mm/mmap.c: remove useless statement "vma = NULL" in find_vma()
[deliverable/linux.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 180extern void update_cpu_load_nohz(void);
3289bdb4
PZ
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
ac1f5912 387extern unsigned int hardlockup_panic;
004417a6 388void lockup_detector_init(void);
8446f1d3 389#else
8446f1d3
IM
390static inline void touch_softlockup_watchdog(void)
391{
392}
d6ad3e28
JW
393static inline void touch_softlockup_watchdog_sync(void)
394{
395}
04c9167f
JF
396static inline void touch_all_softlockup_watchdogs(void)
397{
398}
004417a6
PZ
399static inline void lockup_detector_init(void)
400{
401}
8446f1d3
IM
402#endif
403
8b414521
MT
404#ifdef CONFIG_DETECT_HUNG_TASK
405void reset_hung_task_detector(void);
406#else
407static inline void reset_hung_task_detector(void)
408{
409}
410#endif
411
1da177e4
LT
412/* Attach to any functions which should be ignored in wchan output. */
413#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
414
415/* Linker adds these: start and end of __sched functions */
416extern char __sched_text_start[], __sched_text_end[];
417
1da177e4
LT
418/* Is this address in the __sched functions? */
419extern int in_sched_functions(unsigned long addr);
420
421#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 422extern signed long schedule_timeout(signed long timeout);
64ed93a2 423extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 424extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 425extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 426asmlinkage void schedule(void);
c5491ea7 427extern void schedule_preempt_disabled(void);
1da177e4 428
9cff8ade
N
429extern long io_schedule_timeout(long timeout);
430
431static inline void io_schedule(void)
432{
433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
434}
435
ab516013 436struct nsproxy;
acce292c 437struct user_namespace;
1da177e4 438
efc1a3b1
DH
439#ifdef CONFIG_MMU
440extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
441extern unsigned long
442arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
443 unsigned long, unsigned long);
444extern unsigned long
445arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
446 unsigned long len, unsigned long pgoff,
447 unsigned long flags);
efc1a3b1
DH
448#else
449static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
450#endif
1da177e4 451
d049f74f
KC
452#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
453#define SUID_DUMP_USER 1 /* Dump as user of process */
454#define SUID_DUMP_ROOT 2 /* Dump as root */
455
6c5d5238 456/* mm flags */
f8af4da3 457
7288e118 458/* for SUID_DUMP_* above */
3cb4a0bb 459#define MMF_DUMPABLE_BITS 2
f8af4da3 460#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 461
942be387
ON
462extern void set_dumpable(struct mm_struct *mm, int value);
463/*
464 * This returns the actual value of the suid_dumpable flag. For things
465 * that are using this for checking for privilege transitions, it must
466 * test against SUID_DUMP_USER rather than treating it as a boolean
467 * value.
468 */
469static inline int __get_dumpable(unsigned long mm_flags)
470{
471 return mm_flags & MMF_DUMPABLE_MASK;
472}
473
474static inline int get_dumpable(struct mm_struct *mm)
475{
476 return __get_dumpable(mm->flags);
477}
478
3cb4a0bb
KH
479/* coredump filter bits */
480#define MMF_DUMP_ANON_PRIVATE 2
481#define MMF_DUMP_ANON_SHARED 3
482#define MMF_DUMP_MAPPED_PRIVATE 4
483#define MMF_DUMP_MAPPED_SHARED 5
82df3973 484#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
485#define MMF_DUMP_HUGETLB_PRIVATE 7
486#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 487
3cb4a0bb 488#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 489#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
490#define MMF_DUMP_FILTER_MASK \
491 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
492#define MMF_DUMP_FILTER_DEFAULT \
e575f111 493 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
494 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
495
496#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
497# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
498#else
499# define MMF_DUMP_MASK_DEFAULT_ELF 0
500#endif
f8af4da3
HD
501 /* leave room for more dump flags */
502#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 503#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 504#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 505
9f68f672
ON
506#define MMF_HAS_UPROBES 19 /* has uprobes */
507#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 508
f8af4da3 509#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 510
1da177e4
LT
511struct sighand_struct {
512 atomic_t count;
513 struct k_sigaction action[_NSIG];
514 spinlock_t siglock;
b8fceee1 515 wait_queue_head_t signalfd_wqh;
1da177e4
LT
516};
517
0e464814 518struct pacct_struct {
f6ec29a4
KK
519 int ac_flag;
520 long ac_exitcode;
0e464814 521 unsigned long ac_mem;
77787bfb
KK
522 cputime_t ac_utime, ac_stime;
523 unsigned long ac_minflt, ac_majflt;
0e464814
KK
524};
525
42c4ab41
SG
526struct cpu_itimer {
527 cputime_t expires;
528 cputime_t incr;
8356b5f9
SG
529 u32 error;
530 u32 incr_error;
42c4ab41
SG
531};
532
d37f761d 533/**
9d7fb042 534 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
535 * @utime: time spent in user mode
536 * @stime: time spent in system mode
9d7fb042 537 * @lock: protects the above two fields
d37f761d 538 *
9d7fb042
PZ
539 * Stores previous user/system time values such that we can guarantee
540 * monotonicity.
d37f761d 541 */
9d7fb042
PZ
542struct prev_cputime {
543#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
544 cputime_t utime;
545 cputime_t stime;
9d7fb042
PZ
546 raw_spinlock_t lock;
547#endif
d37f761d
FW
548};
549
9d7fb042
PZ
550static inline void prev_cputime_init(struct prev_cputime *prev)
551{
552#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
553 prev->utime = prev->stime = 0;
554 raw_spin_lock_init(&prev->lock);
555#endif
556}
557
f06febc9
FM
558/**
559 * struct task_cputime - collected CPU time counts
560 * @utime: time spent in user mode, in &cputime_t units
561 * @stime: time spent in kernel mode, in &cputime_t units
562 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 563 *
9d7fb042
PZ
564 * This structure groups together three kinds of CPU time that are tracked for
565 * threads and thread groups. Most things considering CPU time want to group
566 * these counts together and treat all three of them in parallel.
f06febc9
FM
567 */
568struct task_cputime {
569 cputime_t utime;
570 cputime_t stime;
571 unsigned long long sum_exec_runtime;
572};
9d7fb042 573
f06febc9 574/* Alternate field names when used to cache expirations. */
f06febc9 575#define virt_exp utime
9d7fb042 576#define prof_exp stime
f06febc9
FM
577#define sched_exp sum_exec_runtime
578
4cd4c1b4
PZ
579#define INIT_CPUTIME \
580 (struct task_cputime) { \
64861634
MS
581 .utime = 0, \
582 .stime = 0, \
4cd4c1b4
PZ
583 .sum_exec_runtime = 0, \
584 }
585
971e8a98
JL
586/*
587 * This is the atomic variant of task_cputime, which can be used for
588 * storing and updating task_cputime statistics without locking.
