Disable displaced stepping if trying it fails
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
c906108c
SS
65
66/* Prototypes for local functions */
67
96baa820 68static void signals_info (char *, int);
c906108c 69
96baa820 70static void handle_command (char *, int);
c906108c 71
2ea28649 72static void sig_print_info (enum gdb_signal);
c906108c 73
96baa820 74static void sig_print_header (void);
c906108c 75
74b7792f 76static void resume_cleanups (void *);
c906108c 77
96baa820 78static int hook_stop_stub (void *);
c906108c 79
96baa820
JM
80static int restore_selected_frame (void *);
81
4ef3f3be 82static int follow_fork (void);
96baa820 83
d83ad864
DB
84static int follow_fork_inferior (int follow_child, int detach_fork);
85
86static void follow_inferior_reset_breakpoints (void);
87
96baa820 88static void set_schedlock_func (char *args, int from_tty,
488f131b 89 struct cmd_list_element *c);
96baa820 90
a289b8f6
JK
91static int currently_stepping (struct thread_info *tp);
92
96baa820 93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
8550d3b3
YQ
103static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
104
372316f1
PA
105/* Asynchronous signal handler registered as event loop source for
106 when we have pending events ready to be passed to the core. */
107static struct async_event_handler *infrun_async_inferior_event_token;
108
109/* Stores whether infrun_async was previously enabled or disabled.
110 Starts off as -1, indicating "never enabled/disabled". */
111static int infrun_is_async = -1;
112
113/* See infrun.h. */
114
115void
116infrun_async (int enable)
117{
118 if (infrun_is_async != enable)
119 {
120 infrun_is_async = enable;
121
122 if (debug_infrun)
123 fprintf_unfiltered (gdb_stdlog,
124 "infrun: infrun_async(%d)\n",
125 enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132}
133
5fbbeb29
CF
134/* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
137int step_stop_if_no_debug = 0;
920d2a44
AC
138static void
139show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143}
5fbbeb29 144
1777feb0 145/* In asynchronous mode, but simulating synchronous execution. */
96baa820 146
43ff13b4
JM
147int sync_execution = 0;
148
b9f437de
PA
149/* proceed and normal_stop use this to notify the user when the
150 inferior stopped in a different thread than it had been running
151 in. */
96baa820 152
39f77062 153static ptid_t previous_inferior_ptid;
7a292a7a 154
07107ca6
LM
155/* If set (default for legacy reasons), when following a fork, GDB
156 will detach from one of the fork branches, child or parent.
157 Exactly which branch is detached depends on 'set follow-fork-mode'
158 setting. */
159
160static int detach_fork = 1;
6c95b8df 161
237fc4c9
PA
162int debug_displaced = 0;
163static void
164show_debug_displaced (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
168}
169
ccce17b0 170unsigned int debug_infrun = 0;
920d2a44
AC
171static void
172show_debug_infrun (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174{
175 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
176}
527159b7 177
03583c20
UW
178
179/* Support for disabling address space randomization. */
180
181int disable_randomization = 1;
182
183static void
184show_disable_randomization (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186{
187 if (target_supports_disable_randomization ())
188 fprintf_filtered (file,
189 _("Disabling randomization of debuggee's "
190 "virtual address space is %s.\n"),
191 value);
192 else
193 fputs_filtered (_("Disabling randomization of debuggee's "
194 "virtual address space is unsupported on\n"
195 "this platform.\n"), file);
196}
197
198static void
199set_disable_randomization (char *args, int from_tty,
200 struct cmd_list_element *c)
201{
202 if (!target_supports_disable_randomization ())
203 error (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform."));
206}
207
d32dc48e
PA
208/* User interface for non-stop mode. */
209
210int non_stop = 0;
211static int non_stop_1 = 0;
212
213static void
214set_non_stop (char *args, int from_tty,
215 struct cmd_list_element *c)
216{
217 if (target_has_execution)
218 {
219 non_stop_1 = non_stop;
220 error (_("Cannot change this setting while the inferior is running."));
221 }
222
223 non_stop = non_stop_1;
224}
225
226static void
227show_non_stop (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229{
230 fprintf_filtered (file,
231 _("Controlling the inferior in non-stop mode is %s.\n"),
232 value);
233}
234
d914c394
SS
235/* "Observer mode" is somewhat like a more extreme version of
236 non-stop, in which all GDB operations that might affect the
237 target's execution have been disabled. */
238
d914c394
SS
239int observer_mode = 0;
240static int observer_mode_1 = 0;
241
242static void
243set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245{
d914c394
SS
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
d914c394
SS
269 pagination_enabled = 0;
270 non_stop = non_stop_1 = 1;
271 }
272
273 if (from_tty)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (observer_mode ? "on" : "off"));
276}
277
278static void
279show_observer_mode (struct ui_file *file, int from_tty,
280 struct cmd_list_element *c, const char *value)
281{
282 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
283}
284
285/* This updates the value of observer mode based on changes in
286 permissions. Note that we are deliberately ignoring the values of
287 may-write-registers and may-write-memory, since the user may have
288 reason to enable these during a session, for instance to turn on a
289 debugging-related global. */
290
291void
292update_observer_mode (void)
293{
294 int newval;
295
296 newval = (!may_insert_breakpoints
297 && !may_insert_tracepoints
298 && may_insert_fast_tracepoints
299 && !may_stop
300 && non_stop);
301
302 /* Let the user know if things change. */
303 if (newval != observer_mode)
304 printf_filtered (_("Observer mode is now %s.\n"),
305 (newval ? "on" : "off"));
306
307 observer_mode = observer_mode_1 = newval;
308}
c2c6d25f 309
c906108c
SS
310/* Tables of how to react to signals; the user sets them. */
311
312static unsigned char *signal_stop;
313static unsigned char *signal_print;
314static unsigned char *signal_program;
315
ab04a2af
TT
316/* Table of signals that are registered with "catch signal". A
317 non-zero entry indicates that the signal is caught by some "catch
318 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
319 signals. */
320static unsigned char *signal_catch;
321
2455069d
UW
322/* Table of signals that the target may silently handle.
323 This is automatically determined from the flags above,
324 and simply cached here. */
325static unsigned char *signal_pass;
326
c906108c
SS
327#define SET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 1; \
333 } while (0)
334
335#define UNSET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 0; \
341 } while (0)
342
9b224c5e
PA
343/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
344 this function is to avoid exporting `signal_program'. */
345
346void
347update_signals_program_target (void)
348{
a493e3e2 349 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
350}
351
1777feb0 352/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 353
edb3359d 354#define RESUME_ALL minus_one_ptid
c906108c
SS
355
356/* Command list pointer for the "stop" placeholder. */
357
358static struct cmd_list_element *stop_command;
359
c906108c
SS
360/* Nonzero if we want to give control to the user when we're notified
361 of shared library events by the dynamic linker. */
628fe4e4 362int stop_on_solib_events;
f9e14852
GB
363
364/* Enable or disable optional shared library event breakpoints
365 as appropriate when the above flag is changed. */
366
367static void
368set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
369{
370 update_solib_breakpoints ();
371}
372
920d2a44
AC
373static void
374show_stop_on_solib_events (struct ui_file *file, int from_tty,
375 struct cmd_list_element *c, const char *value)
376{
377 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
378 value);
379}
c906108c 380
c906108c
SS
381/* Nonzero means expecting a trace trap
382 and should stop the inferior and return silently when it happens. */
383
384int stop_after_trap;
385
c906108c
SS
386/* Nonzero after stop if current stack frame should be printed. */
387
388static int stop_print_frame;
389
e02bc4cc 390/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
391 returned by target_wait()/deprecated_target_wait_hook(). This
392 information is returned by get_last_target_status(). */
39f77062 393static ptid_t target_last_wait_ptid;
e02bc4cc
DS
394static struct target_waitstatus target_last_waitstatus;
395
0d1e5fa7
PA
396static void context_switch (ptid_t ptid);
397
4e1c45ea 398void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 399
53904c9e
AC
400static const char follow_fork_mode_child[] = "child";
401static const char follow_fork_mode_parent[] = "parent";
402
40478521 403static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
ef346e04 407};
c906108c 408
53904c9e 409static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
410static void
411show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413{
3e43a32a
MS
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
417 value);
418}
c906108c
SS
419\f
420
d83ad864
DB
421/* Handle changes to the inferior list based on the type of fork,
422 which process is being followed, and whether the other process
423 should be detached. On entry inferior_ptid must be the ptid of
424 the fork parent. At return inferior_ptid is the ptid of the
425 followed inferior. */
426
427static int
428follow_fork_inferior (int follow_child, int detach_fork)
429{
430 int has_vforked;
79639e11 431 ptid_t parent_ptid, child_ptid;
d83ad864
DB
432
433 has_vforked = (inferior_thread ()->pending_follow.kind
434 == TARGET_WAITKIND_VFORKED);
79639e11
PA
435 parent_ptid = inferior_ptid;
436 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
437
438 if (has_vforked
439 && !non_stop /* Non-stop always resumes both branches. */
440 && (!target_is_async_p () || sync_execution)
441 && !(follow_child || detach_fork || sched_multi))
442 {
443 /* The parent stays blocked inside the vfork syscall until the
444 child execs or exits. If we don't let the child run, then
445 the parent stays blocked. If we're telling the parent to run
446 in the foreground, the user will not be able to ctrl-c to get
447 back the terminal, effectively hanging the debug session. */
448 fprintf_filtered (gdb_stderr, _("\
449Can not resume the parent process over vfork in the foreground while\n\
450holding the child stopped. Try \"set detach-on-fork\" or \
451\"set schedule-multiple\".\n"));
452 /* FIXME output string > 80 columns. */
453 return 1;
454 }
455
456 if (!follow_child)
457 {
458 /* Detach new forked process? */
459 if (detach_fork)
460 {
461 struct cleanup *old_chain;
462
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
474 }
475
476 if (info_verbose || debug_infrun)
477 {
8dd06f7a
DB
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
480
6f259a23 481 target_terminal_ours_for_output ();
d83ad864 482 fprintf_filtered (gdb_stdlog,
79639e11 483 _("Detaching after %s from child %s.\n"),
6f259a23 484 has_vforked ? "vfork" : "fork",
8dd06f7a 485 target_pid_to_str (process_ptid));
d83ad864
DB
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491 struct cleanup *old_chain;
492
493 /* Add process to GDB's tables. */
79639e11 494 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
495
496 parent_inf = current_inferior ();
497 child_inf->attach_flag = parent_inf->attach_flag;
498 copy_terminal_info (child_inf, parent_inf);
499 child_inf->gdbarch = parent_inf->gdbarch;
500 copy_inferior_target_desc_info (child_inf, parent_inf);
501
502 old_chain = save_inferior_ptid ();
503 save_current_program_space ();
504
79639e11 505 inferior_ptid = child_ptid;
d83ad864
DB
506 add_thread (inferior_ptid);
507 child_inf->symfile_flags = SYMFILE_NO_READ;
508
509 /* If this is a vfork child, then the address-space is
510 shared with the parent. */
511 if (has_vforked)
512 {
513 child_inf->pspace = parent_inf->pspace;
514 child_inf->aspace = parent_inf->aspace;
515
516 /* The parent will be frozen until the child is done
517 with the shared region. Keep track of the
518 parent. */
519 child_inf->vfork_parent = parent_inf;
520 child_inf->pending_detach = 0;
521 parent_inf->vfork_child = child_inf;
522 parent_inf->pending_detach = 0;
523 }
524 else
525 {
526 child_inf->aspace = new_address_space ();
527 child_inf->pspace = add_program_space (child_inf->aspace);
528 child_inf->removable = 1;
529 set_current_program_space (child_inf->pspace);
530 clone_program_space (child_inf->pspace, parent_inf->pspace);
531
532 /* Let the shared library layer (e.g., solib-svr4) learn
533 about this new process, relocate the cloned exec, pull
534 in shared libraries, and install the solib event
535 breakpoint. If a "cloned-VM" event was propagated
536 better throughout the core, this wouldn't be
537 required. */
538 solib_create_inferior_hook (0);
539 }
540
541 do_cleanups (old_chain);
542 }
543
544 if (has_vforked)
545 {
546 struct inferior *parent_inf;
547
548 parent_inf = current_inferior ();
549
550 /* If we detached from the child, then we have to be careful
551 to not insert breakpoints in the parent until the child
552 is done with the shared memory region. However, if we're
553 staying attached to the child, then we can and should
554 insert breakpoints, so that we can debug it. A
555 subsequent child exec or exit is enough to know when does
556 the child stops using the parent's address space. */
557 parent_inf->waiting_for_vfork_done = detach_fork;
558 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
559 }
560 }
561 else
562 {
563 /* Follow the child. */
564 struct inferior *parent_inf, *child_inf;
565 struct program_space *parent_pspace;
566
567 if (info_verbose || debug_infrun)
568 {
6f259a23
DB
569 target_terminal_ours_for_output ();
570 fprintf_filtered (gdb_stdlog,
79639e11
PA
571 _("Attaching after %s %s to child %s.\n"),
572 target_pid_to_str (parent_ptid),
6f259a23 573 has_vforked ? "vfork" : "fork",
79639e11 574 target_pid_to_str (child_ptid));
d83ad864
DB
575 }
576
577 /* Add the new inferior first, so that the target_detach below
578 doesn't unpush the target. */
579
79639e11 580 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
581
582 parent_inf = current_inferior ();
583 child_inf->attach_flag = parent_inf->attach_flag;
584 copy_terminal_info (child_inf, parent_inf);
585 child_inf->gdbarch = parent_inf->gdbarch;
586 copy_inferior_target_desc_info (child_inf, parent_inf);
587
588 parent_pspace = parent_inf->pspace;
589
590 /* If we're vforking, we want to hold on to the parent until the
591 child exits or execs. At child exec or exit time we can
592 remove the old breakpoints from the parent and detach or
593 resume debugging it. Otherwise, detach the parent now; we'll
594 want to reuse it's program/address spaces, but we can't set
595 them to the child before removing breakpoints from the
596 parent, otherwise, the breakpoints module could decide to
597 remove breakpoints from the wrong process (since they'd be
598 assigned to the same address space). */
599
600 if (has_vforked)
601 {
602 gdb_assert (child_inf->vfork_parent == NULL);
603 gdb_assert (parent_inf->vfork_child == NULL);
604 child_inf->vfork_parent = parent_inf;
605 child_inf->pending_detach = 0;
606 parent_inf->vfork_child = child_inf;
607 parent_inf->pending_detach = detach_fork;
608 parent_inf->waiting_for_vfork_done = 0;
609 }
610 else if (detach_fork)
6f259a23
DB
611 {
612 if (info_verbose || debug_infrun)
613 {
8dd06f7a
DB
614 /* Ensure that we have a process ptid. */
615 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
616
6f259a23
DB
617 target_terminal_ours_for_output ();
618 fprintf_filtered (gdb_stdlog,
619 _("Detaching after fork from "
79639e11 620 "child %s.\n"),
8dd06f7a 621 target_pid_to_str (process_ptid));
6f259a23
DB
622 }
623
624 target_detach (NULL, 0);
625 }
d83ad864
DB
626
627 /* Note that the detach above makes PARENT_INF dangling. */
628
629 /* Add the child thread to the appropriate lists, and switch to
630 this new thread, before cloning the program space, and
631 informing the solib layer about this new process. */
632
79639e11 633 inferior_ptid = child_ptid;
d83ad864
DB
634 add_thread (inferior_ptid);
635
636 /* If this is a vfork child, then the address-space is shared
637 with the parent. If we detached from the parent, then we can
638 reuse the parent's program/address spaces. */
639 if (has_vforked || detach_fork)
640 {
641 child_inf->pspace = parent_pspace;
642 child_inf->aspace = child_inf->pspace->aspace;
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = add_program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663}
664
e58b0e63
PA
665/* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
6604731b 669static int
4ef3f3be 670follow_fork (void)
c906108c 671{
ea1dd7bc 672 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
673 int should_resume = 1;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
4e3990f4
DE
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 681 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
17b2616c 685 struct interp *command_interp = NULL;
e58b0e63
PA
686
687 if (!non_stop)
688 {
689 ptid_t wait_ptid;
690 struct target_waitstatus wait_status;
691
692 /* Get the last target status returned by target_wait(). */
693 get_last_target_status (&wait_ptid, &wait_status);
694
695 /* If not stopped at a fork event, then there's nothing else to
696 do. */
697 if (wait_status.kind != TARGET_WAITKIND_FORKED
698 && wait_status.kind != TARGET_WAITKIND_VFORKED)
699 return 1;
700
701 /* Check if we switched over from WAIT_PTID, since the event was
702 reported. */
703 if (!ptid_equal (wait_ptid, minus_one_ptid)
704 && !ptid_equal (inferior_ptid, wait_ptid))
705 {
706 /* We did. Switch back to WAIT_PTID thread, to tell the
707 target to follow it (in either direction). We'll
708 afterwards refuse to resume, and inform the user what
709 happened. */
710 switch_to_thread (wait_ptid);
711 should_resume = 0;
712 }
713 }
714
715 tp = inferior_thread ();
716
717 /* If there were any forks/vforks that were caught and are now to be
718 followed, then do so now. */
719 switch (tp->pending_follow.kind)
720 {
721 case TARGET_WAITKIND_FORKED:
722 case TARGET_WAITKIND_VFORKED:
723 {
724 ptid_t parent, child;
725
726 /* If the user did a next/step, etc, over a fork call,
727 preserve the stepping state in the fork child. */
728 if (follow_child && should_resume)
729 {
8358c15c
JK
730 step_resume_breakpoint = clone_momentary_breakpoint
731 (tp->control.step_resume_breakpoint);
16c381f0
JK
732 step_range_start = tp->control.step_range_start;
733 step_range_end = tp->control.step_range_end;
734 step_frame_id = tp->control.step_frame_id;
186c406b
TT
735 exception_resume_breakpoint
736 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 737 command_interp = tp->control.command_interp;
e58b0e63
PA
738
739 /* For now, delete the parent's sr breakpoint, otherwise,
740 parent/child sr breakpoints are considered duplicates,
741 and the child version will not be installed. Remove
742 this when the breakpoints module becomes aware of
743 inferiors and address spaces. */
744 delete_step_resume_breakpoint (tp);
16c381f0
JK
745 tp->control.step_range_start = 0;
746 tp->control.step_range_end = 0;
747 tp->control.step_frame_id = null_frame_id;
186c406b 748 delete_exception_resume_breakpoint (tp);
17b2616c 749 tp->control.command_interp = NULL;
e58b0e63
PA
750 }
751
752 parent = inferior_ptid;
753 child = tp->pending_follow.value.related_pid;
754
d83ad864
DB
755 /* Set up inferior(s) as specified by the caller, and tell the
756 target to do whatever is necessary to follow either parent
757 or child. */
758 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
759 {
760 /* Target refused to follow, or there's some other reason
761 we shouldn't resume. */
762 should_resume = 0;
763 }
764 else
765 {
766 /* This pending follow fork event is now handled, one way
767 or another. The previous selected thread may be gone
768 from the lists by now, but if it is still around, need
769 to clear the pending follow request. */
e09875d4 770 tp = find_thread_ptid (parent);
e58b0e63
PA
771 if (tp)
772 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
773
774 /* This makes sure we don't try to apply the "Switched
775 over from WAIT_PID" logic above. */
776 nullify_last_target_wait_ptid ();
777
1777feb0 778 /* If we followed the child, switch to it... */
e58b0e63
PA
779 if (follow_child)
780 {
781 switch_to_thread (child);
782
783 /* ... and preserve the stepping state, in case the
784 user was stepping over the fork call. */
785 if (should_resume)
786 {
787 tp = inferior_thread ();
8358c15c
JK
788 tp->control.step_resume_breakpoint
789 = step_resume_breakpoint;
16c381f0
JK
790 tp->control.step_range_start = step_range_start;
791 tp->control.step_range_end = step_range_end;
792 tp->control.step_frame_id = step_frame_id;
186c406b
TT
793 tp->control.exception_resume_breakpoint
794 = exception_resume_breakpoint;
17b2616c 795 tp->control.command_interp = command_interp;
e58b0e63
PA
796 }
797 else
798 {
799 /* If we get here, it was because we're trying to
800 resume from a fork catchpoint, but, the user
801 has switched threads away from the thread that
802 forked. In that case, the resume command
803 issued is most likely not applicable to the
804 child, so just warn, and refuse to resume. */
3e43a32a
MS
805 warning (_("Not resuming: switched threads "
806 "before following fork child.\n"));
e58b0e63
PA
807 }
808
809 /* Reset breakpoints in the child as appropriate. */
810 follow_inferior_reset_breakpoints ();
811 }
812 else
813 switch_to_thread (parent);
814 }
815 }
816 break;
817 case TARGET_WAITKIND_SPURIOUS:
818 /* Nothing to follow. */
819 break;
820 default:
821 internal_error (__FILE__, __LINE__,
822 "Unexpected pending_follow.kind %d\n",
823 tp->pending_follow.kind);
824 break;
825 }
c906108c 826
e58b0e63 827 return should_resume;
c906108c
SS
828}
829
d83ad864 830static void
6604731b 831follow_inferior_reset_breakpoints (void)
c906108c 832{
4e1c45ea
PA
833 struct thread_info *tp = inferior_thread ();
834
6604731b
DJ
835 /* Was there a step_resume breakpoint? (There was if the user
836 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
837 thread number. Cloned step_resume breakpoints are disabled on
838 creation, so enable it here now that it is associated with the
839 correct thread.
6604731b
DJ
840
841 step_resumes are a form of bp that are made to be per-thread.
842 Since we created the step_resume bp when the parent process
843 was being debugged, and now are switching to the child process,
844 from the breakpoint package's viewpoint, that's a switch of
845 "threads". We must update the bp's notion of which thread
846 it is for, or it'll be ignored when it triggers. */
847
8358c15c 848 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
849 {
850 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
851 tp->control.step_resume_breakpoint->loc->enabled = 1;
852 }
6604731b 853
a1aa2221 854 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 855 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
856 {
857 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
858 tp->control.exception_resume_breakpoint->loc->enabled = 1;
859 }
186c406b 860
6604731b
DJ
861 /* Reinsert all breakpoints in the child. The user may have set
862 breakpoints after catching the fork, in which case those
863 were never set in the child, but only in the parent. This makes
864 sure the inserted breakpoints match the breakpoint list. */
865
866 breakpoint_re_set ();
867 insert_breakpoints ();
c906108c 868}
c906108c 869
6c95b8df
PA
870/* The child has exited or execed: resume threads of the parent the
871 user wanted to be executing. */
872
873static int
874proceed_after_vfork_done (struct thread_info *thread,
875 void *arg)
876{
877 int pid = * (int *) arg;
878
879 if (ptid_get_pid (thread->ptid) == pid
880 && is_running (thread->ptid)
881 && !is_executing (thread->ptid)
882 && !thread->stop_requested
a493e3e2 883 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
884 {
885 if (debug_infrun)
886 fprintf_unfiltered (gdb_stdlog,
887 "infrun: resuming vfork parent thread %s\n",
888 target_pid_to_str (thread->ptid));
889
890 switch_to_thread (thread->ptid);
70509625 891 clear_proceed_status (0);
64ce06e4 892 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
893 }
894
895 return 0;
896}
897
898/* Called whenever we notice an exec or exit event, to handle
899 detaching or resuming a vfork parent. */
900
901static void
902handle_vfork_child_exec_or_exit (int exec)
903{
904 struct inferior *inf = current_inferior ();
905
906 if (inf->vfork_parent)
907 {
908 int resume_parent = -1;
909
910 /* This exec or exit marks the end of the shared memory region
911 between the parent and the child. If the user wanted to
912 detach from the parent, now is the time. */
913
914 if (inf->vfork_parent->pending_detach)
915 {
916 struct thread_info *tp;
917 struct cleanup *old_chain;
918 struct program_space *pspace;
919 struct address_space *aspace;
920
1777feb0 921 /* follow-fork child, detach-on-fork on. */
6c95b8df 922
68c9da30
PA
923 inf->vfork_parent->pending_detach = 0;
924
f50f4e56
PA
925 if (!exec)
926 {
927 /* If we're handling a child exit, then inferior_ptid
928 points at the inferior's pid, not to a thread. */
929 old_chain = save_inferior_ptid ();
930 save_current_program_space ();
931 save_current_inferior ();
932 }
933 else
934 old_chain = save_current_space_and_thread ();
6c95b8df
PA
935
936 /* We're letting loose of the parent. */
937 tp = any_live_thread_of_process (inf->vfork_parent->pid);
938 switch_to_thread (tp->ptid);
939
940 /* We're about to detach from the parent, which implicitly
941 removes breakpoints from its address space. There's a
942 catch here: we want to reuse the spaces for the child,
943 but, parent/child are still sharing the pspace at this
944 point, although the exec in reality makes the kernel give
945 the child a fresh set of new pages. The problem here is
946 that the breakpoints module being unaware of this, would
947 likely chose the child process to write to the parent
948 address space. Swapping the child temporarily away from
949 the spaces has the desired effect. Yes, this is "sort
950 of" a hack. */
951
952 pspace = inf->pspace;
953 aspace = inf->aspace;
954 inf->aspace = NULL;
955 inf->pspace = NULL;
956
957 if (debug_infrun || info_verbose)
958 {
6f259a23 959 target_terminal_ours_for_output ();
6c95b8df
PA
960
961 if (exec)
6f259a23
DB
962 {
963 fprintf_filtered (gdb_stdlog,
964 _("Detaching vfork parent process "
965 "%d after child exec.\n"),
966 inf->vfork_parent->pid);
967 }
6c95b8df 968 else
6f259a23
DB
969 {
970 fprintf_filtered (gdb_stdlog,
971 _("Detaching vfork parent process "
972 "%d after child exit.\n"),
973 inf->vfork_parent->pid);
974 }
6c95b8df
PA
975 }
976
977 target_detach (NULL, 0);
978
979 /* Put it back. */
980 inf->pspace = pspace;
981 inf->aspace = aspace;
982
983 do_cleanups (old_chain);
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
989 inf->pspace = add_program_space (maybe_new_address_space ());
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
1001 struct cleanup *old_chain;
1002 struct program_space *pspace;
1003
1004 /* If this is a vfork child exiting, then the pspace and
1005 aspaces were shared with the parent. Since we're
1006 reporting the process exit, we'll be mourning all that is
1007 found in the address space, and switching to null_ptid,
1008 preparing to start a new inferior. But, since we don't
1009 want to clobber the parent's address/program spaces, we
1010 go ahead and create a new one for this exiting
1011 inferior. */
1012
1013 /* Switch to null_ptid, so that clone_program_space doesn't want
1014 to read the selected frame of a dead process. */
1015 old_chain = save_inferior_ptid ();
1016 inferior_ptid = null_ptid;
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
1023 pspace = add_program_space (maybe_new_address_space ());
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
7dcd53a0 1026 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
1031 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1032 inferior. */
6c95b8df
PA
1033 do_cleanups (old_chain);
1034
1035 resume_parent = inf->vfork_parent->pid;
1036 /* Break the bonds. */
1037 inf->vfork_parent->vfork_child = NULL;
1038 }
1039
1040 inf->vfork_parent = NULL;
1041
1042 gdb_assert (current_program_space == inf->pspace);
1043
1044 if (non_stop && resume_parent != -1)
1045 {
1046 /* If the user wanted the parent to be running, let it go
1047 free now. */
1048 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1049
1050 if (debug_infrun)
3e43a32a
MS
1051 fprintf_unfiltered (gdb_stdlog,
1052 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056
1057 do_cleanups (old_chain);
1058 }
1059 }
1060}
1061
eb6c553b 1062/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
40478521 1066static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
1777feb0 1081/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1082
c906108c 1083static void
95e50b27 1084follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1085{
95e50b27 1086 struct thread_info *th, *tmp;
6c95b8df 1087 struct inferior *inf = current_inferior ();
95e50b27 1088 int pid = ptid_get_pid (ptid);
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
8a06aea7 1132 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
6c95b8df
PA
1155 printf_unfiltered (_("%s is executing new program: %s\n"),
1156 target_pid_to_str (inferior_ptid),
1157 execd_pathname);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
c906108c 1162 gdb_flush (gdb_stdout);
6ca15a4b
PA
1163
1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
a3be80c3 1166 if (*gdb_sysroot != '\0')
e85a822c 1167 {
998d2a3e 1168 char *name = exec_file_find (execd_pathname, NULL);
ff862be4
GB
1169
1170 execd_pathname = alloca (strlen (name) + 1);
1171 strcpy (execd_pathname, name);
1172 xfree (name);
e85a822c 1173 }
c906108c 1174
cce9b6bf
PA
1175 /* Reset the shared library package. This ensures that we get a
1176 shlib event when the child reaches "_start", at which point the
1177 dld will have had a chance to initialize the child. */
1178 /* Also, loading a symbol file below may trigger symbol lookups, and
1179 we don't want those to be satisfied by the libraries of the
1180 previous incarnation of this process. */
1181 no_shared_libraries (NULL, 0);
1182
6c95b8df
PA
1183 if (follow_exec_mode_string == follow_exec_mode_new)
1184 {
1185 struct program_space *pspace;
6c95b8df
PA
1186
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
1190 inf = add_inferior (current_inferior ()->pid);
1191 pspace = add_program_space (maybe_new_address_space ());
1192 inf->pspace = pspace;
1193 inf->aspace = pspace->aspace;
1194
1195 exit_inferior_num_silent (current_inferior ()->num);
1196
1197 set_current_inferior (inf);
1198 set_current_program_space (pspace);
1199 }
9107fc8d
PA
1200 else
1201 {
1202 /* The old description may no longer be fit for the new image.
1203 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1204 old description; we'll read a new one below. No need to do
1205 this on "follow-exec-mode new", as the old inferior stays
1206 around (its description is later cleared/refetched on
1207 restart). */
1208 target_clear_description ();
1209 }
6c95b8df
PA
1210
1211 gdb_assert (current_program_space == inf->pspace);
1212
1777feb0 1213 /* That a.out is now the one to use. */
6c95b8df
PA
1214 exec_file_attach (execd_pathname, 0);
1215
c1e56572
JK
1216 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1217 (Position Independent Executable) main symbol file will get applied by
1218 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1219 the breakpoints with the zero displacement. */
1220
7dcd53a0
TT
1221 symbol_file_add (execd_pathname,
1222 (inf->symfile_flags
1223 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1224 NULL, 0);
1225
7dcd53a0
TT
1226 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1227 set_initial_language ();
c906108c 1228
9107fc8d
PA
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
268a4a75 1237 solib_create_inferior_hook (0);
c906108c 1238
4efc6507
DE
1239 jit_inferior_created_hook ();
1240
c1e56572
JK
1241 breakpoint_re_set ();
1242
c906108c
SS
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1777feb0 1245 to symbol_file_command...). */
c906108c
SS
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1777feb0 1251 matically get reset there in the new process.). */
c906108c
SS
1252}
1253
c2829269
PA
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
6c4cfb24
PA
1263/* Bit flags indicating what the thread needs to step over. */
1264
1265enum step_over_what
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275
963f9c80 1276/* Info about an instruction that is being stepped over. */
31e77af2
PA
1277
1278struct step_over_info
1279{
963f9c80
PA
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
31e77af2 1284 struct address_space *aspace;
31e77af2 1285 CORE_ADDR address;
963f9c80
PA
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
31e77af2
PA
1290};
1291
1292/* The step-over info of the location that is being stepped over.
1293
1294 Note that with async/breakpoint always-inserted mode, a user might
1295 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1296 being stepped over. As setting a new breakpoint inserts all
1297 breakpoints, we need to make sure the breakpoint being stepped over
1298 isn't inserted then. We do that by only clearing the step-over
1299 info when the step-over is actually finished (or aborted).
1300
1301 Presently GDB can only step over one breakpoint at any given time.
1302 Given threads that can't run code in the same address space as the
1303 breakpoint's can't really miss the breakpoint, GDB could be taught
1304 to step-over at most one breakpoint per address space (so this info
1305 could move to the address space object if/when GDB is extended).
1306 The set of breakpoints being stepped over will normally be much
1307 smaller than the set of all breakpoints, so a flag in the
1308 breakpoint location structure would be wasteful. A separate list
1309 also saves complexity and run-time, as otherwise we'd have to go
1310 through all breakpoint locations clearing their flag whenever we
1311 start a new sequence. Similar considerations weigh against storing
1312 this info in the thread object. Plus, not all step overs actually
1313 have breakpoint locations -- e.g., stepping past a single-step
1314 breakpoint, or stepping to complete a non-continuable
1315 watchpoint. */
1316static struct step_over_info step_over_info;
1317
1318/* Record the address of the breakpoint/instruction we're currently
1319 stepping over. */
1320
1321static void
963f9c80
PA
1322set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1323 int nonsteppable_watchpoint_p)
31e77af2
PA
1324{
1325 step_over_info.aspace = aspace;
1326 step_over_info.address = address;
963f9c80 1327 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1328}
1329
1330/* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333static void
1334clear_step_over_info (void)
1335{
372316f1
PA
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
31e77af2
PA
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1342}
1343
7f89fd65 1344/* See infrun.h. */
31e77af2
PA
1345
1346int
1347stepping_past_instruction_at (struct address_space *aspace,
1348 CORE_ADDR address)
1349{
1350 return (step_over_info.aspace != NULL
1351 && breakpoint_address_match (aspace, address,
1352 step_over_info.aspace,
1353 step_over_info.address));
1354}
1355
963f9c80
PA
1356/* See infrun.h. */
1357
1358int
1359stepping_past_nonsteppable_watchpoint (void)
1360{
1361 return step_over_info.nonsteppable_watchpoint_p;
1362}
1363
6cc83d2a
PA
1364/* Returns true if step-over info is valid. */
1365
1366static int
1367step_over_info_valid_p (void)
1368{
963f9c80
PA
1369 return (step_over_info.aspace != NULL
1370 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1371}
1372
c906108c 1373\f
237fc4c9
PA
1374/* Displaced stepping. */
1375
1376/* In non-stop debugging mode, we must take special care to manage
1377 breakpoints properly; in particular, the traditional strategy for
1378 stepping a thread past a breakpoint it has hit is unsuitable.
1379 'Displaced stepping' is a tactic for stepping one thread past a
1380 breakpoint it has hit while ensuring that other threads running
1381 concurrently will hit the breakpoint as they should.
1382
1383 The traditional way to step a thread T off a breakpoint in a
1384 multi-threaded program in all-stop mode is as follows:
1385
1386 a0) Initially, all threads are stopped, and breakpoints are not
1387 inserted.
1388 a1) We single-step T, leaving breakpoints uninserted.
1389 a2) We insert breakpoints, and resume all threads.
1390
1391 In non-stop debugging, however, this strategy is unsuitable: we
1392 don't want to have to stop all threads in the system in order to
1393 continue or step T past a breakpoint. Instead, we use displaced
1394 stepping:
1395
1396 n0) Initially, T is stopped, other threads are running, and
1397 breakpoints are inserted.
1398 n1) We copy the instruction "under" the breakpoint to a separate
1399 location, outside the main code stream, making any adjustments
1400 to the instruction, register, and memory state as directed by
1401 T's architecture.
1402 n2) We single-step T over the instruction at its new location.
1403 n3) We adjust the resulting register and memory state as directed
1404 by T's architecture. This includes resetting T's PC to point
1405 back into the main instruction stream.
1406 n4) We resume T.
1407
1408 This approach depends on the following gdbarch methods:
1409
1410 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1411 indicate where to copy the instruction, and how much space must
1412 be reserved there. We use these in step n1.
1413
1414 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1415 address, and makes any necessary adjustments to the instruction,
1416 register contents, and memory. We use this in step n1.
1417
1418 - gdbarch_displaced_step_fixup adjusts registers and memory after
1419 we have successfuly single-stepped the instruction, to yield the
1420 same effect the instruction would have had if we had executed it
1421 at its original address. We use this in step n3.
1422
1423 - gdbarch_displaced_step_free_closure provides cleanup.
1424
1425 The gdbarch_displaced_step_copy_insn and
1426 gdbarch_displaced_step_fixup functions must be written so that
1427 copying an instruction with gdbarch_displaced_step_copy_insn,
1428 single-stepping across the copied instruction, and then applying
1429 gdbarch_displaced_insn_fixup should have the same effects on the
1430 thread's memory and registers as stepping the instruction in place
1431 would have. Exactly which responsibilities fall to the copy and
1432 which fall to the fixup is up to the author of those functions.
1433
1434 See the comments in gdbarch.sh for details.
1435
1436 Note that displaced stepping and software single-step cannot
1437 currently be used in combination, although with some care I think
1438 they could be made to. Software single-step works by placing
1439 breakpoints on all possible subsequent instructions; if the
1440 displaced instruction is a PC-relative jump, those breakpoints
1441 could fall in very strange places --- on pages that aren't
1442 executable, or at addresses that are not proper instruction
1443 boundaries. (We do generally let other threads run while we wait
1444 to hit the software single-step breakpoint, and they might
1445 encounter such a corrupted instruction.) One way to work around
1446 this would be to have gdbarch_displaced_step_copy_insn fully
1447 simulate the effect of PC-relative instructions (and return NULL)
1448 on architectures that use software single-stepping.
