[ARM] PR ld/21402, only override the symbol dynamic decision on undefined weak symbol.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
11db9430 73static void info_signals_command (char *, int);
c906108c 74
96baa820 75static void handle_command (char *, int);
c906108c 76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
74b7792f 81static void resume_cleanups (void *);
c906108c 82
96baa820 83static int hook_stop_stub (void *);
c906108c 84
96baa820
JM
85static int restore_selected_frame (void *);
86
4ef3f3be 87static int follow_fork (void);
96baa820 88
d83ad864
DB
89static int follow_fork_inferior (int follow_child, int detach_fork);
90
91static void follow_inferior_reset_breakpoints (void);
92
96baa820 93static void set_schedlock_func (char *args, int from_tty,
488f131b 94 struct cmd_list_element *c);
96baa820 95
a289b8f6
JK
96static int currently_stepping (struct thread_info *tp);
97
e58b0e63
PA
98void nullify_last_target_wait_ptid (void);
99
2c03e5be 100static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
101
102static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
103
2484c66b
UW
104static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
105
8550d3b3
YQ
106static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
107
372316f1
PA
108/* Asynchronous signal handler registered as event loop source for
109 when we have pending events ready to be passed to the core. */
110static struct async_event_handler *infrun_async_inferior_event_token;
111
112/* Stores whether infrun_async was previously enabled or disabled.
113 Starts off as -1, indicating "never enabled/disabled". */
114static int infrun_is_async = -1;
115
116/* See infrun.h. */
117
118void
119infrun_async (int enable)
120{
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 if (debug_infrun)
126 fprintf_unfiltered (gdb_stdlog,
127 "infrun: infrun_async(%d)\n",
128 enable);
129
130 if (enable)
131 mark_async_event_handler (infrun_async_inferior_event_token);
132 else
133 clear_async_event_handler (infrun_async_inferior_event_token);
134 }
135}
136
0b333c5e
PA
137/* See infrun.h. */
138
139void
140mark_infrun_async_event_handler (void)
141{
142 mark_async_event_handler (infrun_async_inferior_event_token);
143}
144
5fbbeb29
CF
145/* When set, stop the 'step' command if we enter a function which has
146 no line number information. The normal behavior is that we step
147 over such function. */
148int step_stop_if_no_debug = 0;
920d2a44
AC
149static void
150show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152{
153 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
154}
5fbbeb29 155
b9f437de
PA
156/* proceed and normal_stop use this to notify the user when the
157 inferior stopped in a different thread than it had been running
158 in. */
96baa820 159
39f77062 160static ptid_t previous_inferior_ptid;
7a292a7a 161
07107ca6
LM
162/* If set (default for legacy reasons), when following a fork, GDB
163 will detach from one of the fork branches, child or parent.
164 Exactly which branch is detached depends on 'set follow-fork-mode'
165 setting. */
166
167static int detach_fork = 1;
6c95b8df 168
237fc4c9
PA
169int debug_displaced = 0;
170static void
171show_debug_displaced (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173{
174 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
175}
176
ccce17b0 177unsigned int debug_infrun = 0;
920d2a44
AC
178static void
179show_debug_infrun (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
183}
527159b7 184
03583c20
UW
185
186/* Support for disabling address space randomization. */
187
188int disable_randomization = 1;
189
190static void
191show_disable_randomization (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193{
194 if (target_supports_disable_randomization ())
195 fprintf_filtered (file,
196 _("Disabling randomization of debuggee's "
197 "virtual address space is %s.\n"),
198 value);
199 else
200 fputs_filtered (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform.\n"), file);
203}
204
205static void
206set_disable_randomization (char *args, int from_tty,
207 struct cmd_list_element *c)
208{
209 if (!target_supports_disable_randomization ())
210 error (_("Disabling randomization of debuggee's "
211 "virtual address space is unsupported on\n"
212 "this platform."));
213}
214
d32dc48e
PA
215/* User interface for non-stop mode. */
216
217int non_stop = 0;
218static int non_stop_1 = 0;
219
220static void
221set_non_stop (char *args, int from_tty,
222 struct cmd_list_element *c)
223{
224 if (target_has_execution)
225 {
226 non_stop_1 = non_stop;
227 error (_("Cannot change this setting while the inferior is running."));
228 }
229
230 non_stop = non_stop_1;
231}
232
233static void
234show_non_stop (struct ui_file *file, int from_tty,
235 struct cmd_list_element *c, const char *value)
236{
237 fprintf_filtered (file,
238 _("Controlling the inferior in non-stop mode is %s.\n"),
239 value);
240}
241
d914c394
SS
242/* "Observer mode" is somewhat like a more extreme version of
243 non-stop, in which all GDB operations that might affect the
244 target's execution have been disabled. */
245
d914c394
SS
246int observer_mode = 0;
247static int observer_mode_1 = 0;
248
249static void
250set_observer_mode (char *args, int from_tty,
251 struct cmd_list_element *c)
252{
d914c394
SS
253 if (target_has_execution)
254 {
255 observer_mode_1 = observer_mode;
256 error (_("Cannot change this setting while the inferior is running."));
257 }
258
259 observer_mode = observer_mode_1;
260
261 may_write_registers = !observer_mode;
262 may_write_memory = !observer_mode;
263 may_insert_breakpoints = !observer_mode;
264 may_insert_tracepoints = !observer_mode;
265 /* We can insert fast tracepoints in or out of observer mode,
266 but enable them if we're going into this mode. */
267 if (observer_mode)
268 may_insert_fast_tracepoints = 1;
269 may_stop = !observer_mode;
270 update_target_permissions ();
271
272 /* Going *into* observer mode we must force non-stop, then
273 going out we leave it that way. */
274 if (observer_mode)
275 {
d914c394
SS
276 pagination_enabled = 0;
277 non_stop = non_stop_1 = 1;
278 }
279
280 if (from_tty)
281 printf_filtered (_("Observer mode is now %s.\n"),
282 (observer_mode ? "on" : "off"));
283}
284
285static void
286show_observer_mode (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288{
289 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
290}
291
292/* This updates the value of observer mode based on changes in
293 permissions. Note that we are deliberately ignoring the values of
294 may-write-registers and may-write-memory, since the user may have
295 reason to enable these during a session, for instance to turn on a
296 debugging-related global. */
297
298void
299update_observer_mode (void)
300{
301 int newval;
302
303 newval = (!may_insert_breakpoints
304 && !may_insert_tracepoints
305 && may_insert_fast_tracepoints
306 && !may_stop
307 && non_stop);
308
309 /* Let the user know if things change. */
310 if (newval != observer_mode)
311 printf_filtered (_("Observer mode is now %s.\n"),
312 (newval ? "on" : "off"));
313
314 observer_mode = observer_mode_1 = newval;
315}
c2c6d25f 316
c906108c
SS
317/* Tables of how to react to signals; the user sets them. */
318
319static unsigned char *signal_stop;
320static unsigned char *signal_print;
321static unsigned char *signal_program;
322
ab04a2af
TT
323/* Table of signals that are registered with "catch signal". A
324 non-zero entry indicates that the signal is caught by some "catch
325 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
326 signals. */
327static unsigned char *signal_catch;
328
2455069d
UW
329/* Table of signals that the target may silently handle.
330 This is automatically determined from the flags above,
331 and simply cached here. */
332static unsigned char *signal_pass;
333
c906108c
SS
334#define SET_SIGS(nsigs,sigs,flags) \
335 do { \
336 int signum = (nsigs); \
337 while (signum-- > 0) \
338 if ((sigs)[signum]) \
339 (flags)[signum] = 1; \
340 } while (0)
341
342#define UNSET_SIGS(nsigs,sigs,flags) \
343 do { \
344 int signum = (nsigs); \
345 while (signum-- > 0) \
346 if ((sigs)[signum]) \
347 (flags)[signum] = 0; \
348 } while (0)
349
9b224c5e
PA
350/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
351 this function is to avoid exporting `signal_program'. */
352
353void
354update_signals_program_target (void)
355{
a493e3e2 356 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
357}
358
1777feb0 359/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 360
edb3359d 361#define RESUME_ALL minus_one_ptid
c906108c
SS
362
363/* Command list pointer for the "stop" placeholder. */
364
365static struct cmd_list_element *stop_command;
366
c906108c
SS
367/* Nonzero if we want to give control to the user when we're notified
368 of shared library events by the dynamic linker. */
628fe4e4 369int stop_on_solib_events;
f9e14852
GB
370
371/* Enable or disable optional shared library event breakpoints
372 as appropriate when the above flag is changed. */
373
374static void
375set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
376{
377 update_solib_breakpoints ();
378}
379
920d2a44
AC
380static void
381show_stop_on_solib_events (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383{
384 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
385 value);
386}
c906108c 387
c906108c
SS
388/* Nonzero after stop if current stack frame should be printed. */
389
390static int stop_print_frame;
391
e02bc4cc 392/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
393 returned by target_wait()/deprecated_target_wait_hook(). This
394 information is returned by get_last_target_status(). */
39f77062 395static ptid_t target_last_wait_ptid;
e02bc4cc
DS
396static struct target_waitstatus target_last_waitstatus;
397
0d1e5fa7
PA
398static void context_switch (ptid_t ptid);
399
4e1c45ea 400void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 401
53904c9e
AC
402static const char follow_fork_mode_child[] = "child";
403static const char follow_fork_mode_parent[] = "parent";
404
40478521 405static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
406 follow_fork_mode_child,
407 follow_fork_mode_parent,
408 NULL
ef346e04 409};
c906108c 410
53904c9e 411static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
412static void
413show_follow_fork_mode_string (struct ui_file *file, int from_tty,
414 struct cmd_list_element *c, const char *value)
415{
3e43a32a
MS
416 fprintf_filtered (file,
417 _("Debugger response to a program "
418 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
419 value);
420}
c906108c
SS
421\f
422
d83ad864
DB
423/* Handle changes to the inferior list based on the type of fork,
424 which process is being followed, and whether the other process
425 should be detached. On entry inferior_ptid must be the ptid of
426 the fork parent. At return inferior_ptid is the ptid of the
427 followed inferior. */
428
429static int
430follow_fork_inferior (int follow_child, int detach_fork)
431{
432 int has_vforked;
79639e11 433 ptid_t parent_ptid, child_ptid;
d83ad864
DB
434
435 has_vforked = (inferior_thread ()->pending_follow.kind
436 == TARGET_WAITKIND_VFORKED);
79639e11
PA
437 parent_ptid = inferior_ptid;
438 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
439
440 if (has_vforked
441 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 442 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
443 && !(follow_child || detach_fork || sched_multi))
444 {
445 /* The parent stays blocked inside the vfork syscall until the
446 child execs or exits. If we don't let the child run, then
447 the parent stays blocked. If we're telling the parent to run
448 in the foreground, the user will not be able to ctrl-c to get
449 back the terminal, effectively hanging the debug session. */
450 fprintf_filtered (gdb_stderr, _("\
451Can not resume the parent process over vfork in the foreground while\n\
452holding the child stopped. Try \"set detach-on-fork\" or \
453\"set schedule-multiple\".\n"));
454 /* FIXME output string > 80 columns. */
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
d83ad864
DB
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
474 }
475
476 if (info_verbose || debug_infrun)
477 {
8dd06f7a
DB
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
480
223ffa71 481 target_terminal::ours_for_output ();
d83ad864 482 fprintf_filtered (gdb_stdlog,
79639e11 483 _("Detaching after %s from child %s.\n"),
6f259a23 484 has_vforked ? "vfork" : "fork",
8dd06f7a 485 target_pid_to_str (process_ptid));
d83ad864
DB
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
d83ad864
DB
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
5ed8105e 501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 502
79639e11 503 inferior_ptid = child_ptid;
d83ad864 504 add_thread (inferior_ptid);
2a00d7ce 505 set_current_inferior (child_inf);
d83ad864
DB
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
d83ad864
DB
539 }
540
541 if (has_vforked)
542 {
543 struct inferior *parent_inf;
544
545 parent_inf = current_inferior ();
546
547 /* If we detached from the child, then we have to be careful
548 to not insert breakpoints in the parent until the child
549 is done with the shared memory region. However, if we're
550 staying attached to the child, then we can and should
551 insert breakpoints, so that we can debug it. A
552 subsequent child exec or exit is enough to know when does
553 the child stops using the parent's address space. */
554 parent_inf->waiting_for_vfork_done = detach_fork;
555 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
556 }
557 }
558 else
559 {
560 /* Follow the child. */
561 struct inferior *parent_inf, *child_inf;
562 struct program_space *parent_pspace;
563
564 if (info_verbose || debug_infrun)
565 {
223ffa71 566 target_terminal::ours_for_output ();
6f259a23 567 fprintf_filtered (gdb_stdlog,
79639e11
PA
568 _("Attaching after %s %s to child %s.\n"),
569 target_pid_to_str (parent_ptid),
6f259a23 570 has_vforked ? "vfork" : "fork",
79639e11 571 target_pid_to_str (child_ptid));
d83ad864
DB
572 }
573
574 /* Add the new inferior first, so that the target_detach below
575 doesn't unpush the target. */
576
79639e11 577 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
578
579 parent_inf = current_inferior ();
580 child_inf->attach_flag = parent_inf->attach_flag;
581 copy_terminal_info (child_inf, parent_inf);
582 child_inf->gdbarch = parent_inf->gdbarch;
583 copy_inferior_target_desc_info (child_inf, parent_inf);
584
585 parent_pspace = parent_inf->pspace;
586
587 /* If we're vforking, we want to hold on to the parent until the
588 child exits or execs. At child exec or exit time we can
589 remove the old breakpoints from the parent and detach or
590 resume debugging it. Otherwise, detach the parent now; we'll
591 want to reuse it's program/address spaces, but we can't set
592 them to the child before removing breakpoints from the
593 parent, otherwise, the breakpoints module could decide to
594 remove breakpoints from the wrong process (since they'd be
595 assigned to the same address space). */
596
597 if (has_vforked)
598 {
599 gdb_assert (child_inf->vfork_parent == NULL);
600 gdb_assert (parent_inf->vfork_child == NULL);
601 child_inf->vfork_parent = parent_inf;
602 child_inf->pending_detach = 0;
603 parent_inf->vfork_child = child_inf;
604 parent_inf->pending_detach = detach_fork;
605 parent_inf->waiting_for_vfork_done = 0;
606 }
607 else if (detach_fork)
6f259a23
DB
608 {
609 if (info_verbose || debug_infrun)
610 {
8dd06f7a
DB
611 /* Ensure that we have a process ptid. */
612 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
613
223ffa71 614 target_terminal::ours_for_output ();
6f259a23
DB
615 fprintf_filtered (gdb_stdlog,
616 _("Detaching after fork from "
79639e11 617 "child %s.\n"),
8dd06f7a 618 target_pid_to_str (process_ptid));
6f259a23
DB
619 }
620
621 target_detach (NULL, 0);
622 }
d83ad864
DB
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch to
627 this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
79639e11 630 inferior_ptid = child_ptid;
d83ad864 631 add_thread (inferior_ptid);
2a00d7ce 632 set_current_inferior (child_inf);
d83ad864
DB
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
641 }
642 else
643 {
644 child_inf->aspace = new_address_space ();
645 child_inf->pspace = add_program_space (child_inf->aspace);
646 child_inf->removable = 1;
647 child_inf->symfile_flags = SYMFILE_NO_READ;
648 set_current_program_space (child_inf->pspace);
649 clone_program_space (child_inf->pspace, parent_pspace);
650
651 /* Let the shared library layer (e.g., solib-svr4) learn
652 about this new process, relocate the cloned exec, pull in
653 shared libraries, and install the solib event breakpoint.
654 If a "cloned-VM" event was propagated better throughout
655 the core, this wouldn't be required. */
656 solib_create_inferior_hook (0);
657 }
658 }
659
660 return target_follow_fork (follow_child, detach_fork);
661}
662
e58b0e63
PA
663/* Tell the target to follow the fork we're stopped at. Returns true
664 if the inferior should be resumed; false, if the target for some
665 reason decided it's best not to resume. */
666
6604731b 667static int
4ef3f3be 668follow_fork (void)
c906108c 669{
ea1dd7bc 670 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
671 int should_resume = 1;
672 struct thread_info *tp;
673
674 /* Copy user stepping state to the new inferior thread. FIXME: the
675 followed fork child thread should have a copy of most of the
4e3990f4
DE
676 parent thread structure's run control related fields, not just these.
677 Initialized to avoid "may be used uninitialized" warnings from gcc. */
678 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 679 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
680 CORE_ADDR step_range_start = 0;
681 CORE_ADDR step_range_end = 0;
682 struct frame_id step_frame_id = { 0 };
8980e177 683 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
684
685 if (!non_stop)
686 {
687 ptid_t wait_ptid;
688 struct target_waitstatus wait_status;
689
690 /* Get the last target status returned by target_wait(). */
691 get_last_target_status (&wait_ptid, &wait_status);
692
693 /* If not stopped at a fork event, then there's nothing else to
694 do. */
695 if (wait_status.kind != TARGET_WAITKIND_FORKED
696 && wait_status.kind != TARGET_WAITKIND_VFORKED)
697 return 1;
698
699 /* Check if we switched over from WAIT_PTID, since the event was
700 reported. */
701 if (!ptid_equal (wait_ptid, minus_one_ptid)
702 && !ptid_equal (inferior_ptid, wait_ptid))
703 {
704 /* We did. Switch back to WAIT_PTID thread, to tell the
705 target to follow it (in either direction). We'll
706 afterwards refuse to resume, and inform the user what
707 happened. */
708 switch_to_thread (wait_ptid);
709 should_resume = 0;
710 }
711 }
712
713 tp = inferior_thread ();
714
715 /* If there were any forks/vforks that were caught and are now to be
716 followed, then do so now. */
717 switch (tp->pending_follow.kind)
718 {
719 case TARGET_WAITKIND_FORKED:
720 case TARGET_WAITKIND_VFORKED:
721 {
722 ptid_t parent, child;
723
724 /* If the user did a next/step, etc, over a fork call,
725 preserve the stepping state in the fork child. */
726 if (follow_child && should_resume)
727 {
8358c15c
JK
728 step_resume_breakpoint = clone_momentary_breakpoint
729 (tp->control.step_resume_breakpoint);
16c381f0
JK
730 step_range_start = tp->control.step_range_start;
731 step_range_end = tp->control.step_range_end;
732 step_frame_id = tp->control.step_frame_id;
186c406b
TT
733 exception_resume_breakpoint
734 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 735 thread_fsm = tp->thread_fsm;
e58b0e63
PA
736
737 /* For now, delete the parent's sr breakpoint, otherwise,
738 parent/child sr breakpoints are considered duplicates,
739 and the child version will not be installed. Remove
740 this when the breakpoints module becomes aware of
741 inferiors and address spaces. */
742 delete_step_resume_breakpoint (tp);
16c381f0
JK
743 tp->control.step_range_start = 0;
744 tp->control.step_range_end = 0;
745 tp->control.step_frame_id = null_frame_id;
186c406b 746 delete_exception_resume_breakpoint (tp);
8980e177 747 tp->thread_fsm = NULL;
e58b0e63
PA
748 }
749
750 parent = inferior_ptid;
751 child = tp->pending_follow.value.related_pid;
752
d83ad864
DB
753 /* Set up inferior(s) as specified by the caller, and tell the
754 target to do whatever is necessary to follow either parent
755 or child. */
756 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
757 {
758 /* Target refused to follow, or there's some other reason
759 we shouldn't resume. */
760 should_resume = 0;
761 }
762 else
763 {
764 /* This pending follow fork event is now handled, one way
765 or another. The previous selected thread may be gone
766 from the lists by now, but if it is still around, need
767 to clear the pending follow request. */
e09875d4 768 tp = find_thread_ptid (parent);
e58b0e63
PA
769 if (tp)
770 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
771
772 /* This makes sure we don't try to apply the "Switched
773 over from WAIT_PID" logic above. */
774 nullify_last_target_wait_ptid ();
775
1777feb0 776 /* If we followed the child, switch to it... */
e58b0e63
PA
777 if (follow_child)
778 {
779 switch_to_thread (child);
780
781 /* ... and preserve the stepping state, in case the
782 user was stepping over the fork call. */
783 if (should_resume)
784 {
785 tp = inferior_thread ();
8358c15c
JK
786 tp->control.step_resume_breakpoint
787 = step_resume_breakpoint;
16c381f0
JK
788 tp->control.step_range_start = step_range_start;
789 tp->control.step_range_end = step_range_end;
790 tp->control.step_frame_id = step_frame_id;
186c406b
TT
791 tp->control.exception_resume_breakpoint
792 = exception_resume_breakpoint;
8980e177 793 tp->thread_fsm = thread_fsm;
e58b0e63
PA
794 }
795 else
796 {
797 /* If we get here, it was because we're trying to
798 resume from a fork catchpoint, but, the user
799 has switched threads away from the thread that
800 forked. In that case, the resume command
801 issued is most likely not applicable to the
802 child, so just warn, and refuse to resume. */
3e43a32a 803 warning (_("Not resuming: switched threads "
fd7dcb94 804 "before following fork child."));
e58b0e63
PA
805 }
806
807 /* Reset breakpoints in the child as appropriate. */
808 follow_inferior_reset_breakpoints ();
809 }
810 else
811 switch_to_thread (parent);
812 }
813 }
814 break;
815 case TARGET_WAITKIND_SPURIOUS:
816 /* Nothing to follow. */
817 break;
818 default:
819 internal_error (__FILE__, __LINE__,
820 "Unexpected pending_follow.kind %d\n",
821 tp->pending_follow.kind);
822 break;
823 }
c906108c 824
e58b0e63 825 return should_resume;
c906108c
SS
826}
827
d83ad864 828static void
6604731b 829follow_inferior_reset_breakpoints (void)
c906108c 830{
4e1c45ea
PA
831 struct thread_info *tp = inferior_thread ();
832
6604731b
DJ
833 /* Was there a step_resume breakpoint? (There was if the user
834 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
835 thread number. Cloned step_resume breakpoints are disabled on
836 creation, so enable it here now that it is associated with the
837 correct thread.
6604731b
DJ
838
839 step_resumes are a form of bp that are made to be per-thread.
840 Since we created the step_resume bp when the parent process
841 was being debugged, and now are switching to the child process,
842 from the breakpoint package's viewpoint, that's a switch of
843 "threads". We must update the bp's notion of which thread
844 it is for, or it'll be ignored when it triggers. */
845
8358c15c 846 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
849 tp->control.step_resume_breakpoint->loc->enabled = 1;
850 }
6604731b 851
a1aa2221 852 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 853 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
854 {
855 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
856 tp->control.exception_resume_breakpoint->loc->enabled = 1;
857 }
186c406b 858
6604731b
DJ
859 /* Reinsert all breakpoints in the child. The user may have set
860 breakpoints after catching the fork, in which case those
861 were never set in the child, but only in the parent. This makes
862 sure the inserted breakpoints match the breakpoint list. */
863
864 breakpoint_re_set ();
865 insert_breakpoints ();
c906108c 866}
c906108c 867
6c95b8df
PA
868/* The child has exited or execed: resume threads of the parent the
869 user wanted to be executing. */
870
871static int
872proceed_after_vfork_done (struct thread_info *thread,
873 void *arg)
874{
875 int pid = * (int *) arg;
876
877 if (ptid_get_pid (thread->ptid) == pid
878 && is_running (thread->ptid)
879 && !is_executing (thread->ptid)
880 && !thread->stop_requested
a493e3e2 881 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
882 {
883 if (debug_infrun)
884 fprintf_unfiltered (gdb_stdlog,
885 "infrun: resuming vfork parent thread %s\n",
886 target_pid_to_str (thread->ptid));
887
888 switch_to_thread (thread->ptid);
70509625 889 clear_proceed_status (0);
64ce06e4 890 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
891 }
892
893 return 0;
894}
895
5ed8105e
PA
896/* Save/restore inferior_ptid, current program space and current
897 inferior. Only use this if the current context points at an exited
898 inferior (and therefore there's no current thread to save). */
899class scoped_restore_exited_inferior
900{
901public:
902 scoped_restore_exited_inferior ()
903 : m_saved_ptid (&inferior_ptid)
904 {}
905
906private:
907 scoped_restore_tmpl<ptid_t> m_saved_ptid;
908 scoped_restore_current_program_space m_pspace;
909 scoped_restore_current_inferior m_inferior;
910};
911
6c95b8df
PA
912/* Called whenever we notice an exec or exit event, to handle
913 detaching or resuming a vfork parent. */
914
915static void
916handle_vfork_child_exec_or_exit (int exec)
917{
918 struct inferior *inf = current_inferior ();
919
920 if (inf->vfork_parent)
921 {
922 int resume_parent = -1;
923
924 /* This exec or exit marks the end of the shared memory region
925 between the parent and the child. If the user wanted to
926 detach from the parent, now is the time. */
927
928 if (inf->vfork_parent->pending_detach)
929 {
930 struct thread_info *tp;
6c95b8df
PA
931 struct program_space *pspace;
932 struct address_space *aspace;
933
1777feb0 934 /* follow-fork child, detach-on-fork on. */
6c95b8df 935
68c9da30
PA
936 inf->vfork_parent->pending_detach = 0;
937
5ed8105e
PA
938 gdb::optional<scoped_restore_exited_inferior>
939 maybe_restore_inferior;
940 gdb::optional<scoped_restore_current_pspace_and_thread>
941 maybe_restore_thread;
942
943 /* If we're handling a child exit, then inferior_ptid points
944 at the inferior's pid, not to a thread. */
f50f4e56 945 if (!exec)
5ed8105e 946 maybe_restore_inferior.emplace ();
f50f4e56 947 else
5ed8105e 948 maybe_restore_thread.emplace ();
6c95b8df
PA
949
950 /* We're letting loose of the parent. */
951 tp = any_live_thread_of_process (inf->vfork_parent->pid);
952 switch_to_thread (tp->ptid);
953
954 /* We're about to detach from the parent, which implicitly
955 removes breakpoints from its address space. There's a
956 catch here: we want to reuse the spaces for the child,
957 but, parent/child are still sharing the pspace at this
958 point, although the exec in reality makes the kernel give
959 the child a fresh set of new pages. The problem here is
960 that the breakpoints module being unaware of this, would
961 likely chose the child process to write to the parent
962 address space. Swapping the child temporarily away from
963 the spaces has the desired effect. Yes, this is "sort
964 of" a hack. */
965
966 pspace = inf->pspace;
967 aspace = inf->aspace;
968 inf->aspace = NULL;
969 inf->pspace = NULL;
970
971 if (debug_infrun || info_verbose)
972 {
223ffa71 973 target_terminal::ours_for_output ();
6c95b8df
PA
974
975 if (exec)
6f259a23
DB
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("Detaching vfork parent process "
979 "%d after child exec.\n"),
980 inf->vfork_parent->pid);
981 }
6c95b8df 982 else
6f259a23
DB
983 {
984 fprintf_filtered (gdb_stdlog,
985 _("Detaching vfork parent process "
986 "%d after child exit.\n"),
987 inf->vfork_parent->pid);
988 }
6c95b8df
PA
989 }
990
991 target_detach (NULL, 0);
992
993 /* Put it back. */
994 inf->pspace = pspace;
995 inf->aspace = aspace;
6c95b8df
PA
996 }
997 else if (exec)
998 {
999 /* We're staying attached to the parent, so, really give the
1000 child a new address space. */
1001 inf->pspace = add_program_space (maybe_new_address_space ());
1002 inf->aspace = inf->pspace->aspace;
1003 inf->removable = 1;
1004 set_current_program_space (inf->pspace);
1005
1006 resume_parent = inf->vfork_parent->pid;
1007
1008 /* Break the bonds. */
1009 inf->vfork_parent->vfork_child = NULL;
1010 }
1011 else
1012 {
6c95b8df
PA
1013 struct program_space *pspace;
1014
1015 /* If this is a vfork child exiting, then the pspace and
1016 aspaces were shared with the parent. Since we're
1017 reporting the process exit, we'll be mourning all that is
1018 found in the address space, and switching to null_ptid,
1019 preparing to start a new inferior. But, since we don't
1020 want to clobber the parent's address/program spaces, we
1021 go ahead and create a new one for this exiting
1022 inferior. */
1023
5ed8105e
PA
1024 /* Switch to null_ptid while running clone_program_space, so
1025 that clone_program_space doesn't want to read the
1026 selected frame of a dead process. */
1027 scoped_restore restore_ptid
1028 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1029
1030 /* This inferior is dead, so avoid giving the breakpoints
1031 module the option to write through to it (cloning a
1032 program space resets breakpoints). */
1033 inf->aspace = NULL;
1034 inf->pspace = NULL;
1035 pspace = add_program_space (maybe_new_address_space ());
1036 set_current_program_space (pspace);
1037 inf->removable = 1;
7dcd53a0 1038 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1039 clone_program_space (pspace, inf->vfork_parent->pspace);
1040 inf->pspace = pspace;
1041 inf->aspace = pspace->aspace;
1042
6c95b8df
PA
1043 resume_parent = inf->vfork_parent->pid;
1044 /* Break the bonds. */
1045 inf->vfork_parent->vfork_child = NULL;
1046 }
1047
1048 inf->vfork_parent = NULL;
1049
1050 gdb_assert (current_program_space == inf->pspace);
1051
1052 if (non_stop && resume_parent != -1)
1053 {
1054 /* If the user wanted the parent to be running, let it go
1055 free now. */
5ed8105e 1056 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1057
1058 if (debug_infrun)
3e43a32a
MS
1059 fprintf_unfiltered (gdb_stdlog,
1060 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1061 resume_parent);
1062
1063 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1064 }
1065 }
1066}
1067
eb6c553b 1068/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1069
1070static const char follow_exec_mode_new[] = "new";
1071static const char follow_exec_mode_same[] = "same";
40478521 1072static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1073{
1074 follow_exec_mode_new,
1075 follow_exec_mode_same,
1076 NULL,
1077};
1078
1079static const char *follow_exec_mode_string = follow_exec_mode_same;
1080static void
1081show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1082 struct cmd_list_element *c, const char *value)
1083{
1084 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1085}
1086
ecf45d2c 1087/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1088
c906108c 1089static void
ecf45d2c 1090follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1091{
95e50b27 1092 struct thread_info *th, *tmp;
6c95b8df 1093 struct inferior *inf = current_inferior ();
95e50b27 1094 int pid = ptid_get_pid (ptid);
94585166 1095 ptid_t process_ptid;
ecf45d2c
SL
1096 char *exec_file_host;
1097 struct cleanup *old_chain;
7a292a7a 1098
c906108c
SS
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten witha TRAP instruction). Since
1777feb0 1118 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1119
1120 mark_breakpoints_out ();
1121
95e50b27
PA
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
8a06aea7 1141 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1142 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1143 delete_thread (th->ptid);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 th = inferior_thread ();
8358c15c 1150 th->control.step_resume_breakpoint = NULL;
186c406b 1151 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1152 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
c906108c 1155
95e50b27
PA
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
a75724bc
PA
1159 th->stop_requested = 0;
1160
95e50b27
PA
1161 update_breakpoints_after_exec ();
1162
1777feb0 1163 /* What is this a.out's name? */
94585166 1164 process_ptid = pid_to_ptid (pid);
6c95b8df 1165 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1166 target_pid_to_str (process_ptid),
ecf45d2c 1167 exec_file_target);
c906108c
SS
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1170 inferior has essentially been killed & reborn. */
7a292a7a 1171
c906108c 1172 gdb_flush (gdb_stdout);
6ca15a4b
PA
1173
1174 breakpoint_init_inferior (inf_execd);
e85a822c 1175
ecf45d2c
SL
1176 exec_file_host = exec_file_find (exec_file_target, NULL);
1177 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1178
ecf45d2c
SL
1179 /* If we were unable to map the executable target pathname onto a host
1180 pathname, tell the user that. Otherwise GDB's subsequent behavior
1181 is confusing. Maybe it would even be better to stop at this point
1182 so that the user can specify a file manually before continuing. */
1183 if (exec_file_host == NULL)
1184 warning (_("Could not load symbols for executable %s.\n"
1185 "Do you need \"set sysroot\"?"),
1186 exec_file_target);
c906108c 1187
cce9b6bf
PA
1188 /* Reset the shared library package. This ensures that we get a
1189 shlib event when the child reaches "_start", at which point the
1190 dld will have had a chance to initialize the child. */
1191 /* Also, loading a symbol file below may trigger symbol lookups, and
1192 we don't want those to be satisfied by the libraries of the
1193 previous incarnation of this process. */
1194 no_shared_libraries (NULL, 0);
1195
6c95b8df
PA
1196 if (follow_exec_mode_string == follow_exec_mode_new)
1197 {
6c95b8df
PA
1198 /* The user wants to keep the old inferior and program spaces
1199 around. Create a new fresh one, and switch to it. */
1200
17d8546e
DB
1201 /* Do exit processing for the original inferior before adding
1202 the new inferior so we don't have two active inferiors with
1203 the same ptid, which can confuse find_inferior_ptid. */
1204 exit_inferior_num_silent (current_inferior ()->num);
1205
94585166
DB
1206 inf = add_inferior_with_spaces ();
1207 inf->pid = pid;
ecf45d2c 1208 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1209
1210 set_current_inferior (inf);
94585166 1211 set_current_program_space (inf->pspace);
6c95b8df 1212 }
9107fc8d
PA
1213 else
1214 {
1215 /* The old description may no longer be fit for the new image.
1216 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1217 old description; we'll read a new one below. No need to do
1218 this on "follow-exec-mode new", as the old inferior stays
1219 around (its description is later cleared/refetched on
1220 restart). */
1221 target_clear_description ();
1222 }
6c95b8df
PA
1223
1224 gdb_assert (current_program_space == inf->pspace);
1225
ecf45d2c
SL
1226 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1227 because the proper displacement for a PIE (Position Independent
1228 Executable) main symbol file will only be computed by
1229 solib_create_inferior_hook below. breakpoint_re_set would fail
1230 to insert the breakpoints with the zero displacement. */
1231 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1232
ecf45d2c 1233 do_cleanups (old_chain);
c906108c 1234
9107fc8d
PA
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
bf93d7ba
SM
1243 /* The add_thread call ends up reading registers, so do it after updating the
1244 target description. */
1245 if (follow_exec_mode_string == follow_exec_mode_new)
1246 add_thread (ptid);
1247
268a4a75 1248 solib_create_inferior_hook (0);
c906108c 1249
4efc6507
DE
1250 jit_inferior_created_hook ();
1251
c1e56572
JK
1252 breakpoint_re_set ();
1253
c906108c
SS
1254 /* Reinsert all breakpoints. (Those which were symbolic have
1255 been reset to the proper address in the new a.out, thanks
1777feb0 1256 to symbol_file_command...). */
c906108c
SS
1257 insert_breakpoints ();
1258
1259 /* The next resume of this inferior should bring it to the shlib
1260 startup breakpoints. (If the user had also set bp's on
1261 "main" from the old (parent) process, then they'll auto-
1777feb0 1262 matically get reset there in the new process.). */
c906108c
SS
1263}
1264
c2829269
PA
1265/* The queue of threads that need to do a step-over operation to get
1266 past e.g., a breakpoint. What technique is used to step over the
1267 breakpoint/watchpoint does not matter -- all threads end up in the
1268 same queue, to maintain rough temporal order of execution, in order
1269 to avoid starvation, otherwise, we could e.g., find ourselves
1270 constantly stepping the same couple threads past their breakpoints
1271 over and over, if the single-step finish fast enough. */
1272struct thread_info *step_over_queue_head;
1273
6c4cfb24
PA
1274/* Bit flags indicating what the thread needs to step over. */
1275
8d297bbf 1276enum step_over_what_flag
6c4cfb24
PA
1277 {
1278 /* Step over a breakpoint. */
1279 STEP_OVER_BREAKPOINT = 1,
1280
1281 /* Step past a non-continuable watchpoint, in order to let the
1282 instruction execute so we can evaluate the watchpoint
1283 expression. */
1284 STEP_OVER_WATCHPOINT = 2
1285 };
8d297bbf 1286DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1287
963f9c80 1288/* Info about an instruction that is being stepped over. */
31e77af2
PA
1289
1290struct step_over_info
1291{
963f9c80
PA
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
31e77af2 1296 struct address_space *aspace;
31e77af2 1297 CORE_ADDR address;
963f9c80
PA
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
21edc42f
YQ
1302
1303 /* The thread's global number. */
1304 int thread;
31e77af2
PA
1305};
1306
1307/* The step-over info of the location that is being stepped over.
1308
1309 Note that with async/breakpoint always-inserted mode, a user might
1310 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1311 being stepped over. As setting a new breakpoint inserts all
1312 breakpoints, we need to make sure the breakpoint being stepped over
1313 isn't inserted then. We do that by only clearing the step-over
1314 info when the step-over is actually finished (or aborted).
1315
1316 Presently GDB can only step over one breakpoint at any given time.
1317 Given threads that can't run code in the same address space as the
1318 breakpoint's can't really miss the breakpoint, GDB could be taught
1319 to step-over at most one breakpoint per address space (so this info
1320 could move to the address space object if/when GDB is extended).
1321 The set of breakpoints being stepped over will normally be much
1322 smaller than the set of all breakpoints, so a flag in the
1323 breakpoint location structure would be wasteful. A separate list
1324 also saves complexity and run-time, as otherwise we'd have to go
1325 through all breakpoint locations clearing their flag whenever we
1326 start a new sequence. Similar considerations weigh against storing
1327 this info in the thread object. Plus, not all step overs actually
1328 have breakpoint locations -- e.g., stepping past a single-step
1329 breakpoint, or stepping to complete a non-continuable
1330 watchpoint. */
1331static struct step_over_info step_over_info;
1332
1333/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1334 stepping over.
