Introduce program_space::add_objfile
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 objfile_pspace_info () = default;
70 ~objfile_pspace_info ();
71
72 struct obj_section **sections = nullptr;
73 int num_sections = 0;
74
75 /* Nonzero if object files have been added since the section map
76 was last updated. */
77 int new_objfiles_available = 0;
78
79 /* Nonzero if the section map MUST be updated before use. */
80 int section_map_dirty = 0;
81
82 /* Nonzero if section map updates should be inhibited if possible. */
83 int inhibit_updates = 0;
84 };
85
86 /* Per-program-space data key. */
87 static const struct program_space_key<objfile_pspace_info>
88 objfiles_pspace_data;
89
90 objfile_pspace_info::~objfile_pspace_info ()
91 {
92 xfree (sections);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = objfiles_pspace_data.get (pspace);
104 if (info == NULL)
105 info = objfiles_pspace_data.emplace (pspace);
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
115
116 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
117 {
118 }
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. Note that it is
123 not safe to call this multiple times for a given OBJFILE -- it can
124 only be called when allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = objfiles_bfd_data.get (abfd);
133
134 if (storage == NULL)
135 {
136 storage = new objfile_per_bfd_storage;
137 /* If the object requires gdb to do relocations, we simply fall
138 back to not sharing data across users. These cases are rare
139 enough that this seems reasonable. */
140 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
141 objfiles_bfd_data.set (abfd, storage);
142
143 /* Look up the gdbarch associated with the BFD. */
144 if (abfd != NULL)
145 storage->gdbarch = gdbarch_from_bfd (abfd);
146 }
147
148 return storage;
149 }
150
151 /* See objfiles.h. */
152
153 void
154 set_objfile_per_bfd (struct objfile *objfile)
155 {
156 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
157 }
158
159 /* Set the objfile's per-BFD notion of the "main" name and
160 language. */
161
162 void
163 set_objfile_main_name (struct objfile *objfile,
164 const char *name, enum language lang)
165 {
166 if (objfile->per_bfd->name_of_main == NULL
167 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
168 objfile->per_bfd->name_of_main
169 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
170 objfile->per_bfd->language_of_main = lang;
171 }
172
173 /* Helper structure to map blocks to static link properties in hash tables. */
174
175 struct static_link_htab_entry
176 {
177 const struct block *block;
178 const struct dynamic_prop *static_link;
179 };
180
181 /* Return a hash code for struct static_link_htab_entry *P. */
182
183 static hashval_t
184 static_link_htab_entry_hash (const void *p)
185 {
186 const struct static_link_htab_entry *e
187 = (const struct static_link_htab_entry *) p;
188
189 return htab_hash_pointer (e->block);
190 }
191
192 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
193 mappings for the same block. */
194
195 static int
196 static_link_htab_entry_eq (const void *p1, const void *p2)
197 {
198 const struct static_link_htab_entry *e1
199 = (const struct static_link_htab_entry *) p1;
200 const struct static_link_htab_entry *e2
201 = (const struct static_link_htab_entry *) p2;
202
203 return e1->block == e2->block;
204 }
205
206 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
207 Must not be called more than once for each BLOCK. */
208
209 void
210 objfile_register_static_link (struct objfile *objfile,
211 const struct block *block,
212 const struct dynamic_prop *static_link)
213 {
214 void **slot;
215 struct static_link_htab_entry lookup_entry;
216 struct static_link_htab_entry *entry;
217
218 if (objfile->static_links == NULL)
219 objfile->static_links.reset (htab_create_alloc
220 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
221 xcalloc, xfree));
222
223 /* Create a slot for the mapping, make sure it's the first mapping for this
224 block and then create the mapping itself. */
225 lookup_entry.block = block;
226 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
227 gdb_assert (*slot == NULL);
228
229 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
230 entry->block = block;
231 entry->static_link = static_link;
232 *slot = (void *) entry;
233 }
234
235 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
236 none was found. */
237
238 const struct dynamic_prop *
239 objfile_lookup_static_link (struct objfile *objfile,
240 const struct block *block)
241 {
242 struct static_link_htab_entry *entry;
243 struct static_link_htab_entry lookup_entry;
244
245 if (objfile->static_links == NULL)
246 return NULL;
247 lookup_entry.block = block;
248 entry = ((struct static_link_htab_entry *)
249 htab_find (objfile->static_links.get (), &lookup_entry));
250 if (entry == NULL)
251 return NULL;
252
253 gdb_assert (entry->block == block);
254 return entry->static_link;
255 }
256
257 \f
258
259 /* Called via bfd_map_over_sections to build up the section table that
260 the objfile references. The objfile contains pointers to the start
261 of the table (objfile->sections) and to the first location after
262 the end of the table (objfile->sections_end). */
263
264 static void
265 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
266 struct objfile *objfile, int force)
267 {
268 struct obj_section *section;
269
270 if (!force)
271 {
272 flagword aflag;
273
274 aflag = bfd_section_flags (asect);
275 if (!(aflag & SEC_ALLOC))
276 return;
277 }
278
279 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
280 section->objfile = objfile;
281 section->the_bfd_section = asect;
282 section->ovly_mapped = 0;
283 }
284
285 static void
286 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
287 void *objfilep)
288 {
289 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
290 }
291
292 /* Builds a section table for OBJFILE.
