* NEWS: Mention --vfp11-denorm-fix option.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
66eb6687 3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69
RS
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b9d58d71 496static bfd_boolean mips16_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
712
713#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 716\f
0a44bf69
RS
717/* The format of the first PLT entry in a VxWorks executable. */
718static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725};
726
727/* The format of subsequent PLT entries. */
728static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737};
738
739/* The format of the first PLT entry in a VxWorks shared object. */
740static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747};
748
749/* The format of subsequent PLT entries. */
750static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753};
754\f
b49e97c9
TS
755/* Look up an entry in a MIPS ELF linker hash table. */
756
757#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762/* Traverse a MIPS ELF linker hash table. */
763
764#define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
9719ad41 767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
768 (info)))
769
770/* Get the MIPS ELF linker hash table from a link_info structure. */
771
772#define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
0f20cc35
DJ
775/* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778#define TP_OFFSET 0x7000
779#define DTP_OFFSET 0x8000
780
781static bfd_vma
782dtprel_base (struct bfd_link_info *info)
783{
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788}
789
790static bfd_vma
791tprel_base (struct bfd_link_info *info)
792{
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797}
798
b49e97c9
TS
799/* Create an entry in a MIPS ELF linker hash table. */
800
801static struct bfd_hash_entry *
9719ad41
RS
802mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
804{
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
9719ad41
RS
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
b49e97c9
TS
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
9719ad41 819 if (ret != NULL)
b49e97c9
TS
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
b34976b6 827 ret->readonly_reloc = FALSE;
b34976b6 828 ret->no_fn_stub = FALSE;
b49e97c9 829 ret->fn_stub = NULL;
b34976b6 830 ret->need_fn_stub = FALSE;
b49e97c9
TS
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
b34976b6 833 ret->forced_local = FALSE;
0a44bf69
RS
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
0f20cc35 836 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
837 }
838
839 return (struct bfd_hash_entry *) ret;
840}
f0abc2a1
AM
841
842bfd_boolean
9719ad41 843_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 844{
f592407e
AM
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 849
f592407e
AM
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
f0abc2a1
AM
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857}
b49e97c9
TS
858\f
859/* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
b34976b6 862bfd_boolean
9719ad41
RS
863_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
b49e97c9
TS
865{
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
9719ad41 868 char *ext_hdr;
b49e97c9
TS
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
9719ad41 873 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
9719ad41 877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 878 swap->external_hdr_size))
b49e97c9
TS
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886#define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 892 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
893 if (debug->ptr == NULL) \
894 goto error_return; \
9719ad41 895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
912#undef READ
913
914 debug->fdr = NULL;
b49e97c9 915
b34976b6 916 return TRUE;
b49e97c9
TS
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
b34976b6 943 return FALSE;
b49e97c9
TS
944}
945\f
946/* Swap RPDR (runtime procedure table entry) for output. */
947
948static void
9719ad41 949ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
950{
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
962}
963
964/* Create a runtime procedure table from the .mdebug section. */
965
b34976b6 966static bfd_boolean
9719ad41
RS
967mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
b49e97c9
TS
970{
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
9719ad41 975 void *rtproc;
b49e97c9
TS
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
9719ad41 1002 epdr = bfd_malloc (size * count);
b49e97c9
TS
1003 if (epdr == NULL)
1004 goto error_return;
1005
9719ad41 1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
9719ad41 1010 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
9719ad41 1015 sv = bfd_malloc (size * count);
b49e97c9
TS
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
9719ad41 1021 esym = bfd_malloc (size * count);
b49e97c9
TS
1022 if (esym == NULL)
1023 goto error_return;
1024
9719ad41 1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1026 goto error_return;
1027
1028 count = hdr->issMax;
9719ad41 1029 ss = bfd_malloc (count);
b49e97c9
TS
1030 if (ss == NULL)
1031 goto error_return;
f075ee0c 1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
9719ad41
RS
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
9719ad41 1056 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
9719ad41 1065 erp = rtproc;
b49e97c9
TS
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
eea6121a 1080 s->size = size;
9719ad41 1081 s->contents = rtproc;
b49e97c9
TS
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
8423293d 1085 s->map_head.link_order = NULL;
b49e97c9
TS
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
b34976b6 1098 return TRUE;
b49e97c9
TS
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
b34976b6 1111 return FALSE;
b49e97c9
TS
1112}
1113
1114/* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
b34976b6 1117static bfd_boolean
9719ad41
RS
1118mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1120{
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
eea6121a 1130 h->fn_stub->size = 0;
b49e97c9
TS
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
eea6121a 1142 h->call_stub->size = 0;
b49e97c9
TS
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
eea6121a 1154 h->call_fp_stub->size = 0;
b49e97c9
TS
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
b34976b6 1160 return TRUE;
b49e97c9
TS
1161}
1162\f
d6f16593
MR
1163/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248void
1249_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251{
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273}
1274
1275void
1276_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278{
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307}
1308
b49e97c9 1309bfd_reloc_status_type
9719ad41
RS
1310_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1313{
1314 bfd_vma relocation;
a7ebbfdf 1315 bfd_signed_vma val;
30ac9238 1316 bfd_reloc_status_type status;
b49e97c9
TS
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
07515404 1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1327 return bfd_reloc_outofrange;
1328
b49e97c9 1329 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1330 val = reloc_entry->addend;
1331
30ac9238 1332 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1333
b49e97c9 1334 /* Adjust val for the final section location and GP value. If we
1049f94e 1335 are producing relocatable output, we don't want to do this for
b49e97c9 1336 an external symbol. */
1049f94e 1337 if (! relocatable
b49e97c9
TS
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
a7ebbfdf
TS
1341 if (reloc_entry->howto->partial_inplace)
1342 {
30ac9238
RS
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
a7ebbfdf
TS
1348 }
1349 else
1350 reloc_entry->addend = val;
b49e97c9 1351
1049f94e 1352 if (relocatable)
b49e97c9 1353 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1354
1355 return bfd_reloc_ok;
1356}
1357
1358/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363struct mips_hi16
1364{
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369};
1370
1371/* FIXME: This should not be a static variable. */
1372
1373static struct mips_hi16 *mips_hi16_list;
1374
1375/* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384bfd_reloc_status_type
1385_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389{
1390 struct mips_hi16 *n;
1391
07515404 1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409}
1410
1411/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415bfd_reloc_status_type
1416_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419{
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430}
1431
1432/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436bfd_reloc_status_type
1437_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440{
1441 bfd_vma vallo;
d6f16593 1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1443
07515404 1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1445 return bfd_reloc_outofrange;
1446
d6f16593
MR
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
30ac9238
RS
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
30ac9238
RS
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485}
1486
1487/* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491bfd_reloc_status_type
1492_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496{
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
07515404 1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
d6f16593
MR
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
30ac9238
RS
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
d6f16593
MR
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
30ac9238 1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
30ac9238
RS
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1557
1558 return bfd_reloc_ok;
1559}
1560\f
1561/* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564static void
9719ad41
RS
1565bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
b49e97c9
TS
1567{
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570}
1571
1572static void
9719ad41
RS
1573bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
b49e97c9
TS
1575{
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578}
1579
1580static void
9719ad41
RS
1581bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
b49e97c9
TS
1583{
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590}
1591
1592static void
9719ad41
RS
1593bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
b49e97c9
TS
1595{
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605}
b49e97c9
TS
1606\f
1607/* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611void
9719ad41
RS
1612bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
b49e97c9
TS
1614{
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621}
1622
1623void
9719ad41
RS
1624bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
b49e97c9
TS
1626{
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633}
1634
1635/* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641void
9719ad41
RS
1642bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1644{
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652}
1653
1654void
9719ad41
RS
1655bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
b49e97c9
TS
1657{
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665}
1666
1667/* Swap in an options header. */
1668
1669void
9719ad41
RS
1670bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
b49e97c9
TS
1672{
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677}
1678
1679/* Swap out an options header. */
1680
1681void
9719ad41
RS
1682bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
b49e97c9
TS
1684{
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689}
1690\f
1691/* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694static int
9719ad41 1695sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1696{
947216bf
AM
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
6870500c 1699 int diff;
b49e97c9 1700
947216bf
AM
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1703
6870500c
RS
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
b49e97c9
TS
1713}
1714
f4416af6
AO
1715/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717static int
7e3102a7
AM
1718sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1720{
7e3102a7 1721#ifdef BFD64
f4416af6
AO
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
6870500c
RS
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
7e3102a7
AM
1740#else
1741 abort ();
1742#endif
f4416af6
AO
1743}
1744
1745
b49e97c9
TS
1746/* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
b34976b6 1760static bfd_boolean
9719ad41 1761mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1762{
9719ad41 1763 struct extsym_info *einfo = data;
b34976b6 1764 bfd_boolean strip;
b49e97c9
TS
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
b34976b6 1771 strip = FALSE;
f5385ebf 1772 else if ((h->root.def_dynamic
77cfaee6
AM
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
b34976b6 1777 strip = TRUE;
b49e97c9
TS
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
b34976b6
AM
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
b49e97c9 1784 else
b34976b6 1785 strip = FALSE;
b49e97c9
TS
1786
1787 if (strip)
b34976b6 1788 return TRUE;
b49e97c9
TS
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
4a14403c 1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
f5385ebf 1894 else if (h->root.needs_plt)
b49e97c9
TS
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1897 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
b49e97c9
TS
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
b34976b6
AM
1929 einfo->failed = TRUE;
1930 return FALSE;
b49e97c9
TS
1931 }
1932
b34976b6 1933 return TRUE;
b49e97c9
TS
1934}
1935
1936/* A comparison routine used to sort .gptab entries. */
1937
1938static int
9719ad41 1939gptab_compare (const void *p1, const void *p2)
b49e97c9 1940{
9719ad41
RS
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945}
1946\f
b15e6682 1947/* Functions to manage the got entry hash table. */
f4416af6
AO
1948
1949/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952static INLINE hashval_t
9719ad41 1953mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1954{
1955#ifdef BFD64
1956 return addr + (addr >> 32);
1957#else
1958 return addr;
1959#endif
1960}
1961
1962/* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
b15e6682 1966static hashval_t
9719ad41 1967mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1968{
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
38985a1c 1971 return entry->symndx
0f20cc35 1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
b15e6682
AO
1977}
1978
1979static int
9719ad41 1980mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1981{
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
0f20cc35
DJ
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
b15e6682 1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993}
1994
1995/* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000static hashval_t
9719ad41 2001mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2002{
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
0f20cc35
DJ
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2013 : entry->d.h->root.root.root.hash);
2014}
2015
2016static int
9719ad41 2017mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2018{
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
0f20cc35
DJ
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
f4416af6
AO
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
b15e6682
AO
2035}
2036\f
0a44bf69
RS
2037/* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
f4416af6
AO
2040
2041static asection *
0a44bf69 2042mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2043{
0a44bf69 2044 const char *dname;
f4416af6 2045 asection *sreloc;
0a44bf69 2046 bfd *dynobj;
f4416af6 2047
0a44bf69
RS
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
3496cb2a
L
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
f4416af6 2060 if (sreloc == NULL
f4416af6 2061 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2063 return NULL;
2064 }
2065 return sreloc;
2066}
2067
b49e97c9
TS
2068/* Returns the GOT section for ABFD. */
2069
2070static asection *
9719ad41 2071mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2072{
f4416af6
AO
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
b49e97c9
TS
2078}
2079
2080/* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084static struct mips_got_info *
9719ad41 2085mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2086{
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
f4416af6 2090 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2091 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
f4416af6
AO
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
b49e97c9
TS
2099 return g;
2100}
2101
0f20cc35
DJ
2102/* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106static int
2107mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109{
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142}
2143
2144/* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147static int
2148mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149{
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157}
2158
2159/* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162static int
2163mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164{
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175}
2176
2177/* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180static int
2181mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182{
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190}
2191
2192/* Output a simple dynamic relocation into SRELOC. */
2193
2194static void
2195mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200{
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221}
2222
2223/* Initialize a set of TLS GOT entries for one symbol. */
2224
2225static void
2226mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231{
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
0a44bf69 2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345}
2346
2347/* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352static bfd_vma
2353mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356{
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384}
2385
0a44bf69
RS
2386/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390static bfd_vma
2391mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393{
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414}
2415
2416/* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
b49e97c9
TS
2421
2422static bfd_vma
9719ad41 2423mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2424 asection *input_section, bfd_vma value,
2425 unsigned long r_symndx,
0f20cc35 2426 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2427{
2428 asection *sgot;
2429 struct mips_got_info *g;
b15e6682 2430 struct mips_got_entry *entry;
b49e97c9
TS
2431
2432 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2433
0a44bf69
RS
2434 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2435 input_section, value,
0f20cc35
DJ
2436 r_symndx, h, r_type);
2437 if (!entry)
b15e6682 2438 return MINUS_ONE;
0f20cc35
DJ
2439
2440 if (TLS_RELOC_P (r_type))
ead49a57
RS
2441 {
2442 if (entry->symndx == -1 && g->next == NULL)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2446 r_type, info, h, value);
2447 else
2448 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2449 r_type, info, h, value);
2450 }
0f20cc35
DJ
2451 else
2452 return entry->gotidx;
b49e97c9
TS
2453}
2454
2455/* Returns the GOT index for the global symbol indicated by H. */
2456
2457static bfd_vma
0f20cc35
DJ
2458mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2459 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2460{
2461 bfd_vma index;
2462 asection *sgot;
f4416af6 2463 struct mips_got_info *g, *gg;
d0c7ff07 2464 long global_got_dynindx = 0;
b49e97c9 2465
f4416af6
AO
2466 gg = g = mips_elf_got_info (abfd, &sgot);
2467 if (g->bfd2got && ibfd)
2468 {
2469 struct mips_got_entry e, *p;
143d77c5 2470
f4416af6
AO
2471 BFD_ASSERT (h->dynindx >= 0);
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2474 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2475 {
2476 e.abfd = ibfd;
2477 e.symndx = -1;
2478 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2479 e.tls_type = 0;
f4416af6 2480
9719ad41 2481 p = htab_find (g->got_entries, &e);
f4416af6
AO
2482
2483 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2494
2495 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2496 info, e.d.h, value);
2497 }
2498 else
2499 return p->gotidx;
f4416af6
AO
2500 }
2501 }
2502
2503 if (gg->global_gotsym != NULL)
2504 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2505
0f20cc35
DJ
2506 if (TLS_RELOC_P (r_type))
2507 {
2508 struct mips_elf_link_hash_entry *hm
2509 = (struct mips_elf_link_hash_entry *) h;
2510 bfd_vma value = MINUS_ONE;
2511
2512 if ((h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak)
2514 && h->root.u.def.section->output_section)
2515 value = (h->root.u.def.value
2516 + h->root.u.def.section->output_offset
2517 + h->root.u.def.section->output_section->vma);
2518
2519 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2520 r_type, info, hm, value);
2521 }
2522 else
2523 {
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2527 offset. */
2528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2529 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2530 * MIPS_ELF_GOT_SIZE (abfd));
2531 }
eea6121a 2532 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2533
2534 return index;
2535}
2536
0a44bf69
RS
2537/* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
b49e97c9
TS
2543
2544static bfd_vma
9719ad41 2545mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69 2546 asection *input_section, bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2547{
2548 asection *sgot;
2549 struct mips_got_info *g;
0a44bf69 2550 bfd_vma page, index;
b15e6682 2551 struct mips_got_entry *entry;
b49e97c9
TS
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
0a44bf69
RS
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 input_section, page, 0,
0f20cc35 2558 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2559
b15e6682
AO
2560 if (!entry)
2561 return MINUS_ONE;
143d77c5 2562
b15e6682 2563 index = entry->gotidx;
b49e97c9
TS
2564
2565 if (offsetp)
f4416af6 2566 *offsetp = value - entry->d.address;
b49e97c9
TS
2567
2568 return index;
2569}
2570
0a44bf69
RS
2571/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
b49e97c9
TS
2575
2576static bfd_vma
9719ad41 2577mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2578 asection *input_section, bfd_vma value,
2579 bfd_boolean external)
b49e97c9
TS
2580{
2581 asection *sgot;
2582 struct mips_got_info *g;
b15e6682 2583 struct mips_got_entry *entry;
b49e97c9 2584
0a44bf69
RS
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2589 if (! external)
0a44bf69 2590 value = mips_elf_high (value) << 16;
b49e97c9
TS
2591
2592 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593
0a44bf69
RS
2594 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2595 input_section, value, 0,
2596 NULL, R_MIPS_GOT16);
b15e6682
AO
2597 if (entry)
2598 return entry->gotidx;
2599 else
2600 return MINUS_ONE;
b49e97c9
TS
2601}
2602
2603/* Returns the offset for the entry at the INDEXth position
2604 in the GOT. */
2605
2606static bfd_vma
9719ad41
RS
2607mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2608 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2609{
2610 asection *sgot;
2611 bfd_vma gp;
f4416af6 2612 struct mips_got_info *g;
b49e97c9 2613
f4416af6
AO
2614 g = mips_elf_got_info (dynobj, &sgot);
2615 gp = _bfd_get_gp_value (output_bfd)
2616 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2617
f4416af6 2618 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2619}
2620
0a44bf69
RS
2621/* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 instead. */
b49e97c9 2625
b15e6682 2626static struct mips_got_entry *
0a44bf69
RS
2627mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2628 bfd *ibfd, struct mips_got_info *gg,
2629 asection *sgot, asection *input_section,
2630 bfd_vma value, unsigned long r_symndx,
0f20cc35
DJ
2631 struct mips_elf_link_hash_entry *h,
2632 int r_type)
b49e97c9 2633{
b15e6682 2634 struct mips_got_entry entry, **loc;
f4416af6 2635 struct mips_got_info *g;
0a44bf69
RS
2636 struct mips_elf_link_hash_table *htab;
2637
2638 htab = mips_elf_hash_table (info);
b15e6682 2639
f4416af6
AO
2640 entry.abfd = NULL;
2641 entry.symndx = -1;
2642 entry.d.address = value;
0f20cc35 2643 entry.tls_type = 0;
f4416af6
AO
2644
2645 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 if (g == NULL)
2647 {
2648 g = mips_elf_got_for_ibfd (gg, abfd);
2649 BFD_ASSERT (g != NULL);
2650 }
b15e6682 2651
0f20cc35
DJ
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
a008ac03 2656 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2657 if (TLS_RELOC_P (r_type))
2658 {
2659 struct mips_got_entry *p;
2660
2661 entry.abfd = ibfd;
2662 if (r_type == R_MIPS_TLS_LDM)
2663 {
2664 entry.tls_type = GOT_TLS_LDM;
2665 entry.symndx = 0;
2666 entry.d.addend = 0;
2667 }
2668 else if (h == NULL)
2669 {
2670 entry.symndx = r_symndx;
2671 entry.d.addend = 0;
2672 }
2673 else
2674 entry.d.h = h;
2675
2676 p = (struct mips_got_entry *)
2677 htab_find (g->got_entries, &entry);
2678
2679 BFD_ASSERT (p);
2680 return p;
2681 }
2682
b15e6682
AO
2683 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2684 INSERT);
2685 if (*loc)
2686 return *loc;
143d77c5 2687
b15e6682 2688 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2689 entry.tls_type = 0;
b15e6682
AO
2690
2691 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2692
2693 if (! *loc)
2694 return NULL;
143d77c5 2695
b15e6682
AO
2696 memcpy (*loc, &entry, sizeof entry);
2697
b49e97c9
TS
2698 if (g->assigned_gotno >= g->local_gotno)
2699 {
f4416af6 2700 (*loc)->gotidx = -1;
b49e97c9
TS
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value);
b15e6682 2705 return NULL;
b49e97c9
TS
2706 }
2707
2708 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2709 (sgot->contents + entry.gotidx));
2710
0a44bf69
RS
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab->is_vxworks)
2717 {
2718 Elf_Internal_Rela outrel;
2719 asection *s, *output_section;
2720 bfd_byte *loc;
2721 bfd_vma got_address;
2722 int dynindx;
2723
2724 s = mips_elf_rel_dyn_section (info, FALSE);
2725 output_section = input_section->output_section;
2726 dynindx = elf_section_data (output_section)->dynindx;
2727 got_address = (sgot->output_section->vma
2728 + sgot->output_offset
2729 + entry.gotidx);
2730
2731 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2732 outrel.r_offset = got_address;
2733 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2734 outrel.r_addend = value - output_section->vma;
2735 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2736 }
2737
b15e6682 2738 return *loc;
b49e97c9
TS
2739}
2740
2741/* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2747
b34976b6 2748static bfd_boolean
9719ad41 2749mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2750{
2751 struct mips_elf_hash_sort_data hsd;
2752 struct mips_got_info *g;
2753 bfd *dynobj;
2754
2755 dynobj = elf_hash_table (info)->dynobj;
2756
f4416af6
AO
2757 g = mips_elf_got_info (dynobj, NULL);
2758
b49e97c9 2759 hsd.low = NULL;
143d77c5 2760 hsd.max_unref_got_dynindx =
f4416af6
AO
2761 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2770 hsd.max_non_got_dynindx = max_local;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2772 elf_hash_table (info)),
2773 mips_elf_sort_hash_table_f,
2774 &hsd);
2775
2776 /* There should have been enough room in the symbol table to
44c410de 2777 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2778 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2779 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2780 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2781
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
b49e97c9
TS
2784 g->global_gotsym = hsd.low;
2785
b34976b6 2786 return TRUE;
b49e97c9
TS
2787}
2788
2789/* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2791 index. */
2792
b34976b6 2793static bfd_boolean
9719ad41 2794mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2795{
9719ad41 2796 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2797
2798 if (h->root.root.type == bfd_link_hash_warning)
2799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2800
2801 /* Symbols without dynamic symbol table entries aren't interesting
2802 at all. */
2803 if (h->root.dynindx == -1)
b34976b6 2804 return TRUE;
b49e97c9 2805
f4416af6
AO
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2809 -1. */
2810 if (h->root.got.offset == 2)
2811 {
0f20cc35
DJ
2812 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2813
f4416af6
AO
2814 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2815 hsd->low = (struct elf_link_hash_entry *) h;
2816 h->root.dynindx = hsd->max_unref_got_dynindx++;
2817 }
2818 else if (h->root.got.offset != 1)
b49e97c9
TS
2819 h->root.dynindx = hsd->max_non_got_dynindx++;
2820 else
2821 {
0f20cc35
DJ
2822 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2823
b49e97c9
TS
2824 h->root.dynindx = --hsd->min_got_dynindx;
2825 hsd->low = (struct elf_link_hash_entry *) h;
2826 }
2827
b34976b6 2828 return TRUE;
b49e97c9
TS
2829}
2830
2831/* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2833 posterity. */
2834
b34976b6 2835static bfd_boolean
9719ad41
RS
2836mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2837 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2838 struct mips_got_info *g,
2839 unsigned char tls_flag)
b49e97c9 2840{
f4416af6
AO
2841 struct mips_got_entry entry, **loc;
2842
b49e97c9
TS
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2844 table. */
7c5fcef7
L
2845 if (h->dynindx == -1)
2846 {
2847 switch (ELF_ST_VISIBILITY (h->other))
2848 {
2849 case STV_INTERNAL:
2850 case STV_HIDDEN:
b34976b6 2851 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2852 break;
2853 }
c152c796 2854 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2855 return FALSE;
7c5fcef7 2856 }
b49e97c9 2857
86324f90
EC
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g != NULL);
2860
f4416af6
AO
2861 entry.abfd = abfd;
2862 entry.symndx = -1;
2863 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2864 entry.tls_type = 0;
f4416af6
AO
2865
2866 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2867 INSERT);
2868
b49e97c9
TS
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
f4416af6 2871 if (*loc)
0f20cc35
DJ
2872 {
2873 (*loc)->tls_type |= tls_flag;
2874 return TRUE;
2875 }
f4416af6
AO
2876
2877 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2878
2879 if (! *loc)
2880 return FALSE;
143d77c5 2881
f4416af6 2882 entry.gotidx = -1;
0f20cc35
DJ
2883 entry.tls_type = tls_flag;
2884
f4416af6
AO
2885 memcpy (*loc, &entry, sizeof entry);
2886
b49e97c9 2887 if (h->got.offset != MINUS_ONE)
b34976b6 2888 return TRUE;
b49e97c9
TS
2889
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2893 if (tls_flag == 0)
2894 h->got.offset = 1;
b49e97c9 2895
b34976b6 2896 return TRUE;
b49e97c9 2897}
f4416af6
AO
2898
2899/* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2901
2902static bfd_boolean
9719ad41 2903mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2904 struct mips_got_info *g,
2905 unsigned char tls_flag)
f4416af6
AO
2906{
2907 struct mips_got_entry entry, **loc;
2908
2909 entry.abfd = abfd;
2910 entry.symndx = symndx;
2911 entry.d.addend = addend;
0f20cc35 2912 entry.tls_type = tls_flag;
f4416af6
AO
2913 loc = (struct mips_got_entry **)
2914 htab_find_slot (g->got_entries, &entry, INSERT);
2915
2916 if (*loc)
0f20cc35
DJ
2917 {
2918 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2919 {
2920 g->tls_gotno += 2;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2924 {
2925 g->tls_gotno += 1;
2926 (*loc)->tls_type |= tls_flag;
2927 }
2928 return TRUE;
2929 }
f4416af6 2930
0f20cc35
DJ
2931 if (tls_flag != 0)
2932 {
2933 entry.gotidx = -1;
2934 entry.tls_type = tls_flag;
2935 if (tls_flag == GOT_TLS_IE)
2936 g->tls_gotno += 1;
2937 else if (tls_flag == GOT_TLS_GD)
2938 g->tls_gotno += 2;
2939 else if (g->tls_ldm_offset == MINUS_ONE)
2940 {
2941 g->tls_ldm_offset = MINUS_TWO;
2942 g->tls_gotno += 2;
2943 }
2944 }
2945 else
2946 {
2947 entry.gotidx = g->local_gotno++;
2948 entry.tls_type = 0;
2949 }
f4416af6
AO
2950
2951 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952
2953 if (! *loc)
2954 return FALSE;
143d77c5 2955
f4416af6
AO
2956 memcpy (*loc, &entry, sizeof entry);
2957
2958 return TRUE;
2959}
2960\f
2961/* Compute the hash value of the bfd in a bfd2got hash entry. */
2962
2963static hashval_t
9719ad41 2964mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2965{
2966 const struct mips_elf_bfd2got_hash *entry
2967 = (struct mips_elf_bfd2got_hash *)entry_;
2968
2969 return entry->bfd->id;
2970}
2971
2972/* Check whether two hash entries have the same bfd. */
2973
2974static int
9719ad41 2975mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2976{
2977 const struct mips_elf_bfd2got_hash *e1
2978 = (const struct mips_elf_bfd2got_hash *)entry1;
2979 const struct mips_elf_bfd2got_hash *e2
2980 = (const struct mips_elf_bfd2got_hash *)entry2;
2981
2982 return e1->bfd == e2->bfd;
2983}
2984
bad36eac 2985/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2986 be the master GOT data. */
2987
2988static struct mips_got_info *
9719ad41 2989mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2990{
2991 struct mips_elf_bfd2got_hash e, *p;
2992
2993 if (! g->bfd2got)
2994 return g;
2995
2996 e.bfd = ibfd;
9719ad41 2997 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2998 return p ? p->g : NULL;
2999}
3000
3001/* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3003 bfd requires. */
3004
3005static int
9719ad41 3006mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
3007{
3008 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3009 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3010 htab_t bfd2got = arg->bfd2got;
3011 struct mips_got_info *g;
3012 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3013 void **bfdgotp;
143d77c5 3014
f4416af6
AO
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3016 none exists. */
3017 bfdgot_entry.bfd = entry->abfd;
3018 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3019 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3020
3021 if (bfdgot != NULL)
3022 g = bfdgot->g;
3023 else
3024 {
3025 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3026 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3027
3028 if (bfdgot == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 *bfdgotp = bfdgot;
3035
3036 bfdgot->bfd = entry->abfd;
3037 bfdgot->g = g = (struct mips_got_info *)
3038 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3039 if (g == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->global_gotsym = NULL;
3046 g->global_gotno = 0;
3047 g->local_gotno = 0;
3048 g->assigned_gotno = -1;
0f20cc35
DJ
3049 g->tls_gotno = 0;
3050 g->tls_assigned_gotno = 0;
3051 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3052 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3053 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3054 if (g->got_entries == NULL)
3055 {
3056 arg->obfd = 0;
3057 return 0;
3058 }
3059
3060 g->bfd2got = NULL;
3061 g->next = NULL;
3062 }
3063
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3066 if (*entryp != NULL)
3067 return 1;
143d77c5 3068
f4416af6
AO
3069 *entryp = entry;
3070
0f20cc35
DJ
3071 if (entry->tls_type)
3072 {
3073 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3074 g->tls_gotno += 2;
3075 if (entry->tls_type & GOT_TLS_IE)
3076 g->tls_gotno += 1;
3077 }
3078 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3079 ++g->local_gotno;
3080 else
3081 ++g->global_gotno;
3082
3083 return 1;
3084}
3085
3086/* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3092
3093static int
9719ad41 3094mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3095{
3096 struct mips_elf_bfd2got_hash *bfd2got
3097 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3098 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3099 unsigned int lcount = bfd2got->g->local_gotno;
3100 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3101 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3102 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3103 bfd_boolean too_many_for_tls = FALSE;
3104
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3109 if (tcount > 0)
3110 {
3111 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3112 if (primary_total > maxcnt)
0f20cc35
DJ
3113 too_many_for_tls = TRUE;
3114 }
143d77c5 3115
f4416af6
AO
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
0f20cc35
DJ
3118 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3119 && ! too_many_for_tls)
f4416af6
AO
3120 {
3121 arg->primary = bfd2got->g;
3122 arg->primary_count = lcount + gcount;
3123 }
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
0f20cc35
DJ
3127 else if (arg->primary && ! too_many_for_tls
3128 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3129 {
3130 struct mips_got_info *g = bfd2got->g;
3131 int old_lcount = arg->primary->local_gotno;
3132 int old_gcount = arg->primary->global_gotno;
0f20cc35 3133 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3134
3135 bfd2got->g = arg->primary;
3136
3137 htab_traverse (g->got_entries,
3138 mips_elf_make_got_per_bfd,
3139 arg);
3140 if (arg->obfd == NULL)
3141 return 0;
3142
3143 htab_delete (g->got_entries);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3146 table anyway. */
3147
caec41ff 3148 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3149 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3150 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3151
3152 arg->primary_count = arg->primary->local_gotno
0f20cc35 3153 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3154 }
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg->current
0f20cc35 3157 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3158 {
3159 struct mips_got_info *g = bfd2got->g;
3160 int old_lcount = arg->current->local_gotno;
3161 int old_gcount = arg->current->global_gotno;
0f20cc35 3162 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3163
3164 bfd2got->g = arg->current;
3165
3166 htab_traverse (g->got_entries,
3167 mips_elf_make_got_per_bfd,
3168 arg);
3169 if (arg->obfd == NULL)
3170 return 0;
3171
3172 htab_delete (g->got_entries);
3173
caec41ff 3174 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3175 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3176 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3177
3178 arg->current_count = arg->current->local_gotno
0f20cc35 3179 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3180 }
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3184 else
3185 {
3186 bfd2got->g->next = arg->current;
3187 arg->current = bfd2got->g;
143d77c5 3188
0f20cc35
DJ
3189 arg->current_count = lcount + gcount + 2 * tcount;
3190 }
3191
3192 return 1;
3193}
3194
ead49a57
RS
3195/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
0f20cc35
DJ
3197
3198static int
3199mips_elf_initialize_tls_index (void **entryp, void *p)
3200{
3201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3202 struct mips_got_info *g = p;
ead49a57 3203 bfd_vma next_index;
0f20cc35
DJ
3204
3205 /* We're only interested in TLS symbols. */
3206 if (entry->tls_type == 0)
3207 return 1;
3208
ead49a57
RS
3209 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3210
3211 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3212 {
ead49a57
RS
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3216 return 1;
3217 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3218 entry->d.h->tls_got_offset = next_index;
3219 }
3220 else
3221 {
3222 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3223 {
ead49a57
RS
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3228 {
ead49a57 3229 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3230 return 1;
3231 }
ead49a57 3232 g->tls_ldm_offset = next_index;
0f20cc35 3233 }
ead49a57 3234 entry->gotidx = next_index;
f4416af6
AO
3235 }
3236
ead49a57 3237 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3238 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3239 g->tls_assigned_gotno += 2;
3240 if (entry->tls_type & GOT_TLS_IE)
3241 g->tls_assigned_gotno += 1;
3242
f4416af6
AO
3243 return 1;
3244}
3245
3246/* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3249
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3257 marked as not eligible for lazy resolution through a function
f4416af6
AO
3258 stub. */
3259static int
9719ad41 3260mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3261{
3262 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3263 struct mips_elf_set_global_got_offset_arg *arg
3264 = (struct mips_elf_set_global_got_offset_arg *)p;
3265 struct mips_got_info *g = arg->g;
3266
0f20cc35
DJ
3267 if (g && entry->tls_type != GOT_NORMAL)
3268 arg->needed_relocs +=
3269 mips_tls_got_relocs (arg->info, entry->tls_type,
3270 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271
f4416af6 3272 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3273 && entry->d.h->root.dynindx != -1
3274 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
f4416af6
AO
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292}
3293
0626d451
RS
3294/* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296static int
9719ad41 3297mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3298{
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307}
3308
f4416af6
AO
3309/* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315static int
9719ad41 3316mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3317{
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
143d77c5 3331
f4416af6
AO
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
143d77c5 3351
f4416af6
AO
3352 return 1;
3353}
3354
3355/* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357static void
9719ad41 3358mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3359{
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371}
3372
3373/* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375static bfd_vma
9719ad41 3376mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3377{
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
143d77c5 3388
0f20cc35
DJ
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3391}
3392
3393/* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396static bfd_boolean
9719ad41
RS
3397mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
f4416af6
AO
3400{
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3407 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
f4416af6
AO
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
0a44bf69 3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3427 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3428 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
0f20cc35 3441 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
0f20cc35 3452 g->next->tls_gotno = 0;
f4416af6 3453 g->next->assigned_gotno = 0;
0f20cc35
DJ
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
9719ad41 3458 NULL);
f4416af6
AO
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
143d77c5 3479
f4416af6
AO
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
143d77c5 3505
f4416af6
AO
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
0f20cc35 3555 gg->tls_gotno = 0;
f4416af6
AO
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
0a44bf69 3563 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
0f20cc35
DJ
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
ead49a57
RS
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
0f20cc35
DJ
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3579
ead49a57 3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3581 g = gn;
0626d451
RS
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3587 }
3588 while (g);
3589
eea6121a 3590 got->size = (gg->next->local_gotno
0f20cc35
DJ
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3593
f4416af6
AO
3594 return TRUE;
3595}
143d77c5 3596
b49e97c9
TS
3597\f
3598/* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601static const Elf_Internal_Rela *
9719ad41
RS
3602mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
b49e97c9 3605{
c000e262
TS
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
b49e97c9
TS
3608 while (relocation < relend)
3609 {
c000e262
TS
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
3618 bfd_set_error (bfd_error_bad_value);
3619 return NULL;
3620}
3621
3622/* Return whether a relocation is against a local symbol. */
3623
b34976b6 3624static bfd_boolean
9719ad41
RS
3625mips_elf_local_relocation_p (bfd *input_bfd,
3626 const Elf_Internal_Rela *relocation,
3627 asection **local_sections,
3628 bfd_boolean check_forced)
b49e97c9
TS
3629{
3630 unsigned long r_symndx;
3631 Elf_Internal_Shdr *symtab_hdr;
3632 struct mips_elf_link_hash_entry *h;
3633 size_t extsymoff;
3634
3635 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3636 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3637 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3638
3639 if (r_symndx < extsymoff)
b34976b6 3640 return TRUE;
b49e97c9 3641 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3642 return TRUE;
b49e97c9
TS
3643
3644 if (check_forced)
3645 {
3646 /* Look up the hash table to check whether the symbol
3647 was forced local. */
3648 h = (struct mips_elf_link_hash_entry *)
3649 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3650 /* Find the real hash-table entry for this symbol. */
3651 while (h->root.root.type == bfd_link_hash_indirect
3652 || h->root.root.type == bfd_link_hash_warning)
3653 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3654 if (h->root.forced_local)
b34976b6 3655 return TRUE;
b49e97c9
TS
3656 }
3657
b34976b6 3658 return FALSE;
b49e97c9
TS
3659}
3660\f
3661/* Sign-extend VALUE, which has the indicated number of BITS. */
3662
a7ebbfdf 3663bfd_vma
9719ad41 3664_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3665{
3666 if (value & ((bfd_vma) 1 << (bits - 1)))
3667 /* VALUE is negative. */
3668 value |= ((bfd_vma) - 1) << bits;
3669
3670 return value;
3671}
3672
3673/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3674 range expressible by a signed number with the indicated number of
b49e97c9
TS
3675 BITS. */
3676
b34976b6 3677static bfd_boolean
9719ad41 3678mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3679{
3680 bfd_signed_vma svalue = (bfd_signed_vma) value;
3681
3682 if (svalue > (1 << (bits - 1)) - 1)
3683 /* The value is too big. */
b34976b6 3684 return TRUE;
b49e97c9
TS
3685 else if (svalue < -(1 << (bits - 1)))
3686 /* The value is too small. */
b34976b6 3687 return TRUE;
b49e97c9
TS
3688
3689 /* All is well. */
b34976b6 3690 return FALSE;
b49e97c9
TS
3691}
3692
3693/* Calculate the %high function. */
3694
3695static bfd_vma
9719ad41 3696mips_elf_high (bfd_vma value)
b49e97c9
TS
3697{
3698 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3699}
3700
3701/* Calculate the %higher function. */
3702
3703static bfd_vma
9719ad41 3704mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3705{
3706#ifdef BFD64
3707 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3708#else
3709 abort ();
c5ae1840 3710 return MINUS_ONE;
b49e97c9
TS
3711#endif
3712}
3713
3714/* Calculate the %highest function. */
3715
3716static bfd_vma
9719ad41 3717mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3718{
3719#ifdef BFD64
b15e6682 3720 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3721#else
3722 abort ();
c5ae1840 3723 return MINUS_ONE;
b49e97c9
TS
3724#endif
3725}
3726\f
3727/* Create the .compact_rel section. */
3728
b34976b6 3729static bfd_boolean
9719ad41
RS
3730mips_elf_create_compact_rel_section
3731 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3732{
3733 flagword flags;
3734 register asection *s;
3735
3736 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3737 {
3738 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3739 | SEC_READONLY);
3740
3496cb2a 3741 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3742 if (s == NULL
b49e97c9
TS
3743 || ! bfd_set_section_alignment (abfd, s,
3744 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3745 return FALSE;
b49e97c9 3746
eea6121a 3747 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3748 }
3749
b34976b6 3750 return TRUE;
b49e97c9
TS
3751}
3752
3753/* Create the .got section to hold the global offset table. */
3754
b34976b6 3755static bfd_boolean
9719ad41
RS
3756mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3757 bfd_boolean maybe_exclude)
b49e97c9
TS
3758{
3759 flagword flags;
3760 register asection *s;
3761 struct elf_link_hash_entry *h;
14a793b2 3762 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3763 struct mips_got_info *g;
3764 bfd_size_type amt;
0a44bf69
RS
3765 struct mips_elf_link_hash_table *htab;
3766
3767 htab = mips_elf_hash_table (info);
b49e97c9
TS
3768
3769 /* This function may be called more than once. */
f4416af6
AO
3770 s = mips_elf_got_section (abfd, TRUE);
3771 if (s)
3772 {
3773 if (! maybe_exclude)
3774 s->flags &= ~SEC_EXCLUDE;
3775 return TRUE;
3776 }
b49e97c9
TS
3777
3778 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3779 | SEC_LINKER_CREATED);
3780
f4416af6
AO
3781 if (maybe_exclude)
3782 flags |= SEC_EXCLUDE;
3783
72b4917c
TS
3784 /* We have to use an alignment of 2**4 here because this is hardcoded
3785 in the function stub generation and in the linker script. */
3496cb2a 3786 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3787 if (s == NULL
72b4917c 3788 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3789 return FALSE;
b49e97c9
TS
3790
3791 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3792 linker script because we don't want to define the symbol if we
3793 are not creating a global offset table. */
14a793b2 3794 bh = NULL;
b49e97c9
TS
3795 if (! (_bfd_generic_link_add_one_symbol
3796 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3797 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3798 return FALSE;
14a793b2
AM
3799
3800 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3801 h->non_elf = 0;
3802 h->def_regular = 1;
b49e97c9 3803 h->type = STT_OBJECT;
d329bcd1 3804 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3805
3806 if (info->shared
c152c796 3807 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3808 return FALSE;
b49e97c9 3809
b49e97c9 3810 amt = sizeof (struct mips_got_info);
9719ad41 3811 g = bfd_alloc (abfd, amt);
b49e97c9 3812 if (g == NULL)
b34976b6 3813 return FALSE;
b49e97c9 3814 g->global_gotsym = NULL;
e3d54347 3815 g->global_gotno = 0;
0f20cc35 3816 g->tls_gotno = 0;
0a44bf69
RS
3817 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3818 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3819 g->bfd2got = NULL;
3820 g->next = NULL;
0f20cc35 3821 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3822 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3823 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3824 if (g->got_entries == NULL)
3825 return FALSE;
f0abc2a1
AM
3826 mips_elf_section_data (s)->u.got_info = g;
3827 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3828 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3829
0a44bf69
RS
3830 /* VxWorks also needs a .got.plt section. */
3831 if (htab->is_vxworks)
3832 {
3833 s = bfd_make_section_with_flags (abfd, ".got.plt",
3834 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3835 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3836 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3837 return FALSE;
3838
3839 htab->sgotplt = s;
3840 }
b34976b6 3841 return TRUE;
b49e97c9 3842}
b49e97c9 3843\f
0a44bf69
RS
3844/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3845 __GOTT_INDEX__ symbols. These symbols are only special for
3846 shared objects; they are not used in executables. */
3847
3848static bfd_boolean
3849is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3850{
3851 return (mips_elf_hash_table (info)->is_vxworks
3852 && info->shared
3853 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3854 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3855}