1449
1450 In non-stop mode, we can have independent and simultaneous step
1451 requests, so more than one thread may need to simultaneously step
1452 over a breakpoint. The current implementation assumes there is
1453 only one scratch space per process. In this case, we have to
1454 serialize access to the scratch space. If thread A wants to step
1455 over a breakpoint, but we are currently waiting for some other
1456 thread to complete a displaced step, we leave thread A stopped and
1457 place it in the displaced_step_request_queue. Whenever a displaced
1458 step finishes, we pick the next thread in the queue and start a new
1459 displaced step operation on it. See displaced_step_prepare and
1460 displaced_step_fixup for details. */
1461
fc1cf338
PA
1462/* Per-inferior displaced stepping state. */
1463struct displaced_step_inferior_state
1464{
1465 /* Pointer to next in linked list. */
1466 struct displaced_step_inferior_state *next;
1467
1468 /* The process this displaced step state refers to. */
1469 int pid;
1470
3fc8eb30
PA
1471 /* True if preparing a displaced step ever failed. If so, we won't
1472 try displaced stepping for this inferior again. */
1473 int failed_before;
1474
fc1cf338
PA
1475 /* If this is not null_ptid, this is the thread carrying out a
1476 displaced single-step in process PID. This thread's state will
1477 require fixing up once it has completed its step. */
1478 ptid_t step_ptid;
1479
1480 /* The architecture the thread had when we stepped it. */
1481 struct gdbarch *step_gdbarch;
1482
1483 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1484 for post-step cleanup. */
1485 struct displaced_step_closure *step_closure;
1486
1487 /* The address of the original instruction, and the copy we
1488 made. */
1489 CORE_ADDR step_original, step_copy;
1490
1491 /* Saved contents of copy area. */
1492 gdb_byte *step_saved_copy;
1493};
1494
1495/* The list of states of processes involved in displaced stepping
1496 presently. */
1497static struct displaced_step_inferior_state *displaced_step_inferior_states;
1498
1499/* Get the displaced stepping state of process PID. */
1500
1501static struct displaced_step_inferior_state *
1502get_displaced_stepping_state (int pid)
1503{
1504 struct displaced_step_inferior_state *state;
1505
1506 for (state = displaced_step_inferior_states;
1507 state != NULL;
1508 state = state->next)
1509 if (state->pid == pid)
1510 return state;
1511
1512 return NULL;
1513}
1514
372316f1
PA
1515/* Returns true if any inferior has a thread doing a displaced
1516 step. */
1517
1518static int
1519displaced_step_in_progress_any_inferior (void)
1520{
1521 struct displaced_step_inferior_state *state;
1522
1523 for (state = displaced_step_inferior_states;
1524 state != NULL;
1525 state = state->next)
1526 if (!ptid_equal (state->step_ptid, null_ptid))
1527 return 1;
1528
1529 return 0;
1530}
1531
8f572e5c
PA
1532/* Return true if process PID has a thread doing a displaced step. */
1533
1534static int
1535displaced_step_in_progress (int pid)
1536{
1537 struct displaced_step_inferior_state *displaced;
1538
1539 displaced = get_displaced_stepping_state (pid);
1540 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1541 return 1;
1542
1543 return 0;
1544}
1545
fc1cf338
PA
1546/* Add a new displaced stepping state for process PID to the displaced
1547 stepping state list, or return a pointer to an already existing
1548 entry, if it already exists. Never returns NULL. */
1549
1550static struct displaced_step_inferior_state *
1551add_displaced_stepping_state (int pid)
1552{
1553 struct displaced_step_inferior_state *state;
1554
1555 for (state = displaced_step_inferior_states;
1556 state != NULL;
1557 state = state->next)
1558 if (state->pid == pid)
1559 return state;
237fc4c9 1560
fc1cf338
PA
1561 state = xcalloc (1, sizeof (*state));
1562 state->pid = pid;
1563 state->next = displaced_step_inferior_states;
1564 displaced_step_inferior_states = state;
237fc4c9 1565
fc1cf338
PA
1566 return state;
1567}
1568
a42244db
YQ
1569/* If inferior is in displaced stepping, and ADDR equals to starting address
1570 of copy area, return corresponding displaced_step_closure. Otherwise,
1571 return NULL. */
1572
1573struct displaced_step_closure*
1574get_displaced_step_closure_by_addr (CORE_ADDR addr)
1575{
1576 struct displaced_step_inferior_state *displaced
1577 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1578
1579 /* If checking the mode of displaced instruction in copy area. */
1580 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1581 && (displaced->step_copy == addr))
1582 return displaced->step_closure;
1583
1584 return NULL;
1585}
1586
fc1cf338 1587/* Remove the displaced stepping state of process PID. */
237fc4c9 1588
fc1cf338
PA
1589static void
1590remove_displaced_stepping_state (int pid)
1591{
1592 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1593
fc1cf338
PA
1594 gdb_assert (pid != 0);
1595
1596 it = displaced_step_inferior_states;
1597 prev_next_p = &displaced_step_inferior_states;
1598 while (it)
1599 {
1600 if (it->pid == pid)
1601 {
1602 *prev_next_p = it->next;
1603 xfree (it);
1604 return;
1605 }
1606
1607 prev_next_p = &it->next;
1608 it = *prev_next_p;
1609 }
1610}
1611
1612static void
1613infrun_inferior_exit (struct inferior *inf)
1614{
1615 remove_displaced_stepping_state (inf->pid);
1616}
237fc4c9 1617
fff08868
HZ
1618/* If ON, and the architecture supports it, GDB will use displaced
1619 stepping to step over breakpoints. If OFF, or if the architecture
1620 doesn't support it, GDB will instead use the traditional
1621 hold-and-step approach. If AUTO (which is the default), GDB will
1622 decide which technique to use to step over breakpoints depending on
1623 which of all-stop or non-stop mode is active --- displaced stepping
1624 in non-stop mode; hold-and-step in all-stop mode. */
1625
72d0e2c5 1626static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1627
237fc4c9
PA
1628static void
1629show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1630 struct cmd_list_element *c,
1631 const char *value)
1632{
72d0e2c5 1633 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1634 fprintf_filtered (file,
1635 _("Debugger's willingness to use displaced stepping "
1636 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1637 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1638 else
3e43a32a
MS
1639 fprintf_filtered (file,
1640 _("Debugger's willingness to use displaced stepping "
1641 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1642}
1643
fff08868 1644/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1645 over breakpoints of thread TP. */
fff08868 1646
237fc4c9 1647static int
3fc8eb30 1648use_displaced_stepping (struct thread_info *tp)
237fc4c9 1649{
3fc8eb30
PA
1650 struct regcache *regcache = get_thread_regcache (tp->ptid);
1651 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1652 struct displaced_step_inferior_state *displaced_state;
1653
1654 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1655
fbea99ea
PA
1656 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1657 && target_is_non_stop_p ())
72d0e2c5 1658 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1659 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1660 && find_record_target () == NULL
1661 && (displaced_state == NULL
1662 || !displaced_state->failed_before));
237fc4c9
PA
1663}
1664
1665/* Clean out any stray displaced stepping state. */
1666static void
fc1cf338 1667displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1668{
1669 /* Indicate that there is no cleanup pending. */
fc1cf338 1670 displaced->step_ptid = null_ptid;
237fc4c9 1671
fc1cf338 1672 if (displaced->step_closure)
237fc4c9 1673 {
fc1cf338
PA
1674 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1675 displaced->step_closure);
1676 displaced->step_closure = NULL;
237fc4c9
PA
1677 }
1678}
1679
1680static void
fc1cf338 1681displaced_step_clear_cleanup (void *arg)
237fc4c9 1682{
fc1cf338
PA
1683 struct displaced_step_inferior_state *state = arg;
1684
1685 displaced_step_clear (state);
237fc4c9
PA
1686}
1687
1688/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1689void
1690displaced_step_dump_bytes (struct ui_file *file,
1691 const gdb_byte *buf,
1692 size_t len)
1693{
1694 int i;
1695
1696 for (i = 0; i < len; i++)
1697 fprintf_unfiltered (file, "%02x ", buf[i]);
1698 fputs_unfiltered ("\n", file);
1699}
1700
1701/* Prepare to single-step, using displaced stepping.
1702
1703 Note that we cannot use displaced stepping when we have a signal to
1704 deliver. If we have a signal to deliver and an instruction to step
1705 over, then after the step, there will be no indication from the
1706 target whether the thread entered a signal handler or ignored the
1707 signal and stepped over the instruction successfully --- both cases
1708 result in a simple SIGTRAP. In the first case we mustn't do a
1709 fixup, and in the second case we must --- but we can't tell which.
1710 Comments in the code for 'random signals' in handle_inferior_event
1711 explain how we handle this case instead.
1712
1713 Returns 1 if preparing was successful -- this thread is going to be
1714 stepped now; or 0 if displaced stepping this thread got queued. */
1715static int
3fc8eb30 1716displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1717{
ad53cd71 1718 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1719 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1720 struct regcache *regcache = get_thread_regcache (ptid);
1721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1722 CORE_ADDR original, copy;
1723 ULONGEST len;
1724 struct displaced_step_closure *closure;
fc1cf338 1725 struct displaced_step_inferior_state *displaced;
9e529e1d 1726 int status;
237fc4c9
PA
1727
1728 /* We should never reach this function if the architecture does not
1729 support displaced stepping. */
1730 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1731
c2829269
PA
1732 /* Nor if the thread isn't meant to step over a breakpoint. */
1733 gdb_assert (tp->control.trap_expected);
1734
c1e36e3e
PA
1735 /* Disable range stepping while executing in the scratch pad. We
1736 want a single-step even if executing the displaced instruction in
1737 the scratch buffer lands within the stepping range (e.g., a
1738 jump/branch). */
1739 tp->control.may_range_step = 0;
1740
fc1cf338
PA
1741 /* We have to displaced step one thread at a time, as we only have
1742 access to a single scratch space per inferior. */
237fc4c9 1743
fc1cf338
PA
1744 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1745
1746 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1747 {
1748 /* Already waiting for a displaced step to finish. Defer this
1749 request and place in queue. */
237fc4c9
PA
1750
1751 if (debug_displaced)
1752 fprintf_unfiltered (gdb_stdlog,
c2829269 1753 "displaced: deferring step of %s\n",
237fc4c9
PA
1754 target_pid_to_str (ptid));
1755
c2829269 1756 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1757 return 0;
1758 }
1759 else
1760 {
1761 if (debug_displaced)
1762 fprintf_unfiltered (gdb_stdlog,
1763 "displaced: stepping %s now\n",
1764 target_pid_to_str (ptid));
1765 }
1766
fc1cf338 1767 displaced_step_clear (displaced);
237fc4c9 1768
ad53cd71
PA
1769 old_cleanups = save_inferior_ptid ();
1770 inferior_ptid = ptid;
1771
515630c5 1772 original = regcache_read_pc (regcache);
237fc4c9
PA
1773
1774 copy = gdbarch_displaced_step_location (gdbarch);
1775 len = gdbarch_max_insn_length (gdbarch);
1776
1777 /* Save the original contents of the copy area. */
fc1cf338 1778 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1779 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1780 &displaced->step_saved_copy);
9e529e1d
JK
1781 status = target_read_memory (copy, displaced->step_saved_copy, len);
1782 if (status != 0)
1783 throw_error (MEMORY_ERROR,
1784 _("Error accessing memory address %s (%s) for "
1785 "displaced-stepping scratch space."),
1786 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1787 if (debug_displaced)
1788 {
5af949e3
UW
1789 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1790 paddress (gdbarch, copy));
fc1cf338
PA
1791 displaced_step_dump_bytes (gdb_stdlog,
1792 displaced->step_saved_copy,
1793 len);
237fc4c9
PA
1794 };
1795
1796 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1797 original, copy, regcache);
237fc4c9
PA
1798
1799 /* We don't support the fully-simulated case at present. */
1800 gdb_assert (closure);
1801
9f5a595d
UW
1802 /* Save the information we need to fix things up if the step
1803 succeeds. */
fc1cf338
PA
1804 displaced->step_ptid = ptid;
1805 displaced->step_gdbarch = gdbarch;
1806 displaced->step_closure = closure;
1807 displaced->step_original = original;
1808 displaced->step_copy = copy;
9f5a595d 1809
fc1cf338 1810 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1811
1812 /* Resume execution at the copy. */
515630c5 1813 regcache_write_pc (regcache, copy);
237fc4c9 1814
ad53cd71
PA
1815 discard_cleanups (ignore_cleanups);
1816
1817 do_cleanups (old_cleanups);
237fc4c9
PA
1818
1819 if (debug_displaced)
5af949e3
UW
1820 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1821 paddress (gdbarch, copy));
237fc4c9 1822
237fc4c9
PA
1823 return 1;
1824}
1825
3fc8eb30
PA
1826/* Wrapper for displaced_step_prepare_throw that disabled further
1827 attempts at displaced stepping if we get a memory error. */
1828
1829static int
1830displaced_step_prepare (ptid_t ptid)
1831{
1832 int prepared = -1;
1833
1834 TRY
1835 {
1836 prepared = displaced_step_prepare_throw (ptid);
1837 }
1838 CATCH (ex, RETURN_MASK_ERROR)
1839 {
1840 struct displaced_step_inferior_state *displaced_state;
1841
1842 if (ex.error != MEMORY_ERROR)
1843 throw_exception (ex);
1844
1845 if (debug_infrun)
1846 {
1847 fprintf_unfiltered (gdb_stdlog,
1848 "infrun: disabling displaced stepping: %s\n",
1849 ex.message);
1850 }
1851
1852 /* Be verbose if "set displaced-stepping" is "on", silent if
1853 "auto". */
1854 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1855 {
1856 warning (_("disabling displaced stepping: %s\n"),
1857 ex.message);
1858 }
1859
1860 /* Disable further displaced stepping attempts. */
1861 displaced_state
1862 = get_displaced_stepping_state (ptid_get_pid (ptid));
1863 displaced_state->failed_before = 1;
1864 }
1865 END_CATCH
1866
1867 return prepared;
1868}
1869
237fc4c9 1870static void
3e43a32a
MS
1871write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1872 const gdb_byte *myaddr, int len)
237fc4c9
PA
1873{
1874 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1875
237fc4c9
PA
1876 inferior_ptid = ptid;
1877 write_memory (memaddr, myaddr, len);
1878 do_cleanups (ptid_cleanup);
1879}
1880
e2d96639
YQ
1881/* Restore the contents of the copy area for thread PTID. */
1882
1883static void
1884displaced_step_restore (struct displaced_step_inferior_state *displaced,
1885 ptid_t ptid)
1886{
1887 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1888
1889 write_memory_ptid (ptid, displaced->step_copy,
1890 displaced->step_saved_copy, len);
1891 if (debug_displaced)
1892 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1893 target_pid_to_str (ptid),
1894 paddress (displaced->step_gdbarch,
1895 displaced->step_copy));
1896}
1897
372316f1
PA
1898/* If we displaced stepped an instruction successfully, adjust
1899 registers and memory to yield the same effect the instruction would
1900 have had if we had executed it at its original address, and return
1901 1. If the instruction didn't complete, relocate the PC and return
1902 -1. If the thread wasn't displaced stepping, return 0. */
1903
1904static int
2ea28649 1905displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1906{
1907 struct cleanup *old_cleanups;
fc1cf338
PA
1908 struct displaced_step_inferior_state *displaced
1909 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1910 int ret;
fc1cf338
PA
1911
1912 /* Was any thread of this process doing a displaced step? */
1913 if (displaced == NULL)
372316f1 1914 return 0;
237fc4c9
PA
1915
1916 /* Was this event for the pid we displaced? */
fc1cf338
PA
1917 if (ptid_equal (displaced->step_ptid, null_ptid)
1918 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1919 return 0;
237fc4c9 1920
fc1cf338 1921 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1922
e2d96639 1923 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1924
cb71640d
PA
1925 /* Fixup may need to read memory/registers. Switch to the thread
1926 that we're fixing up. Also, target_stopped_by_watchpoint checks
1927 the current thread. */
1928 switch_to_thread (event_ptid);
1929
237fc4c9 1930 /* Did the instruction complete successfully? */
cb71640d
PA
1931 if (signal == GDB_SIGNAL_TRAP
1932 && !(target_stopped_by_watchpoint ()
1933 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1934 || target_have_steppable_watchpoint)))
237fc4c9
PA
1935 {
1936 /* Fix up the resulting state. */
fc1cf338
PA
1937 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1938 displaced->step_closure,
1939 displaced->step_original,
1940 displaced->step_copy,
1941 get_thread_regcache (displaced->step_ptid));
372316f1 1942 ret = 1;
237fc4c9
PA
1943 }
1944 else
1945 {
1946 /* Since the instruction didn't complete, all we can do is
1947 relocate the PC. */
515630c5
UW
1948 struct regcache *regcache = get_thread_regcache (event_ptid);
1949 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1950
fc1cf338 1951 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1952 regcache_write_pc (regcache, pc);
372316f1 1953 ret = -1;
237fc4c9
PA
1954 }
1955
1956 do_cleanups (old_cleanups);
1957
fc1cf338 1958 displaced->step_ptid = null_ptid;
372316f1
PA
1959
1960 return ret;
c2829269 1961}
1c5cfe86 1962
4d9d9d04
PA
1963/* Data to be passed around while handling an event. This data is
1964 discarded between events. */
1965struct execution_control_state
1966{
1967 ptid_t ptid;
1968 /* The thread that got the event, if this was a thread event; NULL
1969 otherwise. */
1970 struct thread_info *event_thread;
1971
1972 struct target_waitstatus ws;
1973 int stop_func_filled_in;
1974 CORE_ADDR stop_func_start;
1975 CORE_ADDR stop_func_end;
1976 const char *stop_func_name;
1977 int wait_some_more;
1978
1979 /* True if the event thread hit the single-step breakpoint of
1980 another thread. Thus the event doesn't cause a stop, the thread
1981 needs to be single-stepped past the single-step breakpoint before
1982 we can switch back to the original stepping thread. */
1983 int hit_singlestep_breakpoint;
1984};
1985
1986/* Clear ECS and set it to point at TP. */
c2829269
PA
1987
1988static void
4d9d9d04
PA
1989reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1990{
1991 memset (ecs, 0, sizeof (*ecs));
1992 ecs->event_thread = tp;
1993 ecs->ptid = tp->ptid;
1994}
1995
1996static void keep_going_pass_signal (struct execution_control_state *ecs);
1997static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1998static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 1999static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2000static void stop_all_threads (void);
4d9d9d04
PA
2001
2002/* Are there any pending step-over requests? If so, run all we can
2003 now and return true. Otherwise, return false. */
2004
2005static int
c2829269
PA
2006start_step_over (void)
2007{
2008 struct thread_info *tp, *next;
2009
372316f1
PA
2010 /* Don't start a new step-over if we already have an in-line
2011 step-over operation ongoing. */
2012 if (step_over_info_valid_p ())
2013 return 0;
2014
c2829269 2015 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2016 {
4d9d9d04
PA
2017 struct execution_control_state ecss;
2018 struct execution_control_state *ecs = &ecss;
372316f1
PA
2019 enum step_over_what step_what;
2020 int must_be_in_line;
c2829269
PA
2021
2022 next = thread_step_over_chain_next (tp);
237fc4c9 2023
c2829269
PA
2024 /* If this inferior already has a displaced step in process,
2025 don't start a new one. */
4d9d9d04 2026 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2027 continue;
2028
372316f1
PA
2029 step_what = thread_still_needs_step_over (tp);
2030 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2031 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2032 && !use_displaced_stepping (tp)));
372316f1
PA
2033
2034 /* We currently stop all threads of all processes to step-over
2035 in-line. If we need to start a new in-line step-over, let
2036 any pending displaced steps finish first. */
2037 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2038 return 0;
2039
c2829269
PA
2040 thread_step_over_chain_remove (tp);
2041
2042 if (step_over_queue_head == NULL)
2043 {
2044 if (debug_infrun)
2045 fprintf_unfiltered (gdb_stdlog,
2046 "infrun: step-over queue now empty\n");
2047 }
2048
372316f1
PA
2049 if (tp->control.trap_expected
2050 || tp->resumed
2051 || tp->executing)
ad53cd71 2052 {
4d9d9d04
PA
2053 internal_error (__FILE__, __LINE__,
2054 "[%s] has inconsistent state: "
372316f1 2055 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2056 target_pid_to_str (tp->ptid),
2057 tp->control.trap_expected,
372316f1 2058 tp->resumed,
4d9d9d04 2059 tp->executing);
ad53cd71 2060 }
1c5cfe86 2061
4d9d9d04
PA
2062 if (debug_infrun)
2063 fprintf_unfiltered (gdb_stdlog,
2064 "infrun: resuming [%s] for step-over\n",
2065 target_pid_to_str (tp->ptid));
2066
2067 /* keep_going_pass_signal skips the step-over if the breakpoint
2068 is no longer inserted. In all-stop, we want to keep looking
2069 for a thread that needs a step-over instead of resuming TP,
2070 because we wouldn't be able to resume anything else until the
2071 target stops again. In non-stop, the resume always resumes
2072 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2073 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2074 continue;
8550d3b3 2075
4d9d9d04
PA
2076 switch_to_thread (tp->ptid);
2077 reset_ecs (ecs, tp);
2078 keep_going_pass_signal (ecs);
1c5cfe86 2079
4d9d9d04
PA
2080 if (!ecs->wait_some_more)
2081 error (_("Command aborted."));
1c5cfe86 2082
372316f1
PA
2083 gdb_assert (tp->resumed);
2084
2085 /* If we started a new in-line step-over, we're done. */
2086 if (step_over_info_valid_p ())
2087 {
2088 gdb_assert (tp->control.trap_expected);
2089 return 1;
2090 }
2091
fbea99ea 2092 if (!target_is_non_stop_p ())
4d9d9d04
PA
2093 {
2094 /* On all-stop, shouldn't have resumed unless we needed a
2095 step over. */
2096 gdb_assert (tp->control.trap_expected
2097 || tp->step_after_step_resume_breakpoint);
2098
2099 /* With remote targets (at least), in all-stop, we can't
2100 issue any further remote commands until the program stops
2101 again. */
2102 return 1;
1c5cfe86 2103 }
c2829269 2104
4d9d9d04
PA
2105 /* Either the thread no longer needed a step-over, or a new
2106 displaced stepping sequence started. Even in the latter
2107 case, continue looking. Maybe we can also start another
2108 displaced step on a thread of other process. */
237fc4c9 2109 }
4d9d9d04
PA
2110
2111 return 0;
237fc4c9
PA
2112}
2113
5231c1fd
PA
2114/* Update global variables holding ptids to hold NEW_PTID if they were
2115 holding OLD_PTID. */
2116static void
2117infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2118{
2119 struct displaced_step_request *it;
fc1cf338 2120 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2121
2122 if (ptid_equal (inferior_ptid, old_ptid))
2123 inferior_ptid = new_ptid;
2124
fc1cf338
PA
2125 for (displaced = displaced_step_inferior_states;
2126 displaced;
2127 displaced = displaced->next)
2128 {
2129 if (ptid_equal (displaced->step_ptid, old_ptid))
2130 displaced->step_ptid = new_ptid;
fc1cf338 2131 }
5231c1fd
PA
2132}
2133
237fc4c9
PA
2134\f
2135/* Resuming. */
c906108c
SS
2136
2137/* Things to clean up if we QUIT out of resume (). */
c906108c 2138static void
74b7792f 2139resume_cleanups (void *ignore)
c906108c 2140{
34b7e8a6
PA
2141 if (!ptid_equal (inferior_ptid, null_ptid))
2142 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2143
c906108c
SS
2144 normal_stop ();
2145}
2146
53904c9e
AC
2147static const char schedlock_off[] = "off";
2148static const char schedlock_on[] = "on";
2149static const char schedlock_step[] = "step";
40478521 2150static const char *const scheduler_enums[] = {
ef346e04
AC
2151 schedlock_off,
2152 schedlock_on,
2153 schedlock_step,
2154 NULL
2155};
920d2a44
AC
2156static const char *scheduler_mode = schedlock_off;
2157static void
2158show_scheduler_mode (struct ui_file *file, int from_tty,
2159 struct cmd_list_element *c, const char *value)
2160{
3e43a32a
MS
2161 fprintf_filtered (file,
2162 _("Mode for locking scheduler "
2163 "during execution is \"%s\".\n"),
920d2a44
AC
2164 value);
2165}
c906108c
SS
2166
2167static void
96baa820 2168set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2169{
eefe576e
AC
2170 if (!target_can_lock_scheduler)
2171 {
2172 scheduler_mode = schedlock_off;
2173 error (_("Target '%s' cannot support this command."), target_shortname);
2174 }
c906108c
SS
2175}
2176
d4db2f36
PA
2177/* True if execution commands resume all threads of all processes by
2178 default; otherwise, resume only threads of the current inferior
2179 process. */
2180int sched_multi = 0;
2181
2facfe5c
DD
2182/* Try to setup for software single stepping over the specified location.
2183 Return 1 if target_resume() should use hardware single step.
2184
2185 GDBARCH the current gdbarch.
2186 PC the location to step over. */
2187
2188static int
2189maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2190{
2191 int hw_step = 1;
2192
f02253f1
HZ
2193 if (execution_direction == EXEC_FORWARD
2194 && gdbarch_software_single_step_p (gdbarch)
99e40580 2195 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2196 {
99e40580 2197 hw_step = 0;
2facfe5c
DD
2198 }
2199 return hw_step;
2200}
c906108c 2201
f3263aa4
PA
2202/* See infrun.h. */
2203
09cee04b
PA
2204ptid_t
2205user_visible_resume_ptid (int step)
2206{
f3263aa4 2207 ptid_t resume_ptid;
09cee04b 2208
09cee04b
PA
2209 if (non_stop)
2210 {
2211 /* With non-stop mode on, threads are always handled
2212 individually. */
2213 resume_ptid = inferior_ptid;
2214 }
2215 else if ((scheduler_mode == schedlock_on)
03d46957 2216 || (scheduler_mode == schedlock_step && step))
09cee04b 2217 {
f3263aa4
PA
2218 /* User-settable 'scheduler' mode requires solo thread
2219 resume. */
09cee04b
PA
2220 resume_ptid = inferior_ptid;
2221 }
f3263aa4
PA
2222 else if (!sched_multi && target_supports_multi_process ())
2223 {
2224 /* Resume all threads of the current process (and none of other
2225 processes). */
2226 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2227 }
2228 else
2229 {
2230 /* Resume all threads of all processes. */
2231 resume_ptid = RESUME_ALL;
2232 }
09cee04b
PA
2233
2234 return resume_ptid;
2235}
2236
fbea99ea
PA
2237/* Return a ptid representing the set of threads that we will resume,
2238 in the perspective of the target, assuming run control handling
2239 does not require leaving some threads stopped (e.g., stepping past
2240 breakpoint). USER_STEP indicates whether we're about to start the
2241 target for a stepping command. */
2242
2243static ptid_t
2244internal_resume_ptid (int user_step)
2245{
2246 /* In non-stop, we always control threads individually. Note that
2247 the target may always work in non-stop mode even with "set
2248 non-stop off", in which case user_visible_resume_ptid could
2249 return a wildcard ptid. */
2250 if (target_is_non_stop_p ())
2251 return inferior_ptid;
2252 else
2253 return user_visible_resume_ptid (user_step);
2254}
2255
64ce06e4
PA
2256/* Wrapper for target_resume, that handles infrun-specific
2257 bookkeeping. */
2258
2259static void
2260do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2261{
2262 struct thread_info *tp = inferior_thread ();
2263
2264 /* Install inferior's terminal modes. */
2265 target_terminal_inferior ();
2266
2267 /* Avoid confusing the next resume, if the next stop/resume
2268 happens to apply to another thread. */
2269 tp->suspend.stop_signal = GDB_SIGNAL_0;
2270
8f572e5c
PA
2271 /* Advise target which signals may be handled silently.
2272
2273 If we have removed breakpoints because we are stepping over one
2274 in-line (in any thread), we need to receive all signals to avoid
2275 accidentally skipping a breakpoint during execution of a signal
2276 handler.
2277
2278 Likewise if we're displaced stepping, otherwise a trap for a
2279 breakpoint in a signal handler might be confused with the
2280 displaced step finishing. We don't make the displaced_step_fixup
2281 step distinguish the cases instead, because:
2282
2283 - a backtrace while stopped in the signal handler would show the
2284 scratch pad as frame older than the signal handler, instead of
2285 the real mainline code.
2286
2287 - when the thread is later resumed, the signal handler would
2288 return to the scratch pad area, which would no longer be
2289 valid. */
2290 if (step_over_info_valid_p ()
2291 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2292 target_pass_signals (0, NULL);
2293 else
2294 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2295
2296 target_resume (resume_ptid, step, sig);
2297}
2298
c906108c
SS
2299/* Resume the inferior, but allow a QUIT. This is useful if the user
2300 wants to interrupt some lengthy single-stepping operation
2301 (for child processes, the SIGINT goes to the inferior, and so
2302 we get a SIGINT random_signal, but for remote debugging and perhaps
2303 other targets, that's not true).
2304
c906108c
SS
2305 SIG is the signal to give the inferior (zero for none). */
2306void
64ce06e4 2307resume (enum gdb_signal sig)
c906108c 2308{
74b7792f 2309 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2310 struct regcache *regcache = get_current_regcache ();
2311 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2312 struct thread_info *tp = inferior_thread ();
515630c5 2313 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2314 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2315 ptid_t resume_ptid;
856e7dd6
PA
2316 /* This represents the user's step vs continue request. When
2317 deciding whether "set scheduler-locking step" applies, it's the
2318 user's intention that counts. */
2319 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2320 /* This represents what we'll actually request the target to do.
2321 This can decay from a step to a continue, if e.g., we need to
2322 implement single-stepping with breakpoints (software
2323 single-step). */
6b403daa 2324 int step;
c7e8a53c 2325
c2829269
PA
2326 gdb_assert (!thread_is_in_step_over_chain (tp));
2327
c906108c
SS
2328 QUIT;
2329
372316f1
PA
2330 if (tp->suspend.waitstatus_pending_p)
2331 {
2332 if (debug_infrun)
2333 {
2334 char *statstr;
2335
2336 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2337 fprintf_unfiltered (gdb_stdlog,
2338 "infrun: resume: thread %s has pending wait status %s "
2339 "(currently_stepping=%d).\n",
2340 target_pid_to_str (tp->ptid), statstr,
2341 currently_stepping (tp));
2342 xfree (statstr);
2343 }
2344
2345 tp->resumed = 1;
2346
2347 /* FIXME: What should we do if we are supposed to resume this
2348 thread with a signal? Maybe we should maintain a queue of
2349 pending signals to deliver. */
2350 if (sig != GDB_SIGNAL_0)
2351 {
2352 warning (_("Couldn't deliver signal %s to %s.\n"),
2353 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2354 }
2355
2356 tp->suspend.stop_signal = GDB_SIGNAL_0;
2357 discard_cleanups (old_cleanups);
2358
2359 if (target_can_async_p ())
2360 target_async (1);
2361 return;
2362 }
2363
2364 tp->stepped_breakpoint = 0;
2365
6b403daa
PA
2366 /* Depends on stepped_breakpoint. */
2367 step = currently_stepping (tp);
2368
74609e71
YQ
2369 if (current_inferior ()->waiting_for_vfork_done)
2370 {
48f9886d
PA
2371 /* Don't try to single-step a vfork parent that is waiting for
2372 the child to get out of the shared memory region (by exec'ing
2373 or exiting). This is particularly important on software
2374 single-step archs, as the child process would trip on the
2375 software single step breakpoint inserted for the parent
2376 process. Since the parent will not actually execute any
2377 instruction until the child is out of the shared region (such
2378 are vfork's semantics), it is safe to simply continue it.
2379 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2380 the parent, and tell it to `keep_going', which automatically
2381 re-sets it stepping. */
74609e71
YQ
2382 if (debug_infrun)
2383 fprintf_unfiltered (gdb_stdlog,
2384 "infrun: resume : clear step\n");
a09dd441 2385 step = 0;
74609e71
YQ
2386 }
2387
527159b7 2388 if (debug_infrun)
237fc4c9 2389 fprintf_unfiltered (gdb_stdlog,
c9737c08 2390 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2391 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2392 step, gdb_signal_to_symbol_string (sig),
2393 tp->control.trap_expected,
0d9a9a5f
PA
2394 target_pid_to_str (inferior_ptid),
2395 paddress (gdbarch, pc));
c906108c 2396
c2c6d25f
JM
2397 /* Normally, by the time we reach `resume', the breakpoints are either
2398 removed or inserted, as appropriate. The exception is if we're sitting
2399 at a permanent breakpoint; we need to step over it, but permanent
2400 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2401 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2402 {
af48d08f
PA
2403 if (sig != GDB_SIGNAL_0)
2404 {
2405 /* We have a signal to pass to the inferior. The resume
2406 may, or may not take us to the signal handler. If this
2407 is a step, we'll need to stop in the signal handler, if
2408 there's one, (if the target supports stepping into
2409 handlers), or in the next mainline instruction, if
2410 there's no handler. If this is a continue, we need to be
2411 sure to run the handler with all breakpoints inserted.
2412 In all cases, set a breakpoint at the current address
2413 (where the handler returns to), and once that breakpoint
2414 is hit, resume skipping the permanent breakpoint. If
2415 that breakpoint isn't hit, then we've stepped into the
2416 signal handler (or hit some other event). We'll delete
2417 the step-resume breakpoint then. */
2418
2419 if (debug_infrun)
2420 fprintf_unfiltered (gdb_stdlog,
2421 "infrun: resume: skipping permanent breakpoint, "
2422 "deliver signal first\n");
2423
2424 clear_step_over_info ();
2425 tp->control.trap_expected = 0;
2426
2427 if (tp->control.step_resume_breakpoint == NULL)
2428 {
2429 /* Set a "high-priority" step-resume, as we don't want
2430 user breakpoints at PC to trigger (again) when this
2431 hits. */
2432 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2433 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2434
2435 tp->step_after_step_resume_breakpoint = step;
2436 }
2437
2438 insert_breakpoints ();
2439 }
2440 else
2441 {
2442 /* There's no signal to pass, we can go ahead and skip the
2443 permanent breakpoint manually. */
2444 if (debug_infrun)
2445 fprintf_unfiltered (gdb_stdlog,
2446 "infrun: resume: skipping permanent breakpoint\n");
2447 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2448 /* Update pc to reflect the new address from which we will
2449 execute instructions. */
2450 pc = regcache_read_pc (regcache);
2451
2452 if (step)
2453 {
2454 /* We've already advanced the PC, so the stepping part
2455 is done. Now we need to arrange for a trap to be
2456 reported to handle_inferior_event. Set a breakpoint
2457 at the current PC, and run to it. Don't update
2458 prev_pc, because if we end in
44a1ee51
PA
2459 switch_back_to_stepped_thread, we want the "expected
2460 thread advanced also" branch to be taken. IOW, we
2461 don't want this thread to step further from PC
af48d08f 2462 (overstep). */
1ac806b8 2463 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2464 insert_single_step_breakpoint (gdbarch, aspace, pc);
2465 insert_breakpoints ();
2466
fbea99ea 2467 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2468 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2469 discard_cleanups (old_cleanups);
372316f1 2470 tp->resumed = 1;
af48d08f
PA
2471 return;
2472 }
2473 }
6d350bb5 2474 }
c2c6d25f 2475
c1e36e3e
PA
2476 /* If we have a breakpoint to step over, make sure to do a single
2477 step only. Same if we have software watchpoints. */
2478 if (tp->control.trap_expected || bpstat_should_step ())
2479 tp->control.may_range_step = 0;
2480
237fc4c9
PA
2481 /* If enabled, step over breakpoints by executing a copy of the
2482 instruction at a different address.
2483
2484 We can't use displaced stepping when we have a signal to deliver;
2485 the comments for displaced_step_prepare explain why. The
2486 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2487 signals' explain what we do instead.
2488
2489 We can't use displaced stepping when we are waiting for vfork_done
2490 event, displaced stepping breaks the vfork child similarly as single
2491 step software breakpoint. */
3fc8eb30
PA
2492 if (tp->control.trap_expected
2493 && use_displaced_stepping (tp)
cb71640d 2494 && !step_over_info_valid_p ()
a493e3e2 2495 && sig == GDB_SIGNAL_0
74609e71 2496 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2497 {
3fc8eb30 2498 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2499
3fc8eb30 2500 if (prepared == 0)
d56b7306 2501 {
4d9d9d04
PA
2502 if (debug_infrun)
2503 fprintf_unfiltered (gdb_stdlog,
2504 "Got placed in step-over queue\n");
2505
2506 tp->control.trap_expected = 0;
d56b7306
VP
2507 discard_cleanups (old_cleanups);
2508 return;
2509 }
3fc8eb30
PA
2510 else if (prepared < 0)
2511 {
2512 /* Fallback to stepping over the breakpoint in-line. */
2513
2514 if (target_is_non_stop_p ())
2515 stop_all_threads ();
2516
2517 set_step_over_info (get_regcache_aspace (regcache),
2518 regcache_read_pc (regcache), 0);
2519
2520 step = maybe_software_singlestep (gdbarch, pc);
2521
2522 insert_breakpoints ();
2523 }
2524 else if (prepared > 0)
2525 {
2526 struct displaced_step_inferior_state *displaced;
99e40580 2527
3fc8eb30
PA
2528 /* Update pc to reflect the new address from which we will
2529 execute instructions due to displaced stepping. */
2530 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2531
3fc8eb30
PA
2532 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2533 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2534 displaced->step_closure);
2535 }
237fc4c9
PA
2536 }
2537
2facfe5c 2538 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2539 else if (step)
2facfe5c 2540 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2541
30852783
UW
2542 /* Currently, our software single-step implementation leads to different
2543 results than hardware single-stepping in one situation: when stepping
2544 into delivering a signal which has an associated signal handler,
2545 hardware single-step will stop at the first instruction of the handler,
2546 while software single-step will simply skip execution of the handler.
2547
2548 For now, this difference in behavior is accepted since there is no
2549 easy way to actually implement single-stepping into a signal handler
2550 without kernel support.
2551
2552 However, there is one scenario where this difference leads to follow-on
2553 problems: if we're stepping off a breakpoint by removing all breakpoints
2554 and then single-stepping. In this case, the software single-step
2555 behavior means that even if there is a *breakpoint* in the signal
2556 handler, GDB still would not stop.
