Fix email in ChangeLog entry.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
c906108c
SS
64
65/* Prototypes for local functions */
66
96baa820 67static void signals_info (char *, int);
c906108c 68
96baa820 69static void handle_command (char *, int);
c906108c 70
2ea28649 71static void sig_print_info (enum gdb_signal);
c906108c 72
96baa820 73static void sig_print_header (void);
c906108c 74
74b7792f 75static void resume_cleanups (void *);
c906108c 76
96baa820 77static int hook_stop_stub (void *);
c906108c 78
96baa820
JM
79static int restore_selected_frame (void *);
80
4ef3f3be 81static int follow_fork (void);
96baa820 82
d83ad864
DB
83static int follow_fork_inferior (int follow_child, int detach_fork);
84
85static void follow_inferior_reset_breakpoints (void);
86
96baa820 87static void set_schedlock_func (char *args, int from_tty,
488f131b 88 struct cmd_list_element *c);
96baa820 89
a289b8f6
JK
90static int currently_stepping (struct thread_info *tp);
91
96baa820 92void _initialize_infrun (void);
43ff13b4 93
e58b0e63
PA
94void nullify_last_target_wait_ptid (void);
95
2c03e5be 96static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
97
98static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
99
2484c66b
UW
100static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
101
8550d3b3
YQ
102static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
103
5fbbeb29
CF
104/* When set, stop the 'step' command if we enter a function which has
105 no line number information. The normal behavior is that we step
106 over such function. */
107int step_stop_if_no_debug = 0;
920d2a44
AC
108static void
109show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111{
112 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
113}
5fbbeb29 114
1777feb0 115/* In asynchronous mode, but simulating synchronous execution. */
96baa820 116
43ff13b4
JM
117int sync_execution = 0;
118
b9f437de
PA
119/* proceed and normal_stop use this to notify the user when the
120 inferior stopped in a different thread than it had been running
121 in. */
96baa820 122
39f77062 123static ptid_t previous_inferior_ptid;
7a292a7a 124
07107ca6
LM
125/* If set (default for legacy reasons), when following a fork, GDB
126 will detach from one of the fork branches, child or parent.
127 Exactly which branch is detached depends on 'set follow-fork-mode'
128 setting. */
129
130static int detach_fork = 1;
6c95b8df 131
237fc4c9
PA
132int debug_displaced = 0;
133static void
134show_debug_displaced (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c, const char *value)
136{
137 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
138}
139
ccce17b0 140unsigned int debug_infrun = 0;
920d2a44
AC
141static void
142show_debug_infrun (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144{
145 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
146}
527159b7 147
03583c20
UW
148
149/* Support for disabling address space randomization. */
150
151int disable_randomization = 1;
152
153static void
154show_disable_randomization (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 if (target_supports_disable_randomization ())
158 fprintf_filtered (file,
159 _("Disabling randomization of debuggee's "
160 "virtual address space is %s.\n"),
161 value);
162 else
163 fputs_filtered (_("Disabling randomization of debuggee's "
164 "virtual address space is unsupported on\n"
165 "this platform.\n"), file);
166}
167
168static void
169set_disable_randomization (char *args, int from_tty,
170 struct cmd_list_element *c)
171{
172 if (!target_supports_disable_randomization ())
173 error (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform."));
176}
177
d32dc48e
PA
178/* User interface for non-stop mode. */
179
180int non_stop = 0;
181static int non_stop_1 = 0;
182
183static void
184set_non_stop (char *args, int from_tty,
185 struct cmd_list_element *c)
186{
187 if (target_has_execution)
188 {
189 non_stop_1 = non_stop;
190 error (_("Cannot change this setting while the inferior is running."));
191 }
192
193 non_stop = non_stop_1;
194}
195
196static void
197show_non_stop (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199{
200 fprintf_filtered (file,
201 _("Controlling the inferior in non-stop mode is %s.\n"),
202 value);
203}
204
d914c394
SS
205/* "Observer mode" is somewhat like a more extreme version of
206 non-stop, in which all GDB operations that might affect the
207 target's execution have been disabled. */
208
d914c394
SS
209int observer_mode = 0;
210static int observer_mode_1 = 0;
211
212static void
213set_observer_mode (char *args, int from_tty,
214 struct cmd_list_element *c)
215{
d914c394
SS
216 if (target_has_execution)
217 {
218 observer_mode_1 = observer_mode;
219 error (_("Cannot change this setting while the inferior is running."));
220 }
221
222 observer_mode = observer_mode_1;
223
224 may_write_registers = !observer_mode;
225 may_write_memory = !observer_mode;
226 may_insert_breakpoints = !observer_mode;
227 may_insert_tracepoints = !observer_mode;
228 /* We can insert fast tracepoints in or out of observer mode,
229 but enable them if we're going into this mode. */
230 if (observer_mode)
231 may_insert_fast_tracepoints = 1;
232 may_stop = !observer_mode;
233 update_target_permissions ();
234
235 /* Going *into* observer mode we must force non-stop, then
236 going out we leave it that way. */
237 if (observer_mode)
238 {
d914c394
SS
239 pagination_enabled = 0;
240 non_stop = non_stop_1 = 1;
241 }
242
243 if (from_tty)
244 printf_filtered (_("Observer mode is now %s.\n"),
245 (observer_mode ? "on" : "off"));
246}
247
248static void
249show_observer_mode (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251{
252 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253}
254
255/* This updates the value of observer mode based on changes in
256 permissions. Note that we are deliberately ignoring the values of
257 may-write-registers and may-write-memory, since the user may have
258 reason to enable these during a session, for instance to turn on a
259 debugging-related global. */
260
261void
262update_observer_mode (void)
263{
264 int newval;
265
266 newval = (!may_insert_breakpoints
267 && !may_insert_tracepoints
268 && may_insert_fast_tracepoints
269 && !may_stop
270 && non_stop);
271
272 /* Let the user know if things change. */
273 if (newval != observer_mode)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (newval ? "on" : "off"));
276
277 observer_mode = observer_mode_1 = newval;
278}
c2c6d25f 279
c906108c
SS
280/* Tables of how to react to signals; the user sets them. */
281
282static unsigned char *signal_stop;
283static unsigned char *signal_print;
284static unsigned char *signal_program;
285
ab04a2af
TT
286/* Table of signals that are registered with "catch signal". A
287 non-zero entry indicates that the signal is caught by some "catch
288 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
289 signals. */
290static unsigned char *signal_catch;
291
2455069d
UW
292/* Table of signals that the target may silently handle.
293 This is automatically determined from the flags above,
294 and simply cached here. */
295static unsigned char *signal_pass;
296
c906108c
SS
297#define SET_SIGS(nsigs,sigs,flags) \
298 do { \
299 int signum = (nsigs); \
300 while (signum-- > 0) \
301 if ((sigs)[signum]) \
302 (flags)[signum] = 1; \
303 } while (0)
304
305#define UNSET_SIGS(nsigs,sigs,flags) \
306 do { \
307 int signum = (nsigs); \
308 while (signum-- > 0) \
309 if ((sigs)[signum]) \
310 (flags)[signum] = 0; \
311 } while (0)
312
9b224c5e
PA
313/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
314 this function is to avoid exporting `signal_program'. */
315
316void
317update_signals_program_target (void)
318{
a493e3e2 319 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
320}
321
1777feb0 322/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 323
edb3359d 324#define RESUME_ALL minus_one_ptid
c906108c
SS
325
326/* Command list pointer for the "stop" placeholder. */
327
328static struct cmd_list_element *stop_command;
329
c906108c
SS
330/* Nonzero if we want to give control to the user when we're notified
331 of shared library events by the dynamic linker. */
628fe4e4 332int stop_on_solib_events;
f9e14852
GB
333
334/* Enable or disable optional shared library event breakpoints
335 as appropriate when the above flag is changed. */
336
337static void
338set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
339{
340 update_solib_breakpoints ();
341}
342
920d2a44
AC
343static void
344show_stop_on_solib_events (struct ui_file *file, int from_tty,
345 struct cmd_list_element *c, const char *value)
346{
347 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
348 value);
349}
c906108c 350
c906108c
SS
351/* Nonzero means expecting a trace trap
352 and should stop the inferior and return silently when it happens. */
353
354int stop_after_trap;
355
c906108c
SS
356/* Nonzero after stop if current stack frame should be printed. */
357
358static int stop_print_frame;
359
e02bc4cc 360/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
361 returned by target_wait()/deprecated_target_wait_hook(). This
362 information is returned by get_last_target_status(). */
39f77062 363static ptid_t target_last_wait_ptid;
e02bc4cc
DS
364static struct target_waitstatus target_last_waitstatus;
365
0d1e5fa7
PA
366static void context_switch (ptid_t ptid);
367
4e1c45ea 368void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 369
53904c9e
AC
370static const char follow_fork_mode_child[] = "child";
371static const char follow_fork_mode_parent[] = "parent";
372
40478521 373static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
374 follow_fork_mode_child,
375 follow_fork_mode_parent,
376 NULL
ef346e04 377};
c906108c 378
53904c9e 379static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
380static void
381show_follow_fork_mode_string (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383{
3e43a32a
MS
384 fprintf_filtered (file,
385 _("Debugger response to a program "
386 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
387 value);
388}
c906108c
SS
389\f
390
d83ad864
DB
391/* Handle changes to the inferior list based on the type of fork,
392 which process is being followed, and whether the other process
393 should be detached. On entry inferior_ptid must be the ptid of
394 the fork parent. At return inferior_ptid is the ptid of the
395 followed inferior. */
396
397static int
398follow_fork_inferior (int follow_child, int detach_fork)
399{
400 int has_vforked;
79639e11 401 ptid_t parent_ptid, child_ptid;
d83ad864
DB
402
403 has_vforked = (inferior_thread ()->pending_follow.kind
404 == TARGET_WAITKIND_VFORKED);
79639e11
PA
405 parent_ptid = inferior_ptid;
406 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
407
408 if (has_vforked
409 && !non_stop /* Non-stop always resumes both branches. */
410 && (!target_is_async_p () || sync_execution)
411 && !(follow_child || detach_fork || sched_multi))
412 {
413 /* The parent stays blocked inside the vfork syscall until the
414 child execs or exits. If we don't let the child run, then
415 the parent stays blocked. If we're telling the parent to run
416 in the foreground, the user will not be able to ctrl-c to get
417 back the terminal, effectively hanging the debug session. */
418 fprintf_filtered (gdb_stderr, _("\
419Can not resume the parent process over vfork in the foreground while\n\
420holding the child stopped. Try \"set detach-on-fork\" or \
421\"set schedule-multiple\".\n"));
422 /* FIXME output string > 80 columns. */
423 return 1;
424 }
425
426 if (!follow_child)
427 {
428 /* Detach new forked process? */
429 if (detach_fork)
430 {
431 struct cleanup *old_chain;
432
433 /* Before detaching from the child, remove all breakpoints
434 from it. If we forked, then this has already been taken
435 care of by infrun.c. If we vforked however, any
436 breakpoint inserted in the parent is visible in the
437 child, even those added while stopped in a vfork
438 catchpoint. This will remove the breakpoints from the
439 parent also, but they'll be reinserted below. */
440 if (has_vforked)
441 {
442 /* Keep breakpoints list in sync. */
443 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
444 }
445
446 if (info_verbose || debug_infrun)
447 {
8dd06f7a
DB
448 /* Ensure that we have a process ptid. */
449 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
450
6f259a23 451 target_terminal_ours_for_output ();
d83ad864 452 fprintf_filtered (gdb_stdlog,
79639e11 453 _("Detaching after %s from child %s.\n"),
6f259a23 454 has_vforked ? "vfork" : "fork",
8dd06f7a 455 target_pid_to_str (process_ptid));
d83ad864
DB
456 }
457 }
458 else
459 {
460 struct inferior *parent_inf, *child_inf;
461 struct cleanup *old_chain;
462
463 /* Add process to GDB's tables. */
79639e11 464 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
465
466 parent_inf = current_inferior ();
467 child_inf->attach_flag = parent_inf->attach_flag;
468 copy_terminal_info (child_inf, parent_inf);
469 child_inf->gdbarch = parent_inf->gdbarch;
470 copy_inferior_target_desc_info (child_inf, parent_inf);
471
472 old_chain = save_inferior_ptid ();
473 save_current_program_space ();
474
79639e11 475 inferior_ptid = child_ptid;
d83ad864
DB
476 add_thread (inferior_ptid);
477 child_inf->symfile_flags = SYMFILE_NO_READ;
478
479 /* If this is a vfork child, then the address-space is
480 shared with the parent. */
481 if (has_vforked)
482 {
483 child_inf->pspace = parent_inf->pspace;
484 child_inf->aspace = parent_inf->aspace;
485
486 /* The parent will be frozen until the child is done
487 with the shared region. Keep track of the
488 parent. */
489 child_inf->vfork_parent = parent_inf;
490 child_inf->pending_detach = 0;
491 parent_inf->vfork_child = child_inf;
492 parent_inf->pending_detach = 0;
493 }
494 else
495 {
496 child_inf->aspace = new_address_space ();
497 child_inf->pspace = add_program_space (child_inf->aspace);
498 child_inf->removable = 1;
499 set_current_program_space (child_inf->pspace);
500 clone_program_space (child_inf->pspace, parent_inf->pspace);
501
502 /* Let the shared library layer (e.g., solib-svr4) learn
503 about this new process, relocate the cloned exec, pull
504 in shared libraries, and install the solib event
505 breakpoint. If a "cloned-VM" event was propagated
506 better throughout the core, this wouldn't be
507 required. */
508 solib_create_inferior_hook (0);
509 }
510
511 do_cleanups (old_chain);
512 }
513
514 if (has_vforked)
515 {
516 struct inferior *parent_inf;
517
518 parent_inf = current_inferior ();
519
520 /* If we detached from the child, then we have to be careful
521 to not insert breakpoints in the parent until the child
522 is done with the shared memory region. However, if we're
523 staying attached to the child, then we can and should
524 insert breakpoints, so that we can debug it. A
525 subsequent child exec or exit is enough to know when does
526 the child stops using the parent's address space. */
527 parent_inf->waiting_for_vfork_done = detach_fork;
528 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
529 }
530 }
531 else
532 {
533 /* Follow the child. */
534 struct inferior *parent_inf, *child_inf;
535 struct program_space *parent_pspace;
536
537 if (info_verbose || debug_infrun)
538 {
6f259a23
DB
539 target_terminal_ours_for_output ();
540 fprintf_filtered (gdb_stdlog,
79639e11
PA
541 _("Attaching after %s %s to child %s.\n"),
542 target_pid_to_str (parent_ptid),
6f259a23 543 has_vforked ? "vfork" : "fork",
79639e11 544 target_pid_to_str (child_ptid));
d83ad864
DB
545 }
546
547 /* Add the new inferior first, so that the target_detach below
548 doesn't unpush the target. */
549
79639e11 550 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
551
552 parent_inf = current_inferior ();
553 child_inf->attach_flag = parent_inf->attach_flag;
554 copy_terminal_info (child_inf, parent_inf);
555 child_inf->gdbarch = parent_inf->gdbarch;
556 copy_inferior_target_desc_info (child_inf, parent_inf);
557
558 parent_pspace = parent_inf->pspace;
559
560 /* If we're vforking, we want to hold on to the parent until the
561 child exits or execs. At child exec or exit time we can
562 remove the old breakpoints from the parent and detach or
563 resume debugging it. Otherwise, detach the parent now; we'll
564 want to reuse it's program/address spaces, but we can't set
565 them to the child before removing breakpoints from the
566 parent, otherwise, the breakpoints module could decide to
567 remove breakpoints from the wrong process (since they'd be
568 assigned to the same address space). */
569
570 if (has_vforked)
571 {
572 gdb_assert (child_inf->vfork_parent == NULL);
573 gdb_assert (parent_inf->vfork_child == NULL);
574 child_inf->vfork_parent = parent_inf;
575 child_inf->pending_detach = 0;
576 parent_inf->vfork_child = child_inf;
577 parent_inf->pending_detach = detach_fork;
578 parent_inf->waiting_for_vfork_done = 0;
579 }
580 else if (detach_fork)
6f259a23
DB
581 {
582 if (info_verbose || debug_infrun)
583 {
8dd06f7a
DB
584 /* Ensure that we have a process ptid. */
585 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
586
6f259a23
DB
587 target_terminal_ours_for_output ();
588 fprintf_filtered (gdb_stdlog,
589 _("Detaching after fork from "
79639e11 590 "child %s.\n"),
8dd06f7a 591 target_pid_to_str (process_ptid));
6f259a23
DB
592 }
593
594 target_detach (NULL, 0);
595 }
d83ad864
DB
596
597 /* Note that the detach above makes PARENT_INF dangling. */
598
599 /* Add the child thread to the appropriate lists, and switch to
600 this new thread, before cloning the program space, and
601 informing the solib layer about this new process. */
602
79639e11 603 inferior_ptid = child_ptid;
d83ad864
DB
604 add_thread (inferior_ptid);
605
606 /* If this is a vfork child, then the address-space is shared
607 with the parent. If we detached from the parent, then we can
608 reuse the parent's program/address spaces. */
609 if (has_vforked || detach_fork)
610 {
611 child_inf->pspace = parent_pspace;
612 child_inf->aspace = child_inf->pspace->aspace;
613 }
614 else
615 {
616 child_inf->aspace = new_address_space ();
617 child_inf->pspace = add_program_space (child_inf->aspace);
618 child_inf->removable = 1;
619 child_inf->symfile_flags = SYMFILE_NO_READ;
620 set_current_program_space (child_inf->pspace);
621 clone_program_space (child_inf->pspace, parent_pspace);
622
623 /* Let the shared library layer (e.g., solib-svr4) learn
624 about this new process, relocate the cloned exec, pull in
625 shared libraries, and install the solib event breakpoint.
626 If a "cloned-VM" event was propagated better throughout
627 the core, this wouldn't be required. */
628 solib_create_inferior_hook (0);
629 }
630 }
631
632 return target_follow_fork (follow_child, detach_fork);
633}
634
e58b0e63
PA
635/* Tell the target to follow the fork we're stopped at. Returns true
636 if the inferior should be resumed; false, if the target for some
637 reason decided it's best not to resume. */
638
6604731b 639static int
4ef3f3be 640follow_fork (void)
c906108c 641{
ea1dd7bc 642 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
643 int should_resume = 1;
644 struct thread_info *tp;
645
646 /* Copy user stepping state to the new inferior thread. FIXME: the
647 followed fork child thread should have a copy of most of the
4e3990f4
DE
648 parent thread structure's run control related fields, not just these.
649 Initialized to avoid "may be used uninitialized" warnings from gcc. */
650 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 651 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
652 CORE_ADDR step_range_start = 0;
653 CORE_ADDR step_range_end = 0;
654 struct frame_id step_frame_id = { 0 };
17b2616c 655 struct interp *command_interp = NULL;
e58b0e63
PA
656
657 if (!non_stop)
658 {
659 ptid_t wait_ptid;
660 struct target_waitstatus wait_status;
661
662 /* Get the last target status returned by target_wait(). */
663 get_last_target_status (&wait_ptid, &wait_status);
664
665 /* If not stopped at a fork event, then there's nothing else to
666 do. */
667 if (wait_status.kind != TARGET_WAITKIND_FORKED
668 && wait_status.kind != TARGET_WAITKIND_VFORKED)
669 return 1;
670
671 /* Check if we switched over from WAIT_PTID, since the event was
672 reported. */
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* We did. Switch back to WAIT_PTID thread, to tell the
677 target to follow it (in either direction). We'll
678 afterwards refuse to resume, and inform the user what
679 happened. */
680 switch_to_thread (wait_ptid);
681 should_resume = 0;
682 }
683 }
684
685 tp = inferior_thread ();
686
687 /* If there were any forks/vforks that were caught and are now to be
688 followed, then do so now. */
689 switch (tp->pending_follow.kind)
690 {
691 case TARGET_WAITKIND_FORKED:
692 case TARGET_WAITKIND_VFORKED:
693 {
694 ptid_t parent, child;
695
696 /* If the user did a next/step, etc, over a fork call,
697 preserve the stepping state in the fork child. */
698 if (follow_child && should_resume)
699 {
8358c15c
JK
700 step_resume_breakpoint = clone_momentary_breakpoint
701 (tp->control.step_resume_breakpoint);
16c381f0
JK
702 step_range_start = tp->control.step_range_start;
703 step_range_end = tp->control.step_range_end;
704 step_frame_id = tp->control.step_frame_id;
186c406b
TT
705 exception_resume_breakpoint
706 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 707 command_interp = tp->control.command_interp;
e58b0e63
PA
708
709 /* For now, delete the parent's sr breakpoint, otherwise,
710 parent/child sr breakpoints are considered duplicates,
711 and the child version will not be installed. Remove
712 this when the breakpoints module becomes aware of
713 inferiors and address spaces. */
714 delete_step_resume_breakpoint (tp);
16c381f0
JK
715 tp->control.step_range_start = 0;
716 tp->control.step_range_end = 0;
717 tp->control.step_frame_id = null_frame_id;
186c406b 718 delete_exception_resume_breakpoint (tp);
17b2616c 719 tp->control.command_interp = NULL;
e58b0e63
PA
720 }
721
722 parent = inferior_ptid;
723 child = tp->pending_follow.value.related_pid;
724
d83ad864
DB
725 /* Set up inferior(s) as specified by the caller, and tell the
726 target to do whatever is necessary to follow either parent
727 or child. */
728 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
729 {
730 /* Target refused to follow, or there's some other reason
731 we shouldn't resume. */
732 should_resume = 0;
733 }
734 else
735 {
736 /* This pending follow fork event is now handled, one way
737 or another. The previous selected thread may be gone
738 from the lists by now, but if it is still around, need
739 to clear the pending follow request. */
e09875d4 740 tp = find_thread_ptid (parent);
e58b0e63
PA
741 if (tp)
742 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744 /* This makes sure we don't try to apply the "Switched
745 over from WAIT_PID" logic above. */
746 nullify_last_target_wait_ptid ();
747
1777feb0 748 /* If we followed the child, switch to it... */
e58b0e63
PA
749 if (follow_child)
750 {
751 switch_to_thread (child);
752
753 /* ... and preserve the stepping state, in case the
754 user was stepping over the fork call. */
755 if (should_resume)
756 {
757 tp = inferior_thread ();
8358c15c
JK
758 tp->control.step_resume_breakpoint
759 = step_resume_breakpoint;
16c381f0
JK
760 tp->control.step_range_start = step_range_start;
761 tp->control.step_range_end = step_range_end;
762 tp->control.step_frame_id = step_frame_id;
186c406b
TT
763 tp->control.exception_resume_breakpoint
764 = exception_resume_breakpoint;
17b2616c 765 tp->control.command_interp = command_interp;
e58b0e63
PA
766 }
767 else
768 {
769 /* If we get here, it was because we're trying to
770 resume from a fork catchpoint, but, the user
771 has switched threads away from the thread that
772 forked. In that case, the resume command
773 issued is most likely not applicable to the
774 child, so just warn, and refuse to resume. */
3e43a32a
MS
775 warning (_("Not resuming: switched threads "
776 "before following fork child.\n"));
e58b0e63
PA
777 }
778
779 /* Reset breakpoints in the child as appropriate. */
780 follow_inferior_reset_breakpoints ();
781 }
782 else
783 switch_to_thread (parent);
784 }
785 }
786 break;
787 case TARGET_WAITKIND_SPURIOUS:
788 /* Nothing to follow. */
789 break;
790 default:
791 internal_error (__FILE__, __LINE__,
792 "Unexpected pending_follow.kind %d\n",
793 tp->pending_follow.kind);
794 break;
795 }
c906108c 796
e58b0e63 797 return should_resume;
c906108c
SS
798}
799
d83ad864 800static void
6604731b 801follow_inferior_reset_breakpoints (void)
c906108c 802{
4e1c45ea
PA
803 struct thread_info *tp = inferior_thread ();
804
6604731b
DJ
805 /* Was there a step_resume breakpoint? (There was if the user
806 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
807 thread number. Cloned step_resume breakpoints are disabled on
808 creation, so enable it here now that it is associated with the
809 correct thread.
6604731b
DJ
810
811 step_resumes are a form of bp that are made to be per-thread.
812 Since we created the step_resume bp when the parent process
813 was being debugged, and now are switching to the child process,
814 from the breakpoint package's viewpoint, that's a switch of
815 "threads". We must update the bp's notion of which thread
816 it is for, or it'll be ignored when it triggers. */
817
8358c15c 818 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
819 {
820 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821 tp->control.step_resume_breakpoint->loc->enabled = 1;
822 }
6604731b 823
a1aa2221 824 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 825 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
826 {
827 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828 tp->control.exception_resume_breakpoint->loc->enabled = 1;
829 }
186c406b 830
6604731b
DJ
831 /* Reinsert all breakpoints in the child. The user may have set
832 breakpoints after catching the fork, in which case those
833 were never set in the child, but only in the parent. This makes
834 sure the inserted breakpoints match the breakpoint list. */
835
836 breakpoint_re_set ();
837 insert_breakpoints ();
c906108c 838}
c906108c 839
6c95b8df
PA
840/* The child has exited or execed: resume threads of the parent the
841 user wanted to be executing. */
842
843static int
844proceed_after_vfork_done (struct thread_info *thread,
845 void *arg)
846{
847 int pid = * (int *) arg;
848
849 if (ptid_get_pid (thread->ptid) == pid
850 && is_running (thread->ptid)
851 && !is_executing (thread->ptid)
852 && !thread->stop_requested
a493e3e2 853 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
854 {
855 if (debug_infrun)
856 fprintf_unfiltered (gdb_stdlog,
857 "infrun: resuming vfork parent thread %s\n",
858 target_pid_to_str (thread->ptid));
859
860 switch_to_thread (thread->ptid);
70509625 861 clear_proceed_status (0);
64ce06e4 862 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
863 }
864
865 return 0;
866}
867
868/* Called whenever we notice an exec or exit event, to handle
869 detaching or resuming a vfork parent. */
870
871static void
872handle_vfork_child_exec_or_exit (int exec)
873{
874 struct inferior *inf = current_inferior ();
875
876 if (inf->vfork_parent)
877 {
878 int resume_parent = -1;
879
880 /* This exec or exit marks the end of the shared memory region
881 between the parent and the child. If the user wanted to
882 detach from the parent, now is the time. */
883
884 if (inf->vfork_parent->pending_detach)
885 {
886 struct thread_info *tp;
887 struct cleanup *old_chain;
888 struct program_space *pspace;
889 struct address_space *aspace;
890
1777feb0 891 /* follow-fork child, detach-on-fork on. */
6c95b8df 892
68c9da30
PA
893 inf->vfork_parent->pending_detach = 0;
894
f50f4e56
PA
895 if (!exec)
896 {
897 /* If we're handling a child exit, then inferior_ptid
898 points at the inferior's pid, not to a thread. */
899 old_chain = save_inferior_ptid ();
900 save_current_program_space ();
901 save_current_inferior ();
902 }
903 else
904 old_chain = save_current_space_and_thread ();
6c95b8df
PA
905
906 /* We're letting loose of the parent. */
907 tp = any_live_thread_of_process (inf->vfork_parent->pid);
908 switch_to_thread (tp->ptid);
909
910 /* We're about to detach from the parent, which implicitly
911 removes breakpoints from its address space. There's a
912 catch here: we want to reuse the spaces for the child,
913 but, parent/child are still sharing the pspace at this
914 point, although the exec in reality makes the kernel give
915 the child a fresh set of new pages. The problem here is
916 that the breakpoints module being unaware of this, would
917 likely chose the child process to write to the parent
918 address space. Swapping the child temporarily away from
919 the spaces has the desired effect. Yes, this is "sort
920 of" a hack. */
921
922 pspace = inf->pspace;
923 aspace = inf->aspace;
924 inf->aspace = NULL;
925 inf->pspace = NULL;
926
927 if (debug_infrun || info_verbose)
928 {
6f259a23 929 target_terminal_ours_for_output ();
6c95b8df
PA
930
931 if (exec)
6f259a23
DB
932 {
933 fprintf_filtered (gdb_stdlog,
934 _("Detaching vfork parent process "
935 "%d after child exec.\n"),
936 inf->vfork_parent->pid);
937 }
6c95b8df 938 else
6f259a23
DB
939 {
940 fprintf_filtered (gdb_stdlog,
941 _("Detaching vfork parent process "
942 "%d after child exit.\n"),
943 inf->vfork_parent->pid);
944 }
6c95b8df
PA
945 }
946
947 target_detach (NULL, 0);
948
949 /* Put it back. */
950 inf->pspace = pspace;
951 inf->aspace = aspace;
952
953 do_cleanups (old_chain);
954 }
955 else if (exec)
956 {
957 /* We're staying attached to the parent, so, really give the
958 child a new address space. */
959 inf->pspace = add_program_space (maybe_new_address_space ());
960 inf->aspace = inf->pspace->aspace;
961 inf->removable = 1;
962 set_current_program_space (inf->pspace);
963
964 resume_parent = inf->vfork_parent->pid;
965
966 /* Break the bonds. */
967 inf->vfork_parent->vfork_child = NULL;
968 }
969 else
970 {
971 struct cleanup *old_chain;
972 struct program_space *pspace;
973
974 /* If this is a vfork child exiting, then the pspace and
975 aspaces were shared with the parent. Since we're
976 reporting the process exit, we'll be mourning all that is
977 found in the address space, and switching to null_ptid,
978 preparing to start a new inferior. But, since we don't
979 want to clobber the parent's address/program spaces, we
980 go ahead and create a new one for this exiting
981 inferior. */
982
983 /* Switch to null_ptid, so that clone_program_space doesn't want
984 to read the selected frame of a dead process. */
985 old_chain = save_inferior_ptid ();
986 inferior_ptid = null_ptid;
987
988 /* This inferior is dead, so avoid giving the breakpoints
989 module the option to write through to it (cloning a
990 program space resets breakpoints). */
991 inf->aspace = NULL;
992 inf->pspace = NULL;
993 pspace = add_program_space (maybe_new_address_space ());
994 set_current_program_space (pspace);
995 inf->removable = 1;
7dcd53a0 996 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
997 clone_program_space (pspace, inf->vfork_parent->pspace);
998 inf->pspace = pspace;
999 inf->aspace = pspace->aspace;
1000
1001 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1002 inferior. */
6c95b8df
PA
1003 do_cleanups (old_chain);
1004
1005 resume_parent = inf->vfork_parent->pid;
1006 /* Break the bonds. */
1007 inf->vfork_parent->vfork_child = NULL;
1008 }
1009
1010 inf->vfork_parent = NULL;
1011
1012 gdb_assert (current_program_space == inf->pspace);
1013
1014 if (non_stop && resume_parent != -1)
1015 {
1016 /* If the user wanted the parent to be running, let it go
1017 free now. */
1018 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020 if (debug_infrun)
3e43a32a
MS
1021 fprintf_unfiltered (gdb_stdlog,
1022 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1023 resume_parent);
1024
1025 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030}
1031
eb6c553b 1032/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1033
1034static const char follow_exec_mode_new[] = "new";
1035static const char follow_exec_mode_same[] = "same";
40478521 1036static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1037{
1038 follow_exec_mode_new,
1039 follow_exec_mode_same,
1040 NULL,
1041};
1042
1043static const char *follow_exec_mode_string = follow_exec_mode_same;
1044static void
1045show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046 struct cmd_list_element *c, const char *value)
1047{
1048 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1049}
1050
1777feb0 1051/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1052
c906108c 1053static void
95e50b27 1054follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1055{
95e50b27 1056 struct thread_info *th, *tmp;
6c95b8df 1057 struct inferior *inf = current_inferior ();
95e50b27 1058 int pid = ptid_get_pid (ptid);
7a292a7a 1059
c906108c
SS
1060 /* This is an exec event that we actually wish to pay attention to.
1061 Refresh our symbol table to the newly exec'd program, remove any
1062 momentary bp's, etc.
1063
1064 If there are breakpoints, they aren't really inserted now,
1065 since the exec() transformed our inferior into a fresh set
1066 of instructions.
1067
1068 We want to preserve symbolic breakpoints on the list, since
1069 we have hopes that they can be reset after the new a.out's
1070 symbol table is read.
1071
1072 However, any "raw" breakpoints must be removed from the list
1073 (e.g., the solib bp's), since their address is probably invalid
1074 now.