589 */
590struct task_cputime_atomic {
591 atomic64_t utime;
592 atomic64_t stime;
593 atomic64_t sum_exec_runtime;
594};
595
596#define INIT_CPUTIME_ATOMIC \
597 (struct task_cputime_atomic) { \
598 .utime = ATOMIC64_INIT(0), \
599 .stime = ATOMIC64_INIT(0), \
600 .sum_exec_runtime = ATOMIC64_INIT(0), \
601 }
602
609ca066 603#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 604
c99e6efe 605/*
87dcbc06
PZ
606 * Disable preemption until the scheduler is running -- use an unconditional
607 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 608 *
87dcbc06 609 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 610 */
87dcbc06 611#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 612
c99e6efe 613/*
609ca066
PZ
614 * Initial preempt_count value; reflects the preempt_count schedule invariant
615 * which states that during context switches:
d86ee480 616 *
609ca066
PZ
617 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
618 *
619 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
620 * Note: See finish_task_switch().
c99e6efe 621 */
609ca066 622#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 623
f06febc9 624/**
4cd4c1b4 625 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 626 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
627 * @running: true when there are timers running and
628 * @cputime_atomic receives updates.
c8d75aa4
JL
629 * @checking_timer: true when a thread in the group is in the
630 * process of checking for thread group timers.
f06febc9
FM
631 *
632 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 633 * used for thread group CPU timer calculations.
f06febc9 634 */
4cd4c1b4 635struct thread_group_cputimer {
71107445 636 struct task_cputime_atomic cputime_atomic;
d5c373eb 637 bool running;
c8d75aa4 638 bool checking_timer;
f06febc9 639};
f06febc9 640
4714d1d3 641#include <linux/rwsem.h>
5091faa4
MG
642struct autogroup;
643
1da177e4 644/*
e815f0a8 645 * NOTE! "signal_struct" does not have its own
1da177e4
LT
646 * locking, because a shared signal_struct always
647 * implies a shared sighand_struct, so locking
648 * sighand_struct is always a proper superset of
649 * the locking of signal_struct.
650 */
651struct signal_struct {
ea6d290c 652 atomic_t sigcnt;
1da177e4 653 atomic_t live;
b3ac022c 654 int nr_threads;
0c740d0a 655 struct list_head thread_head;
1da177e4
LT
656
657 wait_queue_head_t wait_chldexit; /* for wait4() */
658
659 /* current thread group signal load-balancing target: */
36c8b586 660 struct task_struct *curr_target;
1da177e4
LT
661
662 /* shared signal handling: */
663 struct sigpending shared_pending;
664
665 /* thread group exit support */
666 int group_exit_code;
667 /* overloaded:
668 * - notify group_exit_task when ->count is equal to notify_count
669 * - everyone except group_exit_task is stopped during signal delivery
670 * of fatal signals, group_exit_task processes the signal.
671 */
1da177e4 672 int notify_count;
07dd20e0 673 struct task_struct *group_exit_task;
1da177e4
LT
674
675 /* thread group stop support, overloads group_exit_code too */
676 int group_stop_count;
677 unsigned int flags; /* see SIGNAL_* flags below */
678
ebec18a6
LP
679 /*
680 * PR_SET_CHILD_SUBREAPER marks a process, like a service
681 * manager, to re-parent orphan (double-forking) child processes
682 * to this process instead of 'init'. The service manager is
683 * able to receive SIGCHLD signals and is able to investigate
684 * the process until it calls wait(). All children of this
685 * process will inherit a flag if they should look for a
686 * child_subreaper process at exit.
687 */
688 unsigned int is_child_subreaper:1;
689 unsigned int has_child_subreaper:1;
690
1da177e4 691 /* POSIX.1b Interval Timers */
5ed67f05
PE
692 int posix_timer_id;
693 struct list_head posix_timers;
1da177e4
LT
694
695 /* ITIMER_REAL timer for the process */
2ff678b8 696 struct hrtimer real_timer;
fea9d175 697 struct pid *leader_pid;
2ff678b8 698 ktime_t it_real_incr;
1da177e4 699
42c4ab41
SG
700 /*
701 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
702 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
703 * values are defined to 0 and 1 respectively
704 */
705 struct cpu_itimer it[2];
1da177e4 706
f06febc9 707 /*
4cd4c1b4
PZ
708 * Thread group totals for process CPU timers.
709 * See thread_group_cputimer(), et al, for details.
f06febc9 710 */
4cd4c1b4 711 struct thread_group_cputimer cputimer;
f06febc9
FM
712
713 /* Earliest-expiration cache. */
714 struct task_cputime cputime_expires;
715
716 struct list_head cpu_timers[3];
717
ab521dc0 718 struct pid *tty_old_pgrp;
1ec320af 719
1da177e4
LT
720 /* boolean value for session group leader */
721 int leader;
722
723 struct tty_struct *tty; /* NULL if no tty */
724
5091faa4
MG
725#ifdef CONFIG_SCHED_AUTOGROUP
726 struct autogroup *autogroup;
727#endif
1da177e4
LT
728 /*
729 * Cumulative resource counters for dead threads in the group,
730 * and for reaped dead child processes forked by this group.
731 * Live threads maintain their own counters and add to these
732 * in __exit_signal, except for the group leader.
733 */
e78c3496 734 seqlock_t stats_lock;
32bd671d 735 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
736 cputime_t gtime;
737 cputime_t cgtime;
9d7fb042 738 struct prev_cputime prev_cputime;
1da177e4
LT
739 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
740 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 741 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 742 unsigned long maxrss, cmaxrss;
940389b8 743 struct task_io_accounting ioac;
1da177e4 744
32bd671d
PZ
745 /*
746 * Cumulative ns of schedule CPU time fo dead threads in the
747 * group, not including a zombie group leader, (This only differs
748 * from jiffies_to_ns(utime + stime) if sched_clock uses something
749 * other than jiffies.)
750 */
751 unsigned long long sum_sched_runtime;
752
1da177e4
LT
753 /*
754 * We don't bother to synchronize most readers of this at all,
755 * because there is no reader checking a limit that actually needs
756 * to get both rlim_cur and rlim_max atomically, and either one
757 * alone is a single word that can safely be read normally.
758 * getrlimit/setrlimit use task_lock(current->group_leader) to
759 * protect this instead of the siglock, because they really
760 * have no need to disable irqs.
761 */
762 struct rlimit rlim[RLIM_NLIMITS];
763
0e464814
KK
764#ifdef CONFIG_BSD_PROCESS_ACCT
765 struct pacct_struct pacct; /* per-process accounting information */
766#endif
ad4ecbcb 767#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
768 struct taskstats *stats;
769#endif
522ed776
MT
770#ifdef CONFIG_AUDIT
771 unsigned audit_tty;
46e959ea 772 unsigned audit_tty_log_passwd;
522ed776
MT
773 struct tty_audit_buf *tty_audit_buf;
774#endif
0c986253
TH
775#ifdef CONFIG_CGROUPS
776 /*
777 * group_rwsem prevents new tasks from entering the threadgroup and
778 * member tasks from exiting,a more specifically, setting of
779 * PF_EXITING. fork and exit paths are protected with this rwsem
780 * using threadgroup_change_begin/end(). Users which require
781 * threadgroup to remain stable should use threadgroup_[un]lock()
782 * which also takes care of exec path. Currently, cgroup is the
783 * only user.