3856\f
b49e97c9
TS
3857/* Calculate the value produced by the RELOCATION (which comes from
3858 the INPUT_BFD). The ADDEND is the addend to use for this
3859 RELOCATION; RELOCATION->R_ADDEND is ignored.
3860
3861 The result of the relocation calculation is stored in VALUEP.
3862 REQUIRE_JALXP indicates whether or not the opcode used with this
3863 relocation must be JALX.
3864
3865 This function returns bfd_reloc_continue if the caller need take no
3866 further action regarding this relocation, bfd_reloc_notsupported if
3867 something goes dramatically wrong, bfd_reloc_overflow if an
3868 overflow occurs, and bfd_reloc_ok to indicate success. */
3869
3870static bfd_reloc_status_type
9719ad41
RS
3871mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3872 asection *input_section,
3873 struct bfd_link_info *info,
3874 const Elf_Internal_Rela *relocation,
3875 bfd_vma addend, reloc_howto_type *howto,
3876 Elf_Internal_Sym *local_syms,
3877 asection **local_sections, bfd_vma *valuep,
3878 const char **namep, bfd_boolean *require_jalxp,
3879 bfd_boolean save_addend)
b49e97c9
TS
3880{
3881 /* The eventual value we will return. */
3882 bfd_vma value;
3883 /* The address of the symbol against which the relocation is
3884 occurring. */
3885 bfd_vma symbol = 0;
3886 /* The final GP value to be used for the relocatable, executable, or
3887 shared object file being produced. */
3888 bfd_vma gp = MINUS_ONE;
3889 /* The place (section offset or address) of the storage unit being
3890 relocated. */
3891 bfd_vma p;
3892 /* The value of GP used to create the relocatable object. */
3893 bfd_vma gp0 = MINUS_ONE;
3894 /* The offset into the global offset table at which the address of
3895 the relocation entry symbol, adjusted by the addend, resides
3896 during execution. */
3897 bfd_vma g = MINUS_ONE;
3898 /* The section in which the symbol referenced by the relocation is
3899 located. */
3900 asection *sec = NULL;
3901 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3902 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3903 symbol. */
b34976b6
AM
3904 bfd_boolean local_p, was_local_p;
3905 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3906 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3907 /* TRUE if the symbol referred to by this relocation is
3908 "__gnu_local_gp". */
3909 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3910 Elf_Internal_Shdr *symtab_hdr;
3911 size_t extsymoff;
3912 unsigned long r_symndx;
3913 int r_type;
b34976b6 3914 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3915 relocation value. */
b34976b6
AM
3916 bfd_boolean overflowed_p;
3917 /* TRUE if this relocation refers to a MIPS16 function. */
3918 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3919 struct mips_elf_link_hash_table *htab;
3920 bfd *dynobj;
3921
3922 dynobj = elf_hash_table (info)->dynobj;
3923 htab = mips_elf_hash_table (info);
b49e97c9
TS
3924
3925 /* Parse the relocation. */
3926 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3927 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3928 p = (input_section->output_section->vma
3929 + input_section->output_offset
3930 + relocation->r_offset);
3931
3932 /* Assume that there will be no overflow. */
b34976b6 3933 overflowed_p = FALSE;
b49e97c9
TS
3934
3935 /* Figure out whether or not the symbol is local, and get the offset
3936 used in the array of hash table entries. */
3937 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3938 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3939 local_sections, FALSE);
bce03d3d 3940 was_local_p = local_p;
b49e97c9
TS
3941 if (! elf_bad_symtab (input_bfd))
3942 extsymoff = symtab_hdr->sh_info;
3943 else
3944 {
3945 /* The symbol table does not follow the rule that local symbols
3946 must come before globals. */
3947 extsymoff = 0;
3948 }
3949
3950 /* Figure out the value of the symbol. */
3951 if (local_p)
3952 {
3953 Elf_Internal_Sym *sym;
3954
3955 sym = local_syms + r_symndx;
3956 sec = local_sections[r_symndx];
3957
3958 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3959 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3960 || (sec->flags & SEC_MERGE))
b49e97c9 3961 symbol += sym->st_value;
d4df96e6
L
3962 if ((sec->flags & SEC_MERGE)
3963 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3964 {
3965 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3966 addend -= symbol;
3967 addend += sec->output_section->vma + sec->output_offset;
3968 }
b49e97c9
TS
3969
3970 /* MIPS16 text labels should be treated as odd. */
3971 if (sym->st_other == STO_MIPS16)
3972 ++symbol;
3973
3974 /* Record the name of this symbol, for our caller. */
3975 *namep = bfd_elf_string_from_elf_section (input_bfd,
3976 symtab_hdr->sh_link,
3977 sym->st_name);
3978 if (*namep == '\0')
3979 *namep = bfd_section_name (input_bfd, sec);
3980
3981 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3982 }
3983 else
3984 {
560e09e9
NC
3985 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3986
b49e97c9
TS
3987 /* For global symbols we look up the symbol in the hash-table. */
3988 h = ((struct mips_elf_link_hash_entry *)
3989 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3990 /* Find the real hash-table entry for this symbol. */
3991 while (h->root.root.type == bfd_link_hash_indirect
3992 || h->root.root.type == bfd_link_hash_warning)
3993 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3994
3995 /* Record the name of this symbol, for our caller. */
3996 *namep = h->root.root.root.string;
3997
3998 /* See if this is the special _gp_disp symbol. Note that such a
3999 symbol must always be a global symbol. */
560e09e9 4000 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4001 && ! NEWABI_P (input_bfd))
4002 {
4003 /* Relocations against _gp_disp are permitted only with
4004 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
4005 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4006 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
4007 return bfd_reloc_notsupported;
4008
b34976b6 4009 gp_disp_p = TRUE;
b49e97c9 4010 }
bbe506e8
TS
4011 /* See if this is the special _gp symbol. Note that such a
4012 symbol must always be a global symbol. */
4013 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4014 gnu_local_gp_p = TRUE;
4015
4016
b49e97c9
TS
4017 /* If this symbol is defined, calculate its address. Note that
4018 _gp_disp is a magic symbol, always implicitly defined by the
4019 linker, so it's inappropriate to check to see whether or not
4020 its defined. */
4021 else if ((h->root.root.type == bfd_link_hash_defined
4022 || h->root.root.type == bfd_link_hash_defweak)
4023 && h->root.root.u.def.section)
4024 {
4025 sec = h->root.root.u.def.section;
4026 if (sec->output_section)
4027 symbol = (h->root.root.u.def.value
4028 + sec->output_section->vma
4029 + sec->output_offset);
4030 else
4031 symbol = h->root.root.u.def.value;
4032 }
4033 else if (h->root.root.type == bfd_link_hash_undefweak)
4034 /* We allow relocations against undefined weak symbols, giving
4035 it the value zero, so that you can undefined weak functions
4036 and check to see if they exist by looking at their
4037 addresses. */
4038 symbol = 0;
59c2e50f 4039 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4040 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4041 symbol = 0;
a4d0f181
TS
4042 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4043 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4044 {
4045 /* If this is a dynamic link, we should have created a
4046 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4047 in in _bfd_mips_elf_create_dynamic_sections.
4048 Otherwise, we should define the symbol with a value of 0.
4049 FIXME: It should probably get into the symbol table
4050 somehow as well. */
4051 BFD_ASSERT (! info->shared);
4052 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4053 symbol = 0;
4054 }
5e2b0d47
NC
4055 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4056 {
4057 /* This is an optional symbol - an Irix specific extension to the
4058 ELF spec. Ignore it for now.
4059 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4060 than simply ignoring them, but we do not handle this for now.
4061 For information see the "64-bit ELF Object File Specification"
4062 which is available from here:
4063 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4064 symbol = 0;
4065 }
b49e97c9
TS
4066 else
4067 {
4068 if (! ((*info->callbacks->undefined_symbol)
4069 (info, h->root.root.root.string, input_bfd,
4070 input_section, relocation->r_offset,
59c2e50f
L
4071 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4072 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4073 return bfd_reloc_undefined;
4074 symbol = 0;
4075 }
4076
4077 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4078 }
4079
4080 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4081 need to redirect the call to the stub, unless we're already *in*
4082 a stub. */
1049f94e 4083 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4084 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4085 || (local_p
4086 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4087 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4088 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4089 {
4090 /* This is a 32- or 64-bit call to a 16-bit function. We should
4091 have already noticed that we were going to need the
4092 stub. */
4093 if (local_p)
4094 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4095 else
4096 {
4097 BFD_ASSERT (h->need_fn_stub);
4098 sec = h->fn_stub;
4099 }
4100
4101 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4102 /* The target is 16-bit, but the stub isn't. */
4103 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4104 }
4105 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4106 need to redirect the call to the stub. */
1049f94e 4107 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9 4108 && h != NULL
b9d58d71
TS
4109 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4110 || (local_p
4111 && elf_tdata (input_bfd)->local_call_stubs != NULL
4112 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4113 && !target_is_16_bit_code_p)
4114 {
b9d58d71
TS
4115 if (local_p)
4116 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4117 else
b49e97c9 4118 {
b9d58d71
TS
4119 /* If both call_stub and call_fp_stub are defined, we can figure
4120 out which one to use by checking which one appears in the input
4121 file. */
4122 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4123 {
b9d58d71
TS
4124 asection *o;
4125
4126 sec = NULL;
4127 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4128 {
b9d58d71
TS
4129 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4130 {
4131 sec = h->call_fp_stub;
4132 break;
4133 }
b49e97c9 4134 }
b9d58d71
TS
4135 if (sec == NULL)
4136 sec = h->call_stub;
b49e97c9 4137 }
b9d58d71 4138 else if (h->call_stub != NULL)
b49e97c9 4139 sec = h->call_stub;
b9d58d71
TS
4140 else
4141 sec = h->call_fp_stub;
4142 }
b49e97c9 4143
eea6121a 4144 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4145 symbol = sec->output_section->vma + sec->output_offset;
4146 }
4147
4148 /* Calls from 16-bit code to 32-bit code and vice versa require the
4149 special jalx instruction. */
1049f94e 4150 *require_jalxp = (!info->relocatable
b49e97c9
TS
4151 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4152 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4153
4154 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4155 local_sections, TRUE);
b49e97c9
TS
4156
4157 /* If we haven't already determined the GOT offset, or the GP value,
4158 and we're going to need it, get it now. */
4159 switch (r_type)
4160 {
0fdc1bf1 4161 case R_MIPS_GOT_PAGE:
93a2b7ae 4162 case R_MIPS_GOT_OFST:
d25aed71
RS
4163 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4164 bind locally. */
4165 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4166 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4167 break;
4168 /* Fall through. */
4169
b49e97c9
TS
4170 case R_MIPS_CALL16:
4171 case R_MIPS_GOT16:
4172 case R_MIPS_GOT_DISP:
4173 case R_MIPS_GOT_HI16:
4174 case R_MIPS_CALL_HI16:
4175 case R_MIPS_GOT_LO16:
4176 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4177 case R_MIPS_TLS_GD:
4178 case R_MIPS_TLS_GOTTPREL:
4179 case R_MIPS_TLS_LDM:
b49e97c9 4180 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4181 if (r_type == R_MIPS_TLS_LDM)
4182 {
0a44bf69
RS
4183 g = mips_elf_local_got_index (abfd, input_bfd, info,
4184 sec, 0, 0, NULL, r_type);
0f20cc35
DJ
4185 if (g == MINUS_ONE)
4186 return bfd_reloc_outofrange;
4187 }
4188 else if (!local_p)
b49e97c9 4189 {
0a44bf69
RS
4190 /* On VxWorks, CALL relocations should refer to the .got.plt
4191 entry, which is initialized to point at the PLT stub. */
4192 if (htab->is_vxworks
4193 && (r_type == R_MIPS_CALL_HI16
4194 || r_type == R_MIPS_CALL_LO16
4195 || r_type == R_MIPS_CALL16))
4196 {
4197 BFD_ASSERT (addend == 0);
4198 BFD_ASSERT (h->root.needs_plt);
4199 g = mips_elf_gotplt_index (info, &h->root);
4200 }
4201 else
b49e97c9 4202 {
0a44bf69
RS
4203 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4204 GOT_PAGE relocation that decays to GOT_DISP because the
4205 symbol turns out to be global. The addend is then added
4206 as GOT_OFST. */
4207 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4208 g = mips_elf_global_got_index (dynobj, input_bfd,
4209 &h->root, r_type, info);
4210 if (h->tls_type == GOT_NORMAL
4211 && (! elf_hash_table(info)->dynamic_sections_created
4212 || (info->shared
4213 && (info->symbolic || h->root.forced_local)
4214 && h->root.def_regular)))
4215 {
4216 /* This is a static link or a -Bsymbolic link. The
4217 symbol is defined locally, or was forced to be local.
4218 We must initialize this entry in the GOT. */
4219 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4220 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4221 }
b49e97c9
TS
4222 }
4223 }
0a44bf69
RS
4224 else if (!htab->is_vxworks
4225 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4226 /* The calculation below does not involve "g". */
b49e97c9
TS
4227 break;
4228 else
4229 {
0a44bf69
RS
4230 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4231 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4232 if (g == MINUS_ONE)
4233 return bfd_reloc_outofrange;
4234 }
4235
4236 /* Convert GOT indices to actual offsets. */
0a44bf69 4237 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4238 break;
4239
4240 case R_MIPS_HI16:
4241 case R_MIPS_LO16:
b49e97c9
TS
4242 case R_MIPS_GPREL16:
4243 case R_MIPS_GPREL32:
4244 case R_MIPS_LITERAL:
d6f16593
MR
4245 case R_MIPS16_HI16:
4246 case R_MIPS16_LO16:
4247 case R_MIPS16_GPREL:
b49e97c9
TS
4248 gp0 = _bfd_get_gp_value (input_bfd);
4249 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4250 if (dynobj)
4251 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4252 input_bfd);
b49e97c9
TS
4253 break;
4254
4255 default:
4256 break;
4257 }
4258
bbe506e8
TS
4259 if (gnu_local_gp_p)
4260 symbol = gp;
86324f90 4261
0a44bf69
RS
4262 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4263 symbols are resolved by the loader. Add them to .rela.dyn. */
4264 if (h != NULL && is_gott_symbol (info, &h->root))
4265 {
4266 Elf_Internal_Rela outrel;
4267 bfd_byte *loc;
4268 asection *s;
4269
4270 s = mips_elf_rel_dyn_section (info, FALSE);
4271 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4272
4273 outrel.r_offset = (input_section->output_section->vma
4274 + input_section->output_offset
4275 + relocation->r_offset);
4276 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4277 outrel.r_addend = addend;
4278 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4279 *valuep = 0;
4280 return bfd_reloc_ok;
4281 }
4282
b49e97c9
TS
4283 /* Figure out what kind of relocation is being performed. */
4284 switch (r_type)
4285 {
4286 case R_MIPS_NONE:
4287 return bfd_reloc_continue;
4288
4289 case R_MIPS_16:
a7ebbfdf 4290 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4291 overflowed_p = mips_elf_overflow_p (value, 16);
4292 break;
4293
4294 case R_MIPS_32:
4295 case R_MIPS_REL32:
4296 case R_MIPS_64:
4297 if ((info->shared
0a44bf69
RS
4298 || (!htab->is_vxworks
4299 && htab->root.dynamic_sections_created
b49e97c9 4300 && h != NULL
f5385ebf
AM
4301 && h->root.def_dynamic
4302 && !h->root.def_regular))
b49e97c9
TS
4303 && r_symndx != 0
4304 && (input_section->flags & SEC_ALLOC) != 0)
4305 {
4306 /* If we're creating a shared library, or this relocation is
4307 against a symbol in a shared library, then we can't know
4308 where the symbol will end up. So, we create a relocation
4309 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4310 linker.
4311
4312 In VxWorks executables, references to external symbols
4313 are handled using copy relocs or PLT stubs, so there's
4314 no need to add a dynamic relocation here. */
b49e97c9
TS
4315 value = addend;
4316 if (!mips_elf_create_dynamic_relocation (abfd,
4317 info,
4318 relocation,
4319 h,
4320 sec,
4321 symbol,
4322 &value,
4323 input_section))
4324 return bfd_reloc_undefined;
4325 }
b1e24c02
DJ
4326 else if (r_symndx == 0)
4327 /* r_symndx will be zero only for relocs against symbols
4328 from removed linkonce sections, or sections discarded by
4329 a linker script. */
4330 value = 0;
b49e97c9
TS
4331 else
4332 {
4333 if (r_type != R_MIPS_REL32)
4334 value = symbol + addend;
4335 else
4336 value = addend;
4337 }
4338 value &= howto->dst_mask;
092dcd75
CD
4339 break;
4340
4341 case R_MIPS_PC32:
4342 value = symbol + addend - p;
4343 value &= howto->dst_mask;
b49e97c9
TS
4344 break;
4345
b49e97c9
TS
4346 case R_MIPS16_26:
4347 /* The calculation for R_MIPS16_26 is just the same as for an
4348 R_MIPS_26. It's only the storage of the relocated field into
4349 the output file that's different. That's handled in
4350 mips_elf_perform_relocation. So, we just fall through to the
4351 R_MIPS_26 case here. */
4352 case R_MIPS_26:
4353 if (local_p)
30ac9238 4354 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4355 else
728b2f21
ILT
4356 {
4357 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4358 if (h->root.root.type != bfd_link_hash_undefweak)
4359 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4360 }
b49e97c9
TS
4361 value &= howto->dst_mask;
4362 break;
4363
0f20cc35
DJ
4364 case R_MIPS_TLS_DTPREL_HI16:
4365 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4366 & howto->dst_mask);
4367 break;
4368
4369 case R_MIPS_TLS_DTPREL_LO16:
4370 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4371 break;
4372
4373 case R_MIPS_TLS_TPREL_HI16:
4374 value = (mips_elf_high (addend + symbol - tprel_base (info))
4375 & howto->dst_mask);
4376 break;
4377
4378 case R_MIPS_TLS_TPREL_LO16:
4379 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4380 break;
4381
b49e97c9 4382 case R_MIPS_HI16:
d6f16593 4383 case R_MIPS16_HI16:
b49e97c9
TS
4384 if (!gp_disp_p)
4385 {
4386 value = mips_elf_high (addend + symbol);
4387 value &= howto->dst_mask;
4388 }
4389 else
4390 {
d6f16593
MR
4391 /* For MIPS16 ABI code we generate this sequence
4392 0: li $v0,%hi(_gp_disp)
4393 4: addiupc $v1,%lo(_gp_disp)
4394 8: sll $v0,16
4395 12: addu $v0,$v1
4396 14: move $gp,$v0
4397 So the offsets of hi and lo relocs are the same, but the
4398 $pc is four higher than $t9 would be, so reduce
4399 both reloc addends by 4. */
4400 if (r_type == R_MIPS16_HI16)
4401 value = mips_elf_high (addend + gp - p - 4);
4402 else
4403 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4404 overflowed_p = mips_elf_overflow_p (value, 16);
4405 }
4406 break;
4407
4408 case R_MIPS_LO16:
d6f16593 4409 case R_MIPS16_LO16:
b49e97c9
TS
4410 if (!gp_disp_p)
4411 value = (symbol + addend) & howto->dst_mask;
4412 else
4413 {
d6f16593
MR
4414 /* See the comment for R_MIPS16_HI16 above for the reason
4415 for this conditional. */
4416 if (r_type == R_MIPS16_LO16)
4417 value = addend + gp - p;
4418 else
4419 value = addend + gp - p + 4;
b49e97c9 4420 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4421 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4422 _gp_disp are normally generated from the .cpload
4423 pseudo-op. It generates code that normally looks like
4424 this:
4425
4426 lui $gp,%hi(_gp_disp)
4427 addiu $gp,$gp,%lo(_gp_disp)
4428 addu $gp,$gp,$t9
4429
4430 Here $t9 holds the address of the function being called,
4431 as required by the MIPS ELF ABI. The R_MIPS_LO16
4432 relocation can easily overflow in this situation, but the
4433 R_MIPS_HI16 relocation will handle the overflow.
4434 Therefore, we consider this a bug in the MIPS ABI, and do
4435 not check for overflow here. */
4436 }
4437 break;
4438
4439 case R_MIPS_LITERAL:
4440 /* Because we don't merge literal sections, we can handle this
4441 just like R_MIPS_GPREL16. In the long run, we should merge
4442 shared literals, and then we will need to additional work
4443 here. */
4444
4445 /* Fall through. */
4446
4447 case R_MIPS16_GPREL:
4448 /* The R_MIPS16_GPREL performs the same calculation as
4449 R_MIPS_GPREL16, but stores the relocated bits in a different
4450 order. We don't need to do anything special here; the
4451 differences are handled in mips_elf_perform_relocation. */
4452 case R_MIPS_GPREL16:
bce03d3d
AO
4453 /* Only sign-extend the addend if it was extracted from the
4454 instruction. If the addend was separate, leave it alone,
4455 otherwise we may lose significant bits. */
4456 if (howto->partial_inplace)
a7ebbfdf 4457 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4458 value = symbol + addend - gp;
4459 /* If the symbol was local, any earlier relocatable links will
4460 have adjusted its addend with the gp offset, so compensate
4461 for that now. Don't do it for symbols forced local in this
4462 link, though, since they won't have had the gp offset applied
4463 to them before. */
4464 if (was_local_p)
4465 value += gp0;
b49e97c9
TS
4466 overflowed_p = mips_elf_overflow_p (value, 16);
4467 break;
4468
4469 case R_MIPS_GOT16:
4470 case R_MIPS_CALL16:
0a44bf69
RS
4471 /* VxWorks does not have separate local and global semantics for
4472 R_MIPS_GOT16; every relocation evaluates to "G". */
4473 if (!htab->is_vxworks && local_p)
b49e97c9 4474 {
b34976b6 4475 bfd_boolean forced;
b49e97c9 4476
b49e97c9 4477 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4478 local_sections, FALSE);
0a44bf69 4479 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
f4416af6 4480 symbol + addend, forced);
b49e97c9
TS
4481 if (value == MINUS_ONE)
4482 return bfd_reloc_outofrange;
4483 value
0a44bf69 4484 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4485 overflowed_p = mips_elf_overflow_p (value, 16);
4486 break;
4487 }
4488
4489 /* Fall through. */
4490
0f20cc35
DJ
4491 case R_MIPS_TLS_GD:
4492 case R_MIPS_TLS_GOTTPREL:
4493 case R_MIPS_TLS_LDM:
b49e97c9 4494 case R_MIPS_GOT_DISP:
0fdc1bf1 4495 got_disp:
b49e97c9
TS
4496 value = g;
4497 overflowed_p = mips_elf_overflow_p (value, 16);
4498 break;
4499
4500 case R_MIPS_GPREL32:
bce03d3d
AO
4501 value = (addend + symbol + gp0 - gp);
4502 if (!save_addend)
4503 value &= howto->dst_mask;
b49e97c9
TS
4504 break;
4505
4506 case R_MIPS_PC16:
bad36eac
DJ
4507 case R_MIPS_GNU_REL16_S2:
4508 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4509 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4510 value >>= howto->rightshift;
4511 value &= howto->dst_mask;
b49e97c9
TS
4512 break;
4513
4514 case R_MIPS_GOT_HI16:
4515 case R_MIPS_CALL_HI16:
4516 /* We're allowed to handle these two relocations identically.
4517 The dynamic linker is allowed to handle the CALL relocations
4518 differently by creating a lazy evaluation stub. */
4519 value = g;
4520 value = mips_elf_high (value);
4521 value &= howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_GOT_LO16:
4525 case R_MIPS_CALL_LO16:
4526 value = g & howto->dst_mask;
4527 break;
4528
4529 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4530 /* GOT_PAGE relocations that reference non-local symbols decay
4531 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4532 0. */
93a2b7ae 4533 if (! local_p)
0fdc1bf1 4534 goto got_disp;
0a44bf69
RS
4535 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4536 symbol + addend, NULL);
b49e97c9
TS
4537 if (value == MINUS_ONE)
4538 return bfd_reloc_outofrange;
0a44bf69 4539 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4540 overflowed_p = mips_elf_overflow_p (value, 16);
4541 break;
4542
4543 case R_MIPS_GOT_OFST:
93a2b7ae 4544 if (local_p)
0a44bf69
RS
4545 mips_elf_got_page (abfd, input_bfd, info, sec,
4546 symbol + addend, &value);
0fdc1bf1
AO
4547 else
4548 value = addend;
b49e97c9
TS
4549 overflowed_p = mips_elf_overflow_p (value, 16);
4550 break;
4551
4552 case R_MIPS_SUB:
4553 value = symbol - addend;
4554 value &= howto->dst_mask;
4555 break;
4556
4557 case R_MIPS_HIGHER:
4558 value = mips_elf_higher (addend + symbol);
4559 value &= howto->dst_mask;
4560 break;
4561
4562 case R_MIPS_HIGHEST:
4563 value = mips_elf_highest (addend + symbol);
4564 value &= howto->dst_mask;
4565 break;
4566
4567 case R_MIPS_SCN_DISP:
4568 value = symbol + addend - sec->output_offset;
4569 value &= howto->dst_mask;
4570 break;
4571
b49e97c9 4572 case R_MIPS_JALR:
1367d393
ILT
4573 /* This relocation is only a hint. In some cases, we optimize
4574 it into a bal instruction. But we don't try to optimize
4575 branches to the PLT; that will wind up wasting time. */
4576 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4577 return bfd_reloc_continue;
4578 value = symbol + addend;
4579 break;
b49e97c9 4580
1367d393 4581 case R_MIPS_PJUMP:
b49e97c9
TS
4582 case R_MIPS_GNU_VTINHERIT:
4583 case R_MIPS_GNU_VTENTRY:
4584 /* We don't do anything with these at present. */
4585 return bfd_reloc_continue;
4586
4587 default:
4588 /* An unrecognized relocation type. */
4589 return bfd_reloc_notsupported;
4590 }
4591
4592 /* Store the VALUE for our caller. */
4593 *valuep = value;
4594 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4595}
4596
4597/* Obtain the field relocated by RELOCATION. */
4598
4599static bfd_vma
9719ad41
RS
4600mips_elf_obtain_contents (reloc_howto_type *howto,
4601 const Elf_Internal_Rela *relocation,
4602 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4603{
4604 bfd_vma x;
4605 bfd_byte *location = contents + relocation->r_offset;
4606
4607 /* Obtain the bytes. */
4608 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4609
b49e97c9
TS
4610 return x;
4611}
4612
4613/* It has been determined that the result of the RELOCATION is the
4614 VALUE. Use HOWTO to place VALUE into the output file at the
4615 appropriate position. The SECTION is the section to which the
b34976b6 4616 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4617 for the relocation must be either JAL or JALX, and it is
4618 unconditionally converted to JALX.