2557
2558 Fortunately, we can at least fix this particular issue. We detect
2559 here the case where we are about to deliver a signal while software
2560 single-stepping with breakpoints removed. In this situation, we
2561 revert the decisions to remove all breakpoints and insert single-
2562 step breakpoints, and instead we install a step-resume breakpoint
2563 at the current address, deliver the signal without stepping, and
2564 once we arrive back at the step-resume breakpoint, actually step
2565 over the breakpoint we originally wanted to step over. */
34b7e8a6 2566 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2567 && sig != GDB_SIGNAL_0
2568 && step_over_info_valid_p ())
30852783
UW
2569 {
2570 /* If we have nested signals or a pending signal is delivered
2571 immediately after a handler returns, might might already have
2572 a step-resume breakpoint set on the earlier handler. We cannot
2573 set another step-resume breakpoint; just continue on until the
2574 original breakpoint is hit. */
2575 if (tp->control.step_resume_breakpoint == NULL)
2576 {
2c03e5be 2577 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2578 tp->step_after_step_resume_breakpoint = 1;
2579 }
2580
34b7e8a6 2581 delete_single_step_breakpoints (tp);
30852783 2582
31e77af2 2583 clear_step_over_info ();
30852783 2584 tp->control.trap_expected = 0;
31e77af2
PA
2585
2586 insert_breakpoints ();
30852783
UW
2587 }
2588
b0f16a3e
SM
2589 /* If STEP is set, it's a request to use hardware stepping
2590 facilities. But in that case, we should never
2591 use singlestep breakpoint. */
34b7e8a6 2592 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2593
fbea99ea 2594 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2595 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2596 && tp->control.trap_expected)
2597 {
2598 /* We're allowing a thread to run past a breakpoint it has
2599 hit, by single-stepping the thread with the breakpoint
2600 removed. In which case, we need to single-step only this
2601 thread, and keep others stopped, as they can miss this
2602 breakpoint if allowed to run. */
2603 resume_ptid = inferior_ptid;
2604 }
fbea99ea
PA
2605 else
2606 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2607
7f5ef605
PA
2608 if (execution_direction != EXEC_REVERSE
2609 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2610 {
372316f1
PA
2611 /* There are two cases where we currently need to step a
2612 breakpoint instruction when we have a signal to deliver:
2613
2614 - See handle_signal_stop where we handle random signals that
2615 could take out us out of the stepping range. Normally, in
2616 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2617 signal handler with a breakpoint at PC, but there are cases
2618 where we should _always_ single-step, even if we have a
2619 step-resume breakpoint, like when a software watchpoint is
2620 set. Assuming single-stepping and delivering a signal at the
2621 same time would takes us to the signal handler, then we could
2622 have removed the breakpoint at PC to step over it. However,
2623 some hardware step targets (like e.g., Mac OS) can't step
2624 into signal handlers, and for those, we need to leave the
2625 breakpoint at PC inserted, as otherwise if the handler
2626 recurses and executes PC again, it'll miss the breakpoint.
2627 So we leave the breakpoint inserted anyway, but we need to
2628 record that we tried to step a breakpoint instruction, so
372316f1
PA
2629 that adjust_pc_after_break doesn't end up confused.
2630
2631 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2632 in one thread after another thread that was stepping had been
2633 momentarily paused for a step-over. When we re-resume the
2634 stepping thread, it may be resumed from that address with a
2635 breakpoint that hasn't trapped yet. Seen with
2636 gdb.threads/non-stop-fair-events.exp, on targets that don't
2637 do displaced stepping. */
2638
2639 if (debug_infrun)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "infrun: resume: [%s] stepped breakpoint\n",
2642 target_pid_to_str (tp->ptid));
7f5ef605
PA
2643
2644 tp->stepped_breakpoint = 1;
2645
b0f16a3e
SM
2646 /* Most targets can step a breakpoint instruction, thus
2647 executing it normally. But if this one cannot, just
2648 continue and we will hit it anyway. */
7f5ef605 2649 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2650 step = 0;
2651 }
ef5cf84e 2652
b0f16a3e 2653 if (debug_displaced
cb71640d 2654 && tp->control.trap_expected
3fc8eb30 2655 && use_displaced_stepping (tp)
cb71640d 2656 && !step_over_info_valid_p ())
b0f16a3e 2657 {
d9b67d9f 2658 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2659 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2660 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2661 gdb_byte buf[4];
2662
2663 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2664 paddress (resume_gdbarch, actual_pc));
2665 read_memory (actual_pc, buf, sizeof (buf));
2666 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2667 }
237fc4c9 2668
b0f16a3e
SM
2669 if (tp->control.may_range_step)
2670 {
2671 /* If we're resuming a thread with the PC out of the step
2672 range, then we're doing some nested/finer run control
2673 operation, like stepping the thread out of the dynamic
2674 linker or the displaced stepping scratch pad. We
2675 shouldn't have allowed a range step then. */
2676 gdb_assert (pc_in_thread_step_range (pc, tp));
2677 }
c1e36e3e 2678
64ce06e4 2679 do_target_resume (resume_ptid, step, sig);
372316f1 2680 tp->resumed = 1;
c906108c
SS
2681 discard_cleanups (old_cleanups);
2682}
2683\f
237fc4c9 2684/* Proceeding. */
c906108c
SS
2685
2686/* Clear out all variables saying what to do when inferior is continued.
2687 First do this, then set the ones you want, then call `proceed'. */
2688
a7212384
UW
2689static void
2690clear_proceed_status_thread (struct thread_info *tp)
c906108c 2691{
a7212384
UW
2692 if (debug_infrun)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "infrun: clear_proceed_status_thread (%s)\n",
2695 target_pid_to_str (tp->ptid));
d6b48e9c 2696
372316f1
PA
2697 /* If we're starting a new sequence, then the previous finished
2698 single-step is no longer relevant. */
2699 if (tp->suspend.waitstatus_pending_p)
2700 {
2701 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2702 {
2703 if (debug_infrun)
2704 fprintf_unfiltered (gdb_stdlog,
2705 "infrun: clear_proceed_status: pending "
2706 "event of %s was a finished step. "
2707 "Discarding.\n",
2708 target_pid_to_str (tp->ptid));
2709
2710 tp->suspend.waitstatus_pending_p = 0;
2711 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2712 }
2713 else if (debug_infrun)
2714 {
2715 char *statstr;
2716
2717 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2718 fprintf_unfiltered (gdb_stdlog,
2719 "infrun: clear_proceed_status_thread: thread %s "
2720 "has pending wait status %s "
2721 "(currently_stepping=%d).\n",
2722 target_pid_to_str (tp->ptid), statstr,
2723 currently_stepping (tp));
2724 xfree (statstr);
2725 }
2726 }
2727
70509625
PA
2728 /* If this signal should not be seen by program, give it zero.
2729 Used for debugging signals. */
2730 if (!signal_pass_state (tp->suspend.stop_signal))
2731 tp->suspend.stop_signal = GDB_SIGNAL_0;
2732
16c381f0
JK
2733 tp->control.trap_expected = 0;
2734 tp->control.step_range_start = 0;
2735 tp->control.step_range_end = 0;
c1e36e3e 2736 tp->control.may_range_step = 0;
16c381f0
JK
2737 tp->control.step_frame_id = null_frame_id;
2738 tp->control.step_stack_frame_id = null_frame_id;
2739 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2740 tp->control.step_start_function = NULL;
a7212384 2741 tp->stop_requested = 0;
4e1c45ea 2742
16c381f0 2743 tp->control.stop_step = 0;
32400beb 2744
16c381f0 2745 tp->control.proceed_to_finish = 0;
414c69f7 2746
17b2616c 2747 tp->control.command_interp = NULL;
856e7dd6 2748 tp->control.stepping_command = 0;
17b2616c 2749
a7212384 2750 /* Discard any remaining commands or status from previous stop. */
16c381f0 2751 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2752}
32400beb 2753
a7212384 2754void
70509625 2755clear_proceed_status (int step)
a7212384 2756{
6c95b8df
PA
2757 if (!non_stop)
2758 {
70509625
PA
2759 struct thread_info *tp;
2760 ptid_t resume_ptid;
2761
2762 resume_ptid = user_visible_resume_ptid (step);
2763
2764 /* In all-stop mode, delete the per-thread status of all threads
2765 we're about to resume, implicitly and explicitly. */
2766 ALL_NON_EXITED_THREADS (tp)
2767 {
2768 if (!ptid_match (tp->ptid, resume_ptid))
2769 continue;
2770 clear_proceed_status_thread (tp);
2771 }
6c95b8df
PA
2772 }
2773
a7212384
UW
2774 if (!ptid_equal (inferior_ptid, null_ptid))
2775 {
2776 struct inferior *inferior;
2777
2778 if (non_stop)
2779 {
6c95b8df
PA
2780 /* If in non-stop mode, only delete the per-thread status of
2781 the current thread. */
a7212384
UW
2782 clear_proceed_status_thread (inferior_thread ());
2783 }
6c95b8df 2784
d6b48e9c 2785 inferior = current_inferior ();
16c381f0 2786 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2787 }
2788
c906108c 2789 stop_after_trap = 0;
f3b1572e
PA
2790
2791 observer_notify_about_to_proceed ();
c906108c
SS
2792}
2793
99619bea
PA
2794/* Returns true if TP is still stopped at a breakpoint that needs
2795 stepping-over in order to make progress. If the breakpoint is gone
2796 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2797
2798static int
6c4cfb24 2799thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2800{
2801 if (tp->stepping_over_breakpoint)
2802 {
2803 struct regcache *regcache = get_thread_regcache (tp->ptid);
2804
2805 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2806 regcache_read_pc (regcache))
2807 == ordinary_breakpoint_here)
99619bea
PA
2808 return 1;
2809
2810 tp->stepping_over_breakpoint = 0;
2811 }
2812
2813 return 0;
2814}
2815
6c4cfb24
PA
2816/* Check whether thread TP still needs to start a step-over in order
2817 to make progress when resumed. Returns an bitwise or of enum
2818 step_over_what bits, indicating what needs to be stepped over. */
2819
2820static int
2821thread_still_needs_step_over (struct thread_info *tp)
2822{
2823 struct inferior *inf = find_inferior_ptid (tp->ptid);
2824 int what = 0;
2825
2826 if (thread_still_needs_step_over_bp (tp))
2827 what |= STEP_OVER_BREAKPOINT;
2828
2829 if (tp->stepping_over_watchpoint
2830 && !target_have_steppable_watchpoint)
2831 what |= STEP_OVER_WATCHPOINT;
2832
2833 return what;
2834}
2835
483805cf
PA
2836/* Returns true if scheduler locking applies. STEP indicates whether
2837 we're about to do a step/next-like command to a thread. */
2838
2839static int
856e7dd6 2840schedlock_applies (struct thread_info *tp)
483805cf
PA
2841{
2842 return (scheduler_mode == schedlock_on
2843 || (scheduler_mode == schedlock_step
856e7dd6 2844 && tp->control.stepping_command));
483805cf
PA
2845}
2846
c906108c
SS
2847/* Basic routine for continuing the program in various fashions.
2848
2849 ADDR is the address to resume at, or -1 for resume where stopped.
2850 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2851 or -1 for act according to how it stopped.
c906108c 2852 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2853 -1 means return after that and print nothing.
2854 You should probably set various step_... variables
2855 before calling here, if you are stepping.
c906108c
SS
2856
2857 You should call clear_proceed_status before calling proceed. */
2858
2859void
64ce06e4 2860proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2861{
e58b0e63
PA
2862 struct regcache *regcache;
2863 struct gdbarch *gdbarch;
4e1c45ea 2864 struct thread_info *tp;
e58b0e63 2865 CORE_ADDR pc;
6c95b8df 2866 struct address_space *aspace;
4d9d9d04
PA
2867 ptid_t resume_ptid;
2868 struct execution_control_state ecss;
2869 struct execution_control_state *ecs = &ecss;
2870 struct cleanup *old_chain;
2871 int started;
c906108c 2872
e58b0e63
PA
2873 /* If we're stopped at a fork/vfork, follow the branch set by the
2874 "set follow-fork-mode" command; otherwise, we'll just proceed
2875 resuming the current thread. */
2876 if (!follow_fork ())
2877 {
2878 /* The target for some reason decided not to resume. */
2879 normal_stop ();
f148b27e
PA
2880 if (target_can_async_p ())
2881 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2882 return;
2883 }
2884
842951eb
PA
2885 /* We'll update this if & when we switch to a new thread. */
2886 previous_inferior_ptid = inferior_ptid;
2887
e58b0e63
PA
2888 regcache = get_current_regcache ();
2889 gdbarch = get_regcache_arch (regcache);
6c95b8df 2890 aspace = get_regcache_aspace (regcache);
e58b0e63 2891 pc = regcache_read_pc (regcache);
2adfaa28 2892 tp = inferior_thread ();
e58b0e63 2893
99619bea
PA
2894 /* Fill in with reasonable starting values. */
2895 init_thread_stepping_state (tp);
2896
c2829269
PA
2897 gdb_assert (!thread_is_in_step_over_chain (tp));
2898
2acceee2 2899 if (addr == (CORE_ADDR) -1)
c906108c 2900 {
af48d08f
PA
2901 if (pc == stop_pc
2902 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2903 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2904 /* There is a breakpoint at the address we will resume at,
2905 step one instruction before inserting breakpoints so that
2906 we do not stop right away (and report a second hit at this
b2175913
MS
2907 breakpoint).
2908
2909 Note, we don't do this in reverse, because we won't
2910 actually be executing the breakpoint insn anyway.
2911 We'll be (un-)executing the previous instruction. */
99619bea 2912 tp->stepping_over_breakpoint = 1;
515630c5
UW
2913 else if (gdbarch_single_step_through_delay_p (gdbarch)
2914 && gdbarch_single_step_through_delay (gdbarch,
2915 get_current_frame ()))
3352ef37
AC
2916 /* We stepped onto an instruction that needs to be stepped
2917 again before re-inserting the breakpoint, do so. */
99619bea 2918 tp->stepping_over_breakpoint = 1;
c906108c
SS
2919 }
2920 else
2921 {
515630c5 2922 regcache_write_pc (regcache, addr);
c906108c
SS
2923 }
2924
70509625
PA
2925 if (siggnal != GDB_SIGNAL_DEFAULT)
2926 tp->suspend.stop_signal = siggnal;
2927
17b2616c
PA
2928 /* Record the interpreter that issued the execution command that
2929 caused this thread to resume. If the top level interpreter is
2930 MI/async, and the execution command was a CLI command
2931 (next/step/etc.), we'll want to print stop event output to the MI
2932 console channel (the stepped-to line, etc.), as if the user
2933 entered the execution command on a real GDB console. */
4d9d9d04
PA
2934 tp->control.command_interp = command_interp ();
2935
2936 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2937
2938 /* If an exception is thrown from this point on, make sure to
2939 propagate GDB's knowledge of the executing state to the
2940 frontend/user running state. */
2941 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2942
2943 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2944 threads (e.g., we might need to set threads stepping over
2945 breakpoints first), from the user/frontend's point of view, all
2946 threads in RESUME_PTID are now running. Unless we're calling an
2947 inferior function, as in that case we pretend the inferior
2948 doesn't run at all. */
2949 if (!tp->control.in_infcall)
2950 set_running (resume_ptid, 1);
17b2616c 2951
527159b7 2952 if (debug_infrun)
8a9de0e4 2953 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2954 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2955 paddress (gdbarch, addr),
64ce06e4 2956 gdb_signal_to_symbol_string (siggnal));
527159b7 2957
4d9d9d04
PA
2958 annotate_starting ();
2959
2960 /* Make sure that output from GDB appears before output from the
2961 inferior. */
2962 gdb_flush (gdb_stdout);
2963
2964 /* In a multi-threaded task we may select another thread and
2965 then continue or step.
2966
2967 But if a thread that we're resuming had stopped at a breakpoint,
2968 it will immediately cause another breakpoint stop without any
2969 execution (i.e. it will report a breakpoint hit incorrectly). So
2970 we must step over it first.
2971
2972 Look for threads other than the current (TP) that reported a
2973 breakpoint hit and haven't been resumed yet since. */
2974
2975 /* If scheduler locking applies, we can avoid iterating over all
2976 threads. */
2977 if (!non_stop && !schedlock_applies (tp))
94cc34af 2978 {
4d9d9d04
PA
2979 struct thread_info *current = tp;
2980
2981 ALL_NON_EXITED_THREADS (tp)
2982 {
2983 /* Ignore the current thread here. It's handled
2984 afterwards. */
2985 if (tp == current)
2986 continue;
99619bea 2987
4d9d9d04
PA
2988 /* Ignore threads of processes we're not resuming. */
2989 if (!ptid_match (tp->ptid, resume_ptid))
2990 continue;
c906108c 2991
4d9d9d04
PA
2992 if (!thread_still_needs_step_over (tp))
2993 continue;
2994
2995 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2996
99619bea
PA
2997 if (debug_infrun)
2998 fprintf_unfiltered (gdb_stdlog,
2999 "infrun: need to step-over [%s] first\n",
4d9d9d04 3000 target_pid_to_str (tp->ptid));
99619bea 3001
4d9d9d04 3002 thread_step_over_chain_enqueue (tp);
2adfaa28 3003 }
31e77af2 3004
4d9d9d04 3005 tp = current;
30852783
UW
3006 }
3007
4d9d9d04
PA
3008 /* Enqueue the current thread last, so that we move all other
3009 threads over their breakpoints first. */
3010 if (tp->stepping_over_breakpoint)
3011 thread_step_over_chain_enqueue (tp);
30852783 3012
4d9d9d04
PA
3013 /* If the thread isn't started, we'll still need to set its prev_pc,
3014 so that switch_back_to_stepped_thread knows the thread hasn't
3015 advanced. Must do this before resuming any thread, as in
3016 all-stop/remote, once we resume we can't send any other packet
3017 until the target stops again. */
3018 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3019
4d9d9d04 3020 started = start_step_over ();
c906108c 3021
4d9d9d04
PA
3022 if (step_over_info_valid_p ())
3023 {
3024 /* Either this thread started a new in-line step over, or some
3025 other thread was already doing one. In either case, don't
3026 resume anything else until the step-over is finished. */
3027 }
fbea99ea 3028 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3029 {
3030 /* A new displaced stepping sequence was started. In all-stop,
3031 we can't talk to the target anymore until it next stops. */
3032 }
fbea99ea
PA
3033 else if (!non_stop && target_is_non_stop_p ())
3034 {
3035 /* In all-stop, but the target is always in non-stop mode.
3036 Start all other threads that are implicitly resumed too. */
3037 ALL_NON_EXITED_THREADS (tp)
3038 {
3039 /* Ignore threads of processes we're not resuming. */
3040 if (!ptid_match (tp->ptid, resume_ptid))
3041 continue;
3042
3043 if (tp->resumed)
3044 {
3045 if (debug_infrun)
3046 fprintf_unfiltered (gdb_stdlog,
3047 "infrun: proceed: [%s] resumed\n",
3048 target_pid_to_str (tp->ptid));
3049 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3050 continue;
3051 }
3052
3053 if (thread_is_in_step_over_chain (tp))
3054 {
3055 if (debug_infrun)
3056 fprintf_unfiltered (gdb_stdlog,
3057 "infrun: proceed: [%s] needs step-over\n",
3058 target_pid_to_str (tp->ptid));
3059 continue;
3060 }
3061
3062 if (debug_infrun)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "infrun: proceed: resuming %s\n",
3065 target_pid_to_str (tp->ptid));
3066
3067 reset_ecs (ecs, tp);
3068 switch_to_thread (tp->ptid);
3069 keep_going_pass_signal (ecs);
3070 if (!ecs->wait_some_more)
3071 error ("Command aborted.");
3072 }
3073 }
372316f1 3074 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3075 {
3076 /* The thread wasn't started, and isn't queued, run it now. */
3077 reset_ecs (ecs, tp);
3078 switch_to_thread (tp->ptid);
3079 keep_going_pass_signal (ecs);
3080 if (!ecs->wait_some_more)
3081 error ("Command aborted.");
3082 }
c906108c 3083
4d9d9d04 3084 discard_cleanups (old_chain);
c906108c
SS
3085
3086 /* Wait for it to stop (if not standalone)
3087 and in any case decode why it stopped, and act accordingly. */
43ff13b4 3088 /* Do this only if we are not using the event loop, or if the target
1777feb0 3089 does not support asynchronous execution. */
362646f5 3090 if (!target_can_async_p ())
43ff13b4 3091 {
e4c8541f 3092 wait_for_inferior ();
43ff13b4
JM
3093 normal_stop ();
3094 }
c906108c 3095}
c906108c
SS
3096\f
3097
3098/* Start remote-debugging of a machine over a serial link. */
96baa820 3099
c906108c 3100void
8621d6a9 3101start_remote (int from_tty)
c906108c 3102{
d6b48e9c 3103 struct inferior *inferior;
d6b48e9c
PA
3104
3105 inferior = current_inferior ();
16c381f0 3106 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3107
1777feb0 3108 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3109 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3110 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3111 nothing is returned (instead of just blocking). Because of this,
3112 targets expecting an immediate response need to, internally, set
3113 things up so that the target_wait() is forced to eventually
1777feb0 3114 timeout. */
6426a772
JM
3115 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3116 differentiate to its caller what the state of the target is after
3117 the initial open has been performed. Here we're assuming that
3118 the target has stopped. It should be possible to eventually have
3119 target_open() return to the caller an indication that the target
3120 is currently running and GDB state should be set to the same as
1777feb0 3121 for an async run. */
e4c8541f 3122 wait_for_inferior ();
8621d6a9
DJ
3123
3124 /* Now that the inferior has stopped, do any bookkeeping like
3125 loading shared libraries. We want to do this before normal_stop,
3126 so that the displayed frame is up to date. */
3127 post_create_inferior (&current_target, from_tty);
3128
6426a772 3129 normal_stop ();
c906108c
SS
3130}
3131
3132/* Initialize static vars when a new inferior begins. */
3133
3134void
96baa820 3135init_wait_for_inferior (void)
c906108c
SS
3136{
3137 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3138
c906108c
SS
3139 breakpoint_init_inferior (inf_starting);
3140
70509625 3141 clear_proceed_status (0);
9f976b41 3142
ca005067 3143 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3144
842951eb 3145 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3146
edb3359d
DJ
3147 /* Discard any skipped inlined frames. */
3148 clear_inline_frame_state (minus_one_ptid);
c906108c 3149}
237fc4c9 3150
c906108c 3151\f
488f131b 3152
ec9499be 3153static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3154
568d6575
UW
3155static void handle_step_into_function (struct gdbarch *gdbarch,
3156 struct execution_control_state *ecs);
3157static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3158 struct execution_control_state *ecs);
4f5d7f63 3159static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3160static void check_exception_resume (struct execution_control_state *,
28106bc2 3161 struct frame_info *);
611c83ae 3162
bdc36728 3163static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3164static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3165static void keep_going (struct execution_control_state *ecs);
94c57d6a 3166static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3167static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3168
252fbfc8
PA
3169/* Callback for iterate over threads. If the thread is stopped, but
3170 the user/frontend doesn't know about that yet, go through
3171 normal_stop, as if the thread had just stopped now. ARG points at
3172 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3173 ptid_is_pid(PTID) is true, applies to all threads of the process
3174 pointed at by PTID. Otherwise, apply only to the thread pointed by
3175 PTID. */
3176
3177static int
3178infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3179{
3180 ptid_t ptid = * (ptid_t *) arg;
3181
3182 if ((ptid_equal (info->ptid, ptid)
3183 || ptid_equal (minus_one_ptid, ptid)
3184 || (ptid_is_pid (ptid)
3185 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3186 && is_running (info->ptid)
3187 && !is_executing (info->ptid))
3188 {
3189 struct cleanup *old_chain;
3190 struct execution_control_state ecss;
3191 struct execution_control_state *ecs = &ecss;
3192
3193 memset (ecs, 0, sizeof (*ecs));
3194
3195 old_chain = make_cleanup_restore_current_thread ();
3196
f15cb84a
YQ
3197 overlay_cache_invalid = 1;
3198 /* Flush target cache before starting to handle each event.
3199 Target was running and cache could be stale. This is just a
3200 heuristic. Running threads may modify target memory, but we
3201 don't get any event. */
3202 target_dcache_invalidate ();
3203
252fbfc8
PA
3204 /* Go through handle_inferior_event/normal_stop, so we always
3205 have consistent output as if the stop event had been
3206 reported. */
3207 ecs->ptid = info->ptid;
e09875d4 3208 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 3209 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3210 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3211
3212 handle_inferior_event (ecs);
3213
3214 if (!ecs->wait_some_more)
3215 {
3216 struct thread_info *tp;
3217
3218 normal_stop ();
3219
fa4cd53f 3220 /* Finish off the continuations. */
252fbfc8 3221 tp = inferior_thread ();
fa4cd53f
PA
3222 do_all_intermediate_continuations_thread (tp, 1);
3223 do_all_continuations_thread (tp, 1);
252fbfc8
PA
3224 }
3225
3226 do_cleanups (old_chain);
3227 }
3228
3229 return 0;
3230}
3231
3232/* This function is attached as a "thread_stop_requested" observer.
3233 Cleanup local state that assumed the PTID was to be resumed, and
3234 report the stop to the frontend. */
3235
2c0b251b 3236static void
252fbfc8
PA
3237infrun_thread_stop_requested (ptid_t ptid)
3238{
c2829269 3239 struct thread_info *tp;
252fbfc8 3240
c2829269
PA
3241 /* PTID was requested to stop. Remove matching threads from the
3242 step-over queue, so we don't try to resume them
3243 automatically. */
3244 ALL_NON_EXITED_THREADS (tp)
3245 if (ptid_match (tp->ptid, ptid))
3246 {
3247 if (thread_is_in_step_over_chain (tp))
3248 thread_step_over_chain_remove (tp);
3249 }
252fbfc8
PA
3250
3251 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3252}
3253
a07daef3
PA
3254static void
3255infrun_thread_thread_exit (struct thread_info *tp, int silent)
3256{
3257 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3258 nullify_last_target_wait_ptid ();
3259}
3260
0cbcdb96
PA
3261/* Delete the step resume, single-step and longjmp/exception resume
3262 breakpoints of TP. */
4e1c45ea 3263
0cbcdb96
PA
3264static void
3265delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3266{
0cbcdb96
PA
3267 delete_step_resume_breakpoint (tp);
3268 delete_exception_resume_breakpoint (tp);
34b7e8a6 3269 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3270}
3271
0cbcdb96
PA
3272/* If the target still has execution, call FUNC for each thread that
3273 just stopped. In all-stop, that's all the non-exited threads; in
3274 non-stop, that's the current thread, only. */
3275
3276typedef void (*for_each_just_stopped_thread_callback_func)
3277 (struct thread_info *tp);
4e1c45ea
PA
3278
3279static void
0cbcdb96 3280for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3281{
0cbcdb96 3282 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3283 return;
3284
fbea99ea 3285 if (target_is_non_stop_p ())
4e1c45ea 3286 {
0cbcdb96
PA
3287 /* If in non-stop mode, only the current thread stopped. */
3288 func (inferior_thread ());
4e1c45ea
PA
3289 }
3290 else
0cbcdb96
PA
3291 {
3292 struct thread_info *tp;
3293
3294 /* In all-stop mode, all threads have stopped. */
3295 ALL_NON_EXITED_THREADS (tp)
3296 {
3297 func (tp);
3298 }
3299 }
3300}
3301
3302/* Delete the step resume and longjmp/exception resume breakpoints of
3303 the threads that just stopped. */
3304
3305static void
3306delete_just_stopped_threads_infrun_breakpoints (void)
3307{
3308 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3309}
3310
3311/* Delete the single-step breakpoints of the threads that just
3312 stopped. */
7c16b83e 3313
34b7e8a6
PA
3314static void
3315delete_just_stopped_threads_single_step_breakpoints (void)
3316{
3317 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3318}
3319
1777feb0 3320/* A cleanup wrapper. */
4e1c45ea
PA
3321
3322static void
0cbcdb96 3323delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3324{
0cbcdb96 3325 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3326}
3327
223698f8
DE
3328/* Pretty print the results of target_wait, for debugging purposes. */
3329
3330static void
3331print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3332 const struct target_waitstatus *ws)
3333{
3334 char *status_string = target_waitstatus_to_string (ws);
3335 struct ui_file *tmp_stream = mem_fileopen ();
3336 char *text;
223698f8
DE
3337
3338 /* The text is split over several lines because it was getting too long.
3339 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3340 output as a unit; we want only one timestamp printed if debug_timestamp
3341 is set. */
3342
3343 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3344 "infrun: target_wait (%d.%ld.%ld",
3345 ptid_get_pid (waiton_ptid),
3346 ptid_get_lwp (waiton_ptid),
3347 ptid_get_tid (waiton_ptid));
dfd4cc63 3348 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3349 fprintf_unfiltered (tmp_stream,
3350 " [%s]", target_pid_to_str (waiton_ptid));
3351 fprintf_unfiltered (tmp_stream, ", status) =\n");
3352 fprintf_unfiltered (tmp_stream,
1176ecec 3353 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3354 ptid_get_pid (result_ptid),
1176ecec
PA
3355 ptid_get_lwp (result_ptid),
3356 ptid_get_tid (result_ptid),
dfd4cc63 3357 target_pid_to_str (result_ptid));
223698f8
DE
3358 fprintf_unfiltered (tmp_stream,
3359 "infrun: %s\n",
3360 status_string);
3361
759ef836 3362 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3363
3364 /* This uses %s in part to handle %'s in the text, but also to avoid
3365 a gcc error: the format attribute requires a string literal. */
3366 fprintf_unfiltered (gdb_stdlog, "%s", text);
3367
3368 xfree (status_string);
3369 xfree (text);
3370 ui_file_delete (tmp_stream);
3371}
3372
372316f1
PA
3373/* Select a thread at random, out of those which are resumed and have
3374 had events. */
3375
3376static struct thread_info *
3377random_pending_event_thread (ptid_t waiton_ptid)
3378{
3379 struct thread_info *event_tp;
3380 int num_events = 0;
3381 int random_selector;
3382
3383 /* First see how many events we have. Count only resumed threads
3384 that have an event pending. */
3385 ALL_NON_EXITED_THREADS (event_tp)
3386 if (ptid_match (event_tp->ptid, waiton_ptid)
3387 && event_tp->resumed
3388 && event_tp->suspend.waitstatus_pending_p)
3389 num_events++;
3390
3391 if (num_events == 0)
3392 return NULL;
3393
3394 /* Now randomly pick a thread out of those that have had events. */
3395 random_selector = (int)
3396 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3397
3398 if (debug_infrun && num_events > 1)
3399 fprintf_unfiltered (gdb_stdlog,
3400 "infrun: Found %d events, selecting #%d\n",
3401 num_events, random_selector);
3402
3403 /* Select the Nth thread that has had an event. */
3404 ALL_NON_EXITED_THREADS (event_tp)
3405 if (ptid_match (event_tp->ptid, waiton_ptid)
3406 && event_tp->resumed
3407 && event_tp->suspend.waitstatus_pending_p)
3408 if (random_selector-- == 0)
3409 break;
3410
3411 return event_tp;
3412}
3413
3414/* Wrapper for target_wait that first checks whether threads have
3415 pending statuses to report before actually asking the target for
3416 more events. */
3417
3418static ptid_t
3419do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3420{
3421 ptid_t event_ptid;
3422 struct thread_info *tp;
3423
3424 /* First check if there is a resumed thread with a wait status
3425 pending. */
3426 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3427 {
3428 tp = random_pending_event_thread (ptid);
3429 }
3430 else
3431 {
3432 if (debug_infrun)
3433 fprintf_unfiltered (gdb_stdlog,
3434 "infrun: Waiting for specific thread %s.\n",
3435 target_pid_to_str (ptid));
3436
3437 /* We have a specific thread to check. */
3438 tp = find_thread_ptid (ptid);
3439 gdb_assert (tp != NULL);
3440 if (!tp->suspend.waitstatus_pending_p)
3441 tp = NULL;
3442 }
3443
3444 if (tp != NULL
3445 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3446 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3447 {
3448 struct regcache *regcache = get_thread_regcache (tp->ptid);
3449 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3450 CORE_ADDR pc;
3451 int discard = 0;
3452
3453 pc = regcache_read_pc (regcache);
3454
3455 if (pc != tp->suspend.stop_pc)
3456 {
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "infrun: PC of %s changed. was=%s, now=%s\n",
3460 target_pid_to_str (tp->ptid),
3461 paddress (gdbarch, tp->prev_pc),
3462 paddress (gdbarch, pc));
3463 discard = 1;
3464 }
3465 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3466 {
3467 if (debug_infrun)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "infrun: previous breakpoint of %s, at %s gone\n",
3470 target_pid_to_str (tp->ptid),
3471 paddress (gdbarch, pc));
3472
3473 discard = 1;
3474 }
3475
3476 if (discard)
3477 {
3478 if (debug_infrun)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "infrun: pending event of %s cancelled.\n",
3481 target_pid_to_str (tp->ptid));
3482
3483 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3484 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3485 }
3486 }
3487
3488 if (tp != NULL)
3489 {
3490 if (debug_infrun)
3491 {
3492 char *statstr;
3493
3494 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3495 fprintf_unfiltered (gdb_stdlog,
3496 "infrun: Using pending wait status %s for %s.\n",
3497 statstr,
3498 target_pid_to_str (tp->ptid));
3499 xfree (statstr);
3500 }
3501
3502 /* Now that we've selected our final event LWP, un-adjust its PC
3503 if it was a software breakpoint (and the target doesn't
3504 always adjust the PC itself). */
3505 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3506 && !target_supports_stopped_by_sw_breakpoint ())
3507 {
3508 struct regcache *regcache;
3509 struct gdbarch *gdbarch;
3510 int decr_pc;
3511
3512 regcache = get_thread_regcache (tp->ptid);
3513 gdbarch = get_regcache_arch (regcache);
3514
3515 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3516 if (decr_pc != 0)
3517 {
3518 CORE_ADDR pc;
3519
3520 pc = regcache_read_pc (regcache);
3521 regcache_write_pc (regcache, pc + decr_pc);
3522 }
3523 }
3524
3525 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3526 *status = tp->suspend.waitstatus;
3527 tp->suspend.waitstatus_pending_p = 0;
3528
3529 /* Wake up the event loop again, until all pending events are
3530 processed. */
3531 if (target_is_async_p ())
3532 mark_async_event_handler (infrun_async_inferior_event_token);
3533 return tp->ptid;
3534 }
3535
3536 /* But if we don't find one, we'll have to wait. */
3537
3538 if (deprecated_target_wait_hook)
3539 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3540 else
3541 event_ptid = target_wait (ptid, status, options);
3542
3543 return event_ptid;
3544}
3545
24291992
PA
3546/* Prepare and stabilize the inferior for detaching it. E.g.,
3547 detaching while a thread is displaced stepping is a recipe for
3548 crashing it, as nothing would readjust the PC out of the scratch
3549 pad. */
3550
3551void
3552prepare_for_detach (void)
3553{
3554 struct inferior *inf = current_inferior ();
3555 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3556 struct cleanup *old_chain_1;
3557 struct displaced_step_inferior_state *displaced;
3558
3559 displaced = get_displaced_stepping_state (inf->pid);
3560
3561 /* Is any thread of this process displaced stepping? If not,
3562 there's nothing else to do. */
3563 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3564 return;
3565
3566 if (debug_infrun)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "displaced-stepping in-process while detaching");
3569
3570 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3571 inf->detaching = 1;
3572
3573 while (!ptid_equal (displaced->step_ptid, null_ptid))
3574 {
3575 struct cleanup *old_chain_2;
3576 struct execution_control_state ecss;
3577 struct execution_control_state *ecs;
3578
3579 ecs = &ecss;
3580 memset (ecs, 0, sizeof (*ecs));
3581
3582 overlay_cache_invalid = 1;
f15cb84a
YQ
3583 /* Flush target cache before starting to handle each event.
3584 Target was running and cache could be stale. This is just a
3585 heuristic. Running threads may modify target memory, but we
3586 don't get any event. */
3587 target_dcache_invalidate ();
24291992 3588
372316f1 3589 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3590
3591 if (debug_infrun)
3592 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3593
3594 /* If an error happens while handling the event, propagate GDB's
3595 knowledge of the executing state to the frontend/user running
3596 state. */
3e43a32a
MS
3597 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3598 &minus_one_ptid);
24291992
PA
3599
3600 /* Now figure out what to do with the result of the result. */
3601 handle_inferior_event (ecs);
3602
3603 /* No error, don't finish the state yet. */
3604 discard_cleanups (old_chain_2);
3605
3606 /* Breakpoints and watchpoints are not installed on the target
3607 at this point, and signals are passed directly to the
3608 inferior, so this must mean the process is gone. */
3609 if (!ecs->wait_some_more)
3610 {
3611 discard_cleanups (old_chain_1);
3612 error (_("Program exited while detaching"));
3613 }
3614 }
3615
3616 discard_cleanups (old_chain_1);
3617}
3618
cd0fc7c3 3619/* Wait for control to return from inferior to debugger.
ae123ec6 3620
cd0fc7c3
SS
3621 If inferior gets a signal, we may decide to start it up again
3622 instead of returning. That is why there is a loop in this function.
