From Craig Silverstein: support @file expansion.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3db64b00 3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
0f20cc35
DJ
148 /* The number of .got slots used for TLS. */
149 unsigned int tls_gotno;
150 /* The first unused TLS .got entry. Used only during
151 mips_elf_initialize_tls_index. */
152 unsigned int tls_assigned_gotno;
c224138d 153 /* The number of local .got entries, eventually including page entries. */
b49e97c9 154 unsigned int local_gotno;
c224138d
RS
155 /* The maximum number of page entries needed. */
156 unsigned int page_gotno;
b49e97c9
TS
157 /* The number of local .got entries we have used. */
158 unsigned int assigned_gotno;
b15e6682
AO
159 /* A hash table holding members of the got. */
160 struct htab *got_entries;
c224138d
RS
161 /* A hash table of mips_got_page_entry structures. */
162 struct htab *got_page_entries;
f4416af6
AO
163 /* A hash table mapping input bfds to other mips_got_info. NULL
164 unless multi-got was necessary. */
165 struct htab *bfd2got;
166 /* In multi-got links, a pointer to the next got (err, rather, most
167 of the time, it points to the previous got). */
168 struct mips_got_info *next;
0f20cc35
DJ
169 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
170 for none, or MINUS_TWO for not yet assigned. This is needed
171 because a single-GOT link may have multiple hash table entries
172 for the LDM. It does not get initialized in multi-GOT mode. */
173 bfd_vma tls_ldm_offset;
f4416af6
AO
174};
175
176/* Map an input bfd to a got in a multi-got link. */
177
178struct mips_elf_bfd2got_hash {
179 bfd *bfd;
180 struct mips_got_info *g;
181};
182
183/* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
185
186struct mips_elf_got_per_bfd_arg
187{
188 /* A hashtable that maps bfds to gots. */
189 htab_t bfd2got;
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
c224138d
RS
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
0f20cc35
DJ
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
f4416af6
AO
211};
212
213/* Another structure used to pass arguments for got entries traversal. */
214
215struct mips_elf_set_global_got_offset_arg
216{
217 struct mips_got_info *g;
218 int value;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
b49e97c9
TS
221};
222
0f20cc35
DJ
223/* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
225
226struct mips_elf_count_tls_arg
227{
228 struct bfd_link_info *info;
229 unsigned int needed;
230};
231
f0abc2a1
AM
232struct _mips_elf_section_data
233{
234 struct bfd_elf_section_data elf;
235 union
236 {
237 struct mips_got_info *got_info;
238 bfd_byte *tdata;
239 } u;
240};
241
242#define mips_elf_section_data(sec) \
68bfbfcc 243 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 244
b49e97c9
TS
245/* This structure is passed to mips_elf_sort_hash_table_f when sorting
246 the dynamic symbols. */
247
248struct mips_elf_hash_sort_data
249{
250 /* The symbol in the global GOT with the lowest dynamic symbol table
251 index. */
252 struct elf_link_hash_entry *low;
0f20cc35
DJ
253 /* The least dynamic symbol table index corresponding to a non-TLS
254 symbol with a GOT entry. */
b49e97c9 255 long min_got_dynindx;
f4416af6
AO
256 /* The greatest dynamic symbol table index corresponding to a symbol
257 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 258 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 259 long max_unref_got_dynindx;
b49e97c9
TS
260 /* The greatest dynamic symbol table index not corresponding to a
261 symbol without a GOT entry. */
262 long max_non_got_dynindx;
263};
264
265/* The MIPS ELF linker needs additional information for each symbol in
266 the global hash table. */
267
268struct mips_elf_link_hash_entry
269{
270 struct elf_link_hash_entry root;
271
272 /* External symbol information. */
273 EXTR esym;
274
275 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
276 this symbol. */
277 unsigned int possibly_dynamic_relocs;
278
279 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
280 a readonly section. */
b34976b6 281 bfd_boolean readonly_reloc;
b49e97c9 282
b49e97c9
TS
283 /* We must not create a stub for a symbol that has relocations
284 related to taking the function's address, i.e. any but
285 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
286 p. 4-20. */
b34976b6 287 bfd_boolean no_fn_stub;
b49e97c9
TS
288
289 /* If there is a stub that 32 bit functions should use to call this
290 16 bit function, this points to the section containing the stub. */
291 asection *fn_stub;
292
293 /* Whether we need the fn_stub; this is set if this symbol appears
294 in any relocs other than a 16 bit call. */
b34976b6 295 bfd_boolean need_fn_stub;
b49e97c9
TS
296
297 /* If there is a stub that 16 bit functions should use to call this
298 32 bit function, this points to the section containing the stub. */
299 asection *call_stub;
300
301 /* This is like the call_stub field, but it is used if the function
302 being called returns a floating point value. */
303 asection *call_fp_stub;
7c5fcef7 304
a008ac03
DJ
305 /* Are we forced local? This will only be set if we have converted
306 the initial global GOT entry to a local GOT entry. */
b34976b6 307 bfd_boolean forced_local;
0f20cc35 308
0a44bf69
RS
309 /* Are we referenced by some kind of relocation? */
310 bfd_boolean is_relocation_target;
311
312 /* Are we referenced by branch relocations? */
313 bfd_boolean is_branch_target;
314
0f20cc35
DJ
315#define GOT_NORMAL 0
316#define GOT_TLS_GD 1
317#define GOT_TLS_LDM 2
318#define GOT_TLS_IE 4
319#define GOT_TLS_OFFSET_DONE 0x40
320#define GOT_TLS_DONE 0x80
321 unsigned char tls_type;
322 /* This is only used in single-GOT mode; in multi-GOT mode there
323 is one mips_got_entry per GOT entry, so the offset is stored
324 there. In single-GOT mode there may be many mips_got_entry
325 structures all referring to the same GOT slot. It might be
326 possible to use root.got.offset instead, but that field is
327 overloaded already. */
328 bfd_vma tls_got_offset;
b49e97c9
TS
329};
330
331/* MIPS ELF linker hash table. */
332
333struct mips_elf_link_hash_table
334{
335 struct elf_link_hash_table root;
336#if 0
337 /* We no longer use this. */
338 /* String section indices for the dynamic section symbols. */
339 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
340#endif
341 /* The number of .rtproc entries. */
342 bfd_size_type procedure_count;
343 /* The size of the .compact_rel section (if SGI_COMPAT). */
344 bfd_size_type compact_rel_size;
345 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 346 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 347 bfd_boolean use_rld_obj_head;
b49e97c9
TS
348 /* This is the value of the __rld_map or __rld_obj_head symbol. */
349 bfd_vma rld_value;
350 /* This is set if we see any mips16 stub sections. */
b34976b6 351 bfd_boolean mips16_stubs_seen;
8275b357
RS
352 /* True if we've computed the size of the GOT. */
353 bfd_boolean computed_got_sizes;
0a44bf69
RS
354 /* True if we're generating code for VxWorks. */
355 bfd_boolean is_vxworks;
0e53d9da
AN
356 /* True if we already reported the small-data section overflow. */
357 bfd_boolean small_data_overflow_reported;
0a44bf69
RS
358 /* Shortcuts to some dynamic sections, or NULL if they are not
359 being used. */
360 asection *srelbss;
361 asection *sdynbss;
362 asection *srelplt;
363 asection *srelplt2;
364 asection *sgotplt;
365 asection *splt;
366 /* The size of the PLT header in bytes (VxWorks only). */
367 bfd_vma plt_header_size;
368 /* The size of a PLT entry in bytes (VxWorks only). */
369 bfd_vma plt_entry_size;
5108fc1b
RS
370 /* The size of a function stub entry in bytes. */
371 bfd_vma function_stub_size;
b49e97c9
TS
372};
373
0f20cc35
DJ
374#define TLS_RELOC_P(r_type) \
375 (r_type == R_MIPS_TLS_DTPMOD32 \
376 || r_type == R_MIPS_TLS_DTPMOD64 \
377 || r_type == R_MIPS_TLS_DTPREL32 \
378 || r_type == R_MIPS_TLS_DTPREL64 \
379 || r_type == R_MIPS_TLS_GD \
380 || r_type == R_MIPS_TLS_LDM \
381 || r_type == R_MIPS_TLS_DTPREL_HI16 \
382 || r_type == R_MIPS_TLS_DTPREL_LO16 \
383 || r_type == R_MIPS_TLS_GOTTPREL \
384 || r_type == R_MIPS_TLS_TPREL32 \
385 || r_type == R_MIPS_TLS_TPREL64 \
386 || r_type == R_MIPS_TLS_TPREL_HI16 \
387 || r_type == R_MIPS_TLS_TPREL_LO16)
388
b49e97c9
TS
389/* Structure used to pass information to mips_elf_output_extsym. */
390
391struct extsym_info
392{
9e4aeb93
RS
393 bfd *abfd;
394 struct bfd_link_info *info;
b49e97c9
TS
395 struct ecoff_debug_info *debug;
396 const struct ecoff_debug_swap *swap;
b34976b6 397 bfd_boolean failed;
b49e97c9
TS
398};
399
8dc1a139 400/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
401
402static const char * const mips_elf_dynsym_rtproc_names[] =
403{
404 "_procedure_table",
405 "_procedure_string_table",
406 "_procedure_table_size",
407 NULL
408};
409
410/* These structures are used to generate the .compact_rel section on
8dc1a139 411 IRIX5. */
b49e97c9
TS
412
413typedef struct
414{
415 unsigned long id1; /* Always one? */
416 unsigned long num; /* Number of compact relocation entries. */
417 unsigned long id2; /* Always two? */
418 unsigned long offset; /* The file offset of the first relocation. */
419 unsigned long reserved0; /* Zero? */
420 unsigned long reserved1; /* Zero? */
421} Elf32_compact_rel;
422
423typedef struct
424{
425 bfd_byte id1[4];
426 bfd_byte num[4];
427 bfd_byte id2[4];
428 bfd_byte offset[4];
429 bfd_byte reserved0[4];
430 bfd_byte reserved1[4];
431} Elf32_External_compact_rel;
432
433typedef struct
434{
435 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
436 unsigned int rtype : 4; /* Relocation types. See below. */
437 unsigned int dist2to : 8;
438 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
439 unsigned long konst; /* KONST field. See below. */
440 unsigned long vaddr; /* VADDR to be relocated. */
441} Elf32_crinfo;
442
443typedef struct
444{
445 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
446 unsigned int rtype : 4; /* Relocation types. See below. */
447 unsigned int dist2to : 8;
448 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
449 unsigned long konst; /* KONST field. See below. */
450} Elf32_crinfo2;
451
452typedef struct
453{
454 bfd_byte info[4];
455 bfd_byte konst[4];
456 bfd_byte vaddr[4];
457} Elf32_External_crinfo;
458
459typedef struct
460{
461 bfd_byte info[4];
462 bfd_byte konst[4];
463} Elf32_External_crinfo2;
464
465/* These are the constants used to swap the bitfields in a crinfo. */
466
467#define CRINFO_CTYPE (0x1)
468#define CRINFO_CTYPE_SH (31)
469#define CRINFO_RTYPE (0xf)
470#define CRINFO_RTYPE_SH (27)
471#define CRINFO_DIST2TO (0xff)
472#define CRINFO_DIST2TO_SH (19)
473#define CRINFO_RELVADDR (0x7ffff)
474#define CRINFO_RELVADDR_SH (0)
475
476/* A compact relocation info has long (3 words) or short (2 words)
477 formats. A short format doesn't have VADDR field and relvaddr
478 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
479#define CRF_MIPS_LONG 1
480#define CRF_MIPS_SHORT 0
481
482/* There are 4 types of compact relocation at least. The value KONST
483 has different meaning for each type:
484
485 (type) (konst)
486 CT_MIPS_REL32 Address in data
487 CT_MIPS_WORD Address in word (XXX)
488 CT_MIPS_GPHI_LO GP - vaddr
489 CT_MIPS_JMPAD Address to jump
490 */
491
492#define CRT_MIPS_REL32 0xa
493#define CRT_MIPS_WORD 0xb
494#define CRT_MIPS_GPHI_LO 0xc
495#define CRT_MIPS_JMPAD 0xd
496
497#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
498#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
499#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
500#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
501\f
502/* The structure of the runtime procedure descriptor created by the
503 loader for use by the static exception system. */
504
505typedef struct runtime_pdr {
ae9a127f
NC
506 bfd_vma adr; /* Memory address of start of procedure. */
507 long regmask; /* Save register mask. */
508 long regoffset; /* Save register offset. */
509 long fregmask; /* Save floating point register mask. */
510 long fregoffset; /* Save floating point register offset. */
511 long frameoffset; /* Frame size. */
512 short framereg; /* Frame pointer register. */
513 short pcreg; /* Offset or reg of return pc. */
514 long irpss; /* Index into the runtime string table. */
b49e97c9 515 long reserved;
ae9a127f 516 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
517} RPDR, *pRPDR;
518#define cbRPDR sizeof (RPDR)
519#define rpdNil ((pRPDR) 0)
520\f
b15e6682 521static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69 522 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
5c18022e 523 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 524static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 525 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
526static bfd_vma mips_elf_high
527 (bfd_vma);
b9d58d71 528static bfd_boolean mips16_stub_section_p
9719ad41 529 (bfd *, asection *);
b34976b6 530static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
531 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
532 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
533 bfd_vma *, asection *);
9719ad41
RS
534static hashval_t mips_elf_got_entry_hash
535 (const void *);
f4416af6 536static bfd_vma mips_elf_adjust_gp
9719ad41 537 (bfd *, struct mips_got_info *, bfd *);
f4416af6 538static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 539 (struct mips_got_info *, bfd *);
f4416af6 540
b49e97c9
TS
541/* This will be used when we sort the dynamic relocation records. */
542static bfd *reldyn_sorting_bfd;
543
544/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
545#define ABI_N32_P(abfd) \
546 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
547
4a14403c 548/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 549#define ABI_64_P(abfd) \
141ff970 550 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 551
4a14403c
TS
552/* Nonzero if ABFD is using NewABI conventions. */
553#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
554
555/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
556#define IRIX_COMPAT(abfd) \
557 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
558
b49e97c9
TS
559/* Whether we are trying to be compatible with IRIX at all. */
560#define SGI_COMPAT(abfd) \
561 (IRIX_COMPAT (abfd) != ict_none)
562
563/* The name of the options section. */
564#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 565 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 566
cc2e31b9
RS
567/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
568 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
569#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
570 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
571
943284cc
DJ
572/* Whether the section is readonly. */
573#define MIPS_ELF_READONLY_SECTION(sec) \
574 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
575 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
576
b49e97c9 577/* The name of the stub section. */
ca07892d 578#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
579
580/* The size of an external REL relocation. */
581#define MIPS_ELF_REL_SIZE(abfd) \
582 (get_elf_backend_data (abfd)->s->sizeof_rel)
583
0a44bf69
RS
584/* The size of an external RELA relocation. */
585#define MIPS_ELF_RELA_SIZE(abfd) \
586 (get_elf_backend_data (abfd)->s->sizeof_rela)
587
b49e97c9
TS
588/* The size of an external dynamic table entry. */
589#define MIPS_ELF_DYN_SIZE(abfd) \
590 (get_elf_backend_data (abfd)->s->sizeof_dyn)
591
592/* The size of a GOT entry. */
593#define MIPS_ELF_GOT_SIZE(abfd) \
594 (get_elf_backend_data (abfd)->s->arch_size / 8)
595
596/* The size of a symbol-table entry. */
597#define MIPS_ELF_SYM_SIZE(abfd) \
598 (get_elf_backend_data (abfd)->s->sizeof_sym)
599
600/* The default alignment for sections, as a power of two. */
601#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 602 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
603
604/* Get word-sized data. */
605#define MIPS_ELF_GET_WORD(abfd, ptr) \
606 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
607
608/* Put out word-sized data. */
609#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
610 (ABI_64_P (abfd) \
611 ? bfd_put_64 (abfd, val, ptr) \
612 : bfd_put_32 (abfd, val, ptr))
613
614/* Add a dynamic symbol table-entry. */
9719ad41 615#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 616 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
617
618#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
619 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
620
4ffba85c
AO
621/* Determine whether the internal relocation of index REL_IDX is REL
622 (zero) or RELA (non-zero). The assumption is that, if there are
623 two relocation sections for this section, one of them is REL and
624 the other is RELA. If the index of the relocation we're testing is
625 in range for the first relocation section, check that the external
626 relocation size is that for RELA. It is also assumed that, if
627 rel_idx is not in range for the first section, and this first
628 section contains REL relocs, then the relocation is in the second
629 section, that is RELA. */
630#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
631 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
632 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
633 > (bfd_vma)(rel_idx)) \
634 == (elf_section_data (sec)->rel_hdr.sh_entsize \
635 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
636 : sizeof (Elf32_External_Rela))))
637
0a44bf69
RS
638/* The name of the dynamic relocation section. */
639#define MIPS_ELF_REL_DYN_NAME(INFO) \
640 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
641
b49e97c9
TS
642/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
643 from smaller values. Start with zero, widen, *then* decrement. */
644#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 645#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
646
647/* The number of local .got entries we reserve. */
0a44bf69
RS
648#define MIPS_RESERVED_GOTNO(INFO) \
649 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 650
f4416af6 651/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
652#define ELF_MIPS_GP_OFFSET(INFO) \
653 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
654
655/* The maximum size of the GOT for it to be addressable using 16-bit
656 offsets from $gp. */
0a44bf69 657#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 658
6a691779 659/* Instructions which appear in a stub. */
3d6746ca
DD
660#define STUB_LW(abfd) \
661 ((ABI_64_P (abfd) \
662 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
663 : 0x8f998010)) /* lw t9,0x8010(gp) */
664#define STUB_MOVE(abfd) \
665 ((ABI_64_P (abfd) \
666 ? 0x03e0782d /* daddu t7,ra */ \
667 : 0x03e07821)) /* addu t7,ra */
668#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
669#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
670#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
671#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
672#define STUB_LI16S(abfd, VAL) \
673 ((ABI_64_P (abfd) \
674 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
675 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
676
5108fc1b
RS
677#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
678#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
679
680/* The name of the dynamic interpreter. This is put in the .interp
681 section. */
682
683#define ELF_DYNAMIC_INTERPRETER(abfd) \
684 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
685 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
686 : "/usr/lib/libc.so.1")
687
688#ifdef BFD64
ee6423ed
AO
689#define MNAME(bfd,pre,pos) \
690 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
691#define ELF_R_SYM(bfd, i) \
692 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
693#define ELF_R_TYPE(bfd, i) \
694 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
695#define ELF_R_INFO(bfd, s, t) \
696 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
697#else
ee6423ed 698#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
699#define ELF_R_SYM(bfd, i) \
700 (ELF32_R_SYM (i))
701#define ELF_R_TYPE(bfd, i) \
702 (ELF32_R_TYPE (i))
703#define ELF_R_INFO(bfd, s, t) \
704 (ELF32_R_INFO (s, t))
705#endif
706\f
707 /* The mips16 compiler uses a couple of special sections to handle
708 floating point arguments.
709
710 Section names that look like .mips16.fn.FNNAME contain stubs that
711 copy floating point arguments from the fp regs to the gp regs and
712 then jump to FNNAME. If any 32 bit function calls FNNAME, the
713 call should be redirected to the stub instead. If no 32 bit
714 function calls FNNAME, the stub should be discarded. We need to
715 consider any reference to the function, not just a call, because
716 if the address of the function is taken we will need the stub,
717 since the address might be passed to a 32 bit function.
718
719 Section names that look like .mips16.call.FNNAME contain stubs
720 that copy floating point arguments from the gp regs to the fp
721 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
722 then any 16 bit function that calls FNNAME should be redirected
723 to the stub instead. If FNNAME is not a 32 bit function, the
724 stub should be discarded.
725
726 .mips16.call.fp.FNNAME sections are similar, but contain stubs
727 which call FNNAME and then copy the return value from the fp regs
728 to the gp regs. These stubs store the return value in $18 while
729 calling FNNAME; any function which might call one of these stubs
730 must arrange to save $18 around the call. (This case is not
731 needed for 32 bit functions that call 16 bit functions, because
732 16 bit functions always return floating point values in both
733 $f0/$f1 and $2/$3.)
734
735 Note that in all cases FNNAME might be defined statically.
736 Therefore, FNNAME is not used literally. Instead, the relocation
737 information will indicate which symbol the section is for.
738
739 We record any stubs that we find in the symbol table. */
740
741#define FN_STUB ".mips16.fn."
742#define CALL_STUB ".mips16.call."
743#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
744
745#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
746#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
747#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 748\f
0a44bf69
RS
749/* The format of the first PLT entry in a VxWorks executable. */
750static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
751 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
752 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
753 0x8f390008, /* lw t9, 8(t9) */
754 0x00000000, /* nop */
755 0x03200008, /* jr t9 */
756 0x00000000 /* nop */
757};
758
759/* The format of subsequent PLT entries. */
760static const bfd_vma mips_vxworks_exec_plt_entry[] = {
761 0x10000000, /* b .PLT_resolver */
762 0x24180000, /* li t8, <pltindex> */
763 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
764 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
765 0x8f390000, /* lw t9, 0(t9) */
766 0x00000000, /* nop */
767 0x03200008, /* jr t9 */
768 0x00000000 /* nop */
769};
770
771/* The format of the first PLT entry in a VxWorks shared object. */
772static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
773 0x8f990008, /* lw t9, 8(gp) */
774 0x00000000, /* nop */
775 0x03200008, /* jr t9 */
776 0x00000000, /* nop */
777 0x00000000, /* nop */
778 0x00000000 /* nop */
779};
780
781/* The format of subsequent PLT entries. */
782static const bfd_vma mips_vxworks_shared_plt_entry[] = {
783 0x10000000, /* b .PLT_resolver */
784 0x24180000 /* li t8, <pltindex> */
785};
786\f
b49e97c9
TS
787/* Look up an entry in a MIPS ELF linker hash table. */
788
789#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
790 ((struct mips_elf_link_hash_entry *) \
791 elf_link_hash_lookup (&(table)->root, (string), (create), \
792 (copy), (follow)))
793
794/* Traverse a MIPS ELF linker hash table. */
795
796#define mips_elf_link_hash_traverse(table, func, info) \
797 (elf_link_hash_traverse \
798 (&(table)->root, \
9719ad41 799 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
800 (info)))
801
802/* Get the MIPS ELF linker hash table from a link_info structure. */
803
804#define mips_elf_hash_table(p) \
805 ((struct mips_elf_link_hash_table *) ((p)->hash))
806
0f20cc35
DJ
807/* Find the base offsets for thread-local storage in this object,
808 for GD/LD and IE/LE respectively. */
809
810#define TP_OFFSET 0x7000
811#define DTP_OFFSET 0x8000
812
813static bfd_vma
814dtprel_base (struct bfd_link_info *info)
815{
816 /* If tls_sec is NULL, we should have signalled an error already. */
817 if (elf_hash_table (info)->tls_sec == NULL)
818 return 0;
819 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
820}
821
822static bfd_vma
823tprel_base (struct bfd_link_info *info)
824{
825 /* If tls_sec is NULL, we should have signalled an error already. */
826 if (elf_hash_table (info)->tls_sec == NULL)
827 return 0;
828 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
829}
830
b49e97c9
TS
831/* Create an entry in a MIPS ELF linker hash table. */
832
833static struct bfd_hash_entry *
9719ad41
RS
834mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
835 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
836{
837 struct mips_elf_link_hash_entry *ret =
838 (struct mips_elf_link_hash_entry *) entry;
839
840 /* Allocate the structure if it has not already been allocated by a
841 subclass. */
9719ad41
RS
842 if (ret == NULL)
843 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
844 if (ret == NULL)
b49e97c9
TS
845 return (struct bfd_hash_entry *) ret;
846
847 /* Call the allocation method of the superclass. */
848 ret = ((struct mips_elf_link_hash_entry *)
849 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
850 table, string));
9719ad41 851 if (ret != NULL)
b49e97c9
TS
852 {
853 /* Set local fields. */
854 memset (&ret->esym, 0, sizeof (EXTR));
855 /* We use -2 as a marker to indicate that the information has
856 not been set. -1 means there is no associated ifd. */
857 ret->esym.ifd = -2;
858 ret->possibly_dynamic_relocs = 0;
b34976b6 859 ret->readonly_reloc = FALSE;
b34976b6 860 ret->no_fn_stub = FALSE;
b49e97c9 861 ret->fn_stub = NULL;
b34976b6 862 ret->need_fn_stub = FALSE;
b49e97c9
TS
863 ret->call_stub = NULL;
864 ret->call_fp_stub = NULL;
b34976b6 865 ret->forced_local = FALSE;
0a44bf69
RS
866 ret->is_branch_target = FALSE;
867 ret->is_relocation_target = FALSE;
0f20cc35 868 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
869 }
870
871 return (struct bfd_hash_entry *) ret;
872}
f0abc2a1
AM
873
874bfd_boolean
9719ad41 875_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 876{
f592407e
AM
877 if (!sec->used_by_bfd)
878 {
879 struct _mips_elf_section_data *sdata;
880 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 881
f592407e
AM
882 sdata = bfd_zalloc (abfd, amt);
883 if (sdata == NULL)
884 return FALSE;
885 sec->used_by_bfd = sdata;
886 }
f0abc2a1
AM
887
888 return _bfd_elf_new_section_hook (abfd, sec);
889}
b49e97c9
TS
890\f
891/* Read ECOFF debugging information from a .mdebug section into a
892 ecoff_debug_info structure. */
893
b34976b6 894bfd_boolean
9719ad41
RS
895_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
896 struct ecoff_debug_info *debug)
b49e97c9
TS
897{
898 HDRR *symhdr;
899 const struct ecoff_debug_swap *swap;
9719ad41 900 char *ext_hdr;
b49e97c9
TS
901
902 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
903 memset (debug, 0, sizeof (*debug));
904
9719ad41 905 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
906 if (ext_hdr == NULL && swap->external_hdr_size != 0)
907 goto error_return;
908
9719ad41 909 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 910 swap->external_hdr_size))
b49e97c9
TS
911 goto error_return;
912
913 symhdr = &debug->symbolic_header;
914 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
915
916 /* The symbolic header contains absolute file offsets and sizes to
917 read. */
918#define READ(ptr, offset, count, size, type) \
919 if (symhdr->count == 0) \
920 debug->ptr = NULL; \
921 else \
922 { \
923 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 924 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
925 if (debug->ptr == NULL) \
926 goto error_return; \
9719ad41 927 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
928 || bfd_bread (debug->ptr, amt, abfd) != amt) \
929 goto error_return; \
930 }
931
932 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
933 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
934 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
935 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
936 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
937 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
938 union aux_ext *);
939 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
940 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
941 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
942 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
943 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
944#undef READ
945
946 debug->fdr = NULL;
b49e97c9 947
b34976b6 948 return TRUE;
b49e97c9
TS
949
950 error_return:
951 if (ext_hdr != NULL)
952 free (ext_hdr);
953 if (debug->line != NULL)
954 free (debug->line);
955 if (debug->external_dnr != NULL)
956 free (debug->external_dnr);
957 if (debug->external_pdr != NULL)
958 free (debug->external_pdr);
959 if (debug->external_sym != NULL)
960 free (debug->external_sym);
961 if (debug->external_opt != NULL)
962 free (debug->external_opt);
963 if (debug->external_aux != NULL)
964 free (debug->external_aux);
965 if (debug->ss != NULL)
966 free (debug->ss);
967 if (debug->ssext != NULL)
968 free (debug->ssext);
969 if (debug->external_fdr != NULL)
970 free (debug->external_fdr);
971 if (debug->external_rfd != NULL)
972 free (debug->external_rfd);
973 if (debug->external_ext != NULL)
974 free (debug->external_ext);
b34976b6 975 return FALSE;
b49e97c9
TS
976}
977\f
978/* Swap RPDR (runtime procedure table entry) for output. */
979
980static void
9719ad41 981ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
982{
983 H_PUT_S32 (abfd, in->adr, ex->p_adr);
984 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
985 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
986 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
987 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
988 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
989
990 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
991 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
992
993 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
994}
995
996/* Create a runtime procedure table from the .mdebug section. */
997
b34976b6 998static bfd_boolean
9719ad41
RS
999mips_elf_create_procedure_table (void *handle, bfd *abfd,
1000 struct bfd_link_info *info, asection *s,
1001 struct ecoff_debug_info *debug)
b49e97c9
TS
1002{
1003 const struct ecoff_debug_swap *swap;
1004 HDRR *hdr = &debug->symbolic_header;
1005 RPDR *rpdr, *rp;
1006 struct rpdr_ext *erp;
9719ad41 1007 void *rtproc;
b49e97c9
TS
1008 struct pdr_ext *epdr;
1009 struct sym_ext *esym;
1010 char *ss, **sv;
1011 char *str;
1012 bfd_size_type size;
1013 bfd_size_type count;
1014 unsigned long sindex;
1015 unsigned long i;
1016 PDR pdr;
1017 SYMR sym;
1018 const char *no_name_func = _("static procedure (no name)");
1019
1020 epdr = NULL;
1021 rpdr = NULL;
1022 esym = NULL;
1023 ss = NULL;
1024 sv = NULL;
1025
1026 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1027
1028 sindex = strlen (no_name_func) + 1;
1029 count = hdr->ipdMax;
1030 if (count > 0)
1031 {
1032 size = swap->external_pdr_size;
1033
9719ad41 1034 epdr = bfd_malloc (size * count);
b49e97c9
TS
1035 if (epdr == NULL)
1036 goto error_return;
1037
9719ad41 1038 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1039 goto error_return;
1040
1041 size = sizeof (RPDR);
9719ad41 1042 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1043 if (rpdr == NULL)
1044 goto error_return;
1045
1046 size = sizeof (char *);
9719ad41 1047 sv = bfd_malloc (size * count);
b49e97c9
TS
1048 if (sv == NULL)
1049 goto error_return;
1050
1051 count = hdr->isymMax;
1052 size = swap->external_sym_size;
9719ad41 1053 esym = bfd_malloc (size * count);
b49e97c9
TS
1054 if (esym == NULL)
1055 goto error_return;
1056
9719ad41 1057 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1058 goto error_return;
1059
1060 count = hdr->issMax;
9719ad41 1061 ss = bfd_malloc (count);
b49e97c9
TS
1062 if (ss == NULL)
1063 goto error_return;
f075ee0c 1064 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1065 goto error_return;
1066
1067 count = hdr->ipdMax;
1068 for (i = 0; i < (unsigned long) count; i++, rp++)
1069 {
9719ad41
RS
1070 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1071 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1072 rp->adr = sym.value;
1073 rp->regmask = pdr.regmask;
1074 rp->regoffset = pdr.regoffset;
1075 rp->fregmask = pdr.fregmask;
1076 rp->fregoffset = pdr.fregoffset;
1077 rp->frameoffset = pdr.frameoffset;
1078 rp->framereg = pdr.framereg;
1079 rp->pcreg = pdr.pcreg;
1080 rp->irpss = sindex;
1081 sv[i] = ss + sym.iss;
1082 sindex += strlen (sv[i]) + 1;
1083 }
1084 }
1085
1086 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1087 size = BFD_ALIGN (size, 16);
9719ad41 1088 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1089 if (rtproc == NULL)
1090 {
1091 mips_elf_hash_table (info)->procedure_count = 0;
1092 goto error_return;
1093 }
1094
1095 mips_elf_hash_table (info)->procedure_count = count + 2;
1096
9719ad41 1097 erp = rtproc;
b49e97c9
TS
1098 memset (erp, 0, sizeof (struct rpdr_ext));
1099 erp++;
1100 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1101 strcpy (str, no_name_func);
1102 str += strlen (no_name_func) + 1;
1103 for (i = 0; i < count; i++)
1104 {
1105 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1106 strcpy (str, sv[i]);
1107 str += strlen (sv[i]) + 1;
1108 }
1109 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1110
1111 /* Set the size and contents of .rtproc section. */
eea6121a 1112 s->size = size;
9719ad41 1113 s->contents = rtproc;
b49e97c9
TS
1114
1115 /* Skip this section later on (I don't think this currently
1116 matters, but someday it might). */
8423293d 1117 s->map_head.link_order = NULL;
b49e97c9
TS
1118
1119 if (epdr != NULL)
1120 free (epdr);
1121 if (rpdr != NULL)
1122 free (rpdr);
1123 if (esym != NULL)
1124 free (esym);
1125 if (ss != NULL)
1126 free (ss);
1127 if (sv != NULL)
1128 free (sv);
1129
b34976b6 1130 return TRUE;
b49e97c9
TS
1131
1132 error_return:
1133 if (epdr != NULL)
1134 free (epdr);
1135 if (rpdr != NULL)
1136 free (rpdr);
1137 if (esym != NULL)
1138 free (esym);
1139 if (ss != NULL)
1140 free (ss);
1141 if (sv != NULL)
1142 free (sv);
b34976b6 1143 return FALSE;
b49e97c9
TS
1144}
1145
1146/* Check the mips16 stubs for a particular symbol, and see if we can
1147 discard them. */
1148
b34976b6 1149static bfd_boolean
9719ad41
RS
1150mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1151 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1152{
1153 if (h->root.root.type == bfd_link_hash_warning)
1154 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1155
1156 if (h->fn_stub != NULL
1157 && ! h->need_fn_stub)
1158 {
1159 /* We don't need the fn_stub; the only references to this symbol
1160 are 16 bit calls. Clobber the size to 0 to prevent it from
1161 being included in the link. */
eea6121a 1162 h->fn_stub->size = 0;
b49e97c9
TS
1163 h->fn_stub->flags &= ~SEC_RELOC;
1164 h->fn_stub->reloc_count = 0;
1165 h->fn_stub->flags |= SEC_EXCLUDE;
1166 }
1167
1168 if (h->call_stub != NULL
1169 && h->root.other == STO_MIPS16)
1170 {
1171 /* We don't need the call_stub; this is a 16 bit function, so
1172 calls from other 16 bit functions are OK. Clobber the size
1173 to 0 to prevent it from being included in the link. */
eea6121a 1174 h->call_stub->size = 0;
b49e97c9
TS
1175 h->call_stub->flags &= ~SEC_RELOC;
1176 h->call_stub->reloc_count = 0;
1177 h->call_stub->flags |= SEC_EXCLUDE;
1178 }
1179
1180 if (h->call_fp_stub != NULL
1181 && h->root.other == STO_MIPS16)
1182 {
1183 /* We don't need the call_stub; this is a 16 bit function, so
1184 calls from other 16 bit functions are OK. Clobber the size
1185 to 0 to prevent it from being included in the link. */
eea6121a 1186 h->call_fp_stub->size = 0;
b49e97c9
TS
1187 h->call_fp_stub->flags &= ~SEC_RELOC;
1188 h->call_fp_stub->reloc_count = 0;
1189 h->call_fp_stub->flags |= SEC_EXCLUDE;
1190 }
1191
b34976b6 1192 return TRUE;
b49e97c9
TS
1193}
1194\f
d6f16593
MR
1195/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1196 Most mips16 instructions are 16 bits, but these instructions
1197 are 32 bits.
1198
1199 The format of these instructions is:
1200
1201 +--------------+--------------------------------+
1202 | JALX | X| Imm 20:16 | Imm 25:21 |
1203 +--------------+--------------------------------+
1204 | Immediate 15:0 |
1205 +-----------------------------------------------+
1206
1207 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1208 Note that the immediate value in the first word is swapped.
1209
1210 When producing a relocatable object file, R_MIPS16_26 is
1211 handled mostly like R_MIPS_26. In particular, the addend is
1212 stored as a straight 26-bit value in a 32-bit instruction.
1213 (gas makes life simpler for itself by never adjusting a
1214 R_MIPS16_26 reloc to be against a section, so the addend is
1215 always zero). However, the 32 bit instruction is stored as 2
1216 16-bit values, rather than a single 32-bit value. In a
1217 big-endian file, the result is the same; in a little-endian
1218 file, the two 16-bit halves of the 32 bit value are swapped.
1219 This is so that a disassembler can recognize the jal
1220 instruction.
1221
1222 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1223 instruction stored as two 16-bit values. The addend A is the
1224 contents of the targ26 field. The calculation is the same as
1225 R_MIPS_26. When storing the calculated value, reorder the
1226 immediate value as shown above, and don't forget to store the
1227 value as two 16-bit values.
1228
1229 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1230 defined as
1231
1232 big-endian:
1233 +--------+----------------------+
1234 | | |
1235 | | targ26-16 |
1236 |31 26|25 0|
1237 +--------+----------------------+
1238
1239 little-endian:
1240 +----------+------+-------------+
1241 | | | |
1242 | sub1 | | sub2 |
1243 |0 9|10 15|16 31|
1244 +----------+--------------------+
1245 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1246 ((sub1 << 16) | sub2)).
1247
1248 When producing a relocatable object file, the calculation is
1249 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1250 When producing a fully linked file, the calculation is
1251 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1252 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1253
1254 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1255 mode. A typical instruction will have a format like this:
1256
1257 +--------------+--------------------------------+
1258 | EXTEND | Imm 10:5 | Imm 15:11 |
1259 +--------------+--------------------------------+
1260 | Major | rx | ry | Imm 4:0 |
1261 +--------------+--------------------------------+
1262
1263 EXTEND is the five bit value 11110. Major is the instruction
1264 opcode.
1265
1266 This is handled exactly like R_MIPS_GPREL16, except that the
1267 addend is retrieved and stored as shown in this diagram; that
1268 is, the Imm fields above replace the V-rel16 field.
1269
1270 All we need to do here is shuffle the bits appropriately. As
1271 above, the two 16-bit halves must be swapped on a
1272 little-endian system.
1273
1274 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1275 access data when neither GP-relative nor PC-relative addressing
1276 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1277 except that the addend is retrieved and stored as shown above
1278 for R_MIPS16_GPREL.
1279 */
1280void
1281_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1282 bfd_boolean jal_shuffle, bfd_byte *data)
1283{
1284 bfd_vma extend, insn, val;
1285
1286 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1287 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1288 return;
1289
1290 /* Pick up the mips16 extend instruction and the real instruction. */
1291 extend = bfd_get_16 (abfd, data);
1292 insn = bfd_get_16 (abfd, data + 2);
1293 if (r_type == R_MIPS16_26)
1294 {
1295 if (jal_shuffle)
1296 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1297 | ((extend & 0x1f) << 21) | insn;
1298 else
1299 val = extend << 16 | insn;
1300 }
1301 else
1302 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1303 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1304 bfd_put_32 (abfd, val, data);
1305}
1306
1307void
1308_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1309 bfd_boolean jal_shuffle, bfd_byte *data)
1310{
1311 bfd_vma extend, insn, val;
1312
1313 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1314 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1315 return;
1316
1317 val = bfd_get_32 (abfd, data);
1318 if (r_type == R_MIPS16_26)
1319 {
1320 if (jal_shuffle)
1321 {
1322 insn = val & 0xffff;
1323 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1324 | ((val >> 21) & 0x1f);
1325 }
1326 else
1327 {
1328 insn = val & 0xffff;
1329 extend = val >> 16;
1330 }
1331 }
1332 else
1333 {
1334 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1335 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1336 }
1337 bfd_put_16 (abfd, insn, data + 2);
1338 bfd_put_16 (abfd, extend, data);
1339}
1340
b49e97c9 1341bfd_reloc_status_type
9719ad41
RS
1342_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1343 arelent *reloc_entry, asection *input_section,
1344 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1345{
1346 bfd_vma relocation;
a7ebbfdf 1347 bfd_signed_vma val;
30ac9238 1348 bfd_reloc_status_type status;
b49e97c9
TS
1349
1350 if (bfd_is_com_section (symbol->section))
1351 relocation = 0;
1352 else
1353 relocation = symbol->value;
1354
1355 relocation += symbol->section->output_section->vma;
1356 relocation += symbol->section->output_offset;
1357
07515404 1358 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1359 return bfd_reloc_outofrange;
1360
b49e97c9 1361 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1362 val = reloc_entry->addend;
1363
30ac9238 1364 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1365
b49e97c9 1366 /* Adjust val for the final section location and GP value. If we
1049f94e 1367 are producing relocatable output, we don't want to do this for
b49e97c9 1368 an external symbol. */
1049f94e 1369 if (! relocatable
b49e97c9
TS
1370 || (symbol->flags & BSF_SECTION_SYM) != 0)
1371 val += relocation - gp;
1372
a7ebbfdf
TS
1373 if (reloc_entry->howto->partial_inplace)
1374 {
30ac9238
RS
1375 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1376 (bfd_byte *) data
1377 + reloc_entry->address);
1378 if (status != bfd_reloc_ok)
1379 return status;
a7ebbfdf
TS
1380 }
1381 else
1382 reloc_entry->addend = val;
b49e97c9 1383
1049f94e 1384 if (relocatable)
b49e97c9 1385 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1386
1387 return bfd_reloc_ok;
1388}
1389
1390/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1391 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1392 that contains the relocation field and DATA points to the start of
1393 INPUT_SECTION. */
1394
1395struct mips_hi16
1396{
1397 struct mips_hi16 *next;
1398 bfd_byte *data;
1399 asection *input_section;
1400 arelent rel;
1401};
1402
1403/* FIXME: This should not be a static variable. */
1404
1405static struct mips_hi16 *mips_hi16_list;
1406
1407/* A howto special_function for REL *HI16 relocations. We can only
1408 calculate the correct value once we've seen the partnering
1409 *LO16 relocation, so just save the information for later.
1410
1411 The ABI requires that the *LO16 immediately follow the *HI16.
1412 However, as a GNU extension, we permit an arbitrary number of
1413 *HI16s to be associated with a single *LO16. This significantly
1414 simplies the relocation handling in gcc. */
1415
1416bfd_reloc_status_type
1417_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1418 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1419 asection *input_section, bfd *output_bfd,
1420 char **error_message ATTRIBUTE_UNUSED)
1421{
1422 struct mips_hi16 *n;
1423
07515404 1424 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1425 return bfd_reloc_outofrange;
1426
1427 n = bfd_malloc (sizeof *n);
1428 if (n == NULL)
1429 return bfd_reloc_outofrange;
1430
1431 n->next = mips_hi16_list;
1432 n->data = data;
1433 n->input_section = input_section;
1434 n->rel = *reloc_entry;
1435 mips_hi16_list = n;
1436
1437 if (output_bfd != NULL)
1438 reloc_entry->address += input_section->output_offset;
1439
1440 return bfd_reloc_ok;
1441}
1442
1443/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1444 like any other 16-bit relocation when applied to global symbols, but is
1445 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1446
1447bfd_reloc_status_type
1448_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1449 void *data, asection *input_section,
1450 bfd *output_bfd, char **error_message)
1451{
1452 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1453 || bfd_is_und_section (bfd_get_section (symbol))
1454 || bfd_is_com_section (bfd_get_section (symbol)))
1455 /* The relocation is against a global symbol. */
1456 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1457 input_section, output_bfd,
1458 error_message);
1459
1460 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1461 input_section, output_bfd, error_message);
1462}
1463
1464/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1465 is a straightforward 16 bit inplace relocation, but we must deal with
1466 any partnering high-part relocations as well. */
1467
1468bfd_reloc_status_type
1469_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1470 void *data, asection *input_section,
1471 bfd *output_bfd, char **error_message)
1472{
1473 bfd_vma vallo;
d6f16593 1474 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1475
07515404 1476 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1477 return bfd_reloc_outofrange;
1478
d6f16593
MR
1479 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1480 location);
1481 vallo = bfd_get_32 (abfd, location);
1482 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1483 location);
1484
30ac9238
RS
1485 while (mips_hi16_list != NULL)
1486 {
1487 bfd_reloc_status_type ret;
1488 struct mips_hi16 *hi;
1489
1490 hi = mips_hi16_list;
1491
1492 /* R_MIPS_GOT16 relocations are something of a special case. We
1493 want to install the addend in the same way as for a R_MIPS_HI16
1494 relocation (with a rightshift of 16). However, since GOT16
1495 relocations can also be used with global symbols, their howto
1496 has a rightshift of 0. */
1497 if (hi->rel.howto->type == R_MIPS_GOT16)
1498 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1499
1500 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1501 carry or borrow will induce a change of +1 or -1 in the high part. */
1502 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1503
30ac9238
RS
1504 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1505 hi->input_section, output_bfd,
1506 error_message);
1507 if (ret != bfd_reloc_ok)
1508 return ret;
1509
1510 mips_hi16_list = hi->next;
1511 free (hi);
1512 }
1513
1514 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1515 input_section, output_bfd,
1516 error_message);
1517}
1518
1519/* A generic howto special_function. This calculates and installs the
1520 relocation itself, thus avoiding the oft-discussed problems in
1521 bfd_perform_relocation and bfd_install_relocation. */
1522
1523bfd_reloc_status_type
1524_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1525 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1526 asection *input_section, bfd *output_bfd,
1527 char **error_message ATTRIBUTE_UNUSED)
1528{
1529 bfd_signed_vma val;
1530 bfd_reloc_status_type status;
1531 bfd_boolean relocatable;
1532
1533 relocatable = (output_bfd != NULL);
1534
07515404 1535 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1536 return bfd_reloc_outofrange;
1537
1538 /* Build up the field adjustment in VAL. */
1539 val = 0;
1540 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1541 {
1542 /* Either we're calculating the final field value or we have a
1543 relocation against a section symbol. Add in the section's
1544 offset or address. */
1545 val += symbol->section->output_section->vma;
1546 val += symbol->section->output_offset;
1547 }
1548
1549 if (!relocatable)
1550 {
1551 /* We're calculating the final field value. Add in the symbol's value
1552 and, if pc-relative, subtract the address of the field itself. */
1553 val += symbol->value;
1554 if (reloc_entry->howto->pc_relative)
1555 {
1556 val -= input_section->output_section->vma;
1557 val -= input_section->output_offset;
1558 val -= reloc_entry->address;
1559 }
1560 }
1561
1562 /* VAL is now the final adjustment. If we're keeping this relocation
1563 in the output file, and if the relocation uses a separate addend,
1564 we just need to add VAL to that addend. Otherwise we need to add
1565 VAL to the relocation field itself. */
1566 if (relocatable && !reloc_entry->howto->partial_inplace)
1567 reloc_entry->addend += val;
1568 else
1569 {
d6f16593
MR
1570 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1571
30ac9238
RS
1572 /* Add in the separate addend, if any. */
1573 val += reloc_entry->addend;
1574
1575 /* Add VAL to the relocation field. */
d6f16593
MR
1576 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1577 location);
30ac9238 1578 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1579 location);
1580 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1581 location);
1582
30ac9238
RS
1583 if (status != bfd_reloc_ok)
1584 return status;
1585 }
1586
1587 if (relocatable)
1588 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1589
1590 return bfd_reloc_ok;
1591}
1592\f
1593/* Swap an entry in a .gptab section. Note that these routines rely
1594 on the equivalence of the two elements of the union. */
1595
1596static void
9719ad41
RS
1597bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1598 Elf32_gptab *in)
b49e97c9
TS
1599{
1600 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1601 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1602}
1603
1604static void
9719ad41
RS
1605bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1606 Elf32_External_gptab *ex)
b49e97c9
TS
1607{
1608 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1609 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1610}
1611
1612static void
9719ad41
RS
1613bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1614 Elf32_External_compact_rel *ex)
b49e97c9
TS
1615{
1616 H_PUT_32 (abfd, in->id1, ex->id1);
1617 H_PUT_32 (abfd, in->num, ex->num);
1618 H_PUT_32 (abfd, in->id2, ex->id2);
1619 H_PUT_32 (abfd, in->offset, ex->offset);
1620 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1621 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1622}
1623
1624static void
9719ad41
RS
1625bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1626 Elf32_External_crinfo *ex)
b49e97c9
TS
1627{
1628 unsigned long l;
1629
1630 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1631 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1632 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1633 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1634 H_PUT_32 (abfd, l, ex->info);
1635 H_PUT_32 (abfd, in->konst, ex->konst);
1636 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1637}
b49e97c9
TS
1638\f
1639/* A .reginfo section holds a single Elf32_RegInfo structure. These
1640 routines swap this structure in and out. They are used outside of
1641 BFD, so they are globally visible. */
1642
1643void
9719ad41
RS
1644bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1645 Elf32_RegInfo *in)
b49e97c9
TS
1646{
1647 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1648 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1649 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1650 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1651 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1652 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1653}
1654
1655void
9719ad41
RS
1656bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1657 Elf32_External_RegInfo *ex)
b49e97c9
TS
1658{
1659 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665}
1666
1667/* In the 64 bit ABI, the .MIPS.options section holds register
1668 information in an Elf64_Reginfo structure. These routines swap
1669 them in and out. They are globally visible because they are used
1670 outside of BFD. These routines are here so that gas can call them
1671 without worrying about whether the 64 bit ABI has been included. */
1672
1673void
9719ad41
RS
1674bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1675 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1676{
1677 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1678 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1679 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1680 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1681 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1682 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1683 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1684}
1685
1686void
9719ad41
RS
1687bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1688 Elf64_External_RegInfo *ex)
b49e97c9
TS
1689{
1690 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1691 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1692 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1693 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1694 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1695 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1696 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1697}
1698
1699/* Swap in an options header. */
1700
1701void
9719ad41
RS
1702bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1703 Elf_Internal_Options *in)
b49e97c9
TS
1704{
1705 in->kind = H_GET_8 (abfd, ex->kind);
1706 in->size = H_GET_8 (abfd, ex->size);
1707 in->section = H_GET_16 (abfd, ex->section);
1708 in->info = H_GET_32 (abfd, ex->info);
1709}
1710
1711/* Swap out an options header. */
1712
1713void
9719ad41
RS
1714bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1715 Elf_External_Options *ex)
b49e97c9
TS
1716{
1717 H_PUT_8 (abfd, in->kind, ex->kind);
1718 H_PUT_8 (abfd, in->size, ex->size);
1719 H_PUT_16 (abfd, in->section, ex->section);
1720 H_PUT_32 (abfd, in->info, ex->info);
1721}
1722\f
1723/* This function is called via qsort() to sort the dynamic relocation
1724 entries by increasing r_symndx value. */
1725
1726static int
9719ad41 1727sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1728{
947216bf
AM
1729 Elf_Internal_Rela int_reloc1;
1730 Elf_Internal_Rela int_reloc2;
6870500c 1731 int diff;
b49e97c9 1732
947216bf
AM
1733 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1734 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1735
6870500c
RS
1736 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1737 if (diff != 0)
1738 return diff;
1739
1740 if (int_reloc1.r_offset < int_reloc2.r_offset)
1741 return -1;
1742 if (int_reloc1.r_offset > int_reloc2.r_offset)
1743 return 1;
1744 return 0;
b49e97c9
TS
1745}
1746
f4416af6
AO
1747/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1748
1749static int
7e3102a7
AM
1750sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1751 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1752{
7e3102a7 1753#ifdef BFD64
f4416af6
AO
1754 Elf_Internal_Rela int_reloc1[3];
1755 Elf_Internal_Rela int_reloc2[3];
1756
1757 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1758 (reldyn_sorting_bfd, arg1, int_reloc1);
1759 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1760 (reldyn_sorting_bfd, arg2, int_reloc2);
1761
6870500c
RS
1762 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1763 return -1;
1764 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1765 return 1;
1766
1767 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1768 return -1;
1769 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1770 return 1;
1771 return 0;
7e3102a7
AM
1772#else
1773 abort ();
1774#endif
f4416af6
AO
1775}
1776
1777
b49e97c9
TS
1778/* This routine is used to write out ECOFF debugging external symbol
1779 information. It is called via mips_elf_link_hash_traverse. The
1780 ECOFF external symbol information must match the ELF external
1781 symbol information. Unfortunately, at this point we don't know
1782 whether a symbol is required by reloc information, so the two
1783 tables may wind up being different. We must sort out the external
1784 symbol information before we can set the final size of the .mdebug
1785 section, and we must set the size of the .mdebug section before we
1786 can relocate any sections, and we can't know which symbols are
1787 required by relocation until we relocate the sections.