293
294 Note that the OFFSET and OVLY_MAPPED in each table entry are
295 initialized to zero. */
296
297 void
298 build_objfile_section_table (struct objfile *objfile)
299 {
300 int count = gdb_bfd_count_sections (objfile->obfd);
301
302 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
303 count,
304 struct obj_section);
305 objfile->sections_end = (objfile->sections + count);
306 bfd_map_over_sections (objfile->obfd,
307 add_to_objfile_sections, (void *) objfile);
308
309 /* See gdb_bfd_section_index. */
310 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
311 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
314 }
315
316 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
317 initialize the new objfile as best we can and link it into the list
318 of all known objfiles.
319
320 NAME should contain original non-canonicalized filename or other
321 identifier as entered by user. If there is no better source use
322 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
323 NAME content is copied into returned objfile.
324
325 The FLAGS word contains various bits (OBJF_*) that can be taken as
326 requests for specific operations. Other bits like OBJF_SHARED are
327 simply copied through to the new objfile flags member. */
328
329 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
330 : flags (flags_),
331 pspace (current_program_space),
332 partial_symtabs (new psymtab_storage ()),
333 obfd (abfd)
334 {
335 const char *expanded_name;
336
337 /* We could use obstack_specify_allocation here instead, but
338 gdb_obstack.h specifies the alloc/dealloc functions. */
339 obstack_init (&objfile_obstack);
340
341 objfile_alloc_data (this);
342
343 gdb::unique_xmalloc_ptr<char> name_holder;
344 if (name == NULL)
345 {
346 gdb_assert (abfd == NULL);
347 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
348 expanded_name = "<<anonymous objfile>>";
349 }
350 else if ((flags & OBJF_NOT_FILENAME) != 0
351 || is_target_filename (name))
352 expanded_name = name;
353 else
354 {
355 name_holder = gdb_abspath (name);
356 expanded_name = name_holder.get ();
357 }
358 original_name = obstack_strdup (&objfile_obstack, expanded_name);
359
360 /* Update the per-objfile information that comes from the bfd, ensuring
361 that any data that is reference is saved in the per-objfile data
362 region. */
363
364 gdb_bfd_ref (abfd);
365 if (abfd != NULL)
366 {
367 mtime = bfd_get_mtime (abfd);
368
369 /* Build section table. */
370 build_objfile_section_table (this);
371 }
372
373 per_bfd = get_objfile_bfd_data (this, abfd);
374 }
375
376 /* Retrieve the gdbarch associated with OBJFILE. */
377
378 struct gdbarch *
379 get_objfile_arch (const struct objfile *objfile)
380 {
381 return objfile->per_bfd->gdbarch;
382 }
383
384 /* If there is a valid and known entry point, function fills *ENTRY_P with it
385 and returns non-zero; otherwise it returns zero. */
386
387 int
388 entry_point_address_query (CORE_ADDR *entry_p)
389 {
390 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
391 return 0;
392
393 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
394 + ANOFFSET (symfile_objfile->section_offsets,
395 symfile_objfile->per_bfd->ei.the_bfd_section_index));
396
397 return 1;
398 }
399
400 /* Get current entry point address. Call error if it is not known. */
401
402 CORE_ADDR
403 entry_point_address (void)
404 {
405 CORE_ADDR retval;
406
407 if (!entry_point_address_query (&retval))
408 error (_("Entry point address is not known."));
409
410 return retval;
411 }
412
413 separate_debug_iterator &
414 separate_debug_iterator::operator++ ()
415 {
416 gdb_assert (m_objfile != nullptr);
417
418 struct objfile *res;
419
420 /* If any, return the first child. */
421 res = m_objfile->separate_debug_objfile;
422 if (res != nullptr)
423 {
424 m_objfile = res;
425 return *this;
426 }
427
428 /* Common case where there is no separate debug objfile. */
429 if (m_objfile == m_parent)
430 {
431 m_objfile = nullptr;
432 return *this;
433 }
434
435 /* Return the brother if any. Note that we don't iterate on brothers of
436 the parents. */
437 res = m_objfile->separate_debug_objfile_link;
438 if (res != nullptr)
439 {
440 m_objfile = res;
441 return *this;
442 }
443
444 for (res = m_objfile->separate_debug_objfile_backlink;
445 res != m_parent;
446 res = res->separate_debug_objfile_backlink)
447 {
448 gdb_assert (res != nullptr);
449 if (res->separate_debug_objfile_link != nullptr)
450 {
451 m_objfile = res->separate_debug_objfile_link;
452 return *this;
453 }
454 }
455 m_objfile = nullptr;
456 return *this;
457 }
458
459 /* Unlink OBJFILE from the list of known objfiles. */
460
461 static void
462 unlink_objfile (struct objfile *objfile)
463 {
464 struct objfile **objpp;
465