3623 When this function actually returns it means the inferior
3624 should be left stopped and GDB should read more commands. */
3625
3626void
e4c8541f 3627wait_for_inferior (void)
cd0fc7c3
SS
3628{
3629 struct cleanup *old_cleanups;
e6f5c25b 3630 struct cleanup *thread_state_chain;
c906108c 3631
527159b7 3632 if (debug_infrun)
ae123ec6 3633 fprintf_unfiltered
e4c8541f 3634 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3635
0cbcdb96
PA
3636 old_cleanups
3637 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3638 NULL);
cd0fc7c3 3639
e6f5c25b
PA
3640 /* If an error happens while handling the event, propagate GDB's
3641 knowledge of the executing state to the frontend/user running
3642 state. */
3643 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3644
c906108c
SS
3645 while (1)
3646 {
ae25568b
PA
3647 struct execution_control_state ecss;
3648 struct execution_control_state *ecs = &ecss;
963f9c80 3649 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3650
ae25568b
PA
3651 memset (ecs, 0, sizeof (*ecs));
3652
ec9499be 3653 overlay_cache_invalid = 1;
ec9499be 3654
f15cb84a
YQ
3655 /* Flush target cache before starting to handle each event.
3656 Target was running and cache could be stale. This is just a
3657 heuristic. Running threads may modify target memory, but we
3658 don't get any event. */
3659 target_dcache_invalidate ();
3660
372316f1 3661 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3662
f00150c9 3663 if (debug_infrun)
223698f8 3664 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3665
cd0fc7c3
SS
3666 /* Now figure out what to do with the result of the result. */
3667 handle_inferior_event (ecs);
c906108c 3668
cd0fc7c3
SS
3669 if (!ecs->wait_some_more)
3670 break;
3671 }
4e1c45ea 3672
e6f5c25b
PA
3673 /* No error, don't finish the state yet. */
3674 discard_cleanups (thread_state_chain);
3675
cd0fc7c3
SS
3676 do_cleanups (old_cleanups);
3677}
c906108c 3678
d3d4baed
PA
3679/* Cleanup that reinstalls the readline callback handler, if the
3680 target is running in the background. If while handling the target
3681 event something triggered a secondary prompt, like e.g., a
3682 pagination prompt, we'll have removed the callback handler (see
3683 gdb_readline_wrapper_line). Need to do this as we go back to the
3684 event loop, ready to process further input. Note this has no
3685 effect if the handler hasn't actually been removed, because calling
3686 rl_callback_handler_install resets the line buffer, thus losing
3687 input. */
3688
3689static void
3690reinstall_readline_callback_handler_cleanup (void *arg)
3691{
6c400b59
PA
3692 if (!interpreter_async)
3693 {
3694 /* We're not going back to the top level event loop yet. Don't
3695 install the readline callback, as it'd prep the terminal,
3696 readline-style (raw, noecho) (e.g., --batch). We'll install
3697 it the next time the prompt is displayed, when we're ready
3698 for input. */
3699 return;
3700 }
3701
d3d4baed
PA
3702 if (async_command_editing_p && !sync_execution)
3703 gdb_rl_callback_handler_reinstall ();
3704}
3705
1777feb0 3706/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3707 event loop whenever a change of state is detected on the file
1777feb0
MS
3708 descriptor corresponding to the target. It can be called more than
3709 once to complete a single execution command. In such cases we need
3710 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3711 that this function is called for a single execution command, then
3712 report to the user that the inferior has stopped, and do the
1777feb0 3713 necessary cleanups. */
43ff13b4
JM
3714
3715void
fba45db2 3716fetch_inferior_event (void *client_data)
43ff13b4 3717{
0d1e5fa7 3718 struct execution_control_state ecss;
a474d7c2 3719 struct execution_control_state *ecs = &ecss;
4f8d22e3 3720 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3721 struct cleanup *ts_old_chain;
4f8d22e3 3722 int was_sync = sync_execution;
0f641c01 3723 int cmd_done = 0;
963f9c80 3724 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3725
0d1e5fa7
PA
3726 memset (ecs, 0, sizeof (*ecs));
3727
d3d4baed
PA
3728 /* End up with readline processing input, if necessary. */
3729 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3730
c5187ac6
PA
3731 /* We're handling a live event, so make sure we're doing live
3732 debugging. If we're looking at traceframes while the target is
3733 running, we're going to need to get back to that mode after
3734 handling the event. */
3735 if (non_stop)
3736 {
3737 make_cleanup_restore_current_traceframe ();
e6e4e701 3738 set_current_traceframe (-1);
c5187ac6
PA
3739 }
3740
4f8d22e3
PA
3741 if (non_stop)
3742 /* In non-stop mode, the user/frontend should not notice a thread
3743 switch due to internal events. Make sure we reverse to the
3744 user selected thread and frame after handling the event and
3745 running any breakpoint commands. */
3746 make_cleanup_restore_current_thread ();
3747
ec9499be 3748 overlay_cache_invalid = 1;
f15cb84a
YQ
3749 /* Flush target cache before starting to handle each event. Target
3750 was running and cache could be stale. This is just a heuristic.
3751 Running threads may modify target memory, but we don't get any
3752 event. */
3753 target_dcache_invalidate ();
3dd5b83d 3754
32231432
PA
3755 make_cleanup_restore_integer (&execution_direction);
3756 execution_direction = target_execution_direction ();
3757
372316f1 3758 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3759
f00150c9 3760 if (debug_infrun)
223698f8 3761 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3762
29f49a6a
PA
3763 /* If an error happens while handling the event, propagate GDB's
3764 knowledge of the executing state to the frontend/user running
3765 state. */
fbea99ea 3766 if (!target_is_non_stop_p ())
29f49a6a
PA
3767 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3768 else
3769 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3770
353d1d73
JK
3771 /* Get executed before make_cleanup_restore_current_thread above to apply
3772 still for the thread which has thrown the exception. */
3773 make_bpstat_clear_actions_cleanup ();
3774
7c16b83e
PA
3775 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3776
43ff13b4 3777 /* Now figure out what to do with the result of the result. */
a474d7c2 3778 handle_inferior_event (ecs);
43ff13b4 3779
a474d7c2 3780 if (!ecs->wait_some_more)
43ff13b4 3781 {
c9657e70 3782 struct inferior *inf = find_inferior_ptid (ecs->ptid);
d6b48e9c 3783
0cbcdb96 3784 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3785
d6b48e9c 3786 /* We may not find an inferior if this was a process exit. */
16c381f0 3787 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3788 normal_stop ();
3789
af679fd0 3790 if (target_has_execution
0e5bf2a8 3791 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3792 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3793 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3794 && ecs->event_thread->step_multi
16c381f0 3795 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3796 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3797 else
0f641c01
PA
3798 {
3799 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3800 cmd_done = 1;
3801 }
43ff13b4 3802 }
4f8d22e3 3803
29f49a6a
PA
3804 /* No error, don't finish the thread states yet. */
3805 discard_cleanups (ts_old_chain);
3806
4f8d22e3
PA
3807 /* Revert thread and frame. */
3808 do_cleanups (old_chain);
3809
3810 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3811 restore the prompt (a synchronous execution command has finished,
3812 and we're ready for input). */
b4a14fd0 3813 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3814 observer_notify_sync_execution_done ();
0f641c01
PA
3815
3816 if (cmd_done
3817 && !was_sync
3818 && exec_done_display_p
3819 && (ptid_equal (inferior_ptid, null_ptid)
3820 || !is_running (inferior_ptid)))
3821 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3822}
3823
edb3359d
DJ
3824/* Record the frame and location we're currently stepping through. */
3825void
3826set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3827{
3828 struct thread_info *tp = inferior_thread ();
3829
16c381f0
JK
3830 tp->control.step_frame_id = get_frame_id (frame);
3831 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3832
3833 tp->current_symtab = sal.symtab;
3834 tp->current_line = sal.line;
3835}
3836
0d1e5fa7
PA
3837/* Clear context switchable stepping state. */
3838
3839void
4e1c45ea 3840init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3841{
7f5ef605 3842 tss->stepped_breakpoint = 0;
0d1e5fa7 3843 tss->stepping_over_breakpoint = 0;
963f9c80 3844 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3845 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3846}
3847
c32c64b7
DE
3848/* Set the cached copy of the last ptid/waitstatus. */
3849
3850static void
3851set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3852{
3853 target_last_wait_ptid = ptid;
3854 target_last_waitstatus = status;
3855}
3856
e02bc4cc 3857/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3858 target_wait()/deprecated_target_wait_hook(). The data is actually
3859 cached by handle_inferior_event(), which gets called immediately
3860 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3861
3862void
488f131b 3863get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3864{
39f77062 3865 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3866 *status = target_last_waitstatus;
3867}
3868
ac264b3b
MS
3869void
3870nullify_last_target_wait_ptid (void)
3871{
3872 target_last_wait_ptid = minus_one_ptid;
3873}
3874
dcf4fbde 3875/* Switch thread contexts. */
dd80620e
MS
3876
3877static void
0d1e5fa7 3878context_switch (ptid_t ptid)
dd80620e 3879{
4b51d87b 3880 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3881 {
3882 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3883 target_pid_to_str (inferior_ptid));
3884 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3885 target_pid_to_str (ptid));
fd48f117
DJ
3886 }
3887
0d1e5fa7 3888 switch_to_thread (ptid);
dd80620e
MS
3889}
3890
d8dd4d5f
PA
3891/* If the target can't tell whether we've hit breakpoints
3892 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3893 check whether that could have been caused by a breakpoint. If so,
3894 adjust the PC, per gdbarch_decr_pc_after_break. */
3895
4fa8626c 3896static void
d8dd4d5f
PA
3897adjust_pc_after_break (struct thread_info *thread,
3898 struct target_waitstatus *ws)
4fa8626c 3899{
24a73cce
UW
3900 struct regcache *regcache;
3901 struct gdbarch *gdbarch;
6c95b8df 3902 struct address_space *aspace;
118e6252 3903 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3904
4fa8626c
DJ
3905 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3906 we aren't, just return.
9709f61c
DJ
3907
3908 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3909 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3910 implemented by software breakpoints should be handled through the normal
3911 breakpoint layer.
8fb3e588 3912
4fa8626c
DJ
3913 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3914 different signals (SIGILL or SIGEMT for instance), but it is less
3915 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3916 gdbarch_decr_pc_after_break. I don't know any specific target that
3917 generates these signals at breakpoints (the code has been in GDB since at
3918 least 1992) so I can not guess how to handle them here.
8fb3e588 3919
e6cf7916
UW
3920 In earlier versions of GDB, a target with
3921 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3922 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3923 target with both of these set in GDB history, and it seems unlikely to be
3924 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3925
d8dd4d5f 3926 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3927 return;
3928
d8dd4d5f 3929 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3930 return;
3931
4058b839
PA
3932 /* In reverse execution, when a breakpoint is hit, the instruction
3933 under it has already been de-executed. The reported PC always
3934 points at the breakpoint address, so adjusting it further would
3935 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3936 architecture:
3937
3938 B1 0x08000000 : INSN1
3939 B2 0x08000001 : INSN2
3940 0x08000002 : INSN3
3941 PC -> 0x08000003 : INSN4
3942
3943 Say you're stopped at 0x08000003 as above. Reverse continuing
3944 from that point should hit B2 as below. Reading the PC when the
3945 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3946 been de-executed already.
3947
3948 B1 0x08000000 : INSN1
3949 B2 PC -> 0x08000001 : INSN2
3950 0x08000002 : INSN3
3951 0x08000003 : INSN4
3952
3953 We can't apply the same logic as for forward execution, because
3954 we would wrongly adjust the PC to 0x08000000, since there's a
3955 breakpoint at PC - 1. We'd then report a hit on B1, although
3956 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3957 behaviour. */
3958 if (execution_direction == EXEC_REVERSE)
3959 return;
3960
1cf4d951
PA
3961 /* If the target can tell whether the thread hit a SW breakpoint,
3962 trust it. Targets that can tell also adjust the PC
3963 themselves. */
3964 if (target_supports_stopped_by_sw_breakpoint ())
3965 return;
3966
3967 /* Note that relying on whether a breakpoint is planted in memory to
3968 determine this can fail. E.g,. the breakpoint could have been
3969 removed since. Or the thread could have been told to step an
3970 instruction the size of a breakpoint instruction, and only
3971 _after_ was a breakpoint inserted at its address. */
3972
24a73cce
UW
3973 /* If this target does not decrement the PC after breakpoints, then
3974 we have nothing to do. */
d8dd4d5f 3975 regcache = get_thread_regcache (thread->ptid);
24a73cce 3976 gdbarch = get_regcache_arch (regcache);
118e6252 3977
527a273a 3978 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3979 if (decr_pc == 0)
24a73cce
UW
3980 return;
3981
6c95b8df
PA
3982 aspace = get_regcache_aspace (regcache);
3983
8aad930b
AC
3984 /* Find the location where (if we've hit a breakpoint) the
3985 breakpoint would be. */
118e6252 3986 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3987
1cf4d951
PA
3988 /* If the target can't tell whether a software breakpoint triggered,
3989 fallback to figuring it out based on breakpoints we think were
3990 inserted in the target, and on whether the thread was stepped or
3991 continued. */
3992
1c5cfe86
PA
3993 /* Check whether there actually is a software breakpoint inserted at
3994 that location.
3995
3996 If in non-stop mode, a race condition is possible where we've
3997 removed a breakpoint, but stop events for that breakpoint were
3998 already queued and arrive later. To suppress those spurious
3999 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4000 and retire them after a number of stop events are reported. Note
4001 this is an heuristic and can thus get confused. The real fix is
4002 to get the "stopped by SW BP and needs adjustment" info out of
4003 the target/kernel (and thus never reach here; see above). */
6c95b8df 4004 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4005 || (target_is_non_stop_p ()
4006 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4007 {
77f9e713 4008 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4009
8213266a 4010 if (record_full_is_used ())
77f9e713 4011 record_full_gdb_operation_disable_set ();
96429cc8 4012
1c0fdd0e
UW
4013 /* When using hardware single-step, a SIGTRAP is reported for both
4014 a completed single-step and a software breakpoint. Need to
4015 differentiate between the two, as the latter needs adjusting
4016 but the former does not.
4017
4018 The SIGTRAP can be due to a completed hardware single-step only if
4019 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4020 - this thread is currently being stepped
4021
4022 If any of these events did not occur, we must have stopped due
4023 to hitting a software breakpoint, and have to back up to the
4024 breakpoint address.
4025
4026 As a special case, we could have hardware single-stepped a
4027 software breakpoint. In this case (prev_pc == breakpoint_pc),
4028 we also need to back up to the breakpoint address. */
4029
d8dd4d5f
PA
4030 if (thread_has_single_step_breakpoints_set (thread)
4031 || !currently_stepping (thread)
4032 || (thread->stepped_breakpoint
4033 && thread->prev_pc == breakpoint_pc))
515630c5 4034 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4035
77f9e713 4036 do_cleanups (old_cleanups);
8aad930b 4037 }
4fa8626c
DJ
4038}
4039
edb3359d
DJ
4040static int
4041stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4042{
4043 for (frame = get_prev_frame (frame);
4044 frame != NULL;
4045 frame = get_prev_frame (frame))
4046 {
4047 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4048 return 1;
4049 if (get_frame_type (frame) != INLINE_FRAME)
4050 break;
4051 }
4052
4053 return 0;
4054}
4055
a96d9b2e
SDJ
4056/* Auxiliary function that handles syscall entry/return events.
4057 It returns 1 if the inferior should keep going (and GDB
4058 should ignore the event), or 0 if the event deserves to be
4059 processed. */
ca2163eb 4060
a96d9b2e 4061static int
ca2163eb 4062handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4063{
ca2163eb 4064 struct regcache *regcache;
ca2163eb
PA
4065 int syscall_number;
4066
4067 if (!ptid_equal (ecs->ptid, inferior_ptid))
4068 context_switch (ecs->ptid);
4069
4070 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4071 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4072 stop_pc = regcache_read_pc (regcache);
4073
a96d9b2e
SDJ
4074 if (catch_syscall_enabled () > 0
4075 && catching_syscall_number (syscall_number) > 0)
4076 {
4077 if (debug_infrun)
4078 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4079 syscall_number);
a96d9b2e 4080
16c381f0 4081 ecs->event_thread->control.stop_bpstat
6c95b8df 4082 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4083 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4084
ce12b012 4085 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4086 {
4087 /* Catchpoint hit. */
ca2163eb
PA
4088 return 0;
4089 }
a96d9b2e 4090 }
ca2163eb
PA
4091
4092 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4093 keep_going (ecs);
4094 return 1;
a96d9b2e
SDJ
4095}
4096
7e324e48
GB
4097/* Lazily fill in the execution_control_state's stop_func_* fields. */
4098
4099static void
4100fill_in_stop_func (struct gdbarch *gdbarch,
4101 struct execution_control_state *ecs)
4102{
4103 if (!ecs->stop_func_filled_in)
4104 {
4105 /* Don't care about return value; stop_func_start and stop_func_name
4106 will both be 0 if it doesn't work. */
4107 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4108 &ecs->stop_func_start, &ecs->stop_func_end);
4109 ecs->stop_func_start
4110 += gdbarch_deprecated_function_start_offset (gdbarch);
4111
591a12a1
UW
4112 if (gdbarch_skip_entrypoint_p (gdbarch))
4113 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4114 ecs->stop_func_start);
4115
7e324e48
GB
4116 ecs->stop_func_filled_in = 1;
4117 }
4118}
4119
4f5d7f63
PA
4120
4121/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4122
4123static enum stop_kind
4124get_inferior_stop_soon (ptid_t ptid)
4125{
c9657e70 4126 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4127
4128 gdb_assert (inf != NULL);
4129 return inf->control.stop_soon;
4130}
4131
372316f1
PA
4132/* Wait for one event. Store the resulting waitstatus in WS, and
4133 return the event ptid. */
4134
4135static ptid_t
4136wait_one (struct target_waitstatus *ws)
4137{
4138 ptid_t event_ptid;
4139 ptid_t wait_ptid = minus_one_ptid;
4140
4141 overlay_cache_invalid = 1;
4142
4143 /* Flush target cache before starting to handle each event.
4144 Target was running and cache could be stale. This is just a
4145 heuristic. Running threads may modify target memory, but we
4146 don't get any event. */
4147 target_dcache_invalidate ();
4148
4149 if (deprecated_target_wait_hook)
4150 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4151 else
4152 event_ptid = target_wait (wait_ptid, ws, 0);
4153
4154 if (debug_infrun)
4155 print_target_wait_results (wait_ptid, event_ptid, ws);
4156
4157 return event_ptid;
4158}
4159
4160/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4161 instead of the current thread. */
4162#define THREAD_STOPPED_BY(REASON) \
4163static int \
4164thread_stopped_by_ ## REASON (ptid_t ptid) \
4165{ \
4166 struct cleanup *old_chain; \
4167 int res; \
4168 \
4169 old_chain = save_inferior_ptid (); \
4170 inferior_ptid = ptid; \
4171 \
4172 res = target_stopped_by_ ## REASON (); \
4173 \
4174 do_cleanups (old_chain); \
4175 \
4176 return res; \
4177}
4178
4179/* Generate thread_stopped_by_watchpoint. */
4180THREAD_STOPPED_BY (watchpoint)
4181/* Generate thread_stopped_by_sw_breakpoint. */
4182THREAD_STOPPED_BY (sw_breakpoint)
4183/* Generate thread_stopped_by_hw_breakpoint. */
4184THREAD_STOPPED_BY (hw_breakpoint)
4185
4186/* Cleanups that switches to the PTID pointed at by PTID_P. */
4187
4188static void
4189switch_to_thread_cleanup (void *ptid_p)
4190{
4191 ptid_t ptid = *(ptid_t *) ptid_p;
4192
4193 switch_to_thread (ptid);
4194}
4195
4196/* Save the thread's event and stop reason to process it later. */
4197
4198static void
4199save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4200{
4201 struct regcache *regcache;
4202 struct address_space *aspace;
4203
4204 if (debug_infrun)
4205 {
4206 char *statstr;
4207
4208 statstr = target_waitstatus_to_string (ws);
4209 fprintf_unfiltered (gdb_stdlog,
4210 "infrun: saving status %s for %d.%ld.%ld\n",
4211 statstr,
4212 ptid_get_pid (tp->ptid),
4213 ptid_get_lwp (tp->ptid),
4214 ptid_get_tid (tp->ptid));
4215 xfree (statstr);
4216 }
4217
4218 /* Record for later. */
4219 tp->suspend.waitstatus = *ws;
4220 tp->suspend.waitstatus_pending_p = 1;
4221
4222 regcache = get_thread_regcache (tp->ptid);
4223 aspace = get_regcache_aspace (regcache);
4224
4225 if (ws->kind == TARGET_WAITKIND_STOPPED
4226 && ws->value.sig == GDB_SIGNAL_TRAP)
4227 {
4228 CORE_ADDR pc = regcache_read_pc (regcache);
4229
4230 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4231
4232 if (thread_stopped_by_watchpoint (tp->ptid))
4233 {
4234 tp->suspend.stop_reason
4235 = TARGET_STOPPED_BY_WATCHPOINT;
4236 }
4237 else if (target_supports_stopped_by_sw_breakpoint ()
4238 && thread_stopped_by_sw_breakpoint (tp->ptid))
4239 {
4240 tp->suspend.stop_reason
4241 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4242 }
4243 else if (target_supports_stopped_by_hw_breakpoint ()
4244 && thread_stopped_by_hw_breakpoint (tp->ptid))
4245 {
4246 tp->suspend.stop_reason
4247 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4248 }
4249 else if (!target_supports_stopped_by_hw_breakpoint ()
4250 && hardware_breakpoint_inserted_here_p (aspace,
4251 pc))
4252 {
4253 tp->suspend.stop_reason
4254 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4255 }
4256 else if (!target_supports_stopped_by_sw_breakpoint ()
4257 && software_breakpoint_inserted_here_p (aspace,
4258 pc))
4259 {
4260 tp->suspend.stop_reason
4261 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4262 }
4263 else if (!thread_has_single_step_breakpoints_set (tp)
4264 && currently_stepping (tp))
4265 {
4266 tp->suspend.stop_reason
4267 = TARGET_STOPPED_BY_SINGLE_STEP;
4268 }
4269 }
4270}
4271
4272/* Stop all threads. */
4273
4274static void
4275stop_all_threads (void)
4276{
4277 /* We may need multiple passes to discover all threads. */
4278 int pass;
4279 int iterations = 0;
4280 ptid_t entry_ptid;
4281 struct cleanup *old_chain;
4282
fbea99ea 4283 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4284
4285 if (debug_infrun)
4286 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4287
4288 entry_ptid = inferior_ptid;
4289 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4290
4291 /* Request threads to stop, and then wait for the stops. Because
4292 threads we already know about can spawn more threads while we're
4293 trying to stop them, and we only learn about new threads when we
4294 update the thread list, do this in a loop, and keep iterating
4295 until two passes find no threads that need to be stopped. */
4296 for (pass = 0; pass < 2; pass++, iterations++)
4297 {
4298 if (debug_infrun)
4299 fprintf_unfiltered (gdb_stdlog,
4300 "infrun: stop_all_threads, pass=%d, "
4301 "iterations=%d\n", pass, iterations);
4302 while (1)
4303 {
4304 ptid_t event_ptid;
4305 struct target_waitstatus ws;
4306 int need_wait = 0;
4307 struct thread_info *t;
4308
4309 update_thread_list ();
4310
4311 /* Go through all threads looking for threads that we need
4312 to tell the target to stop. */
4313 ALL_NON_EXITED_THREADS (t)
4314 {
4315 if (t->executing)
4316 {
4317 /* If already stopping, don't request a stop again.
4318 We just haven't seen the notification yet. */
4319 if (!t->stop_requested)
4320 {
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: %s executing, "
4324 "need stop\n",
4325 target_pid_to_str (t->ptid));
4326 target_stop (t->ptid);
4327 t->stop_requested = 1;
4328 }
4329 else
4330 {
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: %s executing, "
4334 "already stopping\n",
4335 target_pid_to_str (t->ptid));
4336 }
4337
4338 if (t->stop_requested)
4339 need_wait = 1;
4340 }
4341 else
4342 {
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog,
4345 "infrun: %s not executing\n",
4346 target_pid_to_str (t->ptid));
4347
4348 /* The thread may be not executing, but still be
4349 resumed with a pending status to process. */
4350 t->resumed = 0;
4351 }
4352 }
4353
4354 if (!need_wait)
4355 break;
4356
4357 /* If we find new threads on the second iteration, restart
4358 over. We want to see two iterations in a row with all
4359 threads stopped. */
4360 if (pass > 0)
4361 pass = -1;
4362
4363 event_ptid = wait_one (&ws);
4364 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4365 {
4366 /* All resumed threads exited. */
4367 }
4368 else if (ws.kind == TARGET_WAITKIND_EXITED
4369 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4370 {
4371 if (debug_infrun)
4372 {
4373 ptid_t ptid = pid_to_ptid (ws.value.integer);
4374
4375 fprintf_unfiltered (gdb_stdlog,
4376 "infrun: %s exited while "
4377 "stopping threads\n",
4378 target_pid_to_str (ptid));
4379 }
4380 }
4381 else
4382 {
4383 t = find_thread_ptid (event_ptid);
4384 if (t == NULL)
4385 t = add_thread (event_ptid);
4386
4387 t->stop_requested = 0;
4388 t->executing = 0;
4389 t->resumed = 0;
4390 t->control.may_range_step = 0;
4391
4392 if (ws.kind == TARGET_WAITKIND_STOPPED
4393 && ws.value.sig == GDB_SIGNAL_0)
4394 {
4395 /* We caught the event that we intended to catch, so
4396 there's no event pending. */
4397 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4398 t->suspend.waitstatus_pending_p = 0;
4399
4400 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4401 {
4402 /* Add it back to the step-over queue. */
4403 if (debug_infrun)
4404 {
4405 fprintf_unfiltered (gdb_stdlog,
4406 "infrun: displaced-step of %s "
4407 "canceled: adding back to the "
4408 "step-over queue\n",
4409 target_pid_to_str (t->ptid));
4410 }
4411 t->control.trap_expected = 0;
4412 thread_step_over_chain_enqueue (t);
4413 }
4414 }
4415 else
4416 {
4417 enum gdb_signal sig;
4418 struct regcache *regcache;
4419 struct address_space *aspace;
4420
4421 if (debug_infrun)
4422 {
4423 char *statstr;
4424
4425 statstr = target_waitstatus_to_string (&ws);
4426 fprintf_unfiltered (gdb_stdlog,
4427 "infrun: target_wait %s, saving "
4428 "status for %d.%ld.%ld\n",
4429 statstr,
4430 ptid_get_pid (t->ptid),
4431 ptid_get_lwp (t->ptid),
4432 ptid_get_tid (t->ptid));
4433 xfree (statstr);
4434 }
4435
4436 /* Record for later. */
4437 save_waitstatus (t, &ws);
4438
4439 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4440 ? ws.value.sig : GDB_SIGNAL_0);
4441
4442 if (displaced_step_fixup (t->ptid, sig) < 0)
4443 {
4444 /* Add it back to the step-over queue. */
4445 t->control.trap_expected = 0;
4446 thread_step_over_chain_enqueue (t);
4447 }
4448
4449 regcache = get_thread_regcache (t->ptid);
4450 t->suspend.stop_pc = regcache_read_pc (regcache);
4451
4452 if (debug_infrun)
4453 {
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: saved stop_pc=%s for %s "
4456 "(currently_stepping=%d)\n",
4457 paddress (target_gdbarch (),
4458 t->suspend.stop_pc),
4459 target_pid_to_str (t->ptid),
4460 currently_stepping (t));
4461 }
4462 }
4463 }
4464 }
4465 }
4466
4467 do_cleanups (old_chain);
4468
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4471}
4472
05ba8510
PA
4473/* Given an execution control state that has been freshly filled in by
4474 an event from the inferior, figure out what it means and take
4475 appropriate action.
4476
4477 The alternatives are:
4478
22bcd14b 4479 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4480 debugger.
4481
4482 2) keep_going and return; to wait for the next event (set
4483 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4484 once). */
c906108c 4485
ec9499be 4486static void
0b6e5e10 4487handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4488{
d6b48e9c
PA
4489 enum stop_kind stop_soon;
4490
28736962
PA
4491 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4492 {
4493 /* We had an event in the inferior, but we are not interested in
4494 handling it at this level. The lower layers have already
4495 done what needs to be done, if anything.
4496
4497 One of the possible circumstances for this is when the
4498 inferior produces output for the console. The inferior has
4499 not stopped, and we are ignoring the event. Another possible
4500 circumstance is any event which the lower level knows will be
4501 reported multiple times without an intervening resume. */
4502 if (debug_infrun)
4503 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4504 prepare_to_wait (ecs);
4505 return;
4506 }
4507
0e5bf2a8
PA
4508 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4509 && target_can_async_p () && !sync_execution)
4510 {
4511 /* There were no unwaited-for children left in the target, but,
4512 we're not synchronously waiting for events either. Just
4513 ignore. Otherwise, if we were running a synchronous
4514 execution command, we need to cancel it and give the user
4515 back the terminal. */
4516 if (debug_infrun)
4517 fprintf_unfiltered (gdb_stdlog,
4518 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4519 prepare_to_wait (ecs);
4520 return;
4521 }
4522
1777feb0 4523 /* Cache the last pid/waitstatus. */
c32c64b7 4524 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4525
ca005067 4526 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4527 stop_stack_dummy = STOP_NONE;
ca005067 4528
0e5bf2a8
PA
4529 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4530 {
4531 /* No unwaited-for children left. IOW, all resumed children
4532 have exited. */
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4535
4536 stop_print_frame = 0;
22bcd14b 4537 stop_waiting (ecs);
0e5bf2a8
PA
4538 return;
4539 }
4540
8c90c137 4541 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4542 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4543 {
4544 ecs->event_thread = find_thread_ptid (ecs->ptid);
4545 /* If it's a new thread, add it to the thread database. */
4546 if (ecs->event_thread == NULL)
4547 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4548
4549 /* Disable range stepping. If the next step request could use a
4550 range, this will be end up re-enabled then. */
4551 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4552 }
88ed393a
JK
4553
4554 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4555 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4556
4557 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4558 reinit_frame_cache ();
4559
28736962
PA
4560 breakpoint_retire_moribund ();
4561
2b009048
DJ
4562 /* First, distinguish signals caused by the debugger from signals
4563 that have to do with the program's own actions. Note that
4564 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4565 on the operating system version. Here we detect when a SIGILL or
4566 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4567 something similar for SIGSEGV, since a SIGSEGV will be generated
4568 when we're trying to execute a breakpoint instruction on a
4569 non-executable stack. This happens for call dummy breakpoints
4570 for architectures like SPARC that place call dummies on the
4571 stack. */
2b009048 4572 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4573 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4574 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4575 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4576 {
de0a0249
UW
4577 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4578
4579 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4580 regcache_read_pc (regcache)))
4581 {
4582 if (debug_infrun)
4583 fprintf_unfiltered (gdb_stdlog,
4584 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4585 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4586 }
2b009048
DJ
4587 }
4588
28736962
PA
4589 /* Mark the non-executing threads accordingly. In all-stop, all
4590 threads of all processes are stopped when we get any event
e1316e60 4591 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4592 {
4593 ptid_t mark_ptid;
4594
fbea99ea 4595 if (!target_is_non_stop_p ())
372316f1
PA
4596 mark_ptid = minus_one_ptid;
4597 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4598 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4599 {
4600 /* If we're handling a process exit in non-stop mode, even
4601 though threads haven't been deleted yet, one would think
4602 that there is nothing to do, as threads of the dead process
4603 will be soon deleted, and threads of any other process were
4604 left running. However, on some targets, threads survive a
4605 process exit event. E.g., for the "checkpoint" command,
4606 when the current checkpoint/fork exits, linux-fork.c
4607 automatically switches to another fork from within
4608 target_mourn_inferior, by associating the same
4609 inferior/thread to another fork. We haven't mourned yet at
4610 this point, but we must mark any threads left in the
4611 process as not-executing so that finish_thread_state marks
4612 them stopped (in the user's perspective) if/when we present
4613 the stop to the user. */
4614 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4615 }
4616 else
4617 mark_ptid = ecs->ptid;
4618
4619 set_executing (mark_ptid, 0);
4620
4621 /* Likewise the resumed flag. */
4622 set_resumed (mark_ptid, 0);
4623 }
8c90c137 4624
488f131b
JB
4625 switch (ecs->ws.kind)
4626 {
4627 case TARGET_WAITKIND_LOADED:
527159b7 4628 if (debug_infrun)
8a9de0e4 4629 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4630 if (!ptid_equal (ecs->ptid, inferior_ptid))
4631 context_switch (ecs->ptid);
b0f4b84b
DJ
4632 /* Ignore gracefully during startup of the inferior, as it might
4633 be the shell which has just loaded some objects, otherwise
4634 add the symbols for the newly loaded objects. Also ignore at
4635 the beginning of an attach or remote session; we will query
4636 the full list of libraries once the connection is
4637 established. */
4f5d7f63
PA
4638
4639 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4640 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4641 {
edcc5120
TT
4642 struct regcache *regcache;
4643
edcc5120
TT
4644 regcache = get_thread_regcache (ecs->ptid);
4645
4646 handle_solib_event ();
4647
4648 ecs->event_thread->control.stop_bpstat
4649 = bpstat_stop_status (get_regcache_aspace (regcache),
4650 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4651
ce12b012 4652 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4653 {
4654 /* A catchpoint triggered. */
94c57d6a
PA
4655 process_event_stop_test (ecs);
4656 return;
edcc5120 4657 }
488f131b 4658
b0f4b84b
DJ
4659 /* If requested, stop when the dynamic linker notifies
4660 gdb of events. This allows the user to get control
4661 and place breakpoints in initializer routines for
4662 dynamically loaded objects (among other things). */
a493e3e2 4663 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4664 if (stop_on_solib_events)
4665 {
55409f9d
DJ
4666 /* Make sure we print "Stopped due to solib-event" in
4667 normal_stop. */
4668 stop_print_frame = 1;
4669
22bcd14b 4670 stop_waiting (ecs);
b0f4b84b
DJ
4671 return;
4672 }
488f131b 4673 }
b0f4b84b
DJ
4674
4675 /* If we are skipping through a shell, or through shared library
4676 loading that we aren't interested in, resume the program. If
5c09a2c5 4677 we're running the program normally, also resume. */
b0f4b84b
DJ
4678 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4679 {
74960c60
VP
4680 /* Loading of shared libraries might have changed breakpoint
4681 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4682 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4683 insert_breakpoints ();
64ce06e4 4684 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4685 prepare_to_wait (ecs);
4686 return;
4687 }
4688
5c09a2c5
PA
4689 /* But stop if we're attaching or setting up a remote
4690 connection. */
4691 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4692 || stop_soon == STOP_QUIETLY_REMOTE)
4693 {
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4696 stop_waiting (ecs);
5c09a2c5
PA
4697 return;
4698 }
4699
4700 internal_error (__FILE__, __LINE__,
4701 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4702
488f131b 4703 case TARGET_WAITKIND_SPURIOUS:
527159b7 4704 if (debug_infrun)
8a9de0e4 4705 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4706 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4707 context_switch (ecs->ptid);
64ce06e4 4708 resume (GDB_SIGNAL_0);
488f131b
JB
4709 prepare_to_wait (ecs);
4710 return;
c5aa993b 4711
488f131b 4712 case TARGET_WAITKIND_EXITED:
940c3c06 4713 case TARGET_WAITKIND_SIGNALLED:
527159b7 4714 if (debug_infrun)
940c3c06
PA
4715 {
4716 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4717 fprintf_unfiltered (gdb_stdlog,
4718 "infrun: TARGET_WAITKIND_EXITED\n");
4719 else
4720 fprintf_unfiltered (gdb_stdlog,
4721 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4722 }
4723
fb66883a 4724 inferior_ptid = ecs->ptid;
c9657e70 4725 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4726 set_current_program_space (current_inferior ()->pspace);
4727 handle_vfork_child_exec_or_exit (0);
1777feb0 4728 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4729
0c557179
SDJ
4730 /* Clearing any previous state of convenience variables. */
4731 clear_exit_convenience_vars ();
4732
940c3c06
PA
4733 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4734 {
4735 /* Record the exit code in the convenience variable $_exitcode, so
4736 that the user can inspect this again later. */
4737 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4738 (LONGEST) ecs->ws.value.integer);
4739
4740 /* Also record this in the inferior itself. */
4741 current_inferior ()->has_exit_code = 1;
4742 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4743
98eb56a4
PA
4744 /* Support the --return-child-result option. */
4745 return_child_result_value = ecs->ws.value.integer;
4746
fd664c91 4747 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4748 }
4749 else
0c557179
SDJ
4750 {
4751 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4753
4754 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4755 {
4756 /* Set the value of the internal variable $_exitsignal,
4757 which holds the signal uncaught by the inferior. */
4758 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4759 gdbarch_gdb_signal_to_target (gdbarch,
4760 ecs->ws.value.sig));
4761 }
4762 else
4763 {
4764 /* We don't have access to the target's method used for
4765 converting between signal numbers (GDB's internal
4766 representation <-> target's representation).