1075
1076 And, we DON'T want to call delete_breakpoints() here, since
1077 that may write the bp's "shadow contents" (the instruction
1078 value that was overwritten witha TRAP instruction). Since
1777feb0 1079 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1080
1081 mark_breakpoints_out ();
1082
95e50b27
PA
1083 /* The target reports the exec event to the main thread, even if
1084 some other thread does the exec, and even if the main thread was
1085 stopped or already gone. We may still have non-leader threads of
1086 the process on our list. E.g., on targets that don't have thread
1087 exit events (like remote); or on native Linux in non-stop mode if
1088 there were only two threads in the inferior and the non-leader
1089 one is the one that execs (and nothing forces an update of the
1090 thread list up to here). When debugging remotely, it's best to
1091 avoid extra traffic, when possible, so avoid syncing the thread
1092 list with the target, and instead go ahead and delete all threads
1093 of the process but one that reported the event. Note this must
1094 be done before calling update_breakpoints_after_exec, as
1095 otherwise clearing the threads' resources would reference stale
1096 thread breakpoints -- it may have been one of these threads that
1097 stepped across the exec. We could just clear their stepping
1098 states, but as long as we're iterating, might as well delete
1099 them. Deleting them now rather than at the next user-visible
1100 stop provides a nicer sequence of events for user and MI
1101 notifications. */
8a06aea7 1102 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1103 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104 delete_thread (th->ptid);
1105
1106 /* We also need to clear any left over stale state for the
1107 leader/event thread. E.g., if there was any step-resume
1108 breakpoint or similar, it's gone now. We cannot truly
1109 step-to-next statement through an exec(). */
1110 th = inferior_thread ();
8358c15c 1111 th->control.step_resume_breakpoint = NULL;
186c406b 1112 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1113 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1114 th->control.step_range_start = 0;
1115 th->control.step_range_end = 0;
c906108c 1116
95e50b27
PA
1117 /* The user may have had the main thread held stopped in the
1118 previous image (e.g., schedlock on, or non-stop). Release
1119 it now. */
a75724bc
PA
1120 th->stop_requested = 0;
1121
95e50b27
PA
1122 update_breakpoints_after_exec ();
1123
1777feb0 1124 /* What is this a.out's name? */
6c95b8df
PA
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (inferior_ptid),
1127 execd_pathname);
c906108c
SS
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1130 inferior has essentially been killed & reborn. */
7a292a7a 1131
c906108c 1132 gdb_flush (gdb_stdout);
6ca15a4b
PA
1133
1134 breakpoint_init_inferior (inf_execd);
e85a822c 1135
a3be80c3 1136 if (*gdb_sysroot != '\0')
e85a822c 1137 {
998d2a3e 1138 char *name = exec_file_find (execd_pathname, NULL);
ff862be4
GB
1139
1140 execd_pathname = alloca (strlen (name) + 1);
1141 strcpy (execd_pathname, name);
1142 xfree (name);
e85a822c 1143 }
c906108c 1144
cce9b6bf
PA
1145 /* Reset the shared library package. This ensures that we get a
1146 shlib event when the child reaches "_start", at which point the
1147 dld will have had a chance to initialize the child. */
1148 /* Also, loading a symbol file below may trigger symbol lookups, and
1149 we don't want those to be satisfied by the libraries of the
1150 previous incarnation of this process. */
1151 no_shared_libraries (NULL, 0);
1152
6c95b8df
PA
1153 if (follow_exec_mode_string == follow_exec_mode_new)
1154 {
1155 struct program_space *pspace;
6c95b8df
PA
1156
1157 /* The user wants to keep the old inferior and program spaces
1158 around. Create a new fresh one, and switch to it. */
1159
1160 inf = add_inferior (current_inferior ()->pid);
1161 pspace = add_program_space (maybe_new_address_space ());
1162 inf->pspace = pspace;
1163 inf->aspace = pspace->aspace;
1164
1165 exit_inferior_num_silent (current_inferior ()->num);
1166
1167 set_current_inferior (inf);
1168 set_current_program_space (pspace);
1169 }
9107fc8d
PA
1170 else
1171 {
1172 /* The old description may no longer be fit for the new image.
1173 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1174 old description; we'll read a new one below. No need to do
1175 this on "follow-exec-mode new", as the old inferior stays
1176 around (its description is later cleared/refetched on
1177 restart). */
1178 target_clear_description ();
1179 }
6c95b8df
PA
1180
1181 gdb_assert (current_program_space == inf->pspace);
1182
1777feb0 1183 /* That a.out is now the one to use. */
6c95b8df
PA
1184 exec_file_attach (execd_pathname, 0);
1185
c1e56572
JK
1186 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1187 (Position Independent Executable) main symbol file will get applied by
1188 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1189 the breakpoints with the zero displacement. */
1190
7dcd53a0
TT
1191 symbol_file_add (execd_pathname,
1192 (inf->symfile_flags
1193 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1194 NULL, 0);
1195
7dcd53a0
TT
1196 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1197 set_initial_language ();
c906108c 1198
9107fc8d
PA
1199 /* If the target can specify a description, read it. Must do this
1200 after flipping to the new executable (because the target supplied
1201 description must be compatible with the executable's
1202 architecture, and the old executable may e.g., be 32-bit, while
1203 the new one 64-bit), and before anything involving memory or
1204 registers. */
1205 target_find_description ();
1206
268a4a75 1207 solib_create_inferior_hook (0);
c906108c 1208
4efc6507
DE
1209 jit_inferior_created_hook ();
1210
c1e56572
JK
1211 breakpoint_re_set ();
1212
c906108c
SS
1213 /* Reinsert all breakpoints. (Those which were symbolic have
1214 been reset to the proper address in the new a.out, thanks
1777feb0 1215 to symbol_file_command...). */
c906108c
SS
1216 insert_breakpoints ();
1217
1218 /* The next resume of this inferior should bring it to the shlib
1219 startup breakpoints. (If the user had also set bp's on
1220 "main" from the old (parent) process, then they'll auto-
1777feb0 1221 matically get reset there in the new process.). */
c906108c
SS
1222}
1223
963f9c80 1224/* Info about an instruction that is being stepped over. */
31e77af2
PA
1225
1226struct step_over_info
1227{
963f9c80
PA
1228 /* If we're stepping past a breakpoint, this is the address space
1229 and address of the instruction the breakpoint is set at. We'll
1230 skip inserting all breakpoints here. Valid iff ASPACE is
1231 non-NULL. */
31e77af2 1232 struct address_space *aspace;
31e77af2 1233 CORE_ADDR address;
963f9c80
PA
1234
1235 /* The instruction being stepped over triggers a nonsteppable
1236 watchpoint. If true, we'll skip inserting watchpoints. */
1237 int nonsteppable_watchpoint_p;
31e77af2
PA
1238};
1239
1240/* The step-over info of the location that is being stepped over.
1241
1242 Note that with async/breakpoint always-inserted mode, a user might
1243 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1244 being stepped over. As setting a new breakpoint inserts all
1245 breakpoints, we need to make sure the breakpoint being stepped over
1246 isn't inserted then. We do that by only clearing the step-over
1247 info when the step-over is actually finished (or aborted).
1248
1249 Presently GDB can only step over one breakpoint at any given time.
1250 Given threads that can't run code in the same address space as the
1251 breakpoint's can't really miss the breakpoint, GDB could be taught
1252 to step-over at most one breakpoint per address space (so this info
1253 could move to the address space object if/when GDB is extended).
1254 The set of breakpoints being stepped over will normally be much
1255 smaller than the set of all breakpoints, so a flag in the
1256 breakpoint location structure would be wasteful. A separate list
1257 also saves complexity and run-time, as otherwise we'd have to go
1258 through all breakpoint locations clearing their flag whenever we
1259 start a new sequence. Similar considerations weigh against storing
1260 this info in the thread object. Plus, not all step overs actually
1261 have breakpoint locations -- e.g., stepping past a single-step
1262 breakpoint, or stepping to complete a non-continuable
1263 watchpoint. */
1264static struct step_over_info step_over_info;
1265
1266/* Record the address of the breakpoint/instruction we're currently
1267 stepping over. */
1268
1269static void
963f9c80
PA
1270set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1271 int nonsteppable_watchpoint_p)
31e77af2
PA
1272{
1273 step_over_info.aspace = aspace;
1274 step_over_info.address = address;
963f9c80 1275 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1276}
1277
1278/* Called when we're not longer stepping over a breakpoint / an
1279 instruction, so all breakpoints are free to be (re)inserted. */
1280
1281static void
1282clear_step_over_info (void)
1283{
1284 step_over_info.aspace = NULL;
1285 step_over_info.address = 0;
963f9c80 1286 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1287}
1288
7f89fd65 1289/* See infrun.h. */
31e77af2
PA
1290
1291int
1292stepping_past_instruction_at (struct address_space *aspace,
1293 CORE_ADDR address)
1294{
1295 return (step_over_info.aspace != NULL
1296 && breakpoint_address_match (aspace, address,
1297 step_over_info.aspace,
1298 step_over_info.address));
1299}
1300
963f9c80
PA
1301/* See infrun.h. */
1302
1303int
1304stepping_past_nonsteppable_watchpoint (void)
1305{
1306 return step_over_info.nonsteppable_watchpoint_p;
1307}
1308
6cc83d2a
PA
1309/* Returns true if step-over info is valid. */
1310
1311static int
1312step_over_info_valid_p (void)
1313{
963f9c80
PA
1314 return (step_over_info.aspace != NULL
1315 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1316}
1317
c906108c 1318\f
237fc4c9
PA
1319/* Displaced stepping. */
1320
1321/* In non-stop debugging mode, we must take special care to manage
1322 breakpoints properly; in particular, the traditional strategy for
1323 stepping a thread past a breakpoint it has hit is unsuitable.
1324 'Displaced stepping' is a tactic for stepping one thread past a
1325 breakpoint it has hit while ensuring that other threads running
1326 concurrently will hit the breakpoint as they should.
1327
1328 The traditional way to step a thread T off a breakpoint in a
1329 multi-threaded program in all-stop mode is as follows:
1330
1331 a0) Initially, all threads are stopped, and breakpoints are not
1332 inserted.
1333 a1) We single-step T, leaving breakpoints uninserted.
1334 a2) We insert breakpoints, and resume all threads.
1335
1336 In non-stop debugging, however, this strategy is unsuitable: we
1337 don't want to have to stop all threads in the system in order to
1338 continue or step T past a breakpoint. Instead, we use displaced
1339 stepping:
1340
1341 n0) Initially, T is stopped, other threads are running, and
1342 breakpoints are inserted.
1343 n1) We copy the instruction "under" the breakpoint to a separate
1344 location, outside the main code stream, making any adjustments
1345 to the instruction, register, and memory state as directed by
1346 T's architecture.
1347 n2) We single-step T over the instruction at its new location.
1348 n3) We adjust the resulting register and memory state as directed
1349 by T's architecture. This includes resetting T's PC to point
1350 back into the main instruction stream.
1351 n4) We resume T.
1352
1353 This approach depends on the following gdbarch methods:
1354
1355 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1356 indicate where to copy the instruction, and how much space must
1357 be reserved there. We use these in step n1.
1358
1359 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1360 address, and makes any necessary adjustments to the instruction,
1361 register contents, and memory. We use this in step n1.
1362
1363 - gdbarch_displaced_step_fixup adjusts registers and memory after
1364 we have successfuly single-stepped the instruction, to yield the
1365 same effect the instruction would have had if we had executed it
1366 at its original address. We use this in step n3.
1367
1368 - gdbarch_displaced_step_free_closure provides cleanup.
1369
1370 The gdbarch_displaced_step_copy_insn and
1371 gdbarch_displaced_step_fixup functions must be written so that
1372 copying an instruction with gdbarch_displaced_step_copy_insn,
1373 single-stepping across the copied instruction, and then applying
1374 gdbarch_displaced_insn_fixup should have the same effects on the
1375 thread's memory and registers as stepping the instruction in place
1376 would have. Exactly which responsibilities fall to the copy and
1377 which fall to the fixup is up to the author of those functions.
1378
1379 See the comments in gdbarch.sh for details.
1380
1381 Note that displaced stepping and software single-step cannot
1382 currently be used in combination, although with some care I think
1383 they could be made to. Software single-step works by placing
1384 breakpoints on all possible subsequent instructions; if the
1385 displaced instruction is a PC-relative jump, those breakpoints
1386 could fall in very strange places --- on pages that aren't
1387 executable, or at addresses that are not proper instruction
1388 boundaries. (We do generally let other threads run while we wait
1389 to hit the software single-step breakpoint, and they might
1390 encounter such a corrupted instruction.) One way to work around
1391 this would be to have gdbarch_displaced_step_copy_insn fully
1392 simulate the effect of PC-relative instructions (and return NULL)
1393 on architectures that use software single-stepping.
1394
1395 In non-stop mode, we can have independent and simultaneous step
1396 requests, so more than one thread may need to simultaneously step
1397 over a breakpoint. The current implementation assumes there is
1398 only one scratch space per process. In this case, we have to
1399 serialize access to the scratch space. If thread A wants to step
1400 over a breakpoint, but we are currently waiting for some other
1401 thread to complete a displaced step, we leave thread A stopped and
1402 place it in the displaced_step_request_queue. Whenever a displaced
1403 step finishes, we pick the next thread in the queue and start a new
1404 displaced step operation on it. See displaced_step_prepare and
1405 displaced_step_fixup for details. */
1406
237fc4c9
PA
1407struct displaced_step_request
1408{
1409 ptid_t ptid;
1410 struct displaced_step_request *next;
1411};
1412
fc1cf338
PA
1413/* Per-inferior displaced stepping state. */
1414struct displaced_step_inferior_state
1415{
1416 /* Pointer to next in linked list. */
1417 struct displaced_step_inferior_state *next;
1418
1419 /* The process this displaced step state refers to. */
1420 int pid;
1421
1422 /* A queue of pending displaced stepping requests. One entry per
1423 thread that needs to do a displaced step. */
1424 struct displaced_step_request *step_request_queue;
1425
1426 /* If this is not null_ptid, this is the thread carrying out a
1427 displaced single-step in process PID. This thread's state will
1428 require fixing up once it has completed its step. */
1429 ptid_t step_ptid;
1430
1431 /* The architecture the thread had when we stepped it. */
1432 struct gdbarch *step_gdbarch;
1433
1434 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1435 for post-step cleanup. */
1436 struct displaced_step_closure *step_closure;
1437
1438 /* The address of the original instruction, and the copy we
1439 made. */
1440 CORE_ADDR step_original, step_copy;
1441
1442 /* Saved contents of copy area. */
1443 gdb_byte *step_saved_copy;
1444};
1445
1446/* The list of states of processes involved in displaced stepping
1447 presently. */
1448static struct displaced_step_inferior_state *displaced_step_inferior_states;
1449
1450/* Get the displaced stepping state of process PID. */
1451
1452static struct displaced_step_inferior_state *
1453get_displaced_stepping_state (int pid)
1454{
1455 struct displaced_step_inferior_state *state;
1456
1457 for (state = displaced_step_inferior_states;
1458 state != NULL;
1459 state = state->next)
1460 if (state->pid == pid)
1461 return state;
1462
1463 return NULL;
1464}
1465
8f572e5c
PA
1466/* Return true if process PID has a thread doing a displaced step. */
1467
1468static int
1469displaced_step_in_progress (int pid)
1470{
1471 struct displaced_step_inferior_state *displaced;
1472
1473 displaced = get_displaced_stepping_state (pid);
1474 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1475 return 1;
1476
1477 return 0;
1478}
1479
fc1cf338
PA
1480/* Add a new displaced stepping state for process PID to the displaced
1481 stepping state list, or return a pointer to an already existing
1482 entry, if it already exists. Never returns NULL. */
1483
1484static struct displaced_step_inferior_state *
1485add_displaced_stepping_state (int pid)
1486{
1487 struct displaced_step_inferior_state *state;
1488
1489 for (state = displaced_step_inferior_states;
1490 state != NULL;
1491 state = state->next)
1492 if (state->pid == pid)
1493 return state;
237fc4c9 1494
fc1cf338
PA
1495 state = xcalloc (1, sizeof (*state));
1496 state->pid = pid;
1497 state->next = displaced_step_inferior_states;
1498 displaced_step_inferior_states = state;
237fc4c9 1499
fc1cf338
PA
1500 return state;
1501}
1502
a42244db
YQ
1503/* If inferior is in displaced stepping, and ADDR equals to starting address
1504 of copy area, return corresponding displaced_step_closure. Otherwise,
1505 return NULL. */
1506
1507struct displaced_step_closure*
1508get_displaced_step_closure_by_addr (CORE_ADDR addr)
1509{
1510 struct displaced_step_inferior_state *displaced
1511 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1512
1513 /* If checking the mode of displaced instruction in copy area. */
1514 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1515 && (displaced->step_copy == addr))
1516 return displaced->step_closure;
1517
1518 return NULL;
1519}
1520
fc1cf338 1521/* Remove the displaced stepping state of process PID. */
237fc4c9 1522
fc1cf338
PA
1523static void
1524remove_displaced_stepping_state (int pid)
1525{
1526 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1527
fc1cf338
PA
1528 gdb_assert (pid != 0);
1529
1530 it = displaced_step_inferior_states;
1531 prev_next_p = &displaced_step_inferior_states;
1532 while (it)
1533 {
1534 if (it->pid == pid)
1535 {
1536 *prev_next_p = it->next;
1537 xfree (it);
1538 return;
1539 }
1540
1541 prev_next_p = &it->next;
1542 it = *prev_next_p;
1543 }
1544}
1545
1546static void
1547infrun_inferior_exit (struct inferior *inf)
1548{
1549 remove_displaced_stepping_state (inf->pid);
1550}
237fc4c9 1551
fff08868
HZ
1552/* If ON, and the architecture supports it, GDB will use displaced
1553 stepping to step over breakpoints. If OFF, or if the architecture
1554 doesn't support it, GDB will instead use the traditional
1555 hold-and-step approach. If AUTO (which is the default), GDB will
1556 decide which technique to use to step over breakpoints depending on
1557 which of all-stop or non-stop mode is active --- displaced stepping
1558 in non-stop mode; hold-and-step in all-stop mode. */
1559
72d0e2c5 1560static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1561
237fc4c9
PA
1562static void
1563show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1564 struct cmd_list_element *c,
1565 const char *value)
1566{
72d0e2c5 1567 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1568 fprintf_filtered (file,
1569 _("Debugger's willingness to use displaced stepping "
1570 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1571 value, non_stop ? "on" : "off");
1572 else
3e43a32a
MS
1573 fprintf_filtered (file,
1574 _("Debugger's willingness to use displaced stepping "
1575 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1576}
1577
fff08868
HZ
1578/* Return non-zero if displaced stepping can/should be used to step
1579 over breakpoints. */
1580
237fc4c9
PA
1581static int
1582use_displaced_stepping (struct gdbarch *gdbarch)
1583{
72d0e2c5
YQ
1584 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1585 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1586 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1587 && find_record_target () == NULL);
237fc4c9
PA
1588}
1589
1590/* Clean out any stray displaced stepping state. */
1591static void
fc1cf338 1592displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1593{
1594 /* Indicate that there is no cleanup pending. */
fc1cf338 1595 displaced->step_ptid = null_ptid;
237fc4c9 1596
fc1cf338 1597 if (displaced->step_closure)
237fc4c9 1598 {
fc1cf338
PA
1599 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1600 displaced->step_closure);
1601 displaced->step_closure = NULL;
237fc4c9
PA
1602 }
1603}
1604
1605static void
fc1cf338 1606displaced_step_clear_cleanup (void *arg)
237fc4c9 1607{
fc1cf338
PA
1608 struct displaced_step_inferior_state *state = arg;
1609
1610 displaced_step_clear (state);
237fc4c9
PA
1611}
1612
1613/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1614void
1615displaced_step_dump_bytes (struct ui_file *file,
1616 const gdb_byte *buf,
1617 size_t len)
1618{
1619 int i;
1620
1621 for (i = 0; i < len; i++)
1622 fprintf_unfiltered (file, "%02x ", buf[i]);
1623 fputs_unfiltered ("\n", file);
1624}
1625
1626/* Prepare to single-step, using displaced stepping.
1627
1628 Note that we cannot use displaced stepping when we have a signal to
1629 deliver. If we have a signal to deliver and an instruction to step
1630 over, then after the step, there will be no indication from the
1631 target whether the thread entered a signal handler or ignored the
1632 signal and stepped over the instruction successfully --- both cases
1633 result in a simple SIGTRAP. In the first case we mustn't do a
1634 fixup, and in the second case we must --- but we can't tell which.
1635 Comments in the code for 'random signals' in handle_inferior_event
1636 explain how we handle this case instead.
1637
1638 Returns 1 if preparing was successful -- this thread is going to be
1639 stepped now; or 0 if displaced stepping this thread got queued. */
1640static int
1641displaced_step_prepare (ptid_t ptid)
1642{
ad53cd71 1643 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1644 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1645 struct regcache *regcache = get_thread_regcache (ptid);
1646 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1647 CORE_ADDR original, copy;
1648 ULONGEST len;
1649 struct displaced_step_closure *closure;
fc1cf338 1650 struct displaced_step_inferior_state *displaced;
9e529e1d 1651 int status;
237fc4c9
PA
1652
1653 /* We should never reach this function if the architecture does not
1654 support displaced stepping. */
1655 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1656
c1e36e3e
PA
1657 /* Disable range stepping while executing in the scratch pad. We
1658 want a single-step even if executing the displaced instruction in
1659 the scratch buffer lands within the stepping range (e.g., a
1660 jump/branch). */
1661 tp->control.may_range_step = 0;
1662
fc1cf338
PA
1663 /* We have to displaced step one thread at a time, as we only have
1664 access to a single scratch space per inferior. */
237fc4c9 1665
fc1cf338
PA
1666 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1667
1668 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1669 {
1670 /* Already waiting for a displaced step to finish. Defer this
1671 request and place in queue. */
1672 struct displaced_step_request *req, *new_req;
1673
1674 if (debug_displaced)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "displaced: defering step of %s\n",
1677 target_pid_to_str (ptid));
1678
1679 new_req = xmalloc (sizeof (*new_req));
1680 new_req->ptid = ptid;
1681 new_req->next = NULL;
1682
fc1cf338 1683 if (displaced->step_request_queue)
237fc4c9 1684 {
fc1cf338 1685 for (req = displaced->step_request_queue;
237fc4c9
PA
1686 req && req->next;
1687 req = req->next)
1688 ;
1689 req->next = new_req;
1690 }
1691 else
fc1cf338 1692 displaced->step_request_queue = new_req;
237fc4c9
PA
1693
1694 return 0;
1695 }
1696 else
1697 {
1698 if (debug_displaced)
1699 fprintf_unfiltered (gdb_stdlog,
1700 "displaced: stepping %s now\n",
1701 target_pid_to_str (ptid));
1702 }
1703
fc1cf338 1704 displaced_step_clear (displaced);
237fc4c9 1705
ad53cd71
PA
1706 old_cleanups = save_inferior_ptid ();
1707 inferior_ptid = ptid;
1708
515630c5 1709 original = regcache_read_pc (regcache);
237fc4c9
PA
1710
1711 copy = gdbarch_displaced_step_location (gdbarch);
1712 len = gdbarch_max_insn_length (gdbarch);
1713
1714 /* Save the original contents of the copy area. */
fc1cf338 1715 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1716 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1717 &displaced->step_saved_copy);
9e529e1d
JK
1718 status = target_read_memory (copy, displaced->step_saved_copy, len);
1719 if (status != 0)
1720 throw_error (MEMORY_ERROR,
1721 _("Error accessing memory address %s (%s) for "
1722 "displaced-stepping scratch space."),
1723 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1724 if (debug_displaced)
1725 {
5af949e3
UW
1726 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1727 paddress (gdbarch, copy));
fc1cf338
PA
1728 displaced_step_dump_bytes (gdb_stdlog,
1729 displaced->step_saved_copy,
1730 len);
237fc4c9
PA
1731 };
1732
1733 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1734 original, copy, regcache);
237fc4c9
PA
1735
1736 /* We don't support the fully-simulated case at present. */
1737 gdb_assert (closure);
1738
9f5a595d
UW
1739 /* Save the information we need to fix things up if the step
1740 succeeds. */
fc1cf338
PA
1741 displaced->step_ptid = ptid;
1742 displaced->step_gdbarch = gdbarch;
1743 displaced->step_closure = closure;
1744 displaced->step_original = original;
1745 displaced->step_copy = copy;
9f5a595d 1746
fc1cf338 1747 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1748
1749 /* Resume execution at the copy. */
515630c5 1750 regcache_write_pc (regcache, copy);
237fc4c9 1751
ad53cd71
PA
1752 discard_cleanups (ignore_cleanups);
1753
1754 do_cleanups (old_cleanups);
237fc4c9
PA
1755
1756 if (debug_displaced)
5af949e3
UW
1757 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1758 paddress (gdbarch, copy));
237fc4c9 1759
237fc4c9
PA
1760 return 1;
1761}
1762
237fc4c9 1763static void
3e43a32a
MS
1764write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1765 const gdb_byte *myaddr, int len)
237fc4c9
PA
1766{
1767 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1768
237fc4c9
PA
1769 inferior_ptid = ptid;
1770 write_memory (memaddr, myaddr, len);
1771 do_cleanups (ptid_cleanup);
1772}
1773
e2d96639
YQ
1774/* Restore the contents of the copy area for thread PTID. */
1775
1776static void
1777displaced_step_restore (struct displaced_step_inferior_state *displaced,
1778 ptid_t ptid)
1779{
1780 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1781
1782 write_memory_ptid (ptid, displaced->step_copy,
1783 displaced->step_saved_copy, len);
1784 if (debug_displaced)
1785 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1786 target_pid_to_str (ptid),
1787 paddress (displaced->step_gdbarch,
1788 displaced->step_copy));
1789}
1790
237fc4c9 1791static void
2ea28649 1792displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1793{
1794 struct cleanup *old_cleanups;
fc1cf338
PA
1795 struct displaced_step_inferior_state *displaced
1796 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1797
1798 /* Was any thread of this process doing a displaced step? */
1799 if (displaced == NULL)
1800 return;
237fc4c9
PA
1801
1802 /* Was this event for the pid we displaced? */
fc1cf338
PA
1803 if (ptid_equal (displaced->step_ptid, null_ptid)
1804 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1805 return;
1806
fc1cf338 1807 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1808
e2d96639 1809 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1810
cb71640d
PA
1811 /* Fixup may need to read memory/registers. Switch to the thread
1812 that we're fixing up. Also, target_stopped_by_watchpoint checks
1813 the current thread. */
1814 switch_to_thread (event_ptid);
1815
237fc4c9 1816 /* Did the instruction complete successfully? */
cb71640d
PA
1817 if (signal == GDB_SIGNAL_TRAP
1818 && !(target_stopped_by_watchpoint ()
1819 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1820 || target_have_steppable_watchpoint)))
237fc4c9
PA
1821 {
1822 /* Fix up the resulting state. */
fc1cf338
PA
1823 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1824 displaced->step_closure,
1825 displaced->step_original,
1826 displaced->step_copy,
1827 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1828 }
1829 else
1830 {
1831 /* Since the instruction didn't complete, all we can do is
1832 relocate the PC. */
515630c5
UW
1833 struct regcache *regcache = get_thread_regcache (event_ptid);
1834 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1835
fc1cf338 1836 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1837 regcache_write_pc (regcache, pc);
237fc4c9
PA
1838 }
1839
1840 do_cleanups (old_cleanups);
1841
fc1cf338 1842 displaced->step_ptid = null_ptid;
1c5cfe86 1843
237fc4c9 1844 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1845 one now. Leave the state object around, since we're likely to
1846 need it again soon. */
1847 while (displaced->step_request_queue)
237fc4c9
PA
1848 {
1849 struct displaced_step_request *head;
1850 ptid_t ptid;
5af949e3 1851 struct regcache *regcache;
929dfd4f 1852 struct gdbarch *gdbarch;
1c5cfe86 1853 CORE_ADDR actual_pc;
6c95b8df 1854 struct address_space *aspace;
237fc4c9 1855
fc1cf338 1856 head = displaced->step_request_queue;
237fc4c9 1857 ptid = head->ptid;
fc1cf338 1858 displaced->step_request_queue = head->next;
237fc4c9
PA
1859 xfree (head);
1860
ad53cd71
PA
1861 context_switch (ptid);
1862
5af949e3
UW
1863 regcache = get_thread_regcache (ptid);
1864 actual_pc = regcache_read_pc (regcache);
6c95b8df 1865 aspace = get_regcache_aspace (regcache);
8550d3b3 1866 gdbarch = get_regcache_arch (regcache);
1c5cfe86 1867
6c95b8df 1868 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1869 {
1c5cfe86
PA
1870 if (debug_displaced)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "displaced: stepping queued %s now\n",
1873 target_pid_to_str (ptid));
1874
1875 displaced_step_prepare (ptid);
1876
1877 if (debug_displaced)
1878 {
929dfd4f 1879 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1880 gdb_byte buf[4];
1881
5af949e3
UW
1882 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1883 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1884 read_memory (actual_pc, buf, sizeof (buf));
1885 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1886 }
1887
fc1cf338
PA
1888 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1889 displaced->step_closure))
a493e3e2 1890 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1891 else
a493e3e2 1892 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1893
1894 /* Done, we're stepping a thread. */
1895 break;
ad53cd71 1896 }
1c5cfe86
PA
1897 else
1898 {
1899 int step;
1900 struct thread_info *tp = inferior_thread ();
1901
1902 /* The breakpoint we were sitting under has since been
1903 removed. */
16c381f0 1904 tp->control.trap_expected = 0;
1c5cfe86
PA
1905
1906 /* Go back to what we were trying to do. */
1907 step = currently_stepping (tp);
ad53cd71 1908
8550d3b3
YQ
1909 if (step)
1910 step = maybe_software_singlestep (gdbarch, actual_pc);
1911
1c5cfe86 1912 if (debug_displaced)
3e43a32a 1913 fprintf_unfiltered (gdb_stdlog,
27d2932e 1914 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1915 target_pid_to_str (tp->ptid), step);
1916
a493e3e2
PA
1917 target_resume (ptid, step, GDB_SIGNAL_0);
1918 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1919
1920 /* This request was discarded. See if there's any other
1921 thread waiting for its turn. */
1922 }
237fc4c9
PA
1923 }
1924}
1925
5231c1fd
PA
1926/* Update global variables holding ptids to hold NEW_PTID if they were
1927 holding OLD_PTID. */
1928static void
1929infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1930{
1931 struct displaced_step_request *it;
fc1cf338 1932 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1933
1934 if (ptid_equal (inferior_ptid, old_ptid))
1935 inferior_ptid = new_ptid;
1936
fc1cf338
PA
1937 for (displaced = displaced_step_inferior_states;
1938 displaced;
1939 displaced = displaced->next)
1940 {
1941 if (ptid_equal (displaced->step_ptid, old_ptid))
1942 displaced->step_ptid = new_ptid;
1943
1944 for (it = displaced->step_request_queue; it; it = it->next)
1945 if (ptid_equal (it->ptid, old_ptid))
1946 it->ptid = new_ptid;
1947 }
5231c1fd
PA
1948}
1949
237fc4c9
PA
1950\f
1951/* Resuming. */
c906108c
SS
1952
1953/* Things to clean up if we QUIT out of resume (). */
c906108c 1954static void
74b7792f 1955resume_cleanups (void *ignore)
c906108c 1956{
34b7e8a6
PA
1957 if (!ptid_equal (inferior_ptid, null_ptid))
1958 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1959
c906108c
SS
1960 normal_stop ();
1961}
1962
53904c9e
AC
1963static const char schedlock_off[] = "off";
1964static const char schedlock_on[] = "on";
1965static const char schedlock_step[] = "step";
40478521 1966static const char *const scheduler_enums[] = {
ef346e04
AC
1967 schedlock_off,
1968 schedlock_on,
1969 schedlock_step,
1970 NULL
1971};
920d2a44
AC
1972static const char *scheduler_mode = schedlock_off;
1973static void
1974show_scheduler_mode (struct ui_file *file, int from_tty,
1975 struct cmd_list_element *c, const char *value)
1976{
3e43a32a
MS
1977 fprintf_filtered (file,
1978 _("Mode for locking scheduler "
1979 "during execution is \"%s\".\n"),
920d2a44
AC
1980 value);
1981}
c906108c
SS
1982
1983static void
96baa820 1984set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1985{
eefe576e
AC
1986 if (!target_can_lock_scheduler)
1987 {
1988 scheduler_mode = schedlock_off;
1989 error (_("Target '%s' cannot support this command."), target_shortname);
1990 }
c906108c
SS
1991}
1992
d4db2f36
PA
1993/* True if execution commands resume all threads of all processes by
1994 default; otherwise, resume only threads of the current inferior
1995 process. */
1996int sched_multi = 0;
1997
2facfe5c
DD
1998/* Try to setup for software single stepping over the specified location.
1999 Return 1 if target_resume() should use hardware single step.
2000
2001 GDBARCH the current gdbarch.
2002 PC the location to step over. */
2003
2004static int
2005maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2006{
2007 int hw_step = 1;
2008
f02253f1
HZ
2009 if (execution_direction == EXEC_FORWARD
2010 && gdbarch_software_single_step_p (gdbarch)
99e40580 2011 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2012 {
99e40580 2013 hw_step = 0;
2facfe5c
DD
2014 }
2015 return hw_step;
2016}
c906108c 2017
f3263aa4
PA
2018/* See infrun.h. */
2019
09cee04b
PA
2020ptid_t
2021user_visible_resume_ptid (int step)
2022{
f3263aa4 2023 ptid_t resume_ptid;
09cee04b 2024
09cee04b
PA
2025 if (non_stop)
2026 {
2027 /* With non-stop mode on, threads are always handled
2028 individually. */
2029 resume_ptid = inferior_ptid;
2030 }
2031 else if ((scheduler_mode == schedlock_on)
03d46957 2032 || (scheduler_mode == schedlock_step && step))
09cee04b 2033 {
f3263aa4
PA
2034 /* User-settable 'scheduler' mode requires solo thread
2035 resume. */
09cee04b
PA
2036 resume_ptid = inferior_ptid;
2037 }
f3263aa4
PA
2038 else if (!sched_multi && target_supports_multi_process ())
2039 {
2040 /* Resume all threads of the current process (and none of other
2041 processes). */
2042 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2043 }
2044 else
2045 {
2046 /* Resume all threads of all processes. */
2047 resume_ptid = RESUME_ALL;
2048 }
09cee04b
PA
2049
2050 return resume_ptid;
2051}
2052
64ce06e4
PA
2053/* Wrapper for target_resume, that handles infrun-specific
2054 bookkeeping. */
2055
2056static void
2057do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2058{
2059 struct thread_info *tp = inferior_thread ();
2060
2061 /* Install inferior's terminal modes. */
2062 target_terminal_inferior ();
2063
2064 /* Avoid confusing the next resume, if the next stop/resume
2065 happens to apply to another thread. */
2066 tp->suspend.stop_signal = GDB_SIGNAL_0;
2067
8f572e5c
PA
2068 /* Advise target which signals may be handled silently.
2069
2070 If we have removed breakpoints because we are stepping over one
2071 in-line (in any thread), we need to receive all signals to avoid
2072 accidentally skipping a breakpoint during execution of a signal
2073 handler.
2074
2075 Likewise if we're displaced stepping, otherwise a trap for a
2076 breakpoint in a signal handler might be confused with the
2077 displaced step finishing. We don't make the displaced_step_fixup
2078 step distinguish the cases instead, because:
2079
2080 - a backtrace while stopped in the signal handler would show the
2081 scratch pad as frame older than the signal handler, instead of
2082 the real mainline code.
2083
2084 - when the thread is later resumed, the signal handler would
2085 return to the scratch pad area, which would no longer be
2086 valid. */
2087 if (step_over_info_valid_p ()
2088 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2089 target_pass_signals (0, NULL);
2090 else
2091 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2092
2093 target_resume (resume_ptid, step, sig);
2094}
2095
c906108c
SS
2096/* Resume the inferior, but allow a QUIT. This is useful if the user
2097 wants to interrupt some lengthy single-stepping operation
2098 (for child processes, the SIGINT goes to the inferior, and so
2099 we get a SIGINT random_signal, but for remote debugging and perhaps
2100 other targets, that's not true).