1788 Fortunately, it is relatively unlikely that any symbol will be
1789 stripped but required by a reloc. In particular, it can not happen
1790 when generating a final executable. */
1791
b34976b6 1792static bfd_boolean
9719ad41 1793mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1794{
9719ad41 1795 struct extsym_info *einfo = data;
b34976b6 1796 bfd_boolean strip;
b49e97c9
TS
1797 asection *sec, *output_section;
1798
1799 if (h->root.root.type == bfd_link_hash_warning)
1800 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1801
1802 if (h->root.indx == -2)
b34976b6 1803 strip = FALSE;
f5385ebf 1804 else if ((h->root.def_dynamic
77cfaee6
AM
1805 || h->root.ref_dynamic
1806 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1807 && !h->root.def_regular
1808 && !h->root.ref_regular)
b34976b6 1809 strip = TRUE;
b49e97c9
TS
1810 else if (einfo->info->strip == strip_all
1811 || (einfo->info->strip == strip_some
1812 && bfd_hash_lookup (einfo->info->keep_hash,
1813 h->root.root.root.string,
b34976b6
AM
1814 FALSE, FALSE) == NULL))
1815 strip = TRUE;
b49e97c9 1816 else
b34976b6 1817 strip = FALSE;
b49e97c9
TS
1818
1819 if (strip)
b34976b6 1820 return TRUE;
b49e97c9
TS
1821
1822 if (h->esym.ifd == -2)
1823 {
1824 h->esym.jmptbl = 0;
1825 h->esym.cobol_main = 0;
1826 h->esym.weakext = 0;
1827 h->esym.reserved = 0;
1828 h->esym.ifd = ifdNil;
1829 h->esym.asym.value = 0;
1830 h->esym.asym.st = stGlobal;
1831
1832 if (h->root.root.type == bfd_link_hash_undefined
1833 || h->root.root.type == bfd_link_hash_undefweak)
1834 {
1835 const char *name;
1836
1837 /* Use undefined class. Also, set class and type for some
1838 special symbols. */
1839 name = h->root.root.root.string;
1840 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1841 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1842 {
1843 h->esym.asym.sc = scData;
1844 h->esym.asym.st = stLabel;
1845 h->esym.asym.value = 0;
1846 }
1847 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1848 {
1849 h->esym.asym.sc = scAbs;
1850 h->esym.asym.st = stLabel;
1851 h->esym.asym.value =
1852 mips_elf_hash_table (einfo->info)->procedure_count;
1853 }
4a14403c 1854 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1855 {
1856 h->esym.asym.sc = scAbs;
1857 h->esym.asym.st = stLabel;
1858 h->esym.asym.value = elf_gp (einfo->abfd);
1859 }
1860 else
1861 h->esym.asym.sc = scUndefined;
1862 }
1863 else if (h->root.root.type != bfd_link_hash_defined
1864 && h->root.root.type != bfd_link_hash_defweak)
1865 h->esym.asym.sc = scAbs;
1866 else
1867 {
1868 const char *name;
1869
1870 sec = h->root.root.u.def.section;
1871 output_section = sec->output_section;
1872
1873 /* When making a shared library and symbol h is the one from
1874 the another shared library, OUTPUT_SECTION may be null. */
1875 if (output_section == NULL)
1876 h->esym.asym.sc = scUndefined;
1877 else
1878 {
1879 name = bfd_section_name (output_section->owner, output_section);
1880
1881 if (strcmp (name, ".text") == 0)
1882 h->esym.asym.sc = scText;
1883 else if (strcmp (name, ".data") == 0)
1884 h->esym.asym.sc = scData;
1885 else if (strcmp (name, ".sdata") == 0)
1886 h->esym.asym.sc = scSData;
1887 else if (strcmp (name, ".rodata") == 0
1888 || strcmp (name, ".rdata") == 0)
1889 h->esym.asym.sc = scRData;
1890 else if (strcmp (name, ".bss") == 0)
1891 h->esym.asym.sc = scBss;
1892 else if (strcmp (name, ".sbss") == 0)
1893 h->esym.asym.sc = scSBss;
1894 else if (strcmp (name, ".init") == 0)
1895 h->esym.asym.sc = scInit;
1896 else if (strcmp (name, ".fini") == 0)
1897 h->esym.asym.sc = scFini;
1898 else
1899 h->esym.asym.sc = scAbs;
1900 }
1901 }
1902
1903 h->esym.asym.reserved = 0;
1904 h->esym.asym.index = indexNil;
1905 }
1906
1907 if (h->root.root.type == bfd_link_hash_common)
1908 h->esym.asym.value = h->root.root.u.c.size;
1909 else if (h->root.root.type == bfd_link_hash_defined
1910 || h->root.root.type == bfd_link_hash_defweak)
1911 {
1912 if (h->esym.asym.sc == scCommon)
1913 h->esym.asym.sc = scBss;
1914 else if (h->esym.asym.sc == scSCommon)
1915 h->esym.asym.sc = scSBss;
1916
1917 sec = h->root.root.u.def.section;
1918 output_section = sec->output_section;
1919 if (output_section != NULL)
1920 h->esym.asym.value = (h->root.root.u.def.value
1921 + sec->output_offset
1922 + output_section->vma);
1923 else
1924 h->esym.asym.value = 0;
1925 }
f5385ebf 1926 else if (h->root.needs_plt)
b49e97c9
TS
1927 {
1928 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1929 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1930
1931 while (hd->root.root.type == bfd_link_hash_indirect)
1932 {
1933 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1934 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1935 }
1936
1937 if (!no_fn_stub)
1938 {
1939 /* Set type and value for a symbol with a function stub. */
1940 h->esym.asym.st = stProc;
1941 sec = hd->root.root.u.def.section;
1942 if (sec == NULL)
1943 h->esym.asym.value = 0;
1944 else
1945 {
1946 output_section = sec->output_section;
1947 if (output_section != NULL)
1948 h->esym.asym.value = (hd->root.plt.offset
1949 + sec->output_offset
1950 + output_section->vma);
1951 else
1952 h->esym.asym.value = 0;
1953 }
b49e97c9
TS
1954 }
1955 }
1956
1957 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1958 h->root.root.root.string,
1959 &h->esym))
1960 {
b34976b6
AM
1961 einfo->failed = TRUE;
1962 return FALSE;
b49e97c9
TS
1963 }
1964
b34976b6 1965 return TRUE;
b49e97c9
TS
1966}
1967
1968/* A comparison routine used to sort .gptab entries. */
1969
1970static int
9719ad41 1971gptab_compare (const void *p1, const void *p2)
b49e97c9 1972{
9719ad41
RS
1973 const Elf32_gptab *a1 = p1;
1974 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1975
1976 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1977}
1978\f
b15e6682 1979/* Functions to manage the got entry hash table. */
f4416af6
AO
1980
1981/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1982 hash number. */
1983
1984static INLINE hashval_t
9719ad41 1985mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1986{
1987#ifdef BFD64
1988 return addr + (addr >> 32);
1989#else
1990 return addr;
1991#endif
1992}
1993
1994/* got_entries only match if they're identical, except for gotidx, so
1995 use all fields to compute the hash, and compare the appropriate
1996 union members. */
1997
b15e6682 1998static hashval_t
9719ad41 1999mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2000{
2001 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2002
38985a1c 2003 return entry->symndx
0f20cc35 2004 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2005 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2006 : entry->abfd->id
2007 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2008 : entry->d.h->root.root.root.hash));
b15e6682
AO
2009}
2010
2011static int
9719ad41 2012mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2013{
2014 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2015 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2016
0f20cc35
DJ
2017 /* An LDM entry can only match another LDM entry. */
2018 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2019 return 0;
2020
b15e6682 2021 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2022 && (! e1->abfd ? e1->d.address == e2->d.address
2023 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2024 : e1->d.h == e2->d.h);
2025}
2026
2027/* multi_got_entries are still a match in the case of global objects,
2028 even if the input bfd in which they're referenced differs, so the
2029 hash computation and compare functions are adjusted
2030 accordingly. */
2031
2032static hashval_t
9719ad41 2033mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2034{
2035 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2036
2037 return entry->symndx
2038 + (! entry->abfd
2039 ? mips_elf_hash_bfd_vma (entry->d.address)
2040 : entry->symndx >= 0
0f20cc35
DJ
2041 ? ((entry->tls_type & GOT_TLS_LDM)
2042 ? (GOT_TLS_LDM << 17)
2043 : (entry->abfd->id
2044 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2045 : entry->d.h->root.root.root.hash);
2046}
2047
2048static int
9719ad41 2049mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2050{
2051 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2052 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2053
0f20cc35
DJ
2054 /* Any two LDM entries match. */
2055 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2056 return 1;
2057
2058 /* Nothing else matches an LDM entry. */
2059 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2060 return 0;
2061
f4416af6
AO
2062 return e1->symndx == e2->symndx
2063 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2064 : e1->abfd == NULL || e2->abfd == NULL
2065 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2066 : e1->d.h == e2->d.h);
b15e6682 2067}
c224138d
RS
2068
2069static hashval_t
2070mips_got_page_entry_hash (const void *entry_)
2071{
2072 const struct mips_got_page_entry *entry;
2073
2074 entry = (const struct mips_got_page_entry *) entry_;
2075 return entry->abfd->id + entry->symndx;
2076}
2077
2078static int
2079mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2080{
2081 const struct mips_got_page_entry *entry1, *entry2;
2082
2083 entry1 = (const struct mips_got_page_entry *) entry1_;
2084 entry2 = (const struct mips_got_page_entry *) entry2_;
2085 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2086}
b15e6682 2087\f
0a44bf69
RS
2088/* Return the dynamic relocation section. If it doesn't exist, try to
2089 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2090 if creation fails. */
f4416af6
AO
2091
2092static asection *
0a44bf69 2093mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2094{
0a44bf69 2095 const char *dname;
f4416af6 2096 asection *sreloc;
0a44bf69 2097 bfd *dynobj;
f4416af6 2098
0a44bf69
RS
2099 dname = MIPS_ELF_REL_DYN_NAME (info);
2100 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2101 sreloc = bfd_get_section_by_name (dynobj, dname);
2102 if (sreloc == NULL && create_p)
2103 {
3496cb2a
L
2104 sreloc = bfd_make_section_with_flags (dynobj, dname,
2105 (SEC_ALLOC
2106 | SEC_LOAD
2107 | SEC_HAS_CONTENTS
2108 | SEC_IN_MEMORY
2109 | SEC_LINKER_CREATED
2110 | SEC_READONLY));
f4416af6 2111 if (sreloc == NULL
f4416af6 2112 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2113 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2114 return NULL;
2115 }
2116 return sreloc;
2117}
2118
b49e97c9
TS
2119/* Returns the GOT section for ABFD. */
2120
2121static asection *
9719ad41 2122mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2123{
f4416af6
AO
2124 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2125 if (sgot == NULL
2126 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2127 return NULL;
2128 return sgot;
b49e97c9
TS
2129}
2130
2131/* Returns the GOT information associated with the link indicated by
2132 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2133 section. */
2134
2135static struct mips_got_info *
9719ad41 2136mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2137{
2138 asection *sgot;
2139 struct mips_got_info *g;
2140
f4416af6 2141 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2142 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2143 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2144 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2145 BFD_ASSERT (g != NULL);
2146
2147 if (sgotp)
f4416af6
AO
2148 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2149
b49e97c9
TS
2150 return g;
2151}
2152
0f20cc35
DJ
2153/* Count the number of relocations needed for a TLS GOT entry, with
2154 access types from TLS_TYPE, and symbol H (or a local symbol if H
2155 is NULL). */
2156
2157static int
2158mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2159 struct elf_link_hash_entry *h)
2160{
2161 int indx = 0;
2162 int ret = 0;
2163 bfd_boolean need_relocs = FALSE;
2164 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2165
2166 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2167 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2168 indx = h->dynindx;
2169
2170 if ((info->shared || indx != 0)
2171 && (h == NULL
2172 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2173 || h->root.type != bfd_link_hash_undefweak))
2174 need_relocs = TRUE;
2175
2176 if (!need_relocs)
2177 return FALSE;
2178
2179 if (tls_type & GOT_TLS_GD)
2180 {
2181 ret++;
2182 if (indx != 0)
2183 ret++;
2184 }
2185
2186 if (tls_type & GOT_TLS_IE)
2187 ret++;
2188
2189 if ((tls_type & GOT_TLS_LDM) && info->shared)
2190 ret++;
2191
2192 return ret;
2193}
2194
2195/* Count the number of TLS relocations required for the GOT entry in
2196 ARG1, if it describes a local symbol. */
2197
2198static int
2199mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2200{
2201 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2202 struct mips_elf_count_tls_arg *arg = arg2;
2203
2204 if (entry->abfd != NULL && entry->symndx != -1)
2205 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2206
2207 return 1;
2208}
2209
2210/* Count the number of TLS GOT entries required for the global (or
2211 forced-local) symbol in ARG1. */
2212
2213static int
2214mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2215{
2216 struct mips_elf_link_hash_entry *hm
2217 = (struct mips_elf_link_hash_entry *) arg1;
2218 struct mips_elf_count_tls_arg *arg = arg2;
2219
2220 if (hm->tls_type & GOT_TLS_GD)
2221 arg->needed += 2;
2222 if (hm->tls_type & GOT_TLS_IE)
2223 arg->needed += 1;
2224
2225 return 1;
2226}
2227
2228/* Count the number of TLS relocations required for the global (or
2229 forced-local) symbol in ARG1. */
2230
2231static int
2232mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2233{
2234 struct mips_elf_link_hash_entry *hm
2235 = (struct mips_elf_link_hash_entry *) arg1;
2236 struct mips_elf_count_tls_arg *arg = arg2;
2237
2238 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2239
2240 return 1;
2241}
2242
2243/* Output a simple dynamic relocation into SRELOC. */
2244
2245static void
2246mips_elf_output_dynamic_relocation (bfd *output_bfd,
2247 asection *sreloc,
2248 unsigned long indx,
2249 int r_type,
2250 bfd_vma offset)
2251{
2252 Elf_Internal_Rela rel[3];
2253
2254 memset (rel, 0, sizeof (rel));
2255
2256 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2257 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2258
2259 if (ABI_64_P (output_bfd))
2260 {
2261 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2262 (output_bfd, &rel[0],
2263 (sreloc->contents
2264 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2265 }
2266 else
2267 bfd_elf32_swap_reloc_out
2268 (output_bfd, &rel[0],
2269 (sreloc->contents
2270 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2271 ++sreloc->reloc_count;
2272}
2273
2274/* Initialize a set of TLS GOT entries for one symbol. */
2275
2276static void
2277mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2278 unsigned char *tls_type_p,
2279 struct bfd_link_info *info,
2280 struct mips_elf_link_hash_entry *h,
2281 bfd_vma value)
2282{
2283 int indx;
2284 asection *sreloc, *sgot;
2285 bfd_vma offset, offset2;
2286 bfd *dynobj;
2287 bfd_boolean need_relocs = FALSE;
2288
2289 dynobj = elf_hash_table (info)->dynobj;
2290 sgot = mips_elf_got_section (dynobj, FALSE);
2291
2292 indx = 0;
2293 if (h != NULL)
2294 {
2295 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2296
2297 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2298 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2299 indx = h->root.dynindx;
2300 }
2301
2302 if (*tls_type_p & GOT_TLS_DONE)
2303 return;
2304
2305 if ((info->shared || indx != 0)
2306 && (h == NULL
2307 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2308 || h->root.type != bfd_link_hash_undefweak))
2309 need_relocs = TRUE;
2310
2311 /* MINUS_ONE means the symbol is not defined in this object. It may not
2312 be defined at all; assume that the value doesn't matter in that
2313 case. Otherwise complain if we would use the value. */
2314 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2315 || h->root.root.type == bfd_link_hash_undefweak);
2316
2317 /* Emit necessary relocations. */
0a44bf69 2318 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2319
2320 /* General Dynamic. */
2321 if (*tls_type_p & GOT_TLS_GD)
2322 {
2323 offset = got_offset;
2324 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2325
2326 if (need_relocs)
2327 {
2328 mips_elf_output_dynamic_relocation
2329 (abfd, sreloc, indx,
2330 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2331 sgot->output_offset + sgot->output_section->vma + offset);
2332
2333 if (indx)
2334 mips_elf_output_dynamic_relocation
2335 (abfd, sreloc, indx,
2336 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2337 sgot->output_offset + sgot->output_section->vma + offset2);
2338 else
2339 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2340 sgot->contents + offset2);
2341 }
2342 else
2343 {
2344 MIPS_ELF_PUT_WORD (abfd, 1,
2345 sgot->contents + offset);
2346 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2347 sgot->contents + offset2);
2348 }
2349
2350 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2351 }
2352
2353 /* Initial Exec model. */
2354 if (*tls_type_p & GOT_TLS_IE)
2355 {
2356 offset = got_offset;
2357
2358 if (need_relocs)
2359 {
2360 if (indx == 0)
2361 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2362 sgot->contents + offset);
2363 else
2364 MIPS_ELF_PUT_WORD (abfd, 0,
2365 sgot->contents + offset);
2366
2367 mips_elf_output_dynamic_relocation
2368 (abfd, sreloc, indx,
2369 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2370 sgot->output_offset + sgot->output_section->vma + offset);
2371 }
2372 else
2373 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2374 sgot->contents + offset);
2375 }
2376
2377 if (*tls_type_p & GOT_TLS_LDM)
2378 {
2379 /* The initial offset is zero, and the LD offsets will include the
2380 bias by DTP_OFFSET. */
2381 MIPS_ELF_PUT_WORD (abfd, 0,
2382 sgot->contents + got_offset
2383 + MIPS_ELF_GOT_SIZE (abfd));
2384
2385 if (!info->shared)
2386 MIPS_ELF_PUT_WORD (abfd, 1,
2387 sgot->contents + got_offset);
2388 else
2389 mips_elf_output_dynamic_relocation
2390 (abfd, sreloc, indx,
2391 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2392 sgot->output_offset + sgot->output_section->vma + got_offset);
2393 }
2394
2395 *tls_type_p |= GOT_TLS_DONE;
2396}
2397
2398/* Return the GOT index to use for a relocation of type R_TYPE against
2399 a symbol accessed using TLS_TYPE models. The GOT entries for this
2400 symbol in this GOT start at GOT_INDEX. This function initializes the
2401 GOT entries and corresponding relocations. */
2402
2403static bfd_vma
2404mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2405 int r_type, struct bfd_link_info *info,
2406 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2407{
2408 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2409 || r_type == R_MIPS_TLS_LDM);
2410
2411 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2412
2413 if (r_type == R_MIPS_TLS_GOTTPREL)
2414 {
2415 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2416 if (*tls_type & GOT_TLS_GD)
2417 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2418 else
2419 return got_index;
2420 }
2421
2422 if (r_type == R_MIPS_TLS_GD)
2423 {
2424 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2425 return got_index;
2426 }
2427
2428 if (r_type == R_MIPS_TLS_LDM)
2429 {
2430 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2431 return got_index;
2432 }
2433
2434 return got_index;
2435}
2436
0a44bf69
RS
2437/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2438 for global symbol H. .got.plt comes before the GOT, so the offset
2439 will be negative. */
2440
2441static bfd_vma
2442mips_elf_gotplt_index (struct bfd_link_info *info,
2443 struct elf_link_hash_entry *h)
2444{
2445 bfd_vma plt_index, got_address, got_value;
2446 struct mips_elf_link_hash_table *htab;
2447
2448 htab = mips_elf_hash_table (info);
2449 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2450
2451 /* Calculate the index of the symbol's PLT entry. */
2452 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2453
2454 /* Calculate the address of the associated .got.plt entry. */
2455 got_address = (htab->sgotplt->output_section->vma
2456 + htab->sgotplt->output_offset
2457 + plt_index * 4);
2458
2459 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2460 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2461 + htab->root.hgot->root.u.def.section->output_offset
2462 + htab->root.hgot->root.u.def.value);
2463
2464 return got_address - got_value;
2465}
2466
5c18022e 2467/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2468 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2469 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2470 offset can be found. */
b49e97c9
TS
2471
2472static bfd_vma
9719ad41 2473mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2474 bfd_vma value, unsigned long r_symndx,
0f20cc35 2475 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2476{
2477 asection *sgot;
2478 struct mips_got_info *g;
b15e6682 2479 struct mips_got_entry *entry;
b49e97c9
TS
2480
2481 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2482
0a44bf69 2483 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2484 value, r_symndx, h, r_type);
0f20cc35 2485 if (!entry)
b15e6682 2486 return MINUS_ONE;
0f20cc35
DJ
2487
2488 if (TLS_RELOC_P (r_type))
ead49a57
RS
2489 {
2490 if (entry->symndx == -1 && g->next == NULL)
2491 /* A type (3) entry in the single-GOT case. We use the symbol's
2492 hash table entry to track the index. */
2493 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2494 r_type, info, h, value);
2495 else
2496 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2497 r_type, info, h, value);
2498 }
0f20cc35
DJ
2499 else
2500 return entry->gotidx;
b49e97c9
TS
2501}
2502
2503/* Returns the GOT index for the global symbol indicated by H. */
2504
2505static bfd_vma
0f20cc35
DJ
2506mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2507 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2508{
2509 bfd_vma index;
2510 asection *sgot;
f4416af6 2511 struct mips_got_info *g, *gg;
d0c7ff07 2512 long global_got_dynindx = 0;
b49e97c9 2513
f4416af6
AO
2514 gg = g = mips_elf_got_info (abfd, &sgot);
2515 if (g->bfd2got && ibfd)
2516 {
2517 struct mips_got_entry e, *p;
143d77c5 2518
f4416af6
AO
2519 BFD_ASSERT (h->dynindx >= 0);
2520
2521 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2522 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2523 {
2524 e.abfd = ibfd;
2525 e.symndx = -1;
2526 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2527 e.tls_type = 0;
f4416af6 2528
9719ad41 2529 p = htab_find (g->got_entries, &e);
f4416af6
AO
2530
2531 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2532
2533 if (TLS_RELOC_P (r_type))
2534 {
2535 bfd_vma value = MINUS_ONE;
2536 if ((h->root.type == bfd_link_hash_defined
2537 || h->root.type == bfd_link_hash_defweak)
2538 && h->root.u.def.section->output_section)
2539 value = (h->root.u.def.value
2540 + h->root.u.def.section->output_offset
2541 + h->root.u.def.section->output_section->vma);
2542
2543 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2544 info, e.d.h, value);
2545 }
2546 else
2547 return p->gotidx;
f4416af6
AO
2548 }
2549 }
2550
2551 if (gg->global_gotsym != NULL)
2552 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2553
0f20cc35
DJ
2554 if (TLS_RELOC_P (r_type))
2555 {
2556 struct mips_elf_link_hash_entry *hm
2557 = (struct mips_elf_link_hash_entry *) h;
2558 bfd_vma value = MINUS_ONE;
2559
2560 if ((h->root.type == bfd_link_hash_defined
2561 || h->root.type == bfd_link_hash_defweak)
2562 && h->root.u.def.section->output_section)
2563 value = (h->root.u.def.value
2564 + h->root.u.def.section->output_offset
2565 + h->root.u.def.section->output_section->vma);
2566
2567 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2568 r_type, info, hm, value);
2569 }
2570 else
2571 {
2572 /* Once we determine the global GOT entry with the lowest dynamic
2573 symbol table index, we must put all dynamic symbols with greater
2574 indices into the GOT. That makes it easy to calculate the GOT
2575 offset. */
2576 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2577 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2578 * MIPS_ELF_GOT_SIZE (abfd));
2579 }
eea6121a 2580 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2581
2582 return index;
2583}
2584
5c18022e
RS
2585/* Find a GOT page entry that points to within 32KB of VALUE. These
2586 entries are supposed to be placed at small offsets in the GOT, i.e.,
2587 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2588 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2589 offset of the GOT entry from VALUE. */
b49e97c9
TS
2590
2591static bfd_vma
9719ad41 2592mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2593 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2594{
2595 asection *sgot;
2596 struct mips_got_info *g;
0a44bf69 2597 bfd_vma page, index;
b15e6682 2598 struct mips_got_entry *entry;
b49e97c9
TS
2599
2600 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2601
0a44bf69
RS
2602 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2603 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2604 page, 0, NULL, R_MIPS_GOT_PAGE);
b49e97c9 2605
b15e6682
AO
2606 if (!entry)
2607 return MINUS_ONE;
143d77c5 2608
b15e6682 2609 index = entry->gotidx;
b49e97c9
TS
2610
2611 if (offsetp)
f4416af6 2612 *offsetp = value - entry->d.address;
b49e97c9
TS
2613
2614 return index;
2615}
2616
5c18022e 2617/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
0a44bf69
RS
2618 EXTERNAL is true if the relocation was against a global symbol
2619 that has been forced local. */
b49e97c9
TS
2620
2621static bfd_vma
9719ad41 2622mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2623 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2624{
2625 asection *sgot;
2626 struct mips_got_info *g;
b15e6682 2627 struct mips_got_entry *entry;
b49e97c9 2628
0a44bf69
RS
2629 /* GOT16 relocations against local symbols are followed by a LO16
2630 relocation; those against global symbols are not. Thus if the
2631 symbol was originally local, the GOT16 relocation should load the
2632 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2633 if (! external)
0a44bf69 2634 value = mips_elf_high (value) << 16;
b49e97c9
TS
2635
2636 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2637
0a44bf69 2638 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2639 value, 0, NULL, R_MIPS_GOT16);
b15e6682
AO
2640 if (entry)
2641 return entry->gotidx;
2642 else
2643 return MINUS_ONE;
b49e97c9
TS
2644}
2645
2646/* Returns the offset for the entry at the INDEXth position
2647 in the GOT. */
2648
2649static bfd_vma
9719ad41
RS
2650mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2651 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2652{
2653 asection *sgot;
2654 bfd_vma gp;
f4416af6 2655 struct mips_got_info *g;
b49e97c9 2656
f4416af6
AO
2657 g = mips_elf_got_info (dynobj, &sgot);
2658 gp = _bfd_get_gp_value (output_bfd)
2659 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2660
f4416af6 2661 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2662}
2663
0a44bf69
RS
2664/* Create and return a local GOT entry for VALUE, which was calculated
2665 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2666 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2667 instead. */
b49e97c9 2668
b15e6682 2669static struct mips_got_entry *
0a44bf69
RS
2670mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2671 bfd *ibfd, struct mips_got_info *gg,
5c18022e
RS
2672 asection *sgot, bfd_vma value,
2673 unsigned long r_symndx,
0f20cc35
DJ
2674 struct mips_elf_link_hash_entry *h,
2675 int r_type)
b49e97c9 2676{
b15e6682 2677 struct mips_got_entry entry, **loc;
f4416af6 2678 struct mips_got_info *g;
0a44bf69
RS
2679 struct mips_elf_link_hash_table *htab;
2680
2681 htab = mips_elf_hash_table (info);
b15e6682 2682
f4416af6
AO
2683 entry.abfd = NULL;
2684 entry.symndx = -1;
2685 entry.d.address = value;
0f20cc35 2686 entry.tls_type = 0;
f4416af6
AO
2687
2688 g = mips_elf_got_for_ibfd (gg, ibfd);
2689 if (g == NULL)
2690 {
2691 g = mips_elf_got_for_ibfd (gg, abfd);
2692 BFD_ASSERT (g != NULL);
2693 }
b15e6682 2694
0f20cc35
DJ
2695 /* We might have a symbol, H, if it has been forced local. Use the
2696 global entry then. It doesn't matter whether an entry is local
2697 or global for TLS, since the dynamic linker does not
2698 automatically relocate TLS GOT entries. */
a008ac03 2699 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2700 if (TLS_RELOC_P (r_type))
2701 {
2702 struct mips_got_entry *p;
2703
2704 entry.abfd = ibfd;
2705 if (r_type == R_MIPS_TLS_LDM)
2706 {
2707 entry.tls_type = GOT_TLS_LDM;
2708 entry.symndx = 0;
2709 entry.d.addend = 0;
2710 }
2711 else if (h == NULL)
2712 {
2713 entry.symndx = r_symndx;
2714 entry.d.addend = 0;
2715 }
2716 else
2717 entry.d.h = h;
2718
2719 p = (struct mips_got_entry *)
2720 htab_find (g->got_entries, &entry);
2721
2722 BFD_ASSERT (p);
2723 return p;
2724 }
2725
b15e6682
AO
2726 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2727 INSERT);
2728 if (*loc)
2729 return *loc;
143d77c5 2730
b15e6682 2731 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2732 entry.tls_type = 0;
b15e6682
AO
2733
2734 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2735
2736 if (! *loc)
2737 return NULL;
143d77c5 2738
b15e6682
AO
2739 memcpy (*loc, &entry, sizeof entry);
2740
8275b357 2741 if (g->assigned_gotno > g->local_gotno)
b49e97c9 2742 {
f4416af6 2743 (*loc)->gotidx = -1;
b49e97c9
TS
2744 /* We didn't allocate enough space in the GOT. */
2745 (*_bfd_error_handler)
2746 (_("not enough GOT space for local GOT entries"));
2747 bfd_set_error (bfd_error_bad_value);
b15e6682 2748 return NULL;
b49e97c9
TS
2749 }
2750
2751 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2752 (sgot->contents + entry.gotidx));
2753
5c18022e 2754 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2755 if (htab->is_vxworks)
2756 {
2757 Elf_Internal_Rela outrel;
5c18022e 2758 asection *s;
0a44bf69
RS
2759 bfd_byte *loc;
2760 bfd_vma got_address;
0a44bf69
RS
2761
2762 s = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69
RS
2763 got_address = (sgot->output_section->vma
2764 + sgot->output_offset
2765 + entry.gotidx);
2766
2767 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2768 outrel.r_offset = got_address;
5c18022e
RS
2769 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2770 outrel.r_addend = value;
0a44bf69
RS
2771 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2772 }
2773
b15e6682 2774 return *loc;
b49e97c9
TS
2775}
2776
2777/* Sort the dynamic symbol table so that symbols that need GOT entries
2778 appear towards the end. This reduces the amount of GOT space
2779 required. MAX_LOCAL is used to set the number of local symbols
2780 known to be in the dynamic symbol table. During
2781 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2782 section symbols are added and the count is higher. */
2783
b34976b6 2784static bfd_boolean
9719ad41 2785mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2786{
2787 struct mips_elf_hash_sort_data hsd;
2788 struct mips_got_info *g;
2789 bfd *dynobj;
2790
2791 dynobj = elf_hash_table (info)->dynobj;
2792
f4416af6
AO
2793 g = mips_elf_got_info (dynobj, NULL);
2794
b49e97c9 2795 hsd.low = NULL;
143d77c5 2796 hsd.max_unref_got_dynindx =
f4416af6
AO
2797 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2798 /* In the multi-got case, assigned_gotno of the master got_info
2799 indicate the number of entries that aren't referenced in the
2800 primary GOT, but that must have entries because there are
2801 dynamic relocations that reference it. Since they aren't
2802 referenced, we move them to the end of the GOT, so that they
2803 don't prevent other entries that are referenced from getting
2804 too large offsets. */
2805 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2806 hsd.max_non_got_dynindx = max_local;
2807 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2808 elf_hash_table (info)),
2809 mips_elf_sort_hash_table_f,
2810 &hsd);
2811
2812 /* There should have been enough room in the symbol table to
44c410de 2813 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2814 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2815 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2816 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2817
2818 /* Now we know which dynamic symbol has the lowest dynamic symbol
2819 table index in the GOT. */
b49e97c9
TS
2820 g->global_gotsym = hsd.low;
2821
b34976b6 2822 return TRUE;
b49e97c9
TS
2823}
2824
2825/* If H needs a GOT entry, assign it the highest available dynamic
2826 index. Otherwise, assign it the lowest available dynamic
2827 index. */
2828
b34976b6 2829static bfd_boolean
9719ad41 2830mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2831{
9719ad41 2832 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2833
2834 if (h->root.root.type == bfd_link_hash_warning)
2835 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2836
2837 /* Symbols without dynamic symbol table entries aren't interesting
2838 at all. */
2839 if (h->root.dynindx == -1)
b34976b6 2840 return TRUE;
b49e97c9 2841
f4416af6
AO
2842 /* Global symbols that need GOT entries that are not explicitly
2843 referenced are marked with got offset 2. Those that are
2844 referenced get a 1, and those that don't need GOT entries get
720199d6
DJ
2845 -1. Forced local symbols may also be marked with got offset 1,
2846 but are never given global GOT entries. */
f4416af6
AO
2847 if (h->root.got.offset == 2)
2848 {
0f20cc35
DJ
2849 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2850
f4416af6
AO
2851 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2852 hsd->low = (struct elf_link_hash_entry *) h;
2853 h->root.dynindx = hsd->max_unref_got_dynindx++;
2854 }
720199d6 2855 else if (h->root.got.offset != 1 || h->forced_local)
b49e97c9
TS
2856 h->root.dynindx = hsd->max_non_got_dynindx++;
2857 else
2858 {
0f20cc35
DJ
2859 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2860
b49e97c9
TS
2861 h->root.dynindx = --hsd->min_got_dynindx;
2862 hsd->low = (struct elf_link_hash_entry *) h;
2863 }
2864
b34976b6 2865 return TRUE;
b49e97c9
TS
2866}
2867
2868/* If H is a symbol that needs a global GOT entry, but has a dynamic
2869 symbol table index lower than any we've seen to date, record it for
2870 posterity. */
2871
b34976b6 2872static bfd_boolean
9719ad41
RS
2873mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2874 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2875 struct mips_got_info *g,
2876 unsigned char tls_flag)
b49e97c9 2877{
f4416af6
AO
2878 struct mips_got_entry entry, **loc;
2879
b49e97c9
TS
2880 /* A global symbol in the GOT must also be in the dynamic symbol
2881 table. */
7c5fcef7
L
2882 if (h->dynindx == -1)
2883 {
2884 switch (ELF_ST_VISIBILITY (h->other))
2885 {
2886 case STV_INTERNAL:
2887 case STV_HIDDEN:
b34976b6 2888 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2889 break;
2890 }
c152c796 2891 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2892 return FALSE;
7c5fcef7 2893 }
b49e97c9 2894
86324f90
EC
2895 /* Make sure we have a GOT to put this entry into. */
2896 BFD_ASSERT (g != NULL);
2897
f4416af6
AO
2898 entry.abfd = abfd;
2899 entry.symndx = -1;
2900 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2901 entry.tls_type = 0;
f4416af6
AO
2902
2903 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2904 INSERT);
2905
b49e97c9
TS
2906 /* If we've already marked this entry as needing GOT space, we don't
2907 need to do it again. */
f4416af6 2908 if (*loc)
0f20cc35
DJ
2909 {
2910 (*loc)->tls_type |= tls_flag;
2911 return TRUE;
2912 }
f4416af6
AO
2913
2914 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2915
2916 if (! *loc)
2917 return FALSE;
143d77c5 2918
f4416af6 2919 entry.gotidx = -1;
0f20cc35
DJ
2920 entry.tls_type = tls_flag;
2921
f4416af6
AO
2922 memcpy (*loc, &entry, sizeof entry);
2923
b49e97c9 2924 if (h->got.offset != MINUS_ONE)
b34976b6 2925 return TRUE;
b49e97c9 2926
0f20cc35 2927 if (tls_flag == 0)
8275b357
RS
2928 {
2929 /* By setting this to a value other than -1, we are indicating that
2930 there needs to be a GOT entry for H. Avoid using zero, as the
2931 generic ELF copy_indirect_symbol tests for <= 0. */
2932 h->got.offset = 1;
2933 if (h->forced_local)
2934 g->local_gotno++;
2935 }
b49e97c9 2936
b34976b6 2937 return TRUE;
b49e97c9 2938}
f4416af6
AO
2939
2940/* Reserve space in G for a GOT entry containing the value of symbol
2941 SYMNDX in input bfd ABDF, plus ADDEND. */
2942
2943static bfd_boolean
9719ad41 2944mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2945 struct mips_got_info *g,
2946 unsigned char tls_flag)
f4416af6
AO
2947{
2948 struct mips_got_entry entry, **loc;
2949
2950 entry.abfd = abfd;
2951 entry.symndx = symndx;
2952 entry.d.addend = addend;
0f20cc35 2953 entry.tls_type = tls_flag;
f4416af6
AO
2954 loc = (struct mips_got_entry **)
2955 htab_find_slot (g->got_entries, &entry, INSERT);
2956
2957 if (*loc)
0f20cc35
DJ
2958 {
2959 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2960 {
2961 g->tls_gotno += 2;
2962 (*loc)->tls_type |= tls_flag;
2963 }
2964 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2965 {
2966 g->tls_gotno += 1;
2967 (*loc)->tls_type |= tls_flag;
2968 }
2969 return TRUE;
2970 }
f4416af6 2971
0f20cc35
DJ
2972 if (tls_flag != 0)
2973 {
2974 entry.gotidx = -1;
2975 entry.tls_type = tls_flag;
2976 if (tls_flag == GOT_TLS_IE)
2977 g->tls_gotno += 1;
2978 else if (tls_flag == GOT_TLS_GD)
2979 g->tls_gotno += 2;
2980 else if (g->tls_ldm_offset == MINUS_ONE)
2981 {
2982 g->tls_ldm_offset = MINUS_TWO;
2983 g->tls_gotno += 2;
2984 }
2985 }
2986 else
2987 {
2988 entry.gotidx = g->local_gotno++;
2989 entry.tls_type = 0;
2990 }
f4416af6
AO
2991
2992 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2993
2994 if (! *loc)
2995 return FALSE;
143d77c5 2996
f4416af6
AO
2997 memcpy (*loc, &entry, sizeof entry);
2998
2999 return TRUE;
3000}
c224138d
RS
3001
3002/* Return the maximum number of GOT page entries required for RANGE. */
3003
3004static bfd_vma
3005mips_elf_pages_for_range (const struct mips_got_page_range *range)
3006{
3007 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3008}
3009
3010/* Record that ABFD has a page relocation against symbol SYMNDX and that
3011 ADDEND is the addend for that relocation. G is the GOT information. */
3012
3013static bfd_boolean
3014mips_elf_record_got_page_entry (bfd *abfd, long symndx, bfd_signed_vma addend,
3015 struct mips_got_info *g)
3016{
3017 struct mips_got_page_entry lookup, *entry;
3018 struct mips_got_page_range **range_ptr, *range;
3019 bfd_vma old_pages, new_pages;
3020 void **loc;
3021
3022 /* Find the mips_got_page_entry hash table entry for this symbol. */
3023 lookup.abfd = abfd;
3024 lookup.symndx = symndx;
3025 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3026 if (loc == NULL)
3027 return FALSE;
3028
3029 /* Create a mips_got_page_entry if this is the first time we've
3030 seen the symbol. */
3031 entry = (struct mips_got_page_entry *) *loc;
3032 if (!entry)
3033 {
3034 entry = bfd_alloc (abfd, sizeof (*entry));
3035 if (!entry)
3036 return FALSE;
3037
3038 entry->abfd = abfd;
3039 entry->symndx = symndx;
3040 entry->ranges = NULL;
3041 entry->num_pages = 0;
3042 *loc = entry;
3043 }
3044
3045 /* Skip over ranges whose maximum extent cannot share a page entry
3046 with ADDEND. */
3047 range_ptr = &entry->ranges;
3048 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3049 range_ptr = &(*range_ptr)->next;
3050
3051 /* If we scanned to the end of the list, or found a range whose
3052 minimum extent cannot share a page entry with ADDEND, create
3053 a new singleton range. */
3054 range = *range_ptr;
3055 if (!range || addend < range->min_addend - 0xffff)
3056 {
3057 range = bfd_alloc (abfd, sizeof (*range));
3058 if (!range)
3059 return FALSE;
3060
3061 range->next = *range_ptr;
3062 range->min_addend = addend;
3063 range->max_addend = addend;
3064
3065 *range_ptr = range;
3066 entry->num_pages++;
3067 g->page_gotno++;
3068 return TRUE;
3069 }
3070
3071 /* Remember how many pages the old range contributed. */
3072 old_pages = mips_elf_pages_for_range (range);
3073
3074 /* Update the ranges. */
3075 if (addend < range->min_addend)
3076 range->min_addend = addend;
3077 else if (addend > range->max_addend)
3078 {
3079 if (range->next && addend >= range->next->min_addend - 0xffff)
3080 {
3081 old_pages += mips_elf_pages_for_range (range->next);
3082 range->max_addend = range->next->max_addend;
3083 range->next = range->next->next;
3084 }
3085 else
3086 range->max_addend = addend;
3087 }
3088
3089 /* Record any change in the total estimate. */
3090 new_pages = mips_elf_pages_for_range (range);
3091 if (old_pages != new_pages)
3092 {
3093 entry->num_pages += new_pages - old_pages;
3094 g->page_gotno += new_pages - old_pages;
3095 }
3096
3097 return TRUE;
3098}
f4416af6
AO
3099\f
3100/* Compute the hash value of the bfd in a bfd2got hash entry. */
3101
3102static hashval_t
9719ad41 3103mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
3104{
3105 const struct mips_elf_bfd2got_hash *entry
3106 = (struct mips_elf_bfd2got_hash *)entry_;
3107
3108 return entry->bfd->id;
3109}
3110
3111/* Check whether two hash entries have the same bfd. */
3112
3113static int
9719ad41 3114mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3115{
3116 const struct mips_elf_bfd2got_hash *e1
3117 = (const struct mips_elf_bfd2got_hash *)entry1;
3118 const struct mips_elf_bfd2got_hash *e2
3119 = (const struct mips_elf_bfd2got_hash *)entry2;
3120
3121 return e1->bfd == e2->bfd;
3122}
3123
bad36eac 3124/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
3125 be the master GOT data. */
3126
3127static struct mips_got_info *
9719ad41 3128mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3129{
3130 struct mips_elf_bfd2got_hash e, *p;
3131
3132 if (! g->bfd2got)
3133 return g;
3134
3135 e.bfd = ibfd;
9719ad41 3136 p = htab_find (g->bfd2got, &e);
f4416af6
AO
3137 return p ? p->g : NULL;
3138}
3139
c224138d
RS
3140/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3141 Return NULL if an error occured. */
f4416af6 3142
c224138d
RS
3143static struct mips_got_info *
3144mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3145 bfd *input_bfd)
f4416af6 3146{
f4416af6 3147 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 3148 struct mips_got_info *g;
f4416af6 3149 void **bfdgotp;
143d77c5 3150
c224138d 3151 bfdgot_entry.bfd = input_bfd;
f4416af6 3152 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 3153 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 3154
c224138d 3155 if (bfdgot == NULL)
f4416af6 3156 {
c224138d
RS
3157 bfdgot = ((struct mips_elf_bfd2got_hash *)
3158 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 3159 if (bfdgot == NULL)
c224138d 3160 return NULL;
f4416af6
AO
3161
3162 *bfdgotp = bfdgot;
3163
c224138d
RS
3164 g = ((struct mips_got_info *)
3165 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 3166 if (g == NULL)
c224138d
RS
3167 return NULL;
3168
3169 bfdgot->bfd = input_bfd;
3170 bfdgot->g = g;
f4416af6
AO
3171
3172 g->global_gotsym = NULL;
3173 g->global_gotno = 0;
3174 g->local_gotno = 0;
c224138d 3175 g->page_gotno = 0;
f4416af6 3176 g->assigned_gotno = -1;
0f20cc35
DJ
3177 g->tls_gotno = 0;
3178 g->tls_assigned_gotno = 0;
3179 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3180 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3181 mips_elf_multi_got_entry_eq, NULL);
f4416af6 3182 if (g->got_entries == NULL)
c224138d
RS
3183 return NULL;
3184
3185 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3186 mips_got_page_entry_eq, NULL);
3187 if (g->got_page_entries == NULL)
3188 return NULL;
f4416af6
AO
3189
3190 g->bfd2got = NULL;
3191 g->next = NULL;
3192 }
3193
c224138d
RS
3194 return bfdgot->g;
3195}
3196
3197/* A htab_traverse callback for the entries in the master got.