4619
b34976b6 4620 Returns FALSE if anything goes wrong. */
b49e97c9 4621
b34976b6 4622static bfd_boolean
9719ad41
RS
4623mips_elf_perform_relocation (struct bfd_link_info *info,
4624 reloc_howto_type *howto,
4625 const Elf_Internal_Rela *relocation,
4626 bfd_vma value, bfd *input_bfd,
4627 asection *input_section, bfd_byte *contents,
4628 bfd_boolean require_jalx)
b49e97c9
TS
4629{
4630 bfd_vma x;
4631 bfd_byte *location;
4632 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4633
4634 /* Figure out where the relocation is occurring. */
4635 location = contents + relocation->r_offset;
4636
d6f16593
MR
4637 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4638
b49e97c9
TS
4639 /* Obtain the current value. */
4640 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4641
4642 /* Clear the field we are setting. */
4643 x &= ~howto->dst_mask;
4644
b49e97c9
TS
4645 /* Set the field. */
4646 x |= (value & howto->dst_mask);
4647
4648 /* If required, turn JAL into JALX. */
4649 if (require_jalx)
4650 {
b34976b6 4651 bfd_boolean ok;
b49e97c9
TS
4652 bfd_vma opcode = x >> 26;
4653 bfd_vma jalx_opcode;
4654
4655 /* Check to see if the opcode is already JAL or JALX. */
4656 if (r_type == R_MIPS16_26)
4657 {
4658 ok = ((opcode == 0x6) || (opcode == 0x7));
4659 jalx_opcode = 0x7;
4660 }
4661 else
4662 {
4663 ok = ((opcode == 0x3) || (opcode == 0x1d));
4664 jalx_opcode = 0x1d;
4665 }
4666
4667 /* If the opcode is not JAL or JALX, there's a problem. */
4668 if (!ok)
4669 {
4670 (*_bfd_error_handler)
d003868e
AM
4671 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4672 input_bfd,
4673 input_section,
b49e97c9
TS
4674 (unsigned long) relocation->r_offset);
4675 bfd_set_error (bfd_error_bad_value);
b34976b6 4676 return FALSE;
b49e97c9
TS
4677 }
4678
4679 /* Make this the JALX opcode. */
4680 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4681 }
4682
1367d393
ILT
4683 /* On the RM9000, bal is faster than jal, because bal uses branch
4684 prediction hardware. If we are linking for the RM9000, and we
4685 see jal, and bal fits, use it instead. Note that this
4686 transformation should be safe for all architectures. */
4687 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4688 && !info->relocatable
4689 && !require_jalx
4690 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4691 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4692 {
4693 bfd_vma addr;
4694 bfd_vma dest;
4695 bfd_signed_vma off;
4696
4697 addr = (input_section->output_section->vma
4698 + input_section->output_offset
4699 + relocation->r_offset
4700 + 4);
4701 if (r_type == R_MIPS_26)
4702 dest = (value << 2) | ((addr >> 28) << 28);
4703 else
4704 dest = value;
4705 off = dest - addr;
4706 if (off <= 0x1ffff && off >= -0x20000)
4707 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4708 }
4709
b49e97c9
TS
4710 /* Put the value into the output. */
4711 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4712
4713 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4714 location);
4715
b34976b6 4716 return TRUE;
b49e97c9
TS
4717}
4718
b34976b6 4719/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4720
b34976b6 4721static bfd_boolean
b9d58d71 4722mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4723{
4724 const char *name = bfd_get_section_name (abfd, section);
4725
b9d58d71 4726 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4727}
4728\f
0a44bf69 4729/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4730
4731static void
0a44bf69
RS
4732mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4733 unsigned int n)
b49e97c9
TS
4734{
4735 asection *s;
0a44bf69 4736 struct mips_elf_link_hash_table *htab;
b49e97c9 4737
0a44bf69
RS
4738 htab = mips_elf_hash_table (info);
4739 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4740 BFD_ASSERT (s != NULL);
4741
0a44bf69
RS
4742 if (htab->is_vxworks)
4743 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4744 else
b49e97c9 4745 {
0a44bf69
RS
4746 if (s->size == 0)
4747 {
4748 /* Make room for a null element. */
4749 s->size += MIPS_ELF_REL_SIZE (abfd);
4750 ++s->reloc_count;
4751 }
4752 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4753 }
b49e97c9
TS
4754}
4755
4756/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4757 is the original relocation, which is now being transformed into a
4758 dynamic relocation. The ADDENDP is adjusted if necessary; the
4759 caller should store the result in place of the original addend. */
4760
b34976b6 4761static bfd_boolean
9719ad41
RS
4762mips_elf_create_dynamic_relocation (bfd *output_bfd,
4763 struct bfd_link_info *info,
4764 const Elf_Internal_Rela *rel,
4765 struct mips_elf_link_hash_entry *h,
4766 asection *sec, bfd_vma symbol,
4767 bfd_vma *addendp, asection *input_section)
b49e97c9 4768{
947216bf 4769 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4770 asection *sreloc;
4771 bfd *dynobj;
4772 int r_type;
5d41f0b6
RS
4773 long indx;
4774 bfd_boolean defined_p;
0a44bf69 4775 struct mips_elf_link_hash_table *htab;
b49e97c9 4776
0a44bf69 4777 htab = mips_elf_hash_table (info);
b49e97c9
TS
4778 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4779 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4780 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4781 BFD_ASSERT (sreloc != NULL);
4782 BFD_ASSERT (sreloc->contents != NULL);
4783 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4784 < sreloc->size);
b49e97c9 4785
b49e97c9
TS
4786 outrel[0].r_offset =
4787 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4788 outrel[1].r_offset =
4789 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4790 outrel[2].r_offset =
4791 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4792
c5ae1840 4793 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4794 /* The relocation field has been deleted. */
5d41f0b6
RS
4795 return TRUE;
4796
4797 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4798 {
4799 /* The relocation field has been converted into a relative value of
4800 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4801 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4802 *addendp += symbol;
5d41f0b6 4803 return TRUE;
0d591ff7 4804 }
b49e97c9 4805
5d41f0b6
RS
4806 /* We must now calculate the dynamic symbol table index to use
4807 in the relocation. */
4808 if (h != NULL
6ece8836
TS
4809 && (!h->root.def_regular
4810 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4811 {
4812 indx = h->root.dynindx;
4813 if (SGI_COMPAT (output_bfd))
4814 defined_p = h->root.def_regular;
4815 else
4816 /* ??? glibc's ld.so just adds the final GOT entry to the
4817 relocation field. It therefore treats relocs against
4818 defined symbols in the same way as relocs against
4819 undefined symbols. */
4820 defined_p = FALSE;
4821 }
b49e97c9
TS
4822 else
4823 {
5d41f0b6
RS
4824 if (sec != NULL && bfd_is_abs_section (sec))
4825 indx = 0;
4826 else if (sec == NULL || sec->owner == NULL)
fdd07405 4827 {
5d41f0b6
RS
4828 bfd_set_error (bfd_error_bad_value);
4829 return FALSE;
b49e97c9
TS
4830 }
4831 else
4832 {
5d41f0b6 4833 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4834 if (indx == 0)
4835 {
4836 asection *osec = htab->root.text_index_section;
4837 indx = elf_section_data (osec)->dynindx;
4838 }
5d41f0b6
RS
4839 if (indx == 0)
4840 abort ();
b49e97c9
TS
4841 }
4842
5d41f0b6
RS
4843 /* Instead of generating a relocation using the section
4844 symbol, we may as well make it a fully relative
4845 relocation. We want to avoid generating relocations to
4846 local symbols because we used to generate them
4847 incorrectly, without adding the original symbol value,
4848 which is mandated by the ABI for section symbols. In
4849 order to give dynamic loaders and applications time to
4850 phase out the incorrect use, we refrain from emitting
4851 section-relative relocations. It's not like they're
4852 useful, after all. This should be a bit more efficient
4853 as well. */
4854 /* ??? Although this behavior is compatible with glibc's ld.so,
4855 the ABI says that relocations against STN_UNDEF should have
4856 a symbol value of 0. Irix rld honors this, so relocations
4857 against STN_UNDEF have no effect. */
4858 if (!SGI_COMPAT (output_bfd))
4859 indx = 0;
4860 defined_p = TRUE;
b49e97c9
TS
4861 }
4862
5d41f0b6
RS
4863 /* If the relocation was previously an absolute relocation and
4864 this symbol will not be referred to by the relocation, we must
4865 adjust it by the value we give it in the dynamic symbol table.
4866 Otherwise leave the job up to the dynamic linker. */
4867 if (defined_p && r_type != R_MIPS_REL32)
4868 *addendp += symbol;
4869
0a44bf69
RS
4870 if (htab->is_vxworks)
4871 /* VxWorks uses non-relative relocations for this. */
4872 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4873 else
4874 /* The relocation is always an REL32 relocation because we don't
4875 know where the shared library will wind up at load-time. */
4876 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4877 R_MIPS_REL32);
4878
5d41f0b6
RS
4879 /* For strict adherence to the ABI specification, we should
4880 generate a R_MIPS_64 relocation record by itself before the
4881 _REL32/_64 record as well, such that the addend is read in as
4882 a 64-bit value (REL32 is a 32-bit relocation, after all).
4883 However, since none of the existing ELF64 MIPS dynamic
4884 loaders seems to care, we don't waste space with these
4885 artificial relocations. If this turns out to not be true,
4886 mips_elf_allocate_dynamic_relocation() should be tweaked so
4887 as to make room for a pair of dynamic relocations per
4888 invocation if ABI_64_P, and here we should generate an
4889 additional relocation record with R_MIPS_64 by itself for a
4890 NULL symbol before this relocation record. */
4891 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4892 ABI_64_P (output_bfd)
4893 ? R_MIPS_64
4894 : R_MIPS_NONE);
4895 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4896
4897 /* Adjust the output offset of the relocation to reference the
4898 correct location in the output file. */
4899 outrel[0].r_offset += (input_section->output_section->vma
4900 + input_section->output_offset);
4901 outrel[1].r_offset += (input_section->output_section->vma
4902 + input_section->output_offset);
4903 outrel[2].r_offset += (input_section->output_section->vma
4904 + input_section->output_offset);
4905
b49e97c9
TS
4906 /* Put the relocation back out. We have to use the special
4907 relocation outputter in the 64-bit case since the 64-bit
4908 relocation format is non-standard. */
4909 if (ABI_64_P (output_bfd))
4910 {
4911 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4912 (output_bfd, &outrel[0],
4913 (sreloc->contents
4914 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4915 }
0a44bf69
RS
4916 else if (htab->is_vxworks)
4917 {
4918 /* VxWorks uses RELA rather than REL dynamic relocations. */
4919 outrel[0].r_addend = *addendp;
4920 bfd_elf32_swap_reloca_out
4921 (output_bfd, &outrel[0],
4922 (sreloc->contents
4923 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4924 }
b49e97c9 4925 else
947216bf
AM
4926 bfd_elf32_swap_reloc_out
4927 (output_bfd, &outrel[0],
4928 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4929
b49e97c9
TS
4930 /* We've now added another relocation. */
4931 ++sreloc->reloc_count;
4932
4933 /* Make sure the output section is writable. The dynamic linker
4934 will be writing to it. */
4935 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4936 |= SHF_WRITE;
4937
4938 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4939 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4940 {
4941 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4942 bfd_byte *cr;
4943
4944 if (scpt)
4945 {
4946 Elf32_crinfo cptrel;
4947
4948 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4949 cptrel.vaddr = (rel->r_offset
4950 + input_section->output_section->vma
4951 + input_section->output_offset);
4952 if (r_type == R_MIPS_REL32)
4953 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4954 else
4955 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4956 mips_elf_set_cr_dist2to (cptrel, 0);
4957 cptrel.konst = *addendp;
4958
4959 cr = (scpt->contents
4960 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4961 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4962 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4963 ((Elf32_External_crinfo *) cr
4964 + scpt->reloc_count));
4965 ++scpt->reloc_count;
4966 }
4967 }
4968
943284cc
DJ
4969 /* If we've written this relocation for a readonly section,
4970 we need to set DF_TEXTREL again, so that we do not delete the
4971 DT_TEXTREL tag. */
4972 if (MIPS_ELF_READONLY_SECTION (input_section))
4973 info->flags |= DF_TEXTREL;
4974
b34976b6 4975 return TRUE;
b49e97c9
TS
4976}
4977\f
b49e97c9
TS
4978/* Return the MACH for a MIPS e_flags value. */
4979
4980unsigned long
9719ad41 4981_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4982{
4983 switch (flags & EF_MIPS_MACH)
4984 {
4985 case E_MIPS_MACH_3900:
4986 return bfd_mach_mips3900;
4987
4988 case E_MIPS_MACH_4010:
4989 return bfd_mach_mips4010;
4990
4991 case E_MIPS_MACH_4100:
4992 return bfd_mach_mips4100;
4993
4994 case E_MIPS_MACH_4111:
4995 return bfd_mach_mips4111;
4996
00707a0e
RS
4997 case E_MIPS_MACH_4120:
4998 return bfd_mach_mips4120;
4999
b49e97c9
TS
5000 case E_MIPS_MACH_4650:
5001 return bfd_mach_mips4650;
5002
00707a0e
RS
5003 case E_MIPS_MACH_5400:
5004 return bfd_mach_mips5400;
5005
5006 case E_MIPS_MACH_5500:
5007 return bfd_mach_mips5500;
5008
0d2e43ed
ILT
5009 case E_MIPS_MACH_9000:
5010 return bfd_mach_mips9000;
5011
b49e97c9
TS
5012 case E_MIPS_MACH_SB1:
5013 return bfd_mach_mips_sb1;
5014
5015 default:
5016 switch (flags & EF_MIPS_ARCH)
5017 {
5018 default:
5019 case E_MIPS_ARCH_1:
5020 return bfd_mach_mips3000;
b49e97c9
TS
5021
5022 case E_MIPS_ARCH_2:
5023 return bfd_mach_mips6000;
b49e97c9
TS
5024
5025 case E_MIPS_ARCH_3:
5026 return bfd_mach_mips4000;
b49e97c9
TS
5027
5028 case E_MIPS_ARCH_4:
5029 return bfd_mach_mips8000;
b49e97c9
TS
5030
5031 case E_MIPS_ARCH_5:
5032 return bfd_mach_mips5;
b49e97c9
TS
5033
5034 case E_MIPS_ARCH_32:
5035 return bfd_mach_mipsisa32;
b49e97c9
TS
5036
5037 case E_MIPS_ARCH_64:
5038 return bfd_mach_mipsisa64;
af7ee8bf
CD
5039
5040 case E_MIPS_ARCH_32R2:
5041 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5042
5043 case E_MIPS_ARCH_64R2:
5044 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5045 }
5046 }
5047
5048 return 0;
5049}
5050
5051/* Return printable name for ABI. */
5052
5053static INLINE char *
9719ad41 5054elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5055{
5056 flagword flags;
5057
5058 flags = elf_elfheader (abfd)->e_flags;
5059 switch (flags & EF_MIPS_ABI)
5060 {
5061 case 0:
5062 if (ABI_N32_P (abfd))
5063 return "N32";
5064 else if (ABI_64_P (abfd))
5065 return "64";
5066 else
5067 return "none";
5068 case E_MIPS_ABI_O32:
5069 return "O32";
5070 case E_MIPS_ABI_O64:
5071 return "O64";
5072 case E_MIPS_ABI_EABI32:
5073 return "EABI32";
5074 case E_MIPS_ABI_EABI64:
5075 return "EABI64";
5076 default:
5077 return "unknown abi";
5078 }
5079}
5080\f
5081/* MIPS ELF uses two common sections. One is the usual one, and the
5082 other is for small objects. All the small objects are kept
5083 together, and then referenced via the gp pointer, which yields
5084 faster assembler code. This is what we use for the small common
5085 section. This approach is copied from ecoff.c. */
5086static asection mips_elf_scom_section;
5087static asymbol mips_elf_scom_symbol;
5088static asymbol *mips_elf_scom_symbol_ptr;
5089
5090/* MIPS ELF also uses an acommon section, which represents an
5091 allocated common symbol which may be overridden by a
5092 definition in a shared library. */
5093static asection mips_elf_acom_section;
5094static asymbol mips_elf_acom_symbol;
5095static asymbol *mips_elf_acom_symbol_ptr;
5096
5097/* Handle the special MIPS section numbers that a symbol may use.
5098 This is used for both the 32-bit and the 64-bit ABI. */
5099
5100void
9719ad41 5101_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5102{
5103 elf_symbol_type *elfsym;
5104
5105 elfsym = (elf_symbol_type *) asym;
5106 switch (elfsym->internal_elf_sym.st_shndx)
5107 {
5108 case SHN_MIPS_ACOMMON:
5109 /* This section is used in a dynamically linked executable file.
5110 It is an allocated common section. The dynamic linker can
5111 either resolve these symbols to something in a shared
5112 library, or it can just leave them here. For our purposes,
5113 we can consider these symbols to be in a new section. */
5114 if (mips_elf_acom_section.name == NULL)
5115 {
5116 /* Initialize the acommon section. */
5117 mips_elf_acom_section.name = ".acommon";
5118 mips_elf_acom_section.flags = SEC_ALLOC;
5119 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5120 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5121 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5122 mips_elf_acom_symbol.name = ".acommon";
5123 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5124 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5125 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5126 }
5127 asym->section = &mips_elf_acom_section;
5128 break;
5129
5130 case SHN_COMMON:
5131 /* Common symbols less than the GP size are automatically
5132 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5133 if (asym->value > elf_gp_size (abfd)
b59eed79 5134 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5135 || IRIX_COMPAT (abfd) == ict_irix6)
5136 break;
5137 /* Fall through. */
5138 case SHN_MIPS_SCOMMON:
5139 if (mips_elf_scom_section.name == NULL)
5140 {
5141 /* Initialize the small common section. */
5142 mips_elf_scom_section.name = ".scommon";
5143 mips_elf_scom_section.flags = SEC_IS_COMMON;
5144 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5145 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5146 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5147 mips_elf_scom_symbol.name = ".scommon";
5148 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5149 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5150 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5151 }
5152 asym->section = &mips_elf_scom_section;
5153 asym->value = elfsym->internal_elf_sym.st_size;
5154 break;
5155
5156 case SHN_MIPS_SUNDEFINED:
5157 asym->section = bfd_und_section_ptr;
5158 break;
5159
b49e97c9 5160 case SHN_MIPS_TEXT:
00b4930b
TS
5161 {
5162 asection *section = bfd_get_section_by_name (abfd, ".text");
5163
5164 BFD_ASSERT (SGI_COMPAT (abfd));
5165 if (section != NULL)
5166 {
5167 asym->section = section;
5168 /* MIPS_TEXT is a bit special, the address is not an offset
5169 to the base of the .text section. So substract the section
5170 base address to make it an offset. */
5171 asym->value -= section->vma;
5172 }
5173 }
b49e97c9
TS
5174 break;
5175
5176 case SHN_MIPS_DATA:
00b4930b
TS
5177 {
5178 asection *section = bfd_get_section_by_name (abfd, ".data");
5179
5180 BFD_ASSERT (SGI_COMPAT (abfd));
5181 if (section != NULL)
5182 {
5183 asym->section = section;
5184 /* MIPS_DATA is a bit special, the address is not an offset
5185 to the base of the .data section. So substract the section
5186 base address to make it an offset. */
5187 asym->value -= section->vma;
5188 }
5189 }
b49e97c9 5190 break;
b49e97c9
TS
5191 }
5192}
5193\f
8c946ed5
RS
5194/* Implement elf_backend_eh_frame_address_size. This differs from
5195 the default in the way it handles EABI64.
5196
5197 EABI64 was originally specified as an LP64 ABI, and that is what
5198 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5199 historically accepted the combination of -mabi=eabi and -mlong32,
5200 and this ILP32 variation has become semi-official over time.
5201 Both forms use elf32 and have pointer-sized FDE addresses.
5202
5203 If an EABI object was generated by GCC 4.0 or above, it will have
5204 an empty .gcc_compiled_longXX section, where XX is the size of longs
5205 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5206 have no special marking to distinguish them from LP64 objects.
5207
5208 We don't want users of the official LP64 ABI to be punished for the
5209 existence of the ILP32 variant, but at the same time, we don't want
5210 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5211 We therefore take the following approach:
5212
5213 - If ABFD contains a .gcc_compiled_longXX section, use it to
5214 determine the pointer size.
5215
5216 - Otherwise check the type of the first relocation. Assume that
5217 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5218
5219 - Otherwise punt.
5220
5221 The second check is enough to detect LP64 objects generated by pre-4.0
5222 compilers because, in the kind of output generated by those compilers,
5223 the first relocation will be associated with either a CIE personality
5224 routine or an FDE start address. Furthermore, the compilers never
5225 used a special (non-pointer) encoding for this ABI.
5226
5227 Checking the relocation type should also be safe because there is no
5228 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5229 did so. */
5230
5231unsigned int
5232_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5233{
5234 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5235 return 8;
5236 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5237 {
5238 bfd_boolean long32_p, long64_p;
5239
5240 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5241 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5242 if (long32_p && long64_p)
5243 return 0;
5244 if (long32_p)
5245 return 4;
5246 if (long64_p)
5247 return 8;
5248
5249 if (sec->reloc_count > 0
5250 && elf_section_data (sec)->relocs != NULL
5251 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5252 == R_MIPS_64))
5253 return 8;
5254
5255 return 0;
5256 }
5257 return 4;
5258}
5259\f
174fd7f9
RS
5260/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5261 relocations against two unnamed section symbols to resolve to the
5262 same address. For example, if we have code like:
5263
5264 lw $4,%got_disp(.data)($gp)
5265 lw $25,%got_disp(.text)($gp)
5266 jalr $25
5267
5268 then the linker will resolve both relocations to .data and the program
5269 will jump there rather than to .text.
5270
5271 We can work around this problem by giving names to local section symbols.
5272 This is also what the MIPSpro tools do. */
5273
5274bfd_boolean
5275_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5276{
5277 return SGI_COMPAT (abfd);
5278}
5279\f
b49e97c9
TS
5280/* Work over a section just before writing it out. This routine is
5281 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5282 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5283 a better way. */
5284
b34976b6 5285bfd_boolean
9719ad41 5286_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5287{
5288 if (hdr->sh_type == SHT_MIPS_REGINFO
5289 && hdr->sh_size > 0)
5290 {
5291 bfd_byte buf[4];
5292
5293 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5294 BFD_ASSERT (hdr->contents == NULL);
5295
5296 if (bfd_seek (abfd,
5297 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5298 SEEK_SET) != 0)
b34976b6 5299 return FALSE;
b49e97c9 5300 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5301 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5302 return FALSE;
b49e97c9
TS
5303 }
5304
5305 if (hdr->sh_type == SHT_MIPS_OPTIONS
5306 && hdr->bfd_section != NULL
f0abc2a1
AM
5307 && mips_elf_section_data (hdr->bfd_section) != NULL
5308 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5309 {
5310 bfd_byte *contents, *l, *lend;
5311
f0abc2a1
AM
5312 /* We stored the section contents in the tdata field in the
5313 set_section_contents routine. We save the section contents
5314 so that we don't have to read them again.
b49e97c9
TS
5315 At this point we know that elf_gp is set, so we can look
5316 through the section contents to see if there is an
5317 ODK_REGINFO structure. */
5318
f0abc2a1 5319 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5320 l = contents;
5321 lend = contents + hdr->sh_size;
5322 while (l + sizeof (Elf_External_Options) <= lend)
5323 {
5324 Elf_Internal_Options intopt;
5325
5326 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5327 &intopt);
1bc8074d
MR
5328 if (intopt.size < sizeof (Elf_External_Options))
5329 {
5330 (*_bfd_error_handler)
5331 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5332 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5333 break;
5334 }
b49e97c9
TS
5335 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5336 {
5337 bfd_byte buf[8];
5338
5339 if (bfd_seek (abfd,
5340 (hdr->sh_offset
5341 + (l - contents)
5342 + sizeof (Elf_External_Options)
5343 + (sizeof (Elf64_External_RegInfo) - 8)),
5344 SEEK_SET) != 0)
b34976b6 5345 return FALSE;
b49e97c9 5346 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5347 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5348 return FALSE;
b49e97c9
TS
5349 }
5350 else if (intopt.kind == ODK_REGINFO)
5351 {
5352 bfd_byte buf[4];
5353
5354 if (bfd_seek (abfd,
5355 (hdr->sh_offset
5356 + (l - contents)
5357 + sizeof (Elf_External_Options)
5358 + (sizeof (Elf32_External_RegInfo) - 4)),
5359 SEEK_SET) != 0)
b34976b6 5360 return FALSE;
b49e97c9 5361 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5362 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5363 return FALSE;
b49e97c9
TS
5364 }
5365 l += intopt.size;
5366 }
5367 }
5368
5369 if (hdr->bfd_section != NULL)
5370 {
5371 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5372
5373 if (strcmp (name, ".sdata") == 0
5374 || strcmp (name, ".lit8") == 0
5375 || strcmp (name, ".lit4") == 0)
5376 {
5377 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5378 hdr->sh_type = SHT_PROGBITS;
5379 }
5380 else if (strcmp (name, ".sbss") == 0)
5381 {
5382 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5383 hdr->sh_type = SHT_NOBITS;
5384 }
5385 else if (strcmp (name, ".srdata") == 0)
5386 {
5387 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5388 hdr->sh_type = SHT_PROGBITS;
5389 }
5390 else if (strcmp (name, ".compact_rel") == 0)
5391 {
5392 hdr->sh_flags = 0;
5393 hdr->sh_type = SHT_PROGBITS;
5394 }
5395 else if (strcmp (name, ".rtproc") == 0)
5396 {
5397 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5398 {
5399 unsigned int adjust;
5400
5401 adjust = hdr->sh_size % hdr->sh_addralign;
5402 if (adjust != 0)
5403 hdr->sh_size += hdr->sh_addralign - adjust;
5404 }
5405 }
5406 }
5407
b34976b6 5408 return TRUE;
b49e97c9
TS
5409}
5410
5411/* Handle a MIPS specific section when reading an object file. This
5412 is called when elfcode.h finds a section with an unknown type.
5413 This routine supports both the 32-bit and 64-bit ELF ABI.
5414
5415 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5416 how to. */
5417
b34976b6 5418bfd_boolean
6dc132d9
L
5419_bfd_mips_elf_section_from_shdr (bfd *abfd,
5420 Elf_Internal_Shdr *hdr,
5421 const char *name,
5422 int shindex)
b49e97c9
TS
5423{
5424 flagword flags = 0;
5425
5426 /* There ought to be a place to keep ELF backend specific flags, but
5427 at the moment there isn't one. We just keep track of the
5428 sections by their name, instead. Fortunately, the ABI gives
5429 suggested names for all the MIPS specific sections, so we will
5430 probably get away with this. */
5431 switch (hdr->sh_type)
5432 {
5433 case SHT_MIPS_LIBLIST:
5434 if (strcmp (name, ".liblist") != 0)
b34976b6 5435 return FALSE;
b49e97c9
TS
5436 break;
5437 case SHT_MIPS_MSYM:
5438 if (strcmp (name, ".msym") != 0)
b34976b6 5439 return FALSE;
b49e97c9
TS
5440 break;
5441 case SHT_MIPS_CONFLICT:
5442 if (strcmp (name, ".conflict") != 0)
b34976b6 5443 return FALSE;
b49e97c9
TS
5444 break;
5445 case SHT_MIPS_GPTAB:
0112cd26 5446 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5447 return FALSE;
b49e97c9
TS
5448 break;
5449 case SHT_MIPS_UCODE:
5450 if (strcmp (name, ".ucode") != 0)
b34976b6 5451 return FALSE;
b49e97c9
TS
5452 break;
5453 case SHT_MIPS_DEBUG:
5454 if (strcmp (name, ".mdebug") != 0)
b34976b6 5455 return FALSE;
b49e97c9
TS
5456 flags = SEC_DEBUGGING;
5457 break;
5458 case SHT_MIPS_REGINFO:
5459 if (strcmp (name, ".reginfo") != 0
5460 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5461 return FALSE;
b49e97c9
TS
5462 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5463 break;
5464 case SHT_MIPS_IFACE:
5465 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5466 return FALSE;
b49e97c9
TS
5467 break;
5468 case SHT_MIPS_CONTENT:
0112cd26 5469 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5470 return FALSE;
b49e97c9
TS
5471 break;
5472 case SHT_MIPS_OPTIONS:
cc2e31b9 5473 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5474 return FALSE;
b49e97c9
TS
5475 break;
5476 case SHT_MIPS_DWARF:
0112cd26 5477 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5478 return FALSE;
b49e97c9
TS
5479 break;
5480 case SHT_MIPS_SYMBOL_LIB:
5481 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5482 return FALSE;
b49e97c9
TS
5483 break;
5484 case SHT_MIPS_EVENTS:
0112cd26
NC
5485 if (! CONST_STRNEQ (name, ".MIPS.events")
5486 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5487 return FALSE;
b49e97c9
TS
5488 break;
5489 default:
cc2e31b9 5490 break;
b49e97c9
TS
5491 }
5492
6dc132d9 5493 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5494 return FALSE;
b49e97c9
TS
5495
5496 if (flags)
5497 {
5498 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5499 (bfd_get_section_flags (abfd,
5500 hdr->bfd_section)
5501 | flags)))
b34976b6 5502 return FALSE;
b49e97c9
TS
5503 }
5504
5505 /* FIXME: We should record sh_info for a .gptab section. */
5506
5507 /* For a .reginfo section, set the gp value in the tdata information
5508 from the contents of this section. We need the gp value while
5509 processing relocs, so we just get it now. The .reginfo section
5510 is not used in the 64-bit MIPS ELF ABI. */
5511 if (hdr->sh_type == SHT_MIPS_REGINFO)
5512 {
5513 Elf32_External_RegInfo ext;
5514 Elf32_RegInfo s;
5515
9719ad41
RS
5516 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5517 &ext, 0, sizeof ext))
b34976b6 5518 return FALSE;
b49e97c9
TS
5519 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5520 elf_gp (abfd) = s.ri_gp_value;
5521 }
5522
5523 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5524 set the gp value based on what we find. We may see both
5525 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5526 they should agree. */
5527 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5528 {
5529 bfd_byte *contents, *l, *lend;
5530
9719ad41 5531 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5532 if (contents == NULL)
b34976b6 5533 return FALSE;
b49e97c9 5534 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5535 0, hdr->sh_size))
b49e97c9
TS
5536 {
5537 free (contents);
b34976b6 5538 return FALSE;
b49e97c9
TS
5539 }
5540 l = contents;
5541 lend = contents + hdr->sh_size;
5542 while (l + sizeof (Elf_External_Options) <= lend)
5543 {
5544 Elf_Internal_Options intopt;
5545
5546 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5547 &intopt);
1bc8074d
MR
5548 if (intopt.size < sizeof (Elf_External_Options))
5549 {
5550 (*_bfd_error_handler)
5551 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5552 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5553 break;
5554 }
b49e97c9
TS
5555 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5556 {
5557 Elf64_Internal_RegInfo intreg;
5558
5559 bfd_mips_elf64_swap_reginfo_in
5560 (abfd,
5561 ((Elf64_External_RegInfo *)
5562 (l + sizeof (Elf_External_Options))),
5563 &intreg);
5564 elf_gp (abfd) = intreg.ri_gp_value;
5565 }
5566 else if (intopt.kind == ODK_REGINFO)
5567 {
5568 Elf32_RegInfo intreg;
5569
5570 bfd_mips_elf32_swap_reginfo_in
5571 (abfd,
5572 ((Elf32_External_RegInfo *)
5573 (l + sizeof (Elf_External_Options))),
5574 &intreg);
5575 elf_gp (abfd) = intreg.ri_gp_value;
5576 }
5577 l += intopt.size;
5578 }
5579 free (contents);
5580 }
5581
b34976b6 5582 return TRUE;
b49e97c9
TS
5583}
5584
5585/* Set the correct type for a MIPS ELF section. We do this by the
5586 section name, which is a hack, but ought to work. This routine is
5587 used by both the 32-bit and the 64-bit ABI. */
5588
b34976b6 5589bfd_boolean
9719ad41 5590_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5591{
5592 register const char *name;
1bc8074d 5593 unsigned int sh_type;
b49e97c9
TS
5594
5595 name = bfd_get_section_name (abfd, sec);
1bc8074d 5596 sh_type = hdr->sh_type;
b49e97c9
TS
5597
5598 if (strcmp (name, ".liblist") == 0)
5599 {
5600 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5601 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5602 /* The sh_link field is set in final_write_processing. */
5603 }
5604 else if (strcmp (name, ".conflict") == 0)
5605 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5606 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5607 {
5608 hdr->sh_type = SHT_MIPS_GPTAB;
5609 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5610 /* The sh_info field is set in final_write_processing. */
5611 }
5612 else if (strcmp (name, ".ucode") == 0)
5613 hdr->sh_type = SHT_MIPS_UCODE;
5614 else if (strcmp (name, ".mdebug") == 0)
5615 {
5616 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5617 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5618 entsize of 0. FIXME: Does this matter? */
5619 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5620 hdr->sh_entsize = 0;
5621 else
5622 hdr->sh_entsize = 1;
5623 }
5624 else if (strcmp (name, ".reginfo") == 0)
5625 {
5626 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5627 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5628 entsize of 0x18. FIXME: Does this matter? */
5629 if (SGI_COMPAT (abfd))
5630 {
5631 if ((abfd->flags & DYNAMIC) != 0)
5632 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5633 else
5634 hdr->sh_entsize = 1;
5635 }
5636 else
5637 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5638 }
5639 else if (SGI_COMPAT (abfd)
5640 && (strcmp (name, ".hash") == 0
5641 || strcmp (name, ".dynamic") == 0
5642 || strcmp (name, ".dynstr") == 0))
5643 {
5644 if (SGI_COMPAT (abfd))
5645 hdr->sh_entsize = 0;
5646#if 0
8dc1a139 5647 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5648 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5649#endif
5650 }
5651 else if (strcmp (name, ".got") == 0
5652 || strcmp (name, ".srdata") == 0
5653 || strcmp (name, ".sdata") == 0
5654 || strcmp (name, ".sbss") == 0
5655 || strcmp (name, ".lit4") == 0
5656 || strcmp (name, ".lit8") == 0)
5657 hdr->sh_flags |= SHF_MIPS_GPREL;
5658 else if (strcmp (name, ".MIPS.interfaces") == 0)
5659 {
5660 hdr->sh_type = SHT_MIPS_IFACE;
5661 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5662 }
0112cd26 5663 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5664 {
5665 hdr->sh_type = SHT_MIPS_CONTENT;
5666 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5667 /* The sh_info field is set in final_write_processing. */
5668 }
cc2e31b9 5669 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5670 {
5671 hdr->sh_type = SHT_MIPS_OPTIONS;
5672 hdr->sh_entsize = 1;
5673 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5674 }
0112cd26 5675 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5676 hdr->sh_type = SHT_MIPS_DWARF;
5677 else if (strcmp (name, ".MIPS.symlib") == 0)
5678 {
5679 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5680 /* The sh_link and sh_info fields are set in
5681 final_write_processing. */
5682 }
0112cd26
NC
5683 else if (CONST_STRNEQ (name, ".MIPS.events")
5684 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5685 {
5686 hdr->sh_type = SHT_MIPS_EVENTS;
5687 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5688 /* The sh_link field is set in final_write_processing. */
5689 }
5690 else if (strcmp (name, ".msym") == 0)
5691 {
5692 hdr->sh_type = SHT_MIPS_MSYM;
5693 hdr->sh_flags |= SHF_ALLOC;
5694 hdr->sh_entsize = 8;
5695 }
5696
1bc8074d
MR
5697 /* In the unlikely event a special section is empty it has to lose its
5698 special meaning. This may happen e.g. when using `strip' with the
5699 "--only-keep-debug" option. */
5700 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5701 hdr->sh_type = sh_type;
5702
7a79a000
TS
5703 /* The generic elf_fake_sections will set up REL_HDR using the default
5704 kind of relocations. We used to set up a second header for the
5705 non-default kind of relocations here, but only NewABI would use
5706 these, and the IRIX ld doesn't like resulting empty RELA sections.
5707 Thus we create those header only on demand now. */
b49e97c9 5708
b34976b6 5709 return TRUE;
b49e97c9
TS
5710}
5711
5712/* Given a BFD section, try to locate the corresponding ELF section
5713 index. This is used by both the 32-bit and the 64-bit ABI.
