Fix build failure in xcoffread.c
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
1777feb0 1080/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
95e50b27 1083follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
8a06aea7 1132 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
94585166 1155 process_ptid = pid_to_ptid (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
6c95b8df 1158 execd_pathname);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
a3be80c3 1167 if (*gdb_sysroot != '\0')
e85a822c 1168 {
998d2a3e 1169 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1170
224c3ddb 1171 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1172 strcpy (execd_pathname, name);
1173 xfree (name);
e85a822c 1174 }
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
17d8546e
DB
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
94585166
DB
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1197
1198 set_current_inferior (inf);
94585166
DB
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
6c95b8df 1201 }
9107fc8d
PA
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
6c95b8df
PA
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1777feb0 1215 /* That a.out is now the one to use. */
6c95b8df
PA
1216 exec_file_attach (execd_pathname, 0);
1217
c1e56572
JK
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
7dcd53a0
TT
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1226 NULL, 0);
1227
7dcd53a0
TT
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
268a4a75 1239 solib_create_inferior_hook (0);
c906108c 1240
4efc6507
DE
1241 jit_inferior_created_hook ();
1242
c1e56572
JK
1243 breakpoint_re_set ();
1244
c906108c
SS
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1777feb0 1247 to symbol_file_command...). */
c906108c
SS
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1777feb0 1253 matically get reset there in the new process.). */
c906108c
SS
1254}
1255
c2829269
PA
1256/* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263struct thread_info *step_over_queue_head;
1264
6c4cfb24
PA
1265/* Bit flags indicating what the thread needs to step over. */
1266
8d297bbf 1267enum step_over_what_flag
6c4cfb24
PA
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
8d297bbf 1277DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1278
963f9c80 1279/* Info about an instruction that is being stepped over. */
31e77af2
PA
1280
1281struct step_over_info
1282{
963f9c80
PA
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
31e77af2 1287 struct address_space *aspace;
31e77af2 1288 CORE_ADDR address;
963f9c80
PA
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
21edc42f
YQ
1293
1294 /* The thread's global number. */
1295 int thread;
31e77af2
PA
1296};
1297
1298/* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322static struct step_over_info step_over_info;
1323
1324/* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327static void
963f9c80 1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
fc1cf338
PA
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
fc1cf338 1620/* Remove the displaced stepping state of process PID. */
237fc4c9 1621
fc1cf338
PA
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1626
fc1cf338
PA
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
237fc4c9 1650
fff08868
HZ
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
72d0e2c5 1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1660
237fc4c9
PA
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
72d0e2c5 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1670 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1671 else
3e43a32a
MS
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1675}
1676
fff08868 1677/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1678 over breakpoints of thread TP. */
fff08868 1679
237fc4c9 1680static int
3fc8eb30 1681use_displaced_stepping (struct thread_info *tp)
237fc4c9 1682{
3fc8eb30
PA
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
fbea99ea
PA
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
72d0e2c5 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
237fc4c9
PA
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
fc1cf338 1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1701{
1702 /* Indicate that there is no cleanup pending. */
fc1cf338 1703 displaced->step_ptid = null_ptid;
237fc4c9 1704
fc1cf338 1705 if (displaced->step_closure)
237fc4c9 1706 {
fc1cf338
PA
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
237fc4c9
PA
1710 }
1711}
1712
1713static void
fc1cf338 1714displaced_step_clear_cleanup (void *arg)
237fc4c9 1715{
9a3c8263
SM
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1718
1719 displaced_step_clear (state);
237fc4c9
PA
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
237fc4c9 1751static int
3fc8eb30 1752displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1753{
ad53cd71 1754 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1755 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1758 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
fc1cf338 1762 struct displaced_step_inferior_state *displaced;
9e529e1d 1763 int status;
237fc4c9
PA
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
c2829269
PA
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
c1e36e3e
PA
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
fc1cf338
PA
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
237fc4c9 1780
fc1cf338
PA
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
237fc4c9
PA
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
c2829269 1790 "displaced: deferring step of %s\n",
237fc4c9
PA
1791 target_pid_to_str (ptid));
1792
c2829269 1793 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
fc1cf338 1804 displaced_step_clear (displaced);
237fc4c9 1805
ad53cd71
PA
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
515630c5 1809 original = regcache_read_pc (regcache);
237fc4c9
PA
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
d35ae833
PA
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
237fc4c9 1836 /* Save the original contents of the copy area. */
224c3ddb 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1838 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1839 &displaced->step_saved_copy);
9e529e1d
JK
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1846 if (debug_displaced)
1847 {
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
fc1cf338
PA
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
237fc4c9
PA
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1856 original, copy, regcache);
7f03bd92
PA
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
237fc4c9 1865
9f5a595d
UW
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
fc1cf338
PA
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
9f5a595d 1873
fc1cf338 1874 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1875
1876 /* Resume execution at the copy. */
515630c5 1877 regcache_write_pc (regcache, copy);
237fc4c9 1878
ad53cd71
PA
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
237fc4c9
PA
1882
1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9
PA
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
e2d96639
YQ
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
372316f1
PA
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
2ea28649 1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1971{
1972 struct cleanup *old_cleanups;
fc1cf338
PA
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1975 int ret;
fc1cf338
PA
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
372316f1 1979 return 0;
237fc4c9
PA
1980
1981 /* Was this event for the pid we displaced? */
fc1cf338
PA
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1984 return 0;
237fc4c9 1985
fc1cf338 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1987
e2d96639 1988 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1989
cb71640d
PA
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
237fc4c9 1995 /* Did the instruction complete successfully? */
cb71640d
PA
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
237fc4c9
PA
2000 {
2001 /* Fix up the resulting state. */
fc1cf338
PA
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
372316f1 2007 ret = 1;
237fc4c9
PA
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
515630c5
UW
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2015
fc1cf338 2016 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2017 regcache_write_pc (regcache, pc);
372316f1 2018 ret = -1;
237fc4c9
PA
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
fc1cf338 2023 displaced->step_ptid = null_ptid;
372316f1
PA
2024
2025 return ret;
c2829269 2026}
1c5cfe86 2027
4d9d9d04
PA
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
c2829269
PA
2052
2053static void
4d9d9d04
PA
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2063static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
c2829269
PA
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
372316f1
PA
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
c2829269 2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2080 {
4d9d9d04
PA
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
8d297bbf 2083 step_over_what step_what;
372316f1 2084 int must_be_in_line;
c2829269
PA
2085
2086 next = thread_step_over_chain_next (tp);
237fc4c9 2087
c2829269
PA
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
4d9d9d04 2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2091 continue;
2092
372316f1
PA
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2096 && !use_displaced_stepping (tp)));
372316f1
PA
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
c2829269
PA
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
372316f1
PA
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
ad53cd71 2116 {
4d9d9d04
PA
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
372316f1 2119 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
372316f1 2122 tp->resumed,
4d9d9d04 2123 tp->executing);
ad53cd71 2124 }
1c5cfe86 2125
4d9d9d04
PA
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2137 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2138 continue;
8550d3b3 2139
4d9d9d04
PA
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
1c5cfe86 2143
4d9d9d04
PA
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
1c5cfe86 2146
372316f1
PA
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
fbea99ea 2156 if (!target_is_non_stop_p ())
4d9d9d04
PA
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
1c5cfe86 2167 }
c2829269 2168
4d9d9d04
PA
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
237fc4c9 2173 }
4d9d9d04
PA
2174
2175 return 0;
237fc4c9
PA
2176}
2177
5231c1fd
PA
2178/* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180static void
2181infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182{
fc1cf338 2183 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
fc1cf338
PA
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
fc1cf338 2194 }
5231c1fd
PA
2195}
2196
237fc4c9
PA
2197\f
2198/* Resuming. */
c906108c
SS
2199
2200/* Things to clean up if we QUIT out of resume (). */
c906108c 2201static void
74b7792f 2202resume_cleanups (void *ignore)
c906108c 2203{
34b7e8a6
PA
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2206
c906108c
SS
2207 normal_stop ();
2208}
2209
53904c9e
AC
2210static const char schedlock_off[] = "off";
2211static const char schedlock_on[] = "on";
2212static const char schedlock_step[] = "step";
f2665db5 2213static const char schedlock_replay[] = "replay";
40478521 2214static const char *const scheduler_enums[] = {
ef346e04
AC
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
f2665db5 2218 schedlock_replay,
ef346e04
AC
2219 NULL
2220};
f2665db5 2221static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2222static void
2223show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225{
3e43a32a
MS
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
920d2a44
AC
2229 value);
2230}
c906108c
SS
2231
2232static void
96baa820 2233set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2234{
eefe576e
AC
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
c906108c
SS
2240}
2241
d4db2f36
PA
2242/* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245int sched_multi = 0;
2246
2facfe5c
DD
2247/* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253static int
2254maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255{
2256 int hw_step = 1;
2257
f02253f1
HZ
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
99e40580 2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2261 {
99e40580 2262 hw_step = 0;
2facfe5c
DD
2263 }
2264 return hw_step;
2265}
c906108c 2266
f3263aa4
PA
2267/* See infrun.h. */
2268
09cee04b
PA
2269ptid_t
2270user_visible_resume_ptid (int step)
2271{
f3263aa4 2272 ptid_t resume_ptid;
09cee04b 2273
09cee04b
PA
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
03d46957 2281 || (scheduler_mode == schedlock_step && step))
09cee04b 2282 {
f3263aa4
PA
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
09cee04b
PA
2285 resume_ptid = inferior_ptid;
2286 }
f2665db5
MM
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
f3263aa4
PA
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
09cee04b
PA
2305
2306 return resume_ptid;
2307}
2308
fbea99ea
PA
2309/* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315static ptid_t
2316internal_resume_ptid (int user_step)
2317{
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326}
2327
64ce06e4
PA
2328/* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331static void
2332do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333{
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
8f572e5c
PA
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369}
2370
c906108c
SS
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
c906108c
SS
2377 SIG is the signal to give the inferior (zero for none). */
2378void
64ce06e4 2379resume (enum gdb_signal sig)
c906108c 2380{
74b7792f 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2384 struct thread_info *tp = inferior_thread ();
515630c5 2385 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2386 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2387 ptid_t resume_ptid;
856e7dd6
PA
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
6b403daa 2396 int step;
c7e8a53c 2397
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
fd7dcb94 2424 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
6b403daa
PA
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
74609e71
YQ
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
48f9886d
PA
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
74609e71
YQ
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
a09dd441 2457 step = 0;
74609e71
YQ
2458 }
2459
527159b7 2460 if (debug_infrun)
237fc4c9 2461 fprintf_unfiltered (gdb_stdlog,
c9737c08 2462 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2463 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
0d9a9a5f
PA
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
c906108c 2468
c2c6d25f
JM
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2474 {
af48d08f
PA
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
44a1ee51
PA
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
af48d08f 2534 (overstep). */
1ac806b8 2535 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
fbea99ea 2539 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2541 discard_cleanups (old_cleanups);
372316f1 2542 tp->resumed = 1;
af48d08f
PA
2543 return;
2544 }
2545 }
6d350bb5 2546 }
c2c6d25f 2547
c1e36e3e
PA
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
237fc4c9
PA
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
3fc8eb30
PA
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
cb71640d 2566 && !step_over_info_valid_p ()
a493e3e2 2567 && sig == GDB_SIGNAL_0
74609e71 2568 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2569 {
3fc8eb30 2570 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2571
3fc8eb30 2572 if (prepared == 0)
d56b7306 2573 {
4d9d9d04
PA
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
d56b7306
VP
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
3fc8eb30
PA
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2590 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
99e40580 2599
3fc8eb30
PA
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2603
3fc8eb30
PA
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
237fc4c9
PA
2608 }
2609
2facfe5c 2610 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2611 else if (step)
2facfe5c 2612 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2613
30852783
UW
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
34b7e8a6 2638 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
30852783
UW
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2c03e5be 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
34b7e8a6 2653 delete_single_step_breakpoints (tp);
30852783 2654
31e77af2 2655 clear_step_over_info ();
30852783 2656 tp->control.trap_expected = 0;
31e77af2
PA
2657
2658 insert_breakpoints ();
30852783
UW
2659 }
2660
b0f16a3e
SM
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
34b7e8a6 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2665
fbea99ea 2666 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2667 if (tp->control.trap_expected)
b0f16a3e
SM
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
b0f16a3e
SM
2678 resume_ptid = inferior_ptid;
2679 }
fbea99ea
PA
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2682
7f5ef605
PA
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2685 {
372316f1
PA
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
372316f1
PA
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
7f5ef605
PA
2718
2719 tp->stepped_breakpoint = 1;
2720
b0f16a3e
SM
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
7f5ef605 2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2725 step = 0;
2726 }
ef5cf84e 2727
b0f16a3e 2728 if (debug_displaced
cb71640d 2729 && tp->control.trap_expected
3fc8eb30 2730 && use_displaced_stepping (tp)
cb71640d 2731 && !step_over_info_valid_p ())
b0f16a3e 2732 {
d9b67d9f 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
237fc4c9 2743
b0f16a3e
SM
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
c1e36e3e 2753
64ce06e4 2754 do_target_resume (resume_ptid, step, sig);
372316f1 2755 tp->resumed = 1;
c906108c
SS
2756 discard_cleanups (old_cleanups);
2757}
2758\f
237fc4c9 2759/* Proceeding. */
c906108c 2760
4c2f2a79
PA
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
c906108c
SS
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
a7212384
UW
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
c906108c 2793{
a7212384
UW
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
d6b48e9c 2798
372316f1
PA
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
70509625
PA
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
243a9253
PA
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
16c381f0
JK
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
c1e36e3e 2841 tp->control.may_range_step = 0;
16c381f0
JK
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2845 tp->control.step_start_function = NULL;
a7212384 2846 tp->stop_requested = 0;
4e1c45ea 2847
16c381f0 2848 tp->control.stop_step = 0;
32400beb 2849
16c381f0 2850 tp->control.proceed_to_finish = 0;
414c69f7 2851
856e7dd6 2852 tp->control.stepping_command = 0;
17b2616c 2853
a7212384 2854 /* Discard any remaining commands or status from previous stop. */
16c381f0 2855 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2856}
32400beb 2857
a7212384 2858void
70509625 2859clear_proceed_status (int step)
a7212384 2860{
f2665db5
MM
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
6c95b8df
PA
2873 if (!non_stop)
2874 {
70509625
PA
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
6c95b8df
PA
2888 }
2889
a7212384
UW
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
6c95b8df
PA
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
a7212384
UW
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
6c95b8df 2900
d6b48e9c 2901 inferior = current_inferior ();
16c381f0 2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2903 }
2904
f3b1572e 2905 observer_notify_about_to_proceed ();
c906108c
SS
2906}
2907
99619bea
PA
2908/* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2911
2912static int
6c4cfb24 2913thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2914{
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
99619bea
PA
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928}
2929
6c4cfb24
PA
2930/* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
8d297bbf 2934static step_over_what
6c4cfb24
PA
2935thread_still_needs_step_over (struct thread_info *tp)
2936{
8d297bbf 2937 step_over_what what = 0;
6c4cfb24
PA
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947}
2948
483805cf
PA
2949/* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952static int
856e7dd6 2953schedlock_applies (struct thread_info *tp)
483805cf
PA
2954{
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
f2665db5
MM
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
483805cf
PA
2961}
2962
c906108c
SS
2963/* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2967 or -1 for act according to how it stopped.
c906108c 2968 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
c906108c
SS
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975void
64ce06e4 2976proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2977{
e58b0e63
PA
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
4e1c45ea 2980 struct thread_info *tp;
e58b0e63 2981 CORE_ADDR pc;
6c95b8df 2982 struct address_space *aspace;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
c906108c 2988
e58b0e63
PA
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
f148b27e
PA
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2998 return;
2999 }
3000
842951eb
PA
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
e58b0e63
PA
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
6c95b8df 3006 aspace = get_regcache_aspace (regcache);
e58b0e63 3007 pc = regcache_read_pc (regcache);
2adfaa28 3008 tp = inferior_thread ();
e58b0e63 3009
99619bea
PA
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
c2829269
PA
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
2acceee2 3015 if (addr == (CORE_ADDR) -1)
c906108c 3016 {
af48d08f
PA
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3019 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
b2175913
MS
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
99619bea 3028 tp->stepping_over_breakpoint = 1;
515630c5
UW
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3352ef37
AC
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
c906108c
SS
3035 }
3036 else
3037 {
515630c5 3038 regcache_write_pc (regcache, addr);
c906108c
SS
3039 }
3040
70509625
PA
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
4d9d9d04
PA
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
17b2616c 3059
527159b7 3060 if (debug_infrun)
8a9de0e4 3061 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3062 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3063 paddress (gdbarch, addr),
64ce06e4 3064 gdb_signal_to_symbol_string (siggnal));
527159b7 3065
4d9d9d04
PA
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
94cc34af 3086 {
4d9d9d04
PA
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
99619bea 3095
4d9d9d04
PA
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
c906108c 3099
4d9d9d04
PA
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3104
99619bea
PA
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
4d9d9d04 3108 target_pid_to_str (tp->ptid));
99619bea 3109
4d9d9d04 3110 thread_step_over_chain_enqueue (tp);
2adfaa28 3111 }
31e77af2 3112
4d9d9d04 3113 tp = current;
30852783
UW
3114 }
3115
4d9d9d04
PA
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
30852783 3120
4d9d9d04
PA
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3127
4d9d9d04 3128 started = start_step_over ();
c906108c 3129
4d9d9d04
PA
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
fbea99ea 3136 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
fbea99ea
PA
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
fd7dcb94 3179 error (_("Command aborted."));
fbea99ea
PA
3180 }
3181 }
372316f1 3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
fd7dcb94 3189 error (_("Command aborted."));
4d9d9d04 3190 }
c906108c 3191
4d9d9d04 3192 discard_cleanups (old_chain);
c906108c 3193
0b333c5e
PA
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
362646f5 3197 if (!target_can_async_p ())
0b333c5e 3198 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3199}
c906108c
SS
3200\f
3201
3202/* Start remote-debugging of a machine over a serial link. */
96baa820 3203
c906108c 3204void
8621d6a9 3205start_remote (int from_tty)
c906108c 3206{
d6b48e9c 3207 struct inferior *inferior;
d6b48e9c
PA
3208
3209 inferior = current_inferior ();
16c381f0 3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3211
1777feb0 3212 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3214 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
1777feb0 3218 timeout. */
6426a772
JM
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
1777feb0 3225 for an async run. */
e4c8541f 3226 wait_for_inferior ();
8621d6a9
DJ
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
6426a772 3233 normal_stop ();
c906108c
SS
3234}
3235
3236/* Initialize static vars when a new inferior begins. */
3237
3238void
96baa820 3239init_wait_for_inferior (void)
c906108c
SS
3240{
3241 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3242
c906108c
SS
3243 breakpoint_init_inferior (inf_starting);
3244
70509625 3245 clear_proceed_status (0);
9f976b41 3246
ca005067 3247 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3248
842951eb 3249 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3250
edb3359d
DJ
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
c906108c 3253}
237fc4c9 3254
c906108c 3255\f
488f131b 3256
ec9499be 3257static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3258
568d6575
UW
3259static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
4f5d7f63 3263static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3264static void check_exception_resume (struct execution_control_state *,
28106bc2 3265 struct frame_info *);
611c83ae 3266
bdc36728 3267static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3268static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3269static void keep_going (struct execution_control_state *ecs);
94c57d6a 3270static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3271static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3272
252fbfc8
PA
3273/* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281static int
3282infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283{
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
f15cb84a
YQ
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
252fbfc8
PA
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
243a9253 3312 ecs->event_thread = info;
252fbfc8 3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3314 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
243a9253
PA
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
252fbfc8 3323 normal_stop ();
252fbfc8
PA
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330}
3331
3332/* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
2c0b251b 3336static void
252fbfc8
PA
3337infrun_thread_stop_requested (ptid_t ptid)
3338{
c2829269 3339 struct thread_info *tp;
252fbfc8 3340
c2829269
PA
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
252fbfc8
PA
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352}
3353
a07daef3
PA
3354static void
3355infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356{
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359}
3360
0cbcdb96
PA
3361/* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
4e1c45ea 3363
0cbcdb96
PA
3364static void
3365delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3366{
0cbcdb96
PA
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
34b7e8a6 3369 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3370}
3371
0cbcdb96
PA
3372/* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
4e1c45ea
PA
3378
3379static void
0cbcdb96 3380for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3381{
0cbcdb96 3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3383 return;
3384
fbea99ea 3385 if (target_is_non_stop_p ())
4e1c45ea 3386 {
0cbcdb96
PA
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
4e1c45ea
PA
3389 }
3390 else
0cbcdb96
PA
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400}
3401
3402/* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405static void
3406delete_just_stopped_threads_infrun_breakpoints (void)
3407{
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3409}
3410
3411/* Delete the single-step breakpoints of the threads that just
3412 stopped. */
7c16b83e 3413
34b7e8a6
PA
3414static void
3415delete_just_stopped_threads_single_step_breakpoints (void)
3416{
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3418}
3419
1777feb0 3420/* A cleanup wrapper. */
4e1c45ea
PA
3421
3422static void
0cbcdb96 3423delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3424{
0cbcdb96 3425 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3426}
3427
221e1a37 3428/* See infrun.h. */
223698f8 3429
221e1a37 3430void
223698f8
DE
3431print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433{
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
223698f8
DE
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
dfd4cc63 3448 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
1176ecec 3453 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3454 ptid_get_pid (result_ptid),
1176ecec
PA
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
dfd4cc63 3457 target_pid_to_str (result_ptid));
223698f8
DE
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
759ef836 3462 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471}
3472
372316f1
PA
3473/* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476static struct thread_info *
3477random_pending_event_thread (ptid_t waiton_ptid)
3478{
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512}
3513
3514/* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518static ptid_t
3519do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520{
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644}
3645
24291992
PA
3646/* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651void
3652prepare_for_detach (void)
3653{
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
f15cb84a
YQ
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
24291992 3688
372316f1 3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3e43a32a
MS
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
24291992
PA
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717}
3718
cd0fc7c3 3719/* Wait for control to return from inferior to debugger.
ae123ec6 3720
cd0fc7c3
SS
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726void
e4c8541f 3727wait_for_inferior (void)
cd0fc7c3
SS
3728{
3729 struct cleanup *old_cleanups;
e6f5c25b 3730 struct cleanup *thread_state_chain;
c906108c 3731
527159b7 3732 if (debug_infrun)
ae123ec6 3733 fprintf_unfiltered
e4c8541f 3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3735
0cbcdb96
PA
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
cd0fc7c3 3739
e6f5c25b
PA
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
c906108c
SS
3745 while (1)
3746 {
ae25568b
PA
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
963f9c80 3749 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3750
ae25568b
PA
3751 memset (ecs, 0, sizeof (*ecs));
3752
ec9499be 3753 overlay_cache_invalid = 1;
ec9499be 3754
f15cb84a
YQ
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
372316f1 3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3762
f00150c9 3763 if (debug_infrun)
223698f8 3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3765
cd0fc7c3
SS
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
c906108c 3768
cd0fc7c3
SS
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
4e1c45ea 3772
e6f5c25b
PA
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
cd0fc7c3
SS
3776 do_cleanups (old_cleanups);
3777}
c906108c 3778
d3d4baed
PA
3779/* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789static void
3790reinstall_readline_callback_handler_cleanup (void *arg)
3791{
3b12939d
PA
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
6c400b59
PA
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3b12939d 3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3805 gdb_rl_callback_handler_reinstall ();
3806}
3807
243a9253
PA
3808/* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811static void
3812clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813{
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3817 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
8980e177 3829 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835}
3836
3b12939d
PA
3837/* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840static void
3841check_curr_ui_sync_execution_done (void)
3842{
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3eb7562a 3851 ui_register_input_event_handler (ui);
3b12939d
PA
3852 }
3853}
3854
3855/* See infrun.h. */
3856
3857void
3858all_uis_check_sync_execution_done (void)
3859{
3860 struct switch_thru_all_uis state;
3861
3862 SWITCH_THRU_ALL_UIS (state)
3863 {
3864 check_curr_ui_sync_execution_done ();
3865 }
3866}
3867
a8836c93
PA
3868/* See infrun.h. */
3869
3870void
3871all_uis_on_sync_execution_starting (void)
3872{
3873 struct switch_thru_all_uis state;
3874
3875 SWITCH_THRU_ALL_UIS (state)
3876 {
3877 if (current_ui->prompt_state == PROMPT_NEEDED)
3878 async_disable_stdin ();
3879 }
3880}
3881
170742de
PA
3882/* A cleanup that restores the execution direction to the value saved
3883 in *ARG. */
3884
3885static void
3886restore_execution_direction (void *arg)
3887{
3888 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3889
3890 execution_direction = *save_exec_dir;
3891}
3892
1777feb0 3893/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3894 event loop whenever a change of state is detected on the file
1777feb0
MS
3895 descriptor corresponding to the target. It can be called more than
3896 once to complete a single execution command. In such cases we need
3897 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3898 that this function is called for a single execution command, then
3899 report to the user that the inferior has stopped, and do the
1777feb0 3900 necessary cleanups. */
43ff13b4
JM
3901
3902void
fba45db2 3903fetch_inferior_event (void *client_data)
43ff13b4 3904{
0d1e5fa7 3905 struct execution_control_state ecss;
a474d7c2 3906 struct execution_control_state *ecs = &ecss;
4f8d22e3 3907 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3908 struct cleanup *ts_old_chain;
170742de 3909 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3910 int cmd_done = 0;
963f9c80 3911 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3912
0d1e5fa7
PA
3913 memset (ecs, 0, sizeof (*ecs));
3914
c61db772
PA
3915 /* Events are always processed with the main UI as current UI. This
3916 way, warnings, debug output, etc. are always consistently sent to
3917 the main console. */
a025b477 3918 make_cleanup_restore_current_ui ();
c61db772
PA
3919 current_ui = main_ui;
3920
d3d4baed
PA
3921 /* End up with readline processing input, if necessary. */
3922 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3923
c5187ac6
PA
3924 /* We're handling a live event, so make sure we're doing live
3925 debugging. If we're looking at traceframes while the target is
3926 running, we're going to need to get back to that mode after
3927 handling the event. */
3928 if (non_stop)
3929 {
3930 make_cleanup_restore_current_traceframe ();
e6e4e701 3931 set_current_traceframe (-1);
c5187ac6
PA
3932 }
3933
4f8d22e3
PA
3934 if (non_stop)
3935 /* In non-stop mode, the user/frontend should not notice a thread
3936 switch due to internal events. Make sure we reverse to the
3937 user selected thread and frame after handling the event and
3938 running any breakpoint commands. */
3939 make_cleanup_restore_current_thread ();
3940
ec9499be 3941 overlay_cache_invalid = 1;
f15cb84a
YQ
3942 /* Flush target cache before starting to handle each event. Target
3943 was running and cache could be stale. This is just a heuristic.