3198 Create one separate got for each bfd that has entries in the global
3199 got, such that we can tell how many local and global entries each
3200 bfd requires. */
3201
3202static int
3203mips_elf_make_got_per_bfd (void **entryp, void *p)
3204{
3205 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3206 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3207 struct mips_got_info *g;
3208
3209 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3210 if (g == NULL)
3211 {
3212 arg->obfd = NULL;
3213 return 0;
3214 }
3215
f4416af6
AO
3216 /* Insert the GOT entry in the bfd's got entry hash table. */
3217 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3218 if (*entryp != NULL)
3219 return 1;
143d77c5 3220
f4416af6
AO
3221 *entryp = entry;
3222
0f20cc35
DJ
3223 if (entry->tls_type)
3224 {
3225 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3226 g->tls_gotno += 2;
3227 if (entry->tls_type & GOT_TLS_IE)
3228 g->tls_gotno += 1;
3229 }
3230 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3231 ++g->local_gotno;
3232 else
3233 ++g->global_gotno;
3234
3235 return 1;
3236}
3237
c224138d
RS
3238/* A htab_traverse callback for the page entries in the master got.
3239 Associate each page entry with the bfd's got. */
3240
3241static int
3242mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3243{
3244 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3245 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3246 struct mips_got_info *g;
3247
3248 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3249 if (g == NULL)
3250 {
3251 arg->obfd = NULL;
3252 return 0;
3253 }
3254
3255 /* Insert the GOT entry in the bfd's got entry hash table. */
3256 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3257 if (*entryp != NULL)
3258 return 1;
3259
3260 *entryp = entry;
3261 g->page_gotno += entry->num_pages;
3262 return 1;
3263}
3264
3265/* Consider merging the got described by BFD2GOT with TO, using the
3266 information given by ARG. Return -1 if this would lead to overflow,
3267 1 if they were merged successfully, and 0 if a merge failed due to
3268 lack of memory. (These values are chosen so that nonnegative return
3269 values can be returned by a htab_traverse callback.) */
3270
3271static int
3272mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3273 struct mips_got_info *to,
3274 struct mips_elf_got_per_bfd_arg *arg)
3275{
3276 struct mips_got_info *from = bfd2got->g;
3277 unsigned int estimate;
3278
3279 /* Work out how many page entries we would need for the combined GOT. */
3280 estimate = arg->max_pages;
3281 if (estimate >= from->page_gotno + to->page_gotno)
3282 estimate = from->page_gotno + to->page_gotno;
3283
3284 /* And conservatively estimate how many local, global and TLS entries
3285 would be needed. */
3286 estimate += (from->local_gotno
3287 + from->global_gotno
3288 + from->tls_gotno
3289 + to->local_gotno
3290 + to->global_gotno
3291 + to->tls_gotno);
3292
3293 /* Bail out if the combined GOT might be too big. */
3294 if (estimate > arg->max_count)
3295 return -1;
3296
3297 /* Commit to the merge. Record that TO is now the bfd for this got. */
3298 bfd2got->g = to;
3299
3300 /* Transfer the bfd's got information from FROM to TO. */
3301 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3302 if (arg->obfd == NULL)
3303 return 0;
3304
3305 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3306 if (arg->obfd == NULL)
3307 return 0;
3308
3309 /* We don't have to worry about releasing memory of the actual
3310 got entries, since they're all in the master got_entries hash
3311 table anyway. */
3312 htab_delete (from->got_entries);
3313 htab_delete (from->got_page_entries);
3314 return 1;
3315}
3316
f4416af6
AO
3317/* Attempt to merge gots of different input bfds. Try to use as much
3318 as possible of the primary got, since it doesn't require explicit
3319 dynamic relocations, but don't use bfds that would reference global
3320 symbols out of the addressable range. Failing the primary got,
3321 attempt to merge with the current got, or finish the current got
3322 and then make make the new got current. */
3323
3324static int
9719ad41 3325mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3326{
3327 struct mips_elf_bfd2got_hash *bfd2got
3328 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3329 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
3330 struct mips_got_info *g;
3331 unsigned int estimate;
3332 int result;
3333
3334 g = bfd2got->g;
3335
3336 /* Work out the number of page, local and TLS entries. */
3337 estimate = arg->max_pages;
3338 if (estimate > g->page_gotno)
3339 estimate = g->page_gotno;
3340 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
3341
3342 /* We place TLS GOT entries after both locals and globals. The globals
3343 for the primary GOT may overflow the normal GOT size limit, so be
3344 sure not to merge a GOT which requires TLS with the primary GOT in that
3345 case. This doesn't affect non-primary GOTs. */
c224138d 3346 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 3347
c224138d 3348 if (estimate <= arg->max_count)
f4416af6 3349 {
c224138d
RS
3350 /* If we don't have a primary GOT, use it as
3351 a starting point for the primary GOT. */
3352 if (!arg->primary)
3353 {
3354 arg->primary = bfd2got->g;
3355 return 1;
3356 }
f4416af6 3357
c224138d
RS
3358 /* Try merging with the primary GOT. */
3359 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3360 if (result >= 0)
3361 return result;
f4416af6 3362 }
c224138d 3363
f4416af6 3364 /* If we can merge with the last-created got, do it. */
c224138d 3365 if (arg->current)
f4416af6 3366 {
c224138d
RS
3367 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3368 if (result >= 0)
3369 return result;
f4416af6 3370 }
c224138d 3371
f4416af6
AO
3372 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3373 fits; if it turns out that it doesn't, we'll get relocation
3374 overflows anyway. */
c224138d
RS
3375 g->next = arg->current;
3376 arg->current = g;
0f20cc35
DJ
3377
3378 return 1;
3379}
3380
ead49a57
RS
3381/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3382 is null iff there is just a single GOT. */
0f20cc35
DJ
3383
3384static int
3385mips_elf_initialize_tls_index (void **entryp, void *p)
3386{
3387 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3388 struct mips_got_info *g = p;
ead49a57 3389 bfd_vma next_index;
cbf2cba4 3390 unsigned char tls_type;
0f20cc35
DJ
3391
3392 /* We're only interested in TLS symbols. */
3393 if (entry->tls_type == 0)
3394 return 1;
3395
ead49a57
RS
3396 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3397
3398 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3399 {
ead49a57
RS
3400 /* A type (3) got entry in the single-GOT case. We use the symbol's
3401 hash table entry to track its index. */
3402 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3403 return 1;
3404 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3405 entry->d.h->tls_got_offset = next_index;
cbf2cba4 3406 tls_type = entry->d.h->tls_type;
ead49a57
RS
3407 }
3408 else
3409 {
3410 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3411 {
ead49a57
RS
3412 /* There are separate mips_got_entry objects for each input bfd
3413 that requires an LDM entry. Make sure that all LDM entries in
3414 a GOT resolve to the same index. */
3415 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3416 {
ead49a57 3417 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3418 return 1;
3419 }
ead49a57 3420 g->tls_ldm_offset = next_index;
0f20cc35 3421 }
ead49a57 3422 entry->gotidx = next_index;
cbf2cba4 3423 tls_type = entry->tls_type;
f4416af6
AO
3424 }
3425
ead49a57 3426 /* Account for the entries we've just allocated. */
cbf2cba4 3427 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 3428 g->tls_assigned_gotno += 2;
cbf2cba4 3429 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
3430 g->tls_assigned_gotno += 1;
3431
f4416af6
AO
3432 return 1;
3433}
3434
3435/* If passed a NULL mips_got_info in the argument, set the marker used
3436 to tell whether a global symbol needs a got entry (in the primary
3437 got) to the given VALUE.
3438
3439 If passed a pointer G to a mips_got_info in the argument (it must
3440 not be the primary GOT), compute the offset from the beginning of
3441 the (primary) GOT section to the entry in G corresponding to the
3442 global symbol. G's assigned_gotno must contain the index of the
3443 first available global GOT entry in G. VALUE must contain the size
3444 of a GOT entry in bytes. For each global GOT entry that requires a
3445 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3446 marked as not eligible for lazy resolution through a function
f4416af6
AO
3447 stub. */
3448static int
9719ad41 3449mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3450{
3451 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3452 struct mips_elf_set_global_got_offset_arg *arg
3453 = (struct mips_elf_set_global_got_offset_arg *)p;
3454 struct mips_got_info *g = arg->g;
3455
0f20cc35
DJ
3456 if (g && entry->tls_type != GOT_NORMAL)
3457 arg->needed_relocs +=
3458 mips_tls_got_relocs (arg->info, entry->tls_type,
3459 entry->symndx == -1 ? &entry->d.h->root : NULL);
3460
f4416af6 3461 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35 3462 && entry->d.h->root.dynindx != -1
720199d6 3463 && !entry->d.h->forced_local
0f20cc35 3464 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3465 {
3466 if (g)
3467 {
3468 BFD_ASSERT (g->global_gotsym == NULL);
3469
3470 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3471 if (arg->info->shared
3472 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3473 && entry->d.h->root.def_dynamic
3474 && !entry->d.h->root.def_regular))
f4416af6
AO
3475 ++arg->needed_relocs;
3476 }
3477 else
3478 entry->d.h->root.got.offset = arg->value;
3479 }
3480
3481 return 1;
3482}
3483
0626d451
RS
3484/* Mark any global symbols referenced in the GOT we are iterating over
3485 as inelligible for lazy resolution stubs. */
3486static int
9719ad41 3487mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3488{
3489 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3490
3491 if (entry->abfd != NULL
3492 && entry->symndx == -1
3493 && entry->d.h->root.dynindx != -1)
3494 entry->d.h->no_fn_stub = TRUE;
3495
3496 return 1;
3497}
3498
f4416af6
AO
3499/* Follow indirect and warning hash entries so that each got entry
3500 points to the final symbol definition. P must point to a pointer
3501 to the hash table we're traversing. Since this traversal may
3502 modify the hash table, we set this pointer to NULL to indicate
3503 we've made a potentially-destructive change to the hash table, so
3504 the traversal must be restarted. */
3505static int
9719ad41 3506mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3507{
3508 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3509 htab_t got_entries = *(htab_t *)p;
3510
3511 if (entry->abfd != NULL && entry->symndx == -1)
3512 {
3513 struct mips_elf_link_hash_entry *h = entry->d.h;
3514
3515 while (h->root.root.type == bfd_link_hash_indirect
3516 || h->root.root.type == bfd_link_hash_warning)
3517 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3518
3519 if (entry->d.h == h)
3520 return 1;
143d77c5 3521
f4416af6
AO
3522 entry->d.h = h;
3523
3524 /* If we can't find this entry with the new bfd hash, re-insert
3525 it, and get the traversal restarted. */
3526 if (! htab_find (got_entries, entry))
3527 {
3528 htab_clear_slot (got_entries, entryp);
3529 entryp = htab_find_slot (got_entries, entry, INSERT);
3530 if (! *entryp)
3531 *entryp = entry;
3532 /* Abort the traversal, since the whole table may have
3533 moved, and leave it up to the parent to restart the
3534 process. */
3535 *(htab_t *)p = NULL;
3536 return 0;
3537 }
3538 /* We might want to decrement the global_gotno count, but it's
3539 either too early or too late for that at this point. */
3540 }
143d77c5 3541
f4416af6
AO
3542 return 1;
3543}
3544
3545/* Turn indirect got entries in a got_entries table into their final
3546 locations. */
3547static void
9719ad41 3548mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3549{
3550 htab_t got_entries;
3551
3552 do
3553 {
3554 got_entries = g->got_entries;
3555
3556 htab_traverse (got_entries,
3557 mips_elf_resolve_final_got_entry,
3558 &got_entries);
3559 }
3560 while (got_entries == NULL);
3561}
3562
3563/* Return the offset of an input bfd IBFD's GOT from the beginning of
3564 the primary GOT. */
3565static bfd_vma
9719ad41 3566mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3567{
3568 if (g->bfd2got == NULL)
3569 return 0;
3570
3571 g = mips_elf_got_for_ibfd (g, ibfd);
3572 if (! g)
3573 return 0;
3574
3575 BFD_ASSERT (g->next);
3576
3577 g = g->next;
143d77c5 3578
0f20cc35
DJ
3579 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3580 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3581}
3582
3583/* Turn a single GOT that is too big for 16-bit addressing into
3584 a sequence of GOTs, each one 16-bit addressable. */
3585
3586static bfd_boolean
9719ad41
RS
3587mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3588 struct mips_got_info *g, asection *got,
3589 bfd_size_type pages)
f4416af6
AO
3590{
3591 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3592 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3593 struct mips_got_info *gg;
3594 unsigned int assign;
3595
3596 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3597 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3598 if (g->bfd2got == NULL)
3599 return FALSE;
3600
3601 got_per_bfd_arg.bfd2got = g->bfd2got;
3602 got_per_bfd_arg.obfd = abfd;
3603 got_per_bfd_arg.info = info;
3604
3605 /* Count how many GOT entries each input bfd requires, creating a
3606 map from bfd to got info while at that. */
f4416af6
AO
3607 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3608 if (got_per_bfd_arg.obfd == NULL)
3609 return FALSE;
3610
c224138d
RS
3611 /* Also count how many page entries each input bfd requires. */
3612 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3613 &got_per_bfd_arg);
3614 if (got_per_bfd_arg.obfd == NULL)
3615 return FALSE;
3616
f4416af6
AO
3617 got_per_bfd_arg.current = NULL;
3618 got_per_bfd_arg.primary = NULL;
0a44bf69 3619 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3620 / MIPS_ELF_GOT_SIZE (abfd))
c224138d
RS
3621 - MIPS_RESERVED_GOTNO (info));
3622 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
3623 /* The number of globals that will be included in the primary GOT.
3624 See the calls to mips_elf_set_global_got_offset below for more
3625 information. */
3626 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3627
3628 /* Try to merge the GOTs of input bfds together, as long as they
3629 don't seem to exceed the maximum GOT size, choosing one of them
3630 to be the primary GOT. */
3631 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3632 if (got_per_bfd_arg.obfd == NULL)
3633 return FALSE;
3634
0f20cc35 3635 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3636 if (got_per_bfd_arg.primary == NULL)
3637 {
3638 g->next = (struct mips_got_info *)
3639 bfd_alloc (abfd, sizeof (struct mips_got_info));
3640 if (g->next == NULL)
3641 return FALSE;
3642
3643 g->next->global_gotsym = NULL;
3644 g->next->global_gotno = 0;
3645 g->next->local_gotno = 0;
c224138d 3646 g->next->page_gotno = 0;
0f20cc35 3647 g->next->tls_gotno = 0;
f4416af6 3648 g->next->assigned_gotno = 0;
0f20cc35
DJ
3649 g->next->tls_assigned_gotno = 0;
3650 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3651 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3652 mips_elf_multi_got_entry_eq,
9719ad41 3653 NULL);
f4416af6
AO
3654 if (g->next->got_entries == NULL)
3655 return FALSE;
c224138d
RS
3656 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3657 mips_got_page_entry_eq,
3658 NULL);
3659 if (g->next->got_page_entries == NULL)
3660 return FALSE;
f4416af6
AO
3661 g->next->bfd2got = NULL;
3662 }
3663 else
3664 g->next = got_per_bfd_arg.primary;
3665 g->next->next = got_per_bfd_arg.current;
3666
3667 /* GG is now the master GOT, and G is the primary GOT. */
3668 gg = g;
3669 g = g->next;
3670
3671 /* Map the output bfd to the primary got. That's what we're going
3672 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3673 didn't mark in check_relocs, and we want a quick way to find it.
3674 We can't just use gg->next because we're going to reverse the
3675 list. */
3676 {
3677 struct mips_elf_bfd2got_hash *bfdgot;
3678 void **bfdgotp;
143d77c5 3679
f4416af6
AO
3680 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3681 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3682
3683 if (bfdgot == NULL)
3684 return FALSE;
3685
3686 bfdgot->bfd = abfd;
3687 bfdgot->g = g;
3688 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3689
3690 BFD_ASSERT (*bfdgotp == NULL);
3691 *bfdgotp = bfdgot;
3692 }
3693
3694 /* The IRIX dynamic linker requires every symbol that is referenced
3695 in a dynamic relocation to be present in the primary GOT, so
3696 arrange for them to appear after those that are actually
3697 referenced.
3698
3699 GNU/Linux could very well do without it, but it would slow down
3700 the dynamic linker, since it would have to resolve every dynamic
3701 symbol referenced in other GOTs more than once, without help from
3702 the cache. Also, knowing that every external symbol has a GOT
3703 helps speed up the resolution of local symbols too, so GNU/Linux
3704 follows IRIX's practice.
143d77c5 3705
f4416af6
AO
3706 The number 2 is used by mips_elf_sort_hash_table_f to count
3707 global GOT symbols that are unreferenced in the primary GOT, with
3708 an initial dynamic index computed from gg->assigned_gotno, where
3709 the number of unreferenced global entries in the primary GOT is
3710 preserved. */
3711 if (1)
3712 {
3713 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3714 g->global_gotno = gg->global_gotno;
3715 set_got_offset_arg.value = 2;
3716 }
3717 else
3718 {
3719 /* This could be used for dynamic linkers that don't optimize
3720 symbol resolution while applying relocations so as to use
3721 primary GOT entries or assuming the symbol is locally-defined.
3722 With this code, we assign lower dynamic indices to global
3723 symbols that are not referenced in the primary GOT, so that
3724 their entries can be omitted. */
3725 gg->assigned_gotno = 0;
3726 set_got_offset_arg.value = -1;
3727 }
3728
3729 /* Reorder dynamic symbols as described above (which behavior
3730 depends on the setting of VALUE). */
3731 set_got_offset_arg.g = NULL;
3732 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3733 &set_got_offset_arg);
3734 set_got_offset_arg.value = 1;
3735 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3736 &set_got_offset_arg);
3737 if (! mips_elf_sort_hash_table (info, 1))
3738 return FALSE;
3739
3740 /* Now go through the GOTs assigning them offset ranges.
3741 [assigned_gotno, local_gotno[ will be set to the range of local
3742 entries in each GOT. We can then compute the end of a GOT by
3743 adding local_gotno to global_gotno. We reverse the list and make
3744 it circular since then we'll be able to quickly compute the
3745 beginning of a GOT, by computing the end of its predecessor. To
3746 avoid special cases for the primary GOT, while still preserving
3747 assertions that are valid for both single- and multi-got links,
3748 we arrange for the main got struct to have the right number of
3749 global entries, but set its local_gotno such that the initial
3750 offset of the primary GOT is zero. Remember that the primary GOT
3751 will become the last item in the circular linked list, so it
3752 points back to the master GOT. */
3753 gg->local_gotno = -g->global_gotno;
3754 gg->global_gotno = g->global_gotno;
0f20cc35 3755 gg->tls_gotno = 0;
f4416af6
AO
3756 assign = 0;
3757 gg->next = gg;
3758
3759 do
3760 {
3761 struct mips_got_info *gn;
3762
0a44bf69 3763 assign += MIPS_RESERVED_GOTNO (info);
f4416af6 3764 g->assigned_gotno = assign;
c224138d
RS
3765 g->local_gotno += assign;
3766 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
3767 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3768
ead49a57
RS
3769 /* Take g out of the direct list, and push it onto the reversed
3770 list that gg points to. g->next is guaranteed to be nonnull after
3771 this operation, as required by mips_elf_initialize_tls_index. */
3772 gn = g->next;
3773 g->next = gg->next;
3774 gg->next = g;
3775
0f20cc35
DJ
3776 /* Set up any TLS entries. We always place the TLS entries after
3777 all non-TLS entries. */
3778 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3779 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3780
ead49a57 3781 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3782 g = gn;
0626d451
RS
3783
3784 /* Mark global symbols in every non-primary GOT as ineligible for
3785 stubs. */
3786 if (g)
3787 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3788 }
3789 while (g);
3790
eea6121a 3791 got->size = (gg->next->local_gotno
0f20cc35
DJ
3792 + gg->next->global_gotno
3793 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3794
f4416af6
AO
3795 return TRUE;
3796}
143d77c5 3797
b49e97c9
TS
3798\f
3799/* Returns the first relocation of type r_type found, beginning with
3800 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3801
3802static const Elf_Internal_Rela *
9719ad41
RS
3803mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3804 const Elf_Internal_Rela *relocation,
3805 const Elf_Internal_Rela *relend)
b49e97c9 3806{
c000e262
TS
3807 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3808
b49e97c9
TS
3809 while (relocation < relend)
3810 {
c000e262
TS
3811 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3812 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3813 return relocation;
3814
3815 ++relocation;
3816 }
3817
3818 /* We didn't find it. */
b49e97c9
TS
3819 return NULL;
3820}
3821
3822/* Return whether a relocation is against a local symbol. */
3823
b34976b6 3824static bfd_boolean
9719ad41
RS
3825mips_elf_local_relocation_p (bfd *input_bfd,
3826 const Elf_Internal_Rela *relocation,
3827 asection **local_sections,
3828 bfd_boolean check_forced)
b49e97c9
TS
3829{
3830 unsigned long r_symndx;
3831 Elf_Internal_Shdr *symtab_hdr;
3832 struct mips_elf_link_hash_entry *h;
3833 size_t extsymoff;
3834
3835 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3836 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3837 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3838
3839 if (r_symndx < extsymoff)
b34976b6 3840 return TRUE;
b49e97c9 3841 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3842 return TRUE;
b49e97c9
TS
3843
3844 if (check_forced)
3845 {
3846 /* Look up the hash table to check whether the symbol
3847 was forced local. */
3848 h = (struct mips_elf_link_hash_entry *)
3849 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3850 /* Find the real hash-table entry for this symbol. */
3851 while (h->root.root.type == bfd_link_hash_indirect
3852 || h->root.root.type == bfd_link_hash_warning)
3853 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3854 if (h->root.forced_local)
b34976b6 3855 return TRUE;
b49e97c9
TS
3856 }
3857
b34976b6 3858 return FALSE;
b49e97c9
TS
3859}
3860\f
3861/* Sign-extend VALUE, which has the indicated number of BITS. */
3862
a7ebbfdf 3863bfd_vma
9719ad41 3864_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3865{
3866 if (value & ((bfd_vma) 1 << (bits - 1)))
3867 /* VALUE is negative. */
3868 value |= ((bfd_vma) - 1) << bits;
3869
3870 return value;
3871}
3872
3873/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3874 range expressible by a signed number with the indicated number of
b49e97c9
TS
3875 BITS. */
3876
b34976b6 3877static bfd_boolean
9719ad41 3878mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3879{
3880 bfd_signed_vma svalue = (bfd_signed_vma) value;
3881
3882 if (svalue > (1 << (bits - 1)) - 1)
3883 /* The value is too big. */
b34976b6 3884 return TRUE;
b49e97c9
TS
3885 else if (svalue < -(1 << (bits - 1)))
3886 /* The value is too small. */
b34976b6 3887 return TRUE;
b49e97c9
TS
3888
3889 /* All is well. */
b34976b6 3890 return FALSE;
b49e97c9
TS
3891}
3892
3893/* Calculate the %high function. */
3894
3895static bfd_vma
9719ad41 3896mips_elf_high (bfd_vma value)
b49e97c9
TS
3897{
3898 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3899}
3900
3901/* Calculate the %higher function. */
3902
3903static bfd_vma
9719ad41 3904mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3905{
3906#ifdef BFD64
3907 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3908#else
3909 abort ();
c5ae1840 3910 return MINUS_ONE;
b49e97c9
TS
3911#endif
3912}
3913
3914/* Calculate the %highest function. */
3915
3916static bfd_vma
9719ad41 3917mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3918{
3919#ifdef BFD64
b15e6682 3920 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3921#else
3922 abort ();
c5ae1840 3923 return MINUS_ONE;
b49e97c9
TS
3924#endif
3925}
3926\f
3927/* Create the .compact_rel section. */
3928
b34976b6 3929static bfd_boolean
9719ad41
RS
3930mips_elf_create_compact_rel_section
3931 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3932{
3933 flagword flags;
3934 register asection *s;
3935
3936 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3937 {
3938 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3939 | SEC_READONLY);
3940
3496cb2a 3941 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3942 if (s == NULL
b49e97c9
TS
3943 || ! bfd_set_section_alignment (abfd, s,
3944 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3945 return FALSE;
b49e97c9 3946
eea6121a 3947 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3948 }
3949
b34976b6 3950 return TRUE;
b49e97c9
TS
3951}
3952
3953/* Create the .got section to hold the global offset table. */
3954
b34976b6 3955static bfd_boolean
9719ad41
RS
3956mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3957 bfd_boolean maybe_exclude)
b49e97c9
TS
3958{
3959 flagword flags;
3960 register asection *s;
3961 struct elf_link_hash_entry *h;
14a793b2 3962 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3963 struct mips_got_info *g;
3964 bfd_size_type amt;
0a44bf69
RS
3965 struct mips_elf_link_hash_table *htab;
3966
3967 htab = mips_elf_hash_table (info);
b49e97c9
TS
3968
3969 /* This function may be called more than once. */
f4416af6
AO
3970 s = mips_elf_got_section (abfd, TRUE);
3971 if (s)
3972 {
3973 if (! maybe_exclude)
3974 s->flags &= ~SEC_EXCLUDE;
3975 return TRUE;
3976 }
b49e97c9
TS
3977
3978 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3979 | SEC_LINKER_CREATED);
3980
f4416af6
AO
3981 if (maybe_exclude)
3982 flags |= SEC_EXCLUDE;
3983
72b4917c
TS
3984 /* We have to use an alignment of 2**4 here because this is hardcoded
3985 in the function stub generation and in the linker script. */
3496cb2a 3986 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3987 if (s == NULL
72b4917c 3988 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3989 return FALSE;
b49e97c9
TS
3990
3991 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3992 linker script because we don't want to define the symbol if we
3993 are not creating a global offset table. */
14a793b2 3994 bh = NULL;
b49e97c9
TS
3995 if (! (_bfd_generic_link_add_one_symbol
3996 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3997 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3998 return FALSE;
14a793b2
AM
3999
4000 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4001 h->non_elf = 0;
4002 h->def_regular = 1;
b49e97c9 4003 h->type = STT_OBJECT;
d329bcd1 4004 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4005
4006 if (info->shared
c152c796 4007 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4008 return FALSE;
b49e97c9 4009
b49e97c9 4010 amt = sizeof (struct mips_got_info);
9719ad41 4011 g = bfd_alloc (abfd, amt);
b49e97c9 4012 if (g == NULL)
b34976b6 4013 return FALSE;
b49e97c9 4014 g->global_gotsym = NULL;
e3d54347 4015 g->global_gotno = 0;
0f20cc35 4016 g->tls_gotno = 0;
0a44bf69 4017 g->local_gotno = MIPS_RESERVED_GOTNO (info);
c224138d 4018 g->page_gotno = 0;
0a44bf69 4019 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
4020 g->bfd2got = NULL;
4021 g->next = NULL;
0f20cc35 4022 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4023 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4024 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4025 if (g->got_entries == NULL)
4026 return FALSE;
c224138d
RS
4027 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4028 mips_got_page_entry_eq, NULL);
4029 if (g->got_page_entries == NULL)
4030 return FALSE;
f0abc2a1
AM
4031 mips_elf_section_data (s)->u.got_info = g;
4032 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4033 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4034
0a44bf69
RS
4035 /* VxWorks also needs a .got.plt section. */
4036 if (htab->is_vxworks)
4037 {
4038 s = bfd_make_section_with_flags (abfd, ".got.plt",
4039 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4040 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4041 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4042 return FALSE;
4043
4044 htab->sgotplt = s;
4045 }
b34976b6 4046 return TRUE;
b49e97c9 4047}
b49e97c9 4048\f
0a44bf69
RS
4049/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4050 __GOTT_INDEX__ symbols. These symbols are only special for
4051 shared objects; they are not used in executables. */
4052
4053static bfd_boolean
4054is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4055{
4056 return (mips_elf_hash_table (info)->is_vxworks
4057 && info->shared
4058 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4059 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4060}
4061\f
b49e97c9
TS
4062/* Calculate the value produced by the RELOCATION (which comes from
4063 the INPUT_BFD). The ADDEND is the addend to use for this
4064 RELOCATION; RELOCATION->R_ADDEND is ignored.
4065
4066 The result of the relocation calculation is stored in VALUEP.
4067 REQUIRE_JALXP indicates whether or not the opcode used with this
4068 relocation must be JALX.
4069
4070 This function returns bfd_reloc_continue if the caller need take no
4071 further action regarding this relocation, bfd_reloc_notsupported if
4072 something goes dramatically wrong, bfd_reloc_overflow if an
4073 overflow occurs, and bfd_reloc_ok to indicate success. */
4074
4075static bfd_reloc_status_type
9719ad41
RS
4076mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4077 asection *input_section,
4078 struct bfd_link_info *info,
4079 const Elf_Internal_Rela *relocation,
4080 bfd_vma addend, reloc_howto_type *howto,
4081 Elf_Internal_Sym *local_syms,
4082 asection **local_sections, bfd_vma *valuep,
4083 const char **namep, bfd_boolean *require_jalxp,
4084 bfd_boolean save_addend)
b49e97c9
TS
4085{
4086 /* The eventual value we will return. */
4087 bfd_vma value;
4088 /* The address of the symbol against which the relocation is
4089 occurring. */
4090 bfd_vma symbol = 0;
4091 /* The final GP value to be used for the relocatable, executable, or
4092 shared object file being produced. */
4093 bfd_vma gp = MINUS_ONE;
4094 /* The place (section offset or address) of the storage unit being
4095 relocated. */
4096 bfd_vma p;
4097 /* The value of GP used to create the relocatable object. */
4098 bfd_vma gp0 = MINUS_ONE;
4099 /* The offset into the global offset table at which the address of
4100 the relocation entry symbol, adjusted by the addend, resides
4101 during execution. */
4102 bfd_vma g = MINUS_ONE;
4103 /* The section in which the symbol referenced by the relocation is
4104 located. */
4105 asection *sec = NULL;
4106 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4107 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4108 symbol. */
b34976b6
AM
4109 bfd_boolean local_p, was_local_p;
4110 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4111 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
4112 /* TRUE if the symbol referred to by this relocation is
4113 "__gnu_local_gp". */
4114 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
4115 Elf_Internal_Shdr *symtab_hdr;
4116 size_t extsymoff;
4117 unsigned long r_symndx;
4118 int r_type;
b34976b6 4119 /* TRUE if overflow occurred during the calculation of the
b49e97c9 4120 relocation value. */
b34976b6
AM
4121 bfd_boolean overflowed_p;
4122 /* TRUE if this relocation refers to a MIPS16 function. */
4123 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
4124 struct mips_elf_link_hash_table *htab;
4125 bfd *dynobj;
4126
4127 dynobj = elf_hash_table (info)->dynobj;
4128 htab = mips_elf_hash_table (info);
b49e97c9
TS
4129
4130 /* Parse the relocation. */
4131 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4132 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4133 p = (input_section->output_section->vma
4134 + input_section->output_offset
4135 + relocation->r_offset);
4136
4137 /* Assume that there will be no overflow. */
b34976b6 4138 overflowed_p = FALSE;
b49e97c9
TS
4139
4140 /* Figure out whether or not the symbol is local, and get the offset
4141 used in the array of hash table entries. */
4142 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4143 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4144 local_sections, FALSE);
bce03d3d 4145 was_local_p = local_p;
b49e97c9
TS
4146 if (! elf_bad_symtab (input_bfd))
4147 extsymoff = symtab_hdr->sh_info;
4148 else
4149 {
4150 /* The symbol table does not follow the rule that local symbols
4151 must come before globals. */
4152 extsymoff = 0;
4153 }
4154
4155 /* Figure out the value of the symbol. */
4156 if (local_p)
4157 {
4158 Elf_Internal_Sym *sym;
4159
4160 sym = local_syms + r_symndx;
4161 sec = local_sections[r_symndx];
4162
4163 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
4164 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4165 || (sec->flags & SEC_MERGE))
b49e97c9 4166 symbol += sym->st_value;
d4df96e6
L
4167 if ((sec->flags & SEC_MERGE)
4168 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4169 {
4170 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4171 addend -= symbol;
4172 addend += sec->output_section->vma + sec->output_offset;
4173 }
b49e97c9
TS
4174
4175 /* MIPS16 text labels should be treated as odd. */
4176 if (sym->st_other == STO_MIPS16)
4177 ++symbol;
4178
4179 /* Record the name of this symbol, for our caller. */
4180 *namep = bfd_elf_string_from_elf_section (input_bfd,
4181 symtab_hdr->sh_link,
4182 sym->st_name);
4183 if (*namep == '\0')
4184 *namep = bfd_section_name (input_bfd, sec);
4185
4186 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
4187 }
4188 else
4189 {
560e09e9
NC
4190 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4191
b49e97c9
TS
4192 /* For global symbols we look up the symbol in the hash-table. */
4193 h = ((struct mips_elf_link_hash_entry *)
4194 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4195 /* Find the real hash-table entry for this symbol. */
4196 while (h->root.root.type == bfd_link_hash_indirect
4197 || h->root.root.type == bfd_link_hash_warning)
4198 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4199
4200 /* Record the name of this symbol, for our caller. */
4201 *namep = h->root.root.root.string;
4202
4203 /* See if this is the special _gp_disp symbol. Note that such a
4204 symbol must always be a global symbol. */
560e09e9 4205 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4206 && ! NEWABI_P (input_bfd))
4207 {
4208 /* Relocations against _gp_disp are permitted only with
4209 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
4210 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4211 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
4212 return bfd_reloc_notsupported;
4213
b34976b6 4214 gp_disp_p = TRUE;
b49e97c9 4215 }
bbe506e8
TS
4216 /* See if this is the special _gp symbol. Note that such a
4217 symbol must always be a global symbol. */
4218 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4219 gnu_local_gp_p = TRUE;
4220
4221
b49e97c9
TS
4222 /* If this symbol is defined, calculate its address. Note that
4223 _gp_disp is a magic symbol, always implicitly defined by the
4224 linker, so it's inappropriate to check to see whether or not
4225 its defined. */
4226 else if ((h->root.root.type == bfd_link_hash_defined
4227 || h->root.root.type == bfd_link_hash_defweak)
4228 && h->root.root.u.def.section)
4229 {
4230 sec = h->root.root.u.def.section;
4231 if (sec->output_section)
4232 symbol = (h->root.root.u.def.value
4233 + sec->output_section->vma
4234 + sec->output_offset);
4235 else
4236 symbol = h->root.root.u.def.value;
4237 }
4238 else if (h->root.root.type == bfd_link_hash_undefweak)
4239 /* We allow relocations against undefined weak symbols, giving
4240 it the value zero, so that you can undefined weak functions
4241 and check to see if they exist by looking at their
4242 addresses. */
4243 symbol = 0;
59c2e50f 4244 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4245 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4246 symbol = 0;
a4d0f181
TS
4247 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4248 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4249 {
4250 /* If this is a dynamic link, we should have created a
4251 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4252 in in _bfd_mips_elf_create_dynamic_sections.
4253 Otherwise, we should define the symbol with a value of 0.
4254 FIXME: It should probably get into the symbol table
4255 somehow as well. */
4256 BFD_ASSERT (! info->shared);
4257 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4258 symbol = 0;
4259 }
5e2b0d47
NC
4260 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4261 {
4262 /* This is an optional symbol - an Irix specific extension to the
4263 ELF spec. Ignore it for now.
4264 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4265 than simply ignoring them, but we do not handle this for now.
4266 For information see the "64-bit ELF Object File Specification"
4267 which is available from here:
4268 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4269 symbol = 0;
4270 }
b49e97c9
TS
4271 else
4272 {
4273 if (! ((*info->callbacks->undefined_symbol)
4274 (info, h->root.root.root.string, input_bfd,
4275 input_section, relocation->r_offset,
59c2e50f
L
4276 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4277 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4278 return bfd_reloc_undefined;
4279 symbol = 0;
4280 }
4281
4282 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4283 }
4284
4285 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4286 need to redirect the call to the stub, unless we're already *in*
4287 a stub. */
1049f94e 4288 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4289 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4290 || (local_p
4291 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4292 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4293 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4294 {
4295 /* This is a 32- or 64-bit call to a 16-bit function. We should
4296 have already noticed that we were going to need the
4297 stub. */
4298 if (local_p)
4299 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4300 else
4301 {
4302 BFD_ASSERT (h->need_fn_stub);
4303 sec = h->fn_stub;
4304 }
4305
4306 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4307 /* The target is 16-bit, but the stub isn't. */
4308 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4309 }
4310 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4311 need to redirect the call to the stub. */
1049f94e 4312 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 4313 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
4314 || (local_p
4315 && elf_tdata (input_bfd)->local_call_stubs != NULL
4316 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4317 && !target_is_16_bit_code_p)
4318 {
b9d58d71
TS
4319 if (local_p)
4320 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4321 else
b49e97c9 4322 {
b9d58d71
TS
4323 /* If both call_stub and call_fp_stub are defined, we can figure
4324 out which one to use by checking which one appears in the input
4325 file. */
4326 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4327 {
b9d58d71
TS
4328 asection *o;
4329
4330 sec = NULL;
4331 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4332 {
b9d58d71
TS
4333 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4334 {
4335 sec = h->call_fp_stub;
4336 break;
4337 }
b49e97c9 4338 }
b9d58d71
TS
4339 if (sec == NULL)
4340 sec = h->call_stub;
b49e97c9 4341 }
b9d58d71 4342 else if (h->call_stub != NULL)
b49e97c9 4343 sec = h->call_stub;
b9d58d71
TS
4344 else
4345 sec = h->call_fp_stub;
4346 }
b49e97c9 4347
eea6121a 4348 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4349 symbol = sec->output_section->vma + sec->output_offset;
4350 }
4351
4352 /* Calls from 16-bit code to 32-bit code and vice versa require the
4353 special jalx instruction. */
1049f94e 4354 *require_jalxp = (!info->relocatable
b49e97c9
TS
4355 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4356 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4357
4358 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4359 local_sections, TRUE);
b49e97c9
TS
4360
4361 /* If we haven't already determined the GOT offset, or the GP value,
4362 and we're going to need it, get it now. */
4363 switch (r_type)
4364 {
0fdc1bf1 4365 case R_MIPS_GOT_PAGE:
93a2b7ae 4366 case R_MIPS_GOT_OFST:
d25aed71
RS
4367 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4368 bind locally. */
4369 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4370 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4371 break;
4372 /* Fall through. */
4373
b49e97c9
TS
4374 case R_MIPS_CALL16:
4375 case R_MIPS_GOT16:
4376 case R_MIPS_GOT_DISP:
4377 case R_MIPS_GOT_HI16:
4378 case R_MIPS_CALL_HI16:
4379 case R_MIPS_GOT_LO16:
4380 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4381 case R_MIPS_TLS_GD:
4382 case R_MIPS_TLS_GOTTPREL:
4383 case R_MIPS_TLS_LDM:
b49e97c9 4384 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4385 if (r_type == R_MIPS_TLS_LDM)
4386 {
0a44bf69 4387 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4388 0, 0, NULL, r_type);
0f20cc35
DJ
4389 if (g == MINUS_ONE)
4390 return bfd_reloc_outofrange;
4391 }
4392 else if (!local_p)
b49e97c9 4393 {
0a44bf69
RS
4394 /* On VxWorks, CALL relocations should refer to the .got.plt
4395 entry, which is initialized to point at the PLT stub. */
4396 if (htab->is_vxworks
4397 && (r_type == R_MIPS_CALL_HI16
4398 || r_type == R_MIPS_CALL_LO16
4399 || r_type == R_MIPS_CALL16))
4400 {
4401 BFD_ASSERT (addend == 0);
4402 BFD_ASSERT (h->root.needs_plt);
4403 g = mips_elf_gotplt_index (info, &h->root);
4404 }
4405 else
b49e97c9 4406 {
0a44bf69
RS
4407 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4408 GOT_PAGE relocation that decays to GOT_DISP because the
4409 symbol turns out to be global. The addend is then added
4410 as GOT_OFST. */
4411 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4412 g = mips_elf_global_got_index (dynobj, input_bfd,
4413 &h->root, r_type, info);
4414 if (h->tls_type == GOT_NORMAL
4415 && (! elf_hash_table(info)->dynamic_sections_created
4416 || (info->shared
4417 && (info->symbolic || h->root.forced_local)
4418 && h->root.def_regular)))
4419 {
4420 /* This is a static link or a -Bsymbolic link. The
4421 symbol is defined locally, or was forced to be local.
4422 We must initialize this entry in the GOT. */
4423 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4424 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4425 }
b49e97c9
TS
4426 }
4427 }
0a44bf69
RS
4428 else if (!htab->is_vxworks
4429 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4430 /* The calculation below does not involve "g". */
b49e97c9
TS
4431 break;
4432 else
4433 {
5c18022e 4434 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4435 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4436 if (g == MINUS_ONE)
4437 return bfd_reloc_outofrange;
4438 }
4439
4440 /* Convert GOT indices to actual offsets. */
0a44bf69 4441 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4442 break;
4443
4444 case R_MIPS_HI16:
4445 case R_MIPS_LO16:
b49e97c9
TS
4446 case R_MIPS_GPREL16:
4447 case R_MIPS_GPREL32:
4448 case R_MIPS_LITERAL:
d6f16593
MR
4449 case R_MIPS16_HI16:
4450 case R_MIPS16_LO16:
4451 case R_MIPS16_GPREL:
b49e97c9
TS
4452 gp0 = _bfd_get_gp_value (input_bfd);
4453 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4454 if (dynobj)
4455 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4456 input_bfd);
b49e97c9
TS
4457 break;
4458
4459 default:
4460 break;
4461 }
4462
bbe506e8
TS
4463 if (gnu_local_gp_p)
4464 symbol = gp;
86324f90 4465
0a44bf69
RS
4466 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4467 symbols are resolved by the loader. Add them to .rela.dyn. */
4468 if (h != NULL && is_gott_symbol (info, &h->root))
4469 {
4470 Elf_Internal_Rela outrel;
4471 bfd_byte *loc;
4472 asection *s;
4473
4474 s = mips_elf_rel_dyn_section (info, FALSE);
4475 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4476
4477 outrel.r_offset = (input_section->output_section->vma
4478 + input_section->output_offset
4479 + relocation->r_offset);
4480 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4481 outrel.r_addend = addend;
4482 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4483
4484 /* If we've written this relocation for a readonly section,
4485 we need to set DF_TEXTREL again, so that we do not delete the
4486 DT_TEXTREL tag. */
4487 if (MIPS_ELF_READONLY_SECTION (input_section))
4488 info->flags |= DF_TEXTREL;
4489
0a44bf69
RS
4490 *valuep = 0;
4491 return bfd_reloc_ok;
4492 }
4493
b49e97c9
TS
4494 /* Figure out what kind of relocation is being performed. */
4495 switch (r_type)
4496 {
4497 case R_MIPS_NONE:
4498 return bfd_reloc_continue;
4499
4500 case R_MIPS_16:
a7ebbfdf 4501 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4502 overflowed_p = mips_elf_overflow_p (value, 16);
4503 break;
4504
4505 case R_MIPS_32:
4506 case R_MIPS_REL32:
4507 case R_MIPS_64:
4508 if ((info->shared
0a44bf69
RS
4509 || (!htab->is_vxworks
4510 && htab->root.dynamic_sections_created
b49e97c9 4511 && h != NULL
f5385ebf
AM
4512 && h->root.def_dynamic
4513 && !h->root.def_regular))
b49e97c9
TS
4514 && r_symndx != 0
4515 && (input_section->flags & SEC_ALLOC) != 0)
4516 {
4517 /* If we're creating a shared library, or this relocation is
4518 against a symbol in a shared library, then we can't know
4519 where the symbol will end up. So, we create a relocation
4520 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4521 linker.