466 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
467 {
468 if (*objpp == objfile)
469 {
470 *objpp = (*objpp)->next;
471 objfile->next = NULL;
472 return;
473 }
474 }
475
476 internal_error (__FILE__, __LINE__,
477 _("unlink_objfile: objfile already unlinked"));
478 }
479
480 /* Add OBJFILE as a separate debug objfile of PARENT. */
481
482 static void
483 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
484 {
485 gdb_assert (objfile && parent);
486
487 /* Must not be already in a list. */
488 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
489 gdb_assert (objfile->separate_debug_objfile_link == NULL);
490 gdb_assert (objfile->separate_debug_objfile == NULL);
491 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
492 gdb_assert (parent->separate_debug_objfile_link == NULL);
493
494 objfile->separate_debug_objfile_backlink = parent;
495 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
496 parent->separate_debug_objfile = objfile;
497 }
498
499 /* See objfiles.h. */
500
501 objfile *
502 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
503 objfile *parent)
504 {
505 objfile *result = new objfile (bfd_, name_, flags_);
506 if (parent != nullptr)
507 add_separate_debug_objfile (result, parent);
508
509 current_program_space->add_objfile (result, parent);
510
511 /* Rebuild section map next time we need it. */
512 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
513
514 return result;
515 }
516
517 /* See objfiles.h. */
518
519 void
520 objfile::unlink ()
521 {
522 delete this;
523 }
524
525 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
526 itself. */
527
528 void
529 free_objfile_separate_debug (struct objfile *objfile)
530 {
531 struct objfile *child;
532
533 for (child = objfile->separate_debug_objfile; child;)
534 {
535 struct objfile *next_child = child->separate_debug_objfile_link;
536 child->unlink ();
537 child = next_child;
538 }
539 }
540
541 /* Destroy an objfile and all the symtabs and psymtabs under it. */
542
543 objfile::~objfile ()
544 {
545 /* First notify observers that this objfile is about to be freed. */
546 gdb::observers::free_objfile.notify (this);
547
548 /* Free all separate debug objfiles. */
549 free_objfile_separate_debug (this);
550
551 if (separate_debug_objfile_backlink)
552 {
553 /* We freed the separate debug file, make sure the base objfile
554 doesn't reference it. */
555 struct objfile *child;
556
557 child = separate_debug_objfile_backlink->separate_debug_objfile;
558
559 if (child == this)
560 {
561 /* THIS is the first child. */
562 separate_debug_objfile_backlink->separate_debug_objfile =
563 separate_debug_objfile_link;
564 }
565 else
566 {
567 /* Find THIS in the list. */
568 while (1)
569 {
570 if (child->separate_debug_objfile_link == this)
571 {
572 child->separate_debug_objfile_link =
573 separate_debug_objfile_link;
574 break;
575 }
576 child = child->separate_debug_objfile_link;
577 gdb_assert (child);
578 }
579 }
580 }
581
582 /* Remove any references to this objfile in the global value
583 lists. */
584 preserve_values (this);
585
586 /* It still may reference data modules have associated with the objfile and
587 the symbol file data. */
588 forget_cached_source_info_for_objfile (this);
589
590 breakpoint_free_objfile (this);
591 btrace_free_objfile (this);
592
593 /* First do any symbol file specific actions required when we are
594 finished with a particular symbol file. Note that if the objfile
595 is using reusable symbol information (via mmalloc) then each of
596 these routines is responsible for doing the correct thing, either
597 freeing things which are valid only during this particular gdb
598 execution, or leaving them to be reused during the next one. */
599
600 if (sf != NULL)
601 (*sf->sym_finish) (this);
602
603 /* Discard any data modules have associated with the objfile. The function
604 still may reference obfd. */
605 objfile_free_data (this);
606
607 if (obfd)
608 gdb_bfd_unref (obfd);
609 else
610 delete per_bfd;
611
612 /* Remove it from the chain of all objfiles. */
613
614 unlink_objfile (this);
615
616 if (this == symfile_objfile)
617 symfile_objfile = NULL;
618
619 /* Before the symbol table code was redone to make it easier to
620 selectively load and remove information particular to a specific
621 linkage unit, gdb used to do these things whenever the monolithic
622 symbol table was blown away. How much still needs to be done
623 is unknown, but we play it safe for now and keep each action until
624 it is shown to be no longer needed. */
625
626 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
627 for example), so we need to call this here. */
628 clear_pc_function_cache ();
629
630 /* Check to see if the current_source_symtab belongs to this objfile,