2101
c906108c
SS
2102 SIG is the signal to give the inferior (zero for none). */
2103void
64ce06e4 2104resume (enum gdb_signal sig)
c906108c 2105{
74b7792f 2106 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2107 struct regcache *regcache = get_current_regcache ();
2108 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2109 struct thread_info *tp = inferior_thread ();
515630c5 2110 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2111 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2112 ptid_t resume_ptid;
856e7dd6
PA
2113 /* This represents the user's step vs continue request. When
2114 deciding whether "set scheduler-locking step" applies, it's the
2115 user's intention that counts. */
2116 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2117 /* This represents what we'll actually request the target to do.
2118 This can decay from a step to a continue, if e.g., we need to
2119 implement single-stepping with breakpoints (software
2120 single-step). */
6b403daa 2121 int step;
c7e8a53c 2122
af48d08f
PA
2123 tp->stepped_breakpoint = 0;
2124
c906108c
SS
2125 QUIT;
2126
6b403daa
PA
2127 /* Depends on stepped_breakpoint. */
2128 step = currently_stepping (tp);
2129
74609e71
YQ
2130 if (current_inferior ()->waiting_for_vfork_done)
2131 {
48f9886d
PA
2132 /* Don't try to single-step a vfork parent that is waiting for
2133 the child to get out of the shared memory region (by exec'ing
2134 or exiting). This is particularly important on software
2135 single-step archs, as the child process would trip on the
2136 software single step breakpoint inserted for the parent
2137 process. Since the parent will not actually execute any
2138 instruction until the child is out of the shared region (such
2139 are vfork's semantics), it is safe to simply continue it.
2140 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2141 the parent, and tell it to `keep_going', which automatically
2142 re-sets it stepping. */
74609e71
YQ
2143 if (debug_infrun)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "infrun: resume : clear step\n");
a09dd441 2146 step = 0;
74609e71
YQ
2147 }
2148
527159b7 2149 if (debug_infrun)
237fc4c9 2150 fprintf_unfiltered (gdb_stdlog,
c9737c08 2151 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2152 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2153 step, gdb_signal_to_symbol_string (sig),
2154 tp->control.trap_expected,
0d9a9a5f
PA
2155 target_pid_to_str (inferior_ptid),
2156 paddress (gdbarch, pc));
c906108c 2157
c2c6d25f
JM
2158 /* Normally, by the time we reach `resume', the breakpoints are either
2159 removed or inserted, as appropriate. The exception is if we're sitting
2160 at a permanent breakpoint; we need to step over it, but permanent
2161 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2162 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2163 {
af48d08f
PA
2164 if (sig != GDB_SIGNAL_0)
2165 {
2166 /* We have a signal to pass to the inferior. The resume
2167 may, or may not take us to the signal handler. If this
2168 is a step, we'll need to stop in the signal handler, if
2169 there's one, (if the target supports stepping into
2170 handlers), or in the next mainline instruction, if
2171 there's no handler. If this is a continue, we need to be
2172 sure to run the handler with all breakpoints inserted.
2173 In all cases, set a breakpoint at the current address
2174 (where the handler returns to), and once that breakpoint
2175 is hit, resume skipping the permanent breakpoint. If
2176 that breakpoint isn't hit, then we've stepped into the
2177 signal handler (or hit some other event). We'll delete
2178 the step-resume breakpoint then. */
2179
2180 if (debug_infrun)
2181 fprintf_unfiltered (gdb_stdlog,
2182 "infrun: resume: skipping permanent breakpoint, "
2183 "deliver signal first\n");
2184
2185 clear_step_over_info ();
2186 tp->control.trap_expected = 0;
2187
2188 if (tp->control.step_resume_breakpoint == NULL)
2189 {
2190 /* Set a "high-priority" step-resume, as we don't want
2191 user breakpoints at PC to trigger (again) when this
2192 hits. */
2193 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2194 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2195
2196 tp->step_after_step_resume_breakpoint = step;
2197 }
2198
2199 insert_breakpoints ();
2200 }
2201 else
2202 {
2203 /* There's no signal to pass, we can go ahead and skip the
2204 permanent breakpoint manually. */
2205 if (debug_infrun)
2206 fprintf_unfiltered (gdb_stdlog,
2207 "infrun: resume: skipping permanent breakpoint\n");
2208 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2209 /* Update pc to reflect the new address from which we will
2210 execute instructions. */
2211 pc = regcache_read_pc (regcache);
2212
2213 if (step)
2214 {
2215 /* We've already advanced the PC, so the stepping part
2216 is done. Now we need to arrange for a trap to be
2217 reported to handle_inferior_event. Set a breakpoint
2218 at the current PC, and run to it. Don't update
2219 prev_pc, because if we end in
44a1ee51
PA
2220 switch_back_to_stepped_thread, we want the "expected
2221 thread advanced also" branch to be taken. IOW, we
2222 don't want this thread to step further from PC
af48d08f 2223 (overstep). */
1ac806b8 2224 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2225 insert_single_step_breakpoint (gdbarch, aspace, pc);
2226 insert_breakpoints ();
2227
856e7dd6 2228 resume_ptid = user_visible_resume_ptid (user_step);
1ac806b8 2229 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f
PA
2230 discard_cleanups (old_cleanups);
2231 return;
2232 }
2233 }
6d350bb5 2234 }
c2c6d25f 2235
c1e36e3e
PA
2236 /* If we have a breakpoint to step over, make sure to do a single
2237 step only. Same if we have software watchpoints. */
2238 if (tp->control.trap_expected || bpstat_should_step ())
2239 tp->control.may_range_step = 0;
2240
237fc4c9
PA
2241 /* If enabled, step over breakpoints by executing a copy of the
2242 instruction at a different address.
2243
2244 We can't use displaced stepping when we have a signal to deliver;
2245 the comments for displaced_step_prepare explain why. The
2246 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2247 signals' explain what we do instead.
2248
2249 We can't use displaced stepping when we are waiting for vfork_done
2250 event, displaced stepping breaks the vfork child similarly as single
2251 step software breakpoint. */
515630c5 2252 if (use_displaced_stepping (gdbarch)
36728e82 2253 && tp->control.trap_expected
cb71640d 2254 && !step_over_info_valid_p ()
a493e3e2 2255 && sig == GDB_SIGNAL_0
74609e71 2256 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2257 {
fc1cf338
PA
2258 struct displaced_step_inferior_state *displaced;
2259
237fc4c9 2260 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2261 {
2262 /* Got placed in displaced stepping queue. Will be resumed
2263 later when all the currently queued displaced stepping
251bde03
PA
2264 requests finish. The thread is not executing at this
2265 point, and the call to set_executing will be made later.
2266 But we need to call set_running here, since from the
2267 user/frontend's point of view, threads were set running.
2268 Unless we're calling an inferior function, as in that
2269 case we pretend the inferior doesn't run at all. */
2270 if (!tp->control.in_infcall)
856e7dd6 2271 set_running (user_visible_resume_ptid (user_step), 1);
d56b7306
VP
2272 discard_cleanups (old_cleanups);
2273 return;
2274 }
99e40580 2275
ca7781d2
LM
2276 /* Update pc to reflect the new address from which we will execute
2277 instructions due to displaced stepping. */
2278 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2279
fc1cf338 2280 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2281 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2282 displaced->step_closure);
237fc4c9
PA
2283 }
2284
2facfe5c 2285 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2286 else if (step)
2facfe5c 2287 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2288
30852783
UW
2289 /* Currently, our software single-step implementation leads to different
2290 results than hardware single-stepping in one situation: when stepping
2291 into delivering a signal which has an associated signal handler,
2292 hardware single-step will stop at the first instruction of the handler,
2293 while software single-step will simply skip execution of the handler.
2294
2295 For now, this difference in behavior is accepted since there is no
2296 easy way to actually implement single-stepping into a signal handler
2297 without kernel support.
2298
2299 However, there is one scenario where this difference leads to follow-on
2300 problems: if we're stepping off a breakpoint by removing all breakpoints
2301 and then single-stepping. In this case, the software single-step
2302 behavior means that even if there is a *breakpoint* in the signal
2303 handler, GDB still would not stop.
2304
2305 Fortunately, we can at least fix this particular issue. We detect
2306 here the case where we are about to deliver a signal while software
2307 single-stepping with breakpoints removed. In this situation, we
2308 revert the decisions to remove all breakpoints and insert single-
2309 step breakpoints, and instead we install a step-resume breakpoint
2310 at the current address, deliver the signal without stepping, and
2311 once we arrive back at the step-resume breakpoint, actually step
2312 over the breakpoint we originally wanted to step over. */
34b7e8a6 2313 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2314 && sig != GDB_SIGNAL_0
2315 && step_over_info_valid_p ())
30852783
UW
2316 {
2317 /* If we have nested signals or a pending signal is delivered
2318 immediately after a handler returns, might might already have
2319 a step-resume breakpoint set on the earlier handler. We cannot
2320 set another step-resume breakpoint; just continue on until the
2321 original breakpoint is hit. */
2322 if (tp->control.step_resume_breakpoint == NULL)
2323 {
2c03e5be 2324 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2325 tp->step_after_step_resume_breakpoint = 1;
2326 }
2327
34b7e8a6 2328 delete_single_step_breakpoints (tp);
30852783 2329
31e77af2 2330 clear_step_over_info ();
30852783 2331 tp->control.trap_expected = 0;
31e77af2
PA
2332
2333 insert_breakpoints ();
30852783
UW
2334 }
2335
b0f16a3e
SM
2336 /* If STEP is set, it's a request to use hardware stepping
2337 facilities. But in that case, we should never
2338 use singlestep breakpoint. */
34b7e8a6 2339 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2340
b0f16a3e
SM
2341 /* Decide the set of threads to ask the target to resume. Start
2342 by assuming everything will be resumed, than narrow the set
2343 by applying increasingly restricting conditions. */
856e7dd6 2344 resume_ptid = user_visible_resume_ptid (user_step);
cd76b0b7 2345
251bde03
PA
2346 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2347 (e.g., we might need to step over a breakpoint), from the
2348 user/frontend's point of view, all threads in RESUME_PTID are now
2349 running. Unless we're calling an inferior function, as in that
2350 case pretend we inferior doesn't run at all. */
2351 if (!tp->control.in_infcall)
2352 set_running (resume_ptid, 1);
2353
b0f16a3e 2354 /* Maybe resume a single thread after all. */
34b7e8a6 2355 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2356 && tp->control.trap_expected)
2357 {
2358 /* We're allowing a thread to run past a breakpoint it has
2359 hit, by single-stepping the thread with the breakpoint
2360 removed. In which case, we need to single-step only this
2361 thread, and keep others stopped, as they can miss this
2362 breakpoint if allowed to run. */
2363 resume_ptid = inferior_ptid;
2364 }
d4db2f36 2365
7f5ef605
PA
2366 if (execution_direction != EXEC_REVERSE
2367 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2368 {
7f5ef605
PA
2369 /* The only case we currently need to step a breakpoint
2370 instruction is when we have a signal to deliver. See
2371 handle_signal_stop where we handle random signals that could
2372 take out us out of the stepping range. Normally, in that
2373 case we end up continuing (instead of stepping) over the
2374 signal handler with a breakpoint at PC, but there are cases
2375 where we should _always_ single-step, even if we have a
2376 step-resume breakpoint, like when a software watchpoint is
2377 set. Assuming single-stepping and delivering a signal at the
2378 same time would takes us to the signal handler, then we could
2379 have removed the breakpoint at PC to step over it. However,
2380 some hardware step targets (like e.g., Mac OS) can't step
2381 into signal handlers, and for those, we need to leave the
2382 breakpoint at PC inserted, as otherwise if the handler
2383 recurses and executes PC again, it'll miss the breakpoint.
2384 So we leave the breakpoint inserted anyway, but we need to
2385 record that we tried to step a breakpoint instruction, so
2386 that adjust_pc_after_break doesn't end up confused. */
2387 gdb_assert (sig != GDB_SIGNAL_0);
2388
2389 tp->stepped_breakpoint = 1;
2390
b0f16a3e
SM
2391 /* Most targets can step a breakpoint instruction, thus
2392 executing it normally. But if this one cannot, just
2393 continue and we will hit it anyway. */
7f5ef605 2394 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2395 step = 0;
2396 }
ef5cf84e 2397
b0f16a3e
SM
2398 if (debug_displaced
2399 && use_displaced_stepping (gdbarch)
cb71640d
PA
2400 && tp->control.trap_expected
2401 && !step_over_info_valid_p ())
b0f16a3e 2402 {
d9b67d9f 2403 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2404 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2405 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2406 gdb_byte buf[4];
2407
2408 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2409 paddress (resume_gdbarch, actual_pc));
2410 read_memory (actual_pc, buf, sizeof (buf));
2411 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2412 }
237fc4c9 2413
b0f16a3e
SM
2414 if (tp->control.may_range_step)
2415 {
2416 /* If we're resuming a thread with the PC out of the step
2417 range, then we're doing some nested/finer run control
2418 operation, like stepping the thread out of the dynamic
2419 linker or the displaced stepping scratch pad. We
2420 shouldn't have allowed a range step then. */
2421 gdb_assert (pc_in_thread_step_range (pc, tp));
2422 }
c1e36e3e 2423
64ce06e4 2424 do_target_resume (resume_ptid, step, sig);
c906108c
SS
2425 discard_cleanups (old_cleanups);
2426}
2427\f
237fc4c9 2428/* Proceeding. */
c906108c
SS
2429
2430/* Clear out all variables saying what to do when inferior is continued.
2431 First do this, then set the ones you want, then call `proceed'. */
2432
a7212384
UW
2433static void
2434clear_proceed_status_thread (struct thread_info *tp)
c906108c 2435{
a7212384
UW
2436 if (debug_infrun)
2437 fprintf_unfiltered (gdb_stdlog,
2438 "infrun: clear_proceed_status_thread (%s)\n",
2439 target_pid_to_str (tp->ptid));
d6b48e9c 2440
70509625
PA
2441 /* If this signal should not be seen by program, give it zero.
2442 Used for debugging signals. */
2443 if (!signal_pass_state (tp->suspend.stop_signal))
2444 tp->suspend.stop_signal = GDB_SIGNAL_0;
2445
16c381f0
JK
2446 tp->control.trap_expected = 0;
2447 tp->control.step_range_start = 0;
2448 tp->control.step_range_end = 0;
c1e36e3e 2449 tp->control.may_range_step = 0;
16c381f0
JK
2450 tp->control.step_frame_id = null_frame_id;
2451 tp->control.step_stack_frame_id = null_frame_id;
2452 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2453 tp->control.step_start_function = NULL;
a7212384 2454 tp->stop_requested = 0;
4e1c45ea 2455
16c381f0 2456 tp->control.stop_step = 0;
32400beb 2457
16c381f0 2458 tp->control.proceed_to_finish = 0;
414c69f7 2459
17b2616c 2460 tp->control.command_interp = NULL;
856e7dd6 2461 tp->control.stepping_command = 0;
17b2616c 2462
a7212384 2463 /* Discard any remaining commands or status from previous stop. */
16c381f0 2464 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2465}
32400beb 2466
a7212384 2467void
70509625 2468clear_proceed_status (int step)
a7212384 2469{
6c95b8df
PA
2470 if (!non_stop)
2471 {
70509625
PA
2472 struct thread_info *tp;
2473 ptid_t resume_ptid;
2474
2475 resume_ptid = user_visible_resume_ptid (step);
2476
2477 /* In all-stop mode, delete the per-thread status of all threads
2478 we're about to resume, implicitly and explicitly. */
2479 ALL_NON_EXITED_THREADS (tp)
2480 {
2481 if (!ptid_match (tp->ptid, resume_ptid))
2482 continue;
2483 clear_proceed_status_thread (tp);
2484 }
6c95b8df
PA
2485 }
2486
a7212384
UW
2487 if (!ptid_equal (inferior_ptid, null_ptid))
2488 {
2489 struct inferior *inferior;
2490
2491 if (non_stop)
2492 {
6c95b8df
PA
2493 /* If in non-stop mode, only delete the per-thread status of
2494 the current thread. */
a7212384
UW
2495 clear_proceed_status_thread (inferior_thread ());
2496 }
6c95b8df 2497
d6b48e9c 2498 inferior = current_inferior ();
16c381f0 2499 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2500 }
2501
c906108c 2502 stop_after_trap = 0;
f3b1572e 2503
31e77af2
PA
2504 clear_step_over_info ();
2505
f3b1572e 2506 observer_notify_about_to_proceed ();
c906108c
SS
2507}
2508
99619bea
PA
2509/* Returns true if TP is still stopped at a breakpoint that needs
2510 stepping-over in order to make progress. If the breakpoint is gone
2511 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2512
2513static int
99619bea
PA
2514thread_still_needs_step_over (struct thread_info *tp)
2515{
2516 if (tp->stepping_over_breakpoint)
2517 {
2518 struct regcache *regcache = get_thread_regcache (tp->ptid);
2519
2520 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2521 regcache_read_pc (regcache))
2522 == ordinary_breakpoint_here)
99619bea
PA
2523 return 1;
2524
2525 tp->stepping_over_breakpoint = 0;
2526 }
2527
2528 return 0;
2529}
2530
483805cf
PA
2531/* Returns true if scheduler locking applies. STEP indicates whether
2532 we're about to do a step/next-like command to a thread. */
2533
2534static int
856e7dd6 2535schedlock_applies (struct thread_info *tp)
483805cf
PA
2536{
2537 return (scheduler_mode == schedlock_on
2538 || (scheduler_mode == schedlock_step
856e7dd6 2539 && tp->control.stepping_command));
483805cf
PA
2540}
2541
99619bea
PA
2542/* Look a thread other than EXCEPT that has previously reported a
2543 breakpoint event, and thus needs a step-over in order to make
856e7dd6 2544 progress. Returns NULL is none is found. */
99619bea
PA
2545
2546static struct thread_info *
856e7dd6 2547find_thread_needs_step_over (struct thread_info *except)
ea67f13b 2548{
99619bea 2549 struct thread_info *tp, *current;
5a437975
DE
2550
2551 /* With non-stop mode on, threads are always handled individually. */
2552 gdb_assert (! non_stop);
ea67f13b 2553
99619bea 2554 current = inferior_thread ();
d4db2f36 2555
99619bea
PA
2556 /* If scheduler locking applies, we can avoid iterating over all
2557 threads. */
856e7dd6 2558 if (schedlock_applies (except))
ea67f13b 2559 {
99619bea
PA
2560 if (except != current
2561 && thread_still_needs_step_over (current))
2562 return current;
515630c5 2563
99619bea
PA
2564 return NULL;
2565 }
0d9a9a5f 2566
034f788c 2567 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2568 {
2569 /* Ignore the EXCEPT thread. */
2570 if (tp == except)
2571 continue;
2572 /* Ignore threads of processes we're not resuming. */
2573 if (!sched_multi
2574 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2575 continue;
2576
2577 if (thread_still_needs_step_over (tp))
2578 return tp;
ea67f13b
DJ
2579 }
2580
99619bea 2581 return NULL;
ea67f13b 2582}
e4846b08 2583
c906108c
SS
2584/* Basic routine for continuing the program in various fashions.
2585
2586 ADDR is the address to resume at, or -1 for resume where stopped.
2587 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2588 or -1 for act according to how it stopped.
c906108c 2589 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2590 -1 means return after that and print nothing.
2591 You should probably set various step_... variables
2592 before calling here, if you are stepping.
c906108c
SS
2593
2594 You should call clear_proceed_status before calling proceed. */
2595
2596void
64ce06e4 2597proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2598{
e58b0e63
PA
2599 struct regcache *regcache;
2600 struct gdbarch *gdbarch;
4e1c45ea 2601 struct thread_info *tp;
e58b0e63 2602 CORE_ADDR pc;
6c95b8df 2603 struct address_space *aspace;
c906108c 2604
e58b0e63
PA
2605 /* If we're stopped at a fork/vfork, follow the branch set by the
2606 "set follow-fork-mode" command; otherwise, we'll just proceed
2607 resuming the current thread. */
2608 if (!follow_fork ())
2609 {
2610 /* The target for some reason decided not to resume. */
2611 normal_stop ();
f148b27e
PA
2612 if (target_can_async_p ())
2613 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2614 return;
2615 }
2616
842951eb
PA
2617 /* We'll update this if & when we switch to a new thread. */
2618 previous_inferior_ptid = inferior_ptid;
2619
e58b0e63
PA
2620 regcache = get_current_regcache ();
2621 gdbarch = get_regcache_arch (regcache);
6c95b8df 2622 aspace = get_regcache_aspace (regcache);
e58b0e63 2623 pc = regcache_read_pc (regcache);
2adfaa28 2624 tp = inferior_thread ();
e58b0e63 2625
99619bea
PA
2626 /* Fill in with reasonable starting values. */
2627 init_thread_stepping_state (tp);
2628
2acceee2 2629 if (addr == (CORE_ADDR) -1)
c906108c 2630 {
af48d08f
PA
2631 if (pc == stop_pc
2632 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2633 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2634 /* There is a breakpoint at the address we will resume at,
2635 step one instruction before inserting breakpoints so that
2636 we do not stop right away (and report a second hit at this
b2175913
MS
2637 breakpoint).
2638
2639 Note, we don't do this in reverse, because we won't
2640 actually be executing the breakpoint insn anyway.
2641 We'll be (un-)executing the previous instruction. */
99619bea 2642 tp->stepping_over_breakpoint = 1;
515630c5
UW
2643 else if (gdbarch_single_step_through_delay_p (gdbarch)
2644 && gdbarch_single_step_through_delay (gdbarch,
2645 get_current_frame ()))
3352ef37
AC
2646 /* We stepped onto an instruction that needs to be stepped
2647 again before re-inserting the breakpoint, do so. */
99619bea 2648 tp->stepping_over_breakpoint = 1;
c906108c
SS
2649 }
2650 else
2651 {
515630c5 2652 regcache_write_pc (regcache, addr);
c906108c
SS
2653 }
2654
70509625
PA
2655 if (siggnal != GDB_SIGNAL_DEFAULT)
2656 tp->suspend.stop_signal = siggnal;
2657
17b2616c
PA
2658 /* Record the interpreter that issued the execution command that
2659 caused this thread to resume. If the top level interpreter is
2660 MI/async, and the execution command was a CLI command
2661 (next/step/etc.), we'll want to print stop event output to the MI
2662 console channel (the stepped-to line, etc.), as if the user
2663 entered the execution command on a real GDB console. */
2664 inferior_thread ()->control.command_interp = command_interp ();
2665
527159b7 2666 if (debug_infrun)
8a9de0e4 2667 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2668 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2669 paddress (gdbarch, addr),
64ce06e4 2670 gdb_signal_to_symbol_string (siggnal));
527159b7 2671
94cc34af
PA
2672 if (non_stop)
2673 /* In non-stop, each thread is handled individually. The context
2674 must already be set to the right thread here. */
2675 ;
2676 else
2677 {
99619bea
PA
2678 struct thread_info *step_over;
2679
94cc34af
PA
2680 /* In a multi-threaded task we may select another thread and
2681 then continue or step.
c906108c 2682
94cc34af
PA
2683 But if the old thread was stopped at a breakpoint, it will
2684 immediately cause another breakpoint stop without any
2685 execution (i.e. it will report a breakpoint hit incorrectly).
2686 So we must step over it first.
c906108c 2687
99619bea
PA
2688 Look for a thread other than the current (TP) that reported a
2689 breakpoint hit and hasn't been resumed yet since. */
856e7dd6 2690 step_over = find_thread_needs_step_over (tp);
99619bea 2691 if (step_over != NULL)
2adfaa28 2692 {
99619bea
PA
2693 if (debug_infrun)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "infrun: need to step-over [%s] first\n",
2696 target_pid_to_str (step_over->ptid));
2697
2698 /* Store the prev_pc for the stepping thread too, needed by
44a1ee51 2699 switch_back_to_stepped_thread. */
99619bea
PA
2700 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2701 switch_to_thread (step_over->ptid);
2702 tp = step_over;
2adfaa28 2703 }
94cc34af 2704 }
c906108c 2705
31e77af2
PA
2706 /* If we need to step over a breakpoint, and we're not using
2707 displaced stepping to do so, insert all breakpoints (watchpoints,
2708 etc.) but the one we're stepping over, step one instruction, and
2709 then re-insert the breakpoint when that step is finished. */
99619bea 2710 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2711 {
31e77af2
PA
2712 struct regcache *regcache = get_current_regcache ();
2713
2714 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2715 regcache_read_pc (regcache), 0);
30852783 2716 }
31e77af2
PA
2717 else
2718 clear_step_over_info ();
30852783 2719
31e77af2 2720 insert_breakpoints ();
30852783 2721
99619bea
PA
2722 tp->control.trap_expected = tp->stepping_over_breakpoint;
2723
c906108c
SS
2724 annotate_starting ();
2725
2726 /* Make sure that output from GDB appears before output from the
2727 inferior. */
2728 gdb_flush (gdb_stdout);
2729
e4846b08 2730 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2731 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2732 scenarios such as inferior function calls or returning from
2733 a function via the return command. In those cases, the prev_pc
2734 value was not set properly for subsequent commands. The prev_pc value
2735 is used to initialize the starting line number in the ecs. With an
2736 invalid value, the gdb next command ends up stopping at the position
2737 represented by the next line table entry past our start position.
2738 On platforms that generate one line table entry per line, this
2739 is not a problem. However, on the ia64, the compiler generates
2740 extraneous line table entries that do not increase the line number.
2741 When we issue the gdb next command on the ia64 after an inferior call
2742 or a return command, we often end up a few instructions forward, still
2743 within the original line we started.
2744
d5cd6034
JB
2745 An attempt was made to refresh the prev_pc at the same time the
2746 execution_control_state is initialized (for instance, just before
2747 waiting for an inferior event). But this approach did not work
2748 because of platforms that use ptrace, where the pc register cannot
2749 be read unless the inferior is stopped. At that point, we are not
2750 guaranteed the inferior is stopped and so the regcache_read_pc() call
2751 can fail. Setting the prev_pc value here ensures the value is updated
2752 correctly when the inferior is stopped. */
4e1c45ea 2753 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2754
c906108c 2755 /* Resume inferior. */
64ce06e4 2756 resume (tp->suspend.stop_signal);
c906108c
SS
2757
2758 /* Wait for it to stop (if not standalone)
2759 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2760 /* Do this only if we are not using the event loop, or if the target
1777feb0 2761 does not support asynchronous execution. */
362646f5 2762 if (!target_can_async_p ())
43ff13b4 2763 {
e4c8541f 2764 wait_for_inferior ();
43ff13b4
JM
2765 normal_stop ();
2766 }
c906108c 2767}
c906108c
SS
2768\f
2769
2770/* Start remote-debugging of a machine over a serial link. */
96baa820 2771
c906108c 2772void
8621d6a9 2773start_remote (int from_tty)
c906108c 2774{
d6b48e9c 2775 struct inferior *inferior;
d6b48e9c
PA
2776
2777 inferior = current_inferior ();
16c381f0 2778 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2779
1777feb0 2780 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2781 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2782 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2783 nothing is returned (instead of just blocking). Because of this,
2784 targets expecting an immediate response need to, internally, set
2785 things up so that the target_wait() is forced to eventually
1777feb0 2786 timeout. */
6426a772
JM
2787 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2788 differentiate to its caller what the state of the target is after
2789 the initial open has been performed. Here we're assuming that
2790 the target has stopped. It should be possible to eventually have
2791 target_open() return to the caller an indication that the target
2792 is currently running and GDB state should be set to the same as
1777feb0 2793 for an async run. */
e4c8541f 2794 wait_for_inferior ();
8621d6a9
DJ
2795
2796 /* Now that the inferior has stopped, do any bookkeeping like
2797 loading shared libraries. We want to do this before normal_stop,
2798 so that the displayed frame is up to date. */
2799 post_create_inferior (&current_target, from_tty);
2800
6426a772 2801 normal_stop ();
c906108c
SS
2802}
2803
2804/* Initialize static vars when a new inferior begins. */
2805
2806void
96baa820 2807init_wait_for_inferior (void)
c906108c
SS
2808{
2809 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2810
c906108c
SS
2811 breakpoint_init_inferior (inf_starting);
2812
70509625 2813 clear_proceed_status (0);
9f976b41 2814
ca005067 2815 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2816
842951eb 2817 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2818
edb3359d
DJ
2819 /* Discard any skipped inlined frames. */
2820 clear_inline_frame_state (minus_one_ptid);
c906108c 2821}
237fc4c9 2822
c906108c 2823\f
0d1e5fa7
PA
2824/* Data to be passed around while handling an event. This data is
2825 discarded between events. */
c5aa993b 2826struct execution_control_state
488f131b 2827{
0d1e5fa7 2828 ptid_t ptid;
4e1c45ea
PA
2829 /* The thread that got the event, if this was a thread event; NULL
2830 otherwise. */
2831 struct thread_info *event_thread;
2832
488f131b 2833 struct target_waitstatus ws;
7e324e48 2834 int stop_func_filled_in;
488f131b
JB
2835 CORE_ADDR stop_func_start;
2836 CORE_ADDR stop_func_end;
2c02bd72 2837 const char *stop_func_name;
488f131b 2838 int wait_some_more;
4f5d7f63 2839
2adfaa28
PA
2840 /* True if the event thread hit the single-step breakpoint of
2841 another thread. Thus the event doesn't cause a stop, the thread
2842 needs to be single-stepped past the single-step breakpoint before
2843 we can switch back to the original stepping thread. */
2844 int hit_singlestep_breakpoint;
488f131b
JB
2845};
2846
ec9499be 2847static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2848
568d6575
UW
2849static void handle_step_into_function (struct gdbarch *gdbarch,
2850 struct execution_control_state *ecs);
2851static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2852 struct execution_control_state *ecs);
4f5d7f63 2853static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2854static void check_exception_resume (struct execution_control_state *,
28106bc2 2855 struct frame_info *);
611c83ae 2856
bdc36728 2857static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2858static void stop_waiting (struct execution_control_state *ecs);
104c1213 2859static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2860static void keep_going (struct execution_control_state *ecs);
94c57d6a 2861static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2862static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2863
252fbfc8
PA
2864/* Callback for iterate over threads. If the thread is stopped, but
2865 the user/frontend doesn't know about that yet, go through
2866 normal_stop, as if the thread had just stopped now. ARG points at
2867 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2868 ptid_is_pid(PTID) is true, applies to all threads of the process
2869 pointed at by PTID. Otherwise, apply only to the thread pointed by
2870 PTID. */
2871
2872static int
2873infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2874{
2875 ptid_t ptid = * (ptid_t *) arg;
2876
2877 if ((ptid_equal (info->ptid, ptid)
2878 || ptid_equal (minus_one_ptid, ptid)
2879 || (ptid_is_pid (ptid)
2880 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2881 && is_running (info->ptid)
2882 && !is_executing (info->ptid))
2883 {
2884 struct cleanup *old_chain;
2885 struct execution_control_state ecss;
2886 struct execution_control_state *ecs = &ecss;
2887
2888 memset (ecs, 0, sizeof (*ecs));
2889
2890 old_chain = make_cleanup_restore_current_thread ();
2891
f15cb84a
YQ
2892 overlay_cache_invalid = 1;
2893 /* Flush target cache before starting to handle each event.
2894 Target was running and cache could be stale. This is just a
2895 heuristic. Running threads may modify target memory, but we
2896 don't get any event. */
2897 target_dcache_invalidate ();
2898
252fbfc8
PA
2899 /* Go through handle_inferior_event/normal_stop, so we always
2900 have consistent output as if the stop event had been
2901 reported. */
2902 ecs->ptid = info->ptid;
e09875d4 2903 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2904 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2905 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2906
2907 handle_inferior_event (ecs);
2908
2909 if (!ecs->wait_some_more)
2910 {
2911 struct thread_info *tp;
2912
2913 normal_stop ();
2914
fa4cd53f 2915 /* Finish off the continuations. */
252fbfc8 2916 tp = inferior_thread ();
fa4cd53f
PA
2917 do_all_intermediate_continuations_thread (tp, 1);
2918 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2919 }
2920
2921 do_cleanups (old_chain);
2922 }
2923
2924 return 0;
2925}
2926
2927/* This function is attached as a "thread_stop_requested" observer.