4522
4523 In VxWorks executables, references to external symbols
4524 are handled using copy relocs or PLT stubs, so there's
4525 no need to add a dynamic relocation here. */
b49e97c9
TS
4526 value = addend;
4527 if (!mips_elf_create_dynamic_relocation (abfd,
4528 info,
4529 relocation,
4530 h,
4531 sec,
4532 symbol,
4533 &value,
4534 input_section))
4535 return bfd_reloc_undefined;
4536 }
4537 else
4538 {
4539 if (r_type != R_MIPS_REL32)
4540 value = symbol + addend;
4541 else
4542 value = addend;
4543 }
4544 value &= howto->dst_mask;
092dcd75
CD
4545 break;
4546
4547 case R_MIPS_PC32:
4548 value = symbol + addend - p;
4549 value &= howto->dst_mask;
b49e97c9
TS
4550 break;
4551
b49e97c9
TS
4552 case R_MIPS16_26:
4553 /* The calculation for R_MIPS16_26 is just the same as for an
4554 R_MIPS_26. It's only the storage of the relocated field into
4555 the output file that's different. That's handled in
4556 mips_elf_perform_relocation. So, we just fall through to the
4557 R_MIPS_26 case here. */
4558 case R_MIPS_26:
4559 if (local_p)
30ac9238 4560 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4561 else
728b2f21
ILT
4562 {
4563 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4564 if (h->root.root.type != bfd_link_hash_undefweak)
4565 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4566 }
b49e97c9
TS
4567 value &= howto->dst_mask;
4568 break;
4569
0f20cc35
DJ
4570 case R_MIPS_TLS_DTPREL_HI16:
4571 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4572 & howto->dst_mask);
4573 break;
4574
4575 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
4576 case R_MIPS_TLS_DTPREL32:
4577 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
4578 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4579 break;
4580
4581 case R_MIPS_TLS_TPREL_HI16:
4582 value = (mips_elf_high (addend + symbol - tprel_base (info))
4583 & howto->dst_mask);
4584 break;
4585
4586 case R_MIPS_TLS_TPREL_LO16:
4587 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4588 break;
4589
b49e97c9 4590 case R_MIPS_HI16:
d6f16593 4591 case R_MIPS16_HI16:
b49e97c9
TS
4592 if (!gp_disp_p)
4593 {
4594 value = mips_elf_high (addend + symbol);
4595 value &= howto->dst_mask;
4596 }
4597 else
4598 {
d6f16593
MR
4599 /* For MIPS16 ABI code we generate this sequence
4600 0: li $v0,%hi(_gp_disp)
4601 4: addiupc $v1,%lo(_gp_disp)
4602 8: sll $v0,16
4603 12: addu $v0,$v1
4604 14: move $gp,$v0
4605 So the offsets of hi and lo relocs are the same, but the
4606 $pc is four higher than $t9 would be, so reduce
4607 both reloc addends by 4. */
4608 if (r_type == R_MIPS16_HI16)
4609 value = mips_elf_high (addend + gp - p - 4);
4610 else
4611 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4612 overflowed_p = mips_elf_overflow_p (value, 16);
4613 }
4614 break;
4615
4616 case R_MIPS_LO16:
d6f16593 4617 case R_MIPS16_LO16:
b49e97c9
TS
4618 if (!gp_disp_p)
4619 value = (symbol + addend) & howto->dst_mask;
4620 else
4621 {
d6f16593
MR
4622 /* See the comment for R_MIPS16_HI16 above for the reason
4623 for this conditional. */
4624 if (r_type == R_MIPS16_LO16)
4625 value = addend + gp - p;
4626 else
4627 value = addend + gp - p + 4;
b49e97c9 4628 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4629 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4630 _gp_disp are normally generated from the .cpload
4631 pseudo-op. It generates code that normally looks like
4632 this:
4633
4634 lui $gp,%hi(_gp_disp)
4635 addiu $gp,$gp,%lo(_gp_disp)
4636 addu $gp,$gp,$t9
4637
4638 Here $t9 holds the address of the function being called,
4639 as required by the MIPS ELF ABI. The R_MIPS_LO16
4640 relocation can easily overflow in this situation, but the
4641 R_MIPS_HI16 relocation will handle the overflow.
4642 Therefore, we consider this a bug in the MIPS ABI, and do
4643 not check for overflow here. */
4644 }
4645 break;
4646
4647 case R_MIPS_LITERAL:
4648 /* Because we don't merge literal sections, we can handle this
4649 just like R_MIPS_GPREL16. In the long run, we should merge
4650 shared literals, and then we will need to additional work
4651 here. */
4652
4653 /* Fall through. */
4654
4655 case R_MIPS16_GPREL:
4656 /* The R_MIPS16_GPREL performs the same calculation as
4657 R_MIPS_GPREL16, but stores the relocated bits in a different
4658 order. We don't need to do anything special here; the
4659 differences are handled in mips_elf_perform_relocation. */
4660 case R_MIPS_GPREL16:
bce03d3d
AO
4661 /* Only sign-extend the addend if it was extracted from the
4662 instruction. If the addend was separate, leave it alone,
4663 otherwise we may lose significant bits. */
4664 if (howto->partial_inplace)
a7ebbfdf 4665 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4666 value = symbol + addend - gp;
4667 /* If the symbol was local, any earlier relocatable links will
4668 have adjusted its addend with the gp offset, so compensate
4669 for that now. Don't do it for symbols forced local in this
4670 link, though, since they won't have had the gp offset applied
4671 to them before. */
4672 if (was_local_p)
4673 value += gp0;
b49e97c9
TS
4674 overflowed_p = mips_elf_overflow_p (value, 16);
4675 break;
4676
4677 case R_MIPS_GOT16:
4678 case R_MIPS_CALL16:
0a44bf69
RS
4679 /* VxWorks does not have separate local and global semantics for
4680 R_MIPS_GOT16; every relocation evaluates to "G". */
4681 if (!htab->is_vxworks && local_p)
b49e97c9 4682 {
b34976b6 4683 bfd_boolean forced;
b49e97c9 4684
b49e97c9 4685 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4686 local_sections, FALSE);
5c18022e 4687 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4688 symbol + addend, forced);
b49e97c9
TS
4689 if (value == MINUS_ONE)
4690 return bfd_reloc_outofrange;
4691 value
0a44bf69 4692 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4693 overflowed_p = mips_elf_overflow_p (value, 16);
4694 break;
4695 }
4696
4697 /* Fall through. */
4698
0f20cc35
DJ
4699 case R_MIPS_TLS_GD:
4700 case R_MIPS_TLS_GOTTPREL:
4701 case R_MIPS_TLS_LDM:
b49e97c9 4702 case R_MIPS_GOT_DISP:
0fdc1bf1 4703 got_disp:
b49e97c9
TS
4704 value = g;
4705 overflowed_p = mips_elf_overflow_p (value, 16);
4706 break;
4707
4708 case R_MIPS_GPREL32:
bce03d3d
AO
4709 value = (addend + symbol + gp0 - gp);
4710 if (!save_addend)
4711 value &= howto->dst_mask;
b49e97c9
TS
4712 break;
4713
4714 case R_MIPS_PC16:
bad36eac
DJ
4715 case R_MIPS_GNU_REL16_S2:
4716 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4717 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4718 value >>= howto->rightshift;
4719 value &= howto->dst_mask;
b49e97c9
TS
4720 break;
4721
4722 case R_MIPS_GOT_HI16:
4723 case R_MIPS_CALL_HI16:
4724 /* We're allowed to handle these two relocations identically.
4725 The dynamic linker is allowed to handle the CALL relocations
4726 differently by creating a lazy evaluation stub. */
4727 value = g;
4728 value = mips_elf_high (value);
4729 value &= howto->dst_mask;
4730 break;
4731
4732 case R_MIPS_GOT_LO16:
4733 case R_MIPS_CALL_LO16:
4734 value = g & howto->dst_mask;
4735 break;
4736
4737 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4738 /* GOT_PAGE relocations that reference non-local symbols decay
4739 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4740 0. */
93a2b7ae 4741 if (! local_p)
0fdc1bf1 4742 goto got_disp;
5c18022e 4743 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4744 if (value == MINUS_ONE)
4745 return bfd_reloc_outofrange;
0a44bf69 4746 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4747 overflowed_p = mips_elf_overflow_p (value, 16);
4748 break;
4749
4750 case R_MIPS_GOT_OFST:
93a2b7ae 4751 if (local_p)
5c18022e 4752 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
4753 else
4754 value = addend;
b49e97c9
TS
4755 overflowed_p = mips_elf_overflow_p (value, 16);
4756 break;
4757
4758 case R_MIPS_SUB:
4759 value = symbol - addend;
4760 value &= howto->dst_mask;
4761 break;
4762
4763 case R_MIPS_HIGHER:
4764 value = mips_elf_higher (addend + symbol);
4765 value &= howto->dst_mask;
4766 break;
4767
4768 case R_MIPS_HIGHEST:
4769 value = mips_elf_highest (addend + symbol);
4770 value &= howto->dst_mask;
4771 break;
4772
4773 case R_MIPS_SCN_DISP:
4774 value = symbol + addend - sec->output_offset;
4775 value &= howto->dst_mask;
4776 break;
4777
b49e97c9 4778 case R_MIPS_JALR:
1367d393
ILT
4779 /* This relocation is only a hint. In some cases, we optimize
4780 it into a bal instruction. But we don't try to optimize
4781 branches to the PLT; that will wind up wasting time. */
4782 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4783 return bfd_reloc_continue;
4784 value = symbol + addend;
4785 break;
b49e97c9 4786
1367d393 4787 case R_MIPS_PJUMP:
b49e97c9
TS
4788 case R_MIPS_GNU_VTINHERIT:
4789 case R_MIPS_GNU_VTENTRY:
4790 /* We don't do anything with these at present. */
4791 return bfd_reloc_continue;
4792
4793 default:
4794 /* An unrecognized relocation type. */
4795 return bfd_reloc_notsupported;
4796 }
4797
4798 /* Store the VALUE for our caller. */
4799 *valuep = value;
4800 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4801}
4802
4803/* Obtain the field relocated by RELOCATION. */
4804
4805static bfd_vma
9719ad41
RS
4806mips_elf_obtain_contents (reloc_howto_type *howto,
4807 const Elf_Internal_Rela *relocation,
4808 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4809{
4810 bfd_vma x;
4811 bfd_byte *location = contents + relocation->r_offset;
4812
4813 /* Obtain the bytes. */
4814 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4815
b49e97c9
TS
4816 return x;
4817}
4818
4819/* It has been determined that the result of the RELOCATION is the
4820 VALUE. Use HOWTO to place VALUE into the output file at the
4821 appropriate position. The SECTION is the section to which the
b34976b6 4822 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4823 for the relocation must be either JAL or JALX, and it is
4824 unconditionally converted to JALX.
4825
b34976b6 4826 Returns FALSE if anything goes wrong. */
b49e97c9 4827
b34976b6 4828static bfd_boolean
9719ad41
RS
4829mips_elf_perform_relocation (struct bfd_link_info *info,
4830 reloc_howto_type *howto,
4831 const Elf_Internal_Rela *relocation,
4832 bfd_vma value, bfd *input_bfd,
4833 asection *input_section, bfd_byte *contents,
4834 bfd_boolean require_jalx)
b49e97c9
TS
4835{
4836 bfd_vma x;
4837 bfd_byte *location;
4838 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4839
4840 /* Figure out where the relocation is occurring. */
4841 location = contents + relocation->r_offset;
4842
d6f16593
MR
4843 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4844
b49e97c9
TS
4845 /* Obtain the current value. */
4846 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4847
4848 /* Clear the field we are setting. */
4849 x &= ~howto->dst_mask;
4850
b49e97c9
TS
4851 /* Set the field. */
4852 x |= (value & howto->dst_mask);
4853
4854 /* If required, turn JAL into JALX. */
4855 if (require_jalx)
4856 {
b34976b6 4857 bfd_boolean ok;
b49e97c9
TS
4858 bfd_vma opcode = x >> 26;
4859 bfd_vma jalx_opcode;
4860
4861 /* Check to see if the opcode is already JAL or JALX. */
4862 if (r_type == R_MIPS16_26)
4863 {
4864 ok = ((opcode == 0x6) || (opcode == 0x7));
4865 jalx_opcode = 0x7;
4866 }
4867 else
4868 {
4869 ok = ((opcode == 0x3) || (opcode == 0x1d));
4870 jalx_opcode = 0x1d;
4871 }
4872
4873 /* If the opcode is not JAL or JALX, there's a problem. */
4874 if (!ok)
4875 {
4876 (*_bfd_error_handler)
d003868e
AM
4877 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4878 input_bfd,
4879 input_section,
b49e97c9
TS
4880 (unsigned long) relocation->r_offset);
4881 bfd_set_error (bfd_error_bad_value);
b34976b6 4882 return FALSE;
b49e97c9
TS
4883 }
4884
4885 /* Make this the JALX opcode. */
4886 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4887 }
4888
1367d393
ILT
4889 /* On the RM9000, bal is faster than jal, because bal uses branch
4890 prediction hardware. If we are linking for the RM9000, and we
4891 see jal, and bal fits, use it instead. Note that this
4892 transformation should be safe for all architectures. */
4893 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4894 && !info->relocatable
4895 && !require_jalx
4896 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4897 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4898 {
4899 bfd_vma addr;
4900 bfd_vma dest;
4901 bfd_signed_vma off;
4902
4903 addr = (input_section->output_section->vma
4904 + input_section->output_offset
4905 + relocation->r_offset
4906 + 4);
4907 if (r_type == R_MIPS_26)
4908 dest = (value << 2) | ((addr >> 28) << 28);
4909 else
4910 dest = value;
4911 off = dest - addr;
4912 if (off <= 0x1ffff && off >= -0x20000)
4913 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4914 }
4915
b49e97c9
TS
4916 /* Put the value into the output. */
4917 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4918
4919 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4920 location);
4921
b34976b6 4922 return TRUE;
b49e97c9
TS
4923}
4924
b34976b6 4925/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4926
b34976b6 4927static bfd_boolean
b9d58d71 4928mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4929{
4930 const char *name = bfd_get_section_name (abfd, section);
4931
b9d58d71 4932 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4933}
4934\f
0a44bf69 4935/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4936
4937static void
0a44bf69
RS
4938mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4939 unsigned int n)
b49e97c9
TS
4940{
4941 asection *s;
0a44bf69 4942 struct mips_elf_link_hash_table *htab;
b49e97c9 4943
0a44bf69
RS
4944 htab = mips_elf_hash_table (info);
4945 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4946 BFD_ASSERT (s != NULL);
4947
0a44bf69
RS
4948 if (htab->is_vxworks)
4949 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4950 else
b49e97c9 4951 {
0a44bf69
RS
4952 if (s->size == 0)
4953 {
4954 /* Make room for a null element. */
4955 s->size += MIPS_ELF_REL_SIZE (abfd);
4956 ++s->reloc_count;
4957 }
4958 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4959 }
b49e97c9
TS
4960}
4961
4962/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4963 is the original relocation, which is now being transformed into a
4964 dynamic relocation. The ADDENDP is adjusted if necessary; the
4965 caller should store the result in place of the original addend. */
4966
b34976b6 4967static bfd_boolean
9719ad41
RS
4968mips_elf_create_dynamic_relocation (bfd *output_bfd,
4969 struct bfd_link_info *info,
4970 const Elf_Internal_Rela *rel,
4971 struct mips_elf_link_hash_entry *h,
4972 asection *sec, bfd_vma symbol,
4973 bfd_vma *addendp, asection *input_section)
b49e97c9 4974{
947216bf 4975 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4976 asection *sreloc;
4977 bfd *dynobj;
4978 int r_type;
5d41f0b6
RS
4979 long indx;
4980 bfd_boolean defined_p;
0a44bf69 4981 struct mips_elf_link_hash_table *htab;
b49e97c9 4982
0a44bf69 4983 htab = mips_elf_hash_table (info);
b49e97c9
TS
4984 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4985 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4986 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4987 BFD_ASSERT (sreloc != NULL);
4988 BFD_ASSERT (sreloc->contents != NULL);
4989 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4990 < sreloc->size);
b49e97c9 4991
b49e97c9
TS
4992 outrel[0].r_offset =
4993 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
4994 if (ABI_64_P (output_bfd))
4995 {
4996 outrel[1].r_offset =
4997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4998 outrel[2].r_offset =
4999 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5000 }
b49e97c9 5001
c5ae1840 5002 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 5003 /* The relocation field has been deleted. */
5d41f0b6
RS
5004 return TRUE;
5005
5006 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
5007 {
5008 /* The relocation field has been converted into a relative value of
5009 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5010 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 5011 *addendp += symbol;
5d41f0b6 5012 return TRUE;
0d591ff7 5013 }
b49e97c9 5014
5d41f0b6
RS
5015 /* We must now calculate the dynamic symbol table index to use
5016 in the relocation. */
5017 if (h != NULL
6ece8836
TS
5018 && (!h->root.def_regular
5019 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
5020 {
5021 indx = h->root.dynindx;
5022 if (SGI_COMPAT (output_bfd))
5023 defined_p = h->root.def_regular;
5024 else
5025 /* ??? glibc's ld.so just adds the final GOT entry to the
5026 relocation field. It therefore treats relocs against
5027 defined symbols in the same way as relocs against
5028 undefined symbols. */
5029 defined_p = FALSE;
5030 }
b49e97c9
TS
5031 else
5032 {
5d41f0b6
RS
5033 if (sec != NULL && bfd_is_abs_section (sec))
5034 indx = 0;
5035 else if (sec == NULL || sec->owner == NULL)
fdd07405 5036 {
5d41f0b6
RS
5037 bfd_set_error (bfd_error_bad_value);
5038 return FALSE;
b49e97c9
TS
5039 }
5040 else
5041 {
5d41f0b6 5042 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
5043 if (indx == 0)
5044 {
5045 asection *osec = htab->root.text_index_section;
5046 indx = elf_section_data (osec)->dynindx;
5047 }
5d41f0b6
RS
5048 if (indx == 0)
5049 abort ();
b49e97c9
TS
5050 }
5051
5d41f0b6
RS
5052 /* Instead of generating a relocation using the section
5053 symbol, we may as well make it a fully relative
5054 relocation. We want to avoid generating relocations to
5055 local symbols because we used to generate them
5056 incorrectly, without adding the original symbol value,
5057 which is mandated by the ABI for section symbols. In
5058 order to give dynamic loaders and applications time to
5059 phase out the incorrect use, we refrain from emitting
5060 section-relative relocations. It's not like they're
5061 useful, after all. This should be a bit more efficient
5062 as well. */
5063 /* ??? Although this behavior is compatible with glibc's ld.so,
5064 the ABI says that relocations against STN_UNDEF should have
5065 a symbol value of 0. Irix rld honors this, so relocations
5066 against STN_UNDEF have no effect. */
5067 if (!SGI_COMPAT (output_bfd))
5068 indx = 0;
5069 defined_p = TRUE;
b49e97c9
TS
5070 }
5071
5d41f0b6
RS
5072 /* If the relocation was previously an absolute relocation and
5073 this symbol will not be referred to by the relocation, we must
5074 adjust it by the value we give it in the dynamic symbol table.
5075 Otherwise leave the job up to the dynamic linker. */
5076 if (defined_p && r_type != R_MIPS_REL32)
5077 *addendp += symbol;
5078
0a44bf69
RS
5079 if (htab->is_vxworks)
5080 /* VxWorks uses non-relative relocations for this. */
5081 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5082 else
5083 /* The relocation is always an REL32 relocation because we don't
5084 know where the shared library will wind up at load-time. */
5085 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5086 R_MIPS_REL32);
5087
5d41f0b6
RS
5088 /* For strict adherence to the ABI specification, we should
5089 generate a R_MIPS_64 relocation record by itself before the
5090 _REL32/_64 record as well, such that the addend is read in as
5091 a 64-bit value (REL32 is a 32-bit relocation, after all).
5092 However, since none of the existing ELF64 MIPS dynamic
5093 loaders seems to care, we don't waste space with these
5094 artificial relocations. If this turns out to not be true,
5095 mips_elf_allocate_dynamic_relocation() should be tweaked so
5096 as to make room for a pair of dynamic relocations per
5097 invocation if ABI_64_P, and here we should generate an
5098 additional relocation record with R_MIPS_64 by itself for a
5099 NULL symbol before this relocation record. */
5100 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5101 ABI_64_P (output_bfd)
5102 ? R_MIPS_64
5103 : R_MIPS_NONE);
5104 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5105
5106 /* Adjust the output offset of the relocation to reference the
5107 correct location in the output file. */
5108 outrel[0].r_offset += (input_section->output_section->vma
5109 + input_section->output_offset);
5110 outrel[1].r_offset += (input_section->output_section->vma
5111 + input_section->output_offset);
5112 outrel[2].r_offset += (input_section->output_section->vma
5113 + input_section->output_offset);
5114
b49e97c9
TS
5115 /* Put the relocation back out. We have to use the special
5116 relocation outputter in the 64-bit case since the 64-bit
5117 relocation format is non-standard. */
5118 if (ABI_64_P (output_bfd))
5119 {
5120 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5121 (output_bfd, &outrel[0],
5122 (sreloc->contents
5123 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5124 }
0a44bf69
RS
5125 else if (htab->is_vxworks)
5126 {
5127 /* VxWorks uses RELA rather than REL dynamic relocations. */
5128 outrel[0].r_addend = *addendp;
5129 bfd_elf32_swap_reloca_out
5130 (output_bfd, &outrel[0],
5131 (sreloc->contents
5132 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5133 }
b49e97c9 5134 else
947216bf
AM
5135 bfd_elf32_swap_reloc_out
5136 (output_bfd, &outrel[0],
5137 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 5138
b49e97c9
TS
5139 /* We've now added another relocation. */
5140 ++sreloc->reloc_count;
5141
5142 /* Make sure the output section is writable. The dynamic linker
5143 will be writing to it. */
5144 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5145 |= SHF_WRITE;
5146
5147 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 5148 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
5149 {
5150 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5151 bfd_byte *cr;
5152
5153 if (scpt)
5154 {
5155 Elf32_crinfo cptrel;
5156
5157 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5158 cptrel.vaddr = (rel->r_offset
5159 + input_section->output_section->vma
5160 + input_section->output_offset);
5161 if (r_type == R_MIPS_REL32)
5162 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5163 else
5164 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5165 mips_elf_set_cr_dist2to (cptrel, 0);
5166 cptrel.konst = *addendp;
5167
5168 cr = (scpt->contents
5169 + sizeof (Elf32_External_compact_rel));
abc0f8d0 5170 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
5171 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5172 ((Elf32_External_crinfo *) cr
5173 + scpt->reloc_count));
5174 ++scpt->reloc_count;
5175 }
5176 }
5177
943284cc
DJ
5178 /* If we've written this relocation for a readonly section,
5179 we need to set DF_TEXTREL again, so that we do not delete the
5180 DT_TEXTREL tag. */
5181 if (MIPS_ELF_READONLY_SECTION (input_section))
5182 info->flags |= DF_TEXTREL;
5183
b34976b6 5184 return TRUE;
b49e97c9
TS
5185}
5186\f
b49e97c9
TS
5187/* Return the MACH for a MIPS e_flags value. */
5188
5189unsigned long
9719ad41 5190_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
5191{
5192 switch (flags & EF_MIPS_MACH)
5193 {
5194 case E_MIPS_MACH_3900:
5195 return bfd_mach_mips3900;
5196
5197 case E_MIPS_MACH_4010:
5198 return bfd_mach_mips4010;
5199
5200 case E_MIPS_MACH_4100:
5201 return bfd_mach_mips4100;
5202
5203 case E_MIPS_MACH_4111:
5204 return bfd_mach_mips4111;
5205
00707a0e
RS
5206 case E_MIPS_MACH_4120:
5207 return bfd_mach_mips4120;
5208
b49e97c9
TS
5209 case E_MIPS_MACH_4650:
5210 return bfd_mach_mips4650;
5211
00707a0e
RS
5212 case E_MIPS_MACH_5400:
5213 return bfd_mach_mips5400;
5214
5215 case E_MIPS_MACH_5500:
5216 return bfd_mach_mips5500;
5217
0d2e43ed
ILT
5218 case E_MIPS_MACH_9000:
5219 return bfd_mach_mips9000;
5220
b49e97c9
TS
5221 case E_MIPS_MACH_SB1:
5222 return bfd_mach_mips_sb1;
5223
350cc38d
MS
5224 case E_MIPS_MACH_LS2E:
5225 return bfd_mach_mips_loongson_2e;
5226
5227 case E_MIPS_MACH_LS2F:
5228 return bfd_mach_mips_loongson_2f;
5229
b49e97c9
TS
5230 default:
5231 switch (flags & EF_MIPS_ARCH)
5232 {
5233 default:
5234 case E_MIPS_ARCH_1:
5235 return bfd_mach_mips3000;
b49e97c9
TS
5236
5237 case E_MIPS_ARCH_2:
5238 return bfd_mach_mips6000;
b49e97c9
TS
5239
5240 case E_MIPS_ARCH_3:
5241 return bfd_mach_mips4000;
b49e97c9
TS
5242
5243 case E_MIPS_ARCH_4:
5244 return bfd_mach_mips8000;
b49e97c9
TS
5245
5246 case E_MIPS_ARCH_5:
5247 return bfd_mach_mips5;
b49e97c9
TS
5248
5249 case E_MIPS_ARCH_32:
5250 return bfd_mach_mipsisa32;
b49e97c9
TS
5251
5252 case E_MIPS_ARCH_64:
5253 return bfd_mach_mipsisa64;
af7ee8bf
CD
5254
5255 case E_MIPS_ARCH_32R2:
5256 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5257
5258 case E_MIPS_ARCH_64R2:
5259 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5260 }
5261 }
5262
5263 return 0;
5264}
5265
5266/* Return printable name for ABI. */
5267
5268static INLINE char *
9719ad41 5269elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5270{
5271 flagword flags;
5272
5273 flags = elf_elfheader (abfd)->e_flags;
5274 switch (flags & EF_MIPS_ABI)
5275 {
5276 case 0:
5277 if (ABI_N32_P (abfd))
5278 return "N32";
5279 else if (ABI_64_P (abfd))
5280 return "64";
5281 else
5282 return "none";
5283 case E_MIPS_ABI_O32:
5284 return "O32";
5285 case E_MIPS_ABI_O64:
5286 return "O64";
5287 case E_MIPS_ABI_EABI32:
5288 return "EABI32";
5289 case E_MIPS_ABI_EABI64:
5290 return "EABI64";
5291 default:
5292 return "unknown abi";
5293 }
5294}
5295\f
5296/* MIPS ELF uses two common sections. One is the usual one, and the
5297 other is for small objects. All the small objects are kept
5298 together, and then referenced via the gp pointer, which yields
5299 faster assembler code. This is what we use for the small common
5300 section. This approach is copied from ecoff.c. */
5301static asection mips_elf_scom_section;
5302static asymbol mips_elf_scom_symbol;
5303static asymbol *mips_elf_scom_symbol_ptr;
5304
5305/* MIPS ELF also uses an acommon section, which represents an
5306 allocated common symbol which may be overridden by a
5307 definition in a shared library. */
5308static asection mips_elf_acom_section;
5309static asymbol mips_elf_acom_symbol;
5310static asymbol *mips_elf_acom_symbol_ptr;
5311
5312/* Handle the special MIPS section numbers that a symbol may use.
5313 This is used for both the 32-bit and the 64-bit ABI. */
5314
5315void
9719ad41 5316_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5317{
5318 elf_symbol_type *elfsym;
5319
5320 elfsym = (elf_symbol_type *) asym;
5321 switch (elfsym->internal_elf_sym.st_shndx)
5322 {
5323 case SHN_MIPS_ACOMMON:
5324 /* This section is used in a dynamically linked executable file.
5325 It is an allocated common section. The dynamic linker can
5326 either resolve these symbols to something in a shared
5327 library, or it can just leave them here. For our purposes,
5328 we can consider these symbols to be in a new section. */
5329 if (mips_elf_acom_section.name == NULL)
5330 {
5331 /* Initialize the acommon section. */
5332 mips_elf_acom_section.name = ".acommon";
5333 mips_elf_acom_section.flags = SEC_ALLOC;
5334 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5335 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5336 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5337 mips_elf_acom_symbol.name = ".acommon";
5338 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5339 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5340 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5341 }
5342 asym->section = &mips_elf_acom_section;
5343 break;
5344
5345 case SHN_COMMON:
5346 /* Common symbols less than the GP size are automatically
5347 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5348 if (asym->value > elf_gp_size (abfd)
b59eed79 5349 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5350 || IRIX_COMPAT (abfd) == ict_irix6)
5351 break;
5352 /* Fall through. */
5353 case SHN_MIPS_SCOMMON:
5354 if (mips_elf_scom_section.name == NULL)
5355 {
5356 /* Initialize the small common section. */
5357 mips_elf_scom_section.name = ".scommon";
5358 mips_elf_scom_section.flags = SEC_IS_COMMON;
5359 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5360 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5361 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5362 mips_elf_scom_symbol.name = ".scommon";
5363 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5364 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5365 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5366 }
5367 asym->section = &mips_elf_scom_section;
5368 asym->value = elfsym->internal_elf_sym.st_size;
5369 break;
5370
5371 case SHN_MIPS_SUNDEFINED:
5372 asym->section = bfd_und_section_ptr;
5373 break;
5374
b49e97c9 5375 case SHN_MIPS_TEXT:
00b4930b
TS
5376 {
5377 asection *section = bfd_get_section_by_name (abfd, ".text");
5378
5379 BFD_ASSERT (SGI_COMPAT (abfd));
5380 if (section != NULL)
5381 {
5382 asym->section = section;
5383 /* MIPS_TEXT is a bit special, the address is not an offset
5384 to the base of the .text section. So substract the section
5385 base address to make it an offset. */
5386 asym->value -= section->vma;
5387 }
5388 }
b49e97c9
TS
5389 break;
5390
5391 case SHN_MIPS_DATA:
00b4930b
TS
5392 {
5393 asection *section = bfd_get_section_by_name (abfd, ".data");
5394
5395 BFD_ASSERT (SGI_COMPAT (abfd));
5396 if (section != NULL)
5397 {
5398 asym->section = section;
5399 /* MIPS_DATA is a bit special, the address is not an offset
5400 to the base of the .data section. So substract the section
5401 base address to make it an offset. */
5402 asym->value -= section->vma;
5403 }
5404 }
b49e97c9 5405 break;
b49e97c9
TS
5406 }
5407}
5408\f
8c946ed5
RS
5409/* Implement elf_backend_eh_frame_address_size. This differs from
5410 the default in the way it handles EABI64.
5411
5412 EABI64 was originally specified as an LP64 ABI, and that is what
5413 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5414 historically accepted the combination of -mabi=eabi and -mlong32,
5415 and this ILP32 variation has become semi-official over time.
5416 Both forms use elf32 and have pointer-sized FDE addresses.
5417
5418 If an EABI object was generated by GCC 4.0 or above, it will have
5419 an empty .gcc_compiled_longXX section, where XX is the size of longs
5420 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5421 have no special marking to distinguish them from LP64 objects.
5422
5423 We don't want users of the official LP64 ABI to be punished for the
5424 existence of the ILP32 variant, but at the same time, we don't want
5425 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5426 We therefore take the following approach:
5427
5428 - If ABFD contains a .gcc_compiled_longXX section, use it to
5429 determine the pointer size.
5430
5431 - Otherwise check the type of the first relocation. Assume that
5432 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5433
5434 - Otherwise punt.
5435
5436 The second check is enough to detect LP64 objects generated by pre-4.0
5437 compilers because, in the kind of output generated by those compilers,
5438 the first relocation will be associated with either a CIE personality
5439 routine or an FDE start address. Furthermore, the compilers never
5440 used a special (non-pointer) encoding for this ABI.
5441
5442 Checking the relocation type should also be safe because there is no
5443 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5444 did so. */
5445
5446unsigned int
5447_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5448{
5449 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5450 return 8;
5451 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5452 {
5453 bfd_boolean long32_p, long64_p;
5454
5455 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5456 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5457 if (long32_p && long64_p)
5458 return 0;
5459 if (long32_p)
5460 return 4;
5461 if (long64_p)
5462 return 8;
5463
5464 if (sec->reloc_count > 0
5465 && elf_section_data (sec)->relocs != NULL
5466 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5467 == R_MIPS_64))
5468 return 8;
5469
5470 return 0;
5471 }
5472 return 4;
5473}
5474\f
174fd7f9
RS
5475/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5476 relocations against two unnamed section symbols to resolve to the
5477 same address. For example, if we have code like:
5478
5479 lw $4,%got_disp(.data)($gp)
5480 lw $25,%got_disp(.text)($gp)
5481 jalr $25
5482
5483 then the linker will resolve both relocations to .data and the program
5484 will jump there rather than to .text.
5485
5486 We can work around this problem by giving names to local section symbols.
5487 This is also what the MIPSpro tools do. */
5488
5489bfd_boolean
5490_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5491{
5492 return SGI_COMPAT (abfd);
5493}
5494\f
b49e97c9
TS
5495/* Work over a section just before writing it out. This routine is
5496 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5497 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5498 a better way. */
5499
b34976b6 5500bfd_boolean
9719ad41 5501_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5502{
5503 if (hdr->sh_type == SHT_MIPS_REGINFO
5504 && hdr->sh_size > 0)
5505 {
5506 bfd_byte buf[4];
5507
5508 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5509 BFD_ASSERT (hdr->contents == NULL);
5510
5511 if (bfd_seek (abfd,
5512 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5513 SEEK_SET) != 0)
b34976b6 5514 return FALSE;
b49e97c9 5515 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5516 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5517 return FALSE;
b49e97c9
TS
5518 }
5519
5520 if (hdr->sh_type == SHT_MIPS_OPTIONS
5521 && hdr->bfd_section != NULL
f0abc2a1
AM
5522 && mips_elf_section_data (hdr->bfd_section) != NULL
5523 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5524 {
5525 bfd_byte *contents, *l, *lend;
5526
f0abc2a1
AM
5527 /* We stored the section contents in the tdata field in the
5528 set_section_contents routine. We save the section contents
5529 so that we don't have to read them again.
b49e97c9
TS
5530 At this point we know that elf_gp is set, so we can look
5531 through the section contents to see if there is an
5532 ODK_REGINFO structure. */
5533
f0abc2a1 5534 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5535 l = contents;
5536 lend = contents + hdr->sh_size;
5537 while (l + sizeof (Elf_External_Options) <= lend)
5538 {
5539 Elf_Internal_Options intopt;
5540
5541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5542 &intopt);
1bc8074d
MR
5543 if (intopt.size < sizeof (Elf_External_Options))
5544 {
5545 (*_bfd_error_handler)
5546 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5547 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5548 break;
5549 }
b49e97c9
TS
5550 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5551 {
5552 bfd_byte buf[8];
5553
5554 if (bfd_seek (abfd,
5555 (hdr->sh_offset
5556 + (l - contents)
5557 + sizeof (Elf_External_Options)
5558 + (sizeof (Elf64_External_RegInfo) - 8)),
5559 SEEK_SET) != 0)
b34976b6 5560 return FALSE;
b49e97c9 5561 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5562 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5563 return FALSE;
b49e97c9
TS
5564 }
5565 else if (intopt.kind == ODK_REGINFO)
5566 {
5567 bfd_byte buf[4];
5568
5569 if (bfd_seek (abfd,
5570 (hdr->sh_offset
5571 + (l - contents)
5572 + sizeof (Elf_External_Options)
5573 + (sizeof (Elf32_External_RegInfo) - 4)),
5574 SEEK_SET) != 0)
b34976b6 5575 return FALSE;
b49e97c9 5576 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5577 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5578 return FALSE;
b49e97c9
TS
5579 }
5580 l += intopt.size;
5581 }
5582 }
5583
5584 if (hdr->bfd_section != NULL)
5585 {
5586 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5587
5588 if (strcmp (name, ".sdata") == 0
5589 || strcmp (name, ".lit8") == 0
5590 || strcmp (name, ".lit4") == 0)
5591 {
5592 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5593 hdr->sh_type = SHT_PROGBITS;
5594 }
5595 else if (strcmp (name, ".sbss") == 0)
5596 {
5597 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5598 hdr->sh_type = SHT_NOBITS;
5599 }
5600 else if (strcmp (name, ".srdata") == 0)
5601 {
5602 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5603 hdr->sh_type = SHT_PROGBITS;
5604 }
5605 else if (strcmp (name, ".compact_rel") == 0)
5606 {
5607 hdr->sh_flags = 0;
5608 hdr->sh_type = SHT_PROGBITS;
5609 }
5610 else if (strcmp (name, ".rtproc") == 0)
5611 {
5612 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5613 {
5614 unsigned int adjust;
5615
5616 adjust = hdr->sh_size % hdr->sh_addralign;
5617 if (adjust != 0)
5618 hdr->sh_size += hdr->sh_addralign - adjust;
5619 }
5620 }
5621 }
5622
b34976b6 5623 return TRUE;
b49e97c9
TS
5624}
5625
5626/* Handle a MIPS specific section when reading an object file. This
5627 is called when elfcode.h finds a section with an unknown type.
5628 This routine supports both the 32-bit and 64-bit ELF ABI.
5629
5630 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5631 how to. */
5632
b34976b6 5633bfd_boolean
6dc132d9
L
5634_bfd_mips_elf_section_from_shdr (bfd *abfd,
5635 Elf_Internal_Shdr *hdr,
5636 const char *name,
5637 int shindex)
b49e97c9
TS
5638{
5639 flagword flags = 0;
5640
5641 /* There ought to be a place to keep ELF backend specific flags, but
5642 at the moment there isn't one. We just keep track of the
5643 sections by their name, instead. Fortunately, the ABI gives
5644 suggested names for all the MIPS specific sections, so we will
5645 probably get away with this. */
5646 switch (hdr->sh_type)
5647 {
5648 case SHT_MIPS_LIBLIST:
5649 if (strcmp (name, ".liblist") != 0)
b34976b6 5650 return FALSE;
b49e97c9
TS
5651 break;
5652 case SHT_MIPS_MSYM:
5653 if (strcmp (name, ".msym") != 0)
b34976b6 5654 return FALSE;
b49e97c9
TS
5655 break;
5656 case SHT_MIPS_CONFLICT:
5657 if (strcmp (name, ".conflict") != 0)
b34976b6 5658 return FALSE;
b49e97c9
TS
5659 break;
5660 case SHT_MIPS_GPTAB:
0112cd26 5661 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5662 return FALSE;
b49e97c9
TS
5663 break;
5664 case SHT_MIPS_UCODE:
5665 if (strcmp (name, ".ucode") != 0)
b34976b6 5666 return FALSE;
b49e97c9
TS
5667 break;
5668 case SHT_MIPS_DEBUG:
5669 if (strcmp (name, ".mdebug") != 0)
b34976b6 5670 return FALSE;
b49e97c9
TS
5671 flags = SEC_DEBUGGING;
5672 break;
5673 case SHT_MIPS_REGINFO:
5674 if (strcmp (name, ".reginfo") != 0
5675 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5676 return FALSE;
b49e97c9
TS
5677 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5678 break;
5679 case SHT_MIPS_IFACE:
5680 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5681 return FALSE;
b49e97c9
TS
5682 break;
5683 case SHT_MIPS_CONTENT:
0112cd26 5684 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5685 return FALSE;
b49e97c9
TS
5686 break;
5687 case SHT_MIPS_OPTIONS:
cc2e31b9 5688 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5689 return FALSE;
b49e97c9
TS
5690 break;
5691 case SHT_MIPS_DWARF:
0112cd26 5692 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5693 return FALSE;
b49e97c9
TS
5694 break;
5695 case SHT_MIPS_SYMBOL_LIB:
5696 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5697 return FALSE;
b49e97c9
TS
5698 break;
5699 case SHT_MIPS_EVENTS:
0112cd26
NC
5700 if (! CONST_STRNEQ (name, ".MIPS.events")
5701 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5702 return FALSE;
b49e97c9
TS
5703 break;
5704 default:
cc2e31b9 5705 break;
b49e97c9
TS
5706 }
5707
6dc132d9 5708 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5709 return FALSE;
b49e97c9
TS
5710
5711 if (flags)
5712 {
5713 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5714 (bfd_get_section_flags (abfd,
5715 hdr->bfd_section)
5716 | flags)))
b34976b6 5717 return FALSE;
b49e97c9
TS
5718 }
5719
5720 /* FIXME: We should record sh_info for a .gptab section. */
5721
5722 /* For a .reginfo section, set the gp value in the tdata information
5723 from the contents of this section. We need the gp value while
5724 processing relocs, so we just get it now. The .reginfo section
5725 is not used in the 64-bit MIPS ELF ABI. */
5726 if (hdr->sh_type == SHT_MIPS_REGINFO)
5727 {
5728 Elf32_External_RegInfo ext;
5729 Elf32_RegInfo s;
5730
9719ad41
RS
5731 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5732 &ext, 0, sizeof ext))
b34976b6 5733 return FALSE;
b49e97c9
TS
5734 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5735 elf_gp (abfd) = s.ri_gp_value;
5736 }
5737
5738 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5739 set the gp value based on what we find. We may see both
5740 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5741 they should agree. */
5742 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5743 {
5744 bfd_byte *contents, *l, *lend;
5745
9719ad41 5746 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5747 if (contents == NULL)
b34976b6 5748 return FALSE;
b49e97c9 5749 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5750 0, hdr->sh_size))
b49e97c9
TS
5751 {
5752 free (contents);
b34976b6 5753 return FALSE;
b49e97c9
TS
5754 }
5755 l = contents;
5756 lend = contents + hdr->sh_size;
5757 while (l + sizeof (Elf_External_Options) <= lend)
5758 {
5759 Elf_Internal_Options intopt;
5760
5761 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5762 &intopt);
1bc8074d
MR
5763 if (intopt.size < sizeof (Elf_External_Options))
5764 {
5765 (*_bfd_error_handler)
5766 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5767 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5768 break;
5769 }
b49e97c9
TS
5770 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5771 {
5772 Elf64_Internal_RegInfo intreg;
5773
5774 bfd_mips_elf64_swap_reginfo_in
5775 (abfd,
5776 ((Elf64_External_RegInfo *)
5777 (l + sizeof (Elf_External_Options))),
5778 &intreg);
5779 elf_gp (abfd) = intreg.ri_gp_value;
5780 }
5781 else if (intopt.kind == ODK_REGINFO)
5782 {
5783 Elf32_RegInfo intreg;
5784
5785 bfd_mips_elf32_swap_reginfo_in
5786 (abfd,
5787 ((Elf32_External_RegInfo *)
5788 (l + sizeof (Elf_External_Options))),
5789 &intreg);
5790 elf_gp (abfd) = intreg.ri_gp_value;
5791 }
5792 l += intopt.size;
5793 }
5794 free (contents);
5795 }
5796
b34976b6 5797 return TRUE;
b49e97c9
TS
5798}
5799
5800/* Set the correct type for a MIPS ELF section. We do this by the
5801 section name, which is a hack, but ought to work. This routine is
5802 used by both the 32-bit and the 64-bit ABI. */
5803
b34976b6 5804bfd_boolean
9719ad41 5805_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5806{
0414f35b 5807 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5808
5809 if (strcmp (name, ".liblist") == 0)
5810 {
5811 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5812 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5813 /* The sh_link field is set in final_write_processing. */
5814 }
5815 else if (strcmp (name, ".conflict") == 0)
5816 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5817 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5818 {
5819 hdr->sh_type = SHT_MIPS_GPTAB;
5820 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5821 /* The sh_info field is set in final_write_processing. */
5822 }
5823 else if (strcmp (name, ".ucode") == 0)
5824 hdr->sh_type = SHT_MIPS_UCODE;
5825 else if (strcmp (name, ".mdebug") == 0)
5826 {
5827 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5828 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5829 entsize of 0. FIXME: Does this matter? */
5830 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5831 hdr->sh_entsize = 0;
5832 else
5833 hdr->sh_entsize = 1;
5834 }
5835 else if (strcmp (name, ".reginfo") == 0)
5836 {
5837 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5838 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5839 entsize of 0x18. FIXME: Does this matter? */
5840 if (SGI_COMPAT (abfd))
5841 {
5842 if ((abfd->flags & DYNAMIC) != 0)
5843 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5844 else
5845 hdr->sh_entsize = 1;
5846 }
5847 else
5848 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5849 }
5850 else if (SGI_COMPAT (abfd)
5851 && (strcmp (name, ".hash") == 0
5852 || strcmp (name, ".dynamic") == 0
5853 || strcmp (name, ".dynstr") == 0))
5854 {
5855 if (SGI_COMPAT (abfd))
5856 hdr->sh_entsize = 0;
5857#if 0
8dc1a139 5858 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5859 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5860#endif
5861 }
5862 else if (strcmp (name, ".got") == 0
5863 || strcmp (name, ".srdata") == 0
5864 || strcmp (name, ".sdata") == 0
5865 || strcmp (name, ".sbss") == 0
5866 || strcmp (name, ".lit4") == 0
5867 || strcmp (name, ".lit8") == 0)
5868 hdr->sh_flags |= SHF_MIPS_GPREL;
5869 else if (strcmp (name, ".MIPS.interfaces") == 0)
5870 {
5871 hdr->sh_type = SHT_MIPS_IFACE;
5872 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5873 }
0112cd26 5874 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5875 {
5876 hdr->sh_type = SHT_MIPS_CONTENT;
5877 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5878 /* The sh_info field is set in final_write_processing. */
5879 }
cc2e31b9 5880 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5881 {
5882 hdr->sh_type = SHT_MIPS_OPTIONS;
5883 hdr->sh_entsize = 1;
5884 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5885 }
0112cd26 5886 else if (CONST_STRNEQ (name, ".debug_"))
b5482f21
NC
5887 {
5888 hdr->sh_type = SHT_MIPS_DWARF;
5889
5890 /* Irix facilities such as libexc expect a single .debug_frame
5891 per executable, the system ones have NOSTRIP set and the linker
5892 doesn't merge sections with different flags so ... */
5893 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
5894 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5895 }
b49e97c9
TS
5896 else if (strcmp (name, ".MIPS.symlib") == 0)
5897 {
5898 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5899 /* The sh_link and sh_info fields are set in
5900 final_write_processing. */
5901 }
0112cd26
NC
5902 else if (CONST_STRNEQ (name, ".MIPS.events")
5903 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5904 {
5905 hdr->sh_type = SHT_MIPS_EVENTS;
5906 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5907 /* The sh_link field is set in final_write_processing. */
5908 }
5909 else if (strcmp (name, ".msym") == 0)
5910 {
5911 hdr->sh_type = SHT_MIPS_MSYM;
5912 hdr->sh_flags |= SHF_ALLOC;
5913 hdr->sh_entsize = 8;
5914 }
5915
7a79a000
TS
5916 /* The generic elf_fake_sections will set up REL_HDR using the default
5917 kind of relocations. We used to set up a second header for the
5918 non-default kind of relocations here, but only NewABI would use
5919 these, and the IRIX ld doesn't like resulting empty RELA sections.
5920 Thus we create those header only on demand now. */
b49e97c9 5921
b34976b6 5922 return TRUE;
b49e97c9
TS
5923}
5924
5925/* Given a BFD section, try to locate the corresponding ELF section
5926 index. This is used by both the 32-bit and the 64-bit ABI.
