*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4dfe6ac6 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
23cc69b6
RS
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
0f20cc35
DJ
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
c224138d 155 /* The number of local .got entries, eventually including page entries. */
b49e97c9 156 unsigned int local_gotno;
c224138d
RS
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
b49e97c9
TS
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
b15e6682
AO
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
c224138d
RS
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
f4416af6
AO
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
0f20cc35
DJ
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
f4416af6
AO
176};
177
178/* Map an input bfd to a got in a multi-got link. */
179
91d6fa6a
NC
180struct mips_elf_bfd2got_hash
181{
f4416af6
AO
182 bfd *bfd;
183 struct mips_got_info *g;
184};
185
186/* Structure passed when traversing the bfd2got hash table, used to
187 create and merge bfd's gots. */
188
189struct mips_elf_got_per_bfd_arg
190{
191 /* A hashtable that maps bfds to gots. */
192 htab_t bfd2got;
193 /* The output bfd. */
194 bfd *obfd;
195 /* The link information. */
196 struct bfd_link_info *info;
197 /* A pointer to the primary got, i.e., the one that's going to get
198 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 DT_MIPS_GOTSYM. */
200 struct mips_got_info *primary;
201 /* A non-primary got we're trying to merge with other input bfd's
202 gots. */
203 struct mips_got_info *current;
204 /* The maximum number of got entries that can be addressed with a
205 16-bit offset. */
206 unsigned int max_count;
c224138d
RS
207 /* The maximum number of page entries needed by each got. */
208 unsigned int max_pages;
0f20cc35
DJ
209 /* The total number of global entries which will live in the
210 primary got and be automatically relocated. This includes
211 those not referenced by the primary GOT but included in
212 the "master" GOT. */
213 unsigned int global_count;
f4416af6
AO
214};
215
216/* Another structure used to pass arguments for got entries traversal. */
217
218struct mips_elf_set_global_got_offset_arg
219{
220 struct mips_got_info *g;
221 int value;
222 unsigned int needed_relocs;
223 struct bfd_link_info *info;
b49e97c9
TS
224};
225
0f20cc35
DJ
226/* A structure used to count TLS relocations or GOT entries, for GOT
227 entry or ELF symbol table traversal. */
228
229struct mips_elf_count_tls_arg
230{
231 struct bfd_link_info *info;
232 unsigned int needed;
233};
234
f0abc2a1
AM
235struct _mips_elf_section_data
236{
237 struct bfd_elf_section_data elf;
238 union
239 {
f0abc2a1
AM
240 bfd_byte *tdata;
241 } u;
242};
243
244#define mips_elf_section_data(sec) \
68bfbfcc 245 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 246
d5eaccd7
RS
247#define is_mips_elf(bfd) \
248 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
249 && elf_tdata (bfd) != NULL \
4dfe6ac6 250 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 251
634835ae
RS
252/* The ABI says that every symbol used by dynamic relocations must have
253 a global GOT entry. Among other things, this provides the dynamic
254 linker with a free, directly-indexed cache. The GOT can therefore
255 contain symbols that are not referenced by GOT relocations themselves
256 (in other words, it may have symbols that are not referenced by things
257 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
258
259 GOT relocations are less likely to overflow if we put the associated
260 GOT entries towards the beginning. We therefore divide the global
261 GOT entries into two areas: "normal" and "reloc-only". Entries in
262 the first area can be used for both dynamic relocations and GP-relative
263 accesses, while those in the "reloc-only" area are for dynamic
264 relocations only.
265
266 These GGA_* ("Global GOT Area") values are organised so that lower
267 values are more general than higher values. Also, non-GGA_NONE
268 values are ordered by the position of the area in the GOT. */
269#define GGA_NORMAL 0
270#define GGA_RELOC_ONLY 1
271#define GGA_NONE 2
272
861fb55a
DJ
273/* Information about a non-PIC interface to a PIC function. There are
274 two ways of creating these interfaces. The first is to add:
275
276 lui $25,%hi(func)
277 addiu $25,$25,%lo(func)
278
279 immediately before a PIC function "func". The second is to add:
280
281 lui $25,%hi(func)
282 j func
283 addiu $25,$25,%lo(func)
284
285 to a separate trampoline section.
286
287 Stubs of the first kind go in a new section immediately before the
288 target function. Stubs of the second kind go in a single section
289 pointed to by the hash table's "strampoline" field. */
290struct mips_elf_la25_stub {
291 /* The generated section that contains this stub. */
292 asection *stub_section;
293
294 /* The offset of the stub from the start of STUB_SECTION. */
295 bfd_vma offset;
296
297 /* One symbol for the original function. Its location is available
298 in H->root.root.u.def. */
299 struct mips_elf_link_hash_entry *h;
300};
301
302/* Macros for populating a mips_elf_la25_stub. */
303
304#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
305#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
306#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
307
b49e97c9
TS
308/* This structure is passed to mips_elf_sort_hash_table_f when sorting
309 the dynamic symbols. */
310
311struct mips_elf_hash_sort_data
312{
313 /* The symbol in the global GOT with the lowest dynamic symbol table
314 index. */
315 struct elf_link_hash_entry *low;
0f20cc35
DJ
316 /* The least dynamic symbol table index corresponding to a non-TLS
317 symbol with a GOT entry. */
b49e97c9 318 long min_got_dynindx;
f4416af6
AO
319 /* The greatest dynamic symbol table index corresponding to a symbol
320 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 321 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 322 long max_unref_got_dynindx;
b49e97c9
TS
323 /* The greatest dynamic symbol table index not corresponding to a
324 symbol without a GOT entry. */
325 long max_non_got_dynindx;
326};
327
328/* The MIPS ELF linker needs additional information for each symbol in
329 the global hash table. */
330
331struct mips_elf_link_hash_entry
332{
333 struct elf_link_hash_entry root;
334
335 /* External symbol information. */
336 EXTR esym;
337
861fb55a
DJ
338 /* The la25 stub we have created for ths symbol, if any. */
339 struct mips_elf_la25_stub *la25_stub;
340
b49e97c9
TS
341 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
342 this symbol. */
343 unsigned int possibly_dynamic_relocs;
344
b49e97c9
TS
345 /* If there is a stub that 32 bit functions should use to call this
346 16 bit function, this points to the section containing the stub. */
347 asection *fn_stub;
348
b49e97c9
TS
349 /* If there is a stub that 16 bit functions should use to call this
350 32 bit function, this points to the section containing the stub. */
351 asection *call_stub;
352
353 /* This is like the call_stub field, but it is used if the function
354 being called returns a floating point value. */
355 asection *call_fp_stub;
7c5fcef7 356
0f20cc35
DJ
357#define GOT_NORMAL 0
358#define GOT_TLS_GD 1
359#define GOT_TLS_LDM 2
360#define GOT_TLS_IE 4
361#define GOT_TLS_OFFSET_DONE 0x40
362#define GOT_TLS_DONE 0x80
363 unsigned char tls_type;
71782a75 364
0f20cc35
DJ
365 /* This is only used in single-GOT mode; in multi-GOT mode there
366 is one mips_got_entry per GOT entry, so the offset is stored
367 there. In single-GOT mode there may be many mips_got_entry
368 structures all referring to the same GOT slot. It might be
369 possible to use root.got.offset instead, but that field is
370 overloaded already. */
371 bfd_vma tls_got_offset;
71782a75 372
634835ae
RS
373 /* The highest GGA_* value that satisfies all references to this symbol. */
374 unsigned int global_got_area : 2;
375
71782a75
RS
376 /* True if one of the relocations described by possibly_dynamic_relocs
377 is against a readonly section. */
378 unsigned int readonly_reloc : 1;
379
861fb55a
DJ
380 /* True if there is a relocation against this symbol that must be
381 resolved by the static linker (in other words, if the relocation
382 cannot possibly be made dynamic). */
383 unsigned int has_static_relocs : 1;
384
71782a75
RS
385 /* True if we must not create a .MIPS.stubs entry for this symbol.
386 This is set, for example, if there are relocations related to
387 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
388 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
389 unsigned int no_fn_stub : 1;
390
391 /* Whether we need the fn_stub; this is true if this symbol appears
392 in any relocs other than a 16 bit call. */
393 unsigned int need_fn_stub : 1;
394
861fb55a
DJ
395 /* True if this symbol is referenced by branch relocations from
396 any non-PIC input file. This is used to determine whether an
397 la25 stub is required. */
398 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
399
400 /* Does this symbol need a traditional MIPS lazy-binding stub
401 (as opposed to a PLT entry)? */
402 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
403};
404
405/* MIPS ELF linker hash table. */
406
407struct mips_elf_link_hash_table
408{
409 struct elf_link_hash_table root;
410#if 0
411 /* We no longer use this. */
412 /* String section indices for the dynamic section symbols. */
413 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
414#endif
861fb55a 415
b49e97c9
TS
416 /* The number of .rtproc entries. */
417 bfd_size_type procedure_count;
861fb55a 418
b49e97c9
TS
419 /* The size of the .compact_rel section (if SGI_COMPAT). */
420 bfd_size_type compact_rel_size;
861fb55a 421
b49e97c9 422 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 423 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 424 bfd_boolean use_rld_obj_head;
861fb55a 425
b49e97c9
TS
426 /* This is the value of the __rld_map or __rld_obj_head symbol. */
427 bfd_vma rld_value;
861fb55a 428
b49e97c9 429 /* This is set if we see any mips16 stub sections. */
b34976b6 430 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
431
432 /* True if we can generate copy relocs and PLTs. */
433 bfd_boolean use_plts_and_copy_relocs;
434
0a44bf69
RS
435 /* True if we're generating code for VxWorks. */
436 bfd_boolean is_vxworks;
861fb55a 437
0e53d9da
AN
438 /* True if we already reported the small-data section overflow. */
439 bfd_boolean small_data_overflow_reported;
861fb55a 440
0a44bf69
RS
441 /* Shortcuts to some dynamic sections, or NULL if they are not
442 being used. */
443 asection *srelbss;
444 asection *sdynbss;
445 asection *srelplt;
446 asection *srelplt2;
447 asection *sgotplt;
448 asection *splt;
4e41d0d7 449 asection *sstubs;
a8028dd0 450 asection *sgot;
861fb55a 451
a8028dd0
RS
452 /* The master GOT information. */
453 struct mips_got_info *got_info;
861fb55a
DJ
454
455 /* The size of the PLT header in bytes. */
0a44bf69 456 bfd_vma plt_header_size;
861fb55a
DJ
457
458 /* The size of a PLT entry in bytes. */
0a44bf69 459 bfd_vma plt_entry_size;
861fb55a 460
33bb52fb
RS
461 /* The number of functions that need a lazy-binding stub. */
462 bfd_vma lazy_stub_count;
861fb55a 463
5108fc1b
RS
464 /* The size of a function stub entry in bytes. */
465 bfd_vma function_stub_size;
861fb55a
DJ
466
467 /* The number of reserved entries at the beginning of the GOT. */
468 unsigned int reserved_gotno;
469
470 /* The section used for mips_elf_la25_stub trampolines.
471 See the comment above that structure for details. */
472 asection *strampoline;
473
474 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
475 pairs. */
476 htab_t la25_stubs;
477
478 /* A function FN (NAME, IS, OS) that creates a new input section
479 called NAME and links it to output section OS. If IS is nonnull,
480 the new section should go immediately before it, otherwise it
481 should go at the (current) beginning of OS.
482
483 The function returns the new section on success, otherwise it
484 returns null. */
485 asection *(*add_stub_section) (const char *, asection *, asection *);
486};
487
4dfe6ac6
NC
488/* Get the MIPS ELF linker hash table from a link_info structure. */
489
490#define mips_elf_hash_table(p) \
491 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
492 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
493
861fb55a 494/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
495struct mips_htab_traverse_info
496{
861fb55a
DJ
497 /* The usual link-wide information. */
498 struct bfd_link_info *info;
499 bfd *output_bfd;
500
501 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
502 bfd_boolean error;
b49e97c9
TS
503};
504
0f20cc35
DJ
505#define TLS_RELOC_P(r_type) \
506 (r_type == R_MIPS_TLS_DTPMOD32 \
507 || r_type == R_MIPS_TLS_DTPMOD64 \
508 || r_type == R_MIPS_TLS_DTPREL32 \
509 || r_type == R_MIPS_TLS_DTPREL64 \
510 || r_type == R_MIPS_TLS_GD \
511 || r_type == R_MIPS_TLS_LDM \
512 || r_type == R_MIPS_TLS_DTPREL_HI16 \
513 || r_type == R_MIPS_TLS_DTPREL_LO16 \
514 || r_type == R_MIPS_TLS_GOTTPREL \
515 || r_type == R_MIPS_TLS_TPREL32 \
516 || r_type == R_MIPS_TLS_TPREL64 \
517 || r_type == R_MIPS_TLS_TPREL_HI16 \
518 || r_type == R_MIPS_TLS_TPREL_LO16)
519
b49e97c9
TS
520/* Structure used to pass information to mips_elf_output_extsym. */
521
522struct extsym_info
523{
9e4aeb93
RS
524 bfd *abfd;
525 struct bfd_link_info *info;
b49e97c9
TS
526 struct ecoff_debug_info *debug;
527 const struct ecoff_debug_swap *swap;
b34976b6 528 bfd_boolean failed;
b49e97c9
TS
529};
530
8dc1a139 531/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
532
533static const char * const mips_elf_dynsym_rtproc_names[] =
534{
535 "_procedure_table",
536 "_procedure_string_table",
537 "_procedure_table_size",
538 NULL
539};
540
541/* These structures are used to generate the .compact_rel section on
8dc1a139 542 IRIX5. */
b49e97c9
TS
543
544typedef struct
545{
546 unsigned long id1; /* Always one? */
547 unsigned long num; /* Number of compact relocation entries. */
548 unsigned long id2; /* Always two? */
549 unsigned long offset; /* The file offset of the first relocation. */
550 unsigned long reserved0; /* Zero? */
551 unsigned long reserved1; /* Zero? */
552} Elf32_compact_rel;
553
554typedef struct
555{
556 bfd_byte id1[4];
557 bfd_byte num[4];
558 bfd_byte id2[4];
559 bfd_byte offset[4];
560 bfd_byte reserved0[4];
561 bfd_byte reserved1[4];
562} Elf32_External_compact_rel;
563
564typedef struct
565{
566 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
567 unsigned int rtype : 4; /* Relocation types. See below. */
568 unsigned int dist2to : 8;
569 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
570 unsigned long konst; /* KONST field. See below. */
571 unsigned long vaddr; /* VADDR to be relocated. */
572} Elf32_crinfo;
573
574typedef struct
575{
576 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
577 unsigned int rtype : 4; /* Relocation types. See below. */
578 unsigned int dist2to : 8;
579 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
580 unsigned long konst; /* KONST field. See below. */
581} Elf32_crinfo2;
582
583typedef struct
584{
585 bfd_byte info[4];
586 bfd_byte konst[4];
587 bfd_byte vaddr[4];
588} Elf32_External_crinfo;
589
590typedef struct
591{
592 bfd_byte info[4];
593 bfd_byte konst[4];
594} Elf32_External_crinfo2;
595
596/* These are the constants used to swap the bitfields in a crinfo. */
597
598#define CRINFO_CTYPE (0x1)
599#define CRINFO_CTYPE_SH (31)
600#define CRINFO_RTYPE (0xf)
601#define CRINFO_RTYPE_SH (27)
602#define CRINFO_DIST2TO (0xff)
603#define CRINFO_DIST2TO_SH (19)
604#define CRINFO_RELVADDR (0x7ffff)
605#define CRINFO_RELVADDR_SH (0)
606
607/* A compact relocation info has long (3 words) or short (2 words)
608 formats. A short format doesn't have VADDR field and relvaddr
609 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
610#define CRF_MIPS_LONG 1
611#define CRF_MIPS_SHORT 0
612
613/* There are 4 types of compact relocation at least. The value KONST
614 has different meaning for each type:
615
616 (type) (konst)
617 CT_MIPS_REL32 Address in data
618 CT_MIPS_WORD Address in word (XXX)
619 CT_MIPS_GPHI_LO GP - vaddr
620 CT_MIPS_JMPAD Address to jump
621 */
622
623#define CRT_MIPS_REL32 0xa
624#define CRT_MIPS_WORD 0xb
625#define CRT_MIPS_GPHI_LO 0xc
626#define CRT_MIPS_JMPAD 0xd
627
628#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
629#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
630#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
631#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
632\f
633/* The structure of the runtime procedure descriptor created by the
634 loader for use by the static exception system. */
635
636typedef struct runtime_pdr {
ae9a127f
NC
637 bfd_vma adr; /* Memory address of start of procedure. */
638 long regmask; /* Save register mask. */
639 long regoffset; /* Save register offset. */
640 long fregmask; /* Save floating point register mask. */
641 long fregoffset; /* Save floating point register offset. */
642 long frameoffset; /* Frame size. */
643 short framereg; /* Frame pointer register. */
644 short pcreg; /* Offset or reg of return pc. */
645 long irpss; /* Index into the runtime string table. */
b49e97c9 646 long reserved;
ae9a127f 647 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
648} RPDR, *pRPDR;
649#define cbRPDR sizeof (RPDR)
650#define rpdNil ((pRPDR) 0)
651\f
b15e6682 652static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
653 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
654 struct mips_elf_link_hash_entry *, int);
b34976b6 655static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 656 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
657static bfd_vma mips_elf_high
658 (bfd_vma);
b34976b6 659static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
660 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
661 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
662 bfd_vma *, asection *);
9719ad41
RS
663static hashval_t mips_elf_got_entry_hash
664 (const void *);
f4416af6 665static bfd_vma mips_elf_adjust_gp
9719ad41 666 (bfd *, struct mips_got_info *, bfd *);
f4416af6 667static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 668 (struct mips_got_info *, bfd *);
f4416af6 669
b49e97c9
TS
670/* This will be used when we sort the dynamic relocation records. */
671static bfd *reldyn_sorting_bfd;
672
6d30f5b2
NC
673/* True if ABFD is for CPUs with load interlocking that include
674 non-MIPS1 CPUs and R3900. */
675#define LOAD_INTERLOCKS_P(abfd) \
676 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
677 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
678
cd8d5a82
CF
679/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
680 This should be safe for all architectures. We enable this predicate
681 for RM9000 for now. */
682#define JAL_TO_BAL_P(abfd) \
683 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
684
685/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
686 This should be safe for all architectures. We enable this predicate for
687 all CPUs. */
688#define JALR_TO_BAL_P(abfd) 1
689
38a7df63
CF
690/* True if ABFD is for CPUs that are faster if JR is converted to B.
691 This should be safe for all architectures. We enable this predicate for
692 all CPUs. */
693#define JR_TO_B_P(abfd) 1
694
861fb55a
DJ
695/* True if ABFD is a PIC object. */
696#define PIC_OBJECT_P(abfd) \
697 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
698
b49e97c9 699/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
700#define ABI_N32_P(abfd) \
701 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
702
4a14403c 703/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 704#define ABI_64_P(abfd) \
141ff970 705 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 706
4a14403c
TS
707/* Nonzero if ABFD is using NewABI conventions. */
708#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
709
710/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
711#define IRIX_COMPAT(abfd) \
712 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
713
b49e97c9
TS
714/* Whether we are trying to be compatible with IRIX at all. */
715#define SGI_COMPAT(abfd) \
716 (IRIX_COMPAT (abfd) != ict_none)
717
718/* The name of the options section. */
719#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 720 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 721
cc2e31b9
RS
722/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
723 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
724#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
725 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
726
943284cc
DJ
727/* Whether the section is readonly. */
728#define MIPS_ELF_READONLY_SECTION(sec) \
729 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
730 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
731
b49e97c9 732/* The name of the stub section. */
ca07892d 733#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
734
735/* The size of an external REL relocation. */
736#define MIPS_ELF_REL_SIZE(abfd) \
737 (get_elf_backend_data (abfd)->s->sizeof_rel)
738
0a44bf69
RS
739/* The size of an external RELA relocation. */
740#define MIPS_ELF_RELA_SIZE(abfd) \
741 (get_elf_backend_data (abfd)->s->sizeof_rela)
742
b49e97c9
TS
743/* The size of an external dynamic table entry. */
744#define MIPS_ELF_DYN_SIZE(abfd) \
745 (get_elf_backend_data (abfd)->s->sizeof_dyn)
746
747/* The size of a GOT entry. */
748#define MIPS_ELF_GOT_SIZE(abfd) \
749 (get_elf_backend_data (abfd)->s->arch_size / 8)
750
751/* The size of a symbol-table entry. */
752#define MIPS_ELF_SYM_SIZE(abfd) \
753 (get_elf_backend_data (abfd)->s->sizeof_sym)
754
755/* The default alignment for sections, as a power of two. */
756#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 757 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
758
759/* Get word-sized data. */
760#define MIPS_ELF_GET_WORD(abfd, ptr) \
761 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
762
763/* Put out word-sized data. */
764#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
765 (ABI_64_P (abfd) \
766 ? bfd_put_64 (abfd, val, ptr) \
767 : bfd_put_32 (abfd, val, ptr))
768
861fb55a
DJ
769/* The opcode for word-sized loads (LW or LD). */
770#define MIPS_ELF_LOAD_WORD(abfd) \
771 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
772
b49e97c9 773/* Add a dynamic symbol table-entry. */
9719ad41 774#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 775 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
776
777#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
778 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
779
4ffba85c
AO
780/* Determine whether the internal relocation of index REL_IDX is REL
781 (zero) or RELA (non-zero). The assumption is that, if there are
782 two relocation sections for this section, one of them is REL and
783 the other is RELA. If the index of the relocation we're testing is
784 in range for the first relocation section, check that the external
785 relocation size is that for RELA. It is also assumed that, if
786 rel_idx is not in range for the first section, and this first
787 section contains REL relocs, then the relocation is in the second
788 section, that is RELA. */
789#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
790 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
791 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
792 > (bfd_vma)(rel_idx)) \
793 == (elf_section_data (sec)->rel_hdr.sh_entsize \
794 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
795 : sizeof (Elf32_External_Rela))))
796
0a44bf69
RS
797/* The name of the dynamic relocation section. */
798#define MIPS_ELF_REL_DYN_NAME(INFO) \
799 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
800
b49e97c9
TS
801/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
802 from smaller values. Start with zero, widen, *then* decrement. */
803#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 804#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 805
51e38d68
RS
806/* The value to write into got[1] for SVR4 targets, to identify it is
807 a GNU object. The dynamic linker can then use got[1] to store the
808 module pointer. */
809#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
810 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
811
f4416af6 812/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
813#define ELF_MIPS_GP_OFFSET(INFO) \
814 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
815
816/* The maximum size of the GOT for it to be addressable using 16-bit
817 offsets from $gp. */
0a44bf69 818#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 819
6a691779 820/* Instructions which appear in a stub. */
3d6746ca
DD
821#define STUB_LW(abfd) \
822 ((ABI_64_P (abfd) \
823 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
824 : 0x8f998010)) /* lw t9,0x8010(gp) */
825#define STUB_MOVE(abfd) \
826 ((ABI_64_P (abfd) \
827 ? 0x03e0782d /* daddu t7,ra */ \
828 : 0x03e07821)) /* addu t7,ra */
829#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
830#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
831#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
832#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
833#define STUB_LI16S(abfd, VAL) \
834 ((ABI_64_P (abfd) \
835 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
836 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
837
5108fc1b
RS
838#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
839#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
840
841/* The name of the dynamic interpreter. This is put in the .interp
842 section. */
843
844#define ELF_DYNAMIC_INTERPRETER(abfd) \
845 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
846 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
847 : "/usr/lib/libc.so.1")
848
849#ifdef BFD64
ee6423ed
AO
850#define MNAME(bfd,pre,pos) \
851 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
852#define ELF_R_SYM(bfd, i) \
853 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
854#define ELF_R_TYPE(bfd, i) \
855 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
856#define ELF_R_INFO(bfd, s, t) \
857 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
858#else
ee6423ed 859#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
860#define ELF_R_SYM(bfd, i) \
861 (ELF32_R_SYM (i))
862#define ELF_R_TYPE(bfd, i) \
863 (ELF32_R_TYPE (i))
864#define ELF_R_INFO(bfd, s, t) \
865 (ELF32_R_INFO (s, t))
866#endif
867\f
868 /* The mips16 compiler uses a couple of special sections to handle
869 floating point arguments.
870
871 Section names that look like .mips16.fn.FNNAME contain stubs that
872 copy floating point arguments from the fp regs to the gp regs and
873 then jump to FNNAME. If any 32 bit function calls FNNAME, the
874 call should be redirected to the stub instead. If no 32 bit
875 function calls FNNAME, the stub should be discarded. We need to
876 consider any reference to the function, not just a call, because
877 if the address of the function is taken we will need the stub,
878 since the address might be passed to a 32 bit function.
879
880 Section names that look like .mips16.call.FNNAME contain stubs
881 that copy floating point arguments from the gp regs to the fp
882 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
883 then any 16 bit function that calls FNNAME should be redirected
884 to the stub instead. If FNNAME is not a 32 bit function, the
885 stub should be discarded.
886
887 .mips16.call.fp.FNNAME sections are similar, but contain stubs
888 which call FNNAME and then copy the return value from the fp regs
889 to the gp regs. These stubs store the return value in $18 while
890 calling FNNAME; any function which might call one of these stubs
891 must arrange to save $18 around the call. (This case is not
892 needed for 32 bit functions that call 16 bit functions, because
893 16 bit functions always return floating point values in both
894 $f0/$f1 and $2/$3.)
895
896 Note that in all cases FNNAME might be defined statically.
897 Therefore, FNNAME is not used literally. Instead, the relocation
898 information will indicate which symbol the section is for.
899
900 We record any stubs that we find in the symbol table. */
901
902#define FN_STUB ".mips16.fn."
903#define CALL_STUB ".mips16.call."
904#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
905
906#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
907#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
908#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 909\f
861fb55a 910/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
911static const bfd_vma mips_o32_exec_plt0_entry[] =
912{
861fb55a
DJ
913 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
914 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
915 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
916 0x031cc023, /* subu $24, $24, $28 */
917 0x03e07821, /* move $15, $31 */
918 0x0018c082, /* srl $24, $24, 2 */
919 0x0320f809, /* jalr $25 */
920 0x2718fffe /* subu $24, $24, 2 */
921};
922
923/* The format of the first PLT entry in an N32 executable. Different
924 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
925static const bfd_vma mips_n32_exec_plt0_entry[] =
926{
861fb55a
DJ
927 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
928 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
929 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
930 0x030ec023, /* subu $24, $24, $14 */
931 0x03e07821, /* move $15, $31 */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935};
936
937/* The format of the first PLT entry in an N64 executable. Different
938 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
939static const bfd_vma mips_n64_exec_plt0_entry[] =
940{
861fb55a
DJ
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 */
946 0x0018c0c2, /* srl $24, $24, 3 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949};
950
951/* The format of subsequent PLT entries. */
6d30f5b2
NC
952static const bfd_vma mips_exec_plt_entry[] =
953{
861fb55a
DJ
954 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
955 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
956 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
957 0x03200008 /* jr $25 */
958};
959
0a44bf69 960/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
961static const bfd_vma mips_vxworks_exec_plt0_entry[] =
962{
0a44bf69
RS
963 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
964 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
965 0x8f390008, /* lw t9, 8(t9) */
966 0x00000000, /* nop */
967 0x03200008, /* jr t9 */
968 0x00000000 /* nop */
969};
970
971/* The format of subsequent PLT entries. */
6d30f5b2
NC
972static const bfd_vma mips_vxworks_exec_plt_entry[] =
973{
0a44bf69
RS
974 0x10000000, /* b .PLT_resolver */
975 0x24180000, /* li t8, <pltindex> */
976 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
977 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
978 0x8f390000, /* lw t9, 0(t9) */
979 0x00000000, /* nop */
980 0x03200008, /* jr t9 */
981 0x00000000 /* nop */
982};
983
984/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
985static const bfd_vma mips_vxworks_shared_plt0_entry[] =
986{
0a44bf69
RS
987 0x8f990008, /* lw t9, 8(gp) */
988 0x00000000, /* nop */
989 0x03200008, /* jr t9 */
990 0x00000000, /* nop */
991 0x00000000, /* nop */
992 0x00000000 /* nop */
993};
994
995/* The format of subsequent PLT entries. */
6d30f5b2
NC
996static const bfd_vma mips_vxworks_shared_plt_entry[] =
997{
0a44bf69
RS
998 0x10000000, /* b .PLT_resolver */
999 0x24180000 /* li t8, <pltindex> */
1000};
1001\f
b49e97c9
TS
1002/* Look up an entry in a MIPS ELF linker hash table. */
1003
1004#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1005 ((struct mips_elf_link_hash_entry *) \
1006 elf_link_hash_lookup (&(table)->root, (string), (create), \
1007 (copy), (follow)))
1008
1009/* Traverse a MIPS ELF linker hash table. */
1010
1011#define mips_elf_link_hash_traverse(table, func, info) \
1012 (elf_link_hash_traverse \
1013 (&(table)->root, \
9719ad41 1014 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1015 (info)))
1016
0f20cc35
DJ
1017/* Find the base offsets for thread-local storage in this object,
1018 for GD/LD and IE/LE respectively. */
1019
1020#define TP_OFFSET 0x7000
1021#define DTP_OFFSET 0x8000
1022
1023static bfd_vma
1024dtprel_base (struct bfd_link_info *info)
1025{
1026 /* If tls_sec is NULL, we should have signalled an error already. */
1027 if (elf_hash_table (info)->tls_sec == NULL)
1028 return 0;
1029 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1030}
1031
1032static bfd_vma
1033tprel_base (struct bfd_link_info *info)
1034{
1035 /* If tls_sec is NULL, we should have signalled an error already. */
1036 if (elf_hash_table (info)->tls_sec == NULL)
1037 return 0;
1038 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1039}
1040
b49e97c9
TS
1041/* Create an entry in a MIPS ELF linker hash table. */
1042
1043static struct bfd_hash_entry *
9719ad41
RS
1044mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1045 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1046{
1047 struct mips_elf_link_hash_entry *ret =
1048 (struct mips_elf_link_hash_entry *) entry;
1049
1050 /* Allocate the structure if it has not already been allocated by a
1051 subclass. */
9719ad41
RS
1052 if (ret == NULL)
1053 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1054 if (ret == NULL)
b49e97c9
TS
1055 return (struct bfd_hash_entry *) ret;
1056
1057 /* Call the allocation method of the superclass. */
1058 ret = ((struct mips_elf_link_hash_entry *)
1059 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1060 table, string));
9719ad41 1061 if (ret != NULL)
b49e97c9
TS
1062 {
1063 /* Set local fields. */
1064 memset (&ret->esym, 0, sizeof (EXTR));
1065 /* We use -2 as a marker to indicate that the information has
1066 not been set. -1 means there is no associated ifd. */
1067 ret->esym.ifd = -2;
861fb55a 1068 ret->la25_stub = 0;
b49e97c9 1069 ret->possibly_dynamic_relocs = 0;
b49e97c9 1070 ret->fn_stub = NULL;
b49e97c9
TS
1071 ret->call_stub = NULL;
1072 ret->call_fp_stub = NULL;
71782a75 1073 ret->tls_type = GOT_NORMAL;
634835ae 1074 ret->global_got_area = GGA_NONE;
71782a75 1075 ret->readonly_reloc = FALSE;
861fb55a 1076 ret->has_static_relocs = FALSE;
71782a75
RS
1077 ret->no_fn_stub = FALSE;
1078 ret->need_fn_stub = FALSE;
861fb55a 1079 ret->has_nonpic_branches = FALSE;
33bb52fb 1080 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1081 }
1082
1083 return (struct bfd_hash_entry *) ret;
1084}
f0abc2a1
AM
1085
1086bfd_boolean
9719ad41 1087_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1088{
f592407e
AM
1089 if (!sec->used_by_bfd)
1090 {
1091 struct _mips_elf_section_data *sdata;
1092 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1093
f592407e
AM
1094 sdata = bfd_zalloc (abfd, amt);
1095 if (sdata == NULL)
1096 return FALSE;
1097 sec->used_by_bfd = sdata;
1098 }
f0abc2a1
AM
1099
1100 return _bfd_elf_new_section_hook (abfd, sec);
1101}
b49e97c9
TS
1102\f
1103/* Read ECOFF debugging information from a .mdebug section into a
1104 ecoff_debug_info structure. */
1105
b34976b6 1106bfd_boolean
9719ad41
RS
1107_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1108 struct ecoff_debug_info *debug)
b49e97c9
TS
1109{
1110 HDRR *symhdr;
1111 const struct ecoff_debug_swap *swap;
9719ad41 1112 char *ext_hdr;
b49e97c9
TS
1113
1114 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1115 memset (debug, 0, sizeof (*debug));
1116
9719ad41 1117 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1118 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1119 goto error_return;
1120
9719ad41 1121 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1122 swap->external_hdr_size))
b49e97c9
TS
1123 goto error_return;
1124
1125 symhdr = &debug->symbolic_header;
1126 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1127
1128 /* The symbolic header contains absolute file offsets and sizes to
1129 read. */
1130#define READ(ptr, offset, count, size, type) \
1131 if (symhdr->count == 0) \
1132 debug->ptr = NULL; \
1133 else \
1134 { \
1135 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1136 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1137 if (debug->ptr == NULL) \
1138 goto error_return; \
9719ad41 1139 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1140 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1141 goto error_return; \
1142 }
1143
1144 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1145 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1146 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1147 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1148 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1149 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1150 union aux_ext *);
1151 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1152 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1153 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1154 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1155 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1156#undef READ
1157
1158 debug->fdr = NULL;
b49e97c9 1159
b34976b6 1160 return TRUE;
b49e97c9
TS
1161
1162 error_return:
1163 if (ext_hdr != NULL)
1164 free (ext_hdr);
1165 if (debug->line != NULL)
1166 free (debug->line);
1167 if (debug->external_dnr != NULL)
1168 free (debug->external_dnr);
1169 if (debug->external_pdr != NULL)
1170 free (debug->external_pdr);
1171 if (debug->external_sym != NULL)
1172 free (debug->external_sym);
1173 if (debug->external_opt != NULL)
1174 free (debug->external_opt);
1175 if (debug->external_aux != NULL)
1176 free (debug->external_aux);
1177 if (debug->ss != NULL)
1178 free (debug->ss);
1179 if (debug->ssext != NULL)
1180 free (debug->ssext);
1181 if (debug->external_fdr != NULL)
1182 free (debug->external_fdr);
1183 if (debug->external_rfd != NULL)
1184 free (debug->external_rfd);
1185 if (debug->external_ext != NULL)
1186 free (debug->external_ext);
b34976b6 1187 return FALSE;
b49e97c9
TS
1188}
1189\f
1190/* Swap RPDR (runtime procedure table entry) for output. */
1191
1192static void
9719ad41 1193ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1194{
1195 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1196 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1197 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1198 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1199 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1200 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1201
1202 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1203 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1204
1205 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1206}
1207
1208/* Create a runtime procedure table from the .mdebug section. */
1209
b34976b6 1210static bfd_boolean
9719ad41
RS
1211mips_elf_create_procedure_table (void *handle, bfd *abfd,
1212 struct bfd_link_info *info, asection *s,
1213 struct ecoff_debug_info *debug)
b49e97c9
TS
1214{
1215 const struct ecoff_debug_swap *swap;
1216 HDRR *hdr = &debug->symbolic_header;
1217 RPDR *rpdr, *rp;
1218 struct rpdr_ext *erp;
9719ad41 1219 void *rtproc;
b49e97c9
TS
1220 struct pdr_ext *epdr;
1221 struct sym_ext *esym;
1222 char *ss, **sv;
1223 char *str;
1224 bfd_size_type size;
1225 bfd_size_type count;
1226 unsigned long sindex;
1227 unsigned long i;
1228 PDR pdr;
1229 SYMR sym;
1230 const char *no_name_func = _("static procedure (no name)");
1231
1232 epdr = NULL;
1233 rpdr = NULL;
1234 esym = NULL;
1235 ss = NULL;
1236 sv = NULL;
1237
1238 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1239
1240 sindex = strlen (no_name_func) + 1;
1241 count = hdr->ipdMax;
1242 if (count > 0)
1243 {
1244 size = swap->external_pdr_size;
1245
9719ad41 1246 epdr = bfd_malloc (size * count);
b49e97c9
TS
1247 if (epdr == NULL)
1248 goto error_return;
1249
9719ad41 1250 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1251 goto error_return;
1252
1253 size = sizeof (RPDR);
9719ad41 1254 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1255 if (rpdr == NULL)
1256 goto error_return;
1257
1258 size = sizeof (char *);
9719ad41 1259 sv = bfd_malloc (size * count);
b49e97c9
TS
1260 if (sv == NULL)
1261 goto error_return;
1262
1263 count = hdr->isymMax;
1264 size = swap->external_sym_size;
9719ad41 1265 esym = bfd_malloc (size * count);
b49e97c9
TS
1266 if (esym == NULL)
1267 goto error_return;
1268
9719ad41 1269 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1270 goto error_return;
1271
1272 count = hdr->issMax;
9719ad41 1273 ss = bfd_malloc (count);
b49e97c9
TS
1274 if (ss == NULL)
1275 goto error_return;
f075ee0c 1276 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1277 goto error_return;
1278
1279 count = hdr->ipdMax;
1280 for (i = 0; i < (unsigned long) count; i++, rp++)
1281 {
9719ad41
RS
1282 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1283 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1284 rp->adr = sym.value;
1285 rp->regmask = pdr.regmask;
1286 rp->regoffset = pdr.regoffset;
1287 rp->fregmask = pdr.fregmask;
1288 rp->fregoffset = pdr.fregoffset;
1289 rp->frameoffset = pdr.frameoffset;
1290 rp->framereg = pdr.framereg;
1291 rp->pcreg = pdr.pcreg;
1292 rp->irpss = sindex;
1293 sv[i] = ss + sym.iss;
1294 sindex += strlen (sv[i]) + 1;
1295 }
1296 }
1297
1298 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1299 size = BFD_ALIGN (size, 16);
9719ad41 1300 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1301 if (rtproc == NULL)
1302 {
1303 mips_elf_hash_table (info)->procedure_count = 0;
1304 goto error_return;
1305 }
1306
1307 mips_elf_hash_table (info)->procedure_count = count + 2;
1308
9719ad41 1309 erp = rtproc;
b49e97c9
TS
1310 memset (erp, 0, sizeof (struct rpdr_ext));
1311 erp++;
1312 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1313 strcpy (str, no_name_func);
1314 str += strlen (no_name_func) + 1;
1315 for (i = 0; i < count; i++)
1316 {
1317 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1318 strcpy (str, sv[i]);
1319 str += strlen (sv[i]) + 1;
1320 }
1321 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1322
1323 /* Set the size and contents of .rtproc section. */
eea6121a 1324 s->size = size;
9719ad41 1325 s->contents = rtproc;
b49e97c9
TS
1326
1327 /* Skip this section later on (I don't think this currently
1328 matters, but someday it might). */
8423293d 1329 s->map_head.link_order = NULL;
b49e97c9
TS
1330
1331 if (epdr != NULL)
1332 free (epdr);
1333 if (rpdr != NULL)
1334 free (rpdr);
1335 if (esym != NULL)
1336 free (esym);
1337 if (ss != NULL)
1338 free (ss);
1339 if (sv != NULL)
1340 free (sv);
1341
b34976b6 1342 return TRUE;
b49e97c9
TS
1343
1344 error_return:
1345 if (epdr != NULL)
1346 free (epdr);
1347 if (rpdr != NULL)
1348 free (rpdr);
1349 if (esym != NULL)
1350 free (esym);
1351 if (ss != NULL)
1352 free (ss);
1353 if (sv != NULL)
1354 free (sv);
b34976b6 1355 return FALSE;
b49e97c9 1356}
738e5348 1357\f
861fb55a
DJ
1358/* We're going to create a stub for H. Create a symbol for the stub's
1359 value and size, to help make the disassembly easier to read. */
1360
1361static bfd_boolean
1362mips_elf_create_stub_symbol (struct bfd_link_info *info,
1363 struct mips_elf_link_hash_entry *h,
1364 const char *prefix, asection *s, bfd_vma value,
1365 bfd_vma size)
1366{
1367 struct bfd_link_hash_entry *bh;
1368 struct elf_link_hash_entry *elfh;
1369 const char *name;
1370
1371 /* Create a new symbol. */
1372 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1373 bh = NULL;
1374 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1375 BSF_LOCAL, s, value, NULL,
1376 TRUE, FALSE, &bh))
1377 return FALSE;
1378
1379 /* Make it a local function. */
1380 elfh = (struct elf_link_hash_entry *) bh;
1381 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1382 elfh->size = size;
1383 elfh->forced_local = 1;
1384 return TRUE;
1385}
1386
738e5348
RS
1387/* We're about to redefine H. Create a symbol to represent H's
1388 current value and size, to help make the disassembly easier
1389 to read. */
1390
1391static bfd_boolean
1392mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1393 struct mips_elf_link_hash_entry *h,
1394 const char *prefix)
1395{
1396 struct bfd_link_hash_entry *bh;
1397 struct elf_link_hash_entry *elfh;
1398 const char *name;
1399 asection *s;
1400 bfd_vma value;
1401
1402 /* Read the symbol's value. */
1403 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1404 || h->root.root.type == bfd_link_hash_defweak);
1405 s = h->root.root.u.def.section;
1406 value = h->root.root.u.def.value;
1407
1408 /* Create a new symbol. */
1409 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1410 bh = NULL;
1411 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1412 BSF_LOCAL, s, value, NULL,
1413 TRUE, FALSE, &bh))
1414 return FALSE;
1415
1416 /* Make it local and copy the other attributes from H. */
1417 elfh = (struct elf_link_hash_entry *) bh;
1418 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1419 elfh->other = h->root.other;
1420 elfh->size = h->root.size;
1421 elfh->forced_local = 1;
1422 return TRUE;
1423}
1424
1425/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1426 function rather than to a hard-float stub. */
1427
1428static bfd_boolean
1429section_allows_mips16_refs_p (asection *section)
1430{
1431 const char *name;
1432
1433 name = bfd_get_section_name (section->owner, section);
1434 return (FN_STUB_P (name)
1435 || CALL_STUB_P (name)
1436 || CALL_FP_STUB_P (name)
1437 || strcmp (name, ".pdr") == 0);
1438}
1439
1440/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1441 stub section of some kind. Return the R_SYMNDX of the target
1442 function, or 0 if we can't decide which function that is. */
1443
1444static unsigned long
502e814e
TT
1445mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1446 const Elf_Internal_Rela *relocs,
738e5348
RS
1447 const Elf_Internal_Rela *relend)
1448{
1449 const Elf_Internal_Rela *rel;
1450
1451 /* Trust the first R_MIPS_NONE relocation, if any. */
1452 for (rel = relocs; rel < relend; rel++)
1453 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1454 return ELF_R_SYM (sec->owner, rel->r_info);
1455
1456 /* Otherwise trust the first relocation, whatever its kind. This is
1457 the traditional behavior. */
1458 if (relocs < relend)
1459 return ELF_R_SYM (sec->owner, relocs->r_info);
1460
1461 return 0;
1462}
b49e97c9
TS
1463
1464/* Check the mips16 stubs for a particular symbol, and see if we can
1465 discard them. */
1466
861fb55a
DJ
1467static void
1468mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1469 struct mips_elf_link_hash_entry *h)
b49e97c9 1470{
738e5348
RS
1471 /* Dynamic symbols must use the standard call interface, in case other
1472 objects try to call them. */
1473 if (h->fn_stub != NULL
1474 && h->root.dynindx != -1)
1475 {
1476 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1477 h->need_fn_stub = TRUE;
1478 }
1479
b49e97c9
TS
1480 if (h->fn_stub != NULL
1481 && ! h->need_fn_stub)
1482 {
1483 /* We don't need the fn_stub; the only references to this symbol
1484 are 16 bit calls. Clobber the size to 0 to prevent it from
1485 being included in the link. */
eea6121a 1486 h->fn_stub->size = 0;
b49e97c9
TS
1487 h->fn_stub->flags &= ~SEC_RELOC;
1488 h->fn_stub->reloc_count = 0;
1489 h->fn_stub->flags |= SEC_EXCLUDE;
1490 }
1491
1492 if (h->call_stub != NULL
30c09090 1493 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1494 {
1495 /* We don't need the call_stub; this is a 16 bit function, so
1496 calls from other 16 bit functions are OK. Clobber the size
1497 to 0 to prevent it from being included in the link. */
eea6121a 1498 h->call_stub->size = 0;
b49e97c9
TS
1499 h->call_stub->flags &= ~SEC_RELOC;
1500 h->call_stub->reloc_count = 0;
1501 h->call_stub->flags |= SEC_EXCLUDE;
1502 }
1503
1504 if (h->call_fp_stub != NULL
30c09090 1505 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1506 {
1507 /* We don't need the call_stub; this is a 16 bit function, so
1508 calls from other 16 bit functions are OK. Clobber the size
1509 to 0 to prevent it from being included in the link. */
eea6121a 1510 h->call_fp_stub->size = 0;
b49e97c9
TS
1511 h->call_fp_stub->flags &= ~SEC_RELOC;
1512 h->call_fp_stub->reloc_count = 0;
1513 h->call_fp_stub->flags |= SEC_EXCLUDE;
1514 }
861fb55a
DJ
1515}
1516
1517/* Hashtable callbacks for mips_elf_la25_stubs. */
1518
1519static hashval_t
1520mips_elf_la25_stub_hash (const void *entry_)
1521{
1522 const struct mips_elf_la25_stub *entry;
1523
1524 entry = (struct mips_elf_la25_stub *) entry_;
1525 return entry->h->root.root.u.def.section->id
1526 + entry->h->root.root.u.def.value;
1527}
1528
1529static int
1530mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1531{
1532 const struct mips_elf_la25_stub *entry1, *entry2;
1533
1534 entry1 = (struct mips_elf_la25_stub *) entry1_;
1535 entry2 = (struct mips_elf_la25_stub *) entry2_;
1536 return ((entry1->h->root.root.u.def.section
1537 == entry2->h->root.root.u.def.section)
1538 && (entry1->h->root.root.u.def.value
1539 == entry2->h->root.root.u.def.value));
1540}
1541
1542/* Called by the linker to set up the la25 stub-creation code. FN is
1543 the linker's implementation of add_stub_function. Return true on
1544 success. */
1545
1546bfd_boolean
1547_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1548 asection *(*fn) (const char *, asection *,
1549 asection *))
1550{
1551 struct mips_elf_link_hash_table *htab;
1552
1553 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1554 if (htab == NULL)
1555 return FALSE;
1556
861fb55a
DJ
1557 htab->add_stub_section = fn;
1558 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1559 mips_elf_la25_stub_eq, NULL);
1560 if (htab->la25_stubs == NULL)
1561 return FALSE;
1562
1563 return TRUE;
1564}
1565
1566/* Return true if H is a locally-defined PIC function, in the sense
1567 that it might need $25 to be valid on entry. Note that MIPS16
1568 functions never need $25 to be valid on entry; they set up $gp
1569 using PC-relative instructions instead. */
1570
1571static bfd_boolean
1572mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1573{
1574 return ((h->root.root.type == bfd_link_hash_defined
1575 || h->root.root.type == bfd_link_hash_defweak)
1576 && h->root.def_regular
1577 && !bfd_is_abs_section (h->root.root.u.def.section)
1578 && !ELF_ST_IS_MIPS16 (h->root.other)
1579 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1580 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1581}
1582
1583/* STUB describes an la25 stub that we have decided to implement
1584 by inserting an LUI/ADDIU pair before the target function.
1585 Create the section and redirect the function symbol to it. */
1586
1587static bfd_boolean
1588mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1589 struct bfd_link_info *info)
1590{
1591 struct mips_elf_link_hash_table *htab;
1592 char *name;
1593 asection *s, *input_section;
1594 unsigned int align;
1595
1596 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1597 if (htab == NULL)
1598 return FALSE;
861fb55a
DJ
1599
1600 /* Create a unique name for the new section. */
1601 name = bfd_malloc (11 + sizeof (".text.stub."));
1602 if (name == NULL)
1603 return FALSE;
1604 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1605
1606 /* Create the section. */
1607 input_section = stub->h->root.root.u.def.section;
1608 s = htab->add_stub_section (name, input_section,
1609 input_section->output_section);
1610 if (s == NULL)
1611 return FALSE;
1612
1613 /* Make sure that any padding goes before the stub. */
1614 align = input_section->alignment_power;
1615 if (!bfd_set_section_alignment (s->owner, s, align))
1616 return FALSE;
1617 if (align > 3)
1618 s->size = (1 << align) - 8;
1619
1620 /* Create a symbol for the stub. */
1621 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1622 stub->stub_section = s;
1623 stub->offset = s->size;
1624
1625 /* Allocate room for it. */
1626 s->size += 8;
1627 return TRUE;
1628}
1629
1630/* STUB describes an la25 stub that we have decided to implement
1631 with a separate trampoline. Allocate room for it and redirect
1632 the function symbol to it. */
1633
1634static bfd_boolean
1635mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1636 struct bfd_link_info *info)
1637{
1638 struct mips_elf_link_hash_table *htab;
1639 asection *s;
1640
1641 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1642 if (htab == NULL)
1643 return FALSE;
861fb55a
DJ
1644
1645 /* Create a trampoline section, if we haven't already. */
1646 s = htab->strampoline;
1647 if (s == NULL)
1648 {
1649 asection *input_section = stub->h->root.root.u.def.section;
1650 s = htab->add_stub_section (".text", NULL,
1651 input_section->output_section);
1652 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1653 return FALSE;
1654 htab->strampoline = s;
1655 }
1656
1657 /* Create a symbol for the stub. */
1658 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1659 stub->stub_section = s;
1660 stub->offset = s->size;
1661
1662 /* Allocate room for it. */
1663 s->size += 16;
1664 return TRUE;
1665}
1666
1667/* H describes a symbol that needs an la25 stub. Make sure that an
1668 appropriate stub exists and point H at it. */
1669
1670static bfd_boolean
1671mips_elf_add_la25_stub (struct bfd_link_info *info,
1672 struct mips_elf_link_hash_entry *h)
1673{
1674 struct mips_elf_link_hash_table *htab;
1675 struct mips_elf_la25_stub search, *stub;
1676 bfd_boolean use_trampoline_p;
1677 asection *s;
1678 bfd_vma value;
1679 void **slot;
1680
1681 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1682 of the section and if we would need no more than 2 nops. */
1683 s = h->root.root.u.def.section;
1684 value = h->root.root.u.def.value;
1685 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1686
1687 /* Describe the stub we want. */
1688 search.stub_section = NULL;
1689 search.offset = 0;
1690 search.h = h;
1691
1692 /* See if we've already created an equivalent stub. */
1693 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1694 if (htab == NULL)
1695 return FALSE;
1696
861fb55a
DJ
1697 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1698 if (slot == NULL)
1699 return FALSE;
1700
1701 stub = (struct mips_elf_la25_stub *) *slot;
1702 if (stub != NULL)
1703 {
1704 /* We can reuse the existing stub. */
1705 h->la25_stub = stub;
1706 return TRUE;
1707 }
1708
1709 /* Create a permanent copy of ENTRY and add it to the hash table. */
1710 stub = bfd_malloc (sizeof (search));
1711 if (stub == NULL)
1712 return FALSE;
1713 *stub = search;
1714 *slot = stub;
1715
1716 h->la25_stub = stub;
1717 return (use_trampoline_p
1718 ? mips_elf_add_la25_trampoline (stub, info)
1719 : mips_elf_add_la25_intro (stub, info));
1720}
1721
1722/* A mips_elf_link_hash_traverse callback that is called before sizing
1723 sections. DATA points to a mips_htab_traverse_info structure. */
1724
1725static bfd_boolean
1726mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1727{
1728 struct mips_htab_traverse_info *hti;
1729
1730 hti = (struct mips_htab_traverse_info *) data;
1731 if (h->root.root.type == bfd_link_hash_warning)
1732 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1733
1734 if (!hti->info->relocatable)
1735 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1736
861fb55a
DJ
1737 if (mips_elf_local_pic_function_p (h))
1738 {
1739 /* H is a function that might need $25 to be valid on entry.