1335 N.B. We record the aspace and address now, instead of say just the thread,
1336 because when we need the info later the thread may be running. */
31e77af2
PA
1337
1338static void
963f9c80 1339set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1340 int nonsteppable_watchpoint_p,
1341 int thread)
31e77af2
PA
1342{
1343 step_over_info.aspace = aspace;
1344 step_over_info.address = address;
963f9c80 1345 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1346 step_over_info.thread = thread;
31e77af2
PA
1347}
1348
1349/* Called when we're not longer stepping over a breakpoint / an
1350 instruction, so all breakpoints are free to be (re)inserted. */
1351
1352static void
1353clear_step_over_info (void)
1354{
372316f1
PA
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog,
1357 "infrun: clear_step_over_info\n");
31e77af2
PA
1358 step_over_info.aspace = NULL;
1359 step_over_info.address = 0;
963f9c80 1360 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1361 step_over_info.thread = -1;
31e77af2
PA
1362}
1363
7f89fd65 1364/* See infrun.h. */
31e77af2
PA
1365
1366int
1367stepping_past_instruction_at (struct address_space *aspace,
1368 CORE_ADDR address)
1369{
1370 return (step_over_info.aspace != NULL
1371 && breakpoint_address_match (aspace, address,
1372 step_over_info.aspace,
1373 step_over_info.address));
1374}
1375
963f9c80
PA
1376/* See infrun.h. */
1377
21edc42f
YQ
1378int
1379thread_is_stepping_over_breakpoint (int thread)
1380{
1381 return (step_over_info.thread != -1
1382 && thread == step_over_info.thread);
1383}
1384
1385/* See infrun.h. */
1386
963f9c80
PA
1387int
1388stepping_past_nonsteppable_watchpoint (void)
1389{
1390 return step_over_info.nonsteppable_watchpoint_p;
1391}
1392
6cc83d2a
PA
1393/* Returns true if step-over info is valid. */
1394
1395static int
1396step_over_info_valid_p (void)
1397{
963f9c80
PA
1398 return (step_over_info.aspace != NULL
1399 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1400}
1401
c906108c 1402\f
237fc4c9
PA
1403/* Displaced stepping. */
1404
1405/* In non-stop debugging mode, we must take special care to manage
1406 breakpoints properly; in particular, the traditional strategy for
1407 stepping a thread past a breakpoint it has hit is unsuitable.
1408 'Displaced stepping' is a tactic for stepping one thread past a
1409 breakpoint it has hit while ensuring that other threads running
1410 concurrently will hit the breakpoint as they should.
1411
1412 The traditional way to step a thread T off a breakpoint in a
1413 multi-threaded program in all-stop mode is as follows:
1414
1415 a0) Initially, all threads are stopped, and breakpoints are not
1416 inserted.
1417 a1) We single-step T, leaving breakpoints uninserted.
1418 a2) We insert breakpoints, and resume all threads.
1419
1420 In non-stop debugging, however, this strategy is unsuitable: we
1421 don't want to have to stop all threads in the system in order to
1422 continue or step T past a breakpoint. Instead, we use displaced
1423 stepping:
1424
1425 n0) Initially, T is stopped, other threads are running, and
1426 breakpoints are inserted.
1427 n1) We copy the instruction "under" the breakpoint to a separate
1428 location, outside the main code stream, making any adjustments
1429 to the instruction, register, and memory state as directed by
1430 T's architecture.
1431 n2) We single-step T over the instruction at its new location.
1432 n3) We adjust the resulting register and memory state as directed
1433 by T's architecture. This includes resetting T's PC to point
1434 back into the main instruction stream.
1435 n4) We resume T.
1436
1437 This approach depends on the following gdbarch methods:
1438
1439 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1440 indicate where to copy the instruction, and how much space must
1441 be reserved there. We use these in step n1.
1442
1443 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1444 address, and makes any necessary adjustments to the instruction,
1445 register contents, and memory. We use this in step n1.
1446
1447 - gdbarch_displaced_step_fixup adjusts registers and memory after
1448 we have successfuly single-stepped the instruction, to yield the
1449 same effect the instruction would have had if we had executed it
1450 at its original address. We use this in step n3.
1451
1452 - gdbarch_displaced_step_free_closure provides cleanup.
1453
1454 The gdbarch_displaced_step_copy_insn and
1455 gdbarch_displaced_step_fixup functions must be written so that
1456 copying an instruction with gdbarch_displaced_step_copy_insn,
1457 single-stepping across the copied instruction, and then applying
1458 gdbarch_displaced_insn_fixup should have the same effects on the
1459 thread's memory and registers as stepping the instruction in place
1460 would have. Exactly which responsibilities fall to the copy and
1461 which fall to the fixup is up to the author of those functions.
1462
1463 See the comments in gdbarch.sh for details.
1464
1465 Note that displaced stepping and software single-step cannot
1466 currently be used in combination, although with some care I think
1467 they could be made to. Software single-step works by placing
1468 breakpoints on all possible subsequent instructions; if the
1469 displaced instruction is a PC-relative jump, those breakpoints
1470 could fall in very strange places --- on pages that aren't
1471 executable, or at addresses that are not proper instruction
1472 boundaries. (We do generally let other threads run while we wait
1473 to hit the software single-step breakpoint, and they might
1474 encounter such a corrupted instruction.) One way to work around
1475 this would be to have gdbarch_displaced_step_copy_insn fully
1476 simulate the effect of PC-relative instructions (and return NULL)
1477 on architectures that use software single-stepping.
1478
1479 In non-stop mode, we can have independent and simultaneous step
1480 requests, so more than one thread may need to simultaneously step
1481 over a breakpoint. The current implementation assumes there is
1482 only one scratch space per process. In this case, we have to
1483 serialize access to the scratch space. If thread A wants to step
1484 over a breakpoint, but we are currently waiting for some other
1485 thread to complete a displaced step, we leave thread A stopped and
1486 place it in the displaced_step_request_queue. Whenever a displaced
1487 step finishes, we pick the next thread in the queue and start a new
1488 displaced step operation on it. See displaced_step_prepare and
1489 displaced_step_fixup for details. */
1490
fc1cf338
PA
1491/* Per-inferior displaced stepping state. */
1492struct displaced_step_inferior_state
1493{
1494 /* Pointer to next in linked list. */
1495 struct displaced_step_inferior_state *next;
1496
1497 /* The process this displaced step state refers to. */
1498 int pid;
1499
3fc8eb30
PA
1500 /* True if preparing a displaced step ever failed. If so, we won't
1501 try displaced stepping for this inferior again. */
1502 int failed_before;
1503
fc1cf338
PA
1504 /* If this is not null_ptid, this is the thread carrying out a
1505 displaced single-step in process PID. This thread's state will
1506 require fixing up once it has completed its step. */
1507 ptid_t step_ptid;
1508
1509 /* The architecture the thread had when we stepped it. */
1510 struct gdbarch *step_gdbarch;
1511
1512 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1513 for post-step cleanup. */
1514 struct displaced_step_closure *step_closure;
1515
1516 /* The address of the original instruction, and the copy we
1517 made. */
1518 CORE_ADDR step_original, step_copy;
1519
1520 /* Saved contents of copy area. */
1521 gdb_byte *step_saved_copy;
1522};
1523
1524/* The list of states of processes involved in displaced stepping
1525 presently. */
1526static struct displaced_step_inferior_state *displaced_step_inferior_states;
1527
1528/* Get the displaced stepping state of process PID. */
1529
1530static struct displaced_step_inferior_state *
1531get_displaced_stepping_state (int pid)
1532{
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (state->pid == pid)
1539 return state;
1540
1541 return NULL;
1542}
1543
372316f1
PA
1544/* Returns true if any inferior has a thread doing a displaced
1545 step. */
1546
1547static int
1548displaced_step_in_progress_any_inferior (void)
1549{
1550 struct displaced_step_inferior_state *state;
1551
1552 for (state = displaced_step_inferior_states;
1553 state != NULL;
1554 state = state->next)
1555 if (!ptid_equal (state->step_ptid, null_ptid))
1556 return 1;
1557
1558 return 0;
1559}
1560
c0987663
YQ
1561/* Return true if thread represented by PTID is doing a displaced
1562 step. */
1563
1564static int
1565displaced_step_in_progress_thread (ptid_t ptid)
1566{
1567 struct displaced_step_inferior_state *displaced;
1568
1569 gdb_assert (!ptid_equal (ptid, null_ptid));
1570
1571 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1572
1573 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1574}
1575
8f572e5c
PA
1576/* Return true if process PID has a thread doing a displaced step. */
1577
1578static int
1579displaced_step_in_progress (int pid)
1580{
1581 struct displaced_step_inferior_state *displaced;
1582
1583 displaced = get_displaced_stepping_state (pid);
1584 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1585 return 1;
1586
1587 return 0;
1588}
1589
fc1cf338
PA
1590/* Add a new displaced stepping state for process PID to the displaced
1591 stepping state list, or return a pointer to an already existing
1592 entry, if it already exists. Never returns NULL. */
1593
1594static struct displaced_step_inferior_state *
1595add_displaced_stepping_state (int pid)
1596{
1597 struct displaced_step_inferior_state *state;
1598
1599 for (state = displaced_step_inferior_states;
1600 state != NULL;
1601 state = state->next)
1602 if (state->pid == pid)
1603 return state;
237fc4c9 1604
8d749320 1605 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1606 state->pid = pid;
1607 state->next = displaced_step_inferior_states;
1608 displaced_step_inferior_states = state;
237fc4c9 1609
fc1cf338
PA
1610 return state;
1611}
1612
a42244db
YQ
1613/* If inferior is in displaced stepping, and ADDR equals to starting address
1614 of copy area, return corresponding displaced_step_closure. Otherwise,
1615 return NULL. */
1616
1617struct displaced_step_closure*
1618get_displaced_step_closure_by_addr (CORE_ADDR addr)
1619{
1620 struct displaced_step_inferior_state *displaced
1621 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1622
1623 /* If checking the mode of displaced instruction in copy area. */
1624 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1625 && (displaced->step_copy == addr))
1626 return displaced->step_closure;
1627
1628 return NULL;
1629}
1630
fc1cf338 1631/* Remove the displaced stepping state of process PID. */
237fc4c9 1632
fc1cf338
PA
1633static void
1634remove_displaced_stepping_state (int pid)
1635{
1636 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1637
fc1cf338
PA
1638 gdb_assert (pid != 0);
1639
1640 it = displaced_step_inferior_states;
1641 prev_next_p = &displaced_step_inferior_states;
1642 while (it)
1643 {
1644 if (it->pid == pid)
1645 {
1646 *prev_next_p = it->next;
1647 xfree (it);
1648 return;
1649 }
1650
1651 prev_next_p = &it->next;
1652 it = *prev_next_p;
1653 }
1654}
1655
1656static void
1657infrun_inferior_exit (struct inferior *inf)
1658{
1659 remove_displaced_stepping_state (inf->pid);
1660}
237fc4c9 1661
fff08868
HZ
1662/* If ON, and the architecture supports it, GDB will use displaced
1663 stepping to step over breakpoints. If OFF, or if the architecture
1664 doesn't support it, GDB will instead use the traditional
1665 hold-and-step approach. If AUTO (which is the default), GDB will
1666 decide which technique to use to step over breakpoints depending on
1667 which of all-stop or non-stop mode is active --- displaced stepping
1668 in non-stop mode; hold-and-step in all-stop mode. */
1669
72d0e2c5 1670static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1671
237fc4c9
PA
1672static void
1673show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1674 struct cmd_list_element *c,
1675 const char *value)
1676{
72d0e2c5 1677 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1678 fprintf_filtered (file,
1679 _("Debugger's willingness to use displaced stepping "
1680 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1681 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1682 else
3e43a32a
MS
1683 fprintf_filtered (file,
1684 _("Debugger's willingness to use displaced stepping "
1685 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1686}
1687
fff08868 1688/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1689 over breakpoints of thread TP. */
fff08868 1690
237fc4c9 1691static int
3fc8eb30 1692use_displaced_stepping (struct thread_info *tp)
237fc4c9 1693{
3fc8eb30
PA
1694 struct regcache *regcache = get_thread_regcache (tp->ptid);
1695 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1696 struct displaced_step_inferior_state *displaced_state;
1697
1698 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1699
fbea99ea
PA
1700 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1701 && target_is_non_stop_p ())
72d0e2c5 1702 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1703 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1704 && find_record_target () == NULL
1705 && (displaced_state == NULL
1706 || !displaced_state->failed_before));
237fc4c9
PA
1707}
1708
1709/* Clean out any stray displaced stepping state. */
1710static void
fc1cf338 1711displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1712{
1713 /* Indicate that there is no cleanup pending. */
fc1cf338 1714 displaced->step_ptid = null_ptid;
237fc4c9 1715
6d45d4b4
SM
1716 xfree (displaced->step_closure);
1717 displaced->step_closure = NULL;
237fc4c9
PA
1718}
1719
1720static void
fc1cf338 1721displaced_step_clear_cleanup (void *arg)
237fc4c9 1722{
9a3c8263
SM
1723 struct displaced_step_inferior_state *state
1724 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1725
1726 displaced_step_clear (state);
237fc4c9
PA
1727}
1728
1729/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1730void
1731displaced_step_dump_bytes (struct ui_file *file,
1732 const gdb_byte *buf,
1733 size_t len)
1734{
1735 int i;
1736
1737 for (i = 0; i < len; i++)
1738 fprintf_unfiltered (file, "%02x ", buf[i]);
1739 fputs_unfiltered ("\n", file);
1740}
1741
1742/* Prepare to single-step, using displaced stepping.
1743
1744 Note that we cannot use displaced stepping when we have a signal to
1745 deliver. If we have a signal to deliver and an instruction to step
1746 over, then after the step, there will be no indication from the
1747 target whether the thread entered a signal handler or ignored the
1748 signal and stepped over the instruction successfully --- both cases
1749 result in a simple SIGTRAP. In the first case we mustn't do a
1750 fixup, and in the second case we must --- but we can't tell which.
1751 Comments in the code for 'random signals' in handle_inferior_event
1752 explain how we handle this case instead.
1753
1754 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1755 stepped now; 0 if displaced stepping this thread got queued; or -1
1756 if this instruction can't be displaced stepped. */
1757
237fc4c9 1758static int
3fc8eb30 1759displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1760{
2989a365 1761 struct cleanup *ignore_cleanups;
c1e36e3e 1762 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1763 struct regcache *regcache = get_thread_regcache (ptid);
1764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1765 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1766 CORE_ADDR original, copy;
1767 ULONGEST len;
1768 struct displaced_step_closure *closure;
fc1cf338 1769 struct displaced_step_inferior_state *displaced;
9e529e1d 1770 int status;
237fc4c9
PA
1771
1772 /* We should never reach this function if the architecture does not
1773 support displaced stepping. */
1774 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1775
c2829269
PA
1776 /* Nor if the thread isn't meant to step over a breakpoint. */
1777 gdb_assert (tp->control.trap_expected);
1778
c1e36e3e
PA
1779 /* Disable range stepping while executing in the scratch pad. We
1780 want a single-step even if executing the displaced instruction in
1781 the scratch buffer lands within the stepping range (e.g., a
1782 jump/branch). */
1783 tp->control.may_range_step = 0;
1784
fc1cf338
PA
1785 /* We have to displaced step one thread at a time, as we only have
1786 access to a single scratch space per inferior. */
237fc4c9 1787
fc1cf338
PA
1788 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1789
1790 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1791 {
1792 /* Already waiting for a displaced step to finish. Defer this
1793 request and place in queue. */
237fc4c9
PA
1794
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
c2829269 1797 "displaced: deferring step of %s\n",
237fc4c9
PA
1798 target_pid_to_str (ptid));
1799
c2829269 1800 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1801 return 0;
1802 }
1803 else
1804 {
1805 if (debug_displaced)
1806 fprintf_unfiltered (gdb_stdlog,
1807 "displaced: stepping %s now\n",
1808 target_pid_to_str (ptid));
1809 }
1810
fc1cf338 1811 displaced_step_clear (displaced);
237fc4c9 1812
2989a365 1813 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1814 inferior_ptid = ptid;
1815
515630c5 1816 original = regcache_read_pc (regcache);
237fc4c9
PA
1817
1818 copy = gdbarch_displaced_step_location (gdbarch);
1819 len = gdbarch_max_insn_length (gdbarch);
1820
d35ae833
PA
1821 if (breakpoint_in_range_p (aspace, copy, len))
1822 {
1823 /* There's a breakpoint set in the scratch pad location range
1824 (which is usually around the entry point). We'd either
1825 install it before resuming, which would overwrite/corrupt the
1826 scratch pad, or if it was already inserted, this displaced
1827 step would overwrite it. The latter is OK in the sense that
1828 we already assume that no thread is going to execute the code
1829 in the scratch pad range (after initial startup) anyway, but
1830 the former is unacceptable. Simply punt and fallback to
1831 stepping over this breakpoint in-line. */
1832 if (debug_displaced)
1833 {
1834 fprintf_unfiltered (gdb_stdlog,
1835 "displaced: breakpoint set in scratch pad. "
1836 "Stepping over breakpoint in-line instead.\n");
1837 }
1838
d35ae833
PA
1839 return -1;
1840 }
1841
237fc4c9 1842 /* Save the original contents of the copy area. */
224c3ddb 1843 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1844 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1845 &displaced->step_saved_copy);
9e529e1d
JK
1846 status = target_read_memory (copy, displaced->step_saved_copy, len);
1847 if (status != 0)
1848 throw_error (MEMORY_ERROR,
1849 _("Error accessing memory address %s (%s) for "
1850 "displaced-stepping scratch space."),
1851 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1852 if (debug_displaced)
1853 {
5af949e3
UW
1854 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1855 paddress (gdbarch, copy));
fc1cf338
PA
1856 displaced_step_dump_bytes (gdb_stdlog,
1857 displaced->step_saved_copy,
1858 len);
237fc4c9
PA
1859 };
1860
1861 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1862 original, copy, regcache);
7f03bd92
PA
1863 if (closure == NULL)
1864 {
1865 /* The architecture doesn't know how or want to displaced step
1866 this instruction or instruction sequence. Fallback to
1867 stepping over the breakpoint in-line. */
2989a365 1868 do_cleanups (ignore_cleanups);
7f03bd92
PA
1869 return -1;
1870 }
237fc4c9 1871
9f5a595d
UW
1872 /* Save the information we need to fix things up if the step
1873 succeeds. */
fc1cf338
PA
1874 displaced->step_ptid = ptid;
1875 displaced->step_gdbarch = gdbarch;
1876 displaced->step_closure = closure;
1877 displaced->step_original = original;
1878 displaced->step_copy = copy;
9f5a595d 1879
fc1cf338 1880 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1881
1882 /* Resume execution at the copy. */
515630c5 1883 regcache_write_pc (regcache, copy);
237fc4c9 1884
ad53cd71
PA
1885 discard_cleanups (ignore_cleanups);
1886
237fc4c9 1887 if (debug_displaced)
5af949e3
UW
1888 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1889 paddress (gdbarch, copy));
237fc4c9 1890
237fc4c9
PA
1891 return 1;
1892}
1893
3fc8eb30
PA
1894/* Wrapper for displaced_step_prepare_throw that disabled further
1895 attempts at displaced stepping if we get a memory error. */
1896
1897static int
1898displaced_step_prepare (ptid_t ptid)
1899{
1900 int prepared = -1;
1901
1902 TRY
1903 {
1904 prepared = displaced_step_prepare_throw (ptid);
1905 }
1906 CATCH (ex, RETURN_MASK_ERROR)
1907 {
1908 struct displaced_step_inferior_state *displaced_state;
1909
16b41842
PA
1910 if (ex.error != MEMORY_ERROR
1911 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1912 throw_exception (ex);
1913
1914 if (debug_infrun)
1915 {
1916 fprintf_unfiltered (gdb_stdlog,
1917 "infrun: disabling displaced stepping: %s\n",
1918 ex.message);
1919 }
1920
1921 /* Be verbose if "set displaced-stepping" is "on", silent if
1922 "auto". */
1923 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1924 {
fd7dcb94 1925 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1926 ex.message);
1927 }
1928
1929 /* Disable further displaced stepping attempts. */
1930 displaced_state
1931 = get_displaced_stepping_state (ptid_get_pid (ptid));
1932 displaced_state->failed_before = 1;
1933 }
1934 END_CATCH
1935
1936 return prepared;
1937}
1938
237fc4c9 1939static void
3e43a32a
MS
1940write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1941 const gdb_byte *myaddr, int len)
237fc4c9 1942{
2989a365 1943 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1944
237fc4c9
PA
1945 inferior_ptid = ptid;
1946 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1947}
1948
e2d96639
YQ
1949/* Restore the contents of the copy area for thread PTID. */
1950
1951static void
1952displaced_step_restore (struct displaced_step_inferior_state *displaced,
1953 ptid_t ptid)
1954{
1955 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1956
1957 write_memory_ptid (ptid, displaced->step_copy,
1958 displaced->step_saved_copy, len);
1959 if (debug_displaced)
1960 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1961 target_pid_to_str (ptid),
1962 paddress (displaced->step_gdbarch,
1963 displaced->step_copy));
1964}
1965
372316f1
PA
1966/* If we displaced stepped an instruction successfully, adjust
1967 registers and memory to yield the same effect the instruction would
1968 have had if we had executed it at its original address, and return
1969 1. If the instruction didn't complete, relocate the PC and return
1970 -1. If the thread wasn't displaced stepping, return 0. */
1971
1972static int
2ea28649 1973displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1974{
1975 struct cleanup *old_cleanups;
fc1cf338
PA
1976 struct displaced_step_inferior_state *displaced
1977 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1978 int ret;
fc1cf338
PA
1979
1980 /* Was any thread of this process doing a displaced step? */
1981 if (displaced == NULL)
372316f1 1982 return 0;
237fc4c9
PA
1983
1984 /* Was this event for the pid we displaced? */
fc1cf338
PA
1985 if (ptid_equal (displaced->step_ptid, null_ptid)
1986 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1987 return 0;
237fc4c9 1988
fc1cf338 1989 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1990
e2d96639 1991 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1992
cb71640d
PA
1993 /* Fixup may need to read memory/registers. Switch to the thread
1994 that we're fixing up. Also, target_stopped_by_watchpoint checks
1995 the current thread. */
1996 switch_to_thread (event_ptid);
1997
237fc4c9 1998 /* Did the instruction complete successfully? */
cb71640d
PA
1999 if (signal == GDB_SIGNAL_TRAP
2000 && !(target_stopped_by_watchpoint ()
2001 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2002 || target_have_steppable_watchpoint)))
237fc4c9
PA
2003 {
2004 /* Fix up the resulting state. */
fc1cf338
PA
2005 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2006 displaced->step_closure,
2007 displaced->step_original,
2008 displaced->step_copy,
2009 get_thread_regcache (displaced->step_ptid));
372316f1 2010 ret = 1;
237fc4c9
PA
2011 }
2012 else
2013 {
2014 /* Since the instruction didn't complete, all we can do is
2015 relocate the PC. */
515630c5
UW
2016 struct regcache *regcache = get_thread_regcache (event_ptid);
2017 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2018
fc1cf338 2019 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2020 regcache_write_pc (regcache, pc);
372316f1 2021 ret = -1;
237fc4c9
PA
2022 }
2023
2024 do_cleanups (old_cleanups);
2025
fc1cf338 2026 displaced->step_ptid = null_ptid;
372316f1
PA
2027
2028 return ret;
c2829269 2029}
1c5cfe86 2030
4d9d9d04
PA
2031/* Data to be passed around while handling an event. This data is
2032 discarded between events. */
2033struct execution_control_state
2034{
2035 ptid_t ptid;
2036 /* The thread that got the event, if this was a thread event; NULL
2037 otherwise. */
2038 struct thread_info *event_thread;
2039
2040 struct target_waitstatus ws;
2041 int stop_func_filled_in;
2042 CORE_ADDR stop_func_start;
2043 CORE_ADDR stop_func_end;
2044 const char *stop_func_name;
2045 int wait_some_more;
2046
2047 /* True if the event thread hit the single-step breakpoint of
2048 another thread. Thus the event doesn't cause a stop, the thread
2049 needs to be single-stepped past the single-step breakpoint before
2050 we can switch back to the original stepping thread. */
2051 int hit_singlestep_breakpoint;
2052};
2053
2054/* Clear ECS and set it to point at TP. */
c2829269
PA
2055
2056static void
4d9d9d04
PA
2057reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2058{
2059 memset (ecs, 0, sizeof (*ecs));
2060 ecs->event_thread = tp;
2061 ecs->ptid = tp->ptid;
2062}
2063
2064static void keep_going_pass_signal (struct execution_control_state *ecs);
2065static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2066static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2067static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2068
2069/* Are there any pending step-over requests? If so, run all we can
2070 now and return true. Otherwise, return false. */
2071
2072static int
c2829269
PA
2073start_step_over (void)
2074{
2075 struct thread_info *tp, *next;
2076
372316f1
PA
2077 /* Don't start a new step-over if we already have an in-line
2078 step-over operation ongoing. */
2079 if (step_over_info_valid_p ())
2080 return 0;
2081
c2829269 2082 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2083 {
4d9d9d04
PA
2084 struct execution_control_state ecss;
2085 struct execution_control_state *ecs = &ecss;
8d297bbf 2086 step_over_what step_what;
372316f1 2087 int must_be_in_line;
c2829269 2088
c65d6b55
PA
2089 gdb_assert (!tp->stop_requested);
2090
c2829269 2091 next = thread_step_over_chain_next (tp);
237fc4c9 2092
c2829269
PA
2093 /* If this inferior already has a displaced step in process,
2094 don't start a new one. */
4d9d9d04 2095 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2096 continue;
2097
372316f1
PA
2098 step_what = thread_still_needs_step_over (tp);
2099 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2100 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2101 && !use_displaced_stepping (tp)));
372316f1
PA
2102
2103 /* We currently stop all threads of all processes to step-over
2104 in-line. If we need to start a new in-line step-over, let
2105 any pending displaced steps finish first. */
2106 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2107 return 0;
2108
c2829269
PA
2109 thread_step_over_chain_remove (tp);
2110
2111 if (step_over_queue_head == NULL)
2112 {
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: step-over queue now empty\n");
2116 }
2117
372316f1
PA
2118 if (tp->control.trap_expected
2119 || tp->resumed
2120 || tp->executing)
ad53cd71 2121 {
4d9d9d04
PA
2122 internal_error (__FILE__, __LINE__,
2123 "[%s] has inconsistent state: "
372316f1 2124 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2125 target_pid_to_str (tp->ptid),
2126 tp->control.trap_expected,
372316f1 2127 tp->resumed,
4d9d9d04 2128 tp->executing);
ad53cd71 2129 }
1c5cfe86 2130
4d9d9d04
PA
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog,
2133 "infrun: resuming [%s] for step-over\n",
2134 target_pid_to_str (tp->ptid));
2135
2136 /* keep_going_pass_signal skips the step-over if the breakpoint
2137 is no longer inserted. In all-stop, we want to keep looking
2138 for a thread that needs a step-over instead of resuming TP,
2139 because we wouldn't be able to resume anything else until the
2140 target stops again. In non-stop, the resume always resumes
2141 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2142 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2143 continue;
8550d3b3 2144
4d9d9d04
PA
2145 switch_to_thread (tp->ptid);
2146 reset_ecs (ecs, tp);
2147 keep_going_pass_signal (ecs);
1c5cfe86 2148
4d9d9d04
PA
2149 if (!ecs->wait_some_more)
2150 error (_("Command aborted."));
1c5cfe86 2151
372316f1
PA
2152 gdb_assert (tp->resumed);
2153
2154 /* If we started a new in-line step-over, we're done. */
2155 if (step_over_info_valid_p ())
2156 {
2157 gdb_assert (tp->control.trap_expected);
2158 return 1;
2159 }
2160
fbea99ea 2161 if (!target_is_non_stop_p ())
4d9d9d04
PA
2162 {
2163 /* On all-stop, shouldn't have resumed unless we needed a
2164 step over. */
2165 gdb_assert (tp->control.trap_expected
2166 || tp->step_after_step_resume_breakpoint);
2167
2168 /* With remote targets (at least), in all-stop, we can't
2169 issue any further remote commands until the program stops
2170 again. */
2171 return 1;
1c5cfe86 2172 }
c2829269 2173
4d9d9d04
PA
2174 /* Either the thread no longer needed a step-over, or a new
2175 displaced stepping sequence started. Even in the latter
2176 case, continue looking. Maybe we can also start another
2177 displaced step on a thread of other process. */
237fc4c9 2178 }
4d9d9d04
PA
2179
2180 return 0;
237fc4c9
PA
2181}
2182
5231c1fd
PA
2183/* Update global variables holding ptids to hold NEW_PTID if they were
2184 holding OLD_PTID. */
2185static void
2186infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2187{
fc1cf338 2188 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2189
2190 if (ptid_equal (inferior_ptid, old_ptid))
2191 inferior_ptid = new_ptid;
2192
fc1cf338
PA
2193 for (displaced = displaced_step_inferior_states;
2194 displaced;
2195 displaced = displaced->next)
2196 {
2197 if (ptid_equal (displaced->step_ptid, old_ptid))
2198 displaced->step_ptid = new_ptid;
fc1cf338 2199 }
5231c1fd
PA
2200}
2201
237fc4c9
PA
2202\f
2203/* Resuming. */
c906108c
SS
2204
2205/* Things to clean up if we QUIT out of resume (). */
c906108c 2206static void
74b7792f 2207resume_cleanups (void *ignore)
c906108c 2208{
34b7e8a6
PA
2209 if (!ptid_equal (inferior_ptid, null_ptid))
2210 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2211
c906108c
SS
2212 normal_stop ();
2213}
2214
53904c9e
AC
2215static const char schedlock_off[] = "off";
2216static const char schedlock_on[] = "on";
2217static const char schedlock_step[] = "step";
f2665db5 2218static const char schedlock_replay[] = "replay";
40478521 2219static const char *const scheduler_enums[] = {
ef346e04
AC
2220 schedlock_off,
2221 schedlock_on,
2222 schedlock_step,
f2665db5 2223 schedlock_replay,
ef346e04
AC
2224 NULL
2225};
f2665db5 2226static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2227static void
2228show_scheduler_mode (struct ui_file *file, int from_tty,
2229 struct cmd_list_element *c, const char *value)
2230{
3e43a32a
MS
2231 fprintf_filtered (file,
2232 _("Mode for locking scheduler "
2233 "during execution is \"%s\".\n"),
920d2a44
AC
2234 value);
2235}
c906108c
SS
2236
2237static void
96baa820 2238set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2239{
eefe576e
AC
2240 if (!target_can_lock_scheduler)
2241 {
2242 scheduler_mode = schedlock_off;
2243 error (_("Target '%s' cannot support this command."), target_shortname);
2244 }
c906108c
SS
2245}
2246
d4db2f36
PA
2247/* True if execution commands resume all threads of all processes by
2248 default; otherwise, resume only threads of the current inferior
2249 process. */
2250int sched_multi = 0;
2251
2facfe5c
DD
2252/* Try to setup for software single stepping over the specified location.
2253 Return 1 if target_resume() should use hardware single step.
2254
2255 GDBARCH the current gdbarch.
2256 PC the location to step over. */
2257
2258static int
2259maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2260{
2261 int hw_step = 1;
2262
f02253f1 2263 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2264 && gdbarch_software_single_step_p (gdbarch))
2265 hw_step = !insert_single_step_breakpoints (gdbarch);
2266
2facfe5c
DD
2267 return hw_step;
2268}
c906108c 2269
f3263aa4
PA
2270/* See infrun.h. */
2271
09cee04b
PA
2272ptid_t
2273user_visible_resume_ptid (int step)
2274{
f3263aa4 2275 ptid_t resume_ptid;
09cee04b 2276
09cee04b
PA
2277 if (non_stop)
2278 {
2279 /* With non-stop mode on, threads are always handled
2280 individually. */
2281 resume_ptid = inferior_ptid;
2282 }
2283 else if ((scheduler_mode == schedlock_on)
03d46957 2284 || (scheduler_mode == schedlock_step && step))
09cee04b 2285 {
f3263aa4
PA
2286 /* User-settable 'scheduler' mode requires solo thread
2287 resume. */
09cee04b
PA
2288 resume_ptid = inferior_ptid;
2289 }
f2665db5
MM
2290 else if ((scheduler_mode == schedlock_replay)
2291 && target_record_will_replay (minus_one_ptid, execution_direction))
2292 {
2293 /* User-settable 'scheduler' mode requires solo thread resume in replay
2294 mode. */
2295 resume_ptid = inferior_ptid;
2296 }
f3263aa4
PA
2297 else if (!sched_multi && target_supports_multi_process ())
2298 {
2299 /* Resume all threads of the current process (and none of other
2300 processes). */
2301 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2302 }
2303 else
2304 {
2305 /* Resume all threads of all processes. */
2306 resume_ptid = RESUME_ALL;
2307 }
09cee04b
PA
2308
2309 return resume_ptid;
2310}
2311
fbea99ea
PA
2312/* Return a ptid representing the set of threads that we will resume,
2313 in the perspective of the target, assuming run control handling
2314 does not require leaving some threads stopped (e.g., stepping past
2315 breakpoint). USER_STEP indicates whether we're about to start the
2316 target for a stepping command. */
2317
2318static ptid_t
2319internal_resume_ptid (int user_step)
2320{
2321 /* In non-stop, we always control threads individually. Note that
2322 the target may always work in non-stop mode even with "set
2323 non-stop off", in which case user_visible_resume_ptid could
2324 return a wildcard ptid. */
2325 if (target_is_non_stop_p ())
2326 return inferior_ptid;
2327 else
2328 return user_visible_resume_ptid (user_step);
2329}
2330
64ce06e4
PA
2331/* Wrapper for target_resume, that handles infrun-specific
2332 bookkeeping. */
2333
2334static void
2335do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2336{
2337 struct thread_info *tp = inferior_thread ();
2338
c65d6b55
PA
2339 gdb_assert (!tp->stop_requested);
2340
64ce06e4 2341 /* Install inferior's terminal modes. */
223ffa71 2342 target_terminal::inferior ();
64ce06e4
PA
2343
2344 /* Avoid confusing the next resume, if the next stop/resume
2345 happens to apply to another thread. */
2346 tp->suspend.stop_signal = GDB_SIGNAL_0;
2347
8f572e5c
PA
2348 /* Advise target which signals may be handled silently.
2349
2350 If we have removed breakpoints because we are stepping over one
2351 in-line (in any thread), we need to receive all signals to avoid
2352 accidentally skipping a breakpoint during execution of a signal
2353 handler.
2354
2355 Likewise if we're displaced stepping, otherwise a trap for a
2356 breakpoint in a signal handler might be confused with the
2357 displaced step finishing. We don't make the displaced_step_fixup
2358 step distinguish the cases instead, because:
2359
2360 - a backtrace while stopped in the signal handler would show the
2361 scratch pad as frame older than the signal handler, instead of
2362 the real mainline code.
2363
2364 - when the thread is later resumed, the signal handler would
2365 return to the scratch pad area, which would no longer be
2366 valid. */
2367 if (step_over_info_valid_p ()
2368 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2369 target_pass_signals (0, NULL);
2370 else
2371 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2372
2373 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2374
2375 target_commit_resume ();
64ce06e4
PA
2376}
2377
c906108c
SS
2378/* Resume the inferior, but allow a QUIT. This is useful if the user
2379 wants to interrupt some lengthy single-stepping operation
2380 (for child processes, the SIGINT goes to the inferior, and so
2381 we get a SIGINT random_signal, but for remote debugging and perhaps
2382 other targets, that's not true).
2383
c906108c
SS
2384 SIG is the signal to give the inferior (zero for none). */
2385void
64ce06e4 2386resume (enum gdb_signal sig)
c906108c 2387{
74b7792f 2388 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2389 struct regcache *regcache = get_current_regcache ();
2390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2391 struct thread_info *tp = inferior_thread ();
515630c5 2392 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2393 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2394 ptid_t resume_ptid;
856e7dd6
PA
2395 /* This represents the user's step vs continue request. When
2396 deciding whether "set scheduler-locking step" applies, it's the
2397 user's intention that counts. */
2398 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2399 /* This represents what we'll actually request the target to do.
2400 This can decay from a step to a continue, if e.g., we need to
2401 implement single-stepping with breakpoints (software
2402 single-step). */
6b403daa 2403 int step;
c7e8a53c 2404
c65d6b55 2405 gdb_assert (!tp->stop_requested);
c2829269
PA
2406 gdb_assert (!thread_is_in_step_over_chain (tp));
2407
c906108c
SS
2408 QUIT;
2409
372316f1
PA
2410 if (tp->suspend.waitstatus_pending_p)
2411 {
2412 if (debug_infrun)
2413 {
23fdd69e
SM
2414 std::string statstr
2415 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2416
372316f1 2417 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2418 "infrun: resume: thread %s has pending wait "
2419 "status %s (currently_stepping=%d).\n",
2420 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2421 currently_stepping (tp));
372316f1
PA
2422 }
2423
2424 tp->resumed = 1;
2425
2426 /* FIXME: What should we do if we are supposed to resume this
2427 thread with a signal? Maybe we should maintain a queue of
2428 pending signals to deliver. */
2429 if (sig != GDB_SIGNAL_0)
2430 {
fd7dcb94 2431 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2432 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2433 }
2434
2435 tp->suspend.stop_signal = GDB_SIGNAL_0;
2436 discard_cleanups (old_cleanups);
2437
2438 if (target_can_async_p ())
2439 target_async (1);
2440 return;
2441 }
2442
2443 tp->stepped_breakpoint = 0;
2444
6b403daa
PA
2445 /* Depends on stepped_breakpoint. */
2446 step = currently_stepping (tp);
2447
74609e71
YQ
2448 if (current_inferior ()->waiting_for_vfork_done)
2449 {
48f9886d
PA
2450 /* Don't try to single-step a vfork parent that is waiting for
2451 the child to get out of the shared memory region (by exec'ing
2452 or exiting). This is particularly important on software
2453 single-step archs, as the child process would trip on the
2454 software single step breakpoint inserted for the parent
2455 process. Since the parent will not actually execute any
2456 instruction until the child is out of the shared region (such
2457 are vfork's semantics), it is safe to simply continue it.