5714 Actually, it's not clear to me that the 64-bit ABI supports these,
5715 but for non-PIC objects we will certainly want support for at least
5716 the .scommon section. */
5717
b34976b6 5718bfd_boolean
9719ad41
RS
5719_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5720 asection *sec, int *retval)
b49e97c9
TS
5721{
5722 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5723 {
5724 *retval = SHN_MIPS_SCOMMON;
b34976b6 5725 return TRUE;
b49e97c9
TS
5726 }
5727 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5728 {
5729 *retval = SHN_MIPS_ACOMMON;
b34976b6 5730 return TRUE;
b49e97c9 5731 }
b34976b6 5732 return FALSE;
b49e97c9
TS
5733}
5734\f
5735/* Hook called by the linker routine which adds symbols from an object
5736 file. We must handle the special MIPS section numbers here. */
5737
b34976b6 5738bfd_boolean
9719ad41 5739_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5740 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5741 flagword *flagsp ATTRIBUTE_UNUSED,
5742 asection **secp, bfd_vma *valp)
b49e97c9
TS
5743{
5744 if (SGI_COMPAT (abfd)
5745 && (abfd->flags & DYNAMIC) != 0
5746 && strcmp (*namep, "_rld_new_interface") == 0)
5747 {
8dc1a139 5748 /* Skip IRIX5 rld entry name. */
b49e97c9 5749 *namep = NULL;
b34976b6 5750 return TRUE;
b49e97c9
TS
5751 }
5752
eedecc07
DD
5753 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5754 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5755 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5756 a magic symbol resolved by the linker, we ignore this bogus definition
5757 of _gp_disp. New ABI objects do not suffer from this problem so this
5758 is not done for them. */
5759 if (!NEWABI_P(abfd)
5760 && (sym->st_shndx == SHN_ABS)
5761 && (strcmp (*namep, "_gp_disp") == 0))
5762 {
5763 *namep = NULL;
5764 return TRUE;
5765 }
5766
b49e97c9
TS
5767 switch (sym->st_shndx)
5768 {
5769 case SHN_COMMON:
5770 /* Common symbols less than the GP size are automatically
5771 treated as SHN_MIPS_SCOMMON symbols. */
5772 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5773 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5774 || IRIX_COMPAT (abfd) == ict_irix6)
5775 break;
5776 /* Fall through. */
5777 case SHN_MIPS_SCOMMON:
5778 *secp = bfd_make_section_old_way (abfd, ".scommon");
5779 (*secp)->flags |= SEC_IS_COMMON;
5780 *valp = sym->st_size;
5781 break;
5782
5783 case SHN_MIPS_TEXT:
5784 /* This section is used in a shared object. */
5785 if (elf_tdata (abfd)->elf_text_section == NULL)
5786 {
5787 asymbol *elf_text_symbol;
5788 asection *elf_text_section;
5789 bfd_size_type amt = sizeof (asection);
5790
5791 elf_text_section = bfd_zalloc (abfd, amt);
5792 if (elf_text_section == NULL)
b34976b6 5793 return FALSE;
b49e97c9
TS
5794
5795 amt = sizeof (asymbol);
5796 elf_text_symbol = bfd_zalloc (abfd, amt);
5797 if (elf_text_symbol == NULL)
b34976b6 5798 return FALSE;
b49e97c9
TS
5799
5800 /* Initialize the section. */
5801
5802 elf_tdata (abfd)->elf_text_section = elf_text_section;
5803 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5804
5805 elf_text_section->symbol = elf_text_symbol;
5806 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5807
5808 elf_text_section->name = ".text";
5809 elf_text_section->flags = SEC_NO_FLAGS;
5810 elf_text_section->output_section = NULL;
5811 elf_text_section->owner = abfd;
5812 elf_text_symbol->name = ".text";
5813 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5814 elf_text_symbol->section = elf_text_section;
5815 }
5816 /* This code used to do *secp = bfd_und_section_ptr if
5817 info->shared. I don't know why, and that doesn't make sense,
5818 so I took it out. */
5819 *secp = elf_tdata (abfd)->elf_text_section;
5820 break;
5821
5822 case SHN_MIPS_ACOMMON:
5823 /* Fall through. XXX Can we treat this as allocated data? */
5824 case SHN_MIPS_DATA:
5825 /* This section is used in a shared object. */
5826 if (elf_tdata (abfd)->elf_data_section == NULL)
5827 {
5828 asymbol *elf_data_symbol;
5829 asection *elf_data_section;
5830 bfd_size_type amt = sizeof (asection);
5831
5832 elf_data_section = bfd_zalloc (abfd, amt);
5833 if (elf_data_section == NULL)
b34976b6 5834 return FALSE;
b49e97c9
TS
5835
5836 amt = sizeof (asymbol);
5837 elf_data_symbol = bfd_zalloc (abfd, amt);
5838 if (elf_data_symbol == NULL)
b34976b6 5839 return FALSE;
b49e97c9
TS
5840
5841 /* Initialize the section. */
5842
5843 elf_tdata (abfd)->elf_data_section = elf_data_section;
5844 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5845
5846 elf_data_section->symbol = elf_data_symbol;
5847 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5848
5849 elf_data_section->name = ".data";
5850 elf_data_section->flags = SEC_NO_FLAGS;
5851 elf_data_section->output_section = NULL;
5852 elf_data_section->owner = abfd;
5853 elf_data_symbol->name = ".data";
5854 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5855 elf_data_symbol->section = elf_data_section;
5856 }
5857 /* This code used to do *secp = bfd_und_section_ptr if
5858 info->shared. I don't know why, and that doesn't make sense,
5859 so I took it out. */
5860 *secp = elf_tdata (abfd)->elf_data_section;
5861 break;
5862
5863 case SHN_MIPS_SUNDEFINED:
5864 *secp = bfd_und_section_ptr;
5865 break;
5866 }
5867
5868 if (SGI_COMPAT (abfd)
5869 && ! info->shared
5870 && info->hash->creator == abfd->xvec
5871 && strcmp (*namep, "__rld_obj_head") == 0)
5872 {
5873 struct elf_link_hash_entry *h;
14a793b2 5874 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5875
5876 /* Mark __rld_obj_head as dynamic. */
14a793b2 5877 bh = NULL;
b49e97c9 5878 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5879 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5880 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5881 return FALSE;
14a793b2
AM
5882
5883 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5884 h->non_elf = 0;
5885 h->def_regular = 1;
b49e97c9
TS
5886 h->type = STT_OBJECT;
5887
c152c796 5888 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5889 return FALSE;
b49e97c9 5890
b34976b6 5891 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5892 }
5893
5894 /* If this is a mips16 text symbol, add 1 to the value to make it
5895 odd. This will cause something like .word SYM to come up with
5896 the right value when it is loaded into the PC. */
5897 if (sym->st_other == STO_MIPS16)
5898 ++*valp;
5899
b34976b6 5900 return TRUE;
b49e97c9
TS
5901}
5902
5903/* This hook function is called before the linker writes out a global
5904 symbol. We mark symbols as small common if appropriate. This is
5905 also where we undo the increment of the value for a mips16 symbol. */
5906
b34976b6 5907bfd_boolean
9719ad41
RS
5908_bfd_mips_elf_link_output_symbol_hook
5909 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5910 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5911 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5912{
5913 /* If we see a common symbol, which implies a relocatable link, then
5914 if a symbol was small common in an input file, mark it as small
5915 common in the output file. */
5916 if (sym->st_shndx == SHN_COMMON
5917 && strcmp (input_sec->name, ".scommon") == 0)
5918 sym->st_shndx = SHN_MIPS_SCOMMON;
5919
79cda7cf
FF
5920 if (sym->st_other == STO_MIPS16)
5921 sym->st_value &= ~1;
b49e97c9 5922
b34976b6 5923 return TRUE;
b49e97c9
TS
5924}
5925\f
5926/* Functions for the dynamic linker. */
5927
5928/* Create dynamic sections when linking against a dynamic object. */
5929
b34976b6 5930bfd_boolean
9719ad41 5931_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5932{
5933 struct elf_link_hash_entry *h;
14a793b2 5934 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5935 flagword flags;
5936 register asection *s;
5937 const char * const *namep;
0a44bf69 5938 struct mips_elf_link_hash_table *htab;
b49e97c9 5939
0a44bf69 5940 htab = mips_elf_hash_table (info);
b49e97c9
TS
5941 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5942 | SEC_LINKER_CREATED | SEC_READONLY);
5943
0a44bf69
RS
5944 /* The psABI requires a read-only .dynamic section, but the VxWorks
5945 EABI doesn't. */
5946 if (!htab->is_vxworks)
b49e97c9 5947 {
0a44bf69
RS
5948 s = bfd_get_section_by_name (abfd, ".dynamic");
5949 if (s != NULL)
5950 {
5951 if (! bfd_set_section_flags (abfd, s, flags))
5952 return FALSE;
5953 }
b49e97c9
TS
5954 }
5955
5956 /* We need to create .got section. */
f4416af6
AO
5957 if (! mips_elf_create_got_section (abfd, info, FALSE))
5958 return FALSE;
5959
0a44bf69 5960 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5961 return FALSE;
b49e97c9 5962
b49e97c9
TS
5963 /* Create .stub section. */
5964 if (bfd_get_section_by_name (abfd,
5965 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5966 {
3496cb2a
L
5967 s = bfd_make_section_with_flags (abfd,
5968 MIPS_ELF_STUB_SECTION_NAME (abfd),
5969 flags | SEC_CODE);
b49e97c9 5970 if (s == NULL
b49e97c9
TS
5971 || ! bfd_set_section_alignment (abfd, s,
5972 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5973 return FALSE;
b49e97c9
TS
5974 }
5975
5976 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5977 && !info->shared
5978 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5979 {
3496cb2a
L
5980 s = bfd_make_section_with_flags (abfd, ".rld_map",
5981 flags &~ (flagword) SEC_READONLY);
b49e97c9 5982 if (s == NULL
b49e97c9
TS
5983 || ! bfd_set_section_alignment (abfd, s,
5984 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5985 return FALSE;
b49e97c9
TS
5986 }
5987
5988 /* On IRIX5, we adjust add some additional symbols and change the
5989 alignments of several sections. There is no ABI documentation
5990 indicating that this is necessary on IRIX6, nor any evidence that
5991 the linker takes such action. */
5992 if (IRIX_COMPAT (abfd) == ict_irix5)
5993 {
5994 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5995 {
14a793b2 5996 bh = NULL;
b49e97c9 5997 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5998 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5999 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6000 return FALSE;
14a793b2
AM
6001
6002 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6003 h->non_elf = 0;
6004 h->def_regular = 1;
b49e97c9
TS
6005 h->type = STT_SECTION;
6006
c152c796 6007 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6008 return FALSE;
b49e97c9
TS
6009 }
6010
6011 /* We need to create a .compact_rel section. */
6012 if (SGI_COMPAT (abfd))
6013 {
6014 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6015 return FALSE;
b49e97c9
TS
6016 }
6017
44c410de 6018 /* Change alignments of some sections. */
b49e97c9
TS
6019 s = bfd_get_section_by_name (abfd, ".hash");
6020 if (s != NULL)
d80dcc6a 6021 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6022 s = bfd_get_section_by_name (abfd, ".dynsym");
6023 if (s != NULL)
d80dcc6a 6024 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6025 s = bfd_get_section_by_name (abfd, ".dynstr");
6026 if (s != NULL)
d80dcc6a 6027 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6028 s = bfd_get_section_by_name (abfd, ".reginfo");
6029 if (s != NULL)
d80dcc6a 6030 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6031 s = bfd_get_section_by_name (abfd, ".dynamic");
6032 if (s != NULL)
d80dcc6a 6033 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6034 }
6035
6036 if (!info->shared)
6037 {
14a793b2
AM
6038 const char *name;
6039
6040 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6041 bh = NULL;
6042 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6043 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6044 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6045 return FALSE;
14a793b2
AM
6046
6047 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6048 h->non_elf = 0;
6049 h->def_regular = 1;
b49e97c9
TS
6050 h->type = STT_SECTION;
6051
c152c796 6052 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6053 return FALSE;
b49e97c9
TS
6054
6055 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6056 {
6057 /* __rld_map is a four byte word located in the .data section
6058 and is filled in by the rtld to contain a pointer to
6059 the _r_debug structure. Its symbol value will be set in
6060 _bfd_mips_elf_finish_dynamic_symbol. */
6061 s = bfd_get_section_by_name (abfd, ".rld_map");
6062 BFD_ASSERT (s != NULL);
6063
14a793b2
AM
6064 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6065 bh = NULL;
6066 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6067 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6068 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6069 return FALSE;
14a793b2
AM
6070
6071 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6072 h->non_elf = 0;
6073 h->def_regular = 1;
b49e97c9
TS
6074 h->type = STT_OBJECT;
6075
c152c796 6076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6077 return FALSE;
b49e97c9
TS
6078 }
6079 }
6080
0a44bf69
RS
6081 if (htab->is_vxworks)
6082 {
6083 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6084 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6085 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6086 return FALSE;
6087
6088 /* Cache the sections created above. */
6089 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6090 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6091 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6092 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6093 if (!htab->sdynbss
6094 || (!htab->srelbss && !info->shared)
6095 || !htab->srelplt
6096 || !htab->splt)
6097 abort ();
6098
6099 /* Do the usual VxWorks handling. */
6100 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6101 return FALSE;
6102
6103 /* Work out the PLT sizes. */
6104 if (info->shared)
6105 {
6106 htab->plt_header_size
6107 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6108 htab->plt_entry_size
6109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6110 }
6111 else
6112 {
6113 htab->plt_header_size
6114 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6115 htab->plt_entry_size
6116 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6117 }
6118 }
6119
b34976b6 6120 return TRUE;
b49e97c9
TS
6121}
6122\f
6123/* Look through the relocs for a section during the first phase, and
6124 allocate space in the global offset table. */
6125
b34976b6 6126bfd_boolean
9719ad41
RS
6127_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6128 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6129{
6130 const char *name;
6131 bfd *dynobj;
6132 Elf_Internal_Shdr *symtab_hdr;
6133 struct elf_link_hash_entry **sym_hashes;
6134 struct mips_got_info *g;
6135 size_t extsymoff;
6136 const Elf_Internal_Rela *rel;
6137 const Elf_Internal_Rela *rel_end;
6138 asection *sgot;
6139 asection *sreloc;
9c5bfbb7 6140 const struct elf_backend_data *bed;
0a44bf69 6141 struct mips_elf_link_hash_table *htab;
b49e97c9 6142
1049f94e 6143 if (info->relocatable)
b34976b6 6144 return TRUE;
b49e97c9 6145
0a44bf69 6146 htab = mips_elf_hash_table (info);
b49e97c9
TS
6147 dynobj = elf_hash_table (info)->dynobj;
6148 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6149 sym_hashes = elf_sym_hashes (abfd);
6150 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6151
6152 /* Check for the mips16 stub sections. */
6153
6154 name = bfd_get_section_name (abfd, sec);
b9d58d71 6155 if (FN_STUB_P (name))
b49e97c9
TS
6156 {
6157 unsigned long r_symndx;
6158
6159 /* Look at the relocation information to figure out which symbol
6160 this is for. */
6161
6162 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6163
6164 if (r_symndx < extsymoff
6165 || sym_hashes[r_symndx - extsymoff] == NULL)
6166 {
6167 asection *o;
6168
6169 /* This stub is for a local symbol. This stub will only be
6170 needed if there is some relocation in this BFD, other
6171 than a 16 bit function call, which refers to this symbol. */
6172 for (o = abfd->sections; o != NULL; o = o->next)
6173 {
6174 Elf_Internal_Rela *sec_relocs;
6175 const Elf_Internal_Rela *r, *rend;
6176
6177 /* We can ignore stub sections when looking for relocs. */
6178 if ((o->flags & SEC_RELOC) == 0
6179 || o->reloc_count == 0
b9d58d71 6180 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6181 continue;
6182
45d6a902 6183 sec_relocs
9719ad41 6184 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6185 info->keep_memory);
b49e97c9 6186 if (sec_relocs == NULL)
b34976b6 6187 return FALSE;
b49e97c9
TS
6188
6189 rend = sec_relocs + o->reloc_count;
6190 for (r = sec_relocs; r < rend; r++)
6191 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6192 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6193 break;
6194
6cdc0ccc 6195 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6196 free (sec_relocs);
6197
6198 if (r < rend)
6199 break;
6200 }
6201
6202 if (o == NULL)
6203 {
6204 /* There is no non-call reloc for this stub, so we do
6205 not need it. Since this function is called before
6206 the linker maps input sections to output sections, we
6207 can easily discard it by setting the SEC_EXCLUDE
6208 flag. */
6209 sec->flags |= SEC_EXCLUDE;
b34976b6 6210 return TRUE;
b49e97c9
TS
6211 }
6212
6213 /* Record this stub in an array of local symbol stubs for
6214 this BFD. */
6215 if (elf_tdata (abfd)->local_stubs == NULL)
6216 {
6217 unsigned long symcount;
6218 asection **n;
6219 bfd_size_type amt;
6220
6221 if (elf_bad_symtab (abfd))
6222 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6223 else
6224 symcount = symtab_hdr->sh_info;
6225 amt = symcount * sizeof (asection *);
9719ad41 6226 n = bfd_zalloc (abfd, amt);
b49e97c9 6227 if (n == NULL)
b34976b6 6228 return FALSE;
b49e97c9
TS
6229 elf_tdata (abfd)->local_stubs = n;
6230 }
6231
b9d58d71 6232 sec->flags |= SEC_KEEP;
b49e97c9
TS
6233 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6234
6235 /* We don't need to set mips16_stubs_seen in this case.
6236 That flag is used to see whether we need to look through
6237 the global symbol table for stubs. We don't need to set
6238 it here, because we just have a local stub. */
6239 }
6240 else
6241 {
6242 struct mips_elf_link_hash_entry *h;
6243
6244 h = ((struct mips_elf_link_hash_entry *)
6245 sym_hashes[r_symndx - extsymoff]);
6246
973a3492
L
6247 while (h->root.root.type == bfd_link_hash_indirect
6248 || h->root.root.type == bfd_link_hash_warning)
6249 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6250
b49e97c9
TS
6251 /* H is the symbol this stub is for. */
6252
b9d58d71
TS
6253 /* If we already have an appropriate stub for this function, we
6254 don't need another one, so we can discard this one. Since
6255 this function is called before the linker maps input sections
6256 to output sections, we can easily discard it by setting the
6257 SEC_EXCLUDE flag. */
6258 if (h->fn_stub != NULL)
6259 {
6260 sec->flags |= SEC_EXCLUDE;
6261 return TRUE;
6262 }
6263
6264 sec->flags |= SEC_KEEP;
b49e97c9 6265 h->fn_stub = sec;
b34976b6 6266 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6267 }
6268 }
b9d58d71 6269 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6270 {
6271 unsigned long r_symndx;
6272 struct mips_elf_link_hash_entry *h;
6273 asection **loc;
6274
6275 /* Look at the relocation information to figure out which symbol
6276 this is for. */
6277
6278 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6279
6280 if (r_symndx < extsymoff
6281 || sym_hashes[r_symndx - extsymoff] == NULL)
6282 {
b9d58d71 6283 asection *o;
b49e97c9 6284
b9d58d71
TS
6285 /* This stub is for a local symbol. This stub will only be
6286 needed if there is some relocation (R_MIPS16_26) in this BFD
6287 that refers to this symbol. */
6288 for (o = abfd->sections; o != NULL; o = o->next)
6289 {
6290 Elf_Internal_Rela *sec_relocs;
6291 const Elf_Internal_Rela *r, *rend;
6292
6293 /* We can ignore stub sections when looking for relocs. */
6294 if ((o->flags & SEC_RELOC) == 0
6295 || o->reloc_count == 0
6296 || mips16_stub_section_p (abfd, o))
6297 continue;
6298
6299 sec_relocs
6300 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6301 info->keep_memory);
6302 if (sec_relocs == NULL)
6303 return FALSE;
6304
6305 rend = sec_relocs + o->reloc_count;
6306 for (r = sec_relocs; r < rend; r++)
6307 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6308 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6309 break;
6310
6311 if (elf_section_data (o)->relocs != sec_relocs)
6312 free (sec_relocs);
6313
6314 if (r < rend)
6315 break;
6316 }
6317
6318 if (o == NULL)
6319 {
6320 /* There is no non-call reloc for this stub, so we do
6321 not need it. Since this function is called before
6322 the linker maps input sections to output sections, we
6323 can easily discard it by setting the SEC_EXCLUDE
6324 flag. */
6325 sec->flags |= SEC_EXCLUDE;
6326 return TRUE;
6327 }
6328
6329 /* Record this stub in an array of local symbol call_stubs for
6330 this BFD. */
6331 if (elf_tdata (abfd)->local_call_stubs == NULL)
6332 {
6333 unsigned long symcount;
6334 asection **n;
6335 bfd_size_type amt;
6336
6337 if (elf_bad_symtab (abfd))
6338 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6339 else
6340 symcount = symtab_hdr->sh_info;
6341 amt = symcount * sizeof (asection *);
6342 n = bfd_zalloc (abfd, amt);
6343 if (n == NULL)
6344 return FALSE;
6345 elf_tdata (abfd)->local_call_stubs = n;
6346 }
b49e97c9 6347
b9d58d71
TS
6348 sec->flags |= SEC_KEEP;
6349 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6350
b9d58d71
TS
6351 /* We don't need to set mips16_stubs_seen in this case.
6352 That flag is used to see whether we need to look through
6353 the global symbol table for stubs. We don't need to set
6354 it here, because we just have a local stub. */
6355 }
b49e97c9 6356 else
b49e97c9 6357 {
b9d58d71
TS
6358 h = ((struct mips_elf_link_hash_entry *)
6359 sym_hashes[r_symndx - extsymoff]);
6360
6361 /* H is the symbol this stub is for. */
6362
6363 if (CALL_FP_STUB_P (name))
6364 loc = &h->call_fp_stub;
6365 else
6366 loc = &h->call_stub;
6367
6368 /* If we already have an appropriate stub for this function, we
6369 don't need another one, so we can discard this one. Since
6370 this function is called before the linker maps input sections
6371 to output sections, we can easily discard it by setting the
6372 SEC_EXCLUDE flag. */
6373 if (*loc != NULL)
6374 {
6375 sec->flags |= SEC_EXCLUDE;
6376 return TRUE;
6377 }
b49e97c9 6378
b9d58d71
TS
6379 sec->flags |= SEC_KEEP;
6380 *loc = sec;
6381 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6382 }
b49e97c9
TS
6383 }
6384
6385 if (dynobj == NULL)
6386 {
6387 sgot = NULL;
6388 g = NULL;
6389 }
6390 else
6391 {
f4416af6 6392 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6393 if (sgot == NULL)
6394 g = NULL;
6395 else
6396 {
f0abc2a1
AM
6397 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6398 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6399 BFD_ASSERT (g != NULL);
6400 }
6401 }
6402
6403 sreloc = NULL;
6404 bed = get_elf_backend_data (abfd);
6405 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6406 for (rel = relocs; rel < rel_end; ++rel)
6407 {
6408 unsigned long r_symndx;
6409 unsigned int r_type;
6410 struct elf_link_hash_entry *h;
6411
6412 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6413 r_type = ELF_R_TYPE (abfd, rel->r_info);
6414
6415 if (r_symndx < extsymoff)
6416 h = NULL;
6417 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6418 {
6419 (*_bfd_error_handler)
d003868e
AM
6420 (_("%B: Malformed reloc detected for section %s"),
6421 abfd, name);
b49e97c9 6422 bfd_set_error (bfd_error_bad_value);
b34976b6 6423 return FALSE;
b49e97c9
TS
6424 }
6425 else
6426 {
6427 h = sym_hashes[r_symndx - extsymoff];
6428
6429 /* This may be an indirect symbol created because of a version. */
6430 if (h != NULL)
6431 {
6432 while (h->root.type == bfd_link_hash_indirect)
6433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6434 }
6435 }
6436
6437 /* Some relocs require a global offset table. */
6438 if (dynobj == NULL || sgot == NULL)
6439 {
6440 switch (r_type)
6441 {
6442 case R_MIPS_GOT16:
6443 case R_MIPS_CALL16:
6444 case R_MIPS_CALL_HI16:
6445 case R_MIPS_CALL_LO16:
6446 case R_MIPS_GOT_HI16:
6447 case R_MIPS_GOT_LO16:
6448 case R_MIPS_GOT_PAGE:
6449 case R_MIPS_GOT_OFST:
6450 case R_MIPS_GOT_DISP:
86324f90 6451 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6452 case R_MIPS_TLS_GD:
6453 case R_MIPS_TLS_LDM:
b49e97c9
TS
6454 if (dynobj == NULL)
6455 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6456 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6457 return FALSE;
b49e97c9 6458 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6459 if (htab->is_vxworks && !info->shared)
6460 {
6461 (*_bfd_error_handler)
6462 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6463 abfd, (unsigned long) rel->r_offset);
6464 bfd_set_error (bfd_error_bad_value);
6465 return FALSE;
6466 }
b49e97c9
TS
6467 break;
6468
6469 case R_MIPS_32:
6470 case R_MIPS_REL32:
6471 case R_MIPS_64:
0a44bf69
RS
6472 /* In VxWorks executables, references to external symbols
6473 are handled using copy relocs or PLT stubs, so there's
6474 no need to add a dynamic relocation here. */
b49e97c9 6475 if (dynobj == NULL
0a44bf69 6476 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6477 && (sec->flags & SEC_ALLOC) != 0)
6478 elf_hash_table (info)->dynobj = dynobj = abfd;
6479 break;
6480
6481 default:
6482 break;
6483 }
6484 }
6485
0a44bf69
RS
6486 if (h)
6487 {
6488 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6489
6490 /* Relocations against the special VxWorks __GOTT_BASE__ and
6491 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6492 room for them in .rela.dyn. */
6493 if (is_gott_symbol (info, h))
6494 {
6495 if (sreloc == NULL)
6496 {
6497 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6498 if (sreloc == NULL)
6499 return FALSE;
6500 }
6501 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6502 }
6503 }
6504 else if (r_type == R_MIPS_CALL_LO16
6505 || r_type == R_MIPS_GOT_LO16
6506 || r_type == R_MIPS_GOT_DISP
6507 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6508 {
6509 /* We may need a local GOT entry for this relocation. We
6510 don't count R_MIPS_GOT_PAGE because we can estimate the
6511 maximum number of pages needed by looking at the size of
6512 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6513 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6514 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6515 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6516 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6517 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6518 rel->r_addend, g, 0))
f4416af6 6519 return FALSE;
b49e97c9
TS
6520 }
6521
6522 switch (r_type)
6523 {
6524 case R_MIPS_CALL16:
6525 if (h == NULL)
6526 {
6527 (*_bfd_error_handler)
d003868e
AM
6528 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6529 abfd, (unsigned long) rel->r_offset);
b49e97c9 6530 bfd_set_error (bfd_error_bad_value);
b34976b6 6531 return FALSE;
b49e97c9
TS
6532 }
6533 /* Fall through. */
6534
6535 case R_MIPS_CALL_HI16:
6536 case R_MIPS_CALL_LO16:
6537 if (h != NULL)
6538 {
0a44bf69
RS
6539 /* VxWorks call relocations point the function's .got.plt
6540 entry, which will be allocated by adjust_dynamic_symbol.
6541 Otherwise, this symbol requires a global GOT entry. */
6542 if (!htab->is_vxworks
6543 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6544 return FALSE;
b49e97c9
TS
6545
6546 /* We need a stub, not a plt entry for the undefined
6547 function. But we record it as if it needs plt. See
c152c796 6548 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6549 h->needs_plt = 1;
b49e97c9
TS
6550 h->type = STT_FUNC;
6551 }
6552 break;
6553
0fdc1bf1
AO
6554 case R_MIPS_GOT_PAGE:
6555 /* If this is a global, overridable symbol, GOT_PAGE will
6556 decay to GOT_DISP, so we'll need a GOT entry for it. */
6557 if (h == NULL)
6558 break;
6559 else
6560 {
6561 struct mips_elf_link_hash_entry *hmips =
6562 (struct mips_elf_link_hash_entry *) h;
143d77c5 6563
0fdc1bf1
AO
6564 while (hmips->root.root.type == bfd_link_hash_indirect
6565 || hmips->root.root.type == bfd_link_hash_warning)
6566 hmips = (struct mips_elf_link_hash_entry *)
6567 hmips->root.root.u.i.link;
143d77c5 6568
f5385ebf 6569 if (hmips->root.def_regular
0fdc1bf1 6570 && ! (info->shared && ! info->symbolic
f5385ebf 6571 && ! hmips->root.forced_local))
0fdc1bf1
AO
6572 break;
6573 }
6574 /* Fall through. */
6575
b49e97c9
TS
6576 case R_MIPS_GOT16:
6577 case R_MIPS_GOT_HI16:
6578 case R_MIPS_GOT_LO16:
6579 case R_MIPS_GOT_DISP:
0f20cc35 6580 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6581 return FALSE;
b49e97c9
TS
6582 break;
6583
0f20cc35
DJ
6584 case R_MIPS_TLS_GOTTPREL:
6585 if (info->shared)
6586 info->flags |= DF_STATIC_TLS;
6587 /* Fall through */
6588
6589 case R_MIPS_TLS_LDM:
6590 if (r_type == R_MIPS_TLS_LDM)
6591 {
6592 r_symndx = 0;
6593 h = NULL;
6594 }
6595 /* Fall through */
6596
6597 case R_MIPS_TLS_GD:
6598 /* This symbol requires a global offset table entry, or two
6599 for TLS GD relocations. */
6600 {
6601 unsigned char flag = (r_type == R_MIPS_TLS_GD
6602 ? GOT_TLS_GD
6603 : r_type == R_MIPS_TLS_LDM
6604 ? GOT_TLS_LDM
6605 : GOT_TLS_IE);
6606 if (h != NULL)
6607 {
6608 struct mips_elf_link_hash_entry *hmips =
6609 (struct mips_elf_link_hash_entry *) h;
6610 hmips->tls_type |= flag;
6611
6612 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6613 return FALSE;
6614 }
6615 else
6616 {
6617 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6618
6619 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6620 rel->r_addend, g, flag))
6621 return FALSE;
6622 }
6623 }
6624 break;
6625
b49e97c9
TS
6626 case R_MIPS_32:
6627 case R_MIPS_REL32:
6628 case R_MIPS_64:
0a44bf69
RS
6629 /* In VxWorks executables, references to external symbols
6630 are handled using copy relocs or PLT stubs, so there's
6631 no need to add a .rela.dyn entry for this relocation. */
6632 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6633 && (sec->flags & SEC_ALLOC) != 0)
6634 {
6635 if (sreloc == NULL)
6636 {
0a44bf69 6637 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6638 if (sreloc == NULL)
f4416af6 6639 return FALSE;
b49e97c9 6640 }
b49e97c9 6641 if (info->shared)
82f0cfbd
EC
6642 {
6643 /* When creating a shared object, we must copy these
6644 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6645 relocs. Make room for this reloc in .rel(a).dyn. */
6646 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6647 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6648 /* We tell the dynamic linker that there are
6649 relocations against the text segment. */
6650 info->flags |= DF_TEXTREL;
6651 }
b49e97c9
TS
6652 else
6653 {
6654 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6655
b49e97c9
TS
6656 /* We only need to copy this reloc if the symbol is
6657 defined in a dynamic object. */
6658 hmips = (struct mips_elf_link_hash_entry *) h;
6659 ++hmips->possibly_dynamic_relocs;
943284cc 6660 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6661 /* We need it to tell the dynamic linker if there
6662 are relocations against the text segment. */
6663 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6664 }
6665
6666 /* Even though we don't directly need a GOT entry for
6667 this symbol, a symbol must have a dynamic symbol
6668 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6669 dynamic relocations against it. This does not apply
6670 to VxWorks, which does not have the usual coupling
6671 between global GOT entries and .dynsym entries. */
6672 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6673 {
6674 if (dynobj == NULL)
6675 elf_hash_table (info)->dynobj = dynobj = abfd;
6676 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6677 return FALSE;
6678 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6679 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6680 return FALSE;
6681 }
b49e97c9
TS
6682 }
6683
6684 if (SGI_COMPAT (abfd))
6685 mips_elf_hash_table (info)->compact_rel_size +=
6686 sizeof (Elf32_External_crinfo);
6687 break;
6688
0a44bf69
RS
6689 case R_MIPS_PC16:
6690 if (h)
6691 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6692 break;
6693
b49e97c9 6694 case R_MIPS_26:
0a44bf69
RS
6695 if (h)
6696 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6697 /* Fall through. */
6698
b49e97c9
TS
6699 case R_MIPS_GPREL16:
6700 case R_MIPS_LITERAL:
6701 case R_MIPS_GPREL32:
6702 if (SGI_COMPAT (abfd))
6703 mips_elf_hash_table (info)->compact_rel_size +=
6704 sizeof (Elf32_External_crinfo);
6705 break;
6706
6707 /* This relocation describes the C++ object vtable hierarchy.
6708 Reconstruct it for later use during GC. */
6709 case R_MIPS_GNU_VTINHERIT:
c152c796 6710 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6711 return FALSE;
b49e97c9
TS
6712 break;
6713
6714 /* This relocation describes which C++ vtable entries are actually
6715 used. Record for later use during GC. */
6716 case R_MIPS_GNU_VTENTRY:
c152c796 6717 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6718 return FALSE;
b49e97c9
TS
6719 break;
6720
6721 default:
6722 break;
6723 }
6724
6725 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6726 related to taking the function's address. This doesn't apply to
6727 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6728 a normal .got entry. */
6729 if (!htab->is_vxworks && h != NULL)
6730 switch (r_type)
6731 {
6732 default:
6733 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6734 break;
6735 case R_MIPS_CALL16:
6736 case R_MIPS_CALL_HI16:
6737 case R_MIPS_CALL_LO16:
6738 case R_MIPS_JALR:
6739 break;
6740 }
b49e97c9
TS
6741
6742 /* If this reloc is not a 16 bit call, and it has a global
6743 symbol, then we will need the fn_stub if there is one.
6744 References from a stub section do not count. */
6745 if (h != NULL
6746 && r_type != R_MIPS16_26
b9d58d71 6747 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6748 {
6749 struct mips_elf_link_hash_entry *mh;
6750
6751 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6752 mh->need_fn_stub = TRUE;
b49e97c9
TS
6753 }
6754 }
6755
b34976b6 6756 return TRUE;
b49e97c9
TS
6757}
6758\f
d0647110 6759bfd_boolean
9719ad41
RS
6760_bfd_mips_relax_section (bfd *abfd, asection *sec,
6761 struct bfd_link_info *link_info,
6762 bfd_boolean *again)
d0647110
AO
6763{
6764 Elf_Internal_Rela *internal_relocs;
6765 Elf_Internal_Rela *irel, *irelend;
6766 Elf_Internal_Shdr *symtab_hdr;
6767 bfd_byte *contents = NULL;
d0647110
AO
6768 size_t extsymoff;
6769 bfd_boolean changed_contents = FALSE;
6770 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6771 Elf_Internal_Sym *isymbuf = NULL;
6772
6773 /* We are not currently changing any sizes, so only one pass. */
6774 *again = FALSE;
6775
1049f94e 6776 if (link_info->relocatable)
d0647110
AO
6777 return TRUE;
6778
9719ad41 6779 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6780 link_info->keep_memory);
d0647110
AO
6781 if (internal_relocs == NULL)
6782 return TRUE;
6783
6784 irelend = internal_relocs + sec->reloc_count
6785 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6786 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6787 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6788
6789 for (irel = internal_relocs; irel < irelend; irel++)
6790 {
6791 bfd_vma symval;
6792 bfd_signed_vma sym_offset;
6793 unsigned int r_type;
6794 unsigned long r_symndx;
6795 asection *sym_sec;
6796 unsigned long instruction;
6797
6798 /* Turn jalr into bgezal, and jr into beq, if they're marked
6799 with a JALR relocation, that indicate where they jump to.