2928 Cleanup local state that assumed the PTID was to be resumed, and
2929 report the stop to the frontend. */
2930
2c0b251b 2931static void
252fbfc8
PA
2932infrun_thread_stop_requested (ptid_t ptid)
2933{
fc1cf338 2934 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2935
2936 /* PTID was requested to stop. Remove it from the displaced
2937 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2938
2939 for (displaced = displaced_step_inferior_states;
2940 displaced;
2941 displaced = displaced->next)
252fbfc8 2942 {
fc1cf338 2943 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2944
fc1cf338
PA
2945 it = displaced->step_request_queue;
2946 prev_next_p = &displaced->step_request_queue;
2947 while (it)
252fbfc8 2948 {
fc1cf338
PA
2949 if (ptid_match (it->ptid, ptid))
2950 {
2951 *prev_next_p = it->next;
2952 it->next = NULL;
2953 xfree (it);
2954 }
252fbfc8 2955 else
fc1cf338
PA
2956 {
2957 prev_next_p = &it->next;
2958 }
252fbfc8 2959
fc1cf338 2960 it = *prev_next_p;
252fbfc8 2961 }
252fbfc8
PA
2962 }
2963
2964 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2965}
2966
a07daef3
PA
2967static void
2968infrun_thread_thread_exit (struct thread_info *tp, int silent)
2969{
2970 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2971 nullify_last_target_wait_ptid ();
2972}
2973
0cbcdb96
PA
2974/* Delete the step resume, single-step and longjmp/exception resume
2975 breakpoints of TP. */
4e1c45ea 2976
0cbcdb96
PA
2977static void
2978delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2979{
0cbcdb96
PA
2980 delete_step_resume_breakpoint (tp);
2981 delete_exception_resume_breakpoint (tp);
34b7e8a6 2982 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2983}
2984
0cbcdb96
PA
2985/* If the target still has execution, call FUNC for each thread that
2986 just stopped. In all-stop, that's all the non-exited threads; in
2987 non-stop, that's the current thread, only. */
2988
2989typedef void (*for_each_just_stopped_thread_callback_func)
2990 (struct thread_info *tp);
4e1c45ea
PA
2991
2992static void
0cbcdb96 2993for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2994{
0cbcdb96 2995 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2996 return;
2997
2998 if (non_stop)
2999 {
0cbcdb96
PA
3000 /* If in non-stop mode, only the current thread stopped. */
3001 func (inferior_thread ());
4e1c45ea
PA
3002 }
3003 else
0cbcdb96
PA
3004 {
3005 struct thread_info *tp;
3006
3007 /* In all-stop mode, all threads have stopped. */
3008 ALL_NON_EXITED_THREADS (tp)
3009 {
3010 func (tp);
3011 }
3012 }
3013}
3014
3015/* Delete the step resume and longjmp/exception resume breakpoints of
3016 the threads that just stopped. */
3017
3018static void
3019delete_just_stopped_threads_infrun_breakpoints (void)
3020{
3021 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3022}
3023
3024/* Delete the single-step breakpoints of the threads that just
3025 stopped. */
7c16b83e 3026
34b7e8a6
PA
3027static void
3028delete_just_stopped_threads_single_step_breakpoints (void)
3029{
3030 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3031}
3032
1777feb0 3033/* A cleanup wrapper. */
4e1c45ea
PA
3034
3035static void
0cbcdb96 3036delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3037{
0cbcdb96 3038 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3039}
3040
223698f8
DE
3041/* Pretty print the results of target_wait, for debugging purposes. */
3042
3043static void
3044print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3045 const struct target_waitstatus *ws)
3046{
3047 char *status_string = target_waitstatus_to_string (ws);
3048 struct ui_file *tmp_stream = mem_fileopen ();
3049 char *text;
223698f8
DE
3050
3051 /* The text is split over several lines because it was getting too long.
3052 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3053 output as a unit; we want only one timestamp printed if debug_timestamp
3054 is set. */
3055
3056 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3057 "infrun: target_wait (%d.%ld.%ld",
3058 ptid_get_pid (waiton_ptid),
3059 ptid_get_lwp (waiton_ptid),
3060 ptid_get_tid (waiton_ptid));
dfd4cc63 3061 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3062 fprintf_unfiltered (tmp_stream,
3063 " [%s]", target_pid_to_str (waiton_ptid));
3064 fprintf_unfiltered (tmp_stream, ", status) =\n");
3065 fprintf_unfiltered (tmp_stream,
1176ecec 3066 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3067 ptid_get_pid (result_ptid),
1176ecec
PA
3068 ptid_get_lwp (result_ptid),
3069 ptid_get_tid (result_ptid),
dfd4cc63 3070 target_pid_to_str (result_ptid));
223698f8
DE
3071 fprintf_unfiltered (tmp_stream,
3072 "infrun: %s\n",
3073 status_string);
3074
759ef836 3075 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3076
3077 /* This uses %s in part to handle %'s in the text, but also to avoid
3078 a gcc error: the format attribute requires a string literal. */
3079 fprintf_unfiltered (gdb_stdlog, "%s", text);
3080
3081 xfree (status_string);
3082 xfree (text);
3083 ui_file_delete (tmp_stream);
3084}
3085
24291992
PA
3086/* Prepare and stabilize the inferior for detaching it. E.g.,
3087 detaching while a thread is displaced stepping is a recipe for
3088 crashing it, as nothing would readjust the PC out of the scratch
3089 pad. */
3090
3091void
3092prepare_for_detach (void)
3093{
3094 struct inferior *inf = current_inferior ();
3095 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3096 struct cleanup *old_chain_1;
3097 struct displaced_step_inferior_state *displaced;
3098
3099 displaced = get_displaced_stepping_state (inf->pid);
3100
3101 /* Is any thread of this process displaced stepping? If not,
3102 there's nothing else to do. */
3103 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3104 return;
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "displaced-stepping in-process while detaching");
3109
3110 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3111 inf->detaching = 1;
3112
3113 while (!ptid_equal (displaced->step_ptid, null_ptid))
3114 {
3115 struct cleanup *old_chain_2;
3116 struct execution_control_state ecss;
3117 struct execution_control_state *ecs;
3118
3119 ecs = &ecss;
3120 memset (ecs, 0, sizeof (*ecs));
3121
3122 overlay_cache_invalid = 1;
f15cb84a
YQ
3123 /* Flush target cache before starting to handle each event.
3124 Target was running and cache could be stale. This is just a
3125 heuristic. Running threads may modify target memory, but we
3126 don't get any event. */
3127 target_dcache_invalidate ();
24291992 3128
24291992
PA
3129 if (deprecated_target_wait_hook)
3130 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3131 else
3132 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3133
3134 if (debug_infrun)
3135 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3136
3137 /* If an error happens while handling the event, propagate GDB's
3138 knowledge of the executing state to the frontend/user running
3139 state. */
3e43a32a
MS
3140 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3141 &minus_one_ptid);
24291992
PA
3142
3143 /* Now figure out what to do with the result of the result. */
3144 handle_inferior_event (ecs);
3145
3146 /* No error, don't finish the state yet. */
3147 discard_cleanups (old_chain_2);
3148
3149 /* Breakpoints and watchpoints are not installed on the target
3150 at this point, and signals are passed directly to the
3151 inferior, so this must mean the process is gone. */
3152 if (!ecs->wait_some_more)
3153 {
3154 discard_cleanups (old_chain_1);
3155 error (_("Program exited while detaching"));
3156 }
3157 }
3158
3159 discard_cleanups (old_chain_1);
3160}
3161
cd0fc7c3 3162/* Wait for control to return from inferior to debugger.
ae123ec6 3163
cd0fc7c3
SS
3164 If inferior gets a signal, we may decide to start it up again
3165 instead of returning. That is why there is a loop in this function.
3166 When this function actually returns it means the inferior
3167 should be left stopped and GDB should read more commands. */
3168
3169void
e4c8541f 3170wait_for_inferior (void)
cd0fc7c3
SS
3171{
3172 struct cleanup *old_cleanups;
e6f5c25b 3173 struct cleanup *thread_state_chain;
c906108c 3174
527159b7 3175 if (debug_infrun)
ae123ec6 3176 fprintf_unfiltered
e4c8541f 3177 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3178
0cbcdb96
PA
3179 old_cleanups
3180 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3181 NULL);
cd0fc7c3 3182
e6f5c25b
PA
3183 /* If an error happens while handling the event, propagate GDB's
3184 knowledge of the executing state to the frontend/user running
3185 state. */
3186 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3187
c906108c
SS
3188 while (1)
3189 {
ae25568b
PA
3190 struct execution_control_state ecss;
3191 struct execution_control_state *ecs = &ecss;
963f9c80 3192 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3193
ae25568b
PA
3194 memset (ecs, 0, sizeof (*ecs));
3195
ec9499be 3196 overlay_cache_invalid = 1;
ec9499be 3197
f15cb84a
YQ
3198 /* Flush target cache before starting to handle each event.
3199 Target was running and cache could be stale. This is just a
3200 heuristic. Running threads may modify target memory, but we
3201 don't get any event. */
3202 target_dcache_invalidate ();
3203
9a4105ab 3204 if (deprecated_target_wait_hook)
47608cb1 3205 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3206 else
47608cb1 3207 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3208
f00150c9 3209 if (debug_infrun)
223698f8 3210 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3211
cd0fc7c3
SS
3212 /* Now figure out what to do with the result of the result. */
3213 handle_inferior_event (ecs);
c906108c 3214
cd0fc7c3
SS
3215 if (!ecs->wait_some_more)
3216 break;
3217 }
4e1c45ea 3218
e6f5c25b
PA
3219 /* No error, don't finish the state yet. */
3220 discard_cleanups (thread_state_chain);
3221
cd0fc7c3
SS
3222 do_cleanups (old_cleanups);
3223}
c906108c 3224
d3d4baed
PA
3225/* Cleanup that reinstalls the readline callback handler, if the
3226 target is running in the background. If while handling the target
3227 event something triggered a secondary prompt, like e.g., a
3228 pagination prompt, we'll have removed the callback handler (see
3229 gdb_readline_wrapper_line). Need to do this as we go back to the
3230 event loop, ready to process further input. Note this has no
3231 effect if the handler hasn't actually been removed, because calling
3232 rl_callback_handler_install resets the line buffer, thus losing
3233 input. */
3234
3235static void
3236reinstall_readline_callback_handler_cleanup (void *arg)
3237{
6c400b59
PA
3238 if (!interpreter_async)
3239 {
3240 /* We're not going back to the top level event loop yet. Don't
3241 install the readline callback, as it'd prep the terminal,
3242 readline-style (raw, noecho) (e.g., --batch). We'll install
3243 it the next time the prompt is displayed, when we're ready
3244 for input. */
3245 return;
3246 }
3247
d3d4baed
PA
3248 if (async_command_editing_p && !sync_execution)
3249 gdb_rl_callback_handler_reinstall ();
3250}
3251
1777feb0 3252/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3253 event loop whenever a change of state is detected on the file
1777feb0
MS
3254 descriptor corresponding to the target. It can be called more than
3255 once to complete a single execution command. In such cases we need
3256 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3257 that this function is called for a single execution command, then
3258 report to the user that the inferior has stopped, and do the
1777feb0 3259 necessary cleanups. */
43ff13b4
JM
3260
3261void
fba45db2 3262fetch_inferior_event (void *client_data)
43ff13b4 3263{
0d1e5fa7 3264 struct execution_control_state ecss;
a474d7c2 3265 struct execution_control_state *ecs = &ecss;
4f8d22e3 3266 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3267 struct cleanup *ts_old_chain;
4f8d22e3 3268 int was_sync = sync_execution;
0f641c01 3269 int cmd_done = 0;
963f9c80 3270 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3271
0d1e5fa7
PA
3272 memset (ecs, 0, sizeof (*ecs));
3273
d3d4baed
PA
3274 /* End up with readline processing input, if necessary. */
3275 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3276
c5187ac6
PA
3277 /* We're handling a live event, so make sure we're doing live
3278 debugging. If we're looking at traceframes while the target is
3279 running, we're going to need to get back to that mode after
3280 handling the event. */
3281 if (non_stop)
3282 {
3283 make_cleanup_restore_current_traceframe ();
e6e4e701 3284 set_current_traceframe (-1);
c5187ac6
PA
3285 }
3286
4f8d22e3
PA
3287 if (non_stop)
3288 /* In non-stop mode, the user/frontend should not notice a thread
3289 switch due to internal events. Make sure we reverse to the
3290 user selected thread and frame after handling the event and
3291 running any breakpoint commands. */
3292 make_cleanup_restore_current_thread ();
3293
ec9499be 3294 overlay_cache_invalid = 1;
f15cb84a
YQ
3295 /* Flush target cache before starting to handle each event. Target
3296 was running and cache could be stale. This is just a heuristic.
3297 Running threads may modify target memory, but we don't get any
3298 event. */
3299 target_dcache_invalidate ();
3dd5b83d 3300
32231432
PA
3301 make_cleanup_restore_integer (&execution_direction);
3302 execution_direction = target_execution_direction ();
3303
9a4105ab 3304 if (deprecated_target_wait_hook)
a474d7c2 3305 ecs->ptid =
47608cb1 3306 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3307 else
47608cb1 3308 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3309
f00150c9 3310 if (debug_infrun)
223698f8 3311 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3312
29f49a6a
PA
3313 /* If an error happens while handling the event, propagate GDB's
3314 knowledge of the executing state to the frontend/user running
3315 state. */
3316 if (!non_stop)
3317 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3318 else
3319 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3320
353d1d73
JK
3321 /* Get executed before make_cleanup_restore_current_thread above to apply
3322 still for the thread which has thrown the exception. */
3323 make_bpstat_clear_actions_cleanup ();
3324
7c16b83e
PA
3325 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3326
43ff13b4 3327 /* Now figure out what to do with the result of the result. */
a474d7c2 3328 handle_inferior_event (ecs);
43ff13b4 3329
a474d7c2 3330 if (!ecs->wait_some_more)
43ff13b4 3331 {
c9657e70 3332 struct inferior *inf = find_inferior_ptid (ecs->ptid);
d6b48e9c 3333
0cbcdb96 3334 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3335
d6b48e9c 3336 /* We may not find an inferior if this was a process exit. */
16c381f0 3337 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3338 normal_stop ();
3339
af679fd0 3340 if (target_has_execution
0e5bf2a8 3341 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3342 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3343 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3344 && ecs->event_thread->step_multi
16c381f0 3345 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3346 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3347 else
0f641c01
PA
3348 {
3349 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3350 cmd_done = 1;
3351 }
43ff13b4 3352 }
4f8d22e3 3353
29f49a6a
PA
3354 /* No error, don't finish the thread states yet. */
3355 discard_cleanups (ts_old_chain);
3356
4f8d22e3
PA
3357 /* Revert thread and frame. */
3358 do_cleanups (old_chain);
3359
3360 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3361 restore the prompt (a synchronous execution command has finished,
3362 and we're ready for input). */
b4a14fd0 3363 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3364 observer_notify_sync_execution_done ();
0f641c01
PA
3365
3366 if (cmd_done
3367 && !was_sync
3368 && exec_done_display_p
3369 && (ptid_equal (inferior_ptid, null_ptid)
3370 || !is_running (inferior_ptid)))
3371 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3372}
3373
edb3359d
DJ
3374/* Record the frame and location we're currently stepping through. */
3375void
3376set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3377{
3378 struct thread_info *tp = inferior_thread ();
3379
16c381f0
JK
3380 tp->control.step_frame_id = get_frame_id (frame);
3381 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3382
3383 tp->current_symtab = sal.symtab;
3384 tp->current_line = sal.line;
3385}
3386
0d1e5fa7
PA
3387/* Clear context switchable stepping state. */
3388
3389void
4e1c45ea 3390init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3391{
7f5ef605 3392 tss->stepped_breakpoint = 0;
0d1e5fa7 3393 tss->stepping_over_breakpoint = 0;
963f9c80 3394 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3395 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3396}
3397
c32c64b7
DE
3398/* Set the cached copy of the last ptid/waitstatus. */
3399
3400static void
3401set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3402{
3403 target_last_wait_ptid = ptid;
3404 target_last_waitstatus = status;
3405}
3406
e02bc4cc 3407/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3408 target_wait()/deprecated_target_wait_hook(). The data is actually
3409 cached by handle_inferior_event(), which gets called immediately
3410 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3411
3412void
488f131b 3413get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3414{
39f77062 3415 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3416 *status = target_last_waitstatus;
3417}
3418
ac264b3b
MS
3419void
3420nullify_last_target_wait_ptid (void)
3421{
3422 target_last_wait_ptid = minus_one_ptid;
3423}
3424
dcf4fbde 3425/* Switch thread contexts. */
dd80620e
MS
3426
3427static void
0d1e5fa7 3428context_switch (ptid_t ptid)
dd80620e 3429{
4b51d87b 3430 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3431 {
3432 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3433 target_pid_to_str (inferior_ptid));
3434 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3435 target_pid_to_str (ptid));
fd48f117
DJ
3436 }
3437
0d1e5fa7 3438 switch_to_thread (ptid);
dd80620e
MS
3439}
3440
4fa8626c
DJ
3441static void
3442adjust_pc_after_break (struct execution_control_state *ecs)
3443{
24a73cce
UW
3444 struct regcache *regcache;
3445 struct gdbarch *gdbarch;
6c95b8df 3446 struct address_space *aspace;
118e6252 3447 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3448
4fa8626c
DJ
3449 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3450 we aren't, just return.
9709f61c
DJ
3451
3452 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3453 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3454 implemented by software breakpoints should be handled through the normal
3455 breakpoint layer.
8fb3e588 3456
4fa8626c
DJ
3457 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3458 different signals (SIGILL or SIGEMT for instance), but it is less
3459 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3460 gdbarch_decr_pc_after_break. I don't know any specific target that
3461 generates these signals at breakpoints (the code has been in GDB since at
3462 least 1992) so I can not guess how to handle them here.
8fb3e588 3463
e6cf7916
UW
3464 In earlier versions of GDB, a target with
3465 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3466 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3467 target with both of these set in GDB history, and it seems unlikely to be
3468 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3469
3470 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3471 return;
3472
a493e3e2 3473 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3474 return;
3475
4058b839
PA
3476 /* In reverse execution, when a breakpoint is hit, the instruction
3477 under it has already been de-executed. The reported PC always
3478 points at the breakpoint address, so adjusting it further would
3479 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3480 architecture:
3481
3482 B1 0x08000000 : INSN1
3483 B2 0x08000001 : INSN2
3484 0x08000002 : INSN3
3485 PC -> 0x08000003 : INSN4
3486
3487 Say you're stopped at 0x08000003 as above. Reverse continuing
3488 from that point should hit B2 as below. Reading the PC when the
3489 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3490 been de-executed already.
3491
3492 B1 0x08000000 : INSN1
3493 B2 PC -> 0x08000001 : INSN2
3494 0x08000002 : INSN3
3495 0x08000003 : INSN4
3496
3497 We can't apply the same logic as for forward execution, because
3498 we would wrongly adjust the PC to 0x08000000, since there's a
3499 breakpoint at PC - 1. We'd then report a hit on B1, although
3500 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3501 behaviour. */
3502 if (execution_direction == EXEC_REVERSE)
3503 return;
3504
1cf4d951
PA
3505 /* If the target can tell whether the thread hit a SW breakpoint,
3506 trust it. Targets that can tell also adjust the PC
3507 themselves. */
3508 if (target_supports_stopped_by_sw_breakpoint ())
3509 return;
3510
3511 /* Note that relying on whether a breakpoint is planted in memory to
3512 determine this can fail. E.g,. the breakpoint could have been
3513 removed since. Or the thread could have been told to step an
3514 instruction the size of a breakpoint instruction, and only
3515 _after_ was a breakpoint inserted at its address. */
3516
24a73cce
UW
3517 /* If this target does not decrement the PC after breakpoints, then
3518 we have nothing to do. */
3519 regcache = get_thread_regcache (ecs->ptid);
3520 gdbarch = get_regcache_arch (regcache);
118e6252 3521
527a273a 3522 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3523 if (decr_pc == 0)
24a73cce
UW
3524 return;
3525
6c95b8df
PA
3526 aspace = get_regcache_aspace (regcache);
3527
8aad930b
AC
3528 /* Find the location where (if we've hit a breakpoint) the
3529 breakpoint would be. */
118e6252 3530 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3531
1cf4d951
PA
3532 /* If the target can't tell whether a software breakpoint triggered,
3533 fallback to figuring it out based on breakpoints we think were
3534 inserted in the target, and on whether the thread was stepped or
3535 continued. */
3536
1c5cfe86
PA
3537 /* Check whether there actually is a software breakpoint inserted at
3538 that location.
3539
3540 If in non-stop mode, a race condition is possible where we've
3541 removed a breakpoint, but stop events for that breakpoint were
3542 already queued and arrive later. To suppress those spurious
3543 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3544 and retire them after a number of stop events are reported. Note
3545 this is an heuristic and can thus get confused. The real fix is
3546 to get the "stopped by SW BP and needs adjustment" info out of
3547 the target/kernel (and thus never reach here; see above). */
6c95b8df
PA
3548 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3549 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3550 {
77f9e713 3551 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3552
8213266a 3553 if (record_full_is_used ())
77f9e713 3554 record_full_gdb_operation_disable_set ();
96429cc8 3555
1c0fdd0e
UW
3556 /* When using hardware single-step, a SIGTRAP is reported for both
3557 a completed single-step and a software breakpoint. Need to
3558 differentiate between the two, as the latter needs adjusting
3559 but the former does not.
3560
3561 The SIGTRAP can be due to a completed hardware single-step only if
3562 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
3563 - this thread is currently being stepped
3564
3565 If any of these events did not occur, we must have stopped due
3566 to hitting a software breakpoint, and have to back up to the
3567 breakpoint address.
3568
3569 As a special case, we could have hardware single-stepped a
3570 software breakpoint. In this case (prev_pc == breakpoint_pc),
3571 we also need to back up to the breakpoint address. */
3572
34b7e8a6 3573 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
4e1c45ea 3574 || !currently_stepping (ecs->event_thread)
7f5ef605
PA
3575 || (ecs->event_thread->stepped_breakpoint
3576 && ecs->event_thread->prev_pc == breakpoint_pc))
515630c5 3577 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3578
77f9e713 3579 do_cleanups (old_cleanups);
8aad930b 3580 }
4fa8626c
DJ
3581}
3582
edb3359d
DJ
3583static int
3584stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3585{
3586 for (frame = get_prev_frame (frame);
3587 frame != NULL;
3588 frame = get_prev_frame (frame))
3589 {
3590 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3591 return 1;
3592 if (get_frame_type (frame) != INLINE_FRAME)
3593 break;
3594 }
3595
3596 return 0;
3597}
3598
a96d9b2e
SDJ
3599/* Auxiliary function that handles syscall entry/return events.
3600 It returns 1 if the inferior should keep going (and GDB
3601 should ignore the event), or 0 if the event deserves to be
3602 processed. */
ca2163eb 3603
a96d9b2e 3604static int
ca2163eb 3605handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3606{
ca2163eb 3607 struct regcache *regcache;
ca2163eb
PA
3608 int syscall_number;
3609
3610 if (!ptid_equal (ecs->ptid, inferior_ptid))
3611 context_switch (ecs->ptid);
3612
3613 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3614 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3615 stop_pc = regcache_read_pc (regcache);
3616
a96d9b2e
SDJ
3617 if (catch_syscall_enabled () > 0
3618 && catching_syscall_number (syscall_number) > 0)
3619 {
3620 if (debug_infrun)
3621 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3622 syscall_number);
a96d9b2e 3623
16c381f0 3624 ecs->event_thread->control.stop_bpstat
6c95b8df 3625 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3626 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3627
ce12b012 3628 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3629 {
3630 /* Catchpoint hit. */
ca2163eb
PA
3631 return 0;
3632 }
a96d9b2e 3633 }
ca2163eb
PA
3634
3635 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3636 keep_going (ecs);
3637 return 1;
a96d9b2e
SDJ
3638}
3639
7e324e48
GB
3640/* Lazily fill in the execution_control_state's stop_func_* fields. */
3641
3642static void
3643fill_in_stop_func (struct gdbarch *gdbarch,
3644 struct execution_control_state *ecs)
3645{
3646 if (!ecs->stop_func_filled_in)
3647 {
3648 /* Don't care about return value; stop_func_start and stop_func_name
3649 will both be 0 if it doesn't work. */
3650 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3651 &ecs->stop_func_start, &ecs->stop_func_end);
3652 ecs->stop_func_start
3653 += gdbarch_deprecated_function_start_offset (gdbarch);
3654
591a12a1
UW
3655 if (gdbarch_skip_entrypoint_p (gdbarch))
3656 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3657 ecs->stop_func_start);
3658
7e324e48
GB
3659 ecs->stop_func_filled_in = 1;
3660 }
3661}
3662
4f5d7f63
PA
3663
3664/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3665
3666static enum stop_kind
3667get_inferior_stop_soon (ptid_t ptid)
3668{
c9657e70 3669 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
3670
3671 gdb_assert (inf != NULL);
3672 return inf->control.stop_soon;
3673}
3674
05ba8510
PA
3675/* Given an execution control state that has been freshly filled in by
3676 an event from the inferior, figure out what it means and take
3677 appropriate action.
3678
3679 The alternatives are:
3680
22bcd14b 3681 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3682 debugger.
3683
3684 2) keep_going and return; to wait for the next event (set
3685 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3686 once). */
c906108c 3687
ec9499be 3688static void
0b6e5e10 3689handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 3690{
d6b48e9c
PA
3691 enum stop_kind stop_soon;
3692
28736962
PA
3693 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3694 {
3695 /* We had an event in the inferior, but we are not interested in
3696 handling it at this level. The lower layers have already
3697 done what needs to be done, if anything.
3698
3699 One of the possible circumstances for this is when the
3700 inferior produces output for the console. The inferior has
3701 not stopped, and we are ignoring the event. Another possible
3702 circumstance is any event which the lower level knows will be
3703 reported multiple times without an intervening resume. */
3704 if (debug_infrun)
3705 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3706 prepare_to_wait (ecs);
3707 return;
3708 }
3709
0e5bf2a8
PA
3710 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3711 && target_can_async_p () && !sync_execution)
3712 {
3713 /* There were no unwaited-for children left in the target, but,
3714 we're not synchronously waiting for events either. Just
3715 ignore. Otherwise, if we were running a synchronous
3716 execution command, we need to cancel it and give the user
3717 back the terminal. */
3718 if (debug_infrun)
3719 fprintf_unfiltered (gdb_stdlog,
3720 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3721 prepare_to_wait (ecs);
3722 return;
3723 }
3724
1777feb0 3725 /* Cache the last pid/waitstatus. */
c32c64b7 3726 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3727
ca005067 3728 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3729 stop_stack_dummy = STOP_NONE;
ca005067 3730
0e5bf2a8
PA
3731 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3732 {
3733 /* No unwaited-for children left. IOW, all resumed children
3734 have exited. */
3735 if (debug_infrun)
3736 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3737
3738 stop_print_frame = 0;
22bcd14b 3739 stop_waiting (ecs);
0e5bf2a8
PA
3740 return;
3741 }
3742
8c90c137 3743 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3744 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3745 {
3746 ecs->event_thread = find_thread_ptid (ecs->ptid);
3747 /* If it's a new thread, add it to the thread database. */
3748 if (ecs->event_thread == NULL)
3749 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3750
3751 /* Disable range stepping. If the next step request could use a
3752 range, this will be end up re-enabled then. */
3753 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3754 }
88ed393a
JK
3755
3756 /* Dependent on valid ECS->EVENT_THREAD. */
3757 adjust_pc_after_break (ecs);
3758
3759 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3760 reinit_frame_cache ();
3761
28736962
PA
3762 breakpoint_retire_moribund ();
3763
2b009048
DJ
3764 /* First, distinguish signals caused by the debugger from signals
3765 that have to do with the program's own actions. Note that
3766 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3767 on the operating system version. Here we detect when a SIGILL or
3768 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3769 something similar for SIGSEGV, since a SIGSEGV will be generated
3770 when we're trying to execute a breakpoint instruction on a
3771 non-executable stack. This happens for call dummy breakpoints
3772 for architectures like SPARC that place call dummies on the
3773 stack. */
2b009048 3774 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3775 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3776 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3777 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3778 {
de0a0249
UW
3779 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3780
3781 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3782 regcache_read_pc (regcache)))
3783 {
3784 if (debug_infrun)
3785 fprintf_unfiltered (gdb_stdlog,
3786 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3787 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3788 }
2b009048
DJ
3789 }
3790
28736962
PA
3791 /* Mark the non-executing threads accordingly. In all-stop, all
3792 threads of all processes are stopped when we get any event
3793 reported. In non-stop mode, only the event thread stops. If
3794 we're handling a process exit in non-stop mode, there's nothing
3795 to do, as threads of the dead process are gone, and threads of
3796 any other process were left running. */
3797 if (!non_stop)
3798 set_executing (minus_one_ptid, 0);
3799 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3800 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3801 set_executing (ecs->ptid, 0);
8c90c137 3802
488f131b
JB
3803 switch (ecs->ws.kind)
3804 {
3805 case TARGET_WAITKIND_LOADED:
527159b7 3806 if (debug_infrun)
8a9de0e4 3807 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3808 if (!ptid_equal (ecs->ptid, inferior_ptid))
3809 context_switch (ecs->ptid);
b0f4b84b
DJ
3810 /* Ignore gracefully during startup of the inferior, as it might
3811 be the shell which has just loaded some objects, otherwise
3812 add the symbols for the newly loaded objects. Also ignore at
3813 the beginning of an attach or remote session; we will query
3814 the full list of libraries once the connection is
3815 established. */
4f5d7f63
PA
3816
3817 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3818 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3819 {
edcc5120
TT
3820 struct regcache *regcache;
3821
edcc5120
TT
3822 regcache = get_thread_regcache (ecs->ptid);
3823
3824 handle_solib_event ();
3825
3826 ecs->event_thread->control.stop_bpstat
3827 = bpstat_stop_status (get_regcache_aspace (regcache),
3828 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3829
ce12b012 3830 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3831 {
3832 /* A catchpoint triggered. */
94c57d6a
PA
3833 process_event_stop_test (ecs);
3834 return;
edcc5120 3835 }
488f131b 3836
b0f4b84b
DJ
3837 /* If requested, stop when the dynamic linker notifies
3838 gdb of events. This allows the user to get control
3839 and place breakpoints in initializer routines for
3840 dynamically loaded objects (among other things). */
a493e3e2 3841 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3842 if (stop_on_solib_events)
3843 {
55409f9d
DJ
3844 /* Make sure we print "Stopped due to solib-event" in
3845 normal_stop. */
3846 stop_print_frame = 1;
3847
22bcd14b 3848 stop_waiting (ecs);
b0f4b84b
DJ
3849 return;
3850 }
488f131b 3851 }
b0f4b84b
DJ
3852
3853 /* If we are skipping through a shell, or through shared library
3854 loading that we aren't interested in, resume the program. If
5c09a2c5 3855 we're running the program normally, also resume. */
b0f4b84b
DJ
3856 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3857 {
74960c60
VP
3858 /* Loading of shared libraries might have changed breakpoint
3859 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3860 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3861 insert_breakpoints ();
64ce06e4 3862 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
3863 prepare_to_wait (ecs);
3864 return;
3865 }
3866
5c09a2c5
PA
3867 /* But stop if we're attaching or setting up a remote
3868 connection. */
3869 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3870 || stop_soon == STOP_QUIETLY_REMOTE)
3871 {
3872 if (debug_infrun)
3873 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3874 stop_waiting (ecs);
5c09a2c5
PA
3875 return;
3876 }
3877
3878 internal_error (__FILE__, __LINE__,
3879 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3880
488f131b 3881 case TARGET_WAITKIND_SPURIOUS:
527159b7 3882 if (debug_infrun)
8a9de0e4 3883 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3884 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3885 context_switch (ecs->ptid);
64ce06e4 3886 resume (GDB_SIGNAL_0);
488f131b
JB
3887 prepare_to_wait (ecs);
3888 return;
c5aa993b 3889
488f131b 3890 case TARGET_WAITKIND_EXITED:
940c3c06 3891 case TARGET_WAITKIND_SIGNALLED:
527159b7 3892 if (debug_infrun)
940c3c06
PA
3893 {
3894 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3895 fprintf_unfiltered (gdb_stdlog,
3896 "infrun: TARGET_WAITKIND_EXITED\n");
3897 else
3898 fprintf_unfiltered (gdb_stdlog,
3899 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3900 }
3901
fb66883a 3902 inferior_ptid = ecs->ptid;
c9657e70 3903 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
3904 set_current_program_space (current_inferior ()->pspace);
3905 handle_vfork_child_exec_or_exit (0);
1777feb0 3906 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3907
0c557179
SDJ
3908 /* Clearing any previous state of convenience variables. */
3909 clear_exit_convenience_vars ();
3910
940c3c06
PA
3911 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3912 {
3913 /* Record the exit code in the convenience variable $_exitcode, so
3914 that the user can inspect this again later. */
3915 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3916 (LONGEST) ecs->ws.value.integer);
3917
3918 /* Also record this in the inferior itself. */
3919 current_inferior ()->has_exit_code = 1;
3920 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3921
98eb56a4
PA
3922 /* Support the --return-child-result option. */
3923 return_child_result_value = ecs->ws.value.integer;
3924
fd664c91 3925 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3926 }
3927 else
0c557179
SDJ
3928 {
3929 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3930 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3931
3932 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3933 {
3934 /* Set the value of the internal variable $_exitsignal,
3935 which holds the signal uncaught by the inferior. */
3936 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3937 gdbarch_gdb_signal_to_target (gdbarch,
3938 ecs->ws.value.sig));
3939 }
3940 else
3941 {
3942 /* We don't have access to the target's method used for
3943 converting between signal numbers (GDB's internal
3944 representation <-> target's representation).
3945 Therefore, we cannot do a good job at displaying this
3946 information to the user. It's better to just warn
3947 her about it (if infrun debugging is enabled), and
3948 give up. */
3949 if (debug_infrun)
3950 fprintf_filtered (gdb_stdlog, _("\
3951Cannot fill $_exitsignal with the correct signal number.\n"));
3952 }
3953
fd664c91 3954 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3955 }
8cf64490 3956
488f131b
JB
3957 gdb_flush (gdb_stdout);
3958 target_mourn_inferior ();
488f131b 3959 stop_print_frame = 0;
22bcd14b 3960 stop_waiting (ecs);
488f131b 3961 return;
c5aa993b 3962
488f131b 3963 /* The following are the only cases in which we keep going;
1777feb0 3964 the above cases end in a continue or goto. */
488f131b 3965 case TARGET_WAITKIND_FORKED:
deb3b17b 3966 case TARGET_WAITKIND_VFORKED:
527159b7 3967 if (debug_infrun)
fed708ed
PA
3968 {
3969 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3970 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3971 else
3972 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3973 }
c906108c 3974
e2d96639
YQ
3975 /* Check whether the inferior is displaced stepping. */
3976 {
3977 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3978 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3979 struct displaced_step_inferior_state *displaced
3980 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3981
3982 /* If checking displaced stepping is supported, and thread
3983 ecs->ptid is displaced stepping. */
3984 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3985 {
3986 struct inferior *parent_inf
c9657e70 3987 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
3988 struct regcache *child_regcache;
3989 CORE_ADDR parent_pc;
3990
3991 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3992 indicating that the displaced stepping of syscall instruction
3993 has been done. Perform cleanup for parent process here. Note
3994 that this operation also cleans up the child process for vfork,
3995 because their pages are shared. */
a493e3e2 3996 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3997
3998 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3999 {
4000 /* Restore scratch pad for child process. */
4001 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4002 }
4003
4004 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4005 the child's PC is also within the scratchpad. Set the child's PC
4006 to the parent's PC value, which has already been fixed up.