5927 Actually, it's not clear to me that the 64-bit ABI supports these,
5928 but for non-PIC objects we will certainly want support for at least
5929 the .scommon section. */
5930
b34976b6 5931bfd_boolean
9719ad41
RS
5932_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5933 asection *sec, int *retval)
b49e97c9
TS
5934{
5935 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5936 {
5937 *retval = SHN_MIPS_SCOMMON;
b34976b6 5938 return TRUE;
b49e97c9
TS
5939 }
5940 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5941 {
5942 *retval = SHN_MIPS_ACOMMON;
b34976b6 5943 return TRUE;
b49e97c9 5944 }
b34976b6 5945 return FALSE;
b49e97c9
TS
5946}
5947\f
5948/* Hook called by the linker routine which adds symbols from an object
5949 file. We must handle the special MIPS section numbers here. */
5950
b34976b6 5951bfd_boolean
9719ad41 5952_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5953 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5954 flagword *flagsp ATTRIBUTE_UNUSED,
5955 asection **secp, bfd_vma *valp)
b49e97c9
TS
5956{
5957 if (SGI_COMPAT (abfd)
5958 && (abfd->flags & DYNAMIC) != 0
5959 && strcmp (*namep, "_rld_new_interface") == 0)
5960 {
8dc1a139 5961 /* Skip IRIX5 rld entry name. */
b49e97c9 5962 *namep = NULL;
b34976b6 5963 return TRUE;
b49e97c9
TS
5964 }
5965
eedecc07
DD
5966 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5967 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5968 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5969 a magic symbol resolved by the linker, we ignore this bogus definition
5970 of _gp_disp. New ABI objects do not suffer from this problem so this
5971 is not done for them. */
5972 if (!NEWABI_P(abfd)
5973 && (sym->st_shndx == SHN_ABS)
5974 && (strcmp (*namep, "_gp_disp") == 0))
5975 {
5976 *namep = NULL;
5977 return TRUE;
5978 }
5979
b49e97c9
TS
5980 switch (sym->st_shndx)
5981 {
5982 case SHN_COMMON:
5983 /* Common symbols less than the GP size are automatically
5984 treated as SHN_MIPS_SCOMMON symbols. */
5985 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5986 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5987 || IRIX_COMPAT (abfd) == ict_irix6)
5988 break;
5989 /* Fall through. */
5990 case SHN_MIPS_SCOMMON:
5991 *secp = bfd_make_section_old_way (abfd, ".scommon");
5992 (*secp)->flags |= SEC_IS_COMMON;
5993 *valp = sym->st_size;
5994 break;
5995
5996 case SHN_MIPS_TEXT:
5997 /* This section is used in a shared object. */
5998 if (elf_tdata (abfd)->elf_text_section == NULL)
5999 {
6000 asymbol *elf_text_symbol;
6001 asection *elf_text_section;
6002 bfd_size_type amt = sizeof (asection);
6003
6004 elf_text_section = bfd_zalloc (abfd, amt);
6005 if (elf_text_section == NULL)
b34976b6 6006 return FALSE;
b49e97c9
TS
6007
6008 amt = sizeof (asymbol);
6009 elf_text_symbol = bfd_zalloc (abfd, amt);
6010 if (elf_text_symbol == NULL)
b34976b6 6011 return FALSE;
b49e97c9
TS
6012
6013 /* Initialize the section. */
6014
6015 elf_tdata (abfd)->elf_text_section = elf_text_section;
6016 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6017
6018 elf_text_section->symbol = elf_text_symbol;
6019 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6020
6021 elf_text_section->name = ".text";
6022 elf_text_section->flags = SEC_NO_FLAGS;
6023 elf_text_section->output_section = NULL;
6024 elf_text_section->owner = abfd;
6025 elf_text_symbol->name = ".text";
6026 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6027 elf_text_symbol->section = elf_text_section;
6028 }
6029 /* This code used to do *secp = bfd_und_section_ptr if
6030 info->shared. I don't know why, and that doesn't make sense,
6031 so I took it out. */
6032 *secp = elf_tdata (abfd)->elf_text_section;
6033 break;
6034
6035 case SHN_MIPS_ACOMMON:
6036 /* Fall through. XXX Can we treat this as allocated data? */
6037 case SHN_MIPS_DATA:
6038 /* This section is used in a shared object. */
6039 if (elf_tdata (abfd)->elf_data_section == NULL)
6040 {
6041 asymbol *elf_data_symbol;
6042 asection *elf_data_section;
6043 bfd_size_type amt = sizeof (asection);
6044
6045 elf_data_section = bfd_zalloc (abfd, amt);
6046 if (elf_data_section == NULL)
b34976b6 6047 return FALSE;
b49e97c9
TS
6048
6049 amt = sizeof (asymbol);
6050 elf_data_symbol = bfd_zalloc (abfd, amt);
6051 if (elf_data_symbol == NULL)
b34976b6 6052 return FALSE;
b49e97c9
TS
6053
6054 /* Initialize the section. */
6055
6056 elf_tdata (abfd)->elf_data_section = elf_data_section;
6057 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6058
6059 elf_data_section->symbol = elf_data_symbol;
6060 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6061
6062 elf_data_section->name = ".data";
6063 elf_data_section->flags = SEC_NO_FLAGS;
6064 elf_data_section->output_section = NULL;
6065 elf_data_section->owner = abfd;
6066 elf_data_symbol->name = ".data";
6067 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6068 elf_data_symbol->section = elf_data_section;
6069 }
6070 /* This code used to do *secp = bfd_und_section_ptr if
6071 info->shared. I don't know why, and that doesn't make sense,
6072 so I took it out. */
6073 *secp = elf_tdata (abfd)->elf_data_section;
6074 break;
6075
6076 case SHN_MIPS_SUNDEFINED:
6077 *secp = bfd_und_section_ptr;
6078 break;
6079 }
6080
6081 if (SGI_COMPAT (abfd)
6082 && ! info->shared
6083 && info->hash->creator == abfd->xvec
6084 && strcmp (*namep, "__rld_obj_head") == 0)
6085 {
6086 struct elf_link_hash_entry *h;
14a793b2 6087 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6088
6089 /* Mark __rld_obj_head as dynamic. */
14a793b2 6090 bh = NULL;
b49e97c9 6091 if (! (_bfd_generic_link_add_one_symbol
9719ad41 6092 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 6093 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6094 return FALSE;
14a793b2
AM
6095
6096 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6097 h->non_elf = 0;
6098 h->def_regular = 1;
b49e97c9
TS
6099 h->type = STT_OBJECT;
6100
c152c796 6101 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6102 return FALSE;
b49e97c9 6103
b34976b6 6104 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
6105 }
6106
6107 /* If this is a mips16 text symbol, add 1 to the value to make it
6108 odd. This will cause something like .word SYM to come up with
6109 the right value when it is loaded into the PC. */
6110 if (sym->st_other == STO_MIPS16)
6111 ++*valp;
6112
b34976b6 6113 return TRUE;
b49e97c9
TS
6114}
6115
6116/* This hook function is called before the linker writes out a global
6117 symbol. We mark symbols as small common if appropriate. This is
6118 also where we undo the increment of the value for a mips16 symbol. */
6119
b34976b6 6120bfd_boolean
9719ad41
RS
6121_bfd_mips_elf_link_output_symbol_hook
6122 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6123 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6124 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
6125{
6126 /* If we see a common symbol, which implies a relocatable link, then
6127 if a symbol was small common in an input file, mark it as small
6128 common in the output file. */
6129 if (sym->st_shndx == SHN_COMMON
6130 && strcmp (input_sec->name, ".scommon") == 0)
6131 sym->st_shndx = SHN_MIPS_SCOMMON;
6132
79cda7cf
FF
6133 if (sym->st_other == STO_MIPS16)
6134 sym->st_value &= ~1;
b49e97c9 6135
b34976b6 6136 return TRUE;
b49e97c9
TS
6137}
6138\f
6139/* Functions for the dynamic linker. */
6140
6141/* Create dynamic sections when linking against a dynamic object. */
6142
b34976b6 6143bfd_boolean
9719ad41 6144_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
6145{
6146 struct elf_link_hash_entry *h;
14a793b2 6147 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6148 flagword flags;
6149 register asection *s;
6150 const char * const *namep;
0a44bf69 6151 struct mips_elf_link_hash_table *htab;
b49e97c9 6152
0a44bf69 6153 htab = mips_elf_hash_table (info);
b49e97c9
TS
6154 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6155 | SEC_LINKER_CREATED | SEC_READONLY);
6156
0a44bf69
RS
6157 /* The psABI requires a read-only .dynamic section, but the VxWorks
6158 EABI doesn't. */
6159 if (!htab->is_vxworks)
b49e97c9 6160 {
0a44bf69
RS
6161 s = bfd_get_section_by_name (abfd, ".dynamic");
6162 if (s != NULL)
6163 {
6164 if (! bfd_set_section_flags (abfd, s, flags))
6165 return FALSE;
6166 }
b49e97c9
TS
6167 }
6168
6169 /* We need to create .got section. */
f4416af6
AO
6170 if (! mips_elf_create_got_section (abfd, info, FALSE))
6171 return FALSE;
6172
0a44bf69 6173 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 6174 return FALSE;
b49e97c9 6175
b49e97c9
TS
6176 /* Create .stub section. */
6177 if (bfd_get_section_by_name (abfd,
6178 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6179 {
3496cb2a
L
6180 s = bfd_make_section_with_flags (abfd,
6181 MIPS_ELF_STUB_SECTION_NAME (abfd),
6182 flags | SEC_CODE);
b49e97c9 6183 if (s == NULL
b49e97c9
TS
6184 || ! bfd_set_section_alignment (abfd, s,
6185 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6186 return FALSE;
b49e97c9
TS
6187 }
6188
6189 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6190 && !info->shared
6191 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6192 {
3496cb2a
L
6193 s = bfd_make_section_with_flags (abfd, ".rld_map",
6194 flags &~ (flagword) SEC_READONLY);
b49e97c9 6195 if (s == NULL
b49e97c9
TS
6196 || ! bfd_set_section_alignment (abfd, s,
6197 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6198 return FALSE;
b49e97c9
TS
6199 }
6200
6201 /* On IRIX5, we adjust add some additional symbols and change the
6202 alignments of several sections. There is no ABI documentation
6203 indicating that this is necessary on IRIX6, nor any evidence that
6204 the linker takes such action. */
6205 if (IRIX_COMPAT (abfd) == ict_irix5)
6206 {
6207 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6208 {
14a793b2 6209 bh = NULL;
b49e97c9 6210 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
6211 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6212 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6213 return FALSE;
14a793b2
AM
6214
6215 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6216 h->non_elf = 0;
6217 h->def_regular = 1;
b49e97c9
TS
6218 h->type = STT_SECTION;
6219
c152c796 6220 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6221 return FALSE;
b49e97c9
TS
6222 }
6223
6224 /* We need to create a .compact_rel section. */
6225 if (SGI_COMPAT (abfd))
6226 {
6227 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6228 return FALSE;
b49e97c9
TS
6229 }
6230
44c410de 6231 /* Change alignments of some sections. */
b49e97c9
TS
6232 s = bfd_get_section_by_name (abfd, ".hash");
6233 if (s != NULL)
d80dcc6a 6234 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6235 s = bfd_get_section_by_name (abfd, ".dynsym");
6236 if (s != NULL)
d80dcc6a 6237 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6238 s = bfd_get_section_by_name (abfd, ".dynstr");
6239 if (s != NULL)
d80dcc6a 6240 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6241 s = bfd_get_section_by_name (abfd, ".reginfo");
6242 if (s != NULL)
d80dcc6a 6243 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6244 s = bfd_get_section_by_name (abfd, ".dynamic");
6245 if (s != NULL)
d80dcc6a 6246 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6247 }
6248
6249 if (!info->shared)
6250 {
14a793b2
AM
6251 const char *name;
6252
6253 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6254 bh = NULL;
6255 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6256 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6257 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6258 return FALSE;
14a793b2
AM
6259
6260 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6261 h->non_elf = 0;
6262 h->def_regular = 1;
b49e97c9
TS
6263 h->type = STT_SECTION;
6264
c152c796 6265 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6266 return FALSE;
b49e97c9
TS
6267
6268 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6269 {
6270 /* __rld_map is a four byte word located in the .data section
6271 and is filled in by the rtld to contain a pointer to
6272 the _r_debug structure. Its symbol value will be set in
6273 _bfd_mips_elf_finish_dynamic_symbol. */
6274 s = bfd_get_section_by_name (abfd, ".rld_map");
6275 BFD_ASSERT (s != NULL);
6276
14a793b2
AM
6277 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6278 bh = NULL;
6279 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6280 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6281 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6282 return FALSE;
14a793b2
AM
6283
6284 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6285 h->non_elf = 0;
6286 h->def_regular = 1;
b49e97c9
TS
6287 h->type = STT_OBJECT;
6288
c152c796 6289 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6290 return FALSE;
b49e97c9
TS
6291 }
6292 }
6293
0a44bf69
RS
6294 if (htab->is_vxworks)
6295 {
6296 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6297 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6298 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6299 return FALSE;
6300
6301 /* Cache the sections created above. */
6302 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6303 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6304 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6305 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6306 if (!htab->sdynbss
6307 || (!htab->srelbss && !info->shared)
6308 || !htab->srelplt
6309 || !htab->splt)
6310 abort ();
6311
6312 /* Do the usual VxWorks handling. */
6313 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6314 return FALSE;
6315
6316 /* Work out the PLT sizes. */
6317 if (info->shared)
6318 {
6319 htab->plt_header_size
6320 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6321 htab->plt_entry_size
6322 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6323 }
6324 else
6325 {
6326 htab->plt_header_size
6327 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6328 htab->plt_entry_size
6329 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6330 }
6331 }
6332
b34976b6 6333 return TRUE;
b49e97c9
TS
6334}
6335\f
c224138d
RS
6336/* Return true if relocation REL against section SEC is a REL rather than
6337 RELA relocation. RELOCS is the first relocation in the section and
6338 ABFD is the bfd that contains SEC. */
6339
6340static bfd_boolean
6341mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6342 const Elf_Internal_Rela *relocs,
6343 const Elf_Internal_Rela *rel)
6344{
6345 Elf_Internal_Shdr *rel_hdr;
6346 const struct elf_backend_data *bed;
6347
6348 /* To determine which flavor or relocation this is, we depend on the
6349 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6350 rel_hdr = &elf_section_data (sec)->rel_hdr;
6351 bed = get_elf_backend_data (abfd);
6352 if ((size_t) (rel - relocs)
6353 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6354 rel_hdr = elf_section_data (sec)->rel_hdr2;
6355 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6356}
6357
6358/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6359 HOWTO is the relocation's howto and CONTENTS points to the contents
6360 of the section that REL is against. */
6361
6362static bfd_vma
6363mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6364 reloc_howto_type *howto, bfd_byte *contents)
6365{
6366 bfd_byte *location;
6367 unsigned int r_type;
6368 bfd_vma addend;
6369
6370 r_type = ELF_R_TYPE (abfd, rel->r_info);
6371 location = contents + rel->r_offset;
6372
6373 /* Get the addend, which is stored in the input file. */
6374 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6375 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6376 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6377
6378 return addend & howto->src_mask;
6379}
6380
6381/* REL is a relocation in ABFD that needs a partnering LO16 relocation
6382 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6383 and update *ADDEND with the final addend. Return true on success
6384 or false if the LO16 could not be found. RELEND is the exclusive
6385 upper bound on the relocations for REL's section. */
6386
6387static bfd_boolean
6388mips_elf_add_lo16_rel_addend (bfd *abfd,
6389 const Elf_Internal_Rela *rel,
6390 const Elf_Internal_Rela *relend,
6391 bfd_byte *contents, bfd_vma *addend)
6392{
6393 unsigned int r_type, lo16_type;
6394 const Elf_Internal_Rela *lo16_relocation;
6395 reloc_howto_type *lo16_howto;
6396 bfd_vma l;
6397
6398 r_type = ELF_R_TYPE (abfd, rel->r_info);
6399 if (r_type == R_MIPS16_HI16)
6400 lo16_type = R_MIPS16_LO16;
6401 else
6402 lo16_type = R_MIPS_LO16;
6403
6404 /* The combined value is the sum of the HI16 addend, left-shifted by
6405 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6406 code does a `lui' of the HI16 value, and then an `addiu' of the
6407 LO16 value.)
6408
6409 Scan ahead to find a matching LO16 relocation.
6410
6411 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6412 be immediately following. However, for the IRIX6 ABI, the next
6413 relocation may be a composed relocation consisting of several
6414 relocations for the same address. In that case, the R_MIPS_LO16
6415 relocation may occur as one of these. We permit a similar
6416 extension in general, as that is useful for GCC.
6417
6418 In some cases GCC dead code elimination removes the LO16 but keeps
6419 the corresponding HI16. This is strictly speaking a violation of
6420 the ABI but not immediately harmful. */
6421 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6422 if (lo16_relocation == NULL)
6423 return FALSE;
6424
6425 /* Obtain the addend kept there. */
6426 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6427 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6428
6429 l <<= lo16_howto->rightshift;
6430 l = _bfd_mips_elf_sign_extend (l, 16);
6431
6432 *addend <<= 16;
6433 *addend += l;
6434 return TRUE;
6435}
6436
6437/* Try to read the contents of section SEC in bfd ABFD. Return true and
6438 store the contents in *CONTENTS on success. Assume that *CONTENTS
6439 already holds the contents if it is nonull on entry. */
6440
6441static bfd_boolean
6442mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6443{
6444 if (*contents)
6445 return TRUE;
6446
6447 /* Get cached copy if it exists. */
6448 if (elf_section_data (sec)->this_hdr.contents != NULL)
6449 {
6450 *contents = elf_section_data (sec)->this_hdr.contents;
6451 return TRUE;
6452 }
6453
6454 return bfd_malloc_and_get_section (abfd, sec, contents);
6455}
6456
b49e97c9
TS
6457/* Look through the relocs for a section during the first phase, and
6458 allocate space in the global offset table. */
6459
b34976b6 6460bfd_boolean
9719ad41
RS
6461_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6462 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6463{
6464 const char *name;
6465 bfd *dynobj;
6466 Elf_Internal_Shdr *symtab_hdr;
6467 struct elf_link_hash_entry **sym_hashes;
6468 struct mips_got_info *g;
6469 size_t extsymoff;
6470 const Elf_Internal_Rela *rel;
6471 const Elf_Internal_Rela *rel_end;
6472 asection *sgot;
6473 asection *sreloc;
9c5bfbb7 6474 const struct elf_backend_data *bed;
0a44bf69 6475 struct mips_elf_link_hash_table *htab;
c224138d
RS
6476 bfd_byte *contents;
6477 bfd_vma addend;
6478 reloc_howto_type *howto;
b49e97c9 6479
1049f94e 6480 if (info->relocatable)
b34976b6 6481 return TRUE;
b49e97c9 6482
0a44bf69 6483 htab = mips_elf_hash_table (info);
b49e97c9
TS
6484 dynobj = elf_hash_table (info)->dynobj;
6485 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6486 sym_hashes = elf_sym_hashes (abfd);
6487 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6488
6489 /* Check for the mips16 stub sections. */
6490
6491 name = bfd_get_section_name (abfd, sec);
b9d58d71 6492 if (FN_STUB_P (name))
b49e97c9
TS
6493 {
6494 unsigned long r_symndx;
6495
6496 /* Look at the relocation information to figure out which symbol
6497 this is for. */
6498
6499 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6500
6501 if (r_symndx < extsymoff
6502 || sym_hashes[r_symndx - extsymoff] == NULL)
6503 {
6504 asection *o;
6505
6506 /* This stub is for a local symbol. This stub will only be
6507 needed if there is some relocation in this BFD, other
6508 than a 16 bit function call, which refers to this symbol. */
6509 for (o = abfd->sections; o != NULL; o = o->next)
6510 {
6511 Elf_Internal_Rela *sec_relocs;
6512 const Elf_Internal_Rela *r, *rend;
6513
6514 /* We can ignore stub sections when looking for relocs. */
6515 if ((o->flags & SEC_RELOC) == 0
6516 || o->reloc_count == 0
b9d58d71 6517 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6518 continue;
6519
45d6a902 6520 sec_relocs
9719ad41 6521 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6522 info->keep_memory);
b49e97c9 6523 if (sec_relocs == NULL)
b34976b6 6524 return FALSE;
b49e97c9
TS
6525
6526 rend = sec_relocs + o->reloc_count;
6527 for (r = sec_relocs; r < rend; r++)
6528 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6529 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6530 break;
6531
6cdc0ccc 6532 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6533 free (sec_relocs);
6534
6535 if (r < rend)
6536 break;
6537 }
6538
6539 if (o == NULL)
6540 {
6541 /* There is no non-call reloc for this stub, so we do
6542 not need it. Since this function is called before
6543 the linker maps input sections to output sections, we
6544 can easily discard it by setting the SEC_EXCLUDE
6545 flag. */
6546 sec->flags |= SEC_EXCLUDE;
b34976b6 6547 return TRUE;
b49e97c9
TS
6548 }
6549
6550 /* Record this stub in an array of local symbol stubs for
6551 this BFD. */
6552 if (elf_tdata (abfd)->local_stubs == NULL)
6553 {
6554 unsigned long symcount;
6555 asection **n;
6556 bfd_size_type amt;
6557
6558 if (elf_bad_symtab (abfd))
6559 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6560 else
6561 symcount = symtab_hdr->sh_info;
6562 amt = symcount * sizeof (asection *);
9719ad41 6563 n = bfd_zalloc (abfd, amt);
b49e97c9 6564 if (n == NULL)
b34976b6 6565 return FALSE;
b49e97c9
TS
6566 elf_tdata (abfd)->local_stubs = n;
6567 }
6568
b9d58d71 6569 sec->flags |= SEC_KEEP;
b49e97c9
TS
6570 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6571
6572 /* We don't need to set mips16_stubs_seen in this case.
6573 That flag is used to see whether we need to look through
6574 the global symbol table for stubs. We don't need to set
6575 it here, because we just have a local stub. */
6576 }
6577 else
6578 {
6579 struct mips_elf_link_hash_entry *h;
6580
6581 h = ((struct mips_elf_link_hash_entry *)
6582 sym_hashes[r_symndx - extsymoff]);
6583
973a3492
L
6584 while (h->root.root.type == bfd_link_hash_indirect
6585 || h->root.root.type == bfd_link_hash_warning)
6586 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6587
b49e97c9
TS
6588 /* H is the symbol this stub is for. */
6589
b9d58d71
TS
6590 /* If we already have an appropriate stub for this function, we
6591 don't need another one, so we can discard this one. Since
6592 this function is called before the linker maps input sections
6593 to output sections, we can easily discard it by setting the
6594 SEC_EXCLUDE flag. */
6595 if (h->fn_stub != NULL)
6596 {
6597 sec->flags |= SEC_EXCLUDE;
6598 return TRUE;
6599 }
6600
6601 sec->flags |= SEC_KEEP;
b49e97c9 6602 h->fn_stub = sec;
b34976b6 6603 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6604 }
6605 }
b9d58d71 6606 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6607 {
6608 unsigned long r_symndx;
6609 struct mips_elf_link_hash_entry *h;
6610 asection **loc;
6611
6612 /* Look at the relocation information to figure out which symbol
6613 this is for. */
6614
6615 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6616
6617 if (r_symndx < extsymoff
6618 || sym_hashes[r_symndx - extsymoff] == NULL)
6619 {
b9d58d71 6620 asection *o;
b49e97c9 6621
b9d58d71
TS
6622 /* This stub is for a local symbol. This stub will only be
6623 needed if there is some relocation (R_MIPS16_26) in this BFD
6624 that refers to this symbol. */
6625 for (o = abfd->sections; o != NULL; o = o->next)
6626 {
6627 Elf_Internal_Rela *sec_relocs;
6628 const Elf_Internal_Rela *r, *rend;
6629
6630 /* We can ignore stub sections when looking for relocs. */
6631 if ((o->flags & SEC_RELOC) == 0
6632 || o->reloc_count == 0
6633 || mips16_stub_section_p (abfd, o))
6634 continue;
6635
6636 sec_relocs
6637 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6638 info->keep_memory);
6639 if (sec_relocs == NULL)
6640 return FALSE;
6641
6642 rend = sec_relocs + o->reloc_count;
6643 for (r = sec_relocs; r < rend; r++)
6644 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6645 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6646 break;
6647
6648 if (elf_section_data (o)->relocs != sec_relocs)
6649 free (sec_relocs);
6650
6651 if (r < rend)
6652 break;
6653 }
6654
6655 if (o == NULL)
6656 {
6657 /* There is no non-call reloc for this stub, so we do
6658 not need it. Since this function is called before
6659 the linker maps input sections to output sections, we
6660 can easily discard it by setting the SEC_EXCLUDE
6661 flag. */
6662 sec->flags |= SEC_EXCLUDE;
6663 return TRUE;
6664 }
6665
6666 /* Record this stub in an array of local symbol call_stubs for
6667 this BFD. */
6668 if (elf_tdata (abfd)->local_call_stubs == NULL)
6669 {
6670 unsigned long symcount;
6671 asection **n;
6672 bfd_size_type amt;
6673
6674 if (elf_bad_symtab (abfd))
6675 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6676 else
6677 symcount = symtab_hdr->sh_info;
6678 amt = symcount * sizeof (asection *);
6679 n = bfd_zalloc (abfd, amt);
6680 if (n == NULL)
6681 return FALSE;
6682 elf_tdata (abfd)->local_call_stubs = n;
6683 }
b49e97c9 6684
b9d58d71
TS
6685 sec->flags |= SEC_KEEP;
6686 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6687
b9d58d71
TS
6688 /* We don't need to set mips16_stubs_seen in this case.
6689 That flag is used to see whether we need to look through
6690 the global symbol table for stubs. We don't need to set
6691 it here, because we just have a local stub. */
6692 }
b49e97c9 6693 else
b49e97c9 6694 {
b9d58d71
TS
6695 h = ((struct mips_elf_link_hash_entry *)
6696 sym_hashes[r_symndx - extsymoff]);
6697
6698 /* H is the symbol this stub is for. */
6699
6700 if (CALL_FP_STUB_P (name))
6701 loc = &h->call_fp_stub;
6702 else
6703 loc = &h->call_stub;
6704
6705 /* If we already have an appropriate stub for this function, we
6706 don't need another one, so we can discard this one. Since
6707 this function is called before the linker maps input sections
6708 to output sections, we can easily discard it by setting the
6709 SEC_EXCLUDE flag. */
6710 if (*loc != NULL)
6711 {
6712 sec->flags |= SEC_EXCLUDE;
6713 return TRUE;
6714 }
b49e97c9 6715
b9d58d71
TS
6716 sec->flags |= SEC_KEEP;
6717 *loc = sec;
6718 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6719 }
b49e97c9
TS
6720 }
6721
6722 if (dynobj == NULL)
6723 {
6724 sgot = NULL;
6725 g = NULL;
6726 }
6727 else
6728 {
f4416af6 6729 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6730 if (sgot == NULL)
6731 g = NULL;
6732 else
6733 {
f0abc2a1
AM
6734 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6735 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6736 BFD_ASSERT (g != NULL);
6737 }
6738 }
6739
6740 sreloc = NULL;
6741 bed = get_elf_backend_data (abfd);
6742 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
c224138d 6743 contents = NULL;
b49e97c9
TS
6744 for (rel = relocs; rel < rel_end; ++rel)
6745 {
6746 unsigned long r_symndx;
6747 unsigned int r_type;
6748 struct elf_link_hash_entry *h;
6749
6750 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6751 r_type = ELF_R_TYPE (abfd, rel->r_info);
6752
6753 if (r_symndx < extsymoff)
6754 h = NULL;
6755 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6756 {
6757 (*_bfd_error_handler)
d003868e
AM
6758 (_("%B: Malformed reloc detected for section %s"),
6759 abfd, name);
b49e97c9 6760 bfd_set_error (bfd_error_bad_value);
b34976b6 6761 return FALSE;
b49e97c9
TS
6762 }
6763 else
6764 {
6765 h = sym_hashes[r_symndx - extsymoff];
6766
6767 /* This may be an indirect symbol created because of a version. */
6768 if (h != NULL)
6769 {
6770 while (h->root.type == bfd_link_hash_indirect)
6771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6772 }
6773 }
6774
6775 /* Some relocs require a global offset table. */
6776 if (dynobj == NULL || sgot == NULL)
6777 {
6778 switch (r_type)
6779 {
6780 case R_MIPS_GOT16:
6781 case R_MIPS_CALL16:
6782 case R_MIPS_CALL_HI16:
6783 case R_MIPS_CALL_LO16:
6784 case R_MIPS_GOT_HI16:
6785 case R_MIPS_GOT_LO16:
6786 case R_MIPS_GOT_PAGE:
6787 case R_MIPS_GOT_OFST:
6788 case R_MIPS_GOT_DISP:
86324f90 6789 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6790 case R_MIPS_TLS_GD:
6791 case R_MIPS_TLS_LDM:
b49e97c9
TS
6792 if (dynobj == NULL)
6793 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6794 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6795 return FALSE;
b49e97c9 6796 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6797 if (htab->is_vxworks && !info->shared)
6798 {
6799 (*_bfd_error_handler)
6800 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6801 abfd, (unsigned long) rel->r_offset);
6802 bfd_set_error (bfd_error_bad_value);
6803 return FALSE;
6804 }
b49e97c9
TS
6805 break;
6806
6807 case R_MIPS_32:
6808 case R_MIPS_REL32:
6809 case R_MIPS_64:
0a44bf69
RS
6810 /* In VxWorks executables, references to external symbols
6811 are handled using copy relocs or PLT stubs, so there's
6812 no need to add a dynamic relocation here. */
b49e97c9 6813 if (dynobj == NULL
0a44bf69 6814 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6815 && (sec->flags & SEC_ALLOC) != 0)
6816 elf_hash_table (info)->dynobj = dynobj = abfd;
6817 break;
6818
6819 default:
6820 break;
6821 }
6822 }
6823
0a44bf69
RS
6824 if (h)
6825 {
6826 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6827
6828 /* Relocations against the special VxWorks __GOTT_BASE__ and
6829 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6830 room for them in .rela.dyn. */
6831 if (is_gott_symbol (info, h))
6832 {
6833 if (sreloc == NULL)
6834 {
6835 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6836 if (sreloc == NULL)
6837 return FALSE;
6838 }
6839 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6840 if (MIPS_ELF_READONLY_SECTION (sec))
6841 /* We tell the dynamic linker that there are
6842 relocations against the text segment. */
6843 info->flags |= DF_TEXTREL;
0a44bf69
RS
6844 }
6845 }
6846 else if (r_type == R_MIPS_CALL_LO16
6847 || r_type == R_MIPS_GOT_LO16
6848 || r_type == R_MIPS_GOT_DISP
6849 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6850 {
6851 /* We may need a local GOT entry for this relocation. We
6852 don't count R_MIPS_GOT_PAGE because we can estimate the
6853 maximum number of pages needed by looking at the size of
6854 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6855 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6856 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6857 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6858 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6859 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6860 rel->r_addend, g, 0))
f4416af6 6861 return FALSE;
b49e97c9
TS
6862 }
6863
6864 switch (r_type)
6865 {
6866 case R_MIPS_CALL16:
6867 if (h == NULL)
6868 {
6869 (*_bfd_error_handler)
d003868e
AM
6870 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6871 abfd, (unsigned long) rel->r_offset);
b49e97c9 6872 bfd_set_error (bfd_error_bad_value);
b34976b6 6873 return FALSE;
b49e97c9
TS
6874 }
6875 /* Fall through. */
6876
6877 case R_MIPS_CALL_HI16:
6878 case R_MIPS_CALL_LO16:
6879 if (h != NULL)
6880 {
0a44bf69
RS
6881 /* VxWorks call relocations point the function's .got.plt
6882 entry, which will be allocated by adjust_dynamic_symbol.
6883 Otherwise, this symbol requires a global GOT entry. */
8275b357 6884 if ((!htab->is_vxworks || h->forced_local)
0a44bf69 6885 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6886 return FALSE;
b49e97c9
TS
6887
6888 /* We need a stub, not a plt entry for the undefined
6889 function. But we record it as if it needs plt. See
c152c796 6890 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6891 h->needs_plt = 1;
b49e97c9
TS
6892 h->type = STT_FUNC;
6893 }
6894 break;
6895
0fdc1bf1
AO
6896 case R_MIPS_GOT_PAGE:
6897 /* If this is a global, overridable symbol, GOT_PAGE will
6898 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 6899 if (h)
0fdc1bf1
AO
6900 {
6901 struct mips_elf_link_hash_entry *hmips =
6902 (struct mips_elf_link_hash_entry *) h;
143d77c5 6903
0fdc1bf1
AO
6904 while (hmips->root.root.type == bfd_link_hash_indirect
6905 || hmips->root.root.type == bfd_link_hash_warning)
6906 hmips = (struct mips_elf_link_hash_entry *)
6907 hmips->root.root.u.i.link;
143d77c5 6908
f5385ebf 6909 if (hmips->root.def_regular
0fdc1bf1 6910 && ! (info->shared && ! info->symbolic
f5385ebf 6911 && ! hmips->root.forced_local))
c224138d 6912 h = NULL;
0fdc1bf1
AO
6913 }
6914 /* Fall through. */
6915
b49e97c9
TS
6916 case R_MIPS_GOT16:
6917 case R_MIPS_GOT_HI16:
6918 case R_MIPS_GOT_LO16:
c224138d
RS
6919 if (!h)
6920 {
6921 /* This relocation needs a page entry in the GOT. */
6922 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
6923 {
6924 if (!mips_elf_get_section_contents (abfd, sec, &contents))
6925 return FALSE;
6926 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
6927 addend = mips_elf_read_rel_addend (abfd, rel,
6928 howto, contents);
6929 if (r_type == R_MIPS_GOT16)
6930 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
6931 contents, &addend);
6932 else
6933 addend <<= howto->rightshift;
6934 }
6935 else
6936 addend = rel->r_addend;
6937 if (!mips_elf_record_got_page_entry (abfd, r_symndx, addend, g))
6938 return FALSE;
6939 break;
6940 }
6941 /* Fall through. */
6942
b49e97c9 6943 case R_MIPS_GOT_DISP:
0f20cc35 6944 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6945 return FALSE;
b49e97c9
TS
6946 break;
6947
0f20cc35
DJ
6948 case R_MIPS_TLS_GOTTPREL:
6949 if (info->shared)
6950 info->flags |= DF_STATIC_TLS;
6951 /* Fall through */
6952
6953 case R_MIPS_TLS_LDM:
6954 if (r_type == R_MIPS_TLS_LDM)
6955 {
6956 r_symndx = 0;
6957 h = NULL;
6958 }
6959 /* Fall through */
6960
6961 case R_MIPS_TLS_GD:
6962 /* This symbol requires a global offset table entry, or two
6963 for TLS GD relocations. */
6964 {
6965 unsigned char flag = (r_type == R_MIPS_TLS_GD
6966 ? GOT_TLS_GD
6967 : r_type == R_MIPS_TLS_LDM
6968 ? GOT_TLS_LDM
6969 : GOT_TLS_IE);
6970 if (h != NULL)
6971 {
6972 struct mips_elf_link_hash_entry *hmips =
6973 (struct mips_elf_link_hash_entry *) h;
6974 hmips->tls_type |= flag;
6975
6976 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6977 return FALSE;
6978 }
6979 else
6980 {
6981 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6982
6983 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6984 rel->r_addend, g, flag))
6985 return FALSE;
6986 }
6987 }
6988 break;
6989
b49e97c9
TS
6990 case R_MIPS_32:
6991 case R_MIPS_REL32:
6992 case R_MIPS_64:
0a44bf69
RS
6993 /* In VxWorks executables, references to external symbols
6994 are handled using copy relocs or PLT stubs, so there's
6995 no need to add a .rela.dyn entry for this relocation. */
6996 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6997 && (sec->flags & SEC_ALLOC) != 0)
6998 {
6999 if (sreloc == NULL)
7000 {
0a44bf69 7001 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 7002 if (sreloc == NULL)
f4416af6 7003 return FALSE;
b49e97c9 7004 }
b49e97c9 7005 if (info->shared)
82f0cfbd
EC
7006 {
7007 /* When creating a shared object, we must copy these
7008 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
7009 relocs. Make room for this reloc in .rel(a).dyn. */
7010 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 7011 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7012 /* We tell the dynamic linker that there are
7013 relocations against the text segment. */
7014 info->flags |= DF_TEXTREL;
7015 }
b49e97c9
TS
7016 else
7017 {
7018 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 7019
b49e97c9
TS
7020 /* We only need to copy this reloc if the symbol is
7021 defined in a dynamic object. */
7022 hmips = (struct mips_elf_link_hash_entry *) h;
7023 ++hmips->possibly_dynamic_relocs;
943284cc 7024 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7025 /* We need it to tell the dynamic linker if there
7026 are relocations against the text segment. */
7027 hmips->readonly_reloc = TRUE;
b49e97c9
TS
7028 }
7029
7030 /* Even though we don't directly need a GOT entry for
7031 this symbol, a symbol must have a dynamic symbol
7032 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
7033 dynamic relocations against it. This does not apply
7034 to VxWorks, which does not have the usual coupling
7035 between global GOT entries and .dynsym entries. */
7036 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
7037 {
7038 if (dynobj == NULL)
7039 elf_hash_table (info)->dynobj = dynobj = abfd;
7040 if (! mips_elf_create_got_section (dynobj, info, TRUE))
7041 return FALSE;
7042 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 7043 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
7044 return FALSE;
7045 }
b49e97c9
TS
7046 }
7047
7048 if (SGI_COMPAT (abfd))
7049 mips_elf_hash_table (info)->compact_rel_size +=
7050 sizeof (Elf32_External_crinfo);
7051 break;
7052
0a44bf69
RS
7053 case R_MIPS_PC16:
7054 if (h)
7055 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7056 break;
7057
b49e97c9 7058 case R_MIPS_26:
0a44bf69
RS
7059 if (h)
7060 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7061 /* Fall through. */
7062
b49e97c9
TS
7063 case R_MIPS_GPREL16:
7064 case R_MIPS_LITERAL:
7065 case R_MIPS_GPREL32:
7066 if (SGI_COMPAT (abfd))
7067 mips_elf_hash_table (info)->compact_rel_size +=
7068 sizeof (Elf32_External_crinfo);
7069 break;
7070
7071 /* This relocation describes the C++ object vtable hierarchy.
7072 Reconstruct it for later use during GC. */
7073 case R_MIPS_GNU_VTINHERIT:
c152c796 7074 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 7075 return FALSE;
b49e97c9
TS
7076 break;
7077
7078 /* This relocation describes which C++ vtable entries are actually
7079 used. Record for later use during GC. */
7080 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
7081 BFD_ASSERT (h != NULL);
7082 if (h != NULL
7083 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 7084 return FALSE;
b49e97c9
TS
7085 break;
7086
7087 default:
7088 break;
7089 }
7090
7091 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
7092 related to taking the function's address. This doesn't apply to
7093 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7094 a normal .got entry. */
7095 if (!htab->is_vxworks && h != NULL)
7096 switch (r_type)
7097 {
7098 default:
7099 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7100 break;
7101 case R_MIPS_CALL16:
7102 case R_MIPS_CALL_HI16:
7103 case R_MIPS_CALL_LO16:
7104 case R_MIPS_JALR:
7105 break;
7106 }
b49e97c9
TS
7107
7108 /* If this reloc is not a 16 bit call, and it has a global
7109 symbol, then we will need the fn_stub if there is one.
7110 References from a stub section do not count. */
7111 if (h != NULL
7112 && r_type != R_MIPS16_26
b9d58d71 7113 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
7114 {
7115 struct mips_elf_link_hash_entry *mh;
7116
7117 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 7118 mh->need_fn_stub = TRUE;
b49e97c9
TS
7119 }
7120 }
7121
b34976b6 7122 return TRUE;
b49e97c9
TS
7123}
7124\f
d0647110 7125bfd_boolean
9719ad41
RS
7126_bfd_mips_relax_section (bfd *abfd, asection *sec,
7127 struct bfd_link_info *link_info,
7128 bfd_boolean *again)
d0647110
AO
7129{
7130 Elf_Internal_Rela *internal_relocs;
7131 Elf_Internal_Rela *irel, *irelend;
7132 Elf_Internal_Shdr *symtab_hdr;
7133 bfd_byte *contents = NULL;
d0647110
AO
7134 size_t extsymoff;
7135 bfd_boolean changed_contents = FALSE;
7136 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7137 Elf_Internal_Sym *isymbuf = NULL;
7138
7139 /* We are not currently changing any sizes, so only one pass. */
7140 *again = FALSE;
7141
1049f94e 7142 if (link_info->relocatable)
d0647110
AO
7143 return TRUE;
7144
9719ad41 7145 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 7146 link_info->keep_memory);
d0647110
AO
7147 if (internal_relocs == NULL)
7148 return TRUE;
7149
7150 irelend = internal_relocs + sec->reloc_count
7151 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7152 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7153 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7154
7155 for (irel = internal_relocs; irel < irelend; irel++)
7156 {
7157 bfd_vma symval;
7158 bfd_signed_vma sym_offset;
7159 unsigned int r_type;
7160 unsigned long r_symndx;
7161 asection *sym_sec;
7162 unsigned long instruction;
7163
7164 /* Turn jalr into bgezal, and jr into beq, if they're marked
7165 with a JALR relocation, that indicate where they jump to.