631 and if so, call clear_current_source_symtab_and_line. */
632
633 {
634 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
635
636 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
637 clear_current_source_symtab_and_line ();
638 }
639
640 /* Free the obstacks for non-reusable objfiles. */
641 obstack_free (&objfile_obstack, 0);
642
643 /* Rebuild section map next time we need it. */
644 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
645 }
646
647 /* Free all the object files at once and clean up their users. */
648
649 void
650 free_all_objfiles (void)
651 {
652 struct so_list *so;
653
654 /* Any objfile reference would become stale. */
655 for (so = master_so_list (); so; so = so->next)
656 gdb_assert (so->objfile == NULL);
657
658 for (objfile *objfile : current_program_space->objfiles_safe ())
659 objfile->unlink ();
660 clear_symtab_users (0);
661 }
662 \f
663 /* A helper function for objfile_relocate1 that relocates a single
664 symbol. */
665
666 static void
667 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
668 struct section_offsets *delta)
669 {
670 fixup_symbol_section (sym, objfile);
671
672 /* The RS6000 code from which this was taken skipped
673 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
674 But I'm leaving out that test, on the theory that
675 they can't possibly pass the tests below. */
676 if ((SYMBOL_CLASS (sym) == LOC_LABEL
677 || SYMBOL_CLASS (sym) == LOC_STATIC)
678 && SYMBOL_SECTION (sym) >= 0)
679 {
680 SET_SYMBOL_VALUE_ADDRESS (sym,
681 SYMBOL_VALUE_ADDRESS (sym)
682 + ANOFFSET (delta, SYMBOL_SECTION (sym)));
683 }
684 }
685
686 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
687 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
688 Return non-zero iff any change happened. */
689
690 static int
691 objfile_relocate1 (struct objfile *objfile,
692 const struct section_offsets *new_offsets)
693 {
694 struct section_offsets *delta =
695 ((struct section_offsets *)
696 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
697
698 int something_changed = 0;
699
700 for (int i = 0; i < objfile->num_sections; ++i)
701 {
702 delta->offsets[i] =
703 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
704 if (ANOFFSET (delta, i) != 0)
705 something_changed = 1;
706 }
707 if (!something_changed)
708 return 0;
709
710 /* OK, get all the symtabs. */
711 {
712 for (compunit_symtab *cust : objfile->compunits ())
713 {
714 for (symtab *s : compunit_filetabs (cust))
715 {
716 struct linetable *l;
717
718 /* First the line table. */
719 l = SYMTAB_LINETABLE (s);
720 if (l)
721 {
722 for (int i = 0; i < l->nitems; ++i)
723 l->item[i].pc += ANOFFSET (delta,
724 COMPUNIT_BLOCK_LINE_SECTION
725 (cust));
726 }
727 }
728 }
729
730 for (compunit_symtab *cust : objfile->compunits ())
731 {
732 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
733 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
734
735 if (BLOCKVECTOR_MAP (bv))
736 addrmap_relocate (BLOCKVECTOR_MAP (bv),
737 ANOFFSET (delta, block_line_section));
738
739 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
740 {
741 struct block *b;
742 struct symbol *sym;
743 struct mdict_iterator miter;
744
745 b = BLOCKVECTOR_BLOCK (bv, i);
746 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
747 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
748
749 if (BLOCK_RANGES (b) != nullptr)
750 for (int j = 0; j < BLOCK_NRANGES (b); j++)
751 {
752 BLOCK_RANGE_START (b, j)
753 += ANOFFSET (delta, block_line_section);
754 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
755 block_line_section);
756 }
757
758 /* We only want to iterate over the local symbols, not any
759 symbols in included symtabs. */
760 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
761 {
762 relocate_one_symbol (sym, objfile, delta);
763 }
764 }
765 }
766 }
767
768 /* This stores relocated addresses and so must be cleared. This
769 will cause it to be recreated on demand. */
770 objfile->psymbol_map.clear ();
771
772 /* Relocate isolated symbols. */
773 {
774 struct symbol *iter;
775
776 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
777 relocate_one_symbol (iter, objfile, delta);
778 }
779
780 {
781 int i;
782
783 for (i = 0; i < objfile->num_sections; ++i)
784 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
785 }
786
787 /* Rebuild section map next time we need it. */
788 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
789
790 /* Update the table in exec_ops, used to read memory. */
791 struct obj_section *s;
792 ALL_OBJFILE_OSECTIONS (objfile, s)
793 {
794 int idx = s - objfile->sections;
795
796 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
797 obj_section_addr (s));
798 }
799
800 /* Data changed. */
801 return 1;