4007 FIXME: we use the parent's aspace here, although we're touching
4008 the child, because the child hasn't been added to the inferior
4009 list yet at this point. */
4010
4011 child_regcache
4012 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4013 gdbarch,
4014 parent_inf->aspace);
4015 /* Read PC value of parent process. */
4016 parent_pc = regcache_read_pc (regcache);
4017
4018 if (debug_displaced)
4019 fprintf_unfiltered (gdb_stdlog,
4020 "displaced: write child pc from %s to %s\n",
4021 paddress (gdbarch,
4022 regcache_read_pc (child_regcache)),
4023 paddress (gdbarch, parent_pc));
4024
4025 regcache_write_pc (child_regcache, parent_pc);
4026 }
4027 }
4028
5a2901d9 4029 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4030 context_switch (ecs->ptid);
5a2901d9 4031
b242c3c2
PA
4032 /* Immediately detach breakpoints from the child before there's
4033 any chance of letting the user delete breakpoints from the
4034 breakpoint lists. If we don't do this early, it's easy to
4035 leave left over traps in the child, vis: "break foo; catch
4036 fork; c; <fork>; del; c; <child calls foo>". We only follow
4037 the fork on the last `continue', and by that time the
4038 breakpoint at "foo" is long gone from the breakpoint table.
4039 If we vforked, then we don't need to unpatch here, since both
4040 parent and child are sharing the same memory pages; we'll
4041 need to unpatch at follow/detach time instead to be certain
4042 that new breakpoints added between catchpoint hit time and
4043 vfork follow are detached. */
4044 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4045 {
b242c3c2
PA
4046 /* This won't actually modify the breakpoint list, but will
4047 physically remove the breakpoints from the child. */
d80ee84f 4048 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4049 }
4050
34b7e8a6 4051 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4052
e58b0e63
PA
4053 /* In case the event is caught by a catchpoint, remember that
4054 the event is to be followed at the next resume of the thread,
4055 and not immediately. */
4056 ecs->event_thread->pending_follow = ecs->ws;
4057
fb14de7b 4058 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4059
16c381f0 4060 ecs->event_thread->control.stop_bpstat
6c95b8df 4061 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4062 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4063
ce12b012
PA
4064 /* If no catchpoint triggered for this, then keep going. Note
4065 that we're interested in knowing the bpstat actually causes a
4066 stop, not just if it may explain the signal. Software
4067 watchpoints, for example, always appear in the bpstat. */
4068 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4069 {
6c95b8df
PA
4070 ptid_t parent;
4071 ptid_t child;
e58b0e63 4072 int should_resume;
3e43a32a
MS
4073 int follow_child
4074 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4075
a493e3e2 4076 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4077
4078 should_resume = follow_fork ();
4079
6c95b8df
PA
4080 parent = ecs->ptid;
4081 child = ecs->ws.value.related_pid;
4082
4083 /* In non-stop mode, also resume the other branch. */
4084 if (non_stop && !detach_fork)
4085 {
4086 if (follow_child)
4087 switch_to_thread (parent);
4088 else
4089 switch_to_thread (child);
4090
4091 ecs->event_thread = inferior_thread ();
4092 ecs->ptid = inferior_ptid;
4093 keep_going (ecs);
4094 }
4095
4096 if (follow_child)
4097 switch_to_thread (child);
4098 else
4099 switch_to_thread (parent);
4100
e58b0e63
PA
4101 ecs->event_thread = inferior_thread ();
4102 ecs->ptid = inferior_ptid;
4103
4104 if (should_resume)
4105 keep_going (ecs);
4106 else
22bcd14b 4107 stop_waiting (ecs);
04e68871
DJ
4108 return;
4109 }
94c57d6a
PA
4110 process_event_stop_test (ecs);
4111 return;
488f131b 4112
6c95b8df
PA
4113 case TARGET_WAITKIND_VFORK_DONE:
4114 /* Done with the shared memory region. Re-insert breakpoints in
4115 the parent, and keep going. */
4116
4117 if (debug_infrun)
3e43a32a
MS
4118 fprintf_unfiltered (gdb_stdlog,
4119 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4120
4121 if (!ptid_equal (ecs->ptid, inferior_ptid))
4122 context_switch (ecs->ptid);
4123
4124 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4125 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4126 /* This also takes care of reinserting breakpoints in the
4127 previously locked inferior. */
4128 keep_going (ecs);
4129 return;
4130
488f131b 4131 case TARGET_WAITKIND_EXECD:
527159b7 4132 if (debug_infrun)
fc5261f2 4133 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4134
5a2901d9 4135 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4136 context_switch (ecs->ptid);
5a2901d9 4137
fb14de7b 4138 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4139
6c95b8df
PA
4140 /* Do whatever is necessary to the parent branch of the vfork. */
4141 handle_vfork_child_exec_or_exit (1);
4142
795e548f
PA
4143 /* This causes the eventpoints and symbol table to be reset.
4144 Must do this now, before trying to determine whether to
4145 stop. */
71b43ef8 4146 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4147
16c381f0 4148 ecs->event_thread->control.stop_bpstat
6c95b8df 4149 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4150 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4151
71b43ef8
PA
4152 /* Note that this may be referenced from inside
4153 bpstat_stop_status above, through inferior_has_execd. */
4154 xfree (ecs->ws.value.execd_pathname);
4155 ecs->ws.value.execd_pathname = NULL;
4156
04e68871 4157 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4158 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4159 {
a493e3e2 4160 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4161 keep_going (ecs);
4162 return;
4163 }
94c57d6a
PA
4164 process_event_stop_test (ecs);
4165 return;
488f131b 4166
b4dc5ffa
MK
4167 /* Be careful not to try to gather much state about a thread
4168 that's in a syscall. It's frequently a losing proposition. */
488f131b 4169 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4170 if (debug_infrun)
3e43a32a
MS
4171 fprintf_unfiltered (gdb_stdlog,
4172 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4173 /* Getting the current syscall number. */
94c57d6a
PA
4174 if (handle_syscall_event (ecs) == 0)
4175 process_event_stop_test (ecs);
4176 return;
c906108c 4177
488f131b
JB
4178 /* Before examining the threads further, step this thread to
4179 get it entirely out of the syscall. (We get notice of the
4180 event when the thread is just on the verge of exiting a
4181 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4182 into user code.) */
488f131b 4183 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4184 if (debug_infrun)
3e43a32a
MS
4185 fprintf_unfiltered (gdb_stdlog,
4186 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4187 if (handle_syscall_event (ecs) == 0)
4188 process_event_stop_test (ecs);
4189 return;
c906108c 4190
488f131b 4191 case TARGET_WAITKIND_STOPPED:
527159b7 4192 if (debug_infrun)
8a9de0e4 4193 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4194 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4195 handle_signal_stop (ecs);
4196 return;
c906108c 4197
b2175913 4198 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4199 if (debug_infrun)
4200 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4201 /* Reverse execution: target ran out of history info. */
eab402df 4202
34b7e8a6 4203 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4204 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4205 observer_notify_no_history ();
22bcd14b 4206 stop_waiting (ecs);
b2175913 4207 return;
488f131b 4208 }
4f5d7f63
PA
4209}
4210
0b6e5e10
JB
4211/* A wrapper around handle_inferior_event_1, which also makes sure
4212 that all temporary struct value objects that were created during
4213 the handling of the event get deleted at the end. */
4214
4215static void
4216handle_inferior_event (struct execution_control_state *ecs)
4217{
4218 struct value *mark = value_mark ();
4219
4220 handle_inferior_event_1 (ecs);
4221 /* Purge all temporary values created during the event handling,
4222 as it could be a long time before we return to the command level
4223 where such values would otherwise be purged. */
4224 value_free_to_mark (mark);
4225}
4226
4f5d7f63
PA
4227/* Come here when the program has stopped with a signal. */
4228
4229static void
4230handle_signal_stop (struct execution_control_state *ecs)
4231{
4232 struct frame_info *frame;
4233 struct gdbarch *gdbarch;
4234 int stopped_by_watchpoint;
4235 enum stop_kind stop_soon;
4236 int random_signal;
c906108c 4237
f0407826
DE
4238 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4239
4240 /* Do we need to clean up the state of a thread that has
4241 completed a displaced single-step? (Doing so usually affects
4242 the PC, so do it here, before we set stop_pc.) */
4243 displaced_step_fixup (ecs->ptid,
4244 ecs->event_thread->suspend.stop_signal);
4245
4246 /* If we either finished a single-step or hit a breakpoint, but
4247 the user wanted this thread to be stopped, pretend we got a
4248 SIG0 (generic unsignaled stop). */
4249 if (ecs->event_thread->stop_requested
4250 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4251 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4252
515630c5 4253 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4254
527159b7 4255 if (debug_infrun)
237fc4c9 4256 {
5af949e3
UW
4257 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4258 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4259 struct cleanup *old_chain = save_inferior_ptid ();
4260
4261 inferior_ptid = ecs->ptid;
5af949e3
UW
4262
4263 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4264 paddress (gdbarch, stop_pc));
d92524f1 4265 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4266 {
4267 CORE_ADDR addr;
abbb1732 4268
237fc4c9
PA
4269 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4270
4271 if (target_stopped_data_address (&current_target, &addr))
4272 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4273 "infrun: stopped data address = %s\n",
4274 paddress (gdbarch, addr));
237fc4c9
PA
4275 else
4276 fprintf_unfiltered (gdb_stdlog,
4277 "infrun: (no data address available)\n");
4278 }
7f82dfc7
JK
4279
4280 do_cleanups (old_chain);
237fc4c9 4281 }
527159b7 4282
36fa8042
PA
4283 /* This is originated from start_remote(), start_inferior() and
4284 shared libraries hook functions. */
4285 stop_soon = get_inferior_stop_soon (ecs->ptid);
4286 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4287 {
4288 if (!ptid_equal (ecs->ptid, inferior_ptid))
4289 context_switch (ecs->ptid);
4290 if (debug_infrun)
4291 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4292 stop_print_frame = 1;
22bcd14b 4293 stop_waiting (ecs);
36fa8042
PA
4294 return;
4295 }
4296
4297 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4298 && stop_after_trap)
4299 {
4300 if (!ptid_equal (ecs->ptid, inferior_ptid))
4301 context_switch (ecs->ptid);
4302 if (debug_infrun)
4303 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4304 stop_print_frame = 0;
22bcd14b 4305 stop_waiting (ecs);
36fa8042
PA
4306 return;
4307 }
4308
4309 /* This originates from attach_command(). We need to overwrite
4310 the stop_signal here, because some kernels don't ignore a
4311 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4312 See more comments in inferior.h. On the other hand, if we
4313 get a non-SIGSTOP, report it to the user - assume the backend
4314 will handle the SIGSTOP if it should show up later.
4315
4316 Also consider that the attach is complete when we see a
4317 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4318 target extended-remote report it instead of a SIGSTOP
4319 (e.g. gdbserver). We already rely on SIGTRAP being our
4320 signal, so this is no exception.
4321
4322 Also consider that the attach is complete when we see a
4323 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4324 the target to stop all threads of the inferior, in case the
4325 low level attach operation doesn't stop them implicitly. If
4326 they weren't stopped implicitly, then the stub will report a
4327 GDB_SIGNAL_0, meaning: stopped for no particular reason
4328 other than GDB's request. */
4329 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4330 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4331 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4332 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4333 {
4334 stop_print_frame = 1;
22bcd14b 4335 stop_waiting (ecs);
36fa8042
PA
4336 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4337 return;
4338 }
4339
488f131b 4340 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4341 so, then switch to that thread. */
4342 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4343 {
527159b7 4344 if (debug_infrun)
8a9de0e4 4345 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4346
0d1e5fa7 4347 context_switch (ecs->ptid);
c5aa993b 4348
9a4105ab
AC
4349 if (deprecated_context_hook)
4350 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4351 }
c906108c 4352
568d6575
UW
4353 /* At this point, get hold of the now-current thread's frame. */
4354 frame = get_current_frame ();
4355 gdbarch = get_frame_arch (frame);
4356
2adfaa28 4357 /* Pull the single step breakpoints out of the target. */
af48d08f 4358 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4359 {
af48d08f
PA
4360 struct regcache *regcache;
4361 struct address_space *aspace;
4362 CORE_ADDR pc;
2adfaa28 4363
af48d08f
PA
4364 regcache = get_thread_regcache (ecs->ptid);
4365 aspace = get_regcache_aspace (regcache);
4366 pc = regcache_read_pc (regcache);
34b7e8a6 4367
af48d08f
PA
4368 /* However, before doing so, if this single-step breakpoint was
4369 actually for another thread, set this thread up for moving
4370 past it. */
4371 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4372 aspace, pc))
4373 {
4374 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
4375 {
4376 if (debug_infrun)
4377 {
4378 fprintf_unfiltered (gdb_stdlog,
af48d08f 4379 "infrun: [%s] hit another thread's "
34b7e8a6
PA
4380 "single-step breakpoint\n",
4381 target_pid_to_str (ecs->ptid));
2adfaa28 4382 }
af48d08f
PA
4383 ecs->hit_singlestep_breakpoint = 1;
4384 }
4385 }
4386 else
4387 {
4388 if (debug_infrun)
4389 {
4390 fprintf_unfiltered (gdb_stdlog,
4391 "infrun: [%s] hit its "
4392 "single-step breakpoint\n",
4393 target_pid_to_str (ecs->ptid));
2adfaa28
PA
4394 }
4395 }
488f131b 4396 }
af48d08f 4397 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 4398
963f9c80
PA
4399 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4400 && ecs->event_thread->control.trap_expected
4401 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4402 stopped_by_watchpoint = 0;
4403 else
4404 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4405
4406 /* If necessary, step over this watchpoint. We'll be back to display
4407 it in a moment. */
4408 if (stopped_by_watchpoint
d92524f1 4409 && (target_have_steppable_watchpoint
568d6575 4410 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4411 {
488f131b
JB
4412 /* At this point, we are stopped at an instruction which has
4413 attempted to write to a piece of memory under control of
4414 a watchpoint. The instruction hasn't actually executed
4415 yet. If we were to evaluate the watchpoint expression
4416 now, we would get the old value, and therefore no change
4417 would seem to have occurred.
4418
4419 In order to make watchpoints work `right', we really need
4420 to complete the memory write, and then evaluate the
d983da9c
DJ
4421 watchpoint expression. We do this by single-stepping the
4422 target.
4423
7f89fd65 4424 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4425 it. For example, the PA can (with some kernel cooperation)
4426 single step over a watchpoint without disabling the watchpoint.
4427
4428 It is far more common to need to disable a watchpoint to step
4429 the inferior over it. If we have non-steppable watchpoints,
4430 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4431 disable all watchpoints.
4432
4433 Any breakpoint at PC must also be stepped over -- if there's
4434 one, it will have already triggered before the watchpoint
4435 triggered, and we either already reported it to the user, or
4436 it didn't cause a stop and we called keep_going. In either
4437 case, if there was a breakpoint at PC, we must be trying to
4438 step past it. */
4439 ecs->event_thread->stepping_over_watchpoint = 1;
4440 keep_going (ecs);
488f131b
JB
4441 return;
4442 }
4443
4e1c45ea 4444 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4445 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4446 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4447 ecs->event_thread->control.stop_step = 0;
488f131b 4448 stop_print_frame = 1;
488f131b 4449 stopped_by_random_signal = 0;
488f131b 4450
edb3359d
DJ
4451 /* Hide inlined functions starting here, unless we just performed stepi or
4452 nexti. After stepi and nexti, always show the innermost frame (not any
4453 inline function call sites). */
16c381f0 4454 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4455 {
4456 struct address_space *aspace =
4457 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4458
4459 /* skip_inline_frames is expensive, so we avoid it if we can
4460 determine that the address is one where functions cannot have
4461 been inlined. This improves performance with inferiors that
4462 load a lot of shared libraries, because the solib event
4463 breakpoint is defined as the address of a function (i.e. not
4464 inline). Note that we have to check the previous PC as well
4465 as the current one to catch cases when we have just
4466 single-stepped off a breakpoint prior to reinstating it.
4467 Note that we're assuming that the code we single-step to is
4468 not inline, but that's not definitive: there's nothing
4469 preventing the event breakpoint function from containing
4470 inlined code, and the single-step ending up there. If the
4471 user had set a breakpoint on that inlined code, the missing
4472 skip_inline_frames call would break things. Fortunately
4473 that's an extremely unlikely scenario. */
09ac7c10 4474 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4475 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4476 && ecs->event_thread->control.trap_expected
4477 && pc_at_non_inline_function (aspace,
4478 ecs->event_thread->prev_pc,
09ac7c10 4479 &ecs->ws)))
1c5a993e
MR
4480 {
4481 skip_inline_frames (ecs->ptid);
4482
4483 /* Re-fetch current thread's frame in case that invalidated
4484 the frame cache. */
4485 frame = get_current_frame ();
4486 gdbarch = get_frame_arch (frame);
4487 }
0574c78f 4488 }
edb3359d 4489
a493e3e2 4490 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4491 && ecs->event_thread->control.trap_expected
568d6575 4492 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4493 && currently_stepping (ecs->event_thread))
3352ef37 4494 {
b50d7442 4495 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4496 also on an instruction that needs to be stepped multiple
1777feb0 4497 times before it's been fully executing. E.g., architectures
3352ef37
AC
4498 with a delay slot. It needs to be stepped twice, once for
4499 the instruction and once for the delay slot. */
4500 int step_through_delay
568d6575 4501 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4502
527159b7 4503 if (debug_infrun && step_through_delay)
8a9de0e4 4504 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4505 if (ecs->event_thread->control.step_range_end == 0
4506 && step_through_delay)
3352ef37
AC
4507 {
4508 /* The user issued a continue when stopped at a breakpoint.
4509 Set up for another trap and get out of here. */
4e1c45ea 4510 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4511 keep_going (ecs);
4512 return;
4513 }
4514 else if (step_through_delay)
4515 {
4516 /* The user issued a step when stopped at a breakpoint.
4517 Maybe we should stop, maybe we should not - the delay
4518 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4519 case, don't decide that here, just set
4520 ecs->stepping_over_breakpoint, making sure we
4521 single-step again before breakpoints are re-inserted. */
4e1c45ea 4522 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4523 }
4524 }
4525
ab04a2af
TT
4526 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4527 handles this event. */
4528 ecs->event_thread->control.stop_bpstat
4529 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4530 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4531
ab04a2af
TT
4532 /* Following in case break condition called a
4533 function. */
4534 stop_print_frame = 1;
73dd234f 4535
ab04a2af
TT
4536 /* This is where we handle "moribund" watchpoints. Unlike
4537 software breakpoints traps, hardware watchpoint traps are
4538 always distinguishable from random traps. If no high-level
4539 watchpoint is associated with the reported stop data address
4540 anymore, then the bpstat does not explain the signal ---
4541 simply make sure to ignore it if `stopped_by_watchpoint' is
4542 set. */
4543
4544 if (debug_infrun
4545 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4546 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4547 GDB_SIGNAL_TRAP)
ab04a2af
TT
4548 && stopped_by_watchpoint)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: no user watchpoint explains "
4551 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4552
bac7d97b 4553 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4554 at one stage in the past included checks for an inferior
4555 function call's call dummy's return breakpoint. The original
4556 comment, that went with the test, read:
03cebad2 4557
ab04a2af
TT
4558 ``End of a stack dummy. Some systems (e.g. Sony news) give
4559 another signal besides SIGTRAP, so check here as well as
4560 above.''
73dd234f 4561
ab04a2af
TT
4562 If someone ever tries to get call dummys on a
4563 non-executable stack to work (where the target would stop
4564 with something like a SIGSEGV), then those tests might need
4565 to be re-instated. Given, however, that the tests were only
4566 enabled when momentary breakpoints were not being used, I
4567 suspect that it won't be the case.
488f131b 4568
ab04a2af
TT
4569 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4570 be necessary for call dummies on a non-executable stack on
4571 SPARC. */
488f131b 4572
bac7d97b 4573 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4574 random_signal
4575 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4576 ecs->event_thread->suspend.stop_signal);
bac7d97b 4577
1cf4d951
PA
4578 /* Maybe this was a trap for a software breakpoint that has since
4579 been removed. */
4580 if (random_signal && target_stopped_by_sw_breakpoint ())
4581 {
4582 if (program_breakpoint_here_p (gdbarch, stop_pc))
4583 {
4584 struct regcache *regcache;
4585 int decr_pc;
4586
4587 /* Re-adjust PC to what the program would see if GDB was not
4588 debugging it. */
4589 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 4590 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
4591 if (decr_pc != 0)
4592 {
4593 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4594
4595 if (record_full_is_used ())
4596 record_full_gdb_operation_disable_set ();
4597
4598 regcache_write_pc (regcache, stop_pc + decr_pc);
4599
4600 do_cleanups (old_cleanups);
4601 }
4602 }
4603 else
4604 {
4605 /* A delayed software breakpoint event. Ignore the trap. */
4606 if (debug_infrun)
4607 fprintf_unfiltered (gdb_stdlog,
4608 "infrun: delayed software breakpoint "
4609 "trap, ignoring\n");
4610 random_signal = 0;
4611 }
4612 }
4613
4614 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4615 has since been removed. */
4616 if (random_signal && target_stopped_by_hw_breakpoint ())
4617 {
4618 /* A delayed hardware breakpoint event. Ignore the trap. */
4619 if (debug_infrun)
4620 fprintf_unfiltered (gdb_stdlog,
4621 "infrun: delayed hardware breakpoint/watchpoint "
4622 "trap, ignoring\n");
4623 random_signal = 0;
4624 }
4625
bac7d97b
PA
4626 /* If not, perhaps stepping/nexting can. */
4627 if (random_signal)
4628 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4629 && currently_stepping (ecs->event_thread));
ab04a2af 4630
2adfaa28
PA
4631 /* Perhaps the thread hit a single-step breakpoint of _another_
4632 thread. Single-step breakpoints are transparent to the
4633 breakpoints module. */
4634 if (random_signal)
4635 random_signal = !ecs->hit_singlestep_breakpoint;
4636
bac7d97b
PA
4637 /* No? Perhaps we got a moribund watchpoint. */
4638 if (random_signal)
4639 random_signal = !stopped_by_watchpoint;
ab04a2af 4640
488f131b
JB
4641 /* For the program's own signals, act according to
4642 the signal handling tables. */
4643
ce12b012 4644 if (random_signal)
488f131b
JB
4645 {
4646 /* Signal not for debugging purposes. */
c9657e70 4647 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 4648 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4649
527159b7 4650 if (debug_infrun)
c9737c08
PA
4651 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4652 gdb_signal_to_symbol_string (stop_signal));
527159b7 4653
488f131b
JB
4654 stopped_by_random_signal = 1;
4655
252fbfc8
PA
4656 /* Always stop on signals if we're either just gaining control
4657 of the program, or the user explicitly requested this thread
4658 to remain stopped. */
d6b48e9c 4659 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4660 || ecs->event_thread->stop_requested
24291992 4661 || (!inf->detaching
16c381f0 4662 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4663 {
22bcd14b 4664 stop_waiting (ecs);
488f131b
JB
4665 return;
4666 }
b57bacec
PA
4667
4668 /* Notify observers the signal has "handle print" set. Note we
4669 returned early above if stopping; normal_stop handles the
4670 printing in that case. */
4671 if (signal_print[ecs->event_thread->suspend.stop_signal])
4672 {
4673 /* The signal table tells us to print about this signal. */
4674 target_terminal_ours_for_output ();
4675 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4676 target_terminal_inferior ();
4677 }
488f131b
JB
4678
4679 /* Clear the signal if it should not be passed. */
16c381f0 4680 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4681 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4682
fb14de7b 4683 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4684 && ecs->event_thread->control.trap_expected
8358c15c 4685 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4686 {
4687 /* We were just starting a new sequence, attempting to
4688 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4689 Instead this signal arrives. This signal will take us out
68f53502
AC
4690 of the stepping range so GDB needs to remember to, when
4691 the signal handler returns, resume stepping off that
4692 breakpoint. */
4693 /* To simplify things, "continue" is forced to use the same
4694 code paths as single-step - set a breakpoint at the
4695 signal return address and then, once hit, step off that
4696 breakpoint. */
237fc4c9
PA
4697 if (debug_infrun)
4698 fprintf_unfiltered (gdb_stdlog,
4699 "infrun: signal arrived while stepping over "
4700 "breakpoint\n");
d3169d93 4701
2c03e5be 4702 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4703 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4704 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4705 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4706
4707 /* If we were nexting/stepping some other thread, switch to
4708 it, so that we don't continue it, losing control. */
4709 if (!switch_back_to_stepped_thread (ecs))
4710 keep_going (ecs);
9d799f85 4711 return;
68f53502 4712 }
9d799f85 4713
e5f8a7cc
PA
4714 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4715 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4716 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4717 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4718 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4719 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4720 {
4721 /* The inferior is about to take a signal that will take it
4722 out of the single step range. Set a breakpoint at the
4723 current PC (which is presumably where the signal handler
4724 will eventually return) and then allow the inferior to
4725 run free.
4726
4727 Note that this is only needed for a signal delivered
4728 while in the single-step range. Nested signals aren't a
4729 problem as they eventually all return. */
237fc4c9
PA
4730 if (debug_infrun)
4731 fprintf_unfiltered (gdb_stdlog,
4732 "infrun: signal may take us out of "
4733 "single-step range\n");
4734
2c03e5be 4735 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4736 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4737 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4738 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4739 keep_going (ecs);
4740 return;
d303a6c7 4741 }
9d799f85
AC
4742
4743 /* Note: step_resume_breakpoint may be non-NULL. This occures
4744 when either there's a nested signal, or when there's a
4745 pending signal enabled just as the signal handler returns
4746 (leaving the inferior at the step-resume-breakpoint without
4747 actually executing it). Either way continue until the
4748 breakpoint is really hit. */
c447ac0b
PA
4749
4750 if (!switch_back_to_stepped_thread (ecs))
4751 {
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: random signal, keep going\n");
4755
4756 keep_going (ecs);
4757 }
4758 return;
488f131b 4759 }
94c57d6a
PA
4760
4761 process_event_stop_test (ecs);
4762}
4763
4764/* Come here when we've got some debug event / signal we can explain
4765 (IOW, not a random signal), and test whether it should cause a
4766 stop, or whether we should resume the inferior (transparently).
4767 E.g., could be a breakpoint whose condition evaluates false; we
4768 could be still stepping within the line; etc. */
4769
4770static void
4771process_event_stop_test (struct execution_control_state *ecs)
4772{
4773 struct symtab_and_line stop_pc_sal;
4774 struct frame_info *frame;
4775 struct gdbarch *gdbarch;
cdaa5b73
PA
4776 CORE_ADDR jmp_buf_pc;
4777 struct bpstat_what what;
94c57d6a 4778
cdaa5b73 4779 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4780
cdaa5b73
PA
4781 frame = get_current_frame ();
4782 gdbarch = get_frame_arch (frame);
fcf3daef 4783
cdaa5b73 4784 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4785
cdaa5b73
PA
4786 if (what.call_dummy)
4787 {
4788 stop_stack_dummy = what.call_dummy;
4789 }
186c406b 4790
cdaa5b73
PA
4791 /* If we hit an internal event that triggers symbol changes, the
4792 current frame will be invalidated within bpstat_what (e.g., if we
4793 hit an internal solib event). Re-fetch it. */
4794 frame = get_current_frame ();
4795 gdbarch = get_frame_arch (frame);
e2e4d78b 4796
cdaa5b73
PA
4797 switch (what.main_action)
4798 {
4799 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4800 /* If we hit the breakpoint at longjmp while stepping, we
4801 install a momentary breakpoint at the target of the
4802 jmp_buf. */
186c406b 4803
cdaa5b73
PA
4804 if (debug_infrun)
4805 fprintf_unfiltered (gdb_stdlog,
4806 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4807
cdaa5b73 4808 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4809
cdaa5b73
PA
4810 if (what.is_longjmp)
4811 {
4812 struct value *arg_value;
4813
4814 /* If we set the longjmp breakpoint via a SystemTap probe,
4815 then use it to extract the arguments. The destination PC
4816 is the third argument to the probe. */
4817 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4818 if (arg_value)
8fa0c4f8
AA
4819 {
4820 jmp_buf_pc = value_as_address (arg_value);
4821 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4822 }
cdaa5b73
PA
4823 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4824 || !gdbarch_get_longjmp_target (gdbarch,
4825 frame, &jmp_buf_pc))
e2e4d78b 4826 {
cdaa5b73
PA
4827 if (debug_infrun)
4828 fprintf_unfiltered (gdb_stdlog,
4829 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4830 "(!gdbarch_get_longjmp_target)\n");
4831 keep_going (ecs);
4832 return;
e2e4d78b 4833 }
e2e4d78b 4834
cdaa5b73
PA
4835 /* Insert a breakpoint at resume address. */
4836 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4837 }
4838 else
4839 check_exception_resume (ecs, frame);
4840 keep_going (ecs);
4841 return;
e81a37f7 4842
cdaa5b73
PA
4843 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4844 {
4845 struct frame_info *init_frame;
e81a37f7 4846
cdaa5b73 4847 /* There are several cases to consider.
c906108c 4848
cdaa5b73
PA
4849 1. The initiating frame no longer exists. In this case we
4850 must stop, because the exception or longjmp has gone too
4851 far.
2c03e5be 4852
cdaa5b73
PA
4853 2. The initiating frame exists, and is the same as the
4854 current frame. We stop, because the exception or longjmp
4855 has been caught.
2c03e5be 4856
cdaa5b73
PA
4857 3. The initiating frame exists and is different from the
4858 current frame. This means the exception or longjmp has
4859 been caught beneath the initiating frame, so keep going.
c906108c 4860
cdaa5b73
PA
4861 4. longjmp breakpoint has been placed just to protect
4862 against stale dummy frames and user is not interested in
4863 stopping around longjmps. */
c5aa993b 4864
cdaa5b73
PA
4865 if (debug_infrun)
4866 fprintf_unfiltered (gdb_stdlog,
4867 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4868
cdaa5b73
PA
4869 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4870 != NULL);
4871 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4872
cdaa5b73
PA
4873 if (what.is_longjmp)
4874 {
b67a2c6f 4875 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4876
cdaa5b73 4877 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4878 {
cdaa5b73
PA
4879 /* Case 4. */
4880 keep_going (ecs);
4881 return;
e5ef252a 4882 }
cdaa5b73 4883 }
c5aa993b 4884
cdaa5b73 4885 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4886
cdaa5b73
PA
4887 if (init_frame)
4888 {
4889 struct frame_id current_id
4890 = get_frame_id (get_current_frame ());
4891 if (frame_id_eq (current_id,
4892 ecs->event_thread->initiating_frame))
4893 {
4894 /* Case 2. Fall through. */
4895 }
4896 else
4897 {
4898 /* Case 3. */
4899 keep_going (ecs);
4900 return;
4901 }
68f53502 4902 }
488f131b 4903
cdaa5b73
PA
4904 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4905 exists. */
4906 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4907
bdc36728 4908 end_stepping_range (ecs);
cdaa5b73
PA
4909 }
4910 return;
e5ef252a 4911
cdaa5b73
PA
4912 case BPSTAT_WHAT_SINGLE:
4913 if (debug_infrun)
4914 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4915 ecs->event_thread->stepping_over_breakpoint = 1;
4916 /* Still need to check other stuff, at least the case where we
4917 are stepping and step out of the right range. */
4918 break;
e5ef252a 4919
cdaa5b73
PA
4920 case BPSTAT_WHAT_STEP_RESUME:
4921 if (debug_infrun)
4922 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4923
cdaa5b73
PA
4924 delete_step_resume_breakpoint (ecs->event_thread);
4925 if (ecs->event_thread->control.proceed_to_finish
4926 && execution_direction == EXEC_REVERSE)
4927 {
4928 struct thread_info *tp = ecs->event_thread;
4929
4930 /* We are finishing a function in reverse, and just hit the
4931 step-resume breakpoint at the start address of the
4932 function, and we're almost there -- just need to back up
4933 by one more single-step, which should take us back to the
4934 function call. */
4935 tp->control.step_range_start = tp->control.step_range_end = 1;
4936 keep_going (ecs);
e5ef252a 4937 return;
cdaa5b73
PA
4938 }
4939 fill_in_stop_func (gdbarch, ecs);
4940 if (stop_pc == ecs->stop_func_start
4941 && execution_direction == EXEC_REVERSE)
4942 {
4943 /* We are stepping over a function call in reverse, and just
4944 hit the step-resume breakpoint at the start address of
4945 the function. Go back to single-stepping, which should
4946 take us back to the function call. */
4947 ecs->event_thread->stepping_over_breakpoint = 1;
4948 keep_going (ecs);
4949 return;
4950 }
4951 break;
e5ef252a 4952
cdaa5b73
PA
4953 case BPSTAT_WHAT_STOP_NOISY:
4954 if (debug_infrun)
4955 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4956 stop_print_frame = 1;
e5ef252a 4957
99619bea
PA
4958 /* Assume the thread stopped for a breapoint. We'll still check
4959 whether a/the breakpoint is there when the thread is next
4960 resumed. */
4961 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4962
22bcd14b 4963 stop_waiting (ecs);
cdaa5b73 4964 return;
e5ef252a 4965
cdaa5b73
PA
4966 case BPSTAT_WHAT_STOP_SILENT:
4967 if (debug_infrun)
4968 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4969 stop_print_frame = 0;
e5ef252a 4970
99619bea
PA
4971 /* Assume the thread stopped for a breapoint. We'll still check
4972 whether a/the breakpoint is there when the thread is next
4973 resumed. */
4974 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4975 stop_waiting (ecs);
cdaa5b73
PA
4976 return;
4977
4978 case BPSTAT_WHAT_HP_STEP_RESUME:
4979 if (debug_infrun)
4980 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4981
4982 delete_step_resume_breakpoint (ecs->event_thread);
4983 if (ecs->event_thread->step_after_step_resume_breakpoint)
4984 {
4985 /* Back when the step-resume breakpoint was inserted, we
4986 were trying to single-step off a breakpoint. Go back to
4987 doing that. */
4988 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4989 ecs->event_thread->stepping_over_breakpoint = 1;
4990 keep_going (ecs);
4991 return;
e5ef252a 4992 }
cdaa5b73
PA
4993 break;
4994
4995 case BPSTAT_WHAT_KEEP_CHECKING:
4996 break;
e5ef252a 4997 }
c906108c 4998
af48d08f
PA
4999 /* If we stepped a permanent breakpoint and we had a high priority
5000 step-resume breakpoint for the address we stepped, but we didn't
5001 hit it, then we must have stepped into the signal handler. The
5002 step-resume was only necessary to catch the case of _not_
5003 stepping into the handler, so delete it, and fall through to
5004 checking whether the step finished. */
5005 if (ecs->event_thread->stepped_breakpoint)
5006 {
5007 struct breakpoint *sr_bp
5008 = ecs->event_thread->control.step_resume_breakpoint;
5009
8d707a12
PA
5010 if (sr_bp != NULL
5011 && sr_bp->loc->permanent
af48d08f
PA
5012 && sr_bp->type == bp_hp_step_resume
5013 && sr_bp->loc->address == ecs->event_thread->prev_pc)
5014 {
5015 if (debug_infrun)
5016 fprintf_unfiltered (gdb_stdlog,
5017 "infrun: stepped permanent breakpoint, stopped in "
5018 "handler\n");
5019 delete_step_resume_breakpoint (ecs->event_thread);
5020 ecs->event_thread->step_after_step_resume_breakpoint = 0;
5021 }
5022 }
5023
cdaa5b73
PA
5024 /* We come here if we hit a breakpoint but should not stop for it.
