSE;
a8028dd0 4712 htab->got_info = g;
f0abc2a1 4713 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4714 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4715
861fb55a
DJ
4716 /* We also need a .got.plt section when generating PLTs. */
4717 s = bfd_make_section_with_flags (abfd, ".got.plt",
4718 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4719 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4720 if (s == NULL)
4721 return FALSE;
4722 htab->sgotplt = s;
0a44bf69 4723
b34976b6 4724 return TRUE;
b49e97c9 4725}
b49e97c9 4726\f
0a44bf69
RS
4727/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4728 __GOTT_INDEX__ symbols. These symbols are only special for
4729 shared objects; they are not used in executables. */
4730
4731static bfd_boolean
4732is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4733{
4734 return (mips_elf_hash_table (info)->is_vxworks
4735 && info->shared
4736 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4737 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4738}
861fb55a
DJ
4739
4740/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4741 require an la25 stub. See also mips_elf_local_pic_function_p,
4742 which determines whether the destination function ever requires a
4743 stub. */
4744
4745static bfd_boolean
4746mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4747{
4748 /* We specifically ignore branches and jumps from EF_PIC objects,
4749 where the onus is on the compiler or programmer to perform any
4750 necessary initialization of $25. Sometimes such initialization
4751 is unnecessary; for example, -mno-shared functions do not use
4752 the incoming value of $25, and may therefore be called directly. */
4753 if (PIC_OBJECT_P (input_bfd))
4754 return FALSE;
4755
4756 switch (r_type)
4757 {
4758 case R_MIPS_26:
4759 case R_MIPS_PC16:
4760 case R_MIPS16_26:
4761 return TRUE;
4762
4763 default:
4764 return FALSE;
4765 }
4766}
0a44bf69 4767\f
b49e97c9
TS
4768/* Calculate the value produced by the RELOCATION (which comes from
4769 the INPUT_BFD). The ADDEND is the addend to use for this
4770 RELOCATION; RELOCATION->R_ADDEND is ignored.
4771
4772 The result of the relocation calculation is stored in VALUEP.
4773 REQUIRE_JALXP indicates whether or not the opcode used with this
4774 relocation must be JALX.
4775
4776 This function returns bfd_reloc_continue if the caller need take no
4777 further action regarding this relocation, bfd_reloc_notsupported if
4778 something goes dramatically wrong, bfd_reloc_overflow if an
4779 overflow occurs, and bfd_reloc_ok to indicate success. */
4780
4781static bfd_reloc_status_type
9719ad41
RS
4782mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4783 asection *input_section,
4784 struct bfd_link_info *info,
4785 const Elf_Internal_Rela *relocation,
4786 bfd_vma addend, reloc_howto_type *howto,
4787 Elf_Internal_Sym *local_syms,
4788 asection **local_sections, bfd_vma *valuep,
4789 const char **namep, bfd_boolean *require_jalxp,
4790 bfd_boolean save_addend)
b49e97c9
TS
4791{
4792 /* The eventual value we will return. */
4793 bfd_vma value;
4794 /* The address of the symbol against which the relocation is
4795 occurring. */
4796 bfd_vma symbol = 0;
4797 /* The final GP value to be used for the relocatable, executable, or
4798 shared object file being produced. */
0a61c8c2 4799 bfd_vma gp;
b49e97c9
TS
4800 /* The place (section offset or address) of the storage unit being
4801 relocated. */
4802 bfd_vma p;
4803 /* The value of GP used to create the relocatable object. */
0a61c8c2 4804 bfd_vma gp0;
b49e97c9
TS
4805 /* The offset into the global offset table at which the address of
4806 the relocation entry symbol, adjusted by the addend, resides
4807 during execution. */
4808 bfd_vma g = MINUS_ONE;
4809 /* The section in which the symbol referenced by the relocation is
4810 located. */
4811 asection *sec = NULL;
4812 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4813 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4814 symbol. */
b34976b6
AM
4815 bfd_boolean local_p, was_local_p;
4816 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4817 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
4818 /* TRUE if the symbol referred to by this relocation is
4819 "__gnu_local_gp". */
4820 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
4821 Elf_Internal_Shdr *symtab_hdr;
4822 size_t extsymoff;
4823 unsigned long r_symndx;
4824 int r_type;
b34976b6 4825 /* TRUE if overflow occurred during the calculation of the
b49e97c9 4826 relocation value. */
b34976b6
AM
4827 bfd_boolean overflowed_p;
4828 /* TRUE if this relocation refers to a MIPS16 function. */
4829 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
4830 struct mips_elf_link_hash_table *htab;
4831 bfd *dynobj;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
b49e97c9
TS
4835
4836 /* Parse the relocation. */
4837 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4838 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4839 p = (input_section->output_section->vma
4840 + input_section->output_offset
4841 + relocation->r_offset);
4842
4843 /* Assume that there will be no overflow. */
b34976b6 4844 overflowed_p = FALSE;
b49e97c9
TS
4845
4846 /* Figure out whether or not the symbol is local, and get the offset
4847 used in the array of hash table entries. */
4848 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4849 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4850 local_sections, FALSE);
bce03d3d 4851 was_local_p = local_p;
b49e97c9
TS
4852 if (! elf_bad_symtab (input_bfd))
4853 extsymoff = symtab_hdr->sh_info;
4854 else
4855 {
4856 /* The symbol table does not follow the rule that local symbols
4857 must come before globals. */
4858 extsymoff = 0;
4859 }
4860
4861 /* Figure out the value of the symbol. */
4862 if (local_p)
4863 {
4864 Elf_Internal_Sym *sym;
4865
4866 sym = local_syms + r_symndx;
4867 sec = local_sections[r_symndx];
4868
4869 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
4870 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4871 || (sec->flags & SEC_MERGE))
b49e97c9 4872 symbol += sym->st_value;
d4df96e6
L
4873 if ((sec->flags & SEC_MERGE)
4874 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4875 {
4876 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4877 addend -= symbol;
4878 addend += sec->output_section->vma + sec->output_offset;
4879 }
b49e97c9
TS
4880
4881 /* MIPS16 text labels should be treated as odd. */
30c09090 4882 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
4883 ++symbol;
4884
4885 /* Record the name of this symbol, for our caller. */
4886 *namep = bfd_elf_string_from_elf_section (input_bfd,
4887 symtab_hdr->sh_link,
4888 sym->st_name);
4889 if (*namep == '\0')
4890 *namep = bfd_section_name (input_bfd, sec);
4891
30c09090 4892 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
b49e97c9
TS
4893 }
4894 else
4895 {
560e09e9
NC
4896 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4897
b49e97c9
TS
4898 /* For global symbols we look up the symbol in the hash-table. */
4899 h = ((struct mips_elf_link_hash_entry *)
4900 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4901 /* Find the real hash-table entry for this symbol. */
4902 while (h->root.root.type == bfd_link_hash_indirect
4903 || h->root.root.type == bfd_link_hash_warning)
4904 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4905
4906 /* Record the name of this symbol, for our caller. */
4907 *namep = h->root.root.root.string;
4908
4909 /* See if this is the special _gp_disp symbol. Note that such a
4910 symbol must always be a global symbol. */
560e09e9 4911 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4912 && ! NEWABI_P (input_bfd))
4913 {
4914 /* Relocations against _gp_disp are permitted only with
4915 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 4916 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
4917 return bfd_reloc_notsupported;
4918
b34976b6 4919 gp_disp_p = TRUE;
b49e97c9 4920 }
bbe506e8
TS
4921 /* See if this is the special _gp symbol. Note that such a
4922 symbol must always be a global symbol. */
4923 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4924 gnu_local_gp_p = TRUE;
4925
4926
b49e97c9
TS
4927 /* If this symbol is defined, calculate its address. Note that
4928 _gp_disp is a magic symbol, always implicitly defined by the
4929 linker, so it's inappropriate to check to see whether or not
4930 its defined. */
4931 else if ((h->root.root.type == bfd_link_hash_defined
4932 || h->root.root.type == bfd_link_hash_defweak)
4933 && h->root.root.u.def.section)
4934 {
4935 sec = h->root.root.u.def.section;
4936 if (sec->output_section)
4937 symbol = (h->root.root.u.def.value
4938 + sec->output_section->vma
4939 + sec->output_offset);
4940 else
4941 symbol = h->root.root.u.def.value;
4942 }
4943 else if (h->root.root.type == bfd_link_hash_undefweak)
4944 /* We allow relocations against undefined weak symbols, giving
4945 it the value zero, so that you can undefined weak functions
4946 and check to see if they exist by looking at their
4947 addresses. */
4948 symbol = 0;
59c2e50f 4949 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4950 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4951 symbol = 0;
a4d0f181
TS
4952 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4953 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4954 {
4955 /* If this is a dynamic link, we should have created a
4956 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4957 in in _bfd_mips_elf_create_dynamic_sections.
4958 Otherwise, we should define the symbol with a value of 0.
4959 FIXME: It should probably get into the symbol table
4960 somehow as well. */
4961 BFD_ASSERT (! info->shared);
4962 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4963 symbol = 0;
4964 }
5e2b0d47
NC
4965 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4966 {
4967 /* This is an optional symbol - an Irix specific extension to the
4968 ELF spec. Ignore it for now.
4969 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4970 than simply ignoring them, but we do not handle this for now.
4971 For information see the "64-bit ELF Object File Specification"
4972 which is available from here:
4973 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4974 symbol = 0;
4975 }
b49e97c9
TS
4976 else
4977 {
4978 if (! ((*info->callbacks->undefined_symbol)
4979 (info, h->root.root.root.string, input_bfd,
4980 input_section, relocation->r_offset,
59c2e50f
L
4981 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4982 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4983 return bfd_reloc_undefined;
4984 symbol = 0;
4985 }
4986
30c09090 4987 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
b49e97c9
TS
4988 }
4989
738e5348
RS
4990 /* If this is a reference to a 16-bit function with a stub, we need
4991 to redirect the relocation to the stub unless:
4992
4993 (a) the relocation is for a MIPS16 JAL;
4994
4995 (b) the relocation is for a MIPS16 PIC call, and there are no
4996 non-MIPS16 uses of the GOT slot; or
4997
4998 (c) the section allows direct references to MIPS16 functions. */
4999 if (r_type != R_MIPS16_26
5000 && !info->relocatable
5001 && ((h != NULL
5002 && h->fn_stub != NULL
5003 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5004 || (local_p
5005 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5006 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5007 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5008 {
5009 /* This is a 32- or 64-bit call to a 16-bit function. We should
5010 have already noticed that we were going to need the
5011 stub. */
5012 if (local_p)
5013 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5014 else
5015 {
5016 BFD_ASSERT (h->need_fn_stub);
5017 sec = h->fn_stub;
5018 }
5019
5020 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
5021 /* The target is 16-bit, but the stub isn't. */
5022 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5023 }
5024 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5025 need to redirect the call to the stub. Note that we specifically
5026 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5027 use an indirect stub instead. */
1049f94e 5028 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5029 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5030 || (local_p
5031 && elf_tdata (input_bfd)->local_call_stubs != NULL
5032 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5033 && !target_is_16_bit_code_p)
5034 {
b9d58d71
TS
5035 if (local_p)
5036 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5037 else
b49e97c9 5038 {
b9d58d71
TS
5039 /* If both call_stub and call_fp_stub are defined, we can figure
5040 out which one to use by checking which one appears in the input
5041 file. */
5042 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5043 {
b9d58d71
TS
5044 asection *o;
5045
5046 sec = NULL;
5047 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5048 {
b9d58d71
TS
5049 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5050 {
5051 sec = h->call_fp_stub;
5052 break;
5053 }
b49e97c9 5054 }
b9d58d71
TS
5055 if (sec == NULL)
5056 sec = h->call_stub;
b49e97c9 5057 }
b9d58d71 5058 else if (h->call_stub != NULL)
b49e97c9 5059 sec = h->call_stub;
b9d58d71
TS
5060 else
5061 sec = h->call_fp_stub;
5062 }
b49e97c9 5063
eea6121a 5064 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5065 symbol = sec->output_section->vma + sec->output_offset;
5066 }
861fb55a
DJ
5067 /* If this is a direct call to a PIC function, redirect to the
5068 non-PIC stub. */
5069 else if (h != NULL && h->la25_stub
5070 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5071 symbol = (h->la25_stub->stub_section->output_section->vma
5072 + h->la25_stub->stub_section->output_offset
5073 + h->la25_stub->offset);
b49e97c9
TS
5074
5075 /* Calls from 16-bit code to 32-bit code and vice versa require the
5076 special jalx instruction. */
1049f94e 5077 *require_jalxp = (!info->relocatable
b49e97c9
TS
5078 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
5079 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
5080
5081 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 5082 local_sections, TRUE);
b49e97c9 5083
0a61c8c2
RS
5084 gp0 = _bfd_get_gp_value (input_bfd);
5085 gp = _bfd_get_gp_value (abfd);
23cc69b6 5086 if (htab->got_info)
a8028dd0 5087 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5088
5089 if (gnu_local_gp_p)
5090 symbol = gp;
5091
5092 /* If we haven't already determined the GOT offset, oand we're going
5093 to need it, get it now. */
b49e97c9
TS
5094 switch (r_type)
5095 {
0fdc1bf1 5096 case R_MIPS_GOT_PAGE:
93a2b7ae 5097 case R_MIPS_GOT_OFST:
d25aed71
RS
5098 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5099 bind locally. */
5100 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 5101 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
5102 break;
5103 /* Fall through. */
5104
738e5348
RS
5105 case R_MIPS16_CALL16:
5106 case R_MIPS16_GOT16:
b49e97c9
TS
5107 case R_MIPS_CALL16:
5108 case R_MIPS_GOT16:
5109 case R_MIPS_GOT_DISP:
5110 case R_MIPS_GOT_HI16:
5111 case R_MIPS_CALL_HI16:
5112 case R_MIPS_GOT_LO16:
5113 case R_MIPS_CALL_LO16:
0f20cc35
DJ
5114 case R_MIPS_TLS_GD:
5115 case R_MIPS_TLS_GOTTPREL:
5116 case R_MIPS_TLS_LDM:
b49e97c9 5117 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
5118 if (r_type == R_MIPS_TLS_LDM)
5119 {
0a44bf69 5120 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5121 0, 0, NULL, r_type);
0f20cc35
DJ
5122 if (g == MINUS_ONE)
5123 return bfd_reloc_outofrange;
5124 }
5125 else if (!local_p)
b49e97c9 5126 {
0a44bf69
RS
5127 /* On VxWorks, CALL relocations should refer to the .got.plt
5128 entry, which is initialized to point at the PLT stub. */
5129 if (htab->is_vxworks
5130 && (r_type == R_MIPS_CALL_HI16
5131 || r_type == R_MIPS_CALL_LO16
738e5348 5132 || call16_reloc_p (r_type)))
0a44bf69
RS
5133 {
5134 BFD_ASSERT (addend == 0);
5135 BFD_ASSERT (h->root.needs_plt);
5136 g = mips_elf_gotplt_index (info, &h->root);
5137 }
5138 else
b49e97c9 5139 {
0a44bf69
RS
5140 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5141 GOT_PAGE relocation that decays to GOT_DISP because the
5142 symbol turns out to be global. The addend is then added
5143 as GOT_OFST. */
5144 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5145 g = mips_elf_global_got_index (dynobj, input_bfd,
5146 &h->root, r_type, info);
5147 if (h->tls_type == GOT_NORMAL
5148 && (! elf_hash_table(info)->dynamic_sections_created
5149 || (info->shared
5150 && (info->symbolic || h->root.forced_local)
5151 && h->root.def_regular)))
a8028dd0
RS
5152 /* This is a static link or a -Bsymbolic link. The
5153 symbol is defined locally, or was forced to be local.
5154 We must initialize this entry in the GOT. */
5155 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5156 }
5157 }
0a44bf69 5158 else if (!htab->is_vxworks
738e5348 5159 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5160 /* The calculation below does not involve "g". */
b49e97c9
TS
5161 break;
5162 else
5163 {
5c18022e 5164 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5165 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5166 if (g == MINUS_ONE)
5167 return bfd_reloc_outofrange;
5168 }
5169
5170 /* Convert GOT indices to actual offsets. */
a8028dd0 5171 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5172 break;
b49e97c9
TS
5173 }
5174
0a44bf69
RS
5175 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5176 symbols are resolved by the loader. Add them to .rela.dyn. */
5177 if (h != NULL && is_gott_symbol (info, &h->root))
5178 {
5179 Elf_Internal_Rela outrel;
5180 bfd_byte *loc;
5181 asection *s;
5182
5183 s = mips_elf_rel_dyn_section (info, FALSE);
5184 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5185
5186 outrel.r_offset = (input_section->output_section->vma
5187 + input_section->output_offset
5188 + relocation->r_offset);
5189 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5190 outrel.r_addend = addend;
5191 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5192
5193 /* If we've written this relocation for a readonly section,
5194 we need to set DF_TEXTREL again, so that we do not delete the
5195 DT_TEXTREL tag. */
5196 if (MIPS_ELF_READONLY_SECTION (input_section))
5197 info->flags |= DF_TEXTREL;
5198
0a44bf69
RS
5199 *valuep = 0;
5200 return bfd_reloc_ok;
5201 }
5202
b49e97c9
TS
5203 /* Figure out what kind of relocation is being performed. */
5204 switch (r_type)
5205 {
5206 case R_MIPS_NONE:
5207 return bfd_reloc_continue;
5208
5209 case R_MIPS_16:
a7ebbfdf 5210 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5211 overflowed_p = mips_elf_overflow_p (value, 16);
5212 break;
5213
5214 case R_MIPS_32:
5215 case R_MIPS_REL32:
5216 case R_MIPS_64:
5217 if ((info->shared
861fb55a 5218 || (htab->root.dynamic_sections_created
b49e97c9 5219 && h != NULL
f5385ebf 5220 && h->root.def_dynamic
861fb55a
DJ
5221 && !h->root.def_regular
5222 && !h->has_static_relocs))
b49e97c9 5223 && r_symndx != 0
9a59ad6b
DJ
5224 && (h == NULL
5225 || h->root.root.type != bfd_link_hash_undefweak
5226 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5227 && (input_section->flags & SEC_ALLOC) != 0)
5228 {
861fb55a 5229 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5230 where the symbol will end up. So, we create a relocation
5231 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5232 linker. We must do the same for executable references to
5233 shared library symbols, unless we've decided to use copy
5234 relocs or PLTs instead. */
b49e97c9
TS
5235 value = addend;
5236 if (!mips_elf_create_dynamic_relocation (abfd,
5237 info,
5238 relocation,
5239 h,
5240 sec,
5241 symbol,
5242 &value,
5243 input_section))
5244 return bfd_reloc_undefined;
5245 }
5246 else
5247 {
5248 if (r_type != R_MIPS_REL32)
5249 value = symbol + addend;
5250 else
5251 value = addend;
5252 }
5253 value &= howto->dst_mask;
092dcd75
CD
5254 break;
5255
5256 case R_MIPS_PC32:
5257 value = symbol + addend - p;
5258 value &= howto->dst_mask;
b49e97c9
TS
5259 break;
5260
b49e97c9
TS
5261 case R_MIPS16_26:
5262 /* The calculation for R_MIPS16_26 is just the same as for an
5263 R_MIPS_26. It's only the storage of the relocated field into
5264 the output file that's different. That's handled in
5265 mips_elf_perform_relocation. So, we just fall through to the
5266 R_MIPS_26 case here. */
5267 case R_MIPS_26:
5268 if (local_p)
30ac9238 5269 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 5270 else
728b2f21
ILT
5271 {
5272 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
5273 if (h->root.root.type != bfd_link_hash_undefweak)
5274 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 5275 }
b49e97c9
TS
5276 value &= howto->dst_mask;
5277 break;
5278
0f20cc35
DJ
5279 case R_MIPS_TLS_DTPREL_HI16:
5280 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5281 & howto->dst_mask);
5282 break;
5283
5284 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5285 case R_MIPS_TLS_DTPREL32:
5286 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
5287 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5288 break;
5289
5290 case R_MIPS_TLS_TPREL_HI16:
5291 value = (mips_elf_high (addend + symbol - tprel_base (info))
5292 & howto->dst_mask);
5293 break;
5294
5295 case R_MIPS_TLS_TPREL_LO16:
5296 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5297 break;
5298
b49e97c9 5299 case R_MIPS_HI16:
d6f16593 5300 case R_MIPS16_HI16:
b49e97c9
TS
5301 if (!gp_disp_p)
5302 {
5303 value = mips_elf_high (addend + symbol);
5304 value &= howto->dst_mask;
5305 }
5306 else
5307 {
d6f16593
MR
5308 /* For MIPS16 ABI code we generate this sequence
5309 0: li $v0,%hi(_gp_disp)
5310 4: addiupc $v1,%lo(_gp_disp)
5311 8: sll $v0,16
5312 12: addu $v0,$v1
5313 14: move $gp,$v0
5314 So the offsets of hi and lo relocs are the same, but the
5315 $pc is four higher than $t9 would be, so reduce
5316 both reloc addends by 4. */
5317 if (r_type == R_MIPS16_HI16)
5318 value = mips_elf_high (addend + gp - p - 4);
5319 else
5320 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5321 overflowed_p = mips_elf_overflow_p (value, 16);
5322 }
5323 break;
5324
5325 case R_MIPS_LO16:
d6f16593 5326 case R_MIPS16_LO16:
b49e97c9
TS
5327 if (!gp_disp_p)
5328 value = (symbol + addend) & howto->dst_mask;
5329 else
5330 {
d6f16593
MR
5331 /* See the comment for R_MIPS16_HI16 above for the reason
5332 for this conditional. */
5333 if (r_type == R_MIPS16_LO16)
5334 value = addend + gp - p;
5335 else
5336 value = addend + gp - p + 4;
b49e97c9 5337 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5338 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5339 _gp_disp are normally generated from the .cpload
5340 pseudo-op. It generates code that normally looks like
5341 this:
5342
5343 lui $gp,%hi(_gp_disp)
5344 addiu $gp,$gp,%lo(_gp_disp)
5345 addu $gp,$gp,$t9
5346
5347 Here $t9 holds the address of the function being called,
5348 as required by the MIPS ELF ABI. The R_MIPS_LO16
5349 relocation can easily overflow in this situation, but the
5350 R_MIPS_HI16 relocation will handle the overflow.
5351 Therefore, we consider this a bug in the MIPS ABI, and do
5352 not check for overflow here. */
5353 }
5354 break;
5355
5356 case R_MIPS_LITERAL:
5357 /* Because we don't merge literal sections, we can handle this
5358 just like R_MIPS_GPREL16. In the long run, we should merge
5359 shared literals, and then we will need to additional work
5360 here. */
5361
5362 /* Fall through. */
5363
5364 case R_MIPS16_GPREL:
5365 /* The R_MIPS16_GPREL performs the same calculation as
5366 R_MIPS_GPREL16, but stores the relocated bits in a different
5367 order. We don't need to do anything special here; the
5368 differences are handled in mips_elf_perform_relocation. */
5369 case R_MIPS_GPREL16:
bce03d3d
AO
5370 /* Only sign-extend the addend if it was extracted from the
5371 instruction. If the addend was separate, leave it alone,
5372 otherwise we may lose significant bits. */
5373 if (howto->partial_inplace)
a7ebbfdf 5374 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5375 value = symbol + addend - gp;
5376 /* If the symbol was local, any earlier relocatable links will
5377 have adjusted its addend with the gp offset, so compensate
5378 for that now. Don't do it for symbols forced local in this
5379 link, though, since they won't have had the gp offset applied
5380 to them before. */
5381 if (was_local_p)
5382 value += gp0;
b49e97c9
TS
5383 overflowed_p = mips_elf_overflow_p (value, 16);
5384 break;
5385
738e5348
RS
5386 case R_MIPS16_GOT16:
5387 case R_MIPS16_CALL16:
b49e97c9
TS
5388 case R_MIPS_GOT16:
5389 case R_MIPS_CALL16:
0a44bf69 5390 /* VxWorks does not have separate local and global semantics for
738e5348 5391 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5392 if (!htab->is_vxworks && local_p)
b49e97c9 5393 {
b34976b6 5394 bfd_boolean forced;
b49e97c9 5395
b49e97c9 5396 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 5397 local_sections, FALSE);
5c18022e 5398 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 5399 symbol + addend, forced);
b49e97c9
TS
5400 if (value == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 value
a8028dd0 5403 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5404 overflowed_p = mips_elf_overflow_p (value, 16);
5405 break;
5406 }
5407
5408 /* Fall through. */
5409
0f20cc35
DJ
5410 case R_MIPS_TLS_GD:
5411 case R_MIPS_TLS_GOTTPREL:
5412 case R_MIPS_TLS_LDM:
b49e97c9 5413 case R_MIPS_GOT_DISP:
0fdc1bf1 5414 got_disp:
b49e97c9
TS
5415 value = g;
5416 overflowed_p = mips_elf_overflow_p (value, 16);
5417 break;
5418
5419 case R_MIPS_GPREL32:
bce03d3d
AO
5420 value = (addend + symbol + gp0 - gp);
5421 if (!save_addend)
5422 value &= howto->dst_mask;
b49e97c9
TS
5423 break;
5424
5425 case R_MIPS_PC16:
bad36eac
DJ
5426 case R_MIPS_GNU_REL16_S2:
5427 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5428 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5429 value >>= howto->rightshift;
5430 value &= howto->dst_mask;
b49e97c9
TS
5431 break;
5432
5433 case R_MIPS_GOT_HI16:
5434 case R_MIPS_CALL_HI16:
5435 /* We're allowed to handle these two relocations identically.
5436 The dynamic linker is allowed to handle the CALL relocations
5437 differently by creating a lazy evaluation stub. */
5438 value = g;
5439 value = mips_elf_high (value);
5440 value &= howto->dst_mask;
5441 break;
5442
5443 case R_MIPS_GOT_LO16:
5444 case R_MIPS_CALL_LO16:
5445 value = g & howto->dst_mask;
5446 break;
5447
5448 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
5449 /* GOT_PAGE relocations that reference non-local symbols decay
5450 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5451 0. */
93a2b7ae 5452 if (! local_p)
0fdc1bf1 5453 goto got_disp;
5c18022e 5454 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5455 if (value == MINUS_ONE)
5456 return bfd_reloc_outofrange;
a8028dd0 5457 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5458 overflowed_p = mips_elf_overflow_p (value, 16);
5459 break;
5460
5461 case R_MIPS_GOT_OFST:
93a2b7ae 5462 if (local_p)
5c18022e 5463 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5464 else
5465 value = addend;
b49e97c9
TS
5466 overflowed_p = mips_elf_overflow_p (value, 16);
5467 break;
5468
5469 case R_MIPS_SUB:
5470 value = symbol - addend;
5471 value &= howto->dst_mask;
5472 break;
5473
5474 case R_MIPS_HIGHER:
5475 value = mips_elf_higher (addend + symbol);
5476 value &= howto->dst_mask;
5477 break;
5478
5479 case R_MIPS_HIGHEST:
5480 value = mips_elf_highest (addend + symbol);
5481 value &= howto->dst_mask;
5482 break;
5483
5484 case R_MIPS_SCN_DISP:
5485 value = symbol + addend - sec->output_offset;
5486 value &= howto->dst_mask;
5487 break;
5488
b49e97c9 5489 case R_MIPS_JALR:
1367d393
ILT
5490 /* This relocation is only a hint. In some cases, we optimize
5491 it into a bal instruction. But we don't try to optimize
5492 branches to the PLT; that will wind up wasting time. */
5493 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
5494 return bfd_reloc_continue;
5495 value = symbol + addend;
5496 break;
b49e97c9 5497
1367d393 5498 case R_MIPS_PJUMP:
b49e97c9
TS
5499 case R_MIPS_GNU_VTINHERIT:
5500 case R_MIPS_GNU_VTENTRY:
5501 /* We don't do anything with these at present. */
5502 return bfd_reloc_continue;
5503
5504 default:
5505 /* An unrecognized relocation type. */
5506 return bfd_reloc_notsupported;
5507 }
5508
5509 /* Store the VALUE for our caller. */
5510 *valuep = value;
5511 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5512}
5513
5514/* Obtain the field relocated by RELOCATION. */
5515
5516static bfd_vma
9719ad41
RS
5517mips_elf_obtain_contents (reloc_howto_type *howto,
5518 const Elf_Internal_Rela *relocation,
5519 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5520{
5521 bfd_vma x;
5522 bfd_byte *location = contents + relocation->r_offset;
5523
5524 /* Obtain the bytes. */
5525 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5526
b49e97c9
TS
5527 return x;
5528}
5529
5530/* It has been determined that the result of the RELOCATION is the
5531 VALUE. Use HOWTO to place VALUE into the output file at the
5532 appropriate position. The SECTION is the section to which the
b34976b6 5533 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
5534 for the relocation must be either JAL or JALX, and it is
5535 unconditionally converted to JALX.
5536
b34976b6 5537 Returns FALSE if anything goes wrong. */
b49e97c9 5538
b34976b6 5539static bfd_boolean
9719ad41
RS
5540mips_elf_perform_relocation (struct bfd_link_info *info,
5541 reloc_howto_type *howto,
5542 const Elf_Internal_Rela *relocation,
5543 bfd_vma value, bfd *input_bfd,
5544 asection *input_section, bfd_byte *contents,
5545 bfd_boolean require_jalx)
b49e97c9
TS
5546{
5547 bfd_vma x;
5548 bfd_byte *location;
5549 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5550
5551 /* Figure out where the relocation is occurring. */
5552 location = contents + relocation->r_offset;
5553
d6f16593
MR
5554 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5555
b49e97c9
TS
5556 /* Obtain the current value. */
5557 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5558
5559 /* Clear the field we are setting. */
5560 x &= ~howto->dst_mask;
5561
b49e97c9
TS
5562 /* Set the field. */
5563 x |= (value & howto->dst_mask);
5564
5565 /* If required, turn JAL into JALX. */
5566 if (require_jalx)
5567 {
b34976b6 5568 bfd_boolean ok;
b49e97c9
TS
5569 bfd_vma opcode = x >> 26;
5570 bfd_vma jalx_opcode;
5571
5572 /* Check to see if the opcode is already JAL or JALX. */
5573 if (r_type == R_MIPS16_26)
5574 {
5575 ok = ((opcode == 0x6) || (opcode == 0x7));
5576 jalx_opcode = 0x7;
5577 }
5578 else
5579 {
5580 ok = ((opcode == 0x3) || (opcode == 0x1d));
5581 jalx_opcode = 0x1d;
5582 }
5583
5584 /* If the opcode is not JAL or JALX, there's a problem. */
5585 if (!ok)
5586 {
5587 (*_bfd_error_handler)
d003868e
AM
5588 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5589 input_bfd,
5590 input_section,
b49e97c9
TS
5591 (unsigned long) relocation->r_offset);
5592 bfd_set_error (bfd_error_bad_value);
b34976b6 5593 return FALSE;
b49e97c9
TS
5594 }
5595
5596 /* Make this the JALX opcode. */
5597 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5598 }
5599
cd8d5a82
CF
5600 /* Try converting JAL and JALR to BAL, if the target is in range. */
5601 if (!info->relocatable
1367d393 5602 && !require_jalx
cd8d5a82
CF
5603 && ((JAL_TO_BAL_P (input_bfd)
5604 && r_type == R_MIPS_26
5605 && (x >> 26) == 0x3) /* jal addr */
5606 || (JALR_TO_BAL_P (input_bfd)
5607 && r_type == R_MIPS_JALR
5608 && x == 0x0320f809))) /* jalr t9 */
1367d393
ILT
5609 {
5610 bfd_vma addr;
5611 bfd_vma dest;
5612 bfd_signed_vma off;
5613
5614 addr = (input_section->output_section->vma
5615 + input_section->output_offset
5616 + relocation->r_offset
5617 + 4);
5618 if (r_type == R_MIPS_26)
5619 dest = (value << 2) | ((addr >> 28) << 28);
5620 else
5621 dest = value;
5622 off = dest - addr;
5623 if (off <= 0x1ffff && off >= -0x20000)
5624 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5625 }
5626
b49e97c9
TS
5627 /* Put the value into the output. */
5628 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
5629
5630 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5631 location);
5632
b34976b6 5633 return TRUE;
b49e97c9 5634}
b49e97c9 5635\f
b49e97c9
TS
5636/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5637 is the original relocation, which is now being transformed into a
5638 dynamic relocation. The ADDENDP is adjusted if necessary; the
5639 caller should store the result in place of the original addend. */
5640
b34976b6 5641static bfd_boolean
9719ad41
RS
5642mips_elf_create_dynamic_relocation (bfd *output_bfd,
5643 struct bfd_link_info *info,
5644 const Elf_Internal_Rela *rel,
5645 struct mips_elf_link_hash_entry *h,
5646 asection *sec, bfd_vma symbol,
5647 bfd_vma *addendp, asection *input_section)
b49e97c9 5648{
947216bf 5649 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5650 asection *sreloc;
5651 bfd *dynobj;
5652 int r_type;
5d41f0b6
RS
5653 long indx;
5654 bfd_boolean defined_p;
0a44bf69 5655 struct mips_elf_link_hash_table *htab;
b49e97c9 5656
0a44bf69 5657 htab = mips_elf_hash_table (info);
b49e97c9
TS
5658 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5659 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5660 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5661 BFD_ASSERT (sreloc != NULL);
5662 BFD_ASSERT (sreloc->contents != NULL);
5663 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5664 < sreloc->size);
b49e97c9 5665
b49e97c9
TS
5666 outrel[0].r_offset =
5667 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5668 if (ABI_64_P (output_bfd))
5669 {
5670 outrel[1].r_offset =
5671 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5672 outrel[2].r_offset =
5673 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5674 }
b49e97c9 5675
c5ae1840 5676 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 5677 /* The relocation field has been deleted. */
5d41f0b6
RS
5678 return TRUE;
5679
5680 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
5681 {
5682 /* The relocation field has been converted into a relative value of
5683 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5684 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 5685 *addendp += symbol;
5d41f0b6 5686 return TRUE;
0d591ff7 5687 }
b49e97c9 5688
5d41f0b6
RS
5689 /* We must now calculate the dynamic symbol table index to use
5690 in the relocation. */
5691 if (h != NULL
6ece8836
TS
5692 && (!h->root.def_regular
5693 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
5694 {
5695 indx = h->root.dynindx;
5696 if (SGI_COMPAT (output_bfd))
5697 defined_p = h->root.def_regular;
5698 else
5699 /* ??? glibc's ld.so just adds the final GOT entry to the
5700 relocation field. It therefore treats relocs against
5701 defined symbols in the same way as relocs against
5702 undefined symbols. */
5703 defined_p = FALSE;
5704 }
b49e97c9
TS
5705 else
5706 {
5d41f0b6
RS
5707 if (sec != NULL && bfd_is_abs_section (sec))
5708 indx = 0;
5709 else if (sec == NULL || sec->owner == NULL)
fdd07405 5710 {
5d41f0b6
RS
5711 bfd_set_error (bfd_error_bad_value);
5712 return FALSE;
b49e97c9
TS
5713 }
5714 else
5715 {
5d41f0b6 5716 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
5717 if (indx == 0)
5718 {
5719 asection *osec = htab->root.text_index_section;
5720 indx = elf_section_data (osec)->dynindx;
5721 }
5d41f0b6
RS
5722 if (indx == 0)
5723 abort ();
b49e97c9
TS
5724 }
5725
5d41f0b6
RS
5726 /* Instead of generating a relocation using the section
5727 symbol, we may as well make it a fully relative
5728 relocation. We want to avoid generating relocations to
5729 local symbols because we used to generate them
5730 incorrectly, without adding the original symbol value,
5731 which is mandated by the ABI for section symbols. In
5732 order to give dynamic loaders and applications time to
5733 phase out the incorrect use, we refrain from emitting
5734 section-relative relocations. It's not like they're
5735 useful, after all. This should be a bit more efficient
5736 as well. */
5737 /* ??? Although this behavior is compatible with glibc's ld.so,
5738 the ABI says that relocations against STN_UNDEF should have
5739 a symbol value of 0. Irix rld honors this, so relocations
5740 against STN_UNDEF have no effect. */
5741 if (!SGI_COMPAT (output_bfd))
5742 indx = 0;
5743 defined_p = TRUE;
b49e97c9
TS
5744 }
5745
5d41f0b6
RS
5746 /* If the relocation was previously an absolute relocation and
5747 this symbol will not be referred to by the relocation, we must
5748 adjust it by the value we give it in the dynamic symbol table.