1740 If we're creating a non-PIC relocatable object, mark H as
1741 being PIC. If we're creating a non-relocatable object with
1742 non-PIC branches and jumps to H, make sure that H has an la25
1743 stub. */
1744 if (hti->info->relocatable)
1745 {
1746 if (!PIC_OBJECT_P (hti->output_bfd))
1747 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1748 }
1749 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1750 {
1751 hti->error = TRUE;
1752 return FALSE;
1753 }
1754 }
b34976b6 1755 return TRUE;
b49e97c9
TS
1756}
1757\f
d6f16593
MR
1758/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1759 Most mips16 instructions are 16 bits, but these instructions
1760 are 32 bits.
1761
1762 The format of these instructions is:
1763
1764 +--------------+--------------------------------+
1765 | JALX | X| Imm 20:16 | Imm 25:21 |
1766 +--------------+--------------------------------+
1767 | Immediate 15:0 |
1768 +-----------------------------------------------+
1769
1770 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1771 Note that the immediate value in the first word is swapped.
1772
1773 When producing a relocatable object file, R_MIPS16_26 is
1774 handled mostly like R_MIPS_26. In particular, the addend is
1775 stored as a straight 26-bit value in a 32-bit instruction.
1776 (gas makes life simpler for itself by never adjusting a
1777 R_MIPS16_26 reloc to be against a section, so the addend is
1778 always zero). However, the 32 bit instruction is stored as 2
1779 16-bit values, rather than a single 32-bit value. In a
1780 big-endian file, the result is the same; in a little-endian
1781 file, the two 16-bit halves of the 32 bit value are swapped.
1782 This is so that a disassembler can recognize the jal
1783 instruction.
1784
1785 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1786 instruction stored as two 16-bit values. The addend A is the
1787 contents of the targ26 field. The calculation is the same as
1788 R_MIPS_26. When storing the calculated value, reorder the
1789 immediate value as shown above, and don't forget to store the
1790 value as two 16-bit values.
1791
1792 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1793 defined as
1794
1795 big-endian:
1796 +--------+----------------------+
1797 | | |
1798 | | targ26-16 |
1799 |31 26|25 0|
1800 +--------+----------------------+
1801
1802 little-endian:
1803 +----------+------+-------------+
1804 | | | |
1805 | sub1 | | sub2 |
1806 |0 9|10 15|16 31|
1807 +----------+--------------------+
1808 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1809 ((sub1 << 16) | sub2)).
1810
1811 When producing a relocatable object file, the calculation is
1812 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1813 When producing a fully linked file, the calculation is
1814 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1815 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1816
738e5348
RS
1817 The table below lists the other MIPS16 instruction relocations.
1818 Each one is calculated in the same way as the non-MIPS16 relocation
1819 given on the right, but using the extended MIPS16 layout of 16-bit
1820 immediate fields:
1821
1822 R_MIPS16_GPREL R_MIPS_GPREL16
1823 R_MIPS16_GOT16 R_MIPS_GOT16
1824 R_MIPS16_CALL16 R_MIPS_CALL16
1825 R_MIPS16_HI16 R_MIPS_HI16
1826 R_MIPS16_LO16 R_MIPS_LO16
1827
1828 A typical instruction will have a format like this:
d6f16593
MR
1829
1830 +--------------+--------------------------------+
1831 | EXTEND | Imm 10:5 | Imm 15:11 |
1832 +--------------+--------------------------------+
1833 | Major | rx | ry | Imm 4:0 |
1834 +--------------+--------------------------------+
1835
1836 EXTEND is the five bit value 11110. Major is the instruction
1837 opcode.
1838
738e5348
RS
1839 All we need to do here is shuffle the bits appropriately.
1840 As above, the two 16-bit halves must be swapped on a
1841 little-endian system. */
1842
1843static inline bfd_boolean
1844mips16_reloc_p (int r_type)
1845{
1846 switch (r_type)
1847 {
1848 case R_MIPS16_26:
1849 case R_MIPS16_GPREL:
1850 case R_MIPS16_GOT16:
1851 case R_MIPS16_CALL16:
1852 case R_MIPS16_HI16:
1853 case R_MIPS16_LO16:
1854 return TRUE;
1855
1856 default:
1857 return FALSE;
1858 }
1859}
1860
1861static inline bfd_boolean
1862got16_reloc_p (int r_type)
1863{
1864 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1865}
1866
1867static inline bfd_boolean
1868call16_reloc_p (int r_type)
1869{
1870 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1871}
1872
1873static inline bfd_boolean
1874hi16_reloc_p (int r_type)
1875{
1876 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1877}
d6f16593 1878
738e5348
RS
1879static inline bfd_boolean
1880lo16_reloc_p (int r_type)
1881{
1882 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1883}
1884
1885static inline bfd_boolean
1886mips16_call_reloc_p (int r_type)
1887{
1888 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1889}
d6f16593 1890
38a7df63
CF
1891static inline bfd_boolean
1892jal_reloc_p (int r_type)
1893{
1894 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1895}
1896
d6f16593
MR
1897void
1898_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1899 bfd_boolean jal_shuffle, bfd_byte *data)
1900{
1901 bfd_vma extend, insn, val;
1902
738e5348 1903 if (!mips16_reloc_p (r_type))
d6f16593
MR
1904 return;
1905
1906 /* Pick up the mips16 extend instruction and the real instruction. */
1907 extend = bfd_get_16 (abfd, data);
1908 insn = bfd_get_16 (abfd, data + 2);
1909 if (r_type == R_MIPS16_26)
1910 {
1911 if (jal_shuffle)
1912 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1913 | ((extend & 0x1f) << 21) | insn;
1914 else
1915 val = extend << 16 | insn;
1916 }
1917 else
1918 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1919 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1920 bfd_put_32 (abfd, val, data);
1921}
1922
1923void
1924_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1925 bfd_boolean jal_shuffle, bfd_byte *data)
1926{
1927 bfd_vma extend, insn, val;
1928
738e5348 1929 if (!mips16_reloc_p (r_type))
d6f16593
MR
1930 return;
1931
1932 val = bfd_get_32 (abfd, data);
1933 if (r_type == R_MIPS16_26)
1934 {
1935 if (jal_shuffle)
1936 {
1937 insn = val & 0xffff;
1938 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1939 | ((val >> 21) & 0x1f);
1940 }
1941 else
1942 {
1943 insn = val & 0xffff;
1944 extend = val >> 16;
1945 }
1946 }
1947 else
1948 {
1949 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1950 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1951 }
1952 bfd_put_16 (abfd, insn, data + 2);
1953 bfd_put_16 (abfd, extend, data);
1954}
1955
b49e97c9 1956bfd_reloc_status_type
9719ad41
RS
1957_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1958 arelent *reloc_entry, asection *input_section,
1959 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1960{
1961 bfd_vma relocation;
a7ebbfdf 1962 bfd_signed_vma val;
30ac9238 1963 bfd_reloc_status_type status;
b49e97c9
TS
1964
1965 if (bfd_is_com_section (symbol->section))
1966 relocation = 0;
1967 else
1968 relocation = symbol->value;
1969
1970 relocation += symbol->section->output_section->vma;
1971 relocation += symbol->section->output_offset;
1972
07515404 1973 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1974 return bfd_reloc_outofrange;
1975
b49e97c9 1976 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1977 val = reloc_entry->addend;
1978
30ac9238 1979 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1980
b49e97c9 1981 /* Adjust val for the final section location and GP value. If we
1049f94e 1982 are producing relocatable output, we don't want to do this for
b49e97c9 1983 an external symbol. */
1049f94e 1984 if (! relocatable
b49e97c9
TS
1985 || (symbol->flags & BSF_SECTION_SYM) != 0)
1986 val += relocation - gp;
1987
a7ebbfdf
TS
1988 if (reloc_entry->howto->partial_inplace)
1989 {
30ac9238
RS
1990 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1991 (bfd_byte *) data
1992 + reloc_entry->address);
1993 if (status != bfd_reloc_ok)
1994 return status;
a7ebbfdf
TS
1995 }
1996 else
1997 reloc_entry->addend = val;
b49e97c9 1998
1049f94e 1999 if (relocatable)
b49e97c9 2000 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2001
2002 return bfd_reloc_ok;
2003}
2004
2005/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2006 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2007 that contains the relocation field and DATA points to the start of
2008 INPUT_SECTION. */
2009
2010struct mips_hi16
2011{
2012 struct mips_hi16 *next;
2013 bfd_byte *data;
2014 asection *input_section;
2015 arelent rel;
2016};
2017
2018/* FIXME: This should not be a static variable. */
2019
2020static struct mips_hi16 *mips_hi16_list;
2021
2022/* A howto special_function for REL *HI16 relocations. We can only
2023 calculate the correct value once we've seen the partnering
2024 *LO16 relocation, so just save the information for later.
2025
2026 The ABI requires that the *LO16 immediately follow the *HI16.
2027 However, as a GNU extension, we permit an arbitrary number of
2028 *HI16s to be associated with a single *LO16. This significantly
2029 simplies the relocation handling in gcc. */
2030
2031bfd_reloc_status_type
2032_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2033 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2034 asection *input_section, bfd *output_bfd,
2035 char **error_message ATTRIBUTE_UNUSED)
2036{
2037 struct mips_hi16 *n;
2038
07515404 2039 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2040 return bfd_reloc_outofrange;
2041
2042 n = bfd_malloc (sizeof *n);
2043 if (n == NULL)
2044 return bfd_reloc_outofrange;
2045
2046 n->next = mips_hi16_list;
2047 n->data = data;
2048 n->input_section = input_section;
2049 n->rel = *reloc_entry;
2050 mips_hi16_list = n;
2051
2052 if (output_bfd != NULL)
2053 reloc_entry->address += input_section->output_offset;
2054
2055 return bfd_reloc_ok;
2056}
2057
738e5348 2058/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2059 like any other 16-bit relocation when applied to global symbols, but is
2060 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2061
2062bfd_reloc_status_type
2063_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2064 void *data, asection *input_section,
2065 bfd *output_bfd, char **error_message)
2066{
2067 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2068 || bfd_is_und_section (bfd_get_section (symbol))
2069 || bfd_is_com_section (bfd_get_section (symbol)))
2070 /* The relocation is against a global symbol. */
2071 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2072 input_section, output_bfd,
2073 error_message);
2074
2075 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2076 input_section, output_bfd, error_message);
2077}
2078
2079/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2080 is a straightforward 16 bit inplace relocation, but we must deal with
2081 any partnering high-part relocations as well. */
2082
2083bfd_reloc_status_type
2084_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2085 void *data, asection *input_section,
2086 bfd *output_bfd, char **error_message)
2087{
2088 bfd_vma vallo;
d6f16593 2089 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2090
07515404 2091 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2092 return bfd_reloc_outofrange;
2093
d6f16593
MR
2094 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2095 location);
2096 vallo = bfd_get_32 (abfd, location);
2097 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2098 location);
2099
30ac9238
RS
2100 while (mips_hi16_list != NULL)
2101 {
2102 bfd_reloc_status_type ret;
2103 struct mips_hi16 *hi;
2104
2105 hi = mips_hi16_list;
2106
738e5348
RS
2107 /* R_MIPS*_GOT16 relocations are something of a special case. We
2108 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2109 relocation (with a rightshift of 16). However, since GOT16
2110 relocations can also be used with global symbols, their howto
2111 has a rightshift of 0. */
2112 if (hi->rel.howto->type == R_MIPS_GOT16)
2113 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2114 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2115 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
30ac9238
RS
2116
2117 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2118 carry or borrow will induce a change of +1 or -1 in the high part. */
2119 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2120
30ac9238
RS
2121 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2122 hi->input_section, output_bfd,
2123 error_message);
2124 if (ret != bfd_reloc_ok)
2125 return ret;
2126
2127 mips_hi16_list = hi->next;
2128 free (hi);
2129 }
2130
2131 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2132 input_section, output_bfd,
2133 error_message);
2134}
2135
2136/* A generic howto special_function. This calculates and installs the
2137 relocation itself, thus avoiding the oft-discussed problems in
2138 bfd_perform_relocation and bfd_install_relocation. */
2139
2140bfd_reloc_status_type
2141_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2142 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2143 asection *input_section, bfd *output_bfd,
2144 char **error_message ATTRIBUTE_UNUSED)
2145{
2146 bfd_signed_vma val;
2147 bfd_reloc_status_type status;
2148 bfd_boolean relocatable;
2149
2150 relocatable = (output_bfd != NULL);
2151
07515404 2152 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2153 return bfd_reloc_outofrange;
2154
2155 /* Build up the field adjustment in VAL. */
2156 val = 0;
2157 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2158 {
2159 /* Either we're calculating the final field value or we have a
2160 relocation against a section symbol. Add in the section's
2161 offset or address. */
2162 val += symbol->section->output_section->vma;
2163 val += symbol->section->output_offset;
2164 }
2165
2166 if (!relocatable)
2167 {
2168 /* We're calculating the final field value. Add in the symbol's value
2169 and, if pc-relative, subtract the address of the field itself. */
2170 val += symbol->value;
2171 if (reloc_entry->howto->pc_relative)
2172 {
2173 val -= input_section->output_section->vma;
2174 val -= input_section->output_offset;
2175 val -= reloc_entry->address;
2176 }
2177 }
2178
2179 /* VAL is now the final adjustment. If we're keeping this relocation
2180 in the output file, and if the relocation uses a separate addend,
2181 we just need to add VAL to that addend. Otherwise we need to add
2182 VAL to the relocation field itself. */
2183 if (relocatable && !reloc_entry->howto->partial_inplace)
2184 reloc_entry->addend += val;
2185 else
2186 {
d6f16593
MR
2187 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2188
30ac9238
RS
2189 /* Add in the separate addend, if any. */
2190 val += reloc_entry->addend;
2191
2192 /* Add VAL to the relocation field. */
d6f16593
MR
2193 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2194 location);
30ac9238 2195 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
2196 location);
2197 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2198 location);
2199
30ac9238
RS
2200 if (status != bfd_reloc_ok)
2201 return status;
2202 }
2203
2204 if (relocatable)
2205 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2206
2207 return bfd_reloc_ok;
2208}
2209\f
2210/* Swap an entry in a .gptab section. Note that these routines rely
2211 on the equivalence of the two elements of the union. */
2212
2213static void
9719ad41
RS
2214bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2215 Elf32_gptab *in)
b49e97c9
TS
2216{
2217 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2218 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2219}
2220
2221static void
9719ad41
RS
2222bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2223 Elf32_External_gptab *ex)
b49e97c9
TS
2224{
2225 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2226 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2227}
2228
2229static void
9719ad41
RS
2230bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2231 Elf32_External_compact_rel *ex)
b49e97c9
TS
2232{
2233 H_PUT_32 (abfd, in->id1, ex->id1);
2234 H_PUT_32 (abfd, in->num, ex->num);
2235 H_PUT_32 (abfd, in->id2, ex->id2);
2236 H_PUT_32 (abfd, in->offset, ex->offset);
2237 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2238 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2239}
2240
2241static void
9719ad41
RS
2242bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2243 Elf32_External_crinfo *ex)
b49e97c9
TS
2244{
2245 unsigned long l;
2246
2247 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2248 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2249 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2250 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2251 H_PUT_32 (abfd, l, ex->info);
2252 H_PUT_32 (abfd, in->konst, ex->konst);
2253 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2254}
b49e97c9
TS
2255\f
2256/* A .reginfo section holds a single Elf32_RegInfo structure. These
2257 routines swap this structure in and out. They are used outside of
2258 BFD, so they are globally visible. */
2259
2260void
9719ad41
RS
2261bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2262 Elf32_RegInfo *in)
b49e97c9
TS
2263{
2264 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2265 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2266 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2267 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2268 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2269 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2270}
2271
2272void
9719ad41
RS
2273bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2274 Elf32_External_RegInfo *ex)
b49e97c9
TS
2275{
2276 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2277 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2278 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2279 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2280 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2281 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2282}
2283
2284/* In the 64 bit ABI, the .MIPS.options section holds register
2285 information in an Elf64_Reginfo structure. These routines swap
2286 them in and out. They are globally visible because they are used
2287 outside of BFD. These routines are here so that gas can call them
2288 without worrying about whether the 64 bit ABI has been included. */
2289
2290void
9719ad41
RS
2291bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2292 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2293{
2294 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2295 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2296 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2297 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2298 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2299 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2300 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2301}
2302
2303void
9719ad41
RS
2304bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2305 Elf64_External_RegInfo *ex)
b49e97c9
TS
2306{
2307 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2308 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2309 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2310 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2311 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2312 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2313 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2314}
2315
2316/* Swap in an options header. */
2317
2318void
9719ad41
RS
2319bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2320 Elf_Internal_Options *in)
b49e97c9
TS
2321{
2322 in->kind = H_GET_8 (abfd, ex->kind);
2323 in->size = H_GET_8 (abfd, ex->size);
2324 in->section = H_GET_16 (abfd, ex->section);
2325 in->info = H_GET_32 (abfd, ex->info);
2326}
2327
2328/* Swap out an options header. */
2329
2330void
9719ad41
RS
2331bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2332 Elf_External_Options *ex)
b49e97c9
TS
2333{
2334 H_PUT_8 (abfd, in->kind, ex->kind);
2335 H_PUT_8 (abfd, in->size, ex->size);
2336 H_PUT_16 (abfd, in->section, ex->section);
2337 H_PUT_32 (abfd, in->info, ex->info);
2338}
2339\f
2340/* This function is called via qsort() to sort the dynamic relocation
2341 entries by increasing r_symndx value. */
2342
2343static int
9719ad41 2344sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2345{
947216bf
AM
2346 Elf_Internal_Rela int_reloc1;
2347 Elf_Internal_Rela int_reloc2;
6870500c 2348 int diff;
b49e97c9 2349
947216bf
AM
2350 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2351 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2352
6870500c
RS
2353 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2354 if (diff != 0)
2355 return diff;
2356
2357 if (int_reloc1.r_offset < int_reloc2.r_offset)
2358 return -1;
2359 if (int_reloc1.r_offset > int_reloc2.r_offset)
2360 return 1;
2361 return 0;
b49e97c9
TS
2362}
2363
f4416af6
AO
2364/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2365
2366static int
7e3102a7
AM
2367sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2368 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2369{
7e3102a7 2370#ifdef BFD64
f4416af6
AO
2371 Elf_Internal_Rela int_reloc1[3];
2372 Elf_Internal_Rela int_reloc2[3];
2373
2374 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2375 (reldyn_sorting_bfd, arg1, int_reloc1);
2376 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2377 (reldyn_sorting_bfd, arg2, int_reloc2);
2378
6870500c
RS
2379 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2380 return -1;
2381 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2382 return 1;
2383
2384 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2385 return -1;
2386 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2387 return 1;
2388 return 0;
7e3102a7
AM
2389#else
2390 abort ();
2391#endif
f4416af6
AO
2392}
2393
2394
b49e97c9
TS
2395/* This routine is used to write out ECOFF debugging external symbol
2396 information. It is called via mips_elf_link_hash_traverse. The
2397 ECOFF external symbol information must match the ELF external
2398 symbol information. Unfortunately, at this point we don't know
2399 whether a symbol is required by reloc information, so the two
2400 tables may wind up being different. We must sort out the external
2401 symbol information before we can set the final size of the .mdebug
2402 section, and we must set the size of the .mdebug section before we
2403 can relocate any sections, and we can't know which symbols are
2404 required by relocation until we relocate the sections.
2405 Fortunately, it is relatively unlikely that any symbol will be
2406 stripped but required by a reloc. In particular, it can not happen
2407 when generating a final executable. */
2408
b34976b6 2409static bfd_boolean
9719ad41 2410mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2411{
9719ad41 2412 struct extsym_info *einfo = data;
b34976b6 2413 bfd_boolean strip;
b49e97c9
TS
2414 asection *sec, *output_section;
2415
2416 if (h->root.root.type == bfd_link_hash_warning)
2417 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2418
2419 if (h->root.indx == -2)
b34976b6 2420 strip = FALSE;
f5385ebf 2421 else if ((h->root.def_dynamic
77cfaee6
AM
2422 || h->root.ref_dynamic
2423 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2424 && !h->root.def_regular
2425 && !h->root.ref_regular)
b34976b6 2426 strip = TRUE;
b49e97c9
TS
2427 else if (einfo->info->strip == strip_all
2428 || (einfo->info->strip == strip_some
2429 && bfd_hash_lookup (einfo->info->keep_hash,
2430 h->root.root.root.string,
b34976b6
AM
2431 FALSE, FALSE) == NULL))
2432 strip = TRUE;
b49e97c9 2433 else
b34976b6 2434 strip = FALSE;
b49e97c9
TS
2435
2436 if (strip)
b34976b6 2437 return TRUE;
b49e97c9
TS
2438
2439 if (h->esym.ifd == -2)
2440 {
2441 h->esym.jmptbl = 0;
2442 h->esym.cobol_main = 0;
2443 h->esym.weakext = 0;
2444 h->esym.reserved = 0;
2445 h->esym.ifd = ifdNil;
2446 h->esym.asym.value = 0;
2447 h->esym.asym.st = stGlobal;
2448
2449 if (h->root.root.type == bfd_link_hash_undefined
2450 || h->root.root.type == bfd_link_hash_undefweak)
2451 {
2452 const char *name;
2453
2454 /* Use undefined class. Also, set class and type for some
2455 special symbols. */
2456 name = h->root.root.root.string;
2457 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2458 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2459 {
2460 h->esym.asym.sc = scData;
2461 h->esym.asym.st = stLabel;
2462 h->esym.asym.value = 0;
2463 }
2464 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2465 {
2466 h->esym.asym.sc = scAbs;
2467 h->esym.asym.st = stLabel;
2468 h->esym.asym.value =
2469 mips_elf_hash_table (einfo->info)->procedure_count;
2470 }
4a14403c 2471 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2472 {
2473 h->esym.asym.sc = scAbs;
2474 h->esym.asym.st = stLabel;
2475 h->esym.asym.value = elf_gp (einfo->abfd);
2476 }
2477 else
2478 h->esym.asym.sc = scUndefined;
2479 }
2480 else if (h->root.root.type != bfd_link_hash_defined
2481 && h->root.root.type != bfd_link_hash_defweak)
2482 h->esym.asym.sc = scAbs;
2483 else
2484 {
2485 const char *name;
2486
2487 sec = h->root.root.u.def.section;
2488 output_section = sec->output_section;
2489
2490 /* When making a shared library and symbol h is the one from
2491 the another shared library, OUTPUT_SECTION may be null. */
2492 if (output_section == NULL)
2493 h->esym.asym.sc = scUndefined;
2494 else
2495 {
2496 name = bfd_section_name (output_section->owner, output_section);
2497
2498 if (strcmp (name, ".text") == 0)
2499 h->esym.asym.sc = scText;
2500 else if (strcmp (name, ".data") == 0)
2501 h->esym.asym.sc = scData;
2502 else if (strcmp (name, ".sdata") == 0)
2503 h->esym.asym.sc = scSData;
2504 else if (strcmp (name, ".rodata") == 0
2505 || strcmp (name, ".rdata") == 0)
2506 h->esym.asym.sc = scRData;
2507 else if (strcmp (name, ".bss") == 0)
2508 h->esym.asym.sc = scBss;
2509 else if (strcmp (name, ".sbss") == 0)
2510 h->esym.asym.sc = scSBss;
2511 else if (strcmp (name, ".init") == 0)
2512 h->esym.asym.sc = scInit;
2513 else if (strcmp (name, ".fini") == 0)
2514 h->esym.asym.sc = scFini;
2515 else
2516 h->esym.asym.sc = scAbs;
2517 }
2518 }
2519
2520 h->esym.asym.reserved = 0;
2521 h->esym.asym.index = indexNil;
2522 }
2523
2524 if (h->root.root.type == bfd_link_hash_common)
2525 h->esym.asym.value = h->root.root.u.c.size;
2526 else if (h->root.root.type == bfd_link_hash_defined
2527 || h->root.root.type == bfd_link_hash_defweak)
2528 {
2529 if (h->esym.asym.sc == scCommon)
2530 h->esym.asym.sc = scBss;
2531 else if (h->esym.asym.sc == scSCommon)
2532 h->esym.asym.sc = scSBss;
2533
2534 sec = h->root.root.u.def.section;
2535 output_section = sec->output_section;
2536 if (output_section != NULL)
2537 h->esym.asym.value = (h->root.root.u.def.value
2538 + sec->output_offset
2539 + output_section->vma);
2540 else
2541 h->esym.asym.value = 0;
2542 }
33bb52fb 2543 else
b49e97c9
TS
2544 {
2545 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2546
2547 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2548 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2549
33bb52fb 2550 if (hd->needs_lazy_stub)
b49e97c9
TS
2551 {
2552 /* Set type and value for a symbol with a function stub. */
2553 h->esym.asym.st = stProc;
2554 sec = hd->root.root.u.def.section;
2555 if (sec == NULL)
2556 h->esym.asym.value = 0;
2557 else
2558 {
2559 output_section = sec->output_section;
2560 if (output_section != NULL)
2561 h->esym.asym.value = (hd->root.plt.offset
2562 + sec->output_offset
2563 + output_section->vma);
2564 else
2565 h->esym.asym.value = 0;
2566 }
b49e97c9
TS
2567 }
2568 }
2569
2570 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2571 h->root.root.root.string,
2572 &h->esym))
2573 {
b34976b6
AM
2574 einfo->failed = TRUE;
2575 return FALSE;
b49e97c9
TS
2576 }
2577
b34976b6 2578 return TRUE;
b49e97c9
TS
2579}
2580
2581/* A comparison routine used to sort .gptab entries. */
2582
2583static int
9719ad41 2584gptab_compare (const void *p1, const void *p2)
b49e97c9 2585{
9719ad41
RS
2586 const Elf32_gptab *a1 = p1;
2587 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2588
2589 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2590}
2591\f
b15e6682 2592/* Functions to manage the got entry hash table. */
f4416af6
AO
2593
2594/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2595 hash number. */
2596
2597static INLINE hashval_t
9719ad41 2598mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2599{
2600#ifdef BFD64
2601 return addr + (addr >> 32);
2602#else
2603 return addr;
2604#endif
2605}
2606
2607/* got_entries only match if they're identical, except for gotidx, so
2608 use all fields to compute the hash, and compare the appropriate
2609 union members. */
2610
b15e6682 2611static hashval_t
9719ad41 2612mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2613{
2614 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2615
38985a1c 2616 return entry->symndx
0f20cc35 2617 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2618 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2619 : entry->abfd->id
2620 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2621 : entry->d.h->root.root.root.hash));
b15e6682
AO
2622}
2623
2624static int
9719ad41 2625mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2626{
2627 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2628 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2629
0f20cc35
DJ
2630 /* An LDM entry can only match another LDM entry. */
2631 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2632 return 0;
2633
b15e6682 2634 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2635 && (! e1->abfd ? e1->d.address == e2->d.address
2636 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2637 : e1->d.h == e2->d.h);
2638}
2639
2640/* multi_got_entries are still a match in the case of global objects,
2641 even if the input bfd in which they're referenced differs, so the
2642 hash computation and compare functions are adjusted
2643 accordingly. */
2644
2645static hashval_t
9719ad41 2646mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2647{
2648 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2649
2650 return entry->symndx
2651 + (! entry->abfd
2652 ? mips_elf_hash_bfd_vma (entry->d.address)
2653 : entry->symndx >= 0
0f20cc35
DJ
2654 ? ((entry->tls_type & GOT_TLS_LDM)
2655 ? (GOT_TLS_LDM << 17)
2656 : (entry->abfd->id
2657 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2658 : entry->d.h->root.root.root.hash);
2659}
2660
2661static int
9719ad41 2662mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2663{
2664 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2665 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2666
0f20cc35
DJ
2667 /* Any two LDM entries match. */
2668 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2669 return 1;
2670
2671 /* Nothing else matches an LDM entry. */
2672 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2673 return 0;
2674
f4416af6
AO
2675 return e1->symndx == e2->symndx
2676 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2677 : e1->abfd == NULL || e2->abfd == NULL
2678 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2679 : e1->d.h == e2->d.h);
b15e6682 2680}
c224138d
RS
2681
2682static hashval_t
2683mips_got_page_entry_hash (const void *entry_)
2684{
2685 const struct mips_got_page_entry *entry;
2686
2687 entry = (const struct mips_got_page_entry *) entry_;
2688 return entry->abfd->id + entry->symndx;
2689}
2690
2691static int
2692mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2693{
2694 const struct mips_got_page_entry *entry1, *entry2;
2695
2696 entry1 = (const struct mips_got_page_entry *) entry1_;
2697 entry2 = (const struct mips_got_page_entry *) entry2_;
2698 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2699}
b15e6682 2700\f
0a44bf69
RS
2701/* Return the dynamic relocation section. If it doesn't exist, try to
2702 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2703 if creation fails. */
f4416af6
AO
2704
2705static asection *
0a44bf69 2706mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2707{
0a44bf69 2708 const char *dname;
f4416af6 2709 asection *sreloc;
0a44bf69 2710 bfd *dynobj;
f4416af6 2711
0a44bf69
RS
2712 dname = MIPS_ELF_REL_DYN_NAME (info);
2713 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2714 sreloc = bfd_get_section_by_name (dynobj, dname);
2715 if (sreloc == NULL && create_p)
2716 {
3496cb2a
L
2717 sreloc = bfd_make_section_with_flags (dynobj, dname,
2718 (SEC_ALLOC
2719 | SEC_LOAD
2720 | SEC_HAS_CONTENTS
2721 | SEC_IN_MEMORY
2722 | SEC_LINKER_CREATED
2723 | SEC_READONLY));
f4416af6 2724 if (sreloc == NULL
f4416af6 2725 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2726 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2727 return NULL;
2728 }
2729 return sreloc;
2730}
2731
0f20cc35
DJ
2732/* Count the number of relocations needed for a TLS GOT entry, with
2733 access types from TLS_TYPE, and symbol H (or a local symbol if H
2734 is NULL). */
2735
2736static int
2737mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2738 struct elf_link_hash_entry *h)
2739{
2740 int indx = 0;
2741 int ret = 0;
2742 bfd_boolean need_relocs = FALSE;
2743 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2744
2745 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2746 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2747 indx = h->dynindx;
2748
2749 if ((info->shared || indx != 0)
2750 && (h == NULL
2751 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2752 || h->root.type != bfd_link_hash_undefweak))
2753 need_relocs = TRUE;
2754
2755 if (!need_relocs)
2756 return FALSE;
2757
2758 if (tls_type & GOT_TLS_GD)
2759 {
2760 ret++;
2761 if (indx != 0)
2762 ret++;
2763 }
2764
2765 if (tls_type & GOT_TLS_IE)
2766 ret++;
2767
2768 if ((tls_type & GOT_TLS_LDM) && info->shared)
2769 ret++;
2770
2771 return ret;
2772}
2773
2774/* Count the number of TLS relocations required for the GOT entry in
2775 ARG1, if it describes a local symbol. */
2776
2777static int
2778mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2779{
2780 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2781 struct mips_elf_count_tls_arg *arg = arg2;
2782
2783 if (entry->abfd != NULL && entry->symndx != -1)
2784 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2785
2786 return 1;
2787}
2788
2789/* Count the number of TLS GOT entries required for the global (or
2790 forced-local) symbol in ARG1. */
2791
2792static int
2793mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2794{
2795 struct mips_elf_link_hash_entry *hm
2796 = (struct mips_elf_link_hash_entry *) arg1;
2797 struct mips_elf_count_tls_arg *arg = arg2;
2798
2799 if (hm->tls_type & GOT_TLS_GD)
2800 arg->needed += 2;
2801 if (hm->tls_type & GOT_TLS_IE)
2802 arg->needed += 1;
2803
2804 return 1;
2805}
2806
2807/* Count the number of TLS relocations required for the global (or
2808 forced-local) symbol in ARG1. */
2809
2810static int
2811mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2812{
2813 struct mips_elf_link_hash_entry *hm
2814 = (struct mips_elf_link_hash_entry *) arg1;
2815 struct mips_elf_count_tls_arg *arg = arg2;
2816
2817 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2818
2819 return 1;
2820}
2821
2822/* Output a simple dynamic relocation into SRELOC. */
2823
2824static void
2825mips_elf_output_dynamic_relocation (bfd *output_bfd,
2826 asection *sreloc,
861fb55a 2827 unsigned long reloc_index,
0f20cc35
DJ
2828 unsigned long indx,
2829 int r_type,
2830 bfd_vma offset)
2831{
2832 Elf_Internal_Rela rel[3];
2833
2834 memset (rel, 0, sizeof (rel));
2835
2836 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2837 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2838
2839 if (ABI_64_P (output_bfd))
2840 {
2841 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2842 (output_bfd, &rel[0],
2843 (sreloc->contents
861fb55a 2844 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
2845 }
2846 else
2847 bfd_elf32_swap_reloc_out
2848 (output_bfd, &rel[0],
2849 (sreloc->contents
861fb55a 2850 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
2851}
2852
2853/* Initialize a set of TLS GOT entries for one symbol. */
2854
2855static void
2856mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2857 unsigned char *tls_type_p,
2858 struct bfd_link_info *info,
2859 struct mips_elf_link_hash_entry *h,
2860 bfd_vma value)
2861{
23cc69b6 2862 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
2863 int indx;
2864 asection *sreloc, *sgot;
2865 bfd_vma offset, offset2;
0f20cc35
DJ
2866 bfd_boolean need_relocs = FALSE;
2867
23cc69b6 2868 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
2869 if (htab == NULL)
2870 return;
2871
23cc69b6 2872 sgot = htab->sgot;
0f20cc35
DJ
2873
2874 indx = 0;
2875 if (h != NULL)
2876 {
2877 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2878
2879 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2880 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2881 indx = h->root.dynindx;
2882 }
2883
2884 if (*tls_type_p & GOT_TLS_DONE)
2885 return;
2886
2887 if ((info->shared || indx != 0)
2888 && (h == NULL
2889 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2890 || h->root.type != bfd_link_hash_undefweak))
2891 need_relocs = TRUE;
2892
2893 /* MINUS_ONE means the symbol is not defined in this object. It may not
2894 be defined at all; assume that the value doesn't matter in that
2895 case. Otherwise complain if we would use the value. */
2896 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2897 || h->root.root.type == bfd_link_hash_undefweak);
2898
2899 /* Emit necessary relocations. */
0a44bf69 2900 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2901
2902 /* General Dynamic. */
2903 if (*tls_type_p & GOT_TLS_GD)
2904 {
2905 offset = got_offset;
2906 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2907
2908 if (need_relocs)
2909 {
2910 mips_elf_output_dynamic_relocation
861fb55a 2911 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2912 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2913 sgot->output_offset + sgot->output_section->vma + offset);
2914
2915 if (indx)
2916 mips_elf_output_dynamic_relocation
861fb55a 2917 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2918 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2919 sgot->output_offset + sgot->output_section->vma + offset2);
2920 else
2921 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2922 sgot->contents + offset2);
2923 }
2924 else
2925 {
2926 MIPS_ELF_PUT_WORD (abfd, 1,
2927 sgot->contents + offset);
2928 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2929 sgot->contents + offset2);
2930 }
2931
2932 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2933 }
2934
2935 /* Initial Exec model. */
2936 if (*tls_type_p & GOT_TLS_IE)
2937 {
2938 offset = got_offset;
2939
2940 if (need_relocs)
2941 {
2942 if (indx == 0)
2943 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2944 sgot->contents + offset);
2945 else
2946 MIPS_ELF_PUT_WORD (abfd, 0,
2947 sgot->contents + offset);
2948
2949 mips_elf_output_dynamic_relocation
861fb55a 2950 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2951 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2952 sgot->output_offset + sgot->output_section->vma + offset);
2953 }
2954 else
2955 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2956 sgot->contents + offset);
2957 }
2958
2959 if (*tls_type_p & GOT_TLS_LDM)
2960 {
2961 /* The initial offset is zero, and the LD offsets will include the
2962 bias by DTP_OFFSET. */
2963 MIPS_ELF_PUT_WORD (abfd, 0,
2964 sgot->contents + got_offset
2965 + MIPS_ELF_GOT_SIZE (abfd));
2966
2967 if (!info->shared)
2968 MIPS_ELF_PUT_WORD (abfd, 1,
2969 sgot->contents + got_offset);
2970 else
2971 mips_elf_output_dynamic_relocation
861fb55a 2972 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2973 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2974 sgot->output_offset + sgot->output_section->vma + got_offset);
2975 }
2976
2977 *tls_type_p |= GOT_TLS_DONE;
2978}
2979
2980/* Return the GOT index to use for a relocation of type R_TYPE against
2981 a symbol accessed using TLS_TYPE models. The GOT entries for this
2982 symbol in this GOT start at GOT_INDEX. This function initializes the
2983 GOT entries and corresponding relocations. */
2984
2985static bfd_vma
2986mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2987 int r_type, struct bfd_link_info *info,
2988 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2989{
2990 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2991 || r_type == R_MIPS_TLS_LDM);
2992
2993 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2994
2995 if (r_type == R_MIPS_TLS_GOTTPREL)
2996 {
2997 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2998 if (*tls_type & GOT_TLS_GD)
2999 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3000 else
3001 return got_index;
3002 }
3003
3004 if (r_type == R_MIPS_TLS_GD)
3005 {
3006 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3007 return got_index;
3008 }
3009
3010 if (r_type == R_MIPS_TLS_LDM)
3011 {
3012 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3013 return got_index;
3014 }
3015
3016 return got_index;
3017}
3018
0a44bf69
RS
3019/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3020 for global symbol H. .got.plt comes before the GOT, so the offset
3021 will be negative. */
3022
3023static bfd_vma
3024mips_elf_gotplt_index (struct bfd_link_info *info,
3025 struct elf_link_hash_entry *h)
3026{
3027 bfd_vma plt_index, got_address, got_value;
3028 struct mips_elf_link_hash_table *htab;
3029
3030 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3031 BFD_ASSERT (htab != NULL);
3032
0a44bf69
RS
3033 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3034
861fb55a
DJ
3035 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3036 section starts with reserved entries. */
3037 BFD_ASSERT (htab->is_vxworks);
3038
0a44bf69
RS
3039 /* Calculate the index of the symbol's PLT entry. */
3040 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3041
3042 /* Calculate the address of the associated .got.plt entry. */
3043 got_address = (htab->sgotplt->output_section->vma
3044 + htab->sgotplt->output_offset
3045 + plt_index * 4);
3046
3047 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3048 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3049 + htab->root.hgot->root.u.def.section->output_offset
3050 + htab->root.hgot->root.u.def.value);
3051
3052 return got_address - got_value;
3053}
3054
5c18022e 3055/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3056 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3057 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3058 offset can be found. */
b49e97c9
TS
3059
3060static bfd_vma
9719ad41 3061mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3062 bfd_vma value, unsigned long r_symndx,
0f20cc35 3063 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3064{
a8028dd0 3065 struct mips_elf_link_hash_table *htab;
b15e6682 3066 struct mips_got_entry *entry;
b49e97c9 3067
a8028dd0 3068 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3069 BFD_ASSERT (htab != NULL);
3070
a8028dd0
RS
3071 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3072 r_symndx, h, r_type);
0f20cc35 3073 if (!entry)
b15e6682 3074 return MINUS_ONE;
0f20cc35
DJ
3075
3076 if (TLS_RELOC_P (r_type))
ead49a57 3077 {
a8028dd0 3078 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3079 /* A type (3) entry in the single-GOT case. We use the symbol's
3080 hash table entry to track the index. */
3081 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3082 r_type, info, h, value);
3083 else
3084 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3085 r_type, info, h, value);
3086 }
0f20cc35
DJ
3087 else
3088 return entry->gotidx;
b49e97c9
TS
3089}
3090
3091/* Returns the GOT index for the global symbol indicated by H. */
3092
3093static bfd_vma
0f20cc35
DJ
3094mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3095 int r_type, struct bfd_link_info *info)
b49e97c9 3096{
a8028dd0 3097 struct mips_elf_link_hash_table *htab;
91d6fa6a 3098 bfd_vma got_index;
f4416af6 3099 struct mips_got_info *g, *gg;
d0c7ff07 3100 long global_got_dynindx = 0;
b49e97c9 3101
a8028dd0 3102 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3103 BFD_ASSERT (htab != NULL);
3104
a8028dd0 3105 gg = g = htab->got_info;
f4416af6
AO
3106 if (g->bfd2got && ibfd)
3107 {
3108 struct mips_got_entry e, *p;
143d77c5 3109
f4416af6
AO
3110 BFD_ASSERT (h->dynindx >= 0);
3111
3112 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3113 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3114 {
3115 e.abfd = ibfd;
3116 e.symndx = -1;
3117 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 3118 e.tls_type = 0;
f4416af6 3119
9719ad41 3120 p = htab_find (g->got_entries, &e);
f4416af6
AO
3121
3122 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
3123
3124 if (TLS_RELOC_P (r_type))
3125 {
3126 bfd_vma value = MINUS_ONE;
3127 if ((h->root.type == bfd_link_hash_defined
3128 || h->root.type == bfd_link_hash_defweak)
3129 && h->root.u.def.section->output_section)
3130 value = (h->root.u.def.value
3131 + h->root.u.def.section->output_offset
3132 + h->root.u.def.section->output_section->vma);
3133
3134 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3135 info, e.d.h, value);
3136 }
3137 else
3138 return p->gotidx;
f4416af6
AO
3139 }
3140 }
3141
3142 if (gg->global_gotsym != NULL)
3143 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 3144
0f20cc35
DJ
3145 if (TLS_RELOC_P (r_type))
3146 {
3147 struct mips_elf_link_hash_entry *hm
3148 = (struct mips_elf_link_hash_entry *) h;
3149 bfd_vma value = MINUS_ONE;
3150
3151 if ((h->root.type == bfd_link_hash_defined
3152 || h->root.type == bfd_link_hash_defweak)
3153 && h->root.u.def.section->output_section)
3154 value = (h->root.u.def.value
3155 + h->root.u.def.section->output_offset
3156 + h->root.u.def.section->output_section->vma);
3157
91d6fa6a
NC
3158 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3159 r_type, info, hm, value);
0f20cc35
DJ
3160 }
3161 else
3162 {
3163 /* Once we determine the global GOT entry with the lowest dynamic
3164 symbol table index, we must put all dynamic symbols with greater
3165 indices into the GOT. That makes it easy to calculate the GOT
3166 offset. */
3167 BFD_ASSERT (h->dynindx >= global_got_dynindx);
91d6fa6a
NC
3168 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd));
0f20cc35 3170 }
91d6fa6a 3171 BFD_ASSERT (got_index < htab->sgot->size);
b49e97c9 3172
91d6fa6a 3173 return got_index;
b49e97c9
TS
3174}
3175
5c18022e
RS
3176/* Find a GOT page entry that points to within 32KB of VALUE. These
3177 entries are supposed to be placed at small offsets in the GOT, i.e.,
3178 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3179 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3180 offset of the GOT entry from VALUE. */
b49e97c9
TS
3181
3182static bfd_vma
9719ad41 3183mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3184 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3185{
91d6fa6a 3186 bfd_vma page, got_index;
b15e6682 3187 struct mips_got_entry *entry;
b49e97c9 3188
0a44bf69 3189 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3190 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3191 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3192
b15e6682
AO
3193 if (!entry)
3194 return MINUS_ONE;
143d77c5 3195
91d6fa6a 3196 got_index = entry->gotidx;
b49e97c9
TS
3197
3198 if (offsetp)
f4416af6 3199 *offsetp = value - entry->d.address;
b49e97c9 3200
91d6fa6a 3201 return got_index;
b49e97c9
TS
3202}
3203
738e5348 3204/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
0a44bf69
RS
3205 EXTERNAL is true if the relocation was against a global symbol
3206 that has been forced local. */
b49e97c9
TS
3207
3208static bfd_vma
9719ad41 3209mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3210 bfd_vma value, bfd_boolean external)
b49e97c9 3211{
b15e6682 3212 struct mips_got_entry *entry;
b49e97c9 3213
0a44bf69
RS
3214 /* GOT16 relocations against local symbols are followed by a LO16
3215 relocation; those against global symbols are not. Thus if the
3216 symbol was originally local, the GOT16 relocation should load the
3217 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3218 if (! external)
0a44bf69 3219 value = mips_elf_high (value) << 16;
b49e97c9 3220
738e5348
RS
3221 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3222 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3223 same in all cases. */
a8028dd0
RS
3224 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3225 NULL, R_MIPS_GOT16);
b15e6682
AO
3226 if (entry)
3227 return entry->gotidx;
3228 else
3229 return MINUS_ONE;
b49e97c9
TS
3230}
3231
3232/* Returns the offset for the entry at the INDEXth position
3233 in the GOT. */
3234
3235static bfd_vma
a8028dd0 3236mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3237 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3238{
a8028dd0 3239 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3240 asection *sgot;
3241 bfd_vma gp;
3242
a8028dd0 3243 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3244 BFD_ASSERT (htab != NULL);
3245
a8028dd0 3246 sgot = htab->sgot;
f4416af6 3247 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3248 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3249
91d6fa6a 3250 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3251}
3252
0a44bf69
RS
3253/* Create and return a local GOT entry for VALUE, which was calculated
3254 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3255 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3256 instead. */
b49e97c9 3257
b15e6682 3258static struct mips_got_entry *
0a44bf69 3259mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3260 bfd *ibfd, bfd_vma value,
5c18022e 3261 unsigned long r_symndx,
0f20cc35
DJ
3262 struct mips_elf_link_hash_entry *h,
3263 int r_type)
b49e97c9 3264{
b15e6682 3265 struct mips_got_entry entry, **loc;
f4416af6 3266 struct mips_got_info *g;
0a44bf69
RS
3267 struct mips_elf_link_hash_table *htab;
3268
3269 htab = mips_elf_hash_table (info);
4dfe6ac6 3270 BFD_ASSERT (htab != NULL);
b15e6682 3271
f4416af6
AO
3272 entry.abfd = NULL;
3273 entry.symndx = -1;
3274 entry.d.address = value;
0f20cc35 3275 entry.tls_type = 0;
f4416af6 3276
a8028dd0 3277 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3278 if (g == NULL)
3279 {
a8028dd0 3280 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3281 BFD_ASSERT (g != NULL);
3282 }
b15e6682 3283
0f20cc35
DJ
3284 /* We might have a symbol, H, if it has been forced local. Use the
3285 global entry then. It doesn't matter whether an entry is local
3286 or global for TLS, since the dynamic linker does not
3287 automatically relocate TLS GOT entries. */
a008ac03 3288 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
3289 if (TLS_RELOC_P (r_type))
3290 {
3291 struct mips_got_entry *p;
3292
3293 entry.abfd = ibfd;
3294 if (r_type == R_MIPS_TLS_LDM)
3295 {
3296 entry.tls_type = GOT_TLS_LDM;
3297 entry.symndx = 0;
3298 entry.d.addend = 0;
3299 }
3300 else if (h == NULL)
3301 {
3302 entry.symndx = r_symndx;
3303 entry.d.addend = 0;
3304 }
3305 else
3306 entry.d.h = h;
3307
3308 p = (struct mips_got_entry *)
3309 htab_find (g->got_entries, &entry);
3310
3311 BFD_ASSERT (p);
3312 return p;
3313 }
3314
b15e6682
AO
3315 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3316 INSERT);
3317 if (*loc)
3318 return *loc;
143d77c5 3319
b15e6682 3320 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 3321 entry.tls_type = 0;
b15e6682
AO
3322
3323 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3324
3325 if (! *loc)
3326 return NULL;
143d77c5 3327
b15e6682
AO
3328 memcpy (*loc, &entry, sizeof entry);
3329
8275b357 3330 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3331 {
f4416af6 3332 (*loc)->gotidx = -1;
b49e97c9
TS
3333 /* We didn't allocate enough space in the GOT. */
3334 (*_bfd_error_handler)
3335 (_("not enough GOT space for local GOT entries"));
3336 bfd_set_error (bfd_error_bad_value);
b15e6682 3337 return NULL;
b49e97c9
TS
3338 }
3339
3340 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3341 (htab->sgot->contents + entry.gotidx));
b15e6682 3342
5c18022e 3343 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3344 if (htab->is_vxworks)
3345 {
3346 Elf_Internal_Rela outrel;
5c18022e 3347 asection *s;
91d6fa6a 3348 bfd_byte *rloc;
0a44bf69 3349 bfd_vma got_address;
0a44bf69
RS
3350
3351 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3352 got_address = (htab->sgot->output_section->vma
3353 + htab->sgot->output_offset
0a44bf69
RS
3354 + entry.gotidx);
3355
91d6fa6a 3356 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3357 outrel.r_offset = got_address;
5c18022e
RS
3358 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3359 outrel.r_addend = value;
91d6fa6a 3360 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3361 }
3362
b15e6682 3363 return *loc;
b49e97c9
TS
3364}
3365
d4596a51
RS
3366/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3367 The number might be exact or a worst-case estimate, depending on how
3368 much information is available to elf_backend_omit_section_dynsym at
3369 the current linking stage. */
3370
3371static bfd_size_type
3372count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3373{
3374 bfd_size_type count;
3375
3376 count = 0;
3377 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3378 {
3379 asection *p;
3380 const struct elf_backend_data *bed;
3381
3382 bed = get_elf_backend_data (output_bfd);
3383 for (p = output_bfd->sections; p ; p = p->next)
3384 if ((p->flags & SEC_EXCLUDE) == 0
3385 && (p->flags & SEC_ALLOC) != 0
3386 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3387 ++count;
3388 }
3389 return count;
3390}
3391
b49e97c9 3392/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3393 appear towards the end. */
b49e97c9 3394
b34976b6 3395static bfd_boolean
d4596a51 3396mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3397{
a8028dd0 3398 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3399 struct mips_elf_hash_sort_data hsd;
3400 struct mips_got_info *g;
b49e97c9 3401
d4596a51
RS
3402 if (elf_hash_table (info)->dynsymcount == 0)
3403 return TRUE;
3404
a8028dd0 3405 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3406 BFD_ASSERT (htab != NULL);
3407
a8028dd0 3408 g = htab->got_info;
d4596a51
RS
3409 if (g == NULL)
3410 return TRUE;
f4416af6 3411
b49e97c9 3412 hsd.low = NULL;
23cc69b6
RS
3413 hsd.max_unref_got_dynindx
3414 = hsd.min_got_dynindx
3415 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3416 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3417 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3418 elf_hash_table (info)),
3419 mips_elf_sort_hash_table_f,
3420 &hsd);
3421
3422 /* There should have been enough room in the symbol table to
44c410de 3423 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3424 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3425 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3426 == elf_hash_table (info)->dynsymcount);
3427 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3428 == g->global_gotno);
b49e97c9
TS
3429
3430 /* Now we know which dynamic symbol has the lowest dynamic symbol
3431 table index in the GOT. */
b49e97c9
TS
3432 g->global_gotsym = hsd.low;
3433
b34976b6 3434 return TRUE;
b49e97c9
TS
3435}
3436
3437/* If H needs a GOT entry, assign it the highest available dynamic
3438 index. Otherwise, assign it the lowest available dynamic
3439 index. */
3440
b34976b6 3441static bfd_boolean
9719ad41 3442mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3443{
9719ad41 3444 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
3445
3446 if (h->root.root.type == bfd_link_hash_warning)
3447 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3448
3449 /* Symbols without dynamic symbol table entries aren't interesting
3450 at all. */
3451 if (h->root.dynindx == -1)
b34976b6 3452 return TRUE;
b49e97c9 3453
634835ae 3454 switch (h->global_got_area)
f4416af6 3455 {
634835ae
RS
3456 case GGA_NONE:
3457 h->root.dynindx = hsd->max_non_got_dynindx++;
3458 break;
0f20cc35 3459
634835ae 3460 case GGA_NORMAL:
0f20cc35
DJ
3461 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3462
b49e97c9
TS
3463 h->root.dynindx = --hsd->min_got_dynindx;
3464 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3465 break;
3466
3467 case GGA_RELOC_ONLY:
3468 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3469
3470 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3471 hsd->low = (struct elf_link_hash_entry *) h;
3472 h->root.dynindx = hsd->max_unref_got_dynindx++;
3473 break;
b49e97c9
TS
3474 }
3475
b34976b6 3476 return TRUE;
b49e97c9
TS
3477}
3478
3479/* If H is a symbol that needs a global GOT entry, but has a dynamic
3480 symbol table index lower than any we've seen to date, record it for
3481 posterity. */
3482
b34976b6 3483static bfd_boolean
9719ad41
RS
3484mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3485 bfd *abfd, struct bfd_link_info *info,
0f20cc35 3486 unsigned char tls_flag)
b49e97c9 3487{
a8028dd0 3488 struct mips_elf_link_hash_table *htab;
634835ae 3489 struct mips_elf_link_hash_entry *hmips;
f4416af6 3490 struct mips_got_entry entry, **loc;
a8028dd0
RS
3491 struct mips_got_info *g;
3492
3493 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3494 BFD_ASSERT (htab != NULL);
3495
634835ae 3496 hmips = (struct mips_elf_link_hash_entry *) h;
f4416af6 3497
b49e97c9
TS
3498 /* A global symbol in the GOT must also be in the dynamic symbol
3499 table. */
7c5fcef7
L
3500 if (h->dynindx == -1)
3501 {
3502 switch (ELF_ST_VISIBILITY (h->other))
3503 {
3504 case STV_INTERNAL:
3505 case STV_HIDDEN:
33bb52fb 3506 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3507 break;
3508 }
c152c796 3509 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3510 return FALSE;
7c5fcef7 3511 }
b49e97c9 3512
86324f90 3513 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3514 g = htab->got_info;
86324f90
EC
3515 BFD_ASSERT (g != NULL);
3516
f4416af6
AO
3517 entry.abfd = abfd;
3518 entry.symndx = -1;
3519 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 3520 entry.tls_type = 0;
f4416af6
AO
3521
3522 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3523 INSERT);
3524
b49e97c9
TS
3525 /* If we've already marked this entry as needing GOT space, we don't
3526 need to do it again. */
f4416af6 3527 if (*loc)
0f20cc35
DJ
3528 {
3529 (*loc)->tls_type |= tls_flag;
3530 return TRUE;
3531 }
f4416af6
AO
3532
3533 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3534
3535 if (! *loc)
3536 return FALSE;
143d77c5 3537
f4416af6 3538 entry.gotidx = -1;
0f20cc35
DJ
3539 entry.tls_type = tls_flag;
3540
f4416af6
AO
3541 memcpy (*loc, &entry, sizeof entry);
3542
0f20cc35 3543 if (tls_flag == 0)
634835ae 3544 hmips->global_got_area = GGA_NORMAL;
b49e97c9 3545
b34976b6 3546 return TRUE;
b49e97c9 3547}
f4416af6
AO
3548
3549/* Reserve space in G for a GOT entry containing the value of symbol
3550 SYMNDX in input bfd ABDF, plus ADDEND. */
3551
3552static bfd_boolean
9719ad41 3553mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
a8028dd0 3554 struct bfd_link_info *info,
0f20cc35 3555 unsigned char tls_flag)
f4416af6 3556{
a8028dd0
RS
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
f4416af6
AO
3559 struct mips_got_entry entry, **loc;
3560
a8028dd0 3561 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3562 BFD_ASSERT (htab != NULL);
3563
a8028dd0
RS
3564 g = htab->got_info;
3565 BFD_ASSERT (g != NULL);
3566
f4416af6
AO
3567 entry.abfd = abfd;
3568 entry.symndx = symndx;
3569 entry.d.addend = addend;
0f20cc35 3570 entry.tls_type = tls_flag;
f4416af6
AO
3571 loc = (struct mips_got_entry **)
3572 htab_find_slot (g->got_entries, &entry, INSERT);
3573
3574 if (*loc)
0f20cc35
DJ
3575 {
3576 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3577 {
3578 g->tls_gotno += 2;
3579 (*loc)->tls_type |= tls_flag;
3580 }
3581 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3582 {
3583 g->tls_gotno += 1;
3584 (*loc)->tls_type |= tls_flag;
3585 }
3586 return TRUE;
3587 }
f4416af6 3588
0f20cc35
DJ
3589 if (tls_flag != 0)
3590 {
3591 entry.gotidx = -1;
3592 entry.tls_type = tls_flag;
3593 if (tls_flag == GOT_TLS_IE)
3594 g->tls_gotno += 1;
3595 else if (tls_flag == GOT_TLS_GD)
3596 g->tls_gotno += 2;
3597 else if (g->tls_ldm_offset == MINUS_ONE)
3598 {
3599 g->tls_ldm_offset = MINUS_TWO;
3600 g->tls_gotno += 2;
3601 }
3602 }
3603 else
3604 {
3605 entry.gotidx = g->local_gotno++;
3606 entry.tls_type = 0;
3607 }
f4416af6
AO
3608
3609 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3610
3611 if (! *loc)
3612 return FALSE;
143d77c5 3613
f4416af6
AO
3614 memcpy (*loc, &entry, sizeof entry);
3615
3616 return TRUE;
3617}
c224138d
RS
3618
3619/* Return the maximum number of GOT page entries required for RANGE. */
3620
3621static bfd_vma
3622mips_elf_pages_for_range (const struct mips_got_page_range *range)
3623{
3624 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3625}
3626
3a3b6725 3627/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3628 that ADDEND is the addend for that relocation.