784 */
785 struct rw_semaphore group_rwsem;
786#endif
28b83c51 787
e1e12d2f 788 oom_flags_t oom_flags;
a9c58b90
DR
789 short oom_score_adj; /* OOM kill score adjustment */
790 short oom_score_adj_min; /* OOM kill score adjustment min value.
791 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
792
793 struct mutex cred_guard_mutex; /* guard against foreign influences on
794 * credential calculations
795 * (notably. ptrace) */
1da177e4
LT
796};
797
798/*
799 * Bits in flags field of signal_struct.
800 */
801#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
802#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
803#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 804#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
805/*
806 * Pending notifications to parent.
807 */
808#define SIGNAL_CLD_STOPPED 0x00000010
809#define SIGNAL_CLD_CONTINUED 0x00000020
810#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 811
fae5fa44
ON
812#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
813
ed5d2cac
ON
814/* If true, all threads except ->group_exit_task have pending SIGKILL */
815static inline int signal_group_exit(const struct signal_struct *sig)
816{
817 return (sig->flags & SIGNAL_GROUP_EXIT) ||
818 (sig->group_exit_task != NULL);
819}
820
1da177e4
LT
821/*
822 * Some day this will be a full-fledged user tracking system..
823 */
824struct user_struct {
825 atomic_t __count; /* reference count */
826 atomic_t processes; /* How many processes does this user have? */
1da177e4 827 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 828#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
829 atomic_t inotify_watches; /* How many inotify watches does this user have? */
830 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
831#endif
4afeff85
EP
832#ifdef CONFIG_FANOTIFY
833 atomic_t fanotify_listeners;
834#endif
7ef9964e 835#ifdef CONFIG_EPOLL
52bd19f7 836 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 837#endif
970a8645 838#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
839 /* protected by mq_lock */
840 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 841#endif
1da177e4
LT
842 unsigned long locked_shm; /* How many pages of mlocked shm ? */
843
844#ifdef CONFIG_KEYS
845 struct key *uid_keyring; /* UID specific keyring */
846 struct key *session_keyring; /* UID's default session keyring */
847#endif
848
849 /* Hash table maintenance information */
735de223 850 struct hlist_node uidhash_node;
7b44ab97 851 kuid_t uid;
24e377a8 852
aaac3ba9 853#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
854 atomic_long_t locked_vm;
855#endif
1da177e4
LT
856};
857
eb41d946 858extern int uids_sysfs_init(void);
5cb350ba 859
7b44ab97 860extern struct user_struct *find_user(kuid_t);
1da177e4
LT
861
862extern struct user_struct root_user;
863#define INIT_USER (&root_user)
864
b6dff3ec 865
1da177e4
LT
866struct backing_dev_info;
867struct reclaim_state;
868
f6db8347 869#ifdef CONFIG_SCHED_INFO
1da177e4
LT
870struct sched_info {
871 /* cumulative counters */
2d72376b 872 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 873 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
874
875 /* timestamps */
172ba844
BS
876 unsigned long long last_arrival,/* when we last ran on a cpu */
877 last_queued; /* when we were last queued to run */
1da177e4 878};
f6db8347 879#endif /* CONFIG_SCHED_INFO */
1da177e4 880
ca74e92b
SN
881#ifdef CONFIG_TASK_DELAY_ACCT
882struct task_delay_info {
883 spinlock_t lock;
884 unsigned int flags; /* Private per-task flags */
885
886 /* For each stat XXX, add following, aligned appropriately
887 *
888 * struct timespec XXX_start, XXX_end;
889 * u64 XXX_delay;
890 * u32 XXX_count;
891 *
892 * Atomicity of updates to XXX_delay, XXX_count protected by
893 * single lock above (split into XXX_lock if contention is an issue).
894 */
0ff92245
SN
895
896 /*
897 * XXX_count is incremented on every XXX operation, the delay
898 * associated with the operation is added to XXX_delay.
899 * XXX_delay contains the accumulated delay time in nanoseconds.
900 */
9667a23d 901 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
902 u64 blkio_delay; /* wait for sync block io completion */
903 u64 swapin_delay; /* wait for swapin block io completion */
904 u32 blkio_count; /* total count of the number of sync block */
905 /* io operations performed */
906 u32 swapin_count; /* total count of the number of swapin block */
907 /* io operations performed */
873b4771 908
9667a23d 909 u64 freepages_start;
873b4771
KK
910 u64 freepages_delay; /* wait for memory reclaim */
911 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 912};
52f17b6c
CS
913#endif /* CONFIG_TASK_DELAY_ACCT */
914
915static inline int sched_info_on(void)
916{
917#ifdef CONFIG_SCHEDSTATS
918 return 1;
919#elif defined(CONFIG_TASK_DELAY_ACCT)
920 extern int delayacct_on;
921 return delayacct_on;
922#else
923 return 0;
ca74e92b 924#endif
52f17b6c 925}
ca74e92b 926
d15bcfdb
IM
927enum cpu_idle_type {
928 CPU_IDLE,
929 CPU_NOT_IDLE,
930 CPU_NEWLY_IDLE,
931 CPU_MAX_IDLE_TYPES
1da177e4
LT
932};
933
1399fa78 934/*
ca8ce3d0 935 * Increase resolution of cpu_capacity calculations
1399fa78 936 */
ca8ce3d0
NP
937#define SCHED_CAPACITY_SHIFT 10
938#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 939
76751049
PZ
940/*
941 * Wake-queues are lists of tasks with a pending wakeup, whose
942 * callers have already marked the task as woken internally,
943 * and can thus carry on. A common use case is being able to
944 * do the wakeups once the corresponding user lock as been
945 * released.
946 *
947 * We hold reference to each task in the list across the wakeup,
948 * thus guaranteeing that the memory is still valid by the time
949 * the actual wakeups are performed in wake_up_q().
950 *
951 * One per task suffices, because there's never a need for a task to be
952 * in two wake queues simultaneously; it is forbidden to abandon a task
953 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
954 * already in a wake queue, the wakeup will happen soon and the second
955 * waker can just skip it.
956 *
957 * The WAKE_Q macro declares and initializes the list head.
958 * wake_up_q() does NOT reinitialize the list; it's expected to be
959 * called near the end of a function, where the fact that the queue is
960 * not used again will be easy to see by inspection.
961 *
962 * Note that this can cause spurious wakeups. schedule() callers
963 * must ensure the call is done inside a loop, confirming that the
964 * wakeup condition has in fact occurred.