5749 Otherwise leave the job up to the dynamic linker. */
5750 if (defined_p && r_type != R_MIPS_REL32)
5751 *addendp += symbol;
5752
0a44bf69
RS
5753 if (htab->is_vxworks)
5754 /* VxWorks uses non-relative relocations for this. */
5755 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5756 else
5757 /* The relocation is always an REL32 relocation because we don't
5758 know where the shared library will wind up at load-time. */
5759 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5760 R_MIPS_REL32);
5761
5d41f0b6
RS
5762 /* For strict adherence to the ABI specification, we should
5763 generate a R_MIPS_64 relocation record by itself before the
5764 _REL32/_64 record as well, such that the addend is read in as
5765 a 64-bit value (REL32 is a 32-bit relocation, after all).
5766 However, since none of the existing ELF64 MIPS dynamic
5767 loaders seems to care, we don't waste space with these
5768 artificial relocations. If this turns out to not be true,
5769 mips_elf_allocate_dynamic_relocation() should be tweaked so
5770 as to make room for a pair of dynamic relocations per
5771 invocation if ABI_64_P, and here we should generate an
5772 additional relocation record with R_MIPS_64 by itself for a
5773 NULL symbol before this relocation record. */
5774 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5775 ABI_64_P (output_bfd)
5776 ? R_MIPS_64
5777 : R_MIPS_NONE);
5778 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5779
5780 /* Adjust the output offset of the relocation to reference the
5781 correct location in the output file. */
5782 outrel[0].r_offset += (input_section->output_section->vma
5783 + input_section->output_offset);
5784 outrel[1].r_offset += (input_section->output_section->vma
5785 + input_section->output_offset);
5786 outrel[2].r_offset += (input_section->output_section->vma
5787 + input_section->output_offset);
5788
b49e97c9
TS
5789 /* Put the relocation back out. We have to use the special
5790 relocation outputter in the 64-bit case since the 64-bit
5791 relocation format is non-standard. */
5792 if (ABI_64_P (output_bfd))
5793 {
5794 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5795 (output_bfd, &outrel[0],
5796 (sreloc->contents
5797 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5798 }
0a44bf69
RS
5799 else if (htab->is_vxworks)
5800 {
5801 /* VxWorks uses RELA rather than REL dynamic relocations. */
5802 outrel[0].r_addend = *addendp;
5803 bfd_elf32_swap_reloca_out
5804 (output_bfd, &outrel[0],
5805 (sreloc->contents
5806 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5807 }
b49e97c9 5808 else
947216bf
AM
5809 bfd_elf32_swap_reloc_out
5810 (output_bfd, &outrel[0],
5811 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 5812
b49e97c9
TS
5813 /* We've now added another relocation. */
5814 ++sreloc->reloc_count;
5815
5816 /* Make sure the output section is writable. The dynamic linker
5817 will be writing to it. */
5818 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5819 |= SHF_WRITE;
5820
5821 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 5822 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
5823 {
5824 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5825 bfd_byte *cr;
5826
5827 if (scpt)
5828 {
5829 Elf32_crinfo cptrel;
5830
5831 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5832 cptrel.vaddr = (rel->r_offset
5833 + input_section->output_section->vma
5834 + input_section->output_offset);
5835 if (r_type == R_MIPS_REL32)
5836 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5837 else
5838 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5839 mips_elf_set_cr_dist2to (cptrel, 0);
5840 cptrel.konst = *addendp;
5841
5842 cr = (scpt->contents
5843 + sizeof (Elf32_External_compact_rel));
abc0f8d0 5844 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
5845 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5846 ((Elf32_External_crinfo *) cr
5847 + scpt->reloc_count));
5848 ++scpt->reloc_count;
5849 }
5850 }
5851
943284cc
DJ
5852 /* If we've written this relocation for a readonly section,
5853 we need to set DF_TEXTREL again, so that we do not delete the
5854 DT_TEXTREL tag. */
5855 if (MIPS_ELF_READONLY_SECTION (input_section))
5856 info->flags |= DF_TEXTREL;
5857
b34976b6 5858 return TRUE;
b49e97c9
TS
5859}
5860\f
b49e97c9
TS
5861/* Return the MACH for a MIPS e_flags value. */
5862
5863unsigned long
9719ad41 5864_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
5865{
5866 switch (flags & EF_MIPS_MACH)
5867 {
5868 case E_MIPS_MACH_3900:
5869 return bfd_mach_mips3900;
5870
5871 case E_MIPS_MACH_4010:
5872 return bfd_mach_mips4010;
5873
5874 case E_MIPS_MACH_4100:
5875 return bfd_mach_mips4100;
5876
5877 case E_MIPS_MACH_4111:
5878 return bfd_mach_mips4111;
5879
00707a0e
RS
5880 case E_MIPS_MACH_4120:
5881 return bfd_mach_mips4120;
5882
b49e97c9
TS
5883 case E_MIPS_MACH_4650:
5884 return bfd_mach_mips4650;
5885
00707a0e
RS
5886 case E_MIPS_MACH_5400:
5887 return bfd_mach_mips5400;
5888
5889 case E_MIPS_MACH_5500:
5890 return bfd_mach_mips5500;
5891
0d2e43ed
ILT
5892 case E_MIPS_MACH_9000:
5893 return bfd_mach_mips9000;
5894
b49e97c9
TS
5895 case E_MIPS_MACH_SB1:
5896 return bfd_mach_mips_sb1;
5897
350cc38d
MS
5898 case E_MIPS_MACH_LS2E:
5899 return bfd_mach_mips_loongson_2e;
5900
5901 case E_MIPS_MACH_LS2F:
5902 return bfd_mach_mips_loongson_2f;
5903
6f179bd0
AN
5904 case E_MIPS_MACH_OCTEON:
5905 return bfd_mach_mips_octeon;
5906
52b6b6b9
JM
5907 case E_MIPS_MACH_XLR:
5908 return bfd_mach_mips_xlr;
5909
b49e97c9
TS
5910 default:
5911 switch (flags & EF_MIPS_ARCH)
5912 {
5913 default:
5914 case E_MIPS_ARCH_1:
5915 return bfd_mach_mips3000;
b49e97c9
TS
5916
5917 case E_MIPS_ARCH_2:
5918 return bfd_mach_mips6000;
b49e97c9
TS
5919
5920 case E_MIPS_ARCH_3:
5921 return bfd_mach_mips4000;
b49e97c9
TS
5922
5923 case E_MIPS_ARCH_4:
5924 return bfd_mach_mips8000;
b49e97c9
TS
5925
5926 case E_MIPS_ARCH_5:
5927 return bfd_mach_mips5;
b49e97c9
TS
5928
5929 case E_MIPS_ARCH_32:
5930 return bfd_mach_mipsisa32;
b49e97c9
TS
5931
5932 case E_MIPS_ARCH_64:
5933 return bfd_mach_mipsisa64;
af7ee8bf
CD
5934
5935 case E_MIPS_ARCH_32R2:
5936 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5937
5938 case E_MIPS_ARCH_64R2:
5939 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5940 }
5941 }
5942
5943 return 0;
5944}
5945
5946/* Return printable name for ABI. */
5947
5948static INLINE char *
9719ad41 5949elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5950{
5951 flagword flags;
5952
5953 flags = elf_elfheader (abfd)->e_flags;
5954 switch (flags & EF_MIPS_ABI)
5955 {
5956 case 0:
5957 if (ABI_N32_P (abfd))
5958 return "N32";
5959 else if (ABI_64_P (abfd))
5960 return "64";
5961 else
5962 return "none";
5963 case E_MIPS_ABI_O32:
5964 return "O32";
5965 case E_MIPS_ABI_O64:
5966 return "O64";
5967 case E_MIPS_ABI_EABI32:
5968 return "EABI32";
5969 case E_MIPS_ABI_EABI64:
5970 return "EABI64";
5971 default:
5972 return "unknown abi";
5973 }
5974}
5975\f
5976/* MIPS ELF uses two common sections. One is the usual one, and the
5977 other is for small objects. All the small objects are kept
5978 together, and then referenced via the gp pointer, which yields
5979 faster assembler code. This is what we use for the small common
5980 section. This approach is copied from ecoff.c. */
5981static asection mips_elf_scom_section;
5982static asymbol mips_elf_scom_symbol;
5983static asymbol *mips_elf_scom_symbol_ptr;
5984
5985/* MIPS ELF also uses an acommon section, which represents an
5986 allocated common symbol which may be overridden by a
5987 definition in a shared library. */
5988static asection mips_elf_acom_section;
5989static asymbol mips_elf_acom_symbol;
5990static asymbol *mips_elf_acom_symbol_ptr;
5991
738e5348 5992/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
5993
5994void
9719ad41 5995_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5996{
5997 elf_symbol_type *elfsym;
5998
738e5348 5999 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6000 elfsym = (elf_symbol_type *) asym;
6001 switch (elfsym->internal_elf_sym.st_shndx)
6002 {
6003 case SHN_MIPS_ACOMMON:
6004 /* This section is used in a dynamically linked executable file.
6005 It is an allocated common section. The dynamic linker can
6006 either resolve these symbols to something in a shared
6007 library, or it can just leave them here. For our purposes,
6008 we can consider these symbols to be in a new section. */
6009 if (mips_elf_acom_section.name == NULL)
6010 {
6011 /* Initialize the acommon section. */
6012 mips_elf_acom_section.name = ".acommon";
6013 mips_elf_acom_section.flags = SEC_ALLOC;
6014 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6015 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6016 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6017 mips_elf_acom_symbol.name = ".acommon";
6018 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6019 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6020 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6021 }
6022 asym->section = &mips_elf_acom_section;
6023 break;
6024
6025 case SHN_COMMON:
6026 /* Common symbols less than the GP size are automatically
6027 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6028 if (asym->value > elf_gp_size (abfd)
b59eed79 6029 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6030 || IRIX_COMPAT (abfd) == ict_irix6)
6031 break;
6032 /* Fall through. */
6033 case SHN_MIPS_SCOMMON:
6034 if (mips_elf_scom_section.name == NULL)
6035 {
6036 /* Initialize the small common section. */
6037 mips_elf_scom_section.name = ".scommon";
6038 mips_elf_scom_section.flags = SEC_IS_COMMON;
6039 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6040 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6041 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6042 mips_elf_scom_symbol.name = ".scommon";
6043 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6044 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6045 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6046 }
6047 asym->section = &mips_elf_scom_section;
6048 asym->value = elfsym->internal_elf_sym.st_size;
6049 break;
6050
6051 case SHN_MIPS_SUNDEFINED:
6052 asym->section = bfd_und_section_ptr;
6053 break;
6054
b49e97c9 6055 case SHN_MIPS_TEXT:
00b4930b
TS
6056 {
6057 asection *section = bfd_get_section_by_name (abfd, ".text");
6058
6059 BFD_ASSERT (SGI_COMPAT (abfd));
6060 if (section != NULL)
6061 {
6062 asym->section = section;
6063 /* MIPS_TEXT is a bit special, the address is not an offset
6064 to the base of the .text section. So substract the section
6065 base address to make it an offset. */
6066 asym->value -= section->vma;
6067 }
6068 }
b49e97c9
TS
6069 break;
6070
6071 case SHN_MIPS_DATA:
00b4930b
TS
6072 {
6073 asection *section = bfd_get_section_by_name (abfd, ".data");
6074
6075 BFD_ASSERT (SGI_COMPAT (abfd));
6076 if (section != NULL)
6077 {
6078 asym->section = section;
6079 /* MIPS_DATA is a bit special, the address is not an offset
6080 to the base of the .data section. So substract the section
6081 base address to make it an offset. */
6082 asym->value -= section->vma;
6083 }
6084 }
b49e97c9 6085 break;
b49e97c9 6086 }
738e5348
RS
6087
6088 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6089 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6090 && (asym->value & 1) != 0)
6091 {
6092 asym->value--;
6093 elfsym->internal_elf_sym.st_other
6094 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6095 }
b49e97c9
TS
6096}
6097\f
8c946ed5
RS
6098/* Implement elf_backend_eh_frame_address_size. This differs from
6099 the default in the way it handles EABI64.
6100
6101 EABI64 was originally specified as an LP64 ABI, and that is what
6102 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6103 historically accepted the combination of -mabi=eabi and -mlong32,
6104 and this ILP32 variation has become semi-official over time.
6105 Both forms use elf32 and have pointer-sized FDE addresses.
6106
6107 If an EABI object was generated by GCC 4.0 or above, it will have
6108 an empty .gcc_compiled_longXX section, where XX is the size of longs
6109 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6110 have no special marking to distinguish them from LP64 objects.
6111
6112 We don't want users of the official LP64 ABI to be punished for the
6113 existence of the ILP32 variant, but at the same time, we don't want
6114 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6115 We therefore take the following approach:
6116
6117 - If ABFD contains a .gcc_compiled_longXX section, use it to
6118 determine the pointer size.
6119
6120 - Otherwise check the type of the first relocation. Assume that
6121 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6122
6123 - Otherwise punt.
6124
6125 The second check is enough to detect LP64 objects generated by pre-4.0
6126 compilers because, in the kind of output generated by those compilers,
6127 the first relocation will be associated with either a CIE personality
6128 routine or an FDE start address. Furthermore, the compilers never
6129 used a special (non-pointer) encoding for this ABI.
6130
6131 Checking the relocation type should also be safe because there is no
6132 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6133 did so. */
6134
6135unsigned int
6136_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6137{
6138 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6139 return 8;
6140 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6141 {
6142 bfd_boolean long32_p, long64_p;
6143
6144 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6145 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6146 if (long32_p && long64_p)
6147 return 0;
6148 if (long32_p)
6149 return 4;
6150 if (long64_p)
6151 return 8;
6152
6153 if (sec->reloc_count > 0
6154 && elf_section_data (sec)->relocs != NULL
6155 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6156 == R_MIPS_64))
6157 return 8;
6158
6159 return 0;
6160 }
6161 return 4;
6162}
6163\f
174fd7f9
RS
6164/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6165 relocations against two unnamed section symbols to resolve to the
6166 same address. For example, if we have code like:
6167
6168 lw $4,%got_disp(.data)($gp)
6169 lw $25,%got_disp(.text)($gp)
6170 jalr $25
6171
6172 then the linker will resolve both relocations to .data and the program
6173 will jump there rather than to .text.
6174
6175 We can work around this problem by giving names to local section symbols.
6176 This is also what the MIPSpro tools do. */
6177
6178bfd_boolean
6179_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6180{
6181 return SGI_COMPAT (abfd);
6182}
6183\f
b49e97c9
TS
6184/* Work over a section just before writing it out. This routine is
6185 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6186 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6187 a better way. */
6188
b34976b6 6189bfd_boolean
9719ad41 6190_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6191{
6192 if (hdr->sh_type == SHT_MIPS_REGINFO
6193 && hdr->sh_size > 0)
6194 {
6195 bfd_byte buf[4];
6196
6197 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6198 BFD_ASSERT (hdr->contents == NULL);
6199
6200 if (bfd_seek (abfd,
6201 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6202 SEEK_SET) != 0)
b34976b6 6203 return FALSE;
b49e97c9 6204 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6205 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6206 return FALSE;
b49e97c9
TS
6207 }
6208
6209 if (hdr->sh_type == SHT_MIPS_OPTIONS
6210 && hdr->bfd_section != NULL
f0abc2a1
AM
6211 && mips_elf_section_data (hdr->bfd_section) != NULL
6212 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6213 {
6214 bfd_byte *contents, *l, *lend;
6215
f0abc2a1
AM
6216 /* We stored the section contents in the tdata field in the
6217 set_section_contents routine. We save the section contents
6218 so that we don't have to read them again.
b49e97c9
TS
6219 At this point we know that elf_gp is set, so we can look
6220 through the section contents to see if there is an
6221 ODK_REGINFO structure. */
6222
f0abc2a1 6223 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6224 l = contents;
6225 lend = contents + hdr->sh_size;
6226 while (l + sizeof (Elf_External_Options) <= lend)
6227 {
6228 Elf_Internal_Options intopt;
6229
6230 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6231 &intopt);
1bc8074d
MR
6232 if (intopt.size < sizeof (Elf_External_Options))
6233 {
6234 (*_bfd_error_handler)
6235 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6236 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6237 break;
6238 }
b49e97c9
TS
6239 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6240 {
6241 bfd_byte buf[8];
6242
6243 if (bfd_seek (abfd,
6244 (hdr->sh_offset
6245 + (l - contents)
6246 + sizeof (Elf_External_Options)
6247 + (sizeof (Elf64_External_RegInfo) - 8)),
6248 SEEK_SET) != 0)
b34976b6 6249 return FALSE;
b49e97c9 6250 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6251 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6252 return FALSE;
b49e97c9
TS
6253 }
6254 else if (intopt.kind == ODK_REGINFO)
6255 {
6256 bfd_byte buf[4];
6257
6258 if (bfd_seek (abfd,
6259 (hdr->sh_offset
6260 + (l - contents)
6261 + sizeof (Elf_External_Options)
6262 + (sizeof (Elf32_External_RegInfo) - 4)),
6263 SEEK_SET) != 0)
b34976b6 6264 return FALSE;
b49e97c9 6265 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6266 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6267 return FALSE;
b49e97c9
TS
6268 }
6269 l += intopt.size;
6270 }
6271 }
6272
6273 if (hdr->bfd_section != NULL)
6274 {
6275 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6276
2d0f9ad9
JM
6277 /* .sbss is not handled specially here because the GNU/Linux
6278 prelinker can convert .sbss from NOBITS to PROGBITS and
6279 changing it back to NOBITS breaks the binary. The entry in
6280 _bfd_mips_elf_special_sections will ensure the correct flags
6281 are set on .sbss if BFD creates it without reading it from an
6282 input file, and without special handling here the flags set
6283 on it in an input file will be followed. */
b49e97c9
TS
6284 if (strcmp (name, ".sdata") == 0
6285 || strcmp (name, ".lit8") == 0
6286 || strcmp (name, ".lit4") == 0)
6287 {
6288 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6289 hdr->sh_type = SHT_PROGBITS;
6290 }
b49e97c9
TS
6291 else if (strcmp (name, ".srdata") == 0)
6292 {
6293 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6294 hdr->sh_type = SHT_PROGBITS;
6295 }
6296 else if (strcmp (name, ".compact_rel") == 0)
6297 {
6298 hdr->sh_flags = 0;
6299 hdr->sh_type = SHT_PROGBITS;
6300 }
6301 else if (strcmp (name, ".rtproc") == 0)
6302 {
6303 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6304 {
6305 unsigned int adjust;
6306
6307 adjust = hdr->sh_size % hdr->sh_addralign;
6308 if (adjust != 0)
6309 hdr->sh_size += hdr->sh_addralign - adjust;
6310 }
6311 }
6312 }
6313
b34976b6 6314 return TRUE;
b49e97c9
TS
6315}
6316
6317/* Handle a MIPS specific section when reading an object file. This
6318 is called when elfcode.h finds a section with an unknown type.
6319 This routine supports both the 32-bit and 64-bit ELF ABI.
6320
6321 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6322 how to. */
6323
b34976b6 6324bfd_boolean
6dc132d9
L
6325_bfd_mips_elf_section_from_shdr (bfd *abfd,
6326 Elf_Internal_Shdr *hdr,
6327 const char *name,
6328 int shindex)
b49e97c9
TS
6329{
6330 flagword flags = 0;
6331
6332 /* There ought to be a place to keep ELF backend specific flags, but
6333 at the moment there isn't one. We just keep track of the
6334 sections by their name, instead. Fortunately, the ABI gives
6335 suggested names for all the MIPS specific sections, so we will
6336 probably get away with this. */
6337 switch (hdr->sh_type)
6338 {
6339 case SHT_MIPS_LIBLIST:
6340 if (strcmp (name, ".liblist") != 0)
b34976b6 6341 return FALSE;
b49e97c9
TS
6342 break;
6343 case SHT_MIPS_MSYM:
6344 if (strcmp (name, ".msym") != 0)
b34976b6 6345 return FALSE;
b49e97c9
TS
6346 break;
6347 case SHT_MIPS_CONFLICT:
6348 if (strcmp (name, ".conflict") != 0)
b34976b6 6349 return FALSE;
b49e97c9
TS
6350 break;
6351 case SHT_MIPS_GPTAB:
0112cd26 6352 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6353 return FALSE;
b49e97c9
TS
6354 break;
6355 case SHT_MIPS_UCODE:
6356 if (strcmp (name, ".ucode") != 0)
b34976b6 6357 return FALSE;
b49e97c9
TS
6358 break;
6359 case SHT_MIPS_DEBUG:
6360 if (strcmp (name, ".mdebug") != 0)
b34976b6 6361 return FALSE;
b49e97c9
TS
6362 flags = SEC_DEBUGGING;
6363 break;
6364 case SHT_MIPS_REGINFO:
6365 if (strcmp (name, ".reginfo") != 0
6366 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6367 return FALSE;
b49e97c9
TS
6368 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6369 break;
6370 case SHT_MIPS_IFACE:
6371 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6372 return FALSE;
b49e97c9
TS
6373 break;
6374 case SHT_MIPS_CONTENT:
0112cd26 6375 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6376 return FALSE;
b49e97c9
TS
6377 break;
6378 case SHT_MIPS_OPTIONS:
cc2e31b9 6379 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6380 return FALSE;
b49e97c9
TS
6381 break;
6382 case SHT_MIPS_DWARF:
1b315056 6383 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6384 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6385 return FALSE;
b49e97c9
TS
6386 break;
6387 case SHT_MIPS_SYMBOL_LIB:
6388 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6389 return FALSE;
b49e97c9
TS
6390 break;
6391 case SHT_MIPS_EVENTS:
0112cd26
NC
6392 if (! CONST_STRNEQ (name, ".MIPS.events")
6393 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6394 return FALSE;
b49e97c9
TS
6395 break;
6396 default:
cc2e31b9 6397 break;
b49e97c9
TS
6398 }
6399
6dc132d9 6400 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6401 return FALSE;
b49e97c9
TS
6402
6403 if (flags)
6404 {
6405 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6406 (bfd_get_section_flags (abfd,
6407 hdr->bfd_section)
6408 | flags)))
b34976b6 6409 return FALSE;
b49e97c9
TS
6410 }
6411
6412 /* FIXME: We should record sh_info for a .gptab section. */
6413
6414 /* For a .reginfo section, set the gp value in the tdata information
6415 from the contents of this section. We need the gp value while
6416 processing relocs, so we just get it now. The .reginfo section
6417 is not used in the 64-bit MIPS ELF ABI. */
6418 if (hdr->sh_type == SHT_MIPS_REGINFO)
6419 {
6420 Elf32_External_RegInfo ext;
6421 Elf32_RegInfo s;
6422
9719ad41
RS
6423 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6424 &ext, 0, sizeof ext))
b34976b6 6425 return FALSE;
b49e97c9
TS
6426 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6427 elf_gp (abfd) = s.ri_gp_value;
6428 }
6429
6430 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6431 set the gp value based on what we find. We may see both
6432 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6433 they should agree. */
6434 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6435 {
6436 bfd_byte *contents, *l, *lend;
6437
9719ad41 6438 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6439 if (contents == NULL)
b34976b6 6440 return FALSE;
b49e97c9 6441 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6442 0, hdr->sh_size))
b49e97c9
TS
6443 {
6444 free (contents);
b34976b6 6445 return FALSE;
b49e97c9
TS
6446 }
6447 l = contents;
6448 lend = contents + hdr->sh_size;
6449 while (l + sizeof (Elf_External_Options) <= lend)
6450 {
6451 Elf_Internal_Options intopt;
6452
6453 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6454 &intopt);
1bc8074d
MR
6455 if (intopt.size < sizeof (Elf_External_Options))
6456 {
6457 (*_bfd_error_handler)
6458 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6459 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6460 break;
6461 }
b49e97c9
TS
6462 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6463 {
6464 Elf64_Internal_RegInfo intreg;
6465
6466 bfd_mips_elf64_swap_reginfo_in
6467 (abfd,
6468 ((Elf64_External_RegInfo *)
6469 (l + sizeof (Elf_External_Options))),
6470 &intreg);
6471 elf_gp (abfd) = intreg.ri_gp_value;
6472 }
6473 else if (intopt.kind == ODK_REGINFO)
6474 {
6475 Elf32_RegInfo intreg;
6476
6477 bfd_mips_elf32_swap_reginfo_in
6478 (abfd,
6479 ((Elf32_External_RegInfo *)
6480 (l + sizeof (Elf_External_Options))),
6481 &intreg);
6482 elf_gp (abfd) = intreg.ri_gp_value;
6483 }
6484 l += intopt.size;
6485 }
6486 free (contents);
6487 }
6488
b34976b6 6489 return TRUE;
b49e97c9
TS
6490}
6491
6492/* Set the correct type for a MIPS ELF section. We do this by the
6493 section name, which is a hack, but ought to work. This routine is
6494 used by both the 32-bit and the 64-bit ABI. */
6495
b34976b6 6496bfd_boolean
9719ad41 6497_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6498{
0414f35b 6499 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6500
6501 if (strcmp (name, ".liblist") == 0)
6502 {
6503 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6504 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6505 /* The sh_link field is set in final_write_processing. */
6506 }
6507 else if (strcmp (name, ".conflict") == 0)
6508 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6509 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6510 {
6511 hdr->sh_type = SHT_MIPS_GPTAB;
6512 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6513 /* The sh_info field is set in final_write_processing. */
6514 }
6515 else if (strcmp (name, ".ucode") == 0)
6516 hdr->sh_type = SHT_MIPS_UCODE;
6517 else if (strcmp (name, ".mdebug") == 0)
6518 {
6519 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6520 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6521 entsize of 0. FIXME: Does this matter? */
6522 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6523 hdr->sh_entsize = 0;
6524 else
6525 hdr->sh_entsize = 1;
6526 }
6527 else if (strcmp (name, ".reginfo") == 0)
6528 {
6529 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6530 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6531 entsize of 0x18. FIXME: Does this matter? */
6532 if (SGI_COMPAT (abfd))
6533 {
6534 if ((abfd->flags & DYNAMIC) != 0)
6535 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6536 else
6537 hdr->sh_entsize = 1;
6538 }
6539 else
6540 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6541 }
6542 else if (SGI_COMPAT (abfd)
6543 && (strcmp (name, ".hash") == 0
6544 || strcmp (name, ".dynamic") == 0
6545 || strcmp (name, ".dynstr") == 0))
6546 {
6547 if (SGI_COMPAT (abfd))
6548 hdr->sh_entsize = 0;
6549#if 0
8dc1a139 6550 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6551 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6552#endif
6553 }
6554 else if (strcmp (name, ".got") == 0
6555 || strcmp (name, ".srdata") == 0
6556 || strcmp (name, ".sdata") == 0
6557 || strcmp (name, ".sbss") == 0
6558 || strcmp (name, ".lit4") == 0
6559 || strcmp (name, ".lit8") == 0)
6560 hdr->sh_flags |= SHF_MIPS_GPREL;
6561 else if (strcmp (name, ".MIPS.interfaces") == 0)
6562 {
6563 hdr->sh_type = SHT_MIPS_IFACE;
6564 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6565 }
0112cd26 6566 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6567 {
6568 hdr->sh_type = SHT_MIPS_CONTENT;
6569 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6570 /* The sh_info field is set in final_write_processing. */
6571 }
cc2e31b9 6572 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6573 {
6574 hdr->sh_type = SHT_MIPS_OPTIONS;
6575 hdr->sh_entsize = 1;
6576 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6577 }
1b315056
CS
6578 else if (CONST_STRNEQ (name, ".debug_")
6579 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6580 {
6581 hdr->sh_type = SHT_MIPS_DWARF;
6582
6583 /* Irix facilities such as libexc expect a single .debug_frame
6584 per executable, the system ones have NOSTRIP set and the linker
6585 doesn't merge sections with different flags so ... */
6586 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6587 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6588 }
b49e97c9
TS
6589 else if (strcmp (name, ".MIPS.symlib") == 0)
6590 {
6591 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6592 /* The sh_link and sh_info fields are set in
6593 final_write_processing. */
6594 }
0112cd26
NC
6595 else if (CONST_STRNEQ (name, ".MIPS.events")
6596 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6597 {
6598 hdr->sh_type = SHT_MIPS_EVENTS;
6599 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6600 /* The sh_link field is set in final_write_processing. */
6601 }
6602 else if (strcmp (name, ".msym") == 0)
6603 {
6604 hdr->sh_type = SHT_MIPS_MSYM;
6605 hdr->sh_flags |= SHF_ALLOC;
6606 hdr->sh_entsize = 8;
6607 }
6608
7a79a000
TS
6609 /* The generic elf_fake_sections will set up REL_HDR using the default
6610 kind of relocations. We used to set up a second header for the
6611 non-default kind of relocations here, but only NewABI would use
6612 these, and the IRIX ld doesn't like resulting empty RELA sections.
6613 Thus we create those header only on demand now. */
b49e97c9 6614
b34976b6 6615 return TRUE;
b49e97c9
TS
6616}
6617
6618/* Given a BFD section, try to locate the corresponding ELF section
6619 index. This is used by both the 32-bit and the 64-bit ABI.