3629
3630 This function creates an upper bound on the number of GOT slots
3631 required; no attempt is made to combine references to non-overridable
3632 global symbols across multiple input files. */
c224138d
RS
3633
3634static bfd_boolean
a8028dd0
RS
3635mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3636 long symndx, bfd_signed_vma addend)
c224138d 3637{
a8028dd0
RS
3638 struct mips_elf_link_hash_table *htab;
3639 struct mips_got_info *g;
c224138d
RS
3640 struct mips_got_page_entry lookup, *entry;
3641 struct mips_got_page_range **range_ptr, *range;
3642 bfd_vma old_pages, new_pages;
3643 void **loc;
3644
a8028dd0 3645 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3646 BFD_ASSERT (htab != NULL);
3647
a8028dd0
RS
3648 g = htab->got_info;
3649 BFD_ASSERT (g != NULL);
3650
c224138d
RS
3651 /* Find the mips_got_page_entry hash table entry for this symbol. */
3652 lookup.abfd = abfd;
3653 lookup.symndx = symndx;
3654 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3655 if (loc == NULL)
3656 return FALSE;
3657
3658 /* Create a mips_got_page_entry if this is the first time we've
3659 seen the symbol. */
3660 entry = (struct mips_got_page_entry *) *loc;
3661 if (!entry)
3662 {
3663 entry = bfd_alloc (abfd, sizeof (*entry));
3664 if (!entry)
3665 return FALSE;
3666
3667 entry->abfd = abfd;
3668 entry->symndx = symndx;
3669 entry->ranges = NULL;
3670 entry->num_pages = 0;
3671 *loc = entry;
3672 }
3673
3674 /* Skip over ranges whose maximum extent cannot share a page entry
3675 with ADDEND. */
3676 range_ptr = &entry->ranges;
3677 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3678 range_ptr = &(*range_ptr)->next;
3679
3680 /* If we scanned to the end of the list, or found a range whose
3681 minimum extent cannot share a page entry with ADDEND, create
3682 a new singleton range. */
3683 range = *range_ptr;
3684 if (!range || addend < range->min_addend - 0xffff)
3685 {
3686 range = bfd_alloc (abfd, sizeof (*range));
3687 if (!range)
3688 return FALSE;
3689
3690 range->next = *range_ptr;
3691 range->min_addend = addend;
3692 range->max_addend = addend;
3693
3694 *range_ptr = range;
3695 entry->num_pages++;
3696 g->page_gotno++;
3697 return TRUE;
3698 }
3699
3700 /* Remember how many pages the old range contributed. */
3701 old_pages = mips_elf_pages_for_range (range);
3702
3703 /* Update the ranges. */
3704 if (addend < range->min_addend)
3705 range->min_addend = addend;
3706 else if (addend > range->max_addend)
3707 {
3708 if (range->next && addend >= range->next->min_addend - 0xffff)
3709 {
3710 old_pages += mips_elf_pages_for_range (range->next);
3711 range->max_addend = range->next->max_addend;
3712 range->next = range->next->next;
3713 }
3714 else
3715 range->max_addend = addend;
3716 }
3717
3718 /* Record any change in the total estimate. */
3719 new_pages = mips_elf_pages_for_range (range);
3720 if (old_pages != new_pages)
3721 {
3722 entry->num_pages += new_pages - old_pages;
3723 g->page_gotno += new_pages - old_pages;
3724 }
3725
3726 return TRUE;
3727}
33bb52fb
RS
3728
3729/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3730
3731static void
3732mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3733 unsigned int n)
3734{
3735 asection *s;
3736 struct mips_elf_link_hash_table *htab;
3737
3738 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3739 BFD_ASSERT (htab != NULL);
3740
33bb52fb
RS
3741 s = mips_elf_rel_dyn_section (info, FALSE);
3742 BFD_ASSERT (s != NULL);
3743
3744 if (htab->is_vxworks)
3745 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3746 else
3747 {
3748 if (s->size == 0)
3749 {
3750 /* Make room for a null element. */
3751 s->size += MIPS_ELF_REL_SIZE (abfd);
3752 ++s->reloc_count;
3753 }
3754 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3755 }
3756}
3757\f
3758/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3759 if the GOT entry is for an indirect or warning symbol. */
3760
3761static int
3762mips_elf_check_recreate_got (void **entryp, void *data)
3763{
3764 struct mips_got_entry *entry;
3765 bfd_boolean *must_recreate;
3766
3767 entry = (struct mips_got_entry *) *entryp;
3768 must_recreate = (bfd_boolean *) data;
3769 if (entry->abfd != NULL && entry->symndx == -1)
3770 {
3771 struct mips_elf_link_hash_entry *h;
3772
3773 h = entry->d.h;
3774 if (h->root.root.type == bfd_link_hash_indirect
3775 || h->root.root.type == bfd_link_hash_warning)
3776 {
3777 *must_recreate = TRUE;
3778 return 0;
3779 }
3780 }
3781 return 1;
3782}
3783
3784/* A htab_traverse callback for GOT entries. Add all entries to
3785 hash table *DATA, converting entries for indirect and warning
3786 symbols into entries for the target symbol. Set *DATA to null
3787 on error. */
3788
3789static int
3790mips_elf_recreate_got (void **entryp, void *data)
3791{
3792 htab_t *new_got;
3793 struct mips_got_entry *entry;
3794 void **slot;
3795
3796 new_got = (htab_t *) data;
3797 entry = (struct mips_got_entry *) *entryp;
3798 if (entry->abfd != NULL && entry->symndx == -1)
3799 {
3800 struct mips_elf_link_hash_entry *h;
3801
3802 h = entry->d.h;
3803 while (h->root.root.type == bfd_link_hash_indirect
3804 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
3805 {
3806 BFD_ASSERT (h->global_got_area == GGA_NONE);
3807 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3808 }
33bb52fb
RS
3809 entry->d.h = h;
3810 }
3811 slot = htab_find_slot (*new_got, entry, INSERT);
3812 if (slot == NULL)
3813 {
3814 *new_got = NULL;
3815 return 0;
3816 }
3817 if (*slot == NULL)
3818 *slot = entry;
3819 else
3820 free (entry);
3821 return 1;
3822}
3823
3824/* If any entries in G->got_entries are for indirect or warning symbols,
3825 replace them with entries for the target symbol. */
3826
3827static bfd_boolean
3828mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3829{
3830 bfd_boolean must_recreate;
3831 htab_t new_got;
3832
3833 must_recreate = FALSE;
3834 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3835 if (must_recreate)
3836 {
3837 new_got = htab_create (htab_size (g->got_entries),
3838 mips_elf_got_entry_hash,
3839 mips_elf_got_entry_eq, NULL);
3840 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3841 if (new_got == NULL)
3842 return FALSE;
3843
3844 /* Each entry in g->got_entries has either been copied to new_got
3845 or freed. Now delete the hash table itself. */
3846 htab_delete (g->got_entries);
3847 g->got_entries = new_got;
3848 }
3849 return TRUE;
3850}
3851
634835ae 3852/* A mips_elf_link_hash_traverse callback for which DATA points
d4596a51 3853 to a mips_got_info. Count the number of type (3) entries. */
33bb52fb
RS
3854
3855static int
d4596a51 3856mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb
RS
3857{
3858 struct mips_got_info *g;
3859
3860 g = (struct mips_got_info *) data;
d4596a51 3861 if (h->global_got_area != GGA_NONE)
33bb52fb 3862 {
d4596a51
RS
3863 if (h->root.forced_local || h->root.dynindx == -1)
3864 {
3865 /* We no longer need this entry if it was only used for
3866 relocations; those relocations will be against the
3867 null or section symbol instead of H. */
3868 if (h->global_got_area != GGA_RELOC_ONLY)
3869 g->local_gotno++;
3870 h->global_got_area = GGA_NONE;
3871 }
3872 else
23cc69b6
RS
3873 {
3874 g->global_gotno++;
3875 if (h->global_got_area == GGA_RELOC_ONLY)
3876 g->reloc_only_gotno++;
3877 }
33bb52fb
RS
3878 }
3879 return 1;
3880}
f4416af6
AO
3881\f
3882/* Compute the hash value of the bfd in a bfd2got hash entry. */
3883
3884static hashval_t
9719ad41 3885mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
3886{
3887 const struct mips_elf_bfd2got_hash *entry
3888 = (struct mips_elf_bfd2got_hash *)entry_;
3889
3890 return entry->bfd->id;
3891}
3892
3893/* Check whether two hash entries have the same bfd. */
3894
3895static int
9719ad41 3896mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3897{
3898 const struct mips_elf_bfd2got_hash *e1
3899 = (const struct mips_elf_bfd2got_hash *)entry1;
3900 const struct mips_elf_bfd2got_hash *e2
3901 = (const struct mips_elf_bfd2got_hash *)entry2;
3902
3903 return e1->bfd == e2->bfd;
3904}
3905
bad36eac 3906/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
3907 be the master GOT data. */
3908
3909static struct mips_got_info *
9719ad41 3910mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3911{
3912 struct mips_elf_bfd2got_hash e, *p;
3913
3914 if (! g->bfd2got)
3915 return g;
3916
3917 e.bfd = ibfd;
9719ad41 3918 p = htab_find (g->bfd2got, &e);
f4416af6
AO
3919 return p ? p->g : NULL;
3920}
3921
c224138d
RS
3922/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3923 Return NULL if an error occured. */
f4416af6 3924
c224138d
RS
3925static struct mips_got_info *
3926mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3927 bfd *input_bfd)
f4416af6 3928{
f4416af6 3929 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 3930 struct mips_got_info *g;
f4416af6 3931 void **bfdgotp;
143d77c5 3932
c224138d 3933 bfdgot_entry.bfd = input_bfd;
f4416af6 3934 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 3935 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 3936
c224138d 3937 if (bfdgot == NULL)
f4416af6 3938 {
c224138d
RS
3939 bfdgot = ((struct mips_elf_bfd2got_hash *)
3940 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 3941 if (bfdgot == NULL)
c224138d 3942 return NULL;
f4416af6
AO
3943
3944 *bfdgotp = bfdgot;
3945
c224138d
RS
3946 g = ((struct mips_got_info *)
3947 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 3948 if (g == NULL)
c224138d
RS
3949 return NULL;
3950
3951 bfdgot->bfd = input_bfd;
3952 bfdgot->g = g;
f4416af6
AO
3953
3954 g->global_gotsym = NULL;
3955 g->global_gotno = 0;
23cc69b6 3956 g->reloc_only_gotno = 0;
f4416af6 3957 g->local_gotno = 0;
c224138d 3958 g->page_gotno = 0;
f4416af6 3959 g->assigned_gotno = -1;
0f20cc35
DJ
3960 g->tls_gotno = 0;
3961 g->tls_assigned_gotno = 0;
3962 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3963 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3964 mips_elf_multi_got_entry_eq, NULL);
f4416af6 3965 if (g->got_entries == NULL)
c224138d
RS
3966 return NULL;
3967
3968 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3969 mips_got_page_entry_eq, NULL);
3970 if (g->got_page_entries == NULL)
3971 return NULL;
f4416af6
AO
3972
3973 g->bfd2got = NULL;
3974 g->next = NULL;
3975 }
3976
c224138d
RS
3977 return bfdgot->g;
3978}
3979
3980/* A htab_traverse callback for the entries in the master got.
3981 Create one separate got for each bfd that has entries in the global
3982 got, such that we can tell how many local and global entries each
3983 bfd requires. */
3984
3985static int
3986mips_elf_make_got_per_bfd (void **entryp, void *p)
3987{
3988 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3989 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3990 struct mips_got_info *g;
3991
3992 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3993 if (g == NULL)
3994 {
3995 arg->obfd = NULL;
3996 return 0;
3997 }
3998
f4416af6
AO
3999 /* Insert the GOT entry in the bfd's got entry hash table. */
4000 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4001 if (*entryp != NULL)
4002 return 1;
143d77c5 4003
f4416af6
AO
4004 *entryp = entry;
4005
0f20cc35
DJ
4006 if (entry->tls_type)
4007 {
4008 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4009 g->tls_gotno += 2;
4010 if (entry->tls_type & GOT_TLS_IE)
4011 g->tls_gotno += 1;
4012 }
33bb52fb 4013 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
f4416af6
AO
4014 ++g->local_gotno;
4015 else
4016 ++g->global_gotno;
4017
4018 return 1;
4019}
4020
c224138d
RS
4021/* A htab_traverse callback for the page entries in the master got.
4022 Associate each page entry with the bfd's got. */
4023
4024static int
4025mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4026{
4027 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4028 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4029 struct mips_got_info *g;
4030
4031 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4032 if (g == NULL)
4033 {
4034 arg->obfd = NULL;
4035 return 0;
4036 }
4037
4038 /* Insert the GOT entry in the bfd's got entry hash table. */
4039 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4040 if (*entryp != NULL)
4041 return 1;
4042
4043 *entryp = entry;
4044 g->page_gotno += entry->num_pages;
4045 return 1;
4046}
4047
4048/* Consider merging the got described by BFD2GOT with TO, using the
4049 information given by ARG. Return -1 if this would lead to overflow,
4050 1 if they were merged successfully, and 0 if a merge failed due to
4051 lack of memory. (These values are chosen so that nonnegative return
4052 values can be returned by a htab_traverse callback.) */
4053
4054static int
4055mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4056 struct mips_got_info *to,
4057 struct mips_elf_got_per_bfd_arg *arg)
4058{
4059 struct mips_got_info *from = bfd2got->g;
4060 unsigned int estimate;
4061
4062 /* Work out how many page entries we would need for the combined GOT. */
4063 estimate = arg->max_pages;
4064 if (estimate >= from->page_gotno + to->page_gotno)
4065 estimate = from->page_gotno + to->page_gotno;
4066
4067 /* And conservatively estimate how many local, global and TLS entries
4068 would be needed. */
4069 estimate += (from->local_gotno
4070 + from->global_gotno
4071 + from->tls_gotno
4072 + to->local_gotno
4073 + to->global_gotno
4074 + to->tls_gotno);
4075
4076 /* Bail out if the combined GOT might be too big. */
4077 if (estimate > arg->max_count)
4078 return -1;
4079
4080 /* Commit to the merge. Record that TO is now the bfd for this got. */
4081 bfd2got->g = to;
4082
4083 /* Transfer the bfd's got information from FROM to TO. */
4084 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4085 if (arg->obfd == NULL)
4086 return 0;
4087
4088 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4089 if (arg->obfd == NULL)
4090 return 0;
4091
4092 /* We don't have to worry about releasing memory of the actual
4093 got entries, since they're all in the master got_entries hash
4094 table anyway. */
4095 htab_delete (from->got_entries);
4096 htab_delete (from->got_page_entries);
4097 return 1;
4098}
4099
f4416af6
AO
4100/* Attempt to merge gots of different input bfds. Try to use as much
4101 as possible of the primary got, since it doesn't require explicit
4102 dynamic relocations, but don't use bfds that would reference global
4103 symbols out of the addressable range. Failing the primary got,
4104 attempt to merge with the current got, or finish the current got
4105 and then make make the new got current. */
4106
4107static int
9719ad41 4108mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4109{
4110 struct mips_elf_bfd2got_hash *bfd2got
4111 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4112 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4113 struct mips_got_info *g;
4114 unsigned int estimate;
4115 int result;
4116
4117 g = bfd2got->g;
4118
4119 /* Work out the number of page, local and TLS entries. */
4120 estimate = arg->max_pages;
4121 if (estimate > g->page_gotno)
4122 estimate = g->page_gotno;
4123 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4124
4125 /* We place TLS GOT entries after both locals and globals. The globals
4126 for the primary GOT may overflow the normal GOT size limit, so be
4127 sure not to merge a GOT which requires TLS with the primary GOT in that
4128 case. This doesn't affect non-primary GOTs. */
c224138d 4129 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4130
c224138d 4131 if (estimate <= arg->max_count)
f4416af6 4132 {
c224138d
RS
4133 /* If we don't have a primary GOT, use it as
4134 a starting point for the primary GOT. */
4135 if (!arg->primary)
4136 {
4137 arg->primary = bfd2got->g;
4138 return 1;
4139 }
f4416af6 4140
c224138d
RS
4141 /* Try merging with the primary GOT. */
4142 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4143 if (result >= 0)
4144 return result;
f4416af6 4145 }
c224138d 4146
f4416af6 4147 /* If we can merge with the last-created got, do it. */
c224138d 4148 if (arg->current)
f4416af6 4149 {
c224138d
RS
4150 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4151 if (result >= 0)
4152 return result;
f4416af6 4153 }
c224138d 4154
f4416af6
AO
4155 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4156 fits; if it turns out that it doesn't, we'll get relocation
4157 overflows anyway. */
c224138d
RS
4158 g->next = arg->current;
4159 arg->current = g;
0f20cc35
DJ
4160
4161 return 1;
4162}
4163
ead49a57
RS
4164/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4165 is null iff there is just a single GOT. */
0f20cc35
DJ
4166
4167static int
4168mips_elf_initialize_tls_index (void **entryp, void *p)
4169{
4170 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4171 struct mips_got_info *g = p;
ead49a57 4172 bfd_vma next_index;
cbf2cba4 4173 unsigned char tls_type;
0f20cc35
DJ
4174
4175 /* We're only interested in TLS symbols. */
4176 if (entry->tls_type == 0)
4177 return 1;
4178
ead49a57
RS
4179 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4180
4181 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4182 {
ead49a57
RS
4183 /* A type (3) got entry in the single-GOT case. We use the symbol's
4184 hash table entry to track its index. */
4185 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4186 return 1;
4187 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4188 entry->d.h->tls_got_offset = next_index;
cbf2cba4 4189 tls_type = entry->d.h->tls_type;
ead49a57
RS
4190 }
4191 else
4192 {
4193 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 4194 {
ead49a57
RS
4195 /* There are separate mips_got_entry objects for each input bfd
4196 that requires an LDM entry. Make sure that all LDM entries in
4197 a GOT resolve to the same index. */
4198 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4199 {
ead49a57 4200 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4201 return 1;
4202 }
ead49a57 4203 g->tls_ldm_offset = next_index;
0f20cc35 4204 }
ead49a57 4205 entry->gotidx = next_index;
cbf2cba4 4206 tls_type = entry->tls_type;
f4416af6
AO
4207 }
4208
ead49a57 4209 /* Account for the entries we've just allocated. */
cbf2cba4 4210 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 4211 g->tls_assigned_gotno += 2;
cbf2cba4 4212 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
4213 g->tls_assigned_gotno += 1;
4214
f4416af6
AO
4215 return 1;
4216}
4217
4218/* If passed a NULL mips_got_info in the argument, set the marker used
4219 to tell whether a global symbol needs a got entry (in the primary
4220 got) to the given VALUE.
4221
4222 If passed a pointer G to a mips_got_info in the argument (it must
4223 not be the primary GOT), compute the offset from the beginning of
4224 the (primary) GOT section to the entry in G corresponding to the
4225 global symbol. G's assigned_gotno must contain the index of the
4226 first available global GOT entry in G. VALUE must contain the size
4227 of a GOT entry in bytes. For each global GOT entry that requires a
4228 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 4229 marked as not eligible for lazy resolution through a function
f4416af6
AO
4230 stub. */
4231static int
9719ad41 4232mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
4233{
4234 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4235 struct mips_elf_set_global_got_offset_arg *arg
4236 = (struct mips_elf_set_global_got_offset_arg *)p;
4237 struct mips_got_info *g = arg->g;
4238
0f20cc35
DJ
4239 if (g && entry->tls_type != GOT_NORMAL)
4240 arg->needed_relocs +=
4241 mips_tls_got_relocs (arg->info, entry->tls_type,
4242 entry->symndx == -1 ? &entry->d.h->root : NULL);
4243
634835ae
RS
4244 if (entry->abfd != NULL
4245 && entry->symndx == -1
4246 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
4247 {
4248 if (g)
4249 {
4250 BFD_ASSERT (g->global_gotsym == NULL);
4251
4252 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
4253 if (arg->info->shared
4254 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
4255 && entry->d.h->root.def_dynamic
4256 && !entry->d.h->root.def_regular))
f4416af6
AO
4257 ++arg->needed_relocs;
4258 }
4259 else
634835ae 4260 entry->d.h->global_got_area = arg->value;
f4416af6
AO
4261 }
4262
4263 return 1;
4264}
4265
33bb52fb
RS
4266/* A htab_traverse callback for GOT entries for which DATA is the
4267 bfd_link_info. Forbid any global symbols from having traditional
4268 lazy-binding stubs. */
4269
0626d451 4270static int
33bb52fb 4271mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4272{
33bb52fb
RS
4273 struct bfd_link_info *info;
4274 struct mips_elf_link_hash_table *htab;
4275 struct mips_got_entry *entry;
0626d451 4276
33bb52fb
RS
4277 entry = (struct mips_got_entry *) *entryp;
4278 info = (struct bfd_link_info *) data;
4279 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4280 BFD_ASSERT (htab != NULL);
4281
0626d451
RS
4282 if (entry->abfd != NULL
4283 && entry->symndx == -1
33bb52fb 4284 && entry->d.h->needs_lazy_stub)
f4416af6 4285 {
33bb52fb
RS
4286 entry->d.h->needs_lazy_stub = FALSE;
4287 htab->lazy_stub_count--;
f4416af6 4288 }
143d77c5 4289
f4416af6
AO
4290 return 1;
4291}
4292
f4416af6
AO
4293/* Return the offset of an input bfd IBFD's GOT from the beginning of
4294 the primary GOT. */
4295static bfd_vma
9719ad41 4296mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4297{
4298 if (g->bfd2got == NULL)
4299 return 0;
4300
4301 g = mips_elf_got_for_ibfd (g, ibfd);
4302 if (! g)
4303 return 0;
4304
4305 BFD_ASSERT (g->next);
4306
4307 g = g->next;
143d77c5 4308
0f20cc35
DJ
4309 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4310 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4311}
4312
4313/* Turn a single GOT that is too big for 16-bit addressing into
4314 a sequence of GOTs, each one 16-bit addressable. */
4315
4316static bfd_boolean
9719ad41 4317mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4318 asection *got, bfd_size_type pages)
f4416af6 4319{
a8028dd0 4320 struct mips_elf_link_hash_table *htab;
f4416af6
AO
4321 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4322 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 4323 struct mips_got_info *g, *gg;
33bb52fb
RS
4324 unsigned int assign, needed_relocs;
4325 bfd *dynobj;
f4416af6 4326
33bb52fb 4327 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4328 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4329 BFD_ASSERT (htab != NULL);
4330
a8028dd0 4331 g = htab->got_info;
f4416af6 4332 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4333 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4334 if (g->bfd2got == NULL)
4335 return FALSE;
4336
4337 got_per_bfd_arg.bfd2got = g->bfd2got;
4338 got_per_bfd_arg.obfd = abfd;
4339 got_per_bfd_arg.info = info;
4340
4341 /* Count how many GOT entries each input bfd requires, creating a
4342 map from bfd to got info while at that. */
f4416af6
AO
4343 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4344 if (got_per_bfd_arg.obfd == NULL)
4345 return FALSE;
4346
c224138d
RS
4347 /* Also count how many page entries each input bfd requires. */
4348 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4349 &got_per_bfd_arg);
4350 if (got_per_bfd_arg.obfd == NULL)
4351 return FALSE;
4352
f4416af6
AO
4353 got_per_bfd_arg.current = NULL;
4354 got_per_bfd_arg.primary = NULL;
0a44bf69 4355 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4356 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4357 - htab->reserved_gotno);
c224138d 4358 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
4359 /* The number of globals that will be included in the primary GOT.
4360 See the calls to mips_elf_set_global_got_offset below for more
4361 information. */
4362 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4363
4364 /* Try to merge the GOTs of input bfds together, as long as they
4365 don't seem to exceed the maximum GOT size, choosing one of them
4366 to be the primary GOT. */
4367 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4368 if (got_per_bfd_arg.obfd == NULL)
4369 return FALSE;
4370
0f20cc35 4371 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
4372 if (got_per_bfd_arg.primary == NULL)
4373 {
4374 g->next = (struct mips_got_info *)
4375 bfd_alloc (abfd, sizeof (struct mips_got_info));
4376 if (g->next == NULL)
4377 return FALSE;
4378
4379 g->next->global_gotsym = NULL;
4380 g->next->global_gotno = 0;
23cc69b6 4381 g->next->reloc_only_gotno = 0;
f4416af6 4382 g->next->local_gotno = 0;
c224138d 4383 g->next->page_gotno = 0;
0f20cc35 4384 g->next->tls_gotno = 0;
f4416af6 4385 g->next->assigned_gotno = 0;
0f20cc35
DJ
4386 g->next->tls_assigned_gotno = 0;
4387 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
4388 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4389 mips_elf_multi_got_entry_eq,
9719ad41 4390 NULL);
f4416af6
AO
4391 if (g->next->got_entries == NULL)
4392 return FALSE;
c224138d
RS
4393 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4394 mips_got_page_entry_eq,
4395 NULL);
4396 if (g->next->got_page_entries == NULL)
4397 return FALSE;
f4416af6
AO
4398 g->next->bfd2got = NULL;
4399 }
4400 else
4401 g->next = got_per_bfd_arg.primary;
4402 g->next->next = got_per_bfd_arg.current;
4403
4404 /* GG is now the master GOT, and G is the primary GOT. */
4405 gg = g;
4406 g = g->next;
4407
4408 /* Map the output bfd to the primary got. That's what we're going
4409 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4410 didn't mark in check_relocs, and we want a quick way to find it.
4411 We can't just use gg->next because we're going to reverse the
4412 list. */
4413 {
4414 struct mips_elf_bfd2got_hash *bfdgot;
4415 void **bfdgotp;
143d77c5 4416
f4416af6
AO
4417 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4418 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4419
4420 if (bfdgot == NULL)
4421 return FALSE;
4422
4423 bfdgot->bfd = abfd;
4424 bfdgot->g = g;
4425 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4426
4427 BFD_ASSERT (*bfdgotp == NULL);
4428 *bfdgotp = bfdgot;
4429 }
4430
634835ae
RS
4431 /* Every symbol that is referenced in a dynamic relocation must be
4432 present in the primary GOT, so arrange for them to appear after
4433 those that are actually referenced. */
23cc69b6 4434 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4435 g->global_gotno = gg->global_gotno;
f4416af6 4436
f4416af6 4437 set_got_offset_arg.g = NULL;
634835ae 4438 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
4439 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4440 &set_got_offset_arg);
634835ae 4441 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
4442 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4443 &set_got_offset_arg);
f4416af6
AO
4444
4445 /* Now go through the GOTs assigning them offset ranges.
4446 [assigned_gotno, local_gotno[ will be set to the range of local
4447 entries in each GOT. We can then compute the end of a GOT by
4448 adding local_gotno to global_gotno. We reverse the list and make
4449 it circular since then we'll be able to quickly compute the
4450 beginning of a GOT, by computing the end of its predecessor. To
4451 avoid special cases for the primary GOT, while still preserving
4452 assertions that are valid for both single- and multi-got links,
4453 we arrange for the main got struct to have the right number of
4454 global entries, but set its local_gotno such that the initial
4455 offset of the primary GOT is zero. Remember that the primary GOT
4456 will become the last item in the circular linked list, so it
4457 points back to the master GOT. */
4458 gg->local_gotno = -g->global_gotno;
4459 gg->global_gotno = g->global_gotno;
0f20cc35 4460 gg->tls_gotno = 0;
f4416af6
AO
4461 assign = 0;
4462 gg->next = gg;
4463
4464 do
4465 {
4466 struct mips_got_info *gn;
4467
861fb55a 4468 assign += htab->reserved_gotno;
f4416af6 4469 g->assigned_gotno = assign;
c224138d
RS
4470 g->local_gotno += assign;
4471 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4472 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4473
ead49a57
RS
4474 /* Take g out of the direct list, and push it onto the reversed
4475 list that gg points to. g->next is guaranteed to be nonnull after
4476 this operation, as required by mips_elf_initialize_tls_index. */
4477 gn = g->next;
4478 g->next = gg->next;
4479 gg->next = g;
4480
0f20cc35
DJ
4481 /* Set up any TLS entries. We always place the TLS entries after
4482 all non-TLS entries. */
4483 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4484 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 4485
ead49a57 4486 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4487 g = gn;
0626d451 4488
33bb52fb
RS
4489 /* Forbid global symbols in every non-primary GOT from having
4490 lazy-binding stubs. */
0626d451 4491 if (g)
33bb52fb 4492 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4493 }
4494 while (g);
4495
eea6121a 4496 got->size = (gg->next->local_gotno
33bb52fb
RS
4497 + gg->next->global_gotno
4498 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4499
4500 needed_relocs = 0;
4501 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4502 set_got_offset_arg.info = info;
4503 for (g = gg->next; g && g->next != gg; g = g->next)
4504 {
4505 unsigned int save_assign;
4506
4507 /* Assign offsets to global GOT entries. */
4508 save_assign = g->assigned_gotno;
4509 g->assigned_gotno = g->local_gotno;
4510 set_got_offset_arg.g = g;
4511 set_got_offset_arg.needed_relocs = 0;
4512 htab_traverse (g->got_entries,
4513 mips_elf_set_global_got_offset,
4514 &set_got_offset_arg);
4515 needed_relocs += set_got_offset_arg.needed_relocs;
4516 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4517
4518 g->assigned_gotno = save_assign;
4519 if (info->shared)
4520 {
4521 needed_relocs += g->local_gotno - g->assigned_gotno;
4522 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4523 + g->next->global_gotno
4524 + g->next->tls_gotno
861fb55a 4525 + htab->reserved_gotno);
33bb52fb
RS
4526 }
4527 }
4528
4529 if (needed_relocs)
4530 mips_elf_allocate_dynamic_relocations (dynobj, info,
4531 needed_relocs);
143d77c5 4532
f4416af6
AO
4533 return TRUE;
4534}
143d77c5 4535
b49e97c9
TS
4536\f
4537/* Returns the first relocation of type r_type found, beginning with
4538 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4539
4540static const Elf_Internal_Rela *
9719ad41
RS
4541mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4542 const Elf_Internal_Rela *relocation,
4543 const Elf_Internal_Rela *relend)
b49e97c9 4544{
c000e262
TS
4545 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4546
b49e97c9
TS
4547 while (relocation < relend)
4548 {
c000e262
TS
4549 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4550 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4551 return relocation;
4552
4553 ++relocation;
4554 }
4555
4556 /* We didn't find it. */
b49e97c9
TS
4557 return NULL;
4558}
4559
4560/* Return whether a relocation is against a local symbol. */
4561
b34976b6 4562static bfd_boolean
9719ad41
RS
4563mips_elf_local_relocation_p (bfd *input_bfd,
4564 const Elf_Internal_Rela *relocation,
4565 asection **local_sections,
4566 bfd_boolean check_forced)
b49e97c9
TS
4567{
4568 unsigned long r_symndx;
4569 Elf_Internal_Shdr *symtab_hdr;
4570 struct mips_elf_link_hash_entry *h;
4571 size_t extsymoff;
4572
4573 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4574 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4575 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4576
4577 if (r_symndx < extsymoff)
b34976b6 4578 return TRUE;
b49e97c9 4579 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4580 return TRUE;
b49e97c9
TS
4581
4582 if (check_forced)
4583 {
4584 /* Look up the hash table to check whether the symbol
4585 was forced local. */
4586 h = (struct mips_elf_link_hash_entry *)
4587 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4588 /* Find the real hash-table entry for this symbol. */
4589 while (h->root.root.type == bfd_link_hash_indirect
4590 || h->root.root.type == bfd_link_hash_warning)
4591 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 4592 if (h->root.forced_local)
b34976b6 4593 return TRUE;
b49e97c9
TS
4594 }
4595
b34976b6 4596 return FALSE;
b49e97c9
TS
4597}
4598\f
4599/* Sign-extend VALUE, which has the indicated number of BITS. */
4600
a7ebbfdf 4601bfd_vma
9719ad41 4602_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4603{
4604 if (value & ((bfd_vma) 1 << (bits - 1)))
4605 /* VALUE is negative. */
4606 value |= ((bfd_vma) - 1) << bits;
4607
4608 return value;
4609}
4610
4611/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4612 range expressible by a signed number with the indicated number of
b49e97c9
TS
4613 BITS. */
4614
b34976b6 4615static bfd_boolean
9719ad41 4616mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4617{
4618 bfd_signed_vma svalue = (bfd_signed_vma) value;
4619
4620 if (svalue > (1 << (bits - 1)) - 1)
4621 /* The value is too big. */
b34976b6 4622 return TRUE;
b49e97c9
TS
4623 else if (svalue < -(1 << (bits - 1)))
4624 /* The value is too small. */
b34976b6 4625 return TRUE;
b49e97c9
TS
4626
4627 /* All is well. */
b34976b6 4628 return FALSE;
b49e97c9
TS
4629}
4630
4631/* Calculate the %high function. */
4632
4633static bfd_vma
9719ad41 4634mips_elf_high (bfd_vma value)
b49e97c9
TS
4635{
4636 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4637}
4638
4639/* Calculate the %higher function. */
4640
4641static bfd_vma
9719ad41 4642mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4643{
4644#ifdef BFD64
4645 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4646#else
4647 abort ();
c5ae1840 4648 return MINUS_ONE;
b49e97c9
TS
4649#endif
4650}
4651
4652/* Calculate the %highest function. */
4653
4654static bfd_vma
9719ad41 4655mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4656{
4657#ifdef BFD64
b15e6682 4658 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4659#else
4660 abort ();
c5ae1840 4661 return MINUS_ONE;
b49e97c9
TS
4662#endif
4663}
4664\f
4665/* Create the .compact_rel section. */
4666
b34976b6 4667static bfd_boolean
9719ad41
RS
4668mips_elf_create_compact_rel_section
4669 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4670{
4671 flagword flags;
4672 register asection *s;
4673
4674 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4675 {
4676 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4677 | SEC_READONLY);
4678
3496cb2a 4679 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4680 if (s == NULL
b49e97c9
TS
4681 || ! bfd_set_section_alignment (abfd, s,
4682 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4683 return FALSE;
b49e97c9 4684
eea6121a 4685 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4686 }
4687
b34976b6 4688 return TRUE;
b49e97c9
TS
4689}
4690
4691/* Create the .got section to hold the global offset table. */
4692
b34976b6 4693static bfd_boolean
23cc69b6 4694mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4695{
4696 flagword flags;
4697 register asection *s;
4698 struct elf_link_hash_entry *h;
14a793b2 4699 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4700 struct mips_got_info *g;
4701 bfd_size_type amt;
0a44bf69
RS
4702 struct mips_elf_link_hash_table *htab;
4703
4704 htab = mips_elf_hash_table (info);
4dfe6ac6 4705 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4706
4707 /* This function may be called more than once. */
23cc69b6
RS
4708 if (htab->sgot)
4709 return TRUE;
b49e97c9
TS
4710
4711 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4712 | SEC_LINKER_CREATED);
4713
72b4917c
TS
4714 /* We have to use an alignment of 2**4 here because this is hardcoded
4715 in the function stub generation and in the linker script. */
3496cb2a 4716 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 4717 if (s == NULL
72b4917c 4718 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4719 return FALSE;
a8028dd0 4720 htab->sgot = s;
b49e97c9
TS
4721
4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4723 linker script because we don't want to define the symbol if we
4724 are not creating a global offset table. */
14a793b2 4725 bh = NULL;
b49e97c9
TS
4726 if (! (_bfd_generic_link_add_one_symbol
4727 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4728 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4729 return FALSE;
14a793b2
AM
4730
4731 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4732 h->non_elf = 0;
4733 h->def_regular = 1;
b49e97c9 4734 h->type = STT_OBJECT;
d329bcd1 4735 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4736
4737 if (info->shared
c152c796 4738 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4739 return FALSE;
b49e97c9 4740
b49e97c9 4741 amt = sizeof (struct mips_got_info);
9719ad41 4742 g = bfd_alloc (abfd, amt);
b49e97c9 4743 if (g == NULL)
b34976b6 4744 return FALSE;
b49e97c9 4745 g->global_gotsym = NULL;
e3d54347 4746 g->global_gotno = 0;
23cc69b6 4747 g->reloc_only_gotno = 0;
0f20cc35 4748 g->tls_gotno = 0;
861fb55a 4749 g->local_gotno = 0;
c224138d 4750 g->page_gotno = 0;
861fb55a 4751 g->assigned_gotno = 0;
f4416af6
AO
4752 g->bfd2got = NULL;
4753 g->next = NULL;
0f20cc35 4754 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4755 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4756 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4757 if (g->got_entries == NULL)
4758 return FALSE;
c224138d
RS
4759 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4760 mips_got_page_entry_eq, NULL);
4761 if (g->got_page_entries == NULL)
4762 return FALSE;
a8028dd0 4763 htab->got_info = g;
f0abc2a1 4764 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4765 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4766
861fb55a
DJ
4767 /* We also need a .got.plt section when generating PLTs. */
4768 s = bfd_make_section_with_flags (abfd, ".got.plt",
4769 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4770 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4771 if (s == NULL)
4772 return FALSE;
4773 htab->sgotplt = s;
0a44bf69 4774
b34976b6 4775 return TRUE;
b49e97c9 4776}
b49e97c9 4777\f
0a44bf69
RS
4778/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779 __GOTT_INDEX__ symbols. These symbols are only special for
4780 shared objects; they are not used in executables. */
4781
4782static bfd_boolean
4783is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4784{
4785 return (mips_elf_hash_table (info)->is_vxworks
4786 && info->shared
4787 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4788 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4789}
861fb55a
DJ
4790
4791/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792 require an la25 stub. See also mips_elf_local_pic_function_p,
4793 which determines whether the destination function ever requires a
4794 stub. */
4795
4796static bfd_boolean
4797mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4798{
4799 /* We specifically ignore branches and jumps from EF_PIC objects,
4800 where the onus is on the compiler or programmer to perform any
4801 necessary initialization of $25. Sometimes such initialization
4802 is unnecessary; for example, -mno-shared functions do not use
4803 the incoming value of $25, and may therefore be called directly. */
4804 if (PIC_OBJECT_P (input_bfd))
4805 return FALSE;
4806
4807 switch (r_type)
4808 {
4809 case R_MIPS_26:
4810 case R_MIPS_PC16:
4811 case R_MIPS16_26:
4812 return TRUE;
4813
4814 default:
4815 return FALSE;
4816 }
4817}
0a44bf69 4818\f
b49e97c9
TS
4819/* Calculate the value produced by the RELOCATION (which comes from
4820 the INPUT_BFD). The ADDEND is the addend to use for this
4821 RELOCATION; RELOCATION->R_ADDEND is ignored.
4822
4823 The result of the relocation calculation is stored in VALUEP.
38a7df63
CF
4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825 is a MIPS16 jump to non-MIPS16 code, or vice versa.
b49e97c9
TS
4826
4827 This function returns bfd_reloc_continue if the caller need take no
4828 further action regarding this relocation, bfd_reloc_notsupported if
4829 something goes dramatically wrong, bfd_reloc_overflow if an
4830 overflow occurs, and bfd_reloc_ok to indicate success. */
4831
4832static bfd_reloc_status_type
9719ad41
RS
4833mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4834 asection *input_section,
4835 struct bfd_link_info *info,
4836 const Elf_Internal_Rela *relocation,
4837 bfd_vma addend, reloc_howto_type *howto,
4838 Elf_Internal_Sym *local_syms,
4839 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
4840 const char **namep,
4841 bfd_boolean *cross_mode_jump_p,
9719ad41 4842 bfd_boolean save_addend)
b49e97c9
TS
4843{
4844 /* The eventual value we will return. */
4845 bfd_vma value;
4846 /* The address of the symbol against which the relocation is
4847 occurring. */
4848 bfd_vma symbol = 0;
4849 /* The final GP value to be used for the relocatable, executable, or
4850 shared object file being produced. */
0a61c8c2 4851 bfd_vma gp;
b49e97c9
TS
4852 /* The place (section offset or address) of the storage unit being
4853 relocated. */
4854 bfd_vma p;
4855 /* The value of GP used to create the relocatable object. */
0a61c8c2 4856 bfd_vma gp0;
b49e97c9
TS
4857 /* The offset into the global offset table at which the address of
4858 the relocation entry symbol, adjusted by the addend, resides
4859 during execution. */
4860 bfd_vma g = MINUS_ONE;
4861 /* The section in which the symbol referenced by the relocation is
4862 located. */
4863 asection *sec = NULL;
4864 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4865 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4866 symbol. */
b34976b6
AM
4867 bfd_boolean local_p, was_local_p;
4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4869 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
4870 /* TRUE if the symbol referred to by this relocation is
4871 "__gnu_local_gp". */
4872 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
4873 Elf_Internal_Shdr *symtab_hdr;
4874 size_t extsymoff;
4875 unsigned long r_symndx;
4876 int r_type;
b34976b6 4877 /* TRUE if overflow occurred during the calculation of the
b49e97c9 4878 relocation value. */
b34976b6
AM
4879 bfd_boolean overflowed_p;
4880 /* TRUE if this relocation refers to a MIPS16 function. */
4881 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
4882 struct mips_elf_link_hash_table *htab;
4883 bfd *dynobj;
4884
4885 dynobj = elf_hash_table (info)->dynobj;
4886 htab = mips_elf_hash_table (info);
4dfe6ac6 4887 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4888
4889 /* Parse the relocation. */
4890 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4891 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4892 p = (input_section->output_section->vma
4893 + input_section->output_offset
4894 + relocation->r_offset);
4895
4896 /* Assume that there will be no overflow. */
b34976b6 4897 overflowed_p = FALSE;
b49e97c9
TS
4898
4899 /* Figure out whether or not the symbol is local, and get the offset
4900 used in the array of hash table entries. */
4901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4902 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4903 local_sections, FALSE);
bce03d3d 4904 was_local_p = local_p;
b49e97c9
TS
4905 if (! elf_bad_symtab (input_bfd))
4906 extsymoff = symtab_hdr->sh_info;
4907 else
4908 {
4909 /* The symbol table does not follow the rule that local symbols
4910 must come before globals. */
4911 extsymoff = 0;
4912 }
4913
4914 /* Figure out the value of the symbol. */
4915 if (local_p)
4916 {
4917 Elf_Internal_Sym *sym;
4918
4919 sym = local_syms + r_symndx;
4920 sec = local_sections[r_symndx];
4921
4922 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
4923 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4924 || (sec->flags & SEC_MERGE))
b49e97c9 4925 symbol += sym->st_value;
d4df96e6
L
4926 if ((sec->flags & SEC_MERGE)
4927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4928 {
4929 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4930 addend -= symbol;
4931 addend += sec->output_section->vma + sec->output_offset;
4932 }
b49e97c9
TS
4933
4934 /* MIPS16 text labels should be treated as odd. */
30c09090 4935 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
4936 ++symbol;
4937
4938 /* Record the name of this symbol, for our caller. */
4939 *namep = bfd_elf_string_from_elf_section (input_bfd,
4940 symtab_hdr->sh_link,
4941 sym->st_name);
4942 if (*namep == '\0')
4943 *namep = bfd_section_name (input_bfd, sec);
4944
30c09090 4945 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
b49e97c9
TS
4946 }
4947 else
4948 {
560e09e9
NC
4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4950
b49e97c9
TS
4951 /* For global symbols we look up the symbol in the hash-table. */
4952 h = ((struct mips_elf_link_hash_entry *)
4953 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4954 /* Find the real hash-table entry for this symbol. */
4955 while (h->root.root.type == bfd_link_hash_indirect
4956 || h->root.root.type == bfd_link_hash_warning)
4957 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4958
4959 /* Record the name of this symbol, for our caller. */
4960 *namep = h->root.root.root.string;
4961
4962 /* See if this is the special _gp_disp symbol. Note that such a
4963 symbol must always be a global symbol. */
560e09e9 4964 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4965 && ! NEWABI_P (input_bfd))
4966 {
4967 /* Relocations against _gp_disp are permitted only with
4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 4969 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
4970 return bfd_reloc_notsupported;
4971
b34976b6 4972 gp_disp_p = TRUE;
b49e97c9 4973 }
bbe506e8
TS
4974 /* See if this is the special _gp symbol. Note that such a
4975 symbol must always be a global symbol. */
4976 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4977 gnu_local_gp_p = TRUE;
4978
4979
b49e97c9
TS
4980 /* If this symbol is defined, calculate its address. Note that
4981 _gp_disp is a magic symbol, always implicitly defined by the
4982 linker, so it's inappropriate to check to see whether or not
4983 its defined. */
4984 else if ((h->root.root.type == bfd_link_hash_defined
4985 || h->root.root.type == bfd_link_hash_defweak)
4986 && h->root.root.u.def.section)
4987 {
4988 sec = h->root.root.u.def.section;
4989 if (sec->output_section)
4990 symbol = (h->root.root.u.def.value
4991 + sec->output_section->vma
4992 + sec->output_offset);
4993 else
4994 symbol = h->root.root.u.def.value;
4995 }
4996 else if (h->root.root.type == bfd_link_hash_undefweak)
4997 /* We allow relocations against undefined weak symbols, giving
4998 it the value zero, so that you can undefined weak functions
4999 and check to see if they exist by looking at their
5000 addresses. */
5001 symbol = 0;
59c2e50f 5002 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5003 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5004 symbol = 0;
a4d0f181
TS
5005 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5007 {
5008 /* If this is a dynamic link, we should have created a
5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 in in _bfd_mips_elf_create_dynamic_sections.
5011 Otherwise, we should define the symbol with a value of 0.
5012 FIXME: It should probably get into the symbol table
5013 somehow as well. */
5014 BFD_ASSERT (! info->shared);
5015 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5016 symbol = 0;
5017 }
5e2b0d47
NC
5018 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5019 {
5020 /* This is an optional symbol - an Irix specific extension to the
5021 ELF spec. Ignore it for now.
5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 than simply ignoring them, but we do not handle this for now.