965 */
966struct wake_q_node {
967 struct wake_q_node *next;
968};
969
970struct wake_q_head {
971 struct wake_q_node *first;
972 struct wake_q_node **lastp;
973};
974
975#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
976
977#define WAKE_Q(name) \
978 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
979
980extern void wake_q_add(struct wake_q_head *head,
981 struct task_struct *task);
982extern void wake_up_q(struct wake_q_head *head);
983
1399fa78
NR
984/*
985 * sched-domains (multiprocessor balancing) declarations:
986 */
2dd73a4f 987#ifdef CONFIG_SMP
b5d978e0
PZ
988#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
989#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
990#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
991#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 992#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 993#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 994#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 995#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
996#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
997#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 998#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 999#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1000#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1001#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1002
143e1e28 1003#ifdef CONFIG_SCHED_SMT
b6220ad6 1004static inline int cpu_smt_flags(void)
143e1e28 1005{
5d4dfddd 1006 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1007}
1008#endif
1009
1010#ifdef CONFIG_SCHED_MC
b6220ad6 1011static inline int cpu_core_flags(void)
143e1e28
VG
1012{
1013 return SD_SHARE_PKG_RESOURCES;
1014}
1015#endif
1016
1017#ifdef CONFIG_NUMA
b6220ad6 1018static inline int cpu_numa_flags(void)
143e1e28
VG
1019{
1020 return SD_NUMA;
1021}
1022#endif
532cb4c4 1023
1d3504fc
HS
1024struct sched_domain_attr {
1025 int relax_domain_level;
1026};
1027
1028#define SD_ATTR_INIT (struct sched_domain_attr) { \
1029 .relax_domain_level = -1, \
1030}
1031
60495e77
PZ
1032extern int sched_domain_level_max;
1033
5e6521ea
LZ
1034struct sched_group;
1035
1da177e4
LT
1036struct sched_domain {
1037 /* These fields must be setup */
1038 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1039 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1040 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1041 unsigned long min_interval; /* Minimum balance interval ms */
1042 unsigned long max_interval; /* Maximum balance interval ms */
1043 unsigned int busy_factor; /* less balancing by factor if busy */
1044 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1045 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1046 unsigned int busy_idx;
1047 unsigned int idle_idx;
1048 unsigned int newidle_idx;
1049 unsigned int wake_idx;
147cbb4b 1050 unsigned int forkexec_idx;
a52bfd73 1051 unsigned int smt_gain;
25f55d9d
VG
1052
1053 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1054 int flags; /* See SD_* */
60495e77 1055 int level;
1da177e4
LT
1056
1057 /* Runtime fields. */
1058 unsigned long last_balance; /* init to jiffies. units in jiffies */
1059 unsigned int balance_interval; /* initialise to 1. units in ms. */
1060 unsigned int nr_balance_failed; /* initialise to 0 */
1061
f48627e6 1062 /* idle_balance() stats */
9bd721c5 1063 u64 max_newidle_lb_cost;
f48627e6 1064 unsigned long next_decay_max_lb_cost;
2398f2c6 1065
1da177e4
LT
1066#ifdef CONFIG_SCHEDSTATS
1067 /* load_balance() stats */
480b9434
KC
1068 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1069 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1070 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1071 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1076
1077 /* Active load balancing */
480b9434
KC
1078 unsigned int alb_count;
1079 unsigned int alb_failed;
1080 unsigned int alb_pushed;
1da177e4 1081
68767a0a 1082 /* SD_BALANCE_EXEC stats */
480b9434
KC
1083 unsigned int sbe_count;
1084 unsigned int sbe_balanced;
1085 unsigned int sbe_pushed;
1da177e4 1086
68767a0a 1087 /* SD_BALANCE_FORK stats */
480b9434
KC
1088 unsigned int sbf_count;
1089 unsigned int sbf_balanced;
1090 unsigned int sbf_pushed;
68767a0a 1091
1da177e4 1092 /* try_to_wake_up() stats */
480b9434
KC
1093 unsigned int ttwu_wake_remote;
1094 unsigned int ttwu_move_affine;
1095 unsigned int ttwu_move_balance;
1da177e4 1096#endif
a5d8c348
IM
1097#ifdef CONFIG_SCHED_DEBUG
1098 char *name;
1099#endif
dce840a0
PZ
1100 union {
1101 void *private; /* used during construction */
1102 struct rcu_head rcu; /* used during destruction */
1103 };
6c99e9ad 1104
669c55e9 1105 unsigned int span_weight;
4200efd9
IM
1106 /*
1107 * Span of all CPUs in this domain.
1108 *
1109 * NOTE: this field is variable length. (Allocated dynamically
1110 * by attaching extra space to the end of the structure,
1111 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1112 */
1113 unsigned long span[0];
1da177e4
LT
1114};
1115
758b2cdc
RR
1116static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1117{
6c99e9ad 1118 return to_cpumask(sd->span);
758b2cdc
RR
1119}
1120
acc3f5d7 1121extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1122 struct sched_domain_attr *dattr_new);
029190c5 1123
acc3f5d7
RR
1124/* Allocate an array of sched domains, for partition_sched_domains(). */
1125cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1126void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1127
39be3501
PZ
1128bool cpus_share_cache(int this_cpu, int that_cpu);
1129
143e1e28 1130typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1131typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1132
1133#define SDTL_OVERLAP 0x01
1134
1135struct sd_data {
1136 struct sched_domain **__percpu sd;
1137 struct sched_group **__percpu sg;
63b2ca30 1138 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1139};
1140
1141struct sched_domain_topology_level {
1142 sched_domain_mask_f mask;
1143 sched_domain_flags_f sd_flags;
1144 int flags;
1145 int numa_level;
1146 struct sd_data data;
1147#ifdef CONFIG_SCHED_DEBUG
1148 char *name;
1149#endif
1150};
1151
143e1e28 1152extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1153extern void wake_up_if_idle(int cpu);
143e1e28
VG
1154
1155#ifdef CONFIG_SCHED_DEBUG
1156# define SD_INIT_NAME(type) .name = #type
1157#else
1158# define SD_INIT_NAME(type)
1159#endif
1160
1b427c15 1161#else /* CONFIG_SMP */
1da177e4 1162
1b427c15 1163struct sched_domain_attr;
d02c7a8c 1164
1b427c15 1165static inline void
acc3f5d7 1166partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1167 struct sched_domain_attr *dattr_new)
1168{
d02c7a8c 1169}
39be3501
PZ
1170
1171static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1172{
1173 return true;
1174}
1175
1b427c15 1176#endif /* !CONFIG_SMP */
1da177e4 1177
47fe38fc 1178
1da177e4 1179struct io_context; /* See blkdev.h */
1da177e4 1180
1da177e4 1181
383f2835 1182#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1183extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1184#else
1185static inline void prefetch_stack(struct task_struct *t) { }
1186#endif
1da177e4
LT
1187
1188struct audit_context; /* See audit.c */
1189struct mempolicy;
b92ce558 1190struct pipe_inode_info;
4865ecf1 1191struct uts_namespace;
1da177e4 1192
20b8a59f 1193struct load_weight {
9dbdb155
PZ
1194 unsigned long weight;
1195 u32 inv_weight;
20b8a59f
IM
1196};
1197
9d89c257
YD
1198/*
1199 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1200 * 1) load_avg factors frequency scaling into the amount of time that a
1201 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1202 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1203 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1204 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1205 * For cfs_rq, it is the aggregated such times of all runnable and
1206 * blocked sched_entities.