6620 Actually, it's not clear to me that the 64-bit ABI supports these,
6621 but for non-PIC objects we will certainly want support for at least
6622 the .scommon section. */
6623
b34976b6 6624bfd_boolean
9719ad41
RS
6625_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6626 asection *sec, int *retval)
b49e97c9
TS
6627{
6628 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6629 {
6630 *retval = SHN_MIPS_SCOMMON;
b34976b6 6631 return TRUE;
b49e97c9
TS
6632 }
6633 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6634 {
6635 *retval = SHN_MIPS_ACOMMON;
b34976b6 6636 return TRUE;
b49e97c9 6637 }
b34976b6 6638 return FALSE;
b49e97c9
TS
6639}
6640\f
6641/* Hook called by the linker routine which adds symbols from an object
6642 file. We must handle the special MIPS section numbers here. */
6643
b34976b6 6644bfd_boolean
9719ad41 6645_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6646 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6647 flagword *flagsp ATTRIBUTE_UNUSED,
6648 asection **secp, bfd_vma *valp)
b49e97c9
TS
6649{
6650 if (SGI_COMPAT (abfd)
6651 && (abfd->flags & DYNAMIC) != 0
6652 && strcmp (*namep, "_rld_new_interface") == 0)
6653 {
8dc1a139 6654 /* Skip IRIX5 rld entry name. */
b49e97c9 6655 *namep = NULL;
b34976b6 6656 return TRUE;
b49e97c9
TS
6657 }
6658
eedecc07
DD
6659 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6660 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6661 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6662 a magic symbol resolved by the linker, we ignore this bogus definition
6663 of _gp_disp. New ABI objects do not suffer from this problem so this
6664 is not done for them. */
6665 if (!NEWABI_P(abfd)
6666 && (sym->st_shndx == SHN_ABS)
6667 && (strcmp (*namep, "_gp_disp") == 0))
6668 {
6669 *namep = NULL;
6670 return TRUE;
6671 }
6672
b49e97c9
TS
6673 switch (sym->st_shndx)
6674 {
6675 case SHN_COMMON:
6676 /* Common symbols less than the GP size are automatically
6677 treated as SHN_MIPS_SCOMMON symbols. */
6678 if (sym->st_size > elf_gp_size (abfd)
b59eed79 6679 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
6680 || IRIX_COMPAT (abfd) == ict_irix6)
6681 break;
6682 /* Fall through. */
6683 case SHN_MIPS_SCOMMON:
6684 *secp = bfd_make_section_old_way (abfd, ".scommon");
6685 (*secp)->flags |= SEC_IS_COMMON;
6686 *valp = sym->st_size;
6687 break;
6688
6689 case SHN_MIPS_TEXT:
6690 /* This section is used in a shared object. */
6691 if (elf_tdata (abfd)->elf_text_section == NULL)
6692 {
6693 asymbol *elf_text_symbol;
6694 asection *elf_text_section;
6695 bfd_size_type amt = sizeof (asection);
6696
6697 elf_text_section = bfd_zalloc (abfd, amt);
6698 if (elf_text_section == NULL)
b34976b6 6699 return FALSE;
b49e97c9
TS
6700
6701 amt = sizeof (asymbol);
6702 elf_text_symbol = bfd_zalloc (abfd, amt);
6703 if (elf_text_symbol == NULL)
b34976b6 6704 return FALSE;
b49e97c9
TS
6705
6706 /* Initialize the section. */
6707
6708 elf_tdata (abfd)->elf_text_section = elf_text_section;
6709 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6710
6711 elf_text_section->symbol = elf_text_symbol;
6712 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6713
6714 elf_text_section->name = ".text";
6715 elf_text_section->flags = SEC_NO_FLAGS;
6716 elf_text_section->output_section = NULL;
6717 elf_text_section->owner = abfd;
6718 elf_text_symbol->name = ".text";
6719 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6720 elf_text_symbol->section = elf_text_section;
6721 }
6722 /* This code used to do *secp = bfd_und_section_ptr if
6723 info->shared. I don't know why, and that doesn't make sense,
6724 so I took it out. */
6725 *secp = elf_tdata (abfd)->elf_text_section;
6726 break;
6727
6728 case SHN_MIPS_ACOMMON:
6729 /* Fall through. XXX Can we treat this as allocated data? */
6730 case SHN_MIPS_DATA:
6731 /* This section is used in a shared object. */
6732 if (elf_tdata (abfd)->elf_data_section == NULL)
6733 {
6734 asymbol *elf_data_symbol;
6735 asection *elf_data_section;
6736 bfd_size_type amt = sizeof (asection);
6737
6738 elf_data_section = bfd_zalloc (abfd, amt);
6739 if (elf_data_section == NULL)
b34976b6 6740 return FALSE;
b49e97c9
TS
6741
6742 amt = sizeof (asymbol);
6743 elf_data_symbol = bfd_zalloc (abfd, amt);
6744 if (elf_data_symbol == NULL)
b34976b6 6745 return FALSE;
b49e97c9
TS
6746
6747 /* Initialize the section. */
6748
6749 elf_tdata (abfd)->elf_data_section = elf_data_section;
6750 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6751
6752 elf_data_section->symbol = elf_data_symbol;
6753 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6754
6755 elf_data_section->name = ".data";
6756 elf_data_section->flags = SEC_NO_FLAGS;
6757 elf_data_section->output_section = NULL;
6758 elf_data_section->owner = abfd;
6759 elf_data_symbol->name = ".data";
6760 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6761 elf_data_symbol->section = elf_data_section;
6762 }
6763 /* This code used to do *secp = bfd_und_section_ptr if
6764 info->shared. I don't know why, and that doesn't make sense,
6765 so I took it out. */
6766 *secp = elf_tdata (abfd)->elf_data_section;
6767 break;
6768
6769 case SHN_MIPS_SUNDEFINED:
6770 *secp = bfd_und_section_ptr;
6771 break;
6772 }
6773
6774 if (SGI_COMPAT (abfd)
6775 && ! info->shared
f13a99db 6776 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
6777 && strcmp (*namep, "__rld_obj_head") == 0)
6778 {
6779 struct elf_link_hash_entry *h;
14a793b2 6780 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6781
6782 /* Mark __rld_obj_head as dynamic. */
14a793b2 6783 bh = NULL;
b49e97c9 6784 if (! (_bfd_generic_link_add_one_symbol
9719ad41 6785 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 6786 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6787 return FALSE;
14a793b2
AM
6788
6789 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6790 h->non_elf = 0;
6791 h->def_regular = 1;
b49e97c9
TS
6792 h->type = STT_OBJECT;
6793
c152c796 6794 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6795 return FALSE;
b49e97c9 6796
b34976b6 6797 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
6798 }
6799
6800 /* If this is a mips16 text symbol, add 1 to the value to make it
6801 odd. This will cause something like .word SYM to come up with
6802 the right value when it is loaded into the PC. */
30c09090 6803 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
6804 ++*valp;
6805
b34976b6 6806 return TRUE;
b49e97c9
TS
6807}
6808
6809/* This hook function is called before the linker writes out a global
6810 symbol. We mark symbols as small common if appropriate. This is
6811 also where we undo the increment of the value for a mips16 symbol. */
6812
6e0b88f1 6813int
9719ad41
RS
6814_bfd_mips_elf_link_output_symbol_hook
6815 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6816 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6817 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
6818{
6819 /* If we see a common symbol, which implies a relocatable link, then
6820 if a symbol was small common in an input file, mark it as small
6821 common in the output file. */
6822 if (sym->st_shndx == SHN_COMMON
6823 && strcmp (input_sec->name, ".scommon") == 0)
6824 sym->st_shndx = SHN_MIPS_SCOMMON;
6825
30c09090 6826 if (ELF_ST_IS_MIPS16 (sym->st_other))
79cda7cf 6827 sym->st_value &= ~1;
b49e97c9 6828
6e0b88f1 6829 return 1;
b49e97c9
TS
6830}
6831\f
6832/* Functions for the dynamic linker. */
6833
6834/* Create dynamic sections when linking against a dynamic object. */
6835
b34976b6 6836bfd_boolean
9719ad41 6837_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
6838{
6839 struct elf_link_hash_entry *h;
14a793b2 6840 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6841 flagword flags;
6842 register asection *s;
6843 const char * const *namep;
0a44bf69 6844 struct mips_elf_link_hash_table *htab;
b49e97c9 6845
0a44bf69 6846 htab = mips_elf_hash_table (info);
b49e97c9
TS
6847 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6848 | SEC_LINKER_CREATED | SEC_READONLY);
6849
0a44bf69
RS
6850 /* The psABI requires a read-only .dynamic section, but the VxWorks
6851 EABI doesn't. */
6852 if (!htab->is_vxworks)
b49e97c9 6853 {
0a44bf69
RS
6854 s = bfd_get_section_by_name (abfd, ".dynamic");
6855 if (s != NULL)
6856 {
6857 if (! bfd_set_section_flags (abfd, s, flags))
6858 return FALSE;
6859 }
b49e97c9
TS
6860 }
6861
6862 /* We need to create .got section. */
23cc69b6 6863 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
6864 return FALSE;
6865
0a44bf69 6866 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 6867 return FALSE;
b49e97c9 6868
b49e97c9 6869 /* Create .stub section. */
4e41d0d7
RS
6870 s = bfd_make_section_with_flags (abfd,
6871 MIPS_ELF_STUB_SECTION_NAME (abfd),
6872 flags | SEC_CODE);
6873 if (s == NULL
6874 || ! bfd_set_section_alignment (abfd, s,
6875 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6876 return FALSE;
6877 htab->sstubs = s;
b49e97c9
TS
6878
6879 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6880 && !info->shared
6881 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6882 {
3496cb2a
L
6883 s = bfd_make_section_with_flags (abfd, ".rld_map",
6884 flags &~ (flagword) SEC_READONLY);
b49e97c9 6885 if (s == NULL
b49e97c9
TS
6886 || ! bfd_set_section_alignment (abfd, s,
6887 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6888 return FALSE;
b49e97c9
TS
6889 }
6890
6891 /* On IRIX5, we adjust add some additional symbols and change the
6892 alignments of several sections. There is no ABI documentation
6893 indicating that this is necessary on IRIX6, nor any evidence that
6894 the linker takes such action. */
6895 if (IRIX_COMPAT (abfd) == ict_irix5)
6896 {
6897 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6898 {
14a793b2 6899 bh = NULL;
b49e97c9 6900 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
6901 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6902 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6903 return FALSE;
14a793b2
AM
6904
6905 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6906 h->non_elf = 0;
6907 h->def_regular = 1;
b49e97c9
TS
6908 h->type = STT_SECTION;
6909
c152c796 6910 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6911 return FALSE;
b49e97c9
TS
6912 }
6913
6914 /* We need to create a .compact_rel section. */
6915 if (SGI_COMPAT (abfd))
6916 {
6917 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6918 return FALSE;
b49e97c9
TS
6919 }
6920
44c410de 6921 /* Change alignments of some sections. */
b49e97c9
TS
6922 s = bfd_get_section_by_name (abfd, ".hash");
6923 if (s != NULL)
d80dcc6a 6924 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6925 s = bfd_get_section_by_name (abfd, ".dynsym");
6926 if (s != NULL)
d80dcc6a 6927 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6928 s = bfd_get_section_by_name (abfd, ".dynstr");
6929 if (s != NULL)
d80dcc6a 6930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6931 s = bfd_get_section_by_name (abfd, ".reginfo");
6932 if (s != NULL)
d80dcc6a 6933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6934 s = bfd_get_section_by_name (abfd, ".dynamic");
6935 if (s != NULL)
d80dcc6a 6936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6937 }
6938
6939 if (!info->shared)
6940 {
14a793b2
AM
6941 const char *name;
6942
6943 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6944 bh = NULL;
6945 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6946 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6947 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6948 return FALSE;
14a793b2
AM
6949
6950 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6951 h->non_elf = 0;
6952 h->def_regular = 1;
b49e97c9
TS
6953 h->type = STT_SECTION;
6954
c152c796 6955 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6956 return FALSE;
b49e97c9
TS
6957
6958 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6959 {
6960 /* __rld_map is a four byte word located in the .data section
6961 and is filled in by the rtld to contain a pointer to
6962 the _r_debug structure. Its symbol value will be set in
6963 _bfd_mips_elf_finish_dynamic_symbol. */
6964 s = bfd_get_section_by_name (abfd, ".rld_map");
6965 BFD_ASSERT (s != NULL);
6966
14a793b2
AM
6967 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6968 bh = NULL;
6969 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6970 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6971 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6972 return FALSE;
14a793b2
AM
6973
6974 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6975 h->non_elf = 0;
6976 h->def_regular = 1;
b49e97c9
TS
6977 h->type = STT_OBJECT;
6978
c152c796 6979 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6980 return FALSE;
b49e97c9
TS
6981 }
6982 }
6983
861fb55a
DJ
6984 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6985 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6986 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6987 return FALSE;
6988
6989 /* Cache the sections created above. */
6990 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6991 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
0a44bf69
RS
6992 if (htab->is_vxworks)
6993 {
0a44bf69
RS
6994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6995 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
861fb55a
DJ
6996 }
6997 else
6998 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
6999 if (!htab->sdynbss
7000 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7001 || !htab->srelplt
7002 || !htab->splt)
7003 abort ();
0a44bf69 7004
861fb55a
DJ
7005 if (htab->is_vxworks)
7006 {
0a44bf69
RS
7007 /* Do the usual VxWorks handling. */
7008 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7009 return FALSE;
7010
7011 /* Work out the PLT sizes. */
7012 if (info->shared)
7013 {
7014 htab->plt_header_size
7015 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7016 htab->plt_entry_size
7017 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7018 }
7019 else
7020 {
7021 htab->plt_header_size
7022 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7023 htab->plt_entry_size
7024 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7025 }
7026 }
861fb55a
DJ
7027 else if (!info->shared)
7028 {
7029 /* All variants of the plt0 entry are the same size. */
7030 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7031 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7032 }
0a44bf69 7033
b34976b6 7034 return TRUE;
b49e97c9
TS
7035}
7036\f
c224138d
RS
7037/* Return true if relocation REL against section SEC is a REL rather than
7038 RELA relocation. RELOCS is the first relocation in the section and
7039 ABFD is the bfd that contains SEC. */
7040
7041static bfd_boolean
7042mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7043 const Elf_Internal_Rela *relocs,
7044 const Elf_Internal_Rela *rel)
7045{
7046 Elf_Internal_Shdr *rel_hdr;
7047 const struct elf_backend_data *bed;
7048
7049 /* To determine which flavor or relocation this is, we depend on the
7050 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7051 rel_hdr = &elf_section_data (sec)->rel_hdr;
7052 bed = get_elf_backend_data (abfd);
7053 if ((size_t) (rel - relocs)
7054 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7055 rel_hdr = elf_section_data (sec)->rel_hdr2;
7056 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7057}
7058
7059/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7060 HOWTO is the relocation's howto and CONTENTS points to the contents
7061 of the section that REL is against. */
7062
7063static bfd_vma
7064mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7065 reloc_howto_type *howto, bfd_byte *contents)
7066{
7067 bfd_byte *location;
7068 unsigned int r_type;
7069 bfd_vma addend;
7070
7071 r_type = ELF_R_TYPE (abfd, rel->r_info);
7072 location = contents + rel->r_offset;
7073
7074 /* Get the addend, which is stored in the input file. */
7075 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7076 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7077 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7078
7079 return addend & howto->src_mask;
7080}
7081
7082/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7083 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7084 and update *ADDEND with the final addend. Return true on success
7085 or false if the LO16 could not be found. RELEND is the exclusive
7086 upper bound on the relocations for REL's section. */
7087
7088static bfd_boolean
7089mips_elf_add_lo16_rel_addend (bfd *abfd,
7090 const Elf_Internal_Rela *rel,
7091 const Elf_Internal_Rela *relend,
7092 bfd_byte *contents, bfd_vma *addend)
7093{
7094 unsigned int r_type, lo16_type;
7095 const Elf_Internal_Rela *lo16_relocation;
7096 reloc_howto_type *lo16_howto;
7097 bfd_vma l;
7098
7099 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7100 if (mips16_reloc_p (r_type))
c224138d
RS
7101 lo16_type = R_MIPS16_LO16;
7102 else
7103 lo16_type = R_MIPS_LO16;
7104
7105 /* The combined value is the sum of the HI16 addend, left-shifted by
7106 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7107 code does a `lui' of the HI16 value, and then an `addiu' of the
7108 LO16 value.)
7109
7110 Scan ahead to find a matching LO16 relocation.
7111
7112 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7113 be immediately following. However, for the IRIX6 ABI, the next
7114 relocation may be a composed relocation consisting of several
7115 relocations for the same address. In that case, the R_MIPS_LO16
7116 relocation may occur as one of these. We permit a similar
7117 extension in general, as that is useful for GCC.
7118
7119 In some cases GCC dead code elimination removes the LO16 but keeps
7120 the corresponding HI16. This is strictly speaking a violation of
7121 the ABI but not immediately harmful. */
7122 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7123 if (lo16_relocation == NULL)
7124 return FALSE;
7125
7126 /* Obtain the addend kept there. */
7127 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7128 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7129
7130 l <<= lo16_howto->rightshift;
7131 l = _bfd_mips_elf_sign_extend (l, 16);
7132
7133 *addend <<= 16;
7134 *addend += l;
7135 return TRUE;
7136}
7137
7138/* Try to read the contents of section SEC in bfd ABFD. Return true and
7139 store the contents in *CONTENTS on success. Assume that *CONTENTS
7140 already holds the contents if it is nonull on entry. */
7141
7142static bfd_boolean
7143mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7144{
7145 if (*contents)
7146 return TRUE;
7147
7148 /* Get cached copy if it exists. */
7149 if (elf_section_data (sec)->this_hdr.contents != NULL)
7150 {
7151 *contents = elf_section_data (sec)->this_hdr.contents;
7152 return TRUE;
7153 }
7154
7155 return bfd_malloc_and_get_section (abfd, sec, contents);
7156}
7157
b49e97c9
TS
7158/* Look through the relocs for a section during the first phase, and
7159 allocate space in the global offset table. */
7160
b34976b6 7161bfd_boolean
9719ad41
RS
7162_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7163 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7164{
7165 const char *name;
7166 bfd *dynobj;
7167 Elf_Internal_Shdr *symtab_hdr;
7168 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7169 size_t extsymoff;
7170 const Elf_Internal_Rela *rel;
7171 const Elf_Internal_Rela *rel_end;
b49e97c9 7172 asection *sreloc;
9c5bfbb7 7173 const struct elf_backend_data *bed;
0a44bf69 7174 struct mips_elf_link_hash_table *htab;
c224138d
RS
7175 bfd_byte *contents;
7176 bfd_vma addend;
7177 reloc_howto_type *howto;
b49e97c9 7178
1049f94e 7179 if (info->relocatable)
b34976b6 7180 return TRUE;
b49e97c9 7181
0a44bf69 7182 htab = mips_elf_hash_table (info);
b49e97c9
TS
7183 dynobj = elf_hash_table (info)->dynobj;
7184 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7185 sym_hashes = elf_sym_hashes (abfd);
7186 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7187
738e5348
RS
7188 bed = get_elf_backend_data (abfd);
7189 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7190
b49e97c9
TS
7191 /* Check for the mips16 stub sections. */
7192
7193 name = bfd_get_section_name (abfd, sec);
b9d58d71 7194 if (FN_STUB_P (name))
b49e97c9
TS
7195 {
7196 unsigned long r_symndx;
7197
7198 /* Look at the relocation information to figure out which symbol
7199 this is for. */
7200
738e5348
RS
7201 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7202 if (r_symndx == 0)
7203 {
7204 (*_bfd_error_handler)
7205 (_("%B: Warning: cannot determine the target function for"
7206 " stub section `%s'"),
7207 abfd, name);
7208 bfd_set_error (bfd_error_bad_value);
7209 return FALSE;
7210 }
b49e97c9
TS
7211
7212 if (r_symndx < extsymoff
7213 || sym_hashes[r_symndx - extsymoff] == NULL)
7214 {
7215 asection *o;
7216
7217 /* This stub is for a local symbol. This stub will only be
7218 needed if there is some relocation in this BFD, other
7219 than a 16 bit function call, which refers to this symbol. */
7220 for (o = abfd->sections; o != NULL; o = o->next)
7221 {
7222 Elf_Internal_Rela *sec_relocs;
7223 const Elf_Internal_Rela *r, *rend;
7224
7225 /* We can ignore stub sections when looking for relocs. */
7226 if ((o->flags & SEC_RELOC) == 0
7227 || o->reloc_count == 0
738e5348 7228 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7229 continue;
7230
45d6a902 7231 sec_relocs
9719ad41 7232 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7233 info->keep_memory);
b49e97c9 7234 if (sec_relocs == NULL)
b34976b6 7235 return FALSE;
b49e97c9
TS
7236
7237 rend = sec_relocs + o->reloc_count;
7238 for (r = sec_relocs; r < rend; r++)
7239 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7240 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7241 break;
7242
6cdc0ccc 7243 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7244 free (sec_relocs);
7245
7246 if (r < rend)
7247 break;
7248 }
7249
7250 if (o == NULL)
7251 {
7252 /* There is no non-call reloc for this stub, so we do
7253 not need it. Since this function is called before
7254 the linker maps input sections to output sections, we
7255 can easily discard it by setting the SEC_EXCLUDE
7256 flag. */
7257 sec->flags |= SEC_EXCLUDE;
b34976b6 7258 return TRUE;
b49e97c9
TS
7259 }
7260
7261 /* Record this stub in an array of local symbol stubs for
7262 this BFD. */
7263 if (elf_tdata (abfd)->local_stubs == NULL)
7264 {
7265 unsigned long symcount;
7266 asection **n;
7267 bfd_size_type amt;
7268
7269 if (elf_bad_symtab (abfd))
7270 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7271 else
7272 symcount = symtab_hdr->sh_info;
7273 amt = symcount * sizeof (asection *);
9719ad41 7274 n = bfd_zalloc (abfd, amt);
b49e97c9 7275 if (n == NULL)
b34976b6 7276 return FALSE;
b49e97c9
TS
7277 elf_tdata (abfd)->local_stubs = n;
7278 }
7279
b9d58d71 7280 sec->flags |= SEC_KEEP;
b49e97c9
TS
7281 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7282
7283 /* We don't need to set mips16_stubs_seen in this case.
7284 That flag is used to see whether we need to look through
7285 the global symbol table for stubs. We don't need to set
7286 it here, because we just have a local stub. */
7287 }
7288 else
7289 {
7290 struct mips_elf_link_hash_entry *h;
7291
7292 h = ((struct mips_elf_link_hash_entry *)
7293 sym_hashes[r_symndx - extsymoff]);
7294
973a3492
L
7295 while (h->root.root.type == bfd_link_hash_indirect
7296 || h->root.root.type == bfd_link_hash_warning)
7297 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7298
b49e97c9
TS
7299 /* H is the symbol this stub is for. */
7300
b9d58d71
TS
7301 /* If we already have an appropriate stub for this function, we
7302 don't need another one, so we can discard this one. Since
7303 this function is called before the linker maps input sections
7304 to output sections, we can easily discard it by setting the
7305 SEC_EXCLUDE flag. */
7306 if (h->fn_stub != NULL)
7307 {
7308 sec->flags |= SEC_EXCLUDE;
7309 return TRUE;
7310 }
7311
7312 sec->flags |= SEC_KEEP;
b49e97c9 7313 h->fn_stub = sec;
b34976b6 7314 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7315 }
7316 }
b9d58d71 7317 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7318 {
7319 unsigned long r_symndx;
7320 struct mips_elf_link_hash_entry *h;
7321 asection **loc;
7322
7323 /* Look at the relocation information to figure out which symbol
7324 this is for. */
7325
738e5348
RS
7326 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7327 if (r_symndx == 0)
7328 {
7329 (*_bfd_error_handler)
7330 (_("%B: Warning: cannot determine the target function for"
7331 " stub section `%s'"),
7332 abfd, name);
7333 bfd_set_error (bfd_error_bad_value);
7334 return FALSE;
7335 }
b49e97c9
TS
7336
7337 if (r_symndx < extsymoff
7338 || sym_hashes[r_symndx - extsymoff] == NULL)
7339 {
b9d58d71 7340 asection *o;
b49e97c9 7341
b9d58d71
TS
7342 /* This stub is for a local symbol. This stub will only be
7343 needed if there is some relocation (R_MIPS16_26) in this BFD
7344 that refers to this symbol. */
7345 for (o = abfd->sections; o != NULL; o = o->next)
7346 {
7347 Elf_Internal_Rela *sec_relocs;
7348 const Elf_Internal_Rela *r, *rend;
7349
7350 /* We can ignore stub sections when looking for relocs. */
7351 if ((o->flags & SEC_RELOC) == 0
7352 || o->reloc_count == 0
738e5348 7353 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7354 continue;
7355
7356 sec_relocs
7357 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7358 info->keep_memory);
7359 if (sec_relocs == NULL)
7360 return FALSE;
7361
7362 rend = sec_relocs + o->reloc_count;
7363 for (r = sec_relocs; r < rend; r++)
7364 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7365 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7366 break;
7367
7368 if (elf_section_data (o)->relocs != sec_relocs)
7369 free (sec_relocs);
7370
7371 if (r < rend)
7372 break;
7373 }
7374
7375 if (o == NULL)
7376 {
7377 /* There is no non-call reloc for this stub, so we do
7378 not need it. Since this function is called before
7379 the linker maps input sections to output sections, we
7380 can easily discard it by setting the SEC_EXCLUDE
7381 flag. */
7382 sec->flags |= SEC_EXCLUDE;
7383 return TRUE;
7384 }
7385
7386 /* Record this stub in an array of local symbol call_stubs for
7387 this BFD. */
7388 if (elf_tdata (abfd)->local_call_stubs == NULL)
7389 {
7390 unsigned long symcount;
7391 asection **n;
7392 bfd_size_type amt;
7393
7394 if (elf_bad_symtab (abfd))
7395 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7396 else
7397 symcount = symtab_hdr->sh_info;
7398 amt = symcount * sizeof (asection *);
7399 n = bfd_zalloc (abfd, amt);
7400 if (n == NULL)
7401 return FALSE;
7402 elf_tdata (abfd)->local_call_stubs = n;
7403 }
b49e97c9 7404
b9d58d71
TS
7405 sec->flags |= SEC_KEEP;
7406 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7407
b9d58d71
TS
7408 /* We don't need to set mips16_stubs_seen in this case.
7409 That flag is used to see whether we need to look through
7410 the global symbol table for stubs. We don't need to set
7411 it here, because we just have a local stub. */
7412 }
b49e97c9 7413 else
b49e97c9 7414 {
b9d58d71
TS
7415 h = ((struct mips_elf_link_hash_entry *)
7416 sym_hashes[r_symndx - extsymoff]);
7417
7418 /* H is the symbol this stub is for. */
7419
7420 if (CALL_FP_STUB_P (name))
7421 loc = &h->call_fp_stub;
7422 else
7423 loc = &h->call_stub;
7424
7425 /* If we already have an appropriate stub for this function, we
7426 don't need another one, so we can discard this one. Since
7427 this function is called before the linker maps input sections
7428 to output sections, we can easily discard it by setting the
7429 SEC_EXCLUDE flag. */
7430 if (*loc != NULL)
7431 {
7432 sec->flags |= SEC_EXCLUDE;
7433 return TRUE;
7434 }
b49e97c9 7435
b9d58d71
TS
7436 sec->flags |= SEC_KEEP;
7437 *loc = sec;
7438 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7439 }
b49e97c9
TS
7440 }
7441
b49e97c9 7442 sreloc = NULL;
c224138d 7443 contents = NULL;
b49e97c9
TS
7444 for (rel = relocs; rel < rel_end; ++rel)
7445 {
7446 unsigned long r_symndx;
7447 unsigned int r_type;
7448 struct elf_link_hash_entry *h;
861fb55a 7449 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7450
7451 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7452 r_type = ELF_R_TYPE (abfd, rel->r_info);
7453
7454 if (r_symndx < extsymoff)
7455 h = NULL;
7456 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7457 {
7458 (*_bfd_error_handler)
d003868e
AM
7459 (_("%B: Malformed reloc detected for section %s"),
7460 abfd, name);
b49e97c9 7461 bfd_set_error (bfd_error_bad_value);
b34976b6 7462 return FALSE;
b49e97c9
TS
7463 }
7464 else
7465 {
7466 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7467 while (h != NULL
7468 && (h->root.type == bfd_link_hash_indirect
7469 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7470 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7471 }
b49e97c9 7472
861fb55a
DJ
7473 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7474 relocation into a dynamic one. */
7475 can_make_dynamic_p = FALSE;
7476 switch (r_type)
7477 {
7478 case R_MIPS16_GOT16:
7479 case R_MIPS16_CALL16:
7480 case R_MIPS_GOT16:
7481 case R_MIPS_CALL16:
7482 case R_MIPS_CALL_HI16:
7483 case R_MIPS_CALL_LO16:
7484 case R_MIPS_GOT_HI16:
7485 case R_MIPS_GOT_LO16:
7486 case R_MIPS_GOT_PAGE:
7487 case R_MIPS_GOT_OFST:
7488 case R_MIPS_GOT_DISP:
7489 case R_MIPS_TLS_GOTTPREL:
7490 case R_MIPS_TLS_GD:
7491 case R_MIPS_TLS_LDM:
7492 if (dynobj == NULL)
7493 elf_hash_table (info)->dynobj = dynobj = abfd;
7494 if (!mips_elf_create_got_section (dynobj, info))
7495 return FALSE;
7496 if (htab->is_vxworks && !info->shared)
b49e97c9 7497 {
861fb55a
DJ
7498 (*_bfd_error_handler)
7499 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7500 abfd, (unsigned long) rel->r_offset);
7501 bfd_set_error (bfd_error_bad_value);
7502 return FALSE;
b49e97c9 7503 }
861fb55a 7504 break;
b49e97c9 7505
861fb55a
DJ
7506 case R_MIPS_32:
7507 case R_MIPS_REL32:
7508 case R_MIPS_64:
7509 /* In VxWorks executables, references to external symbols
7510 must be handled using copy relocs or PLT entries; it is not
7511 possible to convert this relocation into a dynamic one.
7512
7513 For executables that use PLTs and copy-relocs, we have a
7514 choice between converting the relocation into a dynamic
7515 one or using copy relocations or PLT entries. It is
7516 usually better to do the former, unless the relocation is
7517 against a read-only section. */
7518 if ((info->shared
7519 || (h != NULL
7520 && !htab->is_vxworks
7521 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7522 && !(!info->nocopyreloc
7523 && !PIC_OBJECT_P (abfd)
7524 && MIPS_ELF_READONLY_SECTION (sec))))
7525 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7526 {
861fb55a 7527 can_make_dynamic_p = TRUE;
b49e97c9
TS
7528 if (dynobj == NULL)
7529 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7530 break;
861fb55a
DJ
7531 }
7532 /* Fall through. */
b49e97c9 7533
861fb55a
DJ
7534 default:
7535 /* Most static relocations require pointer equality, except
7536 for branches. */
7537 if (h)
7538 h->pointer_equality_needed = TRUE;
7539 /* Fall through. */
b49e97c9 7540
861fb55a
DJ
7541 case R_MIPS_26:
7542 case R_MIPS_PC16:
7543 case R_MIPS16_26:
7544 if (h)
7545 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7546 break;
b49e97c9
TS
7547 }
7548
0a44bf69
RS
7549 if (h)
7550 {
0a44bf69
RS
7551 /* Relocations against the special VxWorks __GOTT_BASE__ and
7552 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7553 room for them in .rela.dyn. */
7554 if (is_gott_symbol (info, h))
7555 {
7556 if (sreloc == NULL)
7557 {
7558 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7559 if (sreloc == NULL)
7560 return FALSE;
7561 }
7562 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7563 if (MIPS_ELF_READONLY_SECTION (sec))
7564 /* We tell the dynamic linker that there are
7565 relocations against the text segment. */
7566 info->flags |= DF_TEXTREL;
0a44bf69
RS
7567 }
7568 }
7569 else if (r_type == R_MIPS_CALL_LO16
7570 || r_type == R_MIPS_GOT_LO16
7571 || r_type == R_MIPS_GOT_DISP
738e5348 7572 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7573 {
7574 /* We may need a local GOT entry for this relocation. We
7575 don't count R_MIPS_GOT_PAGE because we can estimate the
7576 maximum number of pages needed by looking at the size of
738e5348
RS
7577 the segment. Similar comments apply to R_MIPS*_GOT16 and
7578 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7579 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7580 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7581 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0
RS
7582 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7583 rel->r_addend, info, 0))
f4416af6 7584 return FALSE;
b49e97c9
TS
7585 }
7586
861fb55a
DJ
7587 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7588 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7589
b49e97c9
TS
7590 switch (r_type)
7591 {
7592 case R_MIPS_CALL16:
738e5348 7593 case R_MIPS16_CALL16:
b49e97c9
TS
7594 if (h == NULL)
7595 {
7596 (*_bfd_error_handler)
d003868e
AM
7597 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7598 abfd, (unsigned long) rel->r_offset);
b49e97c9 7599 bfd_set_error (bfd_error_bad_value);
b34976b6 7600 return FALSE;
b49e97c9
TS
7601 }
7602 /* Fall through. */
7603
7604 case R_MIPS_CALL_HI16:
7605 case R_MIPS_CALL_LO16:
7606 if (h != NULL)
7607 {
d334575b 7608 /* VxWorks call relocations point at the function's .got.plt
0a44bf69
RS
7609 entry, which will be allocated by adjust_dynamic_symbol.