4767 Therefore, we cannot do a good job at displaying this
4768 information to the user. It's better to just warn
4769 her about it (if infrun debugging is enabled), and
4770 give up. */
4771 if (debug_infrun)
4772 fprintf_filtered (gdb_stdlog, _("\
4773Cannot fill $_exitsignal with the correct signal number.\n"));
4774 }
4775
fd664c91 4776 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4777 }
8cf64490 4778
488f131b
JB
4779 gdb_flush (gdb_stdout);
4780 target_mourn_inferior ();
488f131b 4781 stop_print_frame = 0;
22bcd14b 4782 stop_waiting (ecs);
488f131b 4783 return;
c5aa993b 4784
488f131b 4785 /* The following are the only cases in which we keep going;
1777feb0 4786 the above cases end in a continue or goto. */
488f131b 4787 case TARGET_WAITKIND_FORKED:
deb3b17b 4788 case TARGET_WAITKIND_VFORKED:
527159b7 4789 if (debug_infrun)
fed708ed
PA
4790 {
4791 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4792 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4793 else
4794 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4795 }
c906108c 4796
e2d96639
YQ
4797 /* Check whether the inferior is displaced stepping. */
4798 {
4799 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4801 struct displaced_step_inferior_state *displaced
4802 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4803
4804 /* If checking displaced stepping is supported, and thread
4805 ecs->ptid is displaced stepping. */
4806 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4807 {
4808 struct inferior *parent_inf
c9657e70 4809 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4810 struct regcache *child_regcache;
4811 CORE_ADDR parent_pc;
4812
4813 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4814 indicating that the displaced stepping of syscall instruction
4815 has been done. Perform cleanup for parent process here. Note
4816 that this operation also cleans up the child process for vfork,
4817 because their pages are shared. */
a493e3e2 4818 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4819 /* Start a new step-over in another thread if there's one
4820 that needs it. */
4821 start_step_over ();
e2d96639
YQ
4822
4823 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4824 {
4825 /* Restore scratch pad for child process. */
4826 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4827 }
4828
4829 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4830 the child's PC is also within the scratchpad. Set the child's PC
4831 to the parent's PC value, which has already been fixed up.
4832 FIXME: we use the parent's aspace here, although we're touching
4833 the child, because the child hasn't been added to the inferior
4834 list yet at this point. */
4835
4836 child_regcache
4837 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4838 gdbarch,
4839 parent_inf->aspace);
4840 /* Read PC value of parent process. */
4841 parent_pc = regcache_read_pc (regcache);
4842
4843 if (debug_displaced)
4844 fprintf_unfiltered (gdb_stdlog,
4845 "displaced: write child pc from %s to %s\n",
4846 paddress (gdbarch,
4847 regcache_read_pc (child_regcache)),
4848 paddress (gdbarch, parent_pc));
4849
4850 regcache_write_pc (child_regcache, parent_pc);
4851 }
4852 }
4853
5a2901d9 4854 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4855 context_switch (ecs->ptid);
5a2901d9 4856
b242c3c2
PA
4857 /* Immediately detach breakpoints from the child before there's
4858 any chance of letting the user delete breakpoints from the
4859 breakpoint lists. If we don't do this early, it's easy to
4860 leave left over traps in the child, vis: "break foo; catch
4861 fork; c; <fork>; del; c; <child calls foo>". We only follow
4862 the fork on the last `continue', and by that time the
4863 breakpoint at "foo" is long gone from the breakpoint table.
4864 If we vforked, then we don't need to unpatch here, since both
4865 parent and child are sharing the same memory pages; we'll
4866 need to unpatch at follow/detach time instead to be certain
4867 that new breakpoints added between catchpoint hit time and
4868 vfork follow are detached. */
4869 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4870 {
b242c3c2
PA
4871 /* This won't actually modify the breakpoint list, but will
4872 physically remove the breakpoints from the child. */
d80ee84f 4873 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4874 }
4875
34b7e8a6 4876 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4877
e58b0e63
PA
4878 /* In case the event is caught by a catchpoint, remember that
4879 the event is to be followed at the next resume of the thread,
4880 and not immediately. */
4881 ecs->event_thread->pending_follow = ecs->ws;
4882
fb14de7b 4883 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4884
16c381f0 4885 ecs->event_thread->control.stop_bpstat
6c95b8df 4886 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4887 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4888
ce12b012
PA
4889 /* If no catchpoint triggered for this, then keep going. Note
4890 that we're interested in knowing the bpstat actually causes a
4891 stop, not just if it may explain the signal. Software
4892 watchpoints, for example, always appear in the bpstat. */
4893 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4894 {
6c95b8df
PA
4895 ptid_t parent;
4896 ptid_t child;
e58b0e63 4897 int should_resume;
3e43a32a
MS
4898 int follow_child
4899 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4900
a493e3e2 4901 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4902
4903 should_resume = follow_fork ();
4904
6c95b8df
PA
4905 parent = ecs->ptid;
4906 child = ecs->ws.value.related_pid;
4907
4908 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
4909 if (!detach_fork && (non_stop
4910 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
4911 {
4912 if (follow_child)
4913 switch_to_thread (parent);
4914 else
4915 switch_to_thread (child);
4916
4917 ecs->event_thread = inferior_thread ();
4918 ecs->ptid = inferior_ptid;
4919 keep_going (ecs);
4920 }
4921
4922 if (follow_child)
4923 switch_to_thread (child);
4924 else
4925 switch_to_thread (parent);
4926
e58b0e63
PA
4927 ecs->event_thread = inferior_thread ();
4928 ecs->ptid = inferior_ptid;
4929
4930 if (should_resume)
4931 keep_going (ecs);
4932 else
22bcd14b 4933 stop_waiting (ecs);
04e68871
DJ
4934 return;
4935 }
94c57d6a
PA
4936 process_event_stop_test (ecs);
4937 return;
488f131b 4938
6c95b8df
PA
4939 case TARGET_WAITKIND_VFORK_DONE:
4940 /* Done with the shared memory region. Re-insert breakpoints in
4941 the parent, and keep going. */
4942
4943 if (debug_infrun)
3e43a32a
MS
4944 fprintf_unfiltered (gdb_stdlog,
4945 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4946
4947 if (!ptid_equal (ecs->ptid, inferior_ptid))
4948 context_switch (ecs->ptid);
4949
4950 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4951 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4952 /* This also takes care of reinserting breakpoints in the
4953 previously locked inferior. */
4954 keep_going (ecs);
4955 return;
4956
488f131b 4957 case TARGET_WAITKIND_EXECD:
527159b7 4958 if (debug_infrun)
fc5261f2 4959 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4960
5a2901d9 4961 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4962 context_switch (ecs->ptid);
5a2901d9 4963
fb14de7b 4964 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4965
6c95b8df
PA
4966 /* Do whatever is necessary to the parent branch of the vfork. */
4967 handle_vfork_child_exec_or_exit (1);
4968
795e548f
PA
4969 /* This causes the eventpoints and symbol table to be reset.
4970 Must do this now, before trying to determine whether to
4971 stop. */
71b43ef8 4972 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4973
16c381f0 4974 ecs->event_thread->control.stop_bpstat
6c95b8df 4975 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4976 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4977
71b43ef8
PA
4978 /* Note that this may be referenced from inside
4979 bpstat_stop_status above, through inferior_has_execd. */
4980 xfree (ecs->ws.value.execd_pathname);
4981 ecs->ws.value.execd_pathname = NULL;
4982
04e68871 4983 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4984 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4985 {
a493e3e2 4986 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4987 keep_going (ecs);
4988 return;
4989 }
94c57d6a
PA
4990 process_event_stop_test (ecs);
4991 return;
488f131b 4992
b4dc5ffa
MK
4993 /* Be careful not to try to gather much state about a thread
4994 that's in a syscall. It's frequently a losing proposition. */
488f131b 4995 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4996 if (debug_infrun)
3e43a32a
MS
4997 fprintf_unfiltered (gdb_stdlog,
4998 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4999 /* Getting the current syscall number. */
94c57d6a
PA
5000 if (handle_syscall_event (ecs) == 0)
5001 process_event_stop_test (ecs);
5002 return;
c906108c 5003
488f131b
JB
5004 /* Before examining the threads further, step this thread to
5005 get it entirely out of the syscall. (We get notice of the
5006 event when the thread is just on the verge of exiting a
5007 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5008 into user code.) */
488f131b 5009 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5010 if (debug_infrun)
3e43a32a
MS
5011 fprintf_unfiltered (gdb_stdlog,
5012 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5013 if (handle_syscall_event (ecs) == 0)
5014 process_event_stop_test (ecs);
5015 return;
c906108c 5016
488f131b 5017 case TARGET_WAITKIND_STOPPED:
527159b7 5018 if (debug_infrun)
8a9de0e4 5019 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5020 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5021 handle_signal_stop (ecs);
5022 return;
c906108c 5023
b2175913 5024 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5025 if (debug_infrun)
5026 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5027 /* Reverse execution: target ran out of history info. */
eab402df 5028
34b7e8a6 5029 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 5030 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 5031 observer_notify_no_history ();
22bcd14b 5032 stop_waiting (ecs);
b2175913 5033 return;
488f131b 5034 }
4f5d7f63
PA
5035}
5036
0b6e5e10
JB
5037/* A wrapper around handle_inferior_event_1, which also makes sure
5038 that all temporary struct value objects that were created during
5039 the handling of the event get deleted at the end. */
5040
5041static void
5042handle_inferior_event (struct execution_control_state *ecs)
5043{
5044 struct value *mark = value_mark ();
5045
5046 handle_inferior_event_1 (ecs);
5047 /* Purge all temporary values created during the event handling,
5048 as it could be a long time before we return to the command level
5049 where such values would otherwise be purged. */
5050 value_free_to_mark (mark);
5051}
5052
372316f1
PA
5053/* Restart threads back to what they were trying to do back when we
5054 paused them for an in-line step-over. The EVENT_THREAD thread is
5055 ignored. */
4d9d9d04
PA
5056
5057static void
372316f1
PA
5058restart_threads (struct thread_info *event_thread)
5059{
5060 struct thread_info *tp;
5061 struct thread_info *step_over = NULL;
5062
5063 /* In case the instruction just stepped spawned a new thread. */
5064 update_thread_list ();
5065
5066 ALL_NON_EXITED_THREADS (tp)
5067 {
5068 if (tp == event_thread)
5069 {
5070 if (debug_infrun)
5071 fprintf_unfiltered (gdb_stdlog,
5072 "infrun: restart threads: "
5073 "[%s] is event thread\n",
5074 target_pid_to_str (tp->ptid));
5075 continue;
5076 }
5077
5078 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5079 {
5080 if (debug_infrun)
5081 fprintf_unfiltered (gdb_stdlog,
5082 "infrun: restart threads: "
5083 "[%s] not meant to be running\n",
5084 target_pid_to_str (tp->ptid));
5085 continue;
5086 }
5087
5088 if (tp->resumed)
5089 {
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog,
5092 "infrun: restart threads: [%s] resumed\n",
5093 target_pid_to_str (tp->ptid));
5094 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5095 continue;
5096 }
5097
5098 if (thread_is_in_step_over_chain (tp))
5099 {
5100 if (debug_infrun)
5101 fprintf_unfiltered (gdb_stdlog,
5102 "infrun: restart threads: "
5103 "[%s] needs step-over\n",
5104 target_pid_to_str (tp->ptid));
5105 gdb_assert (!tp->resumed);
5106 continue;
5107 }
5108
5109
5110 if (tp->suspend.waitstatus_pending_p)
5111 {
5112 if (debug_infrun)
5113 fprintf_unfiltered (gdb_stdlog,
5114 "infrun: restart threads: "
5115 "[%s] has pending status\n",
5116 target_pid_to_str (tp->ptid));
5117 tp->resumed = 1;
5118 continue;
5119 }
5120
5121 /* If some thread needs to start a step-over at this point, it
5122 should still be in the step-over queue, and thus skipped
5123 above. */
5124 if (thread_still_needs_step_over (tp))
5125 {
5126 internal_error (__FILE__, __LINE__,
5127 "thread [%s] needs a step-over, but not in "
5128 "step-over queue\n",
5129 target_pid_to_str (tp->ptid));
5130 }
5131
5132 if (currently_stepping (tp))
5133 {
5134 if (debug_infrun)
5135 fprintf_unfiltered (gdb_stdlog,
5136 "infrun: restart threads: [%s] was stepping\n",
5137 target_pid_to_str (tp->ptid));
5138 keep_going_stepped_thread (tp);
5139 }
5140 else
5141 {
5142 struct execution_control_state ecss;
5143 struct execution_control_state *ecs = &ecss;
5144
5145 if (debug_infrun)
5146 fprintf_unfiltered (gdb_stdlog,
5147 "infrun: restart threads: [%s] continuing\n",
5148 target_pid_to_str (tp->ptid));
5149 reset_ecs (ecs, tp);
5150 switch_to_thread (tp->ptid);
5151 keep_going_pass_signal (ecs);
5152 }
5153 }
5154}
5155
5156/* Callback for iterate_over_threads. Find a resumed thread that has
5157 a pending waitstatus. */
5158
5159static int
5160resumed_thread_with_pending_status (struct thread_info *tp,
5161 void *arg)
5162{
5163 return (tp->resumed
5164 && tp->suspend.waitstatus_pending_p);
5165}
5166
5167/* Called when we get an event that may finish an in-line or
5168 out-of-line (displaced stepping) step-over started previously.
5169 Return true if the event is processed and we should go back to the
5170 event loop; false if the caller should continue processing the
5171 event. */
5172
5173static int
4d9d9d04
PA
5174finish_step_over (struct execution_control_state *ecs)
5175{
372316f1
PA
5176 int had_step_over_info;
5177
4d9d9d04
PA
5178 displaced_step_fixup (ecs->ptid,
5179 ecs->event_thread->suspend.stop_signal);
5180
372316f1
PA
5181 had_step_over_info = step_over_info_valid_p ();
5182
5183 if (had_step_over_info)
4d9d9d04
PA
5184 {
5185 /* If we're stepping over a breakpoint with all threads locked,
5186 then only the thread that was stepped should be reporting
5187 back an event. */
5188 gdb_assert (ecs->event_thread->control.trap_expected);
5189
5190 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5191 clear_step_over_info ();
5192 }
5193
fbea99ea 5194 if (!target_is_non_stop_p ())
372316f1 5195 return 0;
4d9d9d04
PA
5196
5197 /* Start a new step-over in another thread if there's one that
5198 needs it. */
5199 start_step_over ();
372316f1
PA
5200
5201 /* If we were stepping over a breakpoint before, and haven't started
5202 a new in-line step-over sequence, then restart all other threads
5203 (except the event thread). We can't do this in all-stop, as then
5204 e.g., we wouldn't be able to issue any other remote packet until
5205 these other threads stop. */
5206 if (had_step_over_info && !step_over_info_valid_p ())
5207 {
5208 struct thread_info *pending;
5209
5210 /* If we only have threads with pending statuses, the restart
5211 below won't restart any thread and so nothing re-inserts the
5212 breakpoint we just stepped over. But we need it inserted
5213 when we later process the pending events, otherwise if
5214 another thread has a pending event for this breakpoint too,
5215 we'd discard its event (because the breakpoint that
5216 originally caused the event was no longer inserted). */
5217 context_switch (ecs->ptid);
5218 insert_breakpoints ();
5219
5220 restart_threads (ecs->event_thread);
5221
5222 /* If we have events pending, go through handle_inferior_event
5223 again, picking up a pending event at random. This avoids
5224 thread starvation. */
5225
5226 /* But not if we just stepped over a watchpoint in order to let
5227 the instruction execute so we can evaluate its expression.
5228 The set of watchpoints that triggered is recorded in the
5229 breakpoint objects themselves (see bp->watchpoint_triggered).
5230 If we processed another event first, that other event could
5231 clobber this info. */
5232 if (ecs->event_thread->stepping_over_watchpoint)
5233 return 0;
5234
5235 pending = iterate_over_threads (resumed_thread_with_pending_status,
5236 NULL);
5237 if (pending != NULL)
5238 {
5239 struct thread_info *tp = ecs->event_thread;
5240 struct regcache *regcache;
5241
5242 if (debug_infrun)
5243 {
5244 fprintf_unfiltered (gdb_stdlog,
5245 "infrun: found resumed threads with "
5246 "pending events, saving status\n");
5247 }
5248
5249 gdb_assert (pending != tp);
5250
5251 /* Record the event thread's event for later. */
5252 save_waitstatus (tp, &ecs->ws);
5253 /* This was cleared early, by handle_inferior_event. Set it
5254 so this pending event is considered by
5255 do_target_wait. */
5256 tp->resumed = 1;
5257
5258 gdb_assert (!tp->executing);
5259
5260 regcache = get_thread_regcache (tp->ptid);
5261 tp->suspend.stop_pc = regcache_read_pc (regcache);
5262
5263 if (debug_infrun)
5264 {
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: saved stop_pc=%s for %s "
5267 "(currently_stepping=%d)\n",
5268 paddress (target_gdbarch (),
5269 tp->suspend.stop_pc),
5270 target_pid_to_str (tp->ptid),
5271 currently_stepping (tp));
5272 }
5273
5274 /* This in-line step-over finished; clear this so we won't
5275 start a new one. This is what handle_signal_stop would
5276 do, if we returned false. */
5277 tp->stepping_over_breakpoint = 0;
5278
5279 /* Wake up the event loop again. */
5280 mark_async_event_handler (infrun_async_inferior_event_token);
5281
5282 prepare_to_wait (ecs);
5283 return 1;
5284 }
5285 }
5286
5287 return 0;
4d9d9d04
PA
5288}
5289
4f5d7f63
PA
5290/* Come here when the program has stopped with a signal. */
5291
5292static void
5293handle_signal_stop (struct execution_control_state *ecs)
5294{
5295 struct frame_info *frame;
5296 struct gdbarch *gdbarch;
5297 int stopped_by_watchpoint;
5298 enum stop_kind stop_soon;
5299 int random_signal;
c906108c 5300
f0407826
DE
5301 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5302
5303 /* Do we need to clean up the state of a thread that has
5304 completed a displaced single-step? (Doing so usually affects
5305 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5306 if (finish_step_over (ecs))
5307 return;
f0407826
DE
5308
5309 /* If we either finished a single-step or hit a breakpoint, but
5310 the user wanted this thread to be stopped, pretend we got a
5311 SIG0 (generic unsignaled stop). */
5312 if (ecs->event_thread->stop_requested
5313 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5314 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5315
515630c5 5316 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5317
527159b7 5318 if (debug_infrun)
237fc4c9 5319 {
5af949e3
UW
5320 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5321 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5322 struct cleanup *old_chain = save_inferior_ptid ();
5323
5324 inferior_ptid = ecs->ptid;
5af949e3
UW
5325
5326 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5327 paddress (gdbarch, stop_pc));
d92524f1 5328 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5329 {
5330 CORE_ADDR addr;
abbb1732 5331
237fc4c9
PA
5332 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5333
5334 if (target_stopped_data_address (&current_target, &addr))
5335 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5336 "infrun: stopped data address = %s\n",
5337 paddress (gdbarch, addr));
237fc4c9
PA
5338 else
5339 fprintf_unfiltered (gdb_stdlog,
5340 "infrun: (no data address available)\n");
5341 }
7f82dfc7
JK
5342
5343 do_cleanups (old_chain);
237fc4c9 5344 }
527159b7 5345
36fa8042
PA
5346 /* This is originated from start_remote(), start_inferior() and
5347 shared libraries hook functions. */
5348 stop_soon = get_inferior_stop_soon (ecs->ptid);
5349 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5350 {
5351 if (!ptid_equal (ecs->ptid, inferior_ptid))
5352 context_switch (ecs->ptid);
5353 if (debug_infrun)
5354 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5355 stop_print_frame = 1;
22bcd14b 5356 stop_waiting (ecs);
36fa8042
PA
5357 return;
5358 }
5359
5360 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5361 && stop_after_trap)
5362 {
5363 if (!ptid_equal (ecs->ptid, inferior_ptid))
5364 context_switch (ecs->ptid);
5365 if (debug_infrun)
5366 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5367 stop_print_frame = 0;
22bcd14b 5368 stop_waiting (ecs);
36fa8042
PA
5369 return;
5370 }
5371
5372 /* This originates from attach_command(). We need to overwrite
5373 the stop_signal here, because some kernels don't ignore a
5374 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5375 See more comments in inferior.h. On the other hand, if we
5376 get a non-SIGSTOP, report it to the user - assume the backend
5377 will handle the SIGSTOP if it should show up later.
5378
5379 Also consider that the attach is complete when we see a
5380 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5381 target extended-remote report it instead of a SIGSTOP
5382 (e.g. gdbserver). We already rely on SIGTRAP being our
5383 signal, so this is no exception.
5384
5385 Also consider that the attach is complete when we see a
5386 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5387 the target to stop all threads of the inferior, in case the
5388 low level attach operation doesn't stop them implicitly. If
5389 they weren't stopped implicitly, then the stub will report a
5390 GDB_SIGNAL_0, meaning: stopped for no particular reason
5391 other than GDB's request. */
5392 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5393 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5394 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5395 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5396 {
5397 stop_print_frame = 1;
22bcd14b 5398 stop_waiting (ecs);
36fa8042
PA
5399 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5400 return;
5401 }
5402
488f131b 5403 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5404 so, then switch to that thread. */
5405 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5406 {
527159b7 5407 if (debug_infrun)
8a9de0e4 5408 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5409
0d1e5fa7 5410 context_switch (ecs->ptid);
c5aa993b 5411
9a4105ab
AC
5412 if (deprecated_context_hook)
5413 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5414 }
c906108c 5415
568d6575
UW
5416 /* At this point, get hold of the now-current thread's frame. */
5417 frame = get_current_frame ();
5418 gdbarch = get_frame_arch (frame);
5419
2adfaa28 5420 /* Pull the single step breakpoints out of the target. */
af48d08f 5421 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5422 {
af48d08f
PA
5423 struct regcache *regcache;
5424 struct address_space *aspace;
5425 CORE_ADDR pc;
2adfaa28 5426
af48d08f
PA
5427 regcache = get_thread_regcache (ecs->ptid);
5428 aspace = get_regcache_aspace (regcache);
5429 pc = regcache_read_pc (regcache);
34b7e8a6 5430
af48d08f
PA
5431 /* However, before doing so, if this single-step breakpoint was
5432 actually for another thread, set this thread up for moving
5433 past it. */
5434 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5435 aspace, pc))
5436 {
5437 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5438 {
5439 if (debug_infrun)
5440 {
5441 fprintf_unfiltered (gdb_stdlog,
af48d08f 5442 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5443 "single-step breakpoint\n",
5444 target_pid_to_str (ecs->ptid));
2adfaa28 5445 }
af48d08f
PA
5446 ecs->hit_singlestep_breakpoint = 1;
5447 }
5448 }
5449 else
5450 {
5451 if (debug_infrun)
5452 {
5453 fprintf_unfiltered (gdb_stdlog,
5454 "infrun: [%s] hit its "
5455 "single-step breakpoint\n",
5456 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5457 }
5458 }
488f131b 5459 }
af48d08f 5460 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5461
963f9c80
PA
5462 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5463 && ecs->event_thread->control.trap_expected
5464 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5465 stopped_by_watchpoint = 0;
5466 else
5467 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5468
5469 /* If necessary, step over this watchpoint. We'll be back to display
5470 it in a moment. */
5471 if (stopped_by_watchpoint
d92524f1 5472 && (target_have_steppable_watchpoint
568d6575 5473 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5474 {
488f131b
JB
5475 /* At this point, we are stopped at an instruction which has
5476 attempted to write to a piece of memory under control of
5477 a watchpoint. The instruction hasn't actually executed
5478 yet. If we were to evaluate the watchpoint expression
5479 now, we would get the old value, and therefore no change
5480 would seem to have occurred.
5481
5482 In order to make watchpoints work `right', we really need
5483 to complete the memory write, and then evaluate the
d983da9c
DJ
5484 watchpoint expression. We do this by single-stepping the
5485 target.
5486
7f89fd65 5487 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5488 it. For example, the PA can (with some kernel cooperation)
5489 single step over a watchpoint without disabling the watchpoint.
5490
5491 It is far more common to need to disable a watchpoint to step
5492 the inferior over it. If we have non-steppable watchpoints,
5493 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5494 disable all watchpoints.
5495
5496 Any breakpoint at PC must also be stepped over -- if there's
5497 one, it will have already triggered before the watchpoint
5498 triggered, and we either already reported it to the user, or
5499 it didn't cause a stop and we called keep_going. In either
5500 case, if there was a breakpoint at PC, we must be trying to
5501 step past it. */
5502 ecs->event_thread->stepping_over_watchpoint = 1;
5503 keep_going (ecs);
488f131b
JB
5504 return;
5505 }
5506
4e1c45ea 5507 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5508 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5509 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5510 ecs->event_thread->control.stop_step = 0;
488f131b 5511 stop_print_frame = 1;
488f131b 5512 stopped_by_random_signal = 0;
488f131b 5513
edb3359d
DJ
5514 /* Hide inlined functions starting here, unless we just performed stepi or
5515 nexti. After stepi and nexti, always show the innermost frame (not any
5516 inline function call sites). */
16c381f0 5517 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5518 {
5519 struct address_space *aspace =
5520 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5521
5522 /* skip_inline_frames is expensive, so we avoid it if we can
5523 determine that the address is one where functions cannot have
5524 been inlined. This improves performance with inferiors that
5525 load a lot of shared libraries, because the solib event
5526 breakpoint is defined as the address of a function (i.e. not
5527 inline). Note that we have to check the previous PC as well
5528 as the current one to catch cases when we have just
5529 single-stepped off a breakpoint prior to reinstating it.
5530 Note that we're assuming that the code we single-step to is
5531 not inline, but that's not definitive: there's nothing
5532 preventing the event breakpoint function from containing
5533 inlined code, and the single-step ending up there. If the
5534 user had set a breakpoint on that inlined code, the missing
5535 skip_inline_frames call would break things. Fortunately
5536 that's an extremely unlikely scenario. */
09ac7c10 5537 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5538 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5539 && ecs->event_thread->control.trap_expected
5540 && pc_at_non_inline_function (aspace,
5541 ecs->event_thread->prev_pc,
09ac7c10 5542 &ecs->ws)))
1c5a993e
MR
5543 {
5544 skip_inline_frames (ecs->ptid);
5545
5546 /* Re-fetch current thread's frame in case that invalidated
5547 the frame cache. */
5548 frame = get_current_frame ();
5549 gdbarch = get_frame_arch (frame);
5550 }
0574c78f 5551 }
edb3359d 5552
a493e3e2 5553 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5554 && ecs->event_thread->control.trap_expected
568d6575 5555 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5556 && currently_stepping (ecs->event_thread))
3352ef37 5557 {
b50d7442 5558 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5559 also on an instruction that needs to be stepped multiple
1777feb0 5560 times before it's been fully executing. E.g., architectures
3352ef37
AC
5561 with a delay slot. It needs to be stepped twice, once for
5562 the instruction and once for the delay slot. */
5563 int step_through_delay
568d6575 5564 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5565
527159b7 5566 if (debug_infrun && step_through_delay)
8a9de0e4 5567 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5568 if (ecs->event_thread->control.step_range_end == 0
5569 && step_through_delay)
3352ef37
AC
5570 {
5571 /* The user issued a continue when stopped at a breakpoint.
5572 Set up for another trap and get out of here. */
4e1c45ea 5573 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5574 keep_going (ecs);
5575 return;
5576 }
5577 else if (step_through_delay)
5578 {
5579 /* The user issued a step when stopped at a breakpoint.
5580 Maybe we should stop, maybe we should not - the delay
5581 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5582 case, don't decide that here, just set
5583 ecs->stepping_over_breakpoint, making sure we
5584 single-step again before breakpoints are re-inserted. */
4e1c45ea 5585 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5586 }
5587 }
5588
ab04a2af
TT
5589 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5590 handles this event. */
5591 ecs->event_thread->control.stop_bpstat
5592 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5593 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5594
ab04a2af
TT
5595 /* Following in case break condition called a
5596 function. */
5597 stop_print_frame = 1;
73dd234f 5598
ab04a2af
TT
5599 /* This is where we handle "moribund" watchpoints. Unlike
5600 software breakpoints traps, hardware watchpoint traps are
5601 always distinguishable from random traps. If no high-level
5602 watchpoint is associated with the reported stop data address
5603 anymore, then the bpstat does not explain the signal ---
5604 simply make sure to ignore it if `stopped_by_watchpoint' is
5605 set. */
5606
5607 if (debug_infrun
5608 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5609 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5610 GDB_SIGNAL_TRAP)
ab04a2af
TT
5611 && stopped_by_watchpoint)
5612 fprintf_unfiltered (gdb_stdlog,
5613 "infrun: no user watchpoint explains "
5614 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5615
bac7d97b 5616 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5617 at one stage in the past included checks for an inferior
5618 function call's call dummy's return breakpoint. The original
5619 comment, that went with the test, read:
03cebad2 5620
ab04a2af
TT
5621 ``End of a stack dummy. Some systems (e.g. Sony news) give
5622 another signal besides SIGTRAP, so check here as well as
5623 above.''
73dd234f 5624
ab04a2af
TT
5625 If someone ever tries to get call dummys on a
5626 non-executable stack to work (where the target would stop
5627 with something like a SIGSEGV), then those tests might need
5628 to be re-instated. Given, however, that the tests were only
5629 enabled when momentary breakpoints were not being used, I
5630 suspect that it won't be the case.
488f131b 5631
ab04a2af
TT
5632 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5633 be necessary for call dummies on a non-executable stack on
5634 SPARC. */
488f131b 5635
bac7d97b 5636 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5637 random_signal
5638 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5639 ecs->event_thread->suspend.stop_signal);
bac7d97b 5640
1cf4d951
PA
5641 /* Maybe this was a trap for a software breakpoint that has since
5642 been removed. */
5643 if (random_signal && target_stopped_by_sw_breakpoint ())
5644 {
5645 if (program_breakpoint_here_p (gdbarch, stop_pc))
5646 {
5647 struct regcache *regcache;
5648 int decr_pc;
5649
5650 /* Re-adjust PC to what the program would see if GDB was not
5651 debugging it. */
5652 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5653 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5654 if (decr_pc != 0)
5655 {
5656 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5657
5658 if (record_full_is_used ())
5659 record_full_gdb_operation_disable_set ();
5660
5661 regcache_write_pc (regcache, stop_pc + decr_pc);
5662
5663 do_cleanups (old_cleanups);
5664 }
5665 }
5666 else
5667 {
5668 /* A delayed software breakpoint event. Ignore the trap. */
5669 if (debug_infrun)
5670 fprintf_unfiltered (gdb_stdlog,
5671 "infrun: delayed software breakpoint "
5672 "trap, ignoring\n");
5673 random_signal = 0;
5674 }
5675 }
5676
5677 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5678 has since been removed. */
5679 if (random_signal && target_stopped_by_hw_breakpoint ())
5680 {
5681 /* A delayed hardware breakpoint event. Ignore the trap. */
5682 if (debug_infrun)
5683 fprintf_unfiltered (gdb_stdlog,
5684 "infrun: delayed hardware breakpoint/watchpoint "
5685 "trap, ignoring\n");
5686 random_signal = 0;
5687 }
5688
bac7d97b
PA
5689 /* If not, perhaps stepping/nexting can. */
5690 if (random_signal)
5691 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5692 && currently_stepping (ecs->event_thread));
ab04a2af 5693
2adfaa28
PA
5694 /* Perhaps the thread hit a single-step breakpoint of _another_
5695 thread. Single-step breakpoints are transparent to the
5696 breakpoints module. */
5697 if (random_signal)
5698 random_signal = !ecs->hit_singlestep_breakpoint;
5699
bac7d97b
PA
5700 /* No? Perhaps we got a moribund watchpoint. */
5701 if (random_signal)
5702 random_signal = !stopped_by_watchpoint;
ab04a2af 5703
488f131b
JB
5704 /* For the program's own signals, act according to
5705 the signal handling tables. */
5706
ce12b012 5707 if (random_signal)
488f131b
JB
5708 {
5709 /* Signal not for debugging purposes. */
c9657e70 5710 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5711 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5712
527159b7 5713 if (debug_infrun)
c9737c08
PA
5714 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5715 gdb_signal_to_symbol_string (stop_signal));
527159b7 5716
488f131b
JB
5717 stopped_by_random_signal = 1;
5718
252fbfc8
PA
5719 /* Always stop on signals if we're either just gaining control
5720 of the program, or the user explicitly requested this thread
5721 to remain stopped. */
d6b48e9c 5722 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5723 || ecs->event_thread->stop_requested
24291992 5724 || (!inf->detaching
16c381f0 5725 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5726 {
22bcd14b 5727 stop_waiting (ecs);
488f131b
JB
5728 return;
5729 }
b57bacec
PA
5730
5731 /* Notify observers the signal has "handle print" set. Note we
5732 returned early above if stopping; normal_stop handles the
5733 printing in that case. */
5734 if (signal_print[ecs->event_thread->suspend.stop_signal])
5735 {
5736 /* The signal table tells us to print about this signal. */
5737 target_terminal_ours_for_output ();
5738 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5739 target_terminal_inferior ();
5740 }
488f131b
JB
5741
5742 /* Clear the signal if it should not be passed. */
16c381f0 5743 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5744 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5745
fb14de7b 5746 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5747 && ecs->event_thread->control.trap_expected
8358c15c 5748 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5749 {
372316f1
PA
5750 int was_in_line;
5751
68f53502
AC
5752 /* We were just starting a new sequence, attempting to
5753 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5754 Instead this signal arrives. This signal will take us out
68f53502
AC
5755 of the stepping range so GDB needs to remember to, when
5756 the signal handler returns, resume stepping off that
5757 breakpoint. */
5758 /* To simplify things, "continue" is forced to use the same
5759 code paths as single-step - set a breakpoint at the
5760 signal return address and then, once hit, step off that
5761 breakpoint. */
237fc4c9
PA
5762 if (debug_infrun)
5763 fprintf_unfiltered (gdb_stdlog,
5764 "infrun: signal arrived while stepping over "
5765 "breakpoint\n");
d3169d93 5766
372316f1
PA
5767 was_in_line = step_over_info_valid_p ();
5768 clear_step_over_info ();
2c03e5be 5769 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5770 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5771 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5772 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5773
fbea99ea 5774 if (target_is_non_stop_p ())
372316f1 5775 {
fbea99ea
PA
5776 /* Either "set non-stop" is "on", or the target is
5777 always in non-stop mode. In this case, we have a bit
5778 more work to do. Resume the current thread, and if
5779 we had paused all threads, restart them while the
5780 signal handler runs. */
372316f1
PA
5781 keep_going (ecs);
5782
372316f1
PA
5783 if (was_in_line)
5784 {
372316f1
PA
5785 restart_threads (ecs->event_thread);
5786 }
5787 else if (debug_infrun)
5788 {
5789 fprintf_unfiltered (gdb_stdlog,
5790 "infrun: no need to restart threads\n");
5791 }
5792 return;
5793 }
5794
d137e6dc
PA
5795 /* If we were nexting/stepping some other thread, switch to
5796 it, so that we don't continue it, losing control. */
5797 if (!switch_back_to_stepped_thread (ecs))
5798 keep_going (ecs);
9d799f85 5799 return;
68f53502 5800 }
9d799f85 5801
e5f8a7cc
PA
5802 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5803 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5804 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5805 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5806 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5807 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5808 {
5809 /* The inferior is about to take a signal that will take it
5810 out of the single step range. Set a breakpoint at the
5811 current PC (which is presumably where the signal handler
5812 will eventually return) and then allow the inferior to
5813 run free.
5814
5815 Note that this is only needed for a signal delivered
5816 while in the single-step range. Nested signals aren't a
5817 problem as they eventually all return. */
237fc4c9
PA
5818 if (debug_infrun)
5819 fprintf_unfiltered (gdb_stdlog,
5820 "infrun: signal may take us out of "
5821 "single-step range\n");
5822
372316f1 5823 clear_step_over_info ();
2c03e5be 5824 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5825 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5826 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5827 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5828 keep_going (ecs);
5829 return;
d303a6c7 5830 }
9d799f85
AC
5831
5832 /* Note: step_resume_breakpoint may be non-NULL. This occures
5833 when either there's a nested signal, or when there's a
5834 pending signal enabled just as the signal handler returns
5835 (leaving the inferior at the step-resume-breakpoint without
5836 actually executing it). Either way continue until the
5837 breakpoint is really hit. */
c447ac0b
PA
5838
5839 if (!switch_back_to_stepped_thread (ecs))
5840 {
5841 if (debug_infrun)
5842 fprintf_unfiltered (gdb_stdlog,
5843 "infrun: random signal, keep going\n");
5844
5845 keep_going (ecs);
5846 }
5847 return;
488f131b 5848 }
94c57d6a
PA
5849
5850 process_event_stop_test (ecs);
5851}
5852
5853/* Come here when we've got some debug event / signal we can explain
5854 (IOW, not a random signal), and test whether it should cause a
5855 stop, or whether we should resume the inferior (transparently).