6800 This saves some pipeline bubbles. */
6801 r_type = ELF_R_TYPE (abfd, irel->r_info);
6802 if (r_type != R_MIPS_JALR)
6803 continue;
6804
6805 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6806 /* Compute the address of the jump target. */
6807 if (r_symndx >= extsymoff)
6808 {
6809 struct mips_elf_link_hash_entry *h
6810 = ((struct mips_elf_link_hash_entry *)
6811 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6812
6813 while (h->root.root.type == bfd_link_hash_indirect
6814 || h->root.root.type == bfd_link_hash_warning)
6815 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6816
d0647110
AO
6817 /* If a symbol is undefined, or if it may be overridden,
6818 skip it. */
6819 if (! ((h->root.root.type == bfd_link_hash_defined
6820 || h->root.root.type == bfd_link_hash_defweak)
6821 && h->root.root.u.def.section)
6822 || (link_info->shared && ! link_info->symbolic
f5385ebf 6823 && !h->root.forced_local))
d0647110
AO
6824 continue;
6825
6826 sym_sec = h->root.root.u.def.section;
6827 if (sym_sec->output_section)
6828 symval = (h->root.root.u.def.value
6829 + sym_sec->output_section->vma
6830 + sym_sec->output_offset);
6831 else
6832 symval = h->root.root.u.def.value;
6833 }
6834 else
6835 {
6836 Elf_Internal_Sym *isym;
6837
6838 /* Read this BFD's symbols if we haven't done so already. */
6839 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6840 {
6841 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6842 if (isymbuf == NULL)
6843 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6844 symtab_hdr->sh_info, 0,
6845 NULL, NULL, NULL);
6846 if (isymbuf == NULL)
6847 goto relax_return;
6848 }
6849
6850 isym = isymbuf + r_symndx;
6851 if (isym->st_shndx == SHN_UNDEF)
6852 continue;
6853 else if (isym->st_shndx == SHN_ABS)
6854 sym_sec = bfd_abs_section_ptr;
6855 else if (isym->st_shndx == SHN_COMMON)
6856 sym_sec = bfd_com_section_ptr;
6857 else
6858 sym_sec
6859 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6860 symval = isym->st_value
6861 + sym_sec->output_section->vma
6862 + sym_sec->output_offset;
6863 }
6864
6865 /* Compute branch offset, from delay slot of the jump to the
6866 branch target. */
6867 sym_offset = (symval + irel->r_addend)
6868 - (sec_start + irel->r_offset + 4);
6869
6870 /* Branch offset must be properly aligned. */
6871 if ((sym_offset & 3) != 0)
6872 continue;
6873
6874 sym_offset >>= 2;
6875
6876 /* Check that it's in range. */
6877 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6878 continue;
143d77c5 6879
d0647110
AO
6880 /* Get the section contents if we haven't done so already. */
6881 if (contents == NULL)
6882 {
6883 /* Get cached copy if it exists. */
6884 if (elf_section_data (sec)->this_hdr.contents != NULL)
6885 contents = elf_section_data (sec)->this_hdr.contents;
6886 else
6887 {
eea6121a 6888 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6889 goto relax_return;
6890 }
6891 }
6892
6893 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6894
6895 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6896 if ((instruction & 0xfc1fffff) == 0x0000f809)
6897 instruction = 0x04110000;
6898 /* If it was jr <reg>, turn it into b <target>. */
6899 else if ((instruction & 0xfc1fffff) == 0x00000008)
6900 instruction = 0x10000000;
6901 else
6902 continue;
6903
6904 instruction |= (sym_offset & 0xffff);
6905 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6906 changed_contents = TRUE;
6907 }
6908
6909 if (contents != NULL
6910 && elf_section_data (sec)->this_hdr.contents != contents)
6911 {
6912 if (!changed_contents && !link_info->keep_memory)
6913 free (contents);
6914 else
6915 {
6916 /* Cache the section contents for elf_link_input_bfd. */
6917 elf_section_data (sec)->this_hdr.contents = contents;
6918 }
6919 }
6920 return TRUE;
6921
143d77c5 6922 relax_return:
eea6121a
AM
6923 if (contents != NULL
6924 && elf_section_data (sec)->this_hdr.contents != contents)
6925 free (contents);
d0647110
AO
6926 return FALSE;
6927}
6928\f
b49e97c9
TS
6929/* Adjust a symbol defined by a dynamic object and referenced by a
6930 regular object. The current definition is in some section of the
6931 dynamic object, but we're not including those sections. We have to
6932 change the definition to something the rest of the link can
6933 understand. */
6934
b34976b6 6935bfd_boolean
9719ad41
RS
6936_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6937 struct elf_link_hash_entry *h)
b49e97c9
TS
6938{
6939 bfd *dynobj;
6940 struct mips_elf_link_hash_entry *hmips;
6941 asection *s;
5108fc1b 6942 struct mips_elf_link_hash_table *htab;
b49e97c9 6943
5108fc1b 6944 htab = mips_elf_hash_table (info);
b49e97c9
TS
6945 dynobj = elf_hash_table (info)->dynobj;
6946
6947 /* Make sure we know what is going on here. */
6948 BFD_ASSERT (dynobj != NULL
f5385ebf 6949 && (h->needs_plt
f6e332e6 6950 || h->u.weakdef != NULL
f5385ebf
AM
6951 || (h->def_dynamic
6952 && h->ref_regular
6953 && !h->def_regular)));
b49e97c9
TS
6954
6955 /* If this symbol is defined in a dynamic object, we need to copy
6956 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6957 file. */
6958 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6959 if (! info->relocatable
b49e97c9
TS
6960 && hmips->possibly_dynamic_relocs != 0
6961 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6962 || !h->def_regular))
b49e97c9 6963 {
0a44bf69
RS
6964 mips_elf_allocate_dynamic_relocations
6965 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6966 if (hmips->readonly_reloc)
b49e97c9
TS
6967 /* We tell the dynamic linker that there are relocations
6968 against the text segment. */
6969 info->flags |= DF_TEXTREL;
6970 }
6971
6972 /* For a function, create a stub, if allowed. */
6973 if (! hmips->no_fn_stub
f5385ebf 6974 && h->needs_plt)
b49e97c9
TS
6975 {
6976 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6977 return TRUE;
b49e97c9
TS
6978
6979 /* If this symbol is not defined in a regular file, then set
6980 the symbol to the stub location. This is required to make
6981 function pointers compare as equal between the normal
6982 executable and the shared library. */
f5385ebf 6983 if (!h->def_regular)
b49e97c9
TS
6984 {
6985 /* We need .stub section. */
6986 s = bfd_get_section_by_name (dynobj,
6987 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6988 BFD_ASSERT (s != NULL);
6989
6990 h->root.u.def.section = s;
eea6121a 6991 h->root.u.def.value = s->size;
b49e97c9
TS
6992
6993 /* XXX Write this stub address somewhere. */
eea6121a 6994 h->plt.offset = s->size;
b49e97c9
TS
6995
6996 /* Make room for this stub code. */
5108fc1b 6997 s->size += htab->function_stub_size;
b49e97c9
TS
6998
6999 /* The last half word of the stub will be filled with the index
7000 of this symbol in .dynsym section. */
b34976b6 7001 return TRUE;
b49e97c9
TS
7002 }
7003 }
7004 else if ((h->type == STT_FUNC)
f5385ebf 7005 && !h->needs_plt)
b49e97c9
TS
7006 {
7007 /* This will set the entry for this symbol in the GOT to 0, and
7008 the dynamic linker will take care of this. */
7009 h->root.u.def.value = 0;
b34976b6 7010 return TRUE;
b49e97c9
TS
7011 }
7012
7013 /* If this is a weak symbol, and there is a real definition, the
7014 processor independent code will have arranged for us to see the
7015 real definition first, and we can just use the same value. */
f6e332e6 7016 if (h->u.weakdef != NULL)
b49e97c9 7017 {
f6e332e6
AM
7018 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7019 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7020 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7021 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7022 return TRUE;
b49e97c9
TS
7023 }
7024
7025 /* This is a reference to a symbol defined by a dynamic object which
7026 is not a function. */
7027
b34976b6 7028 return TRUE;
b49e97c9 7029}
0a44bf69
RS
7030
7031/* Likewise, for VxWorks. */
7032
7033bfd_boolean
7034_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7035 struct elf_link_hash_entry *h)
7036{
7037 bfd *dynobj;
7038 struct mips_elf_link_hash_entry *hmips;
7039 struct mips_elf_link_hash_table *htab;
7040 unsigned int power_of_two;
7041
7042 htab = mips_elf_hash_table (info);
7043 dynobj = elf_hash_table (info)->dynobj;
7044 hmips = (struct mips_elf_link_hash_entry *) h;
7045
7046 /* Make sure we know what is going on here. */
7047 BFD_ASSERT (dynobj != NULL
7048 && (h->needs_plt
7049 || h->needs_copy
7050 || h->u.weakdef != NULL
7051 || (h->def_dynamic
7052 && h->ref_regular
7053 && !h->def_regular)));
7054
7055 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7056 either (a) we want to branch to the symbol or (b) we're linking an
7057 executable that needs a canonical function address. In the latter
7058 case, the canonical address will be the address of the executable's
7059 load stub. */
7060 if ((hmips->is_branch_target
7061 || (!info->shared
7062 && h->type == STT_FUNC
7063 && hmips->is_relocation_target))
7064 && h->def_dynamic
7065 && h->ref_regular
7066 && !h->def_regular
7067 && !h->forced_local)
7068 h->needs_plt = 1;
7069
7070 /* Locally-binding symbols do not need a PLT stub; we can refer to
7071 the functions directly. */
7072 else if (h->needs_plt
7073 && (SYMBOL_CALLS_LOCAL (info, h)
7074 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7075 && h->root.type == bfd_link_hash_undefweak)))
7076 {
7077 h->needs_plt = 0;
7078 return TRUE;
7079 }
7080
7081 if (h->needs_plt)
7082 {
7083 /* If this is the first symbol to need a PLT entry, allocate room
7084 for the header, and for the header's .rela.plt.unloaded entries. */
7085 if (htab->splt->size == 0)
7086 {
7087 htab->splt->size += htab->plt_header_size;
7088 if (!info->shared)
7089 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7090 }
7091
7092 /* Assign the next .plt entry to this symbol. */
7093 h->plt.offset = htab->splt->size;
7094 htab->splt->size += htab->plt_entry_size;
7095
7096 /* If the output file has no definition of the symbol, set the
7097 symbol's value to the address of the stub. For executables,
7098 point at the PLT load stub rather than the lazy resolution stub;
7099 this stub will become the canonical function address. */
7100 if (!h->def_regular)
7101 {
7102 h->root.u.def.section = htab->splt;
7103 h->root.u.def.value = h->plt.offset;
7104 if (!info->shared)
7105 h->root.u.def.value += 8;
7106 }
7107
7108 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7109 htab->sgotplt->size += 4;
7110 htab->srelplt->size += sizeof (Elf32_External_Rela);
7111
7112 /* Make room for the .rela.plt.unloaded relocations. */
7113 if (!info->shared)
7114 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7115
7116 return TRUE;
7117 }
7118
7119 /* If a function symbol is defined by a dynamic object, and we do not
7120 need a PLT stub for it, the symbol's value should be zero. */
7121 if (h->type == STT_FUNC
7122 && h->def_dynamic
7123 && h->ref_regular
7124 && !h->def_regular)
7125 {
7126 h->root.u.def.value = 0;
7127 return TRUE;
7128 }
7129
7130 /* If this is a weak symbol, and there is a real definition, the
7131 processor independent code will have arranged for us to see the
7132 real definition first, and we can just use the same value. */
7133 if (h->u.weakdef != NULL)
7134 {
7135 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7136 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7137 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7138 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7139 return TRUE;
7140 }
7141
7142 /* This is a reference to a symbol defined by a dynamic object which
7143 is not a function. */
7144 if (info->shared)
7145 return TRUE;
7146
7147 /* We must allocate the symbol in our .dynbss section, which will
7148 become part of the .bss section of the executable. There will be
7149 an entry for this symbol in the .dynsym section. The dynamic
7150 object will contain position independent code, so all references
7151 from the dynamic object to this symbol will go through the global
7152 offset table. The dynamic linker will use the .dynsym entry to
7153 determine the address it must put in the global offset table, so
7154 both the dynamic object and the regular object will refer to the
7155 same memory location for the variable. */
7156
7157 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7158 {
7159 htab->srelbss->size += sizeof (Elf32_External_Rela);
7160 h->needs_copy = 1;
7161 }
7162
7163 /* We need to figure out the alignment required for this symbol. */
7164 power_of_two = bfd_log2 (h->size);
7165 if (power_of_two > 4)
7166 power_of_two = 4;
7167
7168 /* Apply the required alignment. */
7169 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7170 (bfd_size_type) 1 << power_of_two);
7171 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7172 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7173 return FALSE;
7174
7175 /* Define the symbol as being at this point in the section. */
7176 h->root.u.def.section = htab->sdynbss;
7177 h->root.u.def.value = htab->sdynbss->size;
7178
7179 /* Increment the section size to make room for the symbol. */
7180 htab->sdynbss->size += h->size;
7181
7182 return TRUE;
7183}
b49e97c9 7184\f
5108fc1b
RS
7185/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7186 The number might be exact or a worst-case estimate, depending on how
7187 much information is available to elf_backend_omit_section_dynsym at
7188 the current linking stage. */
7189
7190static bfd_size_type
7191count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7192{
7193 bfd_size_type count;
7194
7195 count = 0;
7196 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7197 {
7198 asection *p;
7199 const struct elf_backend_data *bed;
7200
7201 bed = get_elf_backend_data (output_bfd);
7202 for (p = output_bfd->sections; p ; p = p->next)
7203 if ((p->flags & SEC_EXCLUDE) == 0
7204 && (p->flags & SEC_ALLOC) != 0
7205 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7206 ++count;
7207 }
7208 return count;
7209}
7210
b49e97c9
TS
7211/* This function is called after all the input files have been read,
7212 and the input sections have been assigned to output sections. We
7213 check for any mips16 stub sections that we can discard. */
7214
b34976b6 7215bfd_boolean
9719ad41
RS
7216_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7217 struct bfd_link_info *info)
b49e97c9
TS
7218{
7219 asection *ri;
7220
f4416af6
AO
7221 bfd *dynobj;
7222 asection *s;
7223 struct mips_got_info *g;
7224 int i;
7225 bfd_size_type loadable_size = 0;
7226 bfd_size_type local_gotno;
5108fc1b 7227 bfd_size_type dynsymcount;
f4416af6 7228 bfd *sub;
0f20cc35 7229 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7230 struct mips_elf_link_hash_table *htab;
7231
7232 htab = mips_elf_hash_table (info);
f4416af6 7233
b49e97c9
TS
7234 /* The .reginfo section has a fixed size. */
7235 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7236 if (ri != NULL)
9719ad41 7237 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7238
1049f94e 7239 if (! (info->relocatable
f4416af6
AO
7240 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7241 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7242 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7243
7244 dynobj = elf_hash_table (info)->dynobj;
7245 if (dynobj == NULL)
7246 /* Relocatable links don't have it. */
7247 return TRUE;
143d77c5 7248
f4416af6
AO
7249 g = mips_elf_got_info (dynobj, &s);
7250 if (s == NULL)
b34976b6 7251 return TRUE;
b49e97c9 7252
f4416af6
AO
7253 /* Calculate the total loadable size of the output. That
7254 will give us the maximum number of GOT_PAGE entries
7255 required. */
7256 for (sub = info->input_bfds; sub; sub = sub->link_next)
7257 {
7258 asection *subsection;
7259
7260 for (subsection = sub->sections;
7261 subsection;
7262 subsection = subsection->next)
7263 {
7264 if ((subsection->flags & SEC_ALLOC) == 0)
7265 continue;
eea6121a 7266 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7267 &~ (bfd_size_type) 0xf);
7268 }
7269 }
7270
7271 /* There has to be a global GOT entry for every symbol with
7272 a dynamic symbol table index of DT_MIPS_GOTSYM or
7273 higher. Therefore, it make sense to put those symbols
7274 that need GOT entries at the end of the symbol table. We
7275 do that here. */
7276 if (! mips_elf_sort_hash_table (info, 1))
7277 return FALSE;
7278
7279 if (g->global_gotsym != NULL)
7280 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7281 else
7282 /* If there are no global symbols, or none requiring
7283 relocations, then GLOBAL_GOTSYM will be NULL. */
7284 i = 0;
7285
5108fc1b
RS
7286 /* Get a worst-case estimate of the number of dynamic symbols needed.
7287 At this point, dynsymcount does not account for section symbols
7288 and count_section_dynsyms may overestimate the number that will
7289 be needed. */
7290 dynsymcount = (elf_hash_table (info)->dynsymcount
7291 + count_section_dynsyms (output_bfd, info));
7292
7293 /* Determine the size of one stub entry. */
7294 htab->function_stub_size = (dynsymcount > 0x10000
7295 ? MIPS_FUNCTION_STUB_BIG_SIZE
7296 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7297
f4416af6
AO
7298 /* In the worst case, we'll get one stub per dynamic symbol, plus
7299 one to account for the dummy entry at the end required by IRIX
7300 rld. */
5108fc1b 7301 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7302
0a44bf69
RS
7303 if (htab->is_vxworks)
7304 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7305 relocations against local symbols evaluate to "G", and the EABI does
7306 not include R_MIPS_GOT_PAGE. */
7307 local_gotno = 0;
7308 else
7309 /* Assume there are two loadable segments consisting of contiguous
7310 sections. Is 5 enough? */
7311 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7312
7313 g->local_gotno += local_gotno;
eea6121a 7314 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7315
7316 g->global_gotno = i;
eea6121a 7317 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7318
0f20cc35
DJ
7319 /* We need to calculate tls_gotno for global symbols at this point
7320 instead of building it up earlier, to avoid doublecounting
7321 entries for one global symbol from multiple input files. */
7322 count_tls_arg.info = info;
7323 count_tls_arg.needed = 0;
7324 elf_link_hash_traverse (elf_hash_table (info),
7325 mips_elf_count_global_tls_entries,
7326 &count_tls_arg);
7327 g->tls_gotno += count_tls_arg.needed;
7328 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7329
7330 mips_elf_resolve_final_got_entries (g);
7331
0a44bf69
RS
7332 /* VxWorks does not support multiple GOTs. It initializes $gp to
7333 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7334 dynamic loader. */
7335 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7336 {
7337 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7338 return FALSE;
7339 }
7340 else
7341 {
7342 /* Set up TLS entries for the first GOT. */
7343 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7344 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7345 }
b49e97c9 7346
b34976b6 7347 return TRUE;
b49e97c9
TS
7348}
7349
7350/* Set the sizes of the dynamic sections. */
7351
b34976b6 7352bfd_boolean
9719ad41
RS
7353_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7354 struct bfd_link_info *info)
b49e97c9
TS
7355{
7356 bfd *dynobj;
0a44bf69 7357 asection *s, *sreldyn;
b34976b6 7358 bfd_boolean reltext;
0a44bf69 7359 struct mips_elf_link_hash_table *htab;
b49e97c9 7360
0a44bf69 7361 htab = mips_elf_hash_table (info);
b49e97c9
TS
7362 dynobj = elf_hash_table (info)->dynobj;
7363 BFD_ASSERT (dynobj != NULL);
7364
7365 if (elf_hash_table (info)->dynamic_sections_created)
7366 {
7367 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7368 if (info->executable)
b49e97c9
TS
7369 {
7370 s = bfd_get_section_by_name (dynobj, ".interp");
7371 BFD_ASSERT (s != NULL);
eea6121a 7372 s->size
b49e97c9
TS
7373 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7374 s->contents
7375 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7376 }
7377 }
7378
7379 /* The check_relocs and adjust_dynamic_symbol entry points have
7380 determined the sizes of the various dynamic sections. Allocate
7381 memory for them. */
b34976b6 7382 reltext = FALSE;
0a44bf69 7383 sreldyn = NULL;
b49e97c9
TS
7384 for (s = dynobj->sections; s != NULL; s = s->next)
7385 {
7386 const char *name;
b49e97c9
TS
7387
7388 /* It's OK to base decisions on the section name, because none
7389 of the dynobj section names depend upon the input files. */
7390 name = bfd_get_section_name (dynobj, s);
7391
7392 if ((s->flags & SEC_LINKER_CREATED) == 0)
7393 continue;
7394
0112cd26 7395 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7396 {
c456f082 7397 if (s->size != 0)
b49e97c9
TS
7398 {
7399 const char *outname;
7400 asection *target;
7401
7402 /* If this relocation section applies to a read only
7403 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7404 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7405 assert a DT_TEXTREL entry rather than testing whether
7406 there exists a relocation to a read only section or
7407 not. */
7408 outname = bfd_get_section_name (output_bfd,
7409 s->output_section);
7410 target = bfd_get_section_by_name (output_bfd, outname + 4);
7411 if ((target != NULL
7412 && (target->flags & SEC_READONLY) != 0
7413 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7414 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7415 reltext = TRUE;
b49e97c9
TS
7416
7417 /* We use the reloc_count field as a counter if we need
7418 to copy relocs into the output file. */
0a44bf69 7419 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7420 s->reloc_count = 0;
f4416af6
AO
7421
7422 /* If combreloc is enabled, elf_link_sort_relocs() will
7423 sort relocations, but in a different way than we do,
7424 and before we're done creating relocations. Also, it
7425 will move them around between input sections'
7426 relocation's contents, so our sorting would be
7427 broken, so don't let it run. */
7428 info->combreloc = 0;
b49e97c9
TS
7429 }
7430 }
0a44bf69
RS
7431 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7432 {
7433 /* Executables do not need a GOT. */
7434 if (info->shared)
7435 {
7436 /* Allocate relocations for all but the reserved entries. */
7437 struct mips_got_info *g;
7438 unsigned int count;
7439
7440 g = mips_elf_got_info (dynobj, NULL);
7441 count = (g->global_gotno
7442 + g->local_gotno
7443 - MIPS_RESERVED_GOTNO (info));
7444 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7445 }
7446 }
0112cd26 7447 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7448 {
f4416af6
AO
7449 /* _bfd_mips_elf_always_size_sections() has already done
7450 most of the work, but some symbols may have been mapped
7451 to versions that we must now resolve in the got_entries
7452 hash tables. */
7453 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7454 struct mips_got_info *g = gg;
7455 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7456 unsigned int needed_relocs = 0;
143d77c5 7457
f4416af6 7458 if (gg->next)
b49e97c9 7459 {
f4416af6
AO
7460 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7461 set_got_offset_arg.info = info;
b49e97c9 7462
0f20cc35
DJ
7463 /* NOTE 2005-02-03: How can this call, or the next, ever
7464 find any indirect entries to resolve? They were all
7465 resolved in mips_elf_multi_got. */
f4416af6
AO
7466 mips_elf_resolve_final_got_entries (gg);
7467 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7468 {
f4416af6
AO
7469 unsigned int save_assign;
7470
7471 mips_elf_resolve_final_got_entries (g);
7472
7473 /* Assign offsets to global GOT entries. */
7474 save_assign = g->assigned_gotno;
7475 g->assigned_gotno = g->local_gotno;
7476 set_got_offset_arg.g = g;
7477 set_got_offset_arg.needed_relocs = 0;
7478 htab_traverse (g->got_entries,
7479 mips_elf_set_global_got_offset,
7480 &set_got_offset_arg);
7481 needed_relocs += set_got_offset_arg.needed_relocs;
7482 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7483 <= g->global_gotno);
7484
7485 g->assigned_gotno = save_assign;
7486 if (info->shared)
7487 {
7488 needed_relocs += g->local_gotno - g->assigned_gotno;
7489 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7490 + g->next->global_gotno
0f20cc35 7491 + g->next->tls_gotno
0a44bf69 7492 + MIPS_RESERVED_GOTNO (info));
f4416af6 7493 }
b49e97c9 7494 }
0f20cc35
DJ
7495 }
7496 else
7497 {
7498 struct mips_elf_count_tls_arg arg;
7499 arg.info = info;
7500 arg.needed = 0;
b49e97c9 7501
0f20cc35
DJ
7502 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7503 &arg);
7504 elf_link_hash_traverse (elf_hash_table (info),
7505 mips_elf_count_global_tls_relocs,
7506 &arg);
7507
7508 needed_relocs += arg.needed;
f4416af6 7509 }
0f20cc35
DJ
7510
7511 if (needed_relocs)
0a44bf69
RS
7512 mips_elf_allocate_dynamic_relocations (dynobj, info,
7513 needed_relocs);
b49e97c9
TS
7514 }
7515 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7516 {
8dc1a139 7517 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7518 of .text section. So put a dummy. XXX */
7519 s->size += htab->function_stub_size;
b49e97c9
TS
7520 }
7521 else if (! info->shared
7522 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7523 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7524 {
5108fc1b 7525 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7526 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7527 s->size += 4;
b49e97c9
TS
7528 }
7529 else if (SGI_COMPAT (output_bfd)
0112cd26 7530 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7531 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7532 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7533 && s != htab->sgotplt
7534 && s != htab->splt)
b49e97c9
TS
7535 {
7536 /* It's not one of our sections, so don't allocate space. */
7537 continue;
7538 }
7539
c456f082 7540 if (s->size == 0)
b49e97c9 7541 {
8423293d 7542 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7543 continue;
7544 }
7545
c456f082
AM
7546 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7547 continue;
7548
0a44bf69
RS
7549 /* Allocate memory for this section last, since we may increase its
7550 size above. */
7551 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7552 {
7553 sreldyn = s;
7554 continue;
7555 }
7556
b49e97c9 7557 /* Allocate memory for the section contents. */
eea6121a 7558 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7559 if (s->contents == NULL)
b49e97c9
TS
7560 {
7561 bfd_set_error (bfd_error_no_memory);
b34976b6 7562 return FALSE;
b49e97c9
TS
7563 }
7564 }
7565
0a44bf69
RS
7566 /* Allocate memory for the .rel(a).dyn section. */
7567 if (sreldyn != NULL)
7568 {
7569 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7570 if (sreldyn->contents == NULL)
7571 {
7572 bfd_set_error (bfd_error_no_memory);
7573 return FALSE;
7574 }
7575 }
7576
b49e97c9
TS
7577 if (elf_hash_table (info)->dynamic_sections_created)
7578 {
7579 /* Add some entries to the .dynamic section. We fill in the
7580 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7581 must add the entries now so that we get the correct size for
7582 the .dynamic section. The DT_DEBUG entry is filled in by the
7583 dynamic linker and used by the debugger. */
6a483765 7584 if (info->executable)
b49e97c9
TS
7585 {
7586 /* SGI object has the equivalence of DT_DEBUG in the
7587 DT_MIPS_RLD_MAP entry. */
7588 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 7589 return FALSE;
b49e97c9
TS
7590 if (!SGI_COMPAT (output_bfd))
7591 {
7592 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7593 return FALSE;
b49e97c9
TS
7594 }
7595 }
b49e97c9 7596
0a44bf69 7597 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7598 info->flags |= DF_TEXTREL;
7599
7600 if ((info->flags & DF_TEXTREL) != 0)
7601 {
7602 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7603 return FALSE;
943284cc
DJ
7604
7605 /* Clear the DF_TEXTREL flag. It will be set again if we
7606 write out an actual text relocation; we may not, because
7607 at this point we do not know whether e.g. any .eh_frame
7608 absolute relocations have been converted to PC-relative. */
7609 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7610 }
7611
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7613 return FALSE;
b49e97c9 7614
0a44bf69 7615 if (htab->is_vxworks)
b49e97c9 7616 {
0a44bf69
RS
7617 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7618 use any of the DT_MIPS_* tags. */
7619 if (mips_elf_rel_dyn_section (info, FALSE))
7620 {
7621 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7622 return FALSE;
b49e97c9 7623
0a44bf69
RS
7624 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7625 return FALSE;
b49e97c9 7626
0a44bf69
RS
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7628 return FALSE;
7629 }
7630 if (htab->splt->size > 0)
7631 {
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7633 return FALSE;
7634
7635 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7636 return FALSE;
7637
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7639 return FALSE;
7640 }
b49e97c9 7641 }
0a44bf69
RS
7642 else
7643 {
7644 if (mips_elf_rel_dyn_section (info, FALSE))
7645 {
7646 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7647 return FALSE;
b49e97c9 7648
0a44bf69
RS
7649 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7650 return FALSE;
b49e97c9 7651
0a44bf69
RS
7652 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7653 return FALSE;
7654 }
b49e97c9 7655
0a44bf69
RS
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7657 return FALSE;
b49e97c9 7658
0a44bf69
RS
7659 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7660 return FALSE;
b49e97c9 7661
0a44bf69
RS
7662 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7663 return FALSE;
b49e97c9 7664
0a44bf69
RS
7665 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7666 return FALSE;
b49e97c9 7667
0a44bf69
RS
7668 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7669 return FALSE;
b49e97c9 7670
0a44bf69
RS
7671 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7672 return FALSE;
b49e97c9 7673
0a44bf69
RS
7674 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7675 return FALSE;
7676
7677 if (IRIX_COMPAT (dynobj) == ict_irix5
7678 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7679 return FALSE;
7680
7681 if (IRIX_COMPAT (dynobj) == ict_irix6
7682 && (bfd_get_section_by_name
7683 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7684 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7685 return FALSE;
7686 }
b49e97c9
TS
7687 }
7688
b34976b6 7689 return TRUE;
b49e97c9
TS
7690}
7691\f
81d43bff
RS
7692/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7693 Adjust its R_ADDEND field so that it is correct for the output file.
7694 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7695 and sections respectively; both use symbol indexes. */
7696
7697static void
7698mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7699 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7700 asection **local_sections, Elf_Internal_Rela *rel)
7701{
7702 unsigned int r_type, r_symndx;
7703 Elf_Internal_Sym *sym;
7704 asection *sec;
7705
7706 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7707 {
7708 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7709 if (r_type == R_MIPS16_GPREL
7710 || r_type == R_MIPS_GPREL16
7711 || r_type == R_MIPS_GPREL32
7712 || r_type == R_MIPS_LITERAL)
7713 {
7714 rel->r_addend += _bfd_get_gp_value (input_bfd);
7715 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7716 }
7717
7718 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7719 sym = local_syms + r_symndx;
7720
7721 /* Adjust REL's addend to account for section merging. */
7722 if (!info->relocatable)
7723 {
7724 sec = local_sections[r_symndx];
7725 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7726 }
7727
7728 /* This would normally be done by the rela_normal code in elflink.c. */
7729 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7730 rel->r_addend += local_sections[r_symndx]->output_offset;
7731 }
7732}
7733
b49e97c9
TS
7734/* Relocate a MIPS ELF section. */
7735
b34976b6 7736bfd_boolean
9719ad41
RS
7737_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7738 bfd *input_bfd, asection *input_section,
7739 bfd_byte *contents, Elf_Internal_Rela *relocs,
7740 Elf_Internal_Sym *local_syms,
7741 asection **local_sections)
b49e97c9
TS
7742{
7743 Elf_Internal_Rela *rel;
7744 const Elf_Internal_Rela *relend;
7745 bfd_vma addend = 0;
b34976b6 7746 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7747 const struct elf_backend_data *bed;
b49e97c9
TS
7748
7749 bed = get_elf_backend_data (output_bfd);
7750 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7751 for (rel = relocs; rel < relend; ++rel)
7752 {
7753 const char *name;
c9adbffe 7754 bfd_vma value = 0;
b49e97c9 7755 reloc_howto_type *howto;
b34976b6
AM
7756 bfd_boolean require_jalx;
7757 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7758 REL relocation. */
b34976b6 7759 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7760 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7761 const char *msg;
b49e97c9
TS
7762
7763 /* Find the relocation howto for this relocation. */
4a14403c 7764 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7765 {
7766 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7767 64-bit code, but make sure all their addresses are in the
7768 lowermost or uppermost 32-bit section of the 64-bit address
7769 space. Thus, when they use an R_MIPS_64 they mean what is
7770 usually meant by R_MIPS_32, with the exception that the
7771 stored value is sign-extended to 64 bits. */
b34976b6 7772 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7773
7774 /* On big-endian systems, we need to lie about the position
7775 of the reloc. */
7776 if (bfd_big_endian (input_bfd))
7777 rel->r_offset += 4;
7778 }
7779 else
7780 /* NewABI defaults to RELA relocations. */
7781 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
7782 NEWABI_P (input_bfd)
7783 && (MIPS_RELOC_RELA_P
7784 (input_bfd, input_section,
7785 rel - relocs)));
b49e97c9
TS
7786
7787 if (!use_saved_addend_p)
7788 {
7789 Elf_Internal_Shdr *rel_hdr;
7790
7791 /* If these relocations were originally of the REL variety,
7792 we must pull the addend out of the field that will be
7793 relocated. Otherwise, we simply use the contents of the
7794 RELA relocation. To determine which flavor or relocation
7795 this is, we depend on the fact that the INPUT_SECTION's
7796 REL_HDR is read before its REL_HDR2. */
7797 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7798 if ((size_t) (rel - relocs)
7799 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7800 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7801 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7802 {
d6f16593
MR
7803 bfd_byte *location = contents + rel->r_offset;
7804
b49e97c9 7805 /* Note that this is a REL relocation. */
b34976b6 7806 rela_relocation_p = FALSE;
b49e97c9
TS
7807
7808 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7809 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7810 location);
b49e97c9
TS
7811 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7812 contents);
d6f16593
MR
7813 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7814 location);
7815
b49e97c9
TS
7816 addend &= howto->src_mask;
7817
7818 /* For some kinds of relocations, the ADDEND is a
7819 combination of the addend stored in two different
7820 relocations. */
d6f16593 7821 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7822 || (r_type == R_MIPS_GOT16
7823 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7824 local_sections, FALSE)))
b49e97c9
TS
7825 {
7826 bfd_vma l;
7827 const Elf_Internal_Rela *lo16_relocation;
7828 reloc_howto_type *lo16_howto;
d6f16593
MR
7829 bfd_byte *lo16_location;
7830 int lo16_type;
7831
7832 if (r_type == R_MIPS16_HI16)
7833 lo16_type = R_MIPS16_LO16;
7834 else
7835 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7836
7837 /* The combined value is the sum of the HI16 addend,
7838 left-shifted by sixteen bits, and the LO16
7839 addend, sign extended. (Usually, the code does
7840 a `lui' of the HI16 value, and then an `addiu' of
7841 the LO16 value.)
7842
4030e8f6
CD
7843 Scan ahead to find a matching LO16 relocation.
7844
7845 According to the MIPS ELF ABI, the R_MIPS_LO16
7846 relocation must be immediately following.