7610 Otherwise, this symbol requires a global GOT entry. */
8275b357 7611 if ((!htab->is_vxworks || h->forced_local)
a8028dd0 7612 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7613 return FALSE;
b49e97c9
TS
7614
7615 /* We need a stub, not a plt entry for the undefined
7616 function. But we record it as if it needs plt. See
c152c796 7617 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 7618 h->needs_plt = 1;
b49e97c9
TS
7619 h->type = STT_FUNC;
7620 }
7621 break;
7622
0fdc1bf1
AO
7623 case R_MIPS_GOT_PAGE:
7624 /* If this is a global, overridable symbol, GOT_PAGE will
7625 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 7626 if (h)
0fdc1bf1
AO
7627 {
7628 struct mips_elf_link_hash_entry *hmips =
7629 (struct mips_elf_link_hash_entry *) h;
143d77c5 7630
3a3b6725 7631 /* This symbol is definitely not overridable. */
f5385ebf 7632 if (hmips->root.def_regular
0fdc1bf1 7633 && ! (info->shared && ! info->symbolic
f5385ebf 7634 && ! hmips->root.forced_local))
c224138d 7635 h = NULL;
0fdc1bf1
AO
7636 }
7637 /* Fall through. */
7638
738e5348 7639 case R_MIPS16_GOT16:
b49e97c9
TS
7640 case R_MIPS_GOT16:
7641 case R_MIPS_GOT_HI16:
7642 case R_MIPS_GOT_LO16:
3a3b6725 7643 if (!h || r_type == R_MIPS_GOT_PAGE)
c224138d 7644 {
3a3b6725
DJ
7645 /* This relocation needs (or may need, if h != NULL) a
7646 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7647 know for sure until we know whether the symbol is
7648 preemptible. */
c224138d
RS
7649 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7650 {
7651 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7652 return FALSE;
7653 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7654 addend = mips_elf_read_rel_addend (abfd, rel,
7655 howto, contents);
7656 if (r_type == R_MIPS_GOT16)
7657 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7658 contents, &addend);
7659 else
7660 addend <<= howto->rightshift;
7661 }
7662 else
7663 addend = rel->r_addend;
a8028dd0
RS
7664 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7665 addend))
c224138d
RS
7666 return FALSE;
7667 break;
7668 }
7669 /* Fall through. */
7670
b49e97c9 7671 case R_MIPS_GOT_DISP:
a8028dd0 7672 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7673 return FALSE;
b49e97c9
TS
7674 break;
7675
0f20cc35
DJ
7676 case R_MIPS_TLS_GOTTPREL:
7677 if (info->shared)
7678 info->flags |= DF_STATIC_TLS;
7679 /* Fall through */
7680
7681 case R_MIPS_TLS_LDM:
7682 if (r_type == R_MIPS_TLS_LDM)
7683 {
7684 r_symndx = 0;
7685 h = NULL;
7686 }
7687 /* Fall through */
7688
7689 case R_MIPS_TLS_GD:
7690 /* This symbol requires a global offset table entry, or two
7691 for TLS GD relocations. */
7692 {
7693 unsigned char flag = (r_type == R_MIPS_TLS_GD
7694 ? GOT_TLS_GD
7695 : r_type == R_MIPS_TLS_LDM
7696 ? GOT_TLS_LDM
7697 : GOT_TLS_IE);
7698 if (h != NULL)
7699 {
7700 struct mips_elf_link_hash_entry *hmips =
7701 (struct mips_elf_link_hash_entry *) h;
7702 hmips->tls_type |= flag;
7703
a8028dd0
RS
7704 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7705 info, flag))
0f20cc35
DJ
7706 return FALSE;
7707 }
7708 else
7709 {
7710 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7711
a8028dd0
RS
7712 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7713 rel->r_addend,
7714 info, flag))
0f20cc35
DJ
7715 return FALSE;
7716 }
7717 }
7718 break;
7719
b49e97c9
TS
7720 case R_MIPS_32:
7721 case R_MIPS_REL32:
7722 case R_MIPS_64:
0a44bf69
RS
7723 /* In VxWorks executables, references to external symbols
7724 are handled using copy relocs or PLT stubs, so there's
7725 no need to add a .rela.dyn entry for this relocation. */
861fb55a 7726 if (can_make_dynamic_p)
b49e97c9
TS
7727 {
7728 if (sreloc == NULL)
7729 {
0a44bf69 7730 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 7731 if (sreloc == NULL)
f4416af6 7732 return FALSE;
b49e97c9 7733 }
9a59ad6b 7734 if (info->shared && h == NULL)
82f0cfbd
EC
7735 {
7736 /* When creating a shared object, we must copy these
7737 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
7738 relocs. Make room for this reloc in .rel(a).dyn. */
7739 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 7740 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7741 /* We tell the dynamic linker that there are
7742 relocations against the text segment. */
7743 info->flags |= DF_TEXTREL;
7744 }
b49e97c9
TS
7745 else
7746 {
7747 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 7748
9a59ad6b
DJ
7749 /* For a shared object, we must copy this relocation
7750 unless the symbol turns out to be undefined and
7751 weak with non-default visibility, in which case
7752 it will be left as zero.
7753
7754 We could elide R_MIPS_REL32 for locally binding symbols
7755 in shared libraries, but do not yet do so.
7756
7757 For an executable, we only need to copy this
7758 reloc if the symbol is defined in a dynamic
7759 object. */
b49e97c9
TS
7760 hmips = (struct mips_elf_link_hash_entry *) h;
7761 ++hmips->possibly_dynamic_relocs;
943284cc 7762 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7763 /* We need it to tell the dynamic linker if there
7764 are relocations against the text segment. */
7765 hmips->readonly_reloc = TRUE;
b49e97c9 7766 }
b49e97c9
TS
7767 }
7768
7769 if (SGI_COMPAT (abfd))
7770 mips_elf_hash_table (info)->compact_rel_size +=
7771 sizeof (Elf32_External_crinfo);
7772 break;
7773
7774 case R_MIPS_26:
7775 case R_MIPS_GPREL16:
7776 case R_MIPS_LITERAL:
7777 case R_MIPS_GPREL32:
7778 if (SGI_COMPAT (abfd))
7779 mips_elf_hash_table (info)->compact_rel_size +=
7780 sizeof (Elf32_External_crinfo);
7781 break;
7782
7783 /* This relocation describes the C++ object vtable hierarchy.
7784 Reconstruct it for later use during GC. */
7785 case R_MIPS_GNU_VTINHERIT:
c152c796 7786 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 7787 return FALSE;
b49e97c9
TS
7788 break;
7789
7790 /* This relocation describes which C++ vtable entries are actually
7791 used. Record for later use during GC. */
7792 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
7793 BFD_ASSERT (h != NULL);
7794 if (h != NULL
7795 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 7796 return FALSE;
b49e97c9
TS
7797 break;
7798
7799 default:
7800 break;
7801 }
7802
7803 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
7804 related to taking the function's address. This doesn't apply to
7805 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7806 a normal .got entry. */
7807 if (!htab->is_vxworks && h != NULL)
7808 switch (r_type)
7809 {
7810 default:
7811 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7812 break;
738e5348 7813 case R_MIPS16_CALL16:
0a44bf69
RS
7814 case R_MIPS_CALL16:
7815 case R_MIPS_CALL_HI16:
7816 case R_MIPS_CALL_LO16:
7817 case R_MIPS_JALR:
7818 break;
7819 }
b49e97c9 7820
738e5348
RS
7821 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7822 if there is one. We only need to handle global symbols here;
7823 we decide whether to keep or delete stubs for local symbols
7824 when processing the stub's relocations. */
b49e97c9 7825 if (h != NULL
738e5348
RS
7826 && !mips16_call_reloc_p (r_type)
7827 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
7828 {
7829 struct mips_elf_link_hash_entry *mh;
7830
7831 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 7832 mh->need_fn_stub = TRUE;
b49e97c9 7833 }
861fb55a
DJ
7834
7835 /* Refuse some position-dependent relocations when creating a
7836 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7837 not PIC, but we can create dynamic relocations and the result
7838 will be fine. Also do not refuse R_MIPS_LO16, which can be
7839 combined with R_MIPS_GOT16. */
7840 if (info->shared)
7841 {
7842 switch (r_type)
7843 {
7844 case R_MIPS16_HI16:
7845 case R_MIPS_HI16:
7846 case R_MIPS_HIGHER:
7847 case R_MIPS_HIGHEST:
7848 /* Don't refuse a high part relocation if it's against
7849 no symbol (e.g. part of a compound relocation). */
7850 if (r_symndx == 0)
7851 break;
7852
7853 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7854 and has a special meaning. */
7855 if (!NEWABI_P (abfd) && h != NULL
7856 && strcmp (h->root.root.string, "_gp_disp") == 0)
7857 break;
7858
7859 /* FALLTHROUGH */
7860
7861 case R_MIPS16_26:
7862 case R_MIPS_26:
7863 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7864 (*_bfd_error_handler)
7865 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7866 abfd, howto->name,
7867 (h) ? h->root.root.string : "a local symbol");
7868 bfd_set_error (bfd_error_bad_value);
7869 return FALSE;
7870 default:
7871 break;
7872 }
7873 }
b49e97c9
TS
7874 }
7875
b34976b6 7876 return TRUE;
b49e97c9
TS
7877}
7878\f
d0647110 7879bfd_boolean
9719ad41
RS
7880_bfd_mips_relax_section (bfd *abfd, asection *sec,
7881 struct bfd_link_info *link_info,
7882 bfd_boolean *again)
d0647110
AO
7883{
7884 Elf_Internal_Rela *internal_relocs;
7885 Elf_Internal_Rela *irel, *irelend;
7886 Elf_Internal_Shdr *symtab_hdr;
7887 bfd_byte *contents = NULL;
d0647110
AO
7888 size_t extsymoff;
7889 bfd_boolean changed_contents = FALSE;
7890 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7891 Elf_Internal_Sym *isymbuf = NULL;
7892
7893 /* We are not currently changing any sizes, so only one pass. */
7894 *again = FALSE;
7895
1049f94e 7896 if (link_info->relocatable)
d0647110
AO
7897 return TRUE;
7898
9719ad41 7899 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 7900 link_info->keep_memory);
d0647110
AO
7901 if (internal_relocs == NULL)
7902 return TRUE;
7903
7904 irelend = internal_relocs + sec->reloc_count
7905 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7906 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7907 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7908
7909 for (irel = internal_relocs; irel < irelend; irel++)
7910 {
7911 bfd_vma symval;
7912 bfd_signed_vma sym_offset;
7913 unsigned int r_type;
7914 unsigned long r_symndx;
7915 asection *sym_sec;
7916 unsigned long instruction;
7917
7918 /* Turn jalr into bgezal, and jr into beq, if they're marked
7919 with a JALR relocation, that indicate where they jump to.
7920 This saves some pipeline bubbles. */
7921 r_type = ELF_R_TYPE (abfd, irel->r_info);
7922 if (r_type != R_MIPS_JALR)
7923 continue;
7924
7925 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7926 /* Compute the address of the jump target. */
7927 if (r_symndx >= extsymoff)
7928 {
7929 struct mips_elf_link_hash_entry *h
7930 = ((struct mips_elf_link_hash_entry *)
7931 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7932
7933 while (h->root.root.type == bfd_link_hash_indirect
7934 || h->root.root.type == bfd_link_hash_warning)
7935 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 7936
d0647110
AO
7937 /* If a symbol is undefined, or if it may be overridden,
7938 skip it. */
7939 if (! ((h->root.root.type == bfd_link_hash_defined
7940 || h->root.root.type == bfd_link_hash_defweak)
7941 && h->root.root.u.def.section)
7942 || (link_info->shared && ! link_info->symbolic
f5385ebf 7943 && !h->root.forced_local))
d0647110
AO
7944 continue;
7945
7946 sym_sec = h->root.root.u.def.section;
7947 if (sym_sec->output_section)
7948 symval = (h->root.root.u.def.value
7949 + sym_sec->output_section->vma
7950 + sym_sec->output_offset);
7951 else
7952 symval = h->root.root.u.def.value;
7953 }
7954 else
7955 {
7956 Elf_Internal_Sym *isym;
7957
7958 /* Read this BFD's symbols if we haven't done so already. */
7959 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7960 {
7961 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7962 if (isymbuf == NULL)
7963 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7964 symtab_hdr->sh_info, 0,
7965 NULL, NULL, NULL);
7966 if (isymbuf == NULL)
7967 goto relax_return;
7968 }
7969
7970 isym = isymbuf + r_symndx;
7971 if (isym->st_shndx == SHN_UNDEF)
7972 continue;
7973 else if (isym->st_shndx == SHN_ABS)
7974 sym_sec = bfd_abs_section_ptr;
7975 else if (isym->st_shndx == SHN_COMMON)
7976 sym_sec = bfd_com_section_ptr;
7977 else
7978 sym_sec
7979 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7980 symval = isym->st_value
7981 + sym_sec->output_section->vma
7982 + sym_sec->output_offset;
7983 }
7984
7985 /* Compute branch offset, from delay slot of the jump to the
7986 branch target. */
7987 sym_offset = (symval + irel->r_addend)
7988 - (sec_start + irel->r_offset + 4);
7989
7990 /* Branch offset must be properly aligned. */
7991 if ((sym_offset & 3) != 0)
7992 continue;
7993
7994 sym_offset >>= 2;
7995
7996 /* Check that it's in range. */
7997 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7998 continue;
143d77c5 7999
d0647110 8000 /* Get the section contents if we haven't done so already. */
c224138d
RS
8001 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8002 goto relax_return;
d0647110
AO
8003
8004 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8005
8006 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8007 if ((instruction & 0xfc1fffff) == 0x0000f809)
8008 instruction = 0x04110000;
8009 /* If it was jr <reg>, turn it into b <target>. */
8010 else if ((instruction & 0xfc1fffff) == 0x00000008)
8011 instruction = 0x10000000;
8012 else
8013 continue;
8014
8015 instruction |= (sym_offset & 0xffff);
8016 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8017 changed_contents = TRUE;
8018 }
8019
8020 if (contents != NULL
8021 && elf_section_data (sec)->this_hdr.contents != contents)
8022 {
8023 if (!changed_contents && !link_info->keep_memory)
8024 free (contents);
8025 else
8026 {
8027 /* Cache the section contents for elf_link_input_bfd. */
8028 elf_section_data (sec)->this_hdr.contents = contents;
8029 }
8030 }
8031 return TRUE;
8032
143d77c5 8033 relax_return:
eea6121a
AM
8034 if (contents != NULL
8035 && elf_section_data (sec)->this_hdr.contents != contents)
8036 free (contents);
d0647110
AO
8037 return FALSE;
8038}
8039\f
9a59ad6b
DJ
8040/* Allocate space for global sym dynamic relocs. */
8041
8042static bfd_boolean
8043allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8044{
8045 struct bfd_link_info *info = inf;
8046 bfd *dynobj;
8047 struct mips_elf_link_hash_entry *hmips;
8048 struct mips_elf_link_hash_table *htab;
8049
8050 htab = mips_elf_hash_table (info);
8051 dynobj = elf_hash_table (info)->dynobj;
8052 hmips = (struct mips_elf_link_hash_entry *) h;
8053
8054 /* VxWorks executables are handled elsewhere; we only need to
8055 allocate relocations in shared objects. */
8056 if (htab->is_vxworks && !info->shared)
8057 return TRUE;
8058
63897e2c
RS
8059 /* Ignore indirect and warning symbols. All relocations against
8060 such symbols will be redirected to the target symbol. */
8061 if (h->root.type == bfd_link_hash_indirect
8062 || h->root.type == bfd_link_hash_warning)
8063 return TRUE;
8064
9a59ad6b
DJ
8065 /* If this symbol is defined in a dynamic object, or we are creating
8066 a shared library, we will need to copy any R_MIPS_32 or
8067 R_MIPS_REL32 relocs against it into the output file. */
8068 if (! info->relocatable
8069 && hmips->possibly_dynamic_relocs != 0
8070 && (h->root.type == bfd_link_hash_defweak
8071 || !h->def_regular
8072 || info->shared))
8073 {
8074 bfd_boolean do_copy = TRUE;
8075
8076 if (h->root.type == bfd_link_hash_undefweak)
8077 {
8078 /* Do not copy relocations for undefined weak symbols with
8079 non-default visibility. */
8080 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8081 do_copy = FALSE;
8082
8083 /* Make sure undefined weak symbols are output as a dynamic
8084 symbol in PIEs. */
8085 else if (h->dynindx == -1 && !h->forced_local)
8086 {
8087 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8088 return FALSE;
8089 }
8090 }
8091
8092 if (do_copy)
8093 {
aff469fa
RS
8094 /* Even though we don't directly need a GOT entry for this symbol,
8095 a symbol must have a dynamic symbol table index greater that
8096 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8097 if (hmips->global_got_area > GGA_RELOC_ONLY)
8098 hmips->global_got_area = GGA_RELOC_ONLY;
8099
9a59ad6b
DJ
8100 mips_elf_allocate_dynamic_relocations
8101 (dynobj, info, hmips->possibly_dynamic_relocs);
8102 if (hmips->readonly_reloc)
8103 /* We tell the dynamic linker that there are relocations
8104 against the text segment. */
8105 info->flags |= DF_TEXTREL;
8106 }
8107 }
8108
8109 return TRUE;
8110}
8111
b49e97c9
TS
8112/* Adjust a symbol defined by a dynamic object and referenced by a
8113 regular object. The current definition is in some section of the
8114 dynamic object, but we're not including those sections. We have to
8115 change the definition to something the rest of the link can
8116 understand. */
8117
b34976b6 8118bfd_boolean
9719ad41
RS
8119_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8120 struct elf_link_hash_entry *h)
b49e97c9
TS
8121{
8122 bfd *dynobj;
8123 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8124 struct mips_elf_link_hash_table *htab;
b49e97c9 8125
5108fc1b 8126 htab = mips_elf_hash_table (info);
b49e97c9 8127 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8128 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8129
8130 /* Make sure we know what is going on here. */
8131 BFD_ASSERT (dynobj != NULL
f5385ebf 8132 && (h->needs_plt
f6e332e6 8133 || h->u.weakdef != NULL
f5385ebf
AM
8134 || (h->def_dynamic
8135 && h->ref_regular
8136 && !h->def_regular)));
b49e97c9 8137
b49e97c9 8138 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8139
861fb55a
DJ
8140 /* If there are call relocations against an externally-defined symbol,
8141 see whether we can create a MIPS lazy-binding stub for it. We can
8142 only do this if all references to the function are through call
8143 relocations, and in that case, the traditional lazy-binding stubs
8144 are much more efficient than PLT entries.
8145
8146 Traditional stubs are only available on SVR4 psABI-based systems;
8147 VxWorks always uses PLTs instead. */
8148 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8149 {
8150 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8151 return TRUE;
b49e97c9
TS
8152
8153 /* If this symbol is not defined in a regular file, then set
8154 the symbol to the stub location. This is required to make
8155 function pointers compare as equal between the normal
8156 executable and the shared library. */
f5385ebf 8157 if (!h->def_regular)
b49e97c9 8158 {
33bb52fb
RS
8159 hmips->needs_lazy_stub = TRUE;
8160 htab->lazy_stub_count++;
b34976b6 8161 return TRUE;
b49e97c9
TS
8162 }
8163 }
861fb55a
DJ
8164 /* As above, VxWorks requires PLT entries for externally-defined
8165 functions that are only accessed through call relocations.
b49e97c9 8166
861fb55a
DJ
8167 Both VxWorks and non-VxWorks targets also need PLT entries if there
8168 are static-only relocations against an externally-defined function.
8169 This can technically occur for shared libraries if there are
8170 branches to the symbol, although it is unlikely that this will be
8171 used in practice due to the short ranges involved. It can occur
8172 for any relative or absolute relocation in executables; in that
8173 case, the PLT entry becomes the function's canonical address. */
8174 else if (((h->needs_plt && !hmips->no_fn_stub)
8175 || (h->type == STT_FUNC && hmips->has_static_relocs))
8176 && htab->use_plts_and_copy_relocs
8177 && !SYMBOL_CALLS_LOCAL (info, h)
8178 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8179 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8180 {
861fb55a
DJ
8181 /* If this is the first symbol to need a PLT entry, allocate room
8182 for the header. */
8183 if (htab->splt->size == 0)
8184 {
8185 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8186
861fb55a
DJ
8187 /* If we're using the PLT additions to the psABI, each PLT
8188 entry is 16 bytes and the PLT0 entry is 32 bytes.
8189 Encourage better cache usage by aligning. We do this
8190 lazily to avoid pessimizing traditional objects. */
8191 if (!htab->is_vxworks
8192 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8193 return FALSE;
0a44bf69 8194
861fb55a
DJ
8195 /* Make sure that .got.plt is word-aligned. We do this lazily
8196 for the same reason as above. */
8197 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8198 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8199 return FALSE;
0a44bf69 8200
861fb55a 8201 htab->splt->size += htab->plt_header_size;
0a44bf69 8202
861fb55a
DJ
8203 /* On non-VxWorks targets, the first two entries in .got.plt
8204 are reserved. */
8205 if (!htab->is_vxworks)
8206 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
0a44bf69 8207
861fb55a
DJ
8208 /* On VxWorks, also allocate room for the header's
8209 .rela.plt.unloaded entries. */
8210 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8211 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8212 }
8213
8214 /* Assign the next .plt entry to this symbol. */
8215 h->plt.offset = htab->splt->size;
8216 htab->splt->size += htab->plt_entry_size;
8217
8218 /* If the output file has no definition of the symbol, set the
861fb55a 8219 symbol's value to the address of the stub. */
131eb6b7 8220 if (!info->shared && !h->def_regular)
0a44bf69
RS
8221 {
8222 h->root.u.def.section = htab->splt;
8223 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8224 /* For VxWorks, point at the PLT load stub rather than the
8225 lazy resolution stub; this stub will become the canonical
8226 function address. */
8227 if (htab->is_vxworks)
8228 h->root.u.def.value += 8;
0a44bf69
RS
8229 }
8230
861fb55a
DJ
8231 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8232 relocation. */
8233 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8234 htab->srelplt->size += (htab->is_vxworks
8235 ? MIPS_ELF_RELA_SIZE (dynobj)
8236 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8237
8238 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8239 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8240 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8241
861fb55a
DJ
8242 /* All relocations against this symbol that could have been made
8243 dynamic will now refer to the PLT entry instead. */
8244 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8245
0a44bf69
RS
8246 return TRUE;
8247 }
8248
8249 /* If this is a weak symbol, and there is a real definition, the
8250 processor independent code will have arranged for us to see the
8251 real definition first, and we can just use the same value. */
8252 if (h->u.weakdef != NULL)
8253 {
8254 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8255 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8256 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8257 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8258 return TRUE;
8259 }
8260
861fb55a
DJ
8261 /* Otherwise, there is nothing further to do for symbols defined
8262 in regular objects. */
8263 if (h->def_regular)
0a44bf69
RS
8264 return TRUE;
8265
861fb55a
DJ
8266 /* There's also nothing more to do if we'll convert all relocations
8267 against this symbol into dynamic relocations. */
8268 if (!hmips->has_static_relocs)
8269 return TRUE;
8270
8271 /* We're now relying on copy relocations. Complain if we have
8272 some that we can't convert. */
8273 if (!htab->use_plts_and_copy_relocs || info->shared)
8274 {
8275 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8276 "dynamic symbol %s"),
8277 h->root.root.string);
8278 bfd_set_error (bfd_error_bad_value);
8279 return FALSE;
8280 }
8281
0a44bf69
RS
8282 /* We must allocate the symbol in our .dynbss section, which will
8283 become part of the .bss section of the executable. There will be
8284 an entry for this symbol in the .dynsym section. The dynamic
8285 object will contain position independent code, so all references
8286 from the dynamic object to this symbol will go through the global
8287 offset table. The dynamic linker will use the .dynsym entry to
8288 determine the address it must put in the global offset table, so
8289 both the dynamic object and the regular object will refer to the
8290 same memory location for the variable. */
8291
8292 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8293 {
861fb55a
DJ
8294 if (htab->is_vxworks)
8295 htab->srelbss->size += sizeof (Elf32_External_Rela);
8296 else
8297 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8298 h->needs_copy = 1;
8299 }
8300
861fb55a
DJ
8301 /* All relocations against this symbol that could have been made
8302 dynamic will now refer to the local copy instead. */
8303 hmips->possibly_dynamic_relocs = 0;
8304
027297b7 8305 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8306}
b49e97c9
TS
8307\f
8308/* This function is called after all the input files have been read,
8309 and the input sections have been assigned to output sections. We
8310 check for any mips16 stub sections that we can discard. */
8311
b34976b6 8312bfd_boolean
9719ad41
RS
8313_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8314 struct bfd_link_info *info)
b49e97c9
TS
8315{
8316 asection *ri;
0a44bf69 8317 struct mips_elf_link_hash_table *htab;
861fb55a 8318 struct mips_htab_traverse_info hti;
0a44bf69
RS
8319
8320 htab = mips_elf_hash_table (info);
f4416af6 8321
b49e97c9
TS
8322 /* The .reginfo section has a fixed size. */
8323 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8324 if (ri != NULL)
9719ad41 8325 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8326
861fb55a
DJ
8327 hti.info = info;
8328 hti.output_bfd = output_bfd;
8329 hti.error = FALSE;
8330 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8331 mips_elf_check_symbols, &hti);
8332 if (hti.error)
8333 return FALSE;
f4416af6 8334
33bb52fb
RS
8335 return TRUE;
8336}
8337
8338/* If the link uses a GOT, lay it out and work out its size. */
8339
8340static bfd_boolean
8341mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8342{
8343 bfd *dynobj;
8344 asection *s;
8345 struct mips_got_info *g;
33bb52fb
RS
8346 bfd_size_type loadable_size = 0;
8347 bfd_size_type page_gotno;
8348 bfd *sub;
8349 struct mips_elf_count_tls_arg count_tls_arg;
8350 struct mips_elf_link_hash_table *htab;
8351
8352 htab = mips_elf_hash_table (info);
a8028dd0 8353 s = htab->sgot;
f4416af6 8354 if (s == NULL)
b34976b6 8355 return TRUE;
b49e97c9 8356
33bb52fb 8357 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8358 g = htab->got_info;
8359
861fb55a
DJ
8360 /* Allocate room for the reserved entries. VxWorks always reserves
8361 3 entries; other objects only reserve 2 entries. */
8362 BFD_ASSERT (g->assigned_gotno == 0);
8363 if (htab->is_vxworks)
8364 htab->reserved_gotno = 3;
8365 else
8366 htab->reserved_gotno = 2;
8367 g->local_gotno += htab->reserved_gotno;
8368 g->assigned_gotno = htab->reserved_gotno;
8369
33bb52fb
RS
8370 /* Replace entries for indirect and warning symbols with entries for
8371 the target symbol. */
8372 if (!mips_elf_resolve_final_got_entries (g))
8373 return FALSE;
f4416af6 8374
d4596a51
RS
8375 /* Count the number of GOT symbols. */
8376 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
f4416af6 8377
33bb52fb
RS
8378 /* Calculate the total loadable size of the output. That
8379 will give us the maximum number of GOT_PAGE entries
8380 required. */
8381 for (sub = info->input_bfds; sub; sub = sub->link_next)
8382 {
8383 asection *subsection;
5108fc1b 8384
33bb52fb
RS
8385 for (subsection = sub->sections;
8386 subsection;
8387 subsection = subsection->next)
8388 {
8389 if ((subsection->flags & SEC_ALLOC) == 0)
8390 continue;
8391 loadable_size += ((subsection->size + 0xf)
8392 &~ (bfd_size_type) 0xf);
8393 }
8394 }
f4416af6 8395
0a44bf69 8396 if (htab->is_vxworks)
738e5348 8397 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8398 relocations against local symbols evaluate to "G", and the EABI does
8399 not include R_MIPS_GOT_PAGE. */
c224138d 8400 page_gotno = 0;
0a44bf69
RS
8401 else
8402 /* Assume there are two loadable segments consisting of contiguous
8403 sections. Is 5 enough? */
c224138d
RS
8404 page_gotno = (loadable_size >> 16) + 5;
8405
8406 /* Choose the smaller of the two estimates; both are intended to be
8407 conservative. */
8408 if (page_gotno > g->page_gotno)
8409 page_gotno = g->page_gotno;
f4416af6 8410
c224138d 8411 g->local_gotno += page_gotno;
eea6121a 8412 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 8413 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 8414
0f20cc35
DJ
8415 /* We need to calculate tls_gotno for global symbols at this point
8416 instead of building it up earlier, to avoid doublecounting
8417 entries for one global symbol from multiple input files. */
8418 count_tls_arg.info = info;
8419 count_tls_arg.needed = 0;
8420 elf_link_hash_traverse (elf_hash_table (info),
8421 mips_elf_count_global_tls_entries,
8422 &count_tls_arg);
8423 g->tls_gotno += count_tls_arg.needed;
8424 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8425
0a44bf69
RS
8426 /* VxWorks does not support multiple GOTs. It initializes $gp to
8427 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8428 dynamic loader. */
33bb52fb
RS
8429 if (htab->is_vxworks)
8430 {
8431 /* VxWorks executables do not need a GOT. */
8432 if (info->shared)
8433 {
8434 /* Each VxWorks GOT entry needs an explicit relocation. */
8435 unsigned int count;
8436
861fb55a 8437 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8438 if (count)
8439 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8440 }
8441 }
8442 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8443 {
a8028dd0 8444 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8445 return FALSE;
8446 }
8447 else
8448 {
33bb52fb
RS
8449 struct mips_elf_count_tls_arg arg;
8450
8451 /* Set up TLS entries. */
0f20cc35
DJ
8452 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8453 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
33bb52fb
RS
8454
8455 /* Allocate room for the TLS relocations. */
8456 arg.info = info;
8457 arg.needed = 0;
8458 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8459 elf_link_hash_traverse (elf_hash_table (info),
8460 mips_elf_count_global_tls_relocs,
8461 &arg);
8462 if (arg.needed)
8463 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 8464 }
b49e97c9 8465
b34976b6 8466 return TRUE;
b49e97c9
TS
8467}
8468
33bb52fb
RS
8469/* Estimate the size of the .MIPS.stubs section. */
8470
8471static void
8472mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8473{
8474 struct mips_elf_link_hash_table *htab;
8475 bfd_size_type dynsymcount;
8476
8477 htab = mips_elf_hash_table (info);
8478 if (htab->lazy_stub_count == 0)
8479 return;
8480
8481 /* IRIX rld assumes that a function stub isn't at the end of the .text
8482 section, so add a dummy entry to the end. */
8483 htab->lazy_stub_count++;
8484
8485 /* Get a worst-case estimate of the number of dynamic symbols needed.
8486 At this point, dynsymcount does not account for section symbols
8487 and count_section_dynsyms may overestimate the number that will
8488 be needed. */
8489 dynsymcount = (elf_hash_table (info)->dynsymcount
8490 + count_section_dynsyms (output_bfd, info));
8491
8492 /* Determine the size of one stub entry. */
8493 htab->function_stub_size = (dynsymcount > 0x10000
8494 ? MIPS_FUNCTION_STUB_BIG_SIZE
8495 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8496
8497 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8498}
8499
8500/* A mips_elf_link_hash_traverse callback for which DATA points to the
8501 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8502 allocate an entry in the stubs section. */
8503
8504static bfd_boolean
8505mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8506{
8507 struct mips_elf_link_hash_table *htab;
8508
8509 htab = (struct mips_elf_link_hash_table *) data;
8510 if (h->needs_lazy_stub)
8511 {
8512 h->root.root.u.def.section = htab->sstubs;
8513 h->root.root.u.def.value = htab->sstubs->size;
8514 h->root.plt.offset = htab->sstubs->size;
8515 htab->sstubs->size += htab->function_stub_size;
8516 }
8517 return TRUE;
8518}
8519
8520/* Allocate offsets in the stubs section to each symbol that needs one.
8521 Set the final size of the .MIPS.stub section. */
8522
8523static void
8524mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8525{
8526 struct mips_elf_link_hash_table *htab;
8527
8528 htab = mips_elf_hash_table (info);
8529 if (htab->lazy_stub_count == 0)
8530 return;
8531
8532 htab->sstubs->size = 0;
8533 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8534 mips_elf_allocate_lazy_stub, htab);
8535 htab->sstubs->size += htab->function_stub_size;
8536 BFD_ASSERT (htab->sstubs->size
8537 == htab->lazy_stub_count * htab->function_stub_size);
8538}
8539
b49e97c9
TS
8540/* Set the sizes of the dynamic sections. */
8541
b34976b6 8542bfd_boolean
9719ad41
RS
8543_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8544 struct bfd_link_info *info)
b49e97c9
TS
8545{
8546 bfd *dynobj;
861fb55a 8547 asection *s, *sreldyn;
b34976b6 8548 bfd_boolean reltext;
0a44bf69 8549 struct mips_elf_link_hash_table *htab;
b49e97c9 8550
0a44bf69 8551 htab = mips_elf_hash_table (info);
b49e97c9
TS
8552 dynobj = elf_hash_table (info)->dynobj;
8553 BFD_ASSERT (dynobj != NULL);
8554
8555 if (elf_hash_table (info)->dynamic_sections_created)
8556 {
8557 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8558 if (info->executable)
b49e97c9
TS
8559 {
8560 s = bfd_get_section_by_name (dynobj, ".interp");
8561 BFD_ASSERT (s != NULL);
eea6121a 8562 s->size
b49e97c9
TS
8563 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8564 s->contents
8565 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8566 }
861fb55a
DJ
8567
8568 /* Create a symbol for the PLT, if we know that we are using it. */
8569 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8570 {
8571 struct elf_link_hash_entry *h;
8572
8573 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8574
8575 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8576 "_PROCEDURE_LINKAGE_TABLE_");
8577 htab->root.hplt = h;
8578 if (h == NULL)
8579 return FALSE;
8580 h->type = STT_FUNC;
8581 }
8582 }
4e41d0d7 8583
9a59ad6b
DJ
8584 /* Allocate space for global sym dynamic relocs. */
8585 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8586
33bb52fb
RS
8587 mips_elf_estimate_stub_size (output_bfd, info);
8588
8589 if (!mips_elf_lay_out_got (output_bfd, info))
8590 return FALSE;
8591
8592 mips_elf_lay_out_lazy_stubs (info);
8593
b49e97c9
TS
8594 /* The check_relocs and adjust_dynamic_symbol entry points have
8595 determined the sizes of the various dynamic sections. Allocate
8596 memory for them. */
b34976b6 8597 reltext = FALSE;
b49e97c9
TS
8598 for (s = dynobj->sections; s != NULL; s = s->next)
8599 {
8600 const char *name;
b49e97c9
TS
8601
8602 /* It's OK to base decisions on the section name, because none
8603 of the dynobj section names depend upon the input files. */
8604 name = bfd_get_section_name (dynobj, s);
8605
8606 if ((s->flags & SEC_LINKER_CREATED) == 0)
8607 continue;
8608
0112cd26 8609 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 8610 {
c456f082 8611 if (s->size != 0)
b49e97c9
TS
8612 {
8613 const char *outname;
8614 asection *target;
8615
8616 /* If this relocation section applies to a read only
8617 section, then we probably need a DT_TEXTREL entry.