802 }
803
804 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
805 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
806
807 The number and ordering of sections does differ between the two objfiles.
808 Only their names match. Also the file offsets will differ (objfile being
809 possibly prelinked but separate_debug_objfile is probably not prelinked) but
810 the in-memory absolute address as specified by NEW_OFFSETS must match both
811 files. */
812
813 void
814 objfile_relocate (struct objfile *objfile,
815 const struct section_offsets *new_offsets)
816 {
817 int changed = 0;
818
819 changed |= objfile_relocate1 (objfile, new_offsets);
820
821 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
822 {
823 if (debug_objfile == objfile)
824 continue;
825
826 section_addr_info objfile_addrs
827 = build_section_addr_info_from_objfile (objfile);
828
829 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
830 relative ones must be already created according to debug_objfile. */
831
832 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
833
834 gdb_assert (debug_objfile->num_sections
835 == gdb_bfd_count_sections (debug_objfile->obfd));
836 std::vector<struct section_offsets>
837 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
838 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
839 debug_objfile->num_sections,
840 objfile_addrs);
841
842 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
843 }
844
845 /* Relocate breakpoints as necessary, after things are relocated. */
846 if (changed)
847 breakpoint_re_set ();
848 }
849
850 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
851 not touched here.
852 Return non-zero iff any change happened. */
853
854 static int
855 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
856 {
857 struct section_offsets *new_offsets =
858 ((struct section_offsets *)
859 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
860 int i;
861
862 for (i = 0; i < objfile->num_sections; ++i)
863 new_offsets->offsets[i] = slide;
864
865 return objfile_relocate1 (objfile, new_offsets);
866 }
867
868 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
869 SEPARATE_DEBUG_OBJFILEs. */
870
871 void
872 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
873 {
874 int changed = 0;
875
876 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
877 changed |= objfile_rebase1 (debug_objfile, slide);
878
879 /* Relocate breakpoints as necessary, after things are relocated. */
880 if (changed)
881 breakpoint_re_set ();
882 }
883 \f
884 /* Return non-zero if OBJFILE has partial symbols. */
885
886 int
887 objfile_has_partial_symbols (struct objfile *objfile)
888 {
889 if (!objfile->sf)
890 return 0;
891
892 /* If we have not read psymbols, but we have a function capable of reading
893 them, then that is an indication that they are in fact available. Without
894 this function the symbols may have been already read in but they also may
895 not be present in this objfile. */
896 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
897 && objfile->sf->sym_read_psymbols != NULL)
898 return 1;
899
900 return objfile->sf->qf->has_symbols (objfile);
901 }
902
903 /* Return non-zero if OBJFILE has full symbols. */
904
905 int
906 objfile_has_full_symbols (struct objfile *objfile)
907 {
908 return objfile->compunit_symtabs != NULL;
909 }
910
911 /* Return non-zero if OBJFILE has full or partial symbols, either directly
912 or through a separate debug file. */
913
914 int
915 objfile_has_symbols (struct objfile *objfile)
916 {
917 for (::objfile *o : objfile->separate_debug_objfiles ())
918 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
919 return 1;
920 return 0;
921 }
922
923
924 /* Many places in gdb want to test just to see if we have any partial
925 symbols available. This function returns zero if none are currently
926 available, nonzero otherwise. */
927
928 int
929 have_partial_symbols (void)
930 {
931 for (objfile *ofp : current_program_space->objfiles ())
932 {
933 if (objfile_has_partial_symbols (ofp))
934 return 1;
935 }
936 return 0;
937 }
938
939 /* Many places in gdb want to test just to see if we have any full
940 symbols available. This function returns zero if none are currently
941 available, nonzero otherwise. */
942
943 int
944 have_full_symbols (void)
945 {
946 for (objfile *ofp : current_program_space->objfiles ())
947 {
948 if (objfile_has_full_symbols (ofp))
949 return 1;
950 }
951 return 0;
952 }
953
954
955 /* This operations deletes all objfile entries that represent solibs that
956 weren't explicitly loaded by the user, via e.g., the add-symbol-file
957 command. */
958
959 void
960 objfile_purge_solibs (void)
961 {
962 for (objfile *objf : current_program_space->objfiles_safe ())
963 {
964 /* We assume that the solib package has been purged already, or will
965 be soon. */
966
967 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
968 objf->unlink ();
969 }
970 }
971
972
973 /* Many places in gdb want to test just to see if we have any minimal
974 symbols available. This function returns zero if none are currently
975 available, nonzero otherwise. */
976
977 int
978 have_minimal_symbols (void)
979 {
980 for (objfile *ofp : current_program_space->objfiles ())
981 {
982 if (ofp->per_bfd->minimal_symbol_count > 0)
983 {
984 return 1;
985 }
986 }
987 return 0;
988 }
989
990 /* Qsort comparison function. */
991
992 static bool
993 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
994 {
995 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
996 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
997
998 if (sect1_addr < sect2_addr)
999 return true;
1000 else if (sect1_addr > sect2_addr)
1001 return false;