7847 However, for the IRIX6 ABI, the next relocation
7848 may be a composed relocation consisting of
7849 several relocations for the same address. In
7850 that case, the R_MIPS_LO16 relocation may occur
7851 as one of these. We permit a similar extension
7852 in general, as that is useful for GCC. */
7853 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7854 lo16_type,
b49e97c9
TS
7855 rel, relend);
7856 if (lo16_relocation == NULL)
b34976b6 7857 return FALSE;
b49e97c9 7858
d6f16593
MR
7859 lo16_location = contents + lo16_relocation->r_offset;
7860
b49e97c9 7861 /* Obtain the addend kept there. */
4030e8f6 7862 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7863 lo16_type, FALSE);
7864 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7865 lo16_location);
b49e97c9
TS
7866 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7867 input_bfd, contents);
d6f16593
MR
7868 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7869 lo16_location);
b49e97c9 7870 l &= lo16_howto->src_mask;
5a659663 7871 l <<= lo16_howto->rightshift;
a7ebbfdf 7872 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7873
7874 addend <<= 16;
7875
7876 /* Compute the combined addend. */
7877 addend += l;
b49e97c9 7878 }
30ac9238
RS
7879 else
7880 addend <<= howto->rightshift;
b49e97c9
TS
7881 }
7882 else
7883 addend = rel->r_addend;
81d43bff
RS
7884 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7885 local_syms, local_sections, rel);
b49e97c9
TS
7886 }
7887
1049f94e 7888 if (info->relocatable)
b49e97c9 7889 {
4a14403c 7890 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7891 && bfd_big_endian (input_bfd))
7892 rel->r_offset -= 4;
7893
81d43bff 7894 if (!rela_relocation_p && rel->r_addend)
5a659663 7895 {
81d43bff 7896 addend += rel->r_addend;
30ac9238 7897 if (r_type == R_MIPS_HI16
4030e8f6 7898 || r_type == R_MIPS_GOT16)
5a659663
TS
7899 addend = mips_elf_high (addend);
7900 else if (r_type == R_MIPS_HIGHER)
7901 addend = mips_elf_higher (addend);
7902 else if (r_type == R_MIPS_HIGHEST)
7903 addend = mips_elf_highest (addend);
30ac9238
RS
7904 else
7905 addend >>= howto->rightshift;
b49e97c9 7906
30ac9238
RS
7907 /* We use the source mask, rather than the destination
7908 mask because the place to which we are writing will be
7909 source of the addend in the final link. */
b49e97c9
TS
7910 addend &= howto->src_mask;
7911
5a659663 7912 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7913 /* See the comment above about using R_MIPS_64 in the 32-bit
7914 ABI. Here, we need to update the addend. It would be
7915 possible to get away with just using the R_MIPS_32 reloc
7916 but for endianness. */
7917 {
7918 bfd_vma sign_bits;
7919 bfd_vma low_bits;
7920 bfd_vma high_bits;
7921
7922 if (addend & ((bfd_vma) 1 << 31))
7923#ifdef BFD64
7924 sign_bits = ((bfd_vma) 1 << 32) - 1;
7925#else
7926 sign_bits = -1;
7927#endif
7928 else
7929 sign_bits = 0;
7930
7931 /* If we don't know that we have a 64-bit type,
7932 do two separate stores. */
7933 if (bfd_big_endian (input_bfd))
7934 {
7935 /* Store the sign-bits (which are most significant)
7936 first. */
7937 low_bits = sign_bits;
7938 high_bits = addend;
7939 }
7940 else
7941 {
7942 low_bits = addend;
7943 high_bits = sign_bits;
7944 }
7945 bfd_put_32 (input_bfd, low_bits,
7946 contents + rel->r_offset);
7947 bfd_put_32 (input_bfd, high_bits,
7948 contents + rel->r_offset + 4);
7949 continue;
7950 }
7951
7952 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7953 input_bfd, input_section,
b34976b6
AM
7954 contents, FALSE))
7955 return FALSE;
b49e97c9
TS
7956 }
7957
7958 /* Go on to the next relocation. */
7959 continue;
7960 }
7961
7962 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7963 relocations for the same offset. In that case we are
7964 supposed to treat the output of each relocation as the addend
7965 for the next. */
7966 if (rel + 1 < relend
7967 && rel->r_offset == rel[1].r_offset
7968 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7969 use_saved_addend_p = TRUE;
b49e97c9 7970 else
b34976b6 7971 use_saved_addend_p = FALSE;
b49e97c9
TS
7972
7973 /* Figure out what value we are supposed to relocate. */
7974 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7975 input_section, info, rel,
7976 addend, howto, local_syms,
7977 local_sections, &value,
bce03d3d
AO
7978 &name, &require_jalx,
7979 use_saved_addend_p))
b49e97c9
TS
7980 {
7981 case bfd_reloc_continue:
7982 /* There's nothing to do. */
7983 continue;
7984
7985 case bfd_reloc_undefined:
7986 /* mips_elf_calculate_relocation already called the
7987 undefined_symbol callback. There's no real point in
7988 trying to perform the relocation at this point, so we
7989 just skip ahead to the next relocation. */
7990 continue;
7991
7992 case bfd_reloc_notsupported:
7993 msg = _("internal error: unsupported relocation error");
7994 info->callbacks->warning
7995 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7996 return FALSE;
b49e97c9
TS
7997
7998 case bfd_reloc_overflow:
7999 if (use_saved_addend_p)
8000 /* Ignore overflow until we reach the last relocation for
8001 a given location. */
8002 ;
8003 else
8004 {
8005 BFD_ASSERT (name != NULL);
8006 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8007 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8008 input_bfd, input_section, rel->r_offset)))
b34976b6 8009 return FALSE;
b49e97c9
TS
8010 }
8011 break;
8012
8013 case bfd_reloc_ok:
8014 break;
8015
8016 default:
8017 abort ();
8018 break;
8019 }
8020
8021 /* If we've got another relocation for the address, keep going
8022 until we reach the last one. */
8023 if (use_saved_addend_p)
8024 {
8025 addend = value;
8026 continue;
8027 }
8028
4a14403c 8029 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8030 /* See the comment above about using R_MIPS_64 in the 32-bit
8031 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8032 that calculated the right value. Now, however, we
8033 sign-extend the 32-bit result to 64-bits, and store it as a
8034 64-bit value. We are especially generous here in that we
8035 go to extreme lengths to support this usage on systems with
8036 only a 32-bit VMA. */
8037 {
8038 bfd_vma sign_bits;
8039 bfd_vma low_bits;
8040 bfd_vma high_bits;
8041
8042 if (value & ((bfd_vma) 1 << 31))
8043#ifdef BFD64
8044 sign_bits = ((bfd_vma) 1 << 32) - 1;
8045#else
8046 sign_bits = -1;
8047#endif
8048 else
8049 sign_bits = 0;
8050
8051 /* If we don't know that we have a 64-bit type,
8052 do two separate stores. */
8053 if (bfd_big_endian (input_bfd))
8054 {
8055 /* Undo what we did above. */
8056 rel->r_offset -= 4;
8057 /* Store the sign-bits (which are most significant)
8058 first. */
8059 low_bits = sign_bits;
8060 high_bits = value;
8061 }
8062 else
8063 {
8064 low_bits = value;
8065 high_bits = sign_bits;
8066 }
8067 bfd_put_32 (input_bfd, low_bits,
8068 contents + rel->r_offset);
8069 bfd_put_32 (input_bfd, high_bits,
8070 contents + rel->r_offset + 4);
8071 continue;
8072 }
8073
8074 /* Actually perform the relocation. */
8075 if (! mips_elf_perform_relocation (info, howto, rel, value,
8076 input_bfd, input_section,
8077 contents, require_jalx))
b34976b6 8078 return FALSE;
b49e97c9
TS
8079 }
8080
b34976b6 8081 return TRUE;
b49e97c9
TS
8082}
8083\f
8084/* If NAME is one of the special IRIX6 symbols defined by the linker,
8085 adjust it appropriately now. */
8086
8087static void
9719ad41
RS
8088mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8089 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8090{
8091 /* The linker script takes care of providing names and values for
8092 these, but we must place them into the right sections. */
8093 static const char* const text_section_symbols[] = {
8094 "_ftext",
8095 "_etext",
8096 "__dso_displacement",
8097 "__elf_header",
8098 "__program_header_table",
8099 NULL
8100 };
8101
8102 static const char* const data_section_symbols[] = {
8103 "_fdata",
8104 "_edata",
8105 "_end",
8106 "_fbss",
8107 NULL
8108 };
8109
8110 const char* const *p;
8111 int i;
8112
8113 for (i = 0; i < 2; ++i)
8114 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8115 *p;
8116 ++p)
8117 if (strcmp (*p, name) == 0)
8118 {
8119 /* All of these symbols are given type STT_SECTION by the
8120 IRIX6 linker. */
8121 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8122 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8123
8124 /* The IRIX linker puts these symbols in special sections. */
8125 if (i == 0)
8126 sym->st_shndx = SHN_MIPS_TEXT;
8127 else
8128 sym->st_shndx = SHN_MIPS_DATA;
8129
8130 break;
8131 }
8132}
8133
8134/* Finish up dynamic symbol handling. We set the contents of various
8135 dynamic sections here. */
8136
b34976b6 8137bfd_boolean
9719ad41
RS
8138_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8139 struct bfd_link_info *info,
8140 struct elf_link_hash_entry *h,
8141 Elf_Internal_Sym *sym)
b49e97c9
TS
8142{
8143 bfd *dynobj;
b49e97c9 8144 asection *sgot;
f4416af6 8145 struct mips_got_info *g, *gg;
b49e97c9 8146 const char *name;
3d6746ca 8147 int idx;
5108fc1b 8148 struct mips_elf_link_hash_table *htab;
b49e97c9 8149
5108fc1b 8150 htab = mips_elf_hash_table (info);
b49e97c9 8151 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8152
c5ae1840 8153 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8154 {
8155 asection *s;
5108fc1b 8156 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8157
8158 /* This symbol has a stub. Set it up. */
8159
8160 BFD_ASSERT (h->dynindx != -1);
8161
8162 s = bfd_get_section_by_name (dynobj,
8163 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8164 BFD_ASSERT (s != NULL);
8165
5108fc1b
RS
8166 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8167 || (h->dynindx <= 0xffff));
3d6746ca
DD
8168
8169 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8170 sign extension at runtime in the stub, resulting in a negative
8171 index value. */
8172 if (h->dynindx & ~0x7fffffff)
b34976b6 8173 return FALSE;
b49e97c9
TS
8174
8175 /* Fill the stub. */
3d6746ca
DD
8176 idx = 0;
8177 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8178 idx += 4;
8179 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8180 idx += 4;
5108fc1b 8181 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8182 {
5108fc1b 8183 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8184 stub + idx);
8185 idx += 4;
8186 }
8187 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8188 idx += 4;
b49e97c9 8189
3d6746ca
DD
8190 /* If a large stub is not required and sign extension is not a
8191 problem, then use legacy code in the stub. */
5108fc1b
RS
8192 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8193 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8194 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8195 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8196 else
5108fc1b
RS
8197 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8198 stub + idx);
8199
eea6121a 8200 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8201 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8202
8203 /* Mark the symbol as undefined. plt.offset != -1 occurs
8204 only for the referenced symbol. */
8205 sym->st_shndx = SHN_UNDEF;
8206
8207 /* The run-time linker uses the st_value field of the symbol
8208 to reset the global offset table entry for this external
8209 to its stub address when unlinking a shared object. */
c5ae1840
TS
8210 sym->st_value = (s->output_section->vma + s->output_offset
8211 + h->plt.offset);
b49e97c9
TS
8212 }
8213
8214 BFD_ASSERT (h->dynindx != -1
f5385ebf 8215 || h->forced_local);
b49e97c9 8216
f4416af6 8217 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8218 BFD_ASSERT (sgot != NULL);
f4416af6 8219 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8220 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8221 BFD_ASSERT (g != NULL);
8222
8223 /* Run through the global symbol table, creating GOT entries for all
8224 the symbols that need them. */
8225 if (g->global_gotsym != NULL
8226 && h->dynindx >= g->global_gotsym->dynindx)
8227 {
8228 bfd_vma offset;
8229 bfd_vma value;
8230
6eaa6adc 8231 value = sym->st_value;
0f20cc35 8232 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8233 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8234 }
8235
0f20cc35 8236 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8237 {
8238 struct mips_got_entry e, *p;
0626d451 8239 bfd_vma entry;
f4416af6 8240 bfd_vma offset;
f4416af6
AO
8241
8242 gg = g;
8243
8244 e.abfd = output_bfd;
8245 e.symndx = -1;
8246 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8247 e.tls_type = 0;
143d77c5 8248
f4416af6
AO
8249 for (g = g->next; g->next != gg; g = g->next)
8250 {
8251 if (g->got_entries
8252 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8253 &e)))
8254 {
8255 offset = p->gotidx;
0626d451
RS
8256 if (info->shared
8257 || (elf_hash_table (info)->dynamic_sections_created
8258 && p->d.h != NULL
f5385ebf
AM
8259 && p->d.h->root.def_dynamic
8260 && !p->d.h->root.def_regular))
0626d451
RS
8261 {
8262 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8263 the various compatibility problems, it's easier to mock
8264 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8265 mips_elf_create_dynamic_relocation to calculate the
8266 appropriate addend. */
8267 Elf_Internal_Rela rel[3];
8268
8269 memset (rel, 0, sizeof (rel));
8270 if (ABI_64_P (output_bfd))
8271 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8272 else
8273 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8274 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8275
8276 entry = 0;
8277 if (! (mips_elf_create_dynamic_relocation
8278 (output_bfd, info, rel,
8279 e.d.h, NULL, sym->st_value, &entry, sgot)))
8280 return FALSE;
8281 }
8282 else
8283 entry = sym->st_value;
8284 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8285 }
8286 }
8287 }
8288
b49e97c9
TS
8289 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8290 name = h->root.root.string;
8291 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8292 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8293 sym->st_shndx = SHN_ABS;
8294 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8295 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8296 {
8297 sym->st_shndx = SHN_ABS;
8298 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8299 sym->st_value = 1;
8300 }
4a14403c 8301 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8302 {
8303 sym->st_shndx = SHN_ABS;
8304 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8305 sym->st_value = elf_gp (output_bfd);
8306 }
8307 else if (SGI_COMPAT (output_bfd))
8308 {
8309 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8310 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8311 {
8312 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8313 sym->st_other = STO_PROTECTED;
8314 sym->st_value = 0;
8315 sym->st_shndx = SHN_MIPS_DATA;
8316 }
8317 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8318 {
8319 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8320 sym->st_other = STO_PROTECTED;
8321 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8322 sym->st_shndx = SHN_ABS;
8323 }
8324 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8325 {
8326 if (h->type == STT_FUNC)
8327 sym->st_shndx = SHN_MIPS_TEXT;
8328 else if (h->type == STT_OBJECT)
8329 sym->st_shndx = SHN_MIPS_DATA;
8330 }
8331 }
8332
8333 /* Handle the IRIX6-specific symbols. */
8334 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8335 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8336
8337 if (! info->shared)
8338 {
8339 if (! mips_elf_hash_table (info)->use_rld_obj_head
8340 && (strcmp (name, "__rld_map") == 0
8341 || strcmp (name, "__RLD_MAP") == 0))
8342 {
8343 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8344 BFD_ASSERT (s != NULL);
8345 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8346 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8347 if (mips_elf_hash_table (info)->rld_value == 0)
8348 mips_elf_hash_table (info)->rld_value = sym->st_value;
8349 }
8350 else if (mips_elf_hash_table (info)->use_rld_obj_head
8351 && strcmp (name, "__rld_obj_head") == 0)
8352 {
8353 /* IRIX6 does not use a .rld_map section. */
8354 if (IRIX_COMPAT (output_bfd) == ict_irix5
8355 || IRIX_COMPAT (output_bfd) == ict_none)
8356 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8357 != NULL);
8358 mips_elf_hash_table (info)->rld_value = sym->st_value;
8359 }
8360 }
8361
8362 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8363 if (sym->st_other == STO_MIPS16)
8364 sym->st_value &= ~1;
b49e97c9 8365
b34976b6 8366 return TRUE;
b49e97c9
TS
8367}
8368
0a44bf69
RS
8369/* Likewise, for VxWorks. */
8370
8371bfd_boolean
8372_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8373 struct bfd_link_info *info,
8374 struct elf_link_hash_entry *h,
8375 Elf_Internal_Sym *sym)
8376{
8377 bfd *dynobj;
8378 asection *sgot;
8379 struct mips_got_info *g;
8380 struct mips_elf_link_hash_table *htab;
8381
8382 htab = mips_elf_hash_table (info);
8383 dynobj = elf_hash_table (info)->dynobj;
8384
8385 if (h->plt.offset != (bfd_vma) -1)
8386 {
6d79d2ed 8387 bfd_byte *loc;
0a44bf69
RS
8388 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8389 Elf_Internal_Rela rel;
8390 static const bfd_vma *plt_entry;
8391
8392 BFD_ASSERT (h->dynindx != -1);
8393 BFD_ASSERT (htab->splt != NULL);
8394 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8395
8396 /* Calculate the address of the .plt entry. */
8397 plt_address = (htab->splt->output_section->vma
8398 + htab->splt->output_offset
8399 + h->plt.offset);
8400
8401 /* Calculate the index of the entry. */
8402 plt_index = ((h->plt.offset - htab->plt_header_size)
8403 / htab->plt_entry_size);
8404
8405 /* Calculate the address of the .got.plt entry. */
8406 got_address = (htab->sgotplt->output_section->vma
8407 + htab->sgotplt->output_offset
8408 + plt_index * 4);
8409
8410 /* Calculate the offset of the .got.plt entry from
8411 _GLOBAL_OFFSET_TABLE_. */
8412 got_offset = mips_elf_gotplt_index (info, h);
8413
8414 /* Calculate the offset for the branch at the start of the PLT
8415 entry. The branch jumps to the beginning of .plt. */
8416 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8417
8418 /* Fill in the initial value of the .got.plt entry. */
8419 bfd_put_32 (output_bfd, plt_address,
8420 htab->sgotplt->contents + plt_index * 4);
8421
8422 /* Find out where the .plt entry should go. */
8423 loc = htab->splt->contents + h->plt.offset;
8424
8425 if (info->shared)
8426 {
8427 plt_entry = mips_vxworks_shared_plt_entry;
8428 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8429 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8430 }
8431 else
8432 {
8433 bfd_vma got_address_high, got_address_low;
8434
8435 plt_entry = mips_vxworks_exec_plt_entry;
8436 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8437 got_address_low = got_address & 0xffff;
8438
8439 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8440 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8441 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8442 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8443 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8444 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8445 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8446 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8447
8448 loc = (htab->srelplt2->contents
8449 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8450
8451 /* Emit a relocation for the .got.plt entry. */
8452 rel.r_offset = got_address;
8453 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8454 rel.r_addend = h->plt.offset;
8455 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8456
8457 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8458 loc += sizeof (Elf32_External_Rela);
8459 rel.r_offset = plt_address + 8;
8460 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8461 rel.r_addend = got_offset;
8462 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8463
8464 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8465 loc += sizeof (Elf32_External_Rela);
8466 rel.r_offset += 4;
8467 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8468 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8469 }
8470
8471 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8472 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8473 rel.r_offset = got_address;
8474 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8475 rel.r_addend = 0;
8476 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8477
8478 if (!h->def_regular)
8479 sym->st_shndx = SHN_UNDEF;
8480 }
8481
8482 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8483
8484 sgot = mips_elf_got_section (dynobj, FALSE);
8485 BFD_ASSERT (sgot != NULL);
8486 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8487 g = mips_elf_section_data (sgot)->u.got_info;
8488 BFD_ASSERT (g != NULL);
8489
8490 /* See if this symbol has an entry in the GOT. */
8491 if (g->global_gotsym != NULL
8492 && h->dynindx >= g->global_gotsym->dynindx)
8493 {
8494 bfd_vma offset;
8495 Elf_Internal_Rela outrel;
8496 bfd_byte *loc;
8497 asection *s;
8498
8499 /* Install the symbol value in the GOT. */
8500 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8501 R_MIPS_GOT16, info);
8502 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8503
8504 /* Add a dynamic relocation for it. */
8505 s = mips_elf_rel_dyn_section (info, FALSE);
8506 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8507 outrel.r_offset = (sgot->output_section->vma
8508 + sgot->output_offset
8509 + offset);
8510 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8511 outrel.r_addend = 0;
8512 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8513 }
8514
8515 /* Emit a copy reloc, if needed. */
8516 if (h->needs_copy)
8517 {
8518 Elf_Internal_Rela rel;
8519
8520 BFD_ASSERT (h->dynindx != -1);
8521
8522 rel.r_offset = (h->root.u.def.section->output_section->vma
8523 + h->root.u.def.section->output_offset
8524 + h->root.u.def.value);
8525 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8526 rel.r_addend = 0;
8527 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8528 htab->srelbss->contents
8529 + (htab->srelbss->reloc_count
8530 * sizeof (Elf32_External_Rela)));
8531 ++htab->srelbss->reloc_count;
8532 }
8533
8534 /* If this is a mips16 symbol, force the value to be even. */
8535 if (sym->st_other == STO_MIPS16)
8536 sym->st_value &= ~1;
8537
8538 return TRUE;
8539}
8540
8541/* Install the PLT header for a VxWorks executable and finalize the
8542 contents of .rela.plt.unloaded. */
8543
8544static void
8545mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8546{
8547 Elf_Internal_Rela rela;
8548 bfd_byte *loc;
8549 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8550 static const bfd_vma *plt_entry;
8551 struct mips_elf_link_hash_table *htab;
8552
8553 htab = mips_elf_hash_table (info);
8554 plt_entry = mips_vxworks_exec_plt0_entry;
8555
8556 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8557 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8558 + htab->root.hgot->root.u.def.section->output_offset
8559 + htab->root.hgot->root.u.def.value);
8560
8561 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8562 got_value_low = got_value & 0xffff;
8563
8564 /* Calculate the address of the PLT header. */
8565 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8566
8567 /* Install the PLT header. */
8568 loc = htab->splt->contents;
8569 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8570 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8571 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8572 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8573 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8574 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8575
8576 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8577 loc = htab->srelplt2->contents;
8578 rela.r_offset = plt_address;
8579 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8580 rela.r_addend = 0;
8581 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8582 loc += sizeof (Elf32_External_Rela);
8583
8584 /* Output the relocation for the following addiu of
8585 %lo(_GLOBAL_OFFSET_TABLE_). */
8586 rela.r_offset += 4;
8587 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8588 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8589 loc += sizeof (Elf32_External_Rela);
8590
8591 /* Fix up the remaining relocations. They may have the wrong
8592 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8593 in which symbols were output. */
8594 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8595 {
8596 Elf_Internal_Rela rel;
8597
8598 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8599 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8600 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8601 loc += sizeof (Elf32_External_Rela);
8602
8603 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8604 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8605 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8606 loc += sizeof (Elf32_External_Rela);
8607
8608 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8609 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8610 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8611 loc += sizeof (Elf32_External_Rela);
8612 }
8613}
8614
8615/* Install the PLT header for a VxWorks shared library. */
8616
8617static void
8618mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8619{
8620 unsigned int i;
8621 struct mips_elf_link_hash_table *htab;
8622
8623 htab = mips_elf_hash_table (info);
8624
8625 /* We just need to copy the entry byte-by-byte. */
8626 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8627 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8628 htab->splt->contents + i * 4);
8629}
8630
b49e97c9
TS
8631/* Finish up the dynamic sections. */
8632
b34976b6 8633bfd_boolean
9719ad41
RS
8634_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8635 struct bfd_link_info *info)
b49e97c9
TS
8636{
8637 bfd *dynobj;
8638 asection *sdyn;
8639 asection *sgot;
f4416af6 8640 struct mips_got_info *gg, *g;
0a44bf69 8641 struct mips_elf_link_hash_table *htab;
b49e97c9 8642
0a44bf69 8643 htab = mips_elf_hash_table (info);
b49e97c9
TS
8644 dynobj = elf_hash_table (info)->dynobj;
8645
8646 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8647
f4416af6 8648 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8649 if (sgot == NULL)
f4416af6 8650 gg = g = NULL;
b49e97c9
TS
8651 else
8652 {
f4416af6
AO
8653 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8654 gg = mips_elf_section_data (sgot)->u.got_info;
8655 BFD_ASSERT (gg != NULL);
8656 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8657 BFD_ASSERT (g != NULL);
8658 }
8659
8660 if (elf_hash_table (info)->dynamic_sections_created)
8661 {
8662 bfd_byte *b;
943284cc 8663 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8664
8665 BFD_ASSERT (sdyn != NULL);
8666 BFD_ASSERT (g != NULL);
8667
8668 for (b = sdyn->contents;
eea6121a 8669 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8670 b += MIPS_ELF_DYN_SIZE (dynobj))
8671 {
8672 Elf_Internal_Dyn dyn;
8673 const char *name;
8674 size_t elemsize;
8675 asection *s;
b34976b6 8676 bfd_boolean swap_out_p;
b49e97c9
TS
8677
8678 /* Read in the current dynamic entry. */
8679 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8680
8681 /* Assume that we're going to modify it and write it out. */
b34976b6 8682 swap_out_p = TRUE;
b49e97c9
TS
8683
8684 switch (dyn.d_tag)
8685 {
8686 case DT_RELENT:
b49e97c9
TS
8687 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8688 break;
8689
0a44bf69
RS
8690 case DT_RELAENT:
8691 BFD_ASSERT (htab->is_vxworks);
8692 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8693 break;
8694
b49e97c9
TS
8695 case DT_STRSZ:
8696 /* Rewrite DT_STRSZ. */
8697 dyn.d_un.d_val =
8698 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8699 break;
8700
8701 case DT_PLTGOT:
8702 name = ".got";
0a44bf69
RS
8703 if (htab->is_vxworks)
8704 {
8705 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8706 of the ".got" section in DYNOBJ. */
8707 s = bfd_get_section_by_name (dynobj, name);
8708 BFD_ASSERT (s != NULL);
8709 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8710 }
8711 else
8712 {
8713 s = bfd_get_section_by_name (output_bfd, name);
8714 BFD_ASSERT (s != NULL);
8715 dyn.d_un.d_ptr = s->vma;
8716 }
b49e97c9
TS
8717 break;
8718
8719 case DT_MIPS_RLD_VERSION:
8720 dyn.d_un.d_val = 1; /* XXX */
8721 break;
8722
8723 case DT_MIPS_FLAGS:
8724 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8725 break;
8726
b49e97c9 8727 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8728 {
8729 time_t t;
8730 time (&t);
8731 dyn.d_un.d_val = t;
8732 }
b49e97c9
TS
8733 break;
8734
8735 case DT_MIPS_ICHECKSUM:
8736 /* XXX FIXME: */
b34976b6 8737 swap_out_p = FALSE;
b49e97c9
TS
8738 break;
8739
8740 case DT_MIPS_IVERSION:
8741 /* XXX FIXME: */
b34976b6 8742 swap_out_p = FALSE;
b49e97c9
TS
8743 break;
8744
8745 case DT_MIPS_BASE_ADDRESS:
8746 s = output_bfd->sections;
8747 BFD_ASSERT (s != NULL);
8748 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8749 break;
8750
8751 case DT_MIPS_LOCAL_GOTNO:
8752 dyn.d_un.d_val = g->local_gotno;
8753 break;
8754
8755 case DT_MIPS_UNREFEXTNO:
8756 /* The index into the dynamic symbol table which is the
8757 entry of the first external symbol that is not
8758 referenced within the same object. */
8759 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8760 break;
8761
8762 case DT_MIPS_GOTSYM:
f4416af6 8763 if (gg->global_gotsym)
b49e97c9 8764 {
f4416af6 8765 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8766 break;
8767 }
8768 /* In case if we don't have global got symbols we default
8769 to setting DT_MIPS_GOTSYM to the same value as
8770 DT_MIPS_SYMTABNO, so we just fall through. */
8771
8772 case DT_MIPS_SYMTABNO:
8773 name = ".dynsym";
8774 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8775 s = bfd_get_section_by_name (output_bfd, name);
8776 BFD_ASSERT (s != NULL);
8777
eea6121a 8778 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8779 break;
8780
8781 case DT_MIPS_HIPAGENO:
0a44bf69 8782 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8783 break;
8784
8785 case DT_MIPS_RLD_MAP:
8786 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8787 break;
8788
8789 case DT_MIPS_OPTIONS:
8790 s = (bfd_get_section_by_name
8791 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8792 dyn.d_un.d_ptr = s->vma;
8793 break;
8794
0a44bf69
RS
8795 case DT_RELASZ:
8796 BFD_ASSERT (htab->is_vxworks);
8797 /* The count does not include the JUMP_SLOT relocations. */
8798 if (htab->srelplt)
8799 dyn.d_un.d_val -= htab->srelplt->size;
8800 break;
8801
8802 case DT_PLTREL:
8803 BFD_ASSERT (htab->is_vxworks);
8804 dyn.d_un.d_val = DT_RELA;
8805 break;
8806
8807 case DT_PLTRELSZ:
8808 BFD_ASSERT (htab->is_vxworks);
8809 dyn.d_un.d_val = htab->srelplt->size;
8810 break;
8811
8812 case DT_JMPREL:
8813 BFD_ASSERT (htab->is_vxworks);
8814 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8815 + htab->srelplt->output_offset);
8816 break;
8817
943284cc
DJ
8818 case DT_TEXTREL:
8819 /* If we didn't need any text relocations after all, delete
8820 the dynamic tag. */
8821 if (!(info->flags & DF_TEXTREL))
8822 {
8823 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8824 swap_out_p = FALSE;
8825 }
8826 break;
8827
8828 case DT_FLAGS:
8829 /* If we didn't need any text relocations after all, clear
8830 DF_TEXTREL from DT_FLAGS. */
8831 if (!(info->flags & DF_TEXTREL))
8832 dyn.d_un.d_val &= ~DF_TEXTREL;
8833 else
8834 swap_out_p = FALSE;
8835 break;
8836
b49e97c9 8837 default:
b34976b6 8838 swap_out_p = FALSE;
b49e97c9
TS
8839 break;
8840 }
8841
943284cc 8842 if (swap_out_p || dyn_skipped)
b49e97c9 8843 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8844 (dynobj, &dyn, b - dyn_skipped);
8845
8846 if (dyn_to_skip)
8847 {
8848 dyn_skipped += dyn_to_skip;
8849 dyn_to_skip = 0;
8850 }
b49e97c9 8851 }
943284cc
DJ
8852
8853 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8854 if (dyn_skipped > 0)
8855 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8856 }
8857
eea6121a 8858 if (sgot != NULL && sgot->size > 0)
b49e97c9 8859 {
0a44bf69
RS
8860 if (htab->is_vxworks)
8861 {
8862 /* The first entry of the global offset table points to the
8863 ".dynamic" section. The second is initialized by the
8864 loader and contains the shared library identifier.
8865 The third is also initialized by the loader and points
8866 to the lazy resolution stub. */
8867 MIPS_ELF_PUT_WORD (output_bfd,
8868 sdyn->output_offset + sdyn->output_section->vma,
8869 sgot->contents);
8870 MIPS_ELF_PUT_WORD (output_bfd, 0,
8871 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8872 MIPS_ELF_PUT_WORD (output_bfd, 0,
8873 sgot->contents
8874 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8875 }
8876 else
8877 {
8878 /* The first entry of the global offset table will be filled at
8879 runtime. The second entry will be used by some runtime loaders.