7166 This saves some pipeline bubbles. */
7167 r_type = ELF_R_TYPE (abfd, irel->r_info);
7168 if (r_type != R_MIPS_JALR)
7169 continue;
7170
7171 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7172 /* Compute the address of the jump target. */
7173 if (r_symndx >= extsymoff)
7174 {
7175 struct mips_elf_link_hash_entry *h
7176 = ((struct mips_elf_link_hash_entry *)
7177 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7178
7179 while (h->root.root.type == bfd_link_hash_indirect
7180 || h->root.root.type == bfd_link_hash_warning)
7181 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 7182
d0647110
AO
7183 /* If a symbol is undefined, or if it may be overridden,
7184 skip it. */
7185 if (! ((h->root.root.type == bfd_link_hash_defined
7186 || h->root.root.type == bfd_link_hash_defweak)
7187 && h->root.root.u.def.section)
7188 || (link_info->shared && ! link_info->symbolic
f5385ebf 7189 && !h->root.forced_local))
d0647110
AO
7190 continue;
7191
7192 sym_sec = h->root.root.u.def.section;
7193 if (sym_sec->output_section)
7194 symval = (h->root.root.u.def.value
7195 + sym_sec->output_section->vma
7196 + sym_sec->output_offset);
7197 else
7198 symval = h->root.root.u.def.value;
7199 }
7200 else
7201 {
7202 Elf_Internal_Sym *isym;
7203
7204 /* Read this BFD's symbols if we haven't done so already. */
7205 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7206 {
7207 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7208 if (isymbuf == NULL)
7209 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7210 symtab_hdr->sh_info, 0,
7211 NULL, NULL, NULL);
7212 if (isymbuf == NULL)
7213 goto relax_return;
7214 }
7215
7216 isym = isymbuf + r_symndx;
7217 if (isym->st_shndx == SHN_UNDEF)
7218 continue;
7219 else if (isym->st_shndx == SHN_ABS)
7220 sym_sec = bfd_abs_section_ptr;
7221 else if (isym->st_shndx == SHN_COMMON)
7222 sym_sec = bfd_com_section_ptr;
7223 else
7224 sym_sec
7225 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7226 symval = isym->st_value
7227 + sym_sec->output_section->vma
7228 + sym_sec->output_offset;
7229 }
7230
7231 /* Compute branch offset, from delay slot of the jump to the
7232 branch target. */
7233 sym_offset = (symval + irel->r_addend)
7234 - (sec_start + irel->r_offset + 4);
7235
7236 /* Branch offset must be properly aligned. */
7237 if ((sym_offset & 3) != 0)
7238 continue;
7239
7240 sym_offset >>= 2;
7241
7242 /* Check that it's in range. */
7243 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7244 continue;
143d77c5 7245
d0647110 7246 /* Get the section contents if we haven't done so already. */
c224138d
RS
7247 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7248 goto relax_return;
d0647110
AO
7249
7250 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7251
7252 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7253 if ((instruction & 0xfc1fffff) == 0x0000f809)
7254 instruction = 0x04110000;
7255 /* If it was jr <reg>, turn it into b <target>. */
7256 else if ((instruction & 0xfc1fffff) == 0x00000008)
7257 instruction = 0x10000000;
7258 else
7259 continue;
7260
7261 instruction |= (sym_offset & 0xffff);
7262 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7263 changed_contents = TRUE;
7264 }
7265
7266 if (contents != NULL
7267 && elf_section_data (sec)->this_hdr.contents != contents)
7268 {
7269 if (!changed_contents && !link_info->keep_memory)
7270 free (contents);
7271 else
7272 {
7273 /* Cache the section contents for elf_link_input_bfd. */
7274 elf_section_data (sec)->this_hdr.contents = contents;
7275 }
7276 }
7277 return TRUE;
7278
143d77c5 7279 relax_return:
eea6121a
AM
7280 if (contents != NULL
7281 && elf_section_data (sec)->this_hdr.contents != contents)
7282 free (contents);
d0647110
AO
7283 return FALSE;
7284}
7285\f
b49e97c9
TS
7286/* Adjust a symbol defined by a dynamic object and referenced by a
7287 regular object. The current definition is in some section of the
7288 dynamic object, but we're not including those sections. We have to
7289 change the definition to something the rest of the link can
7290 understand. */
7291
b34976b6 7292bfd_boolean
9719ad41
RS
7293_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7294 struct elf_link_hash_entry *h)
b49e97c9
TS
7295{
7296 bfd *dynobj;
7297 struct mips_elf_link_hash_entry *hmips;
7298 asection *s;
5108fc1b 7299 struct mips_elf_link_hash_table *htab;
b49e97c9 7300
5108fc1b 7301 htab = mips_elf_hash_table (info);
b49e97c9
TS
7302 dynobj = elf_hash_table (info)->dynobj;
7303
7304 /* Make sure we know what is going on here. */
7305 BFD_ASSERT (dynobj != NULL
f5385ebf 7306 && (h->needs_plt
f6e332e6 7307 || h->u.weakdef != NULL
f5385ebf
AM
7308 || (h->def_dynamic
7309 && h->ref_regular
7310 && !h->def_regular)));
b49e97c9
TS
7311
7312 /* If this symbol is defined in a dynamic object, we need to copy
7313 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7314 file. */
7315 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 7316 if (! info->relocatable
b49e97c9
TS
7317 && hmips->possibly_dynamic_relocs != 0
7318 && (h->root.type == bfd_link_hash_defweak
f5385ebf 7319 || !h->def_regular))
b49e97c9 7320 {
0a44bf69
RS
7321 mips_elf_allocate_dynamic_relocations
7322 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 7323 if (hmips->readonly_reloc)
b49e97c9
TS
7324 /* We tell the dynamic linker that there are relocations
7325 against the text segment. */
7326 info->flags |= DF_TEXTREL;
7327 }
7328
7329 /* For a function, create a stub, if allowed. */
7330 if (! hmips->no_fn_stub
f5385ebf 7331 && h->needs_plt)
b49e97c9
TS
7332 {
7333 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 7334 return TRUE;
b49e97c9
TS
7335
7336 /* If this symbol is not defined in a regular file, then set
7337 the symbol to the stub location. This is required to make
7338 function pointers compare as equal between the normal
7339 executable and the shared library. */
f5385ebf 7340 if (!h->def_regular)
b49e97c9
TS
7341 {
7342 /* We need .stub section. */
7343 s = bfd_get_section_by_name (dynobj,
7344 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7345 BFD_ASSERT (s != NULL);
7346
7347 h->root.u.def.section = s;
eea6121a 7348 h->root.u.def.value = s->size;
b49e97c9
TS
7349
7350 /* XXX Write this stub address somewhere. */
eea6121a 7351 h->plt.offset = s->size;
b49e97c9
TS
7352
7353 /* Make room for this stub code. */
5108fc1b 7354 s->size += htab->function_stub_size;
b49e97c9
TS
7355
7356 /* The last half word of the stub will be filled with the index
7357 of this symbol in .dynsym section. */
b34976b6 7358 return TRUE;
b49e97c9
TS
7359 }
7360 }
7361 else if ((h->type == STT_FUNC)
f5385ebf 7362 && !h->needs_plt)
b49e97c9
TS
7363 {
7364 /* This will set the entry for this symbol in the GOT to 0, and
7365 the dynamic linker will take care of this. */
7366 h->root.u.def.value = 0;
b34976b6 7367 return TRUE;
b49e97c9
TS
7368 }
7369
7370 /* If this is a weak symbol, and there is a real definition, the
7371 processor independent code will have arranged for us to see the
7372 real definition first, and we can just use the same value. */
f6e332e6 7373 if (h->u.weakdef != NULL)
b49e97c9 7374 {
f6e332e6
AM
7375 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7376 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7377 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7378 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7379 return TRUE;
b49e97c9
TS
7380 }
7381
7382 /* This is a reference to a symbol defined by a dynamic object which
7383 is not a function. */
7384
b34976b6 7385 return TRUE;
b49e97c9 7386}
0a44bf69
RS
7387
7388/* Likewise, for VxWorks. */
7389
7390bfd_boolean
7391_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7392 struct elf_link_hash_entry *h)
7393{
7394 bfd *dynobj;
7395 struct mips_elf_link_hash_entry *hmips;
7396 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7397
7398 htab = mips_elf_hash_table (info);
7399 dynobj = elf_hash_table (info)->dynobj;
7400 hmips = (struct mips_elf_link_hash_entry *) h;
7401
7402 /* Make sure we know what is going on here. */
7403 BFD_ASSERT (dynobj != NULL
7404 && (h->needs_plt
7405 || h->needs_copy
7406 || h->u.weakdef != NULL
7407 || (h->def_dynamic
7408 && h->ref_regular
7409 && !h->def_regular)));
7410
7411 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7412 either (a) we want to branch to the symbol or (b) we're linking an
7413 executable that needs a canonical function address. In the latter
7414 case, the canonical address will be the address of the executable's
7415 load stub. */
7416 if ((hmips->is_branch_target
7417 || (!info->shared
7418 && h->type == STT_FUNC
7419 && hmips->is_relocation_target))
7420 && h->def_dynamic
7421 && h->ref_regular
7422 && !h->def_regular
7423 && !h->forced_local)
7424 h->needs_plt = 1;
7425
7426 /* Locally-binding symbols do not need a PLT stub; we can refer to
7427 the functions directly. */
7428 else if (h->needs_plt
7429 && (SYMBOL_CALLS_LOCAL (info, h)
7430 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7431 && h->root.type == bfd_link_hash_undefweak)))
7432 {
7433 h->needs_plt = 0;
7434 return TRUE;
7435 }
7436
7437 if (h->needs_plt)
7438 {
7439 /* If this is the first symbol to need a PLT entry, allocate room
7440 for the header, and for the header's .rela.plt.unloaded entries. */
7441 if (htab->splt->size == 0)
7442 {
7443 htab->splt->size += htab->plt_header_size;
7444 if (!info->shared)
7445 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7446 }
7447
7448 /* Assign the next .plt entry to this symbol. */
7449 h->plt.offset = htab->splt->size;
7450 htab->splt->size += htab->plt_entry_size;
7451
7452 /* If the output file has no definition of the symbol, set the
7453 symbol's value to the address of the stub. For executables,
7454 point at the PLT load stub rather than the lazy resolution stub;
7455 this stub will become the canonical function address. */
7456 if (!h->def_regular)
7457 {
7458 h->root.u.def.section = htab->splt;
7459 h->root.u.def.value = h->plt.offset;
7460 if (!info->shared)
7461 h->root.u.def.value += 8;
7462 }
7463
7464 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7465 htab->sgotplt->size += 4;
7466 htab->srelplt->size += sizeof (Elf32_External_Rela);
7467
7468 /* Make room for the .rela.plt.unloaded relocations. */
7469 if (!info->shared)
7470 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7471
7472 return TRUE;
7473 }
7474
7475 /* If a function symbol is defined by a dynamic object, and we do not
7476 need a PLT stub for it, the symbol's value should be zero. */
7477 if (h->type == STT_FUNC
7478 && h->def_dynamic
7479 && h->ref_regular
7480 && !h->def_regular)
7481 {
7482 h->root.u.def.value = 0;
7483 return TRUE;
7484 }
7485
7486 /* If this is a weak symbol, and there is a real definition, the
7487 processor independent code will have arranged for us to see the
7488 real definition first, and we can just use the same value. */
7489 if (h->u.weakdef != NULL)
7490 {
7491 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7492 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7493 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7494 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7495 return TRUE;
7496 }
7497
7498 /* This is a reference to a symbol defined by a dynamic object which
7499 is not a function. */
7500 if (info->shared)
7501 return TRUE;
7502
7503 /* We must allocate the symbol in our .dynbss section, which will
7504 become part of the .bss section of the executable. There will be
7505 an entry for this symbol in the .dynsym section. The dynamic
7506 object will contain position independent code, so all references
7507 from the dynamic object to this symbol will go through the global
7508 offset table. The dynamic linker will use the .dynsym entry to
7509 determine the address it must put in the global offset table, so
7510 both the dynamic object and the regular object will refer to the
7511 same memory location for the variable. */
7512
7513 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7514 {
7515 htab->srelbss->size += sizeof (Elf32_External_Rela);
7516 h->needs_copy = 1;
7517 }
7518
027297b7 7519 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7520}
b49e97c9 7521\f
5108fc1b
RS
7522/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7523 The number might be exact or a worst-case estimate, depending on how
7524 much information is available to elf_backend_omit_section_dynsym at
7525 the current linking stage. */
7526
7527static bfd_size_type
7528count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7529{
7530 bfd_size_type count;
7531
7532 count = 0;
7533 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7534 {
7535 asection *p;
7536 const struct elf_backend_data *bed;
7537
7538 bed = get_elf_backend_data (output_bfd);
7539 for (p = output_bfd->sections; p ; p = p->next)
7540 if ((p->flags & SEC_EXCLUDE) == 0
7541 && (p->flags & SEC_ALLOC) != 0
7542 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7543 ++count;
7544 }
7545 return count;
7546}
7547
b49e97c9
TS
7548/* This function is called after all the input files have been read,
7549 and the input sections have been assigned to output sections. We
7550 check for any mips16 stub sections that we can discard. */
7551
b34976b6 7552bfd_boolean
9719ad41
RS
7553_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7554 struct bfd_link_info *info)
b49e97c9
TS
7555{
7556 asection *ri;
7557
f4416af6
AO
7558 bfd *dynobj;
7559 asection *s;
7560 struct mips_got_info *g;
7561 int i;
7562 bfd_size_type loadable_size = 0;
c224138d 7563 bfd_size_type page_gotno;
5108fc1b 7564 bfd_size_type dynsymcount;
f4416af6 7565 bfd *sub;
0f20cc35 7566 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7567 struct mips_elf_link_hash_table *htab;
7568
7569 htab = mips_elf_hash_table (info);
f4416af6 7570
b49e97c9
TS
7571 /* The .reginfo section has a fixed size. */
7572 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7573 if (ri != NULL)
9719ad41 7574 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7575
1049f94e 7576 if (! (info->relocatable
f4416af6
AO
7577 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7578 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7579 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7580
7581 dynobj = elf_hash_table (info)->dynobj;
7582 if (dynobj == NULL)
7583 /* Relocatable links don't have it. */
7584 return TRUE;
143d77c5 7585
f4416af6
AO
7586 g = mips_elf_got_info (dynobj, &s);
7587 if (s == NULL)
b34976b6 7588 return TRUE;
b49e97c9 7589
f4416af6
AO
7590 /* Calculate the total loadable size of the output. That
7591 will give us the maximum number of GOT_PAGE entries
7592 required. */
7593 for (sub = info->input_bfds; sub; sub = sub->link_next)
7594 {
7595 asection *subsection;
7596
7597 for (subsection = sub->sections;
7598 subsection;
7599 subsection = subsection->next)
7600 {
7601 if ((subsection->flags & SEC_ALLOC) == 0)
7602 continue;
eea6121a 7603 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7604 &~ (bfd_size_type) 0xf);
7605 }
7606 }
7607
7608 /* There has to be a global GOT entry for every symbol with
7609 a dynamic symbol table index of DT_MIPS_GOTSYM or
7610 higher. Therefore, it make sense to put those symbols
7611 that need GOT entries at the end of the symbol table. We
7612 do that here. */
7613 if (! mips_elf_sort_hash_table (info, 1))
7614 return FALSE;
7615
7616 if (g->global_gotsym != NULL)
7617 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7618 else
7619 /* If there are no global symbols, or none requiring
7620 relocations, then GLOBAL_GOTSYM will be NULL. */
7621 i = 0;
7622
5108fc1b
RS
7623 /* Get a worst-case estimate of the number of dynamic symbols needed.
7624 At this point, dynsymcount does not account for section symbols
7625 and count_section_dynsyms may overestimate the number that will
7626 be needed. */
7627 dynsymcount = (elf_hash_table (info)->dynsymcount
7628 + count_section_dynsyms (output_bfd, info));
7629
7630 /* Determine the size of one stub entry. */
7631 htab->function_stub_size = (dynsymcount > 0x10000
7632 ? MIPS_FUNCTION_STUB_BIG_SIZE
7633 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7634
f4416af6
AO
7635 /* In the worst case, we'll get one stub per dynamic symbol, plus
7636 one to account for the dummy entry at the end required by IRIX
7637 rld. */
5108fc1b 7638 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7639
0a44bf69
RS
7640 if (htab->is_vxworks)
7641 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7642 relocations against local symbols evaluate to "G", and the EABI does
7643 not include R_MIPS_GOT_PAGE. */
c224138d 7644 page_gotno = 0;
0a44bf69
RS
7645 else
7646 /* Assume there are two loadable segments consisting of contiguous
7647 sections. Is 5 enough? */
c224138d
RS
7648 page_gotno = (loadable_size >> 16) + 5;
7649
7650 /* Choose the smaller of the two estimates; both are intended to be
7651 conservative. */
7652 if (page_gotno > g->page_gotno)
7653 page_gotno = g->page_gotno;
f4416af6 7654
c224138d 7655 g->local_gotno += page_gotno;
eea6121a 7656 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7657
7658 g->global_gotno = i;
eea6121a 7659 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7660
0f20cc35
DJ
7661 /* We need to calculate tls_gotno for global symbols at this point
7662 instead of building it up earlier, to avoid doublecounting
7663 entries for one global symbol from multiple input files. */
7664 count_tls_arg.info = info;
7665 count_tls_arg.needed = 0;
7666 elf_link_hash_traverse (elf_hash_table (info),
7667 mips_elf_count_global_tls_entries,
7668 &count_tls_arg);
7669 g->tls_gotno += count_tls_arg.needed;
7670 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7671
7672 mips_elf_resolve_final_got_entries (g);
7673
0a44bf69
RS
7674 /* VxWorks does not support multiple GOTs. It initializes $gp to
7675 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7676 dynamic loader. */
7677 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 7678 {
c224138d 7679 if (! mips_elf_multi_got (output_bfd, info, g, s, page_gotno))
0f20cc35
DJ
7680 return FALSE;
7681 }
7682 else
7683 {
7684 /* Set up TLS entries for the first GOT. */
7685 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7686 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7687 }
8275b357 7688 htab->computed_got_sizes = TRUE;
b49e97c9 7689
b34976b6 7690 return TRUE;
b49e97c9
TS
7691}
7692
7693/* Set the sizes of the dynamic sections. */
7694
b34976b6 7695bfd_boolean
9719ad41
RS
7696_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7697 struct bfd_link_info *info)
b49e97c9
TS
7698{
7699 bfd *dynobj;
0a44bf69 7700 asection *s, *sreldyn;
b34976b6 7701 bfd_boolean reltext;
0a44bf69 7702 struct mips_elf_link_hash_table *htab;
b49e97c9 7703
0a44bf69 7704 htab = mips_elf_hash_table (info);
b49e97c9
TS
7705 dynobj = elf_hash_table (info)->dynobj;
7706 BFD_ASSERT (dynobj != NULL);
7707
7708 if (elf_hash_table (info)->dynamic_sections_created)
7709 {
7710 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7711 if (info->executable)
b49e97c9
TS
7712 {
7713 s = bfd_get_section_by_name (dynobj, ".interp");
7714 BFD_ASSERT (s != NULL);
eea6121a 7715 s->size
b49e97c9
TS
7716 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7717 s->contents
7718 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7719 }
7720 }
7721
7722 /* The check_relocs and adjust_dynamic_symbol entry points have
7723 determined the sizes of the various dynamic sections. Allocate
7724 memory for them. */
b34976b6 7725 reltext = FALSE;
0a44bf69 7726 sreldyn = NULL;
b49e97c9
TS
7727 for (s = dynobj->sections; s != NULL; s = s->next)
7728 {
7729 const char *name;
b49e97c9
TS
7730
7731 /* It's OK to base decisions on the section name, because none
7732 of the dynobj section names depend upon the input files. */
7733 name = bfd_get_section_name (dynobj, s);
7734
7735 if ((s->flags & SEC_LINKER_CREATED) == 0)
7736 continue;
7737
0112cd26 7738 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7739 {
c456f082 7740 if (s->size != 0)
b49e97c9
TS
7741 {
7742 const char *outname;
7743 asection *target;
7744
7745 /* If this relocation section applies to a read only
7746 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7747 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7748 assert a DT_TEXTREL entry rather than testing whether
7749 there exists a relocation to a read only section or
7750 not. */
7751 outname = bfd_get_section_name (output_bfd,
7752 s->output_section);
7753 target = bfd_get_section_by_name (output_bfd, outname + 4);
7754 if ((target != NULL
7755 && (target->flags & SEC_READONLY) != 0
7756 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7757 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7758 reltext = TRUE;
b49e97c9
TS
7759
7760 /* We use the reloc_count field as a counter if we need
7761 to copy relocs into the output file. */
0a44bf69 7762 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7763 s->reloc_count = 0;
f4416af6
AO
7764
7765 /* If combreloc is enabled, elf_link_sort_relocs() will
7766 sort relocations, but in a different way than we do,
7767 and before we're done creating relocations. Also, it
7768 will move them around between input sections'
7769 relocation's contents, so our sorting would be
7770 broken, so don't let it run. */
7771 info->combreloc = 0;
b49e97c9
TS
7772 }
7773 }
0a44bf69
RS
7774 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7775 {
7776 /* Executables do not need a GOT. */
7777 if (info->shared)
7778 {
7779 /* Allocate relocations for all but the reserved entries. */
7780 struct mips_got_info *g;
7781 unsigned int count;
7782
7783 g = mips_elf_got_info (dynobj, NULL);
7784 count = (g->global_gotno
7785 + g->local_gotno
7786 - MIPS_RESERVED_GOTNO (info));
7787 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7788 }
7789 }
0112cd26 7790 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7791 {
f4416af6
AO
7792 /* _bfd_mips_elf_always_size_sections() has already done
7793 most of the work, but some symbols may have been mapped
7794 to versions that we must now resolve in the got_entries
7795 hash tables. */
7796 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7797 struct mips_got_info *g = gg;
7798 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7799 unsigned int needed_relocs = 0;
143d77c5 7800
f4416af6 7801 if (gg->next)
b49e97c9 7802 {
f4416af6
AO
7803 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7804 set_got_offset_arg.info = info;
b49e97c9 7805
0f20cc35
DJ
7806 /* NOTE 2005-02-03: How can this call, or the next, ever
7807 find any indirect entries to resolve? They were all
7808 resolved in mips_elf_multi_got. */
f4416af6
AO
7809 mips_elf_resolve_final_got_entries (gg);
7810 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7811 {
f4416af6
AO
7812 unsigned int save_assign;
7813
7814 mips_elf_resolve_final_got_entries (g);
7815
7816 /* Assign offsets to global GOT entries. */
7817 save_assign = g->assigned_gotno;
7818 g->assigned_gotno = g->local_gotno;
7819 set_got_offset_arg.g = g;
7820 set_got_offset_arg.needed_relocs = 0;
7821 htab_traverse (g->got_entries,
7822 mips_elf_set_global_got_offset,
7823 &set_got_offset_arg);
7824 needed_relocs += set_got_offset_arg.needed_relocs;
7825 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7826 <= g->global_gotno);
7827
7828 g->assigned_gotno = save_assign;
7829 if (info->shared)
7830 {
7831 needed_relocs += g->local_gotno - g->assigned_gotno;
7832 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7833 + g->next->global_gotno
0f20cc35 7834 + g->next->tls_gotno
0a44bf69 7835 + MIPS_RESERVED_GOTNO (info));
f4416af6 7836 }
b49e97c9 7837 }
0f20cc35
DJ
7838 }
7839 else
7840 {
7841 struct mips_elf_count_tls_arg arg;
7842 arg.info = info;
7843 arg.needed = 0;
b49e97c9 7844
0f20cc35
DJ
7845 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7846 &arg);
7847 elf_link_hash_traverse (elf_hash_table (info),
7848 mips_elf_count_global_tls_relocs,
7849 &arg);
7850
7851 needed_relocs += arg.needed;
f4416af6 7852 }
0f20cc35
DJ
7853
7854 if (needed_relocs)
0a44bf69
RS
7855 mips_elf_allocate_dynamic_relocations (dynobj, info,
7856 needed_relocs);
b49e97c9
TS
7857 }
7858 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7859 {
8dc1a139 7860 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7861 of .text section. So put a dummy. XXX */
7862 s->size += htab->function_stub_size;
b49e97c9
TS
7863 }
7864 else if (! info->shared
7865 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7866 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7867 {
5108fc1b 7868 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7869 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7870 s->size += 4;
b49e97c9
TS
7871 }
7872 else if (SGI_COMPAT (output_bfd)
0112cd26 7873 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7874 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7875 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7876 && s != htab->sgotplt
7877 && s != htab->splt)
b49e97c9
TS
7878 {
7879 /* It's not one of our sections, so don't allocate space. */
7880 continue;
7881 }
7882
c456f082 7883 if (s->size == 0)
b49e97c9 7884 {
8423293d 7885 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7886 continue;
7887 }
7888
c456f082
AM
7889 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7890 continue;
7891
0a44bf69
RS
7892 /* Allocate memory for this section last, since we may increase its
7893 size above. */
7894 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7895 {
7896 sreldyn = s;
7897 continue;
7898 }
7899
b49e97c9 7900 /* Allocate memory for the section contents. */
eea6121a 7901 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7902 if (s->contents == NULL)
b49e97c9
TS
7903 {
7904 bfd_set_error (bfd_error_no_memory);
b34976b6 7905 return FALSE;
b49e97c9
TS
7906 }
7907 }
7908
0a44bf69
RS
7909 /* Allocate memory for the .rel(a).dyn section. */
7910 if (sreldyn != NULL)
7911 {
7912 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7913 if (sreldyn->contents == NULL)
7914 {
7915 bfd_set_error (bfd_error_no_memory);
7916 return FALSE;
7917 }
7918 }
7919
b49e97c9
TS
7920 if (elf_hash_table (info)->dynamic_sections_created)
7921 {
7922 /* Add some entries to the .dynamic section. We fill in the
7923 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7924 must add the entries now so that we get the correct size for
5750dcec 7925 the .dynamic section. */
af5978fb
RS
7926
7927 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7928 DT_MIPS_RLD_MAP entry. This must come first because glibc
7929 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7930 looks at the first one it sees. */
af5978fb
RS
7931 if (!info->shared
7932 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7933 return FALSE;
b49e97c9 7934
5750dcec
DJ
7935 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7936 used by the debugger. */
7937 if (info->executable
7938 && !SGI_COMPAT (output_bfd)
7939 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7940 return FALSE;
7941
0a44bf69 7942 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7943 info->flags |= DF_TEXTREL;
7944
7945 if ((info->flags & DF_TEXTREL) != 0)
7946 {
7947 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7948 return FALSE;
943284cc
DJ
7949
7950 /* Clear the DF_TEXTREL flag. It will be set again if we
7951 write out an actual text relocation; we may not, because
7952 at this point we do not know whether e.g. any .eh_frame
7953 absolute relocations have been converted to PC-relative. */
7954 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7955 }
7956
7957 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7958 return FALSE;
b49e97c9 7959
0a44bf69 7960 if (htab->is_vxworks)
b49e97c9 7961 {
0a44bf69
RS
7962 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7963 use any of the DT_MIPS_* tags. */
7964 if (mips_elf_rel_dyn_section (info, FALSE))
7965 {
7966 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7967 return FALSE;
b49e97c9 7968
0a44bf69
RS
7969 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7970 return FALSE;
b49e97c9 7971
0a44bf69
RS
7972 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7973 return FALSE;
7974 }
7975 if (htab->splt->size > 0)
7976 {
7977 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7978 return FALSE;
7979
7980 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7981 return FALSE;
7982
7983 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7984 return FALSE;
7985 }
b49e97c9 7986 }
0a44bf69
RS
7987 else
7988 {
7989 if (mips_elf_rel_dyn_section (info, FALSE))
7990 {
7991 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7992 return FALSE;
b49e97c9 7993
0a44bf69
RS
7994 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7995 return FALSE;
b49e97c9 7996
0a44bf69
RS
7997 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7998 return FALSE;
7999 }
b49e97c9 8000
0a44bf69
RS
8001 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8002 return FALSE;
b49e97c9 8003
0a44bf69
RS
8004 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8005 return FALSE;
b49e97c9 8006
0a44bf69
RS
8007 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8008 return FALSE;
b49e97c9 8009
0a44bf69
RS
8010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8011 return FALSE;
b49e97c9 8012
0a44bf69
RS
8013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8014 return FALSE;
b49e97c9 8015
0a44bf69
RS
8016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8017 return FALSE;
b49e97c9 8018
0a44bf69
RS
8019 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8020 return FALSE;
8021
8022 if (IRIX_COMPAT (dynobj) == ict_irix5
8023 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8024 return FALSE;
8025
8026 if (IRIX_COMPAT (dynobj) == ict_irix6
8027 && (bfd_get_section_by_name
8028 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8029 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8030 return FALSE;
8031 }
7a2b07ff
NS
8032 if (htab->is_vxworks
8033 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8034 return FALSE;
b49e97c9
TS
8035 }
8036
b34976b6 8037 return TRUE;
b49e97c9
TS
8038}
8039\f
81d43bff
RS
8040/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8041 Adjust its R_ADDEND field so that it is correct for the output file.
8042 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8043 and sections respectively; both use symbol indexes. */
8044
8045static void
8046mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8047 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8048 asection **local_sections, Elf_Internal_Rela *rel)
8049{
8050 unsigned int r_type, r_symndx;
8051 Elf_Internal_Sym *sym;
8052 asection *sec;
8053
8054 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8055 {
8056 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8057 if (r_type == R_MIPS16_GPREL
8058 || r_type == R_MIPS_GPREL16
8059 || r_type == R_MIPS_GPREL32
8060 || r_type == R_MIPS_LITERAL)
8061 {
8062 rel->r_addend += _bfd_get_gp_value (input_bfd);
8063 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8064 }
8065
8066 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8067 sym = local_syms + r_symndx;
8068
8069 /* Adjust REL's addend to account for section merging. */
8070 if (!info->relocatable)
8071 {
8072 sec = local_sections[r_symndx];
8073 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8074 }
8075
8076 /* This would normally be done by the rela_normal code in elflink.c. */
8077 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8078 rel->r_addend += local_sections[r_symndx]->output_offset;
8079 }
8080}
8081
b49e97c9
TS
8082/* Relocate a MIPS ELF section. */
8083
b34976b6 8084bfd_boolean
9719ad41
RS
8085_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8086 bfd *input_bfd, asection *input_section,
8087 bfd_byte *contents, Elf_Internal_Rela *relocs,
8088 Elf_Internal_Sym *local_syms,
8089 asection **local_sections)
b49e97c9
TS
8090{
8091 Elf_Internal_Rela *rel;
8092 const Elf_Internal_Rela *relend;
8093 bfd_vma addend = 0;
b34976b6 8094 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 8095 const struct elf_backend_data *bed;
b49e97c9
TS
8096
8097 bed = get_elf_backend_data (output_bfd);
8098 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8099 for (rel = relocs; rel < relend; ++rel)
8100 {
8101 const char *name;
c9adbffe 8102 bfd_vma value = 0;
b49e97c9 8103 reloc_howto_type *howto;
b34976b6
AM
8104 bfd_boolean require_jalx;
8105 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 8106 REL relocation. */
b34976b6 8107 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 8108 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 8109 const char *msg;
ab96bf03
AM
8110 unsigned long r_symndx;
8111 asection *sec;
749b8d9d
L
8112 Elf_Internal_Shdr *symtab_hdr;
8113 struct elf_link_hash_entry *h;
b49e97c9
TS
8114
8115 /* Find the relocation howto for this relocation. */
ab96bf03
AM
8116 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8117 NEWABI_P (input_bfd)
8118 && (MIPS_RELOC_RELA_P
8119 (input_bfd, input_section,
8120 rel - relocs)));
8121
8122 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 8123 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 8124 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
8125 {
8126 sec = local_sections[r_symndx];
8127 h = NULL;
8128 }
ab96bf03
AM
8129 else
8130 {
ab96bf03 8131 unsigned long extsymoff;
ab96bf03 8132
ab96bf03
AM
8133 extsymoff = 0;
8134 if (!elf_bad_symtab (input_bfd))
8135 extsymoff = symtab_hdr->sh_info;
8136 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8137 while (h->root.type == bfd_link_hash_indirect
8138 || h->root.type == bfd_link_hash_warning)
8139 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8140
8141 sec = NULL;
8142 if (h->root.type == bfd_link_hash_defined
8143 || h->root.type == bfd_link_hash_defweak)
8144 sec = h->root.u.def.section;
8145 }
8146
8147 if (sec != NULL && elf_discarded_section (sec))
8148 {
8149 /* For relocs against symbols from removed linkonce sections,
8150 or sections discarded by a linker script, we just want the
8151 section contents zeroed. Avoid any special processing. */
8152 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8153 rel->r_info = 0;
8154 rel->r_addend = 0;
8155 continue;
8156 }
8157
4a14403c 8158 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
8159 {
8160 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8161 64-bit code, but make sure all their addresses are in the
8162 lowermost or uppermost 32-bit section of the 64-bit address
8163 space. Thus, when they use an R_MIPS_64 they mean what is
8164 usually meant by R_MIPS_32, with the exception that the
8165 stored value is sign-extended to 64 bits. */
b34976b6 8166 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
8167
8168 /* On big-endian systems, we need to lie about the position
8169 of the reloc. */
8170 if (bfd_big_endian (input_bfd))
8171 rel->r_offset += 4;
8172 }
b49e97c9
TS
8173
8174 if (!use_saved_addend_p)
8175 {
b49e97c9
TS
8176 /* If these relocations were originally of the REL variety,
8177 we must pull the addend out of the field that will be
8178 relocated. Otherwise, we simply use the contents of the
c224138d
RS
8179 RELA relocation. */
8180 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8181 relocs, rel))
b49e97c9 8182 {
b34976b6 8183 rela_relocation_p = FALSE;
c224138d
RS
8184 addend = mips_elf_read_rel_addend (input_bfd, rel,
8185 howto, contents);
8186 if (r_type == R_MIPS_HI16
8187 || r_type == R_MIPS16_HI16
b49e97c9
TS
8188 || (r_type == R_MIPS_GOT16
8189 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 8190 local_sections, FALSE)))
b49e97c9 8191 {
c224138d
RS
8192 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8193 contents, &addend))
749b8d9d
L
8194 {
8195 const char *name;
8196
8197 if (h)
8198 name = h->root.root.string;
8199 else
8200 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8201 local_syms + r_symndx,
8202 sec);
8203 (*_bfd_error_handler)
8204 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8205 input_bfd, input_section, name, howto->name,
8206 rel->r_offset);
749b8d9d 8207 }
b49e97c9 8208 }
30ac9238
RS
8209 else
8210 addend <<= howto->rightshift;
b49e97c9
TS
8211 }
8212 else
8213 addend = rel->r_addend;
81d43bff
RS
8214 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8215 local_syms, local_sections, rel);
b49e97c9
TS
8216 }
8217
1049f94e 8218 if (info->relocatable)
b49e97c9 8219 {
4a14403c 8220 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
8221 && bfd_big_endian (input_bfd))
8222 rel->r_offset -= 4;
8223
81d43bff 8224 if (!rela_relocation_p && rel->r_addend)
5a659663 8225 {
81d43bff 8226 addend += rel->r_addend;
30ac9238 8227 if (r_type == R_MIPS_HI16
4030e8f6 8228 || r_type == R_MIPS_GOT16)
5a659663
TS
8229 addend = mips_elf_high (addend);
8230 else if (r_type == R_MIPS_HIGHER)
8231 addend = mips_elf_higher (addend);
8232 else if (r_type == R_MIPS_HIGHEST)
8233 addend = mips_elf_highest (addend);
30ac9238
RS
8234 else
8235 addend >>= howto->rightshift;
b49e97c9 8236
30ac9238
RS
8237 /* We use the source mask, rather than the destination
8238 mask because the place to which we are writing will be
8239 source of the addend in the final link. */
b49e97c9
TS
8240 addend &= howto->src_mask;
8241
5a659663 8242 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8243 /* See the comment above about using R_MIPS_64 in the 32-bit
8244 ABI. Here, we need to update the addend. It would be
8245 possible to get away with just using the R_MIPS_32 reloc
8246 but for endianness. */
8247 {
8248 bfd_vma sign_bits;
8249 bfd_vma low_bits;
8250 bfd_vma high_bits;
8251
8252 if (addend & ((bfd_vma) 1 << 31))
8253#ifdef BFD64
8254 sign_bits = ((bfd_vma) 1 << 32) - 1;
8255#else
8256 sign_bits = -1;
8257#endif
8258 else
8259 sign_bits = 0;
8260
8261 /* If we don't know that we have a 64-bit type,
8262 do two separate stores. */
8263 if (bfd_big_endian (input_bfd))
8264 {
8265 /* Store the sign-bits (which are most significant)
8266 first. */
8267 low_bits = sign_bits;
8268 high_bits = addend;
8269 }
8270 else
8271 {
8272 low_bits = addend;
8273 high_bits = sign_bits;
8274 }
8275 bfd_put_32 (input_bfd, low_bits,
8276 contents + rel->r_offset);
8277 bfd_put_32 (input_bfd, high_bits,
8278 contents + rel->r_offset + 4);
8279 continue;
8280 }
8281
8282 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8283 input_bfd, input_section,
b34976b6
AM
8284 contents, FALSE))
8285 return FALSE;
b49e97c9
TS
8286 }
8287
8288 /* Go on to the next relocation. */
8289 continue;
8290 }
8291
8292 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8293 relocations for the same offset. In that case we are
8294 supposed to treat the output of each relocation as the addend
8295 for the next. */
8296 if (rel + 1 < relend
8297 && rel->r_offset == rel[1].r_offset
8298 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 8299 use_saved_addend_p = TRUE;
b49e97c9 8300 else
b34976b6 8301 use_saved_addend_p = FALSE;
b49e97c9
TS
8302
8303 /* Figure out what value we are supposed to relocate. */
8304 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8305 input_section, info, rel,
8306 addend, howto, local_syms,
8307 local_sections, &value,
bce03d3d
AO
8308 &name, &require_jalx,
8309 use_saved_addend_p))
b49e97c9
TS
8310 {
8311 case bfd_reloc_continue:
8312 /* There's nothing to do. */
8313 continue;
8314
8315 case bfd_reloc_undefined:
8316 /* mips_elf_calculate_relocation already called the
8317 undefined_symbol callback. There's no real point in
8318 trying to perform the relocation at this point, so we
8319 just skip ahead to the next relocation. */
8320 continue;
8321
8322 case bfd_reloc_notsupported:
8323 msg = _("internal error: unsupported relocation error");
8324 info->callbacks->warning
8325 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8326 return FALSE;
b49e97c9
TS
8327
8328 case bfd_reloc_overflow:
8329 if (use_saved_addend_p)
8330 /* Ignore overflow until we reach the last relocation for
8331 a given location. */
8332 ;
8333 else
8334 {
0e53d9da
AN
8335 struct mips_elf_link_hash_table *htab;
8336
8337 htab = mips_elf_hash_table (info);
b49e97c9 8338 BFD_ASSERT (name != NULL);
0e53d9da
AN
8339 if (!htab->small_data_overflow_reported
8340 && (howto->type == R_MIPS_GPREL16
8341 || howto->type == R_MIPS_LITERAL))
8342 {
8343 const char *msg =
8344 _("small-data section exceeds 64KB;"
8345 " lower small-data size limit (see option -G)");
8346
8347 htab->small_data_overflow_reported = TRUE;
8348 (*info->callbacks->einfo) ("%P: %s\n", msg);
8349 }
b49e97c9 8350 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8351 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8352 input_bfd, input_section, rel->r_offset)))
b34976b6 8353 return FALSE;
b49e97c9
TS
8354 }
8355 break;
8356
8357 case bfd_reloc_ok:
8358 break;
8359
8360 default:
8361 abort ();
8362 break;
8363 }
8364
8365 /* If we've got another relocation for the address, keep going
8366 until we reach the last one. */
8367 if (use_saved_addend_p)
8368 {
8369 addend = value;
8370 continue;
8371 }
8372
4a14403c 8373 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8374 /* See the comment above about using R_MIPS_64 in the 32-bit
8375 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8376 that calculated the right value. Now, however, we
8377 sign-extend the 32-bit result to 64-bits, and store it as a
8378 64-bit value. We are especially generous here in that we
8379 go to extreme lengths to support this usage on systems with
8380 only a 32-bit VMA. */
8381 {
8382 bfd_vma sign_bits;
8383 bfd_vma low_bits;
8384 bfd_vma high_bits;
8385
8386 if (value & ((bfd_vma) 1 << 31))
8387#ifdef BFD64
8388 sign_bits = ((bfd_vma) 1 << 32) - 1;
8389#else
8390 sign_bits = -1;
8391#endif
8392 else
8393 sign_bits = 0;
8394
8395 /* If we don't know that we have a 64-bit type,
8396 do two separate stores. */
8397 if (bfd_big_endian (input_bfd))
8398 {
8399 /* Undo what we did above. */
8400 rel->r_offset -= 4;
8401 /* Store the sign-bits (which are most significant)
8402 first. */
8403 low_bits = sign_bits;
8404 high_bits = value;
8405 }
8406 else
8407 {
8408 low_bits = value;
8409 high_bits = sign_bits;
8410 }
8411 bfd_put_32 (input_bfd, low_bits,
8412 contents + rel->r_offset);
8413 bfd_put_32 (input_bfd, high_bits,
8414 contents + rel->r_offset + 4);
8415 continue;
8416 }
8417
8418 /* Actually perform the relocation. */
8419 if (! mips_elf_perform_relocation (info, howto, rel, value,
8420 input_bfd, input_section,
8421 contents, require_jalx))
b34976b6 8422 return FALSE;
b49e97c9
TS
8423 }
8424
b34976b6 8425 return TRUE;
b49e97c9
TS
8426}
8427\f
8428/* If NAME is one of the special IRIX6 symbols defined by the linker,
8429 adjust it appropriately now. */
8430
8431static void
9719ad41
RS
8432mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8433 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8434{
8435 /* The linker script takes care of providing names and values for
8436 these, but we must place them into the right sections. */
8437 static const char* const text_section_symbols[] = {
8438 "_ftext",
8439 "_etext",
8440 "__dso_displacement",
8441 "__elf_header",
8442 "__program_header_table",
8443 NULL
8444 };
8445
8446 static const char* const data_section_symbols[] = {
8447 "_fdata",
8448 "_edata",
8449 "_end",
8450 "_fbss",
8451 NULL
8452 };
8453
8454 const char* const *p;
8455 int i;
8456
8457 for (i = 0; i < 2; ++i)
8458 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8459 *p;
8460 ++p)
8461 if (strcmp (*p, name) == 0)
8462 {
8463 /* All of these symbols are given type STT_SECTION by the
8464 IRIX6 linker. */
8465 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8466 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8467
8468 /* The IRIX linker puts these symbols in special sections. */
8469 if (i == 0)
8470 sym->st_shndx = SHN_MIPS_TEXT;
8471 else
8472 sym->st_shndx = SHN_MIPS_DATA;
8473
8474 break;
8475 }
8476}
8477
8478/* Finish up dynamic symbol handling. We set the contents of various
8479 dynamic sections here. */
8480
b34976b6 8481bfd_boolean
9719ad41
RS
8482_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8483 struct bfd_link_info *info,
8484 struct elf_link_hash_entry *h,
8485 Elf_Internal_Sym *sym)
b49e97c9
TS
8486{
8487 bfd *dynobj;
b49e97c9 8488 asection *sgot;
f4416af6 8489 struct mips_got_info *g, *gg;
b49e97c9 8490 const char *name;
3d6746ca 8491 int idx;
5108fc1b 8492 struct mips_elf_link_hash_table *htab;
b49e97c9 8493
5108fc1b 8494 htab = mips_elf_hash_table (info);
b49e97c9 8495 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8496
c5ae1840 8497 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8498 {
8499 asection *s;
5108fc1b 8500 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8501
8502 /* This symbol has a stub. Set it up. */
8503
8504 BFD_ASSERT (h->dynindx != -1);
8505
8506 s = bfd_get_section_by_name (dynobj,
8507 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8508 BFD_ASSERT (s != NULL);
8509
5108fc1b
RS
8510 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8511 || (h->dynindx <= 0xffff));
3d6746ca
DD
8512
8513 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8514 sign extension at runtime in the stub, resulting in a negative
8515 index value. */
8516 if (h->dynindx & ~0x7fffffff)
b34976b6 8517 return FALSE;
b49e97c9
TS
8518
8519 /* Fill the stub. */
3d6746ca
DD
8520 idx = 0;
8521 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8522 idx += 4;
8523 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8524 idx += 4;
5108fc1b 8525 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8526 {
5108fc1b 8527 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8528 stub + idx);
8529 idx += 4;
8530 }
8531 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8532 idx += 4;
b49e97c9 8533
3d6746ca
DD
8534 /* If a large stub is not required and sign extension is not a
8535 problem, then use legacy code in the stub. */
5108fc1b
RS
8536 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8537 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8538 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8539 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8540 else
5108fc1b
RS
8541 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8542 stub + idx);
8543
eea6121a 8544 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8545 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8546
8547 /* Mark the symbol as undefined. plt.offset != -1 occurs
8548 only for the referenced symbol. */
8549 sym->st_shndx = SHN_UNDEF;
8550
8551 /* The run-time linker uses the st_value field of the symbol
8552 to reset the global offset table entry for this external
8553 to its stub address when unlinking a shared object. */
c5ae1840
TS
8554 sym->st_value = (s->output_section->vma + s->output_offset
8555 + h->plt.offset);
b49e97c9
TS
8556 }
8557
8558 BFD_ASSERT (h->dynindx != -1
f5385ebf 8559 || h->forced_local);
b49e97c9 8560
f4416af6 8561 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8562 BFD_ASSERT (sgot != NULL);
f4416af6 8563 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8564 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8565 BFD_ASSERT (g != NULL);
8566
8567 /* Run through the global symbol table, creating GOT entries for all
8568 the symbols that need them. */
8569 if (g->global_gotsym != NULL
8570 && h->dynindx >= g->global_gotsym->dynindx)
8571 {
8572 bfd_vma offset;
8573 bfd_vma value;
8574
6eaa6adc 8575 value = sym->st_value;
0f20cc35 8576 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8577 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8578 }
8579
0f20cc35 8580 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8581 {
8582 struct mips_got_entry e, *p;
0626d451 8583 bfd_vma entry;
f4416af6 8584 bfd_vma offset;
f4416af6
AO
8585
8586 gg = g;
8587
8588 e.abfd = output_bfd;
8589 e.symndx = -1;
8590 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8591 e.tls_type = 0;
143d77c5 8592
f4416af6
AO
8593 for (g = g->next; g->next != gg; g = g->next)
8594 {
8595 if (g->got_entries
8596 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8597 &e)))
8598 {
8599 offset = p->gotidx;
0626d451
RS
8600 if (info->shared
8601 || (elf_hash_table (info)->dynamic_sections_created
8602 && p->d.h != NULL
f5385ebf
AM
8603 && p->d.h->root.def_dynamic
8604 && !p->d.h->root.def_regular))
0626d451
RS
8605 {
8606 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8607 the various compatibility problems, it's easier to mock
8608 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8609 mips_elf_create_dynamic_relocation to calculate the
8610 appropriate addend. */
8611 Elf_Internal_Rela rel[3];
8612
8613 memset (rel, 0, sizeof (rel));
8614 if (ABI_64_P (output_bfd))
8615 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8616 else
8617 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8618 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8619
8620 entry = 0;
8621 if (! (mips_elf_create_dynamic_relocation
8622 (output_bfd, info, rel,
8623 e.d.h, NULL, sym->st_value, &entry, sgot)))
8624 return FALSE;
8625 }
8626 else
8627 entry = sym->st_value;
8628 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8629 }
8630 }
8631 }
8632
b49e97c9
TS
8633 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8634 name = h->root.root.string;
8635 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8636 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8637 sym->st_shndx = SHN_ABS;
8638 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8639 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8640 {
8641 sym->st_shndx = SHN_ABS;
8642 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8643 sym->st_value = 1;
8644 }
4a14403c 8645 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8646 {
8647 sym->st_shndx = SHN_ABS;
8648 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8649 sym->st_value = elf_gp (output_bfd);
8650 }
8651 else if (SGI_COMPAT (output_bfd))
8652 {
8653 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8654 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8655 {
8656 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8657 sym->st_other = STO_PROTECTED;
8658 sym->st_value = 0;
8659 sym->st_shndx = SHN_MIPS_DATA;
8660 }
8661 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8662 {
8663 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8664 sym->st_other = STO_PROTECTED;
8665 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8666 sym->st_shndx = SHN_ABS;
8667 }
8668 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8669 {
8670 if (h->type == STT_FUNC)
8671 sym->st_shndx = SHN_MIPS_TEXT;
8672 else if (h->type == STT_OBJECT)
8673 sym->st_shndx = SHN_MIPS_DATA;
8674 }
8675 }
8676
8677 /* Handle the IRIX6-specific symbols. */
8678 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8679 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8680
8681 if (! info->shared)
8682 {
8683 if (! mips_elf_hash_table (info)->use_rld_obj_head
8684 && (strcmp (name, "__rld_map") == 0
8685 || strcmp (name, "__RLD_MAP") == 0))
8686 {
8687 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8688 BFD_ASSERT (s != NULL);
8689 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8690 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8691 if (mips_elf_hash_table (info)->rld_value == 0)
8692 mips_elf_hash_table (info)->rld_value = sym->st_value;
8693 }
8694 else if (mips_elf_hash_table (info)->use_rld_obj_head
8695 && strcmp (name, "__rld_obj_head") == 0)
8696 {
8697 /* IRIX6 does not use a .rld_map section. */
8698 if (IRIX_COMPAT (output_bfd) == ict_irix5
8699 || IRIX_COMPAT (output_bfd) == ict_none)
8700 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8701 != NULL);
8702 mips_elf_hash_table (info)->rld_value = sym->st_value;
8703 }
8704 }
8705
8706 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8707 if (sym->st_other == STO_MIPS16)
8708 sym->st_value &= ~1;
b49e97c9 8709
b34976b6 8710 return TRUE;
b49e97c9
TS
8711}
8712
0a44bf69
RS
8713/* Likewise, for VxWorks. */
8714
8715bfd_boolean
8716_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8717 struct bfd_link_info *info,
8718 struct elf_link_hash_entry *h,
8719 Elf_Internal_Sym *sym)
8720{
8721 bfd *dynobj;
8722 asection *sgot;
8723 struct mips_got_info *g;
8724 struct mips_elf_link_hash_table *htab;
8725
8726 htab = mips_elf_hash_table (info);
8727 dynobj = elf_hash_table (info)->dynobj;
8728
8729 if (h->plt.offset != (bfd_vma) -1)
8730 {
6d79d2ed 8731 bfd_byte *loc;
0a44bf69
RS
8732 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8733 Elf_Internal_Rela rel;
8734 static const bfd_vma *plt_entry;
8735
8736 BFD_ASSERT (h->dynindx != -1);
8737 BFD_ASSERT (htab->splt != NULL);
8738 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8739
8740 /* Calculate the address of the .plt entry. */
8741 plt_address = (htab->splt->output_section->vma
8742 + htab->splt->output_offset
8743 + h->plt.offset);
8744
8745 /* Calculate the index of the entry. */
8746 plt_index = ((h->plt.offset - htab->plt_header_size)
8747 / htab->plt_entry_size);
8748
8749 /* Calculate the address of the .got.plt entry. */
8750 got_address = (htab->sgotplt->output_section->vma
8751 + htab->sgotplt->output_offset
8752 + plt_index * 4);
8753
8754 /* Calculate the offset of the .got.plt entry from
8755 _GLOBAL_OFFSET_TABLE_. */
8756 got_offset = mips_elf_gotplt_index (info, h);
8757
8758 /* Calculate the offset for the branch at the start of the PLT
8759 entry. The branch jumps to the beginning of .plt. */
8760 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8761
8762 /* Fill in the initial value of the .got.plt entry. */
8763 bfd_put_32 (output_bfd, plt_address,
8764 htab->sgotplt->contents + plt_index * 4);
8765
8766 /* Find out where the .plt entry should go. */
8767 loc = htab->splt->contents + h->plt.offset;
8768
8769 if (info->shared)
8770 {
8771 plt_entry = mips_vxworks_shared_plt_entry;
8772 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8773 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8774 }
8775 else
8776 {
8777 bfd_vma got_address_high, got_address_low;
8778
8779 plt_entry = mips_vxworks_exec_plt_entry;
8780 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8781 got_address_low = got_address & 0xffff;
8782
8783 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8784 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8785 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8786 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8787 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8788 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8789 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8790 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8791
8792 loc = (htab->srelplt2->contents
8793 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8794
8795 /* Emit a relocation for the .got.plt entry. */
8796 rel.r_offset = got_address;
8797 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8798 rel.r_addend = h->plt.offset;
8799 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8800
8801 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8802 loc += sizeof (Elf32_External_Rela);
8803 rel.r_offset = plt_address + 8;
8804 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8805 rel.r_addend = got_offset;
8806 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8807
8808 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8809 loc += sizeof (Elf32_External_Rela);
8810 rel.r_offset += 4;
8811 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8812 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8813 }
8814
8815 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8816 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8817 rel.r_offset = got_address;
8818 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8819 rel.r_addend = 0;
8820 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8821
8822 if (!h->def_regular)
8823 sym->st_shndx = SHN_UNDEF;
8824 }
8825
8826 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8827
8828 sgot = mips_elf_got_section (dynobj, FALSE);
8829 BFD_ASSERT (sgot != NULL);
8830 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8831 g = mips_elf_section_data (sgot)->u.got_info;
8832 BFD_ASSERT (g != NULL);
8833
8834 /* See if this symbol has an entry in the GOT. */
8835 if (g->global_gotsym != NULL
8836 && h->dynindx >= g->global_gotsym->dynindx)
8837 {
8838 bfd_vma offset;
8839 Elf_Internal_Rela outrel;
8840 bfd_byte *loc;
8841 asection *s;
8842
8843 /* Install the symbol value in the GOT. */
8844 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8845 R_MIPS_GOT16, info);
8846 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8847
8848 /* Add a dynamic relocation for it. */
8849 s = mips_elf_rel_dyn_section (info, FALSE);
8850 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8851 outrel.r_offset = (sgot->output_section->vma
8852 + sgot->output_offset
8853 + offset);
8854 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8855 outrel.r_addend = 0;
8856 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8857 }
8858
8859 /* Emit a copy reloc, if needed. */
8860 if (h->needs_copy)
8861 {
8862 Elf_Internal_Rela rel;
8863
8864 BFD_ASSERT (h->dynindx != -1);
8865
8866 rel.r_offset = (h->root.u.def.section->output_section->vma
8867 + h->root.u.def.section->output_offset
8868 + h->root.u.def.value);
8869 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8870 rel.r_addend = 0;
8871 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8872 htab->srelbss->contents
8873 + (htab->srelbss->reloc_count
8874 * sizeof (Elf32_External_Rela)));
8875 ++htab->srelbss->reloc_count;
8876 }
8877
8878 /* If this is a mips16 symbol, force the value to be even. */
8879 if (sym->st_other == STO_MIPS16)
8880 sym->st_value &= ~1;
8881
8882 return TRUE;
8883}
8884
8885/* Install the PLT header for a VxWorks executable and finalize the
8886 contents of .rela.plt.unloaded. */
8887
8888static void
8889mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8890{
8891 Elf_Internal_Rela rela;
8892 bfd_byte *loc;
8893 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8894 static const bfd_vma *plt_entry;
8895 struct mips_elf_link_hash_table *htab;
8896
8897 htab = mips_elf_hash_table (info);
8898 plt_entry = mips_vxworks_exec_plt0_entry;
8899
8900 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8901 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8902 + htab->root.hgot->root.u.def.section->output_offset
8903 + htab->root.hgot->root.u.def.value);
8904
8905 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8906 got_value_low = got_value & 0xffff;
8907
8908 /* Calculate the address of the PLT header. */
8909 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8910
8911 /* Install the PLT header. */
8912 loc = htab->splt->contents;
8913 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8914 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8915 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8916 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8917 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8918 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8919
8920 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8921 loc = htab->srelplt2->contents;
8922 rela.r_offset = plt_address;
8923 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8924 rela.r_addend = 0;
8925 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8926 loc += sizeof (Elf32_External_Rela);
8927
8928 /* Output the relocation for the following addiu of
8929 %lo(_GLOBAL_OFFSET_TABLE_). */
8930 rela.r_offset += 4;
8931 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8932 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8933 loc += sizeof (Elf32_External_Rela);
8934
8935 /* Fix up the remaining relocations. They may have the wrong
8936 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8937 in which symbols were output. */
8938 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8939 {
8940 Elf_Internal_Rela rel;
8941
8942 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8943 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8944 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8945 loc += sizeof (Elf32_External_Rela);
8946
8947 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8948 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8949 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8950 loc += sizeof (Elf32_External_Rela);
8951
8952 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8953 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8954 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8955 loc += sizeof (Elf32_External_Rela);
8956 }
8957}
8958
8959/* Install the PLT header for a VxWorks shared library. */
8960
8961static void
8962mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8963{
8964 unsigned int i;
8965 struct mips_elf_link_hash_table *htab;
8966
8967 htab = mips_elf_hash_table (info);
8968
8969 /* We just need to copy the entry byte-by-byte. */
8970 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8971 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8972 htab->splt->contents + i * 4);
8973}
8974
b49e97c9
TS
8975/* Finish up the dynamic sections. */
8976
b34976b6 8977bfd_boolean
9719ad41
RS
8978_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8979 struct bfd_link_info *info)
b49e97c9
TS
8980{
8981 bfd *dynobj;
8982 asection *sdyn;
8983 asection *sgot;
f4416af6 8984 struct mips_got_info *gg, *g;
0a44bf69 8985 struct mips_elf_link_hash_table *htab;
b49e97c9 8986
0a44bf69 8987 htab = mips_elf_hash_table (info);
b49e97c9
TS
8988 dynobj = elf_hash_table (info)->dynobj;
8989
8990 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8991
f4416af6 8992 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8993 if (sgot == NULL)
f4416af6 8994 gg = g = NULL;
b49e97c9
TS
8995 else
8996 {
f4416af6
AO
8997 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8998 gg = mips_elf_section_data (sgot)->u.got_info;
8999 BFD_ASSERT (gg != NULL);
9000 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
9001 BFD_ASSERT (g != NULL);
9002 }
9003
9004 if (elf_hash_table (info)->dynamic_sections_created)
9005 {
9006 bfd_byte *b;
943284cc 9007 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
9008
9009 BFD_ASSERT (sdyn != NULL);
9010 BFD_ASSERT (g != NULL);
9011
9012 for (b = sdyn->contents;
eea6121a 9013 b < sdyn->contents + sdyn->size;
b49e97c9
TS
9014 b += MIPS_ELF_DYN_SIZE (dynobj))
9015 {
9016 Elf_Internal_Dyn dyn;
9017 const char *name;
9018 size_t elemsize;
9019 asection *s;
b34976b6 9020 bfd_boolean swap_out_p;
b49e97c9
TS
9021
9022 /* Read in the current dynamic entry. */
9023 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9024
9025 /* Assume that we're going to modify it and write it out. */
b34976b6 9026 swap_out_p = TRUE;
b49e97c9
TS
9027
9028 switch (dyn.d_tag)
9029 {
9030 case DT_RELENT:
b49e97c9
TS
9031 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9032 break;
9033
0a44bf69
RS
9034 case DT_RELAENT:
9035 BFD_ASSERT (htab->is_vxworks);
9036 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9037 break;
9038
b49e97c9
TS
9039 case DT_STRSZ:
9040 /* Rewrite DT_STRSZ. */
9041 dyn.d_un.d_val =
9042 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9043 break;
9044
9045 case DT_PLTGOT:
9046 name = ".got";
0a44bf69
RS
9047 if (htab->is_vxworks)
9048 {
9049 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9050 of the ".got" section in DYNOBJ. */
9051 s = bfd_get_section_by_name (dynobj, name);
9052 BFD_ASSERT (s != NULL);
9053 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9054 }
9055 else
9056 {
9057 s = bfd_get_section_by_name (output_bfd, name);
9058 BFD_ASSERT (s != NULL);
9059 dyn.d_un.d_ptr = s->vma;
9060 }
b49e97c9
TS
9061 break;
9062
9063 case DT_MIPS_RLD_VERSION:
9064 dyn.d_un.d_val = 1; /* XXX */
9065 break;
9066
9067 case DT_MIPS_FLAGS:
9068 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9069 break;
9070
b49e97c9 9071 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
9072 {
9073 time_t t;
9074 time (&t);
9075 dyn.d_un.d_val = t;
9076 }
b49e97c9
TS
9077 break;
9078
9079 case DT_MIPS_ICHECKSUM:
9080 /* XXX FIXME: */
b34976b6 9081 swap_out_p = FALSE;
b49e97c9
TS
9082 break;
9083
9084 case DT_MIPS_IVERSION:
9085 /* XXX FIXME: */
b34976b6 9086 swap_out_p = FALSE;
b49e97c9
TS
9087 break;
9088
9089 case DT_MIPS_BASE_ADDRESS:
9090 s = output_bfd->sections;
9091 BFD_ASSERT (s != NULL);
9092 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9093 break;
9094
9095 case DT_MIPS_LOCAL_GOTNO:
9096 dyn.d_un.d_val = g->local_gotno;
9097 break;
9098
9099 case DT_MIPS_UNREFEXTNO:
9100 /* The index into the dynamic symbol table which is the
9101 entry of the first external symbol that is not
9102 referenced within the same object. */
9103 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9104 break;
9105
9106 case DT_MIPS_GOTSYM:
f4416af6 9107 if (gg->global_gotsym)
b49e97c9 9108 {
f4416af6 9109 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
9110 break;
9111 }
9112 /* In case if we don't have global got symbols we default
9113 to setting DT_MIPS_GOTSYM to the same value as
9114 DT_MIPS_SYMTABNO, so we just fall through. */
9115
9116 case DT_MIPS_SYMTABNO:
9117 name = ".dynsym";
9118 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9119 s = bfd_get_section_by_name (output_bfd, name);
9120 BFD_ASSERT (s != NULL);
9121
eea6121a 9122 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
9123 break;
9124
9125 case DT_MIPS_HIPAGENO:
0a44bf69 9126 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
9127 break;
9128
9129 case DT_MIPS_RLD_MAP:
9130 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9131 break;
9132
9133 case DT_MIPS_OPTIONS:
9134 s = (bfd_get_section_by_name
9135 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9136 dyn.d_un.d_ptr = s->vma;
9137 break;
9138
0a44bf69
RS
9139 case DT_RELASZ:
9140 BFD_ASSERT (htab->is_vxworks);
9141 /* The count does not include the JUMP_SLOT relocations. */
9142 if (htab->srelplt)
9143 dyn.d_un.d_val -= htab->srelplt->size;
9144 break;
9145
9146 case DT_PLTREL:
9147 BFD_ASSERT (htab->is_vxworks);
9148 dyn.d_un.d_val = DT_RELA;
9149 break;
9150
9151 case DT_PLTRELSZ:
9152 BFD_ASSERT (htab->is_vxworks);
9153 dyn.d_un.d_val = htab->srelplt->size;
9154 break;
9155
9156 case DT_JMPREL:
9157 BFD_ASSERT (htab->is_vxworks);
9158 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9159 + htab->srelplt->output_offset);
9160 break;
9161
943284cc
DJ
9162 case DT_TEXTREL:
9163 /* If we didn't need any text relocations after all, delete
9164 the dynamic tag. */
9165 if (!(info->flags & DF_TEXTREL))
9166 {
9167 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9168 swap_out_p = FALSE;
9169 }
9170 break;
9171
9172 case DT_FLAGS:
9173 /* If we didn't need any text relocations after all, clear
9174 DF_TEXTREL from DT_FLAGS. */
9175 if (!(info->flags & DF_TEXTREL))
9176 dyn.d_un.d_val &= ~DF_TEXTREL;
9177 else
9178 swap_out_p = FALSE;
9179 break;
9180
b49e97c9 9181 default:
b34976b6 9182 swap_out_p = FALSE;
7a2b07ff
NS
9183 if (htab->is_vxworks
9184 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9185 swap_out_p = TRUE;
b49e97c9
TS
9186 break;
9187 }
9188
943284cc 9189 if (swap_out_p || dyn_skipped)
b49e97c9 9190 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
9191 (dynobj, &dyn, b - dyn_skipped);
9192
9193 if (dyn_to_skip)
9194 {
9195 dyn_skipped += dyn_to_skip;
9196 dyn_to_skip = 0;
9197 }
b49e97c9 9198 }
943284cc
DJ
9199
9200 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9201 if (dyn_skipped > 0)
9202 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
9203 }
9204
b55fd4d4
DJ
9205 if (sgot != NULL && sgot->size > 0
9206 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 9207 {
0a44bf69
RS
9208 if (htab->is_vxworks)
9209 {
9210 /* The first entry of the global offset table points to the
9211 ".dynamic" section. The second is initialized by the
9212 loader and contains the shared library identifier.