5025 Possibly we also were stepping and should stop for that. So fall
5026 through and test for stepping. But, if not stepping, do not
5027 stop. */
c906108c 5028
a7212384
UW
5029 /* In all-stop mode, if we're currently stepping but have stopped in
5030 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
5031 if (switch_back_to_stepped_thread (ecs))
5032 return;
776f04fa 5033
8358c15c 5034 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 5035 {
527159b7 5036 if (debug_infrun)
d3169d93
DJ
5037 fprintf_unfiltered (gdb_stdlog,
5038 "infrun: step-resume breakpoint is inserted\n");
527159b7 5039
488f131b
JB
5040 /* Having a step-resume breakpoint overrides anything
5041 else having to do with stepping commands until
5042 that breakpoint is reached. */
488f131b
JB
5043 keep_going (ecs);
5044 return;
5045 }
c5aa993b 5046
16c381f0 5047 if (ecs->event_thread->control.step_range_end == 0)
488f131b 5048 {
527159b7 5049 if (debug_infrun)
8a9de0e4 5050 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 5051 /* Likewise if we aren't even stepping. */
488f131b
JB
5052 keep_going (ecs);
5053 return;
5054 }
c5aa993b 5055
4b7703ad
JB
5056 /* Re-fetch current thread's frame in case the code above caused
5057 the frame cache to be re-initialized, making our FRAME variable
5058 a dangling pointer. */
5059 frame = get_current_frame ();
628fe4e4 5060 gdbarch = get_frame_arch (frame);
7e324e48 5061 fill_in_stop_func (gdbarch, ecs);
4b7703ad 5062
488f131b 5063 /* If stepping through a line, keep going if still within it.
c906108c 5064
488f131b
JB
5065 Note that step_range_end is the address of the first instruction
5066 beyond the step range, and NOT the address of the last instruction
31410e84
MS
5067 within it!
5068
5069 Note also that during reverse execution, we may be stepping
5070 through a function epilogue and therefore must detect when
5071 the current-frame changes in the middle of a line. */
5072
ce4c476a 5073 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 5074 && (execution_direction != EXEC_REVERSE
388a8562 5075 || frame_id_eq (get_frame_id (frame),
16c381f0 5076 ecs->event_thread->control.step_frame_id)))
488f131b 5077 {
527159b7 5078 if (debug_infrun)
5af949e3
UW
5079 fprintf_unfiltered
5080 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
5081 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5082 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 5083
c1e36e3e
PA
5084 /* Tentatively re-enable range stepping; `resume' disables it if
5085 necessary (e.g., if we're stepping over a breakpoint or we
5086 have software watchpoints). */
5087 ecs->event_thread->control.may_range_step = 1;
5088
b2175913
MS
5089 /* When stepping backward, stop at beginning of line range
5090 (unless it's the function entry point, in which case
5091 keep going back to the call point). */
16c381f0 5092 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
5093 && stop_pc != ecs->stop_func_start
5094 && execution_direction == EXEC_REVERSE)
bdc36728 5095 end_stepping_range (ecs);
b2175913
MS
5096 else
5097 keep_going (ecs);
5098
488f131b
JB
5099 return;
5100 }
c5aa993b 5101
488f131b 5102 /* We stepped out of the stepping range. */
c906108c 5103
488f131b 5104 /* If we are stepping at the source level and entered the runtime
388a8562
MS
5105 loader dynamic symbol resolution code...
5106
5107 EXEC_FORWARD: we keep on single stepping until we exit the run
5108 time loader code and reach the callee's address.
5109
5110 EXEC_REVERSE: we've already executed the callee (backward), and
5111 the runtime loader code is handled just like any other
5112 undebuggable function call. Now we need only keep stepping
5113 backward through the trampoline code, and that's handled further
5114 down, so there is nothing for us to do here. */
5115
5116 if (execution_direction != EXEC_REVERSE
16c381f0 5117 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 5118 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 5119 {
4c8c40e6 5120 CORE_ADDR pc_after_resolver =
568d6575 5121 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 5122
527159b7 5123 if (debug_infrun)
3e43a32a
MS
5124 fprintf_unfiltered (gdb_stdlog,
5125 "infrun: stepped into dynsym resolve code\n");
527159b7 5126
488f131b
JB
5127 if (pc_after_resolver)
5128 {
5129 /* Set up a step-resume breakpoint at the address
5130 indicated by SKIP_SOLIB_RESOLVER. */
5131 struct symtab_and_line sr_sal;
abbb1732 5132
fe39c653 5133 init_sal (&sr_sal);
488f131b 5134 sr_sal.pc = pc_after_resolver;
6c95b8df 5135 sr_sal.pspace = get_frame_program_space (frame);
488f131b 5136
a6d9a66e
UW
5137 insert_step_resume_breakpoint_at_sal (gdbarch,
5138 sr_sal, null_frame_id);
c5aa993b 5139 }
c906108c 5140
488f131b
JB
5141 keep_going (ecs);
5142 return;
5143 }
c906108c 5144
16c381f0
JK
5145 if (ecs->event_thread->control.step_range_end != 1
5146 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5147 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 5148 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 5149 {
527159b7 5150 if (debug_infrun)
3e43a32a
MS
5151 fprintf_unfiltered (gdb_stdlog,
5152 "infrun: stepped into signal trampoline\n");
42edda50 5153 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
5154 a signal trampoline (either by a signal being delivered or by
5155 the signal handler returning). Just single-step until the
5156 inferior leaves the trampoline (either by calling the handler
5157 or returning). */
488f131b
JB
5158 keep_going (ecs);
5159 return;
5160 }
c906108c 5161
14132e89
MR
5162 /* If we're in the return path from a shared library trampoline,
5163 we want to proceed through the trampoline when stepping. */
5164 /* macro/2012-04-25: This needs to come before the subroutine
5165 call check below as on some targets return trampolines look
5166 like subroutine calls (MIPS16 return thunks). */
5167 if (gdbarch_in_solib_return_trampoline (gdbarch,
5168 stop_pc, ecs->stop_func_name)
5169 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5170 {
5171 /* Determine where this trampoline returns. */
5172 CORE_ADDR real_stop_pc;
5173
5174 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5175
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: stepped into solib return tramp\n");
5179
5180 /* Only proceed through if we know where it's going. */
5181 if (real_stop_pc)
5182 {
5183 /* And put the step-breakpoint there and go until there. */
5184 struct symtab_and_line sr_sal;
5185
5186 init_sal (&sr_sal); /* initialize to zeroes */
5187 sr_sal.pc = real_stop_pc;
5188 sr_sal.section = find_pc_overlay (sr_sal.pc);
5189 sr_sal.pspace = get_frame_program_space (frame);
5190
5191 /* Do not specify what the fp should be when we stop since
5192 on some machines the prologue is where the new fp value
5193 is established. */
5194 insert_step_resume_breakpoint_at_sal (gdbarch,
5195 sr_sal, null_frame_id);
5196
5197 /* Restart without fiddling with the step ranges or
5198 other state. */
5199 keep_going (ecs);
5200 return;
5201 }
5202 }
5203
c17eaafe
DJ
5204 /* Check for subroutine calls. The check for the current frame
5205 equalling the step ID is not necessary - the check of the
5206 previous frame's ID is sufficient - but it is a common case and
5207 cheaper than checking the previous frame's ID.
14e60db5
DJ
5208
5209 NOTE: frame_id_eq will never report two invalid frame IDs as
5210 being equal, so to get into this block, both the current and
5211 previous frame must have valid frame IDs. */
005ca36a
JB
5212 /* The outer_frame_id check is a heuristic to detect stepping
5213 through startup code. If we step over an instruction which
5214 sets the stack pointer from an invalid value to a valid value,
5215 we may detect that as a subroutine call from the mythical
5216 "outermost" function. This could be fixed by marking
5217 outermost frames as !stack_p,code_p,special_p. Then the
5218 initial outermost frame, before sp was valid, would
ce6cca6d 5219 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 5220 for more. */
edb3359d 5221 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 5222 ecs->event_thread->control.step_stack_frame_id)
005ca36a 5223 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
5224 ecs->event_thread->control.step_stack_frame_id)
5225 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 5226 outer_frame_id)
885eeb5b
PA
5227 || (ecs->event_thread->control.step_start_function
5228 != find_pc_function (stop_pc)))))
488f131b 5229 {
95918acb 5230 CORE_ADDR real_stop_pc;
8fb3e588 5231
527159b7 5232 if (debug_infrun)
8a9de0e4 5233 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 5234
b7a084be 5235 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
5236 {
5237 /* I presume that step_over_calls is only 0 when we're
5238 supposed to be stepping at the assembly language level
5239 ("stepi"). Just stop. */
388a8562 5240 /* And this works the same backward as frontward. MVS */
bdc36728 5241 end_stepping_range (ecs);
95918acb
AC
5242 return;
5243 }
8fb3e588 5244
388a8562
MS
5245 /* Reverse stepping through solib trampolines. */
5246
5247 if (execution_direction == EXEC_REVERSE
16c381f0 5248 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5249 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5250 || (ecs->stop_func_start == 0
5251 && in_solib_dynsym_resolve_code (stop_pc))))
5252 {
5253 /* Any solib trampoline code can be handled in reverse
5254 by simply continuing to single-step. We have already
5255 executed the solib function (backwards), and a few
5256 steps will take us back through the trampoline to the
5257 caller. */
5258 keep_going (ecs);
5259 return;
5260 }
5261
16c381f0 5262 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5263 {
b2175913
MS
5264 /* We're doing a "next".
5265
5266 Normal (forward) execution: set a breakpoint at the
5267 callee's return address (the address at which the caller
5268 will resume).
5269
5270 Reverse (backward) execution. set the step-resume
5271 breakpoint at the start of the function that we just
5272 stepped into (backwards), and continue to there. When we
6130d0b7 5273 get there, we'll need to single-step back to the caller. */
b2175913
MS
5274
5275 if (execution_direction == EXEC_REVERSE)
5276 {
acf9414f
JK
5277 /* If we're already at the start of the function, we've either
5278 just stepped backward into a single instruction function,
5279 or stepped back out of a signal handler to the first instruction
5280 of the function. Just keep going, which will single-step back
5281 to the caller. */
58c48e72 5282 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5283 {
5284 struct symtab_and_line sr_sal;
5285
5286 /* Normal function call return (static or dynamic). */
5287 init_sal (&sr_sal);
5288 sr_sal.pc = ecs->stop_func_start;
5289 sr_sal.pspace = get_frame_program_space (frame);
5290 insert_step_resume_breakpoint_at_sal (gdbarch,
5291 sr_sal, null_frame_id);
5292 }
b2175913
MS
5293 }
5294 else
568d6575 5295 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5296
8567c30f
AC
5297 keep_going (ecs);
5298 return;
5299 }
a53c66de 5300
95918acb 5301 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5302 calling routine and the real function), locate the real
5303 function. That's what tells us (a) whether we want to step
5304 into it at all, and (b) what prologue we want to run to the
5305 end of, if we do step into it. */
568d6575 5306 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5307 if (real_stop_pc == 0)
568d6575 5308 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5309 if (real_stop_pc != 0)
5310 ecs->stop_func_start = real_stop_pc;
8fb3e588 5311
db5f024e 5312 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5313 {
5314 struct symtab_and_line sr_sal;
abbb1732 5315
1b2bfbb9
RC
5316 init_sal (&sr_sal);
5317 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5318 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5319
a6d9a66e
UW
5320 insert_step_resume_breakpoint_at_sal (gdbarch,
5321 sr_sal, null_frame_id);
8fb3e588
AC
5322 keep_going (ecs);
5323 return;
1b2bfbb9
RC
5324 }
5325
95918acb 5326 /* If we have line number information for the function we are
1bfeeb0f
JL
5327 thinking of stepping into and the function isn't on the skip
5328 list, step into it.
95918acb 5329
8fb3e588
AC
5330 If there are several symtabs at that PC (e.g. with include
5331 files), just want to know whether *any* of them have line
5332 numbers. find_pc_line handles this. */
95918acb
AC
5333 {
5334 struct symtab_and_line tmp_sal;
8fb3e588 5335
95918acb 5336 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5337 if (tmp_sal.line != 0
85817405
JK
5338 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5339 &tmp_sal))
95918acb 5340 {
b2175913 5341 if (execution_direction == EXEC_REVERSE)
568d6575 5342 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5343 else
568d6575 5344 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5345 return;
5346 }
5347 }
5348
5349 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5350 set, we stop the step so that the user has a chance to switch
5351 in assembly mode. */
16c381f0 5352 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5353 && step_stop_if_no_debug)
95918acb 5354 {
bdc36728 5355 end_stepping_range (ecs);
95918acb
AC
5356 return;
5357 }
5358
b2175913
MS
5359 if (execution_direction == EXEC_REVERSE)
5360 {
acf9414f
JK
5361 /* If we're already at the start of the function, we've either just
5362 stepped backward into a single instruction function without line
5363 number info, or stepped back out of a signal handler to the first
5364 instruction of the function without line number info. Just keep
5365 going, which will single-step back to the caller. */
5366 if (ecs->stop_func_start != stop_pc)
5367 {
5368 /* Set a breakpoint at callee's start address.
5369 From there we can step once and be back in the caller. */
5370 struct symtab_and_line sr_sal;
abbb1732 5371
acf9414f
JK
5372 init_sal (&sr_sal);
5373 sr_sal.pc = ecs->stop_func_start;
5374 sr_sal.pspace = get_frame_program_space (frame);
5375 insert_step_resume_breakpoint_at_sal (gdbarch,
5376 sr_sal, null_frame_id);
5377 }
b2175913
MS
5378 }
5379 else
5380 /* Set a breakpoint at callee's return address (the address
5381 at which the caller will resume). */
568d6575 5382 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5383
95918acb 5384 keep_going (ecs);
488f131b 5385 return;
488f131b 5386 }
c906108c 5387
fdd654f3
MS
5388 /* Reverse stepping through solib trampolines. */
5389
5390 if (execution_direction == EXEC_REVERSE
16c381f0 5391 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5392 {
5393 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5394 || (ecs->stop_func_start == 0
5395 && in_solib_dynsym_resolve_code (stop_pc)))
5396 {
5397 /* Any solib trampoline code can be handled in reverse
5398 by simply continuing to single-step. We have already
5399 executed the solib function (backwards), and a few
5400 steps will take us back through the trampoline to the
5401 caller. */
5402 keep_going (ecs);
5403 return;
5404 }
5405 else if (in_solib_dynsym_resolve_code (stop_pc))
5406 {
5407 /* Stepped backward into the solib dynsym resolver.
5408 Set a breakpoint at its start and continue, then
5409 one more step will take us out. */
5410 struct symtab_and_line sr_sal;
abbb1732 5411
fdd654f3
MS
5412 init_sal (&sr_sal);
5413 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5414 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5415 insert_step_resume_breakpoint_at_sal (gdbarch,
5416 sr_sal, null_frame_id);
5417 keep_going (ecs);
5418 return;
5419 }
5420 }
5421
2afb61aa 5422 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5423
1b2bfbb9
RC
5424 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5425 the trampoline processing logic, however, there are some trampolines
5426 that have no names, so we should do trampoline handling first. */
16c381f0 5427 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5428 && ecs->stop_func_name == NULL
2afb61aa 5429 && stop_pc_sal.line == 0)
1b2bfbb9 5430 {
527159b7 5431 if (debug_infrun)
3e43a32a
MS
5432 fprintf_unfiltered (gdb_stdlog,
5433 "infrun: stepped into undebuggable function\n");
527159b7 5434
1b2bfbb9 5435 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5436 undebuggable function (where there is no debugging information
5437 and no line number corresponding to the address where the
1b2bfbb9
RC
5438 inferior stopped). Since we want to skip this kind of code,
5439 we keep going until the inferior returns from this
14e60db5
DJ
5440 function - unless the user has asked us not to (via
5441 set step-mode) or we no longer know how to get back
5442 to the call site. */
5443 if (step_stop_if_no_debug
c7ce8faa 5444 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5445 {
5446 /* If we have no line number and the step-stop-if-no-debug
5447 is set, we stop the step so that the user has a chance to
5448 switch in assembly mode. */
bdc36728 5449 end_stepping_range (ecs);
1b2bfbb9
RC
5450 return;
5451 }
5452 else
5453 {
5454 /* Set a breakpoint at callee's return address (the address
5455 at which the caller will resume). */
568d6575 5456 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5457 keep_going (ecs);
5458 return;
5459 }
5460 }
5461
16c381f0 5462 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5463 {
5464 /* It is stepi or nexti. We always want to stop stepping after
5465 one instruction. */
527159b7 5466 if (debug_infrun)
8a9de0e4 5467 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5468 end_stepping_range (ecs);
1b2bfbb9
RC
5469 return;
5470 }
5471
2afb61aa 5472 if (stop_pc_sal.line == 0)
488f131b
JB
5473 {
5474 /* We have no line number information. That means to stop
5475 stepping (does this always happen right after one instruction,
5476 when we do "s" in a function with no line numbers,
5477 or can this happen as a result of a return or longjmp?). */
527159b7 5478 if (debug_infrun)
8a9de0e4 5479 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5480 end_stepping_range (ecs);
488f131b
JB
5481 return;
5482 }
c906108c 5483
edb3359d
DJ
5484 /* Look for "calls" to inlined functions, part one. If the inline
5485 frame machinery detected some skipped call sites, we have entered
5486 a new inline function. */
5487
5488 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5489 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5490 && inline_skipped_frames (ecs->ptid))
5491 {
5492 struct symtab_and_line call_sal;
5493
5494 if (debug_infrun)
5495 fprintf_unfiltered (gdb_stdlog,
5496 "infrun: stepped into inlined function\n");
5497
5498 find_frame_sal (get_current_frame (), &call_sal);
5499
16c381f0 5500 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5501 {
5502 /* For "step", we're going to stop. But if the call site
5503 for this inlined function is on the same source line as
5504 we were previously stepping, go down into the function
5505 first. Otherwise stop at the call site. */
5506
5507 if (call_sal.line == ecs->event_thread->current_line
5508 && call_sal.symtab == ecs->event_thread->current_symtab)
5509 step_into_inline_frame (ecs->ptid);
5510
bdc36728 5511 end_stepping_range (ecs);
edb3359d
DJ
5512 return;
5513 }
5514 else
5515 {
5516 /* For "next", we should stop at the call site if it is on a
5517 different source line. Otherwise continue through the
5518 inlined function. */
5519 if (call_sal.line == ecs->event_thread->current_line
5520 && call_sal.symtab == ecs->event_thread->current_symtab)
5521 keep_going (ecs);
5522 else
bdc36728 5523 end_stepping_range (ecs);
edb3359d
DJ
5524 return;
5525 }
5526 }
5527
5528 /* Look for "calls" to inlined functions, part two. If we are still
5529 in the same real function we were stepping through, but we have
5530 to go further up to find the exact frame ID, we are stepping
5531 through a more inlined call beyond its call site. */
5532
5533 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5534 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5535 ecs->event_thread->control.step_frame_id)
edb3359d 5536 && stepped_in_from (get_current_frame (),
16c381f0 5537 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5538 {
5539 if (debug_infrun)
5540 fprintf_unfiltered (gdb_stdlog,
5541 "infrun: stepping through inlined function\n");
5542
16c381f0 5543 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5544 keep_going (ecs);
5545 else
bdc36728 5546 end_stepping_range (ecs);
edb3359d
DJ
5547 return;
5548 }
5549
2afb61aa 5550 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5551 && (ecs->event_thread->current_line != stop_pc_sal.line
5552 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5553 {
5554 /* We are at the start of a different line. So stop. Note that
5555 we don't stop if we step into the middle of a different line.
5556 That is said to make things like for (;;) statements work
5557 better. */
527159b7 5558 if (debug_infrun)
3e43a32a
MS
5559 fprintf_unfiltered (gdb_stdlog,
5560 "infrun: stepped to a different line\n");
bdc36728 5561 end_stepping_range (ecs);
488f131b
JB
5562 return;
5563 }
c906108c 5564
488f131b 5565 /* We aren't done stepping.
c906108c 5566
488f131b
JB
5567 Optimize by setting the stepping range to the line.
5568 (We might not be in the original line, but if we entered a
5569 new line in mid-statement, we continue stepping. This makes
5570 things like for(;;) statements work better.) */
c906108c 5571
16c381f0
JK
5572 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5573 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5574 ecs->event_thread->control.may_range_step = 1;
edb3359d 5575 set_step_info (frame, stop_pc_sal);
488f131b 5576
527159b7 5577 if (debug_infrun)
8a9de0e4 5578 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5579 keep_going (ecs);
104c1213
JM
5580}
5581
c447ac0b
PA
5582/* In all-stop mode, if we're currently stepping but have stopped in
5583 some other thread, we may need to switch back to the stepped
5584 thread. Returns true we set the inferior running, false if we left
5585 it stopped (and the event needs further processing). */
5586
5587static int
5588switch_back_to_stepped_thread (struct execution_control_state *ecs)
5589{
5590 if (!non_stop)
5591 {
5592 struct thread_info *tp;
99619bea 5593 struct thread_info *stepping_thread;
483805cf 5594 struct thread_info *step_over;
99619bea
PA
5595
5596 /* If any thread is blocked on some internal breakpoint, and we
5597 simply need to step over that breakpoint to get it going
5598 again, do that first. */
5599
5600 /* However, if we see an event for the stepping thread, then we
5601 know all other threads have been moved past their breakpoints
5602 already. Let the caller check whether the step is finished,
5603 etc., before deciding to move it past a breakpoint. */
5604 if (ecs->event_thread->control.step_range_end != 0)
5605 return 0;
5606
5607 /* Check if the current thread is blocked on an incomplete
5608 step-over, interrupted by a random signal. */
5609 if (ecs->event_thread->control.trap_expected
5610 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5611 {
99619bea
PA
5612 if (debug_infrun)
5613 {
5614 fprintf_unfiltered (gdb_stdlog,
5615 "infrun: need to finish step-over of [%s]\n",
5616 target_pid_to_str (ecs->event_thread->ptid));
5617 }
5618 keep_going (ecs);
5619 return 1;
5620 }
2adfaa28 5621
99619bea
PA
5622 /* Check if the current thread is blocked by a single-step
5623 breakpoint of another thread. */
5624 if (ecs->hit_singlestep_breakpoint)
5625 {
5626 if (debug_infrun)
5627 {
5628 fprintf_unfiltered (gdb_stdlog,
5629 "infrun: need to step [%s] over single-step "
5630 "breakpoint\n",
5631 target_pid_to_str (ecs->ptid));
5632 }
5633 keep_going (ecs);
5634 return 1;
5635 }
5636
483805cf
PA
5637 /* Otherwise, we no longer expect a trap in the current thread.
5638 Clear the trap_expected flag before switching back -- this is
5639 what keep_going does as well, if we call it. */
5640 ecs->event_thread->control.trap_expected = 0;
5641
70509625
PA
5642 /* Likewise, clear the signal if it should not be passed. */
5643 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5644 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5645
483805cf
PA
5646 /* If scheduler locking applies even if not stepping, there's no
5647 need to walk over threads. Above we've checked whether the
5648 current thread is stepping. If some other thread not the
5649 event thread is stepping, then it must be that scheduler
5650 locking is not in effect. */
856e7dd6 5651 if (schedlock_applies (ecs->event_thread))
483805cf
PA
5652 return 0;
5653
5654 /* Look for the stepping/nexting thread, and check if any other
5655 thread other than the stepping thread needs to start a
5656 step-over. Do all step-overs before actually proceeding with
5657 step/next/etc. */
5658 stepping_thread = NULL;
5659 step_over = NULL;
034f788c 5660 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5661 {
5662 /* Ignore threads of processes we're not resuming. */
5663 if (!sched_multi
5664 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5665 continue;
5666
5667 /* When stepping over a breakpoint, we lock all threads
5668 except the one that needs to move past the breakpoint.
5669 If a non-event thread has this set, the "incomplete
5670 step-over" check above should have caught it earlier. */
5671 gdb_assert (!tp->control.trap_expected);
5672
5673 /* Did we find the stepping thread? */
5674 if (tp->control.step_range_end)
5675 {
5676 /* Yep. There should only one though. */
5677 gdb_assert (stepping_thread == NULL);
5678
5679 /* The event thread is handled at the top, before we
5680 enter this loop. */
5681 gdb_assert (tp != ecs->event_thread);
5682
5683 /* If some thread other than the event thread is
5684 stepping, then scheduler locking can't be in effect,
5685 otherwise we wouldn't have resumed the current event
5686 thread in the first place. */
856e7dd6 5687 gdb_assert (!schedlock_applies (tp));
483805cf
PA
5688
5689 stepping_thread = tp;
5690 }
5691 else if (thread_still_needs_step_over (tp))
5692 {
5693 step_over = tp;
5694
5695 /* At the top we've returned early if the event thread
5696 is stepping. If some other thread not the event
5697 thread is stepping, then scheduler locking can't be
5698 in effect, and we can resume this thread. No need to
5699 keep looking for the stepping thread then. */
5700 break;
5701 }
5702 }
99619bea 5703
483805cf 5704 if (step_over != NULL)
99619bea 5705 {
483805cf 5706 tp = step_over;
99619bea 5707 if (debug_infrun)
c447ac0b 5708 {
99619bea
PA
5709 fprintf_unfiltered (gdb_stdlog,
5710 "infrun: need to step-over [%s]\n",
5711 target_pid_to_str (tp->ptid));
c447ac0b
PA
5712 }
5713
483805cf 5714 /* Only the stepping thread should have this set. */
99619bea
PA
5715 gdb_assert (tp->control.step_range_end == 0);
5716
99619bea
PA
5717 ecs->ptid = tp->ptid;
5718 ecs->event_thread = tp;
5719 switch_to_thread (ecs->ptid);
5720 keep_going (ecs);
5721 return 1;
5722 }
5723
483805cf 5724 if (stepping_thread != NULL)
99619bea
PA
5725 {
5726 struct frame_info *frame;
5727 struct gdbarch *gdbarch;
5728
483805cf
PA
5729 tp = stepping_thread;
5730
c447ac0b
PA
5731 /* If the stepping thread exited, then don't try to switch
5732 back and resume it, which could fail in several different
5733 ways depending on the target. Instead, just keep going.
5734
5735 We can find a stepping dead thread in the thread list in
5736 two cases:
5737
5738 - The target supports thread exit events, and when the
5739 target tries to delete the thread from the thread list,
5740 inferior_ptid pointed at the exiting thread. In such
5741 case, calling delete_thread does not really remove the
5742 thread from the list; instead, the thread is left listed,
5743 with 'exited' state.
5744
5745 - The target's debug interface does not support thread
5746 exit events, and so we have no idea whatsoever if the
5747 previously stepping thread is still alive. For that
5748 reason, we need to synchronously query the target
5749 now. */
5750 if (is_exited (tp->ptid)
5751 || !target_thread_alive (tp->ptid))
5752 {
5753 if (debug_infrun)
5754 fprintf_unfiltered (gdb_stdlog,
5755 "infrun: not switching back to "
5756 "stepped thread, it has vanished\n");
5757
5758 delete_thread (tp->ptid);
5759 keep_going (ecs);
5760 return 1;
5761 }
5762
c447ac0b
PA
5763 if (debug_infrun)
5764 fprintf_unfiltered (gdb_stdlog,
5765 "infrun: switching back to stepped thread\n");
5766
5767 ecs->event_thread = tp;
5768 ecs->ptid = tp->ptid;
5769 context_switch (ecs->ptid);
2adfaa28
PA
5770
5771 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5772 frame = get_current_frame ();
5773 gdbarch = get_frame_arch (frame);
5774
5775 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5776 changed, then that thread has trapped or been signaled,
5777 but the event has not been reported to GDB yet. Re-poll
5778 the target looking for this particular thread's event
5779 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5780
5781 - setting a break at the current PC
5782 - resuming that particular thread, only (by setting
5783 trap expected)
5784
5785 This prevents us continuously moving the single-step
5786 breakpoint forward, one instruction at a time,
5787 overstepping. */
5788
af48d08f 5789 if (stop_pc != tp->prev_pc)
2adfaa28 5790 {
64ce06e4
PA
5791 ptid_t resume_ptid;
5792
2adfaa28
PA
5793 if (debug_infrun)
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: expected thread advanced also\n");
5796
7c16b83e
PA
5797 /* Clear the info of the previous step-over, as it's no
5798 longer valid. It's what keep_going would do too, if
5799 we called it. Must do this before trying to insert
5800 the sss breakpoint, otherwise if we were previously
5801 trying to step over this exact address in another
5802 thread, the breakpoint ends up not installed. */
5803 clear_step_over_info ();
5804
2adfaa28
PA
5805 insert_single_step_breakpoint (get_frame_arch (frame),
5806 get_frame_address_space (frame),
5807 stop_pc);
2adfaa28 5808
64ce06e4
PA
5809 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
5810 do_target_resume (resume_ptid,
5811 currently_stepping (tp), GDB_SIGNAL_0);
2adfaa28
PA
5812 prepare_to_wait (ecs);
5813 }
5814 else
5815 {
5816 if (debug_infrun)
5817 fprintf_unfiltered (gdb_stdlog,
5818 "infrun: expected thread still "
5819 "hasn't advanced\n");
5820 keep_going (ecs);
5821 }
5822
c447ac0b
PA
5823 return 1;
5824 }
5825 }
5826 return 0;
5827}
5828
b3444185 5829/* Is thread TP in the middle of single-stepping? */
104c1213 5830
a289b8f6 5831static int
b3444185 5832currently_stepping (struct thread_info *tp)
a7212384 5833{
8358c15c
JK
5834 return ((tp->control.step_range_end
5835 && tp->control.step_resume_breakpoint == NULL)
5836 || tp->control.trap_expected
af48d08f 5837 || tp->stepped_breakpoint
8358c15c 5838 || bpstat_should_step ());
a7212384
UW
5839}
5840
b2175913
MS
5841/* Inferior has stepped into a subroutine call with source code that
5842 we should not step over. Do step to the first line of code in
5843 it. */
c2c6d25f
JM
5844
5845static void
568d6575
UW
5846handle_step_into_function (struct gdbarch *gdbarch,
5847 struct execution_control_state *ecs)
c2c6d25f 5848{
43f3e411 5849 struct compunit_symtab *cust;
2afb61aa 5850 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5851
7e324e48
GB
5852 fill_in_stop_func (gdbarch, ecs);
5853
43f3e411
DE
5854 cust = find_pc_compunit_symtab (stop_pc);
5855 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5856 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5857 ecs->stop_func_start);
c2c6d25f 5858
2afb61aa 5859 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5860 /* Use the step_resume_break to step until the end of the prologue,
5861 even if that involves jumps (as it seems to on the vax under
5862 4.2). */
5863 /* If the prologue ends in the middle of a source line, continue to
5864 the end of that source line (if it is still within the function).
5865 Otherwise, just go to end of prologue. */
2afb61aa
PA
5866 if (stop_func_sal.end
5867 && stop_func_sal.pc != ecs->stop_func_start
5868 && stop_func_sal.end < ecs->stop_func_end)
5869 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5870
2dbd5e30
KB
5871 /* Architectures which require breakpoint adjustment might not be able
5872 to place a breakpoint at the computed address. If so, the test
5873 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5874 ecs->stop_func_start to an address at which a breakpoint may be
5875 legitimately placed.
8fb3e588 5876
2dbd5e30
KB
5877 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5878 made, GDB will enter an infinite loop when stepping through
5879 optimized code consisting of VLIW instructions which contain
5880 subinstructions corresponding to different source lines. On
5881 FR-V, it's not permitted to place a breakpoint on any but the
5882 first subinstruction of a VLIW instruction. When a breakpoint is
5883 set, GDB will adjust the breakpoint address to the beginning of
5884 the VLIW instruction. Thus, we need to make the corresponding
5885 adjustment here when computing the stop address. */
8fb3e588 5886
568d6575 5887 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5888 {
5889 ecs->stop_func_start
568d6575 5890 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5891 ecs->stop_func_start);
2dbd5e30
KB
5892 }
5893
c2c6d25f
JM
5894 if (ecs->stop_func_start == stop_pc)
5895 {
5896 /* We are already there: stop now. */
bdc36728 5897 end_stepping_range (ecs);
c2c6d25f
JM
5898 return;
5899 }
5900 else
5901 {
5902 /* Put the step-breakpoint there and go until there. */
fe39c653 5903 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5904 sr_sal.pc = ecs->stop_func_start;
5905 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5906 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5907
c2c6d25f 5908 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5909 some machines the prologue is where the new fp value is
5910 established. */
a6d9a66e 5911 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5912
5913 /* And make sure stepping stops right away then. */
16c381f0
JK
5914 ecs->event_thread->control.step_range_end
5915 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5916 }
5917 keep_going (ecs);
5918}
d4f3574e 5919
b2175913
MS
5920/* Inferior has stepped backward into a subroutine call with source
5921 code that we should not step over. Do step to the beginning of the
5922 last line of code in it. */
5923
5924static void
568d6575
UW
5925handle_step_into_function_backward (struct gdbarch *gdbarch,
5926 struct execution_control_state *ecs)
b2175913 5927{
43f3e411 5928 struct compunit_symtab *cust;
167e4384 5929 struct symtab_and_line stop_func_sal;
b2175913 5930
7e324e48
GB
5931 fill_in_stop_func (gdbarch, ecs);
5932
43f3e411
DE
5933 cust = find_pc_compunit_symtab (stop_pc);
5934 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5935 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5936 ecs->stop_func_start);
5937
5938 stop_func_sal = find_pc_line (stop_pc, 0);
5939
5940 /* OK, we're just going to keep stepping here. */
5941 if (stop_func_sal.pc == stop_pc)
5942 {
5943 /* We're there already. Just stop stepping now. */
bdc36728 5944 end_stepping_range (ecs);
b2175913
MS
5945 }
5946 else
5947 {
5948 /* Else just reset the step range and keep going.