2458 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2459 the parent, and tell it to `keep_going', which automatically
2460 re-sets it stepping. */
74609e71
YQ
2461 if (debug_infrun)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "infrun: resume : clear step\n");
a09dd441 2464 step = 0;
74609e71
YQ
2465 }
2466
527159b7 2467 if (debug_infrun)
237fc4c9 2468 fprintf_unfiltered (gdb_stdlog,
c9737c08 2469 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2470 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2471 step, gdb_signal_to_symbol_string (sig),
2472 tp->control.trap_expected,
0d9a9a5f
PA
2473 target_pid_to_str (inferior_ptid),
2474 paddress (gdbarch, pc));
c906108c 2475
c2c6d25f
JM
2476 /* Normally, by the time we reach `resume', the breakpoints are either
2477 removed or inserted, as appropriate. The exception is if we're sitting
2478 at a permanent breakpoint; we need to step over it, but permanent
2479 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2480 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2481 {
af48d08f
PA
2482 if (sig != GDB_SIGNAL_0)
2483 {
2484 /* We have a signal to pass to the inferior. The resume
2485 may, or may not take us to the signal handler. If this
2486 is a step, we'll need to stop in the signal handler, if
2487 there's one, (if the target supports stepping into
2488 handlers), or in the next mainline instruction, if
2489 there's no handler. If this is a continue, we need to be
2490 sure to run the handler with all breakpoints inserted.
2491 In all cases, set a breakpoint at the current address
2492 (where the handler returns to), and once that breakpoint
2493 is hit, resume skipping the permanent breakpoint. If
2494 that breakpoint isn't hit, then we've stepped into the
2495 signal handler (or hit some other event). We'll delete
2496 the step-resume breakpoint then. */
2497
2498 if (debug_infrun)
2499 fprintf_unfiltered (gdb_stdlog,
2500 "infrun: resume: skipping permanent breakpoint, "
2501 "deliver signal first\n");
2502
2503 clear_step_over_info ();
2504 tp->control.trap_expected = 0;
2505
2506 if (tp->control.step_resume_breakpoint == NULL)
2507 {
2508 /* Set a "high-priority" step-resume, as we don't want
2509 user breakpoints at PC to trigger (again) when this
2510 hits. */
2511 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2512 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2513
2514 tp->step_after_step_resume_breakpoint = step;
2515 }
2516
2517 insert_breakpoints ();
2518 }
2519 else
2520 {
2521 /* There's no signal to pass, we can go ahead and skip the
2522 permanent breakpoint manually. */
2523 if (debug_infrun)
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: resume: skipping permanent breakpoint\n");
2526 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2527 /* Update pc to reflect the new address from which we will
2528 execute instructions. */
2529 pc = regcache_read_pc (regcache);
2530
2531 if (step)
2532 {
2533 /* We've already advanced the PC, so the stepping part
2534 is done. Now we need to arrange for a trap to be
2535 reported to handle_inferior_event. Set a breakpoint
2536 at the current PC, and run to it. Don't update
2537 prev_pc, because if we end in
44a1ee51
PA
2538 switch_back_to_stepped_thread, we want the "expected
2539 thread advanced also" branch to be taken. IOW, we
2540 don't want this thread to step further from PC
af48d08f 2541 (overstep). */
1ac806b8 2542 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2543 insert_single_step_breakpoint (gdbarch, aspace, pc);
2544 insert_breakpoints ();
2545
fbea99ea 2546 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2547 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2548 discard_cleanups (old_cleanups);
372316f1 2549 tp->resumed = 1;
af48d08f
PA
2550 return;
2551 }
2552 }
6d350bb5 2553 }
c2c6d25f 2554
c1e36e3e
PA
2555 /* If we have a breakpoint to step over, make sure to do a single
2556 step only. Same if we have software watchpoints. */
2557 if (tp->control.trap_expected || bpstat_should_step ())
2558 tp->control.may_range_step = 0;
2559
237fc4c9
PA
2560 /* If enabled, step over breakpoints by executing a copy of the
2561 instruction at a different address.
2562
2563 We can't use displaced stepping when we have a signal to deliver;
2564 the comments for displaced_step_prepare explain why. The
2565 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2566 signals' explain what we do instead.
2567
2568 We can't use displaced stepping when we are waiting for vfork_done
2569 event, displaced stepping breaks the vfork child similarly as single
2570 step software breakpoint. */
3fc8eb30
PA
2571 if (tp->control.trap_expected
2572 && use_displaced_stepping (tp)
cb71640d 2573 && !step_over_info_valid_p ()
a493e3e2 2574 && sig == GDB_SIGNAL_0
74609e71 2575 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2576 {
3fc8eb30 2577 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2578
3fc8eb30 2579 if (prepared == 0)
d56b7306 2580 {
4d9d9d04
PA
2581 if (debug_infrun)
2582 fprintf_unfiltered (gdb_stdlog,
2583 "Got placed in step-over queue\n");
2584
2585 tp->control.trap_expected = 0;
d56b7306
VP
2586 discard_cleanups (old_cleanups);
2587 return;
2588 }
3fc8eb30
PA
2589 else if (prepared < 0)
2590 {
2591 /* Fallback to stepping over the breakpoint in-line. */
2592
2593 if (target_is_non_stop_p ())
2594 stop_all_threads ();
2595
2596 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2597 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2598
2599 step = maybe_software_singlestep (gdbarch, pc);
2600
2601 insert_breakpoints ();
2602 }
2603 else if (prepared > 0)
2604 {
2605 struct displaced_step_inferior_state *displaced;
99e40580 2606
3fc8eb30
PA
2607 /* Update pc to reflect the new address from which we will
2608 execute instructions due to displaced stepping. */
2609 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2610
3fc8eb30
PA
2611 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2612 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2613 displaced->step_closure);
2614 }
237fc4c9
PA
2615 }
2616
2facfe5c 2617 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2618 else if (step)
2facfe5c 2619 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2620
30852783
UW
2621 /* Currently, our software single-step implementation leads to different
2622 results than hardware single-stepping in one situation: when stepping
2623 into delivering a signal which has an associated signal handler,
2624 hardware single-step will stop at the first instruction of the handler,
2625 while software single-step will simply skip execution of the handler.
2626
2627 For now, this difference in behavior is accepted since there is no
2628 easy way to actually implement single-stepping into a signal handler
2629 without kernel support.
2630
2631 However, there is one scenario where this difference leads to follow-on
2632 problems: if we're stepping off a breakpoint by removing all breakpoints
2633 and then single-stepping. In this case, the software single-step
2634 behavior means that even if there is a *breakpoint* in the signal
2635 handler, GDB still would not stop.
2636
2637 Fortunately, we can at least fix this particular issue. We detect
2638 here the case where we are about to deliver a signal while software
2639 single-stepping with breakpoints removed. In this situation, we
2640 revert the decisions to remove all breakpoints and insert single-
2641 step breakpoints, and instead we install a step-resume breakpoint
2642 at the current address, deliver the signal without stepping, and
2643 once we arrive back at the step-resume breakpoint, actually step
2644 over the breakpoint we originally wanted to step over. */
34b7e8a6 2645 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2646 && sig != GDB_SIGNAL_0
2647 && step_over_info_valid_p ())
30852783
UW
2648 {
2649 /* If we have nested signals or a pending signal is delivered
2650 immediately after a handler returns, might might already have
2651 a step-resume breakpoint set on the earlier handler. We cannot
2652 set another step-resume breakpoint; just continue on until the
2653 original breakpoint is hit. */
2654 if (tp->control.step_resume_breakpoint == NULL)
2655 {
2c03e5be 2656 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2657 tp->step_after_step_resume_breakpoint = 1;
2658 }
2659
34b7e8a6 2660 delete_single_step_breakpoints (tp);
30852783 2661
31e77af2 2662 clear_step_over_info ();
30852783 2663 tp->control.trap_expected = 0;
31e77af2
PA
2664
2665 insert_breakpoints ();
30852783
UW
2666 }
2667
b0f16a3e
SM
2668 /* If STEP is set, it's a request to use hardware stepping
2669 facilities. But in that case, we should never
2670 use singlestep breakpoint. */
34b7e8a6 2671 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2672
fbea99ea 2673 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2674 if (tp->control.trap_expected)
b0f16a3e
SM
2675 {
2676 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2677 hit, either by single-stepping the thread with the breakpoint
2678 removed, or by displaced stepping, with the breakpoint inserted.
2679 In the former case, we need to single-step only this thread,
2680 and keep others stopped, as they can miss this breakpoint if
2681 allowed to run. That's not really a problem for displaced
2682 stepping, but, we still keep other threads stopped, in case
2683 another thread is also stopped for a breakpoint waiting for
2684 its turn in the displaced stepping queue. */
b0f16a3e
SM
2685 resume_ptid = inferior_ptid;
2686 }
fbea99ea
PA
2687 else
2688 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2689
7f5ef605
PA
2690 if (execution_direction != EXEC_REVERSE
2691 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2692 {
372316f1
PA
2693 /* There are two cases where we currently need to step a
2694 breakpoint instruction when we have a signal to deliver:
2695
2696 - See handle_signal_stop where we handle random signals that
2697 could take out us out of the stepping range. Normally, in
2698 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2699 signal handler with a breakpoint at PC, but there are cases
2700 where we should _always_ single-step, even if we have a
2701 step-resume breakpoint, like when a software watchpoint is
2702 set. Assuming single-stepping and delivering a signal at the
2703 same time would takes us to the signal handler, then we could
2704 have removed the breakpoint at PC to step over it. However,
2705 some hardware step targets (like e.g., Mac OS) can't step
2706 into signal handlers, and for those, we need to leave the
2707 breakpoint at PC inserted, as otherwise if the handler
2708 recurses and executes PC again, it'll miss the breakpoint.
2709 So we leave the breakpoint inserted anyway, but we need to
2710 record that we tried to step a breakpoint instruction, so
372316f1
PA
2711 that adjust_pc_after_break doesn't end up confused.
2712
2713 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2714 in one thread after another thread that was stepping had been
2715 momentarily paused for a step-over. When we re-resume the
2716 stepping thread, it may be resumed from that address with a
2717 breakpoint that hasn't trapped yet. Seen with
2718 gdb.threads/non-stop-fair-events.exp, on targets that don't
2719 do displaced stepping. */
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: resume: [%s] stepped breakpoint\n",
2724 target_pid_to_str (tp->ptid));
7f5ef605
PA
2725
2726 tp->stepped_breakpoint = 1;
2727
b0f16a3e
SM
2728 /* Most targets can step a breakpoint instruction, thus
2729 executing it normally. But if this one cannot, just
2730 continue and we will hit it anyway. */
7f5ef605 2731 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2732 step = 0;
2733 }
ef5cf84e 2734
b0f16a3e 2735 if (debug_displaced
cb71640d 2736 && tp->control.trap_expected
3fc8eb30 2737 && use_displaced_stepping (tp)
cb71640d 2738 && !step_over_info_valid_p ())
b0f16a3e 2739 {
d9b67d9f 2740 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2741 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2742 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2743 gdb_byte buf[4];
2744
2745 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2746 paddress (resume_gdbarch, actual_pc));
2747 read_memory (actual_pc, buf, sizeof (buf));
2748 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2749 }
237fc4c9 2750
b0f16a3e
SM
2751 if (tp->control.may_range_step)
2752 {
2753 /* If we're resuming a thread with the PC out of the step
2754 range, then we're doing some nested/finer run control
2755 operation, like stepping the thread out of the dynamic
2756 linker or the displaced stepping scratch pad. We
2757 shouldn't have allowed a range step then. */
2758 gdb_assert (pc_in_thread_step_range (pc, tp));
2759 }
c1e36e3e 2760
64ce06e4 2761 do_target_resume (resume_ptid, step, sig);
372316f1 2762 tp->resumed = 1;
c906108c
SS
2763 discard_cleanups (old_cleanups);
2764}
2765\f
237fc4c9 2766/* Proceeding. */
c906108c 2767
4c2f2a79
PA
2768/* See infrun.h. */
2769
2770/* Counter that tracks number of user visible stops. This can be used
2771 to tell whether a command has proceeded the inferior past the
2772 current location. This allows e.g., inferior function calls in
2773 breakpoint commands to not interrupt the command list. When the
2774 call finishes successfully, the inferior is standing at the same
2775 breakpoint as if nothing happened (and so we don't call
2776 normal_stop). */
2777static ULONGEST current_stop_id;
2778
2779/* See infrun.h. */
2780
2781ULONGEST
2782get_stop_id (void)
2783{
2784 return current_stop_id;
2785}
2786
2787/* Called when we report a user visible stop. */
2788
2789static void
2790new_stop_id (void)
2791{
2792 current_stop_id++;
2793}
2794
c906108c
SS
2795/* Clear out all variables saying what to do when inferior is continued.
2796 First do this, then set the ones you want, then call `proceed'. */
2797
a7212384
UW
2798static void
2799clear_proceed_status_thread (struct thread_info *tp)
c906108c 2800{
a7212384
UW
2801 if (debug_infrun)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "infrun: clear_proceed_status_thread (%s)\n",
2804 target_pid_to_str (tp->ptid));
d6b48e9c 2805
372316f1
PA
2806 /* If we're starting a new sequence, then the previous finished
2807 single-step is no longer relevant. */
2808 if (tp->suspend.waitstatus_pending_p)
2809 {
2810 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2811 {
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "infrun: clear_proceed_status: pending "
2815 "event of %s was a finished step. "
2816 "Discarding.\n",
2817 target_pid_to_str (tp->ptid));
2818
2819 tp->suspend.waitstatus_pending_p = 0;
2820 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2821 }
2822 else if (debug_infrun)
2823 {
23fdd69e
SM
2824 std::string statstr
2825 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2826
372316f1
PA
2827 fprintf_unfiltered (gdb_stdlog,
2828 "infrun: clear_proceed_status_thread: thread %s "
2829 "has pending wait status %s "
2830 "(currently_stepping=%d).\n",
23fdd69e 2831 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2832 currently_stepping (tp));
372316f1
PA
2833 }
2834 }
2835
70509625
PA
2836 /* If this signal should not be seen by program, give it zero.
2837 Used for debugging signals. */
2838 if (!signal_pass_state (tp->suspend.stop_signal))
2839 tp->suspend.stop_signal = GDB_SIGNAL_0;
2840
243a9253
PA
2841 thread_fsm_delete (tp->thread_fsm);
2842 tp->thread_fsm = NULL;
2843
16c381f0
JK
2844 tp->control.trap_expected = 0;
2845 tp->control.step_range_start = 0;
2846 tp->control.step_range_end = 0;
c1e36e3e 2847 tp->control.may_range_step = 0;
16c381f0
JK
2848 tp->control.step_frame_id = null_frame_id;
2849 tp->control.step_stack_frame_id = null_frame_id;
2850 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2851 tp->control.step_start_function = NULL;
a7212384 2852 tp->stop_requested = 0;
4e1c45ea 2853
16c381f0 2854 tp->control.stop_step = 0;
32400beb 2855
16c381f0 2856 tp->control.proceed_to_finish = 0;
414c69f7 2857
856e7dd6 2858 tp->control.stepping_command = 0;
17b2616c 2859
a7212384 2860 /* Discard any remaining commands or status from previous stop. */
16c381f0 2861 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2862}
32400beb 2863
a7212384 2864void
70509625 2865clear_proceed_status (int step)
a7212384 2866{
f2665db5
MM
2867 /* With scheduler-locking replay, stop replaying other threads if we're
2868 not replaying the user-visible resume ptid.
2869
2870 This is a convenience feature to not require the user to explicitly
2871 stop replaying the other threads. We're assuming that the user's
2872 intent is to resume tracing the recorded process. */
2873 if (!non_stop && scheduler_mode == schedlock_replay
2874 && target_record_is_replaying (minus_one_ptid)
2875 && !target_record_will_replay (user_visible_resume_ptid (step),
2876 execution_direction))
2877 target_record_stop_replaying ();
2878
6c95b8df
PA
2879 if (!non_stop)
2880 {
70509625
PA
2881 struct thread_info *tp;
2882 ptid_t resume_ptid;
2883
2884 resume_ptid = user_visible_resume_ptid (step);
2885
2886 /* In all-stop mode, delete the per-thread status of all threads
2887 we're about to resume, implicitly and explicitly. */
2888 ALL_NON_EXITED_THREADS (tp)
2889 {
2890 if (!ptid_match (tp->ptid, resume_ptid))
2891 continue;
2892 clear_proceed_status_thread (tp);
2893 }
6c95b8df
PA
2894 }
2895
a7212384
UW
2896 if (!ptid_equal (inferior_ptid, null_ptid))
2897 {
2898 struct inferior *inferior;
2899
2900 if (non_stop)
2901 {
6c95b8df
PA
2902 /* If in non-stop mode, only delete the per-thread status of
2903 the current thread. */
a7212384
UW
2904 clear_proceed_status_thread (inferior_thread ());
2905 }
6c95b8df 2906
d6b48e9c 2907 inferior = current_inferior ();
16c381f0 2908 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2909 }
2910
f3b1572e 2911 observer_notify_about_to_proceed ();
c906108c
SS
2912}
2913
99619bea
PA
2914/* Returns true if TP is still stopped at a breakpoint that needs
2915 stepping-over in order to make progress. If the breakpoint is gone
2916 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2917
2918static int
6c4cfb24 2919thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2920{
2921 if (tp->stepping_over_breakpoint)
2922 {
2923 struct regcache *regcache = get_thread_regcache (tp->ptid);
2924
2925 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2926 regcache_read_pc (regcache))
2927 == ordinary_breakpoint_here)
99619bea
PA
2928 return 1;
2929
2930 tp->stepping_over_breakpoint = 0;
2931 }
2932
2933 return 0;
2934}
2935
6c4cfb24
PA
2936/* Check whether thread TP still needs to start a step-over in order
2937 to make progress when resumed. Returns an bitwise or of enum
2938 step_over_what bits, indicating what needs to be stepped over. */
2939
8d297bbf 2940static step_over_what
6c4cfb24
PA
2941thread_still_needs_step_over (struct thread_info *tp)
2942{
8d297bbf 2943 step_over_what what = 0;
6c4cfb24
PA
2944
2945 if (thread_still_needs_step_over_bp (tp))
2946 what |= STEP_OVER_BREAKPOINT;
2947
2948 if (tp->stepping_over_watchpoint
2949 && !target_have_steppable_watchpoint)
2950 what |= STEP_OVER_WATCHPOINT;
2951
2952 return what;
2953}
2954
483805cf
PA
2955/* Returns true if scheduler locking applies. STEP indicates whether
2956 we're about to do a step/next-like command to a thread. */
2957
2958static int
856e7dd6 2959schedlock_applies (struct thread_info *tp)
483805cf
PA
2960{
2961 return (scheduler_mode == schedlock_on
2962 || (scheduler_mode == schedlock_step
f2665db5
MM
2963 && tp->control.stepping_command)
2964 || (scheduler_mode == schedlock_replay
2965 && target_record_will_replay (minus_one_ptid,
2966 execution_direction)));
483805cf
PA
2967}
2968
c906108c
SS
2969/* Basic routine for continuing the program in various fashions.
2970
2971 ADDR is the address to resume at, or -1 for resume where stopped.
2972 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2973 or -1 for act according to how it stopped.
c906108c 2974 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2975 -1 means return after that and print nothing.
2976 You should probably set various step_... variables
2977 before calling here, if you are stepping.
c906108c
SS
2978
2979 You should call clear_proceed_status before calling proceed. */
2980
2981void
64ce06e4 2982proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2983{
e58b0e63
PA
2984 struct regcache *regcache;
2985 struct gdbarch *gdbarch;
4e1c45ea 2986 struct thread_info *tp;
e58b0e63 2987 CORE_ADDR pc;
6c95b8df 2988 struct address_space *aspace;
4d9d9d04
PA
2989 ptid_t resume_ptid;
2990 struct execution_control_state ecss;
2991 struct execution_control_state *ecs = &ecss;
2992 struct cleanup *old_chain;
2993 int started;
c906108c 2994
e58b0e63
PA
2995 /* If we're stopped at a fork/vfork, follow the branch set by the
2996 "set follow-fork-mode" command; otherwise, we'll just proceed
2997 resuming the current thread. */
2998 if (!follow_fork ())
2999 {
3000 /* The target for some reason decided not to resume. */
3001 normal_stop ();
f148b27e
PA
3002 if (target_can_async_p ())
3003 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
3004 return;
3005 }
3006
842951eb
PA
3007 /* We'll update this if & when we switch to a new thread. */
3008 previous_inferior_ptid = inferior_ptid;
3009
e58b0e63
PA
3010 regcache = get_current_regcache ();
3011 gdbarch = get_regcache_arch (regcache);
6c95b8df 3012 aspace = get_regcache_aspace (regcache);
e58b0e63 3013 pc = regcache_read_pc (regcache);
2adfaa28 3014 tp = inferior_thread ();
e58b0e63 3015
99619bea
PA
3016 /* Fill in with reasonable starting values. */
3017 init_thread_stepping_state (tp);
3018
c2829269
PA
3019 gdb_assert (!thread_is_in_step_over_chain (tp));
3020
2acceee2 3021 if (addr == (CORE_ADDR) -1)
c906108c 3022 {
af48d08f
PA
3023 if (pc == stop_pc
3024 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3025 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3026 /* There is a breakpoint at the address we will resume at,
3027 step one instruction before inserting breakpoints so that
3028 we do not stop right away (and report a second hit at this
b2175913
MS
3029 breakpoint).
3030
3031 Note, we don't do this in reverse, because we won't
3032 actually be executing the breakpoint insn anyway.
3033 We'll be (un-)executing the previous instruction. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
515630c5
UW
3035 else if (gdbarch_single_step_through_delay_p (gdbarch)
3036 && gdbarch_single_step_through_delay (gdbarch,
3037 get_current_frame ()))
3352ef37
AC
3038 /* We stepped onto an instruction that needs to be stepped
3039 again before re-inserting the breakpoint, do so. */
99619bea 3040 tp->stepping_over_breakpoint = 1;
c906108c
SS
3041 }
3042 else
3043 {
515630c5 3044 regcache_write_pc (regcache, addr);
c906108c
SS
3045 }
3046
70509625
PA
3047 if (siggnal != GDB_SIGNAL_DEFAULT)
3048 tp->suspend.stop_signal = siggnal;
3049
4d9d9d04
PA
3050 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3051
3052 /* If an exception is thrown from this point on, make sure to
3053 propagate GDB's knowledge of the executing state to the
3054 frontend/user running state. */
3055 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3056
3057 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3058 threads (e.g., we might need to set threads stepping over
3059 breakpoints first), from the user/frontend's point of view, all
3060 threads in RESUME_PTID are now running. Unless we're calling an
3061 inferior function, as in that case we pretend the inferior
3062 doesn't run at all. */
3063 if (!tp->control.in_infcall)
3064 set_running (resume_ptid, 1);
17b2616c 3065
527159b7 3066 if (debug_infrun)
8a9de0e4 3067 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3068 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3069 paddress (gdbarch, addr),
64ce06e4 3070 gdb_signal_to_symbol_string (siggnal));
527159b7 3071
4d9d9d04
PA
3072 annotate_starting ();
3073
3074 /* Make sure that output from GDB appears before output from the
3075 inferior. */
3076 gdb_flush (gdb_stdout);
3077
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
94cc34af 3092 {
4d9d9d04
PA
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
99619bea 3101
4d9d9d04
PA
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
c906108c 3105
4d9d9d04
PA
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3110
99619bea
PA
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
4d9d9d04 3114 target_pid_to_str (tp->ptid));
99619bea 3115
4d9d9d04 3116 thread_step_over_chain_enqueue (tp);
2adfaa28 3117 }
31e77af2 3118
4d9d9d04 3119 tp = current;
30852783
UW
3120 }
3121
4d9d9d04
PA
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
30852783 3126
4d9d9d04
PA
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3133
a9bc57b9
TT
3134 {
3135 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3136
a9bc57b9 3137 started = start_step_over ();
c906108c 3138
a9bc57b9
TT
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
fd7dcb94 3188 error (_("Command aborted."));
fbea99ea 3189 }
a9bc57b9
TT
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200 }
c906108c 3201
85ad3aaf
PA
3202 target_commit_resume ();
3203
4d9d9d04 3204 discard_cleanups (old_chain);
c906108c 3205
0b333c5e
PA
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
362646f5 3209 if (!target_can_async_p ())
0b333c5e 3210 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3211}
c906108c
SS
3212\f
3213
3214/* Start remote-debugging of a machine over a serial link. */
96baa820 3215
c906108c 3216void
8621d6a9 3217start_remote (int from_tty)
c906108c 3218{
d6b48e9c 3219 struct inferior *inferior;
d6b48e9c
PA
3220
3221 inferior = current_inferior ();
16c381f0 3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3223
1777feb0 3224 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3226 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
1777feb0 3230 timeout. */
6426a772
JM
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
1777feb0 3237 for an async run. */
e4c8541f 3238 wait_for_inferior ();
8621d6a9
DJ
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
3243 post_create_inferior (&current_target, from_tty);
3244
6426a772 3245 normal_stop ();
c906108c
SS
3246}
3247
3248/* Initialize static vars when a new inferior begins. */
3249
3250void
96baa820 3251init_wait_for_inferior (void)
c906108c
SS
3252{
3253 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3254
c906108c
SS
3255 breakpoint_init_inferior (inf_starting);
3256
70509625 3257 clear_proceed_status (0);
9f976b41 3258
ca005067 3259 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3260
842951eb 3261 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3262
edb3359d
DJ
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
c906108c 3265}
237fc4c9 3266
c906108c 3267\f
488f131b 3268
ec9499be 3269static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3270
568d6575
UW
3271static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
4f5d7f63 3275static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3276static void check_exception_resume (struct execution_control_state *,
28106bc2 3277 struct frame_info *);
611c83ae 3278
bdc36728 3279static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3280static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3281static void keep_going (struct execution_control_state *ecs);
94c57d6a 3282static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3283static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3284
252fbfc8
PA
3285/* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
2c0b251b 3289static void
252fbfc8
PA
3290infrun_thread_stop_requested (ptid_t ptid)
3291{
c2829269 3292 struct thread_info *tp;
252fbfc8 3293
c65d6b55
PA
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
c2829269
PA
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
c65d6b55
PA
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
c2829269
PA
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
252fbfc8 3311
c65d6b55
PA
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
252fbfc8
PA
3339}
3340
a07daef3
PA
3341static void
3342infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343{
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346}
3347
0cbcdb96
PA
3348/* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
4e1c45ea 3350
0cbcdb96
PA
3351static void
3352delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3353{
0cbcdb96
PA
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
34b7e8a6 3356 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3357}
3358
0cbcdb96
PA
3359/* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
4e1c45ea
PA
3365
3366static void
0cbcdb96 3367for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3368{
0cbcdb96 3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3370 return;
3371
fbea99ea 3372 if (target_is_non_stop_p ())
4e1c45ea 3373 {
0cbcdb96
PA
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
4e1c45ea
PA
3376 }
3377 else
0cbcdb96
PA
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387}
3388
3389/* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392static void
3393delete_just_stopped_threads_infrun_breakpoints (void)
3394{
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3396}
3397
3398/* Delete the single-step breakpoints of the threads that just
3399 stopped. */
7c16b83e 3400
34b7e8a6
PA
3401static void
3402delete_just_stopped_threads_single_step_breakpoints (void)
3403{
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3405}
3406
1777feb0 3407/* A cleanup wrapper. */
4e1c45ea
PA
3408
3409static void
0cbcdb96 3410delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3411{
0cbcdb96 3412 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3413}
3414
221e1a37 3415/* See infrun.h. */
223698f8 3416
221e1a37 3417void
223698f8
DE
3418print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420{
23fdd69e 3421 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3422 string_file stb;
223698f8
DE
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
d7e74731
PA
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
dfd4cc63 3433 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
23fdd69e 3441 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
d7e74731 3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3446}
3447
372316f1
PA
3448/* Select a thread at random, out of those which are resumed and have
3449 had events. */
3450
3451static struct thread_info *
3452random_pending_event_thread (ptid_t waiton_ptid)
3453{
3454 struct thread_info *event_tp;
3455 int num_events = 0;
3456 int random_selector;
3457
3458 /* First see how many events we have. Count only resumed threads
3459 that have an event pending. */
3460 ALL_NON_EXITED_THREADS (event_tp)
3461 if (ptid_match (event_tp->ptid, waiton_ptid)
3462 && event_tp->resumed
3463 && event_tp->suspend.waitstatus_pending_p)
3464 num_events++;
3465
3466 if (num_events == 0)
3467 return NULL;
3468
3469 /* Now randomly pick a thread out of those that have had events. */
3470 random_selector = (int)
3471 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3472
3473 if (debug_infrun && num_events > 1)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "infrun: Found %d events, selecting #%d\n",
3476 num_events, random_selector);
3477
3478 /* Select the Nth thread that has had an event. */
3479 ALL_NON_EXITED_THREADS (event_tp)
3480 if (ptid_match (event_tp->ptid, waiton_ptid)
3481 && event_tp->resumed
3482 && event_tp->suspend.waitstatus_pending_p)
3483 if (random_selector-- == 0)
3484 break;
3485
3486 return event_tp;
3487}
3488
3489/* Wrapper for target_wait that first checks whether threads have
3490 pending statuses to report before actually asking the target for
3491 more events. */
3492
3493static ptid_t
3494do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3495{
3496 ptid_t event_ptid;
3497 struct thread_info *tp;
3498
3499 /* First check if there is a resumed thread with a wait status
3500 pending. */
3501 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3502 {
3503 tp = random_pending_event_thread (ptid);
3504 }
3505 else
3506 {
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Waiting for specific thread %s.\n",
3510 target_pid_to_str (ptid));
3511
3512 /* We have a specific thread to check. */
3513 tp = find_thread_ptid (ptid);
3514 gdb_assert (tp != NULL);
3515 if (!tp->suspend.waitstatus_pending_p)
3516 tp = NULL;
3517 }
3518
3519 if (tp != NULL
3520 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3522 {
3523 struct regcache *regcache = get_thread_regcache (tp->ptid);
3524 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3525 CORE_ADDR pc;
3526 int discard = 0;
3527
3528 pc = regcache_read_pc (regcache);
3529
3530 if (pc != tp->suspend.stop_pc)
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: PC of %s changed. was=%s, now=%s\n",
3535 target_pid_to_str (tp->ptid),
3536 paddress (gdbarch, tp->prev_pc),
3537 paddress (gdbarch, pc));
3538 discard = 1;
3539 }
3540 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: previous breakpoint of %s, at %s gone\n",
3545 target_pid_to_str (tp->ptid),
3546 paddress (gdbarch, pc));
3547
3548 discard = 1;
3549 }
3550
3551 if (discard)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: pending event of %s cancelled.\n",
3556 target_pid_to_str (tp->ptid));
3557
3558 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3559 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3560 }
3561 }
3562
3563 if (tp != NULL)
3564 {
3565 if (debug_infrun)
3566 {
23fdd69e
SM
3567 std::string statstr
3568 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3569
372316f1
PA
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3572 statstr.c_str (),
372316f1 3573 target_pid_to_str (tp->ptid));
372316f1
PA
3574 }
3575
3576 /* Now that we've selected our final event LWP, un-adjust its PC
3577 if it was a software breakpoint (and the target doesn't
3578 always adjust the PC itself). */
3579 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 && !target_supports_stopped_by_sw_breakpoint ())
3581 {
3582 struct regcache *regcache;
3583 struct gdbarch *gdbarch;
3584 int decr_pc;
3585
3586 regcache = get_thread_regcache (tp->ptid);
3587 gdbarch = get_regcache_arch (regcache);
3588
3589 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3600 *status = tp->suspend.waitstatus;
3601 tp->suspend.waitstatus_pending_p = 0;
3602
3603 /* Wake up the event loop again, until all pending events are
3604 processed. */
3605 if (target_is_async_p ())
3606 mark_async_event_handler (infrun_async_inferior_event_token);
3607 return tp->ptid;
3608 }
3609
3610 /* But if we don't find one, we'll have to wait. */
3611
3612 if (deprecated_target_wait_hook)
3613 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3614 else
3615 event_ptid = target_wait (ptid, status, options);
3616
3617 return event_ptid;
3618}
3619
24291992
PA
3620/* Prepare and stabilize the inferior for detaching it. E.g.,
3621 detaching while a thread is displaced stepping is a recipe for
3622 crashing it, as nothing would readjust the PC out of the scratch
3623 pad. */
3624
3625void
3626prepare_for_detach (void)
3627{
3628 struct inferior *inf = current_inferior ();
3629 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3630 struct displaced_step_inferior_state *displaced;
3631
3632 displaced = get_displaced_stepping_state (inf->pid);
3633
3634 /* Is any thread of this process displaced stepping? If not,
3635 there's nothing else to do. */
3636 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3637 return;
3638
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog,
3641 "displaced-stepping in-process while detaching");
3642
9bcb1f16 3643 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3644
3645 while (!ptid_equal (displaced->step_ptid, null_ptid))
3646 {
3647 struct cleanup *old_chain_2;
3648 struct execution_control_state ecss;
3649 struct execution_control_state *ecs;
3650
3651 ecs = &ecss;
3652 memset (ecs, 0, sizeof (*ecs));
3653
3654 overlay_cache_invalid = 1;
f15cb84a
YQ
3655 /* Flush target cache before starting to handle each event.
3656 Target was running and cache could be stale. This is just a
3657 heuristic. Running threads may modify target memory, but we
3658 don't get any event. */
3659 target_dcache_invalidate ();
24291992 3660
372316f1 3661 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3662
3663 if (debug_infrun)
3664 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3665
3666 /* If an error happens while handling the event, propagate GDB's
3667 knowledge of the executing state to the frontend/user running
3668 state. */
3e43a32a
MS
3669 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3670 &minus_one_ptid);
24291992
PA
3671
3672 /* Now figure out what to do with the result of the result. */
3673 handle_inferior_event (ecs);
3674
3675 /* No error, don't finish the state yet. */
3676 discard_cleanups (old_chain_2);
3677
3678 /* Breakpoints and watchpoints are not installed on the target
3679 at this point, and signals are passed directly to the
3680 inferior, so this must mean the process is gone. */
3681 if (!ecs->wait_some_more)
3682 {
9bcb1f16 3683 restore_detaching.release ();
24291992
PA
3684 error (_("Program exited while detaching"));
3685 }
3686 }
3687
9bcb1f16 3688 restore_detaching.release ();
24291992
PA
3689}
3690
cd0fc7c3 3691/* Wait for control to return from inferior to debugger.
ae123ec6 3692
cd0fc7c3
SS
3693 If inferior gets a signal, we may decide to start it up again
3694 instead of returning. That is why there is a loop in this function.
3695 When this function actually returns it means the inferior
3696 should be left stopped and GDB should read more commands. */
3697
3698void
e4c8541f 3699wait_for_inferior (void)
cd0fc7c3
SS
3700{
3701 struct cleanup *old_cleanups;
e6f5c25b 3702 struct cleanup *thread_state_chain;
c906108c 3703
527159b7 3704 if (debug_infrun)
ae123ec6 3705 fprintf_unfiltered
e4c8541f 3706 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3707
0cbcdb96
PA
3708 old_cleanups
3709 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3710 NULL);
cd0fc7c3 3711
e6f5c25b
PA
3712 /* If an error happens while handling the event, propagate GDB's
3713 knowledge of the executing state to the frontend/user running
3714 state. */
3715 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3716
c906108c
SS
3717 while (1)
3718 {
ae25568b
PA
3719 struct execution_control_state ecss;
3720 struct execution_control_state *ecs = &ecss;
963f9c80 3721 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3722
ae25568b
PA
3723 memset (ecs, 0, sizeof (*ecs));
3724
ec9499be 3725 overlay_cache_invalid = 1;
ec9499be 3726
f15cb84a
YQ
3727 /* Flush target cache before starting to handle each event.
3728 Target was running and cache could be stale. This is just a
3729 heuristic. Running threads may modify target memory, but we
3730 don't get any event. */
3731 target_dcache_invalidate ();
3732
372316f1 3733 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3734
f00150c9 3735 if (debug_infrun)
223698f8 3736 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3737
cd0fc7c3
SS
3738 /* Now figure out what to do with the result of the result. */
3739 handle_inferior_event (ecs);
c906108c 3740
cd0fc7c3
SS
3741 if (!ecs->wait_some_more)
3742 break;
3743 }
4e1c45ea 3744
e6f5c25b
PA
3745 /* No error, don't finish the state yet. */
3746 discard_cleanups (thread_state_chain);
3747
cd0fc7c3
SS
3748 do_cleanups (old_cleanups);
3749}
c906108c 3750
d3d4baed
PA
3751/* Cleanup that reinstalls the readline callback handler, if the
3752 target is running in the background. If while handling the target
3753 event something triggered a secondary prompt, like e.g., a
3754 pagination prompt, we'll have removed the callback handler (see
3755 gdb_readline_wrapper_line). Need to do this as we go back to the
3756 event loop, ready to process further input. Note this has no
3757 effect if the handler hasn't actually been removed, because calling
3758 rl_callback_handler_install resets the line buffer, thus losing
3759 input. */
3760
3761static void
3762reinstall_readline_callback_handler_cleanup (void *arg)
3763{
3b12939d
PA
3764 struct ui *ui = current_ui;
3765
3766 if (!ui->async)
6c400b59
PA
3767 {
3768 /* We're not going back to the top level event loop yet. Don't
3769 install the readline callback, as it'd prep the terminal,
3770 readline-style (raw, noecho) (e.g., --batch). We'll install
3771 it the next time the prompt is displayed, when we're ready
3772 for input. */
3773 return;
3774 }
3775
3b12939d 3776 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3777 gdb_rl_callback_handler_reinstall ();
3778}
3779
243a9253
PA
3780/* Clean up the FSMs of threads that are now stopped. In non-stop,
3781 that's just the event thread. In all-stop, that's all threads. */
3782
3783static void
3784clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3785{
3786 struct thread_info *thr = ecs->event_thread;
3787
3788 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3789 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3790
3791 if (!non_stop)
3792 {
3793 ALL_NON_EXITED_THREADS (thr)
3794 {
3795 if (thr->thread_fsm == NULL)
3796 continue;
3797 if (thr == ecs->event_thread)
3798 continue;
3799
3800 switch_to_thread (thr->ptid);
8980e177 3801 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3802 }
3803
3804 if (ecs->event_thread != NULL)
3805 switch_to_thread (ecs->event_thread->ptid);
3806 }
3807}
3808
3b12939d
PA
3809/* Helper for all_uis_check_sync_execution_done that works on the
3810 current UI. */
3811
3812static void
3813check_curr_ui_sync_execution_done (void)
3814{
3815 struct ui *ui = current_ui;
3816
3817 if (ui->prompt_state == PROMPT_NEEDED
3818 && ui->async
3819 && !gdb_in_secondary_prompt_p (ui))
3820 {
223ffa71 3821 target_terminal::ours ();
3b12939d 3822 observer_notify_sync_execution_done ();
3eb7562a 3823 ui_register_input_event_handler (ui);
3b12939d
PA
3824 }
3825}
3826
3827/* See infrun.h. */
3828
3829void
3830all_uis_check_sync_execution_done (void)
3831{
0e454242 3832 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3833 {
3834 check_curr_ui_sync_execution_done ();
3835 }
3836}
3837
a8836c93
PA
3838/* See infrun.h. */
3839
3840void
3841all_uis_on_sync_execution_starting (void)
3842{
0e454242 3843 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3844 {
3845 if (current_ui->prompt_state == PROMPT_NEEDED)
3846 async_disable_stdin ();
3847 }
3848}
3849
1777feb0 3850/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3851 event loop whenever a change of state is detected on the file
1777feb0
MS
3852 descriptor corresponding to the target. It can be called more than
3853 once to complete a single execution command. In such cases we need
3854 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3855 that this function is called for a single execution command, then
3856 report to the user that the inferior has stopped, and do the
1777feb0 3857 necessary cleanups. */
43ff13b4
JM
3858
3859void
fba45db2 3860fetch_inferior_event (void *client_data)
43ff13b4 3861{
0d1e5fa7 3862 struct execution_control_state ecss;
a474d7c2 3863 struct execution_control_state *ecs = &ecss;
4f8d22e3 3864 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3865 struct cleanup *ts_old_chain;
0f641c01 3866 int cmd_done = 0;
963f9c80 3867 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3868
0d1e5fa7
PA
3869 memset (ecs, 0, sizeof (*ecs));
3870
c61db772
PA
3871 /* Events are always processed with the main UI as current UI. This
3872 way, warnings, debug output, etc. are always consistently sent to
3873 the main console. */
4b6749b9 3874 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3875
d3d4baed
PA
3876 /* End up with readline processing input, if necessary. */
3877 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3878
c5187ac6
PA
3879 /* We're handling a live event, so make sure we're doing live
3880 debugging. If we're looking at traceframes while the target is
3881 running, we're going to need to get back to that mode after
3882 handling the event. */
3883 if (non_stop)
3884 {
3885 make_cleanup_restore_current_traceframe ();
e6e4e701 3886 set_current_traceframe (-1);
c5187ac6
PA
3887 }
3888
5ed8105e
PA
3889 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3890
4f8d22e3
PA
3891 if (non_stop)
3892 /* In non-stop mode, the user/frontend should not notice a thread
3893 switch due to internal events. Make sure we reverse to the
3894 user selected thread and frame after handling the event and
3895 running any breakpoint commands. */
5ed8105e 3896 maybe_restore_thread.emplace ();
4f8d22e3 3897
ec9499be 3898 overlay_cache_invalid = 1;
f15cb84a
YQ
3899 /* Flush target cache before starting to handle each event. Target
3900 was running and cache could be stale. This is just a heuristic.