5024 For information see the "64-bit ELF Object File Specification"
5025 which is available from here:
5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5027 symbol = 0;
5028 }
e7e2196d
MR
5029 else if ((*info->callbacks->undefined_symbol)
5030 (info, h->root.root.root.string, input_bfd,
5031 input_section, relocation->r_offset,
5032 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5033 || ELF_ST_VISIBILITY (h->root.other)))
5034 {
5035 return bfd_reloc_undefined;
5036 }
b49e97c9
TS
5037 else
5038 {
e7e2196d 5039 return bfd_reloc_notsupported;
b49e97c9
TS
5040 }
5041
30c09090 5042 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
b49e97c9
TS
5043 }
5044
738e5348
RS
5045 /* If this is a reference to a 16-bit function with a stub, we need
5046 to redirect the relocation to the stub unless:
5047
5048 (a) the relocation is for a MIPS16 JAL;
5049
5050 (b) the relocation is for a MIPS16 PIC call, and there are no
5051 non-MIPS16 uses of the GOT slot; or
5052
5053 (c) the section allows direct references to MIPS16 functions. */
5054 if (r_type != R_MIPS16_26
5055 && !info->relocatable
5056 && ((h != NULL
5057 && h->fn_stub != NULL
5058 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5059 || (local_p
5060 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5062 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5063 {
5064 /* This is a 32- or 64-bit call to a 16-bit function. We should
5065 have already noticed that we were going to need the
5066 stub. */
5067 if (local_p)
5068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5069 else
5070 {
5071 BFD_ASSERT (h->need_fn_stub);
5072 sec = h->fn_stub;
5073 }
5074
5075 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
5076 /* The target is 16-bit, but the stub isn't. */
5077 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5078 }
5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5080 need to redirect the call to the stub. Note that we specifically
5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082 use an indirect stub instead. */
1049f94e 5083 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5084 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5085 || (local_p
5086 && elf_tdata (input_bfd)->local_call_stubs != NULL
5087 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5088 && !target_is_16_bit_code_p)
5089 {
b9d58d71
TS
5090 if (local_p)
5091 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5092 else
b49e97c9 5093 {
b9d58d71
TS
5094 /* If both call_stub and call_fp_stub are defined, we can figure
5095 out which one to use by checking which one appears in the input
5096 file. */
5097 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5098 {
b9d58d71
TS
5099 asection *o;
5100
5101 sec = NULL;
5102 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5103 {
b9d58d71
TS
5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5105 {
5106 sec = h->call_fp_stub;
5107 break;
5108 }
b49e97c9 5109 }
b9d58d71
TS
5110 if (sec == NULL)
5111 sec = h->call_stub;
b49e97c9 5112 }
b9d58d71 5113 else if (h->call_stub != NULL)
b49e97c9 5114 sec = h->call_stub;
b9d58d71
TS
5115 else
5116 sec = h->call_fp_stub;
5117 }
b49e97c9 5118
eea6121a 5119 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5120 symbol = sec->output_section->vma + sec->output_offset;
5121 }
861fb55a
DJ
5122 /* If this is a direct call to a PIC function, redirect to the
5123 non-PIC stub. */
5124 else if (h != NULL && h->la25_stub
5125 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5126 symbol = (h->la25_stub->stub_section->output_section->vma
5127 + h->la25_stub->stub_section->output_offset
5128 + h->la25_stub->offset);
b49e97c9
TS
5129
5130 /* Calls from 16-bit code to 32-bit code and vice versa require the
38a7df63
CF
5131 mode change. */
5132 *cross_mode_jump_p = !info->relocatable
5133 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5134 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5135 && target_is_16_bit_code_p));
b49e97c9
TS
5136
5137 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 5138 local_sections, TRUE);
b49e97c9 5139
0a61c8c2
RS
5140 gp0 = _bfd_get_gp_value (input_bfd);
5141 gp = _bfd_get_gp_value (abfd);
23cc69b6 5142 if (htab->got_info)
a8028dd0 5143 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5144
5145 if (gnu_local_gp_p)
5146 symbol = gp;
5147
5148 /* If we haven't already determined the GOT offset, oand we're going
5149 to need it, get it now. */
b49e97c9
TS
5150 switch (r_type)
5151 {
0fdc1bf1 5152 case R_MIPS_GOT_PAGE:
93a2b7ae 5153 case R_MIPS_GOT_OFST:
d25aed71
RS
5154 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5155 bind locally. */
5156 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 5157 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
5158 break;
5159 /* Fall through. */
5160
738e5348
RS
5161 case R_MIPS16_CALL16:
5162 case R_MIPS16_GOT16:
b49e97c9
TS
5163 case R_MIPS_CALL16:
5164 case R_MIPS_GOT16:
5165 case R_MIPS_GOT_DISP:
5166 case R_MIPS_GOT_HI16:
5167 case R_MIPS_CALL_HI16:
5168 case R_MIPS_GOT_LO16:
5169 case R_MIPS_CALL_LO16:
0f20cc35
DJ
5170 case R_MIPS_TLS_GD:
5171 case R_MIPS_TLS_GOTTPREL:
5172 case R_MIPS_TLS_LDM:
b49e97c9 5173 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
5174 if (r_type == R_MIPS_TLS_LDM)
5175 {
0a44bf69 5176 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5177 0, 0, NULL, r_type);
0f20cc35
DJ
5178 if (g == MINUS_ONE)
5179 return bfd_reloc_outofrange;
5180 }
5181 else if (!local_p)
b49e97c9 5182 {
0a44bf69
RS
5183 /* On VxWorks, CALL relocations should refer to the .got.plt
5184 entry, which is initialized to point at the PLT stub. */
5185 if (htab->is_vxworks
5186 && (r_type == R_MIPS_CALL_HI16
5187 || r_type == R_MIPS_CALL_LO16
738e5348 5188 || call16_reloc_p (r_type)))
0a44bf69
RS
5189 {
5190 BFD_ASSERT (addend == 0);
5191 BFD_ASSERT (h->root.needs_plt);
5192 g = mips_elf_gotplt_index (info, &h->root);
5193 }
5194 else
b49e97c9 5195 {
0a44bf69
RS
5196 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5197 GOT_PAGE relocation that decays to GOT_DISP because the
5198 symbol turns out to be global. The addend is then added
5199 as GOT_OFST. */
5200 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5201 g = mips_elf_global_got_index (dynobj, input_bfd,
5202 &h->root, r_type, info);
5203 if (h->tls_type == GOT_NORMAL
5204 && (! elf_hash_table(info)->dynamic_sections_created
5205 || (info->shared
5206 && (info->symbolic || h->root.forced_local)
5207 && h->root.def_regular)))
a8028dd0
RS
5208 /* This is a static link or a -Bsymbolic link. The
5209 symbol is defined locally, or was forced to be local.
5210 We must initialize this entry in the GOT. */
5211 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5212 }
5213 }
0a44bf69 5214 else if (!htab->is_vxworks
738e5348 5215 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5216 /* The calculation below does not involve "g". */
b49e97c9
TS
5217 break;
5218 else
5219 {
5c18022e 5220 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5221 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5222 if (g == MINUS_ONE)
5223 return bfd_reloc_outofrange;
5224 }
5225
5226 /* Convert GOT indices to actual offsets. */
a8028dd0 5227 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5228 break;
b49e97c9
TS
5229 }
5230
0a44bf69
RS
5231 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5232 symbols are resolved by the loader. Add them to .rela.dyn. */
5233 if (h != NULL && is_gott_symbol (info, &h->root))
5234 {
5235 Elf_Internal_Rela outrel;
5236 bfd_byte *loc;
5237 asection *s;
5238
5239 s = mips_elf_rel_dyn_section (info, FALSE);
5240 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5241
5242 outrel.r_offset = (input_section->output_section->vma
5243 + input_section->output_offset
5244 + relocation->r_offset);
5245 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5246 outrel.r_addend = addend;
5247 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5248
5249 /* If we've written this relocation for a readonly section,
5250 we need to set DF_TEXTREL again, so that we do not delete the
5251 DT_TEXTREL tag. */
5252 if (MIPS_ELF_READONLY_SECTION (input_section))
5253 info->flags |= DF_TEXTREL;
5254
0a44bf69
RS
5255 *valuep = 0;
5256 return bfd_reloc_ok;
5257 }
5258
b49e97c9
TS
5259 /* Figure out what kind of relocation is being performed. */
5260 switch (r_type)
5261 {
5262 case R_MIPS_NONE:
5263 return bfd_reloc_continue;
5264
5265 case R_MIPS_16:
a7ebbfdf 5266 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5267 overflowed_p = mips_elf_overflow_p (value, 16);
5268 break;
5269
5270 case R_MIPS_32:
5271 case R_MIPS_REL32:
5272 case R_MIPS_64:
5273 if ((info->shared
861fb55a 5274 || (htab->root.dynamic_sections_created
b49e97c9 5275 && h != NULL
f5385ebf 5276 && h->root.def_dynamic
861fb55a
DJ
5277 && !h->root.def_regular
5278 && !h->has_static_relocs))
b49e97c9 5279 && r_symndx != 0
9a59ad6b
DJ
5280 && (h == NULL
5281 || h->root.root.type != bfd_link_hash_undefweak
5282 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5283 && (input_section->flags & SEC_ALLOC) != 0)
5284 {
861fb55a 5285 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5286 where the symbol will end up. So, we create a relocation
5287 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5288 linker. We must do the same for executable references to
5289 shared library symbols, unless we've decided to use copy
5290 relocs or PLTs instead. */
b49e97c9
TS
5291 value = addend;
5292 if (!mips_elf_create_dynamic_relocation (abfd,
5293 info,
5294 relocation,
5295 h,
5296 sec,
5297 symbol,
5298 &value,
5299 input_section))
5300 return bfd_reloc_undefined;
5301 }
5302 else
5303 {
5304 if (r_type != R_MIPS_REL32)
5305 value = symbol + addend;
5306 else
5307 value = addend;
5308 }
5309 value &= howto->dst_mask;
092dcd75
CD
5310 break;
5311
5312 case R_MIPS_PC32:
5313 value = symbol + addend - p;
5314 value &= howto->dst_mask;
b49e97c9
TS
5315 break;
5316
b49e97c9
TS
5317 case R_MIPS16_26:
5318 /* The calculation for R_MIPS16_26 is just the same as for an
5319 R_MIPS_26. It's only the storage of the relocated field into
5320 the output file that's different. That's handled in
5321 mips_elf_perform_relocation. So, we just fall through to the
5322 R_MIPS_26 case here. */
5323 case R_MIPS_26:
5324 if (local_p)
30ac9238 5325 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 5326 else
728b2f21
ILT
5327 {
5328 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
5329 if (h->root.root.type != bfd_link_hash_undefweak)
5330 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 5331 }
b49e97c9
TS
5332 value &= howto->dst_mask;
5333 break;
5334
0f20cc35
DJ
5335 case R_MIPS_TLS_DTPREL_HI16:
5336 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5337 & howto->dst_mask);
5338 break;
5339
5340 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5341 case R_MIPS_TLS_DTPREL32:
5342 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
5343 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5344 break;
5345
5346 case R_MIPS_TLS_TPREL_HI16:
5347 value = (mips_elf_high (addend + symbol - tprel_base (info))
5348 & howto->dst_mask);
5349 break;
5350
5351 case R_MIPS_TLS_TPREL_LO16:
5352 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5353 break;
5354
b49e97c9 5355 case R_MIPS_HI16:
d6f16593 5356 case R_MIPS16_HI16:
b49e97c9
TS
5357 if (!gp_disp_p)
5358 {
5359 value = mips_elf_high (addend + symbol);
5360 value &= howto->dst_mask;
5361 }
5362 else
5363 {
d6f16593
MR
5364 /* For MIPS16 ABI code we generate this sequence
5365 0: li $v0,%hi(_gp_disp)
5366 4: addiupc $v1,%lo(_gp_disp)
5367 8: sll $v0,16
5368 12: addu $v0,$v1
5369 14: move $gp,$v0
5370 So the offsets of hi and lo relocs are the same, but the
5371 $pc is four higher than $t9 would be, so reduce
5372 both reloc addends by 4. */
5373 if (r_type == R_MIPS16_HI16)
5374 value = mips_elf_high (addend + gp - p - 4);
5375 else
5376 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5377 overflowed_p = mips_elf_overflow_p (value, 16);
5378 }
5379 break;
5380
5381 case R_MIPS_LO16:
d6f16593 5382 case R_MIPS16_LO16:
b49e97c9
TS
5383 if (!gp_disp_p)
5384 value = (symbol + addend) & howto->dst_mask;
5385 else
5386 {
d6f16593
MR
5387 /* See the comment for R_MIPS16_HI16 above for the reason
5388 for this conditional. */
5389 if (r_type == R_MIPS16_LO16)
5390 value = addend + gp - p;
5391 else
5392 value = addend + gp - p + 4;
b49e97c9 5393 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5394 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5395 _gp_disp are normally generated from the .cpload
5396 pseudo-op. It generates code that normally looks like
5397 this:
5398
5399 lui $gp,%hi(_gp_disp)
5400 addiu $gp,$gp,%lo(_gp_disp)
5401 addu $gp,$gp,$t9
5402
5403 Here $t9 holds the address of the function being called,
5404 as required by the MIPS ELF ABI. The R_MIPS_LO16
5405 relocation can easily overflow in this situation, but the
5406 R_MIPS_HI16 relocation will handle the overflow.
5407 Therefore, we consider this a bug in the MIPS ABI, and do
5408 not check for overflow here. */
5409 }
5410 break;
5411
5412 case R_MIPS_LITERAL:
5413 /* Because we don't merge literal sections, we can handle this
5414 just like R_MIPS_GPREL16. In the long run, we should merge
5415 shared literals, and then we will need to additional work
5416 here. */
5417
5418 /* Fall through. */
5419
5420 case R_MIPS16_GPREL:
5421 /* The R_MIPS16_GPREL performs the same calculation as
5422 R_MIPS_GPREL16, but stores the relocated bits in a different
5423 order. We don't need to do anything special here; the
5424 differences are handled in mips_elf_perform_relocation. */
5425 case R_MIPS_GPREL16:
bce03d3d
AO
5426 /* Only sign-extend the addend if it was extracted from the
5427 instruction. If the addend was separate, leave it alone,
5428 otherwise we may lose significant bits. */
5429 if (howto->partial_inplace)
a7ebbfdf 5430 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5431 value = symbol + addend - gp;
5432 /* If the symbol was local, any earlier relocatable links will
5433 have adjusted its addend with the gp offset, so compensate
5434 for that now. Don't do it for symbols forced local in this
5435 link, though, since they won't have had the gp offset applied
5436 to them before. */
5437 if (was_local_p)
5438 value += gp0;
b49e97c9
TS
5439 overflowed_p = mips_elf_overflow_p (value, 16);
5440 break;
5441
738e5348
RS
5442 case R_MIPS16_GOT16:
5443 case R_MIPS16_CALL16:
b49e97c9
TS
5444 case R_MIPS_GOT16:
5445 case R_MIPS_CALL16:
0a44bf69 5446 /* VxWorks does not have separate local and global semantics for
738e5348 5447 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5448 if (!htab->is_vxworks && local_p)
b49e97c9 5449 {
b34976b6 5450 bfd_boolean forced;
b49e97c9 5451
b49e97c9 5452 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 5453 local_sections, FALSE);
5c18022e 5454 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 5455 symbol + addend, forced);
b49e97c9
TS
5456 if (value == MINUS_ONE)
5457 return bfd_reloc_outofrange;
5458 value
a8028dd0 5459 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5460 overflowed_p = mips_elf_overflow_p (value, 16);
5461 break;
5462 }
5463
5464 /* Fall through. */
5465
0f20cc35
DJ
5466 case R_MIPS_TLS_GD:
5467 case R_MIPS_TLS_GOTTPREL:
5468 case R_MIPS_TLS_LDM:
b49e97c9 5469 case R_MIPS_GOT_DISP:
0fdc1bf1 5470 got_disp:
b49e97c9
TS
5471 value = g;
5472 overflowed_p = mips_elf_overflow_p (value, 16);
5473 break;
5474
5475 case R_MIPS_GPREL32:
bce03d3d
AO
5476 value = (addend + symbol + gp0 - gp);
5477 if (!save_addend)
5478 value &= howto->dst_mask;
b49e97c9
TS
5479 break;
5480
5481 case R_MIPS_PC16:
bad36eac
DJ
5482 case R_MIPS_GNU_REL16_S2:
5483 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5484 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5485 value >>= howto->rightshift;
5486 value &= howto->dst_mask;
b49e97c9
TS
5487 break;
5488
5489 case R_MIPS_GOT_HI16:
5490 case R_MIPS_CALL_HI16:
5491 /* We're allowed to handle these two relocations identically.
5492 The dynamic linker is allowed to handle the CALL relocations
5493 differently by creating a lazy evaluation stub. */
5494 value = g;
5495 value = mips_elf_high (value);
5496 value &= howto->dst_mask;
5497 break;
5498
5499 case R_MIPS_GOT_LO16:
5500 case R_MIPS_CALL_LO16:
5501 value = g & howto->dst_mask;
5502 break;
5503
5504 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
5505 /* GOT_PAGE relocations that reference non-local symbols decay
5506 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5507 0. */
93a2b7ae 5508 if (! local_p)
0fdc1bf1 5509 goto got_disp;
5c18022e 5510 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5511 if (value == MINUS_ONE)
5512 return bfd_reloc_outofrange;
a8028dd0 5513 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5514 overflowed_p = mips_elf_overflow_p (value, 16);
5515 break;
5516
5517 case R_MIPS_GOT_OFST:
93a2b7ae 5518 if (local_p)
5c18022e 5519 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5520 else
5521 value = addend;
b49e97c9
TS
5522 overflowed_p = mips_elf_overflow_p (value, 16);
5523 break;
5524
5525 case R_MIPS_SUB:
5526 value = symbol - addend;
5527 value &= howto->dst_mask;
5528 break;
5529
5530 case R_MIPS_HIGHER:
5531 value = mips_elf_higher (addend + symbol);
5532 value &= howto->dst_mask;
5533 break;
5534
5535 case R_MIPS_HIGHEST:
5536 value = mips_elf_highest (addend + symbol);
5537 value &= howto->dst_mask;
5538 break;
5539
5540 case R_MIPS_SCN_DISP:
5541 value = symbol + addend - sec->output_offset;
5542 value &= howto->dst_mask;
5543 break;
5544
b49e97c9 5545 case R_MIPS_JALR:
1367d393
ILT
5546 /* This relocation is only a hint. In some cases, we optimize
5547 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5548 when the symbol does not resolve locally. */
5549 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5550 return bfd_reloc_continue;
5551 value = symbol + addend;
5552 break;
b49e97c9 5553
1367d393 5554 case R_MIPS_PJUMP:
b49e97c9
TS
5555 case R_MIPS_GNU_VTINHERIT:
5556 case R_MIPS_GNU_VTENTRY:
5557 /* We don't do anything with these at present. */
5558 return bfd_reloc_continue;
5559
5560 default:
5561 /* An unrecognized relocation type. */
5562 return bfd_reloc_notsupported;
5563 }
5564
5565 /* Store the VALUE for our caller. */
5566 *valuep = value;
5567 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5568}
5569
5570/* Obtain the field relocated by RELOCATION. */
5571
5572static bfd_vma
9719ad41
RS
5573mips_elf_obtain_contents (reloc_howto_type *howto,
5574 const Elf_Internal_Rela *relocation,
5575 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5576{
5577 bfd_vma x;
5578 bfd_byte *location = contents + relocation->r_offset;
5579
5580 /* Obtain the bytes. */
5581 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5582
b49e97c9
TS
5583 return x;
5584}
5585
5586/* It has been determined that the result of the RELOCATION is the
5587 VALUE. Use HOWTO to place VALUE into the output file at the
5588 appropriate position. The SECTION is the section to which the
38a7df63
CF
5589 relocation applies.
5590 CROSS_MODE_JUMP_P is true if the relocation field
5591 is a MIPS16 jump to non-MIPS16 code, or vice versa.
b49e97c9 5592
b34976b6 5593 Returns FALSE if anything goes wrong. */
b49e97c9 5594
b34976b6 5595static bfd_boolean
9719ad41
RS
5596mips_elf_perform_relocation (struct bfd_link_info *info,
5597 reloc_howto_type *howto,
5598 const Elf_Internal_Rela *relocation,
5599 bfd_vma value, bfd *input_bfd,
5600 asection *input_section, bfd_byte *contents,
38a7df63 5601 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5602{
5603 bfd_vma x;
5604 bfd_byte *location;
5605 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5606
5607 /* Figure out where the relocation is occurring. */
5608 location = contents + relocation->r_offset;
5609
d6f16593
MR
5610 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5611
b49e97c9
TS
5612 /* Obtain the current value. */
5613 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5614
5615 /* Clear the field we are setting. */
5616 x &= ~howto->dst_mask;
5617
b49e97c9
TS
5618 /* Set the field. */
5619 x |= (value & howto->dst_mask);
5620
5621 /* If required, turn JAL into JALX. */
38a7df63 5622 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5623 {
b34976b6 5624 bfd_boolean ok;
b49e97c9
TS
5625 bfd_vma opcode = x >> 26;
5626 bfd_vma jalx_opcode;
5627
5628 /* Check to see if the opcode is already JAL or JALX. */
5629 if (r_type == R_MIPS16_26)
5630 {
5631 ok = ((opcode == 0x6) || (opcode == 0x7));
5632 jalx_opcode = 0x7;
5633 }
5634 else
5635 {
5636 ok = ((opcode == 0x3) || (opcode == 0x1d));
5637 jalx_opcode = 0x1d;
5638 }
5639
5640 /* If the opcode is not JAL or JALX, there's a problem. */
5641 if (!ok)
5642 {
5643 (*_bfd_error_handler)
776167e8 5644 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
d003868e
AM
5645 input_bfd,
5646 input_section,
b49e97c9
TS
5647 (unsigned long) relocation->r_offset);
5648 bfd_set_error (bfd_error_bad_value);
b34976b6 5649 return FALSE;
b49e97c9
TS
5650 }
5651
5652 /* Make this the JALX opcode. */
5653 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5654 }
5655
38a7df63
CF
5656 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5657 range. */
cd8d5a82 5658 if (!info->relocatable
38a7df63 5659 && !cross_mode_jump_p
cd8d5a82
CF
5660 && ((JAL_TO_BAL_P (input_bfd)
5661 && r_type == R_MIPS_26
5662 && (x >> 26) == 0x3) /* jal addr */
5663 || (JALR_TO_BAL_P (input_bfd)
5664 && r_type == R_MIPS_JALR
38a7df63
CF
5665 && x == 0x0320f809) /* jalr t9 */
5666 || (JR_TO_B_P (input_bfd)
5667 && r_type == R_MIPS_JALR
5668 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5669 {
5670 bfd_vma addr;
5671 bfd_vma dest;
5672 bfd_signed_vma off;
5673
5674 addr = (input_section->output_section->vma
5675 + input_section->output_offset
5676 + relocation->r_offset
5677 + 4);
5678 if (r_type == R_MIPS_26)
5679 dest = (value << 2) | ((addr >> 28) << 28);
5680 else
5681 dest = value;
5682 off = dest - addr;
5683 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
5684 {
5685 if (x == 0x03200008) /* jr t9 */
5686 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5687 else
5688 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5689 }
1367d393
ILT
5690 }
5691
b49e97c9
TS
5692 /* Put the value into the output. */
5693 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
5694
5695 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5696 location);
5697
b34976b6 5698 return TRUE;
b49e97c9 5699}
b49e97c9 5700\f
b49e97c9
TS
5701/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5702 is the original relocation, which is now being transformed into a
5703 dynamic relocation. The ADDENDP is adjusted if necessary; the
5704 caller should store the result in place of the original addend. */
5705
b34976b6 5706static bfd_boolean
9719ad41
RS
5707mips_elf_create_dynamic_relocation (bfd *output_bfd,
5708 struct bfd_link_info *info,
5709 const Elf_Internal_Rela *rel,
5710 struct mips_elf_link_hash_entry *h,
5711 asection *sec, bfd_vma symbol,
5712 bfd_vma *addendp, asection *input_section)
b49e97c9 5713{
947216bf 5714 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5715 asection *sreloc;
5716 bfd *dynobj;
5717 int r_type;
5d41f0b6
RS
5718 long indx;
5719 bfd_boolean defined_p;
0a44bf69 5720 struct mips_elf_link_hash_table *htab;
b49e97c9 5721
0a44bf69 5722 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
5723 BFD_ASSERT (htab != NULL);
5724
b49e97c9
TS
5725 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5726 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5727 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5728 BFD_ASSERT (sreloc != NULL);
5729 BFD_ASSERT (sreloc->contents != NULL);
5730 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5731 < sreloc->size);
b49e97c9 5732
b49e97c9
TS
5733 outrel[0].r_offset =
5734 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5735 if (ABI_64_P (output_bfd))
5736 {
5737 outrel[1].r_offset =
5738 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5739 outrel[2].r_offset =
5740 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5741 }
b49e97c9 5742
c5ae1840 5743 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 5744 /* The relocation field has been deleted. */
5d41f0b6
RS
5745 return TRUE;
5746
5747 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
5748 {
5749 /* The relocation field has been converted into a relative value of
5750 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5751 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 5752 *addendp += symbol;
5d41f0b6 5753 return TRUE;
0d591ff7 5754 }
b49e97c9 5755
5d41f0b6
RS
5756 /* We must now calculate the dynamic symbol table index to use
5757 in the relocation. */
d4a77f3f 5758 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6
RS
5759 {
5760 indx = h->root.dynindx;
5761 if (SGI_COMPAT (output_bfd))
5762 defined_p = h->root.def_regular;
5763 else
5764 /* ??? glibc's ld.so just adds the final GOT entry to the
5765 relocation field. It therefore treats relocs against
5766 defined symbols in the same way as relocs against
5767 undefined symbols. */
5768 defined_p = FALSE;
5769 }
b49e97c9
TS
5770 else
5771 {
5d41f0b6
RS
5772 if (sec != NULL && bfd_is_abs_section (sec))
5773 indx = 0;
5774 else if (sec == NULL || sec->owner == NULL)
fdd07405 5775 {
5d41f0b6
RS
5776 bfd_set_error (bfd_error_bad_value);
5777 return FALSE;
b49e97c9
TS
5778 }
5779 else
5780 {
5d41f0b6 5781 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
5782 if (indx == 0)
5783 {
5784 asection *osec = htab->root.text_index_section;
5785 indx = elf_section_data (osec)->dynindx;
5786 }
5d41f0b6
RS
5787 if (indx == 0)
5788 abort ();
b49e97c9
TS
5789 }
5790
5d41f0b6
RS
5791 /* Instead of generating a relocation using the section
5792 symbol, we may as well make it a fully relative
5793 relocation. We want to avoid generating relocations to
5794 local symbols because we used to generate them
5795 incorrectly, without adding the original symbol value,
5796 which is mandated by the ABI for section symbols. In
5797 order to give dynamic loaders and applications time to
5798 phase out the incorrect use, we refrain from emitting
5799 section-relative relocations. It's not like they're
5800 useful, after all. This should be a bit more efficient
5801 as well. */
5802 /* ??? Although this behavior is compatible with glibc's ld.so,
5803 the ABI says that relocations against STN_UNDEF should have
5804 a symbol value of 0. Irix rld honors this, so relocations
5805 against STN_UNDEF have no effect. */
5806 if (!SGI_COMPAT (output_bfd))
5807 indx = 0;
5808 defined_p = TRUE;
b49e97c9
TS
5809 }
5810
5d41f0b6
RS
5811 /* If the relocation was previously an absolute relocation and
5812 this symbol will not be referred to by the relocation, we must
5813 adjust it by the value we give it in the dynamic symbol table.
5814 Otherwise leave the job up to the dynamic linker. */
5815 if (defined_p && r_type != R_MIPS_REL32)
5816 *addendp += symbol;
5817
0a44bf69
RS
5818 if (htab->is_vxworks)
5819 /* VxWorks uses non-relative relocations for this. */
5820 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5821 else
5822 /* The relocation is always an REL32 relocation because we don't
5823 know where the shared library will wind up at load-time. */
5824 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5825 R_MIPS_REL32);
5826
5d41f0b6
RS
5827 /* For strict adherence to the ABI specification, we should
5828 generate a R_MIPS_64 relocation record by itself before the
5829 _REL32/_64 record as well, such that the addend is read in as
5830 a 64-bit value (REL32 is a 32-bit relocation, after all).
5831 However, since none of the existing ELF64 MIPS dynamic
5832 loaders seems to care, we don't waste space with these
5833 artificial relocations. If this turns out to not be true,
5834 mips_elf_allocate_dynamic_relocation() should be tweaked so
5835 as to make room for a pair of dynamic relocations per
5836 invocation if ABI_64_P, and here we should generate an
5837 additional relocation record with R_MIPS_64 by itself for a
5838 NULL symbol before this relocation record. */
5839 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5840 ABI_64_P (output_bfd)
5841 ? R_MIPS_64
5842 : R_MIPS_NONE);
5843 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5844
5845 /* Adjust the output offset of the relocation to reference the
5846 correct location in the output file. */
5847 outrel[0].r_offset += (input_section->output_section->vma
5848 + input_section->output_offset);
5849 outrel[1].r_offset += (input_section->output_section->vma
5850 + input_section->output_offset);
5851 outrel[2].r_offset += (input_section->output_section->vma
5852 + input_section->output_offset);
5853
b49e97c9
TS
5854 /* Put the relocation back out. We have to use the special
5855 relocation outputter in the 64-bit case since the 64-bit
5856 relocation format is non-standard. */
5857 if (ABI_64_P (output_bfd))
5858 {
5859 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5860 (output_bfd, &outrel[0],
5861 (sreloc->contents
5862 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5863 }
0a44bf69
RS
5864 else if (htab->is_vxworks)
5865 {
5866 /* VxWorks uses RELA rather than REL dynamic relocations. */
5867 outrel[0].r_addend = *addendp;
5868 bfd_elf32_swap_reloca_out
5869 (output_bfd, &outrel[0],
5870 (sreloc->contents
5871 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5872 }
b49e97c9 5873 else
947216bf
AM
5874 bfd_elf32_swap_reloc_out
5875 (output_bfd, &outrel[0],
5876 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 5877
b49e97c9
TS
5878 /* We've now added another relocation. */
5879 ++sreloc->reloc_count;
5880
5881 /* Make sure the output section is writable. The dynamic linker
5882 will be writing to it. */
5883 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5884 |= SHF_WRITE;
5885
5886 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 5887 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
5888 {
5889 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5890 bfd_byte *cr;
5891
5892 if (scpt)
5893 {
5894 Elf32_crinfo cptrel;
5895
5896 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5897 cptrel.vaddr = (rel->r_offset
5898 + input_section->output_section->vma
5899 + input_section->output_offset);
5900 if (r_type == R_MIPS_REL32)
5901 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5902 else
5903 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5904 mips_elf_set_cr_dist2to (cptrel, 0);
5905 cptrel.konst = *addendp;
5906
5907 cr = (scpt->contents
5908 + sizeof (Elf32_External_compact_rel));
abc0f8d0 5909 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
5910 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5911 ((Elf32_External_crinfo *) cr
5912 + scpt->reloc_count));
5913 ++scpt->reloc_count;
5914 }
5915 }
5916
943284cc
DJ
5917 /* If we've written this relocation for a readonly section,
5918 we need to set DF_TEXTREL again, so that we do not delete the
5919 DT_TEXTREL tag. */
5920 if (MIPS_ELF_READONLY_SECTION (input_section))
5921 info->flags |= DF_TEXTREL;
5922
b34976b6 5923 return TRUE;
b49e97c9
TS
5924}
5925\f
b49e97c9
TS
5926/* Return the MACH for a MIPS e_flags value. */
5927
5928unsigned long
9719ad41 5929_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
5930{
5931 switch (flags & EF_MIPS_MACH)
5932 {
5933 case E_MIPS_MACH_3900:
5934 return bfd_mach_mips3900;
5935
5936 case E_MIPS_MACH_4010:
5937 return bfd_mach_mips4010;
5938
5939 case E_MIPS_MACH_4100:
5940 return bfd_mach_mips4100;
5941
5942 case E_MIPS_MACH_4111:
5943 return bfd_mach_mips4111;
5944
00707a0e
RS
5945 case E_MIPS_MACH_4120:
5946 return bfd_mach_mips4120;
5947
b49e97c9
TS
5948 case E_MIPS_MACH_4650:
5949 return bfd_mach_mips4650;
5950
00707a0e
RS
5951 case E_MIPS_MACH_5400:
5952 return bfd_mach_mips5400;
5953
5954 case E_MIPS_MACH_5500:
5955 return bfd_mach_mips5500;
5956
0d2e43ed
ILT
5957 case E_MIPS_MACH_9000:
5958 return bfd_mach_mips9000;
5959
b49e97c9
TS
5960 case E_MIPS_MACH_SB1:
5961 return bfd_mach_mips_sb1;
5962
350cc38d
MS
5963 case E_MIPS_MACH_LS2E:
5964 return bfd_mach_mips_loongson_2e;
5965
5966 case E_MIPS_MACH_LS2F:
5967 return bfd_mach_mips_loongson_2f;
5968
6f179bd0
AN
5969 case E_MIPS_MACH_OCTEON:
5970 return bfd_mach_mips_octeon;
5971
52b6b6b9
JM
5972 case E_MIPS_MACH_XLR:
5973 return bfd_mach_mips_xlr;
5974
b49e97c9
TS
5975 default:
5976 switch (flags & EF_MIPS_ARCH)
5977 {
5978 default:
5979 case E_MIPS_ARCH_1:
5980 return bfd_mach_mips3000;
b49e97c9
TS
5981
5982 case E_MIPS_ARCH_2:
5983 return bfd_mach_mips6000;
b49e97c9
TS
5984
5985 case E_MIPS_ARCH_3:
5986 return bfd_mach_mips4000;
b49e97c9
TS
5987
5988 case E_MIPS_ARCH_4:
5989 return bfd_mach_mips8000;
b49e97c9
TS
5990
5991 case E_MIPS_ARCH_5:
5992 return bfd_mach_mips5;
b49e97c9
TS
5993
5994 case E_MIPS_ARCH_32:
5995 return bfd_mach_mipsisa32;
b49e97c9
TS
5996
5997 case E_MIPS_ARCH_64:
5998 return bfd_mach_mipsisa64;
af7ee8bf
CD
5999
6000 case E_MIPS_ARCH_32R2:
6001 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6002
6003 case E_MIPS_ARCH_64R2:
6004 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6005 }
6006 }
6007
6008 return 0;
6009}
6010
6011/* Return printable name for ABI. */
6012
6013static INLINE char *
9719ad41 6014elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6015{
6016 flagword flags;
6017
6018 flags = elf_elfheader (abfd)->e_flags;
6019 switch (flags & EF_MIPS_ABI)
6020 {
6021 case 0:
6022 if (ABI_N32_P (abfd))
6023 return "N32";
6024 else if (ABI_64_P (abfd))
6025 return "64";
6026 else
6027 return "none";
6028 case E_MIPS_ABI_O32:
6029 return "O32";
6030 case E_MIPS_ABI_O64:
6031 return "O64";
6032 case E_MIPS_ABI_EABI32:
6033 return "EABI32";
6034 case E_MIPS_ABI_EABI64:
6035 return "EABI64";
6036 default:
6037 return "unknown abi";
6038 }
6039}
6040\f
6041/* MIPS ELF uses two common sections. One is the usual one, and the
6042 other is for small objects. All the small objects are kept
6043 together, and then referenced via the gp pointer, which yields
6044 faster assembler code. This is what we use for the small common
6045 section. This approach is copied from ecoff.c. */
6046static asection mips_elf_scom_section;
6047static asymbol mips_elf_scom_symbol;
6048static asymbol *mips_elf_scom_symbol_ptr;
6049
6050/* MIPS ELF also uses an acommon section, which represents an
6051 allocated common symbol which may be overridden by a
6052 definition in a shared library. */
6053static asection mips_elf_acom_section;
6054static asymbol mips_elf_acom_symbol;
6055static asymbol *mips_elf_acom_symbol_ptr;
6056
738e5348 6057/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6058
6059void
9719ad41 6060_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6061{
6062 elf_symbol_type *elfsym;
6063
738e5348 6064 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6065 elfsym = (elf_symbol_type *) asym;
6066 switch (elfsym->internal_elf_sym.st_shndx)
6067 {
6068 case SHN_MIPS_ACOMMON:
6069 /* This section is used in a dynamically linked executable file.
6070 It is an allocated common section. The dynamic linker can
6071 either resolve these symbols to something in a shared
6072 library, or it can just leave them here. For our purposes,
6073 we can consider these symbols to be in a new section. */
6074 if (mips_elf_acom_section.name == NULL)
6075 {
6076 /* Initialize the acommon section. */
6077 mips_elf_acom_section.name = ".acommon";
6078 mips_elf_acom_section.flags = SEC_ALLOC;
6079 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6080 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6081 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6082 mips_elf_acom_symbol.name = ".acommon";
6083 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6084 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6085 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6086 }
6087 asym->section = &mips_elf_acom_section;
6088 break;
6089
6090 case SHN_COMMON:
6091 /* Common symbols less than the GP size are automatically
6092 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6093 if (asym->value > elf_gp_size (abfd)
b59eed79 6094 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6095 || IRIX_COMPAT (abfd) == ict_irix6)
6096 break;
6097 /* Fall through. */
6098 case SHN_MIPS_SCOMMON:
6099 if (mips_elf_scom_section.name == NULL)
6100 {
6101 /* Initialize the small common section. */
6102 mips_elf_scom_section.name = ".scommon";
6103 mips_elf_scom_section.flags = SEC_IS_COMMON;
6104 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6105 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6106 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6107 mips_elf_scom_symbol.name = ".scommon";
6108 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6109 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6110 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6111 }
6112 asym->section = &mips_elf_scom_section;
6113 asym->value = elfsym->internal_elf_sym.st_size;
6114 break;
6115
6116 case SHN_MIPS_SUNDEFINED:
6117 asym->section = bfd_und_section_ptr;
6118 break;
6119
b49e97c9 6120 case SHN_MIPS_TEXT:
00b4930b
TS
6121 {
6122 asection *section = bfd_get_section_by_name (abfd, ".text");
6123
6124 BFD_ASSERT (SGI_COMPAT (abfd));
6125 if (section != NULL)
6126 {
6127 asym->section = section;
6128 /* MIPS_TEXT is a bit special, the address is not an offset
6129 to the base of the .text section. So substract the section
6130 base address to make it an offset. */
6131 asym->value -= section->vma;
6132 }
6133 }
b49e97c9
TS
6134 break;
6135
6136 case SHN_MIPS_DATA:
00b4930b
TS
6137 {
6138 asection *section = bfd_get_section_by_name (abfd, ".data");
6139
6140 BFD_ASSERT (SGI_COMPAT (abfd));
6141 if (section != NULL)
6142 {
6143 asym->section = section;
6144 /* MIPS_DATA is a bit special, the address is not an offset
6145 to the base of the .data section. So substract the section
6146 base address to make it an offset. */
6147 asym->value -= section->vma;
6148 }
6149 }
b49e97c9 6150 break;
b49e97c9 6151 }
738e5348
RS
6152
6153 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6154 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6155 && (asym->value & 1) != 0)
6156 {
6157 asym->value--;
6158 elfsym->internal_elf_sym.st_other
6159 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6160 }
b49e97c9
TS
6161}
6162\f
8c946ed5
RS
6163/* Implement elf_backend_eh_frame_address_size. This differs from
6164 the default in the way it handles EABI64.
6165
6166 EABI64 was originally specified as an LP64 ABI, and that is what
6167 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6168 historically accepted the combination of -mabi=eabi and -mlong32,
6169 and this ILP32 variation has become semi-official over time.
6170 Both forms use elf32 and have pointer-sized FDE addresses.
6171
6172 If an EABI object was generated by GCC 4.0 or above, it will have
6173 an empty .gcc_compiled_longXX section, where XX is the size of longs
6174 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6175 have no special marking to distinguish them from LP64 objects.
6176
6177 We don't want users of the official LP64 ABI to be punished for the
6178 existence of the ILP32 variant, but at the same time, we don't want
6179 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6180 We therefore take the following approach:
6181
6182 - If ABFD contains a .gcc_compiled_longXX section, use it to
6183 determine the pointer size.
6184
6185 - Otherwise check the type of the first relocation. Assume that
6186 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6187
6188 - Otherwise punt.
6189
6190 The second check is enough to detect LP64 objects generated by pre-4.0
6191 compilers because, in the kind of output generated by those compilers,
6192 the first relocation will be associated with either a CIE personality
6193 routine or an FDE start address. Furthermore, the compilers never
6194 used a special (non-pointer) encoding for this ABI.
6195
6196 Checking the relocation type should also be safe because there is no
6197 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6198 did so. */
6199
6200unsigned int
6201_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6202{
6203 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6204 return 8;
6205 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6206 {
6207 bfd_boolean long32_p, long64_p;
6208
6209 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6210 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6211 if (long32_p && long64_p)
6212 return 0;
6213 if (long32_p)
6214 return 4;
6215 if (long64_p)
6216 return 8;
6217
6218 if (sec->reloc_count > 0
6219 && elf_section_data (sec)->relocs != NULL
6220 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6221 == R_MIPS_64))
6222 return 8;
6223
6224 return 0;
6225 }
6226 return 4;
6227}
6228\f
174fd7f9
RS
6229/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6230 relocations against two unnamed section symbols to resolve to the
6231 same address. For example, if we have code like:
6232
6233 lw $4,%got_disp(.data)($gp)
6234 lw $25,%got_disp(.text)($gp)
6235 jalr $25
6236
6237 then the linker will resolve both relocations to .data and the program
6238 will jump there rather than to .text.
6239
6240 We can work around this problem by giving names to local section symbols.
6241 This is also what the MIPSpro tools do. */
6242
6243bfd_boolean
6244_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6245{
6246 return SGI_COMPAT (abfd);
6247}
6248\f
b49e97c9
TS
6249/* Work over a section just before writing it out. This routine is
6250 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6251 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6252 a better way. */
6253
b34976b6 6254bfd_boolean
9719ad41 6255_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6256{
6257 if (hdr->sh_type == SHT_MIPS_REGINFO
6258 && hdr->sh_size > 0)
6259 {
6260 bfd_byte buf[4];
6261
6262 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6263 BFD_ASSERT (hdr->contents == NULL);
6264
6265 if (bfd_seek (abfd,
6266 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6267 SEEK_SET) != 0)
b34976b6 6268 return FALSE;
b49e97c9 6269 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6270 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6271 return FALSE;
b49e97c9
TS
6272 }
6273
6274 if (hdr->sh_type == SHT_MIPS_OPTIONS
6275 && hdr->bfd_section != NULL
f0abc2a1
AM
6276 && mips_elf_section_data (hdr->bfd_section) != NULL
6277 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6278 {
6279 bfd_byte *contents, *l, *lend;
6280
f0abc2a1
AM
6281 /* We stored the section contents in the tdata field in the
6282 set_section_contents routine. We save the section contents
6283 so that we don't have to read them again.
b49e97c9
TS
6284 At this point we know that elf_gp is set, so we can look
6285 through the section contents to see if there is an
6286 ODK_REGINFO structure. */
6287
f0abc2a1 6288 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6289 l = contents;
6290 lend = contents + hdr->sh_size;
6291 while (l + sizeof (Elf_External_Options) <= lend)
6292 {
6293 Elf_Internal_Options intopt;
6294
6295 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6296 &intopt);
1bc8074d
MR
6297 if (intopt.size < sizeof (Elf_External_Options))
6298 {
6299 (*_bfd_error_handler)
6300 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6301 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6302 break;
6303 }
b49e97c9
TS
6304 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6305 {
6306 bfd_byte buf[8];
6307
6308 if (bfd_seek (abfd,
6309 (hdr->sh_offset
6310 + (l - contents)
6311 + sizeof (Elf_External_Options)
6312 + (sizeof (Elf64_External_RegInfo) - 8)),
6313 SEEK_SET) != 0)
b34976b6 6314 return FALSE;
b49e97c9 6315 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6316 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6317 return FALSE;
b49e97c9
TS
6318 }
6319 else if (intopt.kind == ODK_REGINFO)
6320 {
6321 bfd_byte buf[4];
6322
6323 if (bfd_seek (abfd,
6324 (hdr->sh_offset
6325 + (l - contents)
6326 + sizeof (Elf_External_Options)
6327 + (sizeof (Elf32_External_RegInfo) - 4)),
6328 SEEK_SET) != 0)
b34976b6 6329 return FALSE;
b49e97c9 6330 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6331 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6332 return FALSE;
b49e97c9
TS
6333 }
6334 l += intopt.size;
6335 }
6336 }
6337
6338 if (hdr->bfd_section != NULL)
6339 {
6340 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6341
2d0f9ad9
JM
6342 /* .sbss is not handled specially here because the GNU/Linux
6343 prelinker can convert .sbss from NOBITS to PROGBITS and
6344 changing it back to NOBITS breaks the binary. The entry in
6345 _bfd_mips_elf_special_sections will ensure the correct flags
6346 are set on .sbss if BFD creates it without reading it from an
6347 input file, and without special handling here the flags set
6348 on it in an input file will be followed. */
b49e97c9
TS
6349 if (strcmp (name, ".sdata") == 0
6350 || strcmp (name, ".lit8") == 0
6351 || strcmp (name, ".lit4") == 0)
6352 {
6353 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6354 hdr->sh_type = SHT_PROGBITS;
6355 }
b49e97c9
TS
6356 else if (strcmp (name, ".srdata") == 0)
6357 {
6358 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6359 hdr->sh_type = SHT_PROGBITS;
6360 }
6361 else if (strcmp (name, ".compact_rel") == 0)
6362 {
6363 hdr->sh_flags = 0;
6364 hdr->sh_type = SHT_PROGBITS;
6365 }
6366 else if (strcmp (name, ".rtproc") == 0)
6367 {
6368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6369 {
6370 unsigned int adjust;
6371
6372 adjust = hdr->sh_size % hdr->sh_addralign;
6373 if (adjust != 0)
6374 hdr->sh_size += hdr->sh_addralign - adjust;
6375 }
6376 }
6377 }
6378
b34976b6 6379 return TRUE;
b49e97c9
TS
6380}
6381
6382/* Handle a MIPS specific section when reading an object file. This
6383 is called when elfcode.h finds a section with an unknown type.
6384 This routine supports both the 32-bit and 64-bit ELF ABI.
6385
6386 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6387 how to. */
6388
b34976b6 6389bfd_boolean
6dc132d9
L
6390_bfd_mips_elf_section_from_shdr (bfd *abfd,
6391 Elf_Internal_Shdr *hdr,
6392 const char *name,
6393 int shindex)
b49e97c9
TS
6394{
6395 flagword flags = 0;
6396
6397 /* There ought to be a place to keep ELF backend specific flags, but
6398 at the moment there isn't one. We just keep track of the
6399 sections by their name, instead. Fortunately, the ABI gives
6400 suggested names for all the MIPS specific sections, so we will
6401 probably get away with this. */
6402 switch (hdr->sh_type)
6403 {
6404 case SHT_MIPS_LIBLIST:
6405 if (strcmp (name, ".liblist") != 0)
b34976b6 6406 return FALSE;
b49e97c9
TS
6407 break;
6408 case SHT_MIPS_MSYM:
6409 if (strcmp (name, ".msym") != 0)
b34976b6 6410 return FALSE;
b49e97c9
TS
6411 break;
6412 case SHT_MIPS_CONFLICT:
6413 if (strcmp (name, ".conflict") != 0)
b34976b6 6414 return FALSE;
b49e97c9
TS
6415 break;
6416 case SHT_MIPS_GPTAB:
0112cd26 6417 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6418 return FALSE;
b49e97c9
TS
6419 break;
6420 case SHT_MIPS_UCODE:
6421 if (strcmp (name, ".ucode") != 0)
b34976b6 6422 return FALSE;
b49e97c9
TS
6423 break;
6424 case SHT_MIPS_DEBUG:
6425 if (strcmp (name, ".mdebug") != 0)
b34976b6 6426 return FALSE;
b49e97c9
TS
6427 flags = SEC_DEBUGGING;
6428 break;
6429 case SHT_MIPS_REGINFO:
6430 if (strcmp (name, ".reginfo") != 0
6431 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6432 return FALSE;
b49e97c9
TS
6433 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6434 break;
6435 case SHT_MIPS_IFACE:
6436 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6437 return FALSE;
b49e97c9
TS
6438 break;
6439 case SHT_MIPS_CONTENT:
0112cd26 6440 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6441 return FALSE;
b49e97c9
TS
6442 break;
6443 case SHT_MIPS_OPTIONS:
cc2e31b9 6444 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6445 return FALSE;
b49e97c9
TS
6446 break;
6447 case SHT_MIPS_DWARF:
1b315056 6448 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6449 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6450 return FALSE;
b49e97c9
TS
6451 break;
6452 case SHT_MIPS_SYMBOL_LIB:
6453 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6454 return FALSE;
b49e97c9
TS
6455 break;
6456 case SHT_MIPS_EVENTS:
0112cd26
NC
6457 if (! CONST_STRNEQ (name, ".MIPS.events")
6458 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6459 return FALSE;
b49e97c9
TS
6460 break;
6461 default:
cc2e31b9 6462 break;
b49e97c9
TS
6463 }
6464
6dc132d9 6465 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6466 return FALSE;
b49e97c9
TS
6467
6468 if (flags)
6469 {
6470 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6471 (bfd_get_section_flags (abfd,
6472 hdr->bfd_section)
6473 | flags)))
b34976b6 6474 return FALSE;
b49e97c9
TS
6475 }
6476
6477 /* FIXME: We should record sh_info for a .gptab section. */
6478
6479 /* For a .reginfo section, set the gp value in the tdata information
6480 from the contents of this section. We need the gp value while
6481 processing relocs, so we just get it now. The .reginfo section
6482 is not used in the 64-bit MIPS ELF ABI. */
6483 if (hdr->sh_type == SHT_MIPS_REGINFO)
6484 {
6485 Elf32_External_RegInfo ext;
6486 Elf32_RegInfo s;
6487
9719ad41
RS
6488 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6489 &ext, 0, sizeof ext))
b34976b6 6490 return FALSE;
b49e97c9
TS
6491 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6492 elf_gp (abfd) = s.ri_gp_value;
6493 }
6494
6495 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6496 set the gp value based on what we find. We may see both
6497 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6498 they should agree. */
6499 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6500 {
6501 bfd_byte *contents, *l, *lend;
6502
9719ad41 6503 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6504 if (contents == NULL)
b34976b6 6505 return FALSE;
b49e97c9 6506 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6507 0, hdr->sh_size))
b49e97c9
TS
6508 {
6509 free (contents);
b34976b6 6510 return FALSE;
b49e97c9
TS
6511 }
6512 l = contents;
6513 lend = contents + hdr->sh_size;
6514 while (l + sizeof (Elf_External_Options) <= lend)
6515 {
6516 Elf_Internal_Options intopt;
6517
6518 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6519 &intopt);
1bc8074d
MR
6520 if (intopt.size < sizeof (Elf_External_Options))
6521 {
6522 (*_bfd_error_handler)
6523 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6524 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6525 break;
6526 }
b49e97c9
TS
6527 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6528 {
6529 Elf64_Internal_RegInfo intreg;
6530
6531 bfd_mips_elf64_swap_reginfo_in
6532 (abfd,
6533 ((Elf64_External_RegInfo *)
6534 (l + sizeof (Elf_External_Options))),
6535 &intreg);
6536 elf_gp (abfd) = intreg.ri_gp_value;
6537 }
6538 else if (intopt.kind == ODK_REGINFO)
6539 {
6540 Elf32_RegInfo intreg;
6541
6542 bfd_mips_elf32_swap_reginfo_in
6543 (abfd,
6544 ((Elf32_External_RegInfo *)
6545 (l + sizeof (Elf_External_Options))),
6546 &intreg);
6547 elf_gp (abfd) = intreg.ri_gp_value;
6548 }
6549 l += intopt.size;
6550 }
6551 free (contents);
6552 }
6553
b34976b6 6554 return TRUE;
b49e97c9
TS
6555}
6556
6557/* Set the correct type for a MIPS ELF section. We do this by the
6558 section name, which is a hack, but ought to work. This routine is
6559 used by both the 32-bit and the 64-bit ABI. */
6560
b34976b6 6561bfd_boolean
9719ad41 6562_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6563{
0414f35b 6564 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6565
6566 if (strcmp (name, ".liblist") == 0)
6567 {
6568 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6569 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6570 /* The sh_link field is set in final_write_processing. */
6571 }
6572 else if (strcmp (name, ".conflict") == 0)
6573 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6574 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6575 {
6576 hdr->sh_type = SHT_MIPS_GPTAB;
6577 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6578 /* The sh_info field is set in final_write_processing. */
6579 }
6580 else if (strcmp (name, ".ucode") == 0)
6581 hdr->sh_type = SHT_MIPS_UCODE;
6582 else if (strcmp (name, ".mdebug") == 0)
6583 {
6584 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6585 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6586 entsize of 0. FIXME: Does this matter? */
6587 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6588 hdr->sh_entsize = 0;
6589 else
6590 hdr->sh_entsize = 1;
6591 }
6592 else if (strcmp (name, ".reginfo") == 0)
6593 {
6594 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6595 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6596 entsize of 0x18. FIXME: Does this matter? */
6597 if (SGI_COMPAT (abfd))
6598 {
6599 if ((abfd->flags & DYNAMIC) != 0)
6600 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6601 else
6602 hdr->sh_entsize = 1;
6603 }
6604 else
6605 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6606 }
6607 else if (SGI_COMPAT (abfd)
6608 && (strcmp (name, ".hash") == 0
6609 || strcmp (name, ".dynamic") == 0
6610 || strcmp (name, ".dynstr") == 0))
6611 {
6612 if (SGI_COMPAT (abfd))
6613 hdr->sh_entsize = 0;
6614#if 0
8dc1a139 6615 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6616 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6617#endif
6618 }
6619 else if (strcmp (name, ".got") == 0
6620 || strcmp (name, ".srdata") == 0
6621 || strcmp (name, ".sdata") == 0
6622 || strcmp (name, ".sbss") == 0
6623 || strcmp (name, ".lit4") == 0
6624 || strcmp (name, ".lit8") == 0)
6625 hdr->sh_flags |= SHF_MIPS_GPREL;
6626 else if (strcmp (name, ".MIPS.interfaces") == 0)
6627 {
6628 hdr->sh_type = SHT_MIPS_IFACE;
6629 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6630 }
0112cd26 6631 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6632 {
6633 hdr->sh_type = SHT_MIPS_CONTENT;
6634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6635 /* The sh_info field is set in final_write_processing. */
6636 }
cc2e31b9 6637 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6638 {
6639 hdr->sh_type = SHT_MIPS_OPTIONS;
6640 hdr->sh_entsize = 1;
6641 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6642 }
1b315056
CS
6643 else if (CONST_STRNEQ (name, ".debug_")
6644 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6645 {
6646 hdr->sh_type = SHT_MIPS_DWARF;
6647
6648 /* Irix facilities such as libexc expect a single .debug_frame
6649 per executable, the system ones have NOSTRIP set and the linker
6650 doesn't merge sections with different flags so ... */
6651 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6653 }
b49e97c9
TS
6654 else if (strcmp (name, ".MIPS.symlib") == 0)
6655 {
6656 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6657 /* The sh_link and sh_info fields are set in
6658 final_write_processing. */
6659 }
0112cd26
NC
6660 else if (CONST_STRNEQ (name, ".MIPS.events")
6661 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6662 {
6663 hdr->sh_type = SHT_MIPS_EVENTS;
6664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6665 /* The sh_link field is set in final_write_processing. */
6666 }
6667 else if (strcmp (name, ".msym") == 0)
6668 {
6669 hdr->sh_type = SHT_MIPS_MSYM;
6670 hdr->sh_flags |= SHF_ALLOC;
6671 hdr->sh_entsize = 8;
6672 }
6673
7a79a000
TS
6674 /* The generic elf_fake_sections will set up REL_HDR using the default
6675 kind of relocations. We used to set up a second header for the
6676 non-default kind of relocations here, but only NewABI would use
6677 these, and the IRIX ld doesn't like resulting empty RELA sections.