0a44bf69 8618 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
8619 assert a DT_TEXTREL entry rather than testing whether
8620 there exists a relocation to a read only section or
8621 not. */
8622 outname = bfd_get_section_name (output_bfd,
8623 s->output_section);
8624 target = bfd_get_section_by_name (output_bfd, outname + 4);
8625 if ((target != NULL
8626 && (target->flags & SEC_READONLY) != 0
8627 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 8628 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 8629 reltext = TRUE;
b49e97c9
TS
8630
8631 /* We use the reloc_count field as a counter if we need
8632 to copy relocs into the output file. */
0a44bf69 8633 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 8634 s->reloc_count = 0;
f4416af6
AO
8635
8636 /* If combreloc is enabled, elf_link_sort_relocs() will
8637 sort relocations, but in a different way than we do,
8638 and before we're done creating relocations. Also, it
8639 will move them around between input sections'
8640 relocation's contents, so our sorting would be
8641 broken, so don't let it run. */
8642 info->combreloc = 0;
b49e97c9
TS
8643 }
8644 }
b49e97c9
TS
8645 else if (! info->shared
8646 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 8647 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 8648 {
5108fc1b 8649 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 8650 rtld to contain a pointer to the _r_debug structure. */
eea6121a 8651 s->size += 4;
b49e97c9
TS
8652 }
8653 else if (SGI_COMPAT (output_bfd)
0112cd26 8654 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 8655 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
8656 else if (s == htab->splt)
8657 {
8658 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
8659 room for an extra nop to fill the delay slot. This is
8660 for CPUs without load interlocking. */
8661 if (! LOAD_INTERLOCKS_P (output_bfd)
8662 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
8663 s->size += 4;
8664 }
0112cd26 8665 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 8666 && s != htab->sgot
0a44bf69 8667 && s != htab->sgotplt
861fb55a
DJ
8668 && s != htab->sstubs
8669 && s != htab->sdynbss)
b49e97c9
TS
8670 {
8671 /* It's not one of our sections, so don't allocate space. */
8672 continue;
8673 }
8674
c456f082 8675 if (s->size == 0)
b49e97c9 8676 {
8423293d 8677 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
8678 continue;
8679 }
8680
c456f082
AM
8681 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8682 continue;
8683
b49e97c9 8684 /* Allocate memory for the section contents. */
eea6121a 8685 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 8686 if (s->contents == NULL)
b49e97c9
TS
8687 {
8688 bfd_set_error (bfd_error_no_memory);
b34976b6 8689 return FALSE;
b49e97c9
TS
8690 }
8691 }
8692
8693 if (elf_hash_table (info)->dynamic_sections_created)
8694 {
8695 /* Add some entries to the .dynamic section. We fill in the
8696 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8697 must add the entries now so that we get the correct size for
5750dcec 8698 the .dynamic section. */
af5978fb
RS
8699
8700 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
8701 DT_MIPS_RLD_MAP entry. This must come first because glibc
8702 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8703 looks at the first one it sees. */
af5978fb
RS
8704 if (!info->shared
8705 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8706 return FALSE;
b49e97c9 8707
5750dcec
DJ
8708 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8709 used by the debugger. */
8710 if (info->executable
8711 && !SGI_COMPAT (output_bfd)
8712 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8713 return FALSE;
8714
0a44bf69 8715 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
8716 info->flags |= DF_TEXTREL;
8717
8718 if ((info->flags & DF_TEXTREL) != 0)
8719 {
8720 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 8721 return FALSE;
943284cc
DJ
8722
8723 /* Clear the DF_TEXTREL flag. It will be set again if we
8724 write out an actual text relocation; we may not, because
8725 at this point we do not know whether e.g. any .eh_frame
8726 absolute relocations have been converted to PC-relative. */
8727 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
8728 }
8729
8730 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 8731 return FALSE;
b49e97c9 8732
861fb55a 8733 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 8734 if (htab->is_vxworks)
b49e97c9 8735 {
0a44bf69
RS
8736 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8737 use any of the DT_MIPS_* tags. */
861fb55a 8738 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
8739 {
8740 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8741 return FALSE;
b49e97c9 8742
0a44bf69
RS
8743 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8744 return FALSE;
b49e97c9 8745
0a44bf69
RS
8746 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8747 return FALSE;
8748 }
b49e97c9 8749 }
0a44bf69
RS
8750 else
8751 {
861fb55a 8752 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
8753 {
8754 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8755 return FALSE;
b49e97c9 8756
0a44bf69
RS
8757 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8758 return FALSE;
b49e97c9 8759
0a44bf69
RS
8760 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8761 return FALSE;
8762 }
b49e97c9 8763
0a44bf69
RS
8764 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8765 return FALSE;
b49e97c9 8766
0a44bf69
RS
8767 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8768 return FALSE;
b49e97c9 8769
0a44bf69
RS
8770 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8771 return FALSE;
b49e97c9 8772
0a44bf69
RS
8773 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8774 return FALSE;
b49e97c9 8775
0a44bf69
RS
8776 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8777 return FALSE;
b49e97c9 8778
0a44bf69
RS
8779 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8780 return FALSE;
b49e97c9 8781
0a44bf69
RS
8782 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8783 return FALSE;
8784
8785 if (IRIX_COMPAT (dynobj) == ict_irix5
8786 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8787 return FALSE;
8788
8789 if (IRIX_COMPAT (dynobj) == ict_irix6
8790 && (bfd_get_section_by_name
8791 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8792 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8793 return FALSE;
8794 }
861fb55a
DJ
8795 if (htab->splt->size > 0)
8796 {
8797 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8798 return FALSE;
8799
8800 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8801 return FALSE;
8802
8803 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8804 return FALSE;
8805
8806 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8807 return FALSE;
8808 }
7a2b07ff
NS
8809 if (htab->is_vxworks
8810 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8811 return FALSE;
b49e97c9
TS
8812 }
8813
b34976b6 8814 return TRUE;
b49e97c9
TS
8815}
8816\f
81d43bff
RS
8817/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8818 Adjust its R_ADDEND field so that it is correct for the output file.
8819 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8820 and sections respectively; both use symbol indexes. */
8821
8822static void
8823mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8824 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8825 asection **local_sections, Elf_Internal_Rela *rel)
8826{
8827 unsigned int r_type, r_symndx;
8828 Elf_Internal_Sym *sym;
8829 asection *sec;
8830
8831 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8832 {
8833 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8834 if (r_type == R_MIPS16_GPREL
8835 || r_type == R_MIPS_GPREL16
8836 || r_type == R_MIPS_GPREL32
8837 || r_type == R_MIPS_LITERAL)
8838 {
8839 rel->r_addend += _bfd_get_gp_value (input_bfd);
8840 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8841 }
8842
8843 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8844 sym = local_syms + r_symndx;
8845
8846 /* Adjust REL's addend to account for section merging. */
8847 if (!info->relocatable)
8848 {
8849 sec = local_sections[r_symndx];
8850 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8851 }
8852
8853 /* This would normally be done by the rela_normal code in elflink.c. */
8854 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8855 rel->r_addend += local_sections[r_symndx]->output_offset;
8856 }
8857}
8858
b49e97c9
TS
8859/* Relocate a MIPS ELF section. */
8860
b34976b6 8861bfd_boolean
9719ad41
RS
8862_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8863 bfd *input_bfd, asection *input_section,
8864 bfd_byte *contents, Elf_Internal_Rela *relocs,
8865 Elf_Internal_Sym *local_syms,
8866 asection **local_sections)
b49e97c9
TS
8867{
8868 Elf_Internal_Rela *rel;
8869 const Elf_Internal_Rela *relend;
8870 bfd_vma addend = 0;
b34976b6 8871 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 8872 const struct elf_backend_data *bed;
b49e97c9
TS
8873
8874 bed = get_elf_backend_data (output_bfd);
8875 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8876 for (rel = relocs; rel < relend; ++rel)
8877 {
8878 const char *name;
c9adbffe 8879 bfd_vma value = 0;
b49e97c9 8880 reloc_howto_type *howto;
b34976b6
AM
8881 bfd_boolean require_jalx;
8882 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 8883 REL relocation. */
b34976b6 8884 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 8885 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 8886 const char *msg;
ab96bf03
AM
8887 unsigned long r_symndx;
8888 asection *sec;
749b8d9d
L
8889 Elf_Internal_Shdr *symtab_hdr;
8890 struct elf_link_hash_entry *h;
b49e97c9
TS
8891
8892 /* Find the relocation howto for this relocation. */
ab96bf03
AM
8893 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8894 NEWABI_P (input_bfd)
8895 && (MIPS_RELOC_RELA_P
8896 (input_bfd, input_section,
8897 rel - relocs)));
8898
8899 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 8900 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 8901 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
8902 {
8903 sec = local_sections[r_symndx];
8904 h = NULL;
8905 }
ab96bf03
AM
8906 else
8907 {
ab96bf03 8908 unsigned long extsymoff;
ab96bf03 8909
ab96bf03
AM
8910 extsymoff = 0;
8911 if (!elf_bad_symtab (input_bfd))
8912 extsymoff = symtab_hdr->sh_info;
8913 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8914 while (h->root.type == bfd_link_hash_indirect
8915 || h->root.type == bfd_link_hash_warning)
8916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8917
8918 sec = NULL;
8919 if (h->root.type == bfd_link_hash_defined
8920 || h->root.type == bfd_link_hash_defweak)
8921 sec = h->root.u.def.section;
8922 }
8923
8924 if (sec != NULL && elf_discarded_section (sec))
8925 {
8926 /* For relocs against symbols from removed linkonce sections,
8927 or sections discarded by a linker script, we just want the
8928 section contents zeroed. Avoid any special processing. */
8929 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8930 rel->r_info = 0;
8931 rel->r_addend = 0;
8932 continue;
8933 }
8934
4a14403c 8935 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
8936 {
8937 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8938 64-bit code, but make sure all their addresses are in the
8939 lowermost or uppermost 32-bit section of the 64-bit address
8940 space. Thus, when they use an R_MIPS_64 they mean what is
8941 usually meant by R_MIPS_32, with the exception that the
8942 stored value is sign-extended to 64 bits. */
b34976b6 8943 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
8944
8945 /* On big-endian systems, we need to lie about the position
8946 of the reloc. */
8947 if (bfd_big_endian (input_bfd))
8948 rel->r_offset += 4;
8949 }
b49e97c9
TS
8950
8951 if (!use_saved_addend_p)
8952 {
b49e97c9
TS
8953 /* If these relocations were originally of the REL variety,
8954 we must pull the addend out of the field that will be
8955 relocated. Otherwise, we simply use the contents of the
c224138d
RS
8956 RELA relocation. */
8957 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8958 relocs, rel))
b49e97c9 8959 {
b34976b6 8960 rela_relocation_p = FALSE;
c224138d
RS
8961 addend = mips_elf_read_rel_addend (input_bfd, rel,
8962 howto, contents);
738e5348
RS
8963 if (hi16_reloc_p (r_type)
8964 || (got16_reloc_p (r_type)
b49e97c9 8965 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 8966 local_sections, FALSE)))
b49e97c9 8967 {
c224138d
RS
8968 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8969 contents, &addend))
749b8d9d
L
8970 {
8971 const char *name;
8972
8973 if (h)
8974 name = h->root.root.string;
8975 else
8976 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8977 local_syms + r_symndx,
8978 sec);
8979 (*_bfd_error_handler)
8980 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8981 input_bfd, input_section, name, howto->name,
8982 rel->r_offset);
749b8d9d 8983 }
b49e97c9 8984 }
30ac9238
RS
8985 else
8986 addend <<= howto->rightshift;
b49e97c9
TS
8987 }
8988 else
8989 addend = rel->r_addend;
81d43bff
RS
8990 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8991 local_syms, local_sections, rel);
b49e97c9
TS
8992 }
8993
1049f94e 8994 if (info->relocatable)
b49e97c9 8995 {
4a14403c 8996 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
8997 && bfd_big_endian (input_bfd))
8998 rel->r_offset -= 4;
8999
81d43bff 9000 if (!rela_relocation_p && rel->r_addend)
5a659663 9001 {
81d43bff 9002 addend += rel->r_addend;
738e5348 9003 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9004 addend = mips_elf_high (addend);
9005 else if (r_type == R_MIPS_HIGHER)
9006 addend = mips_elf_higher (addend);
9007 else if (r_type == R_MIPS_HIGHEST)
9008 addend = mips_elf_highest (addend);
30ac9238
RS
9009 else
9010 addend >>= howto->rightshift;
b49e97c9 9011
30ac9238
RS
9012 /* We use the source mask, rather than the destination
9013 mask because the place to which we are writing will be
9014 source of the addend in the final link. */
b49e97c9
TS
9015 addend &= howto->src_mask;
9016
5a659663 9017 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9018 /* See the comment above about using R_MIPS_64 in the 32-bit
9019 ABI. Here, we need to update the addend. It would be
9020 possible to get away with just using the R_MIPS_32 reloc
9021 but for endianness. */
9022 {
9023 bfd_vma sign_bits;
9024 bfd_vma low_bits;
9025 bfd_vma high_bits;
9026
9027 if (addend & ((bfd_vma) 1 << 31))
9028#ifdef BFD64
9029 sign_bits = ((bfd_vma) 1 << 32) - 1;
9030#else
9031 sign_bits = -1;
9032#endif
9033 else
9034 sign_bits = 0;
9035
9036 /* If we don't know that we have a 64-bit type,
9037 do two separate stores. */
9038 if (bfd_big_endian (input_bfd))
9039 {
9040 /* Store the sign-bits (which are most significant)
9041 first. */
9042 low_bits = sign_bits;
9043 high_bits = addend;
9044 }
9045 else
9046 {
9047 low_bits = addend;
9048 high_bits = sign_bits;
9049 }
9050 bfd_put_32 (input_bfd, low_bits,
9051 contents + rel->r_offset);
9052 bfd_put_32 (input_bfd, high_bits,
9053 contents + rel->r_offset + 4);
9054 continue;
9055 }
9056
9057 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9058 input_bfd, input_section,
b34976b6
AM
9059 contents, FALSE))
9060 return FALSE;
b49e97c9
TS
9061 }
9062
9063 /* Go on to the next relocation. */
9064 continue;
9065 }
9066
9067 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9068 relocations for the same offset. In that case we are
9069 supposed to treat the output of each relocation as the addend
9070 for the next. */
9071 if (rel + 1 < relend
9072 && rel->r_offset == rel[1].r_offset
9073 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9074 use_saved_addend_p = TRUE;
b49e97c9 9075 else
b34976b6 9076 use_saved_addend_p = FALSE;
b49e97c9
TS
9077
9078 /* Figure out what value we are supposed to relocate. */
9079 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9080 input_section, info, rel,
9081 addend, howto, local_syms,
9082 local_sections, &value,
bce03d3d
AO
9083 &name, &require_jalx,
9084 use_saved_addend_p))
b49e97c9
TS
9085 {
9086 case bfd_reloc_continue:
9087 /* There's nothing to do. */
9088 continue;
9089
9090 case bfd_reloc_undefined:
9091 /* mips_elf_calculate_relocation already called the
9092 undefined_symbol callback. There's no real point in
9093 trying to perform the relocation at this point, so we
9094 just skip ahead to the next relocation. */
9095 continue;
9096
9097 case bfd_reloc_notsupported:
9098 msg = _("internal error: unsupported relocation error");
9099 info->callbacks->warning
9100 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9101 return FALSE;
b49e97c9
TS
9102
9103 case bfd_reloc_overflow:
9104 if (use_saved_addend_p)
9105 /* Ignore overflow until we reach the last relocation for
9106 a given location. */
9107 ;
9108 else
9109 {
0e53d9da
AN
9110 struct mips_elf_link_hash_table *htab;
9111
9112 htab = mips_elf_hash_table (info);
b49e97c9 9113 BFD_ASSERT (name != NULL);
0e53d9da
AN
9114 if (!htab->small_data_overflow_reported
9115 && (howto->type == R_MIPS_GPREL16
9116 || howto->type == R_MIPS_LITERAL))
9117 {
9118 const char *msg =
9119 _("small-data section exceeds 64KB;"
9120 " lower small-data size limit (see option -G)");
9121
9122 htab->small_data_overflow_reported = TRUE;
9123 (*info->callbacks->einfo) ("%P: %s\n", msg);
9124 }
b49e97c9 9125 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9126 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9127 input_bfd, input_section, rel->r_offset)))
b34976b6 9128 return FALSE;
b49e97c9
TS
9129 }
9130 break;
9131
9132 case bfd_reloc_ok:
9133 break;
9134
9135 default:
9136 abort ();
9137 break;
9138 }
9139
9140 /* If we've got another relocation for the address, keep going
9141 until we reach the last one. */
9142 if (use_saved_addend_p)
9143 {
9144 addend = value;
9145 continue;
9146 }
9147
4a14403c 9148 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9149 /* See the comment above about using R_MIPS_64 in the 32-bit
9150 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9151 that calculated the right value. Now, however, we
9152 sign-extend the 32-bit result to 64-bits, and store it as a
9153 64-bit value. We are especially generous here in that we
9154 go to extreme lengths to support this usage on systems with
9155 only a 32-bit VMA. */
9156 {
9157 bfd_vma sign_bits;
9158 bfd_vma low_bits;
9159 bfd_vma high_bits;
9160
9161 if (value & ((bfd_vma) 1 << 31))
9162#ifdef BFD64
9163 sign_bits = ((bfd_vma) 1 << 32) - 1;
9164#else
9165 sign_bits = -1;
9166#endif
9167 else
9168 sign_bits = 0;
9169
9170 /* If we don't know that we have a 64-bit type,
9171 do two separate stores. */
9172 if (bfd_big_endian (input_bfd))
9173 {
9174 /* Undo what we did above. */
9175 rel->r_offset -= 4;
9176 /* Store the sign-bits (which are most significant)
9177 first. */
9178 low_bits = sign_bits;
9179 high_bits = value;
9180 }
9181 else
9182 {
9183 low_bits = value;
9184 high_bits = sign_bits;
9185 }
9186 bfd_put_32 (input_bfd, low_bits,
9187 contents + rel->r_offset);
9188 bfd_put_32 (input_bfd, high_bits,
9189 contents + rel->r_offset + 4);
9190 continue;
9191 }
9192
9193 /* Actually perform the relocation. */
9194 if (! mips_elf_perform_relocation (info, howto, rel, value,
9195 input_bfd, input_section,
9196 contents, require_jalx))
b34976b6 9197 return FALSE;
b49e97c9
TS
9198 }
9199
b34976b6 9200 return TRUE;
b49e97c9
TS
9201}
9202\f
861fb55a
DJ
9203/* A function that iterates over each entry in la25_stubs and fills
9204 in the code for each one. DATA points to a mips_htab_traverse_info. */
9205
9206static int
9207mips_elf_create_la25_stub (void **slot, void *data)
9208{
9209 struct mips_htab_traverse_info *hti;
9210 struct mips_elf_link_hash_table *htab;
9211 struct mips_elf_la25_stub *stub;
9212 asection *s;
9213 bfd_byte *loc;
9214 bfd_vma offset, target, target_high, target_low;
9215
9216 stub = (struct mips_elf_la25_stub *) *slot;
9217 hti = (struct mips_htab_traverse_info *) data;
9218 htab = mips_elf_hash_table (hti->info);
9219
9220 /* Create the section contents, if we haven't already. */
9221 s = stub->stub_section;
9222 loc = s->contents;
9223 if (loc == NULL)
9224 {
9225 loc = bfd_malloc (s->size);
9226 if (loc == NULL)
9227 {
9228 hti->error = TRUE;
9229 return FALSE;
9230 }
9231 s->contents = loc;
9232 }
9233
9234 /* Work out where in the section this stub should go. */
9235 offset = stub->offset;
9236
9237 /* Work out the target address. */
9238 target = (stub->h->root.root.u.def.section->output_section->vma
9239 + stub->h->root.root.u.def.section->output_offset
9240 + stub->h->root.root.u.def.value);
9241 target_high = ((target + 0x8000) >> 16) & 0xffff;
9242 target_low = (target & 0xffff);
9243
9244 if (stub->stub_section != htab->strampoline)
9245 {
9246 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9247 of the section and write the two instructions at the end. */
9248 memset (loc, 0, offset);
9249 loc += offset;
9250 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9251 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9252 }
9253 else
9254 {
9255 /* This is trampoline. */
9256 loc += offset;
9257 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9258 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9259 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9260 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9261 }
9262 return TRUE;
9263}
9264
b49e97c9
TS
9265/* If NAME is one of the special IRIX6 symbols defined by the linker,
9266 adjust it appropriately now. */
9267
9268static void
9719ad41
RS
9269mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9270 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9271{
9272 /* The linker script takes care of providing names and values for
9273 these, but we must place them into the right sections. */
9274 static const char* const text_section_symbols[] = {
9275 "_ftext",
9276 "_etext",
9277 "__dso_displacement",
9278 "__elf_header",
9279 "__program_header_table",
9280 NULL
9281 };
9282
9283 static const char* const data_section_symbols[] = {
9284 "_fdata",
9285 "_edata",
9286 "_end",
9287 "_fbss",
9288 NULL
9289 };
9290
9291 const char* const *p;
9292 int i;
9293
9294 for (i = 0; i < 2; ++i)
9295 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9296 *p;
9297 ++p)
9298 if (strcmp (*p, name) == 0)
9299 {
9300 /* All of these symbols are given type STT_SECTION by the
9301 IRIX6 linker. */
9302 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9303 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9304
9305 /* The IRIX linker puts these symbols in special sections. */
9306 if (i == 0)
9307 sym->st_shndx = SHN_MIPS_TEXT;
9308 else
9309 sym->st_shndx = SHN_MIPS_DATA;
9310
9311 break;
9312 }
9313}
9314
9315/* Finish up dynamic symbol handling. We set the contents of various
9316 dynamic sections here. */
9317
b34976b6 9318bfd_boolean
9719ad41
RS
9319_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9320 struct bfd_link_info *info,
9321 struct elf_link_hash_entry *h,
9322 Elf_Internal_Sym *sym)
b49e97c9
TS
9323{
9324 bfd *dynobj;
b49e97c9 9325 asection *sgot;
f4416af6 9326 struct mips_got_info *g, *gg;
b49e97c9 9327 const char *name;
3d6746ca 9328 int idx;
5108fc1b 9329 struct mips_elf_link_hash_table *htab;
738e5348 9330 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9331
5108fc1b 9332 htab = mips_elf_hash_table (info);
b49e97c9 9333 dynobj = elf_hash_table (info)->dynobj;
738e5348 9334 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9335
861fb55a
DJ
9336 BFD_ASSERT (!htab->is_vxworks);
9337
9338 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9339 {
9340 /* We've decided to create a PLT entry for this symbol. */
9341 bfd_byte *loc;
9342 bfd_vma header_address, plt_index, got_address;
9343 bfd_vma got_address_high, got_address_low, load;
9344 const bfd_vma *plt_entry;
9345
9346 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9347 BFD_ASSERT (h->dynindx != -1);
9348 BFD_ASSERT (htab->splt != NULL);
9349 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9350 BFD_ASSERT (!h->def_regular);
9351
9352 /* Calculate the address of the PLT header. */
9353 header_address = (htab->splt->output_section->vma
9354 + htab->splt->output_offset);
9355
9356 /* Calculate the index of the entry. */
9357 plt_index = ((h->plt.offset - htab->plt_header_size)
9358 / htab->plt_entry_size);
9359
9360 /* Calculate the address of the .got.plt entry. */
9361 got_address = (htab->sgotplt->output_section->vma
9362 + htab->sgotplt->output_offset
9363 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9364 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9365 got_address_low = got_address & 0xffff;
9366
9367 /* Initially point the .got.plt entry at the PLT header. */
9368 loc = (htab->sgotplt->contents
9369 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9370 if (ABI_64_P (output_bfd))
9371 bfd_put_64 (output_bfd, header_address, loc);
9372 else
9373 bfd_put_32 (output_bfd, header_address, loc);
9374
9375 /* Find out where the .plt entry should go. */
9376 loc = htab->splt->contents + h->plt.offset;
9377
9378 /* Pick the load opcode. */
9379 load = MIPS_ELF_LOAD_WORD (output_bfd);
9380
9381 /* Fill in the PLT entry itself. */
9382 plt_entry = mips_exec_plt_entry;
9383 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9384 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9385
9386 if (! LOAD_INTERLOCKS_P (output_bfd))
9387 {
9388 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9389 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9390 }
9391 else
9392 {
9393 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9394 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9395 }
861fb55a
DJ
9396
9397 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9398 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9399 plt_index, h->dynindx,
9400 R_MIPS_JUMP_SLOT, got_address);
9401
9402 /* We distinguish between PLT entries and lazy-binding stubs by
9403 giving the former an st_other value of STO_MIPS_PLT. Set the
9404 flag and leave the value if there are any relocations in the
9405 binary where pointer equality matters. */
9406 sym->st_shndx = SHN_UNDEF;
9407 if (h->pointer_equality_needed)
9408 sym->st_other = STO_MIPS_PLT;
9409 else
9410 sym->st_value = 0;
9411 }
9412 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9413 {
861fb55a 9414 /* We've decided to create a lazy-binding stub. */
5108fc1b 9415 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9416
9417 /* This symbol has a stub. Set it up. */
9418
9419 BFD_ASSERT (h->dynindx != -1);
9420
5108fc1b
RS
9421 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9422 || (h->dynindx <= 0xffff));
3d6746ca
DD
9423
9424 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9425 sign extension at runtime in the stub, resulting in a negative
9426 index value. */
9427 if (h->dynindx & ~0x7fffffff)
b34976b6 9428 return FALSE;
b49e97c9
TS
9429
9430 /* Fill the stub. */
3d6746ca
DD
9431 idx = 0;
9432 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9433 idx += 4;
9434 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9435 idx += 4;
5108fc1b 9436 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9437 {
5108fc1b 9438 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9439 stub + idx);
9440 idx += 4;
9441 }
9442 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9443 idx += 4;
b49e97c9 9444
3d6746ca
DD
9445 /* If a large stub is not required and sign extension is not a
9446 problem, then use legacy code in the stub. */
5108fc1b
RS
9447 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9448 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9449 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9450 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9451 else
5108fc1b
RS
9452 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9453 stub + idx);
9454
4e41d0d7
RS
9455 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9456 memcpy (htab->sstubs->contents + h->plt.offset,
9457 stub, htab->function_stub_size);
b49e97c9
TS
9458
9459 /* Mark the symbol as undefined. plt.offset != -1 occurs
9460 only for the referenced symbol. */
9461 sym->st_shndx = SHN_UNDEF;
9462
9463 /* The run-time linker uses the st_value field of the symbol
9464 to reset the global offset table entry for this external
9465 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9466 sym->st_value = (htab->sstubs->output_section->vma
9467 + htab->sstubs->output_offset
c5ae1840 9468 + h->plt.offset);
b49e97c9
TS
9469 }
9470
738e5348
RS
9471 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9472 refer to the stub, since only the stub uses the standard calling
9473 conventions. */
9474 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9475 {
9476 BFD_ASSERT (hmips->need_fn_stub);
9477 sym->st_value = (hmips->fn_stub->output_section->vma
9478 + hmips->fn_stub->output_offset);
9479 sym->st_size = hmips->fn_stub->size;
9480 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9481 }
9482
b49e97c9 9483 BFD_ASSERT (h->dynindx != -1
f5385ebf 9484 || h->forced_local);
b49e97c9 9485
23cc69b6 9486 sgot = htab->sgot;
a8028dd0 9487 g = htab->got_info;
b49e97c9
TS
9488 BFD_ASSERT (g != NULL);
9489
9490 /* Run through the global symbol table, creating GOT entries for all
9491 the symbols that need them. */
9492 if (g->global_gotsym != NULL
9493 && h->dynindx >= g->global_gotsym->dynindx)
9494 {
9495 bfd_vma offset;
9496 bfd_vma value;
9497
6eaa6adc 9498 value = sym->st_value;
738e5348
RS
9499 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9500 R_MIPS_GOT16, info);
b49e97c9
TS
9501 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9502 }
9503
0f20cc35 9504 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
9505 {
9506 struct mips_got_entry e, *p;
0626d451 9507 bfd_vma entry;
f4416af6 9508 bfd_vma offset;
f4416af6
AO
9509
9510 gg = g;
9511
9512 e.abfd = output_bfd;
9513 e.symndx = -1;
738e5348 9514 e.d.h = hmips;
0f20cc35 9515 e.tls_type = 0;
143d77c5 9516
f4416af6
AO
9517 for (g = g->next; g->next != gg; g = g->next)
9518 {
9519 if (g->got_entries
9520 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9521 &e)))
9522 {
9523 offset = p->gotidx;
0626d451
RS
9524 if (info->shared
9525 || (elf_hash_table (info)->dynamic_sections_created
9526 && p->d.h != NULL
f5385ebf
AM
9527 && p->d.h->root.def_dynamic
9528 && !p->d.h->root.def_regular))
0626d451
RS
9529 {
9530 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9531 the various compatibility problems, it's easier to mock
9532 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9533 mips_elf_create_dynamic_relocation to calculate the
9534 appropriate addend. */
9535 Elf_Internal_Rela rel[3];
9536
9537 memset (rel, 0, sizeof (rel));
9538 if (ABI_64_P (output_bfd))
9539 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9540 else
9541 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9542 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9543
9544 entry = 0;
9545 if (! (mips_elf_create_dynamic_relocation
9546 (output_bfd, info, rel,
9547 e.d.h, NULL, sym->st_value, &entry, sgot)))
9548 return FALSE;
9549 }
9550 else
9551 entry = sym->st_value;
9552 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
9553 }
9554 }
9555 }
9556
b49e97c9
TS
9557 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9558 name = h->root.root.string;
9559 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 9560 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
9561 sym->st_shndx = SHN_ABS;
9562 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9563 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9564 {
9565 sym->st_shndx = SHN_ABS;
9566 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9567 sym->st_value = 1;
9568 }
4a14403c 9569 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9570 {
9571 sym->st_shndx = SHN_ABS;
9572 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9573 sym->st_value = elf_gp (output_bfd);
9574 }
9575 else if (SGI_COMPAT (output_bfd))
9576 {
9577 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9578 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9579 {
9580 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9581 sym->st_other = STO_PROTECTED;
9582 sym->st_value = 0;
9583 sym->st_shndx = SHN_MIPS_DATA;
9584 }
9585 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9586 {
9587 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9588 sym->st_other = STO_PROTECTED;
9589 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9590 sym->st_shndx = SHN_ABS;
9591 }
9592 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9593 {
9594 if (h->type == STT_FUNC)
9595 sym->st_shndx = SHN_MIPS_TEXT;
9596 else if (h->type == STT_OBJECT)
9597 sym->st_shndx = SHN_MIPS_DATA;
9598 }
9599 }
9600
861fb55a
DJ
9601 /* Emit a copy reloc, if needed. */
9602 if (h->needs_copy)
9603 {
9604 asection *s;
9605 bfd_vma symval;
9606
9607 BFD_ASSERT (h->dynindx != -1);
9608 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9609
9610 s = mips_elf_rel_dyn_section (info, FALSE);
9611 symval = (h->root.u.def.section->output_section->vma
9612 + h->root.u.def.section->output_offset
9613 + h->root.u.def.value);
9614 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9615 h->dynindx, R_MIPS_COPY, symval);
9616 }
9617
b49e97c9
TS
9618 /* Handle the IRIX6-specific symbols. */
9619 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9620 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9621
9622 if (! info->shared)
9623 {
9624 if (! mips_elf_hash_table (info)->use_rld_obj_head
9625 && (strcmp (name, "__rld_map") == 0
9626 || strcmp (name, "__RLD_MAP") == 0))
9627 {
9628 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9629 BFD_ASSERT (s != NULL);
9630 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 9631 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
9632 if (mips_elf_hash_table (info)->rld_value == 0)
9633 mips_elf_hash_table (info)->rld_value = sym->st_value;
9634 }
9635 else if (mips_elf_hash_table (info)->use_rld_obj_head
9636 && strcmp (name, "__rld_obj_head") == 0)
9637 {
9638 /* IRIX6 does not use a .rld_map section. */
9639 if (IRIX_COMPAT (output_bfd) == ict_irix5
9640 || IRIX_COMPAT (output_bfd) == ict_none)
9641 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9642 != NULL);
9643 mips_elf_hash_table (info)->rld_value = sym->st_value;
9644 }
9645 }
9646
738e5348
RS
9647 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9648 treat MIPS16 symbols like any other. */
30c09090 9649 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
9650 {
9651 BFD_ASSERT (sym->st_value & 1);
9652 sym->st_other -= STO_MIPS16;
9653 }
b49e97c9 9654
b34976b6 9655 return TRUE;
b49e97c9
TS
9656}
9657
0a44bf69
RS
9658/* Likewise, for VxWorks. */
9659
9660bfd_boolean
9661_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9662 struct bfd_link_info *info,
9663 struct elf_link_hash_entry *h,
9664 Elf_Internal_Sym *sym)
9665{
9666 bfd *dynobj;
9667 asection *sgot;
9668 struct mips_got_info *g;
9669 struct mips_elf_link_hash_table *htab;
9670
9671 htab = mips_elf_hash_table (info);
9672 dynobj = elf_hash_table (info)->dynobj;
9673
9674 if (h->plt.offset != (bfd_vma) -1)
9675 {
6d79d2ed 9676 bfd_byte *loc;
0a44bf69
RS
9677 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9678 Elf_Internal_Rela rel;
9679 static const bfd_vma *plt_entry;
9680
9681 BFD_ASSERT (h->dynindx != -1);
9682 BFD_ASSERT (htab->splt != NULL);
9683 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9684
9685 /* Calculate the address of the .plt entry. */
9686 plt_address = (htab->splt->output_section->vma
9687 + htab->splt->output_offset
9688 + h->plt.offset);
9689
9690 /* Calculate the index of the entry. */
9691 plt_index = ((h->plt.offset - htab->plt_header_size)
9692 / htab->plt_entry_size);
9693
9694 /* Calculate the address of the .got.plt entry. */
9695 got_address = (htab->sgotplt->output_section->vma
9696 + htab->sgotplt->output_offset
9697 + plt_index * 4);
9698
9699 /* Calculate the offset of the .got.plt entry from
9700 _GLOBAL_OFFSET_TABLE_. */
9701 got_offset = mips_elf_gotplt_index (info, h);
9702
9703 /* Calculate the offset for the branch at the start of the PLT
9704 entry. The branch jumps to the beginning of .plt. */