9213 The third is also initialized by the loader and points
9214 to the lazy resolution stub. */
9215 MIPS_ELF_PUT_WORD (output_bfd,
9216 sdyn->output_offset + sdyn->output_section->vma,
9217 sgot->contents);
9218 MIPS_ELF_PUT_WORD (output_bfd, 0,
9219 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9220 MIPS_ELF_PUT_WORD (output_bfd, 0,
9221 sgot->contents
9222 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9223 }
9224 else
9225 {
9226 /* The first entry of the global offset table will be filled at
9227 runtime. The second entry will be used by some runtime loaders.
9228 This isn't the case of IRIX rld. */
9229 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9230 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9231 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9232 }
b49e97c9 9233
54938e2a
TS
9234 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9235 = MIPS_ELF_GOT_SIZE (output_bfd);
9236 }
b49e97c9 9237
f4416af6
AO
9238 /* Generate dynamic relocations for the non-primary gots. */
9239 if (gg != NULL && gg->next)
9240 {
9241 Elf_Internal_Rela rel[3];
9242 bfd_vma addend = 0;
9243
9244 memset (rel, 0, sizeof (rel));
9245 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9246
9247 for (g = gg->next; g->next != gg; g = g->next)
9248 {
0f20cc35
DJ
9249 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9250 + g->next->tls_gotno;
f4416af6 9251
9719ad41 9252 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 9253 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 9254 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
9255 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9256
9257 if (! info->shared)
9258 continue;
9259
9260 while (index < g->assigned_gotno)
9261 {
9262 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9263 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9264 if (!(mips_elf_create_dynamic_relocation
9265 (output_bfd, info, rel, NULL,
9266 bfd_abs_section_ptr,
9267 0, &addend, sgot)))
9268 return FALSE;
9269 BFD_ASSERT (addend == 0);
9270 }
9271 }
9272 }
9273
3133ddbf
DJ
9274 /* The generation of dynamic relocations for the non-primary gots
9275 adds more dynamic relocations. We cannot count them until
9276 here. */
9277
9278 if (elf_hash_table (info)->dynamic_sections_created)
9279 {
9280 bfd_byte *b;
9281 bfd_boolean swap_out_p;
9282
9283 BFD_ASSERT (sdyn != NULL);
9284
9285 for (b = sdyn->contents;
9286 b < sdyn->contents + sdyn->size;
9287 b += MIPS_ELF_DYN_SIZE (dynobj))
9288 {
9289 Elf_Internal_Dyn dyn;
9290 asection *s;
9291
9292 /* Read in the current dynamic entry. */
9293 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9294
9295 /* Assume that we're going to modify it and write it out. */
9296 swap_out_p = TRUE;
9297
9298 switch (dyn.d_tag)
9299 {
9300 case DT_RELSZ:
9301 /* Reduce DT_RELSZ to account for any relocations we
9302 decided not to make. This is for the n64 irix rld,
9303 which doesn't seem to apply any relocations if there
9304 are trailing null entries. */
0a44bf69 9305 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
9306 dyn.d_un.d_val = (s->reloc_count
9307 * (ABI_64_P (output_bfd)
9308 ? sizeof (Elf64_Mips_External_Rel)
9309 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
9310 /* Adjust the section size too. Tools like the prelinker
9311 can reasonably expect the values to the same. */
9312 elf_section_data (s->output_section)->this_hdr.sh_size
9313 = dyn.d_un.d_val;
3133ddbf
DJ
9314 break;
9315
9316 default:
9317 swap_out_p = FALSE;
9318 break;
9319 }
9320
9321 if (swap_out_p)
9322 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9323 (dynobj, &dyn, b);
9324 }
9325 }
9326
b49e97c9 9327 {
b49e97c9
TS
9328 asection *s;
9329 Elf32_compact_rel cpt;
9330
b49e97c9
TS
9331 if (SGI_COMPAT (output_bfd))
9332 {
9333 /* Write .compact_rel section out. */
9334 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9335 if (s != NULL)
9336 {
9337 cpt.id1 = 1;
9338 cpt.num = s->reloc_count;
9339 cpt.id2 = 2;
9340 cpt.offset = (s->output_section->filepos
9341 + sizeof (Elf32_External_compact_rel));
9342 cpt.reserved0 = 0;
9343 cpt.reserved1 = 0;
9344 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9345 ((Elf32_External_compact_rel *)
9346 s->contents));
9347
9348 /* Clean up a dummy stub function entry in .text. */
9349 s = bfd_get_section_by_name (dynobj,
9350 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9351 if (s != NULL)
9352 {
9353 file_ptr dummy_offset;
9354
5108fc1b
RS
9355 BFD_ASSERT (s->size >= htab->function_stub_size);
9356 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9357 memset (s->contents + dummy_offset, 0,
5108fc1b 9358 htab->function_stub_size);
b49e97c9
TS
9359 }
9360 }
9361 }
9362
0a44bf69
RS
9363 /* The psABI says that the dynamic relocations must be sorted in
9364 increasing order of r_symndx. The VxWorks EABI doesn't require
9365 this, and because the code below handles REL rather than RELA
9366 relocations, using it for VxWorks would be outright harmful. */
9367 if (!htab->is_vxworks)
b49e97c9 9368 {
0a44bf69
RS
9369 s = mips_elf_rel_dyn_section (info, FALSE);
9370 if (s != NULL
9371 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9372 {
9373 reldyn_sorting_bfd = output_bfd;
b49e97c9 9374
0a44bf69
RS
9375 if (ABI_64_P (output_bfd))
9376 qsort ((Elf64_External_Rel *) s->contents + 1,
9377 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9378 sort_dynamic_relocs_64);
9379 else
9380 qsort ((Elf32_External_Rel *) s->contents + 1,
9381 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9382 sort_dynamic_relocs);
9383 }
b49e97c9 9384 }
b49e97c9
TS
9385 }
9386
0a44bf69
RS
9387 if (htab->is_vxworks && htab->splt->size > 0)
9388 {
9389 if (info->shared)
9390 mips_vxworks_finish_shared_plt (output_bfd, info);
9391 else
9392 mips_vxworks_finish_exec_plt (output_bfd, info);
9393 }
b34976b6 9394 return TRUE;
b49e97c9
TS
9395}
9396
b49e97c9 9397
64543e1a
RS
9398/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9399
9400static void
9719ad41 9401mips_set_isa_flags (bfd *abfd)
b49e97c9 9402{
64543e1a 9403 flagword val;
b49e97c9
TS
9404
9405 switch (bfd_get_mach (abfd))
9406 {
9407 default:
9408 case bfd_mach_mips3000:
9409 val = E_MIPS_ARCH_1;
9410 break;
9411
9412 case bfd_mach_mips3900:
9413 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9414 break;
9415
9416 case bfd_mach_mips6000:
9417 val = E_MIPS_ARCH_2;
9418 break;
9419
9420 case bfd_mach_mips4000:
9421 case bfd_mach_mips4300:
9422 case bfd_mach_mips4400:
9423 case bfd_mach_mips4600:
9424 val = E_MIPS_ARCH_3;
9425 break;
9426
9427 case bfd_mach_mips4010:
9428 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9429 break;
9430
9431 case bfd_mach_mips4100:
9432 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9433 break;
9434
9435 case bfd_mach_mips4111:
9436 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9437 break;
9438
00707a0e
RS
9439 case bfd_mach_mips4120:
9440 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9441 break;
9442
b49e97c9
TS
9443 case bfd_mach_mips4650:
9444 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9445 break;
9446
00707a0e
RS
9447 case bfd_mach_mips5400:
9448 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9449 break;
9450
9451 case bfd_mach_mips5500:
9452 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9453 break;
9454
0d2e43ed
ILT
9455 case bfd_mach_mips9000:
9456 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9457 break;
9458
b49e97c9 9459 case bfd_mach_mips5000:
5a7ea749 9460 case bfd_mach_mips7000:
b49e97c9
TS
9461 case bfd_mach_mips8000:
9462 case bfd_mach_mips10000:
9463 case bfd_mach_mips12000:
9464 val = E_MIPS_ARCH_4;
9465 break;
9466
9467 case bfd_mach_mips5:
9468 val = E_MIPS_ARCH_5;
9469 break;
9470
350cc38d
MS
9471 case bfd_mach_mips_loongson_2e:
9472 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9473 break;
9474
9475 case bfd_mach_mips_loongson_2f:
9476 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9477 break;
9478
b49e97c9
TS
9479 case bfd_mach_mips_sb1:
9480 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9481 break;
9482
9483 case bfd_mach_mipsisa32:
9484 val = E_MIPS_ARCH_32;
9485 break;
9486
9487 case bfd_mach_mipsisa64:
9488 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9489 break;
9490
9491 case bfd_mach_mipsisa32r2:
9492 val = E_MIPS_ARCH_32R2;
9493 break;
5f74bc13
CD
9494
9495 case bfd_mach_mipsisa64r2:
9496 val = E_MIPS_ARCH_64R2;
9497 break;
b49e97c9 9498 }
b49e97c9
TS
9499 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9500 elf_elfheader (abfd)->e_flags |= val;
9501
64543e1a
RS
9502}
9503
9504
9505/* The final processing done just before writing out a MIPS ELF object
9506 file. This gets the MIPS architecture right based on the machine
9507 number. This is used by both the 32-bit and the 64-bit ABI. */
9508
9509void
9719ad41
RS
9510_bfd_mips_elf_final_write_processing (bfd *abfd,
9511 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9512{
9513 unsigned int i;
9514 Elf_Internal_Shdr **hdrpp;
9515 const char *name;
9516 asection *sec;
9517
9518 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9519 is nonzero. This is for compatibility with old objects, which used
9520 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9521 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9522 mips_set_isa_flags (abfd);
9523
b49e97c9
TS
9524 /* Set the sh_info field for .gptab sections and other appropriate
9525 info for each special section. */
9526 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9527 i < elf_numsections (abfd);
9528 i++, hdrpp++)
9529 {
9530 switch ((*hdrpp)->sh_type)
9531 {
9532 case SHT_MIPS_MSYM:
9533 case SHT_MIPS_LIBLIST:
9534 sec = bfd_get_section_by_name (abfd, ".dynstr");
9535 if (sec != NULL)
9536 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9537 break;
9538
9539 case SHT_MIPS_GPTAB:
9540 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9541 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9542 BFD_ASSERT (name != NULL
0112cd26 9543 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9544 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9545 BFD_ASSERT (sec != NULL);
9546 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9547 break;
9548
9549 case SHT_MIPS_CONTENT:
9550 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9551 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9552 BFD_ASSERT (name != NULL
0112cd26 9553 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9554 sec = bfd_get_section_by_name (abfd,
9555 name + sizeof ".MIPS.content" - 1);
9556 BFD_ASSERT (sec != NULL);
9557 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9558 break;
9559
9560 case SHT_MIPS_SYMBOL_LIB:
9561 sec = bfd_get_section_by_name (abfd, ".dynsym");
9562 if (sec != NULL)
9563 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9564 sec = bfd_get_section_by_name (abfd, ".liblist");
9565 if (sec != NULL)
9566 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9567 break;
9568
9569 case SHT_MIPS_EVENTS:
9570 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9571 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9572 BFD_ASSERT (name != NULL);
0112cd26 9573 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9574 sec = bfd_get_section_by_name (abfd,
9575 name + sizeof ".MIPS.events" - 1);
9576 else
9577 {
0112cd26 9578 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9579 sec = bfd_get_section_by_name (abfd,
9580 (name
9581 + sizeof ".MIPS.post_rel" - 1));
9582 }
9583 BFD_ASSERT (sec != NULL);
9584 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9585 break;
9586
9587 }
9588 }
9589}
9590\f
8dc1a139 9591/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9592 segments. */
9593
9594int
a6b96beb
AM
9595_bfd_mips_elf_additional_program_headers (bfd *abfd,
9596 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9597{
9598 asection *s;
9599 int ret = 0;
9600
9601 /* See if we need a PT_MIPS_REGINFO segment. */
9602 s = bfd_get_section_by_name (abfd, ".reginfo");
9603 if (s && (s->flags & SEC_LOAD))
9604 ++ret;
9605
9606 /* See if we need a PT_MIPS_OPTIONS segment. */
9607 if (IRIX_COMPAT (abfd) == ict_irix6
9608 && bfd_get_section_by_name (abfd,
9609 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9610 ++ret;
9611
9612 /* See if we need a PT_MIPS_RTPROC segment. */
9613 if (IRIX_COMPAT (abfd) == ict_irix5
9614 && bfd_get_section_by_name (abfd, ".dynamic")
9615 && bfd_get_section_by_name (abfd, ".mdebug"))
9616 ++ret;
9617
98c904a8
RS
9618 /* Allocate a PT_NULL header in dynamic objects. See
9619 _bfd_mips_elf_modify_segment_map for details. */
9620 if (!SGI_COMPAT (abfd)
9621 && bfd_get_section_by_name (abfd, ".dynamic"))
9622 ++ret;
9623
b49e97c9
TS
9624 return ret;
9625}
9626
8dc1a139 9627/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9628
b34976b6 9629bfd_boolean
9719ad41 9630_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 9631 struct bfd_link_info *info)
b49e97c9
TS
9632{
9633 asection *s;
9634 struct elf_segment_map *m, **pm;
9635 bfd_size_type amt;
9636
9637 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9638 segment. */
9639 s = bfd_get_section_by_name (abfd, ".reginfo");
9640 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9641 {
9642 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9643 if (m->p_type == PT_MIPS_REGINFO)
9644 break;
9645 if (m == NULL)
9646 {
9647 amt = sizeof *m;
9719ad41 9648 m = bfd_zalloc (abfd, amt);
b49e97c9 9649 if (m == NULL)
b34976b6 9650 return FALSE;
b49e97c9
TS
9651
9652 m->p_type = PT_MIPS_REGINFO;
9653 m->count = 1;
9654 m->sections[0] = s;
9655
9656 /* We want to put it after the PHDR and INTERP segments. */
9657 pm = &elf_tdata (abfd)->segment_map;
9658 while (*pm != NULL
9659 && ((*pm)->p_type == PT_PHDR
9660 || (*pm)->p_type == PT_INTERP))
9661 pm = &(*pm)->next;
9662
9663 m->next = *pm;
9664 *pm = m;
9665 }
9666 }
9667
9668 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9669 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9670 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9671 table. */
c1fd6598
AO
9672 if (NEWABI_P (abfd)
9673 /* On non-IRIX6 new abi, we'll have already created a segment
9674 for this section, so don't create another. I'm not sure this
9675 is not also the case for IRIX 6, but I can't test it right
9676 now. */
9677 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9678 {
9679 for (s = abfd->sections; s; s = s->next)
9680 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9681 break;
9682
9683 if (s)
9684 {
9685 struct elf_segment_map *options_segment;
9686
98a8deaf
RS
9687 pm = &elf_tdata (abfd)->segment_map;
9688 while (*pm != NULL
9689 && ((*pm)->p_type == PT_PHDR
9690 || (*pm)->p_type == PT_INTERP))
9691 pm = &(*pm)->next;
b49e97c9 9692
8ded5a0f
AM
9693 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9694 {
9695 amt = sizeof (struct elf_segment_map);
9696 options_segment = bfd_zalloc (abfd, amt);
9697 options_segment->next = *pm;
9698 options_segment->p_type = PT_MIPS_OPTIONS;
9699 options_segment->p_flags = PF_R;
9700 options_segment->p_flags_valid = TRUE;
9701 options_segment->count = 1;
9702 options_segment->sections[0] = s;
9703 *pm = options_segment;
9704 }
b49e97c9
TS
9705 }
9706 }
9707 else
9708 {
9709 if (IRIX_COMPAT (abfd) == ict_irix5)
9710 {
9711 /* If there are .dynamic and .mdebug sections, we make a room
9712 for the RTPROC header. FIXME: Rewrite without section names. */
9713 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9714 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9715 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9716 {
9717 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9718 if (m->p_type == PT_MIPS_RTPROC)
9719 break;
9720 if (m == NULL)
9721 {
9722 amt = sizeof *m;
9719ad41 9723 m = bfd_zalloc (abfd, amt);
b49e97c9 9724 if (m == NULL)
b34976b6 9725 return FALSE;
b49e97c9
TS
9726
9727 m->p_type = PT_MIPS_RTPROC;
9728
9729 s = bfd_get_section_by_name (abfd, ".rtproc");
9730 if (s == NULL)
9731 {
9732 m->count = 0;
9733 m->p_flags = 0;
9734 m->p_flags_valid = 1;
9735 }
9736 else
9737 {
9738 m->count = 1;
9739 m->sections[0] = s;
9740 }
9741
9742 /* We want to put it after the DYNAMIC segment. */
9743 pm = &elf_tdata (abfd)->segment_map;
9744 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9745 pm = &(*pm)->next;
9746 if (*pm != NULL)
9747 pm = &(*pm)->next;
9748
9749 m->next = *pm;
9750 *pm = m;
9751 }
9752 }
9753 }
8dc1a139 9754 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9755 .dynstr, .dynsym, and .hash sections, and everything in
9756 between. */
9757 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9758 pm = &(*pm)->next)
9759 if ((*pm)->p_type == PT_DYNAMIC)
9760 break;
9761 m = *pm;
9762 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9763 {
9764 /* For a normal mips executable the permissions for the PT_DYNAMIC
9765 segment are read, write and execute. We do that here since
9766 the code in elf.c sets only the read permission. This matters
9767 sometimes for the dynamic linker. */
9768 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9769 {
9770 m->p_flags = PF_R | PF_W | PF_X;
9771 m->p_flags_valid = 1;
9772 }
9773 }
f6f62d6f
RS
9774 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9775 glibc's dynamic linker has traditionally derived the number of
9776 tags from the p_filesz field, and sometimes allocates stack
9777 arrays of that size. An overly-big PT_DYNAMIC segment can
9778 be actively harmful in such cases. Making PT_DYNAMIC contain
9779 other sections can also make life hard for the prelinker,
9780 which might move one of the other sections to a different
9781 PT_LOAD segment. */
9782 if (SGI_COMPAT (abfd)
9783 && m != NULL
9784 && m->count == 1
9785 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9786 {
9787 static const char *sec_names[] =
9788 {
9789 ".dynamic", ".dynstr", ".dynsym", ".hash"
9790 };
9791 bfd_vma low, high;
9792 unsigned int i, c;
9793 struct elf_segment_map *n;
9794
792b4a53 9795 low = ~(bfd_vma) 0;
b49e97c9
TS
9796 high = 0;
9797 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9798 {
9799 s = bfd_get_section_by_name (abfd, sec_names[i]);
9800 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9801 {
9802 bfd_size_type sz;
9803
9804 if (low > s->vma)
9805 low = s->vma;
eea6121a 9806 sz = s->size;
b49e97c9
TS
9807 if (high < s->vma + sz)
9808 high = s->vma + sz;
9809 }
9810 }
9811
9812 c = 0;
9813 for (s = abfd->sections; s != NULL; s = s->next)
9814 if ((s->flags & SEC_LOAD) != 0
9815 && s->vma >= low
eea6121a 9816 && s->vma + s->size <= high)
b49e97c9
TS
9817 ++c;
9818
9819 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9820 n = bfd_zalloc (abfd, amt);
b49e97c9 9821 if (n == NULL)
b34976b6 9822 return FALSE;
b49e97c9
TS
9823 *n = *m;
9824 n->count = c;
9825
9826 i = 0;
9827 for (s = abfd->sections; s != NULL; s = s->next)
9828 {
9829 if ((s->flags & SEC_LOAD) != 0
9830 && s->vma >= low
eea6121a 9831 && s->vma + s->size <= high)
b49e97c9
TS
9832 {
9833 n->sections[i] = s;
9834 ++i;
9835 }
9836 }
9837
9838 *pm = n;
9839 }
9840 }
9841
98c904a8
RS
9842 /* Allocate a spare program header in dynamic objects so that tools
9843 like the prelinker can add an extra PT_LOAD entry.
9844
9845 If the prelinker needs to make room for a new PT_LOAD entry, its
9846 standard procedure is to move the first (read-only) sections into
9847 the new (writable) segment. However, the MIPS ABI requires
9848 .dynamic to be in a read-only segment, and the section will often
9849 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9850
9851 Although the prelinker could in principle move .dynamic to a
9852 writable segment, it seems better to allocate a spare program
9853 header instead, and avoid the need to move any sections.
9854 There is a long tradition of allocating spare dynamic tags,
9855 so allocating a spare program header seems like a natural
7c8b76cc
JM
9856 extension.
9857
9858 If INFO is NULL, we may be copying an already prelinked binary
9859 with objcopy or strip, so do not add this header. */
9860 if (info != NULL
9861 && !SGI_COMPAT (abfd)
98c904a8
RS
9862 && bfd_get_section_by_name (abfd, ".dynamic"))
9863 {
9864 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9865 if ((*pm)->p_type == PT_NULL)
9866 break;
9867 if (*pm == NULL)
9868 {
9869 m = bfd_zalloc (abfd, sizeof (*m));
9870 if (m == NULL)
9871 return FALSE;
9872
9873 m->p_type = PT_NULL;
9874 *pm = m;
9875 }
9876 }
9877
b34976b6 9878 return TRUE;
b49e97c9
TS
9879}
9880\f
9881/* Return the section that should be marked against GC for a given
9882 relocation. */
9883
9884asection *
9719ad41 9885_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9886 struct bfd_link_info *info,
9719ad41
RS
9887 Elf_Internal_Rela *rel,
9888 struct elf_link_hash_entry *h,
9889 Elf_Internal_Sym *sym)
b49e97c9
TS
9890{
9891 /* ??? Do mips16 stub sections need to be handled special? */
9892
9893 if (h != NULL)
07adf181
AM
9894 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9895 {
9896 case R_MIPS_GNU_VTINHERIT:
9897 case R_MIPS_GNU_VTENTRY:
9898 return NULL;
9899 }
b49e97c9 9900
07adf181 9901 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9902}
9903
9904/* Update the got entry reference counts for the section being removed. */
9905
b34976b6 9906bfd_boolean
9719ad41
RS
9907_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9908 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9909 asection *sec ATTRIBUTE_UNUSED,
9910 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9911{
9912#if 0
9913 Elf_Internal_Shdr *symtab_hdr;
9914 struct elf_link_hash_entry **sym_hashes;
9915 bfd_signed_vma *local_got_refcounts;
9916 const Elf_Internal_Rela *rel, *relend;
9917 unsigned long r_symndx;
9918 struct elf_link_hash_entry *h;
9919
7dda2462
TG
9920 if (info->relocatable)
9921 return TRUE;
9922
b49e97c9
TS
9923 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9924 sym_hashes = elf_sym_hashes (abfd);
9925 local_got_refcounts = elf_local_got_refcounts (abfd);
9926
9927 relend = relocs + sec->reloc_count;
9928 for (rel = relocs; rel < relend; rel++)
9929 switch (ELF_R_TYPE (abfd, rel->r_info))
9930 {
9931 case R_MIPS_GOT16:
9932 case R_MIPS_CALL16:
9933 case R_MIPS_CALL_HI16:
9934 case R_MIPS_CALL_LO16:
9935 case R_MIPS_GOT_HI16:
9936 case R_MIPS_GOT_LO16:
4a14403c
TS
9937 case R_MIPS_GOT_DISP:
9938 case R_MIPS_GOT_PAGE:
9939 case R_MIPS_GOT_OFST:
b49e97c9
TS
9940 /* ??? It would seem that the existing MIPS code does no sort
9941 of reference counting or whatnot on its GOT and PLT entries,
9942 so it is not possible to garbage collect them at this time. */
9943 break;
9944
9945 default:
9946 break;
9947 }
9948#endif
9949
b34976b6 9950 return TRUE;
b49e97c9
TS
9951}
9952\f
9953/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9954 hiding the old indirect symbol. Process additional relocation
9955 information. Also called for weakdefs, in which case we just let
9956 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9957
9958void
fcfa13d2 9959_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9960 struct elf_link_hash_entry *dir,
9961 struct elf_link_hash_entry *ind)
b49e97c9
TS
9962{
9963 struct mips_elf_link_hash_entry *dirmips, *indmips;
9964
fcfa13d2 9965 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9966
9967 if (ind->root.type != bfd_link_hash_indirect)
9968 return;
9969
9970 dirmips = (struct mips_elf_link_hash_entry *) dir;
9971 indmips = (struct mips_elf_link_hash_entry *) ind;
9972 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9973 if (indmips->readonly_reloc)
b34976b6 9974 dirmips->readonly_reloc = TRUE;
b49e97c9 9975 if (indmips->no_fn_stub)
b34976b6 9976 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9977
9978 if (dirmips->tls_type == 0)
9979 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9980}
9981
9982void
9719ad41
RS
9983_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9984 struct elf_link_hash_entry *entry,
9985 bfd_boolean force_local)
b49e97c9
TS
9986{
9987 bfd *dynobj;
9988 asection *got;
9989 struct mips_got_info *g;
9990 struct mips_elf_link_hash_entry *h;
8275b357 9991 struct mips_elf_link_hash_table *htab;
7c5fcef7 9992
b49e97c9 9993 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9994 if (h->forced_local)
9995 return;
4b555070 9996 h->forced_local = force_local;
7c5fcef7 9997
b49e97c9 9998 dynobj = elf_hash_table (info)->dynobj;
8275b357 9999 htab = mips_elf_hash_table (info);
8d1d654f 10000 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 10001 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 10002 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 10003 {
c45a316a
AM
10004 if (g->next)
10005 {
10006 struct mips_got_entry e;
10007 struct mips_got_info *gg = g;
10008
10009 /* Since we're turning what used to be a global symbol into a
10010 local one, bump up the number of local entries of each GOT
10011 that had an entry for it. This will automatically decrease
10012 the number of global entries, since global_gotno is actually
10013 the upper limit of global entries. */
10014 e.abfd = dynobj;
10015 e.symndx = -1;
10016 e.d.h = h;
0f20cc35 10017 e.tls_type = 0;
c45a316a
AM
10018
10019 for (g = g->next; g != gg; g = g->next)
10020 if (htab_find (g->got_entries, &e))
10021 {
10022 BFD_ASSERT (g->global_gotno > 0);
10023 g->local_gotno++;
10024 g->global_gotno--;
10025 }
b49e97c9 10026
c45a316a
AM
10027 /* If this was a global symbol forced into the primary GOT, we
10028 no longer need an entry for it. We can't release the entry
10029 at this point, but we must at least stop counting it as one
10030 of the symbols that required a forced got entry. */
10031 if (h->root.got.offset == 2)
10032 {
10033 BFD_ASSERT (gg->assigned_gotno > 0);
10034 gg->assigned_gotno--;
10035 }
10036 }
c45a316a 10037 else if (h->root.got.offset == 1)
f4416af6 10038 {
8275b357
RS
10039 /* check_relocs didn't know that this symbol would be
10040 forced-local, so add an extra local got entry. */
c45a316a 10041 g->local_gotno++;
8275b357
RS
10042 if (htab->computed_got_sizes)
10043 {
10044 /* We'll have treated this symbol as global rather
10045 than local. */
10046 BFD_ASSERT (g->global_gotno > 0);
10047 g->global_gotno--;
10048 }
f4416af6 10049 }
8275b357
RS
10050 else if (htab->is_vxworks && h->root.needs_plt)
10051 {
10052 /* check_relocs didn't know that this symbol would be
10053 forced-local, so add an extra local got entry. */
10054 g->local_gotno++;
10055 if (htab->computed_got_sizes)
10056 /* The symbol is only used in call relocations, so we'll
10057 have assumed it only needs a .got.plt entry. Increase
10058 the size of .got accordingly. */
10059 got->size += MIPS_ELF_GOT_SIZE (dynobj);
10060 }
f4416af6 10061 }
f4416af6
AO
10062
10063 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
10064}
10065\f
d01414a5
TS
10066#define PDR_SIZE 32
10067
b34976b6 10068bfd_boolean
9719ad41
RS
10069_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10070 struct bfd_link_info *info)
d01414a5
TS
10071{
10072 asection *o;
b34976b6 10073 bfd_boolean ret = FALSE;
d01414a5
TS
10074 unsigned char *tdata;
10075 size_t i, skip;
10076
10077 o = bfd_get_section_by_name (abfd, ".pdr");
10078 if (! o)
b34976b6 10079 return FALSE;
eea6121a 10080 if (o->size == 0)
b34976b6 10081 return FALSE;
eea6121a 10082 if (o->size % PDR_SIZE != 0)
b34976b6 10083 return FALSE;
d01414a5
TS
10084 if (o->output_section != NULL
10085 && bfd_is_abs_section (o->output_section))
b34976b6 10086 return FALSE;
d01414a5 10087
eea6121a 10088 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 10089 if (! tdata)
b34976b6 10090 return FALSE;
d01414a5 10091
9719ad41 10092 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 10093 info->keep_memory);
d01414a5
TS
10094 if (!cookie->rels)
10095 {
10096 free (tdata);
b34976b6 10097 return FALSE;
d01414a5
TS
10098 }
10099
10100 cookie->rel = cookie->rels;
10101 cookie->relend = cookie->rels + o->reloc_count;
10102
eea6121a 10103 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 10104 {
c152c796 10105 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
10106 {
10107 tdata[i] = 1;
10108 skip ++;
10109 }
10110 }
10111
10112 if (skip != 0)
10113 {
f0abc2a1 10114 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 10115 o->size -= skip * PDR_SIZE;
b34976b6 10116 ret = TRUE;
d01414a5
TS
10117 }
10118 else
10119 free (tdata);
10120
10121 if (! info->keep_memory)
10122 free (cookie->rels);
10123
10124 return ret;
10125}
10126
b34976b6 10127bfd_boolean
9719ad41 10128_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
10129{
10130 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
10131 return TRUE;
10132 return FALSE;
53bfd6b4 10133}
d01414a5 10134
b34976b6 10135bfd_boolean
c7b8f16e
JB
10136_bfd_mips_elf_write_section (bfd *output_bfd,
10137 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10138 asection *sec, bfd_byte *contents)
d01414a5
TS
10139{
10140 bfd_byte *to, *from, *end;
10141 int i;
10142
10143 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 10144 return FALSE;
d01414a5 10145
f0abc2a1 10146 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 10147 return FALSE;
d01414a5
TS
10148
10149 to = contents;
eea6121a 10150 end = contents + sec->size;
d01414a5
TS
10151 for (from = contents, i = 0;
10152 from < end;
10153 from += PDR_SIZE, i++)
10154 {
f0abc2a1 10155 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
10156 continue;
10157 if (to != from)
10158 memcpy (to, from, PDR_SIZE);
10159 to += PDR_SIZE;
10160 }
10161 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 10162 sec->output_offset, sec->size);
b34976b6 10163 return TRUE;
d01414a5 10164}
53bfd6b4 10165\f
b49e97c9
TS
10166/* MIPS ELF uses a special find_nearest_line routine in order the
10167 handle the ECOFF debugging information. */
10168
10169struct mips_elf_find_line
10170{
10171 struct ecoff_debug_info d;
10172 struct ecoff_find_line i;
10173};
10174
b34976b6 10175bfd_boolean
9719ad41
RS
10176_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10177 asymbol **symbols, bfd_vma offset,
10178 const char **filename_ptr,
10179 const char **functionname_ptr,
10180 unsigned int *line_ptr)
b49e97c9
TS
10181{
10182 asection *msec;
10183
10184 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10185 filename_ptr, functionname_ptr,
10186 line_ptr))
b34976b6 10187 return TRUE;
b49e97c9
TS
10188
10189 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10190 filename_ptr, functionname_ptr,
9719ad41 10191 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 10192 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 10193 return TRUE;
b49e97c9
TS
10194
10195 msec = bfd_get_section_by_name (abfd, ".mdebug");
10196 if (msec != NULL)
10197 {
10198 flagword origflags;
10199 struct mips_elf_find_line *fi;
10200 const struct ecoff_debug_swap * const swap =
10201 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10202
10203 /* If we are called during a link, mips_elf_final_link may have
10204 cleared the SEC_HAS_CONTENTS field. We force it back on here
10205 if appropriate (which it normally will be). */
10206 origflags = msec->flags;
10207 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10208 msec->flags |= SEC_HAS_CONTENTS;
10209
10210 fi = elf_tdata (abfd)->find_line_info;
10211 if (fi == NULL)
10212 {
10213 bfd_size_type external_fdr_size;
10214 char *fraw_src;
10215 char *fraw_end;
10216 struct fdr *fdr_ptr;
10217 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10218
9719ad41 10219 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
10220 if (fi == NULL)
10221 {
10222 msec->flags = origflags;
b34976b6 10223 return FALSE;
b49e97c9
TS
10224 }
10225
10226 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10227 {
10228 msec->flags = origflags;
b34976b6 10229 return FALSE;
b49e97c9
TS
10230 }
10231
10232 /* Swap in the FDR information. */
10233 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 10234 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
10235 if (fi->d.fdr == NULL)
10236 {
10237 msec->flags = origflags;
b34976b6 10238 return FALSE;
b49e97c9
TS
10239 }
10240 external_fdr_size = swap->external_fdr_size;
10241 fdr_ptr = fi->d.fdr;
10242 fraw_src = (char *) fi->d.external_fdr;
10243 fraw_end = (fraw_src
10244 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10245 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 10246 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
10247
10248 elf_tdata (abfd)->find_line_info = fi;
10249
10250 /* Note that we don't bother to ever free this information.