1207 * The 64 bit load_sum can:
1208 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1209 * the highest weight (=88761) always runnable, we should not overflow
1210 * 2) for entity, support any load.weight always runnable
1211 */
9d85f21c 1212struct sched_avg {
9d89c257
YD
1213 u64 last_update_time, load_sum;
1214 u32 util_sum, period_contrib;
1215 unsigned long load_avg, util_avg;
9d85f21c
PT
1216};
1217
94c18227 1218#ifdef CONFIG_SCHEDSTATS
41acab88 1219struct sched_statistics {
20b8a59f 1220 u64 wait_start;
94c18227 1221 u64 wait_max;
6d082592
AV
1222 u64 wait_count;
1223 u64 wait_sum;
8f0dfc34
AV
1224 u64 iowait_count;
1225 u64 iowait_sum;
94c18227 1226
20b8a59f 1227 u64 sleep_start;
20b8a59f 1228 u64 sleep_max;
94c18227
IM
1229 s64 sum_sleep_runtime;
1230
1231 u64 block_start;
20b8a59f
IM
1232 u64 block_max;
1233 u64 exec_max;
eba1ed4b 1234 u64 slice_max;
cc367732 1235
cc367732
IM
1236 u64 nr_migrations_cold;
1237 u64 nr_failed_migrations_affine;
1238 u64 nr_failed_migrations_running;
1239 u64 nr_failed_migrations_hot;
1240 u64 nr_forced_migrations;
cc367732
IM
1241
1242 u64 nr_wakeups;
1243 u64 nr_wakeups_sync;
1244 u64 nr_wakeups_migrate;
1245 u64 nr_wakeups_local;
1246 u64 nr_wakeups_remote;
1247 u64 nr_wakeups_affine;
1248 u64 nr_wakeups_affine_attempts;
1249 u64 nr_wakeups_passive;
1250 u64 nr_wakeups_idle;
41acab88
LDM
1251};
1252#endif
1253
1254struct sched_entity {
1255 struct load_weight load; /* for load-balancing */
1256 struct rb_node run_node;
1257 struct list_head group_node;
1258 unsigned int on_rq;
1259
1260 u64 exec_start;
1261 u64 sum_exec_runtime;
1262 u64 vruntime;
1263 u64 prev_sum_exec_runtime;
1264
41acab88
LDM
1265 u64 nr_migrations;
1266
41acab88
LDM
1267#ifdef CONFIG_SCHEDSTATS
1268 struct sched_statistics statistics;
94c18227
IM
1269#endif
1270
20b8a59f 1271#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1272 int depth;
20b8a59f
IM
1273 struct sched_entity *parent;
1274 /* rq on which this entity is (to be) queued: */
1275 struct cfs_rq *cfs_rq;
1276 /* rq "owned" by this entity/group: */
1277 struct cfs_rq *my_q;
1278#endif
8bd75c77 1279
141965c7 1280#ifdef CONFIG_SMP
9d89c257 1281 /* Per entity load average tracking */
9d85f21c
PT
1282 struct sched_avg avg;
1283#endif
20b8a59f 1284};
70b97a7f 1285
fa717060
PZ
1286struct sched_rt_entity {
1287 struct list_head run_list;
78f2c7db 1288 unsigned long timeout;
57d2aa00 1289 unsigned long watchdog_stamp;
bee367ed 1290 unsigned int time_slice;
6f505b16 1291
58d6c2d7 1292 struct sched_rt_entity *back;
052f1dc7 1293#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1294 struct sched_rt_entity *parent;
1295 /* rq on which this entity is (to be) queued: */
1296 struct rt_rq *rt_rq;
1297 /* rq "owned" by this entity/group: */
1298 struct rt_rq *my_q;
1299#endif
fa717060
PZ
1300};
1301
aab03e05
DF
1302struct sched_dl_entity {
1303 struct rb_node rb_node;
1304
1305 /*
1306 * Original scheduling parameters. Copied here from sched_attr
4027d080 1307 * during sched_setattr(), they will remain the same until
1308 * the next sched_setattr().
aab03e05
DF
1309 */
1310 u64 dl_runtime; /* maximum runtime for each instance */
1311 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1312 u64 dl_period; /* separation of two instances (period) */
332ac17e 1313 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1314
1315 /*
1316 * Actual scheduling parameters. Initialized with the values above,
1317 * they are continously updated during task execution. Note that
1318 * the remaining runtime could be < 0 in case we are in overrun.
1319 */
1320 s64 runtime; /* remaining runtime for this instance */
1321 u64 deadline; /* absolute deadline for this instance */
1322 unsigned int flags; /* specifying the scheduler behaviour */
1323
1324 /*
1325 * Some bool flags:
1326 *
1327 * @dl_throttled tells if we exhausted the runtime. If so, the
1328 * task has to wait for a replenishment to be performed at the
1329 * next firing of dl_timer.
1330 *
1331 * @dl_new tells if a new instance arrived. If so we must
1332 * start executing it with full runtime and reset its absolute
1333 * deadline;
2d3d891d
DF
1334 *
1335 * @dl_boosted tells if we are boosted due to DI. If so we are
1336 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1337 * exit the critical section);
1338 *
1339 * @dl_yielded tells if task gave up the cpu before consuming
1340 * all its available runtime during the last job.
aab03e05 1341 */
5bfd126e 1342 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1343
1344 /*
1345 * Bandwidth enforcement timer. Each -deadline task has its
1346 * own bandwidth to be enforced, thus we need one timer per task.
1347 */
1348 struct hrtimer dl_timer;
1349};
8bd75c77 1350
1d082fd0
PM
1351union rcu_special {
1352 struct {
8203d6d0
PM
1353 u8 blocked;
1354 u8 need_qs;
1355 u8 exp_need_qs;
1356 u8 pad; /* Otherwise the compiler can store garbage here. */
1357 } b; /* Bits. */
1358 u32 s; /* Set of bits. */
1d082fd0 1359};
86848966
PM
1360struct rcu_node;
1361
8dc85d54
PZ
1362enum perf_event_task_context {
1363 perf_invalid_context = -1,
1364 perf_hw_context = 0,
89a1e187 1365 perf_sw_context,
8dc85d54
PZ
1366 perf_nr_task_contexts,
1367};
1368
72b252ae
MG
1369/* Track pages that require TLB flushes */
1370struct tlbflush_unmap_batch {
1371 /*
1372 * Each bit set is a CPU that potentially has a TLB entry for one of
1373 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1374 */
1375 struct cpumask cpumask;
1376
1377 /* True if any bit in cpumask is set */
1378 bool flush_required;
d950c947
MG
1379
1380 /*
1381 * If true then the PTE was dirty when unmapped. The entry must be
1382 * flushed before IO is initiated or a stale TLB entry potentially
1383 * allows an update without redirtying the page.