8880 This isn't the case of IRIX rld. */
8881 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8882 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8883 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8884 }
b49e97c9 8885
54938e2a
TS
8886 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8887 = MIPS_ELF_GOT_SIZE (output_bfd);
8888 }
b49e97c9 8889
f4416af6
AO
8890 /* Generate dynamic relocations for the non-primary gots. */
8891 if (gg != NULL && gg->next)
8892 {
8893 Elf_Internal_Rela rel[3];
8894 bfd_vma addend = 0;
8895
8896 memset (rel, 0, sizeof (rel));
8897 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8898
8899 for (g = gg->next; g->next != gg; g = g->next)
8900 {
0f20cc35
DJ
8901 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8902 + g->next->tls_gotno;
f4416af6 8903
9719ad41 8904 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8905 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8906 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8907 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8908
8909 if (! info->shared)
8910 continue;
8911
8912 while (index < g->assigned_gotno)
8913 {
8914 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8915 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8916 if (!(mips_elf_create_dynamic_relocation
8917 (output_bfd, info, rel, NULL,
8918 bfd_abs_section_ptr,
8919 0, &addend, sgot)))
8920 return FALSE;
8921 BFD_ASSERT (addend == 0);
8922 }
8923 }
8924 }
8925
3133ddbf
DJ
8926 /* The generation of dynamic relocations for the non-primary gots
8927 adds more dynamic relocations. We cannot count them until
8928 here. */
8929
8930 if (elf_hash_table (info)->dynamic_sections_created)
8931 {
8932 bfd_byte *b;
8933 bfd_boolean swap_out_p;
8934
8935 BFD_ASSERT (sdyn != NULL);
8936
8937 for (b = sdyn->contents;
8938 b < sdyn->contents + sdyn->size;
8939 b += MIPS_ELF_DYN_SIZE (dynobj))
8940 {
8941 Elf_Internal_Dyn dyn;
8942 asection *s;
8943
8944 /* Read in the current dynamic entry. */
8945 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8946
8947 /* Assume that we're going to modify it and write it out. */
8948 swap_out_p = TRUE;
8949
8950 switch (dyn.d_tag)
8951 {
8952 case DT_RELSZ:
8953 /* Reduce DT_RELSZ to account for any relocations we
8954 decided not to make. This is for the n64 irix rld,
8955 which doesn't seem to apply any relocations if there
8956 are trailing null entries. */
0a44bf69 8957 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8958 dyn.d_un.d_val = (s->reloc_count
8959 * (ABI_64_P (output_bfd)
8960 ? sizeof (Elf64_Mips_External_Rel)
8961 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
8962 /* Adjust the section size too. Tools like the prelinker
8963 can reasonably expect the values to the same. */
8964 elf_section_data (s->output_section)->this_hdr.sh_size
8965 = dyn.d_un.d_val;
3133ddbf
DJ
8966 break;
8967
8968 default:
8969 swap_out_p = FALSE;
8970 break;
8971 }
8972
8973 if (swap_out_p)
8974 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8975 (dynobj, &dyn, b);
8976 }
8977 }
8978
b49e97c9 8979 {
b49e97c9
TS
8980 asection *s;
8981 Elf32_compact_rel cpt;
8982
b49e97c9
TS
8983 if (SGI_COMPAT (output_bfd))
8984 {
8985 /* Write .compact_rel section out. */
8986 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8987 if (s != NULL)
8988 {
8989 cpt.id1 = 1;
8990 cpt.num = s->reloc_count;
8991 cpt.id2 = 2;
8992 cpt.offset = (s->output_section->filepos
8993 + sizeof (Elf32_External_compact_rel));
8994 cpt.reserved0 = 0;
8995 cpt.reserved1 = 0;
8996 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8997 ((Elf32_External_compact_rel *)
8998 s->contents));
8999
9000 /* Clean up a dummy stub function entry in .text. */
9001 s = bfd_get_section_by_name (dynobj,
9002 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9003 if (s != NULL)
9004 {
9005 file_ptr dummy_offset;
9006
5108fc1b
RS
9007 BFD_ASSERT (s->size >= htab->function_stub_size);
9008 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9009 memset (s->contents + dummy_offset, 0,
5108fc1b 9010 htab->function_stub_size);
b49e97c9
TS
9011 }
9012 }
9013 }
9014
0a44bf69
RS
9015 /* The psABI says that the dynamic relocations must be sorted in
9016 increasing order of r_symndx. The VxWorks EABI doesn't require
9017 this, and because the code below handles REL rather than RELA
9018 relocations, using it for VxWorks would be outright harmful. */
9019 if (!htab->is_vxworks)
b49e97c9 9020 {
0a44bf69
RS
9021 s = mips_elf_rel_dyn_section (info, FALSE);
9022 if (s != NULL
9023 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9024 {
9025 reldyn_sorting_bfd = output_bfd;
b49e97c9 9026
0a44bf69
RS
9027 if (ABI_64_P (output_bfd))
9028 qsort ((Elf64_External_Rel *) s->contents + 1,
9029 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9030 sort_dynamic_relocs_64);
9031 else
9032 qsort ((Elf32_External_Rel *) s->contents + 1,
9033 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9034 sort_dynamic_relocs);
9035 }
b49e97c9 9036 }
b49e97c9
TS
9037 }
9038
0a44bf69
RS
9039 if (htab->is_vxworks && htab->splt->size > 0)
9040 {
9041 if (info->shared)
9042 mips_vxworks_finish_shared_plt (output_bfd, info);
9043 else
9044 mips_vxworks_finish_exec_plt (output_bfd, info);
9045 }
b34976b6 9046 return TRUE;
b49e97c9
TS
9047}
9048
b49e97c9 9049
64543e1a
RS
9050/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9051
9052static void
9719ad41 9053mips_set_isa_flags (bfd *abfd)
b49e97c9 9054{
64543e1a 9055 flagword val;
b49e97c9
TS
9056
9057 switch (bfd_get_mach (abfd))
9058 {
9059 default:
9060 case bfd_mach_mips3000:
9061 val = E_MIPS_ARCH_1;
9062 break;
9063
9064 case bfd_mach_mips3900:
9065 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9066 break;
9067
9068 case bfd_mach_mips6000:
9069 val = E_MIPS_ARCH_2;
9070 break;
9071
9072 case bfd_mach_mips4000:
9073 case bfd_mach_mips4300:
9074 case bfd_mach_mips4400:
9075 case bfd_mach_mips4600:
9076 val = E_MIPS_ARCH_3;
9077 break;
9078
9079 case bfd_mach_mips4010:
9080 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9081 break;
9082
9083 case bfd_mach_mips4100:
9084 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9085 break;
9086
9087 case bfd_mach_mips4111:
9088 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9089 break;
9090
00707a0e
RS
9091 case bfd_mach_mips4120:
9092 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9093 break;
9094
b49e97c9
TS
9095 case bfd_mach_mips4650:
9096 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9097 break;
9098
00707a0e
RS
9099 case bfd_mach_mips5400:
9100 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9101 break;
9102
9103 case bfd_mach_mips5500:
9104 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9105 break;
9106
0d2e43ed
ILT
9107 case bfd_mach_mips9000:
9108 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9109 break;
9110
b49e97c9 9111 case bfd_mach_mips5000:
5a7ea749 9112 case bfd_mach_mips7000:
b49e97c9
TS
9113 case bfd_mach_mips8000:
9114 case bfd_mach_mips10000:
9115 case bfd_mach_mips12000:
9116 val = E_MIPS_ARCH_4;
9117 break;
9118
9119 case bfd_mach_mips5:
9120 val = E_MIPS_ARCH_5;
9121 break;
9122
9123 case bfd_mach_mips_sb1:
9124 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9125 break;
9126
9127 case bfd_mach_mipsisa32:
9128 val = E_MIPS_ARCH_32;
9129 break;
9130
9131 case bfd_mach_mipsisa64:
9132 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9133 break;
9134
9135 case bfd_mach_mipsisa32r2:
9136 val = E_MIPS_ARCH_32R2;
9137 break;
5f74bc13
CD
9138
9139 case bfd_mach_mipsisa64r2:
9140 val = E_MIPS_ARCH_64R2;
9141 break;
b49e97c9 9142 }
b49e97c9
TS
9143 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9144 elf_elfheader (abfd)->e_flags |= val;
9145
64543e1a
RS
9146}
9147
9148
9149/* The final processing done just before writing out a MIPS ELF object
9150 file. This gets the MIPS architecture right based on the machine
9151 number. This is used by both the 32-bit and the 64-bit ABI. */
9152
9153void
9719ad41
RS
9154_bfd_mips_elf_final_write_processing (bfd *abfd,
9155 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9156{
9157 unsigned int i;
9158 Elf_Internal_Shdr **hdrpp;
9159 const char *name;
9160 asection *sec;
9161
9162 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9163 is nonzero. This is for compatibility with old objects, which used
9164 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9165 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9166 mips_set_isa_flags (abfd);
9167
b49e97c9
TS
9168 /* Set the sh_info field for .gptab sections and other appropriate
9169 info for each special section. */
9170 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9171 i < elf_numsections (abfd);
9172 i++, hdrpp++)
9173 {
9174 switch ((*hdrpp)->sh_type)
9175 {
9176 case SHT_MIPS_MSYM:
9177 case SHT_MIPS_LIBLIST:
9178 sec = bfd_get_section_by_name (abfd, ".dynstr");
9179 if (sec != NULL)
9180 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9181 break;
9182
9183 case SHT_MIPS_GPTAB:
9184 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9185 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9186 BFD_ASSERT (name != NULL
0112cd26 9187 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9188 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9189 BFD_ASSERT (sec != NULL);
9190 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9191 break;
9192
9193 case SHT_MIPS_CONTENT:
9194 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9195 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9196 BFD_ASSERT (name != NULL
0112cd26 9197 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9198 sec = bfd_get_section_by_name (abfd,
9199 name + sizeof ".MIPS.content" - 1);
9200 BFD_ASSERT (sec != NULL);
9201 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9202 break;
9203
9204 case SHT_MIPS_SYMBOL_LIB:
9205 sec = bfd_get_section_by_name (abfd, ".dynsym");
9206 if (sec != NULL)
9207 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9208 sec = bfd_get_section_by_name (abfd, ".liblist");
9209 if (sec != NULL)
9210 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9211 break;
9212
9213 case SHT_MIPS_EVENTS:
9214 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9215 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9216 BFD_ASSERT (name != NULL);
0112cd26 9217 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9218 sec = bfd_get_section_by_name (abfd,
9219 name + sizeof ".MIPS.events" - 1);
9220 else
9221 {
0112cd26 9222 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9223 sec = bfd_get_section_by_name (abfd,
9224 (name
9225 + sizeof ".MIPS.post_rel" - 1));
9226 }
9227 BFD_ASSERT (sec != NULL);
9228 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9229 break;
9230
9231 }
9232 }
9233}
9234\f
8dc1a139 9235/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9236 segments. */
9237
9238int
a6b96beb
AM
9239_bfd_mips_elf_additional_program_headers (bfd *abfd,
9240 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9241{
9242 asection *s;
9243 int ret = 0;
9244
9245 /* See if we need a PT_MIPS_REGINFO segment. */
9246 s = bfd_get_section_by_name (abfd, ".reginfo");
9247 if (s && (s->flags & SEC_LOAD))
9248 ++ret;
9249
9250 /* See if we need a PT_MIPS_OPTIONS segment. */
9251 if (IRIX_COMPAT (abfd) == ict_irix6
9252 && bfd_get_section_by_name (abfd,
9253 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9254 ++ret;
9255
9256 /* See if we need a PT_MIPS_RTPROC segment. */
9257 if (IRIX_COMPAT (abfd) == ict_irix5
9258 && bfd_get_section_by_name (abfd, ".dynamic")
9259 && bfd_get_section_by_name (abfd, ".mdebug"))
9260 ++ret;
9261
98c904a8
RS
9262 /* Allocate a PT_NULL header in dynamic objects. See
9263 _bfd_mips_elf_modify_segment_map for details. */
9264 if (!SGI_COMPAT (abfd)
9265 && bfd_get_section_by_name (abfd, ".dynamic"))
9266 ++ret;
9267
b49e97c9
TS
9268 return ret;
9269}
9270
8dc1a139 9271/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9272
b34976b6 9273bfd_boolean
9719ad41
RS
9274_bfd_mips_elf_modify_segment_map (bfd *abfd,
9275 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9276{
9277 asection *s;
9278 struct elf_segment_map *m, **pm;
9279 bfd_size_type amt;
9280
9281 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9282 segment. */
9283 s = bfd_get_section_by_name (abfd, ".reginfo");
9284 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9285 {
9286 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9287 if (m->p_type == PT_MIPS_REGINFO)
9288 break;
9289 if (m == NULL)
9290 {
9291 amt = sizeof *m;
9719ad41 9292 m = bfd_zalloc (abfd, amt);
b49e97c9 9293 if (m == NULL)
b34976b6 9294 return FALSE;
b49e97c9
TS
9295
9296 m->p_type = PT_MIPS_REGINFO;
9297 m->count = 1;
9298 m->sections[0] = s;
9299
9300 /* We want to put it after the PHDR and INTERP segments. */
9301 pm = &elf_tdata (abfd)->segment_map;
9302 while (*pm != NULL
9303 && ((*pm)->p_type == PT_PHDR
9304 || (*pm)->p_type == PT_INTERP))
9305 pm = &(*pm)->next;
9306
9307 m->next = *pm;
9308 *pm = m;
9309 }
9310 }
9311
9312 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9313 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9314 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9315 table. */
c1fd6598
AO
9316 if (NEWABI_P (abfd)
9317 /* On non-IRIX6 new abi, we'll have already created a segment
9318 for this section, so don't create another. I'm not sure this
9319 is not also the case for IRIX 6, but I can't test it right
9320 now. */
9321 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9322 {
9323 for (s = abfd->sections; s; s = s->next)
9324 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9325 break;
9326
9327 if (s)
9328 {
9329 struct elf_segment_map *options_segment;
9330
98a8deaf
RS
9331 pm = &elf_tdata (abfd)->segment_map;
9332 while (*pm != NULL
9333 && ((*pm)->p_type == PT_PHDR
9334 || (*pm)->p_type == PT_INTERP))
9335 pm = &(*pm)->next;
b49e97c9 9336
8ded5a0f
AM
9337 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9338 {
9339 amt = sizeof (struct elf_segment_map);
9340 options_segment = bfd_zalloc (abfd, amt);
9341 options_segment->next = *pm;
9342 options_segment->p_type = PT_MIPS_OPTIONS;
9343 options_segment->p_flags = PF_R;
9344 options_segment->p_flags_valid = TRUE;
9345 options_segment->count = 1;
9346 options_segment->sections[0] = s;
9347 *pm = options_segment;
9348 }
b49e97c9
TS
9349 }
9350 }
9351 else
9352 {
9353 if (IRIX_COMPAT (abfd) == ict_irix5)
9354 {
9355 /* If there are .dynamic and .mdebug sections, we make a room
9356 for the RTPROC header. FIXME: Rewrite without section names. */
9357 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9358 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9359 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9360 {
9361 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9362 if (m->p_type == PT_MIPS_RTPROC)
9363 break;
9364 if (m == NULL)
9365 {
9366 amt = sizeof *m;
9719ad41 9367 m = bfd_zalloc (abfd, amt);
b49e97c9 9368 if (m == NULL)
b34976b6 9369 return FALSE;
b49e97c9
TS
9370
9371 m->p_type = PT_MIPS_RTPROC;
9372
9373 s = bfd_get_section_by_name (abfd, ".rtproc");
9374 if (s == NULL)
9375 {
9376 m->count = 0;
9377 m->p_flags = 0;
9378 m->p_flags_valid = 1;
9379 }
9380 else
9381 {
9382 m->count = 1;
9383 m->sections[0] = s;
9384 }
9385
9386 /* We want to put it after the DYNAMIC segment. */
9387 pm = &elf_tdata (abfd)->segment_map;
9388 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9389 pm = &(*pm)->next;
9390 if (*pm != NULL)
9391 pm = &(*pm)->next;
9392
9393 m->next = *pm;
9394 *pm = m;
9395 }
9396 }
9397 }
8dc1a139 9398 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9399 .dynstr, .dynsym, and .hash sections, and everything in
9400 between. */
9401 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9402 pm = &(*pm)->next)
9403 if ((*pm)->p_type == PT_DYNAMIC)
9404 break;
9405 m = *pm;
9406 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9407 {
9408 /* For a normal mips executable the permissions for the PT_DYNAMIC
9409 segment are read, write and execute. We do that here since
9410 the code in elf.c sets only the read permission. This matters
9411 sometimes for the dynamic linker. */
9412 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9413 {
9414 m->p_flags = PF_R | PF_W | PF_X;
9415 m->p_flags_valid = 1;
9416 }
9417 }
f6f62d6f
RS
9418 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9419 glibc's dynamic linker has traditionally derived the number of
9420 tags from the p_filesz field, and sometimes allocates stack
9421 arrays of that size. An overly-big PT_DYNAMIC segment can
9422 be actively harmful in such cases. Making PT_DYNAMIC contain
9423 other sections can also make life hard for the prelinker,
9424 which might move one of the other sections to a different
9425 PT_LOAD segment. */
9426 if (SGI_COMPAT (abfd)
9427 && m != NULL
9428 && m->count == 1
9429 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9430 {
9431 static const char *sec_names[] =
9432 {
9433 ".dynamic", ".dynstr", ".dynsym", ".hash"
9434 };
9435 bfd_vma low, high;
9436 unsigned int i, c;
9437 struct elf_segment_map *n;
9438
792b4a53 9439 low = ~(bfd_vma) 0;
b49e97c9
TS
9440 high = 0;
9441 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9442 {
9443 s = bfd_get_section_by_name (abfd, sec_names[i]);
9444 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9445 {
9446 bfd_size_type sz;
9447
9448 if (low > s->vma)
9449 low = s->vma;
eea6121a 9450 sz = s->size;
b49e97c9
TS
9451 if (high < s->vma + sz)
9452 high = s->vma + sz;
9453 }
9454 }
9455
9456 c = 0;
9457 for (s = abfd->sections; s != NULL; s = s->next)
9458 if ((s->flags & SEC_LOAD) != 0
9459 && s->vma >= low
eea6121a 9460 && s->vma + s->size <= high)
b49e97c9
TS
9461 ++c;
9462
9463 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9464 n = bfd_zalloc (abfd, amt);
b49e97c9 9465 if (n == NULL)
b34976b6 9466 return FALSE;
b49e97c9
TS
9467 *n = *m;
9468 n->count = c;
9469
9470 i = 0;
9471 for (s = abfd->sections; s != NULL; s = s->next)
9472 {
9473 if ((s->flags & SEC_LOAD) != 0
9474 && s->vma >= low
eea6121a 9475 && s->vma + s->size <= high)
b49e97c9
TS
9476 {
9477 n->sections[i] = s;
9478 ++i;
9479 }
9480 }
9481
9482 *pm = n;
9483 }
9484 }
9485
98c904a8
RS
9486 /* Allocate a spare program header in dynamic objects so that tools
9487 like the prelinker can add an extra PT_LOAD entry.
9488
9489 If the prelinker needs to make room for a new PT_LOAD entry, its
9490 standard procedure is to move the first (read-only) sections into
9491 the new (writable) segment. However, the MIPS ABI requires
9492 .dynamic to be in a read-only segment, and the section will often
9493 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9494
9495 Although the prelinker could in principle move .dynamic to a
9496 writable segment, it seems better to allocate a spare program
9497 header instead, and avoid the need to move any sections.
9498 There is a long tradition of allocating spare dynamic tags,
9499 so allocating a spare program header seems like a natural
9500 extension. */
9501 if (!SGI_COMPAT (abfd)
9502 && bfd_get_section_by_name (abfd, ".dynamic"))
9503 {
9504 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9505 if ((*pm)->p_type == PT_NULL)
9506 break;
9507 if (*pm == NULL)
9508 {
9509 m = bfd_zalloc (abfd, sizeof (*m));
9510 if (m == NULL)
9511 return FALSE;
9512
9513 m->p_type = PT_NULL;
9514 *pm = m;
9515 }
9516 }
9517
b34976b6 9518 return TRUE;
b49e97c9
TS
9519}
9520\f
9521/* Return the section that should be marked against GC for a given
9522 relocation. */
9523
9524asection *
9719ad41 9525_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9526 struct bfd_link_info *info,
9719ad41
RS
9527 Elf_Internal_Rela *rel,
9528 struct elf_link_hash_entry *h,
9529 Elf_Internal_Sym *sym)
b49e97c9
TS
9530{
9531 /* ??? Do mips16 stub sections need to be handled special? */
9532
9533 if (h != NULL)
07adf181
AM
9534 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9535 {
9536 case R_MIPS_GNU_VTINHERIT:
9537 case R_MIPS_GNU_VTENTRY:
9538 return NULL;
9539 }
b49e97c9 9540
07adf181 9541 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9542}
9543
9544/* Update the got entry reference counts for the section being removed. */
9545
b34976b6 9546bfd_boolean
9719ad41
RS
9547_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9548 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9549 asection *sec ATTRIBUTE_UNUSED,
9550 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9551{
9552#if 0
9553 Elf_Internal_Shdr *symtab_hdr;
9554 struct elf_link_hash_entry **sym_hashes;
9555 bfd_signed_vma *local_got_refcounts;
9556 const Elf_Internal_Rela *rel, *relend;
9557 unsigned long r_symndx;
9558 struct elf_link_hash_entry *h;
9559
9560 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9561 sym_hashes = elf_sym_hashes (abfd);
9562 local_got_refcounts = elf_local_got_refcounts (abfd);
9563
9564 relend = relocs + sec->reloc_count;
9565 for (rel = relocs; rel < relend; rel++)
9566 switch (ELF_R_TYPE (abfd, rel->r_info))
9567 {
9568 case R_MIPS_GOT16:
9569 case R_MIPS_CALL16:
9570 case R_MIPS_CALL_HI16:
9571 case R_MIPS_CALL_LO16:
9572 case R_MIPS_GOT_HI16:
9573 case R_MIPS_GOT_LO16:
4a14403c
TS
9574 case R_MIPS_GOT_DISP:
9575 case R_MIPS_GOT_PAGE:
9576 case R_MIPS_GOT_OFST:
b49e97c9
TS
9577 /* ??? It would seem that the existing MIPS code does no sort
9578 of reference counting or whatnot on its GOT and PLT entries,
9579 so it is not possible to garbage collect them at this time. */
9580 break;
9581
9582 default:
9583 break;
9584 }
9585#endif
9586
b34976b6 9587 return TRUE;
b49e97c9
TS
9588}
9589\f
9590/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9591 hiding the old indirect symbol. Process additional relocation
9592 information. Also called for weakdefs, in which case we just let
9593 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9594
9595void
fcfa13d2 9596_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9597 struct elf_link_hash_entry *dir,
9598 struct elf_link_hash_entry *ind)
b49e97c9
TS
9599{
9600 struct mips_elf_link_hash_entry *dirmips, *indmips;
9601
fcfa13d2 9602 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9603
9604 if (ind->root.type != bfd_link_hash_indirect)
9605 return;
9606
9607 dirmips = (struct mips_elf_link_hash_entry *) dir;
9608 indmips = (struct mips_elf_link_hash_entry *) ind;
9609 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9610 if (indmips->readonly_reloc)
b34976b6 9611 dirmips->readonly_reloc = TRUE;
b49e97c9 9612 if (indmips->no_fn_stub)
b34976b6 9613 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9614
9615 if (dirmips->tls_type == 0)
9616 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9617}
9618
9619void
9719ad41
RS
9620_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9621 struct elf_link_hash_entry *entry,
9622 bfd_boolean force_local)
b49e97c9
TS
9623{
9624 bfd *dynobj;
9625 asection *got;
9626 struct mips_got_info *g;
9627 struct mips_elf_link_hash_entry *h;
7c5fcef7 9628
b49e97c9 9629 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9630 if (h->forced_local)
9631 return;
4b555070 9632 h->forced_local = force_local;
7c5fcef7 9633
b49e97c9 9634 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9635 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9636 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9637 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9638 {
c45a316a
AM
9639 if (g->next)
9640 {
9641 struct mips_got_entry e;
9642 struct mips_got_info *gg = g;
9643
9644 /* Since we're turning what used to be a global symbol into a
9645 local one, bump up the number of local entries of each GOT
9646 that had an entry for it. This will automatically decrease
9647 the number of global entries, since global_gotno is actually
9648 the upper limit of global entries. */
9649 e.abfd = dynobj;
9650 e.symndx = -1;
9651 e.d.h = h;
0f20cc35 9652 e.tls_type = 0;
c45a316a
AM
9653
9654 for (g = g->next; g != gg; g = g->next)
9655 if (htab_find (g->got_entries, &e))
9656 {
9657 BFD_ASSERT (g->global_gotno > 0);
9658 g->local_gotno++;
9659 g->global_gotno--;
9660 }
b49e97c9 9661
c45a316a
AM
9662 /* If this was a global symbol forced into the primary GOT, we
9663 no longer need an entry for it. We can't release the entry
9664 at this point, but we must at least stop counting it as one
9665 of the symbols that required a forced got entry. */
9666 if (h->root.got.offset == 2)
9667 {
9668 BFD_ASSERT (gg->assigned_gotno > 0);
9669 gg->assigned_gotno--;
9670 }
9671 }
9672 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9673 /* If we haven't got through GOT allocation yet, just bump up the
9674 number of local entries, as this symbol won't be counted as
9675 global. */
9676 g->local_gotno++;
9677 else if (h->root.got.offset == 1)
f4416af6 9678 {
c45a316a
AM
9679 /* If we're past non-multi-GOT allocation and this symbol had
9680 been marked for a global got entry, give it a local entry
9681 instead. */
9682 BFD_ASSERT (g->global_gotno > 0);
9683 g->local_gotno++;
9684 g->global_gotno--;
f4416af6
AO
9685 }
9686 }
f4416af6
AO
9687
9688 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9689}
9690\f
d01414a5
TS
9691#define PDR_SIZE 32
9692
b34976b6 9693bfd_boolean
9719ad41
RS
9694_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9695 struct bfd_link_info *info)
d01414a5
TS
9696{
9697 asection *o;
b34976b6 9698 bfd_boolean ret = FALSE;
d01414a5
TS
9699 unsigned char *tdata;
9700 size_t i, skip;
9701
9702 o = bfd_get_section_by_name (abfd, ".pdr");
9703 if (! o)
b34976b6 9704 return FALSE;
eea6121a 9705 if (o->size == 0)
b34976b6 9706 return FALSE;
eea6121a 9707 if (o->size % PDR_SIZE != 0)
b34976b6 9708 return FALSE;
d01414a5
TS
9709 if (o->output_section != NULL
9710 && bfd_is_abs_section (o->output_section))
b34976b6 9711 return FALSE;
d01414a5 9712
eea6121a 9713 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9714 if (! tdata)
b34976b6 9715 return FALSE;
d01414a5 9716
9719ad41 9717 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9718 info->keep_memory);
d01414a5
TS
9719 if (!cookie->rels)
9720 {
9721 free (tdata);
b34976b6 9722 return FALSE;
d01414a5
TS
9723 }
9724
9725 cookie->rel = cookie->rels;
9726 cookie->relend = cookie->rels + o->reloc_count;
9727
eea6121a 9728 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9729 {
c152c796 9730 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9731 {
9732 tdata[i] = 1;
9733 skip ++;
9734 }
9735 }
9736
9737 if (skip != 0)
9738 {
f0abc2a1 9739 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9740 o->size -= skip * PDR_SIZE;
b34976b6 9741 ret = TRUE;
d01414a5
TS
9742 }
9743 else
9744 free (tdata);
9745
9746 if (! info->keep_memory)
9747 free (cookie->rels);
9748
9749 return ret;
9750}
9751
b34976b6 9752bfd_boolean
9719ad41 9753_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9754{
9755 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9756 return TRUE;
9757 return FALSE;
53bfd6b4 9758}
d01414a5 9759
b34976b6 9760bfd_boolean
9719ad41
RS
9761_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9762 bfd_byte *contents)
d01414a5
TS
9763{
9764 bfd_byte *to, *from, *end;
9765 int i;
9766
9767 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9768 return FALSE;
d01414a5 9769
f0abc2a1 9770 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9771 return FALSE;
d01414a5
TS
9772
9773 to = contents;
eea6121a 9774 end = contents + sec->size;
d01414a5
TS
9775 for (from = contents, i = 0;
9776 from < end;
9777 from += PDR_SIZE, i++)
9778 {
f0abc2a1 9779 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9780 continue;
9781 if (to != from)
9782 memcpy (to, from, PDR_SIZE);
9783 to += PDR_SIZE;
9784 }
9785 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9786 sec->output_offset, sec->size);
b34976b6 9787 return TRUE;
d01414a5 9788}
53bfd6b4 9789\f
b49e97c9
TS
9790/* MIPS ELF uses a special find_nearest_line routine in order the
9791 handle the ECOFF debugging information. */
9792
9793struct mips_elf_find_line
9794{
9795 struct ecoff_debug_info d;
9796 struct ecoff_find_line i;
9797};
9798
b34976b6 9799bfd_boolean
9719ad41
RS
9800_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9801 asymbol **symbols, bfd_vma offset,
9802 const char **filename_ptr,
9803 const char **functionname_ptr,
9804 unsigned int *line_ptr)
b49e97c9
TS
9805{
9806 asection *msec;
9807
9808 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9809 filename_ptr, functionname_ptr,
9810 line_ptr))
b34976b6 9811 return TRUE;
b49e97c9
TS
9812
9813 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9814 filename_ptr, functionname_ptr,
9719ad41 9815 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9816 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9817 return TRUE;
b49e97c9
TS
9818
9819 msec = bfd_get_section_by_name (abfd, ".mdebug");
9820 if (msec != NULL)
9821 {
9822 flagword origflags;
9823 struct mips_elf_find_line *fi;
9824 const struct ecoff_debug_swap * const swap =
9825 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9826
9827 /* If we are called during a link, mips_elf_final_link may have
9828 cleared the SEC_HAS_CONTENTS field. We force it back on here
9829 if appropriate (which it normally will be). */
9830 origflags = msec->flags;
9831 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9832 msec->flags |= SEC_HAS_CONTENTS;
9833
9834 fi = elf_tdata (abfd)->find_line_info;
9835 if (fi == NULL)
9836 {
9837 bfd_size_type external_fdr_size;
9838 char *fraw_src;
9839 char *fraw_end;
9840 struct fdr *fdr_ptr;
9841 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9842
9719ad41 9843 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9844 if (fi == NULL)
9845 {
9846 msec->flags = origflags;
b34976b6 9847 return FALSE;
b49e97c9
TS
9848 }
9849
9850 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9851 {
9852 msec->flags = origflags;
b34976b6 9853 return FALSE;
b49e97c9
TS
9854 }
9855
9856 /* Swap in the FDR information. */
9857 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9858 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9859 if (fi->d.fdr == NULL)
9860 {
9861 msec->flags = origflags;
b34976b6 9862 return FALSE;
b49e97c9
TS
9863 }
9864 external_fdr_size = swap->external_fdr_size;
9865 fdr_ptr = fi->d.fdr;
9866 fraw_src = (char *) fi->d.external_fdr;
9867 fraw_end = (fraw_src
9868 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9869 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9870 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9871
9872 elf_tdata (abfd)->find_line_info = fi;
9873
9874 /* Note that we don't bother to ever free this information.
9875 find_nearest_line is either called all the time, as in
9876 objdump -l, so the information should be saved, or it is
9877 rarely called, as in ld error messages, so the memory
9878 wasted is unimportant. Still, it would probably be a
9879 good idea for free_cached_info to throw it away. */
9880 }
9881
9882 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9883 &fi->i, filename_ptr, functionname_ptr,
9884 line_ptr))
9885 {
9886 msec->flags = origflags;
b34976b6 9887 return TRUE;
b49e97c9
TS
9888 }
9889
9890 msec->flags = origflags;
9891 }
9892
9893 /* Fall back on the generic ELF find_nearest_line routine. */
9894
9895 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9896 filename_ptr, functionname_ptr,
9897 line_ptr);
9898}
4ab527b0
FF
9899
9900bfd_boolean
9901_bfd_mips_elf_find_inliner_info (bfd *abfd,
9902 const char **filename_ptr,
9903 const char **functionname_ptr,
9904 unsigned int *line_ptr)
9905{
9906 bfd_boolean found;
9907 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9908 functionname_ptr, line_ptr,
9909 & elf_tdata (abfd)->dwarf2_find_line_info);
9910 return found;
9911}
9912
b49e97c9
TS
9913\f
9914/* When are writing out the .options or .MIPS.options section,
9915 remember the bytes we are writing out, so that we can install the
9916 GP value in the section_processing routine. */
9917
b34976b6 9918bfd_boolean
9719ad41
RS
9919_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9920 const void *location,
9921 file_ptr offset, bfd_size_type count)
b49e97c9 9922{
cc2e31b9 9923 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9924 {
9925 bfd_byte *c;
9926
9927 if (elf_section_data (section) == NULL)
9928 {
9929 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9930 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9931 if (elf_section_data (section) == NULL)
b34976b6 9932 return FALSE;
b49e97c9 9933 }
f0abc2a1 9934 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9935 if (c == NULL)
9936 {
eea6121a 9937 c = bfd_zalloc (abfd, section->size);
b49e97c9 9938 if (c == NULL)
b34976b6 9939 return FALSE;
f0abc2a1 9940 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9941 }
9942
9719ad41 9943 memcpy (c + offset, location, count);
b49e97c9
TS
9944 }
9945
9946 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9947 count);
9948}
9949
9950/* This is almost identical to bfd_generic_get_... except that some
9951 MIPS relocations need to be handled specially. Sigh. */
9952
9953bfd_byte *
9719ad41
RS
9954_bfd_elf_mips_get_relocated_section_contents
9955 (bfd *abfd,
9956 struct bfd_link_info *link_info,
9957 struct bfd_link_order *link_order,
9958 bfd_byte *data,
9959 bfd_boolean relocatable,
9960 asymbol **symbols)
b49e97c9
TS
9961{
9962 /* Get enough memory to hold the stuff */
9963 bfd *input_bfd = link_order->u.indirect.section->owner;
9964 asection *input_section = link_order->u.indirect.section;
eea6121a 9965 bfd_size_type sz;
b49e97c9
TS
9966
9967 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9968 arelent **reloc_vector = NULL;
9969 long reloc_count;
9970
9971 if (reloc_size < 0)
9972 goto error_return;
9973
9719ad41 9974 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
9975 if (reloc_vector == NULL && reloc_size != 0)
9976 goto error_return;
9977
9978 /* read in the section */
eea6121a
AM
9979 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9980 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
9981 goto error_return;
9982
b49e97c9
TS
9983 reloc_count = bfd_canonicalize_reloc (input_bfd,
9984 input_section,
9985 reloc_vector,
9986 symbols);
9987 if (reloc_count < 0)
9988 goto error_return;
9989
9990 if (reloc_count > 0)
9991 {
9992 arelent **parent;
9993 /* for mips */
9994 int gp_found;
9995 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9996
9997 {
9998 struct bfd_hash_entry *h;
9999 struct bfd_link_hash_entry *lh;
10000 /* Skip all this stuff if we aren't mixing formats. */
10001 if (abfd && input_bfd
10002 && abfd->xvec == input_bfd->xvec)
10003 lh = 0;
10004 else
10005 {
b34976b6 10006 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10007 lh = (struct bfd_link_hash_entry *) h;
10008 }
10009 lookup:
10010 if (lh)
10011 {
10012 switch (lh->type)
10013 {
10014 case bfd_link_hash_undefined:
10015 case bfd_link_hash_undefweak:
10016 case bfd_link_hash_common:
10017 gp_found = 0;
10018 break;
10019 case bfd_link_hash_defined:
10020 case bfd_link_hash_defweak:
10021 gp_found = 1;
10022 gp = lh->u.def.value;
10023 break;
10024 case bfd_link_hash_indirect:
10025 case bfd_link_hash_warning:
10026 lh = lh->u.i.link;
10027 /* @@FIXME ignoring warning for now */
10028 goto lookup;
10029 case bfd_link_hash_new:
10030 default:
10031 abort ();
10032 }
10033 }
10034 else
10035 gp_found = 0;
10036 }
10037 /* end mips */
9719ad41 10038 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10039 {
9719ad41 10040 char *error_message = NULL;
b49e97c9
TS
10041 bfd_reloc_status_type r;
10042
10043 /* Specific to MIPS: Deal with relocation types that require
10044 knowing the gp of the output bfd. */
10045 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10046
8236346f
EC
10047 /* If we've managed to find the gp and have a special
10048 function for the relocation then go ahead, else default
10049 to the generic handling. */
10050 if (gp_found
10051 && (*parent)->howto->special_function
10052 == _bfd_mips_elf32_gprel16_reloc)
10053 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10054 input_section, relocatable,
10055 data, gp);
10056 else
86324f90 10057 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10058 input_section,
10059 relocatable ? abfd : NULL,
10060 &error_message);
b49e97c9 10061
1049f94e 10062 if (relocatable)
b49e97c9
TS
10063 {
10064 asection *os = input_section->output_section;
10065
10066 /* A partial link, so keep the relocs */
10067 os->orelocation[os->reloc_count] = *parent;
10068 os->reloc_count++;
10069 }
10070
10071 if (r != bfd_reloc_ok)
10072 {
10073 switch (r)
10074 {
10075 case bfd_reloc_undefined:
10076 if (!((*link_info->callbacks->undefined_symbol)
10077 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10078 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10079 goto error_return;
10080 break;
10081 case bfd_reloc_dangerous:
9719ad41 10082 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10083 if (!((*link_info->callbacks->reloc_dangerous)
10084 (link_info, error_message, input_bfd, input_section,
10085 (*parent)->address)))
10086 goto error_return;
10087 break;
10088 case bfd_reloc_overflow:
10089 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10090 (link_info, NULL,
10091 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10092 (*parent)->howto->name, (*parent)->addend,
10093 input_bfd, input_section, (*parent)->address)))
10094 goto error_return;
10095 break;
10096 case bfd_reloc_outofrange:
10097 default:
10098 abort ();
10099 break;
10100 }
10101
10102 }
10103 }
10104 }
10105 if (reloc_vector != NULL)
10106 free (reloc_vector);
10107 return data;
10108
10109error_return:
10110 if (reloc_vector != NULL)
10111 free (reloc_vector);
10112 return NULL;
10113}
10114\f
10115/* Create a MIPS ELF linker hash table. */
10116
10117struct bfd_link_hash_table *
9719ad41 10118_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10119{
10120 struct mips_elf_link_hash_table *ret;
10121 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10122
9719ad41
RS
10123 ret = bfd_malloc (amt);
10124 if (ret == NULL)
b49e97c9
TS
10125 return NULL;
10126
66eb6687
AM
10127 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10128 mips_elf_link_hash_newfunc,
10129 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10130 {
e2d34d7d 10131 free (ret);
b49e97c9
TS
10132 return NULL;
10133 }
10134
10135#if 0
10136 /* We no longer use this. */
10137 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10138 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10139#endif
10140 ret->procedure_count = 0;
10141 ret->compact_rel_size = 0;
b34976b6 10142 ret->use_rld_obj_head = FALSE;
b49e97c9 10143 ret->rld_value = 0;
b34976b6 10144 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10145 ret->is_vxworks = FALSE;
10146 ret->srelbss = NULL;
10147 ret->sdynbss = NULL;
10148 ret->srelplt = NULL;
10149 ret->srelplt2 = NULL;
10150 ret->sgotplt = NULL;
10151 ret->splt = NULL;
10152 ret->plt_header_size = 0;
10153 ret->plt_entry_size = 0;
5108fc1b 10154 ret->function_stub_size = 0;
b49e97c9
TS
10155
10156 return &ret->root.root;
10157}
0a44bf69
RS
10158
10159/* Likewise, but indicate that the target is VxWorks. */
10160
10161struct bfd_link_hash_table *
10162_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10163{
10164 struct bfd_link_hash_table *ret;
10165
10166 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10167 if (ret)
10168 {
10169 struct mips_elf_link_hash_table *htab;
10170
10171 htab = (struct mips_elf_link_hash_table *) ret;
10172 htab->is_vxworks = 1;
10173 }
10174 return ret;
10175}
b49e97c9
TS
10176\f
10177/* We need to use a special link routine to handle the .reginfo and
10178 the .mdebug sections. We need to merge all instances of these
10179 sections together, not write them all out sequentially. */
10180
b34976b6 10181bfd_boolean
9719ad41 10182_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10183{
b49e97c9
TS
10184 asection *o;
10185 struct bfd_link_order *p;
10186 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10187 asection *rtproc_sec;
10188 Elf32_RegInfo reginfo;
10189 struct ecoff_debug_info debug;
7a2a6943
NC
10190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10191 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10192 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10193 void *mdebug_handle = NULL;
b49e97c9
TS
10194 asection *s;
10195 EXTR esym;
10196 unsigned int i;
10197 bfd_size_type amt;
0a44bf69 10198 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10199
10200 static const char * const secname[] =
10201 {
10202 ".text", ".init", ".fini", ".data",
10203 ".rodata", ".sdata", ".sbss", ".bss"
10204 };
10205 static const int sc[] =
10206 {
10207 scText, scInit, scFini, scData,
10208 scRData, scSData, scSBss, scBss
10209 };
10210
b49e97c9
TS
10211 /* We'd carefully arranged the dynamic symbol indices, and then the
10212 generic size_dynamic_sections renumbered them out from under us.