1002 else
1003 {
1004 /* Sections are at the same address. This could happen if
1005 A) we have an objfile and a separate debuginfo.
1006 B) we are confused, and have added sections without proper relocation,
1007 or something like that. */
1008
1009 const struct objfile *const objfile1 = sect1->objfile;
1010 const struct objfile *const objfile2 = sect2->objfile;
1011
1012 if (objfile1->separate_debug_objfile == objfile2
1013 || objfile2->separate_debug_objfile == objfile1)
1014 {
1015 /* Case A. The ordering doesn't matter: separate debuginfo files
1016 will be filtered out later. */
1017
1018 return false;
1019 }
1020
1021 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1022 triage. This section could be slow (since we iterate over all
1023 objfiles in each call to sort_cmp), but this shouldn't happen
1024 very often (GDB is already in a confused state; one hopes this
1025 doesn't happen at all). If you discover that significant time is
1026 spent in the loops below, do 'set complaints 100' and examine the
1027 resulting complaints. */
1028 if (objfile1 == objfile2)
1029 {
1030 /* Both sections came from the same objfile. We are really
1031 confused. Sort on sequence order of sections within the
1032 objfile. The order of checks is important here, if we find a
1033 match on SECT2 first then either SECT2 is before SECT1, or,
1034 SECT2 == SECT1, in both cases we should return false. The
1035 second case shouldn't occur during normal use, but std::sort
1036 does check that '!(a < a)' when compiled in debug mode. */
1037
1038 const struct obj_section *osect;
1039
1040 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1041 if (osect == sect2)
1042 return false;
1043 else if (osect == sect1)
1044 return true;
1045
1046 /* We should have found one of the sections before getting here. */
1047 gdb_assert_not_reached ("section not found");
1048 }
1049 else
1050 {
1051 /* Sort on sequence number of the objfile in the chain. */
1052
1053 for (objfile *objfile : current_program_space->objfiles ())
1054 if (objfile == objfile1)
1055 return true;
1056 else if (objfile == objfile2)
1057 return false;
1058
1059 /* We should have found one of the objfiles before getting here. */
1060 gdb_assert_not_reached ("objfile not found");
1061 }
1062 }
1063
1064 /* Unreachable. */
1065 gdb_assert_not_reached ("unexpected code path");
1066 return false;
1067 }
1068
1069 /* Select "better" obj_section to keep. We prefer the one that came from
1070 the real object, rather than the one from separate debuginfo.
1071 Most of the time the two sections are exactly identical, but with
1072 prelinking the .rel.dyn section in the real object may have different
1073 size. */
1074
1075 static struct obj_section *
1076 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1077 {
1078 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1079 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1080 || (b->objfile->separate_debug_objfile == a->objfile));
1081 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1082 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1083
1084 if (a->objfile->separate_debug_objfile != NULL)
1085 return a;
1086 return b;
1087 }
1088
1089 /* Return 1 if SECTION should be inserted into the section map.
1090 We want to insert only non-overlay and non-TLS section. */
1091
1092 static int
1093 insert_section_p (const struct bfd *abfd,
1094 const struct bfd_section *section)
1095 {
1096 const bfd_vma lma = bfd_section_lma (section);
1097
1098 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1099 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1100 /* This is an overlay section. IN_MEMORY check is needed to avoid
1101 discarding sections from the "system supplied DSO" (aka vdso)
1102 on some Linux systems (e.g. Fedora 11). */
1103 return 0;
1104 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1105 /* This is a TLS section. */
1106 return 0;
1107
1108 return 1;
1109 }
1110
1111 /* Filter out overlapping sections where one section came from the real
1112 objfile, and the other from a separate debuginfo file.
1113 Return the size of table after redundant sections have been eliminated. */
1114
1115 static int
1116 filter_debuginfo_sections (struct obj_section **map, int map_size)
1117 {
1118 int i, j;
1119
1120 for (i = 0, j = 0; i < map_size - 1; i++)
1121 {
1122 struct obj_section *const sect1 = map[i];
1123 struct obj_section *const sect2 = map[i + 1];
1124 const struct objfile *const objfile1 = sect1->objfile;
1125 const struct objfile *const objfile2 = sect2->objfile;
1126 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1127 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1128
1129 if (sect1_addr == sect2_addr
1130 && (objfile1->separate_debug_objfile == objfile2
1131 || objfile2->separate_debug_objfile == objfile1))
1132 {
1133 map[j++] = preferred_obj_section (sect1, sect2);
1134 ++i;
1135 }
1136 else
1137 map[j++] = sect1;
1138 }
1139
1140 if (i < map_size)
1141 {
1142 gdb_assert (i == map_size - 1);
1143 map[j++] = map[i];
1144 }
1145
1146 /* The map should not have shrunk to less than half the original size. */
1147 gdb_assert (map_size / 2 <= j);
1148
1149 return j;
1150 }
1151
1152 /* Filter out overlapping sections, issuing a warning if any are found.