3944 Running threads may modify target memory, but we don't get any
3945 event. */
3946 target_dcache_invalidate ();
3dd5b83d 3947
170742de 3948 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3949 execution_direction = target_execution_direction ();
3950
0b333c5e
PA
3951 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3952 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3953
f00150c9 3954 if (debug_infrun)
223698f8 3955 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3956
29f49a6a
PA
3957 /* If an error happens while handling the event, propagate GDB's
3958 knowledge of the executing state to the frontend/user running
3959 state. */
fbea99ea 3960 if (!target_is_non_stop_p ())
29f49a6a
PA
3961 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3962 else
3963 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3964
353d1d73
JK
3965 /* Get executed before make_cleanup_restore_current_thread above to apply
3966 still for the thread which has thrown the exception. */
3967 make_bpstat_clear_actions_cleanup ();
3968
7c16b83e
PA
3969 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3970
43ff13b4 3971 /* Now figure out what to do with the result of the result. */
a474d7c2 3972 handle_inferior_event (ecs);
43ff13b4 3973
a474d7c2 3974 if (!ecs->wait_some_more)
43ff13b4 3975 {
c9657e70 3976 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3977 int should_stop = 1;
3978 struct thread_info *thr = ecs->event_thread;
388a7084 3979 int should_notify_stop = 1;
d6b48e9c 3980
0cbcdb96 3981 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3982
243a9253
PA
3983 if (thr != NULL)
3984 {
3985 struct thread_fsm *thread_fsm = thr->thread_fsm;
3986
3987 if (thread_fsm != NULL)
8980e177 3988 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3989 }
3990
3991 if (!should_stop)
3992 {
3993 keep_going (ecs);
3994 }
c2d11a7d 3995 else
0f641c01 3996 {
243a9253
PA
3997 clean_up_just_stopped_threads_fsms (ecs);
3998
388a7084
PA
3999 if (thr != NULL && thr->thread_fsm != NULL)
4000 {
4001 should_notify_stop
4002 = thread_fsm_should_notify_stop (thr->thread_fsm);
4003 }
4004
4005 if (should_notify_stop)
4006 {
4c2f2a79
PA
4007 int proceeded = 0;
4008
388a7084
PA
4009 /* We may not find an inferior if this was a process exit. */
4010 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 4011 proceeded = normal_stop ();
243a9253 4012
4c2f2a79
PA
4013 if (!proceeded)
4014 {
4015 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4016 cmd_done = 1;
4017 }
388a7084 4018 }
0f641c01 4019 }
43ff13b4 4020 }
4f8d22e3 4021
29f49a6a
PA
4022 /* No error, don't finish the thread states yet. */
4023 discard_cleanups (ts_old_chain);
4024
4f8d22e3
PA
4025 /* Revert thread and frame. */
4026 do_cleanups (old_chain);
4027
3b12939d
PA
4028 /* If a UI was in sync execution mode, and now isn't, restore its
4029 prompt (a synchronous execution command has finished, and we're
4030 ready for input). */
4031 all_uis_check_sync_execution_done ();
0f641c01
PA
4032
4033 if (cmd_done
0f641c01
PA
4034 && exec_done_display_p
4035 && (ptid_equal (inferior_ptid, null_ptid)
4036 || !is_running (inferior_ptid)))
4037 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4038}
4039
edb3359d
DJ
4040/* Record the frame and location we're currently stepping through. */
4041void
4042set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4043{
4044 struct thread_info *tp = inferior_thread ();
4045
16c381f0
JK
4046 tp->control.step_frame_id = get_frame_id (frame);
4047 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4048
4049 tp->current_symtab = sal.symtab;
4050 tp->current_line = sal.line;
4051}
4052
0d1e5fa7
PA
4053/* Clear context switchable stepping state. */
4054
4055void
4e1c45ea 4056init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4057{
7f5ef605 4058 tss->stepped_breakpoint = 0;
0d1e5fa7 4059 tss->stepping_over_breakpoint = 0;
963f9c80 4060 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4061 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4062}
4063
c32c64b7
DE
4064/* Set the cached copy of the last ptid/waitstatus. */
4065
6efcd9a8 4066void
c32c64b7
DE
4067set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4068{
4069 target_last_wait_ptid = ptid;
4070 target_last_waitstatus = status;
4071}
4072
e02bc4cc 4073/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4074 target_wait()/deprecated_target_wait_hook(). The data is actually
4075 cached by handle_inferior_event(), which gets called immediately
4076 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4077
4078void
488f131b 4079get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4080{
39f77062 4081 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4082 *status = target_last_waitstatus;
4083}
4084
ac264b3b
MS
4085void
4086nullify_last_target_wait_ptid (void)
4087{
4088 target_last_wait_ptid = minus_one_ptid;
4089}
4090
dcf4fbde 4091/* Switch thread contexts. */
dd80620e
MS
4092
4093static void
0d1e5fa7 4094context_switch (ptid_t ptid)
dd80620e 4095{
4b51d87b 4096 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4097 {
4098 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4099 target_pid_to_str (inferior_ptid));
4100 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4101 target_pid_to_str (ptid));
fd48f117
DJ
4102 }
4103
0d1e5fa7 4104 switch_to_thread (ptid);
dd80620e
MS
4105}
4106
d8dd4d5f
PA
4107/* If the target can't tell whether we've hit breakpoints
4108 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4109 check whether that could have been caused by a breakpoint. If so,
4110 adjust the PC, per gdbarch_decr_pc_after_break. */
4111
4fa8626c 4112static void
d8dd4d5f
PA
4113adjust_pc_after_break (struct thread_info *thread,
4114 struct target_waitstatus *ws)
4fa8626c 4115{
24a73cce
UW
4116 struct regcache *regcache;
4117 struct gdbarch *gdbarch;
6c95b8df 4118 struct address_space *aspace;
118e6252 4119 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4120
4fa8626c
DJ
4121 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4122 we aren't, just return.
9709f61c
DJ
4123
4124 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4125 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4126 implemented by software breakpoints should be handled through the normal
4127 breakpoint layer.
8fb3e588 4128
4fa8626c
DJ
4129 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4130 different signals (SIGILL or SIGEMT for instance), but it is less
4131 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4132 gdbarch_decr_pc_after_break. I don't know any specific target that
4133 generates these signals at breakpoints (the code has been in GDB since at
4134 least 1992) so I can not guess how to handle them here.
8fb3e588 4135
e6cf7916
UW
4136 In earlier versions of GDB, a target with
4137 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4138 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4139 target with both of these set in GDB history, and it seems unlikely to be
4140 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4141
d8dd4d5f 4142 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4143 return;
4144
d8dd4d5f 4145 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4146 return;
4147
4058b839
PA
4148 /* In reverse execution, when a breakpoint is hit, the instruction
4149 under it has already been de-executed. The reported PC always
4150 points at the breakpoint address, so adjusting it further would
4151 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4152 architecture:
4153
4154 B1 0x08000000 : INSN1
4155 B2 0x08000001 : INSN2
4156 0x08000002 : INSN3
4157 PC -> 0x08000003 : INSN4
4158
4159 Say you're stopped at 0x08000003 as above. Reverse continuing
4160 from that point should hit B2 as below. Reading the PC when the
4161 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4162 been de-executed already.
4163
4164 B1 0x08000000 : INSN1
4165 B2 PC -> 0x08000001 : INSN2
4166 0x08000002 : INSN3
4167 0x08000003 : INSN4
4168
4169 We can't apply the same logic as for forward execution, because
4170 we would wrongly adjust the PC to 0x08000000, since there's a
4171 breakpoint at PC - 1. We'd then report a hit on B1, although
4172 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4173 behaviour. */
4174 if (execution_direction == EXEC_REVERSE)
4175 return;
4176
1cf4d951
PA
4177 /* If the target can tell whether the thread hit a SW breakpoint,
4178 trust it. Targets that can tell also adjust the PC
4179 themselves. */
4180 if (target_supports_stopped_by_sw_breakpoint ())
4181 return;
4182
4183 /* Note that relying on whether a breakpoint is planted in memory to
4184 determine this can fail. E.g,. the breakpoint could have been
4185 removed since. Or the thread could have been told to step an
4186 instruction the size of a breakpoint instruction, and only
4187 _after_ was a breakpoint inserted at its address. */
4188
24a73cce
UW
4189 /* If this target does not decrement the PC after breakpoints, then
4190 we have nothing to do. */
d8dd4d5f 4191 regcache = get_thread_regcache (thread->ptid);
24a73cce 4192 gdbarch = get_regcache_arch (regcache);
118e6252 4193
527a273a 4194 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4195 if (decr_pc == 0)
24a73cce
UW
4196 return;
4197
6c95b8df
PA
4198 aspace = get_regcache_aspace (regcache);
4199
8aad930b
AC
4200 /* Find the location where (if we've hit a breakpoint) the
4201 breakpoint would be. */
118e6252 4202 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4203
1cf4d951
PA
4204 /* If the target can't tell whether a software breakpoint triggered,
4205 fallback to figuring it out based on breakpoints we think were
4206 inserted in the target, and on whether the thread was stepped or
4207 continued. */
4208
1c5cfe86
PA
4209 /* Check whether there actually is a software breakpoint inserted at
4210 that location.
4211
4212 If in non-stop mode, a race condition is possible where we've
4213 removed a breakpoint, but stop events for that breakpoint were
4214 already queued and arrive later. To suppress those spurious
4215 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4216 and retire them after a number of stop events are reported. Note
4217 this is an heuristic and can thus get confused. The real fix is
4218 to get the "stopped by SW BP and needs adjustment" info out of
4219 the target/kernel (and thus never reach here; see above). */
6c95b8df 4220 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4221 || (target_is_non_stop_p ()
4222 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4223 {
77f9e713 4224 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4225
8213266a 4226 if (record_full_is_used ())
77f9e713 4227 record_full_gdb_operation_disable_set ();
96429cc8 4228
1c0fdd0e
UW
4229 /* When using hardware single-step, a SIGTRAP is reported for both
4230 a completed single-step and a software breakpoint. Need to
4231 differentiate between the two, as the latter needs adjusting
4232 but the former does not.
4233
4234 The SIGTRAP can be due to a completed hardware single-step only if
4235 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4236 - this thread is currently being stepped
4237
4238 If any of these events did not occur, we must have stopped due
4239 to hitting a software breakpoint, and have to back up to the
4240 breakpoint address.
4241
4242 As a special case, we could have hardware single-stepped a
4243 software breakpoint. In this case (prev_pc == breakpoint_pc),
4244 we also need to back up to the breakpoint address. */
4245
d8dd4d5f
PA
4246 if (thread_has_single_step_breakpoints_set (thread)
4247 || !currently_stepping (thread)
4248 || (thread->stepped_breakpoint
4249 && thread->prev_pc == breakpoint_pc))
515630c5 4250 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4251
77f9e713 4252 do_cleanups (old_cleanups);
8aad930b 4253 }
4fa8626c
DJ
4254}
4255
edb3359d
DJ
4256static int
4257stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4258{
4259 for (frame = get_prev_frame (frame);
4260 frame != NULL;
4261 frame = get_prev_frame (frame))
4262 {
4263 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4264 return 1;
4265 if (get_frame_type (frame) != INLINE_FRAME)
4266 break;
4267 }
4268
4269 return 0;
4270}
4271
a96d9b2e
SDJ
4272/* Auxiliary function that handles syscall entry/return events.
4273 It returns 1 if the inferior should keep going (and GDB
4274 should ignore the event), or 0 if the event deserves to be
4275 processed. */
ca2163eb 4276
a96d9b2e 4277static int
ca2163eb 4278handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4279{
ca2163eb 4280 struct regcache *regcache;
ca2163eb
PA
4281 int syscall_number;
4282
4283 if (!ptid_equal (ecs->ptid, inferior_ptid))
4284 context_switch (ecs->ptid);
4285
4286 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4287 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4288 stop_pc = regcache_read_pc (regcache);
4289
a96d9b2e
SDJ
4290 if (catch_syscall_enabled () > 0
4291 && catching_syscall_number (syscall_number) > 0)
4292 {
4293 if (debug_infrun)
4294 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4295 syscall_number);
a96d9b2e 4296
16c381f0 4297 ecs->event_thread->control.stop_bpstat
6c95b8df 4298 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4299 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4300
ce12b012 4301 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4302 {
4303 /* Catchpoint hit. */
ca2163eb
PA
4304 return 0;
4305 }
a96d9b2e 4306 }
ca2163eb
PA
4307
4308 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4309 keep_going (ecs);
4310 return 1;
a96d9b2e
SDJ
4311}
4312
7e324e48
GB
4313/* Lazily fill in the execution_control_state's stop_func_* fields. */
4314
4315static void
4316fill_in_stop_func (struct gdbarch *gdbarch,
4317 struct execution_control_state *ecs)
4318{
4319 if (!ecs->stop_func_filled_in)
4320 {
4321 /* Don't care about return value; stop_func_start and stop_func_name
4322 will both be 0 if it doesn't work. */
4323 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4324 &ecs->stop_func_start, &ecs->stop_func_end);
4325 ecs->stop_func_start
4326 += gdbarch_deprecated_function_start_offset (gdbarch);
4327
591a12a1
UW
4328 if (gdbarch_skip_entrypoint_p (gdbarch))
4329 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4330 ecs->stop_func_start);
4331
7e324e48
GB
4332 ecs->stop_func_filled_in = 1;
4333 }
4334}
4335
4f5d7f63
PA
4336
4337/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4338
4339static enum stop_kind
4340get_inferior_stop_soon (ptid_t ptid)
4341{
c9657e70 4342 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4343
4344 gdb_assert (inf != NULL);
4345 return inf->control.stop_soon;
4346}
4347
372316f1
PA
4348/* Wait for one event. Store the resulting waitstatus in WS, and
4349 return the event ptid. */
4350
4351static ptid_t
4352wait_one (struct target_waitstatus *ws)
4353{
4354 ptid_t event_ptid;
4355 ptid_t wait_ptid = minus_one_ptid;
4356
4357 overlay_cache_invalid = 1;
4358
4359 /* Flush target cache before starting to handle each event.
4360 Target was running and cache could be stale. This is just a
4361 heuristic. Running threads may modify target memory, but we
4362 don't get any event. */
4363 target_dcache_invalidate ();
4364
4365 if (deprecated_target_wait_hook)
4366 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4367 else
4368 event_ptid = target_wait (wait_ptid, ws, 0);
4369
4370 if (debug_infrun)
4371 print_target_wait_results (wait_ptid, event_ptid, ws);
4372
4373 return event_ptid;
4374}
4375
4376/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4377 instead of the current thread. */
4378#define THREAD_STOPPED_BY(REASON) \
4379static int \
4380thread_stopped_by_ ## REASON (ptid_t ptid) \
4381{ \
4382 struct cleanup *old_chain; \
4383 int res; \
4384 \
4385 old_chain = save_inferior_ptid (); \
4386 inferior_ptid = ptid; \
4387 \
4388 res = target_stopped_by_ ## REASON (); \
4389 \
4390 do_cleanups (old_chain); \
4391 \
4392 return res; \
4393}
4394
4395/* Generate thread_stopped_by_watchpoint. */
4396THREAD_STOPPED_BY (watchpoint)
4397/* Generate thread_stopped_by_sw_breakpoint. */
4398THREAD_STOPPED_BY (sw_breakpoint)
4399/* Generate thread_stopped_by_hw_breakpoint. */
4400THREAD_STOPPED_BY (hw_breakpoint)
4401
4402/* Cleanups that switches to the PTID pointed at by PTID_P. */
4403
4404static void
4405switch_to_thread_cleanup (void *ptid_p)
4406{
4407 ptid_t ptid = *(ptid_t *) ptid_p;
4408
4409 switch_to_thread (ptid);
4410}
4411
4412/* Save the thread's event and stop reason to process it later. */
4413
4414static void
4415save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4416{
4417 struct regcache *regcache;
4418 struct address_space *aspace;
4419
4420 if (debug_infrun)
4421 {
4422 char *statstr;
4423
4424 statstr = target_waitstatus_to_string (ws);
4425 fprintf_unfiltered (gdb_stdlog,
4426 "infrun: saving status %s for %d.%ld.%ld\n",
4427 statstr,
4428 ptid_get_pid (tp->ptid),
4429 ptid_get_lwp (tp->ptid),
4430 ptid_get_tid (tp->ptid));
4431 xfree (statstr);
4432 }
4433
4434 /* Record for later. */
4435 tp->suspend.waitstatus = *ws;
4436 tp->suspend.waitstatus_pending_p = 1;
4437
4438 regcache = get_thread_regcache (tp->ptid);
4439 aspace = get_regcache_aspace (regcache);
4440
4441 if (ws->kind == TARGET_WAITKIND_STOPPED
4442 && ws->value.sig == GDB_SIGNAL_TRAP)
4443 {
4444 CORE_ADDR pc = regcache_read_pc (regcache);
4445
4446 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4447
4448 if (thread_stopped_by_watchpoint (tp->ptid))
4449 {
4450 tp->suspend.stop_reason
4451 = TARGET_STOPPED_BY_WATCHPOINT;
4452 }
4453 else if (target_supports_stopped_by_sw_breakpoint ()
4454 && thread_stopped_by_sw_breakpoint (tp->ptid))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4458 }
4459 else if (target_supports_stopped_by_hw_breakpoint ()
4460 && thread_stopped_by_hw_breakpoint (tp->ptid))
4461 {
4462 tp->suspend.stop_reason
4463 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4464 }
4465 else if (!target_supports_stopped_by_hw_breakpoint ()
4466 && hardware_breakpoint_inserted_here_p (aspace,
4467 pc))
4468 {
4469 tp->suspend.stop_reason
4470 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4471 }
4472 else if (!target_supports_stopped_by_sw_breakpoint ()
4473 && software_breakpoint_inserted_here_p (aspace,
4474 pc))
4475 {
4476 tp->suspend.stop_reason
4477 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4478 }
4479 else if (!thread_has_single_step_breakpoints_set (tp)
4480 && currently_stepping (tp))
4481 {
4482 tp->suspend.stop_reason
4483 = TARGET_STOPPED_BY_SINGLE_STEP;
4484 }
4485 }
4486}
4487
65706a29
PA
4488/* A cleanup that disables thread create/exit events. */
4489
4490static void
4491disable_thread_events (void *arg)
4492{
4493 target_thread_events (0);
4494}
4495
6efcd9a8 4496/* See infrun.h. */
372316f1 4497
6efcd9a8 4498void
372316f1
PA
4499stop_all_threads (void)
4500{
4501 /* We may need multiple passes to discover all threads. */
4502 int pass;
4503 int iterations = 0;
4504 ptid_t entry_ptid;
4505 struct cleanup *old_chain;
4506
fbea99ea 4507 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4508
4509 if (debug_infrun)
4510 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4511
4512 entry_ptid = inferior_ptid;
4513 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4514
65706a29
PA
4515 target_thread_events (1);
4516 make_cleanup (disable_thread_events, NULL);
4517
372316f1
PA
4518 /* Request threads to stop, and then wait for the stops. Because
4519 threads we already know about can spawn more threads while we're
4520 trying to stop them, and we only learn about new threads when we
4521 update the thread list, do this in a loop, and keep iterating
4522 until two passes find no threads that need to be stopped. */
4523 for (pass = 0; pass < 2; pass++, iterations++)
4524 {
4525 if (debug_infrun)
4526 fprintf_unfiltered (gdb_stdlog,
4527 "infrun: stop_all_threads, pass=%d, "
4528 "iterations=%d\n", pass, iterations);
4529 while (1)
4530 {
4531 ptid_t event_ptid;
4532 struct target_waitstatus ws;
4533 int need_wait = 0;
4534 struct thread_info *t;
4535
4536 update_thread_list ();
4537
4538 /* Go through all threads looking for threads that we need
4539 to tell the target to stop. */
4540 ALL_NON_EXITED_THREADS (t)
4541 {
4542 if (t->executing)
4543 {
4544 /* If already stopping, don't request a stop again.
4545 We just haven't seen the notification yet. */
4546 if (!t->stop_requested)
4547 {
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: %s executing, "
4551 "need stop\n",
4552 target_pid_to_str (t->ptid));
4553 target_stop (t->ptid);
4554 t->stop_requested = 1;
4555 }
4556 else
4557 {
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog,
4560 "infrun: %s executing, "
4561 "already stopping\n",
4562 target_pid_to_str (t->ptid));
4563 }
4564
4565 if (t->stop_requested)
4566 need_wait = 1;
4567 }
4568 else
4569 {
4570 if (debug_infrun)
4571 fprintf_unfiltered (gdb_stdlog,
4572 "infrun: %s not executing\n",
4573 target_pid_to_str (t->ptid));
4574
4575 /* The thread may be not executing, but still be
4576 resumed with a pending status to process. */
4577 t->resumed = 0;
4578 }
4579 }
4580
4581 if (!need_wait)
4582 break;
4583
4584 /* If we find new threads on the second iteration, restart
4585 over. We want to see two iterations in a row with all
4586 threads stopped. */
4587 if (pass > 0)
4588 pass = -1;
4589
4590 event_ptid = wait_one (&ws);
4591 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4592 {
4593 /* All resumed threads exited. */
4594 }
65706a29
PA
4595 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4596 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4597 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4598 {
4599 if (debug_infrun)
4600 {
4601 ptid_t ptid = pid_to_ptid (ws.value.integer);
4602
4603 fprintf_unfiltered (gdb_stdlog,
4604 "infrun: %s exited while "
4605 "stopping threads\n",
4606 target_pid_to_str (ptid));
4607 }
4608 }
4609 else
4610 {
6efcd9a8
PA
4611 struct inferior *inf;
4612
372316f1
PA
4613 t = find_thread_ptid (event_ptid);
4614 if (t == NULL)
4615 t = add_thread (event_ptid);
4616
4617 t->stop_requested = 0;
4618 t->executing = 0;
4619 t->resumed = 0;
4620 t->control.may_range_step = 0;
4621
6efcd9a8
PA
4622 /* This may be the first time we see the inferior report
4623 a stop. */
4624 inf = find_inferior_ptid (event_ptid);
4625 if (inf->needs_setup)
4626 {
4627 switch_to_thread_no_regs (t);
4628 setup_inferior (0);
4629 }
4630
372316f1
PA
4631 if (ws.kind == TARGET_WAITKIND_STOPPED
4632 && ws.value.sig == GDB_SIGNAL_0)
4633 {
4634 /* We caught the event that we intended to catch, so
4635 there's no event pending. */
4636 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4637 t->suspend.waitstatus_pending_p = 0;
4638
4639 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4640 {
4641 /* Add it back to the step-over queue. */
4642 if (debug_infrun)
4643 {
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: displaced-step of %s "
4646 "canceled: adding back to the "
4647 "step-over queue\n",
4648 target_pid_to_str (t->ptid));
4649 }
4650 t->control.trap_expected = 0;
4651 thread_step_over_chain_enqueue (t);
4652 }
4653 }
4654 else
4655 {
4656 enum gdb_signal sig;
4657 struct regcache *regcache;
372316f1
PA
4658
4659 if (debug_infrun)
4660 {
4661 char *statstr;
4662
4663 statstr = target_waitstatus_to_string (&ws);
4664 fprintf_unfiltered (gdb_stdlog,
4665 "infrun: target_wait %s, saving "
4666 "status for %d.%ld.%ld\n",
4667 statstr,
4668 ptid_get_pid (t->ptid),
4669 ptid_get_lwp (t->ptid),
4670 ptid_get_tid (t->ptid));
4671 xfree (statstr);
4672 }
4673
4674 /* Record for later. */
4675 save_waitstatus (t, &ws);
4676
4677 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4678 ? ws.value.sig : GDB_SIGNAL_0);
4679
4680 if (displaced_step_fixup (t->ptid, sig) < 0)
4681 {
4682 /* Add it back to the step-over queue. */
4683 t->control.trap_expected = 0;
4684 thread_step_over_chain_enqueue (t);
4685 }
4686
4687 regcache = get_thread_regcache (t->ptid);
4688 t->suspend.stop_pc = regcache_read_pc (regcache);
4689
4690 if (debug_infrun)
4691 {
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: saved stop_pc=%s for %s "
4694 "(currently_stepping=%d)\n",
4695 paddress (target_gdbarch (),
4696 t->suspend.stop_pc),
4697 target_pid_to_str (t->ptid),
4698 currently_stepping (t));
4699 }
4700 }
4701 }
4702 }
4703 }
4704
4705 do_cleanups (old_chain);
4706
4707 if (debug_infrun)
4708 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4709}
4710
f4836ba9
PA
4711/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4712
4713static int
4714handle_no_resumed (struct execution_control_state *ecs)
4715{
4716 struct inferior *inf;
4717 struct thread_info *thread;
4718
3b12939d 4719 if (target_can_async_p ())
f4836ba9 4720 {
3b12939d
PA
4721 struct ui *ui;
4722 int any_sync = 0;
f4836ba9 4723
3b12939d
PA
4724 ALL_UIS (ui)
4725 {
4726 if (ui->prompt_state == PROMPT_BLOCKED)
4727 {
4728 any_sync = 1;
4729 break;
4730 }
4731 }
4732 if (!any_sync)
4733 {
4734 /* There were no unwaited-for children left in the target, but,
4735 we're not synchronously waiting for events either. Just
4736 ignore. */
4737
4738 if (debug_infrun)
4739 fprintf_unfiltered (gdb_stdlog,
4740 "infrun: TARGET_WAITKIND_NO_RESUMED "
4741 "(ignoring: bg)\n");
4742 prepare_to_wait (ecs);
4743 return 1;
4744 }
f4836ba9
PA
4745 }
4746
4747 /* Otherwise, if we were running a synchronous execution command, we
4748 may need to cancel it and give the user back the terminal.
4749
4750 In non-stop mode, the target can't tell whether we've already
4751 consumed previous stop events, so it can end up sending us a
4752 no-resumed event like so:
4753
4754 #0 - thread 1 is left stopped
4755
4756 #1 - thread 2 is resumed and hits breakpoint
4757 -> TARGET_WAITKIND_STOPPED
4758
4759 #2 - thread 3 is resumed and exits
4760 this is the last resumed thread, so
4761 -> TARGET_WAITKIND_NO_RESUMED
4762
4763 #3 - gdb processes stop for thread 2 and decides to re-resume
4764 it.
4765
4766 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4767 thread 2 is now resumed, so the event should be ignored.
4768
4769 IOW, if the stop for thread 2 doesn't end a foreground command,
4770 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4771 event. But it could be that the event meant that thread 2 itself
4772 (or whatever other thread was the last resumed thread) exited.
4773
4774 To address this we refresh the thread list and check whether we
4775 have resumed threads _now_. In the example above, this removes
4776 thread 3 from the thread list. If thread 2 was re-resumed, we
4777 ignore this event. If we find no thread resumed, then we cancel
4778 the synchronous command show "no unwaited-for " to the user. */
4779 update_thread_list ();
4780
4781 ALL_NON_EXITED_THREADS (thread)
4782 {
4783 if (thread->executing
4784 || thread->suspend.waitstatus_pending_p)
4785 {
4786 /* There were no unwaited-for children left in the target at
4787 some point, but there are now. Just ignore. */
4788 if (debug_infrun)
4789 fprintf_unfiltered (gdb_stdlog,
4790 "infrun: TARGET_WAITKIND_NO_RESUMED "
4791 "(ignoring: found resumed)\n");
4792 prepare_to_wait (ecs);
4793 return 1;
4794 }
4795 }
4796
4797 /* Note however that we may find no resumed thread because the whole
4798 process exited meanwhile (thus updating the thread list results
4799 in an empty thread list). In this case we know we'll be getting
4800 a process exit event shortly. */
4801 ALL_INFERIORS (inf)
4802 {
4803 if (inf->pid == 0)
4804 continue;
4805
4806 thread = any_live_thread_of_process (inf->pid);
4807 if (thread == NULL)
4808 {
4809 if (debug_infrun)
4810 fprintf_unfiltered (gdb_stdlog,
4811 "infrun: TARGET_WAITKIND_NO_RESUMED "
4812 "(expect process exit)\n");
4813 prepare_to_wait (ecs);
4814 return 1;
4815 }
4816 }
4817
4818 /* Go ahead and report the event. */
4819 return 0;
4820}
4821
05ba8510
PA
4822/* Given an execution control state that has been freshly filled in by
4823 an event from the inferior, figure out what it means and take
4824 appropriate action.