3901 Running threads may modify target memory, but we don't get any
3902 event. */
3903 target_dcache_invalidate ();
3dd5b83d 3904
b7b633e9
TT
3905 scoped_restore save_exec_dir
3906 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3907
0b333c5e
PA
3908 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3909 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3910
f00150c9 3911 if (debug_infrun)
223698f8 3912 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3913
29f49a6a
PA
3914 /* If an error happens while handling the event, propagate GDB's
3915 knowledge of the executing state to the frontend/user running
3916 state. */
fbea99ea 3917 if (!target_is_non_stop_p ())
29f49a6a
PA
3918 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3919 else
3920 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3921
353d1d73
JK
3922 /* Get executed before make_cleanup_restore_current_thread above to apply
3923 still for the thread which has thrown the exception. */
3924 make_bpstat_clear_actions_cleanup ();
3925
7c16b83e
PA
3926 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3927
43ff13b4 3928 /* Now figure out what to do with the result of the result. */
a474d7c2 3929 handle_inferior_event (ecs);
43ff13b4 3930
a474d7c2 3931 if (!ecs->wait_some_more)
43ff13b4 3932 {
c9657e70 3933 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3934 int should_stop = 1;
3935 struct thread_info *thr = ecs->event_thread;
388a7084 3936 int should_notify_stop = 1;
d6b48e9c 3937
0cbcdb96 3938 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3939
243a9253
PA
3940 if (thr != NULL)
3941 {
3942 struct thread_fsm *thread_fsm = thr->thread_fsm;
3943
3944 if (thread_fsm != NULL)
8980e177 3945 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3946 }
3947
3948 if (!should_stop)
3949 {
3950 keep_going (ecs);
3951 }
c2d11a7d 3952 else
0f641c01 3953 {
243a9253
PA
3954 clean_up_just_stopped_threads_fsms (ecs);
3955
388a7084
PA
3956 if (thr != NULL && thr->thread_fsm != NULL)
3957 {
3958 should_notify_stop
3959 = thread_fsm_should_notify_stop (thr->thread_fsm);
3960 }
3961
3962 if (should_notify_stop)
3963 {
4c2f2a79
PA
3964 int proceeded = 0;
3965
388a7084
PA
3966 /* We may not find an inferior if this was a process exit. */
3967 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3968 proceeded = normal_stop ();
243a9253 3969
4c2f2a79
PA
3970 if (!proceeded)
3971 {
3972 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3973 cmd_done = 1;
3974 }
388a7084 3975 }
0f641c01 3976 }
43ff13b4 3977 }
4f8d22e3 3978
29f49a6a
PA
3979 /* No error, don't finish the thread states yet. */
3980 discard_cleanups (ts_old_chain);
3981
4f8d22e3
PA
3982 /* Revert thread and frame. */
3983 do_cleanups (old_chain);
3984
3b12939d
PA
3985 /* If a UI was in sync execution mode, and now isn't, restore its
3986 prompt (a synchronous execution command has finished, and we're
3987 ready for input). */
3988 all_uis_check_sync_execution_done ();
0f641c01
PA
3989
3990 if (cmd_done
0f641c01
PA
3991 && exec_done_display_p
3992 && (ptid_equal (inferior_ptid, null_ptid)
3993 || !is_running (inferior_ptid)))
3994 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3995}
3996
edb3359d
DJ
3997/* Record the frame and location we're currently stepping through. */
3998void
3999set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4000{
4001 struct thread_info *tp = inferior_thread ();
4002
16c381f0
JK
4003 tp->control.step_frame_id = get_frame_id (frame);
4004 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4005
4006 tp->current_symtab = sal.symtab;
4007 tp->current_line = sal.line;
4008}
4009
0d1e5fa7
PA
4010/* Clear context switchable stepping state. */
4011
4012void
4e1c45ea 4013init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4014{
7f5ef605 4015 tss->stepped_breakpoint = 0;
0d1e5fa7 4016 tss->stepping_over_breakpoint = 0;
963f9c80 4017 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4018 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4019}
4020
c32c64b7
DE
4021/* Set the cached copy of the last ptid/waitstatus. */
4022
6efcd9a8 4023void
c32c64b7
DE
4024set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4025{
4026 target_last_wait_ptid = ptid;
4027 target_last_waitstatus = status;
4028}
4029
e02bc4cc 4030/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4031 target_wait()/deprecated_target_wait_hook(). The data is actually
4032 cached by handle_inferior_event(), which gets called immediately
4033 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4034
4035void
488f131b 4036get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4037{
39f77062 4038 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4039 *status = target_last_waitstatus;
4040}
4041
ac264b3b
MS
4042void
4043nullify_last_target_wait_ptid (void)
4044{
4045 target_last_wait_ptid = minus_one_ptid;
4046}
4047
dcf4fbde 4048/* Switch thread contexts. */
dd80620e
MS
4049
4050static void
0d1e5fa7 4051context_switch (ptid_t ptid)
dd80620e 4052{
4b51d87b 4053 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4054 {
4055 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4056 target_pid_to_str (inferior_ptid));
4057 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4058 target_pid_to_str (ptid));
fd48f117
DJ
4059 }
4060
0d1e5fa7 4061 switch_to_thread (ptid);
dd80620e
MS
4062}
4063
d8dd4d5f
PA
4064/* If the target can't tell whether we've hit breakpoints
4065 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4066 check whether that could have been caused by a breakpoint. If so,
4067 adjust the PC, per gdbarch_decr_pc_after_break. */
4068
4fa8626c 4069static void
d8dd4d5f
PA
4070adjust_pc_after_break (struct thread_info *thread,
4071 struct target_waitstatus *ws)
4fa8626c 4072{
24a73cce
UW
4073 struct regcache *regcache;
4074 struct gdbarch *gdbarch;
6c95b8df 4075 struct address_space *aspace;
118e6252 4076 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4077
4fa8626c
DJ
4078 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4079 we aren't, just return.
9709f61c
DJ
4080
4081 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4082 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4083 implemented by software breakpoints should be handled through the normal
4084 breakpoint layer.
8fb3e588 4085
4fa8626c
DJ
4086 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4087 different signals (SIGILL or SIGEMT for instance), but it is less
4088 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4089 gdbarch_decr_pc_after_break. I don't know any specific target that
4090 generates these signals at breakpoints (the code has been in GDB since at
4091 least 1992) so I can not guess how to handle them here.
8fb3e588 4092
e6cf7916
UW
4093 In earlier versions of GDB, a target with
4094 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4095 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4096 target with both of these set in GDB history, and it seems unlikely to be
4097 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4098
d8dd4d5f 4099 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4100 return;
4101
d8dd4d5f 4102 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4103 return;
4104
4058b839
PA
4105 /* In reverse execution, when a breakpoint is hit, the instruction
4106 under it has already been de-executed. The reported PC always
4107 points at the breakpoint address, so adjusting it further would
4108 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4109 architecture:
4110
4111 B1 0x08000000 : INSN1
4112 B2 0x08000001 : INSN2
4113 0x08000002 : INSN3
4114 PC -> 0x08000003 : INSN4
4115
4116 Say you're stopped at 0x08000003 as above. Reverse continuing
4117 from that point should hit B2 as below. Reading the PC when the
4118 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4119 been de-executed already.
4120
4121 B1 0x08000000 : INSN1
4122 B2 PC -> 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 0x08000003 : INSN4
4125
4126 We can't apply the same logic as for forward execution, because
4127 we would wrongly adjust the PC to 0x08000000, since there's a
4128 breakpoint at PC - 1. We'd then report a hit on B1, although
4129 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4130 behaviour. */
4131 if (execution_direction == EXEC_REVERSE)
4132 return;
4133
1cf4d951
PA
4134 /* If the target can tell whether the thread hit a SW breakpoint,
4135 trust it. Targets that can tell also adjust the PC
4136 themselves. */
4137 if (target_supports_stopped_by_sw_breakpoint ())
4138 return;
4139
4140 /* Note that relying on whether a breakpoint is planted in memory to
4141 determine this can fail. E.g,. the breakpoint could have been
4142 removed since. Or the thread could have been told to step an
4143 instruction the size of a breakpoint instruction, and only
4144 _after_ was a breakpoint inserted at its address. */
4145
24a73cce
UW
4146 /* If this target does not decrement the PC after breakpoints, then
4147 we have nothing to do. */
d8dd4d5f 4148 regcache = get_thread_regcache (thread->ptid);
24a73cce 4149 gdbarch = get_regcache_arch (regcache);
118e6252 4150
527a273a 4151 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4152 if (decr_pc == 0)
24a73cce
UW
4153 return;
4154
6c95b8df
PA
4155 aspace = get_regcache_aspace (regcache);
4156
8aad930b
AC
4157 /* Find the location where (if we've hit a breakpoint) the
4158 breakpoint would be. */
118e6252 4159 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4160
1cf4d951
PA
4161 /* If the target can't tell whether a software breakpoint triggered,
4162 fallback to figuring it out based on breakpoints we think were
4163 inserted in the target, and on whether the thread was stepped or
4164 continued. */
4165
1c5cfe86
PA
4166 /* Check whether there actually is a software breakpoint inserted at
4167 that location.
4168
4169 If in non-stop mode, a race condition is possible where we've
4170 removed a breakpoint, but stop events for that breakpoint were
4171 already queued and arrive later. To suppress those spurious
4172 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4173 and retire them after a number of stop events are reported. Note
4174 this is an heuristic and can thus get confused. The real fix is
4175 to get the "stopped by SW BP and needs adjustment" info out of
4176 the target/kernel (and thus never reach here; see above). */
6c95b8df 4177 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4178 || (target_is_non_stop_p ()
4179 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4180 {
07036511 4181 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4182
8213266a 4183 if (record_full_is_used ())
07036511
TT
4184 restore_operation_disable.emplace
4185 (record_full_gdb_operation_disable_set ());
96429cc8 4186
1c0fdd0e
UW
4187 /* When using hardware single-step, a SIGTRAP is reported for both
4188 a completed single-step and a software breakpoint. Need to
4189 differentiate between the two, as the latter needs adjusting
4190 but the former does not.
4191
4192 The SIGTRAP can be due to a completed hardware single-step only if
4193 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4194 - this thread is currently being stepped
4195
4196 If any of these events did not occur, we must have stopped due
4197 to hitting a software breakpoint, and have to back up to the
4198 breakpoint address.
4199
4200 As a special case, we could have hardware single-stepped a
4201 software breakpoint. In this case (prev_pc == breakpoint_pc),
4202 we also need to back up to the breakpoint address. */
4203
d8dd4d5f
PA
4204 if (thread_has_single_step_breakpoints_set (thread)
4205 || !currently_stepping (thread)
4206 || (thread->stepped_breakpoint
4207 && thread->prev_pc == breakpoint_pc))
515630c5 4208 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4209 }
4fa8626c
DJ
4210}
4211
edb3359d
DJ
4212static int
4213stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4214{
4215 for (frame = get_prev_frame (frame);
4216 frame != NULL;
4217 frame = get_prev_frame (frame))
4218 {
4219 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4220 return 1;
4221 if (get_frame_type (frame) != INLINE_FRAME)
4222 break;
4223 }
4224
4225 return 0;
4226}
4227
c65d6b55
PA
4228/* If the event thread has the stop requested flag set, pretend it
4229 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4230 target_stop). */
4231
4232static bool
4233handle_stop_requested (struct execution_control_state *ecs)
4234{
4235 if (ecs->event_thread->stop_requested)
4236 {
4237 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4238 ecs->ws.value.sig = GDB_SIGNAL_0;
4239 handle_signal_stop (ecs);
4240 return true;
4241 }
4242 return false;
4243}
4244
a96d9b2e
SDJ
4245/* Auxiliary function that handles syscall entry/return events.
4246 It returns 1 if the inferior should keep going (and GDB
4247 should ignore the event), or 0 if the event deserves to be
4248 processed. */
ca2163eb 4249
a96d9b2e 4250static int
ca2163eb 4251handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4252{
ca2163eb 4253 struct regcache *regcache;
ca2163eb
PA
4254 int syscall_number;
4255
4256 if (!ptid_equal (ecs->ptid, inferior_ptid))
4257 context_switch (ecs->ptid);
4258
4259 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4260 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4261 stop_pc = regcache_read_pc (regcache);
4262
a96d9b2e
SDJ
4263 if (catch_syscall_enabled () > 0
4264 && catching_syscall_number (syscall_number) > 0)
4265 {
4266 if (debug_infrun)
4267 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4268 syscall_number);
a96d9b2e 4269
16c381f0 4270 ecs->event_thread->control.stop_bpstat
6c95b8df 4271 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4272 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4273
c65d6b55
PA
4274 if (handle_stop_requested (ecs))
4275 return 0;
4276
ce12b012 4277 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4278 {
4279 /* Catchpoint hit. */
ca2163eb
PA
4280 return 0;
4281 }
a96d9b2e 4282 }
ca2163eb 4283
c65d6b55
PA
4284 if (handle_stop_requested (ecs))
4285 return 0;
4286
ca2163eb 4287 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4288 keep_going (ecs);
4289 return 1;
a96d9b2e
SDJ
4290}
4291
7e324e48
GB
4292/* Lazily fill in the execution_control_state's stop_func_* fields. */
4293
4294static void
4295fill_in_stop_func (struct gdbarch *gdbarch,
4296 struct execution_control_state *ecs)
4297{
4298 if (!ecs->stop_func_filled_in)
4299 {
4300 /* Don't care about return value; stop_func_start and stop_func_name
4301 will both be 0 if it doesn't work. */
4302 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4303 &ecs->stop_func_start, &ecs->stop_func_end);
4304 ecs->stop_func_start
4305 += gdbarch_deprecated_function_start_offset (gdbarch);
4306
591a12a1
UW
4307 if (gdbarch_skip_entrypoint_p (gdbarch))
4308 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4309 ecs->stop_func_start);
4310
7e324e48
GB
4311 ecs->stop_func_filled_in = 1;
4312 }
4313}
4314
4f5d7f63
PA
4315
4316/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4317
4318static enum stop_kind
4319get_inferior_stop_soon (ptid_t ptid)
4320{
c9657e70 4321 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4322
4323 gdb_assert (inf != NULL);
4324 return inf->control.stop_soon;
4325}
4326
372316f1
PA
4327/* Wait for one event. Store the resulting waitstatus in WS, and
4328 return the event ptid. */
4329
4330static ptid_t
4331wait_one (struct target_waitstatus *ws)
4332{
4333 ptid_t event_ptid;
4334 ptid_t wait_ptid = minus_one_ptid;
4335
4336 overlay_cache_invalid = 1;
4337
4338 /* Flush target cache before starting to handle each event.
4339 Target was running and cache could be stale. This is just a
4340 heuristic. Running threads may modify target memory, but we
4341 don't get any event. */
4342 target_dcache_invalidate ();
4343
4344 if (deprecated_target_wait_hook)
4345 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4346 else
4347 event_ptid = target_wait (wait_ptid, ws, 0);
4348
4349 if (debug_infrun)
4350 print_target_wait_results (wait_ptid, event_ptid, ws);
4351
4352 return event_ptid;
4353}
4354
4355/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4356 instead of the current thread. */
4357#define THREAD_STOPPED_BY(REASON) \
4358static int \
4359thread_stopped_by_ ## REASON (ptid_t ptid) \
4360{ \
2989a365 4361 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4362 inferior_ptid = ptid; \
4363 \
2989a365 4364 return target_stopped_by_ ## REASON (); \
372316f1
PA
4365}
4366
4367/* Generate thread_stopped_by_watchpoint. */
4368THREAD_STOPPED_BY (watchpoint)
4369/* Generate thread_stopped_by_sw_breakpoint. */
4370THREAD_STOPPED_BY (sw_breakpoint)
4371/* Generate thread_stopped_by_hw_breakpoint. */
4372THREAD_STOPPED_BY (hw_breakpoint)
4373
4374/* Cleanups that switches to the PTID pointed at by PTID_P. */
4375
4376static void
4377switch_to_thread_cleanup (void *ptid_p)
4378{
4379 ptid_t ptid = *(ptid_t *) ptid_p;
4380
4381 switch_to_thread (ptid);
4382}
4383
4384/* Save the thread's event and stop reason to process it later. */
4385
4386static void
4387save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4388{
4389 struct regcache *regcache;
4390 struct address_space *aspace;
4391
4392 if (debug_infrun)
4393 {
23fdd69e 4394 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4395
372316f1
PA
4396 fprintf_unfiltered (gdb_stdlog,
4397 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4398 statstr.c_str (),
372316f1
PA
4399 ptid_get_pid (tp->ptid),
4400 ptid_get_lwp (tp->ptid),
4401 ptid_get_tid (tp->ptid));
372316f1
PA
4402 }
4403
4404 /* Record for later. */
4405 tp->suspend.waitstatus = *ws;
4406 tp->suspend.waitstatus_pending_p = 1;
4407
4408 regcache = get_thread_regcache (tp->ptid);
4409 aspace = get_regcache_aspace (regcache);
4410
4411 if (ws->kind == TARGET_WAITKIND_STOPPED
4412 && ws->value.sig == GDB_SIGNAL_TRAP)
4413 {
4414 CORE_ADDR pc = regcache_read_pc (regcache);
4415
4416 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4417
4418 if (thread_stopped_by_watchpoint (tp->ptid))
4419 {
4420 tp->suspend.stop_reason
4421 = TARGET_STOPPED_BY_WATCHPOINT;
4422 }
4423 else if (target_supports_stopped_by_sw_breakpoint ()
4424 && thread_stopped_by_sw_breakpoint (tp->ptid))
4425 {
4426 tp->suspend.stop_reason
4427 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4428 }
4429 else if (target_supports_stopped_by_hw_breakpoint ()
4430 && thread_stopped_by_hw_breakpoint (tp->ptid))
4431 {
4432 tp->suspend.stop_reason
4433 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4434 }
4435 else if (!target_supports_stopped_by_hw_breakpoint ()
4436 && hardware_breakpoint_inserted_here_p (aspace,
4437 pc))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4441 }
4442 else if (!target_supports_stopped_by_sw_breakpoint ()
4443 && software_breakpoint_inserted_here_p (aspace,
4444 pc))
4445 {
4446 tp->suspend.stop_reason
4447 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4448 }
4449 else if (!thread_has_single_step_breakpoints_set (tp)
4450 && currently_stepping (tp))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_SINGLE_STEP;
4454 }
4455 }
4456}
4457
65706a29
PA
4458/* A cleanup that disables thread create/exit events. */
4459
4460static void
4461disable_thread_events (void *arg)
4462{
4463 target_thread_events (0);
4464}
4465
6efcd9a8 4466/* See infrun.h. */
372316f1 4467
6efcd9a8 4468void
372316f1
PA
4469stop_all_threads (void)
4470{
4471 /* We may need multiple passes to discover all threads. */
4472 int pass;
4473 int iterations = 0;
4474 ptid_t entry_ptid;
4475 struct cleanup *old_chain;
4476
fbea99ea 4477 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4478
4479 if (debug_infrun)
4480 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4481
4482 entry_ptid = inferior_ptid;
4483 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4484
65706a29
PA
4485 target_thread_events (1);
4486 make_cleanup (disable_thread_events, NULL);
4487
372316f1
PA
4488 /* Request threads to stop, and then wait for the stops. Because
4489 threads we already know about can spawn more threads while we're
4490 trying to stop them, and we only learn about new threads when we
4491 update the thread list, do this in a loop, and keep iterating
4492 until two passes find no threads that need to be stopped. */
4493 for (pass = 0; pass < 2; pass++, iterations++)
4494 {
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog,
4497 "infrun: stop_all_threads, pass=%d, "
4498 "iterations=%d\n", pass, iterations);
4499 while (1)
4500 {
4501 ptid_t event_ptid;
4502 struct target_waitstatus ws;
4503 int need_wait = 0;
4504 struct thread_info *t;
4505
4506 update_thread_list ();
4507
4508 /* Go through all threads looking for threads that we need
4509 to tell the target to stop. */
4510 ALL_NON_EXITED_THREADS (t)
4511 {
4512 if (t->executing)
4513 {
4514 /* If already stopping, don't request a stop again.
4515 We just haven't seen the notification yet. */
4516 if (!t->stop_requested)
4517 {
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog,
4520 "infrun: %s executing, "
4521 "need stop\n",
4522 target_pid_to_str (t->ptid));
4523 target_stop (t->ptid);
4524 t->stop_requested = 1;
4525 }
4526 else
4527 {
4528 if (debug_infrun)
4529 fprintf_unfiltered (gdb_stdlog,
4530 "infrun: %s executing, "
4531 "already stopping\n",
4532 target_pid_to_str (t->ptid));
4533 }
4534
4535 if (t->stop_requested)
4536 need_wait = 1;
4537 }
4538 else
4539 {
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: %s not executing\n",
4543 target_pid_to_str (t->ptid));
4544
4545 /* The thread may be not executing, but still be
4546 resumed with a pending status to process. */
4547 t->resumed = 0;
4548 }
4549 }
4550
4551 if (!need_wait)
4552 break;
4553
4554 /* If we find new threads on the second iteration, restart
4555 over. We want to see two iterations in a row with all
4556 threads stopped. */
4557 if (pass > 0)
4558 pass = -1;
4559
4560 event_ptid = wait_one (&ws);
4561 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4562 {
4563 /* All resumed threads exited. */
4564 }
65706a29
PA
4565 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4566 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4567 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4568 {
4569 if (debug_infrun)
4570 {
4571 ptid_t ptid = pid_to_ptid (ws.value.integer);
4572
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: %s exited while "
4575 "stopping threads\n",
4576 target_pid_to_str (ptid));
4577 }
4578 }
4579 else
4580 {
6efcd9a8
PA
4581 struct inferior *inf;
4582
372316f1
PA
4583 t = find_thread_ptid (event_ptid);
4584 if (t == NULL)
4585 t = add_thread (event_ptid);
4586
4587 t->stop_requested = 0;
4588 t->executing = 0;
4589 t->resumed = 0;
4590 t->control.may_range_step = 0;
4591
6efcd9a8
PA
4592 /* This may be the first time we see the inferior report
4593 a stop. */
4594 inf = find_inferior_ptid (event_ptid);
4595 if (inf->needs_setup)
4596 {
4597 switch_to_thread_no_regs (t);
4598 setup_inferior (0);
4599 }
4600
372316f1
PA
4601 if (ws.kind == TARGET_WAITKIND_STOPPED
4602 && ws.value.sig == GDB_SIGNAL_0)
4603 {
4604 /* We caught the event that we intended to catch, so
4605 there's no event pending. */
4606 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4607 t->suspend.waitstatus_pending_p = 0;
4608
4609 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4610 {
4611 /* Add it back to the step-over queue. */
4612 if (debug_infrun)
4613 {
4614 fprintf_unfiltered (gdb_stdlog,
4615 "infrun: displaced-step of %s "
4616 "canceled: adding back to the "
4617 "step-over queue\n",
4618 target_pid_to_str (t->ptid));
4619 }
4620 t->control.trap_expected = 0;
4621 thread_step_over_chain_enqueue (t);
4622 }
4623 }
4624 else
4625 {
4626 enum gdb_signal sig;
4627 struct regcache *regcache;
372316f1
PA
4628
4629 if (debug_infrun)
4630 {
23fdd69e 4631 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4632
372316f1
PA
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: target_wait %s, saving "
4635 "status for %d.%ld.%ld\n",
23fdd69e 4636 statstr.c_str (),
372316f1
PA
4637 ptid_get_pid (t->ptid),
4638 ptid_get_lwp (t->ptid),
4639 ptid_get_tid (t->ptid));
372316f1
PA
4640 }
4641
4642 /* Record for later. */
4643 save_waitstatus (t, &ws);
4644
4645 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4646 ? ws.value.sig : GDB_SIGNAL_0);
4647
4648 if (displaced_step_fixup (t->ptid, sig) < 0)
4649 {
4650 /* Add it back to the step-over queue. */
4651 t->control.trap_expected = 0;
4652 thread_step_over_chain_enqueue (t);
4653 }
4654
4655 regcache = get_thread_regcache (t->ptid);
4656 t->suspend.stop_pc = regcache_read_pc (regcache);
4657
4658 if (debug_infrun)
4659 {
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: saved stop_pc=%s for %s "
4662 "(currently_stepping=%d)\n",
4663 paddress (target_gdbarch (),
4664 t->suspend.stop_pc),
4665 target_pid_to_str (t->ptid),
4666 currently_stepping (t));
4667 }
4668 }
4669 }
4670 }
4671 }
4672
4673 do_cleanups (old_chain);
4674
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4677}
4678
f4836ba9
PA
4679/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4680
4681static int
4682handle_no_resumed (struct execution_control_state *ecs)
4683{
4684 struct inferior *inf;
4685 struct thread_info *thread;
4686
3b12939d 4687 if (target_can_async_p ())
f4836ba9 4688 {
3b12939d
PA
4689 struct ui *ui;
4690 int any_sync = 0;
f4836ba9 4691
3b12939d
PA
4692 ALL_UIS (ui)
4693 {
4694 if (ui->prompt_state == PROMPT_BLOCKED)
4695 {
4696 any_sync = 1;
4697 break;
4698 }
4699 }
4700 if (!any_sync)
4701 {
4702 /* There were no unwaited-for children left in the target, but,
4703 we're not synchronously waiting for events either. Just
4704 ignore. */
4705
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog,
4708 "infrun: TARGET_WAITKIND_NO_RESUMED "
4709 "(ignoring: bg)\n");
4710 prepare_to_wait (ecs);
4711 return 1;
4712 }
f4836ba9
PA
4713 }
4714
4715 /* Otherwise, if we were running a synchronous execution command, we
4716 may need to cancel it and give the user back the terminal.
4717
4718 In non-stop mode, the target can't tell whether we've already
4719 consumed previous stop events, so it can end up sending us a
4720 no-resumed event like so:
4721
4722 #0 - thread 1 is left stopped
4723
4724 #1 - thread 2 is resumed and hits breakpoint
4725 -> TARGET_WAITKIND_STOPPED
4726
4727 #2 - thread 3 is resumed and exits
4728 this is the last resumed thread, so
4729 -> TARGET_WAITKIND_NO_RESUMED
4730
4731 #3 - gdb processes stop for thread 2 and decides to re-resume
4732 it.
4733
4734 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4735 thread 2 is now resumed, so the event should be ignored.
4736
4737 IOW, if the stop for thread 2 doesn't end a foreground command,
4738 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4739 event. But it could be that the event meant that thread 2 itself
4740 (or whatever other thread was the last resumed thread) exited.
4741
4742 To address this we refresh the thread list and check whether we
4743 have resumed threads _now_. In the example above, this removes
4744 thread 3 from the thread list. If thread 2 was re-resumed, we
4745 ignore this event. If we find no thread resumed, then we cancel
4746 the synchronous command show "no unwaited-for " to the user. */
4747 update_thread_list ();
4748
4749 ALL_NON_EXITED_THREADS (thread)
4750 {
4751 if (thread->executing
4752 || thread->suspend.waitstatus_pending_p)
4753 {
4754 /* There were no unwaited-for children left in the target at
4755 some point, but there are now. Just ignore. */
4756 if (debug_infrun)
4757 fprintf_unfiltered (gdb_stdlog,
4758 "infrun: TARGET_WAITKIND_NO_RESUMED "
4759 "(ignoring: found resumed)\n");
4760 prepare_to_wait (ecs);
4761 return 1;
4762 }
4763 }
4764
4765 /* Note however that we may find no resumed thread because the whole
4766 process exited meanwhile (thus updating the thread list results
4767 in an empty thread list). In this case we know we'll be getting
4768 a process exit event shortly. */
4769 ALL_INFERIORS (inf)
4770 {
4771 if (inf->pid == 0)
4772 continue;
4773
4774 thread = any_live_thread_of_process (inf->pid);
4775 if (thread == NULL)
4776 {
4777 if (debug_infrun)
4778 fprintf_unfiltered (gdb_stdlog,
4779 "infrun: TARGET_WAITKIND_NO_RESUMED "
4780 "(expect process exit)\n");
4781 prepare_to_wait (ecs);
4782 return 1;
4783 }
4784 }
4785
4786 /* Go ahead and report the event. */
4787 return 0;
4788}
4789
05ba8510
PA
4790/* Given an execution control state that has been freshly filled in by
4791 an event from the inferior, figure out what it means and take
4792 appropriate action.
4793
4794 The alternatives are:
4795
22bcd14b 4796 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4797 debugger.
4798
4799 2) keep_going and return; to wait for the next event (set
4800 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4801 once). */
c906108c 4802
ec9499be 4803static void
0b6e5e10 4804handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4805{
d6b48e9c
PA
4806 enum stop_kind stop_soon;
4807
28736962
PA
4808 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4809 {
4810 /* We had an event in the inferior, but we are not interested in
4811 handling it at this level. The lower layers have already
4812 done what needs to be done, if anything.
4813
4814 One of the possible circumstances for this is when the
4815 inferior produces output for the console. The inferior has
4816 not stopped, and we are ignoring the event. Another possible
4817 circumstance is any event which the lower level knows will be
4818 reported multiple times without an intervening resume. */
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4821 prepare_to_wait (ecs);
4822 return;
4823 }
4824
65706a29
PA
4825 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4826 {
4827 if (debug_infrun)
4828 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4829 prepare_to_wait (ecs);
4830 return;
4831 }
4832
0e5bf2a8 4833 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4834 && handle_no_resumed (ecs))
4835 return;
0e5bf2a8 4836
1777feb0 4837 /* Cache the last pid/waitstatus. */
c32c64b7 4838 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4839
ca005067 4840 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4841 stop_stack_dummy = STOP_NONE;
ca005067 4842
0e5bf2a8
PA
4843 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4844 {
4845 /* No unwaited-for children left. IOW, all resumed children
4846 have exited. */
4847 if (debug_infrun)
4848 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4849
4850 stop_print_frame = 0;
22bcd14b 4851 stop_waiting (ecs);
0e5bf2a8
PA
4852 return;
4853 }
4854
8c90c137 4855 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4856 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4857 {
4858 ecs->event_thread = find_thread_ptid (ecs->ptid);
4859 /* If it's a new thread, add it to the thread database. */
4860 if (ecs->event_thread == NULL)
4861 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4862
4863 /* Disable range stepping. If the next step request could use a
4864 range, this will be end up re-enabled then. */
4865 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4866 }
88ed393a
JK
4867
4868 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4869 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4870
4871 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4872 reinit_frame_cache ();
4873
28736962
PA
4874 breakpoint_retire_moribund ();
4875
2b009048
DJ
4876 /* First, distinguish signals caused by the debugger from signals
4877 that have to do with the program's own actions. Note that
4878 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4879 on the operating system version. Here we detect when a SIGILL or
4880 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4881 something similar for SIGSEGV, since a SIGSEGV will be generated
4882 when we're trying to execute a breakpoint instruction on a
4883 non-executable stack. This happens for call dummy breakpoints
4884 for architectures like SPARC that place call dummies on the
4885 stack. */
2b009048 4886 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4887 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4888 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4889 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4890 {
de0a0249
UW
4891 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4892
4893 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4894 regcache_read_pc (regcache)))
4895 {
4896 if (debug_infrun)
4897 fprintf_unfiltered (gdb_stdlog,
4898 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4899 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4900 }
2b009048
DJ
4901 }
4902
28736962
PA
4903 /* Mark the non-executing threads accordingly. In all-stop, all
4904 threads of all processes are stopped when we get any event
e1316e60 4905 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4906 {
4907 ptid_t mark_ptid;
4908
fbea99ea 4909 if (!target_is_non_stop_p ())
372316f1
PA
4910 mark_ptid = minus_one_ptid;
4911 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4912 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4913 {
4914 /* If we're handling a process exit in non-stop mode, even
4915 though threads haven't been deleted yet, one would think
4916 that there is nothing to do, as threads of the dead process
4917 will be soon deleted, and threads of any other process were
4918 left running. However, on some targets, threads survive a
4919 process exit event. E.g., for the "checkpoint" command,
4920 when the current checkpoint/fork exits, linux-fork.c
4921 automatically switches to another fork from within
4922 target_mourn_inferior, by associating the same
4923 inferior/thread to another fork. We haven't mourned yet at
4924 this point, but we must mark any threads left in the
4925 process as not-executing so that finish_thread_state marks
4926 them stopped (in the user's perspective) if/when we present
4927 the stop to the user. */
4928 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4929 }
4930 else
4931 mark_ptid = ecs->ptid;
4932
4933 set_executing (mark_ptid, 0);
4934
4935 /* Likewise the resumed flag. */
4936 set_resumed (mark_ptid, 0);
4937 }
8c90c137 4938
488f131b
JB
4939 switch (ecs->ws.kind)
4940 {
4941 case TARGET_WAITKIND_LOADED:
527159b7 4942 if (debug_infrun)
8a9de0e4 4943 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4944 if (!ptid_equal (ecs->ptid, inferior_ptid))
4945 context_switch (ecs->ptid);
b0f4b84b
DJ
4946 /* Ignore gracefully during startup of the inferior, as it might
4947 be the shell which has just loaded some objects, otherwise
4948 add the symbols for the newly loaded objects. Also ignore at
4949 the beginning of an attach or remote session; we will query
4950 the full list of libraries once the connection is
4951 established. */
4f5d7f63
PA
4952
4953 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4954 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4955 {
edcc5120
TT
4956 struct regcache *regcache;
4957
edcc5120
TT
4958 regcache = get_thread_regcache (ecs->ptid);
4959
4960 handle_solib_event ();
4961
4962 ecs->event_thread->control.stop_bpstat
4963 = bpstat_stop_status (get_regcache_aspace (regcache),
4964 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4965
c65d6b55
PA
4966 if (handle_stop_requested (ecs))
4967 return;
4968
ce12b012 4969 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4970 {
4971 /* A catchpoint triggered. */
94c57d6a
PA
4972 process_event_stop_test (ecs);
4973 return;
edcc5120 4974 }
488f131b 4975
b0f4b84b
DJ
4976 /* If requested, stop when the dynamic linker notifies
4977 gdb of events. This allows the user to get control
4978 and place breakpoints in initializer routines for
4979 dynamically loaded objects (among other things). */
a493e3e2 4980 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4981 if (stop_on_solib_events)
4982 {
55409f9d
DJ
4983 /* Make sure we print "Stopped due to solib-event" in
4984 normal_stop. */
4985 stop_print_frame = 1;
4986
22bcd14b 4987 stop_waiting (ecs);
b0f4b84b
DJ
4988 return;
4989 }
488f131b 4990 }
b0f4b84b
DJ
4991
4992 /* If we are skipping through a shell, or through shared library
4993 loading that we aren't interested in, resume the program. If
5c09a2c5 4994 we're running the program normally, also resume. */
b0f4b84b
DJ
4995 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4996 {
74960c60
VP
4997 /* Loading of shared libraries might have changed breakpoint
4998 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4999 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5000 insert_breakpoints ();
64ce06e4 5001 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5002 prepare_to_wait (ecs);
5003 return;
5004 }
5005
5c09a2c5
PA
5006 /* But stop if we're attaching or setting up a remote
5007 connection. */
5008 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5009 || stop_soon == STOP_QUIETLY_REMOTE)
5010 {
5011 if (debug_infrun)
5012 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5013 stop_waiting (ecs);
5c09a2c5
PA
5014 return;
5015 }
5016
5017 internal_error (__FILE__, __LINE__,
5018 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5019
488f131b 5020 case TARGET_WAITKIND_SPURIOUS:
527159b7 5021 if (debug_infrun)
8a9de0e4 5022 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5023 if (handle_stop_requested (ecs))
5024 return;
64776a0b 5025 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5026 context_switch (ecs->ptid);
64ce06e4 5027 resume (GDB_SIGNAL_0);
488f131b
JB
5028 prepare_to_wait (ecs);
5029 return;
c5aa993b 5030
65706a29
PA
5031 case TARGET_WAITKIND_THREAD_CREATED:
5032 if (debug_infrun)
5033 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5034 if (handle_stop_requested (ecs))
5035 return;
65706a29
PA
5036 if (!ptid_equal (ecs->ptid, inferior_ptid))
5037 context_switch (ecs->ptid);
5038 if (!switch_back_to_stepped_thread (ecs))
5039 keep_going (ecs);
5040 return;
5041
488f131b 5042 case TARGET_WAITKIND_EXITED:
940c3c06 5043 case TARGET_WAITKIND_SIGNALLED:
527159b7 5044 if (debug_infrun)
940c3c06
PA
5045 {
5046 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5047 fprintf_unfiltered (gdb_stdlog,
5048 "infrun: TARGET_WAITKIND_EXITED\n");
5049 else
5050 fprintf_unfiltered (gdb_stdlog,
5051 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5052 }
5053
fb66883a 5054 inferior_ptid = ecs->ptid;
c9657e70 5055 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5056 set_current_program_space (current_inferior ()->pspace);
5057 handle_vfork_child_exec_or_exit (0);
223ffa71 5058 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5059
0c557179
SDJ
5060 /* Clearing any previous state of convenience variables. */
5061 clear_exit_convenience_vars ();
5062
940c3c06
PA
5063 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5064 {
5065 /* Record the exit code in the convenience variable $_exitcode, so
5066 that the user can inspect this again later. */
5067 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5068 (LONGEST) ecs->ws.value.integer);
5069
5070 /* Also record this in the inferior itself. */
5071 current_inferior ()->has_exit_code = 1;
5072 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5073
98eb56a4
PA
5074 /* Support the --return-child-result option. */
5075 return_child_result_value = ecs->ws.value.integer;
5076
fd664c91 5077 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5078 }
5079 else
0c557179
SDJ
5080 {
5081 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5082 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5083
5084 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5085 {
5086 /* Set the value of the internal variable $_exitsignal,
5087 which holds the signal uncaught by the inferior. */
5088 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5089 gdbarch_gdb_signal_to_target (gdbarch,
5090 ecs->ws.value.sig));
5091 }
5092 else
5093 {
5094 /* We don't have access to the target's method used for
5095 converting between signal numbers (GDB's internal
5096 representation <-> target's representation).