9705 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9706
9707 /* Fill in the initial value of the .got.plt entry. */
9708 bfd_put_32 (output_bfd, plt_address,
9709 htab->sgotplt->contents + plt_index * 4);
9710
9711 /* Find out where the .plt entry should go. */
9712 loc = htab->splt->contents + h->plt.offset;
9713
9714 if (info->shared)
9715 {
9716 plt_entry = mips_vxworks_shared_plt_entry;
9717 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9718 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9719 }
9720 else
9721 {
9722 bfd_vma got_address_high, got_address_low;
9723
9724 plt_entry = mips_vxworks_exec_plt_entry;
9725 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9726 got_address_low = got_address & 0xffff;
9727
9728 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9729 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9730 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9731 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9732 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9733 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9734 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9735 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9736
9737 loc = (htab->srelplt2->contents
9738 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9739
9740 /* Emit a relocation for the .got.plt entry. */
9741 rel.r_offset = got_address;
9742 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9743 rel.r_addend = h->plt.offset;
9744 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9745
9746 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9747 loc += sizeof (Elf32_External_Rela);
9748 rel.r_offset = plt_address + 8;
9749 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9750 rel.r_addend = got_offset;
9751 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9752
9753 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9754 loc += sizeof (Elf32_External_Rela);
9755 rel.r_offset += 4;
9756 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9757 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9758 }
9759
9760 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9761 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9762 rel.r_offset = got_address;
9763 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9764 rel.r_addend = 0;
9765 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9766
9767 if (!h->def_regular)
9768 sym->st_shndx = SHN_UNDEF;
9769 }
9770
9771 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9772
23cc69b6 9773 sgot = htab->sgot;
a8028dd0 9774 g = htab->got_info;
0a44bf69
RS
9775 BFD_ASSERT (g != NULL);
9776
9777 /* See if this symbol has an entry in the GOT. */
9778 if (g->global_gotsym != NULL
9779 && h->dynindx >= g->global_gotsym->dynindx)
9780 {
9781 bfd_vma offset;
9782 Elf_Internal_Rela outrel;
9783 bfd_byte *loc;
9784 asection *s;
9785
9786 /* Install the symbol value in the GOT. */
9787 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9788 R_MIPS_GOT16, info);
9789 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9790
9791 /* Add a dynamic relocation for it. */
9792 s = mips_elf_rel_dyn_section (info, FALSE);
9793 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9794 outrel.r_offset = (sgot->output_section->vma
9795 + sgot->output_offset
9796 + offset);
9797 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9798 outrel.r_addend = 0;
9799 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9800 }
9801
9802 /* Emit a copy reloc, if needed. */
9803 if (h->needs_copy)
9804 {
9805 Elf_Internal_Rela rel;
9806
9807 BFD_ASSERT (h->dynindx != -1);
9808
9809 rel.r_offset = (h->root.u.def.section->output_section->vma
9810 + h->root.u.def.section->output_offset
9811 + h->root.u.def.value);
9812 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9813 rel.r_addend = 0;
9814 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9815 htab->srelbss->contents
9816 + (htab->srelbss->reloc_count
9817 * sizeof (Elf32_External_Rela)));
9818 ++htab->srelbss->reloc_count;
9819 }
9820
9821 /* If this is a mips16 symbol, force the value to be even. */
30c09090 9822 if (ELF_ST_IS_MIPS16 (sym->st_other))
0a44bf69
RS
9823 sym->st_value &= ~1;
9824
9825 return TRUE;
9826}
9827
861fb55a
DJ
9828/* Write out a plt0 entry to the beginning of .plt. */
9829
9830static void
9831mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9832{
9833 bfd_byte *loc;
9834 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9835 static const bfd_vma *plt_entry;
9836 struct mips_elf_link_hash_table *htab;
9837
9838 htab = mips_elf_hash_table (info);
9839 if (ABI_64_P (output_bfd))
9840 plt_entry = mips_n64_exec_plt0_entry;
9841 else if (ABI_N32_P (output_bfd))
9842 plt_entry = mips_n32_exec_plt0_entry;
9843 else
9844 plt_entry = mips_o32_exec_plt0_entry;
9845
9846 /* Calculate the value of .got.plt. */
9847 gotplt_value = (htab->sgotplt->output_section->vma
9848 + htab->sgotplt->output_offset);
9849 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9850 gotplt_value_low = gotplt_value & 0xffff;
9851
9852 /* The PLT sequence is not safe for N64 if .got.plt's address can
9853 not be loaded in two instructions. */
9854 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9855 || ~(gotplt_value | 0x7fffffff) == 0);
9856
9857 /* Install the PLT header. */
9858 loc = htab->splt->contents;
9859 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9860 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9861 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9862 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9863 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9864 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9865 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9866 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9867}
9868
0a44bf69
RS
9869/* Install the PLT header for a VxWorks executable and finalize the
9870 contents of .rela.plt.unloaded. */
9871
9872static void
9873mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9874{
9875 Elf_Internal_Rela rela;
9876 bfd_byte *loc;
9877 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9878 static const bfd_vma *plt_entry;
9879 struct mips_elf_link_hash_table *htab;
9880
9881 htab = mips_elf_hash_table (info);
9882 plt_entry = mips_vxworks_exec_plt0_entry;
9883
9884 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9885 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9886 + htab->root.hgot->root.u.def.section->output_offset
9887 + htab->root.hgot->root.u.def.value);
9888
9889 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9890 got_value_low = got_value & 0xffff;
9891
9892 /* Calculate the address of the PLT header. */
9893 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9894
9895 /* Install the PLT header. */
9896 loc = htab->splt->contents;
9897 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9898 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9899 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9900 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9901 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9902 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9903
9904 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9905 loc = htab->srelplt2->contents;
9906 rela.r_offset = plt_address;
9907 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9908 rela.r_addend = 0;
9909 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9910 loc += sizeof (Elf32_External_Rela);
9911
9912 /* Output the relocation for the following addiu of
9913 %lo(_GLOBAL_OFFSET_TABLE_). */
9914 rela.r_offset += 4;
9915 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9916 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9917 loc += sizeof (Elf32_External_Rela);
9918
9919 /* Fix up the remaining relocations. They may have the wrong
9920 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9921 in which symbols were output. */
9922 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9923 {
9924 Elf_Internal_Rela rel;
9925
9926 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9927 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9928 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9929 loc += sizeof (Elf32_External_Rela);
9930
9931 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9932 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9933 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9934 loc += sizeof (Elf32_External_Rela);
9935
9936 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9937 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9938 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9939 loc += sizeof (Elf32_External_Rela);
9940 }
9941}
9942
9943/* Install the PLT header for a VxWorks shared library. */
9944
9945static void
9946mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9947{
9948 unsigned int i;
9949 struct mips_elf_link_hash_table *htab;
9950
9951 htab = mips_elf_hash_table (info);
9952
9953 /* We just need to copy the entry byte-by-byte. */
9954 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9955 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9956 htab->splt->contents + i * 4);
9957}
9958
b49e97c9
TS
9959/* Finish up the dynamic sections. */
9960
b34976b6 9961bfd_boolean
9719ad41
RS
9962_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9963 struct bfd_link_info *info)
b49e97c9
TS
9964{
9965 bfd *dynobj;
9966 asection *sdyn;
9967 asection *sgot;
f4416af6 9968 struct mips_got_info *gg, *g;
0a44bf69 9969 struct mips_elf_link_hash_table *htab;
b49e97c9 9970
0a44bf69 9971 htab = mips_elf_hash_table (info);
b49e97c9
TS
9972 dynobj = elf_hash_table (info)->dynobj;
9973
9974 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9975
23cc69b6
RS
9976 sgot = htab->sgot;
9977 gg = htab->got_info;
b49e97c9
TS
9978
9979 if (elf_hash_table (info)->dynamic_sections_created)
9980 {
9981 bfd_byte *b;
943284cc 9982 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
9983
9984 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
9985 BFD_ASSERT (gg != NULL);
9986
9987 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
9988 BFD_ASSERT (g != NULL);
9989
9990 for (b = sdyn->contents;
eea6121a 9991 b < sdyn->contents + sdyn->size;
b49e97c9
TS
9992 b += MIPS_ELF_DYN_SIZE (dynobj))
9993 {
9994 Elf_Internal_Dyn dyn;
9995 const char *name;
9996 size_t elemsize;
9997 asection *s;
b34976b6 9998 bfd_boolean swap_out_p;
b49e97c9
TS
9999
10000 /* Read in the current dynamic entry. */
10001 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10002
10003 /* Assume that we're going to modify it and write it out. */
b34976b6 10004 swap_out_p = TRUE;
b49e97c9
TS
10005
10006 switch (dyn.d_tag)
10007 {
10008 case DT_RELENT:
b49e97c9
TS
10009 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10010 break;
10011
0a44bf69
RS
10012 case DT_RELAENT:
10013 BFD_ASSERT (htab->is_vxworks);
10014 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10015 break;
10016
b49e97c9
TS
10017 case DT_STRSZ:
10018 /* Rewrite DT_STRSZ. */
10019 dyn.d_un.d_val =
10020 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10021 break;
10022
10023 case DT_PLTGOT:
861fb55a
DJ
10024 s = htab->sgot;
10025 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10026 break;
10027
10028 case DT_MIPS_PLTGOT:
10029 s = htab->sgotplt;
10030 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10031 break;
10032
10033 case DT_MIPS_RLD_VERSION:
10034 dyn.d_un.d_val = 1; /* XXX */
10035 break;
10036
10037 case DT_MIPS_FLAGS:
10038 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10039 break;
10040
b49e97c9 10041 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10042 {
10043 time_t t;
10044 time (&t);
10045 dyn.d_un.d_val = t;
10046 }
b49e97c9
TS
10047 break;
10048
10049 case DT_MIPS_ICHECKSUM:
10050 /* XXX FIXME: */
b34976b6 10051 swap_out_p = FALSE;
b49e97c9
TS
10052 break;
10053
10054 case DT_MIPS_IVERSION:
10055 /* XXX FIXME: */
b34976b6 10056 swap_out_p = FALSE;
b49e97c9
TS
10057 break;
10058
10059 case DT_MIPS_BASE_ADDRESS:
10060 s = output_bfd->sections;
10061 BFD_ASSERT (s != NULL);
10062 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10063 break;
10064
10065 case DT_MIPS_LOCAL_GOTNO:
10066 dyn.d_un.d_val = g->local_gotno;
10067 break;
10068
10069 case DT_MIPS_UNREFEXTNO:
10070 /* The index into the dynamic symbol table which is the
10071 entry of the first external symbol that is not
10072 referenced within the same object. */
10073 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10074 break;
10075
10076 case DT_MIPS_GOTSYM:
f4416af6 10077 if (gg->global_gotsym)
b49e97c9 10078 {
f4416af6 10079 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
10080 break;
10081 }
10082 /* In case if we don't have global got symbols we default
10083 to setting DT_MIPS_GOTSYM to the same value as
10084 DT_MIPS_SYMTABNO, so we just fall through. */
10085
10086 case DT_MIPS_SYMTABNO:
10087 name = ".dynsym";
10088 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10089 s = bfd_get_section_by_name (output_bfd, name);
10090 BFD_ASSERT (s != NULL);
10091
eea6121a 10092 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10093 break;
10094
10095 case DT_MIPS_HIPAGENO:
861fb55a 10096 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10097 break;
10098
10099 case DT_MIPS_RLD_MAP:
10100 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10101 break;
10102
10103 case DT_MIPS_OPTIONS:
10104 s = (bfd_get_section_by_name
10105 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10106 dyn.d_un.d_ptr = s->vma;
10107 break;
10108
0a44bf69
RS
10109 case DT_RELASZ:
10110 BFD_ASSERT (htab->is_vxworks);
10111 /* The count does not include the JUMP_SLOT relocations. */
10112 if (htab->srelplt)
10113 dyn.d_un.d_val -= htab->srelplt->size;
10114 break;
10115
10116 case DT_PLTREL:
861fb55a
DJ
10117 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10118 if (htab->is_vxworks)
10119 dyn.d_un.d_val = DT_RELA;
10120 else
10121 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10122 break;
10123
10124 case DT_PLTRELSZ:
861fb55a 10125 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10126 dyn.d_un.d_val = htab->srelplt->size;
10127 break;
10128
10129 case DT_JMPREL:
861fb55a
DJ
10130 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10131 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10132 + htab->srelplt->output_offset);
10133 break;
10134
943284cc
DJ
10135 case DT_TEXTREL:
10136 /* If we didn't need any text relocations after all, delete
10137 the dynamic tag. */
10138 if (!(info->flags & DF_TEXTREL))
10139 {
10140 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10141 swap_out_p = FALSE;
10142 }
10143 break;
10144
10145 case DT_FLAGS:
10146 /* If we didn't need any text relocations after all, clear
10147 DF_TEXTREL from DT_FLAGS. */
10148 if (!(info->flags & DF_TEXTREL))
10149 dyn.d_un.d_val &= ~DF_TEXTREL;
10150 else
10151 swap_out_p = FALSE;
10152 break;
10153
b49e97c9 10154 default:
b34976b6 10155 swap_out_p = FALSE;
7a2b07ff
NS
10156 if (htab->is_vxworks
10157 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10158 swap_out_p = TRUE;
b49e97c9
TS
10159 break;
10160 }
10161
943284cc 10162 if (swap_out_p || dyn_skipped)
b49e97c9 10163 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10164 (dynobj, &dyn, b - dyn_skipped);
10165
10166 if (dyn_to_skip)
10167 {
10168 dyn_skipped += dyn_to_skip;
10169 dyn_to_skip = 0;
10170 }
b49e97c9 10171 }
943284cc
DJ
10172
10173 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10174 if (dyn_skipped > 0)
10175 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10176 }
10177
b55fd4d4
DJ
10178 if (sgot != NULL && sgot->size > 0
10179 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10180 {
0a44bf69
RS
10181 if (htab->is_vxworks)
10182 {
10183 /* The first entry of the global offset table points to the
10184 ".dynamic" section. The second is initialized by the
10185 loader and contains the shared library identifier.
10186 The third is also initialized by the loader and points
10187 to the lazy resolution stub. */
10188 MIPS_ELF_PUT_WORD (output_bfd,
10189 sdyn->output_offset + sdyn->output_section->vma,
10190 sgot->contents);
10191 MIPS_ELF_PUT_WORD (output_bfd, 0,
10192 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10193 MIPS_ELF_PUT_WORD (output_bfd, 0,
10194 sgot->contents
10195 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10196 }
10197 else
10198 {
10199 /* The first entry of the global offset table will be filled at
10200 runtime. The second entry will be used by some runtime loaders.
10201 This isn't the case of IRIX rld. */
10202 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10203 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10204 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10205 }
b49e97c9 10206
54938e2a
TS
10207 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10208 = MIPS_ELF_GOT_SIZE (output_bfd);
10209 }
b49e97c9 10210
f4416af6
AO
10211 /* Generate dynamic relocations for the non-primary gots. */
10212 if (gg != NULL && gg->next)
10213 {
10214 Elf_Internal_Rela rel[3];
10215 bfd_vma addend = 0;
10216
10217 memset (rel, 0, sizeof (rel));
10218 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10219
10220 for (g = gg->next; g->next != gg; g = g->next)
10221 {
0f20cc35
DJ
10222 bfd_vma index = g->next->local_gotno + g->next->global_gotno
10223 + g->next->tls_gotno;
f4416af6 10224
9719ad41 10225 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 10226 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10227 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10228 sgot->contents
f4416af6
AO
10229 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10230
10231 if (! info->shared)
10232 continue;
10233
10234 while (index < g->assigned_gotno)
10235 {
10236 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10237 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10238 if (!(mips_elf_create_dynamic_relocation
10239 (output_bfd, info, rel, NULL,
10240 bfd_abs_section_ptr,
10241 0, &addend, sgot)))
10242 return FALSE;
10243 BFD_ASSERT (addend == 0);
10244 }
10245 }
10246 }
10247
3133ddbf
DJ
10248 /* The generation of dynamic relocations for the non-primary gots
10249 adds more dynamic relocations. We cannot count them until
10250 here. */
10251
10252 if (elf_hash_table (info)->dynamic_sections_created)
10253 {
10254 bfd_byte *b;
10255 bfd_boolean swap_out_p;
10256
10257 BFD_ASSERT (sdyn != NULL);
10258
10259 for (b = sdyn->contents;
10260 b < sdyn->contents + sdyn->size;
10261 b += MIPS_ELF_DYN_SIZE (dynobj))
10262 {
10263 Elf_Internal_Dyn dyn;
10264 asection *s;
10265
10266 /* Read in the current dynamic entry. */
10267 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10268
10269 /* Assume that we're going to modify it and write it out. */
10270 swap_out_p = TRUE;
10271
10272 switch (dyn.d_tag)
10273 {
10274 case DT_RELSZ:
10275 /* Reduce DT_RELSZ to account for any relocations we
10276 decided not to make. This is for the n64 irix rld,
10277 which doesn't seem to apply any relocations if there
10278 are trailing null entries. */
0a44bf69 10279 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10280 dyn.d_un.d_val = (s->reloc_count
10281 * (ABI_64_P (output_bfd)
10282 ? sizeof (Elf64_Mips_External_Rel)
10283 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10284 /* Adjust the section size too. Tools like the prelinker
10285 can reasonably expect the values to the same. */
10286 elf_section_data (s->output_section)->this_hdr.sh_size
10287 = dyn.d_un.d_val;
3133ddbf
DJ
10288 break;
10289
10290 default:
10291 swap_out_p = FALSE;
10292 break;
10293 }
10294
10295 if (swap_out_p)
10296 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10297 (dynobj, &dyn, b);
10298 }
10299 }
10300
b49e97c9 10301 {
b49e97c9
TS
10302 asection *s;
10303 Elf32_compact_rel cpt;
10304
b49e97c9
TS
10305 if (SGI_COMPAT (output_bfd))
10306 {
10307 /* Write .compact_rel section out. */
10308 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10309 if (s != NULL)
10310 {
10311 cpt.id1 = 1;
10312 cpt.num = s->reloc_count;
10313 cpt.id2 = 2;
10314 cpt.offset = (s->output_section->filepos
10315 + sizeof (Elf32_External_compact_rel));
10316 cpt.reserved0 = 0;
10317 cpt.reserved1 = 0;
10318 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10319 ((Elf32_External_compact_rel *)
10320 s->contents));
10321
10322 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10323 if (htab->sstubs != NULL)
b49e97c9
TS
10324 {
10325 file_ptr dummy_offset;
10326
4e41d0d7
RS
10327 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10328 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10329 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10330 htab->function_stub_size);
b49e97c9
TS
10331 }
10332 }
10333 }
10334
0a44bf69
RS
10335 /* The psABI says that the dynamic relocations must be sorted in
10336 increasing order of r_symndx. The VxWorks EABI doesn't require
10337 this, and because the code below handles REL rather than RELA
10338 relocations, using it for VxWorks would be outright harmful. */
10339 if (!htab->is_vxworks)
b49e97c9 10340 {
0a44bf69
RS
10341 s = mips_elf_rel_dyn_section (info, FALSE);
10342 if (s != NULL
10343 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10344 {
10345 reldyn_sorting_bfd = output_bfd;
b49e97c9 10346
0a44bf69
RS
10347 if (ABI_64_P (output_bfd))
10348 qsort ((Elf64_External_Rel *) s->contents + 1,
10349 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10350 sort_dynamic_relocs_64);
10351 else
10352 qsort ((Elf32_External_Rel *) s->contents + 1,
10353 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10354 sort_dynamic_relocs);
10355 }
b49e97c9 10356 }
b49e97c9
TS
10357 }
10358
861fb55a 10359 if (htab->splt && htab->splt->size > 0)
0a44bf69 10360 {
861fb55a
DJ
10361 if (htab->is_vxworks)
10362 {
10363 if (info->shared)
10364 mips_vxworks_finish_shared_plt (output_bfd, info);
10365 else
10366 mips_vxworks_finish_exec_plt (output_bfd, info);
10367 }
0a44bf69 10368 else
861fb55a
DJ
10369 {
10370 BFD_ASSERT (!info->shared);
10371 mips_finish_exec_plt (output_bfd, info);
10372 }
0a44bf69 10373 }
b34976b6 10374 return TRUE;
b49e97c9
TS
10375}
10376
b49e97c9 10377
64543e1a
RS
10378/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10379
10380static void
9719ad41 10381mips_set_isa_flags (bfd *abfd)
b49e97c9 10382{
64543e1a 10383 flagword val;
b49e97c9
TS
10384
10385 switch (bfd_get_mach (abfd))
10386 {
10387 default:
10388 case bfd_mach_mips3000:
10389 val = E_MIPS_ARCH_1;
10390 break;
10391
10392 case bfd_mach_mips3900:
10393 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10394 break;
10395
10396 case bfd_mach_mips6000:
10397 val = E_MIPS_ARCH_2;
10398 break;
10399
10400 case bfd_mach_mips4000:
10401 case bfd_mach_mips4300:
10402 case bfd_mach_mips4400:
10403 case bfd_mach_mips4600:
10404 val = E_MIPS_ARCH_3;
10405 break;
10406
10407 case bfd_mach_mips4010:
10408 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10409 break;
10410
10411 case bfd_mach_mips4100:
10412 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10413 break;
10414
10415 case bfd_mach_mips4111:
10416 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10417 break;
10418
00707a0e
RS
10419 case bfd_mach_mips4120:
10420 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10421 break;
10422
b49e97c9
TS
10423 case bfd_mach_mips4650:
10424 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10425 break;
10426
00707a0e
RS
10427 case bfd_mach_mips5400:
10428 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10429 break;
10430
10431 case bfd_mach_mips5500:
10432 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10433 break;
10434
0d2e43ed
ILT
10435 case bfd_mach_mips9000:
10436 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10437 break;
10438
b49e97c9 10439 case bfd_mach_mips5000:
5a7ea749 10440 case bfd_mach_mips7000:
b49e97c9
TS
10441 case bfd_mach_mips8000:
10442 case bfd_mach_mips10000:
10443 case bfd_mach_mips12000:
3aa3176b
TS
10444 case bfd_mach_mips14000:
10445 case bfd_mach_mips16000:
b49e97c9
TS
10446 val = E_MIPS_ARCH_4;
10447 break;
10448
10449 case bfd_mach_mips5:
10450 val = E_MIPS_ARCH_5;
10451 break;
10452
350cc38d
MS
10453 case bfd_mach_mips_loongson_2e:
10454 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10455 break;
10456
10457 case bfd_mach_mips_loongson_2f:
10458 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10459 break;
10460
b49e97c9
TS
10461 case bfd_mach_mips_sb1:
10462 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10463 break;
10464
6f179bd0
AN
10465 case bfd_mach_mips_octeon:
10466 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10467 break;
10468
52b6b6b9
JM
10469 case bfd_mach_mips_xlr:
10470 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10471 break;
10472
b49e97c9
TS
10473 case bfd_mach_mipsisa32:
10474 val = E_MIPS_ARCH_32;
10475 break;
10476
10477 case bfd_mach_mipsisa64:
10478 val = E_MIPS_ARCH_64;
af7ee8bf
CD
10479 break;
10480
10481 case bfd_mach_mipsisa32r2:
10482 val = E_MIPS_ARCH_32R2;
10483 break;
5f74bc13
CD
10484
10485 case bfd_mach_mipsisa64r2:
10486 val = E_MIPS_ARCH_64R2;
10487 break;
b49e97c9 10488 }
b49e97c9
TS
10489 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10490 elf_elfheader (abfd)->e_flags |= val;
10491
64543e1a
RS
10492}
10493
10494
10495/* The final processing done just before writing out a MIPS ELF object
10496 file. This gets the MIPS architecture right based on the machine
10497 number. This is used by both the 32-bit and the 64-bit ABI. */
10498
10499void
9719ad41
RS
10500_bfd_mips_elf_final_write_processing (bfd *abfd,
10501 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
10502{
10503 unsigned int i;
10504 Elf_Internal_Shdr **hdrpp;
10505 const char *name;
10506 asection *sec;
10507
10508 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10509 is nonzero. This is for compatibility with old objects, which used
10510 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10511 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10512 mips_set_isa_flags (abfd);
10513
b49e97c9
TS
10514 /* Set the sh_info field for .gptab sections and other appropriate
10515 info for each special section. */
10516 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10517 i < elf_numsections (abfd);
10518 i++, hdrpp++)
10519 {
10520 switch ((*hdrpp)->sh_type)
10521 {
10522 case SHT_MIPS_MSYM:
10523 case SHT_MIPS_LIBLIST:
10524 sec = bfd_get_section_by_name (abfd, ".dynstr");
10525 if (sec != NULL)
10526 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10527 break;
10528
10529 case SHT_MIPS_GPTAB:
10530 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10531 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10532 BFD_ASSERT (name != NULL
0112cd26 10533 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
10534 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10535 BFD_ASSERT (sec != NULL);
10536 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10537 break;
10538
10539 case SHT_MIPS_CONTENT:
10540 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10541 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10542 BFD_ASSERT (name != NULL
0112cd26 10543 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
10544 sec = bfd_get_section_by_name (abfd,
10545 name + sizeof ".MIPS.content" - 1);
10546 BFD_ASSERT (sec != NULL);
10547 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10548 break;
10549
10550 case SHT_MIPS_SYMBOL_LIB:
10551 sec = bfd_get_section_by_name (abfd, ".dynsym");
10552 if (sec != NULL)
10553 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10554 sec = bfd_get_section_by_name (abfd, ".liblist");
10555 if (sec != NULL)
10556 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10557 break;
10558
10559 case SHT_MIPS_EVENTS:
10560 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10561 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10562 BFD_ASSERT (name != NULL);
0112cd26 10563 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
10564 sec = bfd_get_section_by_name (abfd,
10565 name + sizeof ".MIPS.events" - 1);
10566 else
10567 {
0112cd26 10568 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
10569 sec = bfd_get_section_by_name (abfd,
10570 (name
10571 + sizeof ".MIPS.post_rel" - 1));
10572 }
10573 BFD_ASSERT (sec != NULL);
10574 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10575 break;
10576
10577 }
10578 }
10579}
10580\f
8dc1a139 10581/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
10582 segments. */
10583
10584int
a6b96beb
AM
10585_bfd_mips_elf_additional_program_headers (bfd *abfd,
10586 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
10587{
10588 asection *s;
10589 int ret = 0;
10590
10591 /* See if we need a PT_MIPS_REGINFO segment. */
10592 s = bfd_get_section_by_name (abfd, ".reginfo");
10593 if (s && (s->flags & SEC_LOAD))
10594 ++ret;
10595
10596 /* See if we need a PT_MIPS_OPTIONS segment. */
10597 if (IRIX_COMPAT (abfd) == ict_irix6
10598 && bfd_get_section_by_name (abfd,
10599 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10600 ++ret;
10601
10602 /* See if we need a PT_MIPS_RTPROC segment. */
10603 if (IRIX_COMPAT (abfd) == ict_irix5
10604 && bfd_get_section_by_name (abfd, ".dynamic")
10605 && bfd_get_section_by_name (abfd, ".mdebug"))
10606 ++ret;
10607
98c904a8
RS
10608 /* Allocate a PT_NULL header in dynamic objects. See
10609 _bfd_mips_elf_modify_segment_map for details. */
10610 if (!SGI_COMPAT (abfd)
10611 && bfd_get_section_by_name (abfd, ".dynamic"))
10612 ++ret;
10613
b49e97c9
TS
10614 return ret;
10615}
10616
8dc1a139 10617/* Modify the segment map for an IRIX5 executable. */
b49e97c9 10618
b34976b6 10619bfd_boolean
9719ad41 10620_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 10621 struct bfd_link_info *info)
b49e97c9
TS
10622{
10623 asection *s;
10624 struct elf_segment_map *m, **pm;
10625 bfd_size_type amt;
10626
10627 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10628 segment. */
10629 s = bfd_get_section_by_name (abfd, ".reginfo");
10630 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10631 {
10632 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10633 if (m->p_type == PT_MIPS_REGINFO)
10634 break;
10635 if (m == NULL)
10636 {
10637 amt = sizeof *m;
9719ad41 10638 m = bfd_zalloc (abfd, amt);
b49e97c9 10639 if (m == NULL)
b34976b6 10640 return FALSE;
b49e97c9
TS
10641
10642 m->p_type = PT_MIPS_REGINFO;
10643 m->count = 1;
10644 m->sections[0] = s;
10645
10646 /* We want to put it after the PHDR and INTERP segments. */
10647 pm = &elf_tdata (abfd)->segment_map;
10648 while (*pm != NULL
10649 && ((*pm)->p_type == PT_PHDR
10650 || (*pm)->p_type == PT_INTERP))
10651 pm = &(*pm)->next;
10652
10653 m->next = *pm;
10654 *pm = m;
10655 }
10656 }
10657
10658 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10659 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 10660 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 10661 table. */
c1fd6598
AO
10662 if (NEWABI_P (abfd)
10663 /* On non-IRIX6 new abi, we'll have already created a segment
10664 for this section, so don't create another. I'm not sure this
10665 is not also the case for IRIX 6, but I can't test it right
10666 now. */
10667 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
10668 {
10669 for (s = abfd->sections; s; s = s->next)
10670 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10671 break;
10672
10673 if (s)
10674 {
10675 struct elf_segment_map *options_segment;
10676
98a8deaf
RS
10677 pm = &elf_tdata (abfd)->segment_map;
10678 while (*pm != NULL
10679 && ((*pm)->p_type == PT_PHDR
10680 || (*pm)->p_type == PT_INTERP))
10681 pm = &(*pm)->next;
b49e97c9 10682
8ded5a0f
AM
10683 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10684 {
10685 amt = sizeof (struct elf_segment_map);
10686 options_segment = bfd_zalloc (abfd, amt);
10687 options_segment->next = *pm;
10688 options_segment->p_type = PT_MIPS_OPTIONS;
10689 options_segment->p_flags = PF_R;
10690 options_segment->p_flags_valid = TRUE;
10691 options_segment->count = 1;
10692 options_segment->sections[0] = s;
10693 *pm = options_segment;
10694 }
b49e97c9
TS
10695 }
10696 }
10697 else
10698 {
10699 if (IRIX_COMPAT (abfd) == ict_irix5)
10700 {
10701 /* If there are .dynamic and .mdebug sections, we make a room
10702 for the RTPROC header. FIXME: Rewrite without section names. */
10703 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10704 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10705 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10706 {
10707 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10708 if (m->p_type == PT_MIPS_RTPROC)
10709 break;
10710 if (m == NULL)
10711 {
10712 amt = sizeof *m;
9719ad41 10713 m = bfd_zalloc (abfd, amt);
b49e97c9 10714 if (m == NULL)
b34976b6 10715 return FALSE;
b49e97c9
TS
10716
10717 m->p_type = PT_MIPS_RTPROC;
10718
10719 s = bfd_get_section_by_name (abfd, ".rtproc");
10720 if (s == NULL)
10721 {
10722 m->count = 0;
10723 m->p_flags = 0;
10724 m->p_flags_valid = 1;
10725 }
10726 else
10727 {
10728 m->count = 1;
10729 m->sections[0] = s;
10730 }
10731
10732 /* We want to put it after the DYNAMIC segment. */
10733 pm = &elf_tdata (abfd)->segment_map;
10734 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10735 pm = &(*pm)->next;
10736 if (*pm != NULL)
10737 pm = &(*pm)->next;
10738
10739 m->next = *pm;
10740 *pm = m;
10741 }
10742 }
10743 }
8dc1a139 10744 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
10745 .dynstr, .dynsym, and .hash sections, and everything in
10746 between. */
10747 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10748 pm = &(*pm)->next)
10749 if ((*pm)->p_type == PT_DYNAMIC)
10750 break;
10751 m = *pm;
10752 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10753 {
10754 /* For a normal mips executable the permissions for the PT_DYNAMIC
10755 segment are read, write and execute. We do that here since
10756 the code in elf.c sets only the read permission. This matters
10757 sometimes for the dynamic linker. */
10758 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10759 {
10760 m->p_flags = PF_R | PF_W | PF_X;
10761 m->p_flags_valid = 1;
10762 }
10763 }
f6f62d6f
RS
10764 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10765 glibc's dynamic linker has traditionally derived the number of
10766 tags from the p_filesz field, and sometimes allocates stack
10767 arrays of that size. An overly-big PT_DYNAMIC segment can
10768 be actively harmful in such cases. Making PT_DYNAMIC contain
10769 other sections can also make life hard for the prelinker,
10770 which might move one of the other sections to a different
10771 PT_LOAD segment. */
10772 if (SGI_COMPAT (abfd)
10773 && m != NULL
10774 && m->count == 1
10775 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
10776 {
10777 static const char *sec_names[] =
10778 {
10779 ".dynamic", ".dynstr", ".dynsym", ".hash"
10780 };
10781 bfd_vma low, high;
10782 unsigned int i, c;
10783 struct elf_segment_map *n;
10784
792b4a53 10785 low = ~(bfd_vma) 0;
b49e97c9
TS
10786 high = 0;
10787 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10788 {
10789 s = bfd_get_section_by_name (abfd, sec_names[i]);
10790 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10791 {
10792 bfd_size_type sz;
10793
10794 if (low > s->vma)
10795 low = s->vma;
eea6121a 10796 sz = s->size;
b49e97c9
TS
10797 if (high < s->vma + sz)
10798 high = s->vma + sz;
10799 }
10800 }
10801
10802 c = 0;
10803 for (s = abfd->sections; s != NULL; s = s->next)
10804 if ((s->flags & SEC_LOAD) != 0
10805 && s->vma >= low
eea6121a 10806 && s->vma + s->size <= high)
b49e97c9
TS
10807 ++c;
10808
10809 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 10810 n = bfd_zalloc (abfd, amt);
b49e97c9 10811 if (n == NULL)
b34976b6 10812 return FALSE;
b49e97c9
TS
10813 *n = *m;
10814 n->count = c;
10815
10816 i = 0;
10817 for (s = abfd->sections; s != NULL; s = s->next)
10818 {
10819 if ((s->flags & SEC_LOAD) != 0
10820 && s->vma >= low
eea6121a 10821 && s->vma + s->size <= high)
b49e97c9
TS
10822 {
10823 n->sections[i] = s;
10824 ++i;
10825 }
10826 }
10827
10828 *pm = n;
10829 }
10830 }
10831
98c904a8
RS
10832 /* Allocate a spare program header in dynamic objects so that tools
10833 like the prelinker can add an extra PT_LOAD entry.