4825
4826 The alternatives are:
4827
22bcd14b 4828 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4829 debugger.
4830
4831 2) keep_going and return; to wait for the next event (set
4832 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4833 once). */
c906108c 4834
ec9499be 4835static void
0b6e5e10 4836handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4837{
d6b48e9c
PA
4838 enum stop_kind stop_soon;
4839
28736962
PA
4840 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4841 {
4842 /* We had an event in the inferior, but we are not interested in
4843 handling it at this level. The lower layers have already
4844 done what needs to be done, if anything.
4845
4846 One of the possible circumstances for this is when the
4847 inferior produces output for the console. The inferior has
4848 not stopped, and we are ignoring the event. Another possible
4849 circumstance is any event which the lower level knows will be
4850 reported multiple times without an intervening resume. */
4851 if (debug_infrun)
4852 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4853 prepare_to_wait (ecs);
4854 return;
4855 }
4856
65706a29
PA
4857 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4858 {
4859 if (debug_infrun)
4860 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4861 prepare_to_wait (ecs);
4862 return;
4863 }
4864
0e5bf2a8 4865 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4866 && handle_no_resumed (ecs))
4867 return;
0e5bf2a8 4868
1777feb0 4869 /* Cache the last pid/waitstatus. */
c32c64b7 4870 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4871
ca005067 4872 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4873 stop_stack_dummy = STOP_NONE;
ca005067 4874
0e5bf2a8
PA
4875 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4876 {
4877 /* No unwaited-for children left. IOW, all resumed children
4878 have exited. */
4879 if (debug_infrun)
4880 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4881
4882 stop_print_frame = 0;
22bcd14b 4883 stop_waiting (ecs);
0e5bf2a8
PA
4884 return;
4885 }
4886
8c90c137 4887 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4888 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4889 {
4890 ecs->event_thread = find_thread_ptid (ecs->ptid);
4891 /* If it's a new thread, add it to the thread database. */
4892 if (ecs->event_thread == NULL)
4893 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4894
4895 /* Disable range stepping. If the next step request could use a
4896 range, this will be end up re-enabled then. */
4897 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4898 }
88ed393a
JK
4899
4900 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4901 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4902
4903 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4904 reinit_frame_cache ();
4905
28736962
PA
4906 breakpoint_retire_moribund ();
4907
2b009048
DJ
4908 /* First, distinguish signals caused by the debugger from signals
4909 that have to do with the program's own actions. Note that
4910 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4911 on the operating system version. Here we detect when a SIGILL or
4912 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4913 something similar for SIGSEGV, since a SIGSEGV will be generated
4914 when we're trying to execute a breakpoint instruction on a
4915 non-executable stack. This happens for call dummy breakpoints
4916 for architectures like SPARC that place call dummies on the
4917 stack. */
2b009048 4918 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4919 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4920 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4921 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4922 {
de0a0249
UW
4923 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4924
4925 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4926 regcache_read_pc (regcache)))
4927 {
4928 if (debug_infrun)
4929 fprintf_unfiltered (gdb_stdlog,
4930 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4931 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4932 }
2b009048
DJ
4933 }
4934
28736962
PA
4935 /* Mark the non-executing threads accordingly. In all-stop, all
4936 threads of all processes are stopped when we get any event
e1316e60 4937 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4938 {
4939 ptid_t mark_ptid;
4940
fbea99ea 4941 if (!target_is_non_stop_p ())
372316f1
PA
4942 mark_ptid = minus_one_ptid;
4943 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4944 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4945 {
4946 /* If we're handling a process exit in non-stop mode, even
4947 though threads haven't been deleted yet, one would think
4948 that there is nothing to do, as threads of the dead process
4949 will be soon deleted, and threads of any other process were
4950 left running. However, on some targets, threads survive a
4951 process exit event. E.g., for the "checkpoint" command,
4952 when the current checkpoint/fork exits, linux-fork.c
4953 automatically switches to another fork from within
4954 target_mourn_inferior, by associating the same
4955 inferior/thread to another fork. We haven't mourned yet at
4956 this point, but we must mark any threads left in the
4957 process as not-executing so that finish_thread_state marks
4958 them stopped (in the user's perspective) if/when we present
4959 the stop to the user. */
4960 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4961 }
4962 else
4963 mark_ptid = ecs->ptid;
4964
4965 set_executing (mark_ptid, 0);
4966
4967 /* Likewise the resumed flag. */
4968 set_resumed (mark_ptid, 0);
4969 }
8c90c137 4970
488f131b
JB
4971 switch (ecs->ws.kind)
4972 {
4973 case TARGET_WAITKIND_LOADED:
527159b7 4974 if (debug_infrun)
8a9de0e4 4975 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4976 if (!ptid_equal (ecs->ptid, inferior_ptid))
4977 context_switch (ecs->ptid);
b0f4b84b
DJ
4978 /* Ignore gracefully during startup of the inferior, as it might
4979 be the shell which has just loaded some objects, otherwise
4980 add the symbols for the newly loaded objects. Also ignore at
4981 the beginning of an attach or remote session; we will query
4982 the full list of libraries once the connection is
4983 established. */
4f5d7f63
PA
4984
4985 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4986 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4987 {
edcc5120
TT
4988 struct regcache *regcache;
4989
edcc5120
TT
4990 regcache = get_thread_regcache (ecs->ptid);
4991
4992 handle_solib_event ();
4993
4994 ecs->event_thread->control.stop_bpstat
4995 = bpstat_stop_status (get_regcache_aspace (regcache),
4996 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4997
ce12b012 4998 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4999 {
5000 /* A catchpoint triggered. */
94c57d6a
PA
5001 process_event_stop_test (ecs);
5002 return;
edcc5120 5003 }
488f131b 5004
b0f4b84b
DJ
5005 /* If requested, stop when the dynamic linker notifies
5006 gdb of events. This allows the user to get control
5007 and place breakpoints in initializer routines for
5008 dynamically loaded objects (among other things). */
a493e3e2 5009 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5010 if (stop_on_solib_events)
5011 {
55409f9d
DJ
5012 /* Make sure we print "Stopped due to solib-event" in
5013 normal_stop. */
5014 stop_print_frame = 1;
5015
22bcd14b 5016 stop_waiting (ecs);
b0f4b84b
DJ
5017 return;
5018 }
488f131b 5019 }
b0f4b84b
DJ
5020
5021 /* If we are skipping through a shell, or through shared library
5022 loading that we aren't interested in, resume the program. If
5c09a2c5 5023 we're running the program normally, also resume. */
b0f4b84b
DJ
5024 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5025 {
74960c60
VP
5026 /* Loading of shared libraries might have changed breakpoint
5027 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5028 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5029 insert_breakpoints ();
64ce06e4 5030 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5031 prepare_to_wait (ecs);
5032 return;
5033 }
5034
5c09a2c5
PA
5035 /* But stop if we're attaching or setting up a remote
5036 connection. */
5037 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5038 || stop_soon == STOP_QUIETLY_REMOTE)
5039 {
5040 if (debug_infrun)
5041 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5042 stop_waiting (ecs);
5c09a2c5
PA
5043 return;
5044 }
5045
5046 internal_error (__FILE__, __LINE__,
5047 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5048
488f131b 5049 case TARGET_WAITKIND_SPURIOUS:
527159b7 5050 if (debug_infrun)
8a9de0e4 5051 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5052 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5053 context_switch (ecs->ptid);
64ce06e4 5054 resume (GDB_SIGNAL_0);
488f131b
JB
5055 prepare_to_wait (ecs);
5056 return;
c5aa993b 5057
65706a29
PA
5058 case TARGET_WAITKIND_THREAD_CREATED:
5059 if (debug_infrun)
5060 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5061 if (!ptid_equal (ecs->ptid, inferior_ptid))
5062 context_switch (ecs->ptid);
5063 if (!switch_back_to_stepped_thread (ecs))
5064 keep_going (ecs);
5065 return;
5066
488f131b 5067 case TARGET_WAITKIND_EXITED:
940c3c06 5068 case TARGET_WAITKIND_SIGNALLED:
527159b7 5069 if (debug_infrun)
940c3c06
PA
5070 {
5071 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5072 fprintf_unfiltered (gdb_stdlog,
5073 "infrun: TARGET_WAITKIND_EXITED\n");
5074 else
5075 fprintf_unfiltered (gdb_stdlog,
5076 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5077 }
5078
fb66883a 5079 inferior_ptid = ecs->ptid;
c9657e70 5080 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5081 set_current_program_space (current_inferior ()->pspace);
5082 handle_vfork_child_exec_or_exit (0);
1777feb0 5083 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5084
0c557179
SDJ
5085 /* Clearing any previous state of convenience variables. */
5086 clear_exit_convenience_vars ();
5087
940c3c06
PA
5088 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5089 {
5090 /* Record the exit code in the convenience variable $_exitcode, so
5091 that the user can inspect this again later. */
5092 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5093 (LONGEST) ecs->ws.value.integer);
5094
5095 /* Also record this in the inferior itself. */
5096 current_inferior ()->has_exit_code = 1;
5097 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5098
98eb56a4
PA
5099 /* Support the --return-child-result option. */
5100 return_child_result_value = ecs->ws.value.integer;
5101
fd664c91 5102 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5103 }
5104 else
0c557179
SDJ
5105 {
5106 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5107 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5108
5109 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5110 {
5111 /* Set the value of the internal variable $_exitsignal,
5112 which holds the signal uncaught by the inferior. */
5113 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5114 gdbarch_gdb_signal_to_target (gdbarch,
5115 ecs->ws.value.sig));
5116 }
5117 else
5118 {
5119 /* We don't have access to the target's method used for
5120 converting between signal numbers (GDB's internal
5121 representation <-> target's representation).
5122 Therefore, we cannot do a good job at displaying this
5123 information to the user. It's better to just warn
5124 her about it (if infrun debugging is enabled), and
5125 give up. */
5126 if (debug_infrun)
5127 fprintf_filtered (gdb_stdlog, _("\
5128Cannot fill $_exitsignal with the correct signal number.\n"));
5129 }
5130
fd664c91 5131 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5132 }
8cf64490 5133
488f131b 5134 gdb_flush (gdb_stdout);
bc1e6c81 5135 target_mourn_inferior (inferior_ptid);
488f131b 5136 stop_print_frame = 0;
22bcd14b 5137 stop_waiting (ecs);
488f131b 5138 return;
c5aa993b 5139
488f131b 5140 /* The following are the only cases in which we keep going;
1777feb0 5141 the above cases end in a continue or goto. */
488f131b 5142 case TARGET_WAITKIND_FORKED:
deb3b17b 5143 case TARGET_WAITKIND_VFORKED:
527159b7 5144 if (debug_infrun)
fed708ed
PA
5145 {
5146 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5147 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5148 else
5149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5150 }
c906108c 5151
e2d96639
YQ
5152 /* Check whether the inferior is displaced stepping. */
5153 {
5154 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5155 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5156
5157 /* If checking displaced stepping is supported, and thread
5158 ecs->ptid is displaced stepping. */
c0987663 5159 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5160 {
5161 struct inferior *parent_inf
c9657e70 5162 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5163 struct regcache *child_regcache;
5164 CORE_ADDR parent_pc;
5165
5166 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5167 indicating that the displaced stepping of syscall instruction
5168 has been done. Perform cleanup for parent process here. Note
5169 that this operation also cleans up the child process for vfork,
5170 because their pages are shared. */
a493e3e2 5171 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5172 /* Start a new step-over in another thread if there's one
5173 that needs it. */
5174 start_step_over ();
e2d96639
YQ
5175
5176 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5177 {
c0987663
YQ
5178 struct displaced_step_inferior_state *displaced
5179 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5180
e2d96639
YQ
5181 /* Restore scratch pad for child process. */
5182 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5183 }
5184
5185 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5186 the child's PC is also within the scratchpad. Set the child's PC
5187 to the parent's PC value, which has already been fixed up.
5188 FIXME: we use the parent's aspace here, although we're touching
5189 the child, because the child hasn't been added to the inferior
5190 list yet at this point. */
5191
5192 child_regcache
5193 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5194 gdbarch,
5195 parent_inf->aspace);
5196 /* Read PC value of parent process. */
5197 parent_pc = regcache_read_pc (regcache);
5198
5199 if (debug_displaced)
5200 fprintf_unfiltered (gdb_stdlog,
5201 "displaced: write child pc from %s to %s\n",
5202 paddress (gdbarch,
5203 regcache_read_pc (child_regcache)),
5204 paddress (gdbarch, parent_pc));
5205
5206 regcache_write_pc (child_regcache, parent_pc);
5207 }
5208 }
5209
5a2901d9 5210 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5211 context_switch (ecs->ptid);
5a2901d9 5212
b242c3c2
PA
5213 /* Immediately detach breakpoints from the child before there's
5214 any chance of letting the user delete breakpoints from the
5215 breakpoint lists. If we don't do this early, it's easy to
5216 leave left over traps in the child, vis: "break foo; catch
5217 fork; c; <fork>; del; c; <child calls foo>". We only follow
5218 the fork on the last `continue', and by that time the
5219 breakpoint at "foo" is long gone from the breakpoint table.
5220 If we vforked, then we don't need to unpatch here, since both
5221 parent and child are sharing the same memory pages; we'll
5222 need to unpatch at follow/detach time instead to be certain
5223 that new breakpoints added between catchpoint hit time and
5224 vfork follow are detached. */
5225 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5226 {
b242c3c2
PA
5227 /* This won't actually modify the breakpoint list, but will
5228 physically remove the breakpoints from the child. */
d80ee84f 5229 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5230 }
5231
34b7e8a6 5232 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5233
e58b0e63
PA
5234 /* In case the event is caught by a catchpoint, remember that
5235 the event is to be followed at the next resume of the thread,
5236 and not immediately. */
5237 ecs->event_thread->pending_follow = ecs->ws;
5238
fb14de7b 5239 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5240
16c381f0 5241 ecs->event_thread->control.stop_bpstat
6c95b8df 5242 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5243 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5244
ce12b012
PA
5245 /* If no catchpoint triggered for this, then keep going. Note
5246 that we're interested in knowing the bpstat actually causes a
5247 stop, not just if it may explain the signal. Software
5248 watchpoints, for example, always appear in the bpstat. */
5249 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5250 {
6c95b8df
PA
5251 ptid_t parent;
5252 ptid_t child;
e58b0e63 5253 int should_resume;
3e43a32a
MS
5254 int follow_child
5255 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5256
a493e3e2 5257 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5258
5259 should_resume = follow_fork ();
5260
6c95b8df
PA
5261 parent = ecs->ptid;
5262 child = ecs->ws.value.related_pid;
5263
a2077e25
PA
5264 /* At this point, the parent is marked running, and the
5265 child is marked stopped. */
5266
5267 /* If not resuming the parent, mark it stopped. */
5268 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5269 set_running (parent, 0);
5270
5271 /* If resuming the child, mark it running. */
5272 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5273 set_running (child, 1);
5274
6c95b8df 5275 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5276 if (!detach_fork && (non_stop
5277 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5278 {
5279 if (follow_child)
5280 switch_to_thread (parent);
5281 else
5282 switch_to_thread (child);
5283
5284 ecs->event_thread = inferior_thread ();
5285 ecs->ptid = inferior_ptid;
5286 keep_going (ecs);
5287 }
5288
5289 if (follow_child)
5290 switch_to_thread (child);
5291 else
5292 switch_to_thread (parent);
5293
e58b0e63
PA
5294 ecs->event_thread = inferior_thread ();
5295 ecs->ptid = inferior_ptid;
5296
5297 if (should_resume)
5298 keep_going (ecs);
5299 else
22bcd14b 5300 stop_waiting (ecs);
04e68871
DJ
5301 return;
5302 }
94c57d6a
PA
5303 process_event_stop_test (ecs);
5304 return;
488f131b 5305
6c95b8df
PA
5306 case TARGET_WAITKIND_VFORK_DONE:
5307 /* Done with the shared memory region. Re-insert breakpoints in
5308 the parent, and keep going. */
5309
5310 if (debug_infrun)
3e43a32a
MS
5311 fprintf_unfiltered (gdb_stdlog,
5312 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5313
5314 if (!ptid_equal (ecs->ptid, inferior_ptid))
5315 context_switch (ecs->ptid);
5316
5317 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5318 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5319 /* This also takes care of reinserting breakpoints in the
5320 previously locked inferior. */
5321 keep_going (ecs);
5322 return;
5323
488f131b 5324 case TARGET_WAITKIND_EXECD:
527159b7 5325 if (debug_infrun)
fc5261f2 5326 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5327
5a2901d9 5328 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5329 context_switch (ecs->ptid);
5a2901d9 5330
fb14de7b 5331 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5332
6c95b8df
PA
5333 /* Do whatever is necessary to the parent branch of the vfork. */
5334 handle_vfork_child_exec_or_exit (1);
5335
795e548f
PA
5336 /* This causes the eventpoints and symbol table to be reset.
5337 Must do this now, before trying to determine whether to
5338 stop. */
71b43ef8 5339 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5340
17d8546e
DB
5341 /* In follow_exec we may have deleted the original thread and
5342 created a new one. Make sure that the event thread is the
5343 execd thread for that case (this is a nop otherwise). */
5344 ecs->event_thread = inferior_thread ();
5345
16c381f0 5346 ecs->event_thread->control.stop_bpstat
6c95b8df 5347 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5348 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5349
71b43ef8
PA
5350 /* Note that this may be referenced from inside
5351 bpstat_stop_status above, through inferior_has_execd. */
5352 xfree (ecs->ws.value.execd_pathname);
5353 ecs->ws.value.execd_pathname = NULL;
5354
04e68871 5355 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5356 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5357 {
a493e3e2 5358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5359 keep_going (ecs);
5360 return;
5361 }
94c57d6a
PA
5362 process_event_stop_test (ecs);
5363 return;
488f131b 5364
b4dc5ffa
MK
5365 /* Be careful not to try to gather much state about a thread
5366 that's in a syscall. It's frequently a losing proposition. */
488f131b 5367 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5368 if (debug_infrun)
3e43a32a
MS
5369 fprintf_unfiltered (gdb_stdlog,
5370 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5371 /* Getting the current syscall number. */
94c57d6a
PA
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
c906108c 5375
488f131b
JB
5376 /* Before examining the threads further, step this thread to
5377 get it entirely out of the syscall. (We get notice of the
5378 event when the thread is just on the verge of exiting a
5379 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5380 into user code.) */
488f131b 5381 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5382 if (debug_infrun)
3e43a32a
MS
5383 fprintf_unfiltered (gdb_stdlog,
5384 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5385 if (handle_syscall_event (ecs) == 0)
5386 process_event_stop_test (ecs);
5387 return;
c906108c 5388
488f131b 5389 case TARGET_WAITKIND_STOPPED:
527159b7 5390 if (debug_infrun)
8a9de0e4 5391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5392 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5393 handle_signal_stop (ecs);
5394 return;
c906108c 5395
b2175913 5396 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5397 if (debug_infrun)
5398 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5399 /* Reverse execution: target ran out of history info. */
eab402df 5400
d1988021
MM
5401 /* Switch to the stopped thread. */
5402 if (!ptid_equal (ecs->ptid, inferior_ptid))
5403 context_switch (ecs->ptid);
5404 if (debug_infrun)
5405 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5406
34b7e8a6 5407 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5408 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5409 observer_notify_no_history ();
22bcd14b 5410 stop_waiting (ecs);
b2175913 5411 return;
488f131b 5412 }
4f5d7f63
PA
5413}
5414
0b6e5e10
JB
5415/* A wrapper around handle_inferior_event_1, which also makes sure
5416 that all temporary struct value objects that were created during
5417 the handling of the event get deleted at the end. */
5418
5419static void
5420handle_inferior_event (struct execution_control_state *ecs)
5421{
5422 struct value *mark = value_mark ();
5423
5424 handle_inferior_event_1 (ecs);
5425 /* Purge all temporary values created during the event handling,
5426 as it could be a long time before we return to the command level
5427 where such values would otherwise be purged. */
5428 value_free_to_mark (mark);
5429}
5430
372316f1
PA
5431/* Restart threads back to what they were trying to do back when we
5432 paused them for an in-line step-over. The EVENT_THREAD thread is
5433 ignored. */
4d9d9d04
PA
5434
5435static void
372316f1
PA
5436restart_threads (struct thread_info *event_thread)
5437{
5438 struct thread_info *tp;
372316f1
PA
5439
5440 /* In case the instruction just stepped spawned a new thread. */
5441 update_thread_list ();
5442
5443 ALL_NON_EXITED_THREADS (tp)
5444 {
5445 if (tp == event_thread)
5446 {
5447 if (debug_infrun)
5448 fprintf_unfiltered (gdb_stdlog,
5449 "infrun: restart threads: "
5450 "[%s] is event thread\n",
5451 target_pid_to_str (tp->ptid));
5452 continue;
5453 }
5454
5455 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5456 {
5457 if (debug_infrun)
5458 fprintf_unfiltered (gdb_stdlog,
5459 "infrun: restart threads: "
5460 "[%s] not meant to be running\n",
5461 target_pid_to_str (tp->ptid));
5462 continue;
5463 }
5464
5465 if (tp->resumed)
5466 {
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog,
5469 "infrun: restart threads: [%s] resumed\n",
5470 target_pid_to_str (tp->ptid));
5471 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5472 continue;
5473 }
5474
5475 if (thread_is_in_step_over_chain (tp))
5476 {
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5479 "infrun: restart threads: "
5480 "[%s] needs step-over\n",
5481 target_pid_to_str (tp->ptid));
5482 gdb_assert (!tp->resumed);
5483 continue;
5484 }
5485
5486
5487 if (tp->suspend.waitstatus_pending_p)
5488 {
5489 if (debug_infrun)
5490 fprintf_unfiltered (gdb_stdlog,
5491 "infrun: restart threads: "
5492 "[%s] has pending status\n",
5493 target_pid_to_str (tp->ptid));
5494 tp->resumed = 1;
5495 continue;
5496 }
5497
5498 /* If some thread needs to start a step-over at this point, it
5499 should still be in the step-over queue, and thus skipped
5500 above. */
5501 if (thread_still_needs_step_over (tp))
5502 {
5503 internal_error (__FILE__, __LINE__,
5504 "thread [%s] needs a step-over, but not in "
5505 "step-over queue\n",
5506 target_pid_to_str (tp->ptid));
5507 }
5508
5509 if (currently_stepping (tp))
5510 {
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] was stepping\n",
5514 target_pid_to_str (tp->ptid));
5515 keep_going_stepped_thread (tp);
5516 }
5517 else
5518 {
5519 struct execution_control_state ecss;
5520 struct execution_control_state *ecs = &ecss;
5521
5522 if (debug_infrun)
5523 fprintf_unfiltered (gdb_stdlog,
5524 "infrun: restart threads: [%s] continuing\n",
5525 target_pid_to_str (tp->ptid));
5526 reset_ecs (ecs, tp);
5527 switch_to_thread (tp->ptid);
5528 keep_going_pass_signal (ecs);
5529 }
5530 }
5531}
5532
5533/* Callback for iterate_over_threads. Find a resumed thread that has
5534 a pending waitstatus. */
5535
5536static int
5537resumed_thread_with_pending_status (struct thread_info *tp,
5538 void *arg)
5539{
5540 return (tp->resumed
5541 && tp->suspend.waitstatus_pending_p);
5542}
5543
5544/* Called when we get an event that may finish an in-line or
5545 out-of-line (displaced stepping) step-over started previously.
5546 Return true if the event is processed and we should go back to the
5547 event loop; false if the caller should continue processing the
5548 event. */
5549
5550static int
4d9d9d04
PA
5551finish_step_over (struct execution_control_state *ecs)
5552{
372316f1
PA
5553 int had_step_over_info;
5554
4d9d9d04
PA
5555 displaced_step_fixup (ecs->ptid,
5556 ecs->event_thread->suspend.stop_signal);
5557
372316f1
PA
5558 had_step_over_info = step_over_info_valid_p ();
5559
5560 if (had_step_over_info)
4d9d9d04
PA
5561 {
5562 /* If we're stepping over a breakpoint with all threads locked,
5563 then only the thread that was stepped should be reporting
5564 back an event. */
5565 gdb_assert (ecs->event_thread->control.trap_expected);
5566
5567 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5568 clear_step_over_info ();
5569 }
5570
fbea99ea 5571 if (!target_is_non_stop_p ())
372316f1 5572 return 0;
4d9d9d04
PA
5573
5574 /* Start a new step-over in another thread if there's one that
5575 needs it. */
5576 start_step_over ();
372316f1
PA
5577
5578 /* If we were stepping over a breakpoint before, and haven't started
5579 a new in-line step-over sequence, then restart all other threads
5580 (except the event thread). We can't do this in all-stop, as then
5581 e.g., we wouldn't be able to issue any other remote packet until
5582 these other threads stop. */
5583 if (had_step_over_info && !step_over_info_valid_p ())
5584 {
5585 struct thread_info *pending;
5586
5587 /* If we only have threads with pending statuses, the restart
5588 below won't restart any thread and so nothing re-inserts the
5589 breakpoint we just stepped over. But we need it inserted
5590 when we later process the pending events, otherwise if
5591 another thread has a pending event for this breakpoint too,
5592 we'd discard its event (because the breakpoint that
5593 originally caused the event was no longer inserted). */
5594 context_switch (ecs->ptid);
5595 insert_breakpoints ();
5596
5597 restart_threads (ecs->event_thread);
5598
5599 /* If we have events pending, go through handle_inferior_event
5600 again, picking up a pending event at random. This avoids
5601 thread starvation. */
5602
5603 /* But not if we just stepped over a watchpoint in order to let
5604 the instruction execute so we can evaluate its expression.
5605 The set of watchpoints that triggered is recorded in the
5606 breakpoint objects themselves (see bp->watchpoint_triggered).