5097 Therefore, we cannot do a good job at displaying this
5098 information to the user. It's better to just warn
5099 her about it (if infrun debugging is enabled), and
5100 give up. */
5101 if (debug_infrun)
5102 fprintf_filtered (gdb_stdlog, _("\
5103Cannot fill $_exitsignal with the correct signal number.\n"));
5104 }
5105
fd664c91 5106 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5107 }
8cf64490 5108
488f131b 5109 gdb_flush (gdb_stdout);
bc1e6c81 5110 target_mourn_inferior (inferior_ptid);
488f131b 5111 stop_print_frame = 0;
22bcd14b 5112 stop_waiting (ecs);
488f131b 5113 return;
c5aa993b 5114
488f131b 5115 /* The following are the only cases in which we keep going;
1777feb0 5116 the above cases end in a continue or goto. */
488f131b 5117 case TARGET_WAITKIND_FORKED:
deb3b17b 5118 case TARGET_WAITKIND_VFORKED:
527159b7 5119 if (debug_infrun)
fed708ed
PA
5120 {
5121 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5122 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5123 else
5124 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5125 }
c906108c 5126
e2d96639
YQ
5127 /* Check whether the inferior is displaced stepping. */
5128 {
5129 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5130 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5131
5132 /* If checking displaced stepping is supported, and thread
5133 ecs->ptid is displaced stepping. */
c0987663 5134 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5135 {
5136 struct inferior *parent_inf
c9657e70 5137 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5138 struct regcache *child_regcache;
5139 CORE_ADDR parent_pc;
5140
5141 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5142 indicating that the displaced stepping of syscall instruction
5143 has been done. Perform cleanup for parent process here. Note
5144 that this operation also cleans up the child process for vfork,
5145 because their pages are shared. */
a493e3e2 5146 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5147 /* Start a new step-over in another thread if there's one
5148 that needs it. */
5149 start_step_over ();
e2d96639
YQ
5150
5151 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5152 {
c0987663
YQ
5153 struct displaced_step_inferior_state *displaced
5154 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5155
e2d96639
YQ
5156 /* Restore scratch pad for child process. */
5157 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5158 }
5159
5160 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5161 the child's PC is also within the scratchpad. Set the child's PC
5162 to the parent's PC value, which has already been fixed up.
5163 FIXME: we use the parent's aspace here, although we're touching
5164 the child, because the child hasn't been added to the inferior
5165 list yet at this point. */
5166
5167 child_regcache
5168 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5169 gdbarch,
5170 parent_inf->aspace);
5171 /* Read PC value of parent process. */
5172 parent_pc = regcache_read_pc (regcache);
5173
5174 if (debug_displaced)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "displaced: write child pc from %s to %s\n",
5177 paddress (gdbarch,
5178 regcache_read_pc (child_regcache)),
5179 paddress (gdbarch, parent_pc));
5180
5181 regcache_write_pc (child_regcache, parent_pc);
5182 }
5183 }
5184
5a2901d9 5185 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5186 context_switch (ecs->ptid);
5a2901d9 5187
b242c3c2
PA
5188 /* Immediately detach breakpoints from the child before there's
5189 any chance of letting the user delete breakpoints from the
5190 breakpoint lists. If we don't do this early, it's easy to
5191 leave left over traps in the child, vis: "break foo; catch
5192 fork; c; <fork>; del; c; <child calls foo>". We only follow
5193 the fork on the last `continue', and by that time the
5194 breakpoint at "foo" is long gone from the breakpoint table.
5195 If we vforked, then we don't need to unpatch here, since both
5196 parent and child are sharing the same memory pages; we'll
5197 need to unpatch at follow/detach time instead to be certain
5198 that new breakpoints added between catchpoint hit time and
5199 vfork follow are detached. */
5200 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5201 {
b242c3c2
PA
5202 /* This won't actually modify the breakpoint list, but will
5203 physically remove the breakpoints from the child. */
d80ee84f 5204 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5205 }
5206
34b7e8a6 5207 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5208
e58b0e63
PA
5209 /* In case the event is caught by a catchpoint, remember that
5210 the event is to be followed at the next resume of the thread,
5211 and not immediately. */
5212 ecs->event_thread->pending_follow = ecs->ws;
5213
fb14de7b 5214 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5215
16c381f0 5216 ecs->event_thread->control.stop_bpstat
6c95b8df 5217 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5218 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5219
c65d6b55
PA
5220 if (handle_stop_requested (ecs))
5221 return;
5222
ce12b012
PA
5223 /* If no catchpoint triggered for this, then keep going. Note
5224 that we're interested in knowing the bpstat actually causes a
5225 stop, not just if it may explain the signal. Software
5226 watchpoints, for example, always appear in the bpstat. */
5227 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5228 {
6c95b8df
PA
5229 ptid_t parent;
5230 ptid_t child;
e58b0e63 5231 int should_resume;
3e43a32a
MS
5232 int follow_child
5233 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5234
a493e3e2 5235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5236
5237 should_resume = follow_fork ();
5238
6c95b8df
PA
5239 parent = ecs->ptid;
5240 child = ecs->ws.value.related_pid;
5241
a2077e25
PA
5242 /* At this point, the parent is marked running, and the
5243 child is marked stopped. */
5244
5245 /* If not resuming the parent, mark it stopped. */
5246 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5247 set_running (parent, 0);
5248
5249 /* If resuming the child, mark it running. */
5250 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5251 set_running (child, 1);
5252
6c95b8df 5253 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5254 if (!detach_fork && (non_stop
5255 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5256 {
5257 if (follow_child)
5258 switch_to_thread (parent);
5259 else
5260 switch_to_thread (child);
5261
5262 ecs->event_thread = inferior_thread ();
5263 ecs->ptid = inferior_ptid;
5264 keep_going (ecs);
5265 }
5266
5267 if (follow_child)
5268 switch_to_thread (child);
5269 else
5270 switch_to_thread (parent);
5271
e58b0e63
PA
5272 ecs->event_thread = inferior_thread ();
5273 ecs->ptid = inferior_ptid;
5274
5275 if (should_resume)
5276 keep_going (ecs);
5277 else
22bcd14b 5278 stop_waiting (ecs);
04e68871
DJ
5279 return;
5280 }
94c57d6a
PA
5281 process_event_stop_test (ecs);
5282 return;
488f131b 5283
6c95b8df
PA
5284 case TARGET_WAITKIND_VFORK_DONE:
5285 /* Done with the shared memory region. Re-insert breakpoints in
5286 the parent, and keep going. */
5287
5288 if (debug_infrun)
3e43a32a
MS
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5291
5292 if (!ptid_equal (ecs->ptid, inferior_ptid))
5293 context_switch (ecs->ptid);
5294
5295 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5296 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5297
5298 if (handle_stop_requested (ecs))
5299 return;
5300
6c95b8df
PA
5301 /* This also takes care of reinserting breakpoints in the
5302 previously locked inferior. */
5303 keep_going (ecs);
5304 return;
5305
488f131b 5306 case TARGET_WAITKIND_EXECD:
527159b7 5307 if (debug_infrun)
fc5261f2 5308 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5309
cbd2b4e3
PA
5310 /* Note we can't read registers yet (the stop_pc), because we
5311 don't yet know the inferior's post-exec architecture.
5312 'stop_pc' is explicitly read below instead. */
5a2901d9 5313 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5314 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5315
6c95b8df
PA
5316 /* Do whatever is necessary to the parent branch of the vfork. */
5317 handle_vfork_child_exec_or_exit (1);
5318
795e548f
PA
5319 /* This causes the eventpoints and symbol table to be reset.
5320 Must do this now, before trying to determine whether to
5321 stop. */
71b43ef8 5322 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5323
1bb7c059
SM
5324 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5325
17d8546e
DB
5326 /* In follow_exec we may have deleted the original thread and
5327 created a new one. Make sure that the event thread is the
5328 execd thread for that case (this is a nop otherwise). */
5329 ecs->event_thread = inferior_thread ();
5330
16c381f0 5331 ecs->event_thread->control.stop_bpstat
6c95b8df 5332 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5333 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5334
71b43ef8
PA
5335 /* Note that this may be referenced from inside
5336 bpstat_stop_status above, through inferior_has_execd. */
5337 xfree (ecs->ws.value.execd_pathname);
5338 ecs->ws.value.execd_pathname = NULL;
5339
c65d6b55
PA
5340 if (handle_stop_requested (ecs))
5341 return;
5342
04e68871 5343 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5344 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5345 {
a493e3e2 5346 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5347 keep_going (ecs);
5348 return;
5349 }
94c57d6a
PA
5350 process_event_stop_test (ecs);
5351 return;
488f131b 5352
b4dc5ffa
MK
5353 /* Be careful not to try to gather much state about a thread
5354 that's in a syscall. It's frequently a losing proposition. */
488f131b 5355 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5356 if (debug_infrun)
3e43a32a
MS
5357 fprintf_unfiltered (gdb_stdlog,
5358 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5359 /* Getting the current syscall number. */
94c57d6a
PA
5360 if (handle_syscall_event (ecs) == 0)
5361 process_event_stop_test (ecs);
5362 return;
c906108c 5363
488f131b
JB
5364 /* Before examining the threads further, step this thread to
5365 get it entirely out of the syscall. (We get notice of the
5366 event when the thread is just on the verge of exiting a
5367 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5368 into user code.) */
488f131b 5369 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5370 if (debug_infrun)
3e43a32a
MS
5371 fprintf_unfiltered (gdb_stdlog,
5372 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5373 if (handle_syscall_event (ecs) == 0)
5374 process_event_stop_test (ecs);
5375 return;
c906108c 5376
488f131b 5377 case TARGET_WAITKIND_STOPPED:
527159b7 5378 if (debug_infrun)
8a9de0e4 5379 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5380 handle_signal_stop (ecs);
5381 return;
c906108c 5382
b2175913 5383 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5386 /* Reverse execution: target ran out of history info. */
eab402df 5387
d1988021
MM
5388 /* Switch to the stopped thread. */
5389 if (!ptid_equal (ecs->ptid, inferior_ptid))
5390 context_switch (ecs->ptid);
5391 if (debug_infrun)
5392 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5393
34b7e8a6 5394 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5395 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5396
5397 if (handle_stop_requested (ecs))
5398 return;
5399
fd664c91 5400 observer_notify_no_history ();
22bcd14b 5401 stop_waiting (ecs);
b2175913 5402 return;
488f131b 5403 }
4f5d7f63
PA
5404}
5405
0b6e5e10
JB
5406/* A wrapper around handle_inferior_event_1, which also makes sure
5407 that all temporary struct value objects that were created during
5408 the handling of the event get deleted at the end. */
5409
5410static void
5411handle_inferior_event (struct execution_control_state *ecs)
5412{
5413 struct value *mark = value_mark ();
5414
5415 handle_inferior_event_1 (ecs);
5416 /* Purge all temporary values created during the event handling,
5417 as it could be a long time before we return to the command level
5418 where such values would otherwise be purged. */
5419 value_free_to_mark (mark);
5420}
5421
372316f1
PA
5422/* Restart threads back to what they were trying to do back when we
5423 paused them for an in-line step-over. The EVENT_THREAD thread is
5424 ignored. */
4d9d9d04
PA
5425
5426static void
372316f1
PA
5427restart_threads (struct thread_info *event_thread)
5428{
5429 struct thread_info *tp;
372316f1
PA
5430
5431 /* In case the instruction just stepped spawned a new thread. */
5432 update_thread_list ();
5433
5434 ALL_NON_EXITED_THREADS (tp)
5435 {
5436 if (tp == event_thread)
5437 {
5438 if (debug_infrun)
5439 fprintf_unfiltered (gdb_stdlog,
5440 "infrun: restart threads: "
5441 "[%s] is event thread\n",
5442 target_pid_to_str (tp->ptid));
5443 continue;
5444 }
5445
5446 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5447 {
5448 if (debug_infrun)
5449 fprintf_unfiltered (gdb_stdlog,
5450 "infrun: restart threads: "
5451 "[%s] not meant to be running\n",
5452 target_pid_to_str (tp->ptid));
5453 continue;
5454 }
5455
5456 if (tp->resumed)
5457 {
5458 if (debug_infrun)
5459 fprintf_unfiltered (gdb_stdlog,
5460 "infrun: restart threads: [%s] resumed\n",
5461 target_pid_to_str (tp->ptid));
5462 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5463 continue;
5464 }
5465
5466 if (thread_is_in_step_over_chain (tp))
5467 {
5468 if (debug_infrun)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "infrun: restart threads: "
5471 "[%s] needs step-over\n",
5472 target_pid_to_str (tp->ptid));
5473 gdb_assert (!tp->resumed);
5474 continue;
5475 }
5476
5477
5478 if (tp->suspend.waitstatus_pending_p)
5479 {
5480 if (debug_infrun)
5481 fprintf_unfiltered (gdb_stdlog,
5482 "infrun: restart threads: "
5483 "[%s] has pending status\n",
5484 target_pid_to_str (tp->ptid));
5485 tp->resumed = 1;
5486 continue;
5487 }
5488
c65d6b55
PA
5489 gdb_assert (!tp->stop_requested);
5490
372316f1
PA
5491 /* If some thread needs to start a step-over at this point, it
5492 should still be in the step-over queue, and thus skipped
5493 above. */
5494 if (thread_still_needs_step_over (tp))
5495 {
5496 internal_error (__FILE__, __LINE__,
5497 "thread [%s] needs a step-over, but not in "
5498 "step-over queue\n",
5499 target_pid_to_str (tp->ptid));
5500 }
5501
5502 if (currently_stepping (tp))
5503 {
5504 if (debug_infrun)
5505 fprintf_unfiltered (gdb_stdlog,
5506 "infrun: restart threads: [%s] was stepping\n",
5507 target_pid_to_str (tp->ptid));
5508 keep_going_stepped_thread (tp);
5509 }
5510 else
5511 {
5512 struct execution_control_state ecss;
5513 struct execution_control_state *ecs = &ecss;
5514
5515 if (debug_infrun)
5516 fprintf_unfiltered (gdb_stdlog,
5517 "infrun: restart threads: [%s] continuing\n",
5518 target_pid_to_str (tp->ptid));
5519 reset_ecs (ecs, tp);
5520 switch_to_thread (tp->ptid);
5521 keep_going_pass_signal (ecs);
5522 }
5523 }
5524}
5525
5526/* Callback for iterate_over_threads. Find a resumed thread that has
5527 a pending waitstatus. */
5528
5529static int
5530resumed_thread_with_pending_status (struct thread_info *tp,
5531 void *arg)
5532{
5533 return (tp->resumed
5534 && tp->suspend.waitstatus_pending_p);
5535}
5536
5537/* Called when we get an event that may finish an in-line or
5538 out-of-line (displaced stepping) step-over started previously.
5539 Return true if the event is processed and we should go back to the
5540 event loop; false if the caller should continue processing the
5541 event. */
5542
5543static int
4d9d9d04
PA
5544finish_step_over (struct execution_control_state *ecs)
5545{
372316f1
PA
5546 int had_step_over_info;
5547
4d9d9d04
PA
5548 displaced_step_fixup (ecs->ptid,
5549 ecs->event_thread->suspend.stop_signal);
5550
372316f1
PA
5551 had_step_over_info = step_over_info_valid_p ();
5552
5553 if (had_step_over_info)
4d9d9d04
PA
5554 {
5555 /* If we're stepping over a breakpoint with all threads locked,
5556 then only the thread that was stepped should be reporting
5557 back an event. */
5558 gdb_assert (ecs->event_thread->control.trap_expected);
5559
c65d6b55 5560 clear_step_over_info ();
4d9d9d04
PA
5561 }
5562
fbea99ea 5563 if (!target_is_non_stop_p ())
372316f1 5564 return 0;
4d9d9d04
PA
5565
5566 /* Start a new step-over in another thread if there's one that
5567 needs it. */
5568 start_step_over ();
372316f1
PA
5569
5570 /* If we were stepping over a breakpoint before, and haven't started
5571 a new in-line step-over sequence, then restart all other threads
5572 (except the event thread). We can't do this in all-stop, as then
5573 e.g., we wouldn't be able to issue any other remote packet until
5574 these other threads stop. */
5575 if (had_step_over_info && !step_over_info_valid_p ())
5576 {
5577 struct thread_info *pending;
5578
5579 /* If we only have threads with pending statuses, the restart
5580 below won't restart any thread and so nothing re-inserts the
5581 breakpoint we just stepped over. But we need it inserted
5582 when we later process the pending events, otherwise if
5583 another thread has a pending event for this breakpoint too,
5584 we'd discard its event (because the breakpoint that
5585 originally caused the event was no longer inserted). */
5586 context_switch (ecs->ptid);
5587 insert_breakpoints ();
5588
5589 restart_threads (ecs->event_thread);
5590
5591 /* If we have events pending, go through handle_inferior_event
5592 again, picking up a pending event at random. This avoids
5593 thread starvation. */
5594
5595 /* But not if we just stepped over a watchpoint in order to let
5596 the instruction execute so we can evaluate its expression.
5597 The set of watchpoints that triggered is recorded in the
5598 breakpoint objects themselves (see bp->watchpoint_triggered).
5599 If we processed another event first, that other event could
5600 clobber this info. */
5601 if (ecs->event_thread->stepping_over_watchpoint)
5602 return 0;
5603
5604 pending = iterate_over_threads (resumed_thread_with_pending_status,
5605 NULL);
5606 if (pending != NULL)
5607 {
5608 struct thread_info *tp = ecs->event_thread;
5609 struct regcache *regcache;
5610
5611 if (debug_infrun)
5612 {
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: found resumed threads with "
5615 "pending events, saving status\n");
5616 }
5617
5618 gdb_assert (pending != tp);
5619
5620 /* Record the event thread's event for later. */
5621 save_waitstatus (tp, &ecs->ws);
5622 /* This was cleared early, by handle_inferior_event. Set it
5623 so this pending event is considered by
5624 do_target_wait. */
5625 tp->resumed = 1;
5626
5627 gdb_assert (!tp->executing);
5628
5629 regcache = get_thread_regcache (tp->ptid);
5630 tp->suspend.stop_pc = regcache_read_pc (regcache);
5631
5632 if (debug_infrun)
5633 {
5634 fprintf_unfiltered (gdb_stdlog,
5635 "infrun: saved stop_pc=%s for %s "
5636 "(currently_stepping=%d)\n",
5637 paddress (target_gdbarch (),
5638 tp->suspend.stop_pc),
5639 target_pid_to_str (tp->ptid),
5640 currently_stepping (tp));
5641 }
5642
5643 /* This in-line step-over finished; clear this so we won't
5644 start a new one. This is what handle_signal_stop would
5645 do, if we returned false. */
5646 tp->stepping_over_breakpoint = 0;
5647
5648 /* Wake up the event loop again. */
5649 mark_async_event_handler (infrun_async_inferior_event_token);
5650
5651 prepare_to_wait (ecs);
5652 return 1;
5653 }
5654 }
5655
5656 return 0;
4d9d9d04
PA
5657}
5658
4f5d7f63
PA
5659/* Come here when the program has stopped with a signal. */
5660
5661static void
5662handle_signal_stop (struct execution_control_state *ecs)
5663{
5664 struct frame_info *frame;
5665 struct gdbarch *gdbarch;
5666 int stopped_by_watchpoint;
5667 enum stop_kind stop_soon;
5668 int random_signal;
c906108c 5669
f0407826
DE
5670 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5671
c65d6b55
PA
5672 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5673
f0407826
DE
5674 /* Do we need to clean up the state of a thread that has
5675 completed a displaced single-step? (Doing so usually affects
5676 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5677 if (finish_step_over (ecs))
5678 return;
f0407826
DE
5679
5680 /* If we either finished a single-step or hit a breakpoint, but
5681 the user wanted this thread to be stopped, pretend we got a
5682 SIG0 (generic unsignaled stop). */
5683 if (ecs->event_thread->stop_requested
5684 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5685 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5686
515630c5 5687 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5688
527159b7 5689 if (debug_infrun)
237fc4c9 5690 {
5af949e3
UW
5691 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2989a365 5693 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5694
5695 inferior_ptid = ecs->ptid;
5af949e3
UW
5696
5697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5698 paddress (gdbarch, stop_pc));
d92524f1 5699 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5700 {
5701 CORE_ADDR addr;
abbb1732 5702
237fc4c9
PA
5703 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5704
5705 if (target_stopped_data_address (&current_target, &addr))
5706 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5707 "infrun: stopped data address = %s\n",
5708 paddress (gdbarch, addr));
237fc4c9
PA
5709 else
5710 fprintf_unfiltered (gdb_stdlog,
5711 "infrun: (no data address available)\n");
5712 }
5713 }
527159b7 5714
36fa8042
PA
5715 /* This is originated from start_remote(), start_inferior() and
5716 shared libraries hook functions. */
5717 stop_soon = get_inferior_stop_soon (ecs->ptid);
5718 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5719 {
5720 if (!ptid_equal (ecs->ptid, inferior_ptid))
5721 context_switch (ecs->ptid);
5722 if (debug_infrun)
5723 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5724 stop_print_frame = 1;
22bcd14b 5725 stop_waiting (ecs);
36fa8042
PA
5726 return;
5727 }
5728
36fa8042
PA
5729 /* This originates from attach_command(). We need to overwrite
5730 the stop_signal here, because some kernels don't ignore a
5731 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5732 See more comments in inferior.h. On the other hand, if we
5733 get a non-SIGSTOP, report it to the user - assume the backend
5734 will handle the SIGSTOP if it should show up later.
5735
5736 Also consider that the attach is complete when we see a
5737 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5738 target extended-remote report it instead of a SIGSTOP
5739 (e.g. gdbserver). We already rely on SIGTRAP being our
5740 signal, so this is no exception.
5741
5742 Also consider that the attach is complete when we see a
5743 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5744 the target to stop all threads of the inferior, in case the
5745 low level attach operation doesn't stop them implicitly. If
5746 they weren't stopped implicitly, then the stub will report a
5747 GDB_SIGNAL_0, meaning: stopped for no particular reason
5748 other than GDB's request. */
5749 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5750 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5751 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5752 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5753 {
5754 stop_print_frame = 1;
22bcd14b 5755 stop_waiting (ecs);
36fa8042
PA
5756 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5757 return;
5758 }
5759
488f131b 5760 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5761 so, then switch to that thread. */
5762 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5763 {
527159b7 5764 if (debug_infrun)
8a9de0e4 5765 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5766
0d1e5fa7 5767 context_switch (ecs->ptid);
c5aa993b 5768
9a4105ab 5769 if (deprecated_context_hook)
5d5658a1 5770 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5771 }
c906108c 5772
568d6575
UW
5773 /* At this point, get hold of the now-current thread's frame. */
5774 frame = get_current_frame ();
5775 gdbarch = get_frame_arch (frame);
5776
2adfaa28 5777 /* Pull the single step breakpoints out of the target. */
af48d08f 5778 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5779 {
af48d08f
PA
5780 struct regcache *regcache;
5781 struct address_space *aspace;
5782 CORE_ADDR pc;
2adfaa28 5783
af48d08f
PA
5784 regcache = get_thread_regcache (ecs->ptid);
5785 aspace = get_regcache_aspace (regcache);
5786 pc = regcache_read_pc (regcache);
34b7e8a6 5787
af48d08f
PA
5788 /* However, before doing so, if this single-step breakpoint was
5789 actually for another thread, set this thread up for moving
5790 past it. */
5791 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5792 aspace, pc))
5793 {
5794 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5795 {
5796 if (debug_infrun)
5797 {
5798 fprintf_unfiltered (gdb_stdlog,
af48d08f 5799 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5800 "single-step breakpoint\n",
5801 target_pid_to_str (ecs->ptid));
2adfaa28 5802 }
af48d08f
PA
5803 ecs->hit_singlestep_breakpoint = 1;
5804 }
5805 }
5806 else
5807 {
5808 if (debug_infrun)
5809 {
5810 fprintf_unfiltered (gdb_stdlog,
5811 "infrun: [%s] hit its "
5812 "single-step breakpoint\n",
5813 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5814 }
5815 }
488f131b 5816 }
af48d08f 5817 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5818
963f9c80
PA
5819 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5820 && ecs->event_thread->control.trap_expected
5821 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5822 stopped_by_watchpoint = 0;
5823 else
5824 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5825
5826 /* If necessary, step over this watchpoint. We'll be back to display
5827 it in a moment. */
5828 if (stopped_by_watchpoint
d92524f1 5829 && (target_have_steppable_watchpoint
568d6575 5830 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5831 {
488f131b
JB
5832 /* At this point, we are stopped at an instruction which has
5833 attempted to write to a piece of memory under control of
5834 a watchpoint. The instruction hasn't actually executed
5835 yet. If we were to evaluate the watchpoint expression
5836 now, we would get the old value, and therefore no change
5837 would seem to have occurred.
5838
5839 In order to make watchpoints work `right', we really need
5840 to complete the memory write, and then evaluate the
d983da9c
DJ
5841 watchpoint expression. We do this by single-stepping the
5842 target.
5843
7f89fd65 5844 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5845 it. For example, the PA can (with some kernel cooperation)
5846 single step over a watchpoint without disabling the watchpoint.
5847
5848 It is far more common to need to disable a watchpoint to step
5849 the inferior over it. If we have non-steppable watchpoints,
5850 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5851 disable all watchpoints.
5852
5853 Any breakpoint at PC must also be stepped over -- if there's
5854 one, it will have already triggered before the watchpoint
5855 triggered, and we either already reported it to the user, or
5856 it didn't cause a stop and we called keep_going. In either
5857 case, if there was a breakpoint at PC, we must be trying to
5858 step past it. */
5859 ecs->event_thread->stepping_over_watchpoint = 1;
5860 keep_going (ecs);
488f131b
JB
5861 return;
5862 }
5863
4e1c45ea 5864 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5865 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5866 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5867 ecs->event_thread->control.stop_step = 0;
488f131b 5868 stop_print_frame = 1;
488f131b 5869 stopped_by_random_signal = 0;
488f131b 5870
edb3359d
DJ
5871 /* Hide inlined functions starting here, unless we just performed stepi or
5872 nexti. After stepi and nexti, always show the innermost frame (not any
5873 inline function call sites). */
16c381f0 5874 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5875 {
5876 struct address_space *aspace =
5877 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5878
5879 /* skip_inline_frames is expensive, so we avoid it if we can
5880 determine that the address is one where functions cannot have
5881 been inlined. This improves performance with inferiors that
5882 load a lot of shared libraries, because the solib event
5883 breakpoint is defined as the address of a function (i.e. not
5884 inline). Note that we have to check the previous PC as well
5885 as the current one to catch cases when we have just
5886 single-stepped off a breakpoint prior to reinstating it.
5887 Note that we're assuming that the code we single-step to is
5888 not inline, but that's not definitive: there's nothing
5889 preventing the event breakpoint function from containing
5890 inlined code, and the single-step ending up there. If the
5891 user had set a breakpoint on that inlined code, the missing
5892 skip_inline_frames call would break things. Fortunately
5893 that's an extremely unlikely scenario. */
09ac7c10 5894 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5895 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5896 && ecs->event_thread->control.trap_expected
5897 && pc_at_non_inline_function (aspace,
5898 ecs->event_thread->prev_pc,
09ac7c10 5899 &ecs->ws)))
1c5a993e
MR
5900 {
5901 skip_inline_frames (ecs->ptid);
5902
5903 /* Re-fetch current thread's frame in case that invalidated
5904 the frame cache. */
5905 frame = get_current_frame ();
5906 gdbarch = get_frame_arch (frame);
5907 }
0574c78f 5908 }
edb3359d 5909
a493e3e2 5910 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5911 && ecs->event_thread->control.trap_expected
568d6575 5912 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5913 && currently_stepping (ecs->event_thread))
3352ef37 5914 {
b50d7442 5915 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5916 also on an instruction that needs to be stepped multiple
1777feb0 5917 times before it's been fully executing. E.g., architectures
3352ef37
AC
5918 with a delay slot. It needs to be stepped twice, once for
5919 the instruction and once for the delay slot. */
5920 int step_through_delay
568d6575 5921 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5922
527159b7 5923 if (debug_infrun && step_through_delay)
8a9de0e4 5924 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5925 if (ecs->event_thread->control.step_range_end == 0
5926 && step_through_delay)
3352ef37
AC
5927 {
5928 /* The user issued a continue when stopped at a breakpoint.
5929 Set up for another trap and get out of here. */
4e1c45ea 5930 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5931 keep_going (ecs);
5932 return;
5933 }
5934 else if (step_through_delay)
5935 {
5936 /* The user issued a step when stopped at a breakpoint.
5937 Maybe we should stop, maybe we should not - the delay
5938 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5939 case, don't decide that here, just set
5940 ecs->stepping_over_breakpoint, making sure we
5941 single-step again before breakpoints are re-inserted. */
4e1c45ea 5942 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5943 }
5944 }
5945
ab04a2af
TT
5946 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5947 handles this event. */
5948 ecs->event_thread->control.stop_bpstat
5949 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5950 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5951
ab04a2af
TT
5952 /* Following in case break condition called a
5953 function. */
5954 stop_print_frame = 1;
73dd234f 5955
ab04a2af
TT
5956 /* This is where we handle "moribund" watchpoints. Unlike
5957 software breakpoints traps, hardware watchpoint traps are
5958 always distinguishable from random traps. If no high-level
5959 watchpoint is associated with the reported stop data address
5960 anymore, then the bpstat does not explain the signal ---
5961 simply make sure to ignore it if `stopped_by_watchpoint' is
5962 set. */
5963
5964 if (debug_infrun
5965 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5966 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5967 GDB_SIGNAL_TRAP)
ab04a2af
TT
5968 && stopped_by_watchpoint)
5969 fprintf_unfiltered (gdb_stdlog,
5970 "infrun: no user watchpoint explains "
5971 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5972
bac7d97b 5973 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5974 at one stage in the past included checks for an inferior
5975 function call's call dummy's return breakpoint. The original
5976 comment, that went with the test, read:
03cebad2 5977
ab04a2af
TT
5978 ``End of a stack dummy. Some systems (e.g. Sony news) give
5979 another signal besides SIGTRAP, so check here as well as
5980 above.''
73dd234f 5981
ab04a2af
TT
5982 If someone ever tries to get call dummys on a
5983 non-executable stack to work (where the target would stop
5984 with something like a SIGSEGV), then those tests might need
5985 to be re-instated. Given, however, that the tests were only
5986 enabled when momentary breakpoints were not being used, I
5987 suspect that it won't be the case.
488f131b 5988
ab04a2af
TT
5989 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5990 be necessary for call dummies on a non-executable stack on
5991 SPARC. */
488f131b 5992
bac7d97b 5993 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5994 random_signal
5995 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5996 ecs->event_thread->suspend.stop_signal);
bac7d97b 5997
1cf4d951
PA
5998 /* Maybe this was a trap for a software breakpoint that has since
5999 been removed. */
6000 if (random_signal && target_stopped_by_sw_breakpoint ())
6001 {
6002 if (program_breakpoint_here_p (gdbarch, stop_pc))
6003 {
6004 struct regcache *regcache;
6005 int decr_pc;
6006
6007 /* Re-adjust PC to what the program would see if GDB was not
6008 debugging it. */
6009 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6010 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6011 if (decr_pc != 0)
6012 {
07036511
TT
6013 gdb::optional<scoped_restore_tmpl<int>>
6014 restore_operation_disable;
1cf4d951
PA
6015
6016 if (record_full_is_used ())
07036511
TT
6017 restore_operation_disable.emplace
6018 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
6019
6020 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
6021 }
6022 }
6023 else
6024 {
6025 /* A delayed software breakpoint event. Ignore the trap. */
6026 if (debug_infrun)
6027 fprintf_unfiltered (gdb_stdlog,
6028 "infrun: delayed software breakpoint "
6029 "trap, ignoring\n");
6030 random_signal = 0;
6031 }
6032 }
6033
6034 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6035 has since been removed. */
6036 if (random_signal && target_stopped_by_hw_breakpoint ())
6037 {
6038 /* A delayed hardware breakpoint event. Ignore the trap. */
6039 if (debug_infrun)
6040 fprintf_unfiltered (gdb_stdlog,
6041 "infrun: delayed hardware breakpoint/watchpoint "
6042 "trap, ignoring\n");
6043 random_signal = 0;
6044 }
6045
bac7d97b
PA
6046 /* If not, perhaps stepping/nexting can. */
6047 if (random_signal)
6048 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6049 && currently_stepping (ecs->event_thread));
ab04a2af 6050
2adfaa28
PA
6051 /* Perhaps the thread hit a single-step breakpoint of _another_
6052 thread. Single-step breakpoints are transparent to the
6053 breakpoints module. */
6054 if (random_signal)
6055 random_signal = !ecs->hit_singlestep_breakpoint;
6056
bac7d97b
PA
6057 /* No? Perhaps we got a moribund watchpoint. */
6058 if (random_signal)
6059 random_signal = !stopped_by_watchpoint;
ab04a2af 6060
c65d6b55
PA
6061 /* Always stop if the user explicitly requested this thread to
6062 remain stopped. */
6063 if (ecs->event_thread->stop_requested)
6064 {
6065 random_signal = 1;
6066 if (debug_infrun)
6067 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6068 }
6069
488f131b
JB
6070 /* For the program's own signals, act according to
6071 the signal handling tables. */
6072
ce12b012 6073 if (random_signal)
488f131b
JB
6074 {
6075 /* Signal not for debugging purposes. */
c9657e70 6076 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6077 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6078
527159b7 6079 if (debug_infrun)
c9737c08
PA
6080 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6081 gdb_signal_to_symbol_string (stop_signal));
527159b7 6082
488f131b
JB
6083 stopped_by_random_signal = 1;
6084
252fbfc8
PA
6085 /* Always stop on signals if we're either just gaining control
6086 of the program, or the user explicitly requested this thread
6087 to remain stopped. */
d6b48e9c 6088 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6089 || ecs->event_thread->stop_requested
24291992 6090 || (!inf->detaching
16c381f0 6091 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6092 {
22bcd14b 6093 stop_waiting (ecs);
488f131b
JB
6094 return;
6095 }
b57bacec
PA
6096
6097 /* Notify observers the signal has "handle print" set. Note we
6098 returned early above if stopping; normal_stop handles the
6099 printing in that case. */
6100 if (signal_print[ecs->event_thread->suspend.stop_signal])
6101 {
6102 /* The signal table tells us to print about this signal. */
223ffa71 6103 target_terminal::ours_for_output ();
b57bacec 6104 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
223ffa71 6105 target_terminal::inferior ();
b57bacec 6106 }
488f131b
JB
6107
6108 /* Clear the signal if it should not be passed. */
16c381f0 6109 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6110 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6111
fb14de7b 6112 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6113 && ecs->event_thread->control.trap_expected
8358c15c 6114 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6115 {
6116 /* We were just starting a new sequence, attempting to
6117 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6118 Instead this signal arrives. This signal will take us out
68f53502
AC
6119 of the stepping range so GDB needs to remember to, when
6120 the signal handler returns, resume stepping off that
6121 breakpoint. */
6122 /* To simplify things, "continue" is forced to use the same
6123 code paths as single-step - set a breakpoint at the
6124 signal return address and then, once hit, step off that
6125 breakpoint. */
237fc4c9
PA
6126 if (debug_infrun)
6127 fprintf_unfiltered (gdb_stdlog,
6128 "infrun: signal arrived while stepping over "
6129 "breakpoint\n");
d3169d93 6130
2c03e5be 6131 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6132 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6133 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6134 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6135
6136 /* If we were nexting/stepping some other thread, switch to
6137 it, so that we don't continue it, losing control. */
6138 if (!switch_back_to_stepped_thread (ecs))
6139 keep_going (ecs);
9d799f85 6140 return;
68f53502 6141 }
9d799f85 6142
e5f8a7cc
PA
6143 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6144 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6145 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6146 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6147 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6148 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6149 {
6150 /* The inferior is about to take a signal that will take it
6151 out of the single step range. Set a breakpoint at the
6152 current PC (which is presumably where the signal handler
6153 will eventually return) and then allow the inferior to
6154 run free.