10251 find_nearest_line is either called all the time, as in
10252 objdump -l, so the information should be saved, or it is
10253 rarely called, as in ld error messages, so the memory
10254 wasted is unimportant. Still, it would probably be a
10255 good idea for free_cached_info to throw it away. */
10256 }
10257
10258 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10259 &fi->i, filename_ptr, functionname_ptr,
10260 line_ptr))
10261 {
10262 msec->flags = origflags;
b34976b6 10263 return TRUE;
b49e97c9
TS
10264 }
10265
10266 msec->flags = origflags;
10267 }
10268
10269 /* Fall back on the generic ELF find_nearest_line routine. */
10270
10271 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10272 filename_ptr, functionname_ptr,
10273 line_ptr);
10274}
4ab527b0
FF
10275
10276bfd_boolean
10277_bfd_mips_elf_find_inliner_info (bfd *abfd,
10278 const char **filename_ptr,
10279 const char **functionname_ptr,
10280 unsigned int *line_ptr)
10281{
10282 bfd_boolean found;
10283 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10284 functionname_ptr, line_ptr,
10285 & elf_tdata (abfd)->dwarf2_find_line_info);
10286 return found;
10287}
10288
b49e97c9
TS
10289\f
10290/* When are writing out the .options or .MIPS.options section,
10291 remember the bytes we are writing out, so that we can install the
10292 GP value in the section_processing routine. */
10293
b34976b6 10294bfd_boolean
9719ad41
RS
10295_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10296 const void *location,
10297 file_ptr offset, bfd_size_type count)
b49e97c9 10298{
cc2e31b9 10299 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
10300 {
10301 bfd_byte *c;
10302
10303 if (elf_section_data (section) == NULL)
10304 {
10305 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 10306 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 10307 if (elf_section_data (section) == NULL)
b34976b6 10308 return FALSE;
b49e97c9 10309 }
f0abc2a1 10310 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
10311 if (c == NULL)
10312 {
eea6121a 10313 c = bfd_zalloc (abfd, section->size);
b49e97c9 10314 if (c == NULL)
b34976b6 10315 return FALSE;
f0abc2a1 10316 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
10317 }
10318
9719ad41 10319 memcpy (c + offset, location, count);
b49e97c9
TS
10320 }
10321
10322 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10323 count);
10324}
10325
10326/* This is almost identical to bfd_generic_get_... except that some
10327 MIPS relocations need to be handled specially. Sigh. */
10328
10329bfd_byte *
9719ad41
RS
10330_bfd_elf_mips_get_relocated_section_contents
10331 (bfd *abfd,
10332 struct bfd_link_info *link_info,
10333 struct bfd_link_order *link_order,
10334 bfd_byte *data,
10335 bfd_boolean relocatable,
10336 asymbol **symbols)
b49e97c9
TS
10337{
10338 /* Get enough memory to hold the stuff */
10339 bfd *input_bfd = link_order->u.indirect.section->owner;
10340 asection *input_section = link_order->u.indirect.section;
eea6121a 10341 bfd_size_type sz;
b49e97c9
TS
10342
10343 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10344 arelent **reloc_vector = NULL;
10345 long reloc_count;
10346
10347 if (reloc_size < 0)
10348 goto error_return;
10349
9719ad41 10350 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10351 if (reloc_vector == NULL && reloc_size != 0)
10352 goto error_return;
10353
10354 /* read in the section */
eea6121a
AM
10355 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10356 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10357 goto error_return;
10358
b49e97c9
TS
10359 reloc_count = bfd_canonicalize_reloc (input_bfd,
10360 input_section,
10361 reloc_vector,
10362 symbols);
10363 if (reloc_count < 0)
10364 goto error_return;
10365
10366 if (reloc_count > 0)
10367 {
10368 arelent **parent;
10369 /* for mips */
10370 int gp_found;
10371 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10372
10373 {
10374 struct bfd_hash_entry *h;
10375 struct bfd_link_hash_entry *lh;
10376 /* Skip all this stuff if we aren't mixing formats. */
10377 if (abfd && input_bfd
10378 && abfd->xvec == input_bfd->xvec)
10379 lh = 0;
10380 else
10381 {
b34976b6 10382 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10383 lh = (struct bfd_link_hash_entry *) h;
10384 }
10385 lookup:
10386 if (lh)
10387 {
10388 switch (lh->type)
10389 {
10390 case bfd_link_hash_undefined:
10391 case bfd_link_hash_undefweak:
10392 case bfd_link_hash_common:
10393 gp_found = 0;
10394 break;
10395 case bfd_link_hash_defined:
10396 case bfd_link_hash_defweak:
10397 gp_found = 1;
10398 gp = lh->u.def.value;
10399 break;
10400 case bfd_link_hash_indirect:
10401 case bfd_link_hash_warning:
10402 lh = lh->u.i.link;
10403 /* @@FIXME ignoring warning for now */
10404 goto lookup;
10405 case bfd_link_hash_new:
10406 default:
10407 abort ();
10408 }
10409 }
10410 else
10411 gp_found = 0;
10412 }
10413 /* end mips */
9719ad41 10414 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10415 {
9719ad41 10416 char *error_message = NULL;
b49e97c9
TS
10417 bfd_reloc_status_type r;
10418
10419 /* Specific to MIPS: Deal with relocation types that require
10420 knowing the gp of the output bfd. */
10421 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10422
8236346f
EC
10423 /* If we've managed to find the gp and have a special
10424 function for the relocation then go ahead, else default
10425 to the generic handling. */
10426 if (gp_found
10427 && (*parent)->howto->special_function
10428 == _bfd_mips_elf32_gprel16_reloc)
10429 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10430 input_section, relocatable,
10431 data, gp);
10432 else
86324f90 10433 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10434 input_section,
10435 relocatable ? abfd : NULL,
10436 &error_message);
b49e97c9 10437
1049f94e 10438 if (relocatable)
b49e97c9
TS
10439 {
10440 asection *os = input_section->output_section;
10441
10442 /* A partial link, so keep the relocs */
10443 os->orelocation[os->reloc_count] = *parent;
10444 os->reloc_count++;
10445 }
10446
10447 if (r != bfd_reloc_ok)
10448 {
10449 switch (r)
10450 {
10451 case bfd_reloc_undefined:
10452 if (!((*link_info->callbacks->undefined_symbol)
10453 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10454 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10455 goto error_return;
10456 break;
10457 case bfd_reloc_dangerous:
9719ad41 10458 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10459 if (!((*link_info->callbacks->reloc_dangerous)
10460 (link_info, error_message, input_bfd, input_section,
10461 (*parent)->address)))
10462 goto error_return;
10463 break;
10464 case bfd_reloc_overflow:
10465 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10466 (link_info, NULL,
10467 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10468 (*parent)->howto->name, (*parent)->addend,
10469 input_bfd, input_section, (*parent)->address)))
10470 goto error_return;
10471 break;
10472 case bfd_reloc_outofrange:
10473 default:
10474 abort ();
10475 break;
10476 }
10477
10478 }
10479 }
10480 }
10481 if (reloc_vector != NULL)
10482 free (reloc_vector);
10483 return data;
10484
10485error_return:
10486 if (reloc_vector != NULL)
10487 free (reloc_vector);
10488 return NULL;
10489}
10490\f
10491/* Create a MIPS ELF linker hash table. */
10492
10493struct bfd_link_hash_table *
9719ad41 10494_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10495{
10496 struct mips_elf_link_hash_table *ret;
10497 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10498
9719ad41
RS
10499 ret = bfd_malloc (amt);
10500 if (ret == NULL)
b49e97c9
TS
10501 return NULL;
10502
66eb6687
AM
10503 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10504 mips_elf_link_hash_newfunc,
10505 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10506 {
e2d34d7d 10507 free (ret);
b49e97c9
TS
10508 return NULL;
10509 }
10510
10511#if 0
10512 /* We no longer use this. */
10513 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10514 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10515#endif
10516 ret->procedure_count = 0;
10517 ret->compact_rel_size = 0;
b34976b6 10518 ret->use_rld_obj_head = FALSE;
b49e97c9 10519 ret->rld_value = 0;
b34976b6 10520 ret->mips16_stubs_seen = FALSE;
8275b357 10521 ret->computed_got_sizes = FALSE;
0a44bf69 10522 ret->is_vxworks = FALSE;
0e53d9da 10523 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
10524 ret->srelbss = NULL;
10525 ret->sdynbss = NULL;
10526 ret->srelplt = NULL;
10527 ret->srelplt2 = NULL;
10528 ret->sgotplt = NULL;
10529 ret->splt = NULL;
10530 ret->plt_header_size = 0;
10531 ret->plt_entry_size = 0;
5108fc1b 10532 ret->function_stub_size = 0;
b49e97c9
TS
10533
10534 return &ret->root.root;
10535}
0a44bf69
RS
10536
10537/* Likewise, but indicate that the target is VxWorks. */
10538
10539struct bfd_link_hash_table *
10540_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10541{
10542 struct bfd_link_hash_table *ret;
10543
10544 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10545 if (ret)
10546 {
10547 struct mips_elf_link_hash_table *htab;
10548
10549 htab = (struct mips_elf_link_hash_table *) ret;
10550 htab->is_vxworks = 1;
10551 }
10552 return ret;
10553}
b49e97c9
TS
10554\f
10555/* We need to use a special link routine to handle the .reginfo and
10556 the .mdebug sections. We need to merge all instances of these
10557 sections together, not write them all out sequentially. */
10558
b34976b6 10559bfd_boolean
9719ad41 10560_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10561{
b49e97c9
TS
10562 asection *o;
10563 struct bfd_link_order *p;
10564 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10565 asection *rtproc_sec;
10566 Elf32_RegInfo reginfo;
10567 struct ecoff_debug_info debug;
7a2a6943
NC
10568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10569 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10570 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10571 void *mdebug_handle = NULL;
b49e97c9
TS
10572 asection *s;
10573 EXTR esym;
10574 unsigned int i;
10575 bfd_size_type amt;
0a44bf69 10576 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10577
10578 static const char * const secname[] =
10579 {
10580 ".text", ".init", ".fini", ".data",
10581 ".rodata", ".sdata", ".sbss", ".bss"
10582 };
10583 static const int sc[] =
10584 {
10585 scText, scInit, scFini, scData,
10586 scRData, scSData, scSBss, scBss
10587 };
10588
b49e97c9
TS
10589 /* We'd carefully arranged the dynamic symbol indices, and then the
10590 generic size_dynamic_sections renumbered them out from under us.
10591 Rather than trying somehow to prevent the renumbering, just do
10592 the sort again. */
0a44bf69 10593 htab = mips_elf_hash_table (info);
b49e97c9
TS
10594 if (elf_hash_table (info)->dynamic_sections_created)
10595 {
10596 bfd *dynobj;
10597 asection *got;
10598 struct mips_got_info *g;
7a2a6943 10599 bfd_size_type dynsecsymcount;
b49e97c9
TS
10600
10601 /* When we resort, we must tell mips_elf_sort_hash_table what
10602 the lowest index it may use is. That's the number of section
10603 symbols we're going to add. The generic ELF linker only
10604 adds these symbols when building a shared object. Note that
10605 we count the sections after (possibly) removing the .options
10606 section above. */
7a2a6943 10607
5108fc1b 10608 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10609 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10610 return FALSE;
b49e97c9
TS
10611
10612 /* Make sure we didn't grow the global .got region. */
10613 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10614 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10615 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10616
10617 if (g->global_gotsym != NULL)
10618 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10619 - g->global_gotsym->dynindx)
10620 <= g->global_gotno);
10621 }
10622
b49e97c9
TS
10623 /* Get a value for the GP register. */
10624 if (elf_gp (abfd) == 0)
10625 {
10626 struct bfd_link_hash_entry *h;
10627
b34976b6 10628 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10629 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10630 elf_gp (abfd) = (h->u.def.value
10631 + h->u.def.section->output_section->vma
10632 + h->u.def.section->output_offset);
0a44bf69
RS
10633 else if (htab->is_vxworks
10634 && (h = bfd_link_hash_lookup (info->hash,
10635 "_GLOBAL_OFFSET_TABLE_",
10636 FALSE, FALSE, TRUE))
10637 && h->type == bfd_link_hash_defined)
10638 elf_gp (abfd) = (h->u.def.section->output_section->vma
10639 + h->u.def.section->output_offset
10640 + h->u.def.value);
1049f94e 10641 else if (info->relocatable)
b49e97c9
TS
10642 {
10643 bfd_vma lo = MINUS_ONE;
10644
10645 /* Find the GP-relative section with the lowest offset. */
9719ad41 10646 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10647 if (o->vma < lo
10648 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10649 lo = o->vma;
10650
10651 /* And calculate GP relative to that. */
0a44bf69 10652 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10653 }
10654 else
10655 {
10656 /* If the relocate_section function needs to do a reloc
10657 involving the GP value, it should make a reloc_dangerous
10658 callback to warn that GP is not defined. */
10659 }
10660 }
10661
10662 /* Go through the sections and collect the .reginfo and .mdebug
10663 information. */
10664 reginfo_sec = NULL;
10665 mdebug_sec = NULL;
10666 gptab_data_sec = NULL;
10667 gptab_bss_sec = NULL;
9719ad41 10668 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10669 {
10670 if (strcmp (o->name, ".reginfo") == 0)
10671 {
10672 memset (&reginfo, 0, sizeof reginfo);
10673
10674 /* We have found the .reginfo section in the output file.
10675 Look through all the link_orders comprising it and merge
10676 the information together. */
8423293d 10677 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10678 {
10679 asection *input_section;
10680 bfd *input_bfd;
10681 Elf32_External_RegInfo ext;
10682 Elf32_RegInfo sub;
10683
10684 if (p->type != bfd_indirect_link_order)
10685 {
10686 if (p->type == bfd_data_link_order)
10687 continue;
10688 abort ();
10689 }
10690
10691 input_section = p->u.indirect.section;
10692 input_bfd = input_section->owner;
10693
b49e97c9 10694 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10695 &ext, 0, sizeof ext))
b34976b6 10696 return FALSE;
b49e97c9
TS
10697
10698 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10699
10700 reginfo.ri_gprmask |= sub.ri_gprmask;
10701 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10702 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10703 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10704 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10705
10706 /* ri_gp_value is set by the function
10707 mips_elf32_section_processing when the section is
10708 finally written out. */
10709
10710 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10711 elf_link_input_bfd ignores this section. */
10712 input_section->flags &= ~SEC_HAS_CONTENTS;
10713 }
10714
10715 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10716 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10717
10718 /* Skip this section later on (I don't think this currently
10719 matters, but someday it might). */
8423293d 10720 o->map_head.link_order = NULL;
b49e97c9
TS
10721
10722 reginfo_sec = o;
10723 }
10724
10725 if (strcmp (o->name, ".mdebug") == 0)
10726 {
10727 struct extsym_info einfo;
10728 bfd_vma last;
10729
10730 /* We have found the .mdebug section in the output file.
10731 Look through all the link_orders comprising it and merge
10732 the information together. */
10733 symhdr->magic = swap->sym_magic;
10734 /* FIXME: What should the version stamp be? */
10735 symhdr->vstamp = 0;
10736 symhdr->ilineMax = 0;
10737 symhdr->cbLine = 0;
10738 symhdr->idnMax = 0;
10739 symhdr->ipdMax = 0;
10740 symhdr->isymMax = 0;
10741 symhdr->ioptMax = 0;
10742 symhdr->iauxMax = 0;
10743 symhdr->issMax = 0;
10744 symhdr->issExtMax = 0;
10745 symhdr->ifdMax = 0;
10746 symhdr->crfd = 0;
10747 symhdr->iextMax = 0;
10748
10749 /* We accumulate the debugging information itself in the
10750 debug_info structure. */
10751 debug.line = NULL;
10752 debug.external_dnr = NULL;
10753 debug.external_pdr = NULL;
10754 debug.external_sym = NULL;
10755 debug.external_opt = NULL;
10756 debug.external_aux = NULL;
10757 debug.ss = NULL;
10758 debug.ssext = debug.ssext_end = NULL;
10759 debug.external_fdr = NULL;
10760 debug.external_rfd = NULL;
10761 debug.external_ext = debug.external_ext_end = NULL;
10762
10763 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10764 if (mdebug_handle == NULL)
b34976b6 10765 return FALSE;
b49e97c9
TS
10766
10767 esym.jmptbl = 0;
10768 esym.cobol_main = 0;
10769 esym.weakext = 0;
10770 esym.reserved = 0;
10771 esym.ifd = ifdNil;
10772 esym.asym.iss = issNil;
10773 esym.asym.st = stLocal;
10774 esym.asym.reserved = 0;
10775 esym.asym.index = indexNil;
10776 last = 0;
10777 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10778 {
10779 esym.asym.sc = sc[i];
10780 s = bfd_get_section_by_name (abfd, secname[i]);
10781 if (s != NULL)
10782 {
10783 esym.asym.value = s->vma;
eea6121a 10784 last = s->vma + s->size;
b49e97c9
TS
10785 }
10786 else
10787 esym.asym.value = last;
10788 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10789 secname[i], &esym))
b34976b6 10790 return FALSE;
b49e97c9
TS
10791 }
10792
8423293d 10793 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10794 {
10795 asection *input_section;
10796 bfd *input_bfd;
10797 const struct ecoff_debug_swap *input_swap;
10798 struct ecoff_debug_info input_debug;
10799 char *eraw_src;
10800 char *eraw_end;
10801
10802 if (p->type != bfd_indirect_link_order)
10803 {
10804 if (p->type == bfd_data_link_order)
10805 continue;
10806 abort ();
10807 }
10808
10809 input_section = p->u.indirect.section;
10810 input_bfd = input_section->owner;
10811
10812 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10813 || (get_elf_backend_data (input_bfd)
10814 ->elf_backend_ecoff_debug_swap) == NULL)
10815 {
10816 /* I don't know what a non MIPS ELF bfd would be
10817 doing with a .mdebug section, but I don't really
10818 want to deal with it. */
10819 continue;
10820 }
10821
10822 input_swap = (get_elf_backend_data (input_bfd)
10823 ->elf_backend_ecoff_debug_swap);
10824
eea6121a 10825 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10826
10827 /* The ECOFF linking code expects that we have already
10828 read in the debugging information and set up an
10829 ecoff_debug_info structure, so we do that now. */
10830 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10831 &input_debug))
b34976b6 10832 return FALSE;
b49e97c9
TS
10833
10834 if (! (bfd_ecoff_debug_accumulate
10835 (mdebug_handle, abfd, &debug, swap, input_bfd,
10836 &input_debug, input_swap, info)))
b34976b6 10837 return FALSE;
b49e97c9
TS
10838
10839 /* Loop through the external symbols. For each one with
10840 interesting information, try to find the symbol in
10841 the linker global hash table and save the information
10842 for the output external symbols. */
10843 eraw_src = input_debug.external_ext;
10844 eraw_end = (eraw_src
10845 + (input_debug.symbolic_header.iextMax
10846 * input_swap->external_ext_size));
10847 for (;
10848 eraw_src < eraw_end;
10849 eraw_src += input_swap->external_ext_size)
10850 {
10851 EXTR ext;
10852 const char *name;
10853 struct mips_elf_link_hash_entry *h;
10854
9719ad41 10855 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10856 if (ext.asym.sc == scNil
10857 || ext.asym.sc == scUndefined
10858 || ext.asym.sc == scSUndefined)
10859 continue;
10860
10861 name = input_debug.ssext + ext.asym.iss;
10862 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10863 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10864 if (h == NULL || h->esym.ifd != -2)
10865 continue;
10866
10867 if (ext.ifd != -1)
10868 {
10869 BFD_ASSERT (ext.ifd
10870 < input_debug.symbolic_header.ifdMax);
10871 ext.ifd = input_debug.ifdmap[ext.ifd];
10872 }
10873
10874 h->esym = ext;
10875 }
10876
10877 /* Free up the information we just read. */
10878 free (input_debug.line);
10879 free (input_debug.external_dnr);
10880 free (input_debug.external_pdr);
10881 free (input_debug.external_sym);
10882 free (input_debug.external_opt);
10883 free (input_debug.external_aux);
10884 free (input_debug.ss);
10885 free (input_debug.ssext);
10886 free (input_debug.external_fdr);
10887 free (input_debug.external_rfd);
10888 free (input_debug.external_ext);
10889
10890 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10891 elf_link_input_bfd ignores this section. */
10892 input_section->flags &= ~SEC_HAS_CONTENTS;
10893 }
10894
10895 if (SGI_COMPAT (abfd) && info->shared)
10896 {
10897 /* Create .rtproc section. */
10898 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10899 if (rtproc_sec == NULL)
10900 {
10901 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10902 | SEC_LINKER_CREATED | SEC_READONLY);
10903
3496cb2a
L
10904 rtproc_sec = bfd_make_section_with_flags (abfd,
10905 ".rtproc",
10906 flags);
b49e97c9 10907 if (rtproc_sec == NULL
b49e97c9 10908 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10909 return FALSE;
b49e97c9
TS
10910 }
10911
10912 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10913 info, rtproc_sec,
10914 &debug))
b34976b6 10915 return FALSE;
b49e97c9
TS
10916 }
10917
10918 /* Build the external symbol information. */
10919 einfo.abfd = abfd;
10920 einfo.info = info;
10921 einfo.debug = &debug;
10922 einfo.swap = swap;
b34976b6 10923 einfo.failed = FALSE;
b49e97c9 10924 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10925 mips_elf_output_extsym, &einfo);
b49e97c9 10926 if (einfo.failed)
b34976b6 10927 return FALSE;
b49e97c9
TS
10928
10929 /* Set the size of the .mdebug section. */
eea6121a 10930 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10931
10932 /* Skip this section later on (I don't think this currently
10933 matters, but someday it might). */
8423293d 10934 o->map_head.link_order = NULL;
b49e97c9
TS
10935
10936 mdebug_sec = o;
10937 }
10938
0112cd26 10939 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10940 {
10941 const char *subname;
10942 unsigned int c;
10943 Elf32_gptab *tab;
10944 Elf32_External_gptab *ext_tab;
10945 unsigned int j;
10946
10947 /* The .gptab.sdata and .gptab.sbss sections hold
10948 information describing how the small data area would
10949 change depending upon the -G switch. These sections
10950 not used in executables files. */
1049f94e 10951 if (! info->relocatable)
b49e97c9 10952 {
8423293d 10953 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10954 {
10955 asection *input_section;
10956
10957 if (p->type != bfd_indirect_link_order)
10958 {
10959 if (p->type == bfd_data_link_order)
10960 continue;
10961 abort ();
10962 }
10963
10964 input_section = p->u.indirect.section;
10965
10966 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10967 elf_link_input_bfd ignores this section. */
10968 input_section->flags &= ~SEC_HAS_CONTENTS;
10969 }
10970
10971 /* Skip this section later on (I don't think this
10972 currently matters, but someday it might). */
8423293d 10973 o->map_head.link_order = NULL;
b49e97c9
TS
10974
10975 /* Really remove the section. */
5daa8fe7 10976 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10977 --abfd->section_count;
10978
10979 continue;
10980 }
10981
10982 /* There is one gptab for initialized data, and one for
10983 uninitialized data. */
10984 if (strcmp (o->name, ".gptab.sdata") == 0)
10985 gptab_data_sec = o;
10986 else if (strcmp (o->name, ".gptab.sbss") == 0)
10987 gptab_bss_sec = o;
10988 else
10989 {
10990 (*_bfd_error_handler)
10991 (_("%s: illegal section name `%s'"),
10992 bfd_get_filename (abfd), o->name);
10993 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10994 return FALSE;
b49e97c9
TS
10995 }
10996
10997 /* The linker script always combines .gptab.data and
10998 .gptab.sdata into .gptab.sdata, and likewise for
10999 .gptab.bss and .gptab.sbss. It is possible that there is
11000 no .sdata or .sbss section in the output file, in which
11001 case we must change the name of the output section. */
11002 subname = o->name + sizeof ".gptab" - 1;
11003 if (bfd_get_section_by_name (abfd, subname) == NULL)
11004 {
11005 if (o == gptab_data_sec)
11006 o->name = ".gptab.data";
11007 else
11008 o->name = ".gptab.bss";
11009 subname = o->name + sizeof ".gptab" - 1;
11010 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11011 }
11012
11013 /* Set up the first entry. */
11014 c = 1;
11015 amt = c * sizeof (Elf32_gptab);
9719ad41 11016 tab = bfd_malloc (amt);
b49e97c9 11017 if (tab == NULL)
b34976b6 11018 return FALSE;
b49e97c9
TS
11019 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11020 tab[0].gt_header.gt_unused = 0;
11021
11022 /* Combine the input sections. */
8423293d 11023 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11024 {
11025 asection *input_section;
11026 bfd *input_bfd;
11027 bfd_size_type size;
11028 unsigned long last;
11029 bfd_size_type gpentry;
11030
11031 if (p->type != bfd_indirect_link_order)
11032 {
11033 if (p->type == bfd_data_link_order)
11034 continue;
11035 abort ();
11036 }
11037
11038 input_section = p->u.indirect.section;
11039 input_bfd = input_section->owner;
11040
11041 /* Combine the gptab entries for this input section one
11042 by one. We know that the input gptab entries are
11043 sorted by ascending -G value. */
eea6121a 11044 size = input_section->size;
b49e97c9
TS
11045 last = 0;
11046 for (gpentry = sizeof (Elf32_External_gptab);
11047 gpentry < size;
11048 gpentry += sizeof (Elf32_External_gptab))
11049 {
11050 Elf32_External_gptab ext_gptab;
11051 Elf32_gptab int_gptab;
11052 unsigned long val;
11053 unsigned long add;
b34976b6 11054 bfd_boolean exact;
b49e97c9
TS
11055 unsigned int look;
11056
11057 if (! (bfd_get_section_contents
9719ad41
RS
11058 (input_bfd, input_section, &ext_gptab, gpentry,
11059 sizeof (Elf32_External_gptab))))
b49e97c9
TS
11060 {
11061 free (tab);
b34976b6 11062 return FALSE;
b49e97c9
TS
11063 }
11064
11065 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11066 &int_gptab);
11067 val = int_gptab.gt_entry.gt_g_value;
11068 add = int_gptab.gt_entry.gt_bytes - last;
11069
b34976b6 11070 exact = FALSE;
b49e97c9
TS
11071 for (look = 1; look < c; look++)
11072 {
11073 if (tab[look].gt_entry.gt_g_value >= val)
11074 tab[look].gt_entry.gt_bytes += add;
11075
11076 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 11077 exact = TRUE;
b49e97c9
TS
11078 }
11079
11080 if (! exact)
11081 {
11082 Elf32_gptab *new_tab;
11083 unsigned int max;
11084
11085 /* We need a new table entry. */
11086 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 11087 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
11088 if (new_tab == NULL)
11089 {
11090 free (tab);
b34976b6 11091 return FALSE;
b49e97c9
TS
11092 }
11093 tab = new_tab;
11094 tab[c].gt_entry.gt_g_value = val;
11095 tab[c].gt_entry.gt_bytes = add;
11096
11097 /* Merge in the size for the next smallest -G
11098 value, since that will be implied by this new
11099 value. */
11100 max = 0;
11101 for (look = 1; look < c; look++)
11102 {
11103 if (tab[look].gt_entry.gt_g_value < val
11104 && (max == 0
11105 || (tab[look].gt_entry.gt_g_value
11106 > tab[max].gt_entry.gt_g_value)))
11107 max = look;
11108 }
11109 if (max != 0)
11110 tab[c].gt_entry.gt_bytes +=
11111 tab[max].gt_entry.gt_bytes;
11112
11113 ++c;
11114 }
11115
11116 last = int_gptab.gt_entry.gt_bytes;
11117 }
11118
11119 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11120 elf_link_input_bfd ignores this section. */
11121 input_section->flags &= ~SEC_HAS_CONTENTS;
11122 }
11123
11124 /* The table must be sorted by -G value. */
11125 if (c > 2)
11126 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11127
11128 /* Swap out the table. */
11129 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 11130 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
11131 if (ext_tab == NULL)
11132 {
11133 free (tab);
b34976b6 11134 return FALSE;
b49e97c9
TS
11135 }
11136
11137 for (j = 0; j < c; j++)
11138 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11139 free (tab);
11140
eea6121a 11141 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
11142 o->contents = (bfd_byte *) ext_tab;
11143
11144 /* Skip this section later on (I don't think this currently
11145 matters, but someday it might). */
8423293d 11146 o->map_head.link_order = NULL;
b49e97c9
TS
11147 }
11148 }
11149
11150 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 11151 if (!bfd_elf_final_link (abfd, info))
b34976b6 11152 return FALSE;
b49e97c9
TS
11153
11154 /* Now write out the computed sections. */
11155
9719ad41 11156 if (reginfo_sec != NULL)
b49e97c9
TS
11157 {
11158 Elf32_External_RegInfo ext;
11159
11160 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 11161 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 11162 return FALSE;
b49e97c9
TS
11163 }
11164
9719ad41 11165 if (mdebug_sec != NULL)
b49e97c9
TS
11166 {
11167 BFD_ASSERT (abfd->output_has_begun);
11168 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11169 swap, info,
11170 mdebug_sec->filepos))
b34976b6 11171 return FALSE;
b49e97c9
TS
11172
11173 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11174 }
11175
9719ad41 11176 if (gptab_data_sec != NULL)
b49e97c9
TS
11177 {
11178 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11179 gptab_data_sec->contents,
eea6121a 11180 0, gptab_data_sec->size))
b34976b6 11181 return FALSE;
b49e97c9
TS
11182 }
11183
9719ad41 11184 if (gptab_bss_sec != NULL)
b49e97c9
TS
11185 {
11186 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11187 gptab_bss_sec->contents,
eea6121a 11188 0, gptab_bss_sec->size))
b34976b6 11189 return FALSE;
b49e97c9
TS
11190 }
11191
11192 if (SGI_COMPAT (abfd))
11193 {
11194 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11195 if (rtproc_sec != NULL)
11196 {
11197 if (! bfd_set_section_contents (abfd, rtproc_sec,
11198 rtproc_sec->contents,
eea6121a 11199 0, rtproc_sec->size))
b34976b6 11200 return FALSE;
b49e97c9
TS
11201 }
11202 }
11203
b34976b6 11204 return TRUE;
b49e97c9
TS
11205}
11206\f
64543e1a
RS
11207/* Structure for saying that BFD machine EXTENSION extends BASE. */
11208
11209struct mips_mach_extension {
11210 unsigned long extension, base;
11211};
11212
11213
11214/* An array describing how BFD machines relate to one another. The entries
11215 are ordered topologically with MIPS I extensions listed last. */
11216
11217static const struct mips_mach_extension mips_mach_extensions[] = {
11218 /* MIPS64 extensions. */
5f74bc13 11219 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
11220 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11221
11222 /* MIPS V extensions. */
11223 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11224
11225 /* R10000 extensions. */
11226 { bfd_mach_mips12000, bfd_mach_mips10000 },
11227
11228 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11229 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11230 better to allow vr5400 and vr5500 code to be merged anyway, since
11231 many libraries will just use the core ISA. Perhaps we could add
11232 some sort of ASE flag if this ever proves a problem. */
11233 { bfd_mach_mips5500, bfd_mach_mips5400 },
11234 { bfd_mach_mips5400, bfd_mach_mips5000 },
11235
11236 /* MIPS IV extensions. */
11237 { bfd_mach_mips5, bfd_mach_mips8000 },
11238 { bfd_mach_mips10000, bfd_mach_mips8000 },
11239 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 11240 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 11241 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
11242
11243 /* VR4100 extensions. */
11244 { bfd_mach_mips4120, bfd_mach_mips4100 },
11245 { bfd_mach_mips4111, bfd_mach_mips4100 },
11246
11247 /* MIPS III extensions. */
350cc38d
MS
11248 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11249 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
11250 { bfd_mach_mips8000, bfd_mach_mips4000 },
11251 { bfd_mach_mips4650, bfd_mach_mips4000 },
11252 { bfd_mach_mips4600, bfd_mach_mips4000 },
11253 { bfd_mach_mips4400, bfd_mach_mips4000 },
11254 { bfd_mach_mips4300, bfd_mach_mips4000 },
11255 { bfd_mach_mips4100, bfd_mach_mips4000 },
11256 { bfd_mach_mips4010, bfd_mach_mips4000 },
11257
11258 /* MIPS32 extensions. */
11259 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11260
11261 /* MIPS II extensions. */
11262 { bfd_mach_mips4000, bfd_mach_mips6000 },
11263 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11264
11265 /* MIPS I extensions. */
11266 { bfd_mach_mips6000, bfd_mach_mips3000 },
11267 { bfd_mach_mips3900, bfd_mach_mips3000 }
11268};
11269
11270
11271/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11272
11273static bfd_boolean
9719ad41 11274mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
11275{
11276 size_t i;
11277
c5211a54
RS
11278 if (extension == base)
11279 return TRUE;
11280
11281 if (base == bfd_mach_mipsisa32
11282 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11283 return TRUE;
11284
11285 if (base == bfd_mach_mipsisa32r2
11286 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11287 return TRUE;
11288
11289 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 11290 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
11291 {
11292 extension = mips_mach_extensions[i].base;
11293 if (extension == base)
11294 return TRUE;
11295 }
64543e1a 11296
c5211a54 11297 return FALSE;
64543e1a
RS
11298}
11299
11300
11301/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 11302
b34976b6 11303static bfd_boolean
9719ad41 11304mips_32bit_flags_p (flagword flags)
00707a0e 11305{
64543e1a
RS
11306 return ((flags & EF_MIPS_32BITMODE) != 0
11307 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11308 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11309 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11310 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11311 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11312 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
11313}
11314
64543e1a 11315
2cf19d5c
JM
11316/* Merge object attributes from IBFD into OBFD. Raise an error if
11317 there are conflicting attributes. */
11318static bfd_boolean
11319mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11320{
11321 obj_attribute *in_attr;
11322 obj_attribute *out_attr;
11323
11324 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11325 {
11326 /* This is the first object. Copy the attributes. */
11327 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11328
11329 /* Use the Tag_null value to indicate the attributes have been
11330 initialized. */
11331 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11332
11333 return TRUE;
11334 }
11335
11336 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11337 non-conflicting ones. */
11338 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11339 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11340 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11341 {
11342 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11343 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11344 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11345 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11346 ;
42554f6a 11347 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
11348 _bfd_error_handler
11349 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11350 in_attr[Tag_GNU_MIPS_ABI_FP].i);
42554f6a 11351 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
11352 _bfd_error_handler
11353 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11354 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11355 else
11356 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11357 {
11358 case 1:
11359 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11360 {
11361 case 2:
11362 _bfd_error_handler
11363 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11364 obfd, ibfd);
51a0dd31 11365 break;
2cf19d5c
JM
11366
11367 case 3:
11368 _bfd_error_handler
11369 (_("Warning: %B uses hard float, %B uses soft float"),
11370 obfd, ibfd);
11371 break;
11372
42554f6a
TS
11373 case 4:
11374 _bfd_error_handler
11375 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11376 obfd, ibfd);
11377 break;
11378
2cf19d5c
JM
11379 default:
11380 abort ();
11381 }
11382 break;
11383
11384 case 2:
11385 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11386 {
11387 case 1:
11388 _bfd_error_handler
11389 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11390 ibfd, obfd);
51a0dd31 11391 break;
2cf19d5c
JM
11392
11393 case 3:
11394 _bfd_error_handler
11395 (_("Warning: %B uses hard float, %B uses soft float"),
11396 obfd, ibfd);
11397 break;
11398
42554f6a
TS
11399 case 4:
11400 _bfd_error_handler
11401 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11402 obfd, ibfd);
11403 break;
11404
2cf19d5c
JM
11405 default:
11406 abort ();
11407 }
11408 break;
11409
11410 case 3:
11411 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11412 {
11413 case 1:
11414 case 2:
42554f6a 11415 case 4:
2cf19d5c
JM
11416 _bfd_error_handler
11417 (_("Warning: %B uses hard float, %B uses soft float"),
11418 ibfd, obfd);
11419 break;
11420
11421 default:
11422 abort ();
11423 }
11424 break;
11425
42554f6a
TS
11426 case 4:
11427 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11428 {
11429 case 1:
11430 _bfd_error_handler
11431 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11432 ibfd, obfd);
11433 break;
11434
11435 case 2:
11436 _bfd_error_handler
11437 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11438 ibfd, obfd);
11439 break;
11440
11441 case 3:
11442 _bfd_error_handler
11443 (_("Warning: %B uses hard float, %B uses soft float"),
11444 obfd, ibfd);
11445 break;
11446
11447 default:
11448 abort ();
11449 }
11450 break;
11451
2cf19d5c
JM
11452 default:
11453 abort ();
11454 }
11455 }
11456
11457 /* Merge Tag_compatibility attributes and any common GNU ones. */
11458 _bfd_elf_merge_object_attributes (ibfd, obfd);
11459
11460 return TRUE;
11461}
11462
b49e97c9
TS
11463/* Merge backend specific data from an object file to the output
11464 object file when linking. */
11465
b34976b6 11466bfd_boolean
9719ad41 11467_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
11468{
11469 flagword old_flags;
11470 flagword new_flags;
b34976b6
AM
11471 bfd_boolean ok;
11472 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
11473 asection *sec;
11474
11475 /* Check if we have the same endianess */
82e51918 11476 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
11477 {
11478 (*_bfd_error_handler)
d003868e
AM
11479 (_("%B: endianness incompatible with that of the selected emulation"),
11480 ibfd);
aa701218
AO
11481 return FALSE;
11482 }
b49e97c9
TS
11483
11484 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11485 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 11486 return TRUE;
b49e97c9 11487
aa701218
AO
11488 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11489 {
11490 (*_bfd_error_handler)
d003868e
AM
11491 (_("%B: ABI is incompatible with that of the selected emulation"),
11492 ibfd);
aa701218
AO
11493 return FALSE;
11494 }
11495
2cf19d5c
JM
11496 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11497 return FALSE;
11498
b49e97c9
TS
11499 new_flags = elf_elfheader (ibfd)->e_flags;
11500 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11501 old_flags = elf_elfheader (obfd)->e_flags;
11502
11503 if (! elf_flags_init (obfd))
11504 {
b34976b6 11505 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11506 elf_elfheader (obfd)->e_flags = new_flags;
11507 elf_elfheader (obfd)->e_ident[EI_CLASS]
11508 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11509
11510 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11511 && (bfd_get_arch_info (obfd)->the_default
11512 || mips_mach_extends_p (bfd_get_mach (obfd),
11513 bfd_get_mach (ibfd))))
b49e97c9
TS
11514 {
11515 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11516 bfd_get_mach (ibfd)))
b34976b6 11517 return FALSE;
b49e97c9
TS
11518 }
11519
b34976b6 11520 return TRUE;
b49e97c9
TS
11521 }
11522
11523 /* Check flag compatibility. */
11524
11525 new_flags &= ~EF_MIPS_NOREORDER;
11526 old_flags &= ~EF_MIPS_NOREORDER;
11527
f4416af6
AO
11528 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11529 doesn't seem to matter. */
11530 new_flags &= ~EF_MIPS_XGOT;
11531 old_flags &= ~EF_MIPS_XGOT;
11532
98a8deaf
RS
11533 /* MIPSpro generates ucode info in n64 objects. Again, we should
11534 just be able to ignore this. */
11535 new_flags &= ~EF_MIPS_UCODE;
11536 old_flags &= ~EF_MIPS_UCODE;
11537
0a44bf69
RS
11538 /* Don't care about the PIC flags from dynamic objects; they are
11539 PIC by design. */
11540 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11541 && (ibfd->flags & DYNAMIC) != 0)
11542 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11543
b49e97c9 11544 if (new_flags == old_flags)
b34976b6 11545 return TRUE;
b49e97c9
TS
11546
11547 /* Check to see if the input BFD actually contains any sections.
11548 If not, its flags may not have been initialised either, but it cannot
11549 actually cause any incompatibility. */
11550 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11551 {
11552 /* Ignore synthetic sections and empty .text, .data and .bss sections
11553 which are automatically generated by gas. */
11554 if (strcmp (sec->name, ".reginfo")
11555 && strcmp (sec->name, ".mdebug")
eea6121a 11556 && (sec->size != 0
d13d89fa
NS
11557 || (strcmp (sec->name, ".text")
11558 && strcmp (sec->name, ".data")
11559 && strcmp (sec->name, ".bss"))))
b49e97c9 11560 {
b34976b6 11561 null_input_bfd = FALSE;
b49e97c9
TS
11562 break;
11563 }
11564 }
11565 if (null_input_bfd)
b34976b6 11566 return TRUE;
b49e97c9 11567
b34976b6 11568 ok = TRUE;
b49e97c9 11569
143d77c5
EC
11570 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11571 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11572 {
b49e97c9 11573 (*_bfd_error_handler)
d003868e
AM
11574 (_("%B: warning: linking PIC files with non-PIC files"),
11575 ibfd);
143d77c5 11576 ok = TRUE;
b49e97c9
TS
11577 }
11578
143d77c5
EC
11579 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11580 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11581 if (! (new_flags & EF_MIPS_PIC))
11582 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11583
11584 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11585 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11586
64543e1a
RS
11587 /* Compare the ISAs. */
11588 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11589 {
64543e1a 11590 (*_bfd_error_handler)
d003868e
AM
11591 (_("%B: linking 32-bit code with 64-bit code"),
11592 ibfd);
64543e1a
RS
11593 ok = FALSE;
11594 }
11595 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11596 {
11597 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11598 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11599 {
64543e1a
RS
11600 /* Copy the architecture info from IBFD to OBFD. Also copy
11601 the 32-bit flag (if set) so that we continue to recognise
11602 OBFD as a 32-bit binary. */
11603 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11604 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11605 elf_elfheader (obfd)->e_flags
11606 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11607
11608 /* Copy across the ABI flags if OBFD doesn't use them
11609 and if that was what caused us to treat IBFD as 32-bit. */
11610 if ((old_flags & EF_MIPS_ABI) == 0
11611 && mips_32bit_flags_p (new_flags)
11612 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11613 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11614 }
11615 else
11616 {
64543e1a 11617 /* The ISAs aren't compatible. */
b49e97c9 11618 (*_bfd_error_handler)
d003868e
AM
11619 (_("%B: linking %s module with previous %s modules"),
11620 ibfd,
64543e1a
RS
11621 bfd_printable_name (ibfd),
11622 bfd_printable_name (obfd));
b34976b6 11623 ok = FALSE;
b49e97c9 11624 }
b49e97c9
TS
11625 }
11626
64543e1a
RS
11627 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11628 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11629
11630 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11631 does set EI_CLASS differently from any 32-bit ABI. */
11632 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11633 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11634 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11635 {
11636 /* Only error if both are set (to different values). */
11637 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11638 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11639 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11640 {
11641 (*_bfd_error_handler)
d003868e
AM
11642 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11643 ibfd,
b49e97c9
TS
11644 elf_mips_abi_name (ibfd),
11645 elf_mips_abi_name (obfd));
b34976b6 11646 ok = FALSE;
b49e97c9
TS
11647 }
11648 new_flags &= ~EF_MIPS_ABI;
11649 old_flags &= ~EF_MIPS_ABI;
11650 }
11651
fb39dac1
RS
11652 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11653 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11654 {
11655 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11656
11657 new_flags &= ~ EF_MIPS_ARCH_ASE;
11658 old_flags &= ~ EF_MIPS_ARCH_ASE;
11659 }
11660
b49e97c9
TS
11661 /* Warn about any other mismatches */
11662 if (new_flags != old_flags)
11663 {
11664 (*_bfd_error_handler)
d003868e
AM
11665 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11666 ibfd, (unsigned long) new_flags,
b49e97c9 11667 (unsigned long) old_flags);
b34976b6 11668 ok = FALSE;
b49e97c9
TS
11669 }
11670
11671 if (! ok)
11672 {
11673 bfd_set_error (bfd_error_bad_value);
b34976b6 11674 return FALSE;
b49e97c9
TS
11675 }
11676
b34976b6 11677 return TRUE;
b49e97c9
TS
11678}
11679
11680/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11681
b34976b6 11682bfd_boolean
9719ad41 11683_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11684{
11685 BFD_ASSERT (!elf_flags_init (abfd)
11686 || elf_elfheader (abfd)->e_flags == flags);
11687
11688 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11689 elf_flags_init (abfd) = TRUE;
11690 return TRUE;
b49e97c9
TS
11691}
11692
b34976b6 11693bfd_boolean
9719ad41 11694_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11695{
9719ad41 11696 FILE *file = ptr;
b49e97c9
TS
11697
11698 BFD_ASSERT (abfd != NULL && ptr != NULL);
11699
11700 /* Print normal ELF private data. */
11701 _bfd_elf_print_private_bfd_data (abfd, ptr);
11702
11703 /* xgettext:c-format */
11704 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11705
11706 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11707 fprintf (file, _(" [abi=O32]"));
11708 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11709 fprintf (file, _(" [abi=O64]"));
11710 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11711 fprintf (file, _(" [abi=EABI32]"));
11712 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11713 fprintf (file, _(" [abi=EABI64]"));
11714 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11715 fprintf (file, _(" [abi unknown]"));
11716 else if (ABI_N32_P (abfd))
11717 fprintf (file, _(" [abi=N32]"));
11718 else if (ABI_64_P (abfd))
11719 fprintf (file, _(" [abi=64]"));
11720 else
11721 fprintf (file, _(" [no abi set]"));
11722
11723 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11724 fprintf (file, " [mips1]");
b49e97c9 11725 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11726 fprintf (file, " [mips2]");
b49e97c9 11727 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11728 fprintf (file, " [mips3]");
b49e97c9 11729 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11730 fprintf (file, " [mips4]");
b49e97c9 11731 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11732 fprintf (file, " [mips5]");
b49e97c9 11733 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11734 fprintf (file, " [mips32]");
b49e97c9 11735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11736 fprintf (file, " [mips64]");
af7ee8bf 11737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11738 fprintf (file, " [mips32r2]");
5f74bc13 11739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11740 fprintf (file, " [mips64r2]");
b49e97c9
TS
11741 else
11742 fprintf (file, _(" [unknown ISA]"));
11743
40d32fc6 11744 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11745 fprintf (file, " [mdmx]");
40d32fc6
CD
11746
11747 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11748 fprintf (file, " [mips16]");
40d32fc6 11749
b49e97c9 11750 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11751 fprintf (file, " [32bitmode]");
b49e97c9
TS
11752 else
11753 fprintf (file, _(" [not 32bitmode]"));
11754
c0e3f241 11755 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11756 fprintf (file, " [noreorder]");
c0e3f241
CD
11757
11758 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11759 fprintf (file, " [PIC]");
c0e3f241
CD
11760
11761 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11762 fprintf (file, " [CPIC]");
c0e3f241
CD
11763
11764 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11765 fprintf (file, " [XGOT]");
c0e3f241
CD
11766
11767 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11768 fprintf (file, " [UCODE]");
c0e3f241 11769
b49e97c9
TS
11770 fputc ('\n', file);
11771
b34976b6 11772 return TRUE;
b49e97c9 11773}
2f89ff8d 11774
b35d266b 11775const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11776{
0112cd26
NC
11777 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11778 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11779 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11780 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11781 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11782 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11783 { NULL, 0, 0, 0, 0 }
2f89ff8d 11784};
5e2b0d47 11785
8992f0d7
TS
11786/* Merge non visibility st_other attributes. Ensure that the
11787 STO_OPTIONAL flag is copied into h->other, even if this is not a
11788 definiton of the symbol. */
5e2b0d47
NC
11789void
11790_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11791 const Elf_Internal_Sym *isym,
11792 bfd_boolean definition,
11793 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11794{
8992f0d7
TS
11795 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11796 {
11797 unsigned char other;
11798
11799 other = (definition ? isym->st_other : h->other);
11800 other &= ~ELF_ST_VISIBILITY (-1);
11801 h->other = other | ELF_ST_VISIBILITY (h->other);
11802 }
11803
11804 if (!definition
5e2b0d47
NC
11805 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11806 h->other |= STO_OPTIONAL;
11807}
12ac1cf5
NC
11808
11809/* Decide whether an undefined symbol is special and can be ignored.
11810 This is the case for OPTIONAL symbols on IRIX. */
11811bfd_boolean
11812_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11813{
11814 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11815}
e0764319
NC
11816
11817bfd_boolean
11818_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11819{
11820 return (sym->st_shndx == SHN_COMMON
11821 || sym->st_shndx == SHN_MIPS_ACOMMON
11822 || sym->st_shndx == SHN_MIPS_SCOMMON);
11823}
This page took 1.311082 seconds and 4 git commands to generate.