5607 If we processed another event first, that other event could
5608 clobber this info. */
5609 if (ecs->event_thread->stepping_over_watchpoint)
5610 return 0;
5611
5612 pending = iterate_over_threads (resumed_thread_with_pending_status,
5613 NULL);
5614 if (pending != NULL)
5615 {
5616 struct thread_info *tp = ecs->event_thread;
5617 struct regcache *regcache;
5618
5619 if (debug_infrun)
5620 {
5621 fprintf_unfiltered (gdb_stdlog,
5622 "infrun: found resumed threads with "
5623 "pending events, saving status\n");
5624 }
5625
5626 gdb_assert (pending != tp);
5627
5628 /* Record the event thread's event for later. */
5629 save_waitstatus (tp, &ecs->ws);
5630 /* This was cleared early, by handle_inferior_event. Set it
5631 so this pending event is considered by
5632 do_target_wait. */
5633 tp->resumed = 1;
5634
5635 gdb_assert (!tp->executing);
5636
5637 regcache = get_thread_regcache (tp->ptid);
5638 tp->suspend.stop_pc = regcache_read_pc (regcache);
5639
5640 if (debug_infrun)
5641 {
5642 fprintf_unfiltered (gdb_stdlog,
5643 "infrun: saved stop_pc=%s for %s "
5644 "(currently_stepping=%d)\n",
5645 paddress (target_gdbarch (),
5646 tp->suspend.stop_pc),
5647 target_pid_to_str (tp->ptid),
5648 currently_stepping (tp));
5649 }
5650
5651 /* This in-line step-over finished; clear this so we won't
5652 start a new one. This is what handle_signal_stop would
5653 do, if we returned false. */
5654 tp->stepping_over_breakpoint = 0;
5655
5656 /* Wake up the event loop again. */
5657 mark_async_event_handler (infrun_async_inferior_event_token);
5658
5659 prepare_to_wait (ecs);
5660 return 1;
5661 }
5662 }
5663
5664 return 0;
4d9d9d04
PA
5665}
5666
4f5d7f63
PA
5667/* Come here when the program has stopped with a signal. */
5668
5669static void
5670handle_signal_stop (struct execution_control_state *ecs)
5671{
5672 struct frame_info *frame;
5673 struct gdbarch *gdbarch;
5674 int stopped_by_watchpoint;
5675 enum stop_kind stop_soon;
5676 int random_signal;
c906108c 5677
f0407826
DE
5678 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5679
5680 /* Do we need to clean up the state of a thread that has
5681 completed a displaced single-step? (Doing so usually affects
5682 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5683 if (finish_step_over (ecs))
5684 return;
f0407826
DE
5685
5686 /* If we either finished a single-step or hit a breakpoint, but
5687 the user wanted this thread to be stopped, pretend we got a
5688 SIG0 (generic unsignaled stop). */
5689 if (ecs->event_thread->stop_requested
5690 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5691 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5692
515630c5 5693 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5694
527159b7 5695 if (debug_infrun)
237fc4c9 5696 {
5af949e3
UW
5697 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5699 struct cleanup *old_chain = save_inferior_ptid ();
5700
5701 inferior_ptid = ecs->ptid;
5af949e3
UW
5702
5703 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5704 paddress (gdbarch, stop_pc));
d92524f1 5705 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5706 {
5707 CORE_ADDR addr;
abbb1732 5708
237fc4c9
PA
5709 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5710
5711 if (target_stopped_data_address (&current_target, &addr))
5712 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5713 "infrun: stopped data address = %s\n",
5714 paddress (gdbarch, addr));
237fc4c9
PA
5715 else
5716 fprintf_unfiltered (gdb_stdlog,
5717 "infrun: (no data address available)\n");
5718 }
7f82dfc7
JK
5719
5720 do_cleanups (old_chain);
237fc4c9 5721 }
527159b7 5722
36fa8042
PA
5723 /* This is originated from start_remote(), start_inferior() and
5724 shared libraries hook functions. */
5725 stop_soon = get_inferior_stop_soon (ecs->ptid);
5726 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5727 {
5728 if (!ptid_equal (ecs->ptid, inferior_ptid))
5729 context_switch (ecs->ptid);
5730 if (debug_infrun)
5731 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5732 stop_print_frame = 1;
22bcd14b 5733 stop_waiting (ecs);
36fa8042
PA
5734 return;
5735 }
5736
36fa8042
PA
5737 /* This originates from attach_command(). We need to overwrite
5738 the stop_signal here, because some kernels don't ignore a
5739 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5740 See more comments in inferior.h. On the other hand, if we
5741 get a non-SIGSTOP, report it to the user - assume the backend
5742 will handle the SIGSTOP if it should show up later.
5743
5744 Also consider that the attach is complete when we see a
5745 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5746 target extended-remote report it instead of a SIGSTOP
5747 (e.g. gdbserver). We already rely on SIGTRAP being our
5748 signal, so this is no exception.
5749
5750 Also consider that the attach is complete when we see a
5751 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5752 the target to stop all threads of the inferior, in case the
5753 low level attach operation doesn't stop them implicitly. If
5754 they weren't stopped implicitly, then the stub will report a
5755 GDB_SIGNAL_0, meaning: stopped for no particular reason
5756 other than GDB's request. */
5757 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5758 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5759 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5760 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5761 {
5762 stop_print_frame = 1;
22bcd14b 5763 stop_waiting (ecs);
36fa8042
PA
5764 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5765 return;
5766 }
5767
488f131b 5768 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5769 so, then switch to that thread. */
5770 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5771 {
527159b7 5772 if (debug_infrun)
8a9de0e4 5773 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5774
0d1e5fa7 5775 context_switch (ecs->ptid);
c5aa993b 5776
9a4105ab 5777 if (deprecated_context_hook)
5d5658a1 5778 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5779 }
c906108c 5780
568d6575
UW
5781 /* At this point, get hold of the now-current thread's frame. */
5782 frame = get_current_frame ();
5783 gdbarch = get_frame_arch (frame);
5784
2adfaa28 5785 /* Pull the single step breakpoints out of the target. */
af48d08f 5786 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5787 {
af48d08f
PA
5788 struct regcache *regcache;
5789 struct address_space *aspace;
5790 CORE_ADDR pc;
2adfaa28 5791
af48d08f
PA
5792 regcache = get_thread_regcache (ecs->ptid);
5793 aspace = get_regcache_aspace (regcache);
5794 pc = regcache_read_pc (regcache);
34b7e8a6 5795
af48d08f
PA
5796 /* However, before doing so, if this single-step breakpoint was
5797 actually for another thread, set this thread up for moving
5798 past it. */
5799 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5800 aspace, pc))
5801 {
5802 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5803 {
5804 if (debug_infrun)
5805 {
5806 fprintf_unfiltered (gdb_stdlog,
af48d08f 5807 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5808 "single-step breakpoint\n",
5809 target_pid_to_str (ecs->ptid));
2adfaa28 5810 }
af48d08f
PA
5811 ecs->hit_singlestep_breakpoint = 1;
5812 }
5813 }
5814 else
5815 {
5816 if (debug_infrun)
5817 {
5818 fprintf_unfiltered (gdb_stdlog,
5819 "infrun: [%s] hit its "
5820 "single-step breakpoint\n",
5821 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5822 }
5823 }
488f131b 5824 }
af48d08f 5825 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5826
963f9c80
PA
5827 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5828 && ecs->event_thread->control.trap_expected
5829 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5830 stopped_by_watchpoint = 0;
5831 else
5832 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5833
5834 /* If necessary, step over this watchpoint. We'll be back to display
5835 it in a moment. */
5836 if (stopped_by_watchpoint
d92524f1 5837 && (target_have_steppable_watchpoint
568d6575 5838 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5839 {
488f131b
JB
5840 /* At this point, we are stopped at an instruction which has
5841 attempted to write to a piece of memory under control of
5842 a watchpoint. The instruction hasn't actually executed
5843 yet. If we were to evaluate the watchpoint expression
5844 now, we would get the old value, and therefore no change
5845 would seem to have occurred.
5846
5847 In order to make watchpoints work `right', we really need
5848 to complete the memory write, and then evaluate the
d983da9c
DJ
5849 watchpoint expression. We do this by single-stepping the
5850 target.
5851
7f89fd65 5852 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5853 it. For example, the PA can (with some kernel cooperation)
5854 single step over a watchpoint without disabling the watchpoint.
5855
5856 It is far more common to need to disable a watchpoint to step
5857 the inferior over it. If we have non-steppable watchpoints,
5858 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5859 disable all watchpoints.
5860
5861 Any breakpoint at PC must also be stepped over -- if there's
5862 one, it will have already triggered before the watchpoint
5863 triggered, and we either already reported it to the user, or
5864 it didn't cause a stop and we called keep_going. In either
5865 case, if there was a breakpoint at PC, we must be trying to
5866 step past it. */
5867 ecs->event_thread->stepping_over_watchpoint = 1;
5868 keep_going (ecs);
488f131b
JB
5869 return;
5870 }
5871
4e1c45ea 5872 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5873 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5874 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5875 ecs->event_thread->control.stop_step = 0;
488f131b 5876 stop_print_frame = 1;
488f131b 5877 stopped_by_random_signal = 0;
488f131b 5878
edb3359d
DJ
5879 /* Hide inlined functions starting here, unless we just performed stepi or
5880 nexti. After stepi and nexti, always show the innermost frame (not any
5881 inline function call sites). */
16c381f0 5882 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5883 {
5884 struct address_space *aspace =
5885 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5886
5887 /* skip_inline_frames is expensive, so we avoid it if we can
5888 determine that the address is one where functions cannot have
5889 been inlined. This improves performance with inferiors that
5890 load a lot of shared libraries, because the solib event
5891 breakpoint is defined as the address of a function (i.e. not
5892 inline). Note that we have to check the previous PC as well
5893 as the current one to catch cases when we have just
5894 single-stepped off a breakpoint prior to reinstating it.
5895 Note that we're assuming that the code we single-step to is
5896 not inline, but that's not definitive: there's nothing
5897 preventing the event breakpoint function from containing
5898 inlined code, and the single-step ending up there. If the
5899 user had set a breakpoint on that inlined code, the missing
5900 skip_inline_frames call would break things. Fortunately
5901 that's an extremely unlikely scenario. */
09ac7c10 5902 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5903 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5904 && ecs->event_thread->control.trap_expected
5905 && pc_at_non_inline_function (aspace,
5906 ecs->event_thread->prev_pc,
09ac7c10 5907 &ecs->ws)))
1c5a993e
MR
5908 {
5909 skip_inline_frames (ecs->ptid);
5910
5911 /* Re-fetch current thread's frame in case that invalidated
5912 the frame cache. */
5913 frame = get_current_frame ();
5914 gdbarch = get_frame_arch (frame);
5915 }
0574c78f 5916 }
edb3359d 5917
a493e3e2 5918 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5919 && ecs->event_thread->control.trap_expected
568d6575 5920 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5921 && currently_stepping (ecs->event_thread))
3352ef37 5922 {
b50d7442 5923 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5924 also on an instruction that needs to be stepped multiple
1777feb0 5925 times before it's been fully executing. E.g., architectures
3352ef37
AC
5926 with a delay slot. It needs to be stepped twice, once for
5927 the instruction and once for the delay slot. */
5928 int step_through_delay
568d6575 5929 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5930
527159b7 5931 if (debug_infrun && step_through_delay)
8a9de0e4 5932 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5933 if (ecs->event_thread->control.step_range_end == 0
5934 && step_through_delay)
3352ef37
AC
5935 {
5936 /* The user issued a continue when stopped at a breakpoint.
5937 Set up for another trap and get out of here. */
4e1c45ea 5938 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5939 keep_going (ecs);
5940 return;
5941 }
5942 else if (step_through_delay)
5943 {
5944 /* The user issued a step when stopped at a breakpoint.
5945 Maybe we should stop, maybe we should not - the delay
5946 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5947 case, don't decide that here, just set
5948 ecs->stepping_over_breakpoint, making sure we
5949 single-step again before breakpoints are re-inserted. */
4e1c45ea 5950 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5951 }
5952 }
5953
ab04a2af
TT
5954 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5955 handles this event. */
5956 ecs->event_thread->control.stop_bpstat
5957 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5958 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5959
ab04a2af
TT
5960 /* Following in case break condition called a
5961 function. */
5962 stop_print_frame = 1;
73dd234f 5963
ab04a2af
TT
5964 /* This is where we handle "moribund" watchpoints. Unlike
5965 software breakpoints traps, hardware watchpoint traps are
5966 always distinguishable from random traps. If no high-level
5967 watchpoint is associated with the reported stop data address
5968 anymore, then the bpstat does not explain the signal ---
5969 simply make sure to ignore it if `stopped_by_watchpoint' is
5970 set. */
5971
5972 if (debug_infrun
5973 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5974 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5975 GDB_SIGNAL_TRAP)
ab04a2af
TT
5976 && stopped_by_watchpoint)
5977 fprintf_unfiltered (gdb_stdlog,
5978 "infrun: no user watchpoint explains "
5979 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5980
bac7d97b 5981 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5982 at one stage in the past included checks for an inferior
5983 function call's call dummy's return breakpoint. The original
5984 comment, that went with the test, read:
03cebad2 5985
ab04a2af
TT
5986 ``End of a stack dummy. Some systems (e.g. Sony news) give
5987 another signal besides SIGTRAP, so check here as well as
5988 above.''
73dd234f 5989
ab04a2af
TT
5990 If someone ever tries to get call dummys on a
5991 non-executable stack to work (where the target would stop
5992 with something like a SIGSEGV), then those tests might need
5993 to be re-instated. Given, however, that the tests were only
5994 enabled when momentary breakpoints were not being used, I
5995 suspect that it won't be the case.
488f131b 5996
ab04a2af
TT
5997 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5998 be necessary for call dummies on a non-executable stack on
5999 SPARC. */
488f131b 6000
bac7d97b 6001 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6002 random_signal
6003 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6004 ecs->event_thread->suspend.stop_signal);
bac7d97b 6005
1cf4d951
PA
6006 /* Maybe this was a trap for a software breakpoint that has since
6007 been removed. */
6008 if (random_signal && target_stopped_by_sw_breakpoint ())
6009 {
6010 if (program_breakpoint_here_p (gdbarch, stop_pc))
6011 {
6012 struct regcache *regcache;
6013 int decr_pc;
6014
6015 /* Re-adjust PC to what the program would see if GDB was not
6016 debugging it. */
6017 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6018 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6019 if (decr_pc != 0)
6020 {
6021 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6022
6023 if (record_full_is_used ())
6024 record_full_gdb_operation_disable_set ();
6025
6026 regcache_write_pc (regcache, stop_pc + decr_pc);
6027
6028 do_cleanups (old_cleanups);
6029 }
6030 }
6031 else
6032 {
6033 /* A delayed software breakpoint event. Ignore the trap. */
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: delayed software breakpoint "
6037 "trap, ignoring\n");
6038 random_signal = 0;
6039 }
6040 }
6041
6042 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6043 has since been removed. */
6044 if (random_signal && target_stopped_by_hw_breakpoint ())
6045 {
6046 /* A delayed hardware breakpoint event. Ignore the trap. */
6047 if (debug_infrun)
6048 fprintf_unfiltered (gdb_stdlog,
6049 "infrun: delayed hardware breakpoint/watchpoint "
6050 "trap, ignoring\n");
6051 random_signal = 0;
6052 }
6053
bac7d97b
PA
6054 /* If not, perhaps stepping/nexting can. */
6055 if (random_signal)
6056 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6057 && currently_stepping (ecs->event_thread));
ab04a2af 6058
2adfaa28
PA
6059 /* Perhaps the thread hit a single-step breakpoint of _another_
6060 thread. Single-step breakpoints are transparent to the
6061 breakpoints module. */
6062 if (random_signal)
6063 random_signal = !ecs->hit_singlestep_breakpoint;
6064
bac7d97b
PA
6065 /* No? Perhaps we got a moribund watchpoint. */
6066 if (random_signal)
6067 random_signal = !stopped_by_watchpoint;
ab04a2af 6068
488f131b
JB
6069 /* For the program's own signals, act according to
6070 the signal handling tables. */
6071
ce12b012 6072 if (random_signal)
488f131b
JB
6073 {
6074 /* Signal not for debugging purposes. */
c9657e70 6075 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6076 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6077
527159b7 6078 if (debug_infrun)
c9737c08
PA
6079 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6080 gdb_signal_to_symbol_string (stop_signal));
527159b7 6081
488f131b
JB
6082 stopped_by_random_signal = 1;
6083
252fbfc8
PA
6084 /* Always stop on signals if we're either just gaining control
6085 of the program, or the user explicitly requested this thread
6086 to remain stopped. */
d6b48e9c 6087 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6088 || ecs->event_thread->stop_requested
24291992 6089 || (!inf->detaching
16c381f0 6090 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6091 {
22bcd14b 6092 stop_waiting (ecs);
488f131b
JB
6093 return;
6094 }
b57bacec
PA
6095
6096 /* Notify observers the signal has "handle print" set. Note we
6097 returned early above if stopping; normal_stop handles the
6098 printing in that case. */
6099 if (signal_print[ecs->event_thread->suspend.stop_signal])
6100 {
6101 /* The signal table tells us to print about this signal. */
6102 target_terminal_ours_for_output ();
6103 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6104 target_terminal_inferior ();
6105 }
488f131b
JB
6106
6107 /* Clear the signal if it should not be passed. */
16c381f0 6108 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6110
fb14de7b 6111 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6112 && ecs->event_thread->control.trap_expected
8358c15c 6113 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6114 {
372316f1
PA
6115 int was_in_line;
6116
68f53502
AC
6117 /* We were just starting a new sequence, attempting to
6118 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6119 Instead this signal arrives. This signal will take us out
68f53502
AC
6120 of the stepping range so GDB needs to remember to, when
6121 the signal handler returns, resume stepping off that
6122 breakpoint. */
6123 /* To simplify things, "continue" is forced to use the same
6124 code paths as single-step - set a breakpoint at the
6125 signal return address and then, once hit, step off that
6126 breakpoint. */
237fc4c9
PA
6127 if (debug_infrun)
6128 fprintf_unfiltered (gdb_stdlog,
6129 "infrun: signal arrived while stepping over "
6130 "breakpoint\n");
d3169d93 6131
372316f1
PA
6132 was_in_line = step_over_info_valid_p ();
6133 clear_step_over_info ();
2c03e5be 6134 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6135 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6136 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6137 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6138
fbea99ea 6139 if (target_is_non_stop_p ())
372316f1 6140 {
fbea99ea
PA
6141 /* Either "set non-stop" is "on", or the target is
6142 always in non-stop mode. In this case, we have a bit
6143 more work to do. Resume the current thread, and if
6144 we had paused all threads, restart them while the
6145 signal handler runs. */
372316f1
PA
6146 keep_going (ecs);
6147
372316f1
PA
6148 if (was_in_line)
6149 {
372316f1
PA
6150 restart_threads (ecs->event_thread);
6151 }
6152 else if (debug_infrun)
6153 {
6154 fprintf_unfiltered (gdb_stdlog,
6155 "infrun: no need to restart threads\n");
6156 }
6157 return;
6158 }
6159
d137e6dc
PA
6160 /* If we were nexting/stepping some other thread, switch to
6161 it, so that we don't continue it, losing control. */
6162 if (!switch_back_to_stepped_thread (ecs))
6163 keep_going (ecs);
9d799f85 6164 return;
68f53502 6165 }
9d799f85 6166
e5f8a7cc
PA
6167 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6168 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6169 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6170 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6171 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6172 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6173 {
6174 /* The inferior is about to take a signal that will take it
6175 out of the single step range. Set a breakpoint at the
6176 current PC (which is presumably where the signal handler
6177 will eventually return) and then allow the inferior to
6178 run free.
6179
6180 Note that this is only needed for a signal delivered
6181 while in the single-step range. Nested signals aren't a
6182 problem as they eventually all return. */
237fc4c9
PA
6183 if (debug_infrun)
6184 fprintf_unfiltered (gdb_stdlog,
6185 "infrun: signal may take us out of "
6186 "single-step range\n");
6187
372316f1 6188 clear_step_over_info ();
2c03e5be 6189 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6190 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6191 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6192 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6193 keep_going (ecs);
6194 return;
d303a6c7 6195 }
9d799f85
AC
6196
6197 /* Note: step_resume_breakpoint may be non-NULL. This occures
6198 when either there's a nested signal, or when there's a
6199 pending signal enabled just as the signal handler returns
6200 (leaving the inferior at the step-resume-breakpoint without
6201 actually executing it). Either way continue until the
6202 breakpoint is really hit. */
c447ac0b
PA
6203
6204 if (!switch_back_to_stepped_thread (ecs))
6205 {
6206 if (debug_infrun)
6207 fprintf_unfiltered (gdb_stdlog,
6208 "infrun: random signal, keep going\n");
6209
6210 keep_going (ecs);
6211 }
6212 return;
488f131b 6213 }
94c57d6a
PA
6214
6215 process_event_stop_test (ecs);
6216}
6217
6218/* Come here when we've got some debug event / signal we can explain
6219 (IOW, not a random signal), and test whether it should cause a
6220 stop, or whether we should resume the inferior (transparently).
6221 E.g., could be a breakpoint whose condition evaluates false; we
6222 could be still stepping within the line; etc. */
6223
6224static void
6225process_event_stop_test (struct execution_control_state *ecs)
6226{
6227 struct symtab_and_line stop_pc_sal;
6228 struct frame_info *frame;
6229 struct gdbarch *gdbarch;
cdaa5b73
PA
6230 CORE_ADDR jmp_buf_pc;
6231 struct bpstat_what what;
94c57d6a 6232
cdaa5b73 6233 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6234
cdaa5b73
PA
6235 frame = get_current_frame ();
6236 gdbarch = get_frame_arch (frame);
fcf3daef 6237
cdaa5b73 6238 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6239
cdaa5b73
PA
6240 if (what.call_dummy)
6241 {
6242 stop_stack_dummy = what.call_dummy;
6243 }
186c406b 6244
243a9253
PA
6245 /* A few breakpoint types have callbacks associated (e.g.,
6246 bp_jit_event). Run them now. */
6247 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6248
cdaa5b73
PA
6249 /* If we hit an internal event that triggers symbol changes, the
6250 current frame will be invalidated within bpstat_what (e.g., if we
6251 hit an internal solib event). Re-fetch it. */
6252 frame = get_current_frame ();
6253 gdbarch = get_frame_arch (frame);
e2e4d78b 6254
cdaa5b73
PA
6255 switch (what.main_action)
6256 {
6257 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6258 /* If we hit the breakpoint at longjmp while stepping, we
6259 install a momentary breakpoint at the target of the
6260 jmp_buf. */
186c406b 6261
cdaa5b73
PA
6262 if (debug_infrun)
6263 fprintf_unfiltered (gdb_stdlog,
6264 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6265
cdaa5b73 6266 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6267
cdaa5b73
PA
6268 if (what.is_longjmp)
6269 {
6270 struct value *arg_value;
6271
6272 /* If we set the longjmp breakpoint via a SystemTap probe,
6273 then use it to extract the arguments. The destination PC
6274 is the third argument to the probe. */
6275 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6276 if (arg_value)
8fa0c4f8
AA
6277 {
6278 jmp_buf_pc = value_as_address (arg_value);
6279 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6280 }
cdaa5b73
PA
6281 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6282 || !gdbarch_get_longjmp_target (gdbarch,
6283 frame, &jmp_buf_pc))
e2e4d78b 6284 {
cdaa5b73
PA
6285 if (debug_infrun)
6286 fprintf_unfiltered (gdb_stdlog,
6287 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6288 "(!gdbarch_get_longjmp_target)\n");
6289 keep_going (ecs);
6290 return;
e2e4d78b 6291 }
e2e4d78b 6292
cdaa5b73
PA
6293 /* Insert a breakpoint at resume address. */
6294 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6295 }
6296 else
6297 check_exception_resume (ecs, frame);
6298 keep_going (ecs);
6299 return;
e81a37f7 6300
cdaa5b73
PA
6301 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6302 {
6303 struct frame_info *init_frame;
e81a37f7 6304
cdaa5b73 6305 /* There are several cases to consider.
c906108c 6306
cdaa5b73
PA
6307 1. The initiating frame no longer exists. In this case we
6308 must stop, because the exception or longjmp has gone too
6309 far.
2c03e5be 6310
cdaa5b73
PA
6311 2. The initiating frame exists, and is the same as the
6312 current frame. We stop, because the exception or longjmp
6313 has been caught.
2c03e5be 6314
cdaa5b73
PA
6315 3. The initiating frame exists and is different from the
6316 current frame. This means the exception or longjmp has
6317 been caught beneath the initiating frame, so keep going.
c906108c 6318
cdaa5b73
PA
6319 4. longjmp breakpoint has been placed just to protect
6320 against stale dummy frames and user is not interested in
6321 stopping around longjmps. */
c5aa993b 6322
cdaa5b73
PA
6323 if (debug_infrun)
6324 fprintf_unfiltered (gdb_stdlog,
6325 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6326
cdaa5b73
PA
6327 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6328 != NULL);
6329 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6330
cdaa5b73
PA
6331 if (what.is_longjmp)
6332 {
b67a2c6f 6333 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6334
cdaa5b73 6335 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6336 {
cdaa5b73
PA
6337 /* Case 4. */
6338 keep_going (ecs);
6339 return;
e5ef252a 6340 }
cdaa5b73 6341 }
c5aa993b 6342
cdaa5b73 6343 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6344
cdaa5b73
PA
6345 if (init_frame)
6346 {
6347 struct frame_id current_id
6348 = get_frame_id (get_current_frame ());
6349 if (frame_id_eq (current_id,
6350 ecs->event_thread->initiating_frame))
6351 {
6352 /* Case 2. Fall through. */
6353 }
6354 else
6355 {
6356 /* Case 3. */
6357 keep_going (ecs);
6358 return;
6359 }
68f53502 6360 }
488f131b 6361
cdaa5b73
PA
6362 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6363 exists. */
6364 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6365
bdc36728 6366 end_stepping_range (ecs);
cdaa5b73
PA
6367 }
6368 return;
e5ef252a 6369
cdaa5b73
PA
6370 case BPSTAT_WHAT_SINGLE:
6371 if (debug_infrun)
6372 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6373 ecs->event_thread->stepping_over_breakpoint = 1;
6374 /* Still need to check other stuff, at least the case where we
6375 are stepping and step out of the right range. */
6376 break;
e5ef252a 6377
cdaa5b73
PA
6378 case BPSTAT_WHAT_STEP_RESUME:
6379 if (debug_infrun)
6380 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6381
cdaa5b73
PA
6382 delete_step_resume_breakpoint (ecs->event_thread);
6383 if (ecs->event_thread->control.proceed_to_finish
6384 && execution_direction == EXEC_REVERSE)
6385 {
6386 struct thread_info *tp = ecs->event_thread;
6387
6388 /* We are finishing a function in reverse, and just hit the
6389 step-resume breakpoint at the start address of the
6390 function, and we're almost there -- just need to back up
6391 by one more single-step, which should take us back to the
6392 function call. */
6393 tp->control.step_range_start = tp->control.step_range_end = 1;
6394 keep_going (ecs);
e5ef252a 6395 return;
cdaa5b73
PA
6396 }
6397 fill_in_stop_func (gdbarch, ecs);
6398 if (stop_pc == ecs->stop_func_start
6399 && execution_direction == EXEC_REVERSE)
6400 {
6401 /* We are stepping over a function call in reverse, and just
6402 hit the step-resume breakpoint at the start address of
6403 the function. Go back to single-stepping, which should
6404 take us back to the function call. */
6405 ecs->event_thread->stepping_over_breakpoint = 1;
6406 keep_going (ecs);
6407 return;
6408 }
6409 break;
e5ef252a 6410
cdaa5b73
PA
6411 case BPSTAT_WHAT_STOP_NOISY:
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6414 stop_print_frame = 1;
e5ef252a 6415
99619bea
PA
6416 /* Assume the thread stopped for a breapoint. We'll still check
6417 whether a/the breakpoint is there when the thread is next
6418 resumed. */
6419 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6420
22bcd14b 6421 stop_waiting (ecs);
cdaa5b73 6422 return;
e5ef252a 6423
cdaa5b73
PA
6424 case BPSTAT_WHAT_STOP_SILENT:
6425 if (debug_infrun)
6426 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6427 stop_print_frame = 0;
e5ef252a 6428
99619bea
PA
6429 /* Assume the thread stopped for a breapoint. We'll still check
6430 whether a/the breakpoint is there when the thread is next
6431 resumed. */
6432 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6433 stop_waiting (ecs);
cdaa5b73
PA
6434 return;
6435
6436 case BPSTAT_WHAT_HP_STEP_RESUME:
6437 if (debug_infrun)
6438 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6439
6440 delete_step_resume_breakpoint (ecs->event_thread);
6441 if (ecs->event_thread->step_after_step_resume_breakpoint)
6442 {
6443 /* Back when the step-resume breakpoint was inserted, we
6444 were trying to single-step off a breakpoint. Go back to
6445 doing that. */
6446 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6447 ecs->event_thread->stepping_over_breakpoint = 1;
6448 keep_going (ecs);
6449 return;
e5ef252a 6450 }
cdaa5b73
PA
6451 break;
6452
6453 case BPSTAT_WHAT_KEEP_CHECKING:
6454 break;
e5ef252a 6455 }
c906108c 6456
af48d08f
PA
6457 /* If we stepped a permanent breakpoint and we had a high priority
6458 step-resume breakpoint for the address we stepped, but we didn't
6459 hit it, then we must have stepped into the signal handler. The
6460 step-resume was only necessary to catch the case of _not_
6461 stepping into the handler, so delete it, and fall through to
6462 checking whether the step finished. */
6463 if (ecs->event_thread->stepped_breakpoint)
6464 {
6465 struct breakpoint *sr_bp
6466 = ecs->event_thread->control.step_resume_breakpoint;
6467
8d707a12
PA
6468 if (sr_bp != NULL
6469 && sr_bp->loc->permanent
af48d08f
PA
6470 && sr_bp->type == bp_hp_step_resume
6471 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6472 {
6473 if (debug_infrun)
6474 fprintf_unfiltered (gdb_stdlog,
6475 "infrun: stepped permanent breakpoint, stopped in "
6476 "handler\n");
6477 delete_step_resume_breakpoint (ecs->event_thread);
6478 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6479 }
6480 }
6481
cdaa5b73
PA
6482 /* We come here if we hit a breakpoint but should not stop for it.