1384 */
1385 bool writable;
72b252ae
MG
1386};
1387
1da177e4
LT
1388struct task_struct {
1389 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1390 void *stack;
1da177e4 1391 atomic_t usage;
97dc32cd
WC
1392 unsigned int flags; /* per process flags, defined below */
1393 unsigned int ptrace;
1da177e4 1394
2dd73a4f 1395#ifdef CONFIG_SMP
fa14ff4a 1396 struct llist_node wake_entry;
3ca7a440 1397 int on_cpu;
63b0e9ed 1398 unsigned int wakee_flips;
62470419 1399 unsigned long wakee_flip_decay_ts;
63b0e9ed 1400 struct task_struct *last_wakee;
ac66f547
PZ
1401
1402 int wake_cpu;
2dd73a4f 1403#endif
fd2f4419 1404 int on_rq;
50e645a8 1405
b29739f9 1406 int prio, static_prio, normal_prio;
c7aceaba 1407 unsigned int rt_priority;
5522d5d5 1408 const struct sched_class *sched_class;
20b8a59f 1409 struct sched_entity se;
fa717060 1410 struct sched_rt_entity rt;
8323f26c
PZ
1411#ifdef CONFIG_CGROUP_SCHED
1412 struct task_group *sched_task_group;
1413#endif
aab03e05 1414 struct sched_dl_entity dl;
1da177e4 1415
e107be36
AK
1416#ifdef CONFIG_PREEMPT_NOTIFIERS
1417 /* list of struct preempt_notifier: */
1418 struct hlist_head preempt_notifiers;
1419#endif
1420
6c5c9341 1421#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1422 unsigned int btrace_seq;
6c5c9341 1423#endif
1da177e4 1424
97dc32cd 1425 unsigned int policy;
29baa747 1426 int nr_cpus_allowed;
1da177e4 1427 cpumask_t cpus_allowed;
1da177e4 1428
a57eb940 1429#ifdef CONFIG_PREEMPT_RCU
e260be67 1430 int rcu_read_lock_nesting;
1d082fd0 1431 union rcu_special rcu_read_unlock_special;
f41d911f 1432 struct list_head rcu_node_entry;
a57eb940 1433 struct rcu_node *rcu_blocked_node;
28f6569a 1434#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1435#ifdef CONFIG_TASKS_RCU
1436 unsigned long rcu_tasks_nvcsw;
1437 bool rcu_tasks_holdout;
1438 struct list_head rcu_tasks_holdout_list;
176f8f7a 1439 int rcu_tasks_idle_cpu;
8315f422 1440#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1441
f6db8347 1442#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1443 struct sched_info sched_info;
1444#endif
1445
1446 struct list_head tasks;
806c09a7 1447#ifdef CONFIG_SMP
917b627d 1448 struct plist_node pushable_tasks;
1baca4ce 1449 struct rb_node pushable_dl_tasks;
806c09a7 1450#endif
1da177e4
LT
1451
1452 struct mm_struct *mm, *active_mm;
615d6e87
DB
1453 /* per-thread vma caching */
1454 u32 vmacache_seqnum;
1455 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1456#if defined(SPLIT_RSS_COUNTING)
1457 struct task_rss_stat rss_stat;
1458#endif
1da177e4 1459/* task state */
97dc32cd 1460 int exit_state;
1da177e4
LT
1461 int exit_code, exit_signal;
1462 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1463 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1464
1465 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1466 unsigned int personality;
9b89f6ba 1467
f9ce1f1c
KT
1468 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1469 * execve */
8f0dfc34
AV
1470 unsigned in_iowait:1;
1471
ca94c442
LP
1472 /* Revert to default priority/policy when forking */
1473 unsigned sched_reset_on_fork:1;
a8e4f2ea 1474 unsigned sched_contributes_to_load:1;
ff303e66 1475 unsigned sched_migrated:1;
ca94c442 1476
6f185c29
VD
1477#ifdef CONFIG_MEMCG_KMEM
1478 unsigned memcg_kmem_skip_account:1;
1479#endif
ff303e66
PZ
1480#ifdef CONFIG_COMPAT_BRK
1481 unsigned brk_randomized:1;
1482#endif
6f185c29 1483
1d4457f9
KC
1484 unsigned long atomic_flags; /* Flags needing atomic access. */
1485
f56141e3
AL
1486 struct restart_block restart_block;
1487
1da177e4
LT
1488 pid_t pid;
1489 pid_t tgid;
0a425405 1490
1314562a 1491#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1492 /* Canary value for the -fstack-protector gcc feature */
1493 unsigned long stack_canary;
1314562a 1494#endif
4d1d61a6 1495 /*
1da177e4 1496 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1497 * older sibling, respectively. (p->father can be replaced with
f470021a 1498 * p->real_parent->pid)
1da177e4 1499 */
abd63bc3
KC
1500 struct task_struct __rcu *real_parent; /* real parent process */
1501 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1502 /*
f470021a 1503 * children/sibling forms the list of my natural children
1da177e4
LT
1504 */
1505 struct list_head children; /* list of my children */
1506 struct list_head sibling; /* linkage in my parent's children list */
1507 struct task_struct *group_leader; /* threadgroup leader */
1508
f470021a
RM
1509 /*
1510 * ptraced is the list of tasks this task is using ptrace on.
1511 * This includes both natural children and PTRACE_ATTACH targets.