6678 Thus we create those header only on demand now. */
b49e97c9 6679
b34976b6 6680 return TRUE;
b49e97c9
TS
6681}
6682
6683/* Given a BFD section, try to locate the corresponding ELF section
6684 index. This is used by both the 32-bit and the 64-bit ABI.
6685 Actually, it's not clear to me that the 64-bit ABI supports these,
6686 but for non-PIC objects we will certainly want support for at least
6687 the .scommon section. */
6688
b34976b6 6689bfd_boolean
9719ad41
RS
6690_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6691 asection *sec, int *retval)
b49e97c9
TS
6692{
6693 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6694 {
6695 *retval = SHN_MIPS_SCOMMON;
b34976b6 6696 return TRUE;
b49e97c9
TS
6697 }
6698 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6699 {
6700 *retval = SHN_MIPS_ACOMMON;
b34976b6 6701 return TRUE;
b49e97c9 6702 }
b34976b6 6703 return FALSE;
b49e97c9
TS
6704}
6705\f
6706/* Hook called by the linker routine which adds symbols from an object
6707 file. We must handle the special MIPS section numbers here. */
6708
b34976b6 6709bfd_boolean
9719ad41 6710_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6711 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6712 flagword *flagsp ATTRIBUTE_UNUSED,
6713 asection **secp, bfd_vma *valp)
b49e97c9
TS
6714{
6715 if (SGI_COMPAT (abfd)
6716 && (abfd->flags & DYNAMIC) != 0
6717 && strcmp (*namep, "_rld_new_interface") == 0)
6718 {
8dc1a139 6719 /* Skip IRIX5 rld entry name. */
b49e97c9 6720 *namep = NULL;
b34976b6 6721 return TRUE;
b49e97c9
TS
6722 }
6723
eedecc07
DD
6724 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6725 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6726 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6727 a magic symbol resolved by the linker, we ignore this bogus definition
6728 of _gp_disp. New ABI objects do not suffer from this problem so this
6729 is not done for them. */
6730 if (!NEWABI_P(abfd)
6731 && (sym->st_shndx == SHN_ABS)
6732 && (strcmp (*namep, "_gp_disp") == 0))
6733 {
6734 *namep = NULL;
6735 return TRUE;
6736 }
6737
b49e97c9
TS
6738 switch (sym->st_shndx)
6739 {
6740 case SHN_COMMON:
6741 /* Common symbols less than the GP size are automatically
6742 treated as SHN_MIPS_SCOMMON symbols. */
6743 if (sym->st_size > elf_gp_size (abfd)
b59eed79 6744 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
6745 || IRIX_COMPAT (abfd) == ict_irix6)
6746 break;
6747 /* Fall through. */
6748 case SHN_MIPS_SCOMMON:
6749 *secp = bfd_make_section_old_way (abfd, ".scommon");
6750 (*secp)->flags |= SEC_IS_COMMON;
6751 *valp = sym->st_size;
6752 break;
6753
6754 case SHN_MIPS_TEXT:
6755 /* This section is used in a shared object. */
6756 if (elf_tdata (abfd)->elf_text_section == NULL)
6757 {
6758 asymbol *elf_text_symbol;
6759 asection *elf_text_section;
6760 bfd_size_type amt = sizeof (asection);
6761
6762 elf_text_section = bfd_zalloc (abfd, amt);
6763 if (elf_text_section == NULL)
b34976b6 6764 return FALSE;
b49e97c9
TS
6765
6766 amt = sizeof (asymbol);
6767 elf_text_symbol = bfd_zalloc (abfd, amt);
6768 if (elf_text_symbol == NULL)
b34976b6 6769 return FALSE;
b49e97c9
TS
6770
6771 /* Initialize the section. */
6772
6773 elf_tdata (abfd)->elf_text_section = elf_text_section;
6774 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6775
6776 elf_text_section->symbol = elf_text_symbol;
6777 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6778
6779 elf_text_section->name = ".text";
6780 elf_text_section->flags = SEC_NO_FLAGS;
6781 elf_text_section->output_section = NULL;
6782 elf_text_section->owner = abfd;
6783 elf_text_symbol->name = ".text";
6784 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6785 elf_text_symbol->section = elf_text_section;
6786 }
6787 /* This code used to do *secp = bfd_und_section_ptr if
6788 info->shared. I don't know why, and that doesn't make sense,
6789 so I took it out. */
6790 *secp = elf_tdata (abfd)->elf_text_section;
6791 break;
6792
6793 case SHN_MIPS_ACOMMON:
6794 /* Fall through. XXX Can we treat this as allocated data? */
6795 case SHN_MIPS_DATA:
6796 /* This section is used in a shared object. */
6797 if (elf_tdata (abfd)->elf_data_section == NULL)
6798 {
6799 asymbol *elf_data_symbol;
6800 asection *elf_data_section;
6801 bfd_size_type amt = sizeof (asection);
6802
6803 elf_data_section = bfd_zalloc (abfd, amt);
6804 if (elf_data_section == NULL)
b34976b6 6805 return FALSE;
b49e97c9
TS
6806
6807 amt = sizeof (asymbol);
6808 elf_data_symbol = bfd_zalloc (abfd, amt);
6809 if (elf_data_symbol == NULL)
b34976b6 6810 return FALSE;
b49e97c9
TS
6811
6812 /* Initialize the section. */
6813
6814 elf_tdata (abfd)->elf_data_section = elf_data_section;
6815 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6816
6817 elf_data_section->symbol = elf_data_symbol;
6818 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6819
6820 elf_data_section->name = ".data";
6821 elf_data_section->flags = SEC_NO_FLAGS;
6822 elf_data_section->output_section = NULL;
6823 elf_data_section->owner = abfd;
6824 elf_data_symbol->name = ".data";
6825 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6826 elf_data_symbol->section = elf_data_section;
6827 }
6828 /* This code used to do *secp = bfd_und_section_ptr if
6829 info->shared. I don't know why, and that doesn't make sense,
6830 so I took it out. */
6831 *secp = elf_tdata (abfd)->elf_data_section;
6832 break;
6833
6834 case SHN_MIPS_SUNDEFINED:
6835 *secp = bfd_und_section_ptr;
6836 break;
6837 }
6838
6839 if (SGI_COMPAT (abfd)
6840 && ! info->shared
f13a99db 6841 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
6842 && strcmp (*namep, "__rld_obj_head") == 0)
6843 {
6844 struct elf_link_hash_entry *h;
14a793b2 6845 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6846
6847 /* Mark __rld_obj_head as dynamic. */
14a793b2 6848 bh = NULL;
b49e97c9 6849 if (! (_bfd_generic_link_add_one_symbol
9719ad41 6850 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 6851 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6852 return FALSE;
14a793b2
AM
6853
6854 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6855 h->non_elf = 0;
6856 h->def_regular = 1;
b49e97c9
TS
6857 h->type = STT_OBJECT;
6858
c152c796 6859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6860 return FALSE;
b49e97c9 6861
b34976b6 6862 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
6863 }
6864
6865 /* If this is a mips16 text symbol, add 1 to the value to make it
6866 odd. This will cause something like .word SYM to come up with
6867 the right value when it is loaded into the PC. */
30c09090 6868 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
6869 ++*valp;
6870
b34976b6 6871 return TRUE;
b49e97c9
TS
6872}
6873
6874/* This hook function is called before the linker writes out a global
6875 symbol. We mark symbols as small common if appropriate. This is
6876 also where we undo the increment of the value for a mips16 symbol. */
6877
6e0b88f1 6878int
9719ad41
RS
6879_bfd_mips_elf_link_output_symbol_hook
6880 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6881 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6882 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
6883{
6884 /* If we see a common symbol, which implies a relocatable link, then
6885 if a symbol was small common in an input file, mark it as small
6886 common in the output file. */
6887 if (sym->st_shndx == SHN_COMMON
6888 && strcmp (input_sec->name, ".scommon") == 0)
6889 sym->st_shndx = SHN_MIPS_SCOMMON;
6890
30c09090 6891 if (ELF_ST_IS_MIPS16 (sym->st_other))
79cda7cf 6892 sym->st_value &= ~1;
b49e97c9 6893
6e0b88f1 6894 return 1;
b49e97c9
TS
6895}
6896\f
6897/* Functions for the dynamic linker. */
6898
6899/* Create dynamic sections when linking against a dynamic object. */
6900
b34976b6 6901bfd_boolean
9719ad41 6902_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
6903{
6904 struct elf_link_hash_entry *h;
14a793b2 6905 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6906 flagword flags;
6907 register asection *s;
6908 const char * const *namep;
0a44bf69 6909 struct mips_elf_link_hash_table *htab;
b49e97c9 6910
0a44bf69 6911 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6912 BFD_ASSERT (htab != NULL);
6913
b49e97c9
TS
6914 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6915 | SEC_LINKER_CREATED | SEC_READONLY);
6916
0a44bf69
RS
6917 /* The psABI requires a read-only .dynamic section, but the VxWorks
6918 EABI doesn't. */
6919 if (!htab->is_vxworks)
b49e97c9 6920 {
0a44bf69
RS
6921 s = bfd_get_section_by_name (abfd, ".dynamic");
6922 if (s != NULL)
6923 {
6924 if (! bfd_set_section_flags (abfd, s, flags))
6925 return FALSE;
6926 }
b49e97c9
TS
6927 }
6928
6929 /* We need to create .got section. */
23cc69b6 6930 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
6931 return FALSE;
6932
0a44bf69 6933 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 6934 return FALSE;
b49e97c9 6935
b49e97c9 6936 /* Create .stub section. */
4e41d0d7
RS
6937 s = bfd_make_section_with_flags (abfd,
6938 MIPS_ELF_STUB_SECTION_NAME (abfd),
6939 flags | SEC_CODE);
6940 if (s == NULL
6941 || ! bfd_set_section_alignment (abfd, s,
6942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6943 return FALSE;
6944 htab->sstubs = s;
b49e97c9
TS
6945
6946 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6947 && !info->shared
6948 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6949 {
3496cb2a
L
6950 s = bfd_make_section_with_flags (abfd, ".rld_map",
6951 flags &~ (flagword) SEC_READONLY);
b49e97c9 6952 if (s == NULL
b49e97c9
TS
6953 || ! bfd_set_section_alignment (abfd, s,
6954 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6955 return FALSE;
b49e97c9
TS
6956 }
6957
6958 /* On IRIX5, we adjust add some additional symbols and change the
6959 alignments of several sections. There is no ABI documentation
6960 indicating that this is necessary on IRIX6, nor any evidence that
6961 the linker takes such action. */
6962 if (IRIX_COMPAT (abfd) == ict_irix5)
6963 {
6964 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6965 {
14a793b2 6966 bh = NULL;
b49e97c9 6967 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
6968 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6969 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6970 return FALSE;
14a793b2
AM
6971
6972 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6973 h->non_elf = 0;
6974 h->def_regular = 1;
b49e97c9
TS
6975 h->type = STT_SECTION;
6976
c152c796 6977 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6978 return FALSE;
b49e97c9
TS
6979 }
6980
6981 /* We need to create a .compact_rel section. */
6982 if (SGI_COMPAT (abfd))
6983 {
6984 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6985 return FALSE;
b49e97c9
TS
6986 }
6987
44c410de 6988 /* Change alignments of some sections. */
b49e97c9
TS
6989 s = bfd_get_section_by_name (abfd, ".hash");
6990 if (s != NULL)
d80dcc6a 6991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6992 s = bfd_get_section_by_name (abfd, ".dynsym");
6993 if (s != NULL)
d80dcc6a 6994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6995 s = bfd_get_section_by_name (abfd, ".dynstr");
6996 if (s != NULL)
d80dcc6a 6997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6998 s = bfd_get_section_by_name (abfd, ".reginfo");
6999 if (s != NULL)
d80dcc6a 7000 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7001 s = bfd_get_section_by_name (abfd, ".dynamic");
7002 if (s != NULL)
d80dcc6a 7003 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7004 }
7005
7006 if (!info->shared)
7007 {
14a793b2
AM
7008 const char *name;
7009
7010 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7011 bh = NULL;
7012 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7013 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7014 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7015 return FALSE;
14a793b2
AM
7016
7017 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7018 h->non_elf = 0;
7019 h->def_regular = 1;
b49e97c9
TS
7020 h->type = STT_SECTION;
7021
c152c796 7022 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7023 return FALSE;
b49e97c9
TS
7024
7025 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7026 {
7027 /* __rld_map is a four byte word located in the .data section
7028 and is filled in by the rtld to contain a pointer to
7029 the _r_debug structure. Its symbol value will be set in
7030 _bfd_mips_elf_finish_dynamic_symbol. */
7031 s = bfd_get_section_by_name (abfd, ".rld_map");
0abfb97a 7032 BFD_ASSERT (s != NULL);
14a793b2 7033
0abfb97a
L
7034 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7035 bh = NULL;
7036 if (!(_bfd_generic_link_add_one_symbol
7037 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7038 get_elf_backend_data (abfd)->collect, &bh)))
7039 return FALSE;
b49e97c9 7040
0abfb97a
L
7041 h = (struct elf_link_hash_entry *) bh;
7042 h->non_elf = 0;
7043 h->def_regular = 1;
7044 h->type = STT_OBJECT;
7045
7046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7047 return FALSE;
b49e97c9
TS
7048 }
7049 }
7050
861fb55a
DJ
7051 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7052 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7053 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7054 return FALSE;
7055
7056 /* Cache the sections created above. */
7057 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7058 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
0a44bf69
RS
7059 if (htab->is_vxworks)
7060 {
0a44bf69
RS
7061 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7062 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
861fb55a
DJ
7063 }
7064 else
7065 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7066 if (!htab->sdynbss
7067 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7068 || !htab->srelplt
7069 || !htab->splt)
7070 abort ();
0a44bf69 7071
861fb55a
DJ
7072 if (htab->is_vxworks)
7073 {
0a44bf69
RS
7074 /* Do the usual VxWorks handling. */
7075 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7076 return FALSE;
7077
7078 /* Work out the PLT sizes. */
7079 if (info->shared)
7080 {
7081 htab->plt_header_size
7082 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7083 htab->plt_entry_size
7084 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7085 }
7086 else
7087 {
7088 htab->plt_header_size
7089 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7090 htab->plt_entry_size
7091 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7092 }
7093 }
861fb55a
DJ
7094 else if (!info->shared)
7095 {
7096 /* All variants of the plt0 entry are the same size. */
7097 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7098 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7099 }
0a44bf69 7100
b34976b6 7101 return TRUE;
b49e97c9
TS
7102}
7103\f
c224138d
RS
7104/* Return true if relocation REL against section SEC is a REL rather than
7105 RELA relocation. RELOCS is the first relocation in the section and
7106 ABFD is the bfd that contains SEC. */
7107
7108static bfd_boolean
7109mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7110 const Elf_Internal_Rela *relocs,
7111 const Elf_Internal_Rela *rel)
7112{
7113 Elf_Internal_Shdr *rel_hdr;
7114 const struct elf_backend_data *bed;
7115
7116 /* To determine which flavor or relocation this is, we depend on the
7117 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7118 rel_hdr = &elf_section_data (sec)->rel_hdr;
7119 bed = get_elf_backend_data (abfd);
7120 if ((size_t) (rel - relocs)
7121 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7122 rel_hdr = elf_section_data (sec)->rel_hdr2;
7123 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7124}
7125
7126/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7127 HOWTO is the relocation's howto and CONTENTS points to the contents
7128 of the section that REL is against. */
7129
7130static bfd_vma
7131mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7132 reloc_howto_type *howto, bfd_byte *contents)
7133{
7134 bfd_byte *location;
7135 unsigned int r_type;
7136 bfd_vma addend;
7137
7138 r_type = ELF_R_TYPE (abfd, rel->r_info);
7139 location = contents + rel->r_offset;
7140
7141 /* Get the addend, which is stored in the input file. */
7142 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7143 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7144 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7145
7146 return addend & howto->src_mask;
7147}
7148
7149/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7150 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7151 and update *ADDEND with the final addend. Return true on success
7152 or false if the LO16 could not be found. RELEND is the exclusive
7153 upper bound on the relocations for REL's section. */
7154
7155static bfd_boolean
7156mips_elf_add_lo16_rel_addend (bfd *abfd,
7157 const Elf_Internal_Rela *rel,
7158 const Elf_Internal_Rela *relend,
7159 bfd_byte *contents, bfd_vma *addend)
7160{
7161 unsigned int r_type, lo16_type;
7162 const Elf_Internal_Rela *lo16_relocation;
7163 reloc_howto_type *lo16_howto;
7164 bfd_vma l;
7165
7166 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7167 if (mips16_reloc_p (r_type))
c224138d
RS
7168 lo16_type = R_MIPS16_LO16;
7169 else
7170 lo16_type = R_MIPS_LO16;
7171
7172 /* The combined value is the sum of the HI16 addend, left-shifted by
7173 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7174 code does a `lui' of the HI16 value, and then an `addiu' of the
7175 LO16 value.)
7176
7177 Scan ahead to find a matching LO16 relocation.
7178
7179 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7180 be immediately following. However, for the IRIX6 ABI, the next
7181 relocation may be a composed relocation consisting of several
7182 relocations for the same address. In that case, the R_MIPS_LO16
7183 relocation may occur as one of these. We permit a similar
7184 extension in general, as that is useful for GCC.
7185
7186 In some cases GCC dead code elimination removes the LO16 but keeps
7187 the corresponding HI16. This is strictly speaking a violation of
7188 the ABI but not immediately harmful. */
7189 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7190 if (lo16_relocation == NULL)
7191 return FALSE;
7192
7193 /* Obtain the addend kept there. */
7194 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7195 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7196
7197 l <<= lo16_howto->rightshift;
7198 l = _bfd_mips_elf_sign_extend (l, 16);
7199
7200 *addend <<= 16;
7201 *addend += l;
7202 return TRUE;
7203}
7204
7205/* Try to read the contents of section SEC in bfd ABFD. Return true and
7206 store the contents in *CONTENTS on success. Assume that *CONTENTS
7207 already holds the contents if it is nonull on entry. */
7208
7209static bfd_boolean
7210mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7211{
7212 if (*contents)
7213 return TRUE;
7214
7215 /* Get cached copy if it exists. */
7216 if (elf_section_data (sec)->this_hdr.contents != NULL)
7217 {
7218 *contents = elf_section_data (sec)->this_hdr.contents;
7219 return TRUE;
7220 }
7221
7222 return bfd_malloc_and_get_section (abfd, sec, contents);
7223}
7224
b49e97c9
TS
7225/* Look through the relocs for a section during the first phase, and
7226 allocate space in the global offset table. */
7227
b34976b6 7228bfd_boolean
9719ad41
RS
7229_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7230 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7231{
7232 const char *name;
7233 bfd *dynobj;
7234 Elf_Internal_Shdr *symtab_hdr;
7235 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7236 size_t extsymoff;
7237 const Elf_Internal_Rela *rel;
7238 const Elf_Internal_Rela *rel_end;
b49e97c9 7239 asection *sreloc;
9c5bfbb7 7240 const struct elf_backend_data *bed;
0a44bf69 7241 struct mips_elf_link_hash_table *htab;
c224138d
RS
7242 bfd_byte *contents;
7243 bfd_vma addend;
7244 reloc_howto_type *howto;
b49e97c9 7245
1049f94e 7246 if (info->relocatable)
b34976b6 7247 return TRUE;
b49e97c9 7248
0a44bf69 7249 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7250 BFD_ASSERT (htab != NULL);
7251
b49e97c9
TS
7252 dynobj = elf_hash_table (info)->dynobj;
7253 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7254 sym_hashes = elf_sym_hashes (abfd);
7255 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7256
738e5348
RS
7257 bed = get_elf_backend_data (abfd);
7258 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7259
b49e97c9
TS
7260 /* Check for the mips16 stub sections. */
7261
7262 name = bfd_get_section_name (abfd, sec);
b9d58d71 7263 if (FN_STUB_P (name))
b49e97c9
TS
7264 {
7265 unsigned long r_symndx;
7266
7267 /* Look at the relocation information to figure out which symbol
7268 this is for. */
7269
738e5348
RS
7270 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7271 if (r_symndx == 0)
7272 {
7273 (*_bfd_error_handler)
7274 (_("%B: Warning: cannot determine the target function for"
7275 " stub section `%s'"),
7276 abfd, name);
7277 bfd_set_error (bfd_error_bad_value);
7278 return FALSE;
7279 }
b49e97c9
TS
7280
7281 if (r_symndx < extsymoff
7282 || sym_hashes[r_symndx - extsymoff] == NULL)
7283 {
7284 asection *o;
7285
7286 /* This stub is for a local symbol. This stub will only be
7287 needed if there is some relocation in this BFD, other
7288 than a 16 bit function call, which refers to this symbol. */
7289 for (o = abfd->sections; o != NULL; o = o->next)
7290 {
7291 Elf_Internal_Rela *sec_relocs;
7292 const Elf_Internal_Rela *r, *rend;
7293
7294 /* We can ignore stub sections when looking for relocs. */
7295 if ((o->flags & SEC_RELOC) == 0
7296 || o->reloc_count == 0
738e5348 7297 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7298 continue;
7299
45d6a902 7300 sec_relocs
9719ad41 7301 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7302 info->keep_memory);
b49e97c9 7303 if (sec_relocs == NULL)
b34976b6 7304 return FALSE;
b49e97c9
TS
7305
7306 rend = sec_relocs + o->reloc_count;
7307 for (r = sec_relocs; r < rend; r++)
7308 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7309 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7310 break;
7311
6cdc0ccc 7312 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7313 free (sec_relocs);
7314
7315 if (r < rend)
7316 break;
7317 }
7318
7319 if (o == NULL)
7320 {
7321 /* There is no non-call reloc for this stub, so we do
7322 not need it. Since this function is called before
7323 the linker maps input sections to output sections, we
7324 can easily discard it by setting the SEC_EXCLUDE
7325 flag. */
7326 sec->flags |= SEC_EXCLUDE;
b34976b6 7327 return TRUE;
b49e97c9
TS
7328 }
7329
7330 /* Record this stub in an array of local symbol stubs for
7331 this BFD. */
7332 if (elf_tdata (abfd)->local_stubs == NULL)
7333 {
7334 unsigned long symcount;
7335 asection **n;
7336 bfd_size_type amt;
7337
7338 if (elf_bad_symtab (abfd))
7339 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7340 else
7341 symcount = symtab_hdr->sh_info;
7342 amt = symcount * sizeof (asection *);
9719ad41 7343 n = bfd_zalloc (abfd, amt);
b49e97c9 7344 if (n == NULL)
b34976b6 7345 return FALSE;
b49e97c9
TS
7346 elf_tdata (abfd)->local_stubs = n;
7347 }
7348
b9d58d71 7349 sec->flags |= SEC_KEEP;
b49e97c9
TS
7350 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7351
7352 /* We don't need to set mips16_stubs_seen in this case.
7353 That flag is used to see whether we need to look through
7354 the global symbol table for stubs. We don't need to set
7355 it here, because we just have a local stub. */
7356 }
7357 else
7358 {
7359 struct mips_elf_link_hash_entry *h;
7360
7361 h = ((struct mips_elf_link_hash_entry *)
7362 sym_hashes[r_symndx - extsymoff]);
7363
973a3492
L
7364 while (h->root.root.type == bfd_link_hash_indirect
7365 || h->root.root.type == bfd_link_hash_warning)
7366 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7367
b49e97c9
TS
7368 /* H is the symbol this stub is for. */
7369
b9d58d71
TS
7370 /* If we already have an appropriate stub for this function, we
7371 don't need another one, so we can discard this one. Since
7372 this function is called before the linker maps input sections
7373 to output sections, we can easily discard it by setting the
7374 SEC_EXCLUDE flag. */
7375 if (h->fn_stub != NULL)
7376 {
7377 sec->flags |= SEC_EXCLUDE;
7378 return TRUE;
7379 }
7380
7381 sec->flags |= SEC_KEEP;
b49e97c9 7382 h->fn_stub = sec;
b34976b6 7383 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7384 }
7385 }
b9d58d71 7386 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7387 {
7388 unsigned long r_symndx;
7389 struct mips_elf_link_hash_entry *h;
7390 asection **loc;
7391
7392 /* Look at the relocation information to figure out which symbol
7393 this is for. */
7394
738e5348
RS
7395 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7396 if (r_symndx == 0)
7397 {
7398 (*_bfd_error_handler)
7399 (_("%B: Warning: cannot determine the target function for"
7400 " stub section `%s'"),
7401 abfd, name);
7402 bfd_set_error (bfd_error_bad_value);
7403 return FALSE;
7404 }
b49e97c9
TS
7405
7406 if (r_symndx < extsymoff
7407 || sym_hashes[r_symndx - extsymoff] == NULL)
7408 {
b9d58d71 7409 asection *o;
b49e97c9 7410
b9d58d71
TS
7411 /* This stub is for a local symbol. This stub will only be
7412 needed if there is some relocation (R_MIPS16_26) in this BFD
7413 that refers to this symbol. */
7414 for (o = abfd->sections; o != NULL; o = o->next)
7415 {
7416 Elf_Internal_Rela *sec_relocs;
7417 const Elf_Internal_Rela *r, *rend;
7418
7419 /* We can ignore stub sections when looking for relocs. */
7420 if ((o->flags & SEC_RELOC) == 0
7421 || o->reloc_count == 0
738e5348 7422 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7423 continue;
7424
7425 sec_relocs
7426 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7427 info->keep_memory);
7428 if (sec_relocs == NULL)
7429 return FALSE;
7430
7431 rend = sec_relocs + o->reloc_count;
7432 for (r = sec_relocs; r < rend; r++)
7433 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7434 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7435 break;
7436
7437 if (elf_section_data (o)->relocs != sec_relocs)
7438 free (sec_relocs);
7439
7440 if (r < rend)
7441 break;
7442 }
7443
7444 if (o == NULL)
7445 {
7446 /* There is no non-call reloc for this stub, so we do
7447 not need it. Since this function is called before
7448 the linker maps input sections to output sections, we
7449 can easily discard it by setting the SEC_EXCLUDE
7450 flag. */
7451 sec->flags |= SEC_EXCLUDE;
7452 return TRUE;
7453 }
7454
7455 /* Record this stub in an array of local symbol call_stubs for
7456 this BFD. */
7457 if (elf_tdata (abfd)->local_call_stubs == NULL)
7458 {
7459 unsigned long symcount;
7460 asection **n;
7461 bfd_size_type amt;
7462
7463 if (elf_bad_symtab (abfd))
7464 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7465 else
7466 symcount = symtab_hdr->sh_info;
7467 amt = symcount * sizeof (asection *);
7468 n = bfd_zalloc (abfd, amt);
7469 if (n == NULL)
7470 return FALSE;
7471 elf_tdata (abfd)->local_call_stubs = n;
7472 }
b49e97c9 7473
b9d58d71
TS
7474 sec->flags |= SEC_KEEP;
7475 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7476
b9d58d71
TS
7477 /* We don't need to set mips16_stubs_seen in this case.
7478 That flag is used to see whether we need to look through
7479 the global symbol table for stubs. We don't need to set
7480 it here, because we just have a local stub. */
7481 }
b49e97c9 7482 else
b49e97c9 7483 {
b9d58d71
TS
7484 h = ((struct mips_elf_link_hash_entry *)
7485 sym_hashes[r_symndx - extsymoff]);
7486
7487 /* H is the symbol this stub is for. */
7488
7489 if (CALL_FP_STUB_P (name))
7490 loc = &h->call_fp_stub;
7491 else
7492 loc = &h->call_stub;
7493
7494 /* If we already have an appropriate stub for this function, we
7495 don't need another one, so we can discard this one. Since
7496 this function is called before the linker maps input sections
7497 to output sections, we can easily discard it by setting the
7498 SEC_EXCLUDE flag. */
7499 if (*loc != NULL)
7500 {
7501 sec->flags |= SEC_EXCLUDE;
7502 return TRUE;
7503 }
b49e97c9 7504
b9d58d71
TS
7505 sec->flags |= SEC_KEEP;
7506 *loc = sec;
7507 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7508 }
b49e97c9
TS
7509 }
7510
b49e97c9 7511 sreloc = NULL;
c224138d 7512 contents = NULL;
b49e97c9
TS
7513 for (rel = relocs; rel < rel_end; ++rel)
7514 {
7515 unsigned long r_symndx;
7516 unsigned int r_type;
7517 struct elf_link_hash_entry *h;
861fb55a 7518 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7519
7520 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7521 r_type = ELF_R_TYPE (abfd, rel->r_info);
7522
7523 if (r_symndx < extsymoff)
7524 h = NULL;
7525 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7526 {
7527 (*_bfd_error_handler)
d003868e
AM
7528 (_("%B: Malformed reloc detected for section %s"),
7529 abfd, name);
b49e97c9 7530 bfd_set_error (bfd_error_bad_value);
b34976b6 7531 return FALSE;
b49e97c9
TS
7532 }
7533 else
7534 {
7535 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7536 while (h != NULL
7537 && (h->root.type == bfd_link_hash_indirect
7538 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7540 }
b49e97c9 7541
861fb55a
DJ
7542 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7543 relocation into a dynamic one. */
7544 can_make_dynamic_p = FALSE;
7545 switch (r_type)
7546 {
7547 case R_MIPS16_GOT16:
7548 case R_MIPS16_CALL16:
7549 case R_MIPS_GOT16:
7550 case R_MIPS_CALL16:
7551 case R_MIPS_CALL_HI16:
7552 case R_MIPS_CALL_LO16:
7553 case R_MIPS_GOT_HI16:
7554 case R_MIPS_GOT_LO16:
7555 case R_MIPS_GOT_PAGE:
7556 case R_MIPS_GOT_OFST:
7557 case R_MIPS_GOT_DISP:
7558 case R_MIPS_TLS_GOTTPREL:
7559 case R_MIPS_TLS_GD:
7560 case R_MIPS_TLS_LDM:
7561 if (dynobj == NULL)
7562 elf_hash_table (info)->dynobj = dynobj = abfd;
7563 if (!mips_elf_create_got_section (dynobj, info))
7564 return FALSE;
7565 if (htab->is_vxworks && !info->shared)
b49e97c9 7566 {
861fb55a
DJ
7567 (*_bfd_error_handler)
7568 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7569 abfd, (unsigned long) rel->r_offset);
7570 bfd_set_error (bfd_error_bad_value);
7571 return FALSE;
b49e97c9 7572 }
861fb55a 7573 break;
b49e97c9 7574
99da6b5f
AN
7575 /* This is just a hint; it can safely be ignored. Don't set
7576 has_static_relocs for the corresponding symbol. */
7577 case R_MIPS_JALR:
7578 break;
7579
861fb55a
DJ
7580 case R_MIPS_32:
7581 case R_MIPS_REL32:
7582 case R_MIPS_64:
7583 /* In VxWorks executables, references to external symbols
7584 must be handled using copy relocs or PLT entries; it is not
7585 possible to convert this relocation into a dynamic one.
7586
7587 For executables that use PLTs and copy-relocs, we have a
7588 choice between converting the relocation into a dynamic
7589 one or using copy relocations or PLT entries. It is
7590 usually better to do the former, unless the relocation is
7591 against a read-only section. */
7592 if ((info->shared
7593 || (h != NULL
7594 && !htab->is_vxworks
7595 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7596 && !(!info->nocopyreloc
7597 && !PIC_OBJECT_P (abfd)
7598 && MIPS_ELF_READONLY_SECTION (sec))))
7599 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7600 {
861fb55a 7601 can_make_dynamic_p = TRUE;
b49e97c9
TS
7602 if (dynobj == NULL)
7603 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7604 break;
861fb55a
DJ
7605 }
7606 /* Fall through. */
b49e97c9 7607
861fb55a
DJ
7608 default:
7609 /* Most static relocations require pointer equality, except
7610 for branches. */
7611 if (h)
7612 h->pointer_equality_needed = TRUE;
7613 /* Fall through. */
b49e97c9 7614
861fb55a
DJ
7615 case R_MIPS_26:
7616 case R_MIPS_PC16:
7617 case R_MIPS16_26:
7618 if (h)
7619 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7620 break;
b49e97c9
TS
7621 }
7622
0a44bf69
RS
7623 if (h)
7624 {
0a44bf69
RS
7625 /* Relocations against the special VxWorks __GOTT_BASE__ and
7626 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7627 room for them in .rela.dyn. */
7628 if (is_gott_symbol (info, h))
7629 {
7630 if (sreloc == NULL)
7631 {
7632 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7633 if (sreloc == NULL)
7634 return FALSE;
7635 }
7636 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7637 if (MIPS_ELF_READONLY_SECTION (sec))
7638 /* We tell the dynamic linker that there are
7639 relocations against the text segment. */
7640 info->flags |= DF_TEXTREL;
0a44bf69
RS
7641 }
7642 }
7643 else if (r_type == R_MIPS_CALL_LO16
7644 || r_type == R_MIPS_GOT_LO16
7645 || r_type == R_MIPS_GOT_DISP
738e5348 7646 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7647 {
7648 /* We may need a local GOT entry for this relocation. We
7649 don't count R_MIPS_GOT_PAGE because we can estimate the
7650 maximum number of pages needed by looking at the size of
738e5348
RS
7651 the segment. Similar comments apply to R_MIPS*_GOT16 and
7652 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7653 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7654 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7655 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0
RS
7656 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7657 rel->r_addend, info, 0))
f4416af6 7658 return FALSE;
b49e97c9
TS
7659 }
7660
861fb55a
DJ
7661 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7662 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7663
b49e97c9
TS
7664 switch (r_type)
7665 {
7666 case R_MIPS_CALL16:
738e5348 7667 case R_MIPS16_CALL16:
b49e97c9
TS
7668 if (h == NULL)
7669 {
7670 (*_bfd_error_handler)
d003868e
AM
7671 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7672 abfd, (unsigned long) rel->r_offset);
b49e97c9 7673 bfd_set_error (bfd_error_bad_value);
b34976b6 7674 return FALSE;
b49e97c9
TS
7675 }
7676 /* Fall through. */
7677
7678 case R_MIPS_CALL_HI16:
7679 case R_MIPS_CALL_LO16:
7680 if (h != NULL)
7681 {
d334575b 7682 /* VxWorks call relocations point at the function's .got.plt
0a44bf69
RS
7683 entry, which will be allocated by adjust_dynamic_symbol.
7684 Otherwise, this symbol requires a global GOT entry. */
8275b357 7685 if ((!htab->is_vxworks || h->forced_local)
a8028dd0 7686 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7687 return FALSE;
b49e97c9
TS
7688
7689 /* We need a stub, not a plt entry for the undefined
7690 function. But we record it as if it needs plt. See
c152c796 7691 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 7692 h->needs_plt = 1;
b49e97c9
TS
7693 h->type = STT_FUNC;
7694 }
7695 break;
7696
0fdc1bf1
AO
7697 case R_MIPS_GOT_PAGE:
7698 /* If this is a global, overridable symbol, GOT_PAGE will
7699 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 7700 if (h)
0fdc1bf1
AO
7701 {
7702 struct mips_elf_link_hash_entry *hmips =
7703 (struct mips_elf_link_hash_entry *) h;
143d77c5 7704
3a3b6725 7705 /* This symbol is definitely not overridable. */
f5385ebf 7706 if (hmips->root.def_regular
0fdc1bf1 7707 && ! (info->shared && ! info->symbolic
f5385ebf 7708 && ! hmips->root.forced_local))
c224138d 7709 h = NULL;
0fdc1bf1
AO
7710 }
7711 /* Fall through. */
7712
738e5348 7713 case R_MIPS16_GOT16:
b49e97c9
TS
7714 case R_MIPS_GOT16:
7715 case R_MIPS_GOT_HI16:
7716 case R_MIPS_GOT_LO16:
3a3b6725 7717 if (!h || r_type == R_MIPS_GOT_PAGE)
c224138d 7718 {
3a3b6725
DJ
7719 /* This relocation needs (or may need, if h != NULL) a
7720 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7721 know for sure until we know whether the symbol is
7722 preemptible. */
c224138d
RS
7723 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7724 {
7725 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7726 return FALSE;
7727 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7728 addend = mips_elf_read_rel_addend (abfd, rel,
7729 howto, contents);
9684f078 7730 if (got16_reloc_p (r_type))
c224138d
RS
7731 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7732 contents, &addend);
7733 else
7734 addend <<= howto->rightshift;
7735 }
7736 else
7737 addend = rel->r_addend;
a8028dd0
RS
7738 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7739 addend))
c224138d
RS
7740 return FALSE;
7741 break;
7742 }
7743 /* Fall through. */
7744
b49e97c9 7745 case R_MIPS_GOT_DISP:
a8028dd0 7746 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7747 return FALSE;
b49e97c9
TS
7748 break;
7749
0f20cc35
DJ
7750 case R_MIPS_TLS_GOTTPREL:
7751 if (info->shared)
7752 info->flags |= DF_STATIC_TLS;
7753 /* Fall through */
7754
7755 case R_MIPS_TLS_LDM:
7756 if (r_type == R_MIPS_TLS_LDM)
7757 {
7758 r_symndx = 0;
7759 h = NULL;
7760 }
7761 /* Fall through */
7762
7763 case R_MIPS_TLS_GD:
7764 /* This symbol requires a global offset table entry, or two
7765 for TLS GD relocations. */
7766 {
7767 unsigned char flag = (r_type == R_MIPS_TLS_GD
7768 ? GOT_TLS_GD
7769 : r_type == R_MIPS_TLS_LDM
7770 ? GOT_TLS_LDM
7771 : GOT_TLS_IE);
7772 if (h != NULL)
7773 {
7774 struct mips_elf_link_hash_entry *hmips =
7775 (struct mips_elf_link_hash_entry *) h;
7776 hmips->tls_type |= flag;
7777
a8028dd0
RS
7778 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7779 info, flag))
0f20cc35
DJ
7780 return FALSE;
7781 }
7782 else
7783 {
7784 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7785
a8028dd0
RS
7786 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7787 rel->r_addend,
7788 info, flag))
0f20cc35
DJ
7789 return FALSE;
7790 }
7791 }
7792 break;
7793
b49e97c9
TS
7794 case R_MIPS_32:
7795 case R_MIPS_REL32:
7796 case R_MIPS_64:
0a44bf69
RS
7797 /* In VxWorks executables, references to external symbols
7798 are handled using copy relocs or PLT stubs, so there's
7799 no need to add a .rela.dyn entry for this relocation. */
861fb55a 7800 if (can_make_dynamic_p)
b49e97c9
TS
7801 {
7802 if (sreloc == NULL)
7803 {
0a44bf69 7804 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 7805 if (sreloc == NULL)
f4416af6 7806 return FALSE;
b49e97c9 7807 }
9a59ad6b 7808 if (info->shared && h == NULL)
82f0cfbd
EC
7809 {
7810 /* When creating a shared object, we must copy these
7811 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
7812 relocs. Make room for this reloc in .rel(a).dyn. */
7813 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 7814 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7815 /* We tell the dynamic linker that there are
7816 relocations against the text segment. */
7817 info->flags |= DF_TEXTREL;
7818 }
b49e97c9
TS
7819 else
7820 {
7821 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 7822
9a59ad6b
DJ
7823 /* For a shared object, we must copy this relocation
7824 unless the symbol turns out to be undefined and
7825 weak with non-default visibility, in which case
7826 it will be left as zero.
7827
7828 We could elide R_MIPS_REL32 for locally binding symbols
7829 in shared libraries, but do not yet do so.
7830
7831 For an executable, we only need to copy this
7832 reloc if the symbol is defined in a dynamic
7833 object. */
b49e97c9
TS
7834 hmips = (struct mips_elf_link_hash_entry *) h;
7835 ++hmips->possibly_dynamic_relocs;
943284cc 7836 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7837 /* We need it to tell the dynamic linker if there
7838 are relocations against the text segment. */
7839 hmips->readonly_reloc = TRUE;
b49e97c9 7840 }
b49e97c9
TS
7841 }
7842
7843 if (SGI_COMPAT (abfd))
7844 mips_elf_hash_table (info)->compact_rel_size +=
7845 sizeof (Elf32_External_crinfo);
7846 break;
7847
7848 case R_MIPS_26:
7849 case R_MIPS_GPREL16:
7850 case R_MIPS_LITERAL:
7851 case R_MIPS_GPREL32:
7852 if (SGI_COMPAT (abfd))
7853 mips_elf_hash_table (info)->compact_rel_size +=
7854 sizeof (Elf32_External_crinfo);
7855 break;
7856
7857 /* This relocation describes the C++ object vtable hierarchy.
7858 Reconstruct it for later use during GC. */
7859 case R_MIPS_GNU_VTINHERIT:
c152c796 7860 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 7861 return FALSE;
b49e97c9
TS
7862 break;
7863
7864 /* This relocation describes which C++ vtable entries are actually
7865 used. Record for later use during GC. */
7866 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
7867 BFD_ASSERT (h != NULL);
7868 if (h != NULL
7869 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 7870 return FALSE;
b49e97c9
TS
7871 break;
7872
7873 default:
7874 break;
7875 }
7876
7877 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
7878 related to taking the function's address. This doesn't apply to
7879 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7880 a normal .got entry. */
7881 if (!htab->is_vxworks && h != NULL)
7882 switch (r_type)
7883 {
7884 default:
7885 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7886 break;
738e5348 7887 case R_MIPS16_CALL16:
0a44bf69
RS
7888 case R_MIPS_CALL16:
7889 case R_MIPS_CALL_HI16:
7890 case R_MIPS_CALL_LO16:
7891 case R_MIPS_JALR:
7892 break;
7893 }
b49e97c9 7894
738e5348
RS
7895 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7896 if there is one. We only need to handle global symbols here;
7897 we decide whether to keep or delete stubs for local symbols
7898 when processing the stub's relocations. */
b49e97c9 7899 if (h != NULL
738e5348
RS
7900 && !mips16_call_reloc_p (r_type)
7901 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
7902 {
7903 struct mips_elf_link_hash_entry *mh;
7904
7905 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 7906 mh->need_fn_stub = TRUE;
b49e97c9 7907 }
861fb55a
DJ
7908
7909 /* Refuse some position-dependent relocations when creating a
7910 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7911 not PIC, but we can create dynamic relocations and the result
7912 will be fine. Also do not refuse R_MIPS_LO16, which can be
7913 combined with R_MIPS_GOT16. */
7914 if (info->shared)
7915 {
7916 switch (r_type)
7917 {
7918 case R_MIPS16_HI16:
7919 case R_MIPS_HI16:
7920 case R_MIPS_HIGHER:
7921 case R_MIPS_HIGHEST:
7922 /* Don't refuse a high part relocation if it's against
7923 no symbol (e.g. part of a compound relocation). */
7924 if (r_symndx == 0)
7925 break;
7926
7927 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7928 and has a special meaning. */
7929 if (!NEWABI_P (abfd) && h != NULL
7930 && strcmp (h->root.root.string, "_gp_disp") == 0)
7931 break;
7932
7933 /* FALLTHROUGH */
7934
7935 case R_MIPS16_26:
7936 case R_MIPS_26:
7937 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7938 (*_bfd_error_handler)
7939 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7940 abfd, howto->name,
7941 (h) ? h->root.root.string : "a local symbol");
7942 bfd_set_error (bfd_error_bad_value);
7943 return FALSE;
7944 default:
7945 break;
7946 }
7947 }
b49e97c9
TS
7948 }
7949
b34976b6 7950 return TRUE;
b49e97c9
TS
7951}
7952\f
d0647110 7953bfd_boolean
9719ad41
RS
7954_bfd_mips_relax_section (bfd *abfd, asection *sec,
7955 struct bfd_link_info *link_info,
7956 bfd_boolean *again)
d0647110
AO
7957{
7958 Elf_Internal_Rela *internal_relocs;
7959 Elf_Internal_Rela *irel, *irelend;
7960 Elf_Internal_Shdr *symtab_hdr;
7961 bfd_byte *contents = NULL;
d0647110
AO
7962 size_t extsymoff;
7963 bfd_boolean changed_contents = FALSE;
7964 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7965 Elf_Internal_Sym *isymbuf = NULL;
7966
7967 /* We are not currently changing any sizes, so only one pass. */
7968 *again = FALSE;
7969
1049f94e 7970 if (link_info->relocatable)
d0647110
AO
7971 return TRUE;
7972
9719ad41 7973 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 7974 link_info->keep_memory);
d0647110
AO
7975 if (internal_relocs == NULL)
7976 return TRUE;
7977
7978 irelend = internal_relocs + sec->reloc_count
7979 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7980 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7981 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7982
7983 for (irel = internal_relocs; irel < irelend; irel++)
7984 {
7985 bfd_vma symval;
7986 bfd_signed_vma sym_offset;
7987 unsigned int r_type;
7988 unsigned long r_symndx;
7989 asection *sym_sec;
7990 unsigned long instruction;
7991
7992 /* Turn jalr into bgezal, and jr into beq, if they're marked
7993 with a JALR relocation, that indicate where they jump to.