6483 Possibly we also were stepping and should stop for that. So fall
6484 through and test for stepping. But, if not stepping, do not
6485 stop. */
c906108c 6486
a7212384
UW
6487 /* In all-stop mode, if we're currently stepping but have stopped in
6488 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6489 if (switch_back_to_stepped_thread (ecs))
6490 return;
776f04fa 6491
8358c15c 6492 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6493 {
527159b7 6494 if (debug_infrun)
d3169d93
DJ
6495 fprintf_unfiltered (gdb_stdlog,
6496 "infrun: step-resume breakpoint is inserted\n");
527159b7 6497
488f131b
JB
6498 /* Having a step-resume breakpoint overrides anything
6499 else having to do with stepping commands until
6500 that breakpoint is reached. */
488f131b
JB
6501 keep_going (ecs);
6502 return;
6503 }
c5aa993b 6504
16c381f0 6505 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6506 {
527159b7 6507 if (debug_infrun)
8a9de0e4 6508 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6509 /* Likewise if we aren't even stepping. */
488f131b
JB
6510 keep_going (ecs);
6511 return;
6512 }
c5aa993b 6513
4b7703ad
JB
6514 /* Re-fetch current thread's frame in case the code above caused
6515 the frame cache to be re-initialized, making our FRAME variable
6516 a dangling pointer. */
6517 frame = get_current_frame ();
628fe4e4 6518 gdbarch = get_frame_arch (frame);
7e324e48 6519 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6520
488f131b 6521 /* If stepping through a line, keep going if still within it.
c906108c 6522
488f131b
JB
6523 Note that step_range_end is the address of the first instruction
6524 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6525 within it!
6526
6527 Note also that during reverse execution, we may be stepping
6528 through a function epilogue and therefore must detect when
6529 the current-frame changes in the middle of a line. */
6530
ce4c476a 6531 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6532 && (execution_direction != EXEC_REVERSE
388a8562 6533 || frame_id_eq (get_frame_id (frame),
16c381f0 6534 ecs->event_thread->control.step_frame_id)))
488f131b 6535 {
527159b7 6536 if (debug_infrun)
5af949e3
UW
6537 fprintf_unfiltered
6538 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6539 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6540 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6541
c1e36e3e
PA
6542 /* Tentatively re-enable range stepping; `resume' disables it if
6543 necessary (e.g., if we're stepping over a breakpoint or we
6544 have software watchpoints). */
6545 ecs->event_thread->control.may_range_step = 1;
6546
b2175913
MS
6547 /* When stepping backward, stop at beginning of line range
6548 (unless it's the function entry point, in which case
6549 keep going back to the call point). */
16c381f0 6550 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6551 && stop_pc != ecs->stop_func_start
6552 && execution_direction == EXEC_REVERSE)
bdc36728 6553 end_stepping_range (ecs);
b2175913
MS
6554 else
6555 keep_going (ecs);
6556
488f131b
JB
6557 return;
6558 }
c5aa993b 6559
488f131b 6560 /* We stepped out of the stepping range. */
c906108c 6561
488f131b 6562 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6563 loader dynamic symbol resolution code...
6564
6565 EXEC_FORWARD: we keep on single stepping until we exit the run
6566 time loader code and reach the callee's address.
6567
6568 EXEC_REVERSE: we've already executed the callee (backward), and
6569 the runtime loader code is handled just like any other
6570 undebuggable function call. Now we need only keep stepping
6571 backward through the trampoline code, and that's handled further
6572 down, so there is nothing for us to do here. */
6573
6574 if (execution_direction != EXEC_REVERSE
16c381f0 6575 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6576 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6577 {
4c8c40e6 6578 CORE_ADDR pc_after_resolver =
568d6575 6579 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6580
527159b7 6581 if (debug_infrun)
3e43a32a
MS
6582 fprintf_unfiltered (gdb_stdlog,
6583 "infrun: stepped into dynsym resolve code\n");
527159b7 6584
488f131b
JB
6585 if (pc_after_resolver)
6586 {
6587 /* Set up a step-resume breakpoint at the address
6588 indicated by SKIP_SOLIB_RESOLVER. */
6589 struct symtab_and_line sr_sal;
abbb1732 6590
fe39c653 6591 init_sal (&sr_sal);
488f131b 6592 sr_sal.pc = pc_after_resolver;
6c95b8df 6593 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6594
a6d9a66e
UW
6595 insert_step_resume_breakpoint_at_sal (gdbarch,
6596 sr_sal, null_frame_id);
c5aa993b 6597 }
c906108c 6598
488f131b
JB
6599 keep_going (ecs);
6600 return;
6601 }
c906108c 6602
16c381f0
JK
6603 if (ecs->event_thread->control.step_range_end != 1
6604 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6605 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6606 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6607 {
527159b7 6608 if (debug_infrun)
3e43a32a
MS
6609 fprintf_unfiltered (gdb_stdlog,
6610 "infrun: stepped into signal trampoline\n");
42edda50 6611 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6612 a signal trampoline (either by a signal being delivered or by
6613 the signal handler returning). Just single-step until the
6614 inferior leaves the trampoline (either by calling the handler
6615 or returning). */
488f131b
JB
6616 keep_going (ecs);
6617 return;
6618 }
c906108c 6619
14132e89
MR
6620 /* If we're in the return path from a shared library trampoline,
6621 we want to proceed through the trampoline when stepping. */
6622 /* macro/2012-04-25: This needs to come before the subroutine
6623 call check below as on some targets return trampolines look
6624 like subroutine calls (MIPS16 return thunks). */
6625 if (gdbarch_in_solib_return_trampoline (gdbarch,
6626 stop_pc, ecs->stop_func_name)
6627 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6628 {
6629 /* Determine where this trampoline returns. */
6630 CORE_ADDR real_stop_pc;
6631
6632 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6633
6634 if (debug_infrun)
6635 fprintf_unfiltered (gdb_stdlog,
6636 "infrun: stepped into solib return tramp\n");
6637
6638 /* Only proceed through if we know where it's going. */
6639 if (real_stop_pc)
6640 {
6641 /* And put the step-breakpoint there and go until there. */
6642 struct symtab_and_line sr_sal;
6643
6644 init_sal (&sr_sal); /* initialize to zeroes */
6645 sr_sal.pc = real_stop_pc;
6646 sr_sal.section = find_pc_overlay (sr_sal.pc);
6647 sr_sal.pspace = get_frame_program_space (frame);
6648
6649 /* Do not specify what the fp should be when we stop since
6650 on some machines the prologue is where the new fp value
6651 is established. */
6652 insert_step_resume_breakpoint_at_sal (gdbarch,
6653 sr_sal, null_frame_id);
6654
6655 /* Restart without fiddling with the step ranges or
6656 other state. */
6657 keep_going (ecs);
6658 return;
6659 }
6660 }
6661
c17eaafe
DJ
6662 /* Check for subroutine calls. The check for the current frame
6663 equalling the step ID is not necessary - the check of the
6664 previous frame's ID is sufficient - but it is a common case and
6665 cheaper than checking the previous frame's ID.
14e60db5
DJ
6666
6667 NOTE: frame_id_eq will never report two invalid frame IDs as
6668 being equal, so to get into this block, both the current and
6669 previous frame must have valid frame IDs. */
005ca36a
JB
6670 /* The outer_frame_id check is a heuristic to detect stepping
6671 through startup code. If we step over an instruction which
6672 sets the stack pointer from an invalid value to a valid value,
6673 we may detect that as a subroutine call from the mythical
6674 "outermost" function. This could be fixed by marking
6675 outermost frames as !stack_p,code_p,special_p. Then the
6676 initial outermost frame, before sp was valid, would
ce6cca6d 6677 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6678 for more. */
edb3359d 6679 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6680 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6681 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6682 ecs->event_thread->control.step_stack_frame_id)
6683 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6684 outer_frame_id)
885eeb5b
PA
6685 || (ecs->event_thread->control.step_start_function
6686 != find_pc_function (stop_pc)))))
488f131b 6687 {
95918acb 6688 CORE_ADDR real_stop_pc;
8fb3e588 6689
527159b7 6690 if (debug_infrun)
8a9de0e4 6691 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6692
b7a084be 6693 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6694 {
6695 /* I presume that step_over_calls is only 0 when we're
6696 supposed to be stepping at the assembly language level
6697 ("stepi"). Just stop. */
388a8562 6698 /* And this works the same backward as frontward. MVS */
bdc36728 6699 end_stepping_range (ecs);
95918acb
AC
6700 return;
6701 }
8fb3e588 6702
388a8562
MS
6703 /* Reverse stepping through solib trampolines. */
6704
6705 if (execution_direction == EXEC_REVERSE
16c381f0 6706 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6707 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6708 || (ecs->stop_func_start == 0
6709 && in_solib_dynsym_resolve_code (stop_pc))))
6710 {
6711 /* Any solib trampoline code can be handled in reverse
6712 by simply continuing to single-step. We have already
6713 executed the solib function (backwards), and a few
6714 steps will take us back through the trampoline to the
6715 caller. */
6716 keep_going (ecs);
6717 return;
6718 }
6719
16c381f0 6720 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6721 {
b2175913
MS
6722 /* We're doing a "next".
6723
6724 Normal (forward) execution: set a breakpoint at the
6725 callee's return address (the address at which the caller
6726 will resume).
6727
6728 Reverse (backward) execution. set the step-resume
6729 breakpoint at the start of the function that we just
6730 stepped into (backwards), and continue to there. When we
6130d0b7 6731 get there, we'll need to single-step back to the caller. */
b2175913
MS
6732
6733 if (execution_direction == EXEC_REVERSE)
6734 {
acf9414f
JK
6735 /* If we're already at the start of the function, we've either
6736 just stepped backward into a single instruction function,
6737 or stepped back out of a signal handler to the first instruction
6738 of the function. Just keep going, which will single-step back
6739 to the caller. */
58c48e72 6740 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6741 {
6742 struct symtab_and_line sr_sal;
6743
6744 /* Normal function call return (static or dynamic). */
6745 init_sal (&sr_sal);
6746 sr_sal.pc = ecs->stop_func_start;
6747 sr_sal.pspace = get_frame_program_space (frame);
6748 insert_step_resume_breakpoint_at_sal (gdbarch,
6749 sr_sal, null_frame_id);
6750 }
b2175913
MS
6751 }
6752 else
568d6575 6753 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6754
8567c30f
AC
6755 keep_going (ecs);
6756 return;
6757 }
a53c66de 6758
95918acb 6759 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6760 calling routine and the real function), locate the real
6761 function. That's what tells us (a) whether we want to step
6762 into it at all, and (b) what prologue we want to run to the
6763 end of, if we do step into it. */
568d6575 6764 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6765 if (real_stop_pc == 0)
568d6575 6766 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6767 if (real_stop_pc != 0)
6768 ecs->stop_func_start = real_stop_pc;
8fb3e588 6769
db5f024e 6770 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6771 {
6772 struct symtab_and_line sr_sal;
abbb1732 6773
1b2bfbb9
RC
6774 init_sal (&sr_sal);
6775 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6776 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6777
a6d9a66e
UW
6778 insert_step_resume_breakpoint_at_sal (gdbarch,
6779 sr_sal, null_frame_id);
8fb3e588
AC
6780 keep_going (ecs);
6781 return;
1b2bfbb9
RC
6782 }
6783
95918acb 6784 /* If we have line number information for the function we are
1bfeeb0f
JL
6785 thinking of stepping into and the function isn't on the skip
6786 list, step into it.
95918acb 6787
8fb3e588
AC
6788 If there are several symtabs at that PC (e.g. with include
6789 files), just want to know whether *any* of them have line
6790 numbers. find_pc_line handles this. */
95918acb
AC
6791 {
6792 struct symtab_and_line tmp_sal;
8fb3e588 6793
95918acb 6794 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6795 if (tmp_sal.line != 0
85817405
JK
6796 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6797 &tmp_sal))
95918acb 6798 {
b2175913 6799 if (execution_direction == EXEC_REVERSE)
568d6575 6800 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6801 else
568d6575 6802 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6803 return;
6804 }
6805 }
6806
6807 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6808 set, we stop the step so that the user has a chance to switch
6809 in assembly mode. */
16c381f0 6810 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6811 && step_stop_if_no_debug)
95918acb 6812 {
bdc36728 6813 end_stepping_range (ecs);
95918acb
AC
6814 return;
6815 }
6816
b2175913
MS
6817 if (execution_direction == EXEC_REVERSE)
6818 {
acf9414f
JK
6819 /* If we're already at the start of the function, we've either just
6820 stepped backward into a single instruction function without line
6821 number info, or stepped back out of a signal handler to the first
6822 instruction of the function without line number info. Just keep
6823 going, which will single-step back to the caller. */
6824 if (ecs->stop_func_start != stop_pc)
6825 {
6826 /* Set a breakpoint at callee's start address.
6827 From there we can step once and be back in the caller. */
6828 struct symtab_and_line sr_sal;
abbb1732 6829
acf9414f
JK
6830 init_sal (&sr_sal);
6831 sr_sal.pc = ecs->stop_func_start;
6832 sr_sal.pspace = get_frame_program_space (frame);
6833 insert_step_resume_breakpoint_at_sal (gdbarch,
6834 sr_sal, null_frame_id);
6835 }
b2175913
MS
6836 }
6837 else
6838 /* Set a breakpoint at callee's return address (the address
6839 at which the caller will resume). */
568d6575 6840 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6841
95918acb 6842 keep_going (ecs);
488f131b 6843 return;
488f131b 6844 }
c906108c 6845
fdd654f3
MS
6846 /* Reverse stepping through solib trampolines. */
6847
6848 if (execution_direction == EXEC_REVERSE
16c381f0 6849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6850 {
6851 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6852 || (ecs->stop_func_start == 0
6853 && in_solib_dynsym_resolve_code (stop_pc)))
6854 {
6855 /* Any solib trampoline code can be handled in reverse
6856 by simply continuing to single-step. We have already
6857 executed the solib function (backwards), and a few
6858 steps will take us back through the trampoline to the
6859 caller. */
6860 keep_going (ecs);
6861 return;
6862 }
6863 else if (in_solib_dynsym_resolve_code (stop_pc))
6864 {
6865 /* Stepped backward into the solib dynsym resolver.
6866 Set a breakpoint at its start and continue, then
6867 one more step will take us out. */
6868 struct symtab_and_line sr_sal;
abbb1732 6869
fdd654f3
MS
6870 init_sal (&sr_sal);
6871 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6872 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6873 insert_step_resume_breakpoint_at_sal (gdbarch,
6874 sr_sal, null_frame_id);
6875 keep_going (ecs);
6876 return;
6877 }
6878 }
6879
2afb61aa 6880 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6881
1b2bfbb9
RC
6882 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6883 the trampoline processing logic, however, there are some trampolines
6884 that have no names, so we should do trampoline handling first. */
16c381f0 6885 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6886 && ecs->stop_func_name == NULL
2afb61aa 6887 && stop_pc_sal.line == 0)
1b2bfbb9 6888 {
527159b7 6889 if (debug_infrun)
3e43a32a
MS
6890 fprintf_unfiltered (gdb_stdlog,
6891 "infrun: stepped into undebuggable function\n");
527159b7 6892
1b2bfbb9 6893 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6894 undebuggable function (where there is no debugging information
6895 and no line number corresponding to the address where the
1b2bfbb9
RC
6896 inferior stopped). Since we want to skip this kind of code,
6897 we keep going until the inferior returns from this
14e60db5
DJ
6898 function - unless the user has asked us not to (via
6899 set step-mode) or we no longer know how to get back
6900 to the call site. */
6901 if (step_stop_if_no_debug
c7ce8faa 6902 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6903 {
6904 /* If we have no line number and the step-stop-if-no-debug
6905 is set, we stop the step so that the user has a chance to
6906 switch in assembly mode. */
bdc36728 6907 end_stepping_range (ecs);
1b2bfbb9
RC
6908 return;
6909 }
6910 else
6911 {
6912 /* Set a breakpoint at callee's return address (the address
6913 at which the caller will resume). */
568d6575 6914 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6915 keep_going (ecs);
6916 return;
6917 }
6918 }
6919
16c381f0 6920 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6921 {
6922 /* It is stepi or nexti. We always want to stop stepping after
6923 one instruction. */
527159b7 6924 if (debug_infrun)
8a9de0e4 6925 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6926 end_stepping_range (ecs);
1b2bfbb9
RC
6927 return;
6928 }
6929
2afb61aa 6930 if (stop_pc_sal.line == 0)
488f131b
JB
6931 {
6932 /* We have no line number information. That means to stop
6933 stepping (does this always happen right after one instruction,
6934 when we do "s" in a function with no line numbers,
6935 or can this happen as a result of a return or longjmp?). */
527159b7 6936 if (debug_infrun)
8a9de0e4 6937 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6938 end_stepping_range (ecs);
488f131b
JB
6939 return;
6940 }
c906108c 6941
edb3359d
DJ
6942 /* Look for "calls" to inlined functions, part one. If the inline
6943 frame machinery detected some skipped call sites, we have entered
6944 a new inline function. */
6945
6946 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6947 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6948 && inline_skipped_frames (ecs->ptid))
6949 {
6950 struct symtab_and_line call_sal;
6951
6952 if (debug_infrun)
6953 fprintf_unfiltered (gdb_stdlog,
6954 "infrun: stepped into inlined function\n");
6955
6956 find_frame_sal (get_current_frame (), &call_sal);
6957
16c381f0 6958 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6959 {
6960 /* For "step", we're going to stop. But if the call site
6961 for this inlined function is on the same source line as
6962 we were previously stepping, go down into the function
6963 first. Otherwise stop at the call site. */
6964
6965 if (call_sal.line == ecs->event_thread->current_line
6966 && call_sal.symtab == ecs->event_thread->current_symtab)
6967 step_into_inline_frame (ecs->ptid);
6968
bdc36728 6969 end_stepping_range (ecs);
edb3359d
DJ
6970 return;
6971 }
6972 else
6973 {
6974 /* For "next", we should stop at the call site if it is on a
6975 different source line. Otherwise continue through the
6976 inlined function. */
6977 if (call_sal.line == ecs->event_thread->current_line
6978 && call_sal.symtab == ecs->event_thread->current_symtab)
6979 keep_going (ecs);
6980 else
bdc36728 6981 end_stepping_range (ecs);
edb3359d
DJ
6982 return;
6983 }
6984 }
6985
6986 /* Look for "calls" to inlined functions, part two. If we are still
6987 in the same real function we were stepping through, but we have
6988 to go further up to find the exact frame ID, we are stepping
6989 through a more inlined call beyond its call site. */
6990
6991 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6992 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6993 ecs->event_thread->control.step_frame_id)
edb3359d 6994 && stepped_in_from (get_current_frame (),
16c381f0 6995 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6996 {
6997 if (debug_infrun)
6998 fprintf_unfiltered (gdb_stdlog,
6999 "infrun: stepping through inlined function\n");
7000
16c381f0 7001 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
7002 keep_going (ecs);
7003 else
bdc36728 7004 end_stepping_range (ecs);
edb3359d
DJ
7005 return;
7006 }
7007
2afb61aa 7008 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7009 && (ecs->event_thread->current_line != stop_pc_sal.line
7010 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7011 {
7012 /* We are at the start of a different line. So stop. Note that
7013 we don't stop if we step into the middle of a different line.
7014 That is said to make things like for (;;) statements work
7015 better. */
527159b7 7016 if (debug_infrun)
3e43a32a
MS
7017 fprintf_unfiltered (gdb_stdlog,
7018 "infrun: stepped to a different line\n");
bdc36728 7019 end_stepping_range (ecs);
488f131b
JB
7020 return;
7021 }
c906108c 7022
488f131b 7023 /* We aren't done stepping.
c906108c 7024
488f131b
JB
7025 Optimize by setting the stepping range to the line.
7026 (We might not be in the original line, but if we entered a
7027 new line in mid-statement, we continue stepping. This makes
7028 things like for(;;) statements work better.) */
c906108c 7029
16c381f0
JK
7030 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7031 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7032 ecs->event_thread->control.may_range_step = 1;
edb3359d 7033 set_step_info (frame, stop_pc_sal);
488f131b 7034
527159b7 7035 if (debug_infrun)
8a9de0e4 7036 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7037 keep_going (ecs);
104c1213
JM
7038}
7039
c447ac0b
PA
7040/* In all-stop mode, if we're currently stepping but have stopped in
7041 some other thread, we may need to switch back to the stepped
7042 thread. Returns true we set the inferior running, false if we left
7043 it stopped (and the event needs further processing). */
7044
7045static int
7046switch_back_to_stepped_thread (struct execution_control_state *ecs)
7047{
fbea99ea 7048 if (!target_is_non_stop_p ())
c447ac0b
PA
7049 {
7050 struct thread_info *tp;
99619bea
PA
7051 struct thread_info *stepping_thread;
7052
7053 /* If any thread is blocked on some internal breakpoint, and we
7054 simply need to step over that breakpoint to get it going
7055 again, do that first. */
7056
7057 /* However, if we see an event for the stepping thread, then we
7058 know all other threads have been moved past their breakpoints
7059 already. Let the caller check whether the step is finished,
7060 etc., before deciding to move it past a breakpoint. */
7061 if (ecs->event_thread->control.step_range_end != 0)
7062 return 0;
7063
7064 /* Check if the current thread is blocked on an incomplete
7065 step-over, interrupted by a random signal. */
7066 if (ecs->event_thread->control.trap_expected
7067 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7068 {
99619bea
PA
7069 if (debug_infrun)
7070 {
7071 fprintf_unfiltered (gdb_stdlog,
7072 "infrun: need to finish step-over of [%s]\n",
7073 target_pid_to_str (ecs->event_thread->ptid));
7074 }
7075 keep_going (ecs);
7076 return 1;
7077 }
2adfaa28 7078
99619bea
PA
7079 /* Check if the current thread is blocked by a single-step
7080 breakpoint of another thread. */
7081 if (ecs->hit_singlestep_breakpoint)
7082 {
7083 if (debug_infrun)
7084 {
7085 fprintf_unfiltered (gdb_stdlog,
7086 "infrun: need to step [%s] over single-step "
7087 "breakpoint\n",
7088 target_pid_to_str (ecs->ptid));
7089 }
7090 keep_going (ecs);
7091 return 1;
7092 }
7093
4d9d9d04
PA
7094 /* If this thread needs yet another step-over (e.g., stepping
7095 through a delay slot), do it first before moving on to
7096 another thread. */
7097 if (thread_still_needs_step_over (ecs->event_thread))
7098 {
7099 if (debug_infrun)
7100 {
7101 fprintf_unfiltered (gdb_stdlog,
7102 "infrun: thread [%s] still needs step-over\n",
7103 target_pid_to_str (ecs->event_thread->ptid));
7104 }
7105 keep_going (ecs);
7106 return 1;
7107 }
70509625 7108
483805cf
PA
7109 /* If scheduler locking applies even if not stepping, there's no
7110 need to walk over threads. Above we've checked whether the
7111 current thread is stepping. If some other thread not the
7112 event thread is stepping, then it must be that scheduler
7113 locking is not in effect. */
856e7dd6 7114 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7115 return 0;
7116
4d9d9d04
PA
7117 /* Otherwise, we no longer expect a trap in the current thread.
7118 Clear the trap_expected flag before switching back -- this is
7119 what keep_going does as well, if we call it. */
7120 ecs->event_thread->control.trap_expected = 0;
7121
7122 /* Likewise, clear the signal if it should not be passed. */
7123 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7124 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7125
7126 /* Do all pending step-overs before actually proceeding with
483805cf 7127 step/next/etc. */
4d9d9d04
PA
7128 if (start_step_over ())
7129 {
7130 prepare_to_wait (ecs);
7131 return 1;
7132 }
7133
7134 /* Look for the stepping/nexting thread. */
483805cf 7135 stepping_thread = NULL;
4d9d9d04 7136
034f788c 7137 ALL_NON_EXITED_THREADS (tp)
483805cf 7138 {
fbea99ea
PA
7139 /* Ignore threads of processes the caller is not
7140 resuming. */
483805cf 7141 if (!sched_multi
1afd5965 7142 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7143 continue;
7144
7145 /* When stepping over a breakpoint, we lock all threads
7146 except the one that needs to move past the breakpoint.