5856 E.g., could be a breakpoint whose condition evaluates false; we
5857 could be still stepping within the line; etc. */
5858
5859static void
5860process_event_stop_test (struct execution_control_state *ecs)
5861{
5862 struct symtab_and_line stop_pc_sal;
5863 struct frame_info *frame;
5864 struct gdbarch *gdbarch;
cdaa5b73
PA
5865 CORE_ADDR jmp_buf_pc;
5866 struct bpstat_what what;
94c57d6a 5867
cdaa5b73 5868 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5869
cdaa5b73
PA
5870 frame = get_current_frame ();
5871 gdbarch = get_frame_arch (frame);
fcf3daef 5872
cdaa5b73 5873 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5874
cdaa5b73
PA
5875 if (what.call_dummy)
5876 {
5877 stop_stack_dummy = what.call_dummy;
5878 }
186c406b 5879
cdaa5b73
PA
5880 /* If we hit an internal event that triggers symbol changes, the
5881 current frame will be invalidated within bpstat_what (e.g., if we
5882 hit an internal solib event). Re-fetch it. */
5883 frame = get_current_frame ();
5884 gdbarch = get_frame_arch (frame);
e2e4d78b 5885
cdaa5b73
PA
5886 switch (what.main_action)
5887 {
5888 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5889 /* If we hit the breakpoint at longjmp while stepping, we
5890 install a momentary breakpoint at the target of the
5891 jmp_buf. */
186c406b 5892
cdaa5b73
PA
5893 if (debug_infrun)
5894 fprintf_unfiltered (gdb_stdlog,
5895 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 5896
cdaa5b73 5897 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 5898
cdaa5b73
PA
5899 if (what.is_longjmp)
5900 {
5901 struct value *arg_value;
5902
5903 /* If we set the longjmp breakpoint via a SystemTap probe,
5904 then use it to extract the arguments. The destination PC
5905 is the third argument to the probe. */
5906 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5907 if (arg_value)
8fa0c4f8
AA
5908 {
5909 jmp_buf_pc = value_as_address (arg_value);
5910 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5911 }
cdaa5b73
PA
5912 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5913 || !gdbarch_get_longjmp_target (gdbarch,
5914 frame, &jmp_buf_pc))
e2e4d78b 5915 {
cdaa5b73
PA
5916 if (debug_infrun)
5917 fprintf_unfiltered (gdb_stdlog,
5918 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
5919 "(!gdbarch_get_longjmp_target)\n");
5920 keep_going (ecs);
5921 return;
e2e4d78b 5922 }
e2e4d78b 5923
cdaa5b73
PA
5924 /* Insert a breakpoint at resume address. */
5925 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
5926 }
5927 else
5928 check_exception_resume (ecs, frame);
5929 keep_going (ecs);
5930 return;
e81a37f7 5931
cdaa5b73
PA
5932 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
5933 {
5934 struct frame_info *init_frame;
e81a37f7 5935
cdaa5b73 5936 /* There are several cases to consider.
c906108c 5937
cdaa5b73
PA
5938 1. The initiating frame no longer exists. In this case we
5939 must stop, because the exception or longjmp has gone too
5940 far.
2c03e5be 5941
cdaa5b73
PA
5942 2. The initiating frame exists, and is the same as the
5943 current frame. We stop, because the exception or longjmp
5944 has been caught.
2c03e5be 5945
cdaa5b73
PA
5946 3. The initiating frame exists and is different from the
5947 current frame. This means the exception or longjmp has
5948 been caught beneath the initiating frame, so keep going.
c906108c 5949
cdaa5b73
PA
5950 4. longjmp breakpoint has been placed just to protect
5951 against stale dummy frames and user is not interested in
5952 stopping around longjmps. */
c5aa993b 5953
cdaa5b73
PA
5954 if (debug_infrun)
5955 fprintf_unfiltered (gdb_stdlog,
5956 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 5957
cdaa5b73
PA
5958 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
5959 != NULL);
5960 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 5961
cdaa5b73
PA
5962 if (what.is_longjmp)
5963 {
b67a2c6f 5964 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 5965
cdaa5b73 5966 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 5967 {
cdaa5b73
PA
5968 /* Case 4. */
5969 keep_going (ecs);
5970 return;
e5ef252a 5971 }
cdaa5b73 5972 }
c5aa993b 5973
cdaa5b73 5974 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 5975
cdaa5b73
PA
5976 if (init_frame)
5977 {
5978 struct frame_id current_id
5979 = get_frame_id (get_current_frame ());
5980 if (frame_id_eq (current_id,
5981 ecs->event_thread->initiating_frame))
5982 {
5983 /* Case 2. Fall through. */
5984 }
5985 else
5986 {
5987 /* Case 3. */
5988 keep_going (ecs);
5989 return;
5990 }
68f53502 5991 }
488f131b 5992
cdaa5b73
PA
5993 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
5994 exists. */
5995 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 5996
bdc36728 5997 end_stepping_range (ecs);
cdaa5b73
PA
5998 }
5999 return;
e5ef252a 6000
cdaa5b73
PA
6001 case BPSTAT_WHAT_SINGLE:
6002 if (debug_infrun)
6003 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6004 ecs->event_thread->stepping_over_breakpoint = 1;
6005 /* Still need to check other stuff, at least the case where we
6006 are stepping and step out of the right range. */
6007 break;
e5ef252a 6008
cdaa5b73
PA
6009 case BPSTAT_WHAT_STEP_RESUME:
6010 if (debug_infrun)
6011 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6012
cdaa5b73
PA
6013 delete_step_resume_breakpoint (ecs->event_thread);
6014 if (ecs->event_thread->control.proceed_to_finish
6015 && execution_direction == EXEC_REVERSE)
6016 {
6017 struct thread_info *tp = ecs->event_thread;
6018
6019 /* We are finishing a function in reverse, and just hit the
6020 step-resume breakpoint at the start address of the
6021 function, and we're almost there -- just need to back up
6022 by one more single-step, which should take us back to the
6023 function call. */
6024 tp->control.step_range_start = tp->control.step_range_end = 1;
6025 keep_going (ecs);
e5ef252a 6026 return;
cdaa5b73
PA
6027 }
6028 fill_in_stop_func (gdbarch, ecs);
6029 if (stop_pc == ecs->stop_func_start
6030 && execution_direction == EXEC_REVERSE)
6031 {
6032 /* We are stepping over a function call in reverse, and just
6033 hit the step-resume breakpoint at the start address of
6034 the function. Go back to single-stepping, which should
6035 take us back to the function call. */
6036 ecs->event_thread->stepping_over_breakpoint = 1;
6037 keep_going (ecs);
6038 return;
6039 }
6040 break;
e5ef252a 6041
cdaa5b73
PA
6042 case BPSTAT_WHAT_STOP_NOISY:
6043 if (debug_infrun)
6044 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6045 stop_print_frame = 1;
e5ef252a 6046
99619bea
PA
6047 /* Assume the thread stopped for a breapoint. We'll still check
6048 whether a/the breakpoint is there when the thread is next
6049 resumed. */
6050 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6051
22bcd14b 6052 stop_waiting (ecs);
cdaa5b73 6053 return;
e5ef252a 6054
cdaa5b73
PA
6055 case BPSTAT_WHAT_STOP_SILENT:
6056 if (debug_infrun)
6057 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6058 stop_print_frame = 0;
e5ef252a 6059
99619bea
PA
6060 /* Assume the thread stopped for a breapoint. We'll still check
6061 whether a/the breakpoint is there when the thread is next
6062 resumed. */
6063 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6064 stop_waiting (ecs);
cdaa5b73
PA
6065 return;
6066
6067 case BPSTAT_WHAT_HP_STEP_RESUME:
6068 if (debug_infrun)
6069 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6070
6071 delete_step_resume_breakpoint (ecs->event_thread);
6072 if (ecs->event_thread->step_after_step_resume_breakpoint)
6073 {
6074 /* Back when the step-resume breakpoint was inserted, we
6075 were trying to single-step off a breakpoint. Go back to
6076 doing that. */
6077 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6078 ecs->event_thread->stepping_over_breakpoint = 1;
6079 keep_going (ecs);
6080 return;
e5ef252a 6081 }
cdaa5b73
PA
6082 break;
6083
6084 case BPSTAT_WHAT_KEEP_CHECKING:
6085 break;
e5ef252a 6086 }
c906108c 6087
af48d08f
PA
6088 /* If we stepped a permanent breakpoint and we had a high priority
6089 step-resume breakpoint for the address we stepped, but we didn't
6090 hit it, then we must have stepped into the signal handler. The
6091 step-resume was only necessary to catch the case of _not_
6092 stepping into the handler, so delete it, and fall through to
6093 checking whether the step finished. */
6094 if (ecs->event_thread->stepped_breakpoint)
6095 {
6096 struct breakpoint *sr_bp
6097 = ecs->event_thread->control.step_resume_breakpoint;
6098
8d707a12
PA
6099 if (sr_bp != NULL
6100 && sr_bp->loc->permanent
af48d08f
PA
6101 && sr_bp->type == bp_hp_step_resume
6102 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6103 {
6104 if (debug_infrun)
6105 fprintf_unfiltered (gdb_stdlog,
6106 "infrun: stepped permanent breakpoint, stopped in "
6107 "handler\n");
6108 delete_step_resume_breakpoint (ecs->event_thread);
6109 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6110 }
6111 }
6112
cdaa5b73
PA
6113 /* We come here if we hit a breakpoint but should not stop for it.
6114 Possibly we also were stepping and should stop for that. So fall
6115 through and test for stepping. But, if not stepping, do not
6116 stop. */
c906108c 6117
a7212384
UW
6118 /* In all-stop mode, if we're currently stepping but have stopped in
6119 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6120 if (switch_back_to_stepped_thread (ecs))
6121 return;
776f04fa 6122
8358c15c 6123 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6124 {
527159b7 6125 if (debug_infrun)
d3169d93
DJ
6126 fprintf_unfiltered (gdb_stdlog,
6127 "infrun: step-resume breakpoint is inserted\n");
527159b7 6128
488f131b
JB
6129 /* Having a step-resume breakpoint overrides anything
6130 else having to do with stepping commands until
6131 that breakpoint is reached. */
488f131b
JB
6132 keep_going (ecs);
6133 return;
6134 }
c5aa993b 6135
16c381f0 6136 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6137 {
527159b7 6138 if (debug_infrun)
8a9de0e4 6139 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6140 /* Likewise if we aren't even stepping. */
488f131b
JB
6141 keep_going (ecs);
6142 return;
6143 }
c5aa993b 6144
4b7703ad
JB
6145 /* Re-fetch current thread's frame in case the code above caused
6146 the frame cache to be re-initialized, making our FRAME variable
6147 a dangling pointer. */
6148 frame = get_current_frame ();
628fe4e4 6149 gdbarch = get_frame_arch (frame);
7e324e48 6150 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6151
488f131b 6152 /* If stepping through a line, keep going if still within it.
c906108c 6153
488f131b
JB
6154 Note that step_range_end is the address of the first instruction
6155 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6156 within it!
6157
6158 Note also that during reverse execution, we may be stepping
6159 through a function epilogue and therefore must detect when
6160 the current-frame changes in the middle of a line. */
6161
ce4c476a 6162 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6163 && (execution_direction != EXEC_REVERSE
388a8562 6164 || frame_id_eq (get_frame_id (frame),
16c381f0 6165 ecs->event_thread->control.step_frame_id)))
488f131b 6166 {
527159b7 6167 if (debug_infrun)
5af949e3
UW
6168 fprintf_unfiltered
6169 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6170 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6171 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6172
c1e36e3e
PA
6173 /* Tentatively re-enable range stepping; `resume' disables it if
6174 necessary (e.g., if we're stepping over a breakpoint or we
6175 have software watchpoints). */
6176 ecs->event_thread->control.may_range_step = 1;
6177
b2175913
MS
6178 /* When stepping backward, stop at beginning of line range
6179 (unless it's the function entry point, in which case
6180 keep going back to the call point). */
16c381f0 6181 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6182 && stop_pc != ecs->stop_func_start
6183 && execution_direction == EXEC_REVERSE)
bdc36728 6184 end_stepping_range (ecs);
b2175913
MS
6185 else
6186 keep_going (ecs);
6187
488f131b
JB
6188 return;
6189 }
c5aa993b 6190
488f131b 6191 /* We stepped out of the stepping range. */
c906108c 6192
488f131b 6193 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6194 loader dynamic symbol resolution code...
6195
6196 EXEC_FORWARD: we keep on single stepping until we exit the run
6197 time loader code and reach the callee's address.
6198
6199 EXEC_REVERSE: we've already executed the callee (backward), and
6200 the runtime loader code is handled just like any other
6201 undebuggable function call. Now we need only keep stepping
6202 backward through the trampoline code, and that's handled further
6203 down, so there is nothing for us to do here. */
6204
6205 if (execution_direction != EXEC_REVERSE
16c381f0 6206 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6207 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6208 {
4c8c40e6 6209 CORE_ADDR pc_after_resolver =
568d6575 6210 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6211
527159b7 6212 if (debug_infrun)
3e43a32a
MS
6213 fprintf_unfiltered (gdb_stdlog,
6214 "infrun: stepped into dynsym resolve code\n");
527159b7 6215
488f131b
JB
6216 if (pc_after_resolver)
6217 {
6218 /* Set up a step-resume breakpoint at the address
6219 indicated by SKIP_SOLIB_RESOLVER. */
6220 struct symtab_and_line sr_sal;
abbb1732 6221
fe39c653 6222 init_sal (&sr_sal);
488f131b 6223 sr_sal.pc = pc_after_resolver;
6c95b8df 6224 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6225
a6d9a66e
UW
6226 insert_step_resume_breakpoint_at_sal (gdbarch,
6227 sr_sal, null_frame_id);
c5aa993b 6228 }
c906108c 6229
488f131b
JB
6230 keep_going (ecs);
6231 return;
6232 }
c906108c 6233
16c381f0
JK
6234 if (ecs->event_thread->control.step_range_end != 1
6235 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6236 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6237 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6238 {
527159b7 6239 if (debug_infrun)
3e43a32a
MS
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: stepped into signal trampoline\n");
42edda50 6242 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6243 a signal trampoline (either by a signal being delivered or by
6244 the signal handler returning). Just single-step until the
6245 inferior leaves the trampoline (either by calling the handler
6246 or returning). */
488f131b
JB
6247 keep_going (ecs);
6248 return;
6249 }
c906108c 6250
14132e89
MR
6251 /* If we're in the return path from a shared library trampoline,
6252 we want to proceed through the trampoline when stepping. */
6253 /* macro/2012-04-25: This needs to come before the subroutine
6254 call check below as on some targets return trampolines look
6255 like subroutine calls (MIPS16 return thunks). */
6256 if (gdbarch_in_solib_return_trampoline (gdbarch,
6257 stop_pc, ecs->stop_func_name)
6258 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6259 {
6260 /* Determine where this trampoline returns. */
6261 CORE_ADDR real_stop_pc;
6262
6263 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6264
6265 if (debug_infrun)
6266 fprintf_unfiltered (gdb_stdlog,
6267 "infrun: stepped into solib return tramp\n");
6268
6269 /* Only proceed through if we know where it's going. */
6270 if (real_stop_pc)
6271 {
6272 /* And put the step-breakpoint there and go until there. */
6273 struct symtab_and_line sr_sal;
6274
6275 init_sal (&sr_sal); /* initialize to zeroes */
6276 sr_sal.pc = real_stop_pc;
6277 sr_sal.section = find_pc_overlay (sr_sal.pc);
6278 sr_sal.pspace = get_frame_program_space (frame);
6279
6280 /* Do not specify what the fp should be when we stop since
6281 on some machines the prologue is where the new fp value
6282 is established. */
6283 insert_step_resume_breakpoint_at_sal (gdbarch,
6284 sr_sal, null_frame_id);
6285
6286 /* Restart without fiddling with the step ranges or
6287 other state. */
6288 keep_going (ecs);
6289 return;
6290 }
6291 }
6292
c17eaafe
DJ
6293 /* Check for subroutine calls. The check for the current frame
6294 equalling the step ID is not necessary - the check of the
6295 previous frame's ID is sufficient - but it is a common case and
6296 cheaper than checking the previous frame's ID.
14e60db5
DJ
6297
6298 NOTE: frame_id_eq will never report two invalid frame IDs as
6299 being equal, so to get into this block, both the current and
6300 previous frame must have valid frame IDs. */
005ca36a
JB
6301 /* The outer_frame_id check is a heuristic to detect stepping
6302 through startup code. If we step over an instruction which
6303 sets the stack pointer from an invalid value to a valid value,
6304 we may detect that as a subroutine call from the mythical
6305 "outermost" function. This could be fixed by marking
6306 outermost frames as !stack_p,code_p,special_p. Then the
6307 initial outermost frame, before sp was valid, would
ce6cca6d 6308 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6309 for more. */
edb3359d 6310 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6311 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6312 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6313 ecs->event_thread->control.step_stack_frame_id)
6314 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6315 outer_frame_id)
885eeb5b
PA
6316 || (ecs->event_thread->control.step_start_function
6317 != find_pc_function (stop_pc)))))
488f131b 6318 {
95918acb 6319 CORE_ADDR real_stop_pc;
8fb3e588 6320
527159b7 6321 if (debug_infrun)
8a9de0e4 6322 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6323
b7a084be 6324 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6325 {
6326 /* I presume that step_over_calls is only 0 when we're
6327 supposed to be stepping at the assembly language level
6328 ("stepi"). Just stop. */
388a8562 6329 /* And this works the same backward as frontward. MVS */
bdc36728 6330 end_stepping_range (ecs);
95918acb
AC
6331 return;
6332 }
8fb3e588 6333
388a8562
MS
6334 /* Reverse stepping through solib trampolines. */
6335
6336 if (execution_direction == EXEC_REVERSE
16c381f0 6337 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6338 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6339 || (ecs->stop_func_start == 0
6340 && in_solib_dynsym_resolve_code (stop_pc))))
6341 {
6342 /* Any solib trampoline code can be handled in reverse
6343 by simply continuing to single-step. We have already
6344 executed the solib function (backwards), and a few
6345 steps will take us back through the trampoline to the
6346 caller. */
6347 keep_going (ecs);
6348 return;
6349 }
6350
16c381f0 6351 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6352 {
b2175913
MS
6353 /* We're doing a "next".
6354
6355 Normal (forward) execution: set a breakpoint at the
6356 callee's return address (the address at which the caller
6357 will resume).
6358
6359 Reverse (backward) execution. set the step-resume
6360 breakpoint at the start of the function that we just
6361 stepped into (backwards), and continue to there. When we
6130d0b7 6362 get there, we'll need to single-step back to the caller. */
b2175913
MS
6363
6364 if (execution_direction == EXEC_REVERSE)
6365 {
acf9414f
JK
6366 /* If we're already at the start of the function, we've either
6367 just stepped backward into a single instruction function,
6368 or stepped back out of a signal handler to the first instruction
6369 of the function. Just keep going, which will single-step back
6370 to the caller. */
58c48e72 6371 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6372 {
6373 struct symtab_and_line sr_sal;
6374
6375 /* Normal function call return (static or dynamic). */
6376 init_sal (&sr_sal);
6377 sr_sal.pc = ecs->stop_func_start;
6378 sr_sal.pspace = get_frame_program_space (frame);
6379 insert_step_resume_breakpoint_at_sal (gdbarch,
6380 sr_sal, null_frame_id);
6381 }
b2175913
MS
6382 }
6383 else
568d6575 6384 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6385
8567c30f
AC
6386 keep_going (ecs);
6387 return;
6388 }
a53c66de 6389
95918acb 6390 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6391 calling routine and the real function), locate the real
6392 function. That's what tells us (a) whether we want to step
6393 into it at all, and (b) what prologue we want to run to the
6394 end of, if we do step into it. */
568d6575 6395 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6396 if (real_stop_pc == 0)
568d6575 6397 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6398 if (real_stop_pc != 0)
6399 ecs->stop_func_start = real_stop_pc;
8fb3e588 6400
db5f024e 6401 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6402 {
6403 struct symtab_and_line sr_sal;
abbb1732 6404
1b2bfbb9
RC
6405 init_sal (&sr_sal);
6406 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6407 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6408
a6d9a66e
UW
6409 insert_step_resume_breakpoint_at_sal (gdbarch,
6410 sr_sal, null_frame_id);
8fb3e588
AC
6411 keep_going (ecs);
6412 return;
1b2bfbb9
RC
6413 }
6414
95918acb 6415 /* If we have line number information for the function we are
1bfeeb0f
JL
6416 thinking of stepping into and the function isn't on the skip
6417 list, step into it.
95918acb 6418
8fb3e588
AC
6419 If there are several symtabs at that PC (e.g. with include
6420 files), just want to know whether *any* of them have line
6421 numbers. find_pc_line handles this. */
95918acb
AC
6422 {
6423 struct symtab_and_line tmp_sal;
8fb3e588 6424
95918acb 6425 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6426 if (tmp_sal.line != 0
85817405
JK
6427 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6428 &tmp_sal))
95918acb 6429 {
b2175913 6430 if (execution_direction == EXEC_REVERSE)
568d6575 6431 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6432 else
568d6575 6433 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6434 return;
6435 }
6436 }
6437
6438 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6439 set, we stop the step so that the user has a chance to switch
6440 in assembly mode. */
16c381f0 6441 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6442 && step_stop_if_no_debug)
95918acb 6443 {
bdc36728 6444 end_stepping_range (ecs);
95918acb
AC
6445 return;
6446 }
6447
b2175913
MS
6448 if (execution_direction == EXEC_REVERSE)
6449 {
acf9414f
JK
6450 /* If we're already at the start of the function, we've either just
6451 stepped backward into a single instruction function without line
6452 number info, or stepped back out of a signal handler to the first
6453 instruction of the function without line number info. Just keep
6454 going, which will single-step back to the caller. */
6455 if (ecs->stop_func_start != stop_pc)
6456 {
6457 /* Set a breakpoint at callee's start address.
6458 From there we can step once and be back in the caller. */
6459 struct symtab_and_line sr_sal;
abbb1732 6460
acf9414f
JK
6461 init_sal (&sr_sal);
6462 sr_sal.pc = ecs->stop_func_start;
6463 sr_sal.pspace = get_frame_program_space (frame);
6464 insert_step_resume_breakpoint_at_sal (gdbarch,
6465 sr_sal, null_frame_id);
6466 }
b2175913
MS
6467 }
6468 else
6469 /* Set a breakpoint at callee's return address (the address
6470 at which the caller will resume). */
568d6575 6471 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6472
95918acb 6473 keep_going (ecs);
488f131b 6474 return;
488f131b 6475 }
c906108c 6476
fdd654f3
MS
6477 /* Reverse stepping through solib trampolines. */
6478
6479 if (execution_direction == EXEC_REVERSE
16c381f0 6480 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6481 {
6482 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6483 || (ecs->stop_func_start == 0
6484 && in_solib_dynsym_resolve_code (stop_pc)))
6485 {
6486 /* Any solib trampoline code can be handled in reverse
6487 by simply continuing to single-step. We have already
6488 executed the solib function (backwards), and a few
6489 steps will take us back through the trampoline to the
6490 caller. */
6491 keep_going (ecs);
6492 return;
6493 }
6494 else if (in_solib_dynsym_resolve_code (stop_pc))
6495 {
6496 /* Stepped backward into the solib dynsym resolver.
6497 Set a breakpoint at its start and continue, then
6498 one more step will take us out. */
6499 struct symtab_and_line sr_sal;
abbb1732 6500
fdd654f3
MS
6501 init_sal (&sr_sal);
6502 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6503 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6504 insert_step_resume_breakpoint_at_sal (gdbarch,
6505 sr_sal, null_frame_id);
6506 keep_going (ecs);
6507 return;
6508 }
6509 }
6510
2afb61aa 6511 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6512
1b2bfbb9
RC
6513 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6514 the trampoline processing logic, however, there are some trampolines
6515 that have no names, so we should do trampoline handling first. */
16c381f0 6516 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6517 && ecs->stop_func_name == NULL
2afb61aa 6518 && stop_pc_sal.line == 0)
1b2bfbb9 6519 {
527159b7 6520 if (debug_infrun)
3e43a32a
MS
6521 fprintf_unfiltered (gdb_stdlog,
6522 "infrun: stepped into undebuggable function\n");
527159b7 6523
1b2bfbb9 6524 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6525 undebuggable function (where there is no debugging information
6526 and no line number corresponding to the address where the
1b2bfbb9
RC
6527 inferior stopped). Since we want to skip this kind of code,
6528 we keep going until the inferior returns from this
14e60db5
DJ
6529 function - unless the user has asked us not to (via
6530 set step-mode) or we no longer know how to get back
6531 to the call site. */
6532 if (step_stop_if_no_debug
c7ce8faa 6533 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6534 {
6535 /* If we have no line number and the step-stop-if-no-debug
6536 is set, we stop the step so that the user has a chance to
6537 switch in assembly mode. */
bdc36728 6538 end_stepping_range (ecs);
1b2bfbb9
RC
6539 return;
6540 }
6541 else
6542 {
6543 /* Set a breakpoint at callee's return address (the address
6544 at which the caller will resume). */
568d6575 6545 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6546 keep_going (ecs);
6547 return;
6548 }
6549 }
6550
16c381f0 6551 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6552 {
6553 /* It is stepi or nexti. We always want to stop stepping after
6554 one instruction. */
527159b7 6555 if (debug_infrun)
8a9de0e4 6556 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6557 end_stepping_range (ecs);
1b2bfbb9
RC
6558 return;
6559 }
6560
2afb61aa 6561 if (stop_pc_sal.line == 0)
488f131b
JB
6562 {
6563 /* We have no line number information. That means to stop
6564 stepping (does this always happen right after one instruction,
6565 when we do "s" in a function with no line numbers,
6566 or can this happen as a result of a return or longjmp?). */
527159b7 6567 if (debug_infrun)
8a9de0e4 6568 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6569 end_stepping_range (ecs);
488f131b
JB
6570 return;
6571 }
c906108c 6572
edb3359d
DJ
6573 /* Look for "calls" to inlined functions, part one. If the inline
6574 frame machinery detected some skipped call sites, we have entered
6575 a new inline function. */
6576
6577 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6578 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6579 && inline_skipped_frames (ecs->ptid))
6580 {
6581 struct symtab_and_line call_sal;
6582
6583 if (debug_infrun)
6584 fprintf_unfiltered (gdb_stdlog,
6585 "infrun: stepped into inlined function\n");
6586
6587 find_frame_sal (get_current_frame (), &call_sal);
6588
16c381f0 6589 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6590 {
6591 /* For "step", we're going to stop. But if the call site
6592 for this inlined function is on the same source line as
6593 we were previously stepping, go down into the function
6594 first. Otherwise stop at the call site. */
6595
6596 if (call_sal.line == ecs->event_thread->current_line
6597 && call_sal.symtab == ecs->event_thread->current_symtab)
6598 step_into_inline_frame (ecs->ptid);
6599
bdc36728 6600 end_stepping_range (ecs);
edb3359d
DJ
6601 return;
6602 }
6603 else
6604 {
6605 /* For "next", we should stop at the call site if it is on a
6606 different source line. Otherwise continue through the
6607 inlined function. */
6608 if (call_sal.line == ecs->event_thread->current_line
6609 && call_sal.symtab == ecs->event_thread->current_symtab)
6610 keep_going (ecs);
6611 else
bdc36728 6612 end_stepping_range (ecs);
edb3359d
DJ
6613 return;
6614 }
6615 }
6616
6617 /* Look for "calls" to inlined functions, part two. If we are still
6618 in the same real function we were stepping through, but we have
6619 to go further up to find the exact frame ID, we are stepping
6620 through a more inlined call beyond its call site. */
6621
6622 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6623 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6624 ecs->event_thread->control.step_frame_id)
edb3359d 6625 && stepped_in_from (get_current_frame (),
16c381f0 6626 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6627 {
6628 if (debug_infrun)
6629 fprintf_unfiltered (gdb_stdlog,
6630 "infrun: stepping through inlined function\n");
6631
16c381f0 6632 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6633 keep_going (ecs);
6634 else
bdc36728 6635 end_stepping_range (ecs);
edb3359d
DJ
6636 return;
6637 }
6638
2afb61aa 6639 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6640 && (ecs->event_thread->current_line != stop_pc_sal.line
6641 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6642 {
6643 /* We are at the start of a different line. So stop. Note that
6644 we don't stop if we step into the middle of a different line.
6645 That is said to make things like for (;;) statements work
6646 better. */
527159b7 6647 if (debug_infrun)
3e43a32a
MS
6648 fprintf_unfiltered (gdb_stdlog,
6649 "infrun: stepped to a different line\n");
bdc36728 6650 end_stepping_range (ecs);
488f131b
JB
6651 return;
6652 }
c906108c 6653
488f131b 6654 /* We aren't done stepping.
c906108c 6655
488f131b
JB
6656 Optimize by setting the stepping range to the line.
6657 (We might not be in the original line, but if we entered a
6658 new line in mid-statement, we continue stepping. This makes
6659 things like for(;;) statements work better.) */
c906108c 6660
16c381f0
JK
6661 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6662 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6663 ecs->event_thread->control.may_range_step = 1;
edb3359d 6664 set_step_info (frame, stop_pc_sal);
488f131b 6665
527159b7 6666 if (debug_infrun)
8a9de0e4 6667 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6668 keep_going (ecs);
104c1213
JM
6669}
6670
c447ac0b
PA
6671/* In all-stop mode, if we're currently stepping but have stopped in
6672 some other thread, we may need to switch back to the stepped
6673 thread. Returns true we set the inferior running, false if we left
6674 it stopped (and the event needs further processing). */
6675
6676static int
6677switch_back_to_stepped_thread (struct execution_control_state *ecs)
6678{
fbea99ea 6679 if (!target_is_non_stop_p ())
c447ac0b
PA
6680 {
6681 struct thread_info *tp;
99619bea
PA
6682 struct thread_info *stepping_thread;
6683
6684 /* If any thread is blocked on some internal breakpoint, and we
6685 simply need to step over that breakpoint to get it going
6686 again, do that first. */
6687
6688 /* However, if we see an event for the stepping thread, then we
6689 know all other threads have been moved past their breakpoints
6690 already. Let the caller check whether the step is finished,
6691 etc., before deciding to move it past a breakpoint. */
6692 if (ecs->event_thread->control.step_range_end != 0)
6693 return 0;
6694
6695 /* Check if the current thread is blocked on an incomplete
6696 step-over, interrupted by a random signal. */
6697 if (ecs->event_thread->control.trap_expected
6698 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6699 {
99619bea
PA
6700 if (debug_infrun)
6701 {
6702 fprintf_unfiltered (gdb_stdlog,
6703 "infrun: need to finish step-over of [%s]\n",
6704 target_pid_to_str (ecs->event_thread->ptid));
6705 }
6706 keep_going (ecs);
6707 return 1;
6708 }
2adfaa28 6709
99619bea
PA
6710 /* Check if the current thread is blocked by a single-step
6711 breakpoint of another thread. */
6712 if (ecs->hit_singlestep_breakpoint)
6713 {
6714 if (debug_infrun)
6715 {
6716 fprintf_unfiltered (gdb_stdlog,
6717 "infrun: need to step [%s] over single-step "
6718 "breakpoint\n",
6719 target_pid_to_str (ecs->ptid));
6720 }
6721 keep_going (ecs);
6722 return 1;
6723 }
6724
4d9d9d04
PA
6725 /* If this thread needs yet another step-over (e.g., stepping
6726 through a delay slot), do it first before moving on to
6727 another thread. */
6728 if (thread_still_needs_step_over (ecs->event_thread))
6729 {
6730 if (debug_infrun)
6731 {
6732 fprintf_unfiltered (gdb_stdlog,
6733 "infrun: thread [%s] still needs step-over\n",
6734 target_pid_to_str (ecs->event_thread->ptid));
6735 }
6736 keep_going (ecs);
6737 return 1;
6738 }
70509625 6739
483805cf
PA
6740 /* If scheduler locking applies even if not stepping, there's no
6741 need to walk over threads. Above we've checked whether the
6742 current thread is stepping. If some other thread not the
6743 event thread is stepping, then it must be that scheduler
6744 locking is not in effect. */
856e7dd6 6745 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6746 return 0;
6747
4d9d9d04
PA
6748 /* Otherwise, we no longer expect a trap in the current thread.
6749 Clear the trap_expected flag before switching back -- this is
6750 what keep_going does as well, if we call it. */
6751 ecs->event_thread->control.trap_expected = 0;
6752
6753 /* Likewise, clear the signal if it should not be passed. */
6754 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6755 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6756
6757 /* Do all pending step-overs before actually proceeding with
483805cf 6758 step/next/etc. */
4d9d9d04
PA
6759 if (start_step_over ())
6760 {
6761 prepare_to_wait (ecs);
6762 return 1;
6763 }
6764
6765 /* Look for the stepping/nexting thread. */
483805cf 6766 stepping_thread = NULL;
4d9d9d04 6767
034f788c 6768 ALL_NON_EXITED_THREADS (tp)
483805cf 6769 {
fbea99ea
PA
6770 /* Ignore threads of processes the caller is not
6771 resuming. */
483805cf 6772 if (!sched_multi
1afd5965 6773 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6774 continue;
6775
6776 /* When stepping over a breakpoint, we lock all threads
6777 except the one that needs to move past the breakpoint.
6778 If a non-event thread has this set, the "incomplete
6779 step-over" check above should have caught it earlier. */
372316f1
PA
6780 if (tp->control.trap_expected)
6781 {
6782 internal_error (__FILE__, __LINE__,
6783 "[%s] has inconsistent state: "
6784 "trap_expected=%d\n",
6785 target_pid_to_str (tp->ptid),
6786 tp->control.trap_expected);
6787 }
483805cf
PA
6788
6789 /* Did we find the stepping thread? */
6790 if (tp->control.step_range_end)
6791 {
6792 /* Yep. There should only one though. */
6793 gdb_assert (stepping_thread == NULL);
6794
6795 /* The event thread is handled at the top, before we
6796 enter this loop. */
6797 gdb_assert (tp != ecs->event_thread);
6798
6799 /* If some thread other than the event thread is
6800 stepping, then scheduler locking can't be in effect,
6801 otherwise we wouldn't have resumed the current event
6802 thread in the first place. */
856e7dd6 6803 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6804
6805 stepping_thread = tp;
6806 }
99619bea
PA
6807 }
6808
483805cf 6809 if (stepping_thread != NULL)
99619bea 6810 {
c447ac0b
PA
6811 if (debug_infrun)
6812 fprintf_unfiltered (gdb_stdlog,
6813 "infrun: switching back to stepped thread\n");
6814
2ac7589c
PA
6815 if (keep_going_stepped_thread (stepping_thread))
6816 {
6817 prepare_to_wait (ecs);
6818 return 1;
6819 }
6820 }
6821 }
2adfaa28 6822
2ac7589c
PA
6823 return 0;
6824}
2adfaa28 6825
2ac7589c
PA
6826/* Set a previously stepped thread back to stepping. Returns true on
6827 success, false if the resume is not possible (e.g., the thread
6828 vanished). */
6829
6830static int
6831keep_going_stepped_thread (struct thread_info *tp)
6832{
6833 struct frame_info *frame;
6834 struct gdbarch *gdbarch;
6835 struct execution_control_state ecss;
6836 struct execution_control_state *ecs = &ecss;
2adfaa28 6837
2ac7589c
PA
6838 /* If the stepping thread exited, then don't try to switch back and
6839 resume it, which could fail in several different ways depending
6840 on the target. Instead, just keep going.
2adfaa28 6841
2ac7589c
PA
6842 We can find a stepping dead thread in the thread list in two
6843 cases:
2adfaa28 6844
2ac7589c
PA
6845 - The target supports thread exit events, and when the target
6846 tries to delete the thread from the thread list, inferior_ptid
6847 pointed at the exiting thread. In such case, calling
6848 delete_thread does not really remove the thread from the list;
6849 instead, the thread is left listed, with 'exited' state.
64ce06e4 6850
2ac7589c
PA
6851 - The target's debug interface does not support thread exit
6852 events, and so we have no idea whatsoever if the previously
6853 stepping thread is still alive. For that reason, we need to
6854 synchronously query the target now. */
2adfaa28 6855
2ac7589c
PA
6856 if (is_exited (tp->ptid)
6857 || !target_thread_alive (tp->ptid))
6858 {
6859 if (debug_infrun)
6860 fprintf_unfiltered (gdb_stdlog,
6861 "infrun: not resuming previously "
6862 "stepped thread, it has vanished\n");
6863
6864 delete_thread (tp->ptid);
6865 return 0;
c447ac0b 6866 }
2ac7589c
PA
6867
6868 if (debug_infrun)
6869 fprintf_unfiltered (gdb_stdlog,
6870 "infrun: resuming previously stepped thread\n");
6871
6872 reset_ecs (ecs, tp);
6873 switch_to_thread (tp->ptid);
6874
6875 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6876 frame = get_current_frame ();
6877 gdbarch = get_frame_arch (frame);
6878
6879 /* If the PC of the thread we were trying to single-step has
6880 changed, then that thread has trapped or been signaled, but the
6881 event has not been reported to GDB yet. Re-poll the target
6882 looking for this particular thread's event (i.e. temporarily
6883 enable schedlock) by:
6884
6885 - setting a break at the current PC
6886 - resuming that particular thread, only (by setting trap
6887 expected)
6888
6889 This prevents us continuously moving the single-step breakpoint
6890 forward, one instruction at a time, overstepping. */
6891
6892 if (stop_pc != tp->prev_pc)
6893 {
6894 ptid_t resume_ptid;
6895
6896 if (debug_infrun)
6897 fprintf_unfiltered (gdb_stdlog,
6898 "infrun: expected thread advanced also (%s -> %s)\n",
6899 paddress (target_gdbarch (), tp->prev_pc),
6900 paddress (target_gdbarch (), stop_pc));
6901
6902 /* Clear the info of the previous step-over, as it's no longer
6903 valid (if the thread was trying to step over a breakpoint, it
6904 has already succeeded). It's what keep_going would do too,
6905 if we called it. Do this before trying to insert the sss
6906 breakpoint, otherwise if we were previously trying to step
6907 over this exact address in another thread, the breakpoint is
6908 skipped. */
6909 clear_step_over_info ();
6910 tp->control.trap_expected = 0;
6911
6912 insert_single_step_breakpoint (get_frame_arch (frame),
6913 get_frame_address_space (frame),
6914 stop_pc);
6915
372316f1 6916 tp->resumed = 1;
fbea99ea 6917 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
6918 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
6919 }
6920 else
6921 {
6922 if (debug_infrun)
6923 fprintf_unfiltered (gdb_stdlog,
6924 "infrun: expected thread still hasn't advanced\n");
6925
6926 keep_going_pass_signal (ecs);
6927 }
6928 return 1;
c447ac0b
PA
6929}
6930
8b061563
PA
6931/* Is thread TP in the middle of (software or hardware)
6932 single-stepping? (Note the result of this function must never be
6933 passed directly as target_resume's STEP parameter.) */
104c1213 6934
a289b8f6 6935static int
b3444185 6936currently_stepping (struct thread_info *tp)
a7212384 6937{
8358c15c
JK
6938 return ((tp->control.step_range_end
6939 && tp->control.step_resume_breakpoint == NULL)
6940 || tp->control.trap_expected
af48d08f 6941 || tp->stepped_breakpoint
8358c15c 6942 || bpstat_should_step ());
a7212384
UW
6943}
6944
b2175913
MS
6945/* Inferior has stepped into a subroutine call with source code that
6946 we should not step over. Do step to the first line of code in
6947 it. */
c2c6d25f
JM
6948
6949static void
568d6575
UW
6950handle_step_into_function (struct gdbarch *gdbarch,
6951 struct execution_control_state *ecs)
c2c6d25f 6952{
43f3e411 6953 struct compunit_symtab *cust;
2afb61aa 6954 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 6955
7e324e48
GB
6956 fill_in_stop_func (gdbarch, ecs);
6957
43f3e411
DE
6958 cust = find_pc_compunit_symtab (stop_pc);
6959 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 6960 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 6961 ecs->stop_func_start);
c2c6d25f 6962
2afb61aa 6963 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
6964 /* Use the step_resume_break to step until the end of the prologue,
6965 even if that involves jumps (as it seems to on the vax under
6966 4.2). */
6967 /* If the prologue ends in the middle of a source line, continue to
6968 the end of that source line (if it is still within the function).