1153 Overlapping sections could really be overlay sections which we didn't
1154 classify as such in insert_section_p, or we could be dealing with a
1155 corrupt binary. */
1156
1157 static int
1158 filter_overlapping_sections (struct obj_section **map, int map_size)
1159 {
1160 int i, j;
1161
1162 for (i = 0, j = 0; i < map_size - 1; )
1163 {
1164 int k;
1165
1166 map[j++] = map[i];
1167 for (k = i + 1; k < map_size; k++)
1168 {
1169 struct obj_section *const sect1 = map[i];
1170 struct obj_section *const sect2 = map[k];
1171 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1172 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1173 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1174
1175 gdb_assert (sect1_addr <= sect2_addr);
1176
1177 if (sect1_endaddr <= sect2_addr)
1178 break;
1179 else
1180 {
1181 /* We have an overlap. Report it. */
1182
1183 struct objfile *const objf1 = sect1->objfile;
1184 struct objfile *const objf2 = sect2->objfile;
1185
1186 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1187 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1188
1189 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1190
1191 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1192
1193 complaint (_("unexpected overlap between:\n"
1194 " (A) section `%s' from `%s' [%s, %s)\n"
1195 " (B) section `%s' from `%s' [%s, %s).\n"
1196 "Will ignore section B"),
1197 bfd_section_name (bfds1), objfile_name (objf1),
1198 paddress (gdbarch, sect1_addr),
1199 paddress (gdbarch, sect1_endaddr),
1200 bfd_section_name (bfds2), objfile_name (objf2),
1201 paddress (gdbarch, sect2_addr),
1202 paddress (gdbarch, sect2_endaddr));
1203 }
1204 }
1205 i = k;
1206 }
1207
1208 if (i < map_size)
1209 {
1210 gdb_assert (i == map_size - 1);
1211 map[j++] = map[i];
1212 }
1213
1214 return j;
1215 }
1216
1217
1218 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1219 TLS, overlay and overlapping sections. */
1220
1221 static void
1222 update_section_map (struct program_space *pspace,
1223 struct obj_section ***pmap, int *pmap_size)
1224 {
1225 struct objfile_pspace_info *pspace_info;
1226 int alloc_size, map_size, i;
1227 struct obj_section *s, **map;
1228
1229 pspace_info = get_objfile_pspace_data (pspace);
1230 gdb_assert (pspace_info->section_map_dirty != 0
1231 || pspace_info->new_objfiles_available != 0);
1232
1233 map = *pmap;
1234 xfree (map);
1235
1236 alloc_size = 0;
1237 for (objfile *objfile : pspace->objfiles ())
1238 ALL_OBJFILE_OSECTIONS (objfile, s)
1239 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1240 alloc_size += 1;
1241
1242 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1243 if (alloc_size == 0)
1244 {
1245 *pmap = NULL;
1246 *pmap_size = 0;
1247 return;
1248 }
1249
1250 map = XNEWVEC (struct obj_section *, alloc_size);
1251
1252 i = 0;
1253 for (objfile *objfile : pspace->objfiles ())
1254 ALL_OBJFILE_OSECTIONS (objfile, s)
1255 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1256 map[i++] = s;
1257
1258 std::sort (map, map + alloc_size, sort_cmp);
1259 map_size = filter_debuginfo_sections(map, alloc_size);
1260 map_size = filter_overlapping_sections(map, map_size);
1261
1262 if (map_size < alloc_size)
1263 /* Some sections were eliminated. Trim excess space. */
1264 map = XRESIZEVEC (struct obj_section *, map, map_size);
1265 else
1266 gdb_assert (alloc_size == map_size);
1267
1268 *pmap = map;
1269 *pmap_size = map_size;
1270 }
1271
1272 /* Bsearch comparison function. */
1273
1274 static int
1275 bsearch_cmp (const void *key, const void *elt)
1276 {
1277 const CORE_ADDR pc = *(CORE_ADDR *) key;
1278 const struct obj_section *section = *(const struct obj_section **) elt;
1279
1280 if (pc < obj_section_addr (section))
1281 return -1;
1282 if (pc < obj_section_endaddr (section))
1283 return 0;
1284 return 1;
1285 }
1286
1287 /* Returns a section whose range includes PC or NULL if none found. */
1288
1289 struct obj_section *
1290 find_pc_section (CORE_ADDR pc)
1291 {
1292 struct objfile_pspace_info *pspace_info;
1293 struct obj_section *s, **sp;
1294
1295 /* Check for mapped overlay section first. */
1296 s = find_pc_mapped_section (pc);
1297 if (s)
1298 return s;
1299
1300 pspace_info = get_objfile_pspace_data (current_program_space);
1301 if (pspace_info->section_map_dirty