7147 If a non-event thread has this set, the "incomplete
7148 step-over" check above should have caught it earlier. */
372316f1
PA
7149 if (tp->control.trap_expected)
7150 {
7151 internal_error (__FILE__, __LINE__,
7152 "[%s] has inconsistent state: "
7153 "trap_expected=%d\n",
7154 target_pid_to_str (tp->ptid),
7155 tp->control.trap_expected);
7156 }
483805cf
PA
7157
7158 /* Did we find the stepping thread? */
7159 if (tp->control.step_range_end)
7160 {
7161 /* Yep. There should only one though. */
7162 gdb_assert (stepping_thread == NULL);
7163
7164 /* The event thread is handled at the top, before we
7165 enter this loop. */
7166 gdb_assert (tp != ecs->event_thread);
7167
7168 /* If some thread other than the event thread is
7169 stepping, then scheduler locking can't be in effect,
7170 otherwise we wouldn't have resumed the current event
7171 thread in the first place. */
856e7dd6 7172 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7173
7174 stepping_thread = tp;
7175 }
99619bea
PA
7176 }
7177
483805cf 7178 if (stepping_thread != NULL)
99619bea 7179 {
c447ac0b
PA
7180 if (debug_infrun)
7181 fprintf_unfiltered (gdb_stdlog,
7182 "infrun: switching back to stepped thread\n");
7183
2ac7589c
PA
7184 if (keep_going_stepped_thread (stepping_thread))
7185 {
7186 prepare_to_wait (ecs);
7187 return 1;
7188 }
7189 }
7190 }
2adfaa28 7191
2ac7589c
PA
7192 return 0;
7193}
2adfaa28 7194
2ac7589c
PA
7195/* Set a previously stepped thread back to stepping. Returns true on
7196 success, false if the resume is not possible (e.g., the thread
7197 vanished). */
7198
7199static int
7200keep_going_stepped_thread (struct thread_info *tp)
7201{
7202 struct frame_info *frame;
2ac7589c
PA
7203 struct execution_control_state ecss;
7204 struct execution_control_state *ecs = &ecss;
2adfaa28 7205
2ac7589c
PA
7206 /* If the stepping thread exited, then don't try to switch back and
7207 resume it, which could fail in several different ways depending
7208 on the target. Instead, just keep going.
2adfaa28 7209
2ac7589c
PA
7210 We can find a stepping dead thread in the thread list in two
7211 cases:
2adfaa28 7212
2ac7589c
PA
7213 - The target supports thread exit events, and when the target
7214 tries to delete the thread from the thread list, inferior_ptid
7215 pointed at the exiting thread. In such case, calling
7216 delete_thread does not really remove the thread from the list;
7217 instead, the thread is left listed, with 'exited' state.
64ce06e4 7218
2ac7589c
PA
7219 - The target's debug interface does not support thread exit
7220 events, and so we have no idea whatsoever if the previously
7221 stepping thread is still alive. For that reason, we need to
7222 synchronously query the target now. */
2adfaa28 7223
2ac7589c
PA
7224 if (is_exited (tp->ptid)
7225 || !target_thread_alive (tp->ptid))
7226 {
7227 if (debug_infrun)
7228 fprintf_unfiltered (gdb_stdlog,
7229 "infrun: not resuming previously "
7230 "stepped thread, it has vanished\n");
7231
7232 delete_thread (tp->ptid);
7233 return 0;
c447ac0b 7234 }
2ac7589c
PA
7235
7236 if (debug_infrun)
7237 fprintf_unfiltered (gdb_stdlog,
7238 "infrun: resuming previously stepped thread\n");
7239
7240 reset_ecs (ecs, tp);
7241 switch_to_thread (tp->ptid);
7242
7243 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7244 frame = get_current_frame ();
2ac7589c
PA
7245
7246 /* If the PC of the thread we were trying to single-step has
7247 changed, then that thread has trapped or been signaled, but the
7248 event has not been reported to GDB yet. Re-poll the target
7249 looking for this particular thread's event (i.e. temporarily
7250 enable schedlock) by:
7251
7252 - setting a break at the current PC
7253 - resuming that particular thread, only (by setting trap
7254 expected)
7255
7256 This prevents us continuously moving the single-step breakpoint
7257 forward, one instruction at a time, overstepping. */
7258
7259 if (stop_pc != tp->prev_pc)
7260 {
7261 ptid_t resume_ptid;
7262
7263 if (debug_infrun)
7264 fprintf_unfiltered (gdb_stdlog,
7265 "infrun: expected thread advanced also (%s -> %s)\n",
7266 paddress (target_gdbarch (), tp->prev_pc),
7267 paddress (target_gdbarch (), stop_pc));
7268
7269 /* Clear the info of the previous step-over, as it's no longer
7270 valid (if the thread was trying to step over a breakpoint, it
7271 has already succeeded). It's what keep_going would do too,
7272 if we called it. Do this before trying to insert the sss
7273 breakpoint, otherwise if we were previously trying to step
7274 over this exact address in another thread, the breakpoint is
7275 skipped. */
7276 clear_step_over_info ();
7277 tp->control.trap_expected = 0;
7278
7279 insert_single_step_breakpoint (get_frame_arch (frame),
7280 get_frame_address_space (frame),
7281 stop_pc);
7282
372316f1 7283 tp->resumed = 1;
fbea99ea 7284 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7285 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7286 }
7287 else
7288 {
7289 if (debug_infrun)
7290 fprintf_unfiltered (gdb_stdlog,
7291 "infrun: expected thread still hasn't advanced\n");
7292
7293 keep_going_pass_signal (ecs);
7294 }
7295 return 1;
c447ac0b
PA
7296}
7297
8b061563
PA
7298/* Is thread TP in the middle of (software or hardware)
7299 single-stepping? (Note the result of this function must never be
7300 passed directly as target_resume's STEP parameter.) */
104c1213 7301
a289b8f6 7302static int
b3444185 7303currently_stepping (struct thread_info *tp)
a7212384 7304{
8358c15c
JK
7305 return ((tp->control.step_range_end
7306 && tp->control.step_resume_breakpoint == NULL)
7307 || tp->control.trap_expected
af48d08f 7308 || tp->stepped_breakpoint
8358c15c 7309 || bpstat_should_step ());
a7212384
UW
7310}
7311
b2175913
MS
7312/* Inferior has stepped into a subroutine call with source code that
7313 we should not step over. Do step to the first line of code in
7314 it. */
c2c6d25f
JM
7315
7316static void
568d6575
UW
7317handle_step_into_function (struct gdbarch *gdbarch,
7318 struct execution_control_state *ecs)
c2c6d25f 7319{
43f3e411 7320 struct compunit_symtab *cust;
2afb61aa 7321 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7322
7e324e48
GB
7323 fill_in_stop_func (gdbarch, ecs);
7324
43f3e411
DE
7325 cust = find_pc_compunit_symtab (stop_pc);
7326 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7327 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7328 ecs->stop_func_start);
c2c6d25f 7329
2afb61aa 7330 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7331 /* Use the step_resume_break to step until the end of the prologue,
7332 even if that involves jumps (as it seems to on the vax under
7333 4.2). */
7334 /* If the prologue ends in the middle of a source line, continue to
7335 the end of that source line (if it is still within the function).
7336 Otherwise, just go to end of prologue. */
2afb61aa
PA
7337 if (stop_func_sal.end
7338 && stop_func_sal.pc != ecs->stop_func_start
7339 && stop_func_sal.end < ecs->stop_func_end)
7340 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7341
2dbd5e30
KB
7342 /* Architectures which require breakpoint adjustment might not be able
7343 to place a breakpoint at the computed address. If so, the test
7344 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7345 ecs->stop_func_start to an address at which a breakpoint may be
7346 legitimately placed.
8fb3e588 7347
2dbd5e30
KB
7348 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7349 made, GDB will enter an infinite loop when stepping through
7350 optimized code consisting of VLIW instructions which contain
7351 subinstructions corresponding to different source lines. On
7352 FR-V, it's not permitted to place a breakpoint on any but the
7353 first subinstruction of a VLIW instruction. When a breakpoint is
7354 set, GDB will adjust the breakpoint address to the beginning of
7355 the VLIW instruction. Thus, we need to make the corresponding
7356 adjustment here when computing the stop address. */
8fb3e588 7357
568d6575 7358 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7359 {
7360 ecs->stop_func_start
568d6575 7361 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7362 ecs->stop_func_start);
2dbd5e30
KB
7363 }
7364
c2c6d25f
JM
7365 if (ecs->stop_func_start == stop_pc)
7366 {
7367 /* We are already there: stop now. */
bdc36728 7368 end_stepping_range (ecs);
c2c6d25f
JM
7369 return;
7370 }
7371 else
7372 {
7373 /* Put the step-breakpoint there and go until there. */
fe39c653 7374 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7375 sr_sal.pc = ecs->stop_func_start;
7376 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7377 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7378
c2c6d25f 7379 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7380 some machines the prologue is where the new fp value is
7381 established. */
a6d9a66e 7382 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7383
7384 /* And make sure stepping stops right away then. */
16c381f0
JK
7385 ecs->event_thread->control.step_range_end
7386 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7387 }
7388 keep_going (ecs);
7389}
d4f3574e 7390
b2175913
MS
7391/* Inferior has stepped backward into a subroutine call with source
7392 code that we should not step over. Do step to the beginning of the
7393 last line of code in it. */
7394
7395static void
568d6575
UW
7396handle_step_into_function_backward (struct gdbarch *gdbarch,
7397 struct execution_control_state *ecs)
b2175913 7398{
43f3e411 7399 struct compunit_symtab *cust;
167e4384 7400 struct symtab_and_line stop_func_sal;
b2175913 7401
7e324e48
GB
7402 fill_in_stop_func (gdbarch, ecs);
7403
43f3e411
DE
7404 cust = find_pc_compunit_symtab (stop_pc);
7405 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7406 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7407 ecs->stop_func_start);
7408
7409 stop_func_sal = find_pc_line (stop_pc, 0);
7410
7411 /* OK, we're just going to keep stepping here. */
7412 if (stop_func_sal.pc == stop_pc)
7413 {
7414 /* We're there already. Just stop stepping now. */
bdc36728 7415 end_stepping_range (ecs);
b2175913
MS
7416 }
7417 else
7418 {
7419 /* Else just reset the step range and keep going.
7420 No step-resume breakpoint, they don't work for
7421 epilogues, which can have multiple entry paths. */
16c381f0
JK
7422 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7423 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7424 keep_going (ecs);
7425 }
7426 return;
7427}
7428
d3169d93 7429/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7430 This is used to both functions and to skip over code. */
7431
7432static void
2c03e5be
PA
7433insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7434 struct symtab_and_line sr_sal,
7435 struct frame_id sr_id,
7436 enum bptype sr_type)
44cbf7b5 7437{
611c83ae
PA
7438 /* There should never be more than one step-resume or longjmp-resume
7439 breakpoint per thread, so we should never be setting a new
44cbf7b5 7440 step_resume_breakpoint when one is already active. */
8358c15c 7441 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7442 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7443
7444 if (debug_infrun)
7445 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7446 "infrun: inserting step-resume breakpoint at %s\n",
7447 paddress (gdbarch, sr_sal.pc));
d3169d93 7448
8358c15c 7449 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7450 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7451}
7452
9da8c2a0 7453void
2c03e5be
PA
7454insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7455 struct symtab_and_line sr_sal,
7456 struct frame_id sr_id)
7457{
7458 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7459 sr_sal, sr_id,
7460 bp_step_resume);
44cbf7b5 7461}
7ce450bd 7462
2c03e5be
PA
7463/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7464 This is used to skip a potential signal handler.
7ce450bd 7465
14e60db5
DJ
7466 This is called with the interrupted function's frame. The signal
7467 handler, when it returns, will resume the interrupted function at
7468 RETURN_FRAME.pc. */
d303a6c7
AC
7469
7470static void
2c03e5be 7471insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7472{
7473 struct symtab_and_line sr_sal;
a6d9a66e 7474 struct gdbarch *gdbarch;
d303a6c7 7475
f4c1edd8 7476 gdb_assert (return_frame != NULL);
d303a6c7
AC
7477 init_sal (&sr_sal); /* initialize to zeros */
7478
a6d9a66e 7479 gdbarch = get_frame_arch (return_frame);
568d6575 7480 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7481 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7482 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7483
2c03e5be
PA
7484 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7485 get_stack_frame_id (return_frame),
7486 bp_hp_step_resume);
d303a6c7
AC
7487}
7488
2c03e5be
PA
7489/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7490 is used to skip a function after stepping into it (for "next" or if
7491 the called function has no debugging information).
14e60db5
DJ
7492
7493 The current function has almost always been reached by single
7494 stepping a call or return instruction. NEXT_FRAME belongs to the
7495 current function, and the breakpoint will be set at the caller's
7496 resume address.
7497
7498 This is a separate function rather than reusing
2c03e5be 7499 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7500 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7501 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7502
7503static void
7504insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7505{
7506 struct symtab_and_line sr_sal;
a6d9a66e 7507 struct gdbarch *gdbarch;
14e60db5
DJ
7508
7509 /* We shouldn't have gotten here if we don't know where the call site
7510 is. */
c7ce8faa 7511 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7512
7513 init_sal (&sr_sal); /* initialize to zeros */
7514
a6d9a66e 7515 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7516 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7517 frame_unwind_caller_pc (next_frame));
14e60db5 7518 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7519 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7520
a6d9a66e 7521 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7522 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7523}
7524
611c83ae
PA
7525/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7526 new breakpoint at the target of a jmp_buf. The handling of
7527 longjmp-resume uses the same mechanisms used for handling
7528 "step-resume" breakpoints. */
7529
7530static void
a6d9a66e 7531insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7532{
e81a37f7
TT
7533 /* There should never be more than one longjmp-resume breakpoint per
7534 thread, so we should never be setting a new
611c83ae 7535 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7536 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7537
7538 if (debug_infrun)
7539 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7540 "infrun: inserting longjmp-resume breakpoint at %s\n",
7541 paddress (gdbarch, pc));
611c83ae 7542
e81a37f7 7543 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7544 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7545}
7546
186c406b
TT
7547/* Insert an exception resume breakpoint. TP is the thread throwing
7548 the exception. The block B is the block of the unwinder debug hook
7549 function. FRAME is the frame corresponding to the call to this
7550 function. SYM is the symbol of the function argument holding the
7551 target PC of the exception. */
7552
7553static void
7554insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7555 const struct block *b,
186c406b
TT
7556 struct frame_info *frame,
7557 struct symbol *sym)
7558{
492d29ea 7559 TRY
186c406b 7560 {
63e43d3a 7561 struct block_symbol vsym;
186c406b
TT
7562 struct value *value;
7563 CORE_ADDR handler;
7564 struct breakpoint *bp;
7565
63e43d3a
PMR
7566 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7567 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7568 /* If the value was optimized out, revert to the old behavior. */
7569 if (! value_optimized_out (value))
7570 {
7571 handler = value_as_address (value);
7572
7573 if (debug_infrun)
7574 fprintf_unfiltered (gdb_stdlog,
7575 "infrun: exception resume at %lx\n",
7576 (unsigned long) handler);
7577
7578 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7579 handler, bp_exception_resume);
c70a6932
JK
7580
7581 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7582 frame = NULL;
7583
5d5658a1 7584 bp->thread = tp->global_num;
186c406b
TT
7585 inferior_thread ()->control.exception_resume_breakpoint = bp;
7586 }
7587 }
492d29ea
PA
7588 CATCH (e, RETURN_MASK_ERROR)
7589 {
7590 /* We want to ignore errors here. */
7591 }
7592 END_CATCH
186c406b
TT
7593}
7594
28106bc2
SDJ
7595/* A helper for check_exception_resume that sets an
7596 exception-breakpoint based on a SystemTap probe. */
7597
7598static void
7599insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7600 const struct bound_probe *probe,
28106bc2
SDJ
7601 struct frame_info *frame)
7602{
7603 struct value *arg_value;
7604 CORE_ADDR handler;
7605 struct breakpoint *bp;
7606
7607 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7608 if (!arg_value)
7609 return;
7610
7611 handler = value_as_address (arg_value);
7612
7613 if (debug_infrun)
7614 fprintf_unfiltered (gdb_stdlog,
7615 "infrun: exception resume at %s\n",
6bac7473 7616 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7617 handler));
7618
7619 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7620 handler, bp_exception_resume);
5d5658a1 7621 bp->thread = tp->global_num;
28106bc2
SDJ
7622 inferior_thread ()->control.exception_resume_breakpoint = bp;
7623}
7624
186c406b
TT
7625/* This is called when an exception has been intercepted. Check to
7626 see whether the exception's destination is of interest, and if so,
7627 set an exception resume breakpoint there. */
7628
7629static void
7630check_exception_resume (struct execution_control_state *ecs,
28106bc2 7631 struct frame_info *frame)
186c406b 7632{
729662a5 7633 struct bound_probe probe;
28106bc2
SDJ
7634 struct symbol *func;
7635
7636 /* First see if this exception unwinding breakpoint was set via a
7637 SystemTap probe point. If so, the probe has two arguments: the
7638 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7639 set a breakpoint there. */
6bac7473 7640 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7641 if (probe.probe)
28106bc2 7642 {
729662a5 7643 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7644 return;
7645 }
7646
7647 func = get_frame_function (frame);
7648 if (!func)
7649 return;
186c406b 7650
492d29ea 7651 TRY
186c406b 7652 {
3977b71f 7653 const struct block *b;
8157b174 7654 struct block_iterator iter;
186c406b
TT
7655 struct symbol *sym;
7656 int argno = 0;
7657
7658 /* The exception breakpoint is a thread-specific breakpoint on
7659 the unwinder's debug hook, declared as:
7660
7661 void _Unwind_DebugHook (void *cfa, void *handler);
7662
7663 The CFA argument indicates the frame to which control is
7664 about to be transferred. HANDLER is the destination PC.
7665
7666 We ignore the CFA and set a temporary breakpoint at HANDLER.
7667 This is not extremely efficient but it avoids issues in gdb
7668 with computing the DWARF CFA, and it also works even in weird
7669 cases such as throwing an exception from inside a signal
7670 handler. */
7671
7672 b = SYMBOL_BLOCK_VALUE (func);
7673 ALL_BLOCK_SYMBOLS (b, iter, sym)
7674 {
7675 if (!SYMBOL_IS_ARGUMENT (sym))
7676 continue;
7677
7678 if (argno == 0)
7679 ++argno;
7680 else
7681 {
7682 insert_exception_resume_breakpoint (ecs->event_thread,
7683 b, frame, sym);
7684 break;
7685 }
7686 }
7687 }
492d29ea
PA
7688 CATCH (e, RETURN_MASK_ERROR)
7689 {
7690 }
7691 END_CATCH
186c406b
TT
7692}
7693
104c1213 7694static void
22bcd14b 7695stop_waiting (struct execution_control_state *ecs)
104c1213 7696{
527159b7 7697 if (debug_infrun)
22bcd14b 7698 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7699
31e77af2
PA
7700 clear_step_over_info ();
7701
cd0fc7c3
SS
7702 /* Let callers know we don't want to wait for the inferior anymore. */
7703 ecs->wait_some_more = 0;
fbea99ea
PA
7704
7705 /* If all-stop, but the target is always in non-stop mode, stop all
7706 threads now that we're presenting the stop to the user. */
7707 if (!non_stop && target_is_non_stop_p ())
7708 stop_all_threads ();
cd0fc7c3
SS
7709}
7710
4d9d9d04
PA
7711/* Like keep_going, but passes the signal to the inferior, even if the
7712 signal is set to nopass. */
d4f3574e
SS
7713
7714static void
4d9d9d04 7715keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7716{
c4dbc9af
PA
7717 /* Make sure normal_stop is called if we get a QUIT handled before
7718 reaching resume. */
7719 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7720
4d9d9d04 7721 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7722 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7723
d4f3574e 7724 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7725 ecs->event_thread->prev_pc
7726 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7727
4d9d9d04 7728 if (ecs->event_thread->control.trap_expected)
d4f3574e 7729 {
4d9d9d04
PA
7730 struct thread_info *tp = ecs->event_thread;
7731
7732 if (debug_infrun)
7733 fprintf_unfiltered (gdb_stdlog,
7734 "infrun: %s has trap_expected set, "
7735 "resuming to collect trap\n",
7736 target_pid_to_str (tp->ptid));
7737
a9ba6bae
PA
7738 /* We haven't yet gotten our trap, and either: intercepted a
7739 non-signal event (e.g., a fork); or took a signal which we
7740 are supposed to pass through to the inferior. Simply
7741 continue. */
c4dbc9af 7742 discard_cleanups (old_cleanups);
64ce06e4 7743 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7744 }
372316f1
PA
7745 else if (step_over_info_valid_p ())
7746 {
7747 /* Another thread is stepping over a breakpoint in-line. If
7748 this thread needs a step-over too, queue the request. In
7749 either case, this resume must be deferred for later. */
7750 struct thread_info *tp = ecs->event_thread;
7751
7752 if (ecs->hit_singlestep_breakpoint
7753 || thread_still_needs_step_over (tp))
7754 {
7755 if (debug_infrun)
7756 fprintf_unfiltered (gdb_stdlog,
7757 "infrun: step-over already in progress: "
7758 "step-over for %s deferred\n",
7759 target_pid_to_str (tp->ptid));
7760 thread_step_over_chain_enqueue (tp);
7761 }
7762 else
7763 {
7764 if (debug_infrun)
7765 fprintf_unfiltered (gdb_stdlog,
7766 "infrun: step-over in progress: "
7767 "resume of %s deferred\n",
7768 target_pid_to_str (tp->ptid));
7769 }
7770
7771 discard_cleanups (old_cleanups);
7772 }
d4f3574e
SS
7773 else
7774 {
31e77af2 7775 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7776 int remove_bp;
7777 int remove_wps;
8d297bbf 7778 step_over_what step_what;
31e77af2 7779
d4f3574e 7780 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7781 anyway (if we got a signal, the user asked it be passed to
7782 the child)
7783 -- or --
7784 We got our expected trap, but decided we should resume from
7785 it.
d4f3574e 7786
a9ba6bae 7787 We're going to run this baby now!
d4f3574e 7788
c36b740a
VP
7789 Note that insert_breakpoints won't try to re-insert
7790 already inserted breakpoints. Therefore, we don't
7791 care if breakpoints were already inserted, or not. */
a9ba6bae 7792
31e77af2
PA
7793 /* If we need to step over a breakpoint, and we're not using
7794 displaced stepping to do so, insert all breakpoints
7795 (watchpoints, etc.) but the one we're stepping over, step one
7796 instruction, and then re-insert the breakpoint when that step
7797 is finished. */
963f9c80 7798
6c4cfb24
PA
7799 step_what = thread_still_needs_step_over (ecs->event_thread);
7800
963f9c80 7801 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7802 || (step_what & STEP_OVER_BREAKPOINT));
7803 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7804
cb71640d
PA
7805 /* We can't use displaced stepping if we need to step past a
7806 watchpoint. The instruction copied to the scratch pad would
7807 still trigger the watchpoint. */
7808 if (remove_bp
3fc8eb30 7809 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7810 {
31e77af2 7811 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7812 regcache_read_pc (regcache), remove_wps,
7813 ecs->event_thread->global_num);
45e8c884 7814 }
963f9c80 7815 else if (remove_wps)
21edc42f 7816 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7817
7818 /* If we now need to do an in-line step-over, we need to stop
7819 all other threads. Note this must be done before
7820 insert_breakpoints below, because that removes the breakpoint
7821 we're about to step over, otherwise other threads could miss
7822 it. */
fbea99ea 7823 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7824 stop_all_threads ();
abbb1732 7825
31e77af2 7826 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7827 TRY
31e77af2
PA
7828 {
7829 insert_breakpoints ();
7830 }
492d29ea 7831 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7832 {
7833 exception_print (gdb_stderr, e);
22bcd14b 7834 stop_waiting (ecs);
de1fe8c8 7835 discard_cleanups (old_cleanups);
31e77af2 7836 return;
d4f3574e 7837 }
492d29ea 7838 END_CATCH
d4f3574e 7839
963f9c80 7840 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7841
c4dbc9af 7842 discard_cleanups (old_cleanups);
64ce06e4 7843 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7844 }
7845
488f131b 7846 prepare_to_wait (ecs);
d4f3574e
SS
7847}
7848
4d9d9d04
PA
7849/* Called when we should continue running the inferior, because the
7850 current event doesn't cause a user visible stop. This does the
7851 resuming part; waiting for the next event is done elsewhere. */
7852
7853static void
7854keep_going (struct execution_control_state *ecs)
7855{
7856 if (ecs->event_thread->control.trap_expected
7857 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7858 ecs->event_thread->control.trap_expected = 0;
7859
7860 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7861 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7862 keep_going_pass_signal (ecs);
7863}
7864
104c1213
JM
7865/* This function normally comes after a resume, before
7866 handle_inferior_event exits. It takes care of any last bits of
7867 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7868
104c1213
JM
7869static void
7870prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7871{
527159b7 7872 if (debug_infrun)
8a9de0e4 7873 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7874
104c1213 7875 ecs->wait_some_more = 1;
0b333c5e
PA
7876
7877 if (!target_is_async_p ())
7878 mark_infrun_async_event_handler ();
c906108c 7879}
11cf8741 7880
fd664c91 7881/* We are done with the step range of a step/next/si/ni command.
b57bacec 7882 Called once for each n of a "step n" operation. */
fd664c91
PA
7883
7884static void
bdc36728 7885end_stepping_range (struct execution_control_state *ecs)
fd664c91 7886{
bdc36728 7887 ecs->event_thread->control.stop_step = 1;
bdc36728 7888 stop_waiting (ecs);
fd664c91
PA
7889}
7890
33d62d64
JK
7891/* Several print_*_reason functions to print why the inferior has stopped.
7892 We always print something when the inferior exits, or receives a signal.
7893 The rest of the cases are dealt with later on in normal_stop and
7894 print_it_typical. Ideally there should be a call to one of these
7895 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7896 stop_waiting is called.
33d62d64 7897
fd664c91
PA
7898 Note that we don't call these directly, instead we delegate that to
7899 the interpreters, through observers. Interpreters then call these
7900 with whatever uiout is right. */
33d62d64 7901
fd664c91
PA
7902void
7903print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7904{
fd664c91 7905 /* For CLI-like interpreters, print nothing. */
33d62d64 7906
fd664c91
PA
7907 if (ui_out_is_mi_like_p (uiout))
7908 {
7909 ui_out_field_string (uiout, "reason",
7910 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7911 }
7912}
33d62d64 7913
fd664c91
PA
7914void
7915print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7916{
33d62d64
JK
7917 annotate_signalled ();
7918 if (ui_out_is_mi_like_p (uiout))
7919 ui_out_field_string
7920 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7921 ui_out_text (uiout, "\nProgram terminated with signal ");
7922 annotate_signal_name ();
7923 ui_out_field_string (uiout, "signal-name",
2ea28649 7924 gdb_signal_to_name (siggnal));
33d62d64
JK
7925 annotate_signal_name_end ();
7926 ui_out_text (uiout, ", ");
7927 annotate_signal_string ();
7928 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7929 gdb_signal_to_string (siggnal));
33d62d64
JK
7930 annotate_signal_string_end ();
7931 ui_out_text (uiout, ".\n");
7932 ui_out_text (uiout, "The program no longer exists.\n");
7933}
7934
fd664c91
PA
7935void
7936print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7937{
fda326dd
TT
7938 struct inferior *inf = current_inferior ();
7939 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7940
33d62d64
JK
7941 annotate_exited (exitstatus);
7942 if (exitstatus)
7943 {
7944 if (ui_out_is_mi_like_p (uiout))
7945 ui_out_field_string (uiout, "reason",
7946 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7947 ui_out_text (uiout, "[Inferior ");
7948 ui_out_text (uiout, plongest (inf->num));
7949 ui_out_text (uiout, " (");
7950 ui_out_text (uiout, pidstr);
7951 ui_out_text (uiout, ") exited with code ");
33d62d64 7952 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7953 ui_out_text (uiout, "]\n");
33d62d64
JK
7954 }
7955 else
11cf8741 7956 {
9dc5e2a9 7957 if (ui_out_is_mi_like_p (uiout))
034dad6f 7958 ui_out_field_string
33d62d64 7959 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7960 ui_out_text (uiout, "[Inferior ");
7961 ui_out_text (uiout, plongest (inf->num));
7962 ui_out_text (uiout, " (");
7963 ui_out_text (uiout, pidstr);
7964 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7965 }
33d62d64
JK
7966}
7967
012b3a21
WT
7968/* Some targets/architectures can do extra processing/display of
7969 segmentation faults. E.g., Intel MPX boundary faults.