6969 Otherwise, just go to end of prologue. */
2afb61aa
PA
6970 if (stop_func_sal.end
6971 && stop_func_sal.pc != ecs->stop_func_start
6972 && stop_func_sal.end < ecs->stop_func_end)
6973 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 6974
2dbd5e30
KB
6975 /* Architectures which require breakpoint adjustment might not be able
6976 to place a breakpoint at the computed address. If so, the test
6977 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
6978 ecs->stop_func_start to an address at which a breakpoint may be
6979 legitimately placed.
8fb3e588 6980
2dbd5e30
KB
6981 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
6982 made, GDB will enter an infinite loop when stepping through
6983 optimized code consisting of VLIW instructions which contain
6984 subinstructions corresponding to different source lines. On
6985 FR-V, it's not permitted to place a breakpoint on any but the
6986 first subinstruction of a VLIW instruction. When a breakpoint is
6987 set, GDB will adjust the breakpoint address to the beginning of
6988 the VLIW instruction. Thus, we need to make the corresponding
6989 adjustment here when computing the stop address. */
8fb3e588 6990
568d6575 6991 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
6992 {
6993 ecs->stop_func_start
568d6575 6994 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 6995 ecs->stop_func_start);
2dbd5e30
KB
6996 }
6997
c2c6d25f
JM
6998 if (ecs->stop_func_start == stop_pc)
6999 {
7000 /* We are already there: stop now. */
bdc36728 7001 end_stepping_range (ecs);
c2c6d25f
JM
7002 return;
7003 }
7004 else
7005 {
7006 /* Put the step-breakpoint there and go until there. */
fe39c653 7007 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7008 sr_sal.pc = ecs->stop_func_start;
7009 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7010 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7011
c2c6d25f 7012 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7013 some machines the prologue is where the new fp value is
7014 established. */
a6d9a66e 7015 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7016
7017 /* And make sure stepping stops right away then. */
16c381f0
JK
7018 ecs->event_thread->control.step_range_end
7019 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7020 }
7021 keep_going (ecs);
7022}
d4f3574e 7023
b2175913
MS
7024/* Inferior has stepped backward into a subroutine call with source
7025 code that we should not step over. Do step to the beginning of the
7026 last line of code in it. */
7027
7028static void
568d6575
UW
7029handle_step_into_function_backward (struct gdbarch *gdbarch,
7030 struct execution_control_state *ecs)
b2175913 7031{
43f3e411 7032 struct compunit_symtab *cust;
167e4384 7033 struct symtab_and_line stop_func_sal;
b2175913 7034
7e324e48
GB
7035 fill_in_stop_func (gdbarch, ecs);
7036
43f3e411
DE
7037 cust = find_pc_compunit_symtab (stop_pc);
7038 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7039 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7040 ecs->stop_func_start);
7041
7042 stop_func_sal = find_pc_line (stop_pc, 0);
7043
7044 /* OK, we're just going to keep stepping here. */
7045 if (stop_func_sal.pc == stop_pc)
7046 {
7047 /* We're there already. Just stop stepping now. */
bdc36728 7048 end_stepping_range (ecs);
b2175913
MS
7049 }
7050 else
7051 {
7052 /* Else just reset the step range and keep going.
7053 No step-resume breakpoint, they don't work for
7054 epilogues, which can have multiple entry paths. */
16c381f0
JK
7055 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7056 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7057 keep_going (ecs);
7058 }
7059 return;
7060}
7061
d3169d93 7062/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7063 This is used to both functions and to skip over code. */
7064
7065static void
2c03e5be
PA
7066insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7067 struct symtab_and_line sr_sal,
7068 struct frame_id sr_id,
7069 enum bptype sr_type)
44cbf7b5 7070{
611c83ae
PA
7071 /* There should never be more than one step-resume or longjmp-resume
7072 breakpoint per thread, so we should never be setting a new
44cbf7b5 7073 step_resume_breakpoint when one is already active. */
8358c15c 7074 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7075 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7076
7077 if (debug_infrun)
7078 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7079 "infrun: inserting step-resume breakpoint at %s\n",
7080 paddress (gdbarch, sr_sal.pc));
d3169d93 7081
8358c15c 7082 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7083 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7084}
7085
9da8c2a0 7086void
2c03e5be
PA
7087insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7088 struct symtab_and_line sr_sal,
7089 struct frame_id sr_id)
7090{
7091 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7092 sr_sal, sr_id,
7093 bp_step_resume);
44cbf7b5 7094}
7ce450bd 7095
2c03e5be
PA
7096/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7097 This is used to skip a potential signal handler.
7ce450bd 7098
14e60db5
DJ
7099 This is called with the interrupted function's frame. The signal
7100 handler, when it returns, will resume the interrupted function at
7101 RETURN_FRAME.pc. */
d303a6c7
AC
7102
7103static void
2c03e5be 7104insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7105{
7106 struct symtab_and_line sr_sal;
a6d9a66e 7107 struct gdbarch *gdbarch;
d303a6c7 7108
f4c1edd8 7109 gdb_assert (return_frame != NULL);
d303a6c7
AC
7110 init_sal (&sr_sal); /* initialize to zeros */
7111
a6d9a66e 7112 gdbarch = get_frame_arch (return_frame);
568d6575 7113 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7114 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7115 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7116
2c03e5be
PA
7117 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7118 get_stack_frame_id (return_frame),
7119 bp_hp_step_resume);
d303a6c7
AC
7120}
7121
2c03e5be
PA
7122/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7123 is used to skip a function after stepping into it (for "next" or if
7124 the called function has no debugging information).
14e60db5
DJ
7125
7126 The current function has almost always been reached by single
7127 stepping a call or return instruction. NEXT_FRAME belongs to the
7128 current function, and the breakpoint will be set at the caller's
7129 resume address.
7130
7131 This is a separate function rather than reusing
2c03e5be 7132 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7133 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7134 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7135
7136static void
7137insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7138{
7139 struct symtab_and_line sr_sal;
a6d9a66e 7140 struct gdbarch *gdbarch;
14e60db5
DJ
7141
7142 /* We shouldn't have gotten here if we don't know where the call site
7143 is. */
c7ce8faa 7144 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7145
7146 init_sal (&sr_sal); /* initialize to zeros */
7147
a6d9a66e 7148 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7149 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7150 frame_unwind_caller_pc (next_frame));
14e60db5 7151 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7152 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7153
a6d9a66e 7154 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7155 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7156}
7157
611c83ae
PA
7158/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7159 new breakpoint at the target of a jmp_buf. The handling of
7160 longjmp-resume uses the same mechanisms used for handling
7161 "step-resume" breakpoints. */
7162
7163static void
a6d9a66e 7164insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7165{
e81a37f7
TT
7166 /* There should never be more than one longjmp-resume breakpoint per
7167 thread, so we should never be setting a new
611c83ae 7168 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7169 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7170
7171 if (debug_infrun)
7172 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7173 "infrun: inserting longjmp-resume breakpoint at %s\n",
7174 paddress (gdbarch, pc));
611c83ae 7175
e81a37f7 7176 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7177 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7178}
7179
186c406b
TT
7180/* Insert an exception resume breakpoint. TP is the thread throwing
7181 the exception. The block B is the block of the unwinder debug hook
7182 function. FRAME is the frame corresponding to the call to this
7183 function. SYM is the symbol of the function argument holding the
7184 target PC of the exception. */
7185
7186static void
7187insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7188 const struct block *b,
186c406b
TT
7189 struct frame_info *frame,
7190 struct symbol *sym)
7191{
492d29ea 7192 TRY
186c406b
TT
7193 {
7194 struct symbol *vsym;
7195 struct value *value;
7196 CORE_ADDR handler;
7197 struct breakpoint *bp;
7198
d12307c1
PMR
7199 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN,
7200 NULL).symbol;
186c406b
TT
7201 value = read_var_value (vsym, frame);
7202 /* If the value was optimized out, revert to the old behavior. */
7203 if (! value_optimized_out (value))
7204 {
7205 handler = value_as_address (value);
7206
7207 if (debug_infrun)
7208 fprintf_unfiltered (gdb_stdlog,
7209 "infrun: exception resume at %lx\n",
7210 (unsigned long) handler);
7211
7212 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7213 handler, bp_exception_resume);
c70a6932
JK
7214
7215 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7216 frame = NULL;
7217
186c406b
TT
7218 bp->thread = tp->num;
7219 inferior_thread ()->control.exception_resume_breakpoint = bp;
7220 }
7221 }
492d29ea
PA
7222 CATCH (e, RETURN_MASK_ERROR)
7223 {
7224 /* We want to ignore errors here. */
7225 }
7226 END_CATCH
186c406b
TT
7227}
7228
28106bc2
SDJ
7229/* A helper for check_exception_resume that sets an
7230 exception-breakpoint based on a SystemTap probe. */
7231
7232static void
7233insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7234 const struct bound_probe *probe,
28106bc2
SDJ
7235 struct frame_info *frame)
7236{
7237 struct value *arg_value;
7238 CORE_ADDR handler;
7239 struct breakpoint *bp;
7240
7241 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7242 if (!arg_value)
7243 return;
7244
7245 handler = value_as_address (arg_value);
7246
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
7249 "infrun: exception resume at %s\n",
6bac7473 7250 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7251 handler));
7252
7253 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7254 handler, bp_exception_resume);
7255 bp->thread = tp->num;
7256 inferior_thread ()->control.exception_resume_breakpoint = bp;
7257}
7258
186c406b
TT
7259/* This is called when an exception has been intercepted. Check to
7260 see whether the exception's destination is of interest, and if so,
7261 set an exception resume breakpoint there. */
7262
7263static void
7264check_exception_resume (struct execution_control_state *ecs,
28106bc2 7265 struct frame_info *frame)
186c406b 7266{
729662a5 7267 struct bound_probe probe;
28106bc2
SDJ
7268 struct symbol *func;
7269
7270 /* First see if this exception unwinding breakpoint was set via a
7271 SystemTap probe point. If so, the probe has two arguments: the
7272 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7273 set a breakpoint there. */
6bac7473 7274 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7275 if (probe.probe)
28106bc2 7276 {
729662a5 7277 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7278 return;
7279 }
7280
7281 func = get_frame_function (frame);
7282 if (!func)
7283 return;
186c406b 7284
492d29ea 7285 TRY
186c406b 7286 {
3977b71f 7287 const struct block *b;
8157b174 7288 struct block_iterator iter;
186c406b
TT
7289 struct symbol *sym;
7290 int argno = 0;
7291
7292 /* The exception breakpoint is a thread-specific breakpoint on
7293 the unwinder's debug hook, declared as:
7294
7295 void _Unwind_DebugHook (void *cfa, void *handler);
7296
7297 The CFA argument indicates the frame to which control is
7298 about to be transferred. HANDLER is the destination PC.
7299
7300 We ignore the CFA and set a temporary breakpoint at HANDLER.
7301 This is not extremely efficient but it avoids issues in gdb
7302 with computing the DWARF CFA, and it also works even in weird
7303 cases such as throwing an exception from inside a signal
7304 handler. */
7305
7306 b = SYMBOL_BLOCK_VALUE (func);
7307 ALL_BLOCK_SYMBOLS (b, iter, sym)
7308 {
7309 if (!SYMBOL_IS_ARGUMENT (sym))
7310 continue;
7311
7312 if (argno == 0)
7313 ++argno;
7314 else
7315 {
7316 insert_exception_resume_breakpoint (ecs->event_thread,
7317 b, frame, sym);
7318 break;
7319 }
7320 }
7321 }
492d29ea
PA
7322 CATCH (e, RETURN_MASK_ERROR)
7323 {
7324 }
7325 END_CATCH
186c406b
TT
7326}
7327
104c1213 7328static void
22bcd14b 7329stop_waiting (struct execution_control_state *ecs)
104c1213 7330{
527159b7 7331 if (debug_infrun)
22bcd14b 7332 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7333
31e77af2
PA
7334 clear_step_over_info ();
7335
cd0fc7c3
SS
7336 /* Let callers know we don't want to wait for the inferior anymore. */
7337 ecs->wait_some_more = 0;
fbea99ea
PA
7338
7339 /* If all-stop, but the target is always in non-stop mode, stop all
7340 threads now that we're presenting the stop to the user. */
7341 if (!non_stop && target_is_non_stop_p ())
7342 stop_all_threads ();
cd0fc7c3
SS
7343}
7344
4d9d9d04
PA
7345/* Like keep_going, but passes the signal to the inferior, even if the
7346 signal is set to nopass. */
d4f3574e
SS
7347
7348static void
4d9d9d04 7349keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7350{
c4dbc9af
PA
7351 /* Make sure normal_stop is called if we get a QUIT handled before
7352 reaching resume. */
7353 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7354
4d9d9d04 7355 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7356 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7357
d4f3574e 7358 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7359 ecs->event_thread->prev_pc
7360 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7361
4d9d9d04 7362 if (ecs->event_thread->control.trap_expected)
d4f3574e 7363 {
4d9d9d04
PA
7364 struct thread_info *tp = ecs->event_thread;
7365
7366 if (debug_infrun)
7367 fprintf_unfiltered (gdb_stdlog,
7368 "infrun: %s has trap_expected set, "
7369 "resuming to collect trap\n",
7370 target_pid_to_str (tp->ptid));
7371
a9ba6bae
PA
7372 /* We haven't yet gotten our trap, and either: intercepted a
7373 non-signal event (e.g., a fork); or took a signal which we
7374 are supposed to pass through to the inferior. Simply
7375 continue. */
c4dbc9af 7376 discard_cleanups (old_cleanups);
64ce06e4 7377 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7378 }
372316f1
PA
7379 else if (step_over_info_valid_p ())
7380 {
7381 /* Another thread is stepping over a breakpoint in-line. If
7382 this thread needs a step-over too, queue the request. In
7383 either case, this resume must be deferred for later. */
7384 struct thread_info *tp = ecs->event_thread;
7385
7386 if (ecs->hit_singlestep_breakpoint
7387 || thread_still_needs_step_over (tp))
7388 {
7389 if (debug_infrun)
7390 fprintf_unfiltered (gdb_stdlog,
7391 "infrun: step-over already in progress: "
7392 "step-over for %s deferred\n",
7393 target_pid_to_str (tp->ptid));
7394 thread_step_over_chain_enqueue (tp);
7395 }
7396 else
7397 {
7398 if (debug_infrun)
7399 fprintf_unfiltered (gdb_stdlog,
7400 "infrun: step-over in progress: "
7401 "resume of %s deferred\n",
7402 target_pid_to_str (tp->ptid));
7403 }
7404
7405 discard_cleanups (old_cleanups);
7406 }
d4f3574e
SS
7407 else
7408 {
31e77af2 7409 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7410 int remove_bp;
7411 int remove_wps;
6c4cfb24 7412 enum step_over_what step_what;
31e77af2 7413
d4f3574e 7414 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7415 anyway (if we got a signal, the user asked it be passed to
7416 the child)
7417 -- or --
7418 We got our expected trap, but decided we should resume from
7419 it.
d4f3574e 7420
a9ba6bae 7421 We're going to run this baby now!
d4f3574e 7422
c36b740a
VP
7423 Note that insert_breakpoints won't try to re-insert
7424 already inserted breakpoints. Therefore, we don't
7425 care if breakpoints were already inserted, or not. */
a9ba6bae 7426
31e77af2
PA
7427 /* If we need to step over a breakpoint, and we're not using
7428 displaced stepping to do so, insert all breakpoints
7429 (watchpoints, etc.) but the one we're stepping over, step one
7430 instruction, and then re-insert the breakpoint when that step
7431 is finished. */
963f9c80 7432
6c4cfb24
PA
7433 step_what = thread_still_needs_step_over (ecs->event_thread);
7434
963f9c80 7435 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7436 || (step_what & STEP_OVER_BREAKPOINT));
7437 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7438
cb71640d
PA
7439 /* We can't use displaced stepping if we need to step past a
7440 watchpoint. The instruction copied to the scratch pad would
7441 still trigger the watchpoint. */
7442 if (remove_bp
3fc8eb30 7443 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7444 {
31e77af2 7445 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7446 regcache_read_pc (regcache), remove_wps);
45e8c884 7447 }
963f9c80
PA
7448 else if (remove_wps)
7449 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7450
7451 /* If we now need to do an in-line step-over, we need to stop
7452 all other threads. Note this must be done before
7453 insert_breakpoints below, because that removes the breakpoint
7454 we're about to step over, otherwise other threads could miss
7455 it. */
fbea99ea 7456 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7457 stop_all_threads ();
abbb1732 7458
31e77af2 7459 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7460 TRY
31e77af2
PA
7461 {
7462 insert_breakpoints ();
7463 }
492d29ea 7464 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7465 {
7466 exception_print (gdb_stderr, e);
22bcd14b 7467 stop_waiting (ecs);
de1fe8c8 7468 discard_cleanups (old_cleanups);
31e77af2 7469 return;
d4f3574e 7470 }
492d29ea 7471 END_CATCH
d4f3574e 7472
963f9c80 7473 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7474
c4dbc9af 7475 discard_cleanups (old_cleanups);
64ce06e4 7476 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7477 }
7478
488f131b 7479 prepare_to_wait (ecs);
d4f3574e
SS
7480}
7481
4d9d9d04
PA
7482/* Called when we should continue running the inferior, because the
7483 current event doesn't cause a user visible stop. This does the
7484 resuming part; waiting for the next event is done elsewhere. */
7485
7486static void
7487keep_going (struct execution_control_state *ecs)
7488{
7489 if (ecs->event_thread->control.trap_expected
7490 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7491 ecs->event_thread->control.trap_expected = 0;
7492
7493 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7494 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7495 keep_going_pass_signal (ecs);
7496}
7497
104c1213
JM
7498/* This function normally comes after a resume, before
7499 handle_inferior_event exits. It takes care of any last bits of
7500 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7501
104c1213
JM
7502static void
7503prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7504{
527159b7 7505 if (debug_infrun)
8a9de0e4 7506 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7507
104c1213
JM
7508 /* This is the old end of the while loop. Let everybody know we
7509 want to wait for the inferior some more and get called again
7510 soon. */
7511 ecs->wait_some_more = 1;
c906108c 7512}
11cf8741 7513
fd664c91 7514/* We are done with the step range of a step/next/si/ni command.
b57bacec 7515 Called once for each n of a "step n" operation. */
fd664c91
PA
7516
7517static void
bdc36728 7518end_stepping_range (struct execution_control_state *ecs)
fd664c91 7519{
bdc36728 7520 ecs->event_thread->control.stop_step = 1;
bdc36728 7521 stop_waiting (ecs);
fd664c91
PA
7522}
7523
33d62d64
JK
7524/* Several print_*_reason functions to print why the inferior has stopped.
7525 We always print something when the inferior exits, or receives a signal.
7526 The rest of the cases are dealt with later on in normal_stop and
7527 print_it_typical. Ideally there should be a call to one of these
7528 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7529 stop_waiting is called.
33d62d64 7530
fd664c91
PA
7531 Note that we don't call these directly, instead we delegate that to
7532 the interpreters, through observers. Interpreters then call these
7533 with whatever uiout is right. */
33d62d64 7534
fd664c91
PA
7535void
7536print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7537{
fd664c91 7538 /* For CLI-like interpreters, print nothing. */
33d62d64 7539
fd664c91
PA
7540 if (ui_out_is_mi_like_p (uiout))
7541 {
7542 ui_out_field_string (uiout, "reason",
7543 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7544 }
7545}
33d62d64 7546
fd664c91
PA
7547void
7548print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7549{
33d62d64
JK
7550 annotate_signalled ();
7551 if (ui_out_is_mi_like_p (uiout))
7552 ui_out_field_string
7553 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7554 ui_out_text (uiout, "\nProgram terminated with signal ");
7555 annotate_signal_name ();
7556 ui_out_field_string (uiout, "signal-name",
2ea28649 7557 gdb_signal_to_name (siggnal));
33d62d64
JK
7558 annotate_signal_name_end ();
7559 ui_out_text (uiout, ", ");
7560 annotate_signal_string ();
7561 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7562 gdb_signal_to_string (siggnal));
33d62d64
JK
7563 annotate_signal_string_end ();
7564 ui_out_text (uiout, ".\n");
7565 ui_out_text (uiout, "The program no longer exists.\n");
7566}
7567
fd664c91
PA
7568void
7569print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7570{
fda326dd
TT
7571 struct inferior *inf = current_inferior ();
7572 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7573
33d62d64
JK
7574 annotate_exited (exitstatus);
7575 if (exitstatus)
7576 {
7577 if (ui_out_is_mi_like_p (uiout))
7578 ui_out_field_string (uiout, "reason",
7579 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7580 ui_out_text (uiout, "[Inferior ");
7581 ui_out_text (uiout, plongest (inf->num));
7582 ui_out_text (uiout, " (");
7583 ui_out_text (uiout, pidstr);
7584 ui_out_text (uiout, ") exited with code ");
33d62d64 7585 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7586 ui_out_text (uiout, "]\n");
33d62d64
JK
7587 }
7588 else
11cf8741 7589 {
9dc5e2a9 7590 if (ui_out_is_mi_like_p (uiout))
034dad6f 7591 ui_out_field_string
33d62d64 7592 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7593 ui_out_text (uiout, "[Inferior ");
7594 ui_out_text (uiout, plongest (inf->num));
7595 ui_out_text (uiout, " (");
7596 ui_out_text (uiout, pidstr);
7597 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7598 }
33d62d64
JK
7599}
7600
fd664c91
PA
7601void
7602print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7603{
7604 annotate_signal ();
7605
a493e3e2 7606 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7607 {
7608 struct thread_info *t = inferior_thread ();
7609
7610 ui_out_text (uiout, "\n[");
7611 ui_out_field_string (uiout, "thread-name",
7612 target_pid_to_str (t->ptid));
7613 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7614 ui_out_text (uiout, " stopped");
7615 }
7616 else
7617 {
7618 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7619 annotate_signal_name ();
33d62d64
JK
7620 if (ui_out_is_mi_like_p (uiout))
7621 ui_out_field_string
7622 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7623 ui_out_field_string (uiout, "signal-name",
2ea28649 7624 gdb_signal_to_name (siggnal));
8b93c638
JM
7625 annotate_signal_name_end ();
7626 ui_out_text (uiout, ", ");
7627 annotate_signal_string ();
488f131b 7628 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7629 gdb_signal_to_string (siggnal));
8b93c638 7630 annotate_signal_string_end ();
33d62d64
JK
7631 }
7632 ui_out_text (uiout, ".\n");
7633}
252fbfc8 7634
fd664c91
PA
7635void
7636print_no_history_reason (struct ui_out *uiout)
33d62d64 7637{
fd664c91 7638 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7639}
43ff13b4 7640
0c7e1a46
PA
7641/* Print current location without a level number, if we have changed
7642 functions or hit a breakpoint. Print source line if we have one.
7643 bpstat_print contains the logic deciding in detail what to print,
7644 based on the event(s) that just occurred. */
7645
7646void
7647print_stop_event (struct target_waitstatus *ws)
7648{
7649 int bpstat_ret;
f486487f 7650 enum print_what source_flag;
0c7e1a46
PA
7651 int do_frame_printing = 1;
7652 struct thread_info *tp = inferior_thread ();
7653
7654 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7655 switch (bpstat_ret)
7656 {
7657 case PRINT_UNKNOWN:
7658 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7659 should) carry around the function and does (or should) use
7660 that when doing a frame comparison. */
7661 if (tp->control.stop_step
7662 && frame_id_eq (tp->control.step_frame_id,
7663 get_frame_id (get_current_frame ()))
885eeb5b 7664 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7665 {
7666 /* Finished step, just print source line. */
7667 source_flag = SRC_LINE;
7668 }
7669 else
7670 {
7671 /* Print location and source line. */
7672 source_flag = SRC_AND_LOC;
7673 }
7674 break;
7675 case PRINT_SRC_AND_LOC:
7676 /* Print location and source line. */
7677 source_flag = SRC_AND_LOC;
7678 break;
7679 case PRINT_SRC_ONLY:
7680 source_flag = SRC_LINE;
7681 break;
7682 case PRINT_NOTHING:
7683 /* Something bogus. */
7684 source_flag = SRC_LINE;
7685 do_frame_printing = 0;
7686 break;
7687 default:
7688 internal_error (__FILE__, __LINE__, _("Unknown value."));
7689 }
7690
7691 /* The behavior of this routine with respect to the source
7692 flag is:
7693 SRC_LINE: Print only source line
7694 LOCATION: Print only location
7695 SRC_AND_LOC: Print location and source line. */
7696 if (do_frame_printing)
7697 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7698
7699 /* Display the auto-display expressions. */
7700 do_displays ();
7701}
7702
c906108c
SS
7703/* Here to return control to GDB when the inferior stops for real.
7704 Print appropriate messages, remove breakpoints, give terminal our modes.
7705
7706 STOP_PRINT_FRAME nonzero means print the executing frame
7707 (pc, function, args, file, line number and line text).
7708 BREAKPOINTS_FAILED nonzero means stop was due to error
7709 attempting to insert breakpoints. */
7710
7711void
96baa820 7712normal_stop (void)
c906108c 7713{
73b65bb0
DJ
7714 struct target_waitstatus last;
7715 ptid_t last_ptid;
29f49a6a 7716 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7717 ptid_t pid_ptid;
73b65bb0
DJ
7718
7719 get_last_target_status (&last_ptid, &last);
7720
29f49a6a
PA
7721 /* If an exception is thrown from this point on, make sure to
7722 propagate GDB's knowledge of the executing state to the
7723 frontend/user running state. A QUIT is an easy exception to see
7724 here, so do this before any filtered output. */
c35b1492
PA
7725 if (!non_stop)
7726 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
7727 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7728 || last.kind == TARGET_WAITKIND_EXITED)
7729 {
7730 /* On some targets, we may still have live threads in the
7731 inferior when we get a process exit event. E.g., for
7732 "checkpoint", when the current checkpoint/fork exits,
7733 linux-fork.c automatically switches to another fork from
7734 within target_mourn_inferior. */
7735 if (!ptid_equal (inferior_ptid, null_ptid))
7736 {
7737 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7738 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7739 }
7740 }
7741 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 7742 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 7743
b57bacec
PA
7744 /* As we're presenting a stop, and potentially removing breakpoints,
7745 update the thread list so we can tell whether there are threads
7746 running on the target. With target remote, for example, we can
7747 only learn about new threads when we explicitly update the thread
7748 list. Do this before notifying the interpreters about signal
7749 stops, end of stepping ranges, etc., so that the "new thread"
7750 output is emitted before e.g., "Program received signal FOO",
7751 instead of after. */
7752 update_thread_list ();
7753
7754 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7755 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7756
c906108c
SS
7757 /* As with the notification of thread events, we want to delay
7758 notifying the user that we've switched thread context until
7759 the inferior actually stops.
7760
73b65bb0
DJ
7761 There's no point in saying anything if the inferior has exited.
7762 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
7763 "received a signal".
7764
7765 Also skip saying anything in non-stop mode. In that mode, as we
7766 don't want GDB to switch threads behind the user's back, to avoid
7767 races where the user is typing a command to apply to thread x,
7768 but GDB switches to thread y before the user finishes entering
7769 the command, fetch_inferior_event installs a cleanup to restore
7770 the current thread back to the thread the user had selected right
7771 after this event is handled, so we're not really switching, only
7772 informing of a stop. */
4f8d22e3
PA
7773 if (!non_stop
7774 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
7775 && target_has_execution
7776 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
7777 && last.kind != TARGET_WAITKIND_EXITED
7778 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
7779 {
7780 target_terminal_ours_for_output ();
a3f17187 7781 printf_filtered (_("[Switching to %s]\n"),
c95310c6 7782 target_pid_to_str (inferior_ptid));
b8fa951a 7783 annotate_thread_changed ();
39f77062 7784 previous_inferior_ptid = inferior_ptid;
c906108c 7785 }
c906108c 7786
0e5bf2a8
PA
7787 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7788 {
7789 gdb_assert (sync_execution || !target_can_async_p ());
7790
7791 target_terminal_ours_for_output ();
7792 printf_filtered (_("No unwaited-for children left.\n"));
7793 }
7794
b57bacec 7795 /* Note: this depends on the update_thread_list call above. */
a25a5a45 7796 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
7797 {
7798 if (remove_breakpoints ())
7799 {
7800 target_terminal_ours_for_output ();
3e43a32a
MS
7801 printf_filtered (_("Cannot remove breakpoints because "
7802 "program is no longer writable.\nFurther "
7803 "execution is probably impossible.\n"));
c906108c
SS
7804 }
7805 }
c906108c 7806
c906108c
SS
7807 /* If an auto-display called a function and that got a signal,
7808 delete that auto-display to avoid an infinite recursion. */
7809
7810 if (stopped_by_random_signal)
7811 disable_current_display ();
7812
b57bacec 7813 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
7814 if (target_has_execution
7815 && last.kind != TARGET_WAITKIND_SIGNALLED
7816 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 7817 && inferior_thread ()->control.stop_step)
b57bacec 7818 {
31cc0b80 7819 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
7820 n > 1 */
7821 if (inferior_thread ()->step_multi)
7822 goto done;
7823
7824 observer_notify_end_stepping_range ();
7825 }
c906108c
SS
7826
7827 target_terminal_ours ();
0f641c01 7828 async_enable_stdin ();
c906108c 7829
7abfe014
DJ
7830 /* Set the current source location. This will also happen if we
7831 display the frame below, but the current SAL will be incorrect
7832 during a user hook-stop function. */
d729566a 7833 if (has_stack_frames () && !stop_stack_dummy)
5166082f 7834 set_current_sal_from_frame (get_current_frame ());
7abfe014 7835
28bf096c
PA
7836 /* Let the user/frontend see the threads as stopped, but defer to
7837 call_function_by_hand if the thread finished an infcall
7838 successfully. We may be e.g., evaluating a breakpoint condition.
7839 In that case, the thread had state THREAD_RUNNING before the
7840 infcall, and shall remain marked running, all without informing
7841 the user/frontend about state transition changes. */
7842 if (target_has_execution
7843 && inferior_thread ()->control.in_infcall
7844 && stop_stack_dummy == STOP_STACK_DUMMY)
251bde03
PA
7845 discard_cleanups (old_chain);
7846 else
7847 do_cleanups (old_chain);
dd7e2d2b
PA
7848
7849 /* Look up the hook_stop and run it (CLI internally handles problem
7850 of stop_command's pre-hook not existing). */
7851 if (stop_command)
7852 catch_errors (hook_stop_stub, stop_command,
7853 "Error while running hook_stop:\n", RETURN_MASK_ALL);
7854
d729566a 7855 if (!has_stack_frames ())
d51fd4c8 7856 goto done;
c906108c 7857
32400beb
PA
7858 if (last.kind == TARGET_WAITKIND_SIGNALLED
7859 || last.kind == TARGET_WAITKIND_EXITED)
7860 goto done;
7861
c906108c
SS
7862 /* Select innermost stack frame - i.e., current frame is frame 0,
7863 and current location is based on that.
7864 Don't do this on return from a stack dummy routine,
1777feb0 7865 or if the program has exited. */
c906108c
SS
7866
7867 if (!stop_stack_dummy)
7868 {
0f7d239c 7869 select_frame (get_current_frame ());
c906108c 7870
d01a8610
AS
7871 /* If --batch-silent is enabled then there's no need to print the current
7872 source location, and to try risks causing an error message about
7873 missing source files. */
7874 if (stop_print_frame && !batch_silent)
0c7e1a46 7875 print_stop_event (&last);
c906108c
SS
7876 }
7877
aa7d318d 7878 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 7879 {
b89667eb
DE
7880 /* Pop the empty frame that contains the stack dummy.
7881 This also restores inferior state prior to the call
16c381f0 7882 (struct infcall_suspend_state). */
b89667eb 7883 struct frame_info *frame = get_current_frame ();
abbb1732 7884
b89667eb
DE
7885 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
7886 frame_pop (frame);
3e43a32a
MS
7887 /* frame_pop() calls reinit_frame_cache as the last thing it
7888 does which means there's currently no selected frame. We
7889 don't need to re-establish a selected frame if the dummy call
7890 returns normally, that will be done by
7891 restore_infcall_control_state. However, we do have to handle
7892 the case where the dummy call is returning after being
7893 stopped (e.g. the dummy call previously hit a breakpoint).
7894 We can't know which case we have so just always re-establish
7895 a selected frame here. */
0f7d239c 7896 select_frame (get_current_frame ());
c906108c
SS
7897 }
7898
c906108c
SS
7899done:
7900 annotate_stopped ();
41d2bdb4
PA
7901
7902 /* Suppress the stop observer if we're in the middle of:
7903
7904 - a step n (n > 1), as there still more steps to be done.
7905
7906 - a "finish" command, as the observer will be called in
7907 finish_command_continuation, so it can include the inferior
7908 function's return value.
7909
7910 - calling an inferior function, as we pretend we inferior didn't
7911 run at all. The return value of the call is handled by the
7912 expression evaluator, through call_function_by_hand. */
7913
7914 if (!target_has_execution
7915 || last.kind == TARGET_WAITKIND_SIGNALLED
7916 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 7917 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
7918 || (!(inferior_thread ()->step_multi
7919 && inferior_thread ()->control.stop_step)
16c381f0
JK
7920 && !(inferior_thread ()->control.stop_bpstat
7921 && inferior_thread ()->control.proceed_to_finish)
7922 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
7923 {
7924 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 7925 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 7926 stop_print_frame);
347bddb7 7927 else
1d33d6ba 7928 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 7929 }
347bddb7 7930
48844aa6
PA
7931 if (target_has_execution)
7932 {
7933 if (last.kind != TARGET_WAITKIND_SIGNALLED
7934 && last.kind != TARGET_WAITKIND_EXITED)
7935 /* Delete the breakpoint we stopped at, if it wants to be deleted.
7936 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 7937 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 7938 }
6c95b8df
PA
7939
7940 /* Try to get rid of automatically added inferiors that are no
7941 longer needed. Keeping those around slows down things linearly.