5949 No step-resume breakpoint, they don't work for
5950 epilogues, which can have multiple entry paths. */
16c381f0
JK
5951 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5952 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5953 keep_going (ecs);
5954 }
5955 return;
5956}
5957
d3169d93 5958/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5959 This is used to both functions and to skip over code. */
5960
5961static void
2c03e5be
PA
5962insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5963 struct symtab_and_line sr_sal,
5964 struct frame_id sr_id,
5965 enum bptype sr_type)
44cbf7b5 5966{
611c83ae
PA
5967 /* There should never be more than one step-resume or longjmp-resume
5968 breakpoint per thread, so we should never be setting a new
44cbf7b5 5969 step_resume_breakpoint when one is already active. */
8358c15c 5970 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5971 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5972
5973 if (debug_infrun)
5974 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5975 "infrun: inserting step-resume breakpoint at %s\n",
5976 paddress (gdbarch, sr_sal.pc));
d3169d93 5977
8358c15c 5978 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5979 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5980}
5981
9da8c2a0 5982void
2c03e5be
PA
5983insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5984 struct symtab_and_line sr_sal,
5985 struct frame_id sr_id)
5986{
5987 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5988 sr_sal, sr_id,
5989 bp_step_resume);
44cbf7b5 5990}
7ce450bd 5991
2c03e5be
PA
5992/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5993 This is used to skip a potential signal handler.
7ce450bd 5994
14e60db5
DJ
5995 This is called with the interrupted function's frame. The signal
5996 handler, when it returns, will resume the interrupted function at
5997 RETURN_FRAME.pc. */
d303a6c7
AC
5998
5999static void
2c03e5be 6000insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
6001{
6002 struct symtab_and_line sr_sal;
a6d9a66e 6003 struct gdbarch *gdbarch;
d303a6c7 6004
f4c1edd8 6005 gdb_assert (return_frame != NULL);
d303a6c7
AC
6006 init_sal (&sr_sal); /* initialize to zeros */
6007
a6d9a66e 6008 gdbarch = get_frame_arch (return_frame);
568d6575 6009 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 6010 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 6011 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 6012
2c03e5be
PA
6013 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
6014 get_stack_frame_id (return_frame),
6015 bp_hp_step_resume);
d303a6c7
AC
6016}
6017
2c03e5be
PA
6018/* Insert a "step-resume breakpoint" at the previous frame's PC. This
6019 is used to skip a function after stepping into it (for "next" or if
6020 the called function has no debugging information).
14e60db5
DJ
6021
6022 The current function has almost always been reached by single
6023 stepping a call or return instruction. NEXT_FRAME belongs to the
6024 current function, and the breakpoint will be set at the caller's
6025 resume address.
6026
6027 This is a separate function rather than reusing
2c03e5be 6028 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 6029 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 6030 of frame_unwind_caller_id for an example). */
14e60db5
DJ
6031
6032static void
6033insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
6034{
6035 struct symtab_and_line sr_sal;
a6d9a66e 6036 struct gdbarch *gdbarch;
14e60db5
DJ
6037
6038 /* We shouldn't have gotten here if we don't know where the call site
6039 is. */
c7ce8faa 6040 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
6041
6042 init_sal (&sr_sal); /* initialize to zeros */
6043
a6d9a66e 6044 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
6045 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
6046 frame_unwind_caller_pc (next_frame));
14e60db5 6047 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 6048 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 6049
a6d9a66e 6050 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 6051 frame_unwind_caller_id (next_frame));
14e60db5
DJ
6052}
6053
611c83ae
PA
6054/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
6055 new breakpoint at the target of a jmp_buf. The handling of
6056 longjmp-resume uses the same mechanisms used for handling
6057 "step-resume" breakpoints. */
6058
6059static void
a6d9a66e 6060insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 6061{
e81a37f7
TT
6062 /* There should never be more than one longjmp-resume breakpoint per
6063 thread, so we should never be setting a new
611c83ae 6064 longjmp_resume_breakpoint when one is already active. */
e81a37f7 6065 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
6066
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
6069 "infrun: inserting longjmp-resume breakpoint at %s\n",
6070 paddress (gdbarch, pc));
611c83ae 6071
e81a37f7 6072 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 6073 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
6074}
6075
186c406b
TT
6076/* Insert an exception resume breakpoint. TP is the thread throwing
6077 the exception. The block B is the block of the unwinder debug hook
6078 function. FRAME is the frame corresponding to the call to this
6079 function. SYM is the symbol of the function argument holding the
6080 target PC of the exception. */
6081
6082static void
6083insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 6084 const struct block *b,
186c406b
TT
6085 struct frame_info *frame,
6086 struct symbol *sym)
6087{
492d29ea 6088 TRY
186c406b
TT
6089 {
6090 struct symbol *vsym;
6091 struct value *value;
6092 CORE_ADDR handler;
6093 struct breakpoint *bp;
6094
6095 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6096 value = read_var_value (vsym, frame);
6097 /* If the value was optimized out, revert to the old behavior. */
6098 if (! value_optimized_out (value))
6099 {
6100 handler = value_as_address (value);
6101
6102 if (debug_infrun)
6103 fprintf_unfiltered (gdb_stdlog,
6104 "infrun: exception resume at %lx\n",
6105 (unsigned long) handler);
6106
6107 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6108 handler, bp_exception_resume);
c70a6932
JK
6109
6110 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6111 frame = NULL;
6112
186c406b
TT
6113 bp->thread = tp->num;
6114 inferior_thread ()->control.exception_resume_breakpoint = bp;
6115 }
6116 }
492d29ea
PA
6117 CATCH (e, RETURN_MASK_ERROR)
6118 {
6119 /* We want to ignore errors here. */
6120 }
6121 END_CATCH
186c406b
TT
6122}
6123
28106bc2
SDJ
6124/* A helper for check_exception_resume that sets an
6125 exception-breakpoint based on a SystemTap probe. */
6126
6127static void
6128insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 6129 const struct bound_probe *probe,
28106bc2
SDJ
6130 struct frame_info *frame)
6131{
6132 struct value *arg_value;
6133 CORE_ADDR handler;
6134 struct breakpoint *bp;
6135
6136 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6137 if (!arg_value)
6138 return;
6139
6140 handler = value_as_address (arg_value);
6141
6142 if (debug_infrun)
6143 fprintf_unfiltered (gdb_stdlog,
6144 "infrun: exception resume at %s\n",
6bac7473 6145 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
6146 handler));
6147
6148 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6149 handler, bp_exception_resume);
6150 bp->thread = tp->num;
6151 inferior_thread ()->control.exception_resume_breakpoint = bp;
6152}
6153
186c406b
TT
6154/* This is called when an exception has been intercepted. Check to
6155 see whether the exception's destination is of interest, and if so,
6156 set an exception resume breakpoint there. */
6157
6158static void
6159check_exception_resume (struct execution_control_state *ecs,
28106bc2 6160 struct frame_info *frame)
186c406b 6161{
729662a5 6162 struct bound_probe probe;
28106bc2
SDJ
6163 struct symbol *func;
6164
6165 /* First see if this exception unwinding breakpoint was set via a
6166 SystemTap probe point. If so, the probe has two arguments: the
6167 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6168 set a breakpoint there. */
6bac7473 6169 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 6170 if (probe.probe)
28106bc2 6171 {
729662a5 6172 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
6173 return;
6174 }
6175
6176 func = get_frame_function (frame);
6177 if (!func)
6178 return;
186c406b 6179
492d29ea 6180 TRY
186c406b 6181 {
3977b71f 6182 const struct block *b;
8157b174 6183 struct block_iterator iter;
186c406b
TT
6184 struct symbol *sym;
6185 int argno = 0;
6186
6187 /* The exception breakpoint is a thread-specific breakpoint on
6188 the unwinder's debug hook, declared as:
6189
6190 void _Unwind_DebugHook (void *cfa, void *handler);
6191
6192 The CFA argument indicates the frame to which control is
6193 about to be transferred. HANDLER is the destination PC.
6194
6195 We ignore the CFA and set a temporary breakpoint at HANDLER.
6196 This is not extremely efficient but it avoids issues in gdb
6197 with computing the DWARF CFA, and it also works even in weird
6198 cases such as throwing an exception from inside a signal
6199 handler. */
6200
6201 b = SYMBOL_BLOCK_VALUE (func);
6202 ALL_BLOCK_SYMBOLS (b, iter, sym)
6203 {
6204 if (!SYMBOL_IS_ARGUMENT (sym))
6205 continue;
6206
6207 if (argno == 0)
6208 ++argno;
6209 else
6210 {
6211 insert_exception_resume_breakpoint (ecs->event_thread,
6212 b, frame, sym);
6213 break;
6214 }
6215 }
6216 }
492d29ea
PA
6217 CATCH (e, RETURN_MASK_ERROR)
6218 {
6219 }
6220 END_CATCH
186c406b
TT
6221}
6222
104c1213 6223static void
22bcd14b 6224stop_waiting (struct execution_control_state *ecs)
104c1213 6225{
527159b7 6226 if (debug_infrun)
22bcd14b 6227 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 6228
31e77af2
PA
6229 clear_step_over_info ();
6230
cd0fc7c3
SS
6231 /* Let callers know we don't want to wait for the inferior anymore. */
6232 ecs->wait_some_more = 0;
6233}
6234
a9ba6bae
PA
6235/* Called when we should continue running the inferior, because the
6236 current event doesn't cause a user visible stop. This does the
6237 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
6238
6239static void
6240keep_going (struct execution_control_state *ecs)
6241{
c4dbc9af
PA
6242 /* Make sure normal_stop is called if we get a QUIT handled before
6243 reaching resume. */
6244 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6245
d4f3574e 6246 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
6247 ecs->event_thread->prev_pc
6248 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 6249
16c381f0 6250 if (ecs->event_thread->control.trap_expected
a493e3e2 6251 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6252 {
a9ba6bae
PA
6253 /* We haven't yet gotten our trap, and either: intercepted a
6254 non-signal event (e.g., a fork); or took a signal which we
6255 are supposed to pass through to the inferior. Simply
6256 continue. */
c4dbc9af 6257 discard_cleanups (old_cleanups);
64ce06e4 6258 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6259 }
6260 else
6261 {
31e77af2 6262 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6263 int remove_bp;
6264 int remove_wps;
31e77af2 6265
d4f3574e 6266 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6267 anyway (if we got a signal, the user asked it be passed to
6268 the child)
6269 -- or --
6270 We got our expected trap, but decided we should resume from
6271 it.
d4f3574e 6272
a9ba6bae 6273 We're going to run this baby now!
d4f3574e 6274
c36b740a
VP
6275 Note that insert_breakpoints won't try to re-insert
6276 already inserted breakpoints. Therefore, we don't
6277 care if breakpoints were already inserted, or not. */
a9ba6bae 6278
31e77af2
PA
6279 /* If we need to step over a breakpoint, and we're not using
6280 displaced stepping to do so, insert all breakpoints
6281 (watchpoints, etc.) but the one we're stepping over, step one
6282 instruction, and then re-insert the breakpoint when that step
6283 is finished. */
963f9c80
PA
6284
6285 remove_bp = (ecs->hit_singlestep_breakpoint
6286 || thread_still_needs_step_over (ecs->event_thread));
6287 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6288 && !target_have_steppable_watchpoint);
6289
cb71640d
PA
6290 /* We can't use displaced stepping if we need to step past a
6291 watchpoint. The instruction copied to the scratch pad would
6292 still trigger the watchpoint. */
6293 if (remove_bp
6294 && (remove_wps
6295 || !use_displaced_stepping (get_regcache_arch (regcache))))
45e8c884 6296 {
31e77af2 6297 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6298 regcache_read_pc (regcache), remove_wps);
45e8c884 6299 }
963f9c80
PA
6300 else if (remove_wps)
6301 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6302 else
31e77af2 6303 clear_step_over_info ();
abbb1732 6304
31e77af2 6305 /* Stop stepping if inserting breakpoints fails. */
492d29ea 6306 TRY
31e77af2
PA
6307 {
6308 insert_breakpoints ();
6309 }
492d29ea 6310 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
6311 {
6312 exception_print (gdb_stderr, e);
22bcd14b 6313 stop_waiting (ecs);
de1fe8c8 6314 discard_cleanups (old_cleanups);
31e77af2 6315 return;
d4f3574e 6316 }
492d29ea 6317 END_CATCH
d4f3574e 6318
963f9c80 6319 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6320
a9ba6bae
PA
6321 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6322 explicitly specifies that such a signal should be delivered
6323 to the target program). Typically, that would occur when a
6324 user is debugging a target monitor on a simulator: the target
6325 monitor sets a breakpoint; the simulator encounters this
6326 breakpoint and halts the simulation handing control to GDB;
6327 GDB, noting that the stop address doesn't map to any known
6328 breakpoint, returns control back to the simulator; the
6329 simulator then delivers the hardware equivalent of a
6330 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6331 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6332 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6333 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6334
c4dbc9af 6335 discard_cleanups (old_cleanups);
64ce06e4 6336 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6337 }
6338
488f131b 6339 prepare_to_wait (ecs);
d4f3574e
SS
6340}
6341
104c1213
JM
6342/* This function normally comes after a resume, before
6343 handle_inferior_event exits. It takes care of any last bits of
6344 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6345
104c1213
JM
6346static void
6347prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6348{
527159b7 6349 if (debug_infrun)
8a9de0e4 6350 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6351
104c1213
JM
6352 /* This is the old end of the while loop. Let everybody know we
6353 want to wait for the inferior some more and get called again
6354 soon. */
6355 ecs->wait_some_more = 1;
c906108c 6356}
11cf8741 6357
fd664c91 6358/* We are done with the step range of a step/next/si/ni command.
b57bacec 6359 Called once for each n of a "step n" operation. */
fd664c91
PA
6360
6361static void
bdc36728 6362end_stepping_range (struct execution_control_state *ecs)
fd664c91 6363{
bdc36728 6364 ecs->event_thread->control.stop_step = 1;
bdc36728 6365 stop_waiting (ecs);
fd664c91
PA
6366}
6367
33d62d64
JK
6368/* Several print_*_reason functions to print why the inferior has stopped.
6369 We always print something when the inferior exits, or receives a signal.
6370 The rest of the cases are dealt with later on in normal_stop and
6371 print_it_typical. Ideally there should be a call to one of these
6372 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6373 stop_waiting is called.
33d62d64 6374
fd664c91
PA
6375 Note that we don't call these directly, instead we delegate that to
6376 the interpreters, through observers. Interpreters then call these
6377 with whatever uiout is right. */
33d62d64 6378
fd664c91
PA
6379void
6380print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6381{
fd664c91 6382 /* For CLI-like interpreters, print nothing. */
33d62d64 6383
fd664c91
PA
6384 if (ui_out_is_mi_like_p (uiout))
6385 {
6386 ui_out_field_string (uiout, "reason",
6387 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6388 }
6389}
33d62d64 6390
fd664c91
PA
6391void
6392print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6393{
33d62d64
JK
6394 annotate_signalled ();
6395 if (ui_out_is_mi_like_p (uiout))
6396 ui_out_field_string
6397 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6398 ui_out_text (uiout, "\nProgram terminated with signal ");
6399 annotate_signal_name ();
6400 ui_out_field_string (uiout, "signal-name",
2ea28649 6401 gdb_signal_to_name (siggnal));
33d62d64
JK
6402 annotate_signal_name_end ();
6403 ui_out_text (uiout, ", ");
6404 annotate_signal_string ();
6405 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6406 gdb_signal_to_string (siggnal));
33d62d64
JK
6407 annotate_signal_string_end ();
6408 ui_out_text (uiout, ".\n");
6409 ui_out_text (uiout, "The program no longer exists.\n");
6410}
6411
fd664c91
PA
6412void
6413print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6414{
fda326dd
TT
6415 struct inferior *inf = current_inferior ();
6416 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6417
33d62d64
JK
6418 annotate_exited (exitstatus);
6419 if (exitstatus)
6420 {
6421 if (ui_out_is_mi_like_p (uiout))
6422 ui_out_field_string (uiout, "reason",
6423 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6424 ui_out_text (uiout, "[Inferior ");
6425 ui_out_text (uiout, plongest (inf->num));
6426 ui_out_text (uiout, " (");
6427 ui_out_text (uiout, pidstr);
6428 ui_out_text (uiout, ") exited with code ");
33d62d64 6429 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6430 ui_out_text (uiout, "]\n");
33d62d64
JK
6431 }
6432 else
11cf8741 6433 {
9dc5e2a9 6434 if (ui_out_is_mi_like_p (uiout))
034dad6f 6435 ui_out_field_string
33d62d64 6436 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6437 ui_out_text (uiout, "[Inferior ");
6438 ui_out_text (uiout, plongest (inf->num));
6439 ui_out_text (uiout, " (");
6440 ui_out_text (uiout, pidstr);
6441 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6442 }
33d62d64
JK
6443}
6444
fd664c91
PA
6445void
6446print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6447{
6448 annotate_signal ();
6449
a493e3e2 6450 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6451 {
6452 struct thread_info *t = inferior_thread ();
6453
6454 ui_out_text (uiout, "\n[");
6455 ui_out_field_string (uiout, "thread-name",
6456 target_pid_to_str (t->ptid));
6457 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6458 ui_out_text (uiout, " stopped");
6459 }
6460 else
6461 {
6462 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6463 annotate_signal_name ();
33d62d64
JK
6464 if (ui_out_is_mi_like_p (uiout))
6465 ui_out_field_string
6466 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6467 ui_out_field_string (uiout, "signal-name",
2ea28649 6468 gdb_signal_to_name (siggnal));
8b93c638
JM
6469 annotate_signal_name_end ();
6470 ui_out_text (uiout, ", ");
6471 annotate_signal_string ();
488f131b 6472 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6473 gdb_signal_to_string (siggnal));
8b93c638 6474 annotate_signal_string_end ();
33d62d64
JK
6475 }
6476 ui_out_text (uiout, ".\n");
6477}
252fbfc8 6478
fd664c91
PA
6479void
6480print_no_history_reason (struct ui_out *uiout)
33d62d64 6481{
fd664c91 6482 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6483}
43ff13b4 6484
0c7e1a46
PA
6485/* Print current location without a level number, if we have changed
6486 functions or hit a breakpoint. Print source line if we have one.
6487 bpstat_print contains the logic deciding in detail what to print,
6488 based on the event(s) that just occurred. */
6489
6490void
6491print_stop_event (struct target_waitstatus *ws)
6492{
6493 int bpstat_ret;
6494 int source_flag;
6495 int do_frame_printing = 1;
6496 struct thread_info *tp = inferior_thread ();
6497
6498 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6499 switch (bpstat_ret)
6500 {
6501 case PRINT_UNKNOWN:
6502 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6503 should) carry around the function and does (or should) use
6504 that when doing a frame comparison. */
6505 if (tp->control.stop_step
6506 && frame_id_eq (tp->control.step_frame_id,
6507 get_frame_id (get_current_frame ()))
885eeb5b 6508 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
6509 {
6510 /* Finished step, just print source line. */
6511 source_flag = SRC_LINE;
6512 }
6513 else
6514 {
6515 /* Print location and source line. */
6516 source_flag = SRC_AND_LOC;
6517 }
6518 break;
6519 case PRINT_SRC_AND_LOC:
6520 /* Print location and source line. */
6521 source_flag = SRC_AND_LOC;
6522 break;
6523 case PRINT_SRC_ONLY:
6524 source_flag = SRC_LINE;
6525 break;
6526 case PRINT_NOTHING:
6527 /* Something bogus. */
6528 source_flag = SRC_LINE;
6529 do_frame_printing = 0;
6530 break;
6531 default:
6532 internal_error (__FILE__, __LINE__, _("Unknown value."));
6533 }
6534
6535 /* The behavior of this routine with respect to the source
6536 flag is:
6537 SRC_LINE: Print only source line
6538 LOCATION: Print only location
6539 SRC_AND_LOC: Print location and source line. */
6540 if (do_frame_printing)
6541 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6542
6543 /* Display the auto-display expressions. */
6544 do_displays ();
6545}
6546
c906108c
SS
6547/* Here to return control to GDB when the inferior stops for real.
6548 Print appropriate messages, remove breakpoints, give terminal our modes.
6549
6550 STOP_PRINT_FRAME nonzero means print the executing frame
6551 (pc, function, args, file, line number and line text).
6552 BREAKPOINTS_FAILED nonzero means stop was due to error
6553 attempting to insert breakpoints. */
6554
6555void
96baa820 6556normal_stop (void)
c906108c 6557{
73b65bb0
DJ
6558 struct target_waitstatus last;
6559 ptid_t last_ptid;
29f49a6a 6560 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6561
6562 get_last_target_status (&last_ptid, &last);
6563
29f49a6a
PA
6564 /* If an exception is thrown from this point on, make sure to
6565 propagate GDB's knowledge of the executing state to the
6566 frontend/user running state. A QUIT is an easy exception to see
6567 here, so do this before any filtered output. */
c35b1492
PA
6568 if (!non_stop)
6569 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6570 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6571 && last.kind != TARGET_WAITKIND_EXITED
6572 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6573 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6574
b57bacec
PA
6575 /* As we're presenting a stop, and potentially removing breakpoints,
6576 update the thread list so we can tell whether there are threads
6577 running on the target. With target remote, for example, we can
6578 only learn about new threads when we explicitly update the thread
6579 list. Do this before notifying the interpreters about signal
6580 stops, end of stepping ranges, etc., so that the "new thread"
6581 output is emitted before e.g., "Program received signal FOO",
6582 instead of after. */
6583 update_thread_list ();
6584
6585 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6586 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6587
c906108c
SS
6588 /* As with the notification of thread events, we want to delay
6589 notifying the user that we've switched thread context until
6590 the inferior actually stops.
6591
73b65bb0
DJ
6592 There's no point in saying anything if the inferior has exited.
6593 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6594 "received a signal".
6595
6596 Also skip saying anything in non-stop mode. In that mode, as we
6597 don't want GDB to switch threads behind the user's back, to avoid
6598 races where the user is typing a command to apply to thread x,
6599 but GDB switches to thread y before the user finishes entering
6600 the command, fetch_inferior_event installs a cleanup to restore
6601 the current thread back to the thread the user had selected right
6602 after this event is handled, so we're not really switching, only
6603 informing of a stop. */
4f8d22e3
PA
6604 if (!non_stop
6605 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6606 && target_has_execution
6607 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6608 && last.kind != TARGET_WAITKIND_EXITED
6609 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6610 {
6611 target_terminal_ours_for_output ();
a3f17187 6612 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6613 target_pid_to_str (inferior_ptid));
b8fa951a 6614 annotate_thread_changed ();
39f77062 6615 previous_inferior_ptid = inferior_ptid;
c906108c 6616 }
c906108c 6617
0e5bf2a8
PA
6618 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6619 {
6620 gdb_assert (sync_execution || !target_can_async_p ());
6621
6622 target_terminal_ours_for_output ();
6623 printf_filtered (_("No unwaited-for children left.\n"));
6624 }
6625
b57bacec 6626 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6627 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6628 {
6629 if (remove_breakpoints ())
6630 {
6631 target_terminal_ours_for_output ();
3e43a32a
MS
6632 printf_filtered (_("Cannot remove breakpoints because "
6633 "program is no longer writable.\nFurther "
6634 "execution is probably impossible.\n"));
c906108c
SS
6635 }
6636 }
c906108c 6637
c906108c
SS
6638 /* If an auto-display called a function and that got a signal,
6639 delete that auto-display to avoid an infinite recursion. */
6640
6641 if (stopped_by_random_signal)
6642 disable_current_display ();
6643
b57bacec 6644 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6645 if (target_has_execution
6646 && last.kind != TARGET_WAITKIND_SIGNALLED
6647 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6648 && inferior_thread ()->control.stop_step)
b57bacec 6649 {
31cc0b80 6650 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6651 n > 1 */
6652 if (inferior_thread ()->step_multi)
6653 goto done;
6654
6655 observer_notify_end_stepping_range ();
6656 }
c906108c
SS
6657
6658 target_terminal_ours ();
0f641c01 6659 async_enable_stdin ();
c906108c 6660
7abfe014
DJ
6661 /* Set the current source location. This will also happen if we
6662 display the frame below, but the current SAL will be incorrect
6663 during a user hook-stop function. */
d729566a 6664 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6665 set_current_sal_from_frame (get_current_frame ());
7abfe014 6666
251bde03
PA
6667 /* Let the user/frontend see the threads as stopped, but do nothing
6668 if the thread was running an infcall. We may be e.g., evaluating
6669 a breakpoint condition. In that case, the thread had state
6670 THREAD_RUNNING before the infcall, and shall remain set to
6671 running, all without informing the user/frontend about state
6672 transition changes. If this is actually a call command, then the
6673 thread was originally already stopped, so there's no state to
6674 finish either. */
6675 if (target_has_execution && inferior_thread ()->control.in_infcall)
6676 discard_cleanups (old_chain);
6677 else
6678 do_cleanups (old_chain);
dd7e2d2b
PA
6679
6680 /* Look up the hook_stop and run it (CLI internally handles problem
6681 of stop_command's pre-hook not existing). */
6682 if (stop_command)
6683 catch_errors (hook_stop_stub, stop_command,
6684 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6685
d729566a 6686 if (!has_stack_frames ())
d51fd4c8 6687 goto done;
c906108c 6688
32400beb
PA
6689 if (last.kind == TARGET_WAITKIND_SIGNALLED
6690 || last.kind == TARGET_WAITKIND_EXITED)
6691 goto done;
6692
c906108c
SS
6693 /* Select innermost stack frame - i.e., current frame is frame 0,
6694 and current location is based on that.
6695 Don't do this on return from a stack dummy routine,
1777feb0 6696 or if the program has exited. */
c906108c
SS
6697
6698 if (!stop_stack_dummy)
6699 {
0f7d239c 6700 select_frame (get_current_frame ());
c906108c 6701
d01a8610
AS
6702 /* If --batch-silent is enabled then there's no need to print the current
6703 source location, and to try risks causing an error message about
6704 missing source files. */
6705 if (stop_print_frame && !batch_silent)
0c7e1a46 6706 print_stop_event (&last);
c906108c
SS
6707 }
6708
aa7d318d 6709 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6710 {
b89667eb
DE
6711 /* Pop the empty frame that contains the stack dummy.
6712 This also restores inferior state prior to the call
16c381f0 6713 (struct infcall_suspend_state). */
b89667eb 6714 struct frame_info *frame = get_current_frame ();
abbb1732 6715
b89667eb
DE
6716 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6717 frame_pop (frame);
3e43a32a
MS
6718 /* frame_pop() calls reinit_frame_cache as the last thing it
6719 does which means there's currently no selected frame. We
6720 don't need to re-establish a selected frame if the dummy call
6721 returns normally, that will be done by
6722 restore_infcall_control_state. However, we do have to handle
6723 the case where the dummy call is returning after being
6724 stopped (e.g. the dummy call previously hit a breakpoint).
6725 We can't know which case we have so just always re-establish
6726 a selected frame here. */
0f7d239c 6727 select_frame (get_current_frame ());
c906108c
SS
6728 }
6729
c906108c
SS
6730done:
6731 annotate_stopped ();
41d2bdb4
PA
6732
6733 /* Suppress the stop observer if we're in the middle of:
6734
6735 - a step n (n > 1), as there still more steps to be done.
6736
6737 - a "finish" command, as the observer will be called in
6738 finish_command_continuation, so it can include the inferior
6739 function's return value.
6740
6741 - calling an inferior function, as we pretend we inferior didn't
6742 run at all. The return value of the call is handled by the
6743 expression evaluator, through call_function_by_hand. */
6744
6745 if (!target_has_execution
6746 || last.kind == TARGET_WAITKIND_SIGNALLED
6747 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6748 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6749 || (!(inferior_thread ()->step_multi
6750 && inferior_thread ()->control.stop_step)
16c381f0
JK
6751 && !(inferior_thread ()->control.stop_bpstat
6752 && inferior_thread ()->control.proceed_to_finish)
6753 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6754 {
6755 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6756 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6757 stop_print_frame);
347bddb7 6758 else
1d33d6ba 6759 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6760 }
347bddb7 6761
48844aa6
PA
6762 if (target_has_execution)
6763 {
6764 if (last.kind != TARGET_WAITKIND_SIGNALLED
6765 && last.kind != TARGET_WAITKIND_EXITED)
6766 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6767 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6768 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6769 }
6c95b8df
PA
6770
6771 /* Try to get rid of automatically added inferiors that are no
6772 longer needed. Keeping those around slows down things linearly.