7994 This saves some pipeline bubbles. */
7995 r_type = ELF_R_TYPE (abfd, irel->r_info);
7996 if (r_type != R_MIPS_JALR)
7997 continue;
7998
7999 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8000 /* Compute the address of the jump target. */
8001 if (r_symndx >= extsymoff)
8002 {
8003 struct mips_elf_link_hash_entry *h
8004 = ((struct mips_elf_link_hash_entry *)
8005 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8006
8007 while (h->root.root.type == bfd_link_hash_indirect
8008 || h->root.root.type == bfd_link_hash_warning)
8009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8010
d0647110
AO
8011 /* If a symbol is undefined, or if it may be overridden,
8012 skip it. */
8013 if (! ((h->root.root.type == bfd_link_hash_defined
8014 || h->root.root.type == bfd_link_hash_defweak)
8015 && h->root.root.u.def.section)
8016 || (link_info->shared && ! link_info->symbolic
f5385ebf 8017 && !h->root.forced_local))
d0647110
AO
8018 continue;
8019
8020 sym_sec = h->root.root.u.def.section;
8021 if (sym_sec->output_section)
8022 symval = (h->root.root.u.def.value
8023 + sym_sec->output_section->vma
8024 + sym_sec->output_offset);
8025 else
8026 symval = h->root.root.u.def.value;
8027 }
8028 else
8029 {
8030 Elf_Internal_Sym *isym;
8031
8032 /* Read this BFD's symbols if we haven't done so already. */
8033 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8034 {
8035 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8036 if (isymbuf == NULL)
8037 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8038 symtab_hdr->sh_info, 0,
8039 NULL, NULL, NULL);
8040 if (isymbuf == NULL)
8041 goto relax_return;
8042 }
8043
8044 isym = isymbuf + r_symndx;
8045 if (isym->st_shndx == SHN_UNDEF)
8046 continue;
8047 else if (isym->st_shndx == SHN_ABS)
8048 sym_sec = bfd_abs_section_ptr;
8049 else if (isym->st_shndx == SHN_COMMON)
8050 sym_sec = bfd_com_section_ptr;
8051 else
8052 sym_sec
8053 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8054 symval = isym->st_value
8055 + sym_sec->output_section->vma
8056 + sym_sec->output_offset;
8057 }
8058
8059 /* Compute branch offset, from delay slot of the jump to the
8060 branch target. */
8061 sym_offset = (symval + irel->r_addend)
8062 - (sec_start + irel->r_offset + 4);
8063
8064 /* Branch offset must be properly aligned. */
8065 if ((sym_offset & 3) != 0)
8066 continue;
8067
8068 sym_offset >>= 2;
8069
8070 /* Check that it's in range. */
8071 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8072 continue;
143d77c5 8073
d0647110 8074 /* Get the section contents if we haven't done so already. */
c224138d
RS
8075 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8076 goto relax_return;
d0647110
AO
8077
8078 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8079
8080 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8081 if ((instruction & 0xfc1fffff) == 0x0000f809)
8082 instruction = 0x04110000;
8083 /* If it was jr <reg>, turn it into b <target>. */
8084 else if ((instruction & 0xfc1fffff) == 0x00000008)
8085 instruction = 0x10000000;
8086 else
8087 continue;
8088
8089 instruction |= (sym_offset & 0xffff);
8090 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8091 changed_contents = TRUE;
8092 }
8093
8094 if (contents != NULL
8095 && elf_section_data (sec)->this_hdr.contents != contents)
8096 {
8097 if (!changed_contents && !link_info->keep_memory)
8098 free (contents);
8099 else
8100 {
8101 /* Cache the section contents for elf_link_input_bfd. */
8102 elf_section_data (sec)->this_hdr.contents = contents;
8103 }
8104 }
8105 return TRUE;
8106
143d77c5 8107 relax_return:
eea6121a
AM
8108 if (contents != NULL
8109 && elf_section_data (sec)->this_hdr.contents != contents)
8110 free (contents);
d0647110
AO
8111 return FALSE;
8112}
8113\f
9a59ad6b
DJ
8114/* Allocate space for global sym dynamic relocs. */
8115
8116static bfd_boolean
8117allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8118{
8119 struct bfd_link_info *info = inf;
8120 bfd *dynobj;
8121 struct mips_elf_link_hash_entry *hmips;
8122 struct mips_elf_link_hash_table *htab;
8123
8124 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8125 BFD_ASSERT (htab != NULL);
8126
9a59ad6b
DJ
8127 dynobj = elf_hash_table (info)->dynobj;
8128 hmips = (struct mips_elf_link_hash_entry *) h;
8129
8130 /* VxWorks executables are handled elsewhere; we only need to
8131 allocate relocations in shared objects. */
8132 if (htab->is_vxworks && !info->shared)
8133 return TRUE;
8134
63897e2c
RS
8135 /* Ignore indirect and warning symbols. All relocations against
8136 such symbols will be redirected to the target symbol. */
8137 if (h->root.type == bfd_link_hash_indirect
8138 || h->root.type == bfd_link_hash_warning)
8139 return TRUE;
8140
9a59ad6b
DJ
8141 /* If this symbol is defined in a dynamic object, or we are creating
8142 a shared library, we will need to copy any R_MIPS_32 or
8143 R_MIPS_REL32 relocs against it into the output file. */
8144 if (! info->relocatable
8145 && hmips->possibly_dynamic_relocs != 0
8146 && (h->root.type == bfd_link_hash_defweak
8147 || !h->def_regular
8148 || info->shared))
8149 {
8150 bfd_boolean do_copy = TRUE;
8151
8152 if (h->root.type == bfd_link_hash_undefweak)
8153 {
8154 /* Do not copy relocations for undefined weak symbols with
8155 non-default visibility. */
8156 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8157 do_copy = FALSE;
8158
8159 /* Make sure undefined weak symbols are output as a dynamic
8160 symbol in PIEs. */
8161 else if (h->dynindx == -1 && !h->forced_local)
8162 {
8163 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8164 return FALSE;
8165 }
8166 }
8167
8168 if (do_copy)
8169 {
aff469fa
RS
8170 /* Even though we don't directly need a GOT entry for this symbol,
8171 a symbol must have a dynamic symbol table index greater that
8172 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8173 if (hmips->global_got_area > GGA_RELOC_ONLY)
8174 hmips->global_got_area = GGA_RELOC_ONLY;
8175
9a59ad6b
DJ
8176 mips_elf_allocate_dynamic_relocations
8177 (dynobj, info, hmips->possibly_dynamic_relocs);
8178 if (hmips->readonly_reloc)
8179 /* We tell the dynamic linker that there are relocations
8180 against the text segment. */
8181 info->flags |= DF_TEXTREL;
8182 }
8183 }
8184
8185 return TRUE;
8186}
8187
b49e97c9
TS
8188/* Adjust a symbol defined by a dynamic object and referenced by a
8189 regular object. The current definition is in some section of the
8190 dynamic object, but we're not including those sections. We have to
8191 change the definition to something the rest of the link can
8192 understand. */
8193
b34976b6 8194bfd_boolean
9719ad41
RS
8195_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8196 struct elf_link_hash_entry *h)
b49e97c9
TS
8197{
8198 bfd *dynobj;
8199 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8200 struct mips_elf_link_hash_table *htab;
b49e97c9 8201
5108fc1b 8202 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8203 BFD_ASSERT (htab != NULL);
8204
b49e97c9 8205 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8206 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8207
8208 /* Make sure we know what is going on here. */
8209 BFD_ASSERT (dynobj != NULL
f5385ebf 8210 && (h->needs_plt
f6e332e6 8211 || h->u.weakdef != NULL
f5385ebf
AM
8212 || (h->def_dynamic
8213 && h->ref_regular
8214 && !h->def_regular)));
b49e97c9 8215
b49e97c9 8216 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8217
861fb55a
DJ
8218 /* If there are call relocations against an externally-defined symbol,
8219 see whether we can create a MIPS lazy-binding stub for it. We can
8220 only do this if all references to the function are through call
8221 relocations, and in that case, the traditional lazy-binding stubs
8222 are much more efficient than PLT entries.
8223
8224 Traditional stubs are only available on SVR4 psABI-based systems;
8225 VxWorks always uses PLTs instead. */
8226 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8227 {
8228 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8229 return TRUE;
b49e97c9
TS
8230
8231 /* If this symbol is not defined in a regular file, then set
8232 the symbol to the stub location. This is required to make
8233 function pointers compare as equal between the normal
8234 executable and the shared library. */
f5385ebf 8235 if (!h->def_regular)
b49e97c9 8236 {
33bb52fb
RS
8237 hmips->needs_lazy_stub = TRUE;
8238 htab->lazy_stub_count++;
b34976b6 8239 return TRUE;
b49e97c9
TS
8240 }
8241 }
861fb55a
DJ
8242 /* As above, VxWorks requires PLT entries for externally-defined
8243 functions that are only accessed through call relocations.
b49e97c9 8244
861fb55a
DJ
8245 Both VxWorks and non-VxWorks targets also need PLT entries if there
8246 are static-only relocations against an externally-defined function.
8247 This can technically occur for shared libraries if there are
8248 branches to the symbol, although it is unlikely that this will be
8249 used in practice due to the short ranges involved. It can occur
8250 for any relative or absolute relocation in executables; in that
8251 case, the PLT entry becomes the function's canonical address. */
8252 else if (((h->needs_plt && !hmips->no_fn_stub)
8253 || (h->type == STT_FUNC && hmips->has_static_relocs))
8254 && htab->use_plts_and_copy_relocs
8255 && !SYMBOL_CALLS_LOCAL (info, h)
8256 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8257 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8258 {
861fb55a
DJ
8259 /* If this is the first symbol to need a PLT entry, allocate room
8260 for the header. */
8261 if (htab->splt->size == 0)
8262 {
8263 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8264
861fb55a
DJ
8265 /* If we're using the PLT additions to the psABI, each PLT
8266 entry is 16 bytes and the PLT0 entry is 32 bytes.
8267 Encourage better cache usage by aligning. We do this
8268 lazily to avoid pessimizing traditional objects. */
8269 if (!htab->is_vxworks
8270 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8271 return FALSE;
0a44bf69 8272
861fb55a
DJ
8273 /* Make sure that .got.plt is word-aligned. We do this lazily
8274 for the same reason as above. */
8275 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8276 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8277 return FALSE;
0a44bf69 8278
861fb55a 8279 htab->splt->size += htab->plt_header_size;
0a44bf69 8280
861fb55a
DJ
8281 /* On non-VxWorks targets, the first two entries in .got.plt
8282 are reserved. */
8283 if (!htab->is_vxworks)
8284 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
0a44bf69 8285
861fb55a
DJ
8286 /* On VxWorks, also allocate room for the header's
8287 .rela.plt.unloaded entries. */
8288 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8289 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8290 }
8291
8292 /* Assign the next .plt entry to this symbol. */
8293 h->plt.offset = htab->splt->size;
8294 htab->splt->size += htab->plt_entry_size;
8295
8296 /* If the output file has no definition of the symbol, set the
861fb55a 8297 symbol's value to the address of the stub. */
131eb6b7 8298 if (!info->shared && !h->def_regular)
0a44bf69
RS
8299 {
8300 h->root.u.def.section = htab->splt;
8301 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8302 /* For VxWorks, point at the PLT load stub rather than the
8303 lazy resolution stub; this stub will become the canonical
8304 function address. */
8305 if (htab->is_vxworks)
8306 h->root.u.def.value += 8;
0a44bf69
RS
8307 }
8308
861fb55a
DJ
8309 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8310 relocation. */
8311 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8312 htab->srelplt->size += (htab->is_vxworks
8313 ? MIPS_ELF_RELA_SIZE (dynobj)
8314 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8315
8316 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8317 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8318 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8319
861fb55a
DJ
8320 /* All relocations against this symbol that could have been made
8321 dynamic will now refer to the PLT entry instead. */
8322 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8323
0a44bf69
RS
8324 return TRUE;
8325 }
8326
8327 /* If this is a weak symbol, and there is a real definition, the
8328 processor independent code will have arranged for us to see the
8329 real definition first, and we can just use the same value. */
8330 if (h->u.weakdef != NULL)
8331 {
8332 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8333 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8334 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8335 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8336 return TRUE;
8337 }
8338
861fb55a
DJ
8339 /* Otherwise, there is nothing further to do for symbols defined
8340 in regular objects. */
8341 if (h->def_regular)
0a44bf69
RS
8342 return TRUE;
8343
861fb55a
DJ
8344 /* There's also nothing more to do if we'll convert all relocations
8345 against this symbol into dynamic relocations. */
8346 if (!hmips->has_static_relocs)
8347 return TRUE;
8348
8349 /* We're now relying on copy relocations. Complain if we have
8350 some that we can't convert. */
8351 if (!htab->use_plts_and_copy_relocs || info->shared)
8352 {
8353 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8354 "dynamic symbol %s"),
8355 h->root.root.string);
8356 bfd_set_error (bfd_error_bad_value);
8357 return FALSE;
8358 }
8359
0a44bf69
RS
8360 /* We must allocate the symbol in our .dynbss section, which will
8361 become part of the .bss section of the executable. There will be
8362 an entry for this symbol in the .dynsym section. The dynamic
8363 object will contain position independent code, so all references
8364 from the dynamic object to this symbol will go through the global
8365 offset table. The dynamic linker will use the .dynsym entry to
8366 determine the address it must put in the global offset table, so
8367 both the dynamic object and the regular object will refer to the
8368 same memory location for the variable. */
8369
8370 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8371 {
861fb55a
DJ
8372 if (htab->is_vxworks)
8373 htab->srelbss->size += sizeof (Elf32_External_Rela);
8374 else
8375 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8376 h->needs_copy = 1;
8377 }
8378
861fb55a
DJ
8379 /* All relocations against this symbol that could have been made
8380 dynamic will now refer to the local copy instead. */
8381 hmips->possibly_dynamic_relocs = 0;
8382
027297b7 8383 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8384}
b49e97c9
TS
8385\f
8386/* This function is called after all the input files have been read,
8387 and the input sections have been assigned to output sections. We
8388 check for any mips16 stub sections that we can discard. */
8389
b34976b6 8390bfd_boolean
9719ad41
RS
8391_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8392 struct bfd_link_info *info)
b49e97c9
TS
8393{
8394 asection *ri;
0a44bf69 8395 struct mips_elf_link_hash_table *htab;
861fb55a 8396 struct mips_htab_traverse_info hti;
0a44bf69
RS
8397
8398 htab = mips_elf_hash_table (info);
4dfe6ac6 8399 BFD_ASSERT (htab != NULL);
f4416af6 8400
b49e97c9
TS
8401 /* The .reginfo section has a fixed size. */
8402 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8403 if (ri != NULL)
9719ad41 8404 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8405
861fb55a
DJ
8406 hti.info = info;
8407 hti.output_bfd = output_bfd;
8408 hti.error = FALSE;
8409 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8410 mips_elf_check_symbols, &hti);
8411 if (hti.error)
8412 return FALSE;
f4416af6 8413
33bb52fb
RS
8414 return TRUE;
8415}
8416
8417/* If the link uses a GOT, lay it out and work out its size. */
8418
8419static bfd_boolean
8420mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8421{
8422 bfd *dynobj;
8423 asection *s;
8424 struct mips_got_info *g;
33bb52fb
RS
8425 bfd_size_type loadable_size = 0;
8426 bfd_size_type page_gotno;
8427 bfd *sub;
8428 struct mips_elf_count_tls_arg count_tls_arg;
8429 struct mips_elf_link_hash_table *htab;
8430
8431 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8432 BFD_ASSERT (htab != NULL);
8433
a8028dd0 8434 s = htab->sgot;
f4416af6 8435 if (s == NULL)
b34976b6 8436 return TRUE;
b49e97c9 8437
33bb52fb 8438 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8439 g = htab->got_info;
8440
861fb55a
DJ
8441 /* Allocate room for the reserved entries. VxWorks always reserves
8442 3 entries; other objects only reserve 2 entries. */
8443 BFD_ASSERT (g->assigned_gotno == 0);
8444 if (htab->is_vxworks)
8445 htab->reserved_gotno = 3;
8446 else
8447 htab->reserved_gotno = 2;
8448 g->local_gotno += htab->reserved_gotno;
8449 g->assigned_gotno = htab->reserved_gotno;
8450
33bb52fb
RS
8451 /* Replace entries for indirect and warning symbols with entries for
8452 the target symbol. */
8453 if (!mips_elf_resolve_final_got_entries (g))
8454 return FALSE;
f4416af6 8455
d4596a51
RS
8456 /* Count the number of GOT symbols. */
8457 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
f4416af6 8458
33bb52fb
RS
8459 /* Calculate the total loadable size of the output. That
8460 will give us the maximum number of GOT_PAGE entries
8461 required. */
8462 for (sub = info->input_bfds; sub; sub = sub->link_next)
8463 {
8464 asection *subsection;
5108fc1b 8465
33bb52fb
RS
8466 for (subsection = sub->sections;
8467 subsection;
8468 subsection = subsection->next)
8469 {
8470 if ((subsection->flags & SEC_ALLOC) == 0)
8471 continue;
8472 loadable_size += ((subsection->size + 0xf)
8473 &~ (bfd_size_type) 0xf);
8474 }
8475 }
f4416af6 8476
0a44bf69 8477 if (htab->is_vxworks)
738e5348 8478 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8479 relocations against local symbols evaluate to "G", and the EABI does
8480 not include R_MIPS_GOT_PAGE. */
c224138d 8481 page_gotno = 0;
0a44bf69
RS
8482 else
8483 /* Assume there are two loadable segments consisting of contiguous
8484 sections. Is 5 enough? */
c224138d
RS
8485 page_gotno = (loadable_size >> 16) + 5;
8486
8487 /* Choose the smaller of the two estimates; both are intended to be
8488 conservative. */
8489 if (page_gotno > g->page_gotno)
8490 page_gotno = g->page_gotno;
f4416af6 8491
c224138d 8492 g->local_gotno += page_gotno;
eea6121a 8493 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 8494 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 8495
0f20cc35
DJ
8496 /* We need to calculate tls_gotno for global symbols at this point
8497 instead of building it up earlier, to avoid doublecounting
8498 entries for one global symbol from multiple input files. */
8499 count_tls_arg.info = info;
8500 count_tls_arg.needed = 0;
8501 elf_link_hash_traverse (elf_hash_table (info),
8502 mips_elf_count_global_tls_entries,
8503 &count_tls_arg);
8504 g->tls_gotno += count_tls_arg.needed;
8505 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8506
0a44bf69
RS
8507 /* VxWorks does not support multiple GOTs. It initializes $gp to
8508 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8509 dynamic loader. */
33bb52fb
RS
8510 if (htab->is_vxworks)
8511 {
8512 /* VxWorks executables do not need a GOT. */
8513 if (info->shared)
8514 {
8515 /* Each VxWorks GOT entry needs an explicit relocation. */
8516 unsigned int count;
8517
861fb55a 8518 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8519 if (count)
8520 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8521 }
8522 }
8523 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8524 {
a8028dd0 8525 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8526 return FALSE;
8527 }
8528 else
8529 {
33bb52fb
RS
8530 struct mips_elf_count_tls_arg arg;
8531
8532 /* Set up TLS entries. */
0f20cc35
DJ
8533 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8534 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
33bb52fb
RS
8535
8536 /* Allocate room for the TLS relocations. */
8537 arg.info = info;
8538 arg.needed = 0;
8539 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8540 elf_link_hash_traverse (elf_hash_table (info),
8541 mips_elf_count_global_tls_relocs,
8542 &arg);
8543 if (arg.needed)
8544 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 8545 }
b49e97c9 8546
b34976b6 8547 return TRUE;
b49e97c9
TS
8548}
8549
33bb52fb
RS
8550/* Estimate the size of the .MIPS.stubs section. */
8551
8552static void
8553mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8554{
8555 struct mips_elf_link_hash_table *htab;
8556 bfd_size_type dynsymcount;
8557
8558 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8559 BFD_ASSERT (htab != NULL);
8560
33bb52fb
RS
8561 if (htab->lazy_stub_count == 0)
8562 return;
8563
8564 /* IRIX rld assumes that a function stub isn't at the end of the .text
8565 section, so add a dummy entry to the end. */
8566 htab->lazy_stub_count++;
8567
8568 /* Get a worst-case estimate of the number of dynamic symbols needed.
8569 At this point, dynsymcount does not account for section symbols
8570 and count_section_dynsyms may overestimate the number that will
8571 be needed. */
8572 dynsymcount = (elf_hash_table (info)->dynsymcount
8573 + count_section_dynsyms (output_bfd, info));
8574
8575 /* Determine the size of one stub entry. */
8576 htab->function_stub_size = (dynsymcount > 0x10000
8577 ? MIPS_FUNCTION_STUB_BIG_SIZE
8578 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8579
8580 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8581}
8582
8583/* A mips_elf_link_hash_traverse callback for which DATA points to the
8584 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8585 allocate an entry in the stubs section. */
8586
8587static bfd_boolean
8588mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8589{
8590 struct mips_elf_link_hash_table *htab;
8591
8592 htab = (struct mips_elf_link_hash_table *) data;
8593 if (h->needs_lazy_stub)
8594 {
8595 h->root.root.u.def.section = htab->sstubs;
8596 h->root.root.u.def.value = htab->sstubs->size;
8597 h->root.plt.offset = htab->sstubs->size;
8598 htab->sstubs->size += htab->function_stub_size;
8599 }
8600 return TRUE;
8601}
8602
8603/* Allocate offsets in the stubs section to each symbol that needs one.
8604 Set the final size of the .MIPS.stub section. */
8605
8606static void
8607mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8608{
8609 struct mips_elf_link_hash_table *htab;
8610
8611 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8612 BFD_ASSERT (htab != NULL);
8613
33bb52fb
RS
8614 if (htab->lazy_stub_count == 0)
8615 return;
8616
8617 htab->sstubs->size = 0;
4dfe6ac6 8618 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
8619 htab->sstubs->size += htab->function_stub_size;
8620 BFD_ASSERT (htab->sstubs->size
8621 == htab->lazy_stub_count * htab->function_stub_size);
8622}
8623
b49e97c9
TS
8624/* Set the sizes of the dynamic sections. */
8625
b34976b6 8626bfd_boolean
9719ad41
RS
8627_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8628 struct bfd_link_info *info)
b49e97c9
TS
8629{
8630 bfd *dynobj;
861fb55a 8631 asection *s, *sreldyn;
b34976b6 8632 bfd_boolean reltext;
0a44bf69 8633 struct mips_elf_link_hash_table *htab;
b49e97c9 8634
0a44bf69 8635 htab = mips_elf_hash_table (info);
4dfe6ac6 8636 BFD_ASSERT (htab != NULL);
b49e97c9
TS
8637 dynobj = elf_hash_table (info)->dynobj;
8638 BFD_ASSERT (dynobj != NULL);
8639
8640 if (elf_hash_table (info)->dynamic_sections_created)
8641 {
8642 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8643 if (info->executable)
b49e97c9
TS
8644 {
8645 s = bfd_get_section_by_name (dynobj, ".interp");
8646 BFD_ASSERT (s != NULL);
eea6121a 8647 s->size
b49e97c9
TS
8648 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8649 s->contents
8650 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8651 }
861fb55a
DJ
8652
8653 /* Create a symbol for the PLT, if we know that we are using it. */
8654 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8655 {
8656 struct elf_link_hash_entry *h;
8657
8658 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8659
8660 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8661 "_PROCEDURE_LINKAGE_TABLE_");
8662 htab->root.hplt = h;
8663 if (h == NULL)
8664 return FALSE;
8665 h->type = STT_FUNC;
8666 }
8667 }
4e41d0d7 8668
9a59ad6b
DJ
8669 /* Allocate space for global sym dynamic relocs. */
8670 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8671
33bb52fb
RS
8672 mips_elf_estimate_stub_size (output_bfd, info);
8673
8674 if (!mips_elf_lay_out_got (output_bfd, info))
8675 return FALSE;
8676
8677 mips_elf_lay_out_lazy_stubs (info);
8678
b49e97c9
TS
8679 /* The check_relocs and adjust_dynamic_symbol entry points have
8680 determined the sizes of the various dynamic sections. Allocate
8681 memory for them. */
b34976b6 8682 reltext = FALSE;
b49e97c9
TS
8683 for (s = dynobj->sections; s != NULL; s = s->next)
8684 {
8685 const char *name;
b49e97c9
TS
8686
8687 /* It's OK to base decisions on the section name, because none
8688 of the dynobj section names depend upon the input files. */
8689 name = bfd_get_section_name (dynobj, s);
8690
8691 if ((s->flags & SEC_LINKER_CREATED) == 0)
8692 continue;
8693
0112cd26 8694 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 8695 {
c456f082 8696 if (s->size != 0)
b49e97c9
TS
8697 {
8698 const char *outname;
8699 asection *target;
8700
8701 /* If this relocation section applies to a read only
8702 section, then we probably need a DT_TEXTREL entry.
0a44bf69 8703 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
8704 assert a DT_TEXTREL entry rather than testing whether
8705 there exists a relocation to a read only section or
8706 not. */
8707 outname = bfd_get_section_name (output_bfd,
8708 s->output_section);
8709 target = bfd_get_section_by_name (output_bfd, outname + 4);
8710 if ((target != NULL
8711 && (target->flags & SEC_READONLY) != 0
8712 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 8713 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 8714 reltext = TRUE;
b49e97c9
TS
8715
8716 /* We use the reloc_count field as a counter if we need
8717 to copy relocs into the output file. */
0a44bf69 8718 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 8719 s->reloc_count = 0;
f4416af6
AO
8720
8721 /* If combreloc is enabled, elf_link_sort_relocs() will
8722 sort relocations, but in a different way than we do,
8723 and before we're done creating relocations. Also, it
8724 will move them around between input sections'
8725 relocation's contents, so our sorting would be
8726 broken, so don't let it run. */
8727 info->combreloc = 0;
b49e97c9
TS
8728 }
8729 }
b49e97c9
TS
8730 else if (! info->shared
8731 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 8732 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 8733 {
5108fc1b 8734 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 8735 rtld to contain a pointer to the _r_debug structure. */
eea6121a 8736 s->size += 4;
b49e97c9
TS
8737 }
8738 else if (SGI_COMPAT (output_bfd)
0112cd26 8739 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 8740 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
8741 else if (s == htab->splt)
8742 {
8743 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
8744 room for an extra nop to fill the delay slot. This is
8745 for CPUs without load interlocking. */
8746 if (! LOAD_INTERLOCKS_P (output_bfd)
8747 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
8748 s->size += 4;
8749 }
0112cd26 8750 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 8751 && s != htab->sgot
0a44bf69 8752 && s != htab->sgotplt
861fb55a
DJ
8753 && s != htab->sstubs
8754 && s != htab->sdynbss)
b49e97c9
TS
8755 {
8756 /* It's not one of our sections, so don't allocate space. */
8757 continue;
8758 }
8759
c456f082 8760 if (s->size == 0)
b49e97c9 8761 {
8423293d 8762 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
8763 continue;
8764 }
8765
c456f082
AM
8766 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8767 continue;
8768
b49e97c9 8769 /* Allocate memory for the section contents. */
eea6121a 8770 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 8771 if (s->contents == NULL)
b49e97c9
TS
8772 {
8773 bfd_set_error (bfd_error_no_memory);
b34976b6 8774 return FALSE;
b49e97c9
TS
8775 }
8776 }
8777
8778 if (elf_hash_table (info)->dynamic_sections_created)
8779 {
8780 /* Add some entries to the .dynamic section. We fill in the
8781 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8782 must add the entries now so that we get the correct size for
5750dcec 8783 the .dynamic section. */
af5978fb
RS
8784
8785 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
8786 DT_MIPS_RLD_MAP entry. This must come first because glibc
8787 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8788 looks at the first one it sees. */
af5978fb
RS
8789 if (!info->shared
8790 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8791 return FALSE;
b49e97c9 8792
5750dcec
DJ
8793 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8794 used by the debugger. */
8795 if (info->executable
8796 && !SGI_COMPAT (output_bfd)
8797 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8798 return FALSE;
8799
0a44bf69 8800 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
8801 info->flags |= DF_TEXTREL;
8802
8803 if ((info->flags & DF_TEXTREL) != 0)
8804 {
8805 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 8806 return FALSE;
943284cc
DJ
8807
8808 /* Clear the DF_TEXTREL flag. It will be set again if we
8809 write out an actual text relocation; we may not, because
8810 at this point we do not know whether e.g. any .eh_frame
8811 absolute relocations have been converted to PC-relative. */
8812 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
8813 }
8814
8815 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 8816 return FALSE;
b49e97c9 8817
861fb55a 8818 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 8819 if (htab->is_vxworks)
b49e97c9 8820 {
0a44bf69
RS
8821 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8822 use any of the DT_MIPS_* tags. */
861fb55a 8823 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
8824 {
8825 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8826 return FALSE;
b49e97c9 8827
0a44bf69
RS
8828 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8829 return FALSE;
b49e97c9 8830
0a44bf69
RS
8831 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8832 return FALSE;
8833 }
b49e97c9 8834 }
0a44bf69
RS
8835 else
8836 {
861fb55a 8837 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
8838 {
8839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8840 return FALSE;
b49e97c9 8841
0a44bf69
RS
8842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8843 return FALSE;
b49e97c9 8844
0a44bf69
RS
8845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8846 return FALSE;
8847 }
b49e97c9 8848
0a44bf69
RS
8849 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8850 return FALSE;
b49e97c9 8851
0a44bf69
RS
8852 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8853 return FALSE;
b49e97c9 8854
0a44bf69
RS
8855 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8856 return FALSE;
b49e97c9 8857
0a44bf69
RS
8858 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8859 return FALSE;
b49e97c9 8860
0a44bf69
RS
8861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8862 return FALSE;
b49e97c9 8863
0a44bf69
RS
8864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8865 return FALSE;
b49e97c9 8866
0a44bf69
RS
8867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8868 return FALSE;
8869
8870 if (IRIX_COMPAT (dynobj) == ict_irix5
8871 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8872 return FALSE;
8873
8874 if (IRIX_COMPAT (dynobj) == ict_irix6
8875 && (bfd_get_section_by_name
8876 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8877 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8878 return FALSE;
8879 }
861fb55a
DJ
8880 if (htab->splt->size > 0)
8881 {
8882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8883 return FALSE;
8884
8885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8886 return FALSE;
8887
8888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8889 return FALSE;
8890
8891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8892 return FALSE;
8893 }
7a2b07ff
NS
8894 if (htab->is_vxworks
8895 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8896 return FALSE;
b49e97c9
TS
8897 }
8898
b34976b6 8899 return TRUE;
b49e97c9
TS
8900}
8901\f
81d43bff
RS
8902/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8903 Adjust its R_ADDEND field so that it is correct for the output file.
8904 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8905 and sections respectively; both use symbol indexes. */
8906
8907static void
8908mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8909 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8910 asection **local_sections, Elf_Internal_Rela *rel)
8911{
8912 unsigned int r_type, r_symndx;
8913 Elf_Internal_Sym *sym;
8914 asection *sec;
8915
8916 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8917 {
8918 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8919 if (r_type == R_MIPS16_GPREL
8920 || r_type == R_MIPS_GPREL16
8921 || r_type == R_MIPS_GPREL32
8922 || r_type == R_MIPS_LITERAL)
8923 {
8924 rel->r_addend += _bfd_get_gp_value (input_bfd);
8925 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8926 }
8927
8928 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8929 sym = local_syms + r_symndx;
8930
8931 /* Adjust REL's addend to account for section merging. */
8932 if (!info->relocatable)
8933 {
8934 sec = local_sections[r_symndx];
8935 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8936 }
8937
8938 /* This would normally be done by the rela_normal code in elflink.c. */
8939 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8940 rel->r_addend += local_sections[r_symndx]->output_offset;
8941 }
8942}
8943
b49e97c9
TS
8944/* Relocate a MIPS ELF section. */
8945
b34976b6 8946bfd_boolean
9719ad41
RS
8947_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8948 bfd *input_bfd, asection *input_section,
8949 bfd_byte *contents, Elf_Internal_Rela *relocs,
8950 Elf_Internal_Sym *local_syms,
8951 asection **local_sections)
b49e97c9
TS
8952{
8953 Elf_Internal_Rela *rel;
8954 const Elf_Internal_Rela *relend;
8955 bfd_vma addend = 0;
b34976b6 8956 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 8957 const struct elf_backend_data *bed;
b49e97c9
TS
8958
8959 bed = get_elf_backend_data (output_bfd);
8960 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8961 for (rel = relocs; rel < relend; ++rel)
8962 {
8963 const char *name;
c9adbffe 8964 bfd_vma value = 0;
b49e97c9 8965 reloc_howto_type *howto;
38a7df63 8966 bfd_boolean cross_mode_jump_p;
b34976b6 8967 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 8968 REL relocation. */
b34976b6 8969 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 8970 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 8971 const char *msg;
ab96bf03
AM
8972 unsigned long r_symndx;
8973 asection *sec;
749b8d9d
L
8974 Elf_Internal_Shdr *symtab_hdr;
8975 struct elf_link_hash_entry *h;
b49e97c9
TS
8976
8977 /* Find the relocation howto for this relocation. */
ab96bf03
AM
8978 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8979 NEWABI_P (input_bfd)
8980 && (MIPS_RELOC_RELA_P
8981 (input_bfd, input_section,
8982 rel - relocs)));
8983
8984 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 8985 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 8986 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
8987 {
8988 sec = local_sections[r_symndx];
8989 h = NULL;
8990 }
ab96bf03
AM
8991 else
8992 {
ab96bf03 8993 unsigned long extsymoff;
ab96bf03 8994
ab96bf03
AM
8995 extsymoff = 0;
8996 if (!elf_bad_symtab (input_bfd))
8997 extsymoff = symtab_hdr->sh_info;
8998 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8999 while (h->root.type == bfd_link_hash_indirect
9000 || h->root.type == bfd_link_hash_warning)
9001 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9002
9003 sec = NULL;
9004 if (h->root.type == bfd_link_hash_defined
9005 || h->root.type == bfd_link_hash_defweak)
9006 sec = h->root.u.def.section;
9007 }
9008
9009 if (sec != NULL && elf_discarded_section (sec))
9010 {
9011 /* For relocs against symbols from removed linkonce sections,
9012 or sections discarded by a linker script, we just want the
9013 section contents zeroed. Avoid any special processing. */
9014 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
9015 rel->r_info = 0;
9016 rel->r_addend = 0;
9017 continue;
9018 }
9019
4a14403c 9020 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9021 {
9022 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9023 64-bit code, but make sure all their addresses are in the
9024 lowermost or uppermost 32-bit section of the 64-bit address
9025 space. Thus, when they use an R_MIPS_64 they mean what is
9026 usually meant by R_MIPS_32, with the exception that the
9027 stored value is sign-extended to 64 bits. */
b34976b6 9028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9029
9030 /* On big-endian systems, we need to lie about the position
9031 of the reloc. */
9032 if (bfd_big_endian (input_bfd))
9033 rel->r_offset += 4;
9034 }
b49e97c9
TS
9035
9036 if (!use_saved_addend_p)
9037 {
b49e97c9
TS
9038 /* If these relocations were originally of the REL variety,
9039 we must pull the addend out of the field that will be
9040 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9041 RELA relocation. */
9042 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9043 relocs, rel))
b49e97c9 9044 {
b34976b6 9045 rela_relocation_p = FALSE;
c224138d
RS
9046 addend = mips_elf_read_rel_addend (input_bfd, rel,
9047 howto, contents);
738e5348
RS
9048 if (hi16_reloc_p (r_type)
9049 || (got16_reloc_p (r_type)
b49e97c9 9050 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 9051 local_sections, FALSE)))
b49e97c9 9052 {
c224138d
RS
9053 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9054 contents, &addend))
749b8d9d 9055 {
749b8d9d
L
9056 if (h)
9057 name = h->root.root.string;
9058 else
9059 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9060 local_syms + r_symndx,
9061 sec);
9062 (*_bfd_error_handler)
9063 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9064 input_bfd, input_section, name, howto->name,
9065 rel->r_offset);
749b8d9d 9066 }
b49e97c9 9067 }
30ac9238
RS
9068 else
9069 addend <<= howto->rightshift;
b49e97c9
TS
9070 }
9071 else
9072 addend = rel->r_addend;
81d43bff
RS
9073 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9074 local_syms, local_sections, rel);
b49e97c9
TS
9075 }
9076
1049f94e 9077 if (info->relocatable)
b49e97c9 9078 {
4a14403c 9079 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9080 && bfd_big_endian (input_bfd))
9081 rel->r_offset -= 4;
9082
81d43bff 9083 if (!rela_relocation_p && rel->r_addend)
5a659663 9084 {
81d43bff 9085 addend += rel->r_addend;
738e5348 9086 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9087 addend = mips_elf_high (addend);
9088 else if (r_type == R_MIPS_HIGHER)
9089 addend = mips_elf_higher (addend);
9090 else if (r_type == R_MIPS_HIGHEST)
9091 addend = mips_elf_highest (addend);
30ac9238
RS
9092 else
9093 addend >>= howto->rightshift;
b49e97c9 9094
30ac9238
RS
9095 /* We use the source mask, rather than the destination
9096 mask because the place to which we are writing will be
9097 source of the addend in the final link. */
b49e97c9
TS
9098 addend &= howto->src_mask;
9099
5a659663 9100 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9101 /* See the comment above about using R_MIPS_64 in the 32-bit
9102 ABI. Here, we need to update the addend. It would be
9103 possible to get away with just using the R_MIPS_32 reloc
9104 but for endianness. */
9105 {
9106 bfd_vma sign_bits;
9107 bfd_vma low_bits;
9108 bfd_vma high_bits;
9109
9110 if (addend & ((bfd_vma) 1 << 31))
9111#ifdef BFD64
9112 sign_bits = ((bfd_vma) 1 << 32) - 1;
9113#else
9114 sign_bits = -1;
9115#endif
9116 else
9117 sign_bits = 0;
9118
9119 /* If we don't know that we have a 64-bit type,
9120 do two separate stores. */
9121 if (bfd_big_endian (input_bfd))
9122 {
9123 /* Store the sign-bits (which are most significant)
9124 first. */
9125 low_bits = sign_bits;
9126 high_bits = addend;
9127 }
9128 else
9129 {
9130 low_bits = addend;
9131 high_bits = sign_bits;
9132 }
9133 bfd_put_32 (input_bfd, low_bits,
9134 contents + rel->r_offset);
9135 bfd_put_32 (input_bfd, high_bits,
9136 contents + rel->r_offset + 4);
9137 continue;
9138 }
9139
9140 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9141 input_bfd, input_section,
b34976b6
AM
9142 contents, FALSE))
9143 return FALSE;
b49e97c9
TS
9144 }
9145
9146 /* Go on to the next relocation. */
9147 continue;
9148 }
9149
9150 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9151 relocations for the same offset. In that case we are
9152 supposed to treat the output of each relocation as the addend
9153 for the next. */
9154 if (rel + 1 < relend
9155 && rel->r_offset == rel[1].r_offset
9156 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9157 use_saved_addend_p = TRUE;
b49e97c9 9158 else
b34976b6 9159 use_saved_addend_p = FALSE;
b49e97c9
TS
9160
9161 /* Figure out what value we are supposed to relocate. */
9162 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9163 input_section, info, rel,
9164 addend, howto, local_syms,
9165 local_sections, &value,
38a7df63 9166 &name, &cross_mode_jump_p,
bce03d3d 9167 use_saved_addend_p))
b49e97c9
TS
9168 {
9169 case bfd_reloc_continue:
9170 /* There's nothing to do. */
9171 continue;
9172
9173 case bfd_reloc_undefined:
9174 /* mips_elf_calculate_relocation already called the
9175 undefined_symbol callback. There's no real point in
9176 trying to perform the relocation at this point, so we
9177 just skip ahead to the next relocation. */
9178 continue;
9179
9180 case bfd_reloc_notsupported:
9181 msg = _("internal error: unsupported relocation error");
9182 info->callbacks->warning
9183 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9184 return FALSE;
b49e97c9
TS
9185
9186 case bfd_reloc_overflow:
9187 if (use_saved_addend_p)
9188 /* Ignore overflow until we reach the last relocation for
9189 a given location. */
9190 ;
9191 else
9192 {
0e53d9da
AN
9193 struct mips_elf_link_hash_table *htab;
9194
9195 htab = mips_elf_hash_table (info);
4dfe6ac6 9196 BFD_ASSERT (htab != NULL);
b49e97c9 9197 BFD_ASSERT (name != NULL);
0e53d9da 9198 if (!htab->small_data_overflow_reported
9684f078 9199 && (gprel16_reloc_p (howto->type)
0e53d9da
AN
9200 || howto->type == R_MIPS_LITERAL))
9201 {
91d6fa6a
NC
9202 msg = _("small-data section exceeds 64KB;"
9203 " lower small-data size limit (see option -G)");
0e53d9da
AN
9204
9205 htab->small_data_overflow_reported = TRUE;
9206 (*info->callbacks->einfo) ("%P: %s\n", msg);
9207 }
b49e97c9 9208 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9209 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9210 input_bfd, input_section, rel->r_offset)))
b34976b6 9211 return FALSE;
b49e97c9
TS
9212 }
9213 break;
9214
9215 case bfd_reloc_ok:
9216 break;
9217
9218 default:
9219 abort ();
9220 break;
9221 }
9222
9223 /* If we've got another relocation for the address, keep going
9224 until we reach the last one. */
9225 if (use_saved_addend_p)
9226 {
9227 addend = value;
9228 continue;
9229 }
9230
4a14403c 9231 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9232 /* See the comment above about using R_MIPS_64 in the 32-bit
9233 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9234 that calculated the right value. Now, however, we
9235 sign-extend the 32-bit result to 64-bits, and store it as a
9236 64-bit value. We are especially generous here in that we
9237 go to extreme lengths to support this usage on systems with
9238 only a 32-bit VMA. */
9239 {
9240 bfd_vma sign_bits;
9241 bfd_vma low_bits;
9242 bfd_vma high_bits;
9243
9244 if (value & ((bfd_vma) 1 << 31))
9245#ifdef BFD64
9246 sign_bits = ((bfd_vma) 1 << 32) - 1;
9247#else
9248 sign_bits = -1;
9249#endif
9250 else
9251 sign_bits = 0;
9252
9253 /* If we don't know that we have a 64-bit type,
9254 do two separate stores. */
9255 if (bfd_big_endian (input_bfd))
9256 {
9257 /* Undo what we did above. */
9258 rel->r_offset -= 4;
9259 /* Store the sign-bits (which are most significant)
9260 first. */
9261 low_bits = sign_bits;
9262 high_bits = value;
9263 }
9264 else
9265 {
9266 low_bits = value;
9267 high_bits = sign_bits;
9268 }
9269 bfd_put_32 (input_bfd, low_bits,
9270 contents + rel->r_offset);
9271 bfd_put_32 (input_bfd, high_bits,
9272 contents + rel->r_offset + 4);
9273 continue;
9274 }
9275
9276 /* Actually perform the relocation. */
9277 if (! mips_elf_perform_relocation (info, howto, rel, value,
9278 input_bfd, input_section,
38a7df63 9279 contents, cross_mode_jump_p))
b34976b6 9280 return FALSE;
b49e97c9
TS
9281 }
9282
b34976b6 9283 return TRUE;
b49e97c9
TS
9284}
9285\f
861fb55a
DJ
9286/* A function that iterates over each entry in la25_stubs and fills
9287 in the code for each one. DATA points to a mips_htab_traverse_info. */
9288
9289static int
9290mips_elf_create_la25_stub (void **slot, void *data)
9291{
9292 struct mips_htab_traverse_info *hti;
9293 struct mips_elf_link_hash_table *htab;
9294 struct mips_elf_la25_stub *stub;
9295 asection *s;
9296 bfd_byte *loc;
9297 bfd_vma offset, target, target_high, target_low;
9298
9299 stub = (struct mips_elf_la25_stub *) *slot;
9300 hti = (struct mips_htab_traverse_info *) data;
9301 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9302 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9303
9304 /* Create the section contents, if we haven't already. */
9305 s = stub->stub_section;
9306 loc = s->contents;
9307 if (loc == NULL)
9308 {
9309 loc = bfd_malloc (s->size);
9310 if (loc == NULL)
9311 {
9312 hti->error = TRUE;
9313 return FALSE;
9314 }
9315 s->contents = loc;
9316 }
9317
9318 /* Work out where in the section this stub should go. */
9319 offset = stub->offset;
9320
9321 /* Work out the target address. */
9322 target = (stub->h->root.root.u.def.section->output_section->vma
9323 + stub->h->root.root.u.def.section->output_offset
9324 + stub->h->root.root.u.def.value);
9325 target_high = ((target + 0x8000) >> 16) & 0xffff;
9326 target_low = (target & 0xffff);
9327
9328 if (stub->stub_section != htab->strampoline)
9329 {
9330 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9331 of the section and write the two instructions at the end. */
9332 memset (loc, 0, offset);
9333 loc += offset;
9334 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9335 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9336 }
9337 else
9338 {
9339 /* This is trampoline. */
9340 loc += offset;
9341 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9342 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9343 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9344 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9345 }
9346 return TRUE;
9347}
9348
b49e97c9
TS
9349/* If NAME is one of the special IRIX6 symbols defined by the linker,
9350 adjust it appropriately now. */
9351
9352static void
9719ad41
RS
9353mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9354 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9355{
9356 /* The linker script takes care of providing names and values for
9357 these, but we must place them into the right sections. */
9358 static const char* const text_section_symbols[] = {
9359 "_ftext",
9360 "_etext",
9361 "__dso_displacement",
9362 "__elf_header",
9363 "__program_header_table",
9364 NULL
9365 };
9366
9367 static const char* const data_section_symbols[] = {
9368 "_fdata",
9369 "_edata",
9370 "_end",
9371 "_fbss",
9372 NULL
9373 };
9374
9375 const char* const *p;
9376 int i;
9377
9378 for (i = 0; i < 2; ++i)
9379 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9380 *p;
9381 ++p)
9382 if (strcmp (*p, name) == 0)
9383 {
9384 /* All of these symbols are given type STT_SECTION by the
9385 IRIX6 linker. */
9386 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9387 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9388
9389 /* The IRIX linker puts these symbols in special sections. */
9390 if (i == 0)
9391 sym->st_shndx = SHN_MIPS_TEXT;
9392 else
9393 sym->st_shndx = SHN_MIPS_DATA;
9394
9395 break;
9396 }
9397}
9398
9399/* Finish up dynamic symbol handling. We set the contents of various
9400 dynamic sections here. */
9401
b34976b6 9402bfd_boolean
9719ad41
RS
9403_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9404 struct bfd_link_info *info,
9405 struct elf_link_hash_entry *h,
9406 Elf_Internal_Sym *sym)
b49e97c9
TS
9407{
9408 bfd *dynobj;
b49e97c9 9409 asection *sgot;
f4416af6 9410 struct mips_got_info *g, *gg;
b49e97c9 9411 const char *name;
3d6746ca 9412 int idx;
5108fc1b 9413 struct mips_elf_link_hash_table *htab;
738e5348 9414 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9415
5108fc1b 9416 htab = mips_elf_hash_table (info);
4dfe6ac6 9417 BFD_ASSERT (htab != NULL);
b49e97c9 9418 dynobj = elf_hash_table (info)->dynobj;
738e5348 9419 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9420
861fb55a
DJ
9421 BFD_ASSERT (!htab->is_vxworks);
9422
9423 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9424 {
9425 /* We've decided to create a PLT entry for this symbol. */
9426 bfd_byte *loc;
9427 bfd_vma header_address, plt_index, got_address;
9428 bfd_vma got_address_high, got_address_low, load;
9429 const bfd_vma *plt_entry;
9430
9431 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9432 BFD_ASSERT (h->dynindx != -1);
9433 BFD_ASSERT (htab->splt != NULL);
9434 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9435 BFD_ASSERT (!h->def_regular);
9436
9437 /* Calculate the address of the PLT header. */
9438 header_address = (htab->splt->output_section->vma
9439 + htab->splt->output_offset);
9440
9441 /* Calculate the index of the entry. */
9442 plt_index = ((h->plt.offset - htab->plt_header_size)
9443 / htab->plt_entry_size);
9444
9445 /* Calculate the address of the .got.plt entry. */
9446 got_address = (htab->sgotplt->output_section->vma
9447 + htab->sgotplt->output_offset
9448 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9449 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9450 got_address_low = got_address & 0xffff;
9451
9452 /* Initially point the .got.plt entry at the PLT header. */
9453 loc = (htab->sgotplt->contents
9454 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9455 if (ABI_64_P (output_bfd))
9456 bfd_put_64 (output_bfd, header_address, loc);
9457 else
9458 bfd_put_32 (output_bfd, header_address, loc);
9459
9460 /* Find out where the .plt entry should go. */
9461 loc = htab->splt->contents + h->plt.offset;
9462
9463 /* Pick the load opcode. */
9464 load = MIPS_ELF_LOAD_WORD (output_bfd);
9465
9466 /* Fill in the PLT entry itself. */
9467 plt_entry = mips_exec_plt_entry;
9468 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9469 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9470
9471 if (! LOAD_INTERLOCKS_P (output_bfd))
9472 {
9473 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9474 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9475 }
9476 else
9477 {
9478 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9479 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9480 }
861fb55a
DJ
9481
9482 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9483 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9484 plt_index, h->dynindx,
9485 R_MIPS_JUMP_SLOT, got_address);
9486
9487 /* We distinguish between PLT entries and lazy-binding stubs by
9488 giving the former an st_other value of STO_MIPS_PLT. Set the
9489 flag and leave the value if there are any relocations in the
9490 binary where pointer equality matters. */
9491 sym->st_shndx = SHN_UNDEF;
9492 if (h->pointer_equality_needed)
9493 sym->st_other = STO_MIPS_PLT;
9494 else
9495 sym->st_value = 0;
9496 }
9497 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9498 {
861fb55a 9499 /* We've decided to create a lazy-binding stub. */
5108fc1b 9500 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9501
9502 /* This symbol has a stub. Set it up. */
9503
9504 BFD_ASSERT (h->dynindx != -1);
9505
5108fc1b
RS
9506 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9507 || (h->dynindx <= 0xffff));
3d6746ca
DD
9508
9509 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9510 sign extension at runtime in the stub, resulting in a negative
9511 index value. */
9512 if (h->dynindx & ~0x7fffffff)
b34976b6 9513 return FALSE;
b49e97c9
TS
9514
9515 /* Fill the stub. */
3d6746ca
DD
9516 idx = 0;
9517 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9518 idx += 4;
9519 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9520 idx += 4;
5108fc1b 9521 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9522 {
5108fc1b 9523 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9524 stub + idx);
9525 idx += 4;
9526 }
9527 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9528 idx += 4;
b49e97c9 9529
3d6746ca
DD
9530 /* If a large stub is not required and sign extension is not a
9531 problem, then use legacy code in the stub. */
5108fc1b
RS
9532 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9533 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9534 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9535 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9536 else
5108fc1b
RS
9537 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9538 stub + idx);
9539
4e41d0d7
RS
9540 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9541 memcpy (htab->sstubs->contents + h->plt.offset,
9542 stub, htab->function_stub_size);
b49e97c9
TS
9543
9544 /* Mark the symbol as undefined. plt.offset != -1 occurs
9545 only for the referenced symbol. */
9546 sym->st_shndx = SHN_UNDEF;
9547
9548 /* The run-time linker uses the st_value field of the symbol
9549 to reset the global offset table entry for this external
9550 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9551 sym->st_value = (htab->sstubs->output_section->vma
9552 + htab->sstubs->output_offset
c5ae1840 9553 + h->plt.offset);
b49e97c9
TS
9554 }
9555
738e5348
RS
9556 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9557 refer to the stub, since only the stub uses the standard calling
9558 conventions. */
9559 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9560 {
9561 BFD_ASSERT (hmips->need_fn_stub);
9562 sym->st_value = (hmips->fn_stub->output_section->vma
9563 + hmips->fn_stub->output_offset);
9564 sym->st_size = hmips->fn_stub->size;
9565 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9566 }
9567
b49e97c9 9568 BFD_ASSERT (h->dynindx != -1
f5385ebf 9569 || h->forced_local);
b49e97c9 9570
23cc69b6 9571 sgot = htab->sgot;
a8028dd0 9572 g = htab->got_info;
b49e97c9
TS
9573 BFD_ASSERT (g != NULL);
9574
9575 /* Run through the global symbol table, creating GOT entries for all
9576 the symbols that need them. */
9577 if (g->global_gotsym != NULL
9578 && h->dynindx >= g->global_gotsym->dynindx)
9579 {
9580 bfd_vma offset;
9581 bfd_vma value;
9582
6eaa6adc 9583 value = sym->st_value;