6155
6156 Note that this is only needed for a signal delivered
6157 while in the single-step range. Nested signals aren't a
6158 problem as they eventually all return. */
237fc4c9
PA
6159 if (debug_infrun)
6160 fprintf_unfiltered (gdb_stdlog,
6161 "infrun: signal may take us out of "
6162 "single-step range\n");
6163
372316f1 6164 clear_step_over_info ();
2c03e5be 6165 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6166 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6167 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6168 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6169 keep_going (ecs);
6170 return;
d303a6c7 6171 }
9d799f85
AC
6172
6173 /* Note: step_resume_breakpoint may be non-NULL. This occures
6174 when either there's a nested signal, or when there's a
6175 pending signal enabled just as the signal handler returns
6176 (leaving the inferior at the step-resume-breakpoint without
6177 actually executing it). Either way continue until the
6178 breakpoint is really hit. */
c447ac0b
PA
6179
6180 if (!switch_back_to_stepped_thread (ecs))
6181 {
6182 if (debug_infrun)
6183 fprintf_unfiltered (gdb_stdlog,
6184 "infrun: random signal, keep going\n");
6185
6186 keep_going (ecs);
6187 }
6188 return;
488f131b 6189 }
94c57d6a
PA
6190
6191 process_event_stop_test (ecs);
6192}
6193
6194/* Come here when we've got some debug event / signal we can explain
6195 (IOW, not a random signal), and test whether it should cause a
6196 stop, or whether we should resume the inferior (transparently).
6197 E.g., could be a breakpoint whose condition evaluates false; we
6198 could be still stepping within the line; etc. */
6199
6200static void
6201process_event_stop_test (struct execution_control_state *ecs)
6202{
6203 struct symtab_and_line stop_pc_sal;
6204 struct frame_info *frame;
6205 struct gdbarch *gdbarch;
cdaa5b73
PA
6206 CORE_ADDR jmp_buf_pc;
6207 struct bpstat_what what;
94c57d6a 6208
cdaa5b73 6209 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6210
cdaa5b73
PA
6211 frame = get_current_frame ();
6212 gdbarch = get_frame_arch (frame);
fcf3daef 6213
cdaa5b73 6214 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6215
cdaa5b73
PA
6216 if (what.call_dummy)
6217 {
6218 stop_stack_dummy = what.call_dummy;
6219 }
186c406b 6220
243a9253
PA
6221 /* A few breakpoint types have callbacks associated (e.g.,
6222 bp_jit_event). Run them now. */
6223 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6224
cdaa5b73
PA
6225 /* If we hit an internal event that triggers symbol changes, the
6226 current frame will be invalidated within bpstat_what (e.g., if we
6227 hit an internal solib event). Re-fetch it. */
6228 frame = get_current_frame ();
6229 gdbarch = get_frame_arch (frame);
e2e4d78b 6230
cdaa5b73
PA
6231 switch (what.main_action)
6232 {
6233 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6234 /* If we hit the breakpoint at longjmp while stepping, we
6235 install a momentary breakpoint at the target of the
6236 jmp_buf. */
186c406b 6237
cdaa5b73
PA
6238 if (debug_infrun)
6239 fprintf_unfiltered (gdb_stdlog,
6240 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6241
cdaa5b73 6242 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6243
cdaa5b73
PA
6244 if (what.is_longjmp)
6245 {
6246 struct value *arg_value;
6247
6248 /* If we set the longjmp breakpoint via a SystemTap probe,
6249 then use it to extract the arguments. The destination PC
6250 is the third argument to the probe. */
6251 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6252 if (arg_value)
8fa0c4f8
AA
6253 {
6254 jmp_buf_pc = value_as_address (arg_value);
6255 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6256 }
cdaa5b73
PA
6257 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6258 || !gdbarch_get_longjmp_target (gdbarch,
6259 frame, &jmp_buf_pc))
e2e4d78b 6260 {
cdaa5b73
PA
6261 if (debug_infrun)
6262 fprintf_unfiltered (gdb_stdlog,
6263 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6264 "(!gdbarch_get_longjmp_target)\n");
6265 keep_going (ecs);
6266 return;
e2e4d78b 6267 }
e2e4d78b 6268
cdaa5b73
PA
6269 /* Insert a breakpoint at resume address. */
6270 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6271 }
6272 else
6273 check_exception_resume (ecs, frame);
6274 keep_going (ecs);
6275 return;
e81a37f7 6276
cdaa5b73
PA
6277 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6278 {
6279 struct frame_info *init_frame;
e81a37f7 6280
cdaa5b73 6281 /* There are several cases to consider.
c906108c 6282
cdaa5b73
PA
6283 1. The initiating frame no longer exists. In this case we
6284 must stop, because the exception or longjmp has gone too
6285 far.
2c03e5be 6286
cdaa5b73
PA
6287 2. The initiating frame exists, and is the same as the
6288 current frame. We stop, because the exception or longjmp
6289 has been caught.
2c03e5be 6290
cdaa5b73
PA
6291 3. The initiating frame exists and is different from the
6292 current frame. This means the exception or longjmp has
6293 been caught beneath the initiating frame, so keep going.
c906108c 6294
cdaa5b73
PA
6295 4. longjmp breakpoint has been placed just to protect
6296 against stale dummy frames and user is not interested in
6297 stopping around longjmps. */
c5aa993b 6298
cdaa5b73
PA
6299 if (debug_infrun)
6300 fprintf_unfiltered (gdb_stdlog,
6301 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6302
cdaa5b73
PA
6303 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6304 != NULL);
6305 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6306
cdaa5b73
PA
6307 if (what.is_longjmp)
6308 {
b67a2c6f 6309 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6310
cdaa5b73 6311 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6312 {
cdaa5b73
PA
6313 /* Case 4. */
6314 keep_going (ecs);
6315 return;
e5ef252a 6316 }
cdaa5b73 6317 }
c5aa993b 6318
cdaa5b73 6319 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6320
cdaa5b73
PA
6321 if (init_frame)
6322 {
6323 struct frame_id current_id
6324 = get_frame_id (get_current_frame ());
6325 if (frame_id_eq (current_id,
6326 ecs->event_thread->initiating_frame))
6327 {
6328 /* Case 2. Fall through. */
6329 }
6330 else
6331 {
6332 /* Case 3. */
6333 keep_going (ecs);
6334 return;
6335 }
68f53502 6336 }
488f131b 6337
cdaa5b73
PA
6338 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6339 exists. */
6340 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6341
bdc36728 6342 end_stepping_range (ecs);
cdaa5b73
PA
6343 }
6344 return;
e5ef252a 6345
cdaa5b73
PA
6346 case BPSTAT_WHAT_SINGLE:
6347 if (debug_infrun)
6348 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6349 ecs->event_thread->stepping_over_breakpoint = 1;
6350 /* Still need to check other stuff, at least the case where we
6351 are stepping and step out of the right range. */
6352 break;
e5ef252a 6353
cdaa5b73
PA
6354 case BPSTAT_WHAT_STEP_RESUME:
6355 if (debug_infrun)
6356 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6357
cdaa5b73
PA
6358 delete_step_resume_breakpoint (ecs->event_thread);
6359 if (ecs->event_thread->control.proceed_to_finish
6360 && execution_direction == EXEC_REVERSE)
6361 {
6362 struct thread_info *tp = ecs->event_thread;
6363
6364 /* We are finishing a function in reverse, and just hit the
6365 step-resume breakpoint at the start address of the
6366 function, and we're almost there -- just need to back up
6367 by one more single-step, which should take us back to the
6368 function call. */
6369 tp->control.step_range_start = tp->control.step_range_end = 1;
6370 keep_going (ecs);
e5ef252a 6371 return;
cdaa5b73
PA
6372 }
6373 fill_in_stop_func (gdbarch, ecs);
6374 if (stop_pc == ecs->stop_func_start
6375 && execution_direction == EXEC_REVERSE)
6376 {
6377 /* We are stepping over a function call in reverse, and just
6378 hit the step-resume breakpoint at the start address of
6379 the function. Go back to single-stepping, which should
6380 take us back to the function call. */
6381 ecs->event_thread->stepping_over_breakpoint = 1;
6382 keep_going (ecs);
6383 return;
6384 }
6385 break;
e5ef252a 6386
cdaa5b73
PA
6387 case BPSTAT_WHAT_STOP_NOISY:
6388 if (debug_infrun)
6389 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6390 stop_print_frame = 1;
e5ef252a 6391
99619bea
PA
6392 /* Assume the thread stopped for a breapoint. We'll still check
6393 whether a/the breakpoint is there when the thread is next
6394 resumed. */
6395 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6396
22bcd14b 6397 stop_waiting (ecs);
cdaa5b73 6398 return;
e5ef252a 6399
cdaa5b73
PA
6400 case BPSTAT_WHAT_STOP_SILENT:
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6403 stop_print_frame = 0;
e5ef252a 6404
99619bea
PA
6405 /* Assume the thread stopped for a breapoint. We'll still check
6406 whether a/the breakpoint is there when the thread is next
6407 resumed. */
6408 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6409 stop_waiting (ecs);
cdaa5b73
PA
6410 return;
6411
6412 case BPSTAT_WHAT_HP_STEP_RESUME:
6413 if (debug_infrun)
6414 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6415
6416 delete_step_resume_breakpoint (ecs->event_thread);
6417 if (ecs->event_thread->step_after_step_resume_breakpoint)
6418 {
6419 /* Back when the step-resume breakpoint was inserted, we
6420 were trying to single-step off a breakpoint. Go back to
6421 doing that. */
6422 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6423 ecs->event_thread->stepping_over_breakpoint = 1;
6424 keep_going (ecs);
6425 return;
e5ef252a 6426 }
cdaa5b73
PA
6427 break;
6428
6429 case BPSTAT_WHAT_KEEP_CHECKING:
6430 break;
e5ef252a 6431 }
c906108c 6432
af48d08f
PA
6433 /* If we stepped a permanent breakpoint and we had a high priority
6434 step-resume breakpoint for the address we stepped, but we didn't
6435 hit it, then we must have stepped into the signal handler. The
6436 step-resume was only necessary to catch the case of _not_
6437 stepping into the handler, so delete it, and fall through to
6438 checking whether the step finished. */
6439 if (ecs->event_thread->stepped_breakpoint)
6440 {
6441 struct breakpoint *sr_bp
6442 = ecs->event_thread->control.step_resume_breakpoint;
6443
8d707a12
PA
6444 if (sr_bp != NULL
6445 && sr_bp->loc->permanent
af48d08f
PA
6446 && sr_bp->type == bp_hp_step_resume
6447 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6448 {
6449 if (debug_infrun)
6450 fprintf_unfiltered (gdb_stdlog,
6451 "infrun: stepped permanent breakpoint, stopped in "
6452 "handler\n");
6453 delete_step_resume_breakpoint (ecs->event_thread);
6454 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6455 }
6456 }
6457
cdaa5b73
PA
6458 /* We come here if we hit a breakpoint but should not stop for it.
6459 Possibly we also were stepping and should stop for that. So fall
6460 through and test for stepping. But, if not stepping, do not
6461 stop. */
c906108c 6462
a7212384
UW
6463 /* In all-stop mode, if we're currently stepping but have stopped in
6464 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6465 if (switch_back_to_stepped_thread (ecs))
6466 return;
776f04fa 6467
8358c15c 6468 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6469 {
527159b7 6470 if (debug_infrun)
d3169d93
DJ
6471 fprintf_unfiltered (gdb_stdlog,
6472 "infrun: step-resume breakpoint is inserted\n");
527159b7 6473
488f131b
JB
6474 /* Having a step-resume breakpoint overrides anything
6475 else having to do with stepping commands until
6476 that breakpoint is reached. */
488f131b
JB
6477 keep_going (ecs);
6478 return;
6479 }
c5aa993b 6480
16c381f0 6481 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6482 {
527159b7 6483 if (debug_infrun)
8a9de0e4 6484 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6485 /* Likewise if we aren't even stepping. */
488f131b
JB
6486 keep_going (ecs);
6487 return;
6488 }
c5aa993b 6489
4b7703ad
JB
6490 /* Re-fetch current thread's frame in case the code above caused
6491 the frame cache to be re-initialized, making our FRAME variable
6492 a dangling pointer. */
6493 frame = get_current_frame ();
628fe4e4 6494 gdbarch = get_frame_arch (frame);
7e324e48 6495 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6496
488f131b 6497 /* If stepping through a line, keep going if still within it.
c906108c 6498
488f131b
JB
6499 Note that step_range_end is the address of the first instruction
6500 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6501 within it!
6502
6503 Note also that during reverse execution, we may be stepping
6504 through a function epilogue and therefore must detect when
6505 the current-frame changes in the middle of a line. */
6506
ce4c476a 6507 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6508 && (execution_direction != EXEC_REVERSE
388a8562 6509 || frame_id_eq (get_frame_id (frame),
16c381f0 6510 ecs->event_thread->control.step_frame_id)))
488f131b 6511 {
527159b7 6512 if (debug_infrun)
5af949e3
UW
6513 fprintf_unfiltered
6514 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6515 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6516 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6517
c1e36e3e
PA
6518 /* Tentatively re-enable range stepping; `resume' disables it if
6519 necessary (e.g., if we're stepping over a breakpoint or we
6520 have software watchpoints). */
6521 ecs->event_thread->control.may_range_step = 1;
6522
b2175913
MS
6523 /* When stepping backward, stop at beginning of line range
6524 (unless it's the function entry point, in which case
6525 keep going back to the call point). */
16c381f0 6526 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6527 && stop_pc != ecs->stop_func_start
6528 && execution_direction == EXEC_REVERSE)
bdc36728 6529 end_stepping_range (ecs);
b2175913
MS
6530 else
6531 keep_going (ecs);
6532
488f131b
JB
6533 return;
6534 }
c5aa993b 6535
488f131b 6536 /* We stepped out of the stepping range. */
c906108c 6537
488f131b 6538 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6539 loader dynamic symbol resolution code...
6540
6541 EXEC_FORWARD: we keep on single stepping until we exit the run
6542 time loader code and reach the callee's address.
6543
6544 EXEC_REVERSE: we've already executed the callee (backward), and
6545 the runtime loader code is handled just like any other
6546 undebuggable function call. Now we need only keep stepping
6547 backward through the trampoline code, and that's handled further
6548 down, so there is nothing for us to do here. */
6549
6550 if (execution_direction != EXEC_REVERSE
16c381f0 6551 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6552 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6553 {
4c8c40e6 6554 CORE_ADDR pc_after_resolver =
568d6575 6555 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6556
527159b7 6557 if (debug_infrun)
3e43a32a
MS
6558 fprintf_unfiltered (gdb_stdlog,
6559 "infrun: stepped into dynsym resolve code\n");
527159b7 6560
488f131b
JB
6561 if (pc_after_resolver)
6562 {
6563 /* Set up a step-resume breakpoint at the address
6564 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6565 symtab_and_line sr_sal;
488f131b 6566 sr_sal.pc = pc_after_resolver;
6c95b8df 6567 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6568
a6d9a66e
UW
6569 insert_step_resume_breakpoint_at_sal (gdbarch,
6570 sr_sal, null_frame_id);
c5aa993b 6571 }
c906108c 6572
488f131b
JB
6573 keep_going (ecs);
6574 return;
6575 }
c906108c 6576
16c381f0
JK
6577 if (ecs->event_thread->control.step_range_end != 1
6578 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6579 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6580 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6581 {
527159b7 6582 if (debug_infrun)
3e43a32a
MS
6583 fprintf_unfiltered (gdb_stdlog,
6584 "infrun: stepped into signal trampoline\n");
42edda50 6585 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6586 a signal trampoline (either by a signal being delivered or by
6587 the signal handler returning). Just single-step until the
6588 inferior leaves the trampoline (either by calling the handler
6589 or returning). */
488f131b
JB
6590 keep_going (ecs);
6591 return;
6592 }
c906108c 6593
14132e89
MR
6594 /* If we're in the return path from a shared library trampoline,
6595 we want to proceed through the trampoline when stepping. */
6596 /* macro/2012-04-25: This needs to come before the subroutine
6597 call check below as on some targets return trampolines look
6598 like subroutine calls (MIPS16 return thunks). */
6599 if (gdbarch_in_solib_return_trampoline (gdbarch,
6600 stop_pc, ecs->stop_func_name)
6601 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6602 {
6603 /* Determine where this trampoline returns. */
6604 CORE_ADDR real_stop_pc;
6605
6606 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6607
6608 if (debug_infrun)
6609 fprintf_unfiltered (gdb_stdlog,
6610 "infrun: stepped into solib return tramp\n");
6611
6612 /* Only proceed through if we know where it's going. */
6613 if (real_stop_pc)
6614 {
6615 /* And put the step-breakpoint there and go until there. */
51abb421 6616 symtab_and_line sr_sal;
14132e89
MR
6617 sr_sal.pc = real_stop_pc;
6618 sr_sal.section = find_pc_overlay (sr_sal.pc);
6619 sr_sal.pspace = get_frame_program_space (frame);
6620
6621 /* Do not specify what the fp should be when we stop since
6622 on some machines the prologue is where the new fp value
6623 is established. */
6624 insert_step_resume_breakpoint_at_sal (gdbarch,
6625 sr_sal, null_frame_id);
6626
6627 /* Restart without fiddling with the step ranges or
6628 other state. */
6629 keep_going (ecs);
6630 return;
6631 }
6632 }
6633
c17eaafe
DJ
6634 /* Check for subroutine calls. The check for the current frame
6635 equalling the step ID is not necessary - the check of the
6636 previous frame's ID is sufficient - but it is a common case and
6637 cheaper than checking the previous frame's ID.
14e60db5
DJ
6638
6639 NOTE: frame_id_eq will never report two invalid frame IDs as
6640 being equal, so to get into this block, both the current and
6641 previous frame must have valid frame IDs. */
005ca36a
JB
6642 /* The outer_frame_id check is a heuristic to detect stepping
6643 through startup code. If we step over an instruction which
6644 sets the stack pointer from an invalid value to a valid value,
6645 we may detect that as a subroutine call from the mythical
6646 "outermost" function. This could be fixed by marking
6647 outermost frames as !stack_p,code_p,special_p. Then the
6648 initial outermost frame, before sp was valid, would
ce6cca6d 6649 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6650 for more. */
edb3359d 6651 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6652 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6653 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6654 ecs->event_thread->control.step_stack_frame_id)
6655 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6656 outer_frame_id)
885eeb5b
PA
6657 || (ecs->event_thread->control.step_start_function
6658 != find_pc_function (stop_pc)))))
488f131b 6659 {
95918acb 6660 CORE_ADDR real_stop_pc;
8fb3e588 6661
527159b7 6662 if (debug_infrun)
8a9de0e4 6663 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6664
b7a084be 6665 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6666 {
6667 /* I presume that step_over_calls is only 0 when we're
6668 supposed to be stepping at the assembly language level
6669 ("stepi"). Just stop. */
388a8562 6670 /* And this works the same backward as frontward. MVS */
bdc36728 6671 end_stepping_range (ecs);
95918acb
AC
6672 return;
6673 }
8fb3e588 6674
388a8562
MS
6675 /* Reverse stepping through solib trampolines. */
6676
6677 if (execution_direction == EXEC_REVERSE
16c381f0 6678 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6679 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6680 || (ecs->stop_func_start == 0
6681 && in_solib_dynsym_resolve_code (stop_pc))))
6682 {
6683 /* Any solib trampoline code can be handled in reverse
6684 by simply continuing to single-step. We have already
6685 executed the solib function (backwards), and a few
6686 steps will take us back through the trampoline to the
6687 caller. */
6688 keep_going (ecs);
6689 return;
6690 }
6691
16c381f0 6692 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6693 {
b2175913
MS
6694 /* We're doing a "next".
6695
6696 Normal (forward) execution: set a breakpoint at the
6697 callee's return address (the address at which the caller
6698 will resume).
6699
6700 Reverse (backward) execution. set the step-resume
6701 breakpoint at the start of the function that we just
6702 stepped into (backwards), and continue to there. When we
6130d0b7 6703 get there, we'll need to single-step back to the caller. */
b2175913
MS
6704
6705 if (execution_direction == EXEC_REVERSE)
6706 {
acf9414f
JK
6707 /* If we're already at the start of the function, we've either
6708 just stepped backward into a single instruction function,
6709 or stepped back out of a signal handler to the first instruction
6710 of the function. Just keep going, which will single-step back
6711 to the caller. */
58c48e72 6712 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6713 {
acf9414f 6714 /* Normal function call return (static or dynamic). */
51abb421 6715 symtab_and_line sr_sal;
acf9414f
JK
6716 sr_sal.pc = ecs->stop_func_start;
6717 sr_sal.pspace = get_frame_program_space (frame);
6718 insert_step_resume_breakpoint_at_sal (gdbarch,
6719 sr_sal, null_frame_id);
6720 }
b2175913
MS
6721 }
6722 else
568d6575 6723 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6724
8567c30f
AC
6725 keep_going (ecs);
6726 return;
6727 }
a53c66de 6728
95918acb 6729 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6730 calling routine and the real function), locate the real
6731 function. That's what tells us (a) whether we want to step
6732 into it at all, and (b) what prologue we want to run to the
6733 end of, if we do step into it. */
568d6575 6734 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6735 if (real_stop_pc == 0)
568d6575 6736 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6737 if (real_stop_pc != 0)
6738 ecs->stop_func_start = real_stop_pc;
8fb3e588 6739
db5f024e 6740 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6741 {
51abb421 6742 symtab_and_line sr_sal;
1b2bfbb9 6743 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6744 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6745
a6d9a66e
UW
6746 insert_step_resume_breakpoint_at_sal (gdbarch,
6747 sr_sal, null_frame_id);
8fb3e588
AC
6748 keep_going (ecs);
6749 return;
1b2bfbb9
RC
6750 }
6751
95918acb 6752 /* If we have line number information for the function we are
1bfeeb0f
JL
6753 thinking of stepping into and the function isn't on the skip
6754 list, step into it.
95918acb 6755
8fb3e588
AC
6756 If there are several symtabs at that PC (e.g. with include
6757 files), just want to know whether *any* of them have line
6758 numbers. find_pc_line handles this. */
95918acb
AC
6759 {
6760 struct symtab_and_line tmp_sal;
8fb3e588 6761
95918acb 6762 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6763 if (tmp_sal.line != 0
85817405 6764 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6765 tmp_sal))
95918acb 6766 {
b2175913 6767 if (execution_direction == EXEC_REVERSE)
568d6575 6768 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6769 else
568d6575 6770 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6771 return;
6772 }
6773 }
6774
6775 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6776 set, we stop the step so that the user has a chance to switch
6777 in assembly mode. */
16c381f0 6778 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6779 && step_stop_if_no_debug)
95918acb 6780 {
bdc36728 6781 end_stepping_range (ecs);
95918acb
AC
6782 return;
6783 }
6784
b2175913
MS
6785 if (execution_direction == EXEC_REVERSE)
6786 {
acf9414f
JK
6787 /* If we're already at the start of the function, we've either just
6788 stepped backward into a single instruction function without line
6789 number info, or stepped back out of a signal handler to the first
6790 instruction of the function without line number info. Just keep
6791 going, which will single-step back to the caller. */
6792 if (ecs->stop_func_start != stop_pc)
6793 {
6794 /* Set a breakpoint at callee's start address.
6795 From there we can step once and be back in the caller. */
51abb421 6796 symtab_and_line sr_sal;
acf9414f
JK
6797 sr_sal.pc = ecs->stop_func_start;
6798 sr_sal.pspace = get_frame_program_space (frame);
6799 insert_step_resume_breakpoint_at_sal (gdbarch,
6800 sr_sal, null_frame_id);
6801 }
b2175913
MS
6802 }
6803 else
6804 /* Set a breakpoint at callee's return address (the address
6805 at which the caller will resume). */
568d6575 6806 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6807
95918acb 6808 keep_going (ecs);
488f131b 6809 return;
488f131b 6810 }
c906108c 6811
fdd654f3
MS
6812 /* Reverse stepping through solib trampolines. */
6813
6814 if (execution_direction == EXEC_REVERSE
16c381f0 6815 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6816 {
6817 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6818 || (ecs->stop_func_start == 0
6819 && in_solib_dynsym_resolve_code (stop_pc)))
6820 {
6821 /* Any solib trampoline code can be handled in reverse
6822 by simply continuing to single-step. We have already
6823 executed the solib function (backwards), and a few
6824 steps will take us back through the trampoline to the
6825 caller. */
6826 keep_going (ecs);
6827 return;
6828 }
6829 else if (in_solib_dynsym_resolve_code (stop_pc))
6830 {
6831 /* Stepped backward into the solib dynsym resolver.
6832 Set a breakpoint at its start and continue, then
6833 one more step will take us out. */
51abb421 6834 symtab_and_line sr_sal;
fdd654f3 6835 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6836 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6837 insert_step_resume_breakpoint_at_sal (gdbarch,
6838 sr_sal, null_frame_id);
6839 keep_going (ecs);
6840 return;
6841 }
6842 }
6843
2afb61aa 6844 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6845
1b2bfbb9
RC
6846 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6847 the trampoline processing logic, however, there are some trampolines
6848 that have no names, so we should do trampoline handling first. */
16c381f0 6849 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6850 && ecs->stop_func_name == NULL
2afb61aa 6851 && stop_pc_sal.line == 0)
1b2bfbb9 6852 {
527159b7 6853 if (debug_infrun)
3e43a32a
MS
6854 fprintf_unfiltered (gdb_stdlog,
6855 "infrun: stepped into undebuggable function\n");
527159b7 6856
1b2bfbb9 6857 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6858 undebuggable function (where there is no debugging information
6859 and no line number corresponding to the address where the
1b2bfbb9
RC
6860 inferior stopped). Since we want to skip this kind of code,
6861 we keep going until the inferior returns from this
14e60db5
DJ
6862 function - unless the user has asked us not to (via
6863 set step-mode) or we no longer know how to get back
6864 to the call site. */
6865 if (step_stop_if_no_debug
c7ce8faa 6866 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6867 {
6868 /* If we have no line number and the step-stop-if-no-debug
6869 is set, we stop the step so that the user has a chance to
6870 switch in assembly mode. */
bdc36728 6871 end_stepping_range (ecs);
1b2bfbb9
RC
6872 return;
6873 }
6874 else
6875 {
6876 /* Set a breakpoint at callee's return address (the address
6877 at which the caller will resume). */
568d6575 6878 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6879 keep_going (ecs);
6880 return;
6881 }
6882 }
6883
16c381f0 6884 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6885 {
6886 /* It is stepi or nexti. We always want to stop stepping after
6887 one instruction. */
527159b7 6888 if (debug_infrun)
8a9de0e4 6889 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6890 end_stepping_range (ecs);
1b2bfbb9
RC
6891 return;
6892 }
6893
2afb61aa 6894 if (stop_pc_sal.line == 0)
488f131b
JB
6895 {
6896 /* We have no line number information. That means to stop
6897 stepping (does this always happen right after one instruction,
6898 when we do "s" in a function with no line numbers,
6899 or can this happen as a result of a return or longjmp?). */
527159b7 6900 if (debug_infrun)
8a9de0e4 6901 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6902 end_stepping_range (ecs);
488f131b
JB
6903 return;
6904 }
c906108c 6905
edb3359d
DJ
6906 /* Look for "calls" to inlined functions, part one. If the inline
6907 frame machinery detected some skipped call sites, we have entered
6908 a new inline function. */
6909
6910 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6911 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6912 && inline_skipped_frames (ecs->ptid))
6913 {
edb3359d
DJ
6914 if (debug_infrun)
6915 fprintf_unfiltered (gdb_stdlog,
6916 "infrun: stepped into inlined function\n");
6917
51abb421 6918 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6919
16c381f0 6920 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6921 {
6922 /* For "step", we're going to stop. But if the call site
6923 for this inlined function is on the same source line as
6924 we were previously stepping, go down into the function
6925 first. Otherwise stop at the call site. */
6926
6927 if (call_sal.line == ecs->event_thread->current_line
6928 && call_sal.symtab == ecs->event_thread->current_symtab)
6929 step_into_inline_frame (ecs->ptid);
6930
bdc36728 6931 end_stepping_range (ecs);
edb3359d
DJ
6932 return;
6933 }
6934 else
6935 {
6936 /* For "next", we should stop at the call site if it is on a
6937 different source line. Otherwise continue through the
6938 inlined function. */
6939 if (call_sal.line == ecs->event_thread->current_line
6940 && call_sal.symtab == ecs->event_thread->current_symtab)
6941 keep_going (ecs);
6942 else
bdc36728 6943 end_stepping_range (ecs);
edb3359d
DJ
6944 return;
6945 }
6946 }
6947
6948 /* Look for "calls" to inlined functions, part two. If we are still
6949 in the same real function we were stepping through, but we have
6950 to go further up to find the exact frame ID, we are stepping
6951 through a more inlined call beyond its call site. */
6952
6953 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6954 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6955 ecs->event_thread->control.step_frame_id)
edb3359d 6956 && stepped_in_from (get_current_frame (),
16c381f0 6957 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6958 {
6959 if (debug_infrun)
6960 fprintf_unfiltered (gdb_stdlog,
6961 "infrun: stepping through inlined function\n");
6962
16c381f0 6963 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6964 keep_going (ecs);
6965 else
bdc36728 6966 end_stepping_range (ecs);
edb3359d
DJ
6967 return;
6968 }
6969
2afb61aa 6970 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6971 && (ecs->event_thread->current_line != stop_pc_sal.line
6972 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6973 {
6974 /* We are at the start of a different line. So stop. Note that
6975 we don't stop if we step into the middle of a different line.
6976 That is said to make things like for (;;) statements work
6977 better. */
527159b7 6978 if (debug_infrun)
3e43a32a
MS
6979 fprintf_unfiltered (gdb_stdlog,
6980 "infrun: stepped to a different line\n");
bdc36728 6981 end_stepping_range (ecs);
488f131b
JB
6982 return;
6983 }
c906108c 6984
488f131b 6985 /* We aren't done stepping.
c906108c 6986
488f131b
JB
6987 Optimize by setting the stepping range to the line.
6988 (We might not be in the original line, but if we entered a
6989 new line in mid-statement, we continue stepping. This makes
6990 things like for(;;) statements work better.) */
c906108c 6991
16c381f0
JK
6992 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6993 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6994 ecs->event_thread->control.may_range_step = 1;
edb3359d 6995 set_step_info (frame, stop_pc_sal);
488f131b 6996
527159b7 6997 if (debug_infrun)
8a9de0e4 6998 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6999 keep_going (ecs);
104c1213
JM
7000}
7001
c447ac0b
PA
7002/* In all-stop mode, if we're currently stepping but have stopped in
7003 some other thread, we may need to switch back to the stepped
7004 thread. Returns true we set the inferior running, false if we left
7005 it stopped (and the event needs further processing). */
7006
7007static int
7008switch_back_to_stepped_thread (struct execution_control_state *ecs)
7009{
fbea99ea 7010 if (!target_is_non_stop_p ())
c447ac0b
PA
7011 {
7012 struct thread_info *tp;
99619bea
PA
7013 struct thread_info *stepping_thread;
7014
7015 /* If any thread is blocked on some internal breakpoint, and we
7016 simply need to step over that breakpoint to get it going
7017 again, do that first. */
7018
7019 /* However, if we see an event for the stepping thread, then we
7020 know all other threads have been moved past their breakpoints
7021 already. Let the caller check whether the step is finished,
7022 etc., before deciding to move it past a breakpoint. */
7023 if (ecs->event_thread->control.step_range_end != 0)
7024 return 0;
7025
7026 /* Check if the current thread is blocked on an incomplete
7027 step-over, interrupted by a random signal. */
7028 if (ecs->event_thread->control.trap_expected
7029 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7030 {
99619bea
PA
7031 if (debug_infrun)
7032 {
7033 fprintf_unfiltered (gdb_stdlog,
7034 "infrun: need to finish step-over of [%s]\n",
7035 target_pid_to_str (ecs->event_thread->ptid));
7036 }
7037 keep_going (ecs);
7038 return 1;
7039 }
2adfaa28 7040
99619bea
PA
7041 /* Check if the current thread is blocked by a single-step
7042 breakpoint of another thread. */
7043 if (ecs->hit_singlestep_breakpoint)
7044 {
7045 if (debug_infrun)
7046 {
7047 fprintf_unfiltered (gdb_stdlog,
7048 "infrun: need to step [%s] over single-step "
7049 "breakpoint\n",
7050 target_pid_to_str (ecs->ptid));
7051 }
7052 keep_going (ecs);
7053 return 1;
7054 }
7055
4d9d9d04
PA
7056 /* If this thread needs yet another step-over (e.g., stepping
7057 through a delay slot), do it first before moving on to
7058 another thread. */
7059 if (thread_still_needs_step_over (ecs->event_thread))
7060 {
7061 if (debug_infrun)
7062 {
7063 fprintf_unfiltered (gdb_stdlog,
7064 "infrun: thread [%s] still needs step-over\n",
7065 target_pid_to_str (ecs->event_thread->ptid));
7066 }
7067 keep_going (ecs);
7068 return 1;
7069 }
70509625 7070
483805cf
PA
7071 /* If scheduler locking applies even if not stepping, there's no
7072 need to walk over threads. Above we've checked whether the
7073 current thread is stepping. If some other thread not the
7074 event thread is stepping, then it must be that scheduler
7075 locking is not in effect. */
856e7dd6 7076 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7077 return 0;
7078
4d9d9d04
PA
7079 /* Otherwise, we no longer expect a trap in the current thread.
7080 Clear the trap_expected flag before switching back -- this is
7081 what keep_going does as well, if we call it. */
7082 ecs->event_thread->control.trap_expected = 0;
7083
7084 /* Likewise, clear the signal if it should not be passed. */
7085 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7086 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7087
7088 /* Do all pending step-overs before actually proceeding with
483805cf 7089 step/next/etc. */
4d9d9d04
PA
7090 if (start_step_over ())
7091 {
7092 prepare_to_wait (ecs);
7093 return 1;
7094 }
7095
7096 /* Look for the stepping/nexting thread. */
483805cf 7097 stepping_thread = NULL;
4d9d9d04 7098
034f788c 7099 ALL_NON_EXITED_THREADS (tp)
483805cf 7100 {
fbea99ea
PA
7101 /* Ignore threads of processes the caller is not
7102 resuming. */
483805cf 7103 if (!sched_multi
1afd5965 7104 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7105 continue;
7106
7107 /* When stepping over a breakpoint, we lock all threads
7108 except the one that needs to move past the breakpoint.
7109 If a non-event thread has this set, the "incomplete
7110 step-over" check above should have caught it earlier. */
372316f1
PA
7111 if (tp->control.trap_expected)
7112 {
7113 internal_error (__FILE__, __LINE__,
7114 "[%s] has inconsistent state: "
7115 "trap_expected=%d\n",
7116 target_pid_to_str (tp->ptid),
7117 tp->control.trap_expected);
7118 }
483805cf
PA
7119
7120 /* Did we find the stepping thread? */
7121 if (tp->control.step_range_end)
7122 {
7123 /* Yep. There should only one though. */
7124 gdb_assert (stepping_thread == NULL);
7125
7126 /* The event thread is handled at the top, before we
7127 enter this loop. */
7128 gdb_assert (tp != ecs->event_thread);
7129
7130 /* If some thread other than the event thread is
7131 stepping, then scheduler locking can't be in effect,
7132 otherwise we wouldn't have resumed the current event
7133 thread in the first place. */
856e7dd6 7134 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7135
7136 stepping_thread = tp;
7137 }
99619bea
PA
7138 }
7139
483805cf 7140 if (stepping_thread != NULL)
99619bea 7141 {
c447ac0b
PA
7142 if (debug_infrun)
7143 fprintf_unfiltered (gdb_stdlog,
7144 "infrun: switching back to stepped thread\n");
7145
2ac7589c
PA
7146 if (keep_going_stepped_thread (stepping_thread))
7147 {
7148 prepare_to_wait (ecs);
7149 return 1;
7150 }
7151 }
7152 }
2adfaa28 7153
2ac7589c
PA
7154 return 0;
7155}
2adfaa28 7156
2ac7589c
PA
7157/* Set a previously stepped thread back to stepping. Returns true on
7158 success, false if the resume is not possible (e.g., the thread
7159 vanished). */
7160
7161static int
7162keep_going_stepped_thread (struct thread_info *tp)
7163{
7164 struct frame_info *frame;
2ac7589c
PA
7165 struct execution_control_state ecss;
7166 struct execution_control_state *ecs = &ecss;
2adfaa28 7167
2ac7589c
PA
7168 /* If the stepping thread exited, then don't try to switch back and
7169 resume it, which could fail in several different ways depending
7170 on the target. Instead, just keep going.
2adfaa28 7171
2ac7589c
PA
7172 We can find a stepping dead thread in the thread list in two
7173 cases:
2adfaa28 7174
2ac7589c
PA
7175 - The target supports thread exit events, and when the target
7176 tries to delete the thread from the thread list, inferior_ptid
7177 pointed at the exiting thread. In such case, calling
7178 delete_thread does not really remove the thread from the list;
7179 instead, the thread is left listed, with 'exited' state.