7942 Note that this never removes the current inferior. */
7943 prune_inferiors ();
c906108c
SS
7944}
7945
7946static int
96baa820 7947hook_stop_stub (void *cmd)
c906108c 7948{
5913bcb0 7949 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
7950 return (0);
7951}
7952\f
c5aa993b 7953int
96baa820 7954signal_stop_state (int signo)
c906108c 7955{
d6b48e9c 7956 return signal_stop[signo];
c906108c
SS
7957}
7958
c5aa993b 7959int
96baa820 7960signal_print_state (int signo)
c906108c
SS
7961{
7962 return signal_print[signo];
7963}
7964
c5aa993b 7965int
96baa820 7966signal_pass_state (int signo)
c906108c
SS
7967{
7968 return signal_program[signo];
7969}
7970
2455069d
UW
7971static void
7972signal_cache_update (int signo)
7973{
7974 if (signo == -1)
7975 {
a493e3e2 7976 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
7977 signal_cache_update (signo);
7978
7979 return;
7980 }
7981
7982 signal_pass[signo] = (signal_stop[signo] == 0
7983 && signal_print[signo] == 0
ab04a2af
TT
7984 && signal_program[signo] == 1
7985 && signal_catch[signo] == 0);
2455069d
UW
7986}
7987
488f131b 7988int
7bda5e4a 7989signal_stop_update (int signo, int state)
d4f3574e
SS
7990{
7991 int ret = signal_stop[signo];
abbb1732 7992
d4f3574e 7993 signal_stop[signo] = state;
2455069d 7994 signal_cache_update (signo);
d4f3574e
SS
7995 return ret;
7996}
7997
488f131b 7998int
7bda5e4a 7999signal_print_update (int signo, int state)
d4f3574e
SS
8000{
8001 int ret = signal_print[signo];
abbb1732 8002
d4f3574e 8003 signal_print[signo] = state;
2455069d 8004 signal_cache_update (signo);
d4f3574e
SS
8005 return ret;
8006}
8007
488f131b 8008int
7bda5e4a 8009signal_pass_update (int signo, int state)
d4f3574e
SS
8010{
8011 int ret = signal_program[signo];
abbb1732 8012
d4f3574e 8013 signal_program[signo] = state;
2455069d 8014 signal_cache_update (signo);
d4f3574e
SS
8015 return ret;
8016}
8017
ab04a2af
TT
8018/* Update the global 'signal_catch' from INFO and notify the
8019 target. */
8020
8021void
8022signal_catch_update (const unsigned int *info)
8023{
8024 int i;
8025
8026 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8027 signal_catch[i] = info[i] > 0;
8028 signal_cache_update (-1);
8029 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8030}
8031
c906108c 8032static void
96baa820 8033sig_print_header (void)
c906108c 8034{
3e43a32a
MS
8035 printf_filtered (_("Signal Stop\tPrint\tPass "
8036 "to program\tDescription\n"));
c906108c
SS
8037}
8038
8039static void
2ea28649 8040sig_print_info (enum gdb_signal oursig)
c906108c 8041{
2ea28649 8042 const char *name = gdb_signal_to_name (oursig);
c906108c 8043 int name_padding = 13 - strlen (name);
96baa820 8044
c906108c
SS
8045 if (name_padding <= 0)
8046 name_padding = 0;
8047
8048 printf_filtered ("%s", name);
488f131b 8049 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8050 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8051 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8052 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8053 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8054}
8055
8056/* Specify how various signals in the inferior should be handled. */
8057
8058static void
96baa820 8059handle_command (char *args, int from_tty)
c906108c
SS
8060{
8061 char **argv;
8062 int digits, wordlen;
8063 int sigfirst, signum, siglast;
2ea28649 8064 enum gdb_signal oursig;
c906108c
SS
8065 int allsigs;
8066 int nsigs;
8067 unsigned char *sigs;
8068 struct cleanup *old_chain;
8069
8070 if (args == NULL)
8071 {
e2e0b3e5 8072 error_no_arg (_("signal to handle"));
c906108c
SS
8073 }
8074
1777feb0 8075 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8076
a493e3e2 8077 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8078 sigs = (unsigned char *) alloca (nsigs);
8079 memset (sigs, 0, nsigs);
8080
1777feb0 8081 /* Break the command line up into args. */
c906108c 8082
d1a41061 8083 argv = gdb_buildargv (args);
7a292a7a 8084 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8085
8086 /* Walk through the args, looking for signal oursigs, signal names, and
8087 actions. Signal numbers and signal names may be interspersed with
8088 actions, with the actions being performed for all signals cumulatively
1777feb0 8089 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8090
8091 while (*argv != NULL)
8092 {
8093 wordlen = strlen (*argv);
8094 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8095 {;
8096 }
8097 allsigs = 0;
8098 sigfirst = siglast = -1;
8099
8100 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8101 {
8102 /* Apply action to all signals except those used by the
1777feb0 8103 debugger. Silently skip those. */
c906108c
SS
8104 allsigs = 1;
8105 sigfirst = 0;
8106 siglast = nsigs - 1;
8107 }
8108 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8109 {
8110 SET_SIGS (nsigs, sigs, signal_stop);
8111 SET_SIGS (nsigs, sigs, signal_print);
8112 }
8113 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8114 {
8115 UNSET_SIGS (nsigs, sigs, signal_program);
8116 }
8117 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8118 {
8119 SET_SIGS (nsigs, sigs, signal_print);
8120 }
8121 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8122 {
8123 SET_SIGS (nsigs, sigs, signal_program);
8124 }
8125 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8126 {
8127 UNSET_SIGS (nsigs, sigs, signal_stop);
8128 }
8129 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8130 {
8131 SET_SIGS (nsigs, sigs, signal_program);
8132 }
8133 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8134 {
8135 UNSET_SIGS (nsigs, sigs, signal_print);
8136 UNSET_SIGS (nsigs, sigs, signal_stop);
8137 }
8138 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8139 {
8140 UNSET_SIGS (nsigs, sigs, signal_program);
8141 }
8142 else if (digits > 0)
8143 {
8144 /* It is numeric. The numeric signal refers to our own
8145 internal signal numbering from target.h, not to host/target
8146 signal number. This is a feature; users really should be
8147 using symbolic names anyway, and the common ones like
8148 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8149
8150 sigfirst = siglast = (int)
2ea28649 8151 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8152 if ((*argv)[digits] == '-')
8153 {
8154 siglast = (int)
2ea28649 8155 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8156 }
8157 if (sigfirst > siglast)
8158 {
1777feb0 8159 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8160 signum = sigfirst;
8161 sigfirst = siglast;
8162 siglast = signum;
8163 }
8164 }
8165 else
8166 {
2ea28649 8167 oursig = gdb_signal_from_name (*argv);
a493e3e2 8168 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8169 {
8170 sigfirst = siglast = (int) oursig;
8171 }
8172 else
8173 {
8174 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8175 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8176 }
8177 }
8178
8179 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8180 which signals to apply actions to. */
c906108c
SS
8181
8182 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8183 {
2ea28649 8184 switch ((enum gdb_signal) signum)
c906108c 8185 {
a493e3e2
PA
8186 case GDB_SIGNAL_TRAP:
8187 case GDB_SIGNAL_INT:
c906108c
SS
8188 if (!allsigs && !sigs[signum])
8189 {
9e2f0ad4 8190 if (query (_("%s is used by the debugger.\n\
3e43a32a 8191Are you sure you want to change it? "),
2ea28649 8192 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8193 {
8194 sigs[signum] = 1;
8195 }
8196 else
8197 {
a3f17187 8198 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8199 gdb_flush (gdb_stdout);
8200 }
8201 }
8202 break;
a493e3e2
PA
8203 case GDB_SIGNAL_0:
8204 case GDB_SIGNAL_DEFAULT:
8205 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8206 /* Make sure that "all" doesn't print these. */
8207 break;
8208 default:
8209 sigs[signum] = 1;
8210 break;
8211 }
8212 }
8213
8214 argv++;
8215 }
8216
3a031f65
PA
8217 for (signum = 0; signum < nsigs; signum++)
8218 if (sigs[signum])
8219 {
2455069d 8220 signal_cache_update (-1);
a493e3e2
PA
8221 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8222 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8223
3a031f65
PA
8224 if (from_tty)
8225 {
8226 /* Show the results. */
8227 sig_print_header ();
8228 for (; signum < nsigs; signum++)
8229 if (sigs[signum])
aead7601 8230 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8231 }
8232
8233 break;
8234 }
c906108c
SS
8235
8236 do_cleanups (old_chain);
8237}
8238
de0bea00
MF
8239/* Complete the "handle" command. */
8240
8241static VEC (char_ptr) *
8242handle_completer (struct cmd_list_element *ignore,
6f937416 8243 const char *text, const char *word)
de0bea00
MF
8244{
8245 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8246 static const char * const keywords[] =
8247 {
8248 "all",
8249 "stop",
8250 "ignore",
8251 "print",
8252 "pass",
8253 "nostop",
8254 "noignore",
8255 "noprint",
8256 "nopass",
8257 NULL,
8258 };
8259
8260 vec_signals = signal_completer (ignore, text, word);
8261 vec_keywords = complete_on_enum (keywords, word, word);
8262
8263 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8264 VEC_free (char_ptr, vec_signals);
8265 VEC_free (char_ptr, vec_keywords);
8266 return return_val;
8267}
8268
2ea28649
PA
8269enum gdb_signal
8270gdb_signal_from_command (int num)
ed01b82c
PA
8271{
8272 if (num >= 1 && num <= 15)
2ea28649 8273 return (enum gdb_signal) num;
ed01b82c
PA
8274 error (_("Only signals 1-15 are valid as numeric signals.\n\
8275Use \"info signals\" for a list of symbolic signals."));
8276}
8277
c906108c
SS
8278/* Print current contents of the tables set by the handle command.
8279 It is possible we should just be printing signals actually used
8280 by the current target (but for things to work right when switching
8281 targets, all signals should be in the signal tables). */
8282
8283static void
96baa820 8284signals_info (char *signum_exp, int from_tty)
c906108c 8285{
2ea28649 8286 enum gdb_signal oursig;
abbb1732 8287
c906108c
SS
8288 sig_print_header ();
8289
8290 if (signum_exp)
8291 {
8292 /* First see if this is a symbol name. */
2ea28649 8293 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8294 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8295 {
8296 /* No, try numeric. */
8297 oursig =
2ea28649 8298 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8299 }
8300 sig_print_info (oursig);
8301 return;
8302 }
8303
8304 printf_filtered ("\n");
8305 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8306 for (oursig = GDB_SIGNAL_FIRST;
8307 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8308 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8309 {
8310 QUIT;
8311
a493e3e2
PA
8312 if (oursig != GDB_SIGNAL_UNKNOWN
8313 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8314 sig_print_info (oursig);
8315 }
8316
3e43a32a
MS
8317 printf_filtered (_("\nUse the \"handle\" command "
8318 "to change these tables.\n"));
c906108c 8319}
4aa995e1 8320
c709acd1
PA
8321/* Check if it makes sense to read $_siginfo from the current thread
8322 at this point. If not, throw an error. */
8323
8324static void
8325validate_siginfo_access (void)
8326{
8327 /* No current inferior, no siginfo. */
8328 if (ptid_equal (inferior_ptid, null_ptid))
8329 error (_("No thread selected."));
8330
8331 /* Don't try to read from a dead thread. */
8332 if (is_exited (inferior_ptid))
8333 error (_("The current thread has terminated"));
8334
8335 /* ... or from a spinning thread. */
8336 if (is_running (inferior_ptid))
8337 error (_("Selected thread is running."));
8338}
8339
4aa995e1
PA
8340/* The $_siginfo convenience variable is a bit special. We don't know
8341 for sure the type of the value until we actually have a chance to
7a9dd1b2 8342 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8343 also dependent on which thread you have selected.
8344
8345 1. making $_siginfo be an internalvar that creates a new value on
8346 access.
8347
8348 2. making the value of $_siginfo be an lval_computed value. */
8349
8350/* This function implements the lval_computed support for reading a
8351 $_siginfo value. */
8352
8353static void
8354siginfo_value_read (struct value *v)
8355{
8356 LONGEST transferred;
8357
c709acd1
PA
8358 validate_siginfo_access ();
8359
4aa995e1
PA
8360 transferred =
8361 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8362 NULL,
8363 value_contents_all_raw (v),
8364 value_offset (v),
8365 TYPE_LENGTH (value_type (v)));
8366
8367 if (transferred != TYPE_LENGTH (value_type (v)))
8368 error (_("Unable to read siginfo"));
8369}
8370
8371/* This function implements the lval_computed support for writing a
8372 $_siginfo value. */
8373
8374static void
8375siginfo_value_write (struct value *v, struct value *fromval)
8376{
8377 LONGEST transferred;
8378
c709acd1
PA
8379 validate_siginfo_access ();
8380
4aa995e1
PA
8381 transferred = target_write (&current_target,
8382 TARGET_OBJECT_SIGNAL_INFO,
8383 NULL,
8384 value_contents_all_raw (fromval),
8385 value_offset (v),
8386 TYPE_LENGTH (value_type (fromval)));
8387
8388 if (transferred != TYPE_LENGTH (value_type (fromval)))
8389 error (_("Unable to write siginfo"));
8390}
8391
c8f2448a 8392static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8393 {
8394 siginfo_value_read,
8395 siginfo_value_write
8396 };
8397
8398/* Return a new value with the correct type for the siginfo object of
78267919
UW
8399 the current thread using architecture GDBARCH. Return a void value
8400 if there's no object available. */
4aa995e1 8401
2c0b251b 8402static struct value *
22d2b532
SDJ
8403siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8404 void *ignore)
4aa995e1 8405{
4aa995e1 8406 if (target_has_stack
78267919
UW
8407 && !ptid_equal (inferior_ptid, null_ptid)
8408 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8409 {
78267919 8410 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8411
78267919 8412 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8413 }
8414
78267919 8415 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8416}
8417
c906108c 8418\f
16c381f0
JK
8419/* infcall_suspend_state contains state about the program itself like its
8420 registers and any signal it received when it last stopped.
8421 This state must be restored regardless of how the inferior function call
8422 ends (either successfully, or after it hits a breakpoint or signal)
8423 if the program is to properly continue where it left off. */
8424
8425struct infcall_suspend_state
7a292a7a 8426{
16c381f0 8427 struct thread_suspend_state thread_suspend;
16c381f0
JK
8428
8429 /* Other fields: */
7a292a7a 8430 CORE_ADDR stop_pc;
b89667eb 8431 struct regcache *registers;
1736ad11 8432
35515841 8433 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8434 struct gdbarch *siginfo_gdbarch;
8435
8436 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8437 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8438 content would be invalid. */
8439 gdb_byte *siginfo_data;
b89667eb
DE
8440};
8441
16c381f0
JK
8442struct infcall_suspend_state *
8443save_infcall_suspend_state (void)
b89667eb 8444{
16c381f0 8445 struct infcall_suspend_state *inf_state;
b89667eb 8446 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8447 struct regcache *regcache = get_current_regcache ();
8448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8449 gdb_byte *siginfo_data = NULL;
8450
8451 if (gdbarch_get_siginfo_type_p (gdbarch))
8452 {
8453 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8454 size_t len = TYPE_LENGTH (type);
8455 struct cleanup *back_to;
8456
8457 siginfo_data = xmalloc (len);
8458 back_to = make_cleanup (xfree, siginfo_data);
8459
8460 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8461 siginfo_data, 0, len) == len)
8462 discard_cleanups (back_to);
8463 else
8464 {
8465 /* Errors ignored. */
8466 do_cleanups (back_to);
8467 siginfo_data = NULL;
8468 }
8469 }
8470
41bf6aca 8471 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8472
8473 if (siginfo_data)
8474 {
8475 inf_state->siginfo_gdbarch = gdbarch;
8476 inf_state->siginfo_data = siginfo_data;
8477 }
b89667eb 8478
16c381f0 8479 inf_state->thread_suspend = tp->suspend;
16c381f0 8480
35515841 8481 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8482 GDB_SIGNAL_0 anyway. */
8483 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8484
b89667eb
DE
8485 inf_state->stop_pc = stop_pc;
8486
1736ad11 8487 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8488
8489 return inf_state;
8490}
8491
8492/* Restore inferior session state to INF_STATE. */
8493
8494void
16c381f0 8495restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8496{
8497 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8498 struct regcache *regcache = get_current_regcache ();
8499 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8500
16c381f0 8501 tp->suspend = inf_state->thread_suspend;
16c381f0 8502
b89667eb
DE
8503 stop_pc = inf_state->stop_pc;
8504
1736ad11
JK
8505 if (inf_state->siginfo_gdbarch == gdbarch)
8506 {
8507 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8508
8509 /* Errors ignored. */
8510 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8511 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8512 }
8513
b89667eb
DE
8514 /* The inferior can be gone if the user types "print exit(0)"
8515 (and perhaps other times). */
8516 if (target_has_execution)
8517 /* NB: The register write goes through to the target. */
1736ad11 8518 regcache_cpy (regcache, inf_state->registers);
803b5f95 8519
16c381f0 8520 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8521}
8522
8523static void
16c381f0 8524do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8525{
16c381f0 8526 restore_infcall_suspend_state (state);
b89667eb
DE
8527}
8528
8529struct cleanup *
16c381f0
JK
8530make_cleanup_restore_infcall_suspend_state
8531 (struct infcall_suspend_state *inf_state)
b89667eb 8532{
16c381f0 8533 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8534}
8535
8536void
16c381f0 8537discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8538{
8539 regcache_xfree (inf_state->registers);
803b5f95 8540 xfree (inf_state->siginfo_data);
b89667eb
DE
8541 xfree (inf_state);
8542}
8543
8544struct regcache *
16c381f0 8545get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8546{
8547 return inf_state->registers;
8548}
8549
16c381f0
JK
8550/* infcall_control_state contains state regarding gdb's control of the
8551 inferior itself like stepping control. It also contains session state like
8552 the user's currently selected frame. */
b89667eb 8553
16c381f0 8554struct infcall_control_state
b89667eb 8555{
16c381f0
JK
8556 struct thread_control_state thread_control;
8557 struct inferior_control_state inferior_control;
d82142e2
JK
8558
8559 /* Other fields: */
8560 enum stop_stack_kind stop_stack_dummy;
8561 int stopped_by_random_signal;
7a292a7a 8562 int stop_after_trap;
7a292a7a 8563
b89667eb 8564 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8565 struct frame_id selected_frame_id;
7a292a7a
SS
8566};
8567
c906108c 8568/* Save all of the information associated with the inferior<==>gdb
b89667eb 8569 connection. */
c906108c 8570
16c381f0
JK
8571struct infcall_control_state *
8572save_infcall_control_state (void)
c906108c 8573{
16c381f0 8574 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 8575 struct thread_info *tp = inferior_thread ();
d6b48e9c 8576 struct inferior *inf = current_inferior ();
7a292a7a 8577
16c381f0
JK
8578 inf_status->thread_control = tp->control;
8579 inf_status->inferior_control = inf->control;
d82142e2 8580
8358c15c 8581 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8582 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8583
16c381f0
JK
8584 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8585 chain. If caller's caller is walking the chain, they'll be happier if we
8586 hand them back the original chain when restore_infcall_control_state is
8587 called. */
8588 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8589
8590 /* Other fields: */
8591 inf_status->stop_stack_dummy = stop_stack_dummy;
8592 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8593 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 8594
206415a3 8595 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8596
7a292a7a 8597 return inf_status;
c906108c
SS
8598}
8599
c906108c 8600static int
96baa820 8601restore_selected_frame (void *args)
c906108c 8602{
488f131b 8603 struct frame_id *fid = (struct frame_id *) args;
c906108c 8604 struct frame_info *frame;
c906108c 8605
101dcfbe 8606 frame = frame_find_by_id (*fid);
c906108c 8607
aa0cd9c1
AC
8608 /* If inf_status->selected_frame_id is NULL, there was no previously
8609 selected frame. */
101dcfbe 8610 if (frame == NULL)
c906108c 8611 {
8a3fe4f8 8612 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8613 return 0;
8614 }
8615
0f7d239c 8616 select_frame (frame);
c906108c
SS
8617
8618 return (1);
8619}
8620
b89667eb
DE
8621/* Restore inferior session state to INF_STATUS. */
8622
c906108c 8623void
16c381f0 8624restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8625{
4e1c45ea 8626 struct thread_info *tp = inferior_thread ();
d6b48e9c 8627 struct inferior *inf = current_inferior ();
4e1c45ea 8628
8358c15c
JK
8629 if (tp->control.step_resume_breakpoint)
8630 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8631
5b79abe7
TT
8632 if (tp->control.exception_resume_breakpoint)
8633 tp->control.exception_resume_breakpoint->disposition
8634 = disp_del_at_next_stop;
8635
d82142e2 8636 /* Handle the bpstat_copy of the chain. */
16c381f0 8637 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8638
16c381f0
JK
8639 tp->control = inf_status->thread_control;
8640 inf->control = inf_status->inferior_control;
d82142e2
JK
8641
8642 /* Other fields: */
8643 stop_stack_dummy = inf_status->stop_stack_dummy;
8644 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8645 stop_after_trap = inf_status->stop_after_trap;
c906108c 8646
b89667eb 8647 if (target_has_stack)
c906108c 8648 {
c906108c 8649 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8650 walking the stack might encounter a garbage pointer and
8651 error() trying to dereference it. */
488f131b
JB
8652 if (catch_errors
8653 (restore_selected_frame, &inf_status->selected_frame_id,
8654 "Unable to restore previously selected frame:\n",
8655 RETURN_MASK_ERROR) == 0)
c906108c
SS
8656 /* Error in restoring the selected frame. Select the innermost
8657 frame. */
0f7d239c 8658 select_frame (get_current_frame ());
c906108c 8659 }
c906108c 8660
72cec141 8661 xfree (inf_status);
7a292a7a 8662}
c906108c 8663
74b7792f 8664static void
16c381f0 8665do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8666{
16c381f0 8667 restore_infcall_control_state (sts);
74b7792f
AC
8668}
8669
8670struct cleanup *
16c381f0
JK
8671make_cleanup_restore_infcall_control_state
8672 (struct infcall_control_state *inf_status)
74b7792f 8673{
16c381f0 8674 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8675}
8676
c906108c 8677void
16c381f0 8678discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8679{
8358c15c
JK
8680 if (inf_status->thread_control.step_resume_breakpoint)
8681 inf_status->thread_control.step_resume_breakpoint->disposition
8682 = disp_del_at_next_stop;
8683
5b79abe7
TT
8684 if (inf_status->thread_control.exception_resume_breakpoint)
8685 inf_status->thread_control.exception_resume_breakpoint->disposition
8686 = disp_del_at_next_stop;
8687
1777feb0 8688 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8689 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8690
72cec141 8691 xfree (inf_status);
7a292a7a 8692}
b89667eb 8693\f
ca6724c1
KB
8694/* restore_inferior_ptid() will be used by the cleanup machinery
8695 to restore the inferior_ptid value saved in a call to
8696 save_inferior_ptid(). */
ce696e05
KB
8697
8698static void
8699restore_inferior_ptid (void *arg)
8700{
8701 ptid_t *saved_ptid_ptr = arg;
abbb1732 8702
ce696e05
KB
8703 inferior_ptid = *saved_ptid_ptr;
8704 xfree (arg);
8705}
8706
8707/* Save the value of inferior_ptid so that it may be restored by a
8708 later call to do_cleanups(). Returns the struct cleanup pointer
8709 needed for later doing the cleanup. */
8710
8711struct cleanup *
8712save_inferior_ptid (void)
8713{
8714 ptid_t *saved_ptid_ptr;
8715
8716 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
8717 *saved_ptid_ptr = inferior_ptid;
8718 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8719}
0c557179 8720
7f89fd65 8721/* See infrun.h. */
0c557179
SDJ
8722
8723void
8724clear_exit_convenience_vars (void)
8725{
8726 clear_internalvar (lookup_internalvar ("_exitsignal"));
8727 clear_internalvar (lookup_internalvar ("_exitcode"));
8728}
c5aa993b 8729\f
488f131b 8730
b2175913
MS
8731/* User interface for reverse debugging:
8732 Set exec-direction / show exec-direction commands
8733 (returns error unless target implements to_set_exec_direction method). */
8734
32231432 8735int execution_direction = EXEC_FORWARD;
b2175913
MS
8736static const char exec_forward[] = "forward";
8737static const char exec_reverse[] = "reverse";
8738static const char *exec_direction = exec_forward;
40478521 8739static const char *const exec_direction_names[] = {
b2175913
MS
8740 exec_forward,
8741 exec_reverse,
8742 NULL
8743};
8744
8745static void
8746set_exec_direction_func (char *args, int from_tty,
8747 struct cmd_list_element *cmd)
8748{
8749 if (target_can_execute_reverse)
8750 {
8751 if (!strcmp (exec_direction, exec_forward))
8752 execution_direction = EXEC_FORWARD;
8753 else if (!strcmp (exec_direction, exec_reverse))
8754 execution_direction = EXEC_REVERSE;
8755 }
8bbed405
MS
8756 else
8757 {
8758 exec_direction = exec_forward;
8759 error (_("Target does not support this operation."));
8760 }
b2175913
MS
8761}
8762
8763static void
8764show_exec_direction_func (struct ui_file *out, int from_tty,
8765 struct cmd_list_element *cmd, const char *value)
8766{
8767 switch (execution_direction) {
8768 case EXEC_FORWARD:
8769 fprintf_filtered (out, _("Forward.\n"));
8770 break;
8771 case EXEC_REVERSE:
8772 fprintf_filtered (out, _("Reverse.\n"));
8773 break;
b2175913 8774 default:
d8b34453
PA
8775 internal_error (__FILE__, __LINE__,
8776 _("bogus execution_direction value: %d"),
8777 (int) execution_direction);
b2175913
MS
8778 }
8779}
8780
d4db2f36
PA
8781static void
8782show_schedule_multiple (struct ui_file *file, int from_tty,
8783 struct cmd_list_element *c, const char *value)
8784{
3e43a32a
MS
8785 fprintf_filtered (file, _("Resuming the execution of threads "
8786 "of all processes is %s.\n"), value);
d4db2f36 8787}
ad52ddc6 8788
22d2b532
SDJ
8789/* Implementation of `siginfo' variable. */
8790
8791static const struct internalvar_funcs siginfo_funcs =
8792{
8793 siginfo_make_value,
8794 NULL,
8795 NULL
8796};
8797
372316f1
PA
8798/* Callback for infrun's target events source. This is marked when a
8799 thread has a pending status to process. */
8800
8801static void
8802infrun_async_inferior_event_handler (gdb_client_data data)
8803{
8804 /* If the target is closed while this event source is marked, we
8805 will reach here without execution, or a target to call
8806 target_wait on, which is an error. Instead of tracking whether
8807 the target has been popped already, or whether we do have threads
8808 with pending statutes, simply ignore the event. */
8809 if (!target_is_async_p ())
8810 return;
8811
8812 inferior_event_handler (INF_REG_EVENT, NULL);
8813}
8814
c906108c 8815void
96baa820 8816_initialize_infrun (void)
c906108c 8817{
52f0bd74
AC
8818 int i;
8819 int numsigs;
de0bea00 8820 struct cmd_list_element *c;
c906108c 8821
372316f1
PA
8822 /* Register extra event sources in the event loop. */
8823 infrun_async_inferior_event_token
8824 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8825
1bedd215
AC
8826 add_info ("signals", signals_info, _("\
8827What debugger does when program gets various signals.\n\
8828Specify a signal as argument to print info on that signal only."));
c906108c
SS
8829 add_info_alias ("handle", "signals", 0);
8830
de0bea00 8831 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8832Specify how to handle signals.\n\
486c7739 8833Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8834Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8835If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8836will be displayed instead.\n\
8837\n\
c906108c
SS
8838Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8839from 1-15 are allowed for compatibility with old versions of GDB.\n\
8840Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8841The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8842used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8843\n\
1bedd215 8844Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8845\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8846Stop means reenter debugger if this signal happens (implies print).\n\
8847Print means print a message if this signal happens.\n\
8848Pass means let program see this signal; otherwise program doesn't know.\n\
8849Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8850Pass and Stop may be combined.\n\
8851\n\
8852Multiple signals may be specified. Signal numbers and signal names\n\
8853may be interspersed with actions, with the actions being performed for\n\
8854all signals cumulatively specified."));
de0bea00 8855 set_cmd_completer (c, handle_completer);
486c7739 8856
c906108c 8857 if (!dbx_commands)
1a966eab
AC
8858 stop_command = add_cmd ("stop", class_obscure,
8859 not_just_help_class_command, _("\
8860There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8861This allows you to set a list of commands to be run each time execution\n\
1a966eab 8862of the program stops."), &cmdlist);
c906108c 8863
ccce17b0 8864 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8865Set inferior debugging."), _("\
8866Show inferior debugging."), _("\
8867When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8868 NULL,
8869 show_debug_infrun,
8870 &setdebuglist, &showdebuglist);
527159b7 8871
3e43a32a
MS
8872 add_setshow_boolean_cmd ("displaced", class_maintenance,
8873 &debug_displaced, _("\
237fc4c9
PA
8874Set displaced stepping debugging."), _("\
8875Show displaced stepping debugging."), _("\
8876When non-zero, displaced stepping specific debugging is enabled."),
8877 NULL,
8878 show_debug_displaced,
8879 &setdebuglist, &showdebuglist);
8880
ad52ddc6
PA
8881 add_setshow_boolean_cmd ("non-stop", no_class,
8882 &non_stop_1, _("\
8883Set whether gdb controls the inferior in non-stop mode."), _("\
8884Show whether gdb controls the inferior in non-stop mode."), _("\
8885When debugging a multi-threaded program and this setting is\n\
8886off (the default, also called all-stop mode), when one thread stops\n\
8887(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8888all other threads in the program while you interact with the thread of\n\
8889interest. When you continue or step a thread, you can allow the other\n\
8890threads to run, or have them remain stopped, but while you inspect any\n\
8891thread's state, all threads stop.\n\
8892\n\
8893In non-stop mode, when one thread stops, other threads can continue\n\
8894to run freely. You'll be able to step each thread independently,\n\
8895leave it stopped or free to run as needed."),
8896 set_non_stop,
8897 show_non_stop,
8898 &setlist,
8899 &showlist);
8900
a493e3e2 8901 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 8902 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
8903 signal_print = (unsigned char *)
8904 xmalloc (sizeof (signal_print[0]) * numsigs);
8905 signal_program = (unsigned char *)
8906 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
8907 signal_catch = (unsigned char *)
8908 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 8909 signal_pass = (unsigned char *)
4395285e 8910 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
8911 for (i = 0; i < numsigs; i++)
8912 {
8913 signal_stop[i] = 1;
8914 signal_print[i] = 1;
8915 signal_program[i] = 1;
ab04a2af 8916 signal_catch[i] = 0;
c906108c
SS
8917 }
8918
4d9d9d04
PA
8919 /* Signals caused by debugger's own actions should not be given to
8920 the program afterwards.
8921
8922 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8923 explicitly specifies that it should be delivered to the target
8924 program. Typically, that would occur when a user is debugging a
8925 target monitor on a simulator: the target monitor sets a
8926 breakpoint; the simulator encounters this breakpoint and halts
8927 the simulation handing control to GDB; GDB, noting that the stop
8928 address doesn't map to any known breakpoint, returns control back
8929 to the simulator; the simulator then delivers the hardware
8930 equivalent of a GDB_SIGNAL_TRAP to the program being
8931 debugged. */
a493e3e2
PA
8932 signal_program[GDB_SIGNAL_TRAP] = 0;
8933 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
8934
8935 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
8936 signal_stop[GDB_SIGNAL_ALRM] = 0;
8937 signal_print[GDB_SIGNAL_ALRM] = 0;
8938 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8939 signal_print[GDB_SIGNAL_VTALRM] = 0;
8940 signal_stop[GDB_SIGNAL_PROF] = 0;
8941 signal_print[GDB_SIGNAL_PROF] = 0;
8942 signal_stop[GDB_SIGNAL_CHLD] = 0;
8943 signal_print[GDB_SIGNAL_CHLD] = 0;
8944 signal_stop[GDB_SIGNAL_IO] = 0;
8945 signal_print[GDB_SIGNAL_IO] = 0;
8946 signal_stop[GDB_SIGNAL_POLL] = 0;
8947 signal_print[GDB_SIGNAL_POLL] = 0;
8948 signal_stop[GDB_SIGNAL_URG] = 0;
8949 signal_print[GDB_SIGNAL_URG] = 0;
8950 signal_stop[GDB_SIGNAL_WINCH] = 0;
8951 signal_print[GDB_SIGNAL_WINCH] = 0;
8952 signal_stop[GDB_SIGNAL_PRIO] = 0;
8953 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 8954
cd0fc7c3
SS
8955 /* These signals are used internally by user-level thread
8956 implementations. (See signal(5) on Solaris.) Like the above
8957 signals, a healthy program receives and handles them as part of
8958 its normal operation. */
a493e3e2
PA
8959 signal_stop[GDB_SIGNAL_LWP] = 0;
8960 signal_print[GDB_SIGNAL_LWP] = 0;
8961 signal_stop[GDB_SIGNAL_WAITING] = 0;
8962 signal_print[GDB_SIGNAL_WAITING] = 0;
8963 signal_stop[GDB_SIGNAL_CANCEL] = 0;
8964 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 8965
2455069d
UW
8966 /* Update cached state. */
8967 signal_cache_update (-1);
8968
85c07804
AC
8969 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
8970 &stop_on_solib_events, _("\
8971Set stopping for shared library events."), _("\
8972Show stopping for shared library events."), _("\
c906108c
SS
8973If nonzero, gdb will give control to the user when the dynamic linker\n\
8974notifies gdb of shared library events. The most common event of interest\n\
85c07804 8975to the user would be loading/unloading of a new library."),
f9e14852 8976 set_stop_on_solib_events,
920d2a44 8977 show_stop_on_solib_events,
85c07804 8978 &setlist, &showlist);
c906108c 8979
7ab04401
AC
8980 add_setshow_enum_cmd ("follow-fork-mode", class_run,
8981 follow_fork_mode_kind_names,
8982 &follow_fork_mode_string, _("\
8983Set debugger response to a program call of fork or vfork."), _("\
8984Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
8985A fork or vfork creates a new process. follow-fork-mode can be:\n\
8986 parent - the original process is debugged after a fork\n\
8987 child - the new process is debugged after a fork\n\
ea1dd7bc 8988The unfollowed process will continue to run.\n\
7ab04401
AC
8989By default, the debugger will follow the parent process."),
8990 NULL,
920d2a44 8991 show_follow_fork_mode_string,
7ab04401
AC
8992 &setlist, &showlist);
8993
6c95b8df
PA
8994 add_setshow_enum_cmd ("follow-exec-mode", class_run,
8995 follow_exec_mode_names,
8996 &follow_exec_mode_string, _("\
8997Set debugger response to a program call of exec."), _("\
8998Show debugger response to a program call of exec."), _("\
8999An exec call replaces the program image of a process.\n\
9000\n\
9001follow-exec-mode can be:\n\
9002\n\
cce7e648 9003 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9004to this new inferior. The program the process was running before\n\
9005the exec call can be restarted afterwards by restarting the original\n\
9006inferior.\n\
9007\n\
9008 same - the debugger keeps the process bound to the same inferior.\n\
9009The new executable image replaces the previous executable loaded in\n\
9010the inferior. Restarting the inferior after the exec call restarts\n\
9011the executable the process was running after the exec call.\n\
9012\n\
9013By default, the debugger will use the same inferior."),
9014 NULL,
9015 show_follow_exec_mode_string,
9016 &setlist, &showlist);
9017
7ab04401
AC
9018 add_setshow_enum_cmd ("scheduler-locking", class_run,
9019 scheduler_enums, &scheduler_mode, _("\
9020Set mode for locking scheduler during execution."), _("\
9021Show mode for locking scheduler during execution."), _("\
c906108c
SS
9022off == no locking (threads may preempt at any time)\n\
9023on == full locking (no thread except the current thread may run)\n\
856e7dd6
PA
9024step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9025 In this mode, other threads may run during other commands."),
7ab04401 9026 set_schedlock_func, /* traps on target vector */
920d2a44 9027 show_scheduler_mode,
7ab04401 9028 &setlist, &showlist);
5fbbeb29 9029
d4db2f36
PA
9030 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9031Set mode for resuming threads of all processes."), _("\
9032Show mode for resuming threads of all processes."), _("\
9033When on, execution commands (such as 'continue' or 'next') resume all\n\
9034threads of all processes. When off (which is the default), execution\n\
9035commands only resume the threads of the current process. The set of\n\
9036threads that are resumed is further refined by the scheduler-locking\n\
9037mode (see help set scheduler-locking)."),
9038 NULL,
9039 show_schedule_multiple,
9040 &setlist, &showlist);
9041
5bf193a2
AC
9042 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9043Set mode of the step operation."), _("\
9044Show mode of the step operation."), _("\
9045When set, doing a step over a function without debug line information\n\
9046will stop at the first instruction of that function. Otherwise, the\n\
9047function is skipped and the step command stops at a different source line."),
9048 NULL,
920d2a44 9049 show_step_stop_if_no_debug,
5bf193a2 9050 &setlist, &showlist);
ca6724c1 9051
72d0e2c5
YQ
9052 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9053 &can_use_displaced_stepping, _("\
237fc4c9
PA
9054Set debugger's willingness to use displaced stepping."), _("\
9055Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9056If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9057supported by the target architecture. If off, gdb will not use displaced\n\
9058stepping to step over breakpoints, even if such is supported by the target\n\
9059architecture. If auto (which is the default), gdb will use displaced stepping\n\
9060if the target architecture supports it and non-stop mode is active, but will not\n\
9061use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9062 NULL,
9063 show_can_use_displaced_stepping,
9064 &setlist, &showlist);
237fc4c9 9065
b2175913
MS
9066 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9067 &exec_direction, _("Set direction of execution.\n\
9068Options are 'forward' or 'reverse'."),
9069 _("Show direction of execution (forward/reverse)."),
9070 _("Tells gdb whether to execute forward or backward."),
9071 set_exec_direction_func, show_exec_direction_func,
9072 &setlist, &showlist);
9073
6c95b8df
PA
9074 /* Set/show detach-on-fork: user-settable mode. */
9075
9076 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9077Set whether gdb will detach the child of a fork."), _("\
9078Show whether gdb will detach the child of a fork."), _("\
9079Tells gdb whether to detach the child of a fork."),
9080 NULL, NULL, &setlist, &showlist);
9081
03583c20
UW
9082 /* Set/show disable address space randomization mode. */
9083
9084 add_setshow_boolean_cmd ("disable-randomization", class_support,
9085 &disable_randomization, _("\
9086Set disabling of debuggee's virtual address space randomization."), _("\
9087Show disabling of debuggee's virtual address space randomization."), _("\
9088When this mode is on (which is the default), randomization of the virtual\n\
9089address space is disabled. Standalone programs run with the randomization\n\
9090enabled by default on some platforms."),
9091 &set_disable_randomization,
9092 &show_disable_randomization,
9093 &setlist, &showlist);
9094
ca6724c1 9095 /* ptid initializations */
ca6724c1
KB
9096 inferior_ptid = null_ptid;
9097 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9098
9099 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9100 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9101 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9102 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9103
9104 /* Explicitly create without lookup, since that tries to create a
9105 value with a void typed value, and when we get here, gdbarch
9106 isn't initialized yet. At this point, we're quite sure there
9107 isn't another convenience variable of the same name. */
22d2b532 9108 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9109
9110 add_setshow_boolean_cmd ("observer", no_class,
9111 &observer_mode_1, _("\
9112Set whether gdb controls the inferior in observer mode."), _("\
9113Show whether gdb controls the inferior in observer mode."), _("\
9114In observer mode, GDB can get data from the inferior, but not\n\
9115affect its execution. Registers and memory may not be changed,\n\
9116breakpoints may not be set, and the program cannot be interrupted\n\
9117or signalled."),
9118 set_observer_mode,
9119 show_observer_mode,
9120 &setlist,
9121 &showlist);
c906108c 9122}
This page took 1.99607 seconds and 4 git commands to generate.