1302 || (pspace_info->new_objfiles_available
1303 && !pspace_info->inhibit_updates))
1304 {
1305 update_section_map (current_program_space,
1306 &pspace_info->sections,
1307 &pspace_info->num_sections);
1308
1309 /* Don't need updates to section map until objfiles are added,
1310 removed or relocated. */
1311 pspace_info->new_objfiles_available = 0;
1312 pspace_info->section_map_dirty = 0;
1313 }
1314
1315 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1316 bsearch be non-NULL. */
1317 if (pspace_info->sections == NULL)
1318 {
1319 gdb_assert (pspace_info->num_sections == 0);
1320 return NULL;
1321 }
1322
1323 sp = (struct obj_section **) bsearch (&pc,
1324 pspace_info->sections,
1325 pspace_info->num_sections,
1326 sizeof (*pspace_info->sections),
1327 bsearch_cmp);
1328 if (sp != NULL)
1329 return *sp;
1330 return NULL;
1331 }
1332
1333
1334 /* Return non-zero if PC is in a section called NAME. */
1335
1336 int
1337 pc_in_section (CORE_ADDR pc, const char *name)
1338 {
1339 struct obj_section *s;
1340 int retval = 0;
1341
1342 s = find_pc_section (pc);
1343
1344 retval = (s != NULL
1345 && s->the_bfd_section->name != NULL
1346 && strcmp (s->the_bfd_section->name, name) == 0);
1347 return (retval);
1348 }
1349 \f
1350
1351 /* Set section_map_dirty so section map will be rebuilt next time it
1352 is used. Called by reread_symbols. */
1353
1354 void
1355 objfiles_changed (void)
1356 {
1357 /* Rebuild section map next time we need it. */
1358 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1359 }
1360
1361 /* See comments in objfiles.h. */
1362
1363 scoped_restore_tmpl<int>
1364 inhibit_section_map_updates (struct program_space *pspace)
1365 {
1366 return scoped_restore_tmpl<int>
1367 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1368 }
1369
1370 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1371 otherwise. */
1372
1373 int
1374 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1375 {
1376 struct obj_section *osect;
1377
1378 if (objfile == NULL)
1379 return 0;
1380
1381 ALL_OBJFILE_OSECTIONS (objfile, osect)
1382 {
1383 if (section_is_overlay (osect) && !section_is_mapped (osect))
1384 continue;
1385
1386 if (obj_section_addr (osect) <= addr
1387 && addr < obj_section_endaddr (osect))
1388 return 1;
1389 }
1390 return 0;
1391 }
1392
1393 int
1394 shared_objfile_contains_address_p (struct program_space *pspace,
1395 CORE_ADDR address)
1396 {
1397 for (objfile *objfile : pspace->objfiles ())
1398 {
1399 if ((objfile->flags & OBJF_SHARED) != 0
1400 && is_addr_in_objfile (address, objfile))
1401 return 1;
1402 }
1403
1404 return 0;
1405 }
1406
1407 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1408 gdbarch method. It is equivalent to use the objfiles iterable,
1409 searching the objfiles in the order they are stored internally,
1410 ignoring CURRENT_OBJFILE.
1411
1412 On most platforms, it should be close enough to doing the best
1413 we can without some knowledge specific to the architecture. */
1414
1415 void
1416 default_iterate_over_objfiles_in_search_order
1417 (struct gdbarch *gdbarch,
1418 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1419 void *cb_data, struct objfile *current_objfile)
1420 {
1421 int stop = 0;
1422
1423 for (objfile *objfile : current_program_space->objfiles ())
1424 {
1425 stop = cb (objfile, cb_data);
1426 if (stop)
1427 return;
1428 }
1429 }
1430
1431 /* See objfiles.h. */
1432
1433 const char *
1434 objfile_name (const struct objfile *objfile)
1435 {
1436 if (objfile->obfd != NULL)
1437 return bfd_get_filename (objfile->obfd);
1438
1439 return objfile->original_name;
1440 }
1441
1442 /* See objfiles.h. */
1443
1444 const char *
1445 objfile_filename (const struct objfile *objfile)
1446 {
1447 if (objfile->obfd != NULL)
1448 return bfd_get_filename (objfile->obfd);
1449
1450 return NULL;
1451 }
1452
1453 /* See objfiles.h. */
1454
1455 const char *
1456 objfile_debug_name (const struct objfile *objfile)
1457 {
1458 return lbasename (objfile->original_name);
1459 }
1460
1461 /* See objfiles.h. */
1462
1463 const char *
1464 objfile_flavour_name (struct objfile *objfile)
1465 {
1466 if (objfile->obfd != NULL)
1467 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1468 return NULL;
1469 }
This page took 0.088605 seconds and 4 git commands to generate.