64ce06e4 7180
2ac7589c
PA
7181 - The target's debug interface does not support thread exit
7182 events, and so we have no idea whatsoever if the previously
7183 stepping thread is still alive. For that reason, we need to
7184 synchronously query the target now. */
2adfaa28 7185
2ac7589c
PA
7186 if (is_exited (tp->ptid)
7187 || !target_thread_alive (tp->ptid))
7188 {
7189 if (debug_infrun)
7190 fprintf_unfiltered (gdb_stdlog,
7191 "infrun: not resuming previously "
7192 "stepped thread, it has vanished\n");
7193
7194 delete_thread (tp->ptid);
7195 return 0;
c447ac0b 7196 }
2ac7589c
PA
7197
7198 if (debug_infrun)
7199 fprintf_unfiltered (gdb_stdlog,
7200 "infrun: resuming previously stepped thread\n");
7201
7202 reset_ecs (ecs, tp);
7203 switch_to_thread (tp->ptid);
7204
7205 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7206 frame = get_current_frame ();
2ac7589c
PA
7207
7208 /* If the PC of the thread we were trying to single-step has
7209 changed, then that thread has trapped or been signaled, but the
7210 event has not been reported to GDB yet. Re-poll the target
7211 looking for this particular thread's event (i.e. temporarily
7212 enable schedlock) by:
7213
7214 - setting a break at the current PC
7215 - resuming that particular thread, only (by setting trap
7216 expected)
7217
7218 This prevents us continuously moving the single-step breakpoint
7219 forward, one instruction at a time, overstepping. */
7220
7221 if (stop_pc != tp->prev_pc)
7222 {
7223 ptid_t resume_ptid;
7224
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: expected thread advanced also (%s -> %s)\n",
7228 paddress (target_gdbarch (), tp->prev_pc),
7229 paddress (target_gdbarch (), stop_pc));
7230
7231 /* Clear the info of the previous step-over, as it's no longer
7232 valid (if the thread was trying to step over a breakpoint, it
7233 has already succeeded). It's what keep_going would do too,
7234 if we called it. Do this before trying to insert the sss
7235 breakpoint, otherwise if we were previously trying to step
7236 over this exact address in another thread, the breakpoint is
7237 skipped. */
7238 clear_step_over_info ();
7239 tp->control.trap_expected = 0;
7240
7241 insert_single_step_breakpoint (get_frame_arch (frame),
7242 get_frame_address_space (frame),
7243 stop_pc);
7244
372316f1 7245 tp->resumed = 1;
fbea99ea 7246 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7247 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7248 }
7249 else
7250 {
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
7253 "infrun: expected thread still hasn't advanced\n");
7254
7255 keep_going_pass_signal (ecs);
7256 }
7257 return 1;
c447ac0b
PA
7258}
7259
8b061563
PA
7260/* Is thread TP in the middle of (software or hardware)
7261 single-stepping? (Note the result of this function must never be
7262 passed directly as target_resume's STEP parameter.) */
104c1213 7263
a289b8f6 7264static int
b3444185 7265currently_stepping (struct thread_info *tp)
a7212384 7266{
8358c15c
JK
7267 return ((tp->control.step_range_end
7268 && tp->control.step_resume_breakpoint == NULL)
7269 || tp->control.trap_expected
af48d08f 7270 || tp->stepped_breakpoint
8358c15c 7271 || bpstat_should_step ());
a7212384
UW
7272}
7273
b2175913
MS
7274/* Inferior has stepped into a subroutine call with source code that
7275 we should not step over. Do step to the first line of code in
7276 it. */
c2c6d25f
JM
7277
7278static void
568d6575
UW
7279handle_step_into_function (struct gdbarch *gdbarch,
7280 struct execution_control_state *ecs)
c2c6d25f 7281{
7e324e48
GB
7282 fill_in_stop_func (gdbarch, ecs);
7283
51abb421 7284 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7285 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7286 ecs->stop_func_start
7287 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7288
51abb421 7289 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7290 /* Use the step_resume_break to step until the end of the prologue,
7291 even if that involves jumps (as it seems to on the vax under
7292 4.2). */
7293 /* If the prologue ends in the middle of a source line, continue to
7294 the end of that source line (if it is still within the function).
7295 Otherwise, just go to end of prologue. */
2afb61aa
PA
7296 if (stop_func_sal.end
7297 && stop_func_sal.pc != ecs->stop_func_start
7298 && stop_func_sal.end < ecs->stop_func_end)
7299 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7300
2dbd5e30
KB
7301 /* Architectures which require breakpoint adjustment might not be able
7302 to place a breakpoint at the computed address. If so, the test
7303 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7304 ecs->stop_func_start to an address at which a breakpoint may be
7305 legitimately placed.
8fb3e588 7306
2dbd5e30
KB
7307 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7308 made, GDB will enter an infinite loop when stepping through
7309 optimized code consisting of VLIW instructions which contain
7310 subinstructions corresponding to different source lines. On
7311 FR-V, it's not permitted to place a breakpoint on any but the
7312 first subinstruction of a VLIW instruction. When a breakpoint is
7313 set, GDB will adjust the breakpoint address to the beginning of
7314 the VLIW instruction. Thus, we need to make the corresponding
7315 adjustment here when computing the stop address. */
8fb3e588 7316
568d6575 7317 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7318 {
7319 ecs->stop_func_start
568d6575 7320 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7321 ecs->stop_func_start);
2dbd5e30
KB
7322 }
7323
c2c6d25f
JM
7324 if (ecs->stop_func_start == stop_pc)
7325 {
7326 /* We are already there: stop now. */
bdc36728 7327 end_stepping_range (ecs);
c2c6d25f
JM
7328 return;
7329 }
7330 else
7331 {
7332 /* Put the step-breakpoint there and go until there. */
51abb421 7333 symtab_and_line sr_sal;
c2c6d25f
JM
7334 sr_sal.pc = ecs->stop_func_start;
7335 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7336 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7337
c2c6d25f 7338 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7339 some machines the prologue is where the new fp value is
7340 established. */
a6d9a66e 7341 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7342
7343 /* And make sure stepping stops right away then. */
16c381f0
JK
7344 ecs->event_thread->control.step_range_end
7345 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7346 }
7347 keep_going (ecs);
7348}
d4f3574e 7349
b2175913
MS
7350/* Inferior has stepped backward into a subroutine call with source
7351 code that we should not step over. Do step to the beginning of the
7352 last line of code in it. */
7353
7354static void
568d6575
UW
7355handle_step_into_function_backward (struct gdbarch *gdbarch,
7356 struct execution_control_state *ecs)
b2175913 7357{
43f3e411 7358 struct compunit_symtab *cust;
167e4384 7359 struct symtab_and_line stop_func_sal;
b2175913 7360
7e324e48
GB
7361 fill_in_stop_func (gdbarch, ecs);
7362
43f3e411
DE
7363 cust = find_pc_compunit_symtab (stop_pc);
7364 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7365 ecs->stop_func_start
7366 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7367
7368 stop_func_sal = find_pc_line (stop_pc, 0);
7369
7370 /* OK, we're just going to keep stepping here. */
7371 if (stop_func_sal.pc == stop_pc)
7372 {
7373 /* We're there already. Just stop stepping now. */
bdc36728 7374 end_stepping_range (ecs);
b2175913
MS
7375 }
7376 else
7377 {
7378 /* Else just reset the step range and keep going.
7379 No step-resume breakpoint, they don't work for
7380 epilogues, which can have multiple entry paths. */
16c381f0
JK
7381 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7382 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7383 keep_going (ecs);
7384 }
7385 return;
7386}
7387
d3169d93 7388/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7389 This is used to both functions and to skip over code. */
7390
7391static void
2c03e5be
PA
7392insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7393 struct symtab_and_line sr_sal,
7394 struct frame_id sr_id,
7395 enum bptype sr_type)
44cbf7b5 7396{
611c83ae
PA
7397 /* There should never be more than one step-resume or longjmp-resume
7398 breakpoint per thread, so we should never be setting a new
44cbf7b5 7399 step_resume_breakpoint when one is already active. */
8358c15c 7400 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7401 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7402
7403 if (debug_infrun)
7404 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7405 "infrun: inserting step-resume breakpoint at %s\n",
7406 paddress (gdbarch, sr_sal.pc));
d3169d93 7407
8358c15c 7408 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7409 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7410}
7411
9da8c2a0 7412void
2c03e5be
PA
7413insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7414 struct symtab_and_line sr_sal,
7415 struct frame_id sr_id)
7416{
7417 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7418 sr_sal, sr_id,
7419 bp_step_resume);
44cbf7b5 7420}
7ce450bd 7421
2c03e5be
PA
7422/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7423 This is used to skip a potential signal handler.
7ce450bd 7424
14e60db5
DJ
7425 This is called with the interrupted function's frame. The signal
7426 handler, when it returns, will resume the interrupted function at
7427 RETURN_FRAME.pc. */
d303a6c7
AC
7428
7429static void
2c03e5be 7430insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7431{
f4c1edd8 7432 gdb_assert (return_frame != NULL);
d303a6c7 7433
51abb421
PA
7434 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7435
7436 symtab_and_line sr_sal;
568d6575 7437 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7438 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7439 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7440
2c03e5be
PA
7441 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7442 get_stack_frame_id (return_frame),
7443 bp_hp_step_resume);
d303a6c7
AC
7444}
7445
2c03e5be
PA
7446/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7447 is used to skip a function after stepping into it (for "next" or if
7448 the called function has no debugging information).
14e60db5
DJ
7449
7450 The current function has almost always been reached by single
7451 stepping a call or return instruction. NEXT_FRAME belongs to the
7452 current function, and the breakpoint will be set at the caller's
7453 resume address.
7454
7455 This is a separate function rather than reusing
2c03e5be 7456 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7457 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7458 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7459
7460static void
7461insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7462{
14e60db5
DJ
7463 /* We shouldn't have gotten here if we don't know where the call site
7464 is. */
c7ce8faa 7465 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7466
51abb421 7467 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7468
51abb421 7469 symtab_and_line sr_sal;
c7ce8faa
DJ
7470 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7471 frame_unwind_caller_pc (next_frame));
14e60db5 7472 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7473 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7474
a6d9a66e 7475 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7476 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7477}
7478
611c83ae
PA
7479/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7480 new breakpoint at the target of a jmp_buf. The handling of
7481 longjmp-resume uses the same mechanisms used for handling
7482 "step-resume" breakpoints. */
7483
7484static void
a6d9a66e 7485insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7486{
e81a37f7
TT
7487 /* There should never be more than one longjmp-resume breakpoint per
7488 thread, so we should never be setting a new
611c83ae 7489 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7490 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7491
7492 if (debug_infrun)
7493 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7494 "infrun: inserting longjmp-resume breakpoint at %s\n",
7495 paddress (gdbarch, pc));
611c83ae 7496
e81a37f7 7497 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7498 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7499}
7500
186c406b
TT
7501/* Insert an exception resume breakpoint. TP is the thread throwing
7502 the exception. The block B is the block of the unwinder debug hook
7503 function. FRAME is the frame corresponding to the call to this
7504 function. SYM is the symbol of the function argument holding the
7505 target PC of the exception. */
7506
7507static void
7508insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7509 const struct block *b,
186c406b
TT
7510 struct frame_info *frame,
7511 struct symbol *sym)
7512{
492d29ea 7513 TRY
186c406b 7514 {
63e43d3a 7515 struct block_symbol vsym;
186c406b
TT
7516 struct value *value;
7517 CORE_ADDR handler;
7518 struct breakpoint *bp;
7519
63e43d3a
PMR
7520 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7521 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7522 /* If the value was optimized out, revert to the old behavior. */
7523 if (! value_optimized_out (value))
7524 {
7525 handler = value_as_address (value);
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: exception resume at %lx\n",
7530 (unsigned long) handler);
7531
7532 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7533 handler, bp_exception_resume);
c70a6932
JK
7534
7535 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7536 frame = NULL;
7537
5d5658a1 7538 bp->thread = tp->global_num;
186c406b
TT
7539 inferior_thread ()->control.exception_resume_breakpoint = bp;
7540 }
7541 }
492d29ea
PA
7542 CATCH (e, RETURN_MASK_ERROR)
7543 {
7544 /* We want to ignore errors here. */
7545 }
7546 END_CATCH
186c406b
TT
7547}
7548
28106bc2
SDJ
7549/* A helper for check_exception_resume that sets an
7550 exception-breakpoint based on a SystemTap probe. */
7551
7552static void
7553insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7554 const struct bound_probe *probe,
28106bc2
SDJ
7555 struct frame_info *frame)
7556{
7557 struct value *arg_value;
7558 CORE_ADDR handler;
7559 struct breakpoint *bp;
7560
7561 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7562 if (!arg_value)
7563 return;
7564
7565 handler = value_as_address (arg_value);
7566
7567 if (debug_infrun)
7568 fprintf_unfiltered (gdb_stdlog,
7569 "infrun: exception resume at %s\n",
6bac7473 7570 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7571 handler));
7572
7573 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7574 handler, bp_exception_resume);
5d5658a1 7575 bp->thread = tp->global_num;
28106bc2
SDJ
7576 inferior_thread ()->control.exception_resume_breakpoint = bp;
7577}
7578
186c406b
TT
7579/* This is called when an exception has been intercepted. Check to
7580 see whether the exception's destination is of interest, and if so,
7581 set an exception resume breakpoint there. */
7582
7583static void
7584check_exception_resume (struct execution_control_state *ecs,
28106bc2 7585 struct frame_info *frame)
186c406b 7586{
729662a5 7587 struct bound_probe probe;
28106bc2
SDJ
7588 struct symbol *func;
7589
7590 /* First see if this exception unwinding breakpoint was set via a
7591 SystemTap probe point. If so, the probe has two arguments: the
7592 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7593 set a breakpoint there. */
6bac7473 7594 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7595 if (probe.probe)
28106bc2 7596 {
729662a5 7597 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7598 return;
7599 }
7600
7601 func = get_frame_function (frame);
7602 if (!func)
7603 return;
186c406b 7604
492d29ea 7605 TRY
186c406b 7606 {
3977b71f 7607 const struct block *b;
8157b174 7608 struct block_iterator iter;
186c406b
TT
7609 struct symbol *sym;
7610 int argno = 0;
7611
7612 /* The exception breakpoint is a thread-specific breakpoint on
7613 the unwinder's debug hook, declared as:
7614
7615 void _Unwind_DebugHook (void *cfa, void *handler);
7616
7617 The CFA argument indicates the frame to which control is
7618 about to be transferred. HANDLER is the destination PC.
7619
7620 We ignore the CFA and set a temporary breakpoint at HANDLER.
7621 This is not extremely efficient but it avoids issues in gdb
7622 with computing the DWARF CFA, and it also works even in weird
7623 cases such as throwing an exception from inside a signal
7624 handler. */
7625
7626 b = SYMBOL_BLOCK_VALUE (func);
7627 ALL_BLOCK_SYMBOLS (b, iter, sym)
7628 {
7629 if (!SYMBOL_IS_ARGUMENT (sym))
7630 continue;
7631
7632 if (argno == 0)
7633 ++argno;
7634 else
7635 {
7636 insert_exception_resume_breakpoint (ecs->event_thread,
7637 b, frame, sym);
7638 break;
7639 }
7640 }
7641 }
492d29ea
PA
7642 CATCH (e, RETURN_MASK_ERROR)
7643 {
7644 }
7645 END_CATCH
186c406b
TT
7646}
7647
104c1213 7648static void
22bcd14b 7649stop_waiting (struct execution_control_state *ecs)
104c1213 7650{
527159b7 7651 if (debug_infrun)
22bcd14b 7652 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7653
cd0fc7c3
SS
7654 /* Let callers know we don't want to wait for the inferior anymore. */
7655 ecs->wait_some_more = 0;
fbea99ea
PA
7656
7657 /* If all-stop, but the target is always in non-stop mode, stop all
7658 threads now that we're presenting the stop to the user. */
7659 if (!non_stop && target_is_non_stop_p ())
7660 stop_all_threads ();
cd0fc7c3
SS
7661}
7662
4d9d9d04
PA
7663/* Like keep_going, but passes the signal to the inferior, even if the
7664 signal is set to nopass. */
d4f3574e
SS
7665
7666static void
4d9d9d04 7667keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7668{
c4dbc9af
PA
7669 /* Make sure normal_stop is called if we get a QUIT handled before
7670 reaching resume. */
7671 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7672
4d9d9d04 7673 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7674 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7675
d4f3574e 7676 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7677 ecs->event_thread->prev_pc
7678 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7679
4d9d9d04 7680 if (ecs->event_thread->control.trap_expected)
d4f3574e 7681 {
4d9d9d04
PA
7682 struct thread_info *tp = ecs->event_thread;
7683
7684 if (debug_infrun)
7685 fprintf_unfiltered (gdb_stdlog,
7686 "infrun: %s has trap_expected set, "
7687 "resuming to collect trap\n",
7688 target_pid_to_str (tp->ptid));
7689
a9ba6bae
PA
7690 /* We haven't yet gotten our trap, and either: intercepted a
7691 non-signal event (e.g., a fork); or took a signal which we
7692 are supposed to pass through to the inferior. Simply
7693 continue. */
c4dbc9af 7694 discard_cleanups (old_cleanups);
64ce06e4 7695 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7696 }
372316f1
PA
7697 else if (step_over_info_valid_p ())
7698 {
7699 /* Another thread is stepping over a breakpoint in-line. If
7700 this thread needs a step-over too, queue the request. In
7701 either case, this resume must be deferred for later. */
7702 struct thread_info *tp = ecs->event_thread;
7703
7704 if (ecs->hit_singlestep_breakpoint
7705 || thread_still_needs_step_over (tp))
7706 {
7707 if (debug_infrun)
7708 fprintf_unfiltered (gdb_stdlog,
7709 "infrun: step-over already in progress: "
7710 "step-over for %s deferred\n",
7711 target_pid_to_str (tp->ptid));
7712 thread_step_over_chain_enqueue (tp);
7713 }
7714 else
7715 {
7716 if (debug_infrun)
7717 fprintf_unfiltered (gdb_stdlog,
7718 "infrun: step-over in progress: "
7719 "resume of %s deferred\n",
7720 target_pid_to_str (tp->ptid));
7721 }
7722
7723 discard_cleanups (old_cleanups);
7724 }
d4f3574e
SS
7725 else
7726 {
31e77af2 7727 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7728 int remove_bp;
7729 int remove_wps;
8d297bbf 7730 step_over_what step_what;
31e77af2 7731
d4f3574e 7732 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7733 anyway (if we got a signal, the user asked it be passed to
7734 the child)
7735 -- or --
7736 We got our expected trap, but decided we should resume from
7737 it.
d4f3574e 7738
a9ba6bae 7739 We're going to run this baby now!
d4f3574e 7740
c36b740a
VP
7741 Note that insert_breakpoints won't try to re-insert
7742 already inserted breakpoints. Therefore, we don't
7743 care if breakpoints were already inserted, or not. */
a9ba6bae 7744
31e77af2
PA
7745 /* If we need to step over a breakpoint, and we're not using
7746 displaced stepping to do so, insert all breakpoints
7747 (watchpoints, etc.) but the one we're stepping over, step one
7748 instruction, and then re-insert the breakpoint when that step
7749 is finished. */
963f9c80 7750
6c4cfb24
PA
7751 step_what = thread_still_needs_step_over (ecs->event_thread);
7752
963f9c80 7753 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7754 || (step_what & STEP_OVER_BREAKPOINT));
7755 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7756
cb71640d
PA
7757 /* We can't use displaced stepping if we need to step past a
7758 watchpoint. The instruction copied to the scratch pad would
7759 still trigger the watchpoint. */
7760 if (remove_bp
3fc8eb30 7761 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7762 {
31e77af2 7763 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7764 regcache_read_pc (regcache), remove_wps,
7765 ecs->event_thread->global_num);
45e8c884 7766 }
963f9c80 7767 else if (remove_wps)
21edc42f 7768 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7769
7770 /* If we now need to do an in-line step-over, we need to stop
7771 all other threads. Note this must be done before
7772 insert_breakpoints below, because that removes the breakpoint
7773 we're about to step over, otherwise other threads could miss
7774 it. */
fbea99ea 7775 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7776 stop_all_threads ();
abbb1732 7777
31e77af2 7778 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7779 TRY
31e77af2
PA
7780 {
7781 insert_breakpoints ();
7782 }
492d29ea 7783 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7784 {
7785 exception_print (gdb_stderr, e);
22bcd14b 7786 stop_waiting (ecs);
de1fe8c8 7787 discard_cleanups (old_cleanups);
31e77af2 7788 return;
d4f3574e 7789 }
492d29ea 7790 END_CATCH
d4f3574e 7791
963f9c80 7792 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7793
c4dbc9af 7794 discard_cleanups (old_cleanups);
64ce06e4 7795 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7796 }
7797
488f131b 7798 prepare_to_wait (ecs);
d4f3574e
SS
7799}
7800
4d9d9d04
PA
7801/* Called when we should continue running the inferior, because the
7802 current event doesn't cause a user visible stop. This does the
7803 resuming part; waiting for the next event is done elsewhere. */
7804
7805static void
7806keep_going (struct execution_control_state *ecs)
7807{
7808 if (ecs->event_thread->control.trap_expected
7809 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7810 ecs->event_thread->control.trap_expected = 0;
7811
7812 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7813 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7814 keep_going_pass_signal (ecs);
7815}
7816
104c1213
JM
7817/* This function normally comes after a resume, before
7818 handle_inferior_event exits. It takes care of any last bits of
7819 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7820
104c1213
JM
7821static void
7822prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7823{
527159b7 7824 if (debug_infrun)
8a9de0e4 7825 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7826
104c1213 7827 ecs->wait_some_more = 1;
0b333c5e
PA
7828
7829 if (!target_is_async_p ())
7830 mark_infrun_async_event_handler ();
c906108c 7831}
11cf8741 7832
fd664c91 7833/* We are done with the step range of a step/next/si/ni command.
b57bacec 7834 Called once for each n of a "step n" operation. */
fd664c91
PA
7835
7836static void
bdc36728 7837end_stepping_range (struct execution_control_state *ecs)
fd664c91 7838{
bdc36728 7839 ecs->event_thread->control.stop_step = 1;
bdc36728 7840 stop_waiting (ecs);
fd664c91
PA
7841}
7842
33d62d64
JK
7843/* Several print_*_reason functions to print why the inferior has stopped.
7844 We always print something when the inferior exits, or receives a signal.
7845 The rest of the cases are dealt with later on in normal_stop and
7846 print_it_typical. Ideally there should be a call to one of these
7847 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7848 stop_waiting is called.
33d62d64 7849
fd664c91
PA
7850 Note that we don't call these directly, instead we delegate that to
7851 the interpreters, through observers. Interpreters then call these
7852 with whatever uiout is right. */
33d62d64 7853
fd664c91
PA
7854void
7855print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7856{
fd664c91 7857 /* For CLI-like interpreters, print nothing. */
33d62d64 7858
112e8700 7859 if (uiout->is_mi_like_p ())
fd664c91 7860 {
112e8700 7861 uiout->field_string ("reason",
fd664c91
PA
7862 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7863 }
7864}
33d62d64 7865
fd664c91
PA
7866void
7867print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7868{
33d62d64 7869 annotate_signalled ();
112e8700
SM
7870 if (uiout->is_mi_like_p ())
7871 uiout->field_string
7872 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7873 uiout->text ("\nProgram terminated with signal ");
33d62d64 7874 annotate_signal_name ();
112e8700 7875 uiout->field_string ("signal-name",
2ea28649 7876 gdb_signal_to_name (siggnal));
33d62d64 7877 annotate_signal_name_end ();
112e8700 7878 uiout->text (", ");
33d62d64 7879 annotate_signal_string ();
112e8700 7880 uiout->field_string ("signal-meaning",
2ea28649 7881 gdb_signal_to_string (siggnal));
33d62d64 7882 annotate_signal_string_end ();
112e8700
SM
7883 uiout->text (".\n");
7884 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7885}
7886
fd664c91
PA
7887void
7888print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7889{
fda326dd
TT
7890 struct inferior *inf = current_inferior ();
7891 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7892
33d62d64
JK
7893 annotate_exited (exitstatus);
7894 if (exitstatus)
7895 {
112e8700
SM
7896 if (uiout->is_mi_like_p ())
7897 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7898 uiout->text ("[Inferior ");
7899 uiout->text (plongest (inf->num));
7900 uiout->text (" (");
7901 uiout->text (pidstr);
7902 uiout->text (") exited with code ");
7903 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7904 uiout->text ("]\n");
33d62d64
JK
7905 }
7906 else
11cf8741 7907 {
112e8700
SM
7908 if (uiout->is_mi_like_p ())
7909 uiout->field_string
7910 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7911 uiout->text ("[Inferior ");
7912 uiout->text (plongest (inf->num));
7913 uiout->text (" (");
7914 uiout->text (pidstr);
7915 uiout->text (") exited normally]\n");
33d62d64 7916 }
33d62d64
JK
7917}
7918
012b3a21
WT
7919/* Some targets/architectures can do extra processing/display of
7920 segmentation faults. E.g., Intel MPX boundary faults.
7921 Call the architecture dependent function to handle the fault. */
7922
7923static void
7924handle_segmentation_fault (struct ui_out *uiout)
7925{
7926 struct regcache *regcache = get_current_regcache ();
7927 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7928
7929 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7930 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7931}
7932
fd664c91
PA
7933void
7934print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7935{
f303dbd6
PA
7936 struct thread_info *thr = inferior_thread ();
7937
33d62d64
JK
7938 annotate_signal ();
7939
112e8700 7940 if (uiout->is_mi_like_p ())
f303dbd6
PA
7941 ;
7942 else if (show_thread_that_caused_stop ())
33d62d64 7943 {
f303dbd6 7944 const char *name;
33d62d64 7945
112e8700
SM
7946 uiout->text ("\nThread ");
7947 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7948
7949 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7950 if (name != NULL)
7951 {
112e8700
SM
7952 uiout->text (" \"");
7953 uiout->field_fmt ("name", "%s", name);
7954 uiout->text ("\"");
f303dbd6 7955 }
33d62d64 7956 }
f303dbd6 7957 else
112e8700 7958 uiout->text ("\nProgram");
f303dbd6 7959
112e8700
SM
7960 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7961 uiout->text (" stopped");
33d62d64
JK
7962 else
7963 {
112e8700 7964 uiout->text (" received signal ");
8b93c638 7965 annotate_signal_name ();
112e8700
SM
7966 if (uiout->is_mi_like_p ())
7967 uiout->field_string
7968 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7969 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7970 annotate_signal_name_end ();
112e8700 7971 uiout->text (", ");
8b93c638 7972 annotate_signal_string ();
112e8700 7973 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7974
7975 if (siggnal == GDB_SIGNAL_SEGV)
7976 handle_segmentation_fault (uiout);
7977
8b93c638 7978 annotate_signal_string_end ();
33d62d64 7979 }
112e8700 7980 uiout->text (".\n");
33d62d64 7981}
252fbfc8 7982
fd664c91
PA
7983void
7984print_no_history_reason (struct ui_out *uiout)
33d62d64 7985{
112e8700 7986 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7987}
43ff13b4 7988
0c7e1a46
PA
7989/* Print current location without a level number, if we have changed
7990 functions or hit a breakpoint. Print source line if we have one.
7991 bpstat_print contains the logic deciding in detail what to print,
7992 based on the event(s) that just occurred. */
7993
243a9253
PA
7994static void
7995print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7996{
7997 int bpstat_ret;
f486487f 7998 enum print_what source_flag;
0c7e1a46
PA
7999 int do_frame_printing = 1;
8000 struct thread_info *tp = inferior_thread ();
8001
8002 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8003 switch (bpstat_ret)
8004 {
8005 case PRINT_UNKNOWN:
8006 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8007 should) carry around the function and does (or should) use
8008 that when doing a frame comparison. */
8009 if (tp->control.stop_step
8010 && frame_id_eq (tp->control.step_frame_id,
8011 get_frame_id (get_current_frame ()))
885eeb5b 8012 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8013 {
8014 /* Finished step, just print source line. */
8015 source_flag = SRC_LINE;
8016 }
8017 else
8018 {
8019 /* Print location and source line. */
8020 source_flag = SRC_AND_LOC;
8021 }
8022 break;
8023 case PRINT_SRC_AND_LOC:
8024 /* Print location and source line. */
8025 source_flag = SRC_AND_LOC;
8026 break;
8027 case PRINT_SRC_ONLY:
8028 source_flag = SRC_LINE;
8029 break;
8030 case PRINT_NOTHING:
8031 /* Something bogus. */
8032 source_flag = SRC_LINE;
8033 do_frame_printing = 0;
8034 break;
8035 default:
8036 internal_error (__FILE__, __LINE__, _("Unknown value."));
8037 }
8038
8039 /* The behavior of this routine with respect to the source
8040 flag is:
8041 SRC_LINE: Print only source line
8042 LOCATION: Print only location
8043 SRC_AND_LOC: Print location and source line. */
8044 if (do_frame_printing)
8045 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8046}
8047
243a9253
PA
8048/* See infrun.h. */
8049
8050void
8051print_stop_event (struct ui_out *uiout)
8052{
243a9253
PA
8053 struct target_waitstatus last;
8054 ptid_t last_ptid;
8055 struct thread_info *tp;
8056
8057 get_last_target_status (&last_ptid, &last);
8058
67ad9399
TT
8059 {
8060 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8061
67ad9399 8062 print_stop_location (&last);
243a9253 8063
67ad9399
TT
8064 /* Display the auto-display expressions. */
8065 do_displays ();
8066 }
243a9253
PA
8067
8068 tp = inferior_thread ();
8069 if (tp->thread_fsm != NULL
8070 && thread_fsm_finished_p (tp->thread_fsm))
8071 {
8072 struct return_value_info *rv;
8073
8074 rv = thread_fsm_return_value (tp->thread_fsm);
8075 if (rv != NULL)
8076 print_return_value (uiout, rv);
8077 }
0c7e1a46
PA
8078}
8079
388a7084
PA
8080/* See infrun.h. */
8081
8082void
8083maybe_remove_breakpoints (void)
8084{
8085 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8086 {
8087 if (remove_breakpoints ())
8088 {
223ffa71 8089 target_terminal::ours_for_output ();
388a7084
PA
8090 printf_filtered (_("Cannot remove breakpoints because "
8091 "program is no longer writable.\nFurther "
8092 "execution is probably impossible.\n"));
8093 }
8094 }
8095}
8096
4c2f2a79
PA
8097/* The execution context that just caused a normal stop. */
8098
8099struct stop_context
8100{
8101 /* The stop ID. */
8102 ULONGEST stop_id;
c906108c 8103
4c2f2a79 8104 /* The event PTID. */
c906108c 8105
4c2f2a79
PA
8106 ptid_t ptid;
8107
8108 /* If stopp for a thread event, this is the thread that caused the
8109 stop. */
8110 struct thread_info *thread;
8111
8112 /* The inferior that caused the stop. */
8113 int inf_num;
8114};
8115
8116/* Returns a new stop context. If stopped for a thread event, this
8117 takes a strong reference to the thread. */
8118
8119static struct stop_context *
8120save_stop_context (void)
8121{
224c3ddb 8122 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8123
8124 sc->stop_id = get_stop_id ();
8125 sc->ptid = inferior_ptid;
8126 sc->inf_num = current_inferior ()->num;
8127
8128 if (!ptid_equal (inferior_ptid, null_ptid))
8129 {
8130 /* Take a strong reference so that the thread can't be deleted
8131 yet. */
8132 sc->thread = inferior_thread ();
803bdfe4 8133 sc->thread->incref ();
4c2f2a79
PA
8134 }
8135 else
8136 sc->thread = NULL;
8137
8138 return sc;
8139}
8140
8141/* Release a stop context previously created with save_stop_context.
8142 Releases the strong reference to the thread as well. */
8143
8144static void
8145release_stop_context_cleanup (void *arg)
8146{
9a3c8263 8147 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8148
8149 if (sc->thread != NULL)
803bdfe4 8150 sc->thread->decref ();
4c2f2a79
PA
8151 xfree (sc);
8152}
8153
8154/* Return true if the current context no longer matches the saved stop
8155 context. */
8156
8157static int
8158stop_context_changed (struct stop_context *prev)
8159{
8160 if (!ptid_equal (prev->ptid, inferior_ptid))
8161 return 1;
8162 if (prev->inf_num != current_inferior ()->num)
8163 return 1;
8164 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8165 return 1;
8166 if (get_stop_id () != prev->stop_id)
8167 return 1;
8168 return 0;
8169}
8170
8171/* See infrun.h. */
8172
8173int
96baa820 8174normal_stop (void)
c906108c 8175{
73b65bb0
DJ
8176 struct target_waitstatus last;
8177 ptid_t last_ptid;
29f49a6a 8178 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8179 ptid_t pid_ptid;
73b65bb0
DJ
8180
8181 get_last_target_status (&last_ptid, &last);
8182
4c2f2a79
PA
8183 new_stop_id ();
8184
29f49a6a
PA
8185 /* If an exception is thrown from this point on, make sure to
8186 propagate GDB's knowledge of the executing state to the
8187 frontend/user running state. A QUIT is an easy exception to see
8188 here, so do this before any filtered output. */
c35b1492
PA
8189 if (!non_stop)
8190 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8191 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8192 || last.kind == TARGET_WAITKIND_EXITED)
8193 {
8194 /* On some targets, we may still have live threads in the
8195 inferior when we get a process exit event. E.g., for
8196 "checkpoint", when the current checkpoint/fork exits,
8197 linux-fork.c automatically switches to another fork from
8198 within target_mourn_inferior. */
8199 if (!ptid_equal (inferior_ptid, null_ptid))
8200 {
8201 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8202 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8203 }
8204 }
8205 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8206 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8207
b57bacec
PA
8208 /* As we're presenting a stop, and potentially removing breakpoints,
8209 update the thread list so we can tell whether there are threads
8210 running on the target. With target remote, for example, we can
8211 only learn about new threads when we explicitly update the thread
8212 list. Do this before notifying the interpreters about signal
8213 stops, end of stepping ranges, etc., so that the "new thread"
8214 output is emitted before e.g., "Program received signal FOO",
8215 instead of after. */
8216 update_thread_list ();
8217
8218 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8219 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8220
c906108c
SS
8221 /* As with the notification of thread events, we want to delay
8222 notifying the user that we've switched thread context until
8223 the inferior actually stops.
8224
73b65bb0
DJ
8225 There's no point in saying anything if the inferior has exited.
8226 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8227 "received a signal".
8228
8229 Also skip saying anything in non-stop mode. In that mode, as we
8230 don't want GDB to switch threads behind the user's back, to avoid
8231 races where the user is typing a command to apply to thread x,
8232 but GDB switches to thread y before the user finishes entering
8233 the command, fetch_inferior_event installs a cleanup to restore
8234 the current thread back to the thread the user had selected right
8235 after this event is handled, so we're not really switching, only
8236 informing of a stop. */
4f8d22e3
PA
8237 if (!non_stop
8238 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8239 && target_has_execution
8240 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8241 && last.kind != TARGET_WAITKIND_EXITED
8242 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8243 {
0e454242 8244 SWITCH_THRU_ALL_UIS ()
3b12939d 8245 {
223ffa71 8246 target_terminal::ours_for_output ();
3b12939d
PA
8247 printf_filtered (_("[Switching to %s]\n"),
8248 target_pid_to_str (inferior_ptid));
8249 annotate_thread_changed ();
8250 }
39f77062 8251 previous_inferior_ptid = inferior_ptid;
c906108c 8252 }
c906108c 8253
0e5bf2a8
PA
8254 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8255 {
0e454242 8256 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8257 if (current_ui->prompt_state == PROMPT_BLOCKED)
8258 {
223ffa71 8259 target_terminal::ours_for_output ();
3b12939d
PA
8260 printf_filtered (_("No unwaited-for children left.\n"));
8261 }
0e5bf2a8
PA
8262 }
8263
b57bacec 8264 /* Note: this depends on the update_thread_list call above. */
388a7084 8265 maybe_remove_breakpoints ();
c906108c 8266
c906108c
SS
8267 /* If an auto-display called a function and that got a signal,
8268 delete that auto-display to avoid an infinite recursion. */
8269
8270 if (stopped_by_random_signal)
8271 disable_current_display ();
8272
0e454242 8273 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8274 {
8275 async_enable_stdin ();
8276 }
c906108c 8277
388a7084
PA
8278 /* Let the user/frontend see the threads as stopped. */
8279 do_cleanups (old_chain);
8280
8281 /* Select innermost stack frame - i.e., current frame is frame 0,
8282 and current location is based on that. Handle the case where the
8283 dummy call is returning after being stopped. E.g. the dummy call
8284 previously hit a breakpoint. (If the dummy call returns
8285 normally, we won't reach here.) Do this before the stop hook is
8286 run, so that it doesn't get to see the temporary dummy frame,
8287 which is not where we'll present the stop. */
8288 if (has_stack_frames ())
8289 {
8290 if (stop_stack_dummy == STOP_STACK_DUMMY)
8291 {
8292 /* Pop the empty frame that contains the stack dummy. This
8293 also restores inferior state prior to the call (struct
8294 infcall_suspend_state). */
8295 struct frame_info *frame = get_current_frame ();
8296
8297 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8298 frame_pop (frame);
8299 /* frame_pop calls reinit_frame_cache as the last thing it
8300 does which means there's now no selected frame. */
8301 }
8302
8303 select_frame (get_current_frame ());
8304
8305 /* Set the current source location. */
8306 set_current_sal_from_frame (get_current_frame ());
8307 }
dd7e2d2b
PA
8308
8309 /* Look up the hook_stop and run it (CLI internally handles problem
8310 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8311 if (stop_command != NULL)
8312 {
8313 struct stop_context *saved_context = save_stop_context ();
8314 struct cleanup *old_chain
8315 = make_cleanup (release_stop_context_cleanup, saved_context);
8316
8317 catch_errors (hook_stop_stub, stop_command,
8318 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8319
8320 /* If the stop hook resumes the target, then there's no point in
8321 trying to notify about the previous stop; its context is
8322 gone. Likewise if the command switches thread or inferior --
8323 the observers would print a stop for the wrong
8324 thread/inferior. */
8325 if (stop_context_changed (saved_context))
8326 {
8327 do_cleanups (old_chain);
8328 return 1;
8329 }
8330 do_cleanups (old_chain);
8331 }
dd7e2d2b 8332
388a7084
PA
8333 /* Notify observers about the stop. This is where the interpreters
8334 print the stop event. */
8335 if (!ptid_equal (inferior_ptid, null_ptid))
8336 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8337 stop_print_frame);
8338 else
8339 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8340
243a9253
PA
8341 annotate_stopped ();
8342
48844aa6
PA
8343 if (target_has_execution)
8344 {
8345 if (last.kind != TARGET_WAITKIND_SIGNALLED
8346 && last.kind != TARGET_WAITKIND_EXITED)
8347 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8348 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8349 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8350 }
6c95b8df
PA
8351
8352 /* Try to get rid of automatically added inferiors that are no
8353 longer needed. Keeping those around slows down things linearly.