6773 Note that this never removes the current inferior. */
6774 prune_inferiors ();
c906108c
SS
6775}
6776
6777static int
96baa820 6778hook_stop_stub (void *cmd)
c906108c 6779{
5913bcb0 6780 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6781 return (0);
6782}
6783\f
c5aa993b 6784int
96baa820 6785signal_stop_state (int signo)
c906108c 6786{
d6b48e9c 6787 return signal_stop[signo];
c906108c
SS
6788}
6789
c5aa993b 6790int
96baa820 6791signal_print_state (int signo)
c906108c
SS
6792{
6793 return signal_print[signo];
6794}
6795
c5aa993b 6796int
96baa820 6797signal_pass_state (int signo)
c906108c
SS
6798{
6799 return signal_program[signo];
6800}
6801
2455069d
UW
6802static void
6803signal_cache_update (int signo)
6804{
6805 if (signo == -1)
6806 {
a493e3e2 6807 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6808 signal_cache_update (signo);
6809
6810 return;
6811 }
6812
6813 signal_pass[signo] = (signal_stop[signo] == 0
6814 && signal_print[signo] == 0
ab04a2af
TT
6815 && signal_program[signo] == 1
6816 && signal_catch[signo] == 0);
2455069d
UW
6817}
6818
488f131b 6819int
7bda5e4a 6820signal_stop_update (int signo, int state)
d4f3574e
SS
6821{
6822 int ret = signal_stop[signo];
abbb1732 6823
d4f3574e 6824 signal_stop[signo] = state;
2455069d 6825 signal_cache_update (signo);
d4f3574e
SS
6826 return ret;
6827}
6828
488f131b 6829int
7bda5e4a 6830signal_print_update (int signo, int state)
d4f3574e
SS
6831{
6832 int ret = signal_print[signo];
abbb1732 6833
d4f3574e 6834 signal_print[signo] = state;
2455069d 6835 signal_cache_update (signo);
d4f3574e
SS
6836 return ret;
6837}
6838
488f131b 6839int
7bda5e4a 6840signal_pass_update (int signo, int state)
d4f3574e
SS
6841{
6842 int ret = signal_program[signo];
abbb1732 6843
d4f3574e 6844 signal_program[signo] = state;
2455069d 6845 signal_cache_update (signo);
d4f3574e
SS
6846 return ret;
6847}
6848
ab04a2af
TT
6849/* Update the global 'signal_catch' from INFO and notify the
6850 target. */
6851
6852void
6853signal_catch_update (const unsigned int *info)
6854{
6855 int i;
6856
6857 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6858 signal_catch[i] = info[i] > 0;
6859 signal_cache_update (-1);
6860 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6861}
6862
c906108c 6863static void
96baa820 6864sig_print_header (void)
c906108c 6865{
3e43a32a
MS
6866 printf_filtered (_("Signal Stop\tPrint\tPass "
6867 "to program\tDescription\n"));
c906108c
SS
6868}
6869
6870static void
2ea28649 6871sig_print_info (enum gdb_signal oursig)
c906108c 6872{
2ea28649 6873 const char *name = gdb_signal_to_name (oursig);
c906108c 6874 int name_padding = 13 - strlen (name);
96baa820 6875
c906108c
SS
6876 if (name_padding <= 0)
6877 name_padding = 0;
6878
6879 printf_filtered ("%s", name);
488f131b 6880 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6881 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6882 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6883 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6884 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6885}
6886
6887/* Specify how various signals in the inferior should be handled. */
6888
6889static void
96baa820 6890handle_command (char *args, int from_tty)
c906108c
SS
6891{
6892 char **argv;
6893 int digits, wordlen;
6894 int sigfirst, signum, siglast;
2ea28649 6895 enum gdb_signal oursig;
c906108c
SS
6896 int allsigs;
6897 int nsigs;
6898 unsigned char *sigs;
6899 struct cleanup *old_chain;
6900
6901 if (args == NULL)
6902 {
e2e0b3e5 6903 error_no_arg (_("signal to handle"));
c906108c
SS
6904 }
6905
1777feb0 6906 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6907
a493e3e2 6908 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6909 sigs = (unsigned char *) alloca (nsigs);
6910 memset (sigs, 0, nsigs);
6911
1777feb0 6912 /* Break the command line up into args. */
c906108c 6913
d1a41061 6914 argv = gdb_buildargv (args);
7a292a7a 6915 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6916
6917 /* Walk through the args, looking for signal oursigs, signal names, and
6918 actions. Signal numbers and signal names may be interspersed with
6919 actions, with the actions being performed for all signals cumulatively
1777feb0 6920 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6921
6922 while (*argv != NULL)
6923 {
6924 wordlen = strlen (*argv);
6925 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6926 {;
6927 }
6928 allsigs = 0;
6929 sigfirst = siglast = -1;
6930
6931 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6932 {
6933 /* Apply action to all signals except those used by the
1777feb0 6934 debugger. Silently skip those. */
c906108c
SS
6935 allsigs = 1;
6936 sigfirst = 0;
6937 siglast = nsigs - 1;
6938 }
6939 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6940 {
6941 SET_SIGS (nsigs, sigs, signal_stop);
6942 SET_SIGS (nsigs, sigs, signal_print);
6943 }
6944 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6945 {
6946 UNSET_SIGS (nsigs, sigs, signal_program);
6947 }
6948 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6949 {
6950 SET_SIGS (nsigs, sigs, signal_print);
6951 }
6952 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6953 {
6954 SET_SIGS (nsigs, sigs, signal_program);
6955 }
6956 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6957 {
6958 UNSET_SIGS (nsigs, sigs, signal_stop);
6959 }
6960 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6961 {
6962 SET_SIGS (nsigs, sigs, signal_program);
6963 }
6964 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6965 {
6966 UNSET_SIGS (nsigs, sigs, signal_print);
6967 UNSET_SIGS (nsigs, sigs, signal_stop);
6968 }
6969 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6970 {
6971 UNSET_SIGS (nsigs, sigs, signal_program);
6972 }
6973 else if (digits > 0)
6974 {
6975 /* It is numeric. The numeric signal refers to our own
6976 internal signal numbering from target.h, not to host/target
6977 signal number. This is a feature; users really should be
6978 using symbolic names anyway, and the common ones like
6979 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6980
6981 sigfirst = siglast = (int)
2ea28649 6982 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6983 if ((*argv)[digits] == '-')
6984 {
6985 siglast = (int)
2ea28649 6986 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6987 }
6988 if (sigfirst > siglast)
6989 {
1777feb0 6990 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6991 signum = sigfirst;
6992 sigfirst = siglast;
6993 siglast = signum;
6994 }
6995 }
6996 else
6997 {
2ea28649 6998 oursig = gdb_signal_from_name (*argv);
a493e3e2 6999 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
7000 {
7001 sigfirst = siglast = (int) oursig;
7002 }
7003 else
7004 {
7005 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 7006 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
7007 }
7008 }
7009
7010 /* If any signal numbers or symbol names were found, set flags for
1777feb0 7011 which signals to apply actions to. */
c906108c
SS
7012
7013 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
7014 {
2ea28649 7015 switch ((enum gdb_signal) signum)
c906108c 7016 {
a493e3e2
PA
7017 case GDB_SIGNAL_TRAP:
7018 case GDB_SIGNAL_INT:
c906108c
SS
7019 if (!allsigs && !sigs[signum])
7020 {
9e2f0ad4 7021 if (query (_("%s is used by the debugger.\n\
3e43a32a 7022Are you sure you want to change it? "),
2ea28649 7023 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
7024 {
7025 sigs[signum] = 1;
7026 }
7027 else
7028 {
a3f17187 7029 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
7030 gdb_flush (gdb_stdout);
7031 }
7032 }
7033 break;
a493e3e2
PA
7034 case GDB_SIGNAL_0:
7035 case GDB_SIGNAL_DEFAULT:
7036 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
7037 /* Make sure that "all" doesn't print these. */
7038 break;
7039 default:
7040 sigs[signum] = 1;
7041 break;
7042 }
7043 }
7044
7045 argv++;
7046 }
7047
3a031f65
PA
7048 for (signum = 0; signum < nsigs; signum++)
7049 if (sigs[signum])
7050 {
2455069d 7051 signal_cache_update (-1);
a493e3e2
PA
7052 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7053 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 7054
3a031f65
PA
7055 if (from_tty)
7056 {
7057 /* Show the results. */
7058 sig_print_header ();
7059 for (; signum < nsigs; signum++)
7060 if (sigs[signum])
7061 sig_print_info (signum);
7062 }
7063
7064 break;
7065 }
c906108c
SS
7066
7067 do_cleanups (old_chain);
7068}
7069
de0bea00
MF
7070/* Complete the "handle" command. */
7071
7072static VEC (char_ptr) *
7073handle_completer (struct cmd_list_element *ignore,
6f937416 7074 const char *text, const char *word)
de0bea00
MF
7075{
7076 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7077 static const char * const keywords[] =
7078 {
7079 "all",
7080 "stop",
7081 "ignore",
7082 "print",
7083 "pass",
7084 "nostop",
7085 "noignore",
7086 "noprint",
7087 "nopass",
7088 NULL,
7089 };
7090
7091 vec_signals = signal_completer (ignore, text, word);
7092 vec_keywords = complete_on_enum (keywords, word, word);
7093
7094 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7095 VEC_free (char_ptr, vec_signals);
7096 VEC_free (char_ptr, vec_keywords);
7097 return return_val;
7098}
7099
2ea28649
PA
7100enum gdb_signal
7101gdb_signal_from_command (int num)
ed01b82c
PA
7102{
7103 if (num >= 1 && num <= 15)
2ea28649 7104 return (enum gdb_signal) num;
ed01b82c
PA
7105 error (_("Only signals 1-15 are valid as numeric signals.\n\
7106Use \"info signals\" for a list of symbolic signals."));
7107}
7108
c906108c
SS
7109/* Print current contents of the tables set by the handle command.
7110 It is possible we should just be printing signals actually used
7111 by the current target (but for things to work right when switching
7112 targets, all signals should be in the signal tables). */
7113
7114static void
96baa820 7115signals_info (char *signum_exp, int from_tty)
c906108c 7116{
2ea28649 7117 enum gdb_signal oursig;
abbb1732 7118
c906108c
SS
7119 sig_print_header ();
7120
7121 if (signum_exp)
7122 {
7123 /* First see if this is a symbol name. */
2ea28649 7124 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 7125 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
7126 {
7127 /* No, try numeric. */
7128 oursig =
2ea28649 7129 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
7130 }
7131 sig_print_info (oursig);
7132 return;
7133 }
7134
7135 printf_filtered ("\n");
7136 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
7137 for (oursig = GDB_SIGNAL_FIRST;
7138 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 7139 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
7140 {
7141 QUIT;
7142
a493e3e2
PA
7143 if (oursig != GDB_SIGNAL_UNKNOWN
7144 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
7145 sig_print_info (oursig);
7146 }
7147
3e43a32a
MS
7148 printf_filtered (_("\nUse the \"handle\" command "
7149 "to change these tables.\n"));
c906108c 7150}
4aa995e1 7151
c709acd1
PA
7152/* Check if it makes sense to read $_siginfo from the current thread
7153 at this point. If not, throw an error. */
7154
7155static void
7156validate_siginfo_access (void)
7157{
7158 /* No current inferior, no siginfo. */
7159 if (ptid_equal (inferior_ptid, null_ptid))
7160 error (_("No thread selected."));
7161
7162 /* Don't try to read from a dead thread. */
7163 if (is_exited (inferior_ptid))
7164 error (_("The current thread has terminated"));
7165
7166 /* ... or from a spinning thread. */
7167 if (is_running (inferior_ptid))
7168 error (_("Selected thread is running."));
7169}
7170
4aa995e1
PA
7171/* The $_siginfo convenience variable is a bit special. We don't know
7172 for sure the type of the value until we actually have a chance to
7a9dd1b2 7173 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7174 also dependent on which thread you have selected.
7175
7176 1. making $_siginfo be an internalvar that creates a new value on
7177 access.
7178
7179 2. making the value of $_siginfo be an lval_computed value. */
7180
7181/* This function implements the lval_computed support for reading a
7182 $_siginfo value. */
7183
7184static void
7185siginfo_value_read (struct value *v)
7186{
7187 LONGEST transferred;
7188
c709acd1
PA
7189 validate_siginfo_access ();
7190
4aa995e1
PA
7191 transferred =
7192 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7193 NULL,
7194 value_contents_all_raw (v),
7195 value_offset (v),
7196 TYPE_LENGTH (value_type (v)));
7197
7198 if (transferred != TYPE_LENGTH (value_type (v)))
7199 error (_("Unable to read siginfo"));
7200}
7201
7202/* This function implements the lval_computed support for writing a
7203 $_siginfo value. */
7204
7205static void
7206siginfo_value_write (struct value *v, struct value *fromval)
7207{
7208 LONGEST transferred;
7209
c709acd1
PA
7210 validate_siginfo_access ();
7211
4aa995e1
PA
7212 transferred = target_write (&current_target,
7213 TARGET_OBJECT_SIGNAL_INFO,
7214 NULL,
7215 value_contents_all_raw (fromval),
7216 value_offset (v),
7217 TYPE_LENGTH (value_type (fromval)));
7218
7219 if (transferred != TYPE_LENGTH (value_type (fromval)))
7220 error (_("Unable to write siginfo"));
7221}
7222
c8f2448a 7223static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7224 {
7225 siginfo_value_read,
7226 siginfo_value_write
7227 };
7228
7229/* Return a new value with the correct type for the siginfo object of
78267919
UW
7230 the current thread using architecture GDBARCH. Return a void value
7231 if there's no object available. */
4aa995e1 7232
2c0b251b 7233static struct value *
22d2b532
SDJ
7234siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7235 void *ignore)
4aa995e1 7236{
4aa995e1 7237 if (target_has_stack
78267919
UW
7238 && !ptid_equal (inferior_ptid, null_ptid)
7239 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7240 {
78267919 7241 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7242
78267919 7243 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7244 }
7245
78267919 7246 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7247}
7248
c906108c 7249\f
16c381f0
JK
7250/* infcall_suspend_state contains state about the program itself like its
7251 registers and any signal it received when it last stopped.
7252 This state must be restored regardless of how the inferior function call
7253 ends (either successfully, or after it hits a breakpoint or signal)
7254 if the program is to properly continue where it left off. */
7255
7256struct infcall_suspend_state
7a292a7a 7257{
16c381f0 7258 struct thread_suspend_state thread_suspend;
16c381f0
JK
7259
7260 /* Other fields: */
7a292a7a 7261 CORE_ADDR stop_pc;
b89667eb 7262 struct regcache *registers;
1736ad11 7263
35515841 7264 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7265 struct gdbarch *siginfo_gdbarch;
7266
7267 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7268 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7269 content would be invalid. */
7270 gdb_byte *siginfo_data;
b89667eb
DE
7271};
7272
16c381f0
JK
7273struct infcall_suspend_state *
7274save_infcall_suspend_state (void)
b89667eb 7275{
16c381f0 7276 struct infcall_suspend_state *inf_state;
b89667eb 7277 struct thread_info *tp = inferior_thread ();
1736ad11
JK
7278 struct regcache *regcache = get_current_regcache ();
7279 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7280 gdb_byte *siginfo_data = NULL;
7281
7282 if (gdbarch_get_siginfo_type_p (gdbarch))
7283 {
7284 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7285 size_t len = TYPE_LENGTH (type);
7286 struct cleanup *back_to;
7287
7288 siginfo_data = xmalloc (len);
7289 back_to = make_cleanup (xfree, siginfo_data);
7290
7291 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7292 siginfo_data, 0, len) == len)
7293 discard_cleanups (back_to);
7294 else
7295 {
7296 /* Errors ignored. */
7297 do_cleanups (back_to);
7298 siginfo_data = NULL;
7299 }
7300 }
7301
41bf6aca 7302 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7303
7304 if (siginfo_data)
7305 {
7306 inf_state->siginfo_gdbarch = gdbarch;
7307 inf_state->siginfo_data = siginfo_data;
7308 }
b89667eb 7309
16c381f0 7310 inf_state->thread_suspend = tp->suspend;
16c381f0 7311
35515841 7312 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7313 GDB_SIGNAL_0 anyway. */
7314 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7315
b89667eb
DE
7316 inf_state->stop_pc = stop_pc;
7317
1736ad11 7318 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7319
7320 return inf_state;
7321}
7322
7323/* Restore inferior session state to INF_STATE. */
7324
7325void
16c381f0 7326restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7327{
7328 struct thread_info *tp = inferior_thread ();
1736ad11
JK
7329 struct regcache *regcache = get_current_regcache ();
7330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7331
16c381f0 7332 tp->suspend = inf_state->thread_suspend;
16c381f0 7333
b89667eb
DE
7334 stop_pc = inf_state->stop_pc;
7335
1736ad11
JK
7336 if (inf_state->siginfo_gdbarch == gdbarch)
7337 {
7338 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7339
7340 /* Errors ignored. */
7341 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7342 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7343 }
7344
b89667eb
DE
7345 /* The inferior can be gone if the user types "print exit(0)"
7346 (and perhaps other times). */
7347 if (target_has_execution)
7348 /* NB: The register write goes through to the target. */
1736ad11 7349 regcache_cpy (regcache, inf_state->registers);
803b5f95 7350
16c381f0 7351 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7352}
7353
7354static void
16c381f0 7355do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7356{
16c381f0 7357 restore_infcall_suspend_state (state);
b89667eb
DE
7358}
7359
7360struct cleanup *
16c381f0
JK
7361make_cleanup_restore_infcall_suspend_state
7362 (struct infcall_suspend_state *inf_state)
b89667eb 7363{
16c381f0 7364 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7365}
7366
7367void
16c381f0 7368discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7369{
7370 regcache_xfree (inf_state->registers);
803b5f95 7371 xfree (inf_state->siginfo_data);
b89667eb
DE
7372 xfree (inf_state);
7373}
7374
7375struct regcache *
16c381f0 7376get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7377{
7378 return inf_state->registers;
7379}
7380
16c381f0
JK
7381/* infcall_control_state contains state regarding gdb's control of the
7382 inferior itself like stepping control. It also contains session state like
7383 the user's currently selected frame. */
b89667eb 7384
16c381f0 7385struct infcall_control_state
b89667eb 7386{
16c381f0
JK
7387 struct thread_control_state thread_control;
7388 struct inferior_control_state inferior_control;
d82142e2
JK
7389
7390 /* Other fields: */
7391 enum stop_stack_kind stop_stack_dummy;
7392 int stopped_by_random_signal;
7a292a7a 7393 int stop_after_trap;
7a292a7a 7394
b89667eb 7395 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7396 struct frame_id selected_frame_id;
7a292a7a
SS
7397};
7398
c906108c 7399/* Save all of the information associated with the inferior<==>gdb
b89667eb 7400 connection. */
c906108c 7401
16c381f0
JK
7402struct infcall_control_state *
7403save_infcall_control_state (void)
c906108c 7404{
16c381f0 7405 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7406 struct thread_info *tp = inferior_thread ();
d6b48e9c 7407 struct inferior *inf = current_inferior ();
7a292a7a 7408
16c381f0
JK
7409 inf_status->thread_control = tp->control;
7410 inf_status->inferior_control = inf->control;
d82142e2 7411
8358c15c 7412 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7413 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7414
16c381f0
JK
7415 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7416 chain. If caller's caller is walking the chain, they'll be happier if we
7417 hand them back the original chain when restore_infcall_control_state is
7418 called. */
7419 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7420
7421 /* Other fields: */
7422 inf_status->stop_stack_dummy = stop_stack_dummy;
7423 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7424 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7425
206415a3 7426 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7427
7a292a7a 7428 return inf_status;
c906108c
SS
7429}
7430
c906108c 7431static int
96baa820 7432restore_selected_frame (void *args)
c906108c 7433{
488f131b 7434 struct frame_id *fid = (struct frame_id *) args;
c906108c 7435 struct frame_info *frame;
c906108c 7436
101dcfbe 7437 frame = frame_find_by_id (*fid);
c906108c 7438
aa0cd9c1
AC
7439 /* If inf_status->selected_frame_id is NULL, there was no previously
7440 selected frame. */
101dcfbe 7441 if (frame == NULL)
c906108c 7442 {
8a3fe4f8 7443 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7444 return 0;
7445 }
7446
0f7d239c 7447 select_frame (frame);
c906108c
SS
7448
7449 return (1);
7450}
7451
b89667eb
DE
7452/* Restore inferior session state to INF_STATUS. */
7453
c906108c 7454void
16c381f0 7455restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7456{
4e1c45ea 7457 struct thread_info *tp = inferior_thread ();
d6b48e9c 7458 struct inferior *inf = current_inferior ();
4e1c45ea 7459
8358c15c
JK
7460 if (tp->control.step_resume_breakpoint)
7461 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7462
5b79abe7
TT
7463 if (tp->control.exception_resume_breakpoint)
7464 tp->control.exception_resume_breakpoint->disposition
7465 = disp_del_at_next_stop;
7466
d82142e2 7467 /* Handle the bpstat_copy of the chain. */
16c381f0 7468 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7469
16c381f0
JK
7470 tp->control = inf_status->thread_control;
7471 inf->control = inf_status->inferior_control;
d82142e2
JK
7472
7473 /* Other fields: */
7474 stop_stack_dummy = inf_status->stop_stack_dummy;
7475 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7476 stop_after_trap = inf_status->stop_after_trap;
c906108c 7477
b89667eb 7478 if (target_has_stack)
c906108c 7479 {
c906108c 7480 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7481 walking the stack might encounter a garbage pointer and
7482 error() trying to dereference it. */
488f131b
JB
7483 if (catch_errors
7484 (restore_selected_frame, &inf_status->selected_frame_id,
7485 "Unable to restore previously selected frame:\n",
7486 RETURN_MASK_ERROR) == 0)
c906108c
SS
7487 /* Error in restoring the selected frame. Select the innermost
7488 frame. */
0f7d239c 7489 select_frame (get_current_frame ());
c906108c 7490 }
c906108c 7491
72cec141 7492 xfree (inf_status);
7a292a7a 7493}
c906108c 7494
74b7792f 7495static void
16c381f0 7496do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7497{
16c381f0 7498 restore_infcall_control_state (sts);
74b7792f
AC
7499}
7500
7501struct cleanup *
16c381f0
JK
7502make_cleanup_restore_infcall_control_state
7503 (struct infcall_control_state *inf_status)
74b7792f 7504{
16c381f0 7505 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7506}
7507
c906108c 7508void
16c381f0 7509discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7510{
8358c15c
JK
7511 if (inf_status->thread_control.step_resume_breakpoint)
7512 inf_status->thread_control.step_resume_breakpoint->disposition
7513 = disp_del_at_next_stop;
7514
5b79abe7
TT
7515 if (inf_status->thread_control.exception_resume_breakpoint)
7516 inf_status->thread_control.exception_resume_breakpoint->disposition
7517 = disp_del_at_next_stop;
7518
1777feb0 7519 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7520 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7521
72cec141 7522 xfree (inf_status);
7a292a7a 7523}
b89667eb 7524\f
ca6724c1
KB
7525/* restore_inferior_ptid() will be used by the cleanup machinery
7526 to restore the inferior_ptid value saved in a call to
7527 save_inferior_ptid(). */
ce696e05
KB
7528
7529static void
7530restore_inferior_ptid (void *arg)
7531{
7532 ptid_t *saved_ptid_ptr = arg;
abbb1732 7533
ce696e05
KB
7534 inferior_ptid = *saved_ptid_ptr;
7535 xfree (arg);
7536}
7537
7538/* Save the value of inferior_ptid so that it may be restored by a
7539 later call to do_cleanups(). Returns the struct cleanup pointer
7540 needed for later doing the cleanup. */
7541
7542struct cleanup *
7543save_inferior_ptid (void)
7544{
7545 ptid_t *saved_ptid_ptr;
7546
7547 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7548 *saved_ptid_ptr = inferior_ptid;
7549 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7550}
0c557179 7551
7f89fd65 7552/* See infrun.h. */
0c557179
SDJ
7553
7554void
7555clear_exit_convenience_vars (void)
7556{
7557 clear_internalvar (lookup_internalvar ("_exitsignal"));
7558 clear_internalvar (lookup_internalvar ("_exitcode"));
7559}
c5aa993b 7560\f
488f131b 7561
b2175913
MS
7562/* User interface for reverse debugging:
7563 Set exec-direction / show exec-direction commands
7564 (returns error unless target implements to_set_exec_direction method). */
7565
32231432 7566int execution_direction = EXEC_FORWARD;
b2175913
MS
7567static const char exec_forward[] = "forward";
7568static const char exec_reverse[] = "reverse";
7569static const char *exec_direction = exec_forward;
40478521 7570static const char *const exec_direction_names[] = {
b2175913
MS
7571 exec_forward,
7572 exec_reverse,
7573 NULL
7574};
7575
7576static void
7577set_exec_direction_func (char *args, int from_tty,
7578 struct cmd_list_element *cmd)
7579{
7580 if (target_can_execute_reverse)
7581 {
7582 if (!strcmp (exec_direction, exec_forward))
7583 execution_direction = EXEC_FORWARD;
7584 else if (!strcmp (exec_direction, exec_reverse))
7585 execution_direction = EXEC_REVERSE;
7586 }
8bbed405
MS
7587 else
7588 {
7589 exec_direction = exec_forward;
7590 error (_("Target does not support this operation."));
7591 }
b2175913
MS
7592}
7593
7594static void
7595show_exec_direction_func (struct ui_file *out, int from_tty,
7596 struct cmd_list_element *cmd, const char *value)
7597{
7598 switch (execution_direction) {
7599 case EXEC_FORWARD:
7600 fprintf_filtered (out, _("Forward.\n"));
7601 break;
7602 case EXEC_REVERSE:
7603 fprintf_filtered (out, _("Reverse.\n"));
7604 break;
b2175913 7605 default:
d8b34453
PA
7606 internal_error (__FILE__, __LINE__,
7607 _("bogus execution_direction value: %d"),
7608 (int) execution_direction);
b2175913
MS
7609 }
7610}
7611
d4db2f36
PA
7612static void
7613show_schedule_multiple (struct ui_file *file, int from_tty,
7614 struct cmd_list_element *c, const char *value)
7615{
3e43a32a
MS
7616 fprintf_filtered (file, _("Resuming the execution of threads "
7617 "of all processes is %s.\n"), value);
d4db2f36 7618}
ad52ddc6 7619
22d2b532
SDJ
7620/* Implementation of `siginfo' variable. */
7621
7622static const struct internalvar_funcs siginfo_funcs =
7623{
7624 siginfo_make_value,
7625 NULL,
7626 NULL
7627};
7628
c906108c 7629void
96baa820 7630_initialize_infrun (void)
c906108c 7631{
52f0bd74
AC
7632 int i;
7633 int numsigs;
de0bea00 7634 struct cmd_list_element *c;
c906108c 7635
1bedd215
AC
7636 add_info ("signals", signals_info, _("\
7637What debugger does when program gets various signals.\n\
7638Specify a signal as argument to print info on that signal only."));
c906108c
SS
7639 add_info_alias ("handle", "signals", 0);
7640
de0bea00 7641 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7642Specify how to handle signals.\n\
486c7739 7643Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7644Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7645If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7646will be displayed instead.\n\
7647\n\
c906108c
SS
7648Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7649from 1-15 are allowed for compatibility with old versions of GDB.\n\
7650Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7651The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7652used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7653\n\
1bedd215 7654Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7655\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7656Stop means reenter debugger if this signal happens (implies print).\n\
7657Print means print a message if this signal happens.\n\
7658Pass means let program see this signal; otherwise program doesn't know.\n\
7659Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7660Pass and Stop may be combined.\n\
7661\n\
7662Multiple signals may be specified. Signal numbers and signal names\n\
7663may be interspersed with actions, with the actions being performed for\n\
7664all signals cumulatively specified."));
de0bea00 7665 set_cmd_completer (c, handle_completer);
486c7739 7666
c906108c 7667 if (!dbx_commands)
1a966eab
AC
7668 stop_command = add_cmd ("stop", class_obscure,
7669 not_just_help_class_command, _("\
7670There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7671This allows you to set a list of commands to be run each time execution\n\
1a966eab 7672of the program stops."), &cmdlist);
c906108c 7673
ccce17b0 7674 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7675Set inferior debugging."), _("\
7676Show inferior debugging."), _("\
7677When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7678 NULL,
7679 show_debug_infrun,
7680 &setdebuglist, &showdebuglist);
527159b7 7681
3e43a32a
MS
7682 add_setshow_boolean_cmd ("displaced", class_maintenance,
7683 &debug_displaced, _("\
237fc4c9
PA
7684Set displaced stepping debugging."), _("\
7685Show displaced stepping debugging."), _("\
7686When non-zero, displaced stepping specific debugging is enabled."),
7687 NULL,
7688 show_debug_displaced,
7689 &setdebuglist, &showdebuglist);
7690
ad52ddc6
PA
7691 add_setshow_boolean_cmd ("non-stop", no_class,
7692 &non_stop_1, _("\
7693Set whether gdb controls the inferior in non-stop mode."), _("\
7694Show whether gdb controls the inferior in non-stop mode."), _("\
7695When debugging a multi-threaded program and this setting is\n\
7696off (the default, also called all-stop mode), when one thread stops\n\
7697(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7698all other threads in the program while you interact with the thread of\n\
7699interest. When you continue or step a thread, you can allow the other\n\
7700threads to run, or have them remain stopped, but while you inspect any\n\
7701thread's state, all threads stop.\n\
7702\n\
7703In non-stop mode, when one thread stops, other threads can continue\n\
7704to run freely. You'll be able to step each thread independently,\n\
7705leave it stopped or free to run as needed."),
7706 set_non_stop,
7707 show_non_stop,
7708 &setlist,
7709 &showlist);
7710
a493e3e2 7711 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7712 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7713 signal_print = (unsigned char *)
7714 xmalloc (sizeof (signal_print[0]) * numsigs);
7715 signal_program = (unsigned char *)
7716 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7717 signal_catch = (unsigned char *)
7718 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7719 signal_pass = (unsigned char *)
4395285e 7720 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7721 for (i = 0; i < numsigs; i++)
7722 {
7723 signal_stop[i] = 1;
7724 signal_print[i] = 1;
7725 signal_program[i] = 1;
ab04a2af 7726 signal_catch[i] = 0;
c906108c
SS
7727 }
7728
7729 /* Signals caused by debugger's own actions
7730 should not be given to the program afterwards. */
a493e3e2
PA
7731 signal_program[GDB_SIGNAL_TRAP] = 0;
7732 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7733
7734 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7735 signal_stop[GDB_SIGNAL_ALRM] = 0;
7736 signal_print[GDB_SIGNAL_ALRM] = 0;
7737 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7738 signal_print[GDB_SIGNAL_VTALRM] = 0;
7739 signal_stop[GDB_SIGNAL_PROF] = 0;
7740 signal_print[GDB_SIGNAL_PROF] = 0;
7741 signal_stop[GDB_SIGNAL_CHLD] = 0;
7742 signal_print[GDB_SIGNAL_CHLD] = 0;
7743 signal_stop[GDB_SIGNAL_IO] = 0;
7744 signal_print[GDB_SIGNAL_IO] = 0;
7745 signal_stop[GDB_SIGNAL_POLL] = 0;
7746 signal_print[GDB_SIGNAL_POLL] = 0;
7747 signal_stop[GDB_SIGNAL_URG] = 0;
7748 signal_print[GDB_SIGNAL_URG] = 0;
7749 signal_stop[GDB_SIGNAL_WINCH] = 0;
7750 signal_print[GDB_SIGNAL_WINCH] = 0;
7751 signal_stop[GDB_SIGNAL_PRIO] = 0;
7752 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7753
cd0fc7c3
SS
7754 /* These signals are used internally by user-level thread
7755 implementations. (See signal(5) on Solaris.) Like the above
7756 signals, a healthy program receives and handles them as part of
7757 its normal operation. */
a493e3e2
PA
7758 signal_stop[GDB_SIGNAL_LWP] = 0;
7759 signal_print[GDB_SIGNAL_LWP] = 0;
7760 signal_stop[GDB_SIGNAL_WAITING] = 0;
7761 signal_print[GDB_SIGNAL_WAITING] = 0;
7762 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7763 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7764
2455069d
UW
7765 /* Update cached state. */
7766 signal_cache_update (-1);
7767
85c07804
AC
7768 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7769 &stop_on_solib_events, _("\
7770Set stopping for shared library events."), _("\
7771Show stopping for shared library events."), _("\
c906108c
SS
7772If nonzero, gdb will give control to the user when the dynamic linker\n\
7773notifies gdb of shared library events. The most common event of interest\n\
85c07804 7774to the user would be loading/unloading of a new library."),
f9e14852 7775 set_stop_on_solib_events,
920d2a44 7776 show_stop_on_solib_events,
85c07804 7777 &setlist, &showlist);
c906108c 7778
7ab04401
AC
7779 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7780 follow_fork_mode_kind_names,
7781 &follow_fork_mode_string, _("\
7782Set debugger response to a program call of fork or vfork."), _("\
7783Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7784A fork or vfork creates a new process. follow-fork-mode can be:\n\
7785 parent - the original process is debugged after a fork\n\
7786 child - the new process is debugged after a fork\n\
ea1dd7bc 7787The unfollowed process will continue to run.\n\
7ab04401
AC
7788By default, the debugger will follow the parent process."),
7789 NULL,
920d2a44 7790 show_follow_fork_mode_string,
7ab04401
AC
7791 &setlist, &showlist);
7792
6c95b8df
PA
7793 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7794 follow_exec_mode_names,
7795 &follow_exec_mode_string, _("\
7796Set debugger response to a program call of exec."), _("\
7797Show debugger response to a program call of exec."), _("\
7798An exec call replaces the program image of a process.\n\
7799\n\
7800follow-exec-mode can be:\n\
7801\n\
cce7e648 7802 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7803to this new inferior. The program the process was running before\n\
7804the exec call can be restarted afterwards by restarting the original\n\
7805inferior.\n\
7806\n\
7807 same - the debugger keeps the process bound to the same inferior.\n\
7808The new executable image replaces the previous executable loaded in\n\
7809the inferior. Restarting the inferior after the exec call restarts\n\
7810the executable the process was running after the exec call.\n\
7811\n\
7812By default, the debugger will use the same inferior."),
7813 NULL,
7814 show_follow_exec_mode_string,
7815 &setlist, &showlist);
7816
7ab04401
AC
7817 add_setshow_enum_cmd ("scheduler-locking", class_run,
7818 scheduler_enums, &scheduler_mode, _("\
7819Set mode for locking scheduler during execution."), _("\
7820Show mode for locking scheduler during execution."), _("\
c906108c
SS
7821off == no locking (threads may preempt at any time)\n\
7822on == full locking (no thread except the current thread may run)\n\
856e7dd6
PA
7823step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
7824 In this mode, other threads may run during other commands."),
7ab04401 7825 set_schedlock_func, /* traps on target vector */
920d2a44 7826 show_scheduler_mode,
7ab04401 7827 &setlist, &showlist);
5fbbeb29 7828
d4db2f36
PA
7829 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7830Set mode for resuming threads of all processes."), _("\
7831Show mode for resuming threads of all processes."), _("\
7832When on, execution commands (such as 'continue' or 'next') resume all\n\
7833threads of all processes. When off (which is the default), execution\n\
7834commands only resume the threads of the current process. The set of\n\
7835threads that are resumed is further refined by the scheduler-locking\n\
7836mode (see help set scheduler-locking)."),
7837 NULL,
7838 show_schedule_multiple,
7839 &setlist, &showlist);
7840
5bf193a2
AC
7841 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7842Set mode of the step operation."), _("\
7843Show mode of the step operation."), _("\
7844When set, doing a step over a function without debug line information\n\
7845will stop at the first instruction of that function. Otherwise, the\n\
7846function is skipped and the step command stops at a different source line."),
7847 NULL,
920d2a44 7848 show_step_stop_if_no_debug,
5bf193a2 7849 &setlist, &showlist);
ca6724c1 7850
72d0e2c5
YQ
7851 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7852 &can_use_displaced_stepping, _("\
237fc4c9
PA
7853Set debugger's willingness to use displaced stepping."), _("\
7854Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7855If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7856supported by the target architecture. If off, gdb will not use displaced\n\
7857stepping to step over breakpoints, even if such is supported by the target\n\
7858architecture. If auto (which is the default), gdb will use displaced stepping\n\
7859if the target architecture supports it and non-stop mode is active, but will not\n\
7860use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7861 NULL,
7862 show_can_use_displaced_stepping,
7863 &setlist, &showlist);
237fc4c9 7864
b2175913
MS
7865 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7866 &exec_direction, _("Set direction of execution.\n\
7867Options are 'forward' or 'reverse'."),
7868 _("Show direction of execution (forward/reverse)."),
7869 _("Tells gdb whether to execute forward or backward."),
7870 set_exec_direction_func, show_exec_direction_func,
7871 &setlist, &showlist);
7872
6c95b8df
PA
7873 /* Set/show detach-on-fork: user-settable mode. */
7874
7875 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7876Set whether gdb will detach the child of a fork."), _("\
7877Show whether gdb will detach the child of a fork."), _("\
7878Tells gdb whether to detach the child of a fork."),
7879 NULL, NULL, &setlist, &showlist);
7880
03583c20
UW
7881 /* Set/show disable address space randomization mode. */
7882
7883 add_setshow_boolean_cmd ("disable-randomization", class_support,
7884 &disable_randomization, _("\
7885Set disabling of debuggee's virtual address space randomization."), _("\
7886Show disabling of debuggee's virtual address space randomization."), _("\
7887When this mode is on (which is the default), randomization of the virtual\n\
7888address space is disabled. Standalone programs run with the randomization\n\
7889enabled by default on some platforms."),
7890 &set_disable_randomization,
7891 &show_disable_randomization,
7892 &setlist, &showlist);
7893
ca6724c1 7894 /* ptid initializations */
ca6724c1
KB
7895 inferior_ptid = null_ptid;
7896 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7897
7898 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7899 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7900 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7901 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7902
7903 /* Explicitly create without lookup, since that tries to create a
7904 value with a void typed value, and when we get here, gdbarch
7905 isn't initialized yet. At this point, we're quite sure there
7906 isn't another convenience variable of the same name. */
22d2b532 7907 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7908
7909 add_setshow_boolean_cmd ("observer", no_class,
7910 &observer_mode_1, _("\
7911Set whether gdb controls the inferior in observer mode."), _("\
7912Show whether gdb controls the inferior in observer mode."), _("\
7913In observer mode, GDB can get data from the inferior, but not\n\
7914affect its execution. Registers and memory may not be changed,\n\
7915breakpoints may not be set, and the program cannot be interrupted\n\
7916or signalled."),
7917 set_observer_mode,
7918 show_observer_mode,
7919 &setlist,
7920 &showlist);
c906108c 7921}
This page took 2.352914 seconds and 4 git commands to generate.