10834
10835 If the prelinker needs to make room for a new PT_LOAD entry, its
10836 standard procedure is to move the first (read-only) sections into
10837 the new (writable) segment. However, the MIPS ABI requires
10838 .dynamic to be in a read-only segment, and the section will often
10839 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10840
10841 Although the prelinker could in principle move .dynamic to a
10842 writable segment, it seems better to allocate a spare program
10843 header instead, and avoid the need to move any sections.
10844 There is a long tradition of allocating spare dynamic tags,
10845 so allocating a spare program header seems like a natural
7c8b76cc
JM
10846 extension.
10847
10848 If INFO is NULL, we may be copying an already prelinked binary
10849 with objcopy or strip, so do not add this header. */
10850 if (info != NULL
10851 && !SGI_COMPAT (abfd)
98c904a8
RS
10852 && bfd_get_section_by_name (abfd, ".dynamic"))
10853 {
10854 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10855 if ((*pm)->p_type == PT_NULL)
10856 break;
10857 if (*pm == NULL)
10858 {
10859 m = bfd_zalloc (abfd, sizeof (*m));
10860 if (m == NULL)
10861 return FALSE;
10862
10863 m->p_type = PT_NULL;
10864 *pm = m;
10865 }
10866 }
10867
b34976b6 10868 return TRUE;
b49e97c9
TS
10869}
10870\f
10871/* Return the section that should be marked against GC for a given
10872 relocation. */
10873
10874asection *
9719ad41 10875_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 10876 struct bfd_link_info *info,
9719ad41
RS
10877 Elf_Internal_Rela *rel,
10878 struct elf_link_hash_entry *h,
10879 Elf_Internal_Sym *sym)
b49e97c9
TS
10880{
10881 /* ??? Do mips16 stub sections need to be handled special? */
10882
10883 if (h != NULL)
07adf181
AM
10884 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10885 {
10886 case R_MIPS_GNU_VTINHERIT:
10887 case R_MIPS_GNU_VTENTRY:
10888 return NULL;
10889 }
b49e97c9 10890
07adf181 10891 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
10892}
10893
10894/* Update the got entry reference counts for the section being removed. */
10895
b34976b6 10896bfd_boolean
9719ad41
RS
10897_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10898 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10899 asection *sec ATTRIBUTE_UNUSED,
10900 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
10901{
10902#if 0
10903 Elf_Internal_Shdr *symtab_hdr;
10904 struct elf_link_hash_entry **sym_hashes;
10905 bfd_signed_vma *local_got_refcounts;
10906 const Elf_Internal_Rela *rel, *relend;
10907 unsigned long r_symndx;
10908 struct elf_link_hash_entry *h;
10909
7dda2462
TG
10910 if (info->relocatable)
10911 return TRUE;
10912
b49e97c9
TS
10913 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10914 sym_hashes = elf_sym_hashes (abfd);
10915 local_got_refcounts = elf_local_got_refcounts (abfd);
10916
10917 relend = relocs + sec->reloc_count;
10918 for (rel = relocs; rel < relend; rel++)
10919 switch (ELF_R_TYPE (abfd, rel->r_info))
10920 {
738e5348
RS
10921 case R_MIPS16_GOT16:
10922 case R_MIPS16_CALL16:
b49e97c9
TS
10923 case R_MIPS_GOT16:
10924 case R_MIPS_CALL16:
10925 case R_MIPS_CALL_HI16:
10926 case R_MIPS_CALL_LO16:
10927 case R_MIPS_GOT_HI16:
10928 case R_MIPS_GOT_LO16:
4a14403c
TS
10929 case R_MIPS_GOT_DISP:
10930 case R_MIPS_GOT_PAGE:
10931 case R_MIPS_GOT_OFST:
b49e97c9
TS
10932 /* ??? It would seem that the existing MIPS code does no sort
10933 of reference counting or whatnot on its GOT and PLT entries,
10934 so it is not possible to garbage collect them at this time. */
10935 break;
10936
10937 default:
10938 break;
10939 }
10940#endif
10941
b34976b6 10942 return TRUE;
b49e97c9
TS
10943}
10944\f
10945/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10946 hiding the old indirect symbol. Process additional relocation
10947 information. Also called for weakdefs, in which case we just let
10948 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10949
10950void
fcfa13d2 10951_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
10952 struct elf_link_hash_entry *dir,
10953 struct elf_link_hash_entry *ind)
b49e97c9
TS
10954{
10955 struct mips_elf_link_hash_entry *dirmips, *indmips;
10956
fcfa13d2 10957 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 10958
861fb55a
DJ
10959 dirmips = (struct mips_elf_link_hash_entry *) dir;
10960 indmips = (struct mips_elf_link_hash_entry *) ind;
10961 /* Any absolute non-dynamic relocations against an indirect or weak
10962 definition will be against the target symbol. */
10963 if (indmips->has_static_relocs)
10964 dirmips->has_static_relocs = TRUE;
10965
b49e97c9
TS
10966 if (ind->root.type != bfd_link_hash_indirect)
10967 return;
10968
b49e97c9
TS
10969 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10970 if (indmips->readonly_reloc)
b34976b6 10971 dirmips->readonly_reloc = TRUE;
b49e97c9 10972 if (indmips->no_fn_stub)
b34976b6 10973 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
10974 if (indmips->fn_stub)
10975 {
10976 dirmips->fn_stub = indmips->fn_stub;
10977 indmips->fn_stub = NULL;
10978 }
10979 if (indmips->need_fn_stub)
10980 {
10981 dirmips->need_fn_stub = TRUE;
10982 indmips->need_fn_stub = FALSE;
10983 }
10984 if (indmips->call_stub)
10985 {
10986 dirmips->call_stub = indmips->call_stub;
10987 indmips->call_stub = NULL;
10988 }
10989 if (indmips->call_fp_stub)
10990 {
10991 dirmips->call_fp_stub = indmips->call_fp_stub;
10992 indmips->call_fp_stub = NULL;
10993 }
634835ae
RS
10994 if (indmips->global_got_area < dirmips->global_got_area)
10995 dirmips->global_got_area = indmips->global_got_area;
10996 if (indmips->global_got_area < GGA_NONE)
10997 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
10998 if (indmips->has_nonpic_branches)
10999 dirmips->has_nonpic_branches = TRUE;
0f20cc35
DJ
11000
11001 if (dirmips->tls_type == 0)
11002 dirmips->tls_type = indmips->tls_type;
b49e97c9 11003}
b49e97c9 11004\f
d01414a5
TS
11005#define PDR_SIZE 32
11006
b34976b6 11007bfd_boolean
9719ad41
RS
11008_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11009 struct bfd_link_info *info)
d01414a5
TS
11010{
11011 asection *o;
b34976b6 11012 bfd_boolean ret = FALSE;
d01414a5
TS
11013 unsigned char *tdata;
11014 size_t i, skip;
11015
11016 o = bfd_get_section_by_name (abfd, ".pdr");
11017 if (! o)
b34976b6 11018 return FALSE;
eea6121a 11019 if (o->size == 0)
b34976b6 11020 return FALSE;
eea6121a 11021 if (o->size % PDR_SIZE != 0)
b34976b6 11022 return FALSE;
d01414a5
TS
11023 if (o->output_section != NULL
11024 && bfd_is_abs_section (o->output_section))
b34976b6 11025 return FALSE;
d01414a5 11026
eea6121a 11027 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11028 if (! tdata)
b34976b6 11029 return FALSE;
d01414a5 11030
9719ad41 11031 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11032 info->keep_memory);
d01414a5
TS
11033 if (!cookie->rels)
11034 {
11035 free (tdata);
b34976b6 11036 return FALSE;
d01414a5
TS
11037 }
11038
11039 cookie->rel = cookie->rels;
11040 cookie->relend = cookie->rels + o->reloc_count;
11041
eea6121a 11042 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11043 {
c152c796 11044 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11045 {
11046 tdata[i] = 1;
11047 skip ++;
11048 }
11049 }
11050
11051 if (skip != 0)
11052 {
f0abc2a1 11053 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11054 o->size -= skip * PDR_SIZE;
b34976b6 11055 ret = TRUE;
d01414a5
TS
11056 }
11057 else
11058 free (tdata);
11059
11060 if (! info->keep_memory)
11061 free (cookie->rels);
11062
11063 return ret;
11064}
11065
b34976b6 11066bfd_boolean
9719ad41 11067_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11068{
11069 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11070 return TRUE;
11071 return FALSE;
53bfd6b4 11072}
d01414a5 11073
b34976b6 11074bfd_boolean
c7b8f16e
JB
11075_bfd_mips_elf_write_section (bfd *output_bfd,
11076 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11077 asection *sec, bfd_byte *contents)
d01414a5
TS
11078{
11079 bfd_byte *to, *from, *end;
11080 int i;
11081
11082 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11083 return FALSE;
d01414a5 11084
f0abc2a1 11085 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11086 return FALSE;
d01414a5
TS
11087
11088 to = contents;
eea6121a 11089 end = contents + sec->size;
d01414a5
TS
11090 for (from = contents, i = 0;
11091 from < end;
11092 from += PDR_SIZE, i++)
11093 {
f0abc2a1 11094 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11095 continue;
11096 if (to != from)
11097 memcpy (to, from, PDR_SIZE);
11098 to += PDR_SIZE;
11099 }
11100 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11101 sec->output_offset, sec->size);
b34976b6 11102 return TRUE;
d01414a5 11103}
53bfd6b4 11104\f
b49e97c9
TS
11105/* MIPS ELF uses a special find_nearest_line routine in order the
11106 handle the ECOFF debugging information. */
11107
11108struct mips_elf_find_line
11109{
11110 struct ecoff_debug_info d;
11111 struct ecoff_find_line i;
11112};
11113
b34976b6 11114bfd_boolean
9719ad41
RS
11115_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11116 asymbol **symbols, bfd_vma offset,
11117 const char **filename_ptr,
11118 const char **functionname_ptr,
11119 unsigned int *line_ptr)
b49e97c9
TS
11120{
11121 asection *msec;
11122
11123 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11124 filename_ptr, functionname_ptr,
11125 line_ptr))
b34976b6 11126 return TRUE;
b49e97c9
TS
11127
11128 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11129 filename_ptr, functionname_ptr,
9719ad41 11130 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11131 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11132 return TRUE;
b49e97c9
TS
11133
11134 msec = bfd_get_section_by_name (abfd, ".mdebug");
11135 if (msec != NULL)
11136 {
11137 flagword origflags;
11138 struct mips_elf_find_line *fi;
11139 const struct ecoff_debug_swap * const swap =
11140 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11141
11142 /* If we are called during a link, mips_elf_final_link may have
11143 cleared the SEC_HAS_CONTENTS field. We force it back on here
11144 if appropriate (which it normally will be). */
11145 origflags = msec->flags;
11146 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11147 msec->flags |= SEC_HAS_CONTENTS;
11148
11149 fi = elf_tdata (abfd)->find_line_info;
11150 if (fi == NULL)
11151 {
11152 bfd_size_type external_fdr_size;
11153 char *fraw_src;
11154 char *fraw_end;
11155 struct fdr *fdr_ptr;
11156 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11157
9719ad41 11158 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11159 if (fi == NULL)
11160 {
11161 msec->flags = origflags;
b34976b6 11162 return FALSE;
b49e97c9
TS
11163 }
11164
11165 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11166 {
11167 msec->flags = origflags;
b34976b6 11168 return FALSE;
b49e97c9
TS
11169 }
11170
11171 /* Swap in the FDR information. */
11172 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11173 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11174 if (fi->d.fdr == NULL)
11175 {
11176 msec->flags = origflags;
b34976b6 11177 return FALSE;
b49e97c9
TS
11178 }
11179 external_fdr_size = swap->external_fdr_size;
11180 fdr_ptr = fi->d.fdr;
11181 fraw_src = (char *) fi->d.external_fdr;
11182 fraw_end = (fraw_src
11183 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11184 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11185 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11186
11187 elf_tdata (abfd)->find_line_info = fi;
11188
11189 /* Note that we don't bother to ever free this information.
11190 find_nearest_line is either called all the time, as in
11191 objdump -l, so the information should be saved, or it is
11192 rarely called, as in ld error messages, so the memory
11193 wasted is unimportant. Still, it would probably be a
11194 good idea for free_cached_info to throw it away. */
11195 }
11196
11197 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11198 &fi->i, filename_ptr, functionname_ptr,
11199 line_ptr))
11200 {
11201 msec->flags = origflags;
b34976b6 11202 return TRUE;
b49e97c9
TS
11203 }
11204
11205 msec->flags = origflags;
11206 }
11207
11208 /* Fall back on the generic ELF find_nearest_line routine. */
11209
11210 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11211 filename_ptr, functionname_ptr,
11212 line_ptr);
11213}
4ab527b0
FF
11214
11215bfd_boolean
11216_bfd_mips_elf_find_inliner_info (bfd *abfd,
11217 const char **filename_ptr,
11218 const char **functionname_ptr,
11219 unsigned int *line_ptr)
11220{
11221 bfd_boolean found;
11222 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11223 functionname_ptr, line_ptr,
11224 & elf_tdata (abfd)->dwarf2_find_line_info);
11225 return found;
11226}
11227
b49e97c9
TS
11228\f
11229/* When are writing out the .options or .MIPS.options section,
11230 remember the bytes we are writing out, so that we can install the
11231 GP value in the section_processing routine. */
11232
b34976b6 11233bfd_boolean
9719ad41
RS
11234_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11235 const void *location,
11236 file_ptr offset, bfd_size_type count)
b49e97c9 11237{
cc2e31b9 11238 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11239 {
11240 bfd_byte *c;
11241
11242 if (elf_section_data (section) == NULL)
11243 {
11244 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11245 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11246 if (elf_section_data (section) == NULL)
b34976b6 11247 return FALSE;
b49e97c9 11248 }
f0abc2a1 11249 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11250 if (c == NULL)
11251 {
eea6121a 11252 c = bfd_zalloc (abfd, section->size);
b49e97c9 11253 if (c == NULL)
b34976b6 11254 return FALSE;
f0abc2a1 11255 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11256 }
11257
9719ad41 11258 memcpy (c + offset, location, count);
b49e97c9
TS
11259 }
11260
11261 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11262 count);
11263}
11264
11265/* This is almost identical to bfd_generic_get_... except that some
11266 MIPS relocations need to be handled specially. Sigh. */
11267
11268bfd_byte *
9719ad41
RS
11269_bfd_elf_mips_get_relocated_section_contents
11270 (bfd *abfd,
11271 struct bfd_link_info *link_info,
11272 struct bfd_link_order *link_order,
11273 bfd_byte *data,
11274 bfd_boolean relocatable,
11275 asymbol **symbols)
b49e97c9
TS
11276{
11277 /* Get enough memory to hold the stuff */
11278 bfd *input_bfd = link_order->u.indirect.section->owner;
11279 asection *input_section = link_order->u.indirect.section;
eea6121a 11280 bfd_size_type sz;
b49e97c9
TS
11281
11282 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11283 arelent **reloc_vector = NULL;
11284 long reloc_count;
11285
11286 if (reloc_size < 0)
11287 goto error_return;
11288
9719ad41 11289 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11290 if (reloc_vector == NULL && reloc_size != 0)
11291 goto error_return;
11292
11293 /* read in the section */
eea6121a
AM
11294 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11295 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11296 goto error_return;
11297
b49e97c9
TS
11298 reloc_count = bfd_canonicalize_reloc (input_bfd,
11299 input_section,
11300 reloc_vector,
11301 symbols);
11302 if (reloc_count < 0)
11303 goto error_return;
11304
11305 if (reloc_count > 0)
11306 {
11307 arelent **parent;
11308 /* for mips */
11309 int gp_found;
11310 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11311
11312 {
11313 struct bfd_hash_entry *h;
11314 struct bfd_link_hash_entry *lh;
11315 /* Skip all this stuff if we aren't mixing formats. */
11316 if (abfd && input_bfd
11317 && abfd->xvec == input_bfd->xvec)
11318 lh = 0;
11319 else
11320 {
b34976b6 11321 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11322 lh = (struct bfd_link_hash_entry *) h;
11323 }
11324 lookup:
11325 if (lh)
11326 {
11327 switch (lh->type)
11328 {
11329 case bfd_link_hash_undefined:
11330 case bfd_link_hash_undefweak:
11331 case bfd_link_hash_common:
11332 gp_found = 0;
11333 break;
11334 case bfd_link_hash_defined:
11335 case bfd_link_hash_defweak:
11336 gp_found = 1;
11337 gp = lh->u.def.value;
11338 break;
11339 case bfd_link_hash_indirect:
11340 case bfd_link_hash_warning:
11341 lh = lh->u.i.link;
11342 /* @@FIXME ignoring warning for now */
11343 goto lookup;
11344 case bfd_link_hash_new:
11345 default:
11346 abort ();
11347 }
11348 }
11349 else
11350 gp_found = 0;
11351 }
11352 /* end mips */
9719ad41 11353 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11354 {
9719ad41 11355 char *error_message = NULL;
b49e97c9
TS
11356 bfd_reloc_status_type r;
11357
11358 /* Specific to MIPS: Deal with relocation types that require
11359 knowing the gp of the output bfd. */
11360 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11361
8236346f
EC
11362 /* If we've managed to find the gp and have a special
11363 function for the relocation then go ahead, else default
11364 to the generic handling. */
11365 if (gp_found
11366 && (*parent)->howto->special_function
11367 == _bfd_mips_elf32_gprel16_reloc)
11368 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11369 input_section, relocatable,
11370 data, gp);
11371 else
86324f90 11372 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11373 input_section,
11374 relocatable ? abfd : NULL,
11375 &error_message);
b49e97c9 11376
1049f94e 11377 if (relocatable)
b49e97c9
TS
11378 {
11379 asection *os = input_section->output_section;
11380
11381 /* A partial link, so keep the relocs */
11382 os->orelocation[os->reloc_count] = *parent;
11383 os->reloc_count++;
11384 }
11385
11386 if (r != bfd_reloc_ok)
11387 {
11388 switch (r)
11389 {
11390 case bfd_reloc_undefined:
11391 if (!((*link_info->callbacks->undefined_symbol)
11392 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11393 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11394 goto error_return;
11395 break;
11396 case bfd_reloc_dangerous:
9719ad41 11397 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11398 if (!((*link_info->callbacks->reloc_dangerous)
11399 (link_info, error_message, input_bfd, input_section,
11400 (*parent)->address)))
11401 goto error_return;
11402 break;
11403 case bfd_reloc_overflow:
11404 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11405 (link_info, NULL,
11406 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11407 (*parent)->howto->name, (*parent)->addend,
11408 input_bfd, input_section, (*parent)->address)))
11409 goto error_return;
11410 break;
11411 case bfd_reloc_outofrange:
11412 default:
11413 abort ();
11414 break;
11415 }
11416
11417 }
11418 }
11419 }
11420 if (reloc_vector != NULL)
11421 free (reloc_vector);
11422 return data;
11423
11424error_return:
11425 if (reloc_vector != NULL)
11426 free (reloc_vector);
11427 return NULL;
11428}
11429\f
d5eaccd7
RS
11430/* Allocate ABFD's target-dependent data. */
11431
11432bfd_boolean
11433_bfd_mips_elf_mkobject (bfd *abfd)
11434{
11435 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
11436 MIPS_ELF_TDATA);
11437}
11438
b49e97c9
TS
11439/* Create a MIPS ELF linker hash table. */
11440
11441struct bfd_link_hash_table *
9719ad41 11442_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
11443{
11444 struct mips_elf_link_hash_table *ret;
11445 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11446
9719ad41
RS
11447 ret = bfd_malloc (amt);
11448 if (ret == NULL)
b49e97c9
TS
11449 return NULL;
11450
66eb6687
AM
11451 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11452 mips_elf_link_hash_newfunc,
11453 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 11454 {
e2d34d7d 11455 free (ret);
b49e97c9
TS
11456 return NULL;
11457 }
11458
11459#if 0
11460 /* We no longer use this. */
11461 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11462 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11463#endif
11464 ret->procedure_count = 0;
11465 ret->compact_rel_size = 0;
b34976b6 11466 ret->use_rld_obj_head = FALSE;
b49e97c9 11467 ret->rld_value = 0;
b34976b6 11468 ret->mips16_stubs_seen = FALSE;
861fb55a 11469 ret->use_plts_and_copy_relocs = FALSE;
0a44bf69 11470 ret->is_vxworks = FALSE;
0e53d9da 11471 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
11472 ret->srelbss = NULL;
11473 ret->sdynbss = NULL;
11474 ret->srelplt = NULL;
11475 ret->srelplt2 = NULL;
11476 ret->sgotplt = NULL;
11477 ret->splt = NULL;
4e41d0d7 11478 ret->sstubs = NULL;
a8028dd0
RS
11479 ret->sgot = NULL;
11480 ret->got_info = NULL;
0a44bf69
RS
11481 ret->plt_header_size = 0;
11482 ret->plt_entry_size = 0;
33bb52fb 11483 ret->lazy_stub_count = 0;
5108fc1b 11484 ret->function_stub_size = 0;
861fb55a
DJ
11485 ret->strampoline = NULL;
11486 ret->la25_stubs = NULL;
11487 ret->add_stub_section = NULL;
b49e97c9
TS
11488
11489 return &ret->root.root;
11490}
0a44bf69
RS
11491
11492/* Likewise, but indicate that the target is VxWorks. */
11493
11494struct bfd_link_hash_table *
11495_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11496{
11497 struct bfd_link_hash_table *ret;
11498
11499 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11500 if (ret)
11501 {
11502 struct mips_elf_link_hash_table *htab;
11503
11504 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
11505 htab->use_plts_and_copy_relocs = TRUE;
11506 htab->is_vxworks = TRUE;
0a44bf69
RS
11507 }
11508 return ret;
11509}
861fb55a
DJ
11510
11511/* A function that the linker calls if we are allowed to use PLTs
11512 and copy relocs. */
11513
11514void
11515_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11516{
11517 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11518}
b49e97c9
TS
11519\f
11520/* We need to use a special link routine to handle the .reginfo and
11521 the .mdebug sections. We need to merge all instances of these
11522 sections together, not write them all out sequentially. */
11523
b34976b6 11524bfd_boolean
9719ad41 11525_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 11526{
b49e97c9
TS
11527 asection *o;
11528 struct bfd_link_order *p;
11529 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11530 asection *rtproc_sec;
11531 Elf32_RegInfo reginfo;
11532 struct ecoff_debug_info debug;
861fb55a 11533 struct mips_htab_traverse_info hti;
7a2a6943
NC
11534 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11535 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 11536 HDRR *symhdr = &debug.symbolic_header;
9719ad41 11537 void *mdebug_handle = NULL;
b49e97c9
TS
11538 asection *s;
11539 EXTR esym;
11540 unsigned int i;
11541 bfd_size_type amt;
0a44bf69 11542 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
11543
11544 static const char * const secname[] =
11545 {
11546 ".text", ".init", ".fini", ".data",
11547 ".rodata", ".sdata", ".sbss", ".bss"
11548 };
11549 static const int sc[] =
11550 {
11551 scText, scInit, scFini, scData,
11552 scRData, scSData, scSBss, scBss
11553 };
11554
d4596a51
RS
11555 /* Sort the dynamic symbols so that those with GOT entries come after
11556 those without. */
0a44bf69 11557 htab = mips_elf_hash_table (info);
d4596a51
RS
11558 if (!mips_elf_sort_hash_table (abfd, info))
11559 return FALSE;
b49e97c9 11560
861fb55a
DJ
11561 /* Create any scheduled LA25 stubs. */
11562 hti.info = info;
11563 hti.output_bfd = abfd;
11564 hti.error = FALSE;
11565 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11566 if (hti.error)
11567 return FALSE;
11568
b49e97c9
TS
11569 /* Get a value for the GP register. */
11570 if (elf_gp (abfd) == 0)
11571 {
11572 struct bfd_link_hash_entry *h;
11573
b34976b6 11574 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 11575 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
11576 elf_gp (abfd) = (h->u.def.value
11577 + h->u.def.section->output_section->vma
11578 + h->u.def.section->output_offset);
0a44bf69
RS
11579 else if (htab->is_vxworks
11580 && (h = bfd_link_hash_lookup (info->hash,
11581 "_GLOBAL_OFFSET_TABLE_",
11582 FALSE, FALSE, TRUE))
11583 && h->type == bfd_link_hash_defined)
11584 elf_gp (abfd) = (h->u.def.section->output_section->vma
11585 + h->u.def.section->output_offset
11586 + h->u.def.value);
1049f94e 11587 else if (info->relocatable)
b49e97c9
TS
11588 {
11589 bfd_vma lo = MINUS_ONE;
11590
11591 /* Find the GP-relative section with the lowest offset. */
9719ad41 11592 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
11593 if (o->vma < lo
11594 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11595 lo = o->vma;
11596
11597 /* And calculate GP relative to that. */
0a44bf69 11598 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
11599 }
11600 else
11601 {
11602 /* If the relocate_section function needs to do a reloc
11603 involving the GP value, it should make a reloc_dangerous
11604 callback to warn that GP is not defined. */
11605 }
11606 }
11607
11608 /* Go through the sections and collect the .reginfo and .mdebug
11609 information. */
11610 reginfo_sec = NULL;
11611 mdebug_sec = NULL;
11612 gptab_data_sec = NULL;
11613 gptab_bss_sec = NULL;
9719ad41 11614 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
11615 {
11616 if (strcmp (o->name, ".reginfo") == 0)
11617 {
11618 memset (&reginfo, 0, sizeof reginfo);
11619
11620 /* We have found the .reginfo section in the output file.
11621 Look through all the link_orders comprising it and merge
11622 the information together. */
8423293d 11623 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11624 {
11625 asection *input_section;
11626 bfd *input_bfd;
11627 Elf32_External_RegInfo ext;
11628 Elf32_RegInfo sub;
11629
11630 if (p->type != bfd_indirect_link_order)
11631 {
11632 if (p->type == bfd_data_link_order)
11633 continue;
11634 abort ();
11635 }
11636
11637 input_section = p->u.indirect.section;
11638 input_bfd = input_section->owner;
11639
b49e97c9 11640 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 11641 &ext, 0, sizeof ext))
b34976b6 11642 return FALSE;
b49e97c9
TS
11643
11644 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11645
11646 reginfo.ri_gprmask |= sub.ri_gprmask;
11647 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11648 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11649 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11650 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11651
11652 /* ri_gp_value is set by the function
11653 mips_elf32_section_processing when the section is
11654 finally written out. */
11655
11656 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11657 elf_link_input_bfd ignores this section. */
11658 input_section->flags &= ~SEC_HAS_CONTENTS;
11659 }
11660
11661 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 11662 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
11663
11664 /* Skip this section later on (I don't think this currently
11665 matters, but someday it might). */
8423293d 11666 o->map_head.link_order = NULL;
b49e97c9
TS
11667
11668 reginfo_sec = o;
11669 }
11670
11671 if (strcmp (o->name, ".mdebug") == 0)
11672 {
11673 struct extsym_info einfo;
11674 bfd_vma last;
11675
11676 /* We have found the .mdebug section in the output file.