8354 Note that this never removes the current inferior. */
8355 prune_inferiors ();
4c2f2a79
PA
8356
8357 return 0;
c906108c
SS
8358}
8359
8360static int
96baa820 8361hook_stop_stub (void *cmd)
c906108c 8362{
5913bcb0 8363 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8364 return (0);
8365}
8366\f
c5aa993b 8367int
96baa820 8368signal_stop_state (int signo)
c906108c 8369{
d6b48e9c 8370 return signal_stop[signo];
c906108c
SS
8371}
8372
c5aa993b 8373int
96baa820 8374signal_print_state (int signo)
c906108c
SS
8375{
8376 return signal_print[signo];
8377}
8378
c5aa993b 8379int
96baa820 8380signal_pass_state (int signo)
c906108c
SS
8381{
8382 return signal_program[signo];
8383}
8384
2455069d
UW
8385static void
8386signal_cache_update (int signo)
8387{
8388 if (signo == -1)
8389 {
a493e3e2 8390 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8391 signal_cache_update (signo);
8392
8393 return;
8394 }
8395
8396 signal_pass[signo] = (signal_stop[signo] == 0
8397 && signal_print[signo] == 0
ab04a2af
TT
8398 && signal_program[signo] == 1
8399 && signal_catch[signo] == 0);
2455069d
UW
8400}
8401
488f131b 8402int
7bda5e4a 8403signal_stop_update (int signo, int state)
d4f3574e
SS
8404{
8405 int ret = signal_stop[signo];
abbb1732 8406
d4f3574e 8407 signal_stop[signo] = state;
2455069d 8408 signal_cache_update (signo);
d4f3574e
SS
8409 return ret;
8410}
8411
488f131b 8412int
7bda5e4a 8413signal_print_update (int signo, int state)
d4f3574e
SS
8414{
8415 int ret = signal_print[signo];
abbb1732 8416
d4f3574e 8417 signal_print[signo] = state;
2455069d 8418 signal_cache_update (signo);
d4f3574e
SS
8419 return ret;
8420}
8421
488f131b 8422int
7bda5e4a 8423signal_pass_update (int signo, int state)
d4f3574e
SS
8424{
8425 int ret = signal_program[signo];
abbb1732 8426
d4f3574e 8427 signal_program[signo] = state;
2455069d 8428 signal_cache_update (signo);
d4f3574e
SS
8429 return ret;
8430}
8431
ab04a2af
TT
8432/* Update the global 'signal_catch' from INFO and notify the
8433 target. */
8434
8435void
8436signal_catch_update (const unsigned int *info)
8437{
8438 int i;
8439
8440 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8441 signal_catch[i] = info[i] > 0;
8442 signal_cache_update (-1);
8443 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8444}
8445
c906108c 8446static void
96baa820 8447sig_print_header (void)
c906108c 8448{
3e43a32a
MS
8449 printf_filtered (_("Signal Stop\tPrint\tPass "
8450 "to program\tDescription\n"));
c906108c
SS
8451}
8452
8453static void
2ea28649 8454sig_print_info (enum gdb_signal oursig)
c906108c 8455{
2ea28649 8456 const char *name = gdb_signal_to_name (oursig);
c906108c 8457 int name_padding = 13 - strlen (name);
96baa820 8458
c906108c
SS
8459 if (name_padding <= 0)
8460 name_padding = 0;
8461
8462 printf_filtered ("%s", name);
488f131b 8463 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8464 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8465 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8466 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8467 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8468}
8469
8470/* Specify how various signals in the inferior should be handled. */
8471
8472static void
96baa820 8473handle_command (char *args, int from_tty)
c906108c 8474{
c906108c
SS
8475 int digits, wordlen;
8476 int sigfirst, signum, siglast;
2ea28649 8477 enum gdb_signal oursig;
c906108c
SS
8478 int allsigs;
8479 int nsigs;
8480 unsigned char *sigs;
c906108c
SS
8481
8482 if (args == NULL)
8483 {
e2e0b3e5 8484 error_no_arg (_("signal to handle"));
c906108c
SS
8485 }
8486
1777feb0 8487 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8488
a493e3e2 8489 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8490 sigs = (unsigned char *) alloca (nsigs);
8491 memset (sigs, 0, nsigs);
8492
1777feb0 8493 /* Break the command line up into args. */
c906108c 8494
773a1edc 8495 gdb_argv built_argv (args);
c906108c
SS
8496
8497 /* Walk through the args, looking for signal oursigs, signal names, and
8498 actions. Signal numbers and signal names may be interspersed with
8499 actions, with the actions being performed for all signals cumulatively
1777feb0 8500 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8501
773a1edc 8502 for (char *arg : built_argv)
c906108c 8503 {
773a1edc
TT
8504 wordlen = strlen (arg);
8505 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8506 {;
8507 }
8508 allsigs = 0;
8509 sigfirst = siglast = -1;
8510
773a1edc 8511 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8512 {
8513 /* Apply action to all signals except those used by the
1777feb0 8514 debugger. Silently skip those. */
c906108c
SS
8515 allsigs = 1;
8516 sigfirst = 0;
8517 siglast = nsigs - 1;
8518 }
773a1edc 8519 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8520 {
8521 SET_SIGS (nsigs, sigs, signal_stop);
8522 SET_SIGS (nsigs, sigs, signal_print);
8523 }
773a1edc 8524 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8525 {
8526 UNSET_SIGS (nsigs, sigs, signal_program);
8527 }
773a1edc 8528 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8529 {
8530 SET_SIGS (nsigs, sigs, signal_print);
8531 }
773a1edc 8532 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8533 {
8534 SET_SIGS (nsigs, sigs, signal_program);
8535 }
773a1edc 8536 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8537 {
8538 UNSET_SIGS (nsigs, sigs, signal_stop);
8539 }
773a1edc 8540 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8541 {
8542 SET_SIGS (nsigs, sigs, signal_program);
8543 }
773a1edc 8544 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8545 {
8546 UNSET_SIGS (nsigs, sigs, signal_print);
8547 UNSET_SIGS (nsigs, sigs, signal_stop);
8548 }
773a1edc 8549 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8550 {
8551 UNSET_SIGS (nsigs, sigs, signal_program);
8552 }
8553 else if (digits > 0)
8554 {
8555 /* It is numeric. The numeric signal refers to our own
8556 internal signal numbering from target.h, not to host/target
8557 signal number. This is a feature; users really should be
8558 using symbolic names anyway, and the common ones like
8559 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8560
8561 sigfirst = siglast = (int)
773a1edc
TT
8562 gdb_signal_from_command (atoi (arg));
8563 if (arg[digits] == '-')
c906108c
SS
8564 {
8565 siglast = (int)
773a1edc 8566 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8567 }
8568 if (sigfirst > siglast)
8569 {
1777feb0 8570 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8571 signum = sigfirst;
8572 sigfirst = siglast;
8573 siglast = signum;
8574 }
8575 }
8576 else
8577 {
773a1edc 8578 oursig = gdb_signal_from_name (arg);
a493e3e2 8579 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8580 {
8581 sigfirst = siglast = (int) oursig;
8582 }
8583 else
8584 {
8585 /* Not a number and not a recognized flag word => complain. */
773a1edc 8586 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8587 }
8588 }
8589
8590 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8591 which signals to apply actions to. */
c906108c
SS
8592
8593 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8594 {
2ea28649 8595 switch ((enum gdb_signal) signum)
c906108c 8596 {
a493e3e2
PA
8597 case GDB_SIGNAL_TRAP:
8598 case GDB_SIGNAL_INT:
c906108c
SS
8599 if (!allsigs && !sigs[signum])
8600 {
9e2f0ad4 8601 if (query (_("%s is used by the debugger.\n\
3e43a32a 8602Are you sure you want to change it? "),
2ea28649 8603 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8604 {
8605 sigs[signum] = 1;
8606 }
8607 else
8608 {
a3f17187 8609 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8610 gdb_flush (gdb_stdout);
8611 }
8612 }
8613 break;
a493e3e2
PA
8614 case GDB_SIGNAL_0:
8615 case GDB_SIGNAL_DEFAULT:
8616 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8617 /* Make sure that "all" doesn't print these. */
8618 break;
8619 default:
8620 sigs[signum] = 1;
8621 break;
8622 }
8623 }
c906108c
SS
8624 }
8625
3a031f65
PA
8626 for (signum = 0; signum < nsigs; signum++)
8627 if (sigs[signum])
8628 {
2455069d 8629 signal_cache_update (-1);
a493e3e2
PA
8630 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8631 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8632
3a031f65
PA
8633 if (from_tty)
8634 {
8635 /* Show the results. */
8636 sig_print_header ();
8637 for (; signum < nsigs; signum++)
8638 if (sigs[signum])
aead7601 8639 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8640 }
8641
8642 break;
8643 }
c906108c
SS
8644}
8645
de0bea00
MF
8646/* Complete the "handle" command. */
8647
eb3ff9a5 8648static void
de0bea00 8649handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8650 completion_tracker &tracker,
6f937416 8651 const char *text, const char *word)
de0bea00 8652{
de0bea00
MF
8653 static const char * const keywords[] =
8654 {
8655 "all",
8656 "stop",
8657 "ignore",
8658 "print",
8659 "pass",
8660 "nostop",
8661 "noignore",
8662 "noprint",
8663 "nopass",
8664 NULL,
8665 };
8666
eb3ff9a5
PA
8667 signal_completer (ignore, tracker, text, word);
8668 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8669}
8670
2ea28649
PA
8671enum gdb_signal
8672gdb_signal_from_command (int num)
ed01b82c
PA
8673{
8674 if (num >= 1 && num <= 15)
2ea28649 8675 return (enum gdb_signal) num;
ed01b82c
PA
8676 error (_("Only signals 1-15 are valid as numeric signals.\n\
8677Use \"info signals\" for a list of symbolic signals."));
8678}
8679
c906108c
SS
8680/* Print current contents of the tables set by the handle command.
8681 It is possible we should just be printing signals actually used
8682 by the current target (but for things to work right when switching
8683 targets, all signals should be in the signal tables). */
8684
8685static void
11db9430 8686info_signals_command (char *signum_exp, int from_tty)
c906108c 8687{
2ea28649 8688 enum gdb_signal oursig;
abbb1732 8689
c906108c
SS
8690 sig_print_header ();
8691
8692 if (signum_exp)
8693 {
8694 /* First see if this is a symbol name. */
2ea28649 8695 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8696 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8697 {
8698 /* No, try numeric. */
8699 oursig =
2ea28649 8700 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8701 }
8702 sig_print_info (oursig);
8703 return;
8704 }
8705
8706 printf_filtered ("\n");
8707 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8708 for (oursig = GDB_SIGNAL_FIRST;
8709 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8710 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8711 {
8712 QUIT;
8713
a493e3e2
PA
8714 if (oursig != GDB_SIGNAL_UNKNOWN
8715 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8716 sig_print_info (oursig);
8717 }
8718
3e43a32a
MS
8719 printf_filtered (_("\nUse the \"handle\" command "
8720 "to change these tables.\n"));
c906108c 8721}
4aa995e1
PA
8722
8723/* The $_siginfo convenience variable is a bit special. We don't know
8724 for sure the type of the value until we actually have a chance to
7a9dd1b2 8725 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8726 also dependent on which thread you have selected.
8727
8728 1. making $_siginfo be an internalvar that creates a new value on
8729 access.
8730
8731 2. making the value of $_siginfo be an lval_computed value. */
8732
8733/* This function implements the lval_computed support for reading a
8734 $_siginfo value. */
8735
8736static void
8737siginfo_value_read (struct value *v)
8738{
8739 LONGEST transferred;
8740
a911d87a
PA
8741 /* If we can access registers, so can we access $_siginfo. Likewise
8742 vice versa. */
8743 validate_registers_access ();
c709acd1 8744
4aa995e1
PA
8745 transferred =
8746 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8747 NULL,
8748 value_contents_all_raw (v),
8749 value_offset (v),
8750 TYPE_LENGTH (value_type (v)));
8751
8752 if (transferred != TYPE_LENGTH (value_type (v)))
8753 error (_("Unable to read siginfo"));
8754}
8755
8756/* This function implements the lval_computed support for writing a
8757 $_siginfo value. */
8758
8759static void
8760siginfo_value_write (struct value *v, struct value *fromval)
8761{
8762 LONGEST transferred;
8763
a911d87a
PA
8764 /* If we can access registers, so can we access $_siginfo. Likewise
8765 vice versa. */
8766 validate_registers_access ();
c709acd1 8767
4aa995e1
PA
8768 transferred = target_write (&current_target,
8769 TARGET_OBJECT_SIGNAL_INFO,
8770 NULL,
8771 value_contents_all_raw (fromval),
8772 value_offset (v),
8773 TYPE_LENGTH (value_type (fromval)));
8774
8775 if (transferred != TYPE_LENGTH (value_type (fromval)))
8776 error (_("Unable to write siginfo"));
8777}
8778
c8f2448a 8779static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8780 {
8781 siginfo_value_read,
8782 siginfo_value_write
8783 };
8784
8785/* Return a new value with the correct type for the siginfo object of
78267919
UW
8786 the current thread using architecture GDBARCH. Return a void value
8787 if there's no object available. */
4aa995e1 8788
2c0b251b 8789static struct value *
22d2b532
SDJ
8790siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8791 void *ignore)
4aa995e1 8792{
4aa995e1 8793 if (target_has_stack
78267919
UW
8794 && !ptid_equal (inferior_ptid, null_ptid)
8795 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8796 {
78267919 8797 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8798
78267919 8799 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8800 }
8801
78267919 8802 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8803}
8804
c906108c 8805\f
16c381f0
JK
8806/* infcall_suspend_state contains state about the program itself like its
8807 registers and any signal it received when it last stopped.
8808 This state must be restored regardless of how the inferior function call
8809 ends (either successfully, or after it hits a breakpoint or signal)
8810 if the program is to properly continue where it left off. */
8811
8812struct infcall_suspend_state
7a292a7a 8813{
16c381f0 8814 struct thread_suspend_state thread_suspend;
16c381f0
JK
8815
8816 /* Other fields: */
7a292a7a 8817 CORE_ADDR stop_pc;
b89667eb 8818 struct regcache *registers;
1736ad11 8819
35515841 8820 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8821 struct gdbarch *siginfo_gdbarch;
8822
8823 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8824 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8825 content would be invalid. */
8826 gdb_byte *siginfo_data;
b89667eb
DE
8827};
8828
16c381f0
JK
8829struct infcall_suspend_state *
8830save_infcall_suspend_state (void)
b89667eb 8831{
16c381f0 8832 struct infcall_suspend_state *inf_state;
b89667eb 8833 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8834 struct regcache *regcache = get_current_regcache ();
8835 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8836 gdb_byte *siginfo_data = NULL;
8837
8838 if (gdbarch_get_siginfo_type_p (gdbarch))
8839 {
8840 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8841 size_t len = TYPE_LENGTH (type);
8842 struct cleanup *back_to;
8843
224c3ddb 8844 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8845 back_to = make_cleanup (xfree, siginfo_data);
8846
8847 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8848 siginfo_data, 0, len) == len)
8849 discard_cleanups (back_to);
8850 else
8851 {
8852 /* Errors ignored. */
8853 do_cleanups (back_to);
8854 siginfo_data = NULL;
8855 }
8856 }
8857
41bf6aca 8858 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8859
8860 if (siginfo_data)
8861 {
8862 inf_state->siginfo_gdbarch = gdbarch;
8863 inf_state->siginfo_data = siginfo_data;
8864 }
b89667eb 8865
16c381f0 8866 inf_state->thread_suspend = tp->suspend;
16c381f0 8867
35515841 8868 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8869 GDB_SIGNAL_0 anyway. */
8870 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8871
b89667eb
DE
8872 inf_state->stop_pc = stop_pc;
8873
1736ad11 8874 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8875
8876 return inf_state;
8877}
8878
8879/* Restore inferior session state to INF_STATE. */
8880
8881void
16c381f0 8882restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8883{
8884 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8885 struct regcache *regcache = get_current_regcache ();
8886 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8887
16c381f0 8888 tp->suspend = inf_state->thread_suspend;
16c381f0 8889
b89667eb
DE
8890 stop_pc = inf_state->stop_pc;
8891
1736ad11
JK
8892 if (inf_state->siginfo_gdbarch == gdbarch)
8893 {
8894 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8895
8896 /* Errors ignored. */
8897 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8898 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8899 }
8900
b89667eb
DE
8901 /* The inferior can be gone if the user types "print exit(0)"
8902 (and perhaps other times). */
8903 if (target_has_execution)
8904 /* NB: The register write goes through to the target. */
1736ad11 8905 regcache_cpy (regcache, inf_state->registers);
803b5f95 8906
16c381f0 8907 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8908}
8909
8910static void
16c381f0 8911do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8912{
9a3c8263 8913 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8914}
8915
8916struct cleanup *
16c381f0
JK
8917make_cleanup_restore_infcall_suspend_state
8918 (struct infcall_suspend_state *inf_state)
b89667eb 8919{
16c381f0 8920 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8921}
8922
8923void
16c381f0 8924discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8925{
c0e383c6 8926 delete inf_state->registers;
803b5f95 8927 xfree (inf_state->siginfo_data);
b89667eb
DE
8928 xfree (inf_state);
8929}
8930
8931struct regcache *
16c381f0 8932get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8933{
8934 return inf_state->registers;
8935}
8936
16c381f0
JK
8937/* infcall_control_state contains state regarding gdb's control of the
8938 inferior itself like stepping control. It also contains session state like
8939 the user's currently selected frame. */
b89667eb 8940
16c381f0 8941struct infcall_control_state
b89667eb 8942{
16c381f0
JK
8943 struct thread_control_state thread_control;
8944 struct inferior_control_state inferior_control;
d82142e2
JK
8945
8946 /* Other fields: */
8947 enum stop_stack_kind stop_stack_dummy;
8948 int stopped_by_random_signal;
7a292a7a 8949
b89667eb 8950 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8951 struct frame_id selected_frame_id;
7a292a7a
SS
8952};
8953
c906108c 8954/* Save all of the information associated with the inferior<==>gdb
b89667eb 8955 connection. */
c906108c 8956
16c381f0
JK
8957struct infcall_control_state *
8958save_infcall_control_state (void)
c906108c 8959{
8d749320
SM
8960 struct infcall_control_state *inf_status =
8961 XNEW (struct infcall_control_state);
4e1c45ea 8962 struct thread_info *tp = inferior_thread ();
d6b48e9c 8963 struct inferior *inf = current_inferior ();
7a292a7a 8964
16c381f0
JK
8965 inf_status->thread_control = tp->control;
8966 inf_status->inferior_control = inf->control;
d82142e2 8967
8358c15c 8968 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8969 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8970
16c381f0
JK
8971 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8972 chain. If caller's caller is walking the chain, they'll be happier if we
8973 hand them back the original chain when restore_infcall_control_state is
8974 called. */
8975 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8976
8977 /* Other fields: */
8978 inf_status->stop_stack_dummy = stop_stack_dummy;
8979 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8980
206415a3 8981 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8982
7a292a7a 8983 return inf_status;
c906108c
SS
8984}
8985
c906108c 8986static int
96baa820 8987restore_selected_frame (void *args)
c906108c 8988{
488f131b 8989 struct frame_id *fid = (struct frame_id *) args;
c906108c 8990 struct frame_info *frame;
c906108c 8991
101dcfbe 8992 frame = frame_find_by_id (*fid);
c906108c 8993
aa0cd9c1
AC
8994 /* If inf_status->selected_frame_id is NULL, there was no previously
8995 selected frame. */
101dcfbe 8996 if (frame == NULL)
c906108c 8997 {
8a3fe4f8 8998 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8999 return 0;
9000 }
9001
0f7d239c 9002 select_frame (frame);
c906108c
SS
9003
9004 return (1);
9005}
9006
b89667eb
DE
9007/* Restore inferior session state to INF_STATUS. */
9008
c906108c 9009void
16c381f0 9010restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9011{
4e1c45ea 9012 struct thread_info *tp = inferior_thread ();
d6b48e9c 9013 struct inferior *inf = current_inferior ();
4e1c45ea 9014
8358c15c
JK
9015 if (tp->control.step_resume_breakpoint)
9016 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9017
5b79abe7
TT
9018 if (tp->control.exception_resume_breakpoint)
9019 tp->control.exception_resume_breakpoint->disposition
9020 = disp_del_at_next_stop;
9021
d82142e2 9022 /* Handle the bpstat_copy of the chain. */
16c381f0 9023 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9024
16c381f0
JK
9025 tp->control = inf_status->thread_control;
9026 inf->control = inf_status->inferior_control;
d82142e2
JK
9027
9028 /* Other fields: */
9029 stop_stack_dummy = inf_status->stop_stack_dummy;
9030 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9031
b89667eb 9032 if (target_has_stack)
c906108c 9033 {
c906108c 9034 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9035 walking the stack might encounter a garbage pointer and
9036 error() trying to dereference it. */
488f131b
JB
9037 if (catch_errors
9038 (restore_selected_frame, &inf_status->selected_frame_id,
9039 "Unable to restore previously selected frame:\n",
9040 RETURN_MASK_ERROR) == 0)
c906108c
SS
9041 /* Error in restoring the selected frame. Select the innermost
9042 frame. */
0f7d239c 9043 select_frame (get_current_frame ());
c906108c 9044 }
c906108c 9045
72cec141 9046 xfree (inf_status);
7a292a7a 9047}
c906108c 9048
74b7792f 9049static void
16c381f0 9050do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9051{
9a3c8263 9052 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9053}
9054
9055struct cleanup *
16c381f0
JK
9056make_cleanup_restore_infcall_control_state
9057 (struct infcall_control_state *inf_status)
74b7792f 9058{
16c381f0 9059 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9060}
9061
c906108c 9062void
16c381f0 9063discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9064{
8358c15c
JK
9065 if (inf_status->thread_control.step_resume_breakpoint)
9066 inf_status->thread_control.step_resume_breakpoint->disposition
9067 = disp_del_at_next_stop;
9068
5b79abe7
TT
9069 if (inf_status->thread_control.exception_resume_breakpoint)
9070 inf_status->thread_control.exception_resume_breakpoint->disposition
9071 = disp_del_at_next_stop;
9072
1777feb0 9073 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9074 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9075
72cec141 9076 xfree (inf_status);
7a292a7a 9077}
b89667eb 9078\f
7f89fd65 9079/* See infrun.h. */
0c557179
SDJ
9080
9081void
9082clear_exit_convenience_vars (void)
9083{
9084 clear_internalvar (lookup_internalvar ("_exitsignal"));
9085 clear_internalvar (lookup_internalvar ("_exitcode"));
9086}
c5aa993b 9087\f
488f131b 9088
b2175913
MS
9089/* User interface for reverse debugging:
9090 Set exec-direction / show exec-direction commands
9091 (returns error unless target implements to_set_exec_direction method). */
9092
170742de 9093enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9094static const char exec_forward[] = "forward";
9095static const char exec_reverse[] = "reverse";
9096static const char *exec_direction = exec_forward;
40478521 9097static const char *const exec_direction_names[] = {
b2175913
MS
9098 exec_forward,
9099 exec_reverse,
9100 NULL
9101};
9102
9103static void
9104set_exec_direction_func (char *args, int from_tty,
9105 struct cmd_list_element *cmd)
9106{
9107 if (target_can_execute_reverse)
9108 {
9109 if (!strcmp (exec_direction, exec_forward))
9110 execution_direction = EXEC_FORWARD;
9111 else if (!strcmp (exec_direction, exec_reverse))
9112 execution_direction = EXEC_REVERSE;
9113 }
8bbed405
MS
9114 else
9115 {
9116 exec_direction = exec_forward;
9117 error (_("Target does not support this operation."));
9118 }
b2175913
MS
9119}
9120
9121static void
9122show_exec_direction_func (struct ui_file *out, int from_tty,
9123 struct cmd_list_element *cmd, const char *value)
9124{
9125 switch (execution_direction) {
9126 case EXEC_FORWARD:
9127 fprintf_filtered (out, _("Forward.\n"));
9128 break;
9129 case EXEC_REVERSE:
9130 fprintf_filtered (out, _("Reverse.\n"));
9131 break;
b2175913 9132 default:
d8b34453
PA
9133 internal_error (__FILE__, __LINE__,
9134 _("bogus execution_direction value: %d"),
9135 (int) execution_direction);
b2175913
MS
9136 }
9137}
9138
d4db2f36
PA
9139static void
9140show_schedule_multiple (struct ui_file *file, int from_tty,
9141 struct cmd_list_element *c, const char *value)
9142{
3e43a32a
MS
9143 fprintf_filtered (file, _("Resuming the execution of threads "
9144 "of all processes is %s.\n"), value);
d4db2f36 9145}
ad52ddc6 9146
22d2b532
SDJ
9147/* Implementation of `siginfo' variable. */
9148
9149static const struct internalvar_funcs siginfo_funcs =
9150{
9151 siginfo_make_value,
9152 NULL,
9153 NULL
9154};
9155
372316f1
PA
9156/* Callback for infrun's target events source. This is marked when a
9157 thread has a pending status to process. */
9158
9159static void
9160infrun_async_inferior_event_handler (gdb_client_data data)
9161{
372316f1
PA
9162 inferior_event_handler (INF_REG_EVENT, NULL);
9163}
9164
c906108c 9165void
96baa820 9166_initialize_infrun (void)
c906108c 9167{
52f0bd74
AC
9168 int i;
9169 int numsigs;
de0bea00 9170 struct cmd_list_element *c;
c906108c 9171
372316f1
PA
9172 /* Register extra event sources in the event loop. */
9173 infrun_async_inferior_event_token
9174 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9175
11db9430 9176 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9177What debugger does when program gets various signals.\n\
9178Specify a signal as argument to print info on that signal only."));
c906108c
SS
9179 add_info_alias ("handle", "signals", 0);
9180
de0bea00 9181 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9182Specify how to handle signals.\n\
486c7739 9183Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9184Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9185If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9186will be displayed instead.\n\
9187\n\
c906108c
SS
9188Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9189from 1-15 are allowed for compatibility with old versions of GDB.\n\
9190Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9191The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9192used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9193\n\
1bedd215 9194Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9195\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9196Stop means reenter debugger if this signal happens (implies print).\n\
9197Print means print a message if this signal happens.\n\
9198Pass means let program see this signal; otherwise program doesn't know.\n\
9199Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9200Pass and Stop may be combined.\n\
9201\n\
9202Multiple signals may be specified. Signal numbers and signal names\n\
9203may be interspersed with actions, with the actions being performed for\n\
9204all signals cumulatively specified."));
de0bea00 9205 set_cmd_completer (c, handle_completer);
486c7739 9206
c906108c 9207 if (!dbx_commands)
1a966eab
AC
9208 stop_command = add_cmd ("stop", class_obscure,
9209 not_just_help_class_command, _("\
9210There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9211This allows you to set a list of commands to be run each time execution\n\
1a966eab 9212of the program stops."), &cmdlist);
c906108c 9213
ccce17b0 9214 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9215Set inferior debugging."), _("\
9216Show inferior debugging."), _("\
9217When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9218 NULL,
9219 show_debug_infrun,
9220 &setdebuglist, &showdebuglist);
527159b7 9221
3e43a32a
MS
9222 add_setshow_boolean_cmd ("displaced", class_maintenance,
9223 &debug_displaced, _("\
237fc4c9
PA
9224Set displaced stepping debugging."), _("\
9225Show displaced stepping debugging."), _("\
9226When non-zero, displaced stepping specific debugging is enabled."),
9227 NULL,
9228 show_debug_displaced,
9229 &setdebuglist, &showdebuglist);
9230
ad52ddc6
PA
9231 add_setshow_boolean_cmd ("non-stop", no_class,
9232 &non_stop_1, _("\
9233Set whether gdb controls the inferior in non-stop mode."), _("\
9234Show whether gdb controls the inferior in non-stop mode."), _("\
9235When debugging a multi-threaded program and this setting is\n\
9236off (the default, also called all-stop mode), when one thread stops\n\
9237(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9238all other threads in the program while you interact with the thread of\n\
9239interest. When you continue or step a thread, you can allow the other\n\
9240threads to run, or have them remain stopped, but while you inspect any\n\
9241thread's state, all threads stop.\n\
9242\n\
9243In non-stop mode, when one thread stops, other threads can continue\n\
9244to run freely. You'll be able to step each thread independently,\n\
9245leave it stopped or free to run as needed."),
9246 set_non_stop,
9247 show_non_stop,
9248 &setlist,
9249 &showlist);
9250
a493e3e2 9251 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9252 signal_stop = XNEWVEC (unsigned char, numsigs);
9253 signal_print = XNEWVEC (unsigned char, numsigs);
9254 signal_program = XNEWVEC (unsigned char, numsigs);
9255 signal_catch = XNEWVEC (unsigned char, numsigs);
9256 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9257 for (i = 0; i < numsigs; i++)
9258 {
9259 signal_stop[i] = 1;
9260 signal_print[i] = 1;
9261 signal_program[i] = 1;
ab04a2af 9262 signal_catch[i] = 0;
c906108c
SS
9263 }
9264
4d9d9d04
PA
9265 /* Signals caused by debugger's own actions should not be given to
9266 the program afterwards.
9267
9268 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9269 explicitly specifies that it should be delivered to the target
9270 program. Typically, that would occur when a user is debugging a
9271 target monitor on a simulator: the target monitor sets a
9272 breakpoint; the simulator encounters this breakpoint and halts
9273 the simulation handing control to GDB; GDB, noting that the stop
9274 address doesn't map to any known breakpoint, returns control back
9275 to the simulator; the simulator then delivers the hardware
9276 equivalent of a GDB_SIGNAL_TRAP to the program being
9277 debugged. */
a493e3e2
PA
9278 signal_program[GDB_SIGNAL_TRAP] = 0;
9279 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9280
9281 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9282 signal_stop[GDB_SIGNAL_ALRM] = 0;
9283 signal_print[GDB_SIGNAL_ALRM] = 0;
9284 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9285 signal_print[GDB_SIGNAL_VTALRM] = 0;
9286 signal_stop[GDB_SIGNAL_PROF] = 0;
9287 signal_print[GDB_SIGNAL_PROF] = 0;
9288 signal_stop[GDB_SIGNAL_CHLD] = 0;
9289 signal_print[GDB_SIGNAL_CHLD] = 0;
9290 signal_stop[GDB_SIGNAL_IO] = 0;
9291 signal_print[GDB_SIGNAL_IO] = 0;
9292 signal_stop[GDB_SIGNAL_POLL] = 0;
9293 signal_print[GDB_SIGNAL_POLL] = 0;
9294 signal_stop[GDB_SIGNAL_URG] = 0;
9295 signal_print[GDB_SIGNAL_URG] = 0;
9296 signal_stop[GDB_SIGNAL_WINCH] = 0;
9297 signal_print[GDB_SIGNAL_WINCH] = 0;
9298 signal_stop[GDB_SIGNAL_PRIO] = 0;
9299 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9300
cd0fc7c3
SS
9301 /* These signals are used internally by user-level thread
9302 implementations. (See signal(5) on Solaris.) Like the above
9303 signals, a healthy program receives and handles them as part of
9304 its normal operation. */
a493e3e2
PA
9305 signal_stop[GDB_SIGNAL_LWP] = 0;
9306 signal_print[GDB_SIGNAL_LWP] = 0;
9307 signal_stop[GDB_SIGNAL_WAITING] = 0;
9308 signal_print[GDB_SIGNAL_WAITING] = 0;
9309 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9310 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9311 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9312 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9313
2455069d
UW
9314 /* Update cached state. */
9315 signal_cache_update (-1);
9316
85c07804
AC
9317 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9318 &stop_on_solib_events, _("\
9319Set stopping for shared library events."), _("\
9320Show stopping for shared library events."), _("\
c906108c
SS
9321If nonzero, gdb will give control to the user when the dynamic linker\n\
9322notifies gdb of shared library events. The most common event of interest\n\
85c07804 9323to the user would be loading/unloading of a new library."),
f9e14852 9324 set_stop_on_solib_events,
920d2a44 9325 show_stop_on_solib_events,
85c07804 9326 &setlist, &showlist);
c906108c 9327
7ab04401
AC
9328 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9329 follow_fork_mode_kind_names,
9330 &follow_fork_mode_string, _("\
9331Set debugger response to a program call of fork or vfork."), _("\
9332Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9333A fork or vfork creates a new process. follow-fork-mode can be:\n\
9334 parent - the original process is debugged after a fork\n\
9335 child - the new process is debugged after a fork\n\
ea1dd7bc 9336The unfollowed process will continue to run.\n\
7ab04401
AC
9337By default, the debugger will follow the parent process."),
9338 NULL,
920d2a44 9339 show_follow_fork_mode_string,
7ab04401
AC
9340 &setlist, &showlist);
9341
6c95b8df
PA
9342 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9343 follow_exec_mode_names,
9344 &follow_exec_mode_string, _("\
9345Set debugger response to a program call of exec."), _("\
9346Show debugger response to a program call of exec."), _("\
9347An exec call replaces the program image of a process.\n\
9348\n\
9349follow-exec-mode can be:\n\
9350\n\
cce7e648 9351 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9352to this new inferior. The program the process was running before\n\
9353the exec call can be restarted afterwards by restarting the original\n\
9354inferior.\n\
9355\n\
9356 same - the debugger keeps the process bound to the same inferior.\n\
9357The new executable image replaces the previous executable loaded in\n\
9358the inferior. Restarting the inferior after the exec call restarts\n\
9359the executable the process was running after the exec call.\n\
9360\n\
9361By default, the debugger will use the same inferior."),
9362 NULL,
9363 show_follow_exec_mode_string,
9364 &setlist, &showlist);
9365
7ab04401
AC
9366 add_setshow_enum_cmd ("scheduler-locking", class_run,
9367 scheduler_enums, &scheduler_mode, _("\
9368Set mode for locking scheduler during execution."), _("\
9369Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9370off == no locking (threads may preempt at any time)\n\
9371on == full locking (no thread except the current thread may run)\n\
9372 This applies to both normal execution and replay mode.\n\
9373step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9374 In this mode, other threads may run during other commands.\n\
9375 This applies to both normal execution and replay mode.\n\
9376replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9377 set_schedlock_func, /* traps on target vector */
920d2a44 9378 show_scheduler_mode,
7ab04401 9379 &setlist, &showlist);
5fbbeb29 9380
d4db2f36
PA
9381 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9382Set mode for resuming threads of all processes."), _("\
9383Show mode for resuming threads of all processes."), _("\
9384When on, execution commands (such as 'continue' or 'next') resume all\n\
9385threads of all processes. When off (which is the default), execution\n\
9386commands only resume the threads of the current process. The set of\n\
9387threads that are resumed is further refined by the scheduler-locking\n\
9388mode (see help set scheduler-locking)."),
9389 NULL,
9390 show_schedule_multiple,
9391 &setlist, &showlist);
9392
5bf193a2
AC
9393 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9394Set mode of the step operation."), _("\
9395Show mode of the step operation."), _("\
9396When set, doing a step over a function without debug line information\n\
9397will stop at the first instruction of that function. Otherwise, the\n\
9398function is skipped and the step command stops at a different source line."),
9399 NULL,
920d2a44 9400 show_step_stop_if_no_debug,
5bf193a2 9401 &setlist, &showlist);
ca6724c1 9402
72d0e2c5
YQ
9403 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9404 &can_use_displaced_stepping, _("\
237fc4c9
PA
9405Set debugger's willingness to use displaced stepping."), _("\
9406Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9407If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9408supported by the target architecture. If off, gdb will not use displaced\n\
9409stepping to step over breakpoints, even if such is supported by the target\n\
9410architecture. If auto (which is the default), gdb will use displaced stepping\n\
9411if the target architecture supports it and non-stop mode is active, but will not\n\
9412use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9413 NULL,
9414 show_can_use_displaced_stepping,
9415 &setlist, &showlist);
237fc4c9 9416
b2175913
MS
9417 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9418 &exec_direction, _("Set direction of execution.\n\
9419Options are 'forward' or 'reverse'."),
9420 _("Show direction of execution (forward/reverse)."),
9421 _("Tells gdb whether to execute forward or backward."),
9422 set_exec_direction_func, show_exec_direction_func,
9423 &setlist, &showlist);
9424
6c95b8df
PA
9425 /* Set/show detach-on-fork: user-settable mode. */
9426
9427 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9428Set whether gdb will detach the child of a fork."), _("\
9429Show whether gdb will detach the child of a fork."), _("\
9430Tells gdb whether to detach the child of a fork."),
9431 NULL, NULL, &setlist, &showlist);
9432
03583c20
UW
9433 /* Set/show disable address space randomization mode. */
9434
9435 add_setshow_boolean_cmd ("disable-randomization", class_support,
9436 &disable_randomization, _("\
9437Set disabling of debuggee's virtual address space randomization."), _("\
9438Show disabling of debuggee's virtual address space randomization."), _("\
9439When this mode is on (which is the default), randomization of the virtual\n\
9440address space is disabled. Standalone programs run with the randomization\n\
9441enabled by default on some platforms."),
9442 &set_disable_randomization,
9443 &show_disable_randomization,
9444 &setlist, &showlist);
9445
ca6724c1 9446 /* ptid initializations */
ca6724c1
KB
9447 inferior_ptid = null_ptid;
9448 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9449
9450 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9451 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9452 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9453 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9454
9455 /* Explicitly create without lookup, since that tries to create a
9456 value with a void typed value, and when we get here, gdbarch
9457 isn't initialized yet. At this point, we're quite sure there
9458 isn't another convenience variable of the same name. */
22d2b532 9459 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9460
9461 add_setshow_boolean_cmd ("observer", no_class,
9462 &observer_mode_1, _("\
9463Set whether gdb controls the inferior in observer mode."), _("\
9464Show whether gdb controls the inferior in observer mode."), _("\
9465In observer mode, GDB can get data from the inferior, but not\n\
9466affect its execution. Registers and memory may not be changed,\n\
9467breakpoints may not be set, and the program cannot be interrupted\n\
9468or signalled."),
9469 set_observer_mode,
9470 show_observer_mode,
9471 &setlist,
9472 &showlist);
c906108c 9473}
This page took 2.309359 seconds and 4 git commands to generate.