738e5348
RS
9584 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9585 R_MIPS_GOT16, info);
b49e97c9
TS
9586 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9587 }
9588
0f20cc35 9589 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
9590 {
9591 struct mips_got_entry e, *p;
0626d451 9592 bfd_vma entry;
f4416af6 9593 bfd_vma offset;
f4416af6
AO
9594
9595 gg = g;
9596
9597 e.abfd = output_bfd;
9598 e.symndx = -1;
738e5348 9599 e.d.h = hmips;
0f20cc35 9600 e.tls_type = 0;
143d77c5 9601
f4416af6
AO
9602 for (g = g->next; g->next != gg; g = g->next)
9603 {
9604 if (g->got_entries
9605 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9606 &e)))
9607 {
9608 offset = p->gotidx;
0626d451
RS
9609 if (info->shared
9610 || (elf_hash_table (info)->dynamic_sections_created
9611 && p->d.h != NULL
f5385ebf
AM
9612 && p->d.h->root.def_dynamic
9613 && !p->d.h->root.def_regular))
0626d451
RS
9614 {
9615 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9616 the various compatibility problems, it's easier to mock
9617 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9618 mips_elf_create_dynamic_relocation to calculate the
9619 appropriate addend. */
9620 Elf_Internal_Rela rel[3];
9621
9622 memset (rel, 0, sizeof (rel));
9623 if (ABI_64_P (output_bfd))
9624 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9625 else
9626 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9627 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9628
9629 entry = 0;
9630 if (! (mips_elf_create_dynamic_relocation
9631 (output_bfd, info, rel,
9632 e.d.h, NULL, sym->st_value, &entry, sgot)))
9633 return FALSE;
9634 }
9635 else
9636 entry = sym->st_value;
9637 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
9638 }
9639 }
9640 }
9641
b49e97c9
TS
9642 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9643 name = h->root.root.string;
9644 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 9645 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
9646 sym->st_shndx = SHN_ABS;
9647 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9648 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9649 {
9650 sym->st_shndx = SHN_ABS;
9651 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9652 sym->st_value = 1;
9653 }
4a14403c 9654 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9655 {
9656 sym->st_shndx = SHN_ABS;
9657 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9658 sym->st_value = elf_gp (output_bfd);
9659 }
9660 else if (SGI_COMPAT (output_bfd))
9661 {
9662 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9663 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9664 {
9665 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9666 sym->st_other = STO_PROTECTED;
9667 sym->st_value = 0;
9668 sym->st_shndx = SHN_MIPS_DATA;
9669 }
9670 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9671 {
9672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9673 sym->st_other = STO_PROTECTED;
9674 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9675 sym->st_shndx = SHN_ABS;
9676 }
9677 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9678 {
9679 if (h->type == STT_FUNC)
9680 sym->st_shndx = SHN_MIPS_TEXT;
9681 else if (h->type == STT_OBJECT)
9682 sym->st_shndx = SHN_MIPS_DATA;
9683 }
9684 }
9685
861fb55a
DJ
9686 /* Emit a copy reloc, if needed. */
9687 if (h->needs_copy)
9688 {
9689 asection *s;
9690 bfd_vma symval;
9691
9692 BFD_ASSERT (h->dynindx != -1);
9693 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9694
9695 s = mips_elf_rel_dyn_section (info, FALSE);
9696 symval = (h->root.u.def.section->output_section->vma
9697 + h->root.u.def.section->output_offset
9698 + h->root.u.def.value);
9699 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9700 h->dynindx, R_MIPS_COPY, symval);
9701 }
9702
b49e97c9
TS
9703 /* Handle the IRIX6-specific symbols. */
9704 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9705 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9706
9707 if (! info->shared)
9708 {
9709 if (! mips_elf_hash_table (info)->use_rld_obj_head
9710 && (strcmp (name, "__rld_map") == 0
9711 || strcmp (name, "__RLD_MAP") == 0))
9712 {
9713 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9714 BFD_ASSERT (s != NULL);
9715 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 9716 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
9717 if (mips_elf_hash_table (info)->rld_value == 0)
9718 mips_elf_hash_table (info)->rld_value = sym->st_value;
9719 }
9720 else if (mips_elf_hash_table (info)->use_rld_obj_head
9721 && strcmp (name, "__rld_obj_head") == 0)
9722 {
9723 /* IRIX6 does not use a .rld_map section. */
9724 if (IRIX_COMPAT (output_bfd) == ict_irix5
9725 || IRIX_COMPAT (output_bfd) == ict_none)
9726 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9727 != NULL);
9728 mips_elf_hash_table (info)->rld_value = sym->st_value;
9729 }
9730 }
9731
738e5348
RS
9732 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9733 treat MIPS16 symbols like any other. */
30c09090 9734 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
9735 {
9736 BFD_ASSERT (sym->st_value & 1);
9737 sym->st_other -= STO_MIPS16;
9738 }
b49e97c9 9739
b34976b6 9740 return TRUE;
b49e97c9
TS
9741}
9742
0a44bf69
RS
9743/* Likewise, for VxWorks. */
9744
9745bfd_boolean
9746_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9747 struct bfd_link_info *info,
9748 struct elf_link_hash_entry *h,
9749 Elf_Internal_Sym *sym)
9750{
9751 bfd *dynobj;
9752 asection *sgot;
9753 struct mips_got_info *g;
9754 struct mips_elf_link_hash_table *htab;
9755
9756 htab = mips_elf_hash_table (info);
4dfe6ac6 9757 BFD_ASSERT (htab != NULL);
0a44bf69
RS
9758 dynobj = elf_hash_table (info)->dynobj;
9759
9760 if (h->plt.offset != (bfd_vma) -1)
9761 {
6d79d2ed 9762 bfd_byte *loc;
0a44bf69
RS
9763 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9764 Elf_Internal_Rela rel;
9765 static const bfd_vma *plt_entry;
9766
9767 BFD_ASSERT (h->dynindx != -1);
9768 BFD_ASSERT (htab->splt != NULL);
9769 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9770
9771 /* Calculate the address of the .plt entry. */
9772 plt_address = (htab->splt->output_section->vma
9773 + htab->splt->output_offset
9774 + h->plt.offset);
9775
9776 /* Calculate the index of the entry. */
9777 plt_index = ((h->plt.offset - htab->plt_header_size)
9778 / htab->plt_entry_size);
9779
9780 /* Calculate the address of the .got.plt entry. */
9781 got_address = (htab->sgotplt->output_section->vma
9782 + htab->sgotplt->output_offset
9783 + plt_index * 4);
9784
9785 /* Calculate the offset of the .got.plt entry from
9786 _GLOBAL_OFFSET_TABLE_. */
9787 got_offset = mips_elf_gotplt_index (info, h);
9788
9789 /* Calculate the offset for the branch at the start of the PLT
9790 entry. The branch jumps to the beginning of .plt. */
9791 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9792
9793 /* Fill in the initial value of the .got.plt entry. */
9794 bfd_put_32 (output_bfd, plt_address,
9795 htab->sgotplt->contents + plt_index * 4);
9796
9797 /* Find out where the .plt entry should go. */
9798 loc = htab->splt->contents + h->plt.offset;
9799
9800 if (info->shared)
9801 {
9802 plt_entry = mips_vxworks_shared_plt_entry;
9803 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9804 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9805 }
9806 else
9807 {
9808 bfd_vma got_address_high, got_address_low;
9809
9810 plt_entry = mips_vxworks_exec_plt_entry;
9811 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9812 got_address_low = got_address & 0xffff;
9813
9814 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9815 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9816 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9817 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9818 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9819 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9820 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9821 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9822
9823 loc = (htab->srelplt2->contents
9824 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9825
9826 /* Emit a relocation for the .got.plt entry. */
9827 rel.r_offset = got_address;
9828 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9829 rel.r_addend = h->plt.offset;
9830 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9831
9832 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9833 loc += sizeof (Elf32_External_Rela);
9834 rel.r_offset = plt_address + 8;
9835 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9836 rel.r_addend = got_offset;
9837 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9838
9839 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9840 loc += sizeof (Elf32_External_Rela);
9841 rel.r_offset += 4;
9842 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9843 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9844 }
9845
9846 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9847 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9848 rel.r_offset = got_address;
9849 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9850 rel.r_addend = 0;
9851 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9852
9853 if (!h->def_regular)
9854 sym->st_shndx = SHN_UNDEF;
9855 }
9856
9857 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9858
23cc69b6 9859 sgot = htab->sgot;
a8028dd0 9860 g = htab->got_info;
0a44bf69
RS
9861 BFD_ASSERT (g != NULL);
9862
9863 /* See if this symbol has an entry in the GOT. */
9864 if (g->global_gotsym != NULL
9865 && h->dynindx >= g->global_gotsym->dynindx)
9866 {
9867 bfd_vma offset;
9868 Elf_Internal_Rela outrel;
9869 bfd_byte *loc;
9870 asection *s;
9871
9872 /* Install the symbol value in the GOT. */
9873 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9874 R_MIPS_GOT16, info);
9875 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9876
9877 /* Add a dynamic relocation for it. */
9878 s = mips_elf_rel_dyn_section (info, FALSE);
9879 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9880 outrel.r_offset = (sgot->output_section->vma
9881 + sgot->output_offset
9882 + offset);
9883 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9884 outrel.r_addend = 0;
9885 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9886 }
9887
9888 /* Emit a copy reloc, if needed. */
9889 if (h->needs_copy)
9890 {
9891 Elf_Internal_Rela rel;
9892
9893 BFD_ASSERT (h->dynindx != -1);
9894
9895 rel.r_offset = (h->root.u.def.section->output_section->vma
9896 + h->root.u.def.section->output_offset
9897 + h->root.u.def.value);
9898 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9899 rel.r_addend = 0;
9900 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9901 htab->srelbss->contents
9902 + (htab->srelbss->reloc_count
9903 * sizeof (Elf32_External_Rela)));
9904 ++htab->srelbss->reloc_count;
9905 }
9906
9907 /* If this is a mips16 symbol, force the value to be even. */
30c09090 9908 if (ELF_ST_IS_MIPS16 (sym->st_other))
0a44bf69
RS
9909 sym->st_value &= ~1;
9910
9911 return TRUE;
9912}
9913
861fb55a
DJ
9914/* Write out a plt0 entry to the beginning of .plt. */
9915
9916static void
9917mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9918{
9919 bfd_byte *loc;
9920 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9921 static const bfd_vma *plt_entry;
9922 struct mips_elf_link_hash_table *htab;
9923
9924 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9925 BFD_ASSERT (htab != NULL);
9926
861fb55a
DJ
9927 if (ABI_64_P (output_bfd))
9928 plt_entry = mips_n64_exec_plt0_entry;
9929 else if (ABI_N32_P (output_bfd))
9930 plt_entry = mips_n32_exec_plt0_entry;
9931 else
9932 plt_entry = mips_o32_exec_plt0_entry;
9933
9934 /* Calculate the value of .got.plt. */
9935 gotplt_value = (htab->sgotplt->output_section->vma
9936 + htab->sgotplt->output_offset);
9937 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9938 gotplt_value_low = gotplt_value & 0xffff;
9939
9940 /* The PLT sequence is not safe for N64 if .got.plt's address can
9941 not be loaded in two instructions. */
9942 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9943 || ~(gotplt_value | 0x7fffffff) == 0);
9944
9945 /* Install the PLT header. */
9946 loc = htab->splt->contents;
9947 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9948 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9949 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9950 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9951 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9952 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9953 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9954 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9955}
9956
0a44bf69
RS
9957/* Install the PLT header for a VxWorks executable and finalize the
9958 contents of .rela.plt.unloaded. */
9959
9960static void
9961mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9962{
9963 Elf_Internal_Rela rela;
9964 bfd_byte *loc;
9965 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9966 static const bfd_vma *plt_entry;
9967 struct mips_elf_link_hash_table *htab;
9968
9969 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9970 BFD_ASSERT (htab != NULL);
9971
0a44bf69
RS
9972 plt_entry = mips_vxworks_exec_plt0_entry;
9973
9974 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9975 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9976 + htab->root.hgot->root.u.def.section->output_offset
9977 + htab->root.hgot->root.u.def.value);
9978
9979 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9980 got_value_low = got_value & 0xffff;
9981
9982 /* Calculate the address of the PLT header. */
9983 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9984
9985 /* Install the PLT header. */
9986 loc = htab->splt->contents;
9987 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9988 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9989 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9990 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9991 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9992 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9993
9994 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9995 loc = htab->srelplt2->contents;
9996 rela.r_offset = plt_address;
9997 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9998 rela.r_addend = 0;
9999 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10000 loc += sizeof (Elf32_External_Rela);
10001
10002 /* Output the relocation for the following addiu of
10003 %lo(_GLOBAL_OFFSET_TABLE_). */
10004 rela.r_offset += 4;
10005 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10006 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10007 loc += sizeof (Elf32_External_Rela);
10008
10009 /* Fix up the remaining relocations. They may have the wrong
10010 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10011 in which symbols were output. */
10012 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10013 {
10014 Elf_Internal_Rela rel;
10015
10016 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10017 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10018 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10019 loc += sizeof (Elf32_External_Rela);
10020
10021 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10022 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10023 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10024 loc += sizeof (Elf32_External_Rela);
10025
10026 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10027 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10028 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10029 loc += sizeof (Elf32_External_Rela);
10030 }
10031}
10032
10033/* Install the PLT header for a VxWorks shared library. */
10034
10035static void
10036mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10037{
10038 unsigned int i;
10039 struct mips_elf_link_hash_table *htab;
10040
10041 htab = mips_elf_hash_table (info);
4dfe6ac6 10042 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10043
10044 /* We just need to copy the entry byte-by-byte. */
10045 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10046 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10047 htab->splt->contents + i * 4);
10048}
10049
b49e97c9
TS
10050/* Finish up the dynamic sections. */
10051
b34976b6 10052bfd_boolean
9719ad41
RS
10053_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10054 struct bfd_link_info *info)
b49e97c9
TS
10055{
10056 bfd *dynobj;
10057 asection *sdyn;
10058 asection *sgot;
f4416af6 10059 struct mips_got_info *gg, *g;
0a44bf69 10060 struct mips_elf_link_hash_table *htab;
b49e97c9 10061
0a44bf69 10062 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10063 BFD_ASSERT (htab != NULL);
10064
b49e97c9
TS
10065 dynobj = elf_hash_table (info)->dynobj;
10066
10067 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10068
23cc69b6
RS
10069 sgot = htab->sgot;
10070 gg = htab->got_info;
b49e97c9
TS
10071
10072 if (elf_hash_table (info)->dynamic_sections_created)
10073 {
10074 bfd_byte *b;
943284cc 10075 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10076
10077 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10078 BFD_ASSERT (gg != NULL);
10079
10080 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
10081 BFD_ASSERT (g != NULL);
10082
10083 for (b = sdyn->contents;
eea6121a 10084 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10085 b += MIPS_ELF_DYN_SIZE (dynobj))
10086 {
10087 Elf_Internal_Dyn dyn;
10088 const char *name;
10089 size_t elemsize;
10090 asection *s;
b34976b6 10091 bfd_boolean swap_out_p;
b49e97c9
TS
10092
10093 /* Read in the current dynamic entry. */
10094 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10095
10096 /* Assume that we're going to modify it and write it out. */
b34976b6 10097 swap_out_p = TRUE;
b49e97c9
TS
10098
10099 switch (dyn.d_tag)
10100 {
10101 case DT_RELENT:
b49e97c9
TS
10102 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10103 break;
10104
0a44bf69
RS
10105 case DT_RELAENT:
10106 BFD_ASSERT (htab->is_vxworks);
10107 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10108 break;
10109
b49e97c9
TS
10110 case DT_STRSZ:
10111 /* Rewrite DT_STRSZ. */
10112 dyn.d_un.d_val =
10113 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10114 break;
10115
10116 case DT_PLTGOT:
861fb55a
DJ
10117 s = htab->sgot;
10118 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10119 break;
10120
10121 case DT_MIPS_PLTGOT:
10122 s = htab->sgotplt;
10123 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10124 break;
10125
10126 case DT_MIPS_RLD_VERSION:
10127 dyn.d_un.d_val = 1; /* XXX */
10128 break;
10129
10130 case DT_MIPS_FLAGS:
10131 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10132 break;
10133
b49e97c9 10134 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10135 {
10136 time_t t;
10137 time (&t);
10138 dyn.d_un.d_val = t;
10139 }
b49e97c9
TS
10140 break;
10141
10142 case DT_MIPS_ICHECKSUM:
10143 /* XXX FIXME: */
b34976b6 10144 swap_out_p = FALSE;
b49e97c9
TS
10145 break;
10146
10147 case DT_MIPS_IVERSION:
10148 /* XXX FIXME: */
b34976b6 10149 swap_out_p = FALSE;
b49e97c9
TS
10150 break;
10151
10152 case DT_MIPS_BASE_ADDRESS:
10153 s = output_bfd->sections;
10154 BFD_ASSERT (s != NULL);
10155 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10156 break;
10157
10158 case DT_MIPS_LOCAL_GOTNO:
10159 dyn.d_un.d_val = g->local_gotno;
10160 break;
10161
10162 case DT_MIPS_UNREFEXTNO:
10163 /* The index into the dynamic symbol table which is the
10164 entry of the first external symbol that is not
10165 referenced within the same object. */
10166 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10167 break;
10168
10169 case DT_MIPS_GOTSYM:
f4416af6 10170 if (gg->global_gotsym)
b49e97c9 10171 {
f4416af6 10172 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
10173 break;
10174 }
10175 /* In case if we don't have global got symbols we default
10176 to setting DT_MIPS_GOTSYM to the same value as
10177 DT_MIPS_SYMTABNO, so we just fall through. */
10178
10179 case DT_MIPS_SYMTABNO:
10180 name = ".dynsym";
10181 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10182 s = bfd_get_section_by_name (output_bfd, name);
10183 BFD_ASSERT (s != NULL);
10184
eea6121a 10185 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10186 break;
10187
10188 case DT_MIPS_HIPAGENO:
861fb55a 10189 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10190 break;
10191
10192 case DT_MIPS_RLD_MAP:
10193 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10194 break;
10195
10196 case DT_MIPS_OPTIONS:
10197 s = (bfd_get_section_by_name
10198 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10199 dyn.d_un.d_ptr = s->vma;
10200 break;
10201
0a44bf69
RS
10202 case DT_RELASZ:
10203 BFD_ASSERT (htab->is_vxworks);
10204 /* The count does not include the JUMP_SLOT relocations. */
10205 if (htab->srelplt)
10206 dyn.d_un.d_val -= htab->srelplt->size;
10207 break;
10208
10209 case DT_PLTREL:
861fb55a
DJ
10210 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10211 if (htab->is_vxworks)
10212 dyn.d_un.d_val = DT_RELA;
10213 else
10214 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10215 break;
10216
10217 case DT_PLTRELSZ:
861fb55a 10218 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10219 dyn.d_un.d_val = htab->srelplt->size;
10220 break;
10221
10222 case DT_JMPREL:
861fb55a
DJ
10223 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10224 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10225 + htab->srelplt->output_offset);
10226 break;
10227
943284cc
DJ
10228 case DT_TEXTREL:
10229 /* If we didn't need any text relocations after all, delete
10230 the dynamic tag. */
10231 if (!(info->flags & DF_TEXTREL))
10232 {
10233 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10234 swap_out_p = FALSE;
10235 }
10236 break;
10237
10238 case DT_FLAGS:
10239 /* If we didn't need any text relocations after all, clear
10240 DF_TEXTREL from DT_FLAGS. */
10241 if (!(info->flags & DF_TEXTREL))
10242 dyn.d_un.d_val &= ~DF_TEXTREL;
10243 else
10244 swap_out_p = FALSE;
10245 break;
10246
b49e97c9 10247 default:
b34976b6 10248 swap_out_p = FALSE;
7a2b07ff
NS
10249 if (htab->is_vxworks
10250 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10251 swap_out_p = TRUE;
b49e97c9
TS
10252 break;
10253 }
10254
943284cc 10255 if (swap_out_p || dyn_skipped)
b49e97c9 10256 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10257 (dynobj, &dyn, b - dyn_skipped);
10258
10259 if (dyn_to_skip)
10260 {
10261 dyn_skipped += dyn_to_skip;
10262 dyn_to_skip = 0;
10263 }
b49e97c9 10264 }
943284cc
DJ
10265
10266 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10267 if (dyn_skipped > 0)
10268 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10269 }
10270
b55fd4d4
DJ
10271 if (sgot != NULL && sgot->size > 0
10272 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10273 {
0a44bf69
RS
10274 if (htab->is_vxworks)
10275 {
10276 /* The first entry of the global offset table points to the
10277 ".dynamic" section. The second is initialized by the
10278 loader and contains the shared library identifier.
10279 The third is also initialized by the loader and points
10280 to the lazy resolution stub. */
10281 MIPS_ELF_PUT_WORD (output_bfd,
10282 sdyn->output_offset + sdyn->output_section->vma,
10283 sgot->contents);
10284 MIPS_ELF_PUT_WORD (output_bfd, 0,
10285 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10286 MIPS_ELF_PUT_WORD (output_bfd, 0,
10287 sgot->contents
10288 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10289 }
10290 else
10291 {
10292 /* The first entry of the global offset table will be filled at
10293 runtime. The second entry will be used by some runtime loaders.
10294 This isn't the case of IRIX rld. */
10295 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10296 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10297 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10298 }
b49e97c9 10299
54938e2a
TS
10300 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10301 = MIPS_ELF_GOT_SIZE (output_bfd);
10302 }
b49e97c9 10303
f4416af6
AO
10304 /* Generate dynamic relocations for the non-primary gots. */
10305 if (gg != NULL && gg->next)
10306 {
10307 Elf_Internal_Rela rel[3];
10308 bfd_vma addend = 0;
10309
10310 memset (rel, 0, sizeof (rel));
10311 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10312
10313 for (g = gg->next; g->next != gg; g = g->next)
10314 {
91d6fa6a 10315 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10316 + g->next->tls_gotno;
f4416af6 10317
9719ad41 10318 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10319 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10320 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10321 sgot->contents
91d6fa6a 10322 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10323
10324 if (! info->shared)
10325 continue;
10326
91d6fa6a 10327 while (got_index < g->assigned_gotno)
f4416af6
AO
10328 {
10329 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10330 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10331 if (!(mips_elf_create_dynamic_relocation
10332 (output_bfd, info, rel, NULL,
10333 bfd_abs_section_ptr,
10334 0, &addend, sgot)))
10335 return FALSE;
10336 BFD_ASSERT (addend == 0);
10337 }
10338 }
10339 }
10340
3133ddbf
DJ
10341 /* The generation of dynamic relocations for the non-primary gots
10342 adds more dynamic relocations. We cannot count them until
10343 here. */
10344
10345 if (elf_hash_table (info)->dynamic_sections_created)
10346 {
10347 bfd_byte *b;
10348 bfd_boolean swap_out_p;
10349
10350 BFD_ASSERT (sdyn != NULL);
10351
10352 for (b = sdyn->contents;
10353 b < sdyn->contents + sdyn->size;
10354 b += MIPS_ELF_DYN_SIZE (dynobj))
10355 {
10356 Elf_Internal_Dyn dyn;
10357 asection *s;
10358
10359 /* Read in the current dynamic entry. */
10360 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10361
10362 /* Assume that we're going to modify it and write it out. */
10363 swap_out_p = TRUE;
10364
10365 switch (dyn.d_tag)
10366 {
10367 case DT_RELSZ:
10368 /* Reduce DT_RELSZ to account for any relocations we
10369 decided not to make. This is for the n64 irix rld,
10370 which doesn't seem to apply any relocations if there
10371 are trailing null entries. */
0a44bf69 10372 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10373 dyn.d_un.d_val = (s->reloc_count
10374 * (ABI_64_P (output_bfd)
10375 ? sizeof (Elf64_Mips_External_Rel)
10376 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10377 /* Adjust the section size too. Tools like the prelinker
10378 can reasonably expect the values to the same. */
10379 elf_section_data (s->output_section)->this_hdr.sh_size
10380 = dyn.d_un.d_val;
3133ddbf
DJ
10381 break;
10382
10383 default:
10384 swap_out_p = FALSE;
10385 break;
10386 }
10387
10388 if (swap_out_p)
10389 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10390 (dynobj, &dyn, b);
10391 }
10392 }
10393
b49e97c9 10394 {
b49e97c9
TS
10395 asection *s;
10396 Elf32_compact_rel cpt;
10397
b49e97c9
TS
10398 if (SGI_COMPAT (output_bfd))
10399 {
10400 /* Write .compact_rel section out. */
10401 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10402 if (s != NULL)
10403 {
10404 cpt.id1 = 1;
10405 cpt.num = s->reloc_count;
10406 cpt.id2 = 2;
10407 cpt.offset = (s->output_section->filepos
10408 + sizeof (Elf32_External_compact_rel));
10409 cpt.reserved0 = 0;
10410 cpt.reserved1 = 0;
10411 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10412 ((Elf32_External_compact_rel *)
10413 s->contents));
10414
10415 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10416 if (htab->sstubs != NULL)
b49e97c9
TS
10417 {
10418 file_ptr dummy_offset;
10419
4e41d0d7
RS
10420 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10421 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10422 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10423 htab->function_stub_size);
b49e97c9
TS
10424 }
10425 }
10426 }
10427
0a44bf69
RS
10428 /* The psABI says that the dynamic relocations must be sorted in
10429 increasing order of r_symndx. The VxWorks EABI doesn't require
10430 this, and because the code below handles REL rather than RELA
10431 relocations, using it for VxWorks would be outright harmful. */
10432 if (!htab->is_vxworks)
b49e97c9 10433 {
0a44bf69
RS
10434 s = mips_elf_rel_dyn_section (info, FALSE);
10435 if (s != NULL
10436 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10437 {
10438 reldyn_sorting_bfd = output_bfd;
b49e97c9 10439
0a44bf69
RS
10440 if (ABI_64_P (output_bfd))
10441 qsort ((Elf64_External_Rel *) s->contents + 1,
10442 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10443 sort_dynamic_relocs_64);
10444 else
10445 qsort ((Elf32_External_Rel *) s->contents + 1,
10446 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10447 sort_dynamic_relocs);
10448 }
b49e97c9 10449 }
b49e97c9
TS
10450 }
10451
861fb55a 10452 if (htab->splt && htab->splt->size > 0)
0a44bf69 10453 {
861fb55a
DJ
10454 if (htab->is_vxworks)
10455 {
10456 if (info->shared)
10457 mips_vxworks_finish_shared_plt (output_bfd, info);
10458 else
10459 mips_vxworks_finish_exec_plt (output_bfd, info);
10460 }
0a44bf69 10461 else
861fb55a
DJ
10462 {
10463 BFD_ASSERT (!info->shared);
10464 mips_finish_exec_plt (output_bfd, info);
10465 }
0a44bf69 10466 }
b34976b6 10467 return TRUE;
b49e97c9
TS
10468}
10469
b49e97c9 10470
64543e1a
RS
10471/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10472
10473static void
9719ad41 10474mips_set_isa_flags (bfd *abfd)
b49e97c9 10475{
64543e1a 10476 flagword val;
b49e97c9
TS
10477
10478 switch (bfd_get_mach (abfd))
10479 {
10480 default:
10481 case bfd_mach_mips3000:
10482 val = E_MIPS_ARCH_1;
10483 break;
10484
10485 case bfd_mach_mips3900:
10486 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10487 break;
10488
10489 case bfd_mach_mips6000:
10490 val = E_MIPS_ARCH_2;
10491 break;
10492
10493 case bfd_mach_mips4000:
10494 case bfd_mach_mips4300:
10495 case bfd_mach_mips4400:
10496 case bfd_mach_mips4600:
10497 val = E_MIPS_ARCH_3;
10498 break;
10499
10500 case bfd_mach_mips4010:
10501 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10502 break;
10503
10504 case bfd_mach_mips4100:
10505 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10506 break;
10507
10508 case bfd_mach_mips4111:
10509 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10510 break;
10511
00707a0e
RS
10512 case bfd_mach_mips4120:
10513 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10514 break;
10515
b49e97c9
TS
10516 case bfd_mach_mips4650:
10517 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10518 break;
10519
00707a0e
RS
10520 case bfd_mach_mips5400:
10521 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10522 break;
10523
10524 case bfd_mach_mips5500:
10525 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10526 break;
10527
0d2e43ed
ILT
10528 case bfd_mach_mips9000:
10529 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10530 break;
10531
b49e97c9 10532 case bfd_mach_mips5000:
5a7ea749 10533 case bfd_mach_mips7000:
b49e97c9
TS
10534 case bfd_mach_mips8000:
10535 case bfd_mach_mips10000:
10536 case bfd_mach_mips12000:
3aa3176b
TS
10537 case bfd_mach_mips14000:
10538 case bfd_mach_mips16000:
b49e97c9
TS
10539 val = E_MIPS_ARCH_4;
10540 break;
10541
10542 case bfd_mach_mips5:
10543 val = E_MIPS_ARCH_5;
10544 break;
10545
350cc38d
MS
10546 case bfd_mach_mips_loongson_2e:
10547 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10548 break;
10549
10550 case bfd_mach_mips_loongson_2f:
10551 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10552 break;
10553
b49e97c9
TS
10554 case bfd_mach_mips_sb1:
10555 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10556 break;
10557
6f179bd0
AN
10558 case bfd_mach_mips_octeon:
10559 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10560 break;
10561
52b6b6b9
JM
10562 case bfd_mach_mips_xlr:
10563 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10564 break;
10565
b49e97c9
TS
10566 case bfd_mach_mipsisa32:
10567 val = E_MIPS_ARCH_32;
10568 break;
10569
10570 case bfd_mach_mipsisa64:
10571 val = E_MIPS_ARCH_64;
af7ee8bf
CD
10572 break;
10573
10574 case bfd_mach_mipsisa32r2:
10575 val = E_MIPS_ARCH_32R2;
10576 break;
5f74bc13
CD
10577
10578 case bfd_mach_mipsisa64r2:
10579 val = E_MIPS_ARCH_64R2;
10580 break;
b49e97c9 10581 }
b49e97c9
TS
10582 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10583 elf_elfheader (abfd)->e_flags |= val;
10584
64543e1a
RS
10585}
10586
10587
10588/* The final processing done just before writing out a MIPS ELF object
10589 file. This gets the MIPS architecture right based on the machine
10590 number. This is used by both the 32-bit and the 64-bit ABI. */
10591
10592void
9719ad41
RS
10593_bfd_mips_elf_final_write_processing (bfd *abfd,
10594 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
10595{
10596 unsigned int i;
10597 Elf_Internal_Shdr **hdrpp;
10598 const char *name;
10599 asection *sec;
10600
10601 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10602 is nonzero. This is for compatibility with old objects, which used
10603 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10604 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10605 mips_set_isa_flags (abfd);
10606
b49e97c9
TS
10607 /* Set the sh_info field for .gptab sections and other appropriate
10608 info for each special section. */
10609 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10610 i < elf_numsections (abfd);
10611 i++, hdrpp++)
10612 {
10613 switch ((*hdrpp)->sh_type)
10614 {
10615 case SHT_MIPS_MSYM:
10616 case SHT_MIPS_LIBLIST:
10617 sec = bfd_get_section_by_name (abfd, ".dynstr");
10618 if (sec != NULL)
10619 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10620 break;
10621
10622 case SHT_MIPS_GPTAB:
10623 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10624 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10625 BFD_ASSERT (name != NULL
0112cd26 10626 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
10627 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10628 BFD_ASSERT (sec != NULL);
10629 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10630 break;
10631
10632 case SHT_MIPS_CONTENT:
10633 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10634 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10635 BFD_ASSERT (name != NULL
0112cd26 10636 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
10637 sec = bfd_get_section_by_name (abfd,
10638 name + sizeof ".MIPS.content" - 1);
10639 BFD_ASSERT (sec != NULL);
10640 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10641 break;
10642
10643 case SHT_MIPS_SYMBOL_LIB:
10644 sec = bfd_get_section_by_name (abfd, ".dynsym");
10645 if (sec != NULL)
10646 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10647 sec = bfd_get_section_by_name (abfd, ".liblist");
10648 if (sec != NULL)
10649 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10650 break;
10651
10652 case SHT_MIPS_EVENTS:
10653 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10654 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10655 BFD_ASSERT (name != NULL);
0112cd26 10656 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
10657 sec = bfd_get_section_by_name (abfd,
10658 name + sizeof ".MIPS.events" - 1);
10659 else
10660 {
0112cd26 10661 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
10662 sec = bfd_get_section_by_name (abfd,
10663 (name
10664 + sizeof ".MIPS.post_rel" - 1));
10665 }
10666 BFD_ASSERT (sec != NULL);
10667 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10668 break;
10669
10670 }
10671 }
10672}
10673\f
8dc1a139 10674/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
10675 segments. */
10676
10677int
a6b96beb
AM
10678_bfd_mips_elf_additional_program_headers (bfd *abfd,
10679 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
10680{
10681 asection *s;
10682 int ret = 0;
10683
10684 /* See if we need a PT_MIPS_REGINFO segment. */
10685 s = bfd_get_section_by_name (abfd, ".reginfo");
10686 if (s && (s->flags & SEC_LOAD))
10687 ++ret;
10688
10689 /* See if we need a PT_MIPS_OPTIONS segment. */
10690 if (IRIX_COMPAT (abfd) == ict_irix6
10691 && bfd_get_section_by_name (abfd,
10692 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10693 ++ret;
10694
10695 /* See if we need a PT_MIPS_RTPROC segment. */
10696 if (IRIX_COMPAT (abfd) == ict_irix5
10697 && bfd_get_section_by_name (abfd, ".dynamic")
10698 && bfd_get_section_by_name (abfd, ".mdebug"))
10699 ++ret;
10700
98c904a8
RS
10701 /* Allocate a PT_NULL header in dynamic objects. See
10702 _bfd_mips_elf_modify_segment_map for details. */
10703 if (!SGI_COMPAT (abfd)
10704 && bfd_get_section_by_name (abfd, ".dynamic"))
10705 ++ret;
10706
b49e97c9
TS
10707 return ret;
10708}
10709
8dc1a139 10710/* Modify the segment map for an IRIX5 executable. */
b49e97c9 10711
b34976b6 10712bfd_boolean
9719ad41 10713_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 10714 struct bfd_link_info *info)
b49e97c9
TS
10715{
10716 asection *s;
10717 struct elf_segment_map *m, **pm;
10718 bfd_size_type amt;
10719
10720 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10721 segment. */
10722 s = bfd_get_section_by_name (abfd, ".reginfo");
10723 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10724 {
10725 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10726 if (m->p_type == PT_MIPS_REGINFO)
10727 break;
10728 if (m == NULL)
10729 {
10730 amt = sizeof *m;
9719ad41 10731 m = bfd_zalloc (abfd, amt);
b49e97c9 10732 if (m == NULL)
b34976b6 10733 return FALSE;
b49e97c9
TS
10734
10735 m->p_type = PT_MIPS_REGINFO;
10736 m->count = 1;
10737 m->sections[0] = s;
10738
10739 /* We want to put it after the PHDR and INTERP segments. */
10740 pm = &elf_tdata (abfd)->segment_map;
10741 while (*pm != NULL
10742 && ((*pm)->p_type == PT_PHDR
10743 || (*pm)->p_type == PT_INTERP))
10744 pm = &(*pm)->next;
10745
10746 m->next = *pm;
10747 *pm = m;
10748 }
10749 }
10750
10751 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10752 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 10753 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 10754 table. */
c1fd6598
AO
10755 if (NEWABI_P (abfd)
10756 /* On non-IRIX6 new abi, we'll have already created a segment
10757 for this section, so don't create another. I'm not sure this
10758 is not also the case for IRIX 6, but I can't test it right
10759 now. */
10760 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
10761 {
10762 for (s = abfd->sections; s; s = s->next)
10763 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10764 break;
10765
10766 if (s)
10767 {
10768 struct elf_segment_map *options_segment;
10769
98a8deaf
RS
10770 pm = &elf_tdata (abfd)->segment_map;
10771 while (*pm != NULL
10772 && ((*pm)->p_type == PT_PHDR
10773 || (*pm)->p_type == PT_INTERP))
10774 pm = &(*pm)->next;
b49e97c9 10775
8ded5a0f
AM
10776 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10777 {
10778 amt = sizeof (struct elf_segment_map);
10779 options_segment = bfd_zalloc (abfd, amt);
10780 options_segment->next = *pm;
10781 options_segment->p_type = PT_MIPS_OPTIONS;
10782 options_segment->p_flags = PF_R;
10783 options_segment->p_flags_valid = TRUE;
10784 options_segment->count = 1;
10785 options_segment->sections[0] = s;
10786 *pm = options_segment;
10787 }
b49e97c9
TS
10788 }
10789 }
10790 else
10791 {
10792 if (IRIX_COMPAT (abfd) == ict_irix5)
10793 {
10794 /* If there are .dynamic and .mdebug sections, we make a room
10795 for the RTPROC header. FIXME: Rewrite without section names. */
10796 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10797 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10798 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10799 {
10800 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10801 if (m->p_type == PT_MIPS_RTPROC)
10802 break;
10803 if (m == NULL)
10804 {
10805 amt = sizeof *m;
9719ad41 10806 m = bfd_zalloc (abfd, amt);
b49e97c9 10807 if (m == NULL)
b34976b6 10808 return FALSE;
b49e97c9
TS
10809
10810 m->p_type = PT_MIPS_RTPROC;
10811
10812 s = bfd_get_section_by_name (abfd, ".rtproc");
10813 if (s == NULL)
10814 {
10815 m->count = 0;
10816 m->p_flags = 0;
10817 m->p_flags_valid = 1;
10818 }
10819 else
10820 {
10821 m->count = 1;
10822 m->sections[0] = s;
10823 }
10824
10825 /* We want to put it after the DYNAMIC segment. */
10826 pm = &elf_tdata (abfd)->segment_map;
10827 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10828 pm = &(*pm)->next;
10829 if (*pm != NULL)
10830 pm = &(*pm)->next;
10831
10832 m->next = *pm;
10833 *pm = m;
10834 }
10835 }
10836 }
8dc1a139 10837 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
10838 .dynstr, .dynsym, and .hash sections, and everything in
10839 between. */
10840 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10841 pm = &(*pm)->next)
10842 if ((*pm)->p_type == PT_DYNAMIC)
10843 break;
10844 m = *pm;
10845 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10846 {
10847 /* For a normal mips executable the permissions for the PT_DYNAMIC
10848 segment are read, write and execute. We do that here since
10849 the code in elf.c sets only the read permission. This matters
10850 sometimes for the dynamic linker. */
10851 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10852 {
10853 m->p_flags = PF_R | PF_W | PF_X;
10854 m->p_flags_valid = 1;
10855 }
10856 }
f6f62d6f
RS
10857 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10858 glibc's dynamic linker has traditionally derived the number of
10859 tags from the p_filesz field, and sometimes allocates stack
10860 arrays of that size. An overly-big PT_DYNAMIC segment can
10861 be actively harmful in such cases. Making PT_DYNAMIC contain
10862 other sections can also make life hard for the prelinker,
10863 which might move one of the other sections to a different
10864 PT_LOAD segment. */
10865 if (SGI_COMPAT (abfd)
10866 && m != NULL
10867 && m->count == 1
10868 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
10869 {
10870 static const char *sec_names[] =
10871 {
10872 ".dynamic", ".dynstr", ".dynsym", ".hash"
10873 };
10874 bfd_vma low, high;
10875 unsigned int i, c;
10876 struct elf_segment_map *n;
10877
792b4a53 10878 low = ~(bfd_vma) 0;
b49e97c9
TS
10879 high = 0;
10880 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10881 {
10882 s = bfd_get_section_by_name (abfd, sec_names[i]);
10883 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10884 {
10885 bfd_size_type sz;
10886
10887 if (low > s->vma)
10888 low = s->vma;
eea6121a 10889 sz = s->size;
b49e97c9
TS
10890 if (high < s->vma + sz)
10891 high = s->vma + sz;
10892 }
10893 }
10894
10895 c = 0;
10896 for (s = abfd->sections; s != NULL; s = s->next)
10897 if ((s->flags & SEC_LOAD) != 0
10898 && s->vma >= low
eea6121a 10899 && s->vma + s->size <= high)
b49e97c9
TS
10900 ++c;
10901
10902 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 10903 n = bfd_zalloc (abfd, amt);
b49e97c9 10904 if (n == NULL)
b34976b6 10905 return FALSE;
b49e97c9
TS
10906 *n = *m;
10907 n->count = c;
10908
10909 i = 0;
10910 for (s = abfd->sections; s != NULL; s = s->next)
10911 {
10912 if ((s->flags & SEC_LOAD) != 0
10913 && s->vma >= low
eea6121a 10914 && s->vma + s->size <= high)
b49e97c9
TS
10915 {
10916 n->sections[i] = s;
10917 ++i;
10918 }
10919 }
10920
10921 *pm = n;
10922 }
10923 }
10924
98c904a8
RS
10925 /* Allocate a spare program header in dynamic objects so that tools
10926 like the prelinker can add an extra PT_LOAD entry.
10927
10928 If the prelinker needs to make room for a new PT_LOAD entry, its
10929 standard procedure is to move the first (read-only) sections into
10930 the new (writable) segment. However, the MIPS ABI requires
10931 .dynamic to be in a read-only segment, and the section will often
10932 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10933
10934 Although the prelinker could in principle move .dynamic to a
10935 writable segment, it seems better to allocate a spare program
10936 header instead, and avoid the need to move any sections.
10937 There is a long tradition of allocating spare dynamic tags,
10938 so allocating a spare program header seems like a natural
7c8b76cc
JM
10939 extension.
10940
10941 If INFO is NULL, we may be copying an already prelinked binary
10942 with objcopy or strip, so do not add this header. */
10943 if (info != NULL
10944 && !SGI_COMPAT (abfd)
98c904a8
RS
10945 && bfd_get_section_by_name (abfd, ".dynamic"))
10946 {
10947 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10948 if ((*pm)->p_type == PT_NULL)
10949 break;
10950 if (*pm == NULL)
10951 {
10952 m = bfd_zalloc (abfd, sizeof (*m));
10953 if (m == NULL)
10954 return FALSE;
10955
10956 m->p_type = PT_NULL;
10957 *pm = m;
10958 }
10959 }
10960
b34976b6 10961 return TRUE;
b49e97c9
TS
10962}
10963\f
10964/* Return the section that should be marked against GC for a given
10965 relocation. */
10966
10967asection *
9719ad41 10968_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 10969 struct bfd_link_info *info,
9719ad41
RS
10970 Elf_Internal_Rela *rel,
10971 struct elf_link_hash_entry *h,
10972 Elf_Internal_Sym *sym)
b49e97c9
TS
10973{
10974 /* ??? Do mips16 stub sections need to be handled special? */
10975
10976 if (h != NULL)
07adf181
AM
10977 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10978 {
10979 case R_MIPS_GNU_VTINHERIT:
10980 case R_MIPS_GNU_VTENTRY:
10981 return NULL;
10982 }
b49e97c9 10983
07adf181 10984 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
10985}
10986
10987/* Update the got entry reference counts for the section being removed. */
10988
b34976b6 10989bfd_boolean
9719ad41
RS
10990_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10991 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10992 asection *sec ATTRIBUTE_UNUSED,
10993 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
10994{
10995#if 0
10996 Elf_Internal_Shdr *symtab_hdr;
10997 struct elf_link_hash_entry **sym_hashes;
10998 bfd_signed_vma *local_got_refcounts;
10999 const Elf_Internal_Rela *rel, *relend;
11000 unsigned long r_symndx;
11001 struct elf_link_hash_entry *h;
11002
7dda2462
TG
11003 if (info->relocatable)
11004 return TRUE;
11005
b49e97c9
TS
11006 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11007 sym_hashes = elf_sym_hashes (abfd);
11008 local_got_refcounts = elf_local_got_refcounts (abfd);
11009
11010 relend = relocs + sec->reloc_count;
11011 for (rel = relocs; rel < relend; rel++)
11012 switch (ELF_R_TYPE (abfd, rel->r_info))
11013 {
738e5348
RS
11014 case R_MIPS16_GOT16:
11015 case R_MIPS16_CALL16:
b49e97c9
TS
11016 case R_MIPS_GOT16:
11017 case R_MIPS_CALL16:
11018 case R_MIPS_CALL_HI16:
11019 case R_MIPS_CALL_LO16:
11020 case R_MIPS_GOT_HI16:
11021 case R_MIPS_GOT_LO16:
4a14403c
TS
11022 case R_MIPS_GOT_DISP:
11023 case R_MIPS_GOT_PAGE:
11024 case R_MIPS_GOT_OFST:
b49e97c9
TS
11025 /* ??? It would seem that the existing MIPS code does no sort
11026 of reference counting or whatnot on its GOT and PLT entries,
11027 so it is not possible to garbage collect them at this time. */
11028 break;
11029
11030 default:
11031 break;
11032 }
11033#endif
11034
b34976b6 11035 return TRUE;
b49e97c9
TS
11036}
11037\f
11038/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11039 hiding the old indirect symbol. Process additional relocation
11040 information. Also called for weakdefs, in which case we just let
11041 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11042
11043void
fcfa13d2 11044_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11045 struct elf_link_hash_entry *dir,
11046 struct elf_link_hash_entry *ind)
b49e97c9
TS
11047{
11048 struct mips_elf_link_hash_entry *dirmips, *indmips;
11049
fcfa13d2 11050 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11051
861fb55a
DJ
11052 dirmips = (struct mips_elf_link_hash_entry *) dir;
11053 indmips = (struct mips_elf_link_hash_entry *) ind;
11054 /* Any absolute non-dynamic relocations against an indirect or weak
11055 definition will be against the target symbol. */
11056 if (indmips->has_static_relocs)
11057 dirmips->has_static_relocs = TRUE;
11058
b49e97c9
TS
11059 if (ind->root.type != bfd_link_hash_indirect)
11060 return;
11061
b49e97c9
TS
11062 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11063 if (indmips->readonly_reloc)
b34976b6 11064 dirmips->readonly_reloc = TRUE;
b49e97c9 11065 if (indmips->no_fn_stub)
b34976b6 11066 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11067 if (indmips->fn_stub)
11068 {
11069 dirmips->fn_stub = indmips->fn_stub;
11070 indmips->fn_stub = NULL;
11071 }
11072 if (indmips->need_fn_stub)
11073 {
11074 dirmips->need_fn_stub = TRUE;
11075 indmips->need_fn_stub = FALSE;
11076 }
11077 if (indmips->call_stub)
11078 {
11079 dirmips->call_stub = indmips->call_stub;
11080 indmips->call_stub = NULL;
11081 }
11082 if (indmips->call_fp_stub)
11083 {
11084 dirmips->call_fp_stub = indmips->call_fp_stub;
11085 indmips->call_fp_stub = NULL;
11086 }
634835ae
RS
11087 if (indmips->global_got_area < dirmips->global_got_area)
11088 dirmips->global_got_area = indmips->global_got_area;
11089 if (indmips->global_got_area < GGA_NONE)
11090 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11091 if (indmips->has_nonpic_branches)
11092 dirmips->has_nonpic_branches = TRUE;
0f20cc35
DJ
11093
11094 if (dirmips->tls_type == 0)
11095 dirmips->tls_type = indmips->tls_type;
b49e97c9 11096}
b49e97c9 11097\f
d01414a5
TS
11098#define PDR_SIZE 32
11099
b34976b6 11100bfd_boolean
9719ad41
RS
11101_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11102 struct bfd_link_info *info)
d01414a5
TS
11103{
11104 asection *o;
b34976b6 11105 bfd_boolean ret = FALSE;
d01414a5
TS
11106 unsigned char *tdata;
11107 size_t i, skip;
11108
11109 o = bfd_get_section_by_name (abfd, ".pdr");
11110 if (! o)
b34976b6 11111 return FALSE;
eea6121a 11112 if (o->size == 0)
b34976b6 11113 return FALSE;
eea6121a 11114 if (o->size % PDR_SIZE != 0)
b34976b6 11115 return FALSE;
d01414a5
TS
11116 if (o->output_section != NULL
11117 && bfd_is_abs_section (o->output_section))
b34976b6 11118 return FALSE;
d01414a5 11119
eea6121a 11120 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11121 if (! tdata)
b34976b6 11122 return FALSE;
d01414a5 11123
9719ad41 11124 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11125 info->keep_memory);
d01414a5
TS
11126 if (!cookie->rels)
11127 {
11128 free (tdata);
b34976b6 11129 return FALSE;
d01414a5
TS
11130 }
11131
11132 cookie->rel = cookie->rels;
11133 cookie->relend = cookie->rels + o->reloc_count;
11134
eea6121a 11135 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11136 {
c152c796 11137 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11138 {
11139 tdata[i] = 1;
11140 skip ++;
11141 }
11142 }
11143
11144 if (skip != 0)
11145 {
f0abc2a1 11146 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11147 o->size -= skip * PDR_SIZE;
b34976b6 11148 ret = TRUE;
d01414a5
TS
11149 }
11150 else
11151 free (tdata);
11152
11153 if (! info->keep_memory)
11154 free (cookie->rels);
11155
11156 return ret;
11157}
11158
b34976b6 11159bfd_boolean
9719ad41 11160_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11161{
11162 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11163 return TRUE;
11164 return FALSE;
53bfd6b4 11165}
d01414a5 11166
b34976b6 11167bfd_boolean
c7b8f16e
JB
11168_bfd_mips_elf_write_section (bfd *output_bfd,
11169 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11170 asection *sec, bfd_byte *contents)
d01414a5
TS
11171{
11172 bfd_byte *to, *from, *end;
11173 int i;
11174
11175 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11176 return FALSE;
d01414a5 11177
f0abc2a1 11178 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11179 return FALSE;
d01414a5
TS
11180
11181 to = contents;
eea6121a 11182 end = contents + sec->size;
d01414a5
TS
11183 for (from = contents, i = 0;
11184 from < end;
11185 from += PDR_SIZE, i++)
11186 {
f0abc2a1 11187 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11188 continue;
11189 if (to != from)
11190 memcpy (to, from, PDR_SIZE);
11191 to += PDR_SIZE;
11192 }
11193 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11194 sec->output_offset, sec->size);
b34976b6 11195 return TRUE;
d01414a5 11196}
53bfd6b4 11197\f
b49e97c9
TS
11198/* MIPS ELF uses a special find_nearest_line routine in order the
11199 handle the ECOFF debugging information. */
11200
11201struct mips_elf_find_line
11202{
11203 struct ecoff_debug_info d;
11204 struct ecoff_find_line i;
11205};
11206
b34976b6 11207bfd_boolean
9719ad41
RS
11208_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11209 asymbol **symbols, bfd_vma offset,
11210 const char **filename_ptr,
11211 const char **functionname_ptr,
11212 unsigned int *line_ptr)
b49e97c9
TS
11213{
11214 asection *msec;
11215
11216 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11217 filename_ptr, functionname_ptr,
11218 line_ptr))
b34976b6 11219 return TRUE;
b49e97c9
TS
11220
11221 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11222 filename_ptr, functionname_ptr,
9719ad41 11223 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11224 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11225 return TRUE;
b49e97c9
TS
11226
11227 msec = bfd_get_section_by_name (abfd, ".mdebug");
11228 if (msec != NULL)
11229 {
11230 flagword origflags;
11231 struct mips_elf_find_line *fi;
11232 const struct ecoff_debug_swap * const swap =
11233 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11234
11235 /* If we are called during a link, mips_elf_final_link may have
11236 cleared the SEC_HAS_CONTENTS field. We force it back on here
11237 if appropriate (which it normally will be). */
11238 origflags = msec->flags;
11239 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11240 msec->flags |= SEC_HAS_CONTENTS;
11241
11242 fi = elf_tdata (abfd)->find_line_info;
11243 if (fi == NULL)
11244 {
11245 bfd_size_type external_fdr_size;
11246 char *fraw_src;
11247 char *fraw_end;
11248 struct fdr *fdr_ptr;
11249 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11250
9719ad41 11251 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11252 if (fi == NULL)
11253 {
11254 msec->flags = origflags;
b34976b6 11255 return FALSE;
b49e97c9
TS
11256 }
11257
11258 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11259 {
11260 msec->flags = origflags;
b34976b6 11261 return FALSE;
b49e97c9
TS
11262 }
11263
11264 /* Swap in the FDR information. */
11265 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11266 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11267 if (fi->d.fdr == NULL)
11268 {
11269 msec->flags = origflags;
b34976b6 11270 return FALSE;
b49e97c9
TS
11271 }
11272 external_fdr_size = swap->external_fdr_size;
11273 fdr_ptr = fi->d.fdr;
11274 fraw_src = (char *) fi->d.external_fdr;
11275 fraw_end = (fraw_src
11276 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11277 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11278 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11279
11280 elf_tdata (abfd)->find_line_info = fi;
11281
11282 /* Note that we don't bother to ever free this information.