11677 Look through all the link_orders comprising it and merge
11678 the information together. */
11679 symhdr->magic = swap->sym_magic;
11680 /* FIXME: What should the version stamp be? */
11681 symhdr->vstamp = 0;
11682 symhdr->ilineMax = 0;
11683 symhdr->cbLine = 0;
11684 symhdr->idnMax = 0;
11685 symhdr->ipdMax = 0;
11686 symhdr->isymMax = 0;
11687 symhdr->ioptMax = 0;
11688 symhdr->iauxMax = 0;
11689 symhdr->issMax = 0;
11690 symhdr->issExtMax = 0;
11691 symhdr->ifdMax = 0;
11692 symhdr->crfd = 0;
11693 symhdr->iextMax = 0;
11694
11695 /* We accumulate the debugging information itself in the
11696 debug_info structure. */
11697 debug.line = NULL;
11698 debug.external_dnr = NULL;
11699 debug.external_pdr = NULL;
11700 debug.external_sym = NULL;
11701 debug.external_opt = NULL;
11702 debug.external_aux = NULL;
11703 debug.ss = NULL;
11704 debug.ssext = debug.ssext_end = NULL;
11705 debug.external_fdr = NULL;
11706 debug.external_rfd = NULL;
11707 debug.external_ext = debug.external_ext_end = NULL;
11708
11709 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 11710 if (mdebug_handle == NULL)
b34976b6 11711 return FALSE;
b49e97c9
TS
11712
11713 esym.jmptbl = 0;
11714 esym.cobol_main = 0;
11715 esym.weakext = 0;
11716 esym.reserved = 0;
11717 esym.ifd = ifdNil;
11718 esym.asym.iss = issNil;
11719 esym.asym.st = stLocal;
11720 esym.asym.reserved = 0;
11721 esym.asym.index = indexNil;
11722 last = 0;
11723 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11724 {
11725 esym.asym.sc = sc[i];
11726 s = bfd_get_section_by_name (abfd, secname[i]);
11727 if (s != NULL)
11728 {
11729 esym.asym.value = s->vma;
eea6121a 11730 last = s->vma + s->size;
b49e97c9
TS
11731 }
11732 else
11733 esym.asym.value = last;
11734 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11735 secname[i], &esym))
b34976b6 11736 return FALSE;
b49e97c9
TS
11737 }
11738
8423293d 11739 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11740 {
11741 asection *input_section;
11742 bfd *input_bfd;
11743 const struct ecoff_debug_swap *input_swap;
11744 struct ecoff_debug_info input_debug;
11745 char *eraw_src;
11746 char *eraw_end;
11747
11748 if (p->type != bfd_indirect_link_order)
11749 {
11750 if (p->type == bfd_data_link_order)
11751 continue;
11752 abort ();
11753 }
11754
11755 input_section = p->u.indirect.section;
11756 input_bfd = input_section->owner;
11757
d5eaccd7 11758 if (!is_mips_elf (input_bfd))
b49e97c9
TS
11759 {
11760 /* I don't know what a non MIPS ELF bfd would be
11761 doing with a .mdebug section, but I don't really
11762 want to deal with it. */
11763 continue;
11764 }
11765
11766 input_swap = (get_elf_backend_data (input_bfd)
11767 ->elf_backend_ecoff_debug_swap);
11768
eea6121a 11769 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
11770
11771 /* The ECOFF linking code expects that we have already
11772 read in the debugging information and set up an
11773 ecoff_debug_info structure, so we do that now. */
11774 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11775 &input_debug))
b34976b6 11776 return FALSE;
b49e97c9
TS
11777
11778 if (! (bfd_ecoff_debug_accumulate
11779 (mdebug_handle, abfd, &debug, swap, input_bfd,
11780 &input_debug, input_swap, info)))
b34976b6 11781 return FALSE;
b49e97c9
TS
11782
11783 /* Loop through the external symbols. For each one with
11784 interesting information, try to find the symbol in
11785 the linker global hash table and save the information
11786 for the output external symbols. */
11787 eraw_src = input_debug.external_ext;
11788 eraw_end = (eraw_src
11789 + (input_debug.symbolic_header.iextMax
11790 * input_swap->external_ext_size));
11791 for (;
11792 eraw_src < eraw_end;
11793 eraw_src += input_swap->external_ext_size)
11794 {
11795 EXTR ext;
11796 const char *name;
11797 struct mips_elf_link_hash_entry *h;
11798
9719ad41 11799 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
11800 if (ext.asym.sc == scNil
11801 || ext.asym.sc == scUndefined
11802 || ext.asym.sc == scSUndefined)
11803 continue;
11804
11805 name = input_debug.ssext + ext.asym.iss;
11806 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 11807 name, FALSE, FALSE, TRUE);
b49e97c9
TS
11808 if (h == NULL || h->esym.ifd != -2)
11809 continue;
11810
11811 if (ext.ifd != -1)
11812 {
11813 BFD_ASSERT (ext.ifd
11814 < input_debug.symbolic_header.ifdMax);
11815 ext.ifd = input_debug.ifdmap[ext.ifd];
11816 }
11817
11818 h->esym = ext;
11819 }
11820
11821 /* Free up the information we just read. */
11822 free (input_debug.line);
11823 free (input_debug.external_dnr);
11824 free (input_debug.external_pdr);
11825 free (input_debug.external_sym);
11826 free (input_debug.external_opt);
11827 free (input_debug.external_aux);
11828 free (input_debug.ss);
11829 free (input_debug.ssext);
11830 free (input_debug.external_fdr);
11831 free (input_debug.external_rfd);
11832 free (input_debug.external_ext);
11833
11834 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11835 elf_link_input_bfd ignores this section. */
11836 input_section->flags &= ~SEC_HAS_CONTENTS;
11837 }
11838
11839 if (SGI_COMPAT (abfd) && info->shared)
11840 {
11841 /* Create .rtproc section. */
11842 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11843 if (rtproc_sec == NULL)
11844 {
11845 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11846 | SEC_LINKER_CREATED | SEC_READONLY);
11847
3496cb2a
L
11848 rtproc_sec = bfd_make_section_with_flags (abfd,
11849 ".rtproc",
11850 flags);
b49e97c9 11851 if (rtproc_sec == NULL
b49e97c9 11852 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 11853 return FALSE;
b49e97c9
TS
11854 }
11855
11856 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11857 info, rtproc_sec,
11858 &debug))
b34976b6 11859 return FALSE;
b49e97c9
TS
11860 }
11861
11862 /* Build the external symbol information. */
11863 einfo.abfd = abfd;
11864 einfo.info = info;
11865 einfo.debug = &debug;
11866 einfo.swap = swap;
b34976b6 11867 einfo.failed = FALSE;
b49e97c9 11868 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 11869 mips_elf_output_extsym, &einfo);
b49e97c9 11870 if (einfo.failed)
b34976b6 11871 return FALSE;
b49e97c9
TS
11872
11873 /* Set the size of the .mdebug section. */
eea6121a 11874 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
11875
11876 /* Skip this section later on (I don't think this currently
11877 matters, but someday it might). */
8423293d 11878 o->map_head.link_order = NULL;
b49e97c9
TS
11879
11880 mdebug_sec = o;
11881 }
11882
0112cd26 11883 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
11884 {
11885 const char *subname;
11886 unsigned int c;
11887 Elf32_gptab *tab;
11888 Elf32_External_gptab *ext_tab;
11889 unsigned int j;
11890
11891 /* The .gptab.sdata and .gptab.sbss sections hold
11892 information describing how the small data area would
11893 change depending upon the -G switch. These sections
11894 not used in executables files. */
1049f94e 11895 if (! info->relocatable)
b49e97c9 11896 {
8423293d 11897 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11898 {
11899 asection *input_section;
11900
11901 if (p->type != bfd_indirect_link_order)
11902 {
11903 if (p->type == bfd_data_link_order)
11904 continue;
11905 abort ();
11906 }
11907
11908 input_section = p->u.indirect.section;
11909
11910 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11911 elf_link_input_bfd ignores this section. */
11912 input_section->flags &= ~SEC_HAS_CONTENTS;
11913 }
11914
11915 /* Skip this section later on (I don't think this
11916 currently matters, but someday it might). */
8423293d 11917 o->map_head.link_order = NULL;
b49e97c9
TS
11918
11919 /* Really remove the section. */
5daa8fe7 11920 bfd_section_list_remove (abfd, o);
b49e97c9
TS
11921 --abfd->section_count;
11922
11923 continue;
11924 }
11925
11926 /* There is one gptab for initialized data, and one for
11927 uninitialized data. */
11928 if (strcmp (o->name, ".gptab.sdata") == 0)
11929 gptab_data_sec = o;
11930 else if (strcmp (o->name, ".gptab.sbss") == 0)
11931 gptab_bss_sec = o;
11932 else
11933 {
11934 (*_bfd_error_handler)
11935 (_("%s: illegal section name `%s'"),
11936 bfd_get_filename (abfd), o->name);
11937 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 11938 return FALSE;
b49e97c9
TS
11939 }
11940
11941 /* The linker script always combines .gptab.data and
11942 .gptab.sdata into .gptab.sdata, and likewise for
11943 .gptab.bss and .gptab.sbss. It is possible that there is
11944 no .sdata or .sbss section in the output file, in which
11945 case we must change the name of the output section. */
11946 subname = o->name + sizeof ".gptab" - 1;
11947 if (bfd_get_section_by_name (abfd, subname) == NULL)
11948 {
11949 if (o == gptab_data_sec)
11950 o->name = ".gptab.data";
11951 else
11952 o->name = ".gptab.bss";
11953 subname = o->name + sizeof ".gptab" - 1;
11954 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11955 }
11956
11957 /* Set up the first entry. */
11958 c = 1;
11959 amt = c * sizeof (Elf32_gptab);
9719ad41 11960 tab = bfd_malloc (amt);
b49e97c9 11961 if (tab == NULL)
b34976b6 11962 return FALSE;
b49e97c9
TS
11963 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11964 tab[0].gt_header.gt_unused = 0;
11965
11966 /* Combine the input sections. */
8423293d 11967 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11968 {
11969 asection *input_section;
11970 bfd *input_bfd;
11971 bfd_size_type size;
11972 unsigned long last;
11973 bfd_size_type gpentry;
11974
11975 if (p->type != bfd_indirect_link_order)
11976 {
11977 if (p->type == bfd_data_link_order)
11978 continue;
11979 abort ();
11980 }
11981
11982 input_section = p->u.indirect.section;
11983 input_bfd = input_section->owner;
11984
11985 /* Combine the gptab entries for this input section one
11986 by one. We know that the input gptab entries are
11987 sorted by ascending -G value. */
eea6121a 11988 size = input_section->size;
b49e97c9
TS
11989 last = 0;
11990 for (gpentry = sizeof (Elf32_External_gptab);
11991 gpentry < size;
11992 gpentry += sizeof (Elf32_External_gptab))
11993 {
11994 Elf32_External_gptab ext_gptab;
11995 Elf32_gptab int_gptab;
11996 unsigned long val;
11997 unsigned long add;
b34976b6 11998 bfd_boolean exact;
b49e97c9
TS
11999 unsigned int look;
12000
12001 if (! (bfd_get_section_contents
9719ad41
RS
12002 (input_bfd, input_section, &ext_gptab, gpentry,
12003 sizeof (Elf32_External_gptab))))
b49e97c9
TS
12004 {
12005 free (tab);
b34976b6 12006 return FALSE;
b49e97c9
TS
12007 }
12008
12009 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12010 &int_gptab);
12011 val = int_gptab.gt_entry.gt_g_value;
12012 add = int_gptab.gt_entry.gt_bytes - last;
12013
b34976b6 12014 exact = FALSE;
b49e97c9
TS
12015 for (look = 1; look < c; look++)
12016 {
12017 if (tab[look].gt_entry.gt_g_value >= val)
12018 tab[look].gt_entry.gt_bytes += add;
12019
12020 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 12021 exact = TRUE;
b49e97c9
TS
12022 }
12023
12024 if (! exact)
12025 {
12026 Elf32_gptab *new_tab;
12027 unsigned int max;
12028
12029 /* We need a new table entry. */
12030 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 12031 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
12032 if (new_tab == NULL)
12033 {
12034 free (tab);
b34976b6 12035 return FALSE;
b49e97c9
TS
12036 }
12037 tab = new_tab;
12038 tab[c].gt_entry.gt_g_value = val;
12039 tab[c].gt_entry.gt_bytes = add;
12040
12041 /* Merge in the size for the next smallest -G
12042 value, since that will be implied by this new
12043 value. */
12044 max = 0;
12045 for (look = 1; look < c; look++)
12046 {
12047 if (tab[look].gt_entry.gt_g_value < val
12048 && (max == 0
12049 || (tab[look].gt_entry.gt_g_value
12050 > tab[max].gt_entry.gt_g_value)))
12051 max = look;
12052 }
12053 if (max != 0)
12054 tab[c].gt_entry.gt_bytes +=
12055 tab[max].gt_entry.gt_bytes;
12056
12057 ++c;
12058 }
12059
12060 last = int_gptab.gt_entry.gt_bytes;
12061 }
12062
12063 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12064 elf_link_input_bfd ignores this section. */
12065 input_section->flags &= ~SEC_HAS_CONTENTS;
12066 }
12067
12068 /* The table must be sorted by -G value. */
12069 if (c > 2)
12070 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12071
12072 /* Swap out the table. */
12073 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 12074 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
12075 if (ext_tab == NULL)
12076 {
12077 free (tab);
b34976b6 12078 return FALSE;
b49e97c9
TS
12079 }
12080
12081 for (j = 0; j < c; j++)
12082 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12083 free (tab);
12084
eea6121a 12085 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
12086 o->contents = (bfd_byte *) ext_tab;
12087
12088 /* Skip this section later on (I don't think this currently
12089 matters, but someday it might). */
8423293d 12090 o->map_head.link_order = NULL;
b49e97c9
TS
12091 }
12092 }
12093
12094 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 12095 if (!bfd_elf_final_link (abfd, info))
b34976b6 12096 return FALSE;
b49e97c9
TS
12097
12098 /* Now write out the computed sections. */
12099
9719ad41 12100 if (reginfo_sec != NULL)
b49e97c9
TS
12101 {
12102 Elf32_External_RegInfo ext;
12103
12104 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 12105 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 12106 return FALSE;
b49e97c9
TS
12107 }
12108
9719ad41 12109 if (mdebug_sec != NULL)
b49e97c9
TS
12110 {
12111 BFD_ASSERT (abfd->output_has_begun);
12112 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12113 swap, info,
12114 mdebug_sec->filepos))
b34976b6 12115 return FALSE;
b49e97c9
TS
12116
12117 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12118 }
12119
9719ad41 12120 if (gptab_data_sec != NULL)
b49e97c9
TS
12121 {
12122 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12123 gptab_data_sec->contents,
eea6121a 12124 0, gptab_data_sec->size))
b34976b6 12125 return FALSE;
b49e97c9
TS
12126 }
12127
9719ad41 12128 if (gptab_bss_sec != NULL)
b49e97c9
TS
12129 {
12130 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12131 gptab_bss_sec->contents,
eea6121a 12132 0, gptab_bss_sec->size))
b34976b6 12133 return FALSE;
b49e97c9
TS
12134 }
12135
12136 if (SGI_COMPAT (abfd))
12137 {
12138 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12139 if (rtproc_sec != NULL)
12140 {
12141 if (! bfd_set_section_contents (abfd, rtproc_sec,
12142 rtproc_sec->contents,
eea6121a 12143 0, rtproc_sec->size))
b34976b6 12144 return FALSE;
b49e97c9
TS
12145 }
12146 }
12147
b34976b6 12148 return TRUE;
b49e97c9
TS
12149}
12150\f
64543e1a
RS
12151/* Structure for saying that BFD machine EXTENSION extends BASE. */
12152
12153struct mips_mach_extension {
12154 unsigned long extension, base;
12155};
12156
12157
12158/* An array describing how BFD machines relate to one another. The entries
12159 are ordered topologically with MIPS I extensions listed last. */
12160
12161static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0
AN
12162 /* MIPS64r2 extensions. */
12163 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12164
64543e1a 12165 /* MIPS64 extensions. */
5f74bc13 12166 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 12167 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 12168 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
64543e1a
RS
12169
12170 /* MIPS V extensions. */
12171 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12172
12173 /* R10000 extensions. */
12174 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
12175 { bfd_mach_mips14000, bfd_mach_mips10000 },
12176 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
12177
12178 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12179 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12180 better to allow vr5400 and vr5500 code to be merged anyway, since
12181 many libraries will just use the core ISA. Perhaps we could add
12182 some sort of ASE flag if this ever proves a problem. */
12183 { bfd_mach_mips5500, bfd_mach_mips5400 },
12184 { bfd_mach_mips5400, bfd_mach_mips5000 },
12185
12186 /* MIPS IV extensions. */
12187 { bfd_mach_mips5, bfd_mach_mips8000 },
12188 { bfd_mach_mips10000, bfd_mach_mips8000 },
12189 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 12190 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 12191 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
12192
12193 /* VR4100 extensions. */
12194 { bfd_mach_mips4120, bfd_mach_mips4100 },
12195 { bfd_mach_mips4111, bfd_mach_mips4100 },
12196
12197 /* MIPS III extensions. */
350cc38d
MS
12198 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12199 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
12200 { bfd_mach_mips8000, bfd_mach_mips4000 },
12201 { bfd_mach_mips4650, bfd_mach_mips4000 },
12202 { bfd_mach_mips4600, bfd_mach_mips4000 },
12203 { bfd_mach_mips4400, bfd_mach_mips4000 },
12204 { bfd_mach_mips4300, bfd_mach_mips4000 },
12205 { bfd_mach_mips4100, bfd_mach_mips4000 },
12206 { bfd_mach_mips4010, bfd_mach_mips4000 },
12207
12208 /* MIPS32 extensions. */
12209 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12210
12211 /* MIPS II extensions. */
12212 { bfd_mach_mips4000, bfd_mach_mips6000 },
12213 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12214
12215 /* MIPS I extensions. */
12216 { bfd_mach_mips6000, bfd_mach_mips3000 },
12217 { bfd_mach_mips3900, bfd_mach_mips3000 }
12218};
12219
12220
12221/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12222
12223static bfd_boolean
9719ad41 12224mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
12225{
12226 size_t i;
12227
c5211a54
RS
12228 if (extension == base)
12229 return TRUE;
12230
12231 if (base == bfd_mach_mipsisa32
12232 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12233 return TRUE;
12234
12235 if (base == bfd_mach_mipsisa32r2
12236 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12237 return TRUE;
12238
12239 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 12240 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
12241 {
12242 extension = mips_mach_extensions[i].base;
12243 if (extension == base)
12244 return TRUE;
12245 }
64543e1a 12246
c5211a54 12247 return FALSE;
64543e1a
RS
12248}
12249
12250
12251/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 12252
b34976b6 12253static bfd_boolean
9719ad41 12254mips_32bit_flags_p (flagword flags)
00707a0e 12255{
64543e1a
RS
12256 return ((flags & EF_MIPS_32BITMODE) != 0
12257 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12258 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12259 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12260 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12261 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12262 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
12263}
12264
64543e1a 12265
2cf19d5c
JM
12266/* Merge object attributes from IBFD into OBFD. Raise an error if
12267 there are conflicting attributes. */
12268static bfd_boolean
12269mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12270{
12271 obj_attribute *in_attr;
12272 obj_attribute *out_attr;
12273
12274 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12275 {
12276 /* This is the first object. Copy the attributes. */
12277 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12278
12279 /* Use the Tag_null value to indicate the attributes have been
12280 initialized. */
12281 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12282
12283 return TRUE;
12284 }
12285
12286 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12287 non-conflicting ones. */
12288 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12289 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12290 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12291 {
12292 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12293 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12294 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12295 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12296 ;
42554f6a 12297 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
12298 _bfd_error_handler
12299 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12300 in_attr[Tag_GNU_MIPS_ABI_FP].i);
42554f6a 12301 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
12302 _bfd_error_handler
12303 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12304 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12305 else
12306 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12307 {
12308 case 1:
12309 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12310 {
12311 case 2:
12312 _bfd_error_handler
12313 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12314 obfd, ibfd);
51a0dd31 12315 break;
2cf19d5c
JM
12316
12317 case 3:
12318 _bfd_error_handler
12319 (_("Warning: %B uses hard float, %B uses soft float"),
12320 obfd, ibfd);
12321 break;
12322
42554f6a
TS
12323 case 4:
12324 _bfd_error_handler
12325 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12326 obfd, ibfd);
12327 break;
12328
2cf19d5c
JM
12329 default:
12330 abort ();
12331 }
12332 break;
12333
12334 case 2:
12335 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12336 {
12337 case 1:
12338 _bfd_error_handler
12339 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12340 ibfd, obfd);
51a0dd31 12341 break;
2cf19d5c
JM
12342
12343 case 3:
12344 _bfd_error_handler
12345 (_("Warning: %B uses hard float, %B uses soft float"),
12346 obfd, ibfd);
12347 break;
12348
42554f6a
TS
12349 case 4:
12350 _bfd_error_handler
12351 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12352 obfd, ibfd);
12353 break;
12354
2cf19d5c
JM
12355 default:
12356 abort ();
12357 }
12358 break;
12359
12360 case 3:
12361 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12362 {
12363 case 1:
12364 case 2:
42554f6a 12365 case 4:
2cf19d5c
JM
12366 _bfd_error_handler
12367 (_("Warning: %B uses hard float, %B uses soft float"),
12368 ibfd, obfd);
12369 break;
12370
12371 default:
12372 abort ();
12373 }
12374 break;
12375
42554f6a
TS
12376 case 4:
12377 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12378 {
12379 case 1:
12380 _bfd_error_handler
12381 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12382 ibfd, obfd);
12383 break;
12384
12385 case 2:
12386 _bfd_error_handler
12387 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12388 ibfd, obfd);
12389 break;
12390
12391 case 3:
12392 _bfd_error_handler
12393 (_("Warning: %B uses hard float, %B uses soft float"),
12394 obfd, ibfd);
12395 break;
12396
12397 default:
12398 abort ();
12399 }
12400 break;
12401
2cf19d5c
JM
12402 default:
12403 abort ();
12404 }
12405 }
12406
12407 /* Merge Tag_compatibility attributes and any common GNU ones. */
12408 _bfd_elf_merge_object_attributes (ibfd, obfd);
12409
12410 return TRUE;
12411}
12412
b49e97c9
TS
12413/* Merge backend specific data from an object file to the output
12414 object file when linking. */
12415
b34976b6 12416bfd_boolean
9719ad41 12417_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
12418{
12419 flagword old_flags;
12420 flagword new_flags;
b34976b6
AM
12421 bfd_boolean ok;
12422 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
12423 asection *sec;
12424
12425 /* Check if we have the same endianess */
82e51918 12426 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
12427 {
12428 (*_bfd_error_handler)
d003868e
AM
12429 (_("%B: endianness incompatible with that of the selected emulation"),
12430 ibfd);
aa701218
AO
12431 return FALSE;
12432 }
b49e97c9 12433
d5eaccd7 12434 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 12435 return TRUE;
b49e97c9 12436
aa701218
AO
12437 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12438 {
12439 (*_bfd_error_handler)
d003868e
AM
12440 (_("%B: ABI is incompatible with that of the selected emulation"),
12441 ibfd);
aa701218
AO
12442 return FALSE;
12443 }
12444
2cf19d5c
JM
12445 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12446 return FALSE;
12447
b49e97c9
TS
12448 new_flags = elf_elfheader (ibfd)->e_flags;
12449 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12450 old_flags = elf_elfheader (obfd)->e_flags;
12451
12452 if (! elf_flags_init (obfd))
12453 {
b34976b6 12454 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
12455 elf_elfheader (obfd)->e_flags = new_flags;
12456 elf_elfheader (obfd)->e_ident[EI_CLASS]
12457 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12458
12459 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
12460 && (bfd_get_arch_info (obfd)->the_default
12461 || mips_mach_extends_p (bfd_get_mach (obfd),
12462 bfd_get_mach (ibfd))))
b49e97c9
TS
12463 {
12464 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12465 bfd_get_mach (ibfd)))
b34976b6 12466 return FALSE;
b49e97c9
TS
12467 }
12468
b34976b6 12469 return TRUE;
b49e97c9
TS
12470 }
12471
12472 /* Check flag compatibility. */
12473
12474 new_flags &= ~EF_MIPS_NOREORDER;
12475 old_flags &= ~EF_MIPS_NOREORDER;
12476
f4416af6
AO
12477 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12478 doesn't seem to matter. */
12479 new_flags &= ~EF_MIPS_XGOT;
12480 old_flags &= ~EF_MIPS_XGOT;
12481
98a8deaf
RS
12482 /* MIPSpro generates ucode info in n64 objects. Again, we should
12483 just be able to ignore this. */
12484 new_flags &= ~EF_MIPS_UCODE;
12485 old_flags &= ~EF_MIPS_UCODE;
12486
861fb55a
DJ
12487 /* DSOs should only be linked with CPIC code. */
12488 if ((ibfd->flags & DYNAMIC) != 0)
12489 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 12490
b49e97c9 12491 if (new_flags == old_flags)
b34976b6 12492 return TRUE;
b49e97c9
TS
12493
12494 /* Check to see if the input BFD actually contains any sections.
12495 If not, its flags may not have been initialised either, but it cannot
12496 actually cause any incompatibility. */
12497 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12498 {
12499 /* Ignore synthetic sections and empty .text, .data and .bss sections
12500 which are automatically generated by gas. */
12501 if (strcmp (sec->name, ".reginfo")
12502 && strcmp (sec->name, ".mdebug")
eea6121a 12503 && (sec->size != 0
d13d89fa
NS
12504 || (strcmp (sec->name, ".text")
12505 && strcmp (sec->name, ".data")
12506 && strcmp (sec->name, ".bss"))))
b49e97c9 12507 {
b34976b6 12508 null_input_bfd = FALSE;
b49e97c9
TS
12509 break;
12510 }
12511 }
12512 if (null_input_bfd)
b34976b6 12513 return TRUE;
b49e97c9 12514
b34976b6 12515 ok = TRUE;
b49e97c9 12516
143d77c5
EC
12517 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12518 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 12519 {
b49e97c9 12520 (*_bfd_error_handler)
861fb55a 12521 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 12522 ibfd);
143d77c5 12523 ok = TRUE;
b49e97c9
TS
12524 }
12525
143d77c5
EC
12526 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12527 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12528 if (! (new_flags & EF_MIPS_PIC))
12529 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12530
12531 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12532 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 12533
64543e1a
RS
12534 /* Compare the ISAs. */
12535 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 12536 {
64543e1a 12537 (*_bfd_error_handler)
d003868e
AM
12538 (_("%B: linking 32-bit code with 64-bit code"),
12539 ibfd);
64543e1a
RS
12540 ok = FALSE;
12541 }
12542 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12543 {
12544 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12545 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 12546 {
64543e1a
RS
12547 /* Copy the architecture info from IBFD to OBFD. Also copy
12548 the 32-bit flag (if set) so that we continue to recognise
12549 OBFD as a 32-bit binary. */
12550 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12551 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12552 elf_elfheader (obfd)->e_flags
12553 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12554
12555 /* Copy across the ABI flags if OBFD doesn't use them
12556 and if that was what caused us to treat IBFD as 32-bit. */
12557 if ((old_flags & EF_MIPS_ABI) == 0
12558 && mips_32bit_flags_p (new_flags)
12559 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12560 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
12561 }
12562 else
12563 {
64543e1a 12564 /* The ISAs aren't compatible. */
b49e97c9 12565 (*_bfd_error_handler)
d003868e
AM
12566 (_("%B: linking %s module with previous %s modules"),
12567 ibfd,
64543e1a
RS
12568 bfd_printable_name (ibfd),
12569 bfd_printable_name (obfd));
b34976b6 12570 ok = FALSE;
b49e97c9 12571 }
b49e97c9
TS
12572 }
12573
64543e1a
RS
12574 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12575 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12576
12577 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
12578 does set EI_CLASS differently from any 32-bit ABI. */
12579 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12580 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12581 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12582 {
12583 /* Only error if both are set (to different values). */
12584 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12585 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12586 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12587 {
12588 (*_bfd_error_handler)
d003868e
AM
12589 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12590 ibfd,
b49e97c9
TS
12591 elf_mips_abi_name (ibfd),
12592 elf_mips_abi_name (obfd));
b34976b6 12593 ok = FALSE;
b49e97c9
TS
12594 }
12595 new_flags &= ~EF_MIPS_ABI;
12596 old_flags &= ~EF_MIPS_ABI;
12597 }
12598
fb39dac1
RS
12599 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12600 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12601 {
12602 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12603
12604 new_flags &= ~ EF_MIPS_ARCH_ASE;
12605 old_flags &= ~ EF_MIPS_ARCH_ASE;
12606 }
12607
b49e97c9
TS
12608 /* Warn about any other mismatches */
12609 if (new_flags != old_flags)
12610 {
12611 (*_bfd_error_handler)
d003868e
AM
12612 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12613 ibfd, (unsigned long) new_flags,
b49e97c9 12614 (unsigned long) old_flags);
b34976b6 12615 ok = FALSE;
b49e97c9
TS
12616 }
12617
12618 if (! ok)
12619 {
12620 bfd_set_error (bfd_error_bad_value);
b34976b6 12621 return FALSE;
b49e97c9
TS
12622 }
12623
b34976b6 12624 return TRUE;
b49e97c9
TS
12625}
12626
12627/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12628
b34976b6 12629bfd_boolean
9719ad41 12630_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
12631{
12632 BFD_ASSERT (!elf_flags_init (abfd)
12633 || elf_elfheader (abfd)->e_flags == flags);
12634
12635 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
12636 elf_flags_init (abfd) = TRUE;
12637 return TRUE;
b49e97c9
TS
12638}
12639
ad9563d6
CM
12640char *
12641_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12642{
12643 switch (dtag)
12644 {
12645 default: return "";
12646 case DT_MIPS_RLD_VERSION:
12647 return "MIPS_RLD_VERSION";
12648 case DT_MIPS_TIME_STAMP:
12649 return "MIPS_TIME_STAMP";
12650 case DT_MIPS_ICHECKSUM:
12651 return "MIPS_ICHECKSUM";
12652 case DT_MIPS_IVERSION:
12653 return "MIPS_IVERSION";
12654 case DT_MIPS_FLAGS:
12655 return "MIPS_FLAGS";
12656 case DT_MIPS_BASE_ADDRESS:
12657 return "MIPS_BASE_ADDRESS";
12658 case DT_MIPS_MSYM:
12659 return "MIPS_MSYM";
12660 case DT_MIPS_CONFLICT:
12661 return "MIPS_CONFLICT";
12662 case DT_MIPS_LIBLIST:
12663 return "MIPS_LIBLIST";
12664 case DT_MIPS_LOCAL_GOTNO:
12665 return "MIPS_LOCAL_GOTNO";
12666 case DT_MIPS_CONFLICTNO:
12667 return "MIPS_CONFLICTNO";
12668 case DT_MIPS_LIBLISTNO:
12669 return "MIPS_LIBLISTNO";
12670 case DT_MIPS_SYMTABNO:
12671 return "MIPS_SYMTABNO";
12672 case DT_MIPS_UNREFEXTNO:
12673 return "MIPS_UNREFEXTNO";
12674 case DT_MIPS_GOTSYM:
12675 return "MIPS_GOTSYM";
12676 case DT_MIPS_HIPAGENO:
12677 return "MIPS_HIPAGENO";
12678 case DT_MIPS_RLD_MAP:
12679 return "MIPS_RLD_MAP";
12680 case DT_MIPS_DELTA_CLASS:
12681 return "MIPS_DELTA_CLASS";
12682 case DT_MIPS_DELTA_CLASS_NO:
12683 return "MIPS_DELTA_CLASS_NO";
12684 case DT_MIPS_DELTA_INSTANCE:
12685 return "MIPS_DELTA_INSTANCE";
12686 case DT_MIPS_DELTA_INSTANCE_NO:
12687 return "MIPS_DELTA_INSTANCE_NO";
12688 case DT_MIPS_DELTA_RELOC:
12689 return "MIPS_DELTA_RELOC";
12690 case DT_MIPS_DELTA_RELOC_NO:
12691 return "MIPS_DELTA_RELOC_NO";
12692 case DT_MIPS_DELTA_SYM:
12693 return "MIPS_DELTA_SYM";
12694 case DT_MIPS_DELTA_SYM_NO:
12695 return "MIPS_DELTA_SYM_NO";
12696 case DT_MIPS_DELTA_CLASSSYM:
12697 return "MIPS_DELTA_CLASSSYM";
12698 case DT_MIPS_DELTA_CLASSSYM_NO:
12699 return "MIPS_DELTA_CLASSSYM_NO";
12700 case DT_MIPS_CXX_FLAGS:
12701 return "MIPS_CXX_FLAGS";
12702 case DT_MIPS_PIXIE_INIT:
12703 return "MIPS_PIXIE_INIT";
12704 case DT_MIPS_SYMBOL_LIB:
12705 return "MIPS_SYMBOL_LIB";
12706 case DT_MIPS_LOCALPAGE_GOTIDX:
12707 return "MIPS_LOCALPAGE_GOTIDX";
12708 case DT_MIPS_LOCAL_GOTIDX:
12709 return "MIPS_LOCAL_GOTIDX";
12710 case DT_MIPS_HIDDEN_GOTIDX:
12711 return "MIPS_HIDDEN_GOTIDX";
12712 case DT_MIPS_PROTECTED_GOTIDX:
12713 return "MIPS_PROTECTED_GOT_IDX";
12714 case DT_MIPS_OPTIONS:
12715 return "MIPS_OPTIONS";
12716 case DT_MIPS_INTERFACE:
12717 return "MIPS_INTERFACE";
12718 case DT_MIPS_DYNSTR_ALIGN:
12719 return "DT_MIPS_DYNSTR_ALIGN";
12720 case DT_MIPS_INTERFACE_SIZE:
12721 return "DT_MIPS_INTERFACE_SIZE";
12722 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12723 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12724 case DT_MIPS_PERF_SUFFIX:
12725 return "DT_MIPS_PERF_SUFFIX";
12726 case DT_MIPS_COMPACT_SIZE:
12727 return "DT_MIPS_COMPACT_SIZE";
12728 case DT_MIPS_GP_VALUE:
12729 return "DT_MIPS_GP_VALUE";
12730 case DT_MIPS_AUX_DYNAMIC:
12731 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
12732 case DT_MIPS_PLTGOT:
12733 return "DT_MIPS_PLTGOT";
12734 case DT_MIPS_RWPLT:
12735 return "DT_MIPS_RWPLT";
ad9563d6
CM
12736 }
12737}
12738
b34976b6 12739bfd_boolean
9719ad41 12740_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 12741{
9719ad41 12742 FILE *file = ptr;
b49e97c9
TS
12743
12744 BFD_ASSERT (abfd != NULL && ptr != NULL);
12745
12746 /* Print normal ELF private data. */
12747 _bfd_elf_print_private_bfd_data (abfd, ptr);
12748
12749 /* xgettext:c-format */
12750 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12751
12752 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12753 fprintf (file, _(" [abi=O32]"));
12754 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12755 fprintf (file, _(" [abi=O64]"));
12756 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12757 fprintf (file, _(" [abi=EABI32]"));
12758 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12759 fprintf (file, _(" [abi=EABI64]"));
12760 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12761 fprintf (file, _(" [abi unknown]"));
12762 else if (ABI_N32_P (abfd))
12763 fprintf (file, _(" [abi=N32]"));
12764 else if (ABI_64_P (abfd))
12765 fprintf (file, _(" [abi=64]"));
12766 else
12767 fprintf (file, _(" [no abi set]"));
12768
12769 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 12770 fprintf (file, " [mips1]");
b49e97c9 12771 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 12772 fprintf (file, " [mips2]");
b49e97c9 12773 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 12774 fprintf (file, " [mips3]");
b49e97c9 12775 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 12776 fprintf (file, " [mips4]");
b49e97c9 12777 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 12778 fprintf (file, " [mips5]");
b49e97c9 12779 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 12780 fprintf (file, " [mips32]");
b49e97c9 12781 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 12782 fprintf (file, " [mips64]");
af7ee8bf 12783 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 12784 fprintf (file, " [mips32r2]");
5f74bc13 12785 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 12786 fprintf (file, " [mips64r2]");
b49e97c9
TS
12787 else
12788 fprintf (file, _(" [unknown ISA]"));
12789
40d32fc6 12790 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 12791 fprintf (file, " [mdmx]");
40d32fc6
CD
12792
12793 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 12794 fprintf (file, " [mips16]");
40d32fc6 12795
b49e97c9 12796 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 12797 fprintf (file, " [32bitmode]");
b49e97c9
TS
12798 else
12799 fprintf (file, _(" [not 32bitmode]"));
12800
c0e3f241 12801 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 12802 fprintf (file, " [noreorder]");
c0e3f241
CD
12803
12804 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 12805 fprintf (file, " [PIC]");
c0e3f241
CD
12806
12807 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 12808 fprintf (file, " [CPIC]");
c0e3f241
CD
12809
12810 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 12811 fprintf (file, " [XGOT]");
c0e3f241
CD
12812
12813 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 12814 fprintf (file, " [UCODE]");
c0e3f241 12815
b49e97c9
TS
12816 fputc ('\n', file);
12817
b34976b6 12818 return TRUE;
b49e97c9 12819}
2f89ff8d 12820
b35d266b 12821const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 12822{
0112cd26
NC
12823 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12824 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12825 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12826 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12827 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12828 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12829 { NULL, 0, 0, 0, 0 }
2f89ff8d 12830};
5e2b0d47 12831
8992f0d7
TS
12832/* Merge non visibility st_other attributes. Ensure that the
12833 STO_OPTIONAL flag is copied into h->other, even if this is not a
12834 definiton of the symbol. */
5e2b0d47
NC
12835void
12836_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12837 const Elf_Internal_Sym *isym,
12838 bfd_boolean definition,
12839 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12840{
8992f0d7
TS
12841 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12842 {
12843 unsigned char other;
12844
12845 other = (definition ? isym->st_other : h->other);
12846 other &= ~ELF_ST_VISIBILITY (-1);
12847 h->other = other | ELF_ST_VISIBILITY (h->other);
12848 }
12849
12850 if (!definition
5e2b0d47
NC
12851 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12852 h->other |= STO_OPTIONAL;
12853}
12ac1cf5
NC
12854
12855/* Decide whether an undefined symbol is special and can be ignored.
12856 This is the case for OPTIONAL symbols on IRIX. */
12857bfd_boolean
12858_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12859{
12860 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12861}
e0764319
NC
12862
12863bfd_boolean
12864_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12865{
12866 return (sym->st_shndx == SHN_COMMON
12867 || sym->st_shndx == SHN_MIPS_ACOMMON
12868 || sym->st_shndx == SHN_MIPS_SCOMMON);
12869}
861fb55a
DJ
12870
12871/* Return address for Ith PLT stub in section PLT, for relocation REL
12872 or (bfd_vma) -1 if it should not be included. */
12873
12874bfd_vma
12875_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12876 const arelent *rel ATTRIBUTE_UNUSED)
12877{
12878 return (plt->vma
12879 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12880 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12881}
12882
12883void
12884_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12885{
12886 struct mips_elf_link_hash_table *htab;
12887 Elf_Internal_Ehdr *i_ehdrp;
12888
12889 i_ehdrp = elf_elfheader (abfd);
12890 if (link_info)
12891 {
12892 htab = mips_elf_hash_table (link_info);
12893 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12894 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12895 }
12896}
This page took 1.822702 seconds and 4 git commands to generate.