7970 Call the architecture dependent function to handle the fault. */
7971
7972static void
7973handle_segmentation_fault (struct ui_out *uiout)
7974{
7975 struct regcache *regcache = get_current_regcache ();
7976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7977
7978 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7979 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7980}
7981
fd664c91
PA
7982void
7983print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7984{
f303dbd6
PA
7985 struct thread_info *thr = inferior_thread ();
7986
33d62d64
JK
7987 annotate_signal ();
7988
f303dbd6
PA
7989 if (ui_out_is_mi_like_p (uiout))
7990 ;
7991 else if (show_thread_that_caused_stop ())
33d62d64 7992 {
f303dbd6 7993 const char *name;
33d62d64 7994
f303dbd6
PA
7995 ui_out_text (uiout, "\nThread ");
7996 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7997
7998 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7999 if (name != NULL)
8000 {
8001 ui_out_text (uiout, " \"");
8002 ui_out_field_fmt (uiout, "name", "%s", name);
8003 ui_out_text (uiout, "\"");
8004 }
33d62d64 8005 }
f303dbd6
PA
8006 else
8007 ui_out_text (uiout, "\nProgram");
8008
8009 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8010 ui_out_text (uiout, " stopped");
33d62d64
JK
8011 else
8012 {
f303dbd6 8013 ui_out_text (uiout, " received signal ");
8b93c638 8014 annotate_signal_name ();
33d62d64
JK
8015 if (ui_out_is_mi_like_p (uiout))
8016 ui_out_field_string
8017 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 8018 ui_out_field_string (uiout, "signal-name",
2ea28649 8019 gdb_signal_to_name (siggnal));
8b93c638
JM
8020 annotate_signal_name_end ();
8021 ui_out_text (uiout, ", ");
8022 annotate_signal_string ();
488f131b 8023 ui_out_field_string (uiout, "signal-meaning",
2ea28649 8024 gdb_signal_to_string (siggnal));
012b3a21
WT
8025
8026 if (siggnal == GDB_SIGNAL_SEGV)
8027 handle_segmentation_fault (uiout);
8028
8b93c638 8029 annotate_signal_string_end ();
33d62d64
JK
8030 }
8031 ui_out_text (uiout, ".\n");
8032}
252fbfc8 8033
fd664c91
PA
8034void
8035print_no_history_reason (struct ui_out *uiout)
33d62d64 8036{
fd664c91 8037 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 8038}
43ff13b4 8039
0c7e1a46
PA
8040/* Print current location without a level number, if we have changed
8041 functions or hit a breakpoint. Print source line if we have one.
8042 bpstat_print contains the logic deciding in detail what to print,
8043 based on the event(s) that just occurred. */
8044
243a9253
PA
8045static void
8046print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8047{
8048 int bpstat_ret;
f486487f 8049 enum print_what source_flag;
0c7e1a46
PA
8050 int do_frame_printing = 1;
8051 struct thread_info *tp = inferior_thread ();
8052
8053 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8054 switch (bpstat_ret)
8055 {
8056 case PRINT_UNKNOWN:
8057 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8058 should) carry around the function and does (or should) use
8059 that when doing a frame comparison. */
8060 if (tp->control.stop_step
8061 && frame_id_eq (tp->control.step_frame_id,
8062 get_frame_id (get_current_frame ()))
885eeb5b 8063 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8064 {
8065 /* Finished step, just print source line. */
8066 source_flag = SRC_LINE;
8067 }
8068 else
8069 {
8070 /* Print location and source line. */
8071 source_flag = SRC_AND_LOC;
8072 }
8073 break;
8074 case PRINT_SRC_AND_LOC:
8075 /* Print location and source line. */
8076 source_flag = SRC_AND_LOC;
8077 break;
8078 case PRINT_SRC_ONLY:
8079 source_flag = SRC_LINE;
8080 break;
8081 case PRINT_NOTHING:
8082 /* Something bogus. */
8083 source_flag = SRC_LINE;
8084 do_frame_printing = 0;
8085 break;
8086 default:
8087 internal_error (__FILE__, __LINE__, _("Unknown value."));
8088 }
8089
8090 /* The behavior of this routine with respect to the source
8091 flag is:
8092 SRC_LINE: Print only source line
8093 LOCATION: Print only location
8094 SRC_AND_LOC: Print location and source line. */
8095 if (do_frame_printing)
8096 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8097}
8098
243a9253
PA
8099/* See infrun.h. */
8100
8101void
8102print_stop_event (struct ui_out *uiout)
8103{
8104 struct cleanup *old_chain;
8105 struct target_waitstatus last;
8106 ptid_t last_ptid;
8107 struct thread_info *tp;
8108
8109 get_last_target_status (&last_ptid, &last);
8110
cd94f6d5 8111 old_chain = make_cleanup_restore_current_uiout ();
243a9253
PA
8112 current_uiout = uiout;
8113
8114 print_stop_location (&last);
0c7e1a46
PA
8115
8116 /* Display the auto-display expressions. */
8117 do_displays ();
243a9253
PA
8118
8119 do_cleanups (old_chain);
8120
8121 tp = inferior_thread ();
8122 if (tp->thread_fsm != NULL
8123 && thread_fsm_finished_p (tp->thread_fsm))
8124 {
8125 struct return_value_info *rv;
8126
8127 rv = thread_fsm_return_value (tp->thread_fsm);
8128 if (rv != NULL)
8129 print_return_value (uiout, rv);
8130 }
0c7e1a46
PA
8131}
8132
388a7084
PA
8133/* See infrun.h. */
8134
8135void
8136maybe_remove_breakpoints (void)
8137{
8138 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8139 {
8140 if (remove_breakpoints ())
8141 {
8142 target_terminal_ours_for_output ();
8143 printf_filtered (_("Cannot remove breakpoints because "
8144 "program is no longer writable.\nFurther "
8145 "execution is probably impossible.\n"));
8146 }
8147 }
8148}
8149
4c2f2a79
PA
8150/* The execution context that just caused a normal stop. */
8151
8152struct stop_context
8153{
8154 /* The stop ID. */
8155 ULONGEST stop_id;
c906108c 8156
4c2f2a79 8157 /* The event PTID. */
c906108c 8158
4c2f2a79
PA
8159 ptid_t ptid;
8160
8161 /* If stopp for a thread event, this is the thread that caused the
8162 stop. */
8163 struct thread_info *thread;
8164
8165 /* The inferior that caused the stop. */
8166 int inf_num;
8167};
8168
8169/* Returns a new stop context. If stopped for a thread event, this
8170 takes a strong reference to the thread. */
8171
8172static struct stop_context *
8173save_stop_context (void)
8174{
224c3ddb 8175 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8176
8177 sc->stop_id = get_stop_id ();
8178 sc->ptid = inferior_ptid;
8179 sc->inf_num = current_inferior ()->num;
8180
8181 if (!ptid_equal (inferior_ptid, null_ptid))
8182 {
8183 /* Take a strong reference so that the thread can't be deleted
8184 yet. */
8185 sc->thread = inferior_thread ();
8186 sc->thread->refcount++;
8187 }
8188 else
8189 sc->thread = NULL;
8190
8191 return sc;
8192}
8193
8194/* Release a stop context previously created with save_stop_context.
8195 Releases the strong reference to the thread as well. */
8196
8197static void
8198release_stop_context_cleanup (void *arg)
8199{
9a3c8263 8200 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8201
8202 if (sc->thread != NULL)
8203 sc->thread->refcount--;
8204 xfree (sc);
8205}
8206
8207/* Return true if the current context no longer matches the saved stop
8208 context. */
8209
8210static int
8211stop_context_changed (struct stop_context *prev)
8212{
8213 if (!ptid_equal (prev->ptid, inferior_ptid))
8214 return 1;
8215 if (prev->inf_num != current_inferior ()->num)
8216 return 1;
8217 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8218 return 1;
8219 if (get_stop_id () != prev->stop_id)
8220 return 1;
8221 return 0;
8222}
8223
8224/* See infrun.h. */
8225
8226int
96baa820 8227normal_stop (void)
c906108c 8228{
73b65bb0
DJ
8229 struct target_waitstatus last;
8230 ptid_t last_ptid;
29f49a6a 8231 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8232 ptid_t pid_ptid;
3b12939d 8233 struct switch_thru_all_uis state;
73b65bb0
DJ
8234
8235 get_last_target_status (&last_ptid, &last);
8236
4c2f2a79
PA
8237 new_stop_id ();
8238
29f49a6a
PA
8239 /* If an exception is thrown from this point on, make sure to
8240 propagate GDB's knowledge of the executing state to the
8241 frontend/user running state. A QUIT is an easy exception to see
8242 here, so do this before any filtered output. */
c35b1492
PA
8243 if (!non_stop)
8244 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8245 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8246 || last.kind == TARGET_WAITKIND_EXITED)
8247 {
8248 /* On some targets, we may still have live threads in the
8249 inferior when we get a process exit event. E.g., for
8250 "checkpoint", when the current checkpoint/fork exits,
8251 linux-fork.c automatically switches to another fork from
8252 within target_mourn_inferior. */
8253 if (!ptid_equal (inferior_ptid, null_ptid))
8254 {
8255 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8256 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8257 }
8258 }
8259 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8260 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8261
b57bacec
PA
8262 /* As we're presenting a stop, and potentially removing breakpoints,
8263 update the thread list so we can tell whether there are threads
8264 running on the target. With target remote, for example, we can
8265 only learn about new threads when we explicitly update the thread
8266 list. Do this before notifying the interpreters about signal
8267 stops, end of stepping ranges, etc., so that the "new thread"
8268 output is emitted before e.g., "Program received signal FOO",
8269 instead of after. */
8270 update_thread_list ();
8271
8272 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8273 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8274
c906108c
SS
8275 /* As with the notification of thread events, we want to delay
8276 notifying the user that we've switched thread context until
8277 the inferior actually stops.
8278
73b65bb0
DJ
8279 There's no point in saying anything if the inferior has exited.
8280 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8281 "received a signal".
8282
8283 Also skip saying anything in non-stop mode. In that mode, as we
8284 don't want GDB to switch threads behind the user's back, to avoid
8285 races where the user is typing a command to apply to thread x,
8286 but GDB switches to thread y before the user finishes entering
8287 the command, fetch_inferior_event installs a cleanup to restore
8288 the current thread back to the thread the user had selected right
8289 after this event is handled, so we're not really switching, only
8290 informing of a stop. */
4f8d22e3
PA
8291 if (!non_stop
8292 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8293 && target_has_execution
8294 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8295 && last.kind != TARGET_WAITKIND_EXITED
8296 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8297 {
3b12939d
PA
8298 SWITCH_THRU_ALL_UIS (state)
8299 {
8300 target_terminal_ours_for_output ();
8301 printf_filtered (_("[Switching to %s]\n"),
8302 target_pid_to_str (inferior_ptid));
8303 annotate_thread_changed ();
8304 }
39f77062 8305 previous_inferior_ptid = inferior_ptid;
c906108c 8306 }
c906108c 8307
0e5bf2a8
PA
8308 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8309 {
3b12939d
PA
8310 SWITCH_THRU_ALL_UIS (state)
8311 if (current_ui->prompt_state == PROMPT_BLOCKED)
8312 {
8313 target_terminal_ours_for_output ();
8314 printf_filtered (_("No unwaited-for children left.\n"));
8315 }
0e5bf2a8
PA
8316 }
8317
b57bacec 8318 /* Note: this depends on the update_thread_list call above. */
388a7084 8319 maybe_remove_breakpoints ();
c906108c 8320
c906108c
SS
8321 /* If an auto-display called a function and that got a signal,
8322 delete that auto-display to avoid an infinite recursion. */
8323
8324 if (stopped_by_random_signal)
8325 disable_current_display ();
8326
3b12939d
PA
8327 SWITCH_THRU_ALL_UIS (state)
8328 {
8329 async_enable_stdin ();
8330 }
c906108c 8331
388a7084
PA
8332 /* Let the user/frontend see the threads as stopped. */
8333 do_cleanups (old_chain);
8334
8335 /* Select innermost stack frame - i.e., current frame is frame 0,
8336 and current location is based on that. Handle the case where the
8337 dummy call is returning after being stopped. E.g. the dummy call
8338 previously hit a breakpoint. (If the dummy call returns
8339 normally, we won't reach here.) Do this before the stop hook is
8340 run, so that it doesn't get to see the temporary dummy frame,
8341 which is not where we'll present the stop. */
8342 if (has_stack_frames ())
8343 {
8344 if (stop_stack_dummy == STOP_STACK_DUMMY)
8345 {
8346 /* Pop the empty frame that contains the stack dummy. This
8347 also restores inferior state prior to the call (struct
8348 infcall_suspend_state). */
8349 struct frame_info *frame = get_current_frame ();
8350
8351 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8352 frame_pop (frame);
8353 /* frame_pop calls reinit_frame_cache as the last thing it
8354 does which means there's now no selected frame. */
8355 }
8356
8357 select_frame (get_current_frame ());
8358
8359 /* Set the current source location. */
8360 set_current_sal_from_frame (get_current_frame ());
8361 }
dd7e2d2b
PA
8362
8363 /* Look up the hook_stop and run it (CLI internally handles problem
8364 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8365 if (stop_command != NULL)
8366 {
8367 struct stop_context *saved_context = save_stop_context ();
8368 struct cleanup *old_chain
8369 = make_cleanup (release_stop_context_cleanup, saved_context);
8370
8371 catch_errors (hook_stop_stub, stop_command,
8372 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8373
8374 /* If the stop hook resumes the target, then there's no point in
8375 trying to notify about the previous stop; its context is
8376 gone. Likewise if the command switches thread or inferior --
8377 the observers would print a stop for the wrong
8378 thread/inferior. */
8379 if (stop_context_changed (saved_context))
8380 {
8381 do_cleanups (old_chain);
8382 return 1;
8383 }
8384 do_cleanups (old_chain);
8385 }
dd7e2d2b 8386
388a7084
PA
8387 /* Notify observers about the stop. This is where the interpreters
8388 print the stop event. */
8389 if (!ptid_equal (inferior_ptid, null_ptid))
8390 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8391 stop_print_frame);
8392 else
8393 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8394
243a9253
PA
8395 annotate_stopped ();
8396
48844aa6
PA
8397 if (target_has_execution)
8398 {
8399 if (last.kind != TARGET_WAITKIND_SIGNALLED
8400 && last.kind != TARGET_WAITKIND_EXITED)
8401 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8402 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8403 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8404 }
6c95b8df
PA
8405
8406 /* Try to get rid of automatically added inferiors that are no
8407 longer needed. Keeping those around slows down things linearly.
8408 Note that this never removes the current inferior. */
8409 prune_inferiors ();
4c2f2a79
PA
8410
8411 return 0;
c906108c
SS
8412}
8413
8414static int
96baa820 8415hook_stop_stub (void *cmd)
c906108c 8416{
5913bcb0 8417 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8418 return (0);
8419}
8420\f
c5aa993b 8421int
96baa820 8422signal_stop_state (int signo)
c906108c 8423{
d6b48e9c 8424 return signal_stop[signo];
c906108c
SS
8425}
8426
c5aa993b 8427int
96baa820 8428signal_print_state (int signo)
c906108c
SS
8429{
8430 return signal_print[signo];
8431}
8432
c5aa993b 8433int
96baa820 8434signal_pass_state (int signo)
c906108c
SS
8435{
8436 return signal_program[signo];
8437}
8438
2455069d
UW
8439static void
8440signal_cache_update (int signo)
8441{
8442 if (signo == -1)
8443 {
a493e3e2 8444 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8445 signal_cache_update (signo);
8446
8447 return;
8448 }
8449
8450 signal_pass[signo] = (signal_stop[signo] == 0
8451 && signal_print[signo] == 0
ab04a2af
TT
8452 && signal_program[signo] == 1
8453 && signal_catch[signo] == 0);
2455069d
UW
8454}
8455
488f131b 8456int
7bda5e4a 8457signal_stop_update (int signo, int state)
d4f3574e
SS
8458{
8459 int ret = signal_stop[signo];
abbb1732 8460
d4f3574e 8461 signal_stop[signo] = state;
2455069d 8462 signal_cache_update (signo);
d4f3574e
SS
8463 return ret;
8464}
8465
488f131b 8466int
7bda5e4a 8467signal_print_update (int signo, int state)
d4f3574e
SS
8468{
8469 int ret = signal_print[signo];
abbb1732 8470
d4f3574e 8471 signal_print[signo] = state;
2455069d 8472 signal_cache_update (signo);
d4f3574e
SS
8473 return ret;
8474}
8475
488f131b 8476int
7bda5e4a 8477signal_pass_update (int signo, int state)
d4f3574e
SS
8478{
8479 int ret = signal_program[signo];
abbb1732 8480
d4f3574e 8481 signal_program[signo] = state;
2455069d 8482 signal_cache_update (signo);
d4f3574e
SS
8483 return ret;
8484}
8485
ab04a2af
TT
8486/* Update the global 'signal_catch' from INFO and notify the
8487 target. */
8488
8489void
8490signal_catch_update (const unsigned int *info)
8491{
8492 int i;
8493
8494 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8495 signal_catch[i] = info[i] > 0;
8496 signal_cache_update (-1);
8497 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8498}
8499
c906108c 8500static void
96baa820 8501sig_print_header (void)
c906108c 8502{
3e43a32a
MS
8503 printf_filtered (_("Signal Stop\tPrint\tPass "
8504 "to program\tDescription\n"));
c906108c
SS
8505}
8506
8507static void
2ea28649 8508sig_print_info (enum gdb_signal oursig)
c906108c 8509{
2ea28649 8510 const char *name = gdb_signal_to_name (oursig);
c906108c 8511 int name_padding = 13 - strlen (name);
96baa820 8512
c906108c
SS
8513 if (name_padding <= 0)
8514 name_padding = 0;
8515
8516 printf_filtered ("%s", name);
488f131b 8517 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8518 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8519 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8520 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8521 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8522}
8523
8524/* Specify how various signals in the inferior should be handled. */
8525
8526static void
96baa820 8527handle_command (char *args, int from_tty)
c906108c
SS
8528{
8529 char **argv;
8530 int digits, wordlen;
8531 int sigfirst, signum, siglast;
2ea28649 8532 enum gdb_signal oursig;
c906108c
SS
8533 int allsigs;
8534 int nsigs;
8535 unsigned char *sigs;
8536 struct cleanup *old_chain;
8537
8538 if (args == NULL)
8539 {
e2e0b3e5 8540 error_no_arg (_("signal to handle"));
c906108c
SS
8541 }
8542
1777feb0 8543 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8544
a493e3e2 8545 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8546 sigs = (unsigned char *) alloca (nsigs);
8547 memset (sigs, 0, nsigs);
8548
1777feb0 8549 /* Break the command line up into args. */
c906108c 8550
d1a41061 8551 argv = gdb_buildargv (args);
7a292a7a 8552 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8553
8554 /* Walk through the args, looking for signal oursigs, signal names, and
8555 actions. Signal numbers and signal names may be interspersed with
8556 actions, with the actions being performed for all signals cumulatively
1777feb0 8557 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8558
8559 while (*argv != NULL)
8560 {
8561 wordlen = strlen (*argv);
8562 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8563 {;
8564 }
8565 allsigs = 0;
8566 sigfirst = siglast = -1;
8567
8568 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8569 {
8570 /* Apply action to all signals except those used by the
1777feb0 8571 debugger. Silently skip those. */
c906108c
SS
8572 allsigs = 1;
8573 sigfirst = 0;
8574 siglast = nsigs - 1;
8575 }
8576 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8577 {
8578 SET_SIGS (nsigs, sigs, signal_stop);
8579 SET_SIGS (nsigs, sigs, signal_print);
8580 }
8581 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8582 {
8583 UNSET_SIGS (nsigs, sigs, signal_program);
8584 }
8585 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8586 {
8587 SET_SIGS (nsigs, sigs, signal_print);
8588 }
8589 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8590 {
8591 SET_SIGS (nsigs, sigs, signal_program);
8592 }
8593 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8594 {
8595 UNSET_SIGS (nsigs, sigs, signal_stop);
8596 }
8597 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8598 {
8599 SET_SIGS (nsigs, sigs, signal_program);
8600 }
8601 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8602 {
8603 UNSET_SIGS (nsigs, sigs, signal_print);
8604 UNSET_SIGS (nsigs, sigs, signal_stop);
8605 }
8606 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8607 {
8608 UNSET_SIGS (nsigs, sigs, signal_program);
8609 }
8610 else if (digits > 0)
8611 {
8612 /* It is numeric. The numeric signal refers to our own
8613 internal signal numbering from target.h, not to host/target
8614 signal number. This is a feature; users really should be
8615 using symbolic names anyway, and the common ones like
8616 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8617
8618 sigfirst = siglast = (int)
2ea28649 8619 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8620 if ((*argv)[digits] == '-')
8621 {
8622 siglast = (int)
2ea28649 8623 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8624 }
8625 if (sigfirst > siglast)
8626 {
1777feb0 8627 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8628 signum = sigfirst;
8629 sigfirst = siglast;
8630 siglast = signum;
8631 }
8632 }
8633 else
8634 {
2ea28649 8635 oursig = gdb_signal_from_name (*argv);
a493e3e2 8636 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8637 {
8638 sigfirst = siglast = (int) oursig;
8639 }
8640 else
8641 {
8642 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8643 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8644 }
8645 }
8646
8647 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8648 which signals to apply actions to. */
c906108c
SS
8649
8650 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8651 {
2ea28649 8652 switch ((enum gdb_signal) signum)
c906108c 8653 {
a493e3e2
PA
8654 case GDB_SIGNAL_TRAP:
8655 case GDB_SIGNAL_INT:
c906108c
SS
8656 if (!allsigs && !sigs[signum])
8657 {
9e2f0ad4 8658 if (query (_("%s is used by the debugger.\n\
3e43a32a 8659Are you sure you want to change it? "),
2ea28649 8660 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8661 {
8662 sigs[signum] = 1;
8663 }
8664 else
8665 {
a3f17187 8666 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8667 gdb_flush (gdb_stdout);
8668 }
8669 }
8670 break;
a493e3e2
PA
8671 case GDB_SIGNAL_0:
8672 case GDB_SIGNAL_DEFAULT:
8673 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8674 /* Make sure that "all" doesn't print these. */
8675 break;
8676 default:
8677 sigs[signum] = 1;
8678 break;
8679 }
8680 }
8681
8682 argv++;
8683 }
8684
3a031f65
PA
8685 for (signum = 0; signum < nsigs; signum++)
8686 if (sigs[signum])
8687 {
2455069d 8688 signal_cache_update (-1);
a493e3e2
PA
8689 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8690 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8691
3a031f65
PA
8692 if (from_tty)
8693 {
8694 /* Show the results. */
8695 sig_print_header ();
8696 for (; signum < nsigs; signum++)
8697 if (sigs[signum])
aead7601 8698 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8699 }
8700
8701 break;
8702 }
c906108c
SS
8703
8704 do_cleanups (old_chain);
8705}
8706
de0bea00
MF
8707/* Complete the "handle" command. */
8708
8709static VEC (char_ptr) *
8710handle_completer (struct cmd_list_element *ignore,
6f937416 8711 const char *text, const char *word)
de0bea00
MF
8712{
8713 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8714 static const char * const keywords[] =
8715 {
8716 "all",
8717 "stop",
8718 "ignore",
8719 "print",
8720 "pass",
8721 "nostop",
8722 "noignore",
8723 "noprint",
8724 "nopass",
8725 NULL,
8726 };
8727
8728 vec_signals = signal_completer (ignore, text, word);
8729 vec_keywords = complete_on_enum (keywords, word, word);
8730
8731 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8732 VEC_free (char_ptr, vec_signals);
8733 VEC_free (char_ptr, vec_keywords);
8734 return return_val;
8735}
8736
2ea28649
PA
8737enum gdb_signal
8738gdb_signal_from_command (int num)
ed01b82c
PA
8739{
8740 if (num >= 1 && num <= 15)
2ea28649 8741 return (enum gdb_signal) num;
ed01b82c
PA
8742 error (_("Only signals 1-15 are valid as numeric signals.\n\
8743Use \"info signals\" for a list of symbolic signals."));
8744}
8745
c906108c
SS
8746/* Print current contents of the tables set by the handle command.
8747 It is possible we should just be printing signals actually used
8748 by the current target (but for things to work right when switching
8749 targets, all signals should be in the signal tables). */
8750
8751static void
96baa820 8752signals_info (char *signum_exp, int from_tty)
c906108c 8753{
2ea28649 8754 enum gdb_signal oursig;
abbb1732 8755
c906108c
SS
8756 sig_print_header ();
8757
8758 if (signum_exp)
8759 {
8760 /* First see if this is a symbol name. */
2ea28649 8761 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8762 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8763 {
8764 /* No, try numeric. */
8765 oursig =
2ea28649 8766 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8767 }
8768 sig_print_info (oursig);
8769 return;
8770 }
8771
8772 printf_filtered ("\n");
8773 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8774 for (oursig = GDB_SIGNAL_FIRST;
8775 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8776 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8777 {
8778 QUIT;
8779
a493e3e2
PA
8780 if (oursig != GDB_SIGNAL_UNKNOWN
8781 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8782 sig_print_info (oursig);
8783 }
8784
3e43a32a
MS
8785 printf_filtered (_("\nUse the \"handle\" command "
8786 "to change these tables.\n"));
c906108c 8787}
4aa995e1
PA
8788
8789/* The $_siginfo convenience variable is a bit special. We don't know
8790 for sure the type of the value until we actually have a chance to
7a9dd1b2 8791 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8792 also dependent on which thread you have selected.
8793
8794 1. making $_siginfo be an internalvar that creates a new value on
8795 access.