10213 Rather than trying somehow to prevent the renumbering, just do
10214 the sort again. */
0a44bf69 10215 htab = mips_elf_hash_table (info);
b49e97c9
TS
10216 if (elf_hash_table (info)->dynamic_sections_created)
10217 {
10218 bfd *dynobj;
10219 asection *got;
10220 struct mips_got_info *g;
7a2a6943 10221 bfd_size_type dynsecsymcount;
b49e97c9
TS
10222
10223 /* When we resort, we must tell mips_elf_sort_hash_table what
10224 the lowest index it may use is. That's the number of section
10225 symbols we're going to add. The generic ELF linker only
10226 adds these symbols when building a shared object. Note that
10227 we count the sections after (possibly) removing the .options
10228 section above. */
7a2a6943 10229
5108fc1b 10230 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10231 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10232 return FALSE;
b49e97c9
TS
10233
10234 /* Make sure we didn't grow the global .got region. */
10235 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10236 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10237 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10238
10239 if (g->global_gotsym != NULL)
10240 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10241 - g->global_gotsym->dynindx)
10242 <= g->global_gotno);
10243 }
10244
b49e97c9
TS
10245 /* Get a value for the GP register. */
10246 if (elf_gp (abfd) == 0)
10247 {
10248 struct bfd_link_hash_entry *h;
10249
b34976b6 10250 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10251 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10252 elf_gp (abfd) = (h->u.def.value
10253 + h->u.def.section->output_section->vma
10254 + h->u.def.section->output_offset);
0a44bf69
RS
10255 else if (htab->is_vxworks
10256 && (h = bfd_link_hash_lookup (info->hash,
10257 "_GLOBAL_OFFSET_TABLE_",
10258 FALSE, FALSE, TRUE))
10259 && h->type == bfd_link_hash_defined)
10260 elf_gp (abfd) = (h->u.def.section->output_section->vma
10261 + h->u.def.section->output_offset
10262 + h->u.def.value);
1049f94e 10263 else if (info->relocatable)
b49e97c9
TS
10264 {
10265 bfd_vma lo = MINUS_ONE;
10266
10267 /* Find the GP-relative section with the lowest offset. */
9719ad41 10268 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10269 if (o->vma < lo
10270 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10271 lo = o->vma;
10272
10273 /* And calculate GP relative to that. */
0a44bf69 10274 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10275 }
10276 else
10277 {
10278 /* If the relocate_section function needs to do a reloc
10279 involving the GP value, it should make a reloc_dangerous
10280 callback to warn that GP is not defined. */
10281 }
10282 }
10283
10284 /* Go through the sections and collect the .reginfo and .mdebug
10285 information. */
10286 reginfo_sec = NULL;
10287 mdebug_sec = NULL;
10288 gptab_data_sec = NULL;
10289 gptab_bss_sec = NULL;
9719ad41 10290 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10291 {
10292 if (strcmp (o->name, ".reginfo") == 0)
10293 {
10294 memset (&reginfo, 0, sizeof reginfo);
10295
10296 /* We have found the .reginfo section in the output file.
10297 Look through all the link_orders comprising it and merge
10298 the information together. */
8423293d 10299 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10300 {
10301 asection *input_section;
10302 bfd *input_bfd;
10303 Elf32_External_RegInfo ext;
10304 Elf32_RegInfo sub;
10305
10306 if (p->type != bfd_indirect_link_order)
10307 {
10308 if (p->type == bfd_data_link_order)
10309 continue;
10310 abort ();
10311 }
10312
10313 input_section = p->u.indirect.section;
10314 input_bfd = input_section->owner;
10315
b49e97c9 10316 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10317 &ext, 0, sizeof ext))
b34976b6 10318 return FALSE;
b49e97c9
TS
10319
10320 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10321
10322 reginfo.ri_gprmask |= sub.ri_gprmask;
10323 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10324 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10325 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10326 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10327
10328 /* ri_gp_value is set by the function
10329 mips_elf32_section_processing when the section is
10330 finally written out. */
10331
10332 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10333 elf_link_input_bfd ignores this section. */
10334 input_section->flags &= ~SEC_HAS_CONTENTS;
10335 }
10336
10337 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10338 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10339
10340 /* Skip this section later on (I don't think this currently
10341 matters, but someday it might). */
8423293d 10342 o->map_head.link_order = NULL;
b49e97c9
TS
10343
10344 reginfo_sec = o;
10345 }
10346
10347 if (strcmp (o->name, ".mdebug") == 0)
10348 {
10349 struct extsym_info einfo;
10350 bfd_vma last;
10351
10352 /* We have found the .mdebug section in the output file.
10353 Look through all the link_orders comprising it and merge
10354 the information together. */
10355 symhdr->magic = swap->sym_magic;
10356 /* FIXME: What should the version stamp be? */
10357 symhdr->vstamp = 0;
10358 symhdr->ilineMax = 0;
10359 symhdr->cbLine = 0;
10360 symhdr->idnMax = 0;
10361 symhdr->ipdMax = 0;
10362 symhdr->isymMax = 0;
10363 symhdr->ioptMax = 0;
10364 symhdr->iauxMax = 0;
10365 symhdr->issMax = 0;
10366 symhdr->issExtMax = 0;
10367 symhdr->ifdMax = 0;
10368 symhdr->crfd = 0;
10369 symhdr->iextMax = 0;
10370
10371 /* We accumulate the debugging information itself in the
10372 debug_info structure. */
10373 debug.line = NULL;
10374 debug.external_dnr = NULL;
10375 debug.external_pdr = NULL;
10376 debug.external_sym = NULL;
10377 debug.external_opt = NULL;
10378 debug.external_aux = NULL;
10379 debug.ss = NULL;
10380 debug.ssext = debug.ssext_end = NULL;
10381 debug.external_fdr = NULL;
10382 debug.external_rfd = NULL;
10383 debug.external_ext = debug.external_ext_end = NULL;
10384
10385 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10386 if (mdebug_handle == NULL)
b34976b6 10387 return FALSE;
b49e97c9
TS
10388
10389 esym.jmptbl = 0;
10390 esym.cobol_main = 0;
10391 esym.weakext = 0;
10392 esym.reserved = 0;
10393 esym.ifd = ifdNil;
10394 esym.asym.iss = issNil;
10395 esym.asym.st = stLocal;
10396 esym.asym.reserved = 0;
10397 esym.asym.index = indexNil;
10398 last = 0;
10399 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10400 {
10401 esym.asym.sc = sc[i];
10402 s = bfd_get_section_by_name (abfd, secname[i]);
10403 if (s != NULL)
10404 {
10405 esym.asym.value = s->vma;
eea6121a 10406 last = s->vma + s->size;
b49e97c9
TS
10407 }
10408 else
10409 esym.asym.value = last;
10410 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10411 secname[i], &esym))
b34976b6 10412 return FALSE;
b49e97c9
TS
10413 }
10414
8423293d 10415 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10416 {
10417 asection *input_section;
10418 bfd *input_bfd;
10419 const struct ecoff_debug_swap *input_swap;
10420 struct ecoff_debug_info input_debug;
10421 char *eraw_src;
10422 char *eraw_end;
10423
10424 if (p->type != bfd_indirect_link_order)
10425 {
10426 if (p->type == bfd_data_link_order)
10427 continue;
10428 abort ();
10429 }
10430
10431 input_section = p->u.indirect.section;
10432 input_bfd = input_section->owner;
10433
10434 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10435 || (get_elf_backend_data (input_bfd)
10436 ->elf_backend_ecoff_debug_swap) == NULL)
10437 {
10438 /* I don't know what a non MIPS ELF bfd would be
10439 doing with a .mdebug section, but I don't really
10440 want to deal with it. */
10441 continue;
10442 }
10443
10444 input_swap = (get_elf_backend_data (input_bfd)
10445 ->elf_backend_ecoff_debug_swap);
10446
eea6121a 10447 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10448
10449 /* The ECOFF linking code expects that we have already
10450 read in the debugging information and set up an
10451 ecoff_debug_info structure, so we do that now. */
10452 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10453 &input_debug))
b34976b6 10454 return FALSE;
b49e97c9
TS
10455
10456 if (! (bfd_ecoff_debug_accumulate
10457 (mdebug_handle, abfd, &debug, swap, input_bfd,
10458 &input_debug, input_swap, info)))
b34976b6 10459 return FALSE;
b49e97c9
TS
10460
10461 /* Loop through the external symbols. For each one with
10462 interesting information, try to find the symbol in
10463 the linker global hash table and save the information
10464 for the output external symbols. */
10465 eraw_src = input_debug.external_ext;
10466 eraw_end = (eraw_src
10467 + (input_debug.symbolic_header.iextMax
10468 * input_swap->external_ext_size));
10469 for (;
10470 eraw_src < eraw_end;
10471 eraw_src += input_swap->external_ext_size)
10472 {
10473 EXTR ext;
10474 const char *name;
10475 struct mips_elf_link_hash_entry *h;
10476
9719ad41 10477 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10478 if (ext.asym.sc == scNil
10479 || ext.asym.sc == scUndefined
10480 || ext.asym.sc == scSUndefined)
10481 continue;
10482
10483 name = input_debug.ssext + ext.asym.iss;
10484 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10485 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10486 if (h == NULL || h->esym.ifd != -2)
10487 continue;
10488
10489 if (ext.ifd != -1)
10490 {
10491 BFD_ASSERT (ext.ifd
10492 < input_debug.symbolic_header.ifdMax);
10493 ext.ifd = input_debug.ifdmap[ext.ifd];
10494 }
10495
10496 h->esym = ext;
10497 }
10498
10499 /* Free up the information we just read. */
10500 free (input_debug.line);
10501 free (input_debug.external_dnr);
10502 free (input_debug.external_pdr);
10503 free (input_debug.external_sym);
10504 free (input_debug.external_opt);
10505 free (input_debug.external_aux);
10506 free (input_debug.ss);
10507 free (input_debug.ssext);
10508 free (input_debug.external_fdr);
10509 free (input_debug.external_rfd);
10510 free (input_debug.external_ext);
10511
10512 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10513 elf_link_input_bfd ignores this section. */
10514 input_section->flags &= ~SEC_HAS_CONTENTS;
10515 }
10516
10517 if (SGI_COMPAT (abfd) && info->shared)
10518 {
10519 /* Create .rtproc section. */
10520 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10521 if (rtproc_sec == NULL)
10522 {
10523 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10524 | SEC_LINKER_CREATED | SEC_READONLY);
10525
3496cb2a
L
10526 rtproc_sec = bfd_make_section_with_flags (abfd,
10527 ".rtproc",
10528 flags);
b49e97c9 10529 if (rtproc_sec == NULL
b49e97c9 10530 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10531 return FALSE;
b49e97c9
TS
10532 }
10533
10534 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10535 info, rtproc_sec,
10536 &debug))
b34976b6 10537 return FALSE;
b49e97c9
TS
10538 }
10539
10540 /* Build the external symbol information. */
10541 einfo.abfd = abfd;
10542 einfo.info = info;
10543 einfo.debug = &debug;
10544 einfo.swap = swap;
b34976b6 10545 einfo.failed = FALSE;
b49e97c9 10546 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10547 mips_elf_output_extsym, &einfo);
b49e97c9 10548 if (einfo.failed)
b34976b6 10549 return FALSE;
b49e97c9
TS
10550
10551 /* Set the size of the .mdebug section. */
eea6121a 10552 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10553
10554 /* Skip this section later on (I don't think this currently
10555 matters, but someday it might). */
8423293d 10556 o->map_head.link_order = NULL;
b49e97c9
TS
10557
10558 mdebug_sec = o;
10559 }
10560
0112cd26 10561 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10562 {
10563 const char *subname;
10564 unsigned int c;
10565 Elf32_gptab *tab;
10566 Elf32_External_gptab *ext_tab;
10567 unsigned int j;
10568
10569 /* The .gptab.sdata and .gptab.sbss sections hold
10570 information describing how the small data area would
10571 change depending upon the -G switch. These sections
10572 not used in executables files. */
1049f94e 10573 if (! info->relocatable)
b49e97c9 10574 {
8423293d 10575 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10576 {
10577 asection *input_section;
10578
10579 if (p->type != bfd_indirect_link_order)
10580 {
10581 if (p->type == bfd_data_link_order)
10582 continue;
10583 abort ();
10584 }
10585
10586 input_section = p->u.indirect.section;
10587
10588 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10589 elf_link_input_bfd ignores this section. */
10590 input_section->flags &= ~SEC_HAS_CONTENTS;
10591 }
10592
10593 /* Skip this section later on (I don't think this
10594 currently matters, but someday it might). */
8423293d 10595 o->map_head.link_order = NULL;
b49e97c9
TS
10596
10597 /* Really remove the section. */
5daa8fe7 10598 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10599 --abfd->section_count;
10600
10601 continue;
10602 }
10603
10604 /* There is one gptab for initialized data, and one for
10605 uninitialized data. */
10606 if (strcmp (o->name, ".gptab.sdata") == 0)
10607 gptab_data_sec = o;
10608 else if (strcmp (o->name, ".gptab.sbss") == 0)
10609 gptab_bss_sec = o;
10610 else
10611 {
10612 (*_bfd_error_handler)
10613 (_("%s: illegal section name `%s'"),
10614 bfd_get_filename (abfd), o->name);
10615 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10616 return FALSE;
b49e97c9
TS
10617 }
10618
10619 /* The linker script always combines .gptab.data and
10620 .gptab.sdata into .gptab.sdata, and likewise for
10621 .gptab.bss and .gptab.sbss. It is possible that there is
10622 no .sdata or .sbss section in the output file, in which
10623 case we must change the name of the output section. */
10624 subname = o->name + sizeof ".gptab" - 1;
10625 if (bfd_get_section_by_name (abfd, subname) == NULL)
10626 {
10627 if (o == gptab_data_sec)
10628 o->name = ".gptab.data";
10629 else
10630 o->name = ".gptab.bss";
10631 subname = o->name + sizeof ".gptab" - 1;
10632 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10633 }
10634
10635 /* Set up the first entry. */
10636 c = 1;
10637 amt = c * sizeof (Elf32_gptab);
9719ad41 10638 tab = bfd_malloc (amt);
b49e97c9 10639 if (tab == NULL)
b34976b6 10640 return FALSE;
b49e97c9
TS
10641 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10642 tab[0].gt_header.gt_unused = 0;
10643
10644 /* Combine the input sections. */
8423293d 10645 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10646 {
10647 asection *input_section;
10648 bfd *input_bfd;
10649 bfd_size_type size;
10650 unsigned long last;
10651 bfd_size_type gpentry;
10652
10653 if (p->type != bfd_indirect_link_order)
10654 {
10655 if (p->type == bfd_data_link_order)
10656 continue;
10657 abort ();
10658 }
10659
10660 input_section = p->u.indirect.section;
10661 input_bfd = input_section->owner;
10662
10663 /* Combine the gptab entries for this input section one
10664 by one. We know that the input gptab entries are
10665 sorted by ascending -G value. */
eea6121a 10666 size = input_section->size;
b49e97c9
TS
10667 last = 0;
10668 for (gpentry = sizeof (Elf32_External_gptab);
10669 gpentry < size;
10670 gpentry += sizeof (Elf32_External_gptab))
10671 {
10672 Elf32_External_gptab ext_gptab;
10673 Elf32_gptab int_gptab;
10674 unsigned long val;
10675 unsigned long add;
b34976b6 10676 bfd_boolean exact;
b49e97c9
TS
10677 unsigned int look;
10678
10679 if (! (bfd_get_section_contents
9719ad41
RS
10680 (input_bfd, input_section, &ext_gptab, gpentry,
10681 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10682 {
10683 free (tab);
b34976b6 10684 return FALSE;
b49e97c9
TS
10685 }
10686
10687 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10688 &int_gptab);
10689 val = int_gptab.gt_entry.gt_g_value;
10690 add = int_gptab.gt_entry.gt_bytes - last;
10691
b34976b6 10692 exact = FALSE;
b49e97c9
TS
10693 for (look = 1; look < c; look++)
10694 {
10695 if (tab[look].gt_entry.gt_g_value >= val)
10696 tab[look].gt_entry.gt_bytes += add;
10697
10698 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10699 exact = TRUE;
b49e97c9
TS
10700 }
10701
10702 if (! exact)
10703 {
10704 Elf32_gptab *new_tab;
10705 unsigned int max;
10706
10707 /* We need a new table entry. */
10708 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10709 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10710 if (new_tab == NULL)
10711 {
10712 free (tab);
b34976b6 10713 return FALSE;
b49e97c9
TS
10714 }
10715 tab = new_tab;
10716 tab[c].gt_entry.gt_g_value = val;
10717 tab[c].gt_entry.gt_bytes = add;
10718
10719 /* Merge in the size for the next smallest -G
10720 value, since that will be implied by this new
10721 value. */
10722 max = 0;
10723 for (look = 1; look < c; look++)
10724 {
10725 if (tab[look].gt_entry.gt_g_value < val
10726 && (max == 0
10727 || (tab[look].gt_entry.gt_g_value
10728 > tab[max].gt_entry.gt_g_value)))
10729 max = look;
10730 }
10731 if (max != 0)
10732 tab[c].gt_entry.gt_bytes +=
10733 tab[max].gt_entry.gt_bytes;
10734
10735 ++c;
10736 }
10737
10738 last = int_gptab.gt_entry.gt_bytes;
10739 }
10740
10741 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10742 elf_link_input_bfd ignores this section. */
10743 input_section->flags &= ~SEC_HAS_CONTENTS;
10744 }
10745
10746 /* The table must be sorted by -G value. */
10747 if (c > 2)
10748 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10749
10750 /* Swap out the table. */
10751 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10752 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10753 if (ext_tab == NULL)
10754 {
10755 free (tab);
b34976b6 10756 return FALSE;
b49e97c9
TS
10757 }
10758
10759 for (j = 0; j < c; j++)
10760 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10761 free (tab);
10762
eea6121a 10763 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10764 o->contents = (bfd_byte *) ext_tab;
10765
10766 /* Skip this section later on (I don't think this currently
10767 matters, but someday it might). */
8423293d 10768 o->map_head.link_order = NULL;
b49e97c9
TS
10769 }
10770 }
10771
10772 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10773 if (!bfd_elf_final_link (abfd, info))
b34976b6 10774 return FALSE;
b49e97c9
TS
10775
10776 /* Now write out the computed sections. */
10777
9719ad41 10778 if (reginfo_sec != NULL)
b49e97c9
TS
10779 {
10780 Elf32_External_RegInfo ext;
10781
10782 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10783 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10784 return FALSE;
b49e97c9
TS
10785 }
10786
9719ad41 10787 if (mdebug_sec != NULL)
b49e97c9
TS
10788 {
10789 BFD_ASSERT (abfd->output_has_begun);
10790 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10791 swap, info,
10792 mdebug_sec->filepos))
b34976b6 10793 return FALSE;
b49e97c9
TS
10794
10795 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10796 }
10797
9719ad41 10798 if (gptab_data_sec != NULL)
b49e97c9
TS
10799 {
10800 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10801 gptab_data_sec->contents,
eea6121a 10802 0, gptab_data_sec->size))
b34976b6 10803 return FALSE;
b49e97c9
TS
10804 }
10805
9719ad41 10806 if (gptab_bss_sec != NULL)
b49e97c9
TS
10807 {
10808 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10809 gptab_bss_sec->contents,
eea6121a 10810 0, gptab_bss_sec->size))
b34976b6 10811 return FALSE;
b49e97c9
TS
10812 }
10813
10814 if (SGI_COMPAT (abfd))
10815 {
10816 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10817 if (rtproc_sec != NULL)
10818 {
10819 if (! bfd_set_section_contents (abfd, rtproc_sec,
10820 rtproc_sec->contents,
eea6121a 10821 0, rtproc_sec->size))
b34976b6 10822 return FALSE;
b49e97c9
TS
10823 }
10824 }
10825
b34976b6 10826 return TRUE;
b49e97c9
TS
10827}
10828\f
64543e1a
RS
10829/* Structure for saying that BFD machine EXTENSION extends BASE. */
10830
10831struct mips_mach_extension {
10832 unsigned long extension, base;
10833};
10834
10835
10836/* An array describing how BFD machines relate to one another. The entries
10837 are ordered topologically with MIPS I extensions listed last. */
10838
10839static const struct mips_mach_extension mips_mach_extensions[] = {
10840 /* MIPS64 extensions. */
5f74bc13 10841 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10842 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10843
10844 /* MIPS V extensions. */
10845 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10846
10847 /* R10000 extensions. */
10848 { bfd_mach_mips12000, bfd_mach_mips10000 },
10849
10850 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10851 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10852 better to allow vr5400 and vr5500 code to be merged anyway, since
10853 many libraries will just use the core ISA. Perhaps we could add
10854 some sort of ASE flag if this ever proves a problem. */
10855 { bfd_mach_mips5500, bfd_mach_mips5400 },
10856 { bfd_mach_mips5400, bfd_mach_mips5000 },
10857
10858 /* MIPS IV extensions. */
10859 { bfd_mach_mips5, bfd_mach_mips8000 },
10860 { bfd_mach_mips10000, bfd_mach_mips8000 },
10861 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10862 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10863 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10864
10865 /* VR4100 extensions. */
10866 { bfd_mach_mips4120, bfd_mach_mips4100 },
10867 { bfd_mach_mips4111, bfd_mach_mips4100 },
10868
10869 /* MIPS III extensions. */
10870 { bfd_mach_mips8000, bfd_mach_mips4000 },
10871 { bfd_mach_mips4650, bfd_mach_mips4000 },
10872 { bfd_mach_mips4600, bfd_mach_mips4000 },
10873 { bfd_mach_mips4400, bfd_mach_mips4000 },
10874 { bfd_mach_mips4300, bfd_mach_mips4000 },
10875 { bfd_mach_mips4100, bfd_mach_mips4000 },
10876 { bfd_mach_mips4010, bfd_mach_mips4000 },
10877
10878 /* MIPS32 extensions. */
10879 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10880
10881 /* MIPS II extensions. */
10882 { bfd_mach_mips4000, bfd_mach_mips6000 },
10883 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10884
10885 /* MIPS I extensions. */
10886 { bfd_mach_mips6000, bfd_mach_mips3000 },
10887 { bfd_mach_mips3900, bfd_mach_mips3000 }
10888};
10889
10890
10891/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10892
10893static bfd_boolean
9719ad41 10894mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10895{
10896 size_t i;
10897
c5211a54
RS
10898 if (extension == base)
10899 return TRUE;
10900
10901 if (base == bfd_mach_mipsisa32
10902 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10903 return TRUE;
10904
10905 if (base == bfd_mach_mipsisa32r2
10906 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10907 return TRUE;
10908
10909 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10910 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10911 {
10912 extension = mips_mach_extensions[i].base;
10913 if (extension == base)
10914 return TRUE;
10915 }
64543e1a 10916
c5211a54 10917 return FALSE;
64543e1a
RS
10918}
10919
10920
10921/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10922
b34976b6 10923static bfd_boolean
9719ad41 10924mips_32bit_flags_p (flagword flags)
00707a0e 10925{
64543e1a
RS
10926 return ((flags & EF_MIPS_32BITMODE) != 0
10927 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10928 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10929 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10930 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10931 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10932 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10933}
10934
64543e1a 10935
b49e97c9
TS
10936/* Merge backend specific data from an object file to the output
10937 object file when linking. */
10938
b34976b6 10939bfd_boolean
9719ad41 10940_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10941{
10942 flagword old_flags;
10943 flagword new_flags;
b34976b6
AM
10944 bfd_boolean ok;
10945 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10946 asection *sec;
10947
10948 /* Check if we have the same endianess */
82e51918 10949 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10950 {
10951 (*_bfd_error_handler)
d003868e
AM
10952 (_("%B: endianness incompatible with that of the selected emulation"),
10953 ibfd);
aa701218
AO
10954 return FALSE;
10955 }
b49e97c9
TS
10956
10957 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10958 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10959 return TRUE;
b49e97c9 10960
aa701218
AO
10961 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10962 {
10963 (*_bfd_error_handler)
d003868e
AM
10964 (_("%B: ABI is incompatible with that of the selected emulation"),
10965 ibfd);
aa701218
AO
10966 return FALSE;
10967 }
10968
b49e97c9
TS
10969 new_flags = elf_elfheader (ibfd)->e_flags;
10970 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10971 old_flags = elf_elfheader (obfd)->e_flags;
10972
10973 if (! elf_flags_init (obfd))
10974 {
b34976b6 10975 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
10976 elf_elfheader (obfd)->e_flags = new_flags;
10977 elf_elfheader (obfd)->e_ident[EI_CLASS]
10978 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10979
10980 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
10981 && (bfd_get_arch_info (obfd)->the_default
10982 || mips_mach_extends_p (bfd_get_mach (obfd),
10983 bfd_get_mach (ibfd))))
b49e97c9
TS
10984 {
10985 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10986 bfd_get_mach (ibfd)))
b34976b6 10987 return FALSE;
b49e97c9
TS
10988 }
10989
b34976b6 10990 return TRUE;
b49e97c9
TS
10991 }
10992
10993 /* Check flag compatibility. */
10994
10995 new_flags &= ~EF_MIPS_NOREORDER;
10996 old_flags &= ~EF_MIPS_NOREORDER;
10997
f4416af6
AO
10998 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10999 doesn't seem to matter. */
11000 new_flags &= ~EF_MIPS_XGOT;
11001 old_flags &= ~EF_MIPS_XGOT;
11002
98a8deaf
RS
11003 /* MIPSpro generates ucode info in n64 objects. Again, we should
11004 just be able to ignore this. */
11005 new_flags &= ~EF_MIPS_UCODE;
11006 old_flags &= ~EF_MIPS_UCODE;
11007
0a44bf69
RS
11008 /* Don't care about the PIC flags from dynamic objects; they are
11009 PIC by design. */
11010 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11011 && (ibfd->flags & DYNAMIC) != 0)
11012 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11013
b49e97c9 11014 if (new_flags == old_flags)
b34976b6 11015 return TRUE;
b49e97c9
TS
11016
11017 /* Check to see if the input BFD actually contains any sections.
11018 If not, its flags may not have been initialised either, but it cannot
11019 actually cause any incompatibility. */
11020 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11021 {
11022 /* Ignore synthetic sections and empty .text, .data and .bss sections
11023 which are automatically generated by gas. */
11024 if (strcmp (sec->name, ".reginfo")
11025 && strcmp (sec->name, ".mdebug")
eea6121a 11026 && (sec->size != 0
d13d89fa
NS
11027 || (strcmp (sec->name, ".text")
11028 && strcmp (sec->name, ".data")
11029 && strcmp (sec->name, ".bss"))))
b49e97c9 11030 {
b34976b6 11031 null_input_bfd = FALSE;
b49e97c9
TS
11032 break;
11033 }
11034 }
11035 if (null_input_bfd)
b34976b6 11036 return TRUE;
b49e97c9 11037
b34976b6 11038 ok = TRUE;
b49e97c9 11039
143d77c5
EC
11040 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11041 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11042 {
b49e97c9 11043 (*_bfd_error_handler)
d003868e
AM
11044 (_("%B: warning: linking PIC files with non-PIC files"),
11045 ibfd);
143d77c5 11046 ok = TRUE;
b49e97c9
TS
11047 }
11048
143d77c5
EC
11049 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11050 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11051 if (! (new_flags & EF_MIPS_PIC))
11052 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11053
11054 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11055 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11056
64543e1a
RS
11057 /* Compare the ISAs. */
11058 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11059 {
64543e1a 11060 (*_bfd_error_handler)
d003868e
AM
11061 (_("%B: linking 32-bit code with 64-bit code"),
11062 ibfd);
64543e1a
RS
11063 ok = FALSE;
11064 }
11065 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11066 {
11067 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11068 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11069 {
64543e1a
RS
11070 /* Copy the architecture info from IBFD to OBFD. Also copy
11071 the 32-bit flag (if set) so that we continue to recognise
11072 OBFD as a 32-bit binary. */
11073 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11074 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11075 elf_elfheader (obfd)->e_flags
11076 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11077
11078 /* Copy across the ABI flags if OBFD doesn't use them
11079 and if that was what caused us to treat IBFD as 32-bit. */
11080 if ((old_flags & EF_MIPS_ABI) == 0
11081 && mips_32bit_flags_p (new_flags)
11082 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11083 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11084 }
11085 else
11086 {
64543e1a 11087 /* The ISAs aren't compatible. */
b49e97c9 11088 (*_bfd_error_handler)
d003868e
AM
11089 (_("%B: linking %s module with previous %s modules"),
11090 ibfd,
64543e1a
RS
11091 bfd_printable_name (ibfd),
11092 bfd_printable_name (obfd));
b34976b6 11093 ok = FALSE;
b49e97c9 11094 }
b49e97c9
TS
11095 }
11096
64543e1a
RS
11097 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11098 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11099
11100 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11101 does set EI_CLASS differently from any 32-bit ABI. */
11102 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11103 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11104 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11105 {
11106 /* Only error if both are set (to different values). */
11107 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11108 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11109 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11110 {
11111 (*_bfd_error_handler)
d003868e
AM
11112 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11113 ibfd,
b49e97c9
TS
11114 elf_mips_abi_name (ibfd),
11115 elf_mips_abi_name (obfd));
b34976b6 11116 ok = FALSE;
b49e97c9
TS
11117 }
11118 new_flags &= ~EF_MIPS_ABI;
11119 old_flags &= ~EF_MIPS_ABI;
11120 }
11121
fb39dac1
RS
11122 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11123 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11124 {
11125 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11126
11127 new_flags &= ~ EF_MIPS_ARCH_ASE;
11128 old_flags &= ~ EF_MIPS_ARCH_ASE;
11129 }
11130
b49e97c9
TS
11131 /* Warn about any other mismatches */
11132 if (new_flags != old_flags)
11133 {
11134 (*_bfd_error_handler)
d003868e
AM
11135 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11136 ibfd, (unsigned long) new_flags,
b49e97c9 11137 (unsigned long) old_flags);
b34976b6 11138 ok = FALSE;
b49e97c9
TS
11139 }
11140
11141 if (! ok)
11142 {
11143 bfd_set_error (bfd_error_bad_value);
b34976b6 11144 return FALSE;
b49e97c9
TS
11145 }
11146
b34976b6 11147 return TRUE;
b49e97c9
TS
11148}
11149
11150/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11151
b34976b6 11152bfd_boolean
9719ad41 11153_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11154{
11155 BFD_ASSERT (!elf_flags_init (abfd)
11156 || elf_elfheader (abfd)->e_flags == flags);
11157
11158 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11159 elf_flags_init (abfd) = TRUE;
11160 return TRUE;
b49e97c9
TS
11161}
11162
b34976b6 11163bfd_boolean
9719ad41 11164_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11165{
9719ad41 11166 FILE *file = ptr;
b49e97c9
TS
11167
11168 BFD_ASSERT (abfd != NULL && ptr != NULL);
11169
11170 /* Print normal ELF private data. */
11171 _bfd_elf_print_private_bfd_data (abfd, ptr);
11172
11173 /* xgettext:c-format */
11174 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11175
11176 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11177 fprintf (file, _(" [abi=O32]"));
11178 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11179 fprintf (file, _(" [abi=O64]"));
11180 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11181 fprintf (file, _(" [abi=EABI32]"));
11182 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11183 fprintf (file, _(" [abi=EABI64]"));
11184 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11185 fprintf (file, _(" [abi unknown]"));
11186 else if (ABI_N32_P (abfd))
11187 fprintf (file, _(" [abi=N32]"));
11188 else if (ABI_64_P (abfd))
11189 fprintf (file, _(" [abi=64]"));
11190 else
11191 fprintf (file, _(" [no abi set]"));
11192
11193 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11194 fprintf (file, _(" [mips1]"));
11195 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11196 fprintf (file, _(" [mips2]"));
11197 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11198 fprintf (file, _(" [mips3]"));
11199 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11200 fprintf (file, _(" [mips4]"));
11201 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11202 fprintf (file, _(" [mips5]"));
11203 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11204 fprintf (file, _(" [mips32]"));
11205 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11206 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
11207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11208 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
11209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11210 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
11211 else
11212 fprintf (file, _(" [unknown ISA]"));
11213
40d32fc6
CD
11214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11215 fprintf (file, _(" [mdmx]"));
11216
11217 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11218 fprintf (file, _(" [mips16]"));
11219
b49e97c9
TS
11220 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11221 fprintf (file, _(" [32bitmode]"));
11222 else
11223 fprintf (file, _(" [not 32bitmode]"));
11224
11225 fputc ('\n', file);
11226
b34976b6 11227 return TRUE;
b49e97c9 11228}
2f89ff8d 11229
b35d266b 11230const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11231{
0112cd26
NC
11232 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11233 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11234 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11235 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11236 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11237 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11238 { NULL, 0, 0, 0, 0 }
2f89ff8d 11239};
5e2b0d47 11240
8992f0d7
TS
11241/* Merge non visibility st_other attributes. Ensure that the
11242 STO_OPTIONAL flag is copied into h->other, even if this is not a
11243 definiton of the symbol. */
5e2b0d47
NC
11244void
11245_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11246 const Elf_Internal_Sym *isym,
11247 bfd_boolean definition,
11248 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11249{
8992f0d7
TS
11250 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11251 {
11252 unsigned char other;
11253
11254 other = (definition ? isym->st_other : h->other);
11255 other &= ~ELF_ST_VISIBILITY (-1);
11256 h->other = other | ELF_ST_VISIBILITY (h->other);
11257 }
11258
11259 if (!definition
5e2b0d47
NC
11260 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11261 h->other |= STO_OPTIONAL;
11262}
12ac1cf5
NC
11263
11264/* Decide whether an undefined symbol is special and can be ignored.
11265 This is the case for OPTIONAL symbols on IRIX. */
11266bfd_boolean
11267_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11268{
11269 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11270}
e0764319
NC
11271
11272bfd_boolean
11273_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11274{
11275 return (sym->st_shndx == SHN_COMMON
11276 || sym->st_shndx == SHN_MIPS_ACOMMON
11277 || sym->st_shndx == SHN_MIPS_SCOMMON);
11278}
This page took 0.96963 seconds and 4 git commands to generate.