1512 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1513 */
1514 struct list_head ptraced;
1515 struct list_head ptrace_entry;
1516
1da177e4 1517 /* PID/PID hash table linkage. */
92476d7f 1518 struct pid_link pids[PIDTYPE_MAX];
47e65328 1519 struct list_head thread_group;
0c740d0a 1520 struct list_head thread_node;
1da177e4
LT
1521
1522 struct completion *vfork_done; /* for vfork() */
1523 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1524 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1525
c66f08be 1526 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1527 cputime_t gtime;
9d7fb042 1528 struct prev_cputime prev_cputime;
6a61671b
FW
1529#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1530 seqlock_t vtime_seqlock;
1531 unsigned long long vtime_snap;
1532 enum {
1533 VTIME_SLEEPING = 0,
1534 VTIME_USER,
1535 VTIME_SYS,
1536 } vtime_snap_whence;
d99ca3b9 1537#endif
1da177e4 1538 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1539 u64 start_time; /* monotonic time in nsec */
57e0be04 1540 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1541/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1542 unsigned long min_flt, maj_flt;
1543
f06febc9 1544 struct task_cputime cputime_expires;
1da177e4
LT
1545 struct list_head cpu_timers[3];
1546
1547/* process credentials */
1b0ba1c9 1548 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1549 * credentials (COW) */
1b0ba1c9 1550 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1551 * credentials (COW) */
36772092
PBG
1552 char comm[TASK_COMM_LEN]; /* executable name excluding path
1553 - access with [gs]et_task_comm (which lock
1554 it with task_lock())
221af7f8 1555 - initialized normally by setup_new_exec */
1da177e4 1556/* file system info */
756daf26 1557 struct nameidata *nameidata;
3d5b6fcc 1558#ifdef CONFIG_SYSVIPC
1da177e4
LT
1559/* ipc stuff */
1560 struct sysv_sem sysvsem;
ab602f79 1561 struct sysv_shm sysvshm;
3d5b6fcc 1562#endif
e162b39a 1563#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1564/* hung task detection */
82a1fcb9
IM
1565 unsigned long last_switch_count;
1566#endif
1da177e4
LT
1567/* filesystem information */
1568 struct fs_struct *fs;
1569/* open file information */
1570 struct files_struct *files;
1651e14e 1571/* namespaces */
ab516013 1572 struct nsproxy *nsproxy;
1da177e4
LT
1573/* signal handlers */
1574 struct signal_struct *signal;
1575 struct sighand_struct *sighand;
1576
1577 sigset_t blocked, real_blocked;
f3de272b 1578 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1579 struct sigpending pending;
1580
1581 unsigned long sas_ss_sp;
1582 size_t sas_ss_size;
1583 int (*notifier)(void *priv);
1584 void *notifier_data;
1585 sigset_t *notifier_mask;
67d12145 1586 struct callback_head *task_works;
e73f8959 1587
1da177e4 1588 struct audit_context *audit_context;
bfef93a5 1589#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1590 kuid_t loginuid;
4746ec5b 1591 unsigned int sessionid;
bfef93a5 1592#endif
932ecebb 1593 struct seccomp seccomp;
1da177e4
LT
1594
1595/* Thread group tracking */
1596 u32 parent_exec_id;
1597 u32 self_exec_id;
58568d2a
MX
1598/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1599 * mempolicy */
1da177e4 1600 spinlock_t alloc_lock;
1da177e4 1601
b29739f9 1602 /* Protection of the PI data structures: */
1d615482 1603 raw_spinlock_t pi_lock;
b29739f9 1604
76751049
PZ
1605 struct wake_q_node wake_q;
1606
23f78d4a
IM
1607#ifdef CONFIG_RT_MUTEXES
1608 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1609 struct rb_root pi_waiters;
1610 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1611 /* Deadlock detection and priority inheritance handling */
1612 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1613#endif
1614
408894ee
IM
1615#ifdef CONFIG_DEBUG_MUTEXES
1616 /* mutex deadlock detection */
1617 struct mutex_waiter *blocked_on;
1618#endif
de30a2b3
IM
1619#ifdef CONFIG_TRACE_IRQFLAGS
1620 unsigned int irq_events;
de30a2b3 1621 unsigned long hardirq_enable_ip;
de30a2b3 1622 unsigned long hardirq_disable_ip;
fa1452e8 1623 unsigned int hardirq_enable_event;
de30a2b3 1624 unsigned int hardirq_disable_event;
fa1452e8
HS
1625 int hardirqs_enabled;
1626 int hardirq_context;
de30a2b3 1627 unsigned long softirq_disable_ip;
de30a2b3 1628 unsigned long softirq_enable_ip;
fa1452e8 1629 unsigned int softirq_disable_event;
de30a2b3 1630 unsigned int softirq_enable_event;
fa1452e8 1631 int softirqs_enabled;
de30a2b3
IM
1632 int softirq_context;
1633#endif
fbb9ce95 1634#ifdef CONFIG_LOCKDEP
bdb9441e 1635# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1636 u64 curr_chain_key;
1637 int lockdep_depth;
fbb9ce95 1638 unsigned int lockdep_recursion;
c7aceaba 1639 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1640 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1641#endif
408894ee 1642
1da177e4
LT
1643/* journalling filesystem info */
1644 void *journal_info;
1645
d89d8796 1646/* stacked block device info */
bddd87c7 1647 struct bio_list *bio_list;
d89d8796 1648
73c10101
JA
1649#ifdef CONFIG_BLOCK
1650/* stack plugging */
1651 struct blk_plug *plug;
1652#endif
1653
1da177e4
LT
1654/* VM state */
1655 struct reclaim_state *reclaim_state;
1656
1da177e4
LT
1657 struct backing_dev_info *backing_dev_info;
1658
1659 struct io_context *io_context;
1660
1661 unsigned long ptrace_message;
1662 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1663 struct task_io_accounting ioac;
8f0ab514 1664#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1665 u64 acct_rss_mem1; /* accumulated rss usage */
1666 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1667 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1668#endif
1669#ifdef CONFIG_CPUSETS
58568d2a 1670 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1671 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1672 int cpuset_mem_spread_rotor;
6adef3eb 1673 int cpuset_slab_spread_rotor;
1da177e4 1674#endif
ddbcc7e8 1675#ifdef CONFIG_CGROUPS
817929ec 1676 /* Control Group info protected by css_set_lock */
2c392b8c 1677 struct css_set __rcu *cgroups;
817929ec
PM
1678 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1679 struct list_head cg_list;
ddbcc7e8 1680#endif
42b2dd0a 1681#ifdef CONFIG_FUTEX
0771dfef 1682 struct robust_list_head __user *robust_list;
34f192c6
IM
1683#ifdef CONFIG_COMPAT
1684 struct compat_robust_list_head __user *compat_robust_list;
1685#endif
c87e2837
IM
1686 struct list_head pi_state_list;
1687 struct futex_pi_state *pi_state_cache;
c7aceaba 1688#endif
cdd6c482 1689#ifdef CONFIG_PERF_EVENTS
8dc85d54 1690 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1691 struct mutex perf_event_mutex;
1692 struct list_head perf_event_list;
a63eaf34 1693#endif
8f47b187
TG
1694#ifdef CONFIG_DEBUG_PREEMPT
1695 unsigned long preempt_disable_ip;
1696#endif
c7aceaba 1697#ifdef CONFIG_NUMA
58568d2a 1698 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1699 short il_next;
207205a2 1700 short pref_node_fork;
42b2dd0a 1701#endif
cbee9f88
PZ
1702#ifdef CONFIG_NUMA_BALANCING
1703 int numa_scan_seq;
cbee9f88 1704 unsigned int numa_scan_period;
598f0ec0 1705 unsigned int numa_scan_period_max;
de1c9ce6 1706 int numa_preferred_nid;
6b9a7460 1707 unsigned long numa_migrate_retry;
cbee9f88 1708 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1709 u64 last_task_numa_placement;
1710 u64 last_sum_exec_runtime;
cbee9f88 1711 struct callback_head numa_work;
f809ca9a 1712
8c8a743c
PZ
1713 struct list_head numa_entry;
1714 struct numa_group *numa_group;
1715
745d6147 1716 /*
44dba3d5
IM
1717 * numa_faults is an array split into four regions:
1718 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1719 * in this precise order.
1720 *
1721 * faults_memory: Exponential decaying average of faults on a per-node
1722 * basis. Scheduling placement decisions are made based on these
1723 * counts. The values remain static for the duration of a PTE scan.
1724 * faults_cpu: Track the nodes the process was running on when a NUMA
1725 * hinting fault was incurred.