8796
8797 2. making the value of $_siginfo be an lval_computed value. */
8798
8799/* This function implements the lval_computed support for reading a
8800 $_siginfo value. */
8801
8802static void
8803siginfo_value_read (struct value *v)
8804{
8805 LONGEST transferred;
8806
a911d87a
PA
8807 /* If we can access registers, so can we access $_siginfo. Likewise
8808 vice versa. */
8809 validate_registers_access ();
c709acd1 8810
4aa995e1
PA
8811 transferred =
8812 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8813 NULL,
8814 value_contents_all_raw (v),
8815 value_offset (v),
8816 TYPE_LENGTH (value_type (v)));
8817
8818 if (transferred != TYPE_LENGTH (value_type (v)))
8819 error (_("Unable to read siginfo"));
8820}
8821
8822/* This function implements the lval_computed support for writing a
8823 $_siginfo value. */
8824
8825static void
8826siginfo_value_write (struct value *v, struct value *fromval)
8827{
8828 LONGEST transferred;
8829
a911d87a
PA
8830 /* If we can access registers, so can we access $_siginfo. Likewise
8831 vice versa. */
8832 validate_registers_access ();
c709acd1 8833
4aa995e1
PA
8834 transferred = target_write (&current_target,
8835 TARGET_OBJECT_SIGNAL_INFO,
8836 NULL,
8837 value_contents_all_raw (fromval),
8838 value_offset (v),
8839 TYPE_LENGTH (value_type (fromval)));
8840
8841 if (transferred != TYPE_LENGTH (value_type (fromval)))
8842 error (_("Unable to write siginfo"));
8843}
8844
c8f2448a 8845static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8846 {
8847 siginfo_value_read,
8848 siginfo_value_write
8849 };
8850
8851/* Return a new value with the correct type for the siginfo object of
78267919
UW
8852 the current thread using architecture GDBARCH. Return a void value
8853 if there's no object available. */
4aa995e1 8854
2c0b251b 8855static struct value *
22d2b532
SDJ
8856siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8857 void *ignore)
4aa995e1 8858{
4aa995e1 8859 if (target_has_stack
78267919
UW
8860 && !ptid_equal (inferior_ptid, null_ptid)
8861 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8862 {
78267919 8863 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8864
78267919 8865 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8866 }
8867
78267919 8868 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8869}
8870
c906108c 8871\f
16c381f0
JK
8872/* infcall_suspend_state contains state about the program itself like its
8873 registers and any signal it received when it last stopped.
8874 This state must be restored regardless of how the inferior function call
8875 ends (either successfully, or after it hits a breakpoint or signal)
8876 if the program is to properly continue where it left off. */
8877
8878struct infcall_suspend_state
7a292a7a 8879{
16c381f0 8880 struct thread_suspend_state thread_suspend;
16c381f0
JK
8881
8882 /* Other fields: */
7a292a7a 8883 CORE_ADDR stop_pc;
b89667eb 8884 struct regcache *registers;
1736ad11 8885
35515841 8886 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8887 struct gdbarch *siginfo_gdbarch;
8888
8889 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8890 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8891 content would be invalid. */
8892 gdb_byte *siginfo_data;
b89667eb
DE
8893};
8894
16c381f0
JK
8895struct infcall_suspend_state *
8896save_infcall_suspend_state (void)
b89667eb 8897{
16c381f0 8898 struct infcall_suspend_state *inf_state;
b89667eb 8899 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8900 struct regcache *regcache = get_current_regcache ();
8901 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8902 gdb_byte *siginfo_data = NULL;
8903
8904 if (gdbarch_get_siginfo_type_p (gdbarch))
8905 {
8906 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8907 size_t len = TYPE_LENGTH (type);
8908 struct cleanup *back_to;
8909
224c3ddb 8910 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8911 back_to = make_cleanup (xfree, siginfo_data);
8912
8913 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8914 siginfo_data, 0, len) == len)
8915 discard_cleanups (back_to);
8916 else
8917 {
8918 /* Errors ignored. */
8919 do_cleanups (back_to);
8920 siginfo_data = NULL;
8921 }
8922 }
8923
41bf6aca 8924 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8925
8926 if (siginfo_data)
8927 {
8928 inf_state->siginfo_gdbarch = gdbarch;
8929 inf_state->siginfo_data = siginfo_data;
8930 }
b89667eb 8931
16c381f0 8932 inf_state->thread_suspend = tp->suspend;
16c381f0 8933
35515841 8934 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8935 GDB_SIGNAL_0 anyway. */
8936 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8937
b89667eb
DE
8938 inf_state->stop_pc = stop_pc;
8939
1736ad11 8940 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8941
8942 return inf_state;
8943}
8944
8945/* Restore inferior session state to INF_STATE. */
8946
8947void
16c381f0 8948restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8949{
8950 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8951 struct regcache *regcache = get_current_regcache ();
8952 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8953
16c381f0 8954 tp->suspend = inf_state->thread_suspend;
16c381f0 8955
b89667eb
DE
8956 stop_pc = inf_state->stop_pc;
8957
1736ad11
JK
8958 if (inf_state->siginfo_gdbarch == gdbarch)
8959 {
8960 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8961
8962 /* Errors ignored. */
8963 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8964 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8965 }
8966
b89667eb
DE
8967 /* The inferior can be gone if the user types "print exit(0)"
8968 (and perhaps other times). */
8969 if (target_has_execution)
8970 /* NB: The register write goes through to the target. */
1736ad11 8971 regcache_cpy (regcache, inf_state->registers);
803b5f95 8972
16c381f0 8973 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8974}
8975
8976static void
16c381f0 8977do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8978{
9a3c8263 8979 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8980}
8981
8982struct cleanup *
16c381f0
JK
8983make_cleanup_restore_infcall_suspend_state
8984 (struct infcall_suspend_state *inf_state)
b89667eb 8985{
16c381f0 8986 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8987}
8988
8989void
16c381f0 8990discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8991{
8992 regcache_xfree (inf_state->registers);
803b5f95 8993 xfree (inf_state->siginfo_data);
b89667eb
DE
8994 xfree (inf_state);
8995}
8996
8997struct regcache *
16c381f0 8998get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8999{
9000 return inf_state->registers;
9001}
9002
16c381f0
JK
9003/* infcall_control_state contains state regarding gdb's control of the
9004 inferior itself like stepping control. It also contains session state like
9005 the user's currently selected frame. */
b89667eb 9006
16c381f0 9007struct infcall_control_state
b89667eb 9008{
16c381f0
JK
9009 struct thread_control_state thread_control;
9010 struct inferior_control_state inferior_control;
d82142e2
JK
9011
9012 /* Other fields: */
9013 enum stop_stack_kind stop_stack_dummy;
9014 int stopped_by_random_signal;
7a292a7a 9015
b89667eb 9016 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 9017 struct frame_id selected_frame_id;
7a292a7a
SS
9018};
9019
c906108c 9020/* Save all of the information associated with the inferior<==>gdb
b89667eb 9021 connection. */
c906108c 9022
16c381f0
JK
9023struct infcall_control_state *
9024save_infcall_control_state (void)
c906108c 9025{
8d749320
SM
9026 struct infcall_control_state *inf_status =
9027 XNEW (struct infcall_control_state);
4e1c45ea 9028 struct thread_info *tp = inferior_thread ();
d6b48e9c 9029 struct inferior *inf = current_inferior ();
7a292a7a 9030
16c381f0
JK
9031 inf_status->thread_control = tp->control;
9032 inf_status->inferior_control = inf->control;
d82142e2 9033
8358c15c 9034 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9035 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9036
16c381f0
JK
9037 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9038 chain. If caller's caller is walking the chain, they'll be happier if we
9039 hand them back the original chain when restore_infcall_control_state is
9040 called. */
9041 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9042
9043 /* Other fields: */
9044 inf_status->stop_stack_dummy = stop_stack_dummy;
9045 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9046
206415a3 9047 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9048
7a292a7a 9049 return inf_status;
c906108c
SS
9050}
9051
c906108c 9052static int
96baa820 9053restore_selected_frame (void *args)
c906108c 9054{
488f131b 9055 struct frame_id *fid = (struct frame_id *) args;
c906108c 9056 struct frame_info *frame;
c906108c 9057
101dcfbe 9058 frame = frame_find_by_id (*fid);
c906108c 9059
aa0cd9c1
AC
9060 /* If inf_status->selected_frame_id is NULL, there was no previously
9061 selected frame. */
101dcfbe 9062 if (frame == NULL)
c906108c 9063 {
8a3fe4f8 9064 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9065 return 0;
9066 }
9067
0f7d239c 9068 select_frame (frame);
c906108c
SS
9069
9070 return (1);
9071}
9072
b89667eb
DE
9073/* Restore inferior session state to INF_STATUS. */
9074
c906108c 9075void
16c381f0 9076restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9077{
4e1c45ea 9078 struct thread_info *tp = inferior_thread ();
d6b48e9c 9079 struct inferior *inf = current_inferior ();
4e1c45ea 9080
8358c15c
JK
9081 if (tp->control.step_resume_breakpoint)
9082 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9083
5b79abe7
TT
9084 if (tp->control.exception_resume_breakpoint)
9085 tp->control.exception_resume_breakpoint->disposition
9086 = disp_del_at_next_stop;
9087
d82142e2 9088 /* Handle the bpstat_copy of the chain. */
16c381f0 9089 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9090
16c381f0
JK
9091 tp->control = inf_status->thread_control;
9092 inf->control = inf_status->inferior_control;
d82142e2
JK
9093
9094 /* Other fields: */
9095 stop_stack_dummy = inf_status->stop_stack_dummy;
9096 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9097
b89667eb 9098 if (target_has_stack)
c906108c 9099 {
c906108c 9100 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9101 walking the stack might encounter a garbage pointer and
9102 error() trying to dereference it. */
488f131b
JB
9103 if (catch_errors
9104 (restore_selected_frame, &inf_status->selected_frame_id,
9105 "Unable to restore previously selected frame:\n",
9106 RETURN_MASK_ERROR) == 0)
c906108c
SS
9107 /* Error in restoring the selected frame. Select the innermost
9108 frame. */
0f7d239c 9109 select_frame (get_current_frame ());
c906108c 9110 }
c906108c 9111
72cec141 9112 xfree (inf_status);
7a292a7a 9113}
c906108c 9114
74b7792f 9115static void
16c381f0 9116do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9117{
9a3c8263 9118 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9119}
9120
9121struct cleanup *
16c381f0
JK
9122make_cleanup_restore_infcall_control_state
9123 (struct infcall_control_state *inf_status)
74b7792f 9124{
16c381f0 9125 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9126}
9127
c906108c 9128void
16c381f0 9129discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9130{
8358c15c
JK
9131 if (inf_status->thread_control.step_resume_breakpoint)
9132 inf_status->thread_control.step_resume_breakpoint->disposition
9133 = disp_del_at_next_stop;
9134
5b79abe7
TT
9135 if (inf_status->thread_control.exception_resume_breakpoint)
9136 inf_status->thread_control.exception_resume_breakpoint->disposition
9137 = disp_del_at_next_stop;
9138
1777feb0 9139 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9140 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9141
72cec141 9142 xfree (inf_status);
7a292a7a 9143}
b89667eb 9144\f
ca6724c1
KB
9145/* restore_inferior_ptid() will be used by the cleanup machinery
9146 to restore the inferior_ptid value saved in a call to
9147 save_inferior_ptid(). */
ce696e05
KB
9148
9149static void
9150restore_inferior_ptid (void *arg)
9151{
9a3c8263 9152 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9153
ce696e05
KB
9154 inferior_ptid = *saved_ptid_ptr;
9155 xfree (arg);
9156}
9157
9158/* Save the value of inferior_ptid so that it may be restored by a
9159 later call to do_cleanups(). Returns the struct cleanup pointer
9160 needed for later doing the cleanup. */
9161
9162struct cleanup *
9163save_inferior_ptid (void)
9164{
8d749320 9165 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9166
ce696e05
KB
9167 *saved_ptid_ptr = inferior_ptid;
9168 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9169}
0c557179 9170
7f89fd65 9171/* See infrun.h. */
0c557179
SDJ
9172
9173void
9174clear_exit_convenience_vars (void)
9175{
9176 clear_internalvar (lookup_internalvar ("_exitsignal"));
9177 clear_internalvar (lookup_internalvar ("_exitcode"));
9178}
c5aa993b 9179\f
488f131b 9180
b2175913
MS
9181/* User interface for reverse debugging:
9182 Set exec-direction / show exec-direction commands
9183 (returns error unless target implements to_set_exec_direction method). */
9184
170742de 9185enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9186static const char exec_forward[] = "forward";
9187static const char exec_reverse[] = "reverse";
9188static const char *exec_direction = exec_forward;
40478521 9189static const char *const exec_direction_names[] = {
b2175913
MS
9190 exec_forward,
9191 exec_reverse,
9192 NULL
9193};
9194
9195static void
9196set_exec_direction_func (char *args, int from_tty,
9197 struct cmd_list_element *cmd)
9198{
9199 if (target_can_execute_reverse)
9200 {
9201 if (!strcmp (exec_direction, exec_forward))
9202 execution_direction = EXEC_FORWARD;
9203 else if (!strcmp (exec_direction, exec_reverse))
9204 execution_direction = EXEC_REVERSE;
9205 }
8bbed405
MS
9206 else
9207 {
9208 exec_direction = exec_forward;
9209 error (_("Target does not support this operation."));
9210 }
b2175913
MS
9211}
9212
9213static void
9214show_exec_direction_func (struct ui_file *out, int from_tty,
9215 struct cmd_list_element *cmd, const char *value)
9216{
9217 switch (execution_direction) {
9218 case EXEC_FORWARD:
9219 fprintf_filtered (out, _("Forward.\n"));
9220 break;
9221 case EXEC_REVERSE:
9222 fprintf_filtered (out, _("Reverse.\n"));
9223 break;
b2175913 9224 default:
d8b34453
PA
9225 internal_error (__FILE__, __LINE__,
9226 _("bogus execution_direction value: %d"),
9227 (int) execution_direction);
b2175913
MS
9228 }
9229}
9230
d4db2f36
PA
9231static void
9232show_schedule_multiple (struct ui_file *file, int from_tty,
9233 struct cmd_list_element *c, const char *value)
9234{
3e43a32a
MS
9235 fprintf_filtered (file, _("Resuming the execution of threads "
9236 "of all processes is %s.\n"), value);
d4db2f36 9237}
ad52ddc6 9238
22d2b532
SDJ
9239/* Implementation of `siginfo' variable. */
9240
9241static const struct internalvar_funcs siginfo_funcs =
9242{
9243 siginfo_make_value,
9244 NULL,
9245 NULL
9246};
9247
372316f1
PA
9248/* Callback for infrun's target events source. This is marked when a
9249 thread has a pending status to process. */
9250
9251static void
9252infrun_async_inferior_event_handler (gdb_client_data data)
9253{
372316f1
PA
9254 inferior_event_handler (INF_REG_EVENT, NULL);
9255}
9256
c906108c 9257void
96baa820 9258_initialize_infrun (void)
c906108c 9259{
52f0bd74
AC
9260 int i;
9261 int numsigs;
de0bea00 9262 struct cmd_list_element *c;
c906108c 9263
372316f1
PA
9264 /* Register extra event sources in the event loop. */
9265 infrun_async_inferior_event_token
9266 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9267
1bedd215
AC
9268 add_info ("signals", signals_info, _("\
9269What debugger does when program gets various signals.\n\
9270Specify a signal as argument to print info on that signal only."));
c906108c
SS
9271 add_info_alias ("handle", "signals", 0);
9272
de0bea00 9273 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9274Specify how to handle signals.\n\
486c7739 9275Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9276Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9277If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9278will be displayed instead.\n\
9279\n\
c906108c
SS
9280Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9281from 1-15 are allowed for compatibility with old versions of GDB.\n\
9282Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9283The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9284used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9285\n\
1bedd215 9286Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9287\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9288Stop means reenter debugger if this signal happens (implies print).\n\
9289Print means print a message if this signal happens.\n\
9290Pass means let program see this signal; otherwise program doesn't know.\n\
9291Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9292Pass and Stop may be combined.\n\
9293\n\
9294Multiple signals may be specified. Signal numbers and signal names\n\
9295may be interspersed with actions, with the actions being performed for\n\
9296all signals cumulatively specified."));
de0bea00 9297 set_cmd_completer (c, handle_completer);
486c7739 9298
c906108c 9299 if (!dbx_commands)
1a966eab
AC
9300 stop_command = add_cmd ("stop", class_obscure,
9301 not_just_help_class_command, _("\
9302There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9303This allows you to set a list of commands to be run each time execution\n\
1a966eab 9304of the program stops."), &cmdlist);
c906108c 9305
ccce17b0 9306 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9307Set inferior debugging."), _("\
9308Show inferior debugging."), _("\
9309When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9310 NULL,
9311 show_debug_infrun,
9312 &setdebuglist, &showdebuglist);
527159b7 9313
3e43a32a
MS
9314 add_setshow_boolean_cmd ("displaced", class_maintenance,
9315 &debug_displaced, _("\
237fc4c9
PA
9316Set displaced stepping debugging."), _("\
9317Show displaced stepping debugging."), _("\
9318When non-zero, displaced stepping specific debugging is enabled."),
9319 NULL,
9320 show_debug_displaced,
9321 &setdebuglist, &showdebuglist);
9322
ad52ddc6
PA
9323 add_setshow_boolean_cmd ("non-stop", no_class,
9324 &non_stop_1, _("\
9325Set whether gdb controls the inferior in non-stop mode."), _("\
9326Show whether gdb controls the inferior in non-stop mode."), _("\
9327When debugging a multi-threaded program and this setting is\n\
9328off (the default, also called all-stop mode), when one thread stops\n\
9329(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9330all other threads in the program while you interact with the thread of\n\
9331interest. When you continue or step a thread, you can allow the other\n\
9332threads to run, or have them remain stopped, but while you inspect any\n\
9333thread's state, all threads stop.\n\
9334\n\
9335In non-stop mode, when one thread stops, other threads can continue\n\
9336to run freely. You'll be able to step each thread independently,\n\
9337leave it stopped or free to run as needed."),
9338 set_non_stop,
9339 show_non_stop,
9340 &setlist,
9341 &showlist);
9342
a493e3e2 9343 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9344 signal_stop = XNEWVEC (unsigned char, numsigs);
9345 signal_print = XNEWVEC (unsigned char, numsigs);
9346 signal_program = XNEWVEC (unsigned char, numsigs);
9347 signal_catch = XNEWVEC (unsigned char, numsigs);
9348 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9349 for (i = 0; i < numsigs; i++)
9350 {
9351 signal_stop[i] = 1;
9352 signal_print[i] = 1;
9353 signal_program[i] = 1;
ab04a2af 9354 signal_catch[i] = 0;
c906108c
SS
9355 }
9356
4d9d9d04
PA
9357 /* Signals caused by debugger's own actions should not be given to
9358 the program afterwards.
9359
9360 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9361 explicitly specifies that it should be delivered to the target
9362 program. Typically, that would occur when a user is debugging a
9363 target monitor on a simulator: the target monitor sets a
9364 breakpoint; the simulator encounters this breakpoint and halts
9365 the simulation handing control to GDB; GDB, noting that the stop
9366 address doesn't map to any known breakpoint, returns control back
9367 to the simulator; the simulator then delivers the hardware
9368 equivalent of a GDB_SIGNAL_TRAP to the program being
9369 debugged. */
a493e3e2
PA
9370 signal_program[GDB_SIGNAL_TRAP] = 0;
9371 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9372
9373 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9374 signal_stop[GDB_SIGNAL_ALRM] = 0;
9375 signal_print[GDB_SIGNAL_ALRM] = 0;
9376 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9377 signal_print[GDB_SIGNAL_VTALRM] = 0;
9378 signal_stop[GDB_SIGNAL_PROF] = 0;
9379 signal_print[GDB_SIGNAL_PROF] = 0;
9380 signal_stop[GDB_SIGNAL_CHLD] = 0;
9381 signal_print[GDB_SIGNAL_CHLD] = 0;
9382 signal_stop[GDB_SIGNAL_IO] = 0;
9383 signal_print[GDB_SIGNAL_IO] = 0;
9384 signal_stop[GDB_SIGNAL_POLL] = 0;
9385 signal_print[GDB_SIGNAL_POLL] = 0;
9386 signal_stop[GDB_SIGNAL_URG] = 0;
9387 signal_print[GDB_SIGNAL_URG] = 0;
9388 signal_stop[GDB_SIGNAL_WINCH] = 0;
9389 signal_print[GDB_SIGNAL_WINCH] = 0;
9390 signal_stop[GDB_SIGNAL_PRIO] = 0;
9391 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9392
cd0fc7c3
SS
9393 /* These signals are used internally by user-level thread
9394 implementations. (See signal(5) on Solaris.) Like the above
9395 signals, a healthy program receives and handles them as part of
9396 its normal operation. */
a493e3e2
PA
9397 signal_stop[GDB_SIGNAL_LWP] = 0;
9398 signal_print[GDB_SIGNAL_LWP] = 0;
9399 signal_stop[GDB_SIGNAL_WAITING] = 0;
9400 signal_print[GDB_SIGNAL_WAITING] = 0;
9401 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9402 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9403 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9404 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9405
2455069d
UW
9406 /* Update cached state. */
9407 signal_cache_update (-1);
9408
85c07804
AC
9409 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9410 &stop_on_solib_events, _("\
9411Set stopping for shared library events."), _("\
9412Show stopping for shared library events."), _("\
c906108c
SS
9413If nonzero, gdb will give control to the user when the dynamic linker\n\
9414notifies gdb of shared library events. The most common event of interest\n\
85c07804 9415to the user would be loading/unloading of a new library."),
f9e14852 9416 set_stop_on_solib_events,
920d2a44 9417 show_stop_on_solib_events,
85c07804 9418 &setlist, &showlist);
c906108c 9419
7ab04401
AC
9420 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9421 follow_fork_mode_kind_names,
9422 &follow_fork_mode_string, _("\
9423Set debugger response to a program call of fork or vfork."), _("\
9424Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9425A fork or vfork creates a new process. follow-fork-mode can be:\n\
9426 parent - the original process is debugged after a fork\n\
9427 child - the new process is debugged after a fork\n\
ea1dd7bc 9428The unfollowed process will continue to run.\n\
7ab04401
AC
9429By default, the debugger will follow the parent process."),
9430 NULL,
920d2a44 9431 show_follow_fork_mode_string,
7ab04401
AC
9432 &setlist, &showlist);
9433
6c95b8df
PA
9434 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9435 follow_exec_mode_names,
9436 &follow_exec_mode_string, _("\
9437Set debugger response to a program call of exec."), _("\
9438Show debugger response to a program call of exec."), _("\
9439An exec call replaces the program image of a process.\n\
9440\n\
9441follow-exec-mode can be:\n\
9442\n\
cce7e648 9443 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9444to this new inferior. The program the process was running before\n\
9445the exec call can be restarted afterwards by restarting the original\n\
9446inferior.\n\
9447\n\
9448 same - the debugger keeps the process bound to the same inferior.\n\
9449The new executable image replaces the previous executable loaded in\n\
9450the inferior. Restarting the inferior after the exec call restarts\n\
9451the executable the process was running after the exec call.\n\
9452\n\
9453By default, the debugger will use the same inferior."),
9454 NULL,
9455 show_follow_exec_mode_string,
9456 &setlist, &showlist);
9457
7ab04401
AC
9458 add_setshow_enum_cmd ("scheduler-locking", class_run,
9459 scheduler_enums, &scheduler_mode, _("\
9460Set mode for locking scheduler during execution."), _("\
9461Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9462off == no locking (threads may preempt at any time)\n\
9463on == full locking (no thread except the current thread may run)\n\
9464 This applies to both normal execution and replay mode.\n\
9465step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9466 In this mode, other threads may run during other commands.\n\
9467 This applies to both normal execution and replay mode.\n\
9468replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9469 set_schedlock_func, /* traps on target vector */
920d2a44 9470 show_scheduler_mode,
7ab04401 9471 &setlist, &showlist);
5fbbeb29 9472
d4db2f36
PA
9473 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9474Set mode for resuming threads of all processes."), _("\
9475Show mode for resuming threads of all processes."), _("\
9476When on, execution commands (such as 'continue' or 'next') resume all\n\
9477threads of all processes. When off (which is the default), execution\n\
9478commands only resume the threads of the current process. The set of\n\
9479threads that are resumed is further refined by the scheduler-locking\n\
9480mode (see help set scheduler-locking)."),
9481 NULL,
9482 show_schedule_multiple,
9483 &setlist, &showlist);
9484
5bf193a2
AC
9485 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9486Set mode of the step operation."), _("\
9487Show mode of the step operation."), _("\
9488When set, doing a step over a function without debug line information\n\
9489will stop at the first instruction of that function. Otherwise, the\n\
9490function is skipped and the step command stops at a different source line."),
9491 NULL,
920d2a44 9492 show_step_stop_if_no_debug,
5bf193a2 9493 &setlist, &showlist);
ca6724c1 9494
72d0e2c5
YQ
9495 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9496 &can_use_displaced_stepping, _("\
237fc4c9
PA
9497Set debugger's willingness to use displaced stepping."), _("\
9498Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9499If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9500supported by the target architecture. If off, gdb will not use displaced\n\
9501stepping to step over breakpoints, even if such is supported by the target\n\
9502architecture. If auto (which is the default), gdb will use displaced stepping\n\
9503if the target architecture supports it and non-stop mode is active, but will not\n\
9504use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9505 NULL,
9506 show_can_use_displaced_stepping,
9507 &setlist, &showlist);
237fc4c9 9508
b2175913
MS
9509 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9510 &exec_direction, _("Set direction of execution.\n\
9511Options are 'forward' or 'reverse'."),
9512 _("Show direction of execution (forward/reverse)."),
9513 _("Tells gdb whether to execute forward or backward."),
9514 set_exec_direction_func, show_exec_direction_func,
9515 &setlist, &showlist);
9516
6c95b8df
PA
9517 /* Set/show detach-on-fork: user-settable mode. */
9518
9519 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9520Set whether gdb will detach the child of a fork."), _("\
9521Show whether gdb will detach the child of a fork."), _("\
9522Tells gdb whether to detach the child of a fork."),
9523 NULL, NULL, &setlist, &showlist);
9524
03583c20
UW
9525 /* Set/show disable address space randomization mode. */
9526
9527 add_setshow_boolean_cmd ("disable-randomization", class_support,
9528 &disable_randomization, _("\
9529Set disabling of debuggee's virtual address space randomization."), _("\
9530Show disabling of debuggee's virtual address space randomization."), _("\
9531When this mode is on (which is the default), randomization of the virtual\n\
9532address space is disabled. Standalone programs run with the randomization\n\
9533enabled by default on some platforms."),
9534 &set_disable_randomization,
9535 &show_disable_randomization,
9536 &setlist, &showlist);
9537
ca6724c1 9538 /* ptid initializations */
ca6724c1
KB
9539 inferior_ptid = null_ptid;
9540 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9541
9542 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9543 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9544 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9545 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9546
9547 /* Explicitly create without lookup, since that tries to create a
9548 value with a void typed value, and when we get here, gdbarch
9549 isn't initialized yet. At this point, we're quite sure there
9550 isn't another convenience variable of the same name. */
22d2b532 9551 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9552
9553 add_setshow_boolean_cmd ("observer", no_class,
9554 &observer_mode_1, _("\
9555Set whether gdb controls the inferior in observer mode."), _("\
9556Show whether gdb controls the inferior in observer mode."), _("\
9557In observer mode, GDB can get data from the inferior, but not\n\
9558affect its execution. Registers and memory may not be changed,\n\
9559breakpoints may not be set, and the program cannot be interrupted\n\
9560or signalled."),
9561 set_observer_mode,
9562 show_observer_mode,
9563 &setlist,
9564 &showlist);
c906108c 9565}
This page took 2.295212 seconds and 4 git commands to generate.