11283 find_nearest_line is either called all the time, as in
11284 objdump -l, so the information should be saved, or it is
11285 rarely called, as in ld error messages, so the memory
11286 wasted is unimportant. Still, it would probably be a
11287 good idea for free_cached_info to throw it away. */
11288 }
11289
11290 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11291 &fi->i, filename_ptr, functionname_ptr,
11292 line_ptr))
11293 {
11294 msec->flags = origflags;
b34976b6 11295 return TRUE;
b49e97c9
TS
11296 }
11297
11298 msec->flags = origflags;
11299 }
11300
11301 /* Fall back on the generic ELF find_nearest_line routine. */
11302
11303 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11304 filename_ptr, functionname_ptr,
11305 line_ptr);
11306}
4ab527b0
FF
11307
11308bfd_boolean
11309_bfd_mips_elf_find_inliner_info (bfd *abfd,
11310 const char **filename_ptr,
11311 const char **functionname_ptr,
11312 unsigned int *line_ptr)
11313{
11314 bfd_boolean found;
11315 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11316 functionname_ptr, line_ptr,
11317 & elf_tdata (abfd)->dwarf2_find_line_info);
11318 return found;
11319}
11320
b49e97c9
TS
11321\f
11322/* When are writing out the .options or .MIPS.options section,
11323 remember the bytes we are writing out, so that we can install the
11324 GP value in the section_processing routine. */
11325
b34976b6 11326bfd_boolean
9719ad41
RS
11327_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11328 const void *location,
11329 file_ptr offset, bfd_size_type count)
b49e97c9 11330{
cc2e31b9 11331 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11332 {
11333 bfd_byte *c;
11334
11335 if (elf_section_data (section) == NULL)
11336 {
11337 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11338 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11339 if (elf_section_data (section) == NULL)
b34976b6 11340 return FALSE;
b49e97c9 11341 }
f0abc2a1 11342 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11343 if (c == NULL)
11344 {
eea6121a 11345 c = bfd_zalloc (abfd, section->size);
b49e97c9 11346 if (c == NULL)
b34976b6 11347 return FALSE;
f0abc2a1 11348 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11349 }
11350
9719ad41 11351 memcpy (c + offset, location, count);
b49e97c9
TS
11352 }
11353
11354 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11355 count);
11356}
11357
11358/* This is almost identical to bfd_generic_get_... except that some
11359 MIPS relocations need to be handled specially. Sigh. */
11360
11361bfd_byte *
9719ad41
RS
11362_bfd_elf_mips_get_relocated_section_contents
11363 (bfd *abfd,
11364 struct bfd_link_info *link_info,
11365 struct bfd_link_order *link_order,
11366 bfd_byte *data,
11367 bfd_boolean relocatable,
11368 asymbol **symbols)
b49e97c9
TS
11369{
11370 /* Get enough memory to hold the stuff */
11371 bfd *input_bfd = link_order->u.indirect.section->owner;
11372 asection *input_section = link_order->u.indirect.section;
eea6121a 11373 bfd_size_type sz;
b49e97c9
TS
11374
11375 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11376 arelent **reloc_vector = NULL;
11377 long reloc_count;
11378
11379 if (reloc_size < 0)
11380 goto error_return;
11381
9719ad41 11382 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11383 if (reloc_vector == NULL && reloc_size != 0)
11384 goto error_return;
11385
11386 /* read in the section */
eea6121a
AM
11387 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11388 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11389 goto error_return;
11390
b49e97c9
TS
11391 reloc_count = bfd_canonicalize_reloc (input_bfd,
11392 input_section,
11393 reloc_vector,
11394 symbols);
11395 if (reloc_count < 0)
11396 goto error_return;
11397
11398 if (reloc_count > 0)
11399 {
11400 arelent **parent;
11401 /* for mips */
11402 int gp_found;
11403 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11404
11405 {
11406 struct bfd_hash_entry *h;
11407 struct bfd_link_hash_entry *lh;
11408 /* Skip all this stuff if we aren't mixing formats. */
11409 if (abfd && input_bfd
11410 && abfd->xvec == input_bfd->xvec)
11411 lh = 0;
11412 else
11413 {
b34976b6 11414 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11415 lh = (struct bfd_link_hash_entry *) h;
11416 }
11417 lookup:
11418 if (lh)
11419 {
11420 switch (lh->type)
11421 {
11422 case bfd_link_hash_undefined:
11423 case bfd_link_hash_undefweak:
11424 case bfd_link_hash_common:
11425 gp_found = 0;
11426 break;
11427 case bfd_link_hash_defined:
11428 case bfd_link_hash_defweak:
11429 gp_found = 1;
11430 gp = lh->u.def.value;
11431 break;
11432 case bfd_link_hash_indirect:
11433 case bfd_link_hash_warning:
11434 lh = lh->u.i.link;
11435 /* @@FIXME ignoring warning for now */
11436 goto lookup;
11437 case bfd_link_hash_new:
11438 default:
11439 abort ();
11440 }
11441 }
11442 else
11443 gp_found = 0;
11444 }
11445 /* end mips */
9719ad41 11446 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11447 {
9719ad41 11448 char *error_message = NULL;
b49e97c9
TS
11449 bfd_reloc_status_type r;
11450
11451 /* Specific to MIPS: Deal with relocation types that require
11452 knowing the gp of the output bfd. */
11453 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11454
8236346f
EC
11455 /* If we've managed to find the gp and have a special
11456 function for the relocation then go ahead, else default
11457 to the generic handling. */
11458 if (gp_found
11459 && (*parent)->howto->special_function
11460 == _bfd_mips_elf32_gprel16_reloc)
11461 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11462 input_section, relocatable,
11463 data, gp);
11464 else
86324f90 11465 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11466 input_section,
11467 relocatable ? abfd : NULL,
11468 &error_message);
b49e97c9 11469
1049f94e 11470 if (relocatable)
b49e97c9
TS
11471 {
11472 asection *os = input_section->output_section;
11473
11474 /* A partial link, so keep the relocs */
11475 os->orelocation[os->reloc_count] = *parent;
11476 os->reloc_count++;
11477 }
11478
11479 if (r != bfd_reloc_ok)
11480 {
11481 switch (r)
11482 {
11483 case bfd_reloc_undefined:
11484 if (!((*link_info->callbacks->undefined_symbol)
11485 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11486 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11487 goto error_return;
11488 break;
11489 case bfd_reloc_dangerous:
9719ad41 11490 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11491 if (!((*link_info->callbacks->reloc_dangerous)
11492 (link_info, error_message, input_bfd, input_section,
11493 (*parent)->address)))
11494 goto error_return;
11495 break;
11496 case bfd_reloc_overflow:
11497 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11498 (link_info, NULL,
11499 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11500 (*parent)->howto->name, (*parent)->addend,
11501 input_bfd, input_section, (*parent)->address)))
11502 goto error_return;
11503 break;
11504 case bfd_reloc_outofrange:
11505 default:
11506 abort ();
11507 break;
11508 }
11509
11510 }
11511 }
11512 }
11513 if (reloc_vector != NULL)
11514 free (reloc_vector);
11515 return data;
11516
11517error_return:
11518 if (reloc_vector != NULL)
11519 free (reloc_vector);
11520 return NULL;
11521}
11522\f
11523/* Create a MIPS ELF linker hash table. */
11524
11525struct bfd_link_hash_table *
9719ad41 11526_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
11527{
11528 struct mips_elf_link_hash_table *ret;
11529 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11530
9719ad41
RS
11531 ret = bfd_malloc (amt);
11532 if (ret == NULL)
b49e97c9
TS
11533 return NULL;
11534
66eb6687
AM
11535 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11536 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
11537 sizeof (struct mips_elf_link_hash_entry),
11538 MIPS_ELF_DATA))
b49e97c9 11539 {
e2d34d7d 11540 free (ret);
b49e97c9
TS
11541 return NULL;
11542 }
11543
11544#if 0
11545 /* We no longer use this. */
11546 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11547 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11548#endif
11549 ret->procedure_count = 0;
11550 ret->compact_rel_size = 0;
b34976b6 11551 ret->use_rld_obj_head = FALSE;
b49e97c9 11552 ret->rld_value = 0;
b34976b6 11553 ret->mips16_stubs_seen = FALSE;
861fb55a 11554 ret->use_plts_and_copy_relocs = FALSE;
0a44bf69 11555 ret->is_vxworks = FALSE;
0e53d9da 11556 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
11557 ret->srelbss = NULL;
11558 ret->sdynbss = NULL;
11559 ret->srelplt = NULL;
11560 ret->srelplt2 = NULL;
11561 ret->sgotplt = NULL;
11562 ret->splt = NULL;
4e41d0d7 11563 ret->sstubs = NULL;
a8028dd0
RS
11564 ret->sgot = NULL;
11565 ret->got_info = NULL;
0a44bf69
RS
11566 ret->plt_header_size = 0;
11567 ret->plt_entry_size = 0;
33bb52fb 11568 ret->lazy_stub_count = 0;
5108fc1b 11569 ret->function_stub_size = 0;
861fb55a
DJ
11570 ret->strampoline = NULL;
11571 ret->la25_stubs = NULL;
11572 ret->add_stub_section = NULL;
b49e97c9
TS
11573
11574 return &ret->root.root;
11575}
0a44bf69
RS
11576
11577/* Likewise, but indicate that the target is VxWorks. */
11578
11579struct bfd_link_hash_table *
11580_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11581{
11582 struct bfd_link_hash_table *ret;
11583
11584 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11585 if (ret)
11586 {
11587 struct mips_elf_link_hash_table *htab;
11588
11589 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
11590 htab->use_plts_and_copy_relocs = TRUE;
11591 htab->is_vxworks = TRUE;
0a44bf69
RS
11592 }
11593 return ret;
11594}
861fb55a
DJ
11595
11596/* A function that the linker calls if we are allowed to use PLTs
11597 and copy relocs. */
11598
11599void
11600_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11601{
11602 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11603}
b49e97c9
TS
11604\f
11605/* We need to use a special link routine to handle the .reginfo and
11606 the .mdebug sections. We need to merge all instances of these
11607 sections together, not write them all out sequentially. */
11608
b34976b6 11609bfd_boolean
9719ad41 11610_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 11611{
b49e97c9
TS
11612 asection *o;
11613 struct bfd_link_order *p;
11614 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11615 asection *rtproc_sec;
11616 Elf32_RegInfo reginfo;
11617 struct ecoff_debug_info debug;
861fb55a 11618 struct mips_htab_traverse_info hti;
7a2a6943
NC
11619 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11620 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 11621 HDRR *symhdr = &debug.symbolic_header;
9719ad41 11622 void *mdebug_handle = NULL;
b49e97c9
TS
11623 asection *s;
11624 EXTR esym;
11625 unsigned int i;
11626 bfd_size_type amt;
0a44bf69 11627 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
11628
11629 static const char * const secname[] =
11630 {
11631 ".text", ".init", ".fini", ".data",
11632 ".rodata", ".sdata", ".sbss", ".bss"
11633 };
11634 static const int sc[] =
11635 {
11636 scText, scInit, scFini, scData,
11637 scRData, scSData, scSBss, scBss
11638 };
11639
d4596a51
RS
11640 /* Sort the dynamic symbols so that those with GOT entries come after
11641 those without. */
0a44bf69 11642 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11643 BFD_ASSERT (htab != NULL);
11644
d4596a51
RS
11645 if (!mips_elf_sort_hash_table (abfd, info))
11646 return FALSE;
b49e97c9 11647
861fb55a
DJ
11648 /* Create any scheduled LA25 stubs. */
11649 hti.info = info;
11650 hti.output_bfd = abfd;
11651 hti.error = FALSE;
11652 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11653 if (hti.error)
11654 return FALSE;
11655
b49e97c9
TS
11656 /* Get a value for the GP register. */
11657 if (elf_gp (abfd) == 0)
11658 {
11659 struct bfd_link_hash_entry *h;
11660
b34976b6 11661 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 11662 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
11663 elf_gp (abfd) = (h->u.def.value
11664 + h->u.def.section->output_section->vma
11665 + h->u.def.section->output_offset);
0a44bf69
RS
11666 else if (htab->is_vxworks
11667 && (h = bfd_link_hash_lookup (info->hash,
11668 "_GLOBAL_OFFSET_TABLE_",
11669 FALSE, FALSE, TRUE))
11670 && h->type == bfd_link_hash_defined)
11671 elf_gp (abfd) = (h->u.def.section->output_section->vma
11672 + h->u.def.section->output_offset
11673 + h->u.def.value);
1049f94e 11674 else if (info->relocatable)
b49e97c9
TS
11675 {
11676 bfd_vma lo = MINUS_ONE;
11677
11678 /* Find the GP-relative section with the lowest offset. */
9719ad41 11679 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
11680 if (o->vma < lo
11681 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11682 lo = o->vma;
11683
11684 /* And calculate GP relative to that. */
0a44bf69 11685 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
11686 }
11687 else
11688 {
11689 /* If the relocate_section function needs to do a reloc
11690 involving the GP value, it should make a reloc_dangerous
11691 callback to warn that GP is not defined. */
11692 }
11693 }
11694
11695 /* Go through the sections and collect the .reginfo and .mdebug
11696 information. */
11697 reginfo_sec = NULL;
11698 mdebug_sec = NULL;
11699 gptab_data_sec = NULL;
11700 gptab_bss_sec = NULL;
9719ad41 11701 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
11702 {
11703 if (strcmp (o->name, ".reginfo") == 0)
11704 {
11705 memset (&reginfo, 0, sizeof reginfo);
11706
11707 /* We have found the .reginfo section in the output file.
11708 Look through all the link_orders comprising it and merge
11709 the information together. */
8423293d 11710 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11711 {
11712 asection *input_section;
11713 bfd *input_bfd;
11714 Elf32_External_RegInfo ext;
11715 Elf32_RegInfo sub;
11716
11717 if (p->type != bfd_indirect_link_order)
11718 {
11719 if (p->type == bfd_data_link_order)
11720 continue;
11721 abort ();
11722 }
11723
11724 input_section = p->u.indirect.section;
11725 input_bfd = input_section->owner;
11726
b49e97c9 11727 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 11728 &ext, 0, sizeof ext))
b34976b6 11729 return FALSE;
b49e97c9
TS
11730
11731 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11732
11733 reginfo.ri_gprmask |= sub.ri_gprmask;
11734 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11735 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11736 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11737 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11738
11739 /* ri_gp_value is set by the function
11740 mips_elf32_section_processing when the section is
11741 finally written out. */
11742
11743 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11744 elf_link_input_bfd ignores this section. */
11745 input_section->flags &= ~SEC_HAS_CONTENTS;
11746 }
11747
11748 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 11749 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
11750
11751 /* Skip this section later on (I don't think this currently
11752 matters, but someday it might). */
8423293d 11753 o->map_head.link_order = NULL;
b49e97c9
TS
11754
11755 reginfo_sec = o;
11756 }
11757
11758 if (strcmp (o->name, ".mdebug") == 0)
11759 {
11760 struct extsym_info einfo;
11761 bfd_vma last;
11762
11763 /* We have found the .mdebug section in the output file.
11764 Look through all the link_orders comprising it and merge
11765 the information together. */
11766 symhdr->magic = swap->sym_magic;
11767 /* FIXME: What should the version stamp be? */
11768 symhdr->vstamp = 0;
11769 symhdr->ilineMax = 0;
11770 symhdr->cbLine = 0;
11771 symhdr->idnMax = 0;
11772 symhdr->ipdMax = 0;
11773 symhdr->isymMax = 0;
11774 symhdr->ioptMax = 0;
11775 symhdr->iauxMax = 0;
11776 symhdr->issMax = 0;
11777 symhdr->issExtMax = 0;
11778 symhdr->ifdMax = 0;
11779 symhdr->crfd = 0;
11780 symhdr->iextMax = 0;
11781
11782 /* We accumulate the debugging information itself in the
11783 debug_info structure. */
11784 debug.line = NULL;
11785 debug.external_dnr = NULL;
11786 debug.external_pdr = NULL;
11787 debug.external_sym = NULL;
11788 debug.external_opt = NULL;
11789 debug.external_aux = NULL;
11790 debug.ss = NULL;
11791 debug.ssext = debug.ssext_end = NULL;
11792 debug.external_fdr = NULL;
11793 debug.external_rfd = NULL;
11794 debug.external_ext = debug.external_ext_end = NULL;
11795
11796 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 11797 if (mdebug_handle == NULL)
b34976b6 11798 return FALSE;
b49e97c9
TS
11799
11800 esym.jmptbl = 0;
11801 esym.cobol_main = 0;
11802 esym.weakext = 0;
11803 esym.reserved = 0;
11804 esym.ifd = ifdNil;
11805 esym.asym.iss = issNil;
11806 esym.asym.st = stLocal;
11807 esym.asym.reserved = 0;
11808 esym.asym.index = indexNil;
11809 last = 0;
11810 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11811 {
11812 esym.asym.sc = sc[i];
11813 s = bfd_get_section_by_name (abfd, secname[i]);
11814 if (s != NULL)
11815 {
11816 esym.asym.value = s->vma;
eea6121a 11817 last = s->vma + s->size;
b49e97c9
TS
11818 }
11819 else
11820 esym.asym.value = last;
11821 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11822 secname[i], &esym))
b34976b6 11823 return FALSE;
b49e97c9
TS
11824 }
11825
8423293d 11826 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11827 {
11828 asection *input_section;
11829 bfd *input_bfd;
11830 const struct ecoff_debug_swap *input_swap;
11831 struct ecoff_debug_info input_debug;
11832 char *eraw_src;
11833 char *eraw_end;
11834
11835 if (p->type != bfd_indirect_link_order)
11836 {
11837 if (p->type == bfd_data_link_order)
11838 continue;
11839 abort ();
11840 }
11841
11842 input_section = p->u.indirect.section;
11843 input_bfd = input_section->owner;
11844
d5eaccd7 11845 if (!is_mips_elf (input_bfd))
b49e97c9
TS
11846 {
11847 /* I don't know what a non MIPS ELF bfd would be
11848 doing with a .mdebug section, but I don't really
11849 want to deal with it. */
11850 continue;
11851 }
11852
11853 input_swap = (get_elf_backend_data (input_bfd)
11854 ->elf_backend_ecoff_debug_swap);
11855
eea6121a 11856 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
11857
11858 /* The ECOFF linking code expects that we have already
11859 read in the debugging information and set up an
11860 ecoff_debug_info structure, so we do that now. */
11861 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11862 &input_debug))
b34976b6 11863 return FALSE;
b49e97c9
TS
11864
11865 if (! (bfd_ecoff_debug_accumulate
11866 (mdebug_handle, abfd, &debug, swap, input_bfd,
11867 &input_debug, input_swap, info)))
b34976b6 11868 return FALSE;
b49e97c9
TS
11869
11870 /* Loop through the external symbols. For each one with
11871 interesting information, try to find the symbol in
11872 the linker global hash table and save the information
11873 for the output external symbols. */
11874 eraw_src = input_debug.external_ext;
11875 eraw_end = (eraw_src
11876 + (input_debug.symbolic_header.iextMax
11877 * input_swap->external_ext_size));
11878 for (;
11879 eraw_src < eraw_end;
11880 eraw_src += input_swap->external_ext_size)
11881 {
11882 EXTR ext;
11883 const char *name;
11884 struct mips_elf_link_hash_entry *h;
11885
9719ad41 11886 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
11887 if (ext.asym.sc == scNil
11888 || ext.asym.sc == scUndefined
11889 || ext.asym.sc == scSUndefined)
11890 continue;
11891
11892 name = input_debug.ssext + ext.asym.iss;
11893 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 11894 name, FALSE, FALSE, TRUE);
b49e97c9
TS
11895 if (h == NULL || h->esym.ifd != -2)
11896 continue;
11897
11898 if (ext.ifd != -1)
11899 {
11900 BFD_ASSERT (ext.ifd
11901 < input_debug.symbolic_header.ifdMax);
11902 ext.ifd = input_debug.ifdmap[ext.ifd];
11903 }
11904
11905 h->esym = ext;
11906 }
11907
11908 /* Free up the information we just read. */
11909 free (input_debug.line);
11910 free (input_debug.external_dnr);
11911 free (input_debug.external_pdr);
11912 free (input_debug.external_sym);
11913 free (input_debug.external_opt);
11914 free (input_debug.external_aux);
11915 free (input_debug.ss);
11916 free (input_debug.ssext);
11917 free (input_debug.external_fdr);
11918 free (input_debug.external_rfd);
11919 free (input_debug.external_ext);
11920
11921 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11922 elf_link_input_bfd ignores this section. */
11923 input_section->flags &= ~SEC_HAS_CONTENTS;
11924 }
11925
11926 if (SGI_COMPAT (abfd) && info->shared)
11927 {
11928 /* Create .rtproc section. */
11929 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11930 if (rtproc_sec == NULL)
11931 {
11932 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11933 | SEC_LINKER_CREATED | SEC_READONLY);
11934
3496cb2a
L
11935 rtproc_sec = bfd_make_section_with_flags (abfd,
11936 ".rtproc",
11937 flags);
b49e97c9 11938 if (rtproc_sec == NULL
b49e97c9 11939 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 11940 return FALSE;
b49e97c9
TS
11941 }
11942
11943 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11944 info, rtproc_sec,
11945 &debug))
b34976b6 11946 return FALSE;
b49e97c9
TS
11947 }
11948
11949 /* Build the external symbol information. */
11950 einfo.abfd = abfd;
11951 einfo.info = info;
11952 einfo.debug = &debug;
11953 einfo.swap = swap;
b34976b6 11954 einfo.failed = FALSE;
b49e97c9 11955 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 11956 mips_elf_output_extsym, &einfo);
b49e97c9 11957 if (einfo.failed)
b34976b6 11958 return FALSE;
b49e97c9
TS
11959
11960 /* Set the size of the .mdebug section. */
eea6121a 11961 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
11962
11963 /* Skip this section later on (I don't think this currently
11964 matters, but someday it might). */
8423293d 11965 o->map_head.link_order = NULL;
b49e97c9
TS
11966
11967 mdebug_sec = o;
11968 }
11969
0112cd26 11970 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
11971 {
11972 const char *subname;
11973 unsigned int c;
11974 Elf32_gptab *tab;
11975 Elf32_External_gptab *ext_tab;
11976 unsigned int j;
11977
11978 /* The .gptab.sdata and .gptab.sbss sections hold
11979 information describing how the small data area would
11980 change depending upon the -G switch. These sections
11981 not used in executables files. */
1049f94e 11982 if (! info->relocatable)
b49e97c9 11983 {
8423293d 11984 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11985 {
11986 asection *input_section;
11987
11988 if (p->type != bfd_indirect_link_order)
11989 {
11990 if (p->type == bfd_data_link_order)
11991 continue;
11992 abort ();
11993 }
11994
11995 input_section = p->u.indirect.section;
11996
11997 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11998 elf_link_input_bfd ignores this section. */
11999 input_section->flags &= ~SEC_HAS_CONTENTS;
12000 }
12001
12002 /* Skip this section later on (I don't think this
12003 currently matters, but someday it might). */
8423293d 12004 o->map_head.link_order = NULL;
b49e97c9
TS
12005
12006 /* Really remove the section. */
5daa8fe7 12007 bfd_section_list_remove (abfd, o);
b49e97c9
TS
12008 --abfd->section_count;
12009
12010 continue;
12011 }
12012
12013 /* There is one gptab for initialized data, and one for
12014 uninitialized data. */
12015 if (strcmp (o->name, ".gptab.sdata") == 0)
12016 gptab_data_sec = o;
12017 else if (strcmp (o->name, ".gptab.sbss") == 0)
12018 gptab_bss_sec = o;
12019 else
12020 {
12021 (*_bfd_error_handler)
12022 (_("%s: illegal section name `%s'"),
12023 bfd_get_filename (abfd), o->name);
12024 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 12025 return FALSE;
b49e97c9
TS
12026 }
12027
12028 /* The linker script always combines .gptab.data and
12029 .gptab.sdata into .gptab.sdata, and likewise for
12030 .gptab.bss and .gptab.sbss. It is possible that there is
12031 no .sdata or .sbss section in the output file, in which
12032 case we must change the name of the output section. */
12033 subname = o->name + sizeof ".gptab" - 1;
12034 if (bfd_get_section_by_name (abfd, subname) == NULL)
12035 {
12036 if (o == gptab_data_sec)
12037 o->name = ".gptab.data";
12038 else
12039 o->name = ".gptab.bss";
12040 subname = o->name + sizeof ".gptab" - 1;
12041 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12042 }
12043
12044 /* Set up the first entry. */
12045 c = 1;
12046 amt = c * sizeof (Elf32_gptab);
9719ad41 12047 tab = bfd_malloc (amt);
b49e97c9 12048 if (tab == NULL)
b34976b6 12049 return FALSE;
b49e97c9
TS
12050 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12051 tab[0].gt_header.gt_unused = 0;
12052
12053 /* Combine the input sections. */
8423293d 12054 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
12055 {
12056 asection *input_section;
12057 bfd *input_bfd;
12058 bfd_size_type size;
12059 unsigned long last;
12060 bfd_size_type gpentry;
12061
12062 if (p->type != bfd_indirect_link_order)
12063 {
12064 if (p->type == bfd_data_link_order)
12065 continue;
12066 abort ();
12067 }
12068
12069 input_section = p->u.indirect.section;
12070 input_bfd = input_section->owner;
12071
12072 /* Combine the gptab entries for this input section one
12073 by one. We know that the input gptab entries are
12074 sorted by ascending -G value. */
eea6121a 12075 size = input_section->size;
b49e97c9
TS
12076 last = 0;
12077 for (gpentry = sizeof (Elf32_External_gptab);
12078 gpentry < size;
12079 gpentry += sizeof (Elf32_External_gptab))
12080 {
12081 Elf32_External_gptab ext_gptab;
12082 Elf32_gptab int_gptab;
12083 unsigned long val;
12084 unsigned long add;
b34976b6 12085 bfd_boolean exact;
b49e97c9
TS
12086 unsigned int look;
12087
12088 if (! (bfd_get_section_contents
9719ad41
RS
12089 (input_bfd, input_section, &ext_gptab, gpentry,
12090 sizeof (Elf32_External_gptab))))
b49e97c9
TS
12091 {
12092 free (tab);
b34976b6 12093 return FALSE;
b49e97c9
TS
12094 }
12095
12096 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12097 &int_gptab);
12098 val = int_gptab.gt_entry.gt_g_value;
12099 add = int_gptab.gt_entry.gt_bytes - last;
12100
b34976b6 12101 exact = FALSE;
b49e97c9
TS
12102 for (look = 1; look < c; look++)
12103 {
12104 if (tab[look].gt_entry.gt_g_value >= val)
12105 tab[look].gt_entry.gt_bytes += add;
12106
12107 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 12108 exact = TRUE;
b49e97c9
TS
12109 }
12110
12111 if (! exact)
12112 {
12113 Elf32_gptab *new_tab;
12114 unsigned int max;
12115
12116 /* We need a new table entry. */
12117 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 12118 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
12119 if (new_tab == NULL)
12120 {
12121 free (tab);
b34976b6 12122 return FALSE;
b49e97c9
TS
12123 }
12124 tab = new_tab;
12125 tab[c].gt_entry.gt_g_value = val;
12126 tab[c].gt_entry.gt_bytes = add;
12127
12128 /* Merge in the size for the next smallest -G
12129 value, since that will be implied by this new
12130 value. */
12131 max = 0;
12132 for (look = 1; look < c; look++)
12133 {
12134 if (tab[look].gt_entry.gt_g_value < val
12135 && (max == 0
12136 || (tab[look].gt_entry.gt_g_value
12137 > tab[max].gt_entry.gt_g_value)))
12138 max = look;
12139 }
12140 if (max != 0)
12141 tab[c].gt_entry.gt_bytes +=
12142 tab[max].gt_entry.gt_bytes;
12143
12144 ++c;
12145 }
12146
12147 last = int_gptab.gt_entry.gt_bytes;
12148 }
12149
12150 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12151 elf_link_input_bfd ignores this section. */
12152 input_section->flags &= ~SEC_HAS_CONTENTS;
12153 }
12154
12155 /* The table must be sorted by -G value. */
12156 if (c > 2)
12157 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12158
12159 /* Swap out the table. */
12160 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 12161 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
12162 if (ext_tab == NULL)
12163 {
12164 free (tab);
b34976b6 12165 return FALSE;
b49e97c9
TS
12166 }
12167
12168 for (j = 0; j < c; j++)
12169 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12170 free (tab);
12171
eea6121a 12172 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
12173 o->contents = (bfd_byte *) ext_tab;
12174
12175 /* Skip this section later on (I don't think this currently
12176 matters, but someday it might). */
8423293d 12177 o->map_head.link_order = NULL;
b49e97c9
TS
12178 }
12179 }
12180
12181 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 12182 if (!bfd_elf_final_link (abfd, info))
b34976b6 12183 return FALSE;
b49e97c9
TS
12184
12185 /* Now write out the computed sections. */
12186
9719ad41 12187 if (reginfo_sec != NULL)
b49e97c9
TS
12188 {
12189 Elf32_External_RegInfo ext;
12190
12191 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 12192 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 12193 return FALSE;
b49e97c9
TS
12194 }
12195
9719ad41 12196 if (mdebug_sec != NULL)
b49e97c9
TS
12197 {
12198 BFD_ASSERT (abfd->output_has_begun);
12199 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12200 swap, info,
12201 mdebug_sec->filepos))
b34976b6 12202 return FALSE;
b49e97c9
TS
12203
12204 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12205 }
12206
9719ad41 12207 if (gptab_data_sec != NULL)
b49e97c9
TS
12208 {
12209 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12210 gptab_data_sec->contents,
eea6121a 12211 0, gptab_data_sec->size))
b34976b6 12212 return FALSE;
b49e97c9
TS
12213 }
12214
9719ad41 12215 if (gptab_bss_sec != NULL)
b49e97c9
TS
12216 {
12217 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12218 gptab_bss_sec->contents,
eea6121a 12219 0, gptab_bss_sec->size))
b34976b6 12220 return FALSE;
b49e97c9
TS
12221 }
12222
12223 if (SGI_COMPAT (abfd))
12224 {
12225 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12226 if (rtproc_sec != NULL)
12227 {
12228 if (! bfd_set_section_contents (abfd, rtproc_sec,
12229 rtproc_sec->contents,
eea6121a 12230 0, rtproc_sec->size))
b34976b6 12231 return FALSE;
b49e97c9
TS
12232 }
12233 }
12234
b34976b6 12235 return TRUE;
b49e97c9
TS
12236}
12237\f
64543e1a
RS
12238/* Structure for saying that BFD machine EXTENSION extends BASE. */
12239
12240struct mips_mach_extension {
12241 unsigned long extension, base;
12242};
12243
12244
12245/* An array describing how BFD machines relate to one another. The entries
12246 are ordered topologically with MIPS I extensions listed last. */
12247
12248static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0
AN
12249 /* MIPS64r2 extensions. */
12250 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12251
64543e1a 12252 /* MIPS64 extensions. */
5f74bc13 12253 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 12254 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 12255 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
64543e1a
RS
12256
12257 /* MIPS V extensions. */
12258 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12259
12260 /* R10000 extensions. */
12261 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
12262 { bfd_mach_mips14000, bfd_mach_mips10000 },
12263 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
12264
12265 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12266 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12267 better to allow vr5400 and vr5500 code to be merged anyway, since
12268 many libraries will just use the core ISA. Perhaps we could add
12269 some sort of ASE flag if this ever proves a problem. */
12270 { bfd_mach_mips5500, bfd_mach_mips5400 },
12271 { bfd_mach_mips5400, bfd_mach_mips5000 },
12272
12273 /* MIPS IV extensions. */
12274 { bfd_mach_mips5, bfd_mach_mips8000 },
12275 { bfd_mach_mips10000, bfd_mach_mips8000 },
12276 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 12277 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 12278 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
12279
12280 /* VR4100 extensions. */
12281 { bfd_mach_mips4120, bfd_mach_mips4100 },
12282 { bfd_mach_mips4111, bfd_mach_mips4100 },
12283
12284 /* MIPS III extensions. */
350cc38d
MS
12285 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12286 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
12287 { bfd_mach_mips8000, bfd_mach_mips4000 },
12288 { bfd_mach_mips4650, bfd_mach_mips4000 },
12289 { bfd_mach_mips4600, bfd_mach_mips4000 },
12290 { bfd_mach_mips4400, bfd_mach_mips4000 },
12291 { bfd_mach_mips4300, bfd_mach_mips4000 },
12292 { bfd_mach_mips4100, bfd_mach_mips4000 },
12293 { bfd_mach_mips4010, bfd_mach_mips4000 },
12294
12295 /* MIPS32 extensions. */
12296 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12297
12298 /* MIPS II extensions. */
12299 { bfd_mach_mips4000, bfd_mach_mips6000 },
12300 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12301
12302 /* MIPS I extensions. */
12303 { bfd_mach_mips6000, bfd_mach_mips3000 },
12304 { bfd_mach_mips3900, bfd_mach_mips3000 }
12305};
12306
12307
12308/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12309
12310static bfd_boolean
9719ad41 12311mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
12312{
12313 size_t i;
12314
c5211a54
RS
12315 if (extension == base)
12316 return TRUE;
12317
12318 if (base == bfd_mach_mipsisa32
12319 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12320 return TRUE;
12321
12322 if (base == bfd_mach_mipsisa32r2
12323 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12324 return TRUE;
12325
12326 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 12327 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
12328 {
12329 extension = mips_mach_extensions[i].base;
12330 if (extension == base)
12331 return TRUE;
12332 }
64543e1a 12333
c5211a54 12334 return FALSE;
64543e1a
RS
12335}
12336
12337
12338/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 12339
b34976b6 12340static bfd_boolean
9719ad41 12341mips_32bit_flags_p (flagword flags)
00707a0e 12342{
64543e1a
RS
12343 return ((flags & EF_MIPS_32BITMODE) != 0
12344 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12345 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12346 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12347 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12348 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12349 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
12350}
12351
64543e1a 12352
2cf19d5c
JM
12353/* Merge object attributes from IBFD into OBFD. Raise an error if
12354 there are conflicting attributes. */
12355static bfd_boolean
12356mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12357{
12358 obj_attribute *in_attr;
12359 obj_attribute *out_attr;
12360
12361 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12362 {
12363 /* This is the first object. Copy the attributes. */
12364 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12365
12366 /* Use the Tag_null value to indicate the attributes have been
12367 initialized. */
12368 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12369
12370 return TRUE;
12371 }
12372
12373 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12374 non-conflicting ones. */
12375 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12376 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12377 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12378 {
12379 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12380 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12381 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12382 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12383 ;
42554f6a 12384 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
12385 _bfd_error_handler
12386 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12387 in_attr[Tag_GNU_MIPS_ABI_FP].i);
42554f6a 12388 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
12389 _bfd_error_handler
12390 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12391 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12392 else
12393 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12394 {
12395 case 1:
12396 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12397 {
12398 case 2:
12399 _bfd_error_handler
12400 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12401 obfd, ibfd);
51a0dd31 12402 break;
2cf19d5c
JM
12403
12404 case 3:
12405 _bfd_error_handler
12406 (_("Warning: %B uses hard float, %B uses soft float"),
12407 obfd, ibfd);
12408 break;
12409
42554f6a
TS
12410 case 4:
12411 _bfd_error_handler
12412 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12413 obfd, ibfd);
12414 break;
12415
2cf19d5c
JM
12416 default:
12417 abort ();
12418 }
12419 break;
12420
12421 case 2:
12422 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12423 {
12424 case 1:
12425 _bfd_error_handler
12426 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12427 ibfd, obfd);
51a0dd31 12428 break;
2cf19d5c
JM
12429
12430 case 3:
12431 _bfd_error_handler
12432 (_("Warning: %B uses hard float, %B uses soft float"),
12433 obfd, ibfd);
12434 break;
12435
42554f6a
TS
12436 case 4:
12437 _bfd_error_handler
12438 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12439 obfd, ibfd);
12440 break;
12441
2cf19d5c
JM
12442 default:
12443 abort ();
12444 }
12445 break;
12446
12447 case 3:
12448 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12449 {
12450 case 1:
12451 case 2:
42554f6a 12452 case 4:
2cf19d5c
JM
12453 _bfd_error_handler
12454 (_("Warning: %B uses hard float, %B uses soft float"),
12455 ibfd, obfd);
12456 break;
12457
12458 default:
12459 abort ();
12460 }
12461 break;
12462
42554f6a
TS
12463 case 4:
12464 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12465 {
12466 case 1:
12467 _bfd_error_handler
12468 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12469 ibfd, obfd);
12470 break;
12471
12472 case 2:
12473 _bfd_error_handler
12474 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12475 ibfd, obfd);
12476 break;
12477
12478 case 3:
12479 _bfd_error_handler
12480 (_("Warning: %B uses hard float, %B uses soft float"),
12481 obfd, ibfd);
12482 break;
12483
12484 default:
12485 abort ();
12486 }
12487 break;
12488
2cf19d5c
JM
12489 default:
12490 abort ();
12491 }
12492 }
12493
12494 /* Merge Tag_compatibility attributes and any common GNU ones. */
12495 _bfd_elf_merge_object_attributes (ibfd, obfd);
12496
12497 return TRUE;
12498}
12499
b49e97c9
TS
12500/* Merge backend specific data from an object file to the output
12501 object file when linking. */
12502
b34976b6 12503bfd_boolean
9719ad41 12504_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
12505{
12506 flagword old_flags;
12507 flagword new_flags;
b34976b6
AM
12508 bfd_boolean ok;
12509 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
12510 asection *sec;
12511
12512 /* Check if we have the same endianess */
82e51918 12513 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
12514 {
12515 (*_bfd_error_handler)
d003868e
AM
12516 (_("%B: endianness incompatible with that of the selected emulation"),
12517 ibfd);
aa701218
AO
12518 return FALSE;
12519 }
b49e97c9 12520
d5eaccd7 12521 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 12522 return TRUE;
b49e97c9 12523
aa701218
AO
12524 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12525 {
12526 (*_bfd_error_handler)
d003868e
AM
12527 (_("%B: ABI is incompatible with that of the selected emulation"),
12528 ibfd);
aa701218
AO
12529 return FALSE;
12530 }
12531
2cf19d5c
JM
12532 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12533 return FALSE;
12534
b49e97c9
TS
12535 new_flags = elf_elfheader (ibfd)->e_flags;
12536 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12537 old_flags = elf_elfheader (obfd)->e_flags;
12538
12539 if (! elf_flags_init (obfd))
12540 {
b34976b6 12541 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
12542 elf_elfheader (obfd)->e_flags = new_flags;
12543 elf_elfheader (obfd)->e_ident[EI_CLASS]
12544 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12545
12546 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
12547 && (bfd_get_arch_info (obfd)->the_default
12548 || mips_mach_extends_p (bfd_get_mach (obfd),
12549 bfd_get_mach (ibfd))))
b49e97c9
TS
12550 {
12551 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12552 bfd_get_mach (ibfd)))
b34976b6 12553 return FALSE;
b49e97c9
TS
12554 }
12555
b34976b6 12556 return TRUE;
b49e97c9
TS
12557 }
12558
12559 /* Check flag compatibility. */
12560
12561 new_flags &= ~EF_MIPS_NOREORDER;
12562 old_flags &= ~EF_MIPS_NOREORDER;
12563
f4416af6
AO
12564 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12565 doesn't seem to matter. */
12566 new_flags &= ~EF_MIPS_XGOT;
12567 old_flags &= ~EF_MIPS_XGOT;
12568
98a8deaf
RS
12569 /* MIPSpro generates ucode info in n64 objects. Again, we should
12570 just be able to ignore this. */
12571 new_flags &= ~EF_MIPS_UCODE;
12572 old_flags &= ~EF_MIPS_UCODE;
12573
861fb55a
DJ
12574 /* DSOs should only be linked with CPIC code. */
12575 if ((ibfd->flags & DYNAMIC) != 0)
12576 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 12577
b49e97c9 12578 if (new_flags == old_flags)
b34976b6 12579 return TRUE;
b49e97c9
TS
12580
12581 /* Check to see if the input BFD actually contains any sections.
12582 If not, its flags may not have been initialised either, but it cannot
12583 actually cause any incompatibility. */
12584 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12585 {
12586 /* Ignore synthetic sections and empty .text, .data and .bss sections
12587 which are automatically generated by gas. */
12588 if (strcmp (sec->name, ".reginfo")
12589 && strcmp (sec->name, ".mdebug")
eea6121a 12590 && (sec->size != 0
d13d89fa
NS
12591 || (strcmp (sec->name, ".text")
12592 && strcmp (sec->name, ".data")
12593 && strcmp (sec->name, ".bss"))))
b49e97c9 12594 {
b34976b6 12595 null_input_bfd = FALSE;
b49e97c9
TS
12596 break;
12597 }
12598 }
12599 if (null_input_bfd)
b34976b6 12600 return TRUE;
b49e97c9 12601
b34976b6 12602 ok = TRUE;
b49e97c9 12603
143d77c5
EC
12604 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12605 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 12606 {
b49e97c9 12607 (*_bfd_error_handler)
861fb55a 12608 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 12609 ibfd);
143d77c5 12610 ok = TRUE;
b49e97c9
TS
12611 }
12612
143d77c5
EC
12613 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12614 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12615 if (! (new_flags & EF_MIPS_PIC))
12616 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12617
12618 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12619 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 12620
64543e1a
RS
12621 /* Compare the ISAs. */
12622 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 12623 {
64543e1a 12624 (*_bfd_error_handler)
d003868e
AM
12625 (_("%B: linking 32-bit code with 64-bit code"),
12626 ibfd);
64543e1a
RS
12627 ok = FALSE;
12628 }
12629 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12630 {
12631 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12632 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 12633 {
64543e1a
RS
12634 /* Copy the architecture info from IBFD to OBFD. Also copy
12635 the 32-bit flag (if set) so that we continue to recognise
12636 OBFD as a 32-bit binary. */
12637 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12638 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12639 elf_elfheader (obfd)->e_flags
12640 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12641
12642 /* Copy across the ABI flags if OBFD doesn't use them
12643 and if that was what caused us to treat IBFD as 32-bit. */
12644 if ((old_flags & EF_MIPS_ABI) == 0
12645 && mips_32bit_flags_p (new_flags)
12646 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12647 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
12648 }
12649 else
12650 {
64543e1a 12651 /* The ISAs aren't compatible. */
b49e97c9 12652 (*_bfd_error_handler)
d003868e
AM
12653 (_("%B: linking %s module with previous %s modules"),
12654 ibfd,
64543e1a
RS
12655 bfd_printable_name (ibfd),
12656 bfd_printable_name (obfd));
b34976b6 12657 ok = FALSE;
b49e97c9 12658 }
b49e97c9
TS
12659 }
12660
64543e1a
RS
12661 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12662 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12663
12664 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
12665 does set EI_CLASS differently from any 32-bit ABI. */
12666 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12667 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12668 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12669 {
12670 /* Only error if both are set (to different values). */
12671 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12672 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12673 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12674 {
12675 (*_bfd_error_handler)
d003868e
AM
12676 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12677 ibfd,
b49e97c9
TS
12678 elf_mips_abi_name (ibfd),
12679 elf_mips_abi_name (obfd));
b34976b6 12680 ok = FALSE;
b49e97c9
TS
12681 }
12682 new_flags &= ~EF_MIPS_ABI;
12683 old_flags &= ~EF_MIPS_ABI;
12684 }
12685
fb39dac1
RS
12686 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12687 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12688 {
12689 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12690
12691 new_flags &= ~ EF_MIPS_ARCH_ASE;
12692 old_flags &= ~ EF_MIPS_ARCH_ASE;
12693 }
12694
b49e97c9
TS
12695 /* Warn about any other mismatches */
12696 if (new_flags != old_flags)
12697 {
12698 (*_bfd_error_handler)
d003868e
AM
12699 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12700 ibfd, (unsigned long) new_flags,
b49e97c9 12701 (unsigned long) old_flags);
b34976b6 12702 ok = FALSE;
b49e97c9
TS
12703 }
12704
12705 if (! ok)
12706 {
12707 bfd_set_error (bfd_error_bad_value);
b34976b6 12708 return FALSE;
b49e97c9
TS
12709 }
12710
b34976b6 12711 return TRUE;
b49e97c9
TS
12712}
12713
12714/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12715
b34976b6 12716bfd_boolean
9719ad41 12717_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
12718{
12719 BFD_ASSERT (!elf_flags_init (abfd)
12720 || elf_elfheader (abfd)->e_flags == flags);
12721
12722 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
12723 elf_flags_init (abfd) = TRUE;
12724 return TRUE;
b49e97c9
TS
12725}
12726
ad9563d6
CM
12727char *
12728_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12729{
12730 switch (dtag)
12731 {
12732 default: return "";
12733 case DT_MIPS_RLD_VERSION:
12734 return "MIPS_RLD_VERSION";
12735 case DT_MIPS_TIME_STAMP:
12736 return "MIPS_TIME_STAMP";
12737 case DT_MIPS_ICHECKSUM:
12738 return "MIPS_ICHECKSUM";
12739 case DT_MIPS_IVERSION:
12740 return "MIPS_IVERSION";
12741 case DT_MIPS_FLAGS:
12742 return "MIPS_FLAGS";
12743 case DT_MIPS_BASE_ADDRESS:
12744 return "MIPS_BASE_ADDRESS";
12745 case DT_MIPS_MSYM:
12746 return "MIPS_MSYM";
12747 case DT_MIPS_CONFLICT:
12748 return "MIPS_CONFLICT";
12749 case DT_MIPS_LIBLIST:
12750 return "MIPS_LIBLIST";
12751 case DT_MIPS_LOCAL_GOTNO:
12752 return "MIPS_LOCAL_GOTNO";
12753 case DT_MIPS_CONFLICTNO:
12754 return "MIPS_CONFLICTNO";
12755 case DT_MIPS_LIBLISTNO:
12756 return "MIPS_LIBLISTNO";
12757 case DT_MIPS_SYMTABNO:
12758 return "MIPS_SYMTABNO";
12759 case DT_MIPS_UNREFEXTNO:
12760 return "MIPS_UNREFEXTNO";
12761 case DT_MIPS_GOTSYM:
12762 return "MIPS_GOTSYM";
12763 case DT_MIPS_HIPAGENO:
12764 return "MIPS_HIPAGENO";
12765 case DT_MIPS_RLD_MAP:
12766 return "MIPS_RLD_MAP";
12767 case DT_MIPS_DELTA_CLASS:
12768 return "MIPS_DELTA_CLASS";
12769 case DT_MIPS_DELTA_CLASS_NO:
12770 return "MIPS_DELTA_CLASS_NO";
12771 case DT_MIPS_DELTA_INSTANCE:
12772 return "MIPS_DELTA_INSTANCE";
12773 case DT_MIPS_DELTA_INSTANCE_NO:
12774 return "MIPS_DELTA_INSTANCE_NO";
12775 case DT_MIPS_DELTA_RELOC:
12776 return "MIPS_DELTA_RELOC";
12777 case DT_MIPS_DELTA_RELOC_NO:
12778 return "MIPS_DELTA_RELOC_NO";
12779 case DT_MIPS_DELTA_SYM:
12780 return "MIPS_DELTA_SYM";
12781 case DT_MIPS_DELTA_SYM_NO:
12782 return "MIPS_DELTA_SYM_NO";
12783 case DT_MIPS_DELTA_CLASSSYM:
12784 return "MIPS_DELTA_CLASSSYM";
12785 case DT_MIPS_DELTA_CLASSSYM_NO:
12786 return "MIPS_DELTA_CLASSSYM_NO";
12787 case DT_MIPS_CXX_FLAGS:
12788 return "MIPS_CXX_FLAGS";
12789 case DT_MIPS_PIXIE_INIT:
12790 return "MIPS_PIXIE_INIT";
12791 case DT_MIPS_SYMBOL_LIB:
12792 return "MIPS_SYMBOL_LIB";
12793 case DT_MIPS_LOCALPAGE_GOTIDX:
12794 return "MIPS_LOCALPAGE_GOTIDX";
12795 case DT_MIPS_LOCAL_GOTIDX:
12796 return "MIPS_LOCAL_GOTIDX";
12797 case DT_MIPS_HIDDEN_GOTIDX:
12798 return "MIPS_HIDDEN_GOTIDX";
12799 case DT_MIPS_PROTECTED_GOTIDX:
12800 return "MIPS_PROTECTED_GOT_IDX";
12801 case DT_MIPS_OPTIONS:
12802 return "MIPS_OPTIONS";
12803 case DT_MIPS_INTERFACE:
12804 return "MIPS_INTERFACE";
12805 case DT_MIPS_DYNSTR_ALIGN:
12806 return "DT_MIPS_DYNSTR_ALIGN";
12807 case DT_MIPS_INTERFACE_SIZE:
12808 return "DT_MIPS_INTERFACE_SIZE";
12809 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12810 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12811 case DT_MIPS_PERF_SUFFIX:
12812 return "DT_MIPS_PERF_SUFFIX";
12813 case DT_MIPS_COMPACT_SIZE:
12814 return "DT_MIPS_COMPACT_SIZE";
12815 case DT_MIPS_GP_VALUE:
12816 return "DT_MIPS_GP_VALUE";
12817 case DT_MIPS_AUX_DYNAMIC:
12818 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
12819 case DT_MIPS_PLTGOT:
12820 return "DT_MIPS_PLTGOT";
12821 case DT_MIPS_RWPLT:
12822 return "DT_MIPS_RWPLT";
ad9563d6
CM
12823 }
12824}
12825
b34976b6 12826bfd_boolean
9719ad41 12827_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 12828{
9719ad41 12829 FILE *file = ptr;
b49e97c9
TS
12830
12831 BFD_ASSERT (abfd != NULL && ptr != NULL);
12832
12833 /* Print normal ELF private data. */
12834 _bfd_elf_print_private_bfd_data (abfd, ptr);
12835
12836 /* xgettext:c-format */
12837 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12838
12839 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12840 fprintf (file, _(" [abi=O32]"));
12841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12842 fprintf (file, _(" [abi=O64]"));
12843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12844 fprintf (file, _(" [abi=EABI32]"));
12845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12846 fprintf (file, _(" [abi=EABI64]"));
12847 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12848 fprintf (file, _(" [abi unknown]"));
12849 else if (ABI_N32_P (abfd))
12850 fprintf (file, _(" [abi=N32]"));
12851 else if (ABI_64_P (abfd))
12852 fprintf (file, _(" [abi=64]"));
12853 else
12854 fprintf (file, _(" [no abi set]"));
12855
12856 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 12857 fprintf (file, " [mips1]");
b49e97c9 12858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 12859 fprintf (file, " [mips2]");
b49e97c9 12860 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 12861 fprintf (file, " [mips3]");
b49e97c9 12862 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 12863 fprintf (file, " [mips4]");
b49e97c9 12864 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 12865 fprintf (file, " [mips5]");
b49e97c9 12866 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 12867 fprintf (file, " [mips32]");
b49e97c9 12868 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 12869 fprintf (file, " [mips64]");
af7ee8bf 12870 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 12871 fprintf (file, " [mips32r2]");
5f74bc13 12872 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 12873 fprintf (file, " [mips64r2]");
b49e97c9
TS
12874 else
12875 fprintf (file, _(" [unknown ISA]"));
12876
40d32fc6 12877 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 12878 fprintf (file, " [mdmx]");
40d32fc6
CD
12879
12880 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 12881 fprintf (file, " [mips16]");
40d32fc6 12882
b49e97c9 12883 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 12884 fprintf (file, " [32bitmode]");
b49e97c9
TS
12885 else
12886 fprintf (file, _(" [not 32bitmode]"));
12887
c0e3f241 12888 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 12889 fprintf (file, " [noreorder]");
c0e3f241
CD
12890
12891 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 12892 fprintf (file, " [PIC]");
c0e3f241
CD
12893
12894 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 12895 fprintf (file, " [CPIC]");
c0e3f241
CD
12896
12897 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 12898 fprintf (file, " [XGOT]");
c0e3f241
CD
12899
12900 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 12901 fprintf (file, " [UCODE]");
c0e3f241 12902
b49e97c9
TS
12903 fputc ('\n', file);
12904
b34976b6 12905 return TRUE;
b49e97c9 12906}
2f89ff8d 12907
b35d266b 12908const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 12909{
0112cd26
NC
12910 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12911 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12912 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12913 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12914 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12915 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12916 { NULL, 0, 0, 0, 0 }
2f89ff8d 12917};
5e2b0d47 12918
8992f0d7
TS
12919/* Merge non visibility st_other attributes. Ensure that the
12920 STO_OPTIONAL flag is copied into h->other, even if this is not a
12921 definiton of the symbol. */
5e2b0d47
NC
12922void
12923_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12924 const Elf_Internal_Sym *isym,
12925 bfd_boolean definition,
12926 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12927{
8992f0d7
TS
12928 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12929 {
12930 unsigned char other;
12931
12932 other = (definition ? isym->st_other : h->other);
12933 other &= ~ELF_ST_VISIBILITY (-1);
12934 h->other = other | ELF_ST_VISIBILITY (h->other);
12935 }
12936
12937 if (!definition
5e2b0d47
NC
12938 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12939 h->other |= STO_OPTIONAL;
12940}
12ac1cf5
NC
12941
12942/* Decide whether an undefined symbol is special and can be ignored.
12943 This is the case for OPTIONAL symbols on IRIX. */
12944bfd_boolean
12945_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12946{
12947 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12948}
e0764319
NC
12949
12950bfd_boolean
12951_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12952{
12953 return (sym->st_shndx == SHN_COMMON
12954 || sym->st_shndx == SHN_MIPS_ACOMMON
12955 || sym->st_shndx == SHN_MIPS_SCOMMON);
12956}
861fb55a
DJ
12957
12958/* Return address for Ith PLT stub in section PLT, for relocation REL
12959 or (bfd_vma) -1 if it should not be included. */
12960
12961bfd_vma
12962_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12963 const arelent *rel ATTRIBUTE_UNUSED)
12964{
12965 return (plt->vma
12966 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12967 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12968}
12969
12970void
12971_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12972{
12973 struct mips_elf_link_hash_table *htab;
12974 Elf_Internal_Ehdr *i_ehdrp;
12975
12976 i_ehdrp = elf_elfheader (abfd);
12977 if (link_info)
12978 {
12979 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
12980 BFD_ASSERT (htab != NULL);
12981
861fb55a
DJ
12982 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12983 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12984 }
12985}
This page took 1.271521 seconds and 4 git commands to generate.