1726 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1727 * during the current scan window. When the scan completes, the counts
1728 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1729 */
44dba3d5 1730 unsigned long *numa_faults;
83e1d2cd 1731 unsigned long total_numa_faults;
745d6147 1732
04bb2f94
RR
1733 /*
1734 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1735 * scan window were remote/local or failed to migrate. The task scan
1736 * period is adapted based on the locality of the faults with different
1737 * weights depending on whether they were shared or private faults
04bb2f94 1738 */
074c2381 1739 unsigned long numa_faults_locality[3];
04bb2f94 1740
b32e86b4 1741 unsigned long numa_pages_migrated;
cbee9f88
PZ
1742#endif /* CONFIG_NUMA_BALANCING */
1743
72b252ae
MG
1744#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1745 struct tlbflush_unmap_batch tlb_ubc;
1746#endif
1747
e56d0903 1748 struct rcu_head rcu;
b92ce558
JA
1749
1750 /*
1751 * cache last used pipe for splice
1752 */
1753 struct pipe_inode_info *splice_pipe;
5640f768
ED
1754
1755 struct page_frag task_frag;
1756
ca74e92b
SN
1757#ifdef CONFIG_TASK_DELAY_ACCT
1758 struct task_delay_info *delays;
f4f154fd
AM
1759#endif
1760#ifdef CONFIG_FAULT_INJECTION
1761 int make_it_fail;
ca74e92b 1762#endif
9d823e8f
WF
1763 /*
1764 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1765 * balance_dirty_pages() for some dirty throttling pause
1766 */
1767 int nr_dirtied;
1768 int nr_dirtied_pause;
83712358 1769 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1770
9745512c
AV
1771#ifdef CONFIG_LATENCYTOP
1772 int latency_record_count;
1773 struct latency_record latency_record[LT_SAVECOUNT];
1774#endif
6976675d
AV
1775 /*
1776 * time slack values; these are used to round up poll() and
1777 * select() etc timeout values. These are in nanoseconds.
1778 */
1779 unsigned long timer_slack_ns;
1780 unsigned long default_timer_slack_ns;
f8d570a4 1781
0b24becc
AR
1782#ifdef CONFIG_KASAN
1783 unsigned int kasan_depth;
1784#endif
fb52607a 1785#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1786 /* Index of current stored address in ret_stack */
f201ae23
FW
1787 int curr_ret_stack;
1788 /* Stack of return addresses for return function tracing */
1789 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1790 /* time stamp for last schedule */
1791 unsigned long long ftrace_timestamp;
f201ae23
FW
1792 /*
1793 * Number of functions that haven't been traced
1794 * because of depth overrun.
1795 */
1796 atomic_t trace_overrun;
380c4b14
FW
1797 /* Pause for the tracing */
1798 atomic_t tracing_graph_pause;
f201ae23 1799#endif
ea4e2bc4
SR
1800#ifdef CONFIG_TRACING
1801 /* state flags for use by tracers */
1802 unsigned long trace;
b1cff0ad 1803 /* bitmask and counter of trace recursion */
261842b7
SR
1804 unsigned long trace_recursion;
1805#endif /* CONFIG_TRACING */
6f185c29 1806#ifdef CONFIG_MEMCG
519e5247 1807 struct memcg_oom_info {
49426420
JW
1808 struct mem_cgroup *memcg;
1809 gfp_t gfp_mask;
1810 int order;
519e5247
JW
1811 unsigned int may_oom:1;
1812 } memcg_oom;
569b846d 1813#endif
0326f5a9
SD
1814#ifdef CONFIG_UPROBES
1815 struct uprobe_task *utask;
0326f5a9 1816#endif
cafe5635
KO
1817#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1818 unsigned int sequential_io;
1819 unsigned int sequential_io_avg;
1820#endif
8eb23b9f
PZ
1821#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1822 unsigned long task_state_change;
1823#endif
8bcbde54 1824 int pagefault_disabled;
0c8c0f03
DH
1825/* CPU-specific state of this task */
1826 struct thread_struct thread;
1827/*
1828 * WARNING: on x86, 'thread_struct' contains a variable-sized
1829 * structure. It *MUST* be at the end of 'task_struct'.
1830 *
1831 * Do not put anything below here!
1832 */
1da177e4
LT
1833};
1834
5aaeb5c0
IM
1835#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1836extern int arch_task_struct_size __read_mostly;
1837#else
1838# define arch_task_struct_size (sizeof(struct task_struct))
1839#endif
0c8c0f03 1840
76e6eee0 1841/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1842#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1843
6688cc05
PZ
1844#define TNF_MIGRATED 0x01
1845#define TNF_NO_GROUP 0x02
dabe1d99 1846#define TNF_SHARED 0x04
04bb2f94 1847#define TNF_FAULT_LOCAL 0x08
074c2381 1848#define TNF_MIGRATE_FAIL 0x10
6688cc05 1849
cbee9f88 1850#ifdef CONFIG_NUMA_BALANCING
6688cc05 1851extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1852extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1853extern void set_numabalancing_state(bool enabled);
82727018 1854extern void task_numa_free(struct task_struct *p);
10f39042
RR
1855extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1856 int src_nid, int dst_cpu);
cbee9f88 1857#else
ac8e895b 1858static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1859 int flags)
cbee9f88
PZ
1860{
1861}
e29cf08b
MG
1862static inline pid_t task_numa_group_id(struct task_struct *p)
1863{
1864 return 0;
1865}
1a687c2e
MG
1866static inline void set_numabalancing_state(bool enabled)
1867{
1868}
82727018
RR
1869static inline void task_numa_free(struct task_struct *p)
1870{
1871}
10f39042
RR
1872static inline bool should_numa_migrate_memory(struct task_struct *p,
1873 struct page *page, int src_nid, int dst_cpu)
1874{
1875 return true;
1876}
cbee9f88
PZ
1877#endif
1878
e868171a 1879static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1880{
1881 return task->pids[PIDTYPE_PID].pid;
1882}
1883
e868171a 1884static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1885{
1886 return task->group_leader->pids[PIDTYPE_PID].pid;
1887}
1888
6dda81f4
ON
1889/*
1890 * Without tasklist or rcu lock it is not safe to dereference
1891 * the result of task_pgrp/task_session even if task == current,
1892 * we can race with another thread doing sys_setsid/sys_setpgid.
1893 */
e868171a 1894static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1895{
1896 return task->group_leader->pids[PIDTYPE_PGID].pid;
1897}
1898
e868171a 1899static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1900{
1901 return task->group_leader->pids[PIDTYPE_SID].pid;
1902}
1903
7af57294
PE
1904struct pid_namespace;
1905
1906/*
1907 * the helpers to get the task's different pids as they are seen
1908 * from various namespaces
1909 *
1910 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1911 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1912 * current.
7af57294
PE
1913 * task_xid_nr_ns() : id seen from the ns specified;
1914 *
1915 * set_task_vxid() : assigns a virtual id to a task;
1916 *
7af57294
PE
1917 * see also pid_nr() etc in include/linux/pid.h
1918 */
52ee2dfd
ON
1919pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1920 struct pid_namespace *ns);
7af57294 1921
e868171a 1922static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1923{
1924 return tsk->pid;
1925}
1926
52ee2dfd
ON
1927static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1928 struct pid_namespace *ns)
1929{
1930 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1931}
7af57294
PE
1932
1933static inline pid_t task_pid_vnr(struct task_struct *tsk)
1934{
52ee2dfd 1935 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1936}
1937
1938
e868171a 1939static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1940{
1941 return tsk->tgid;
1942}
1943
2f2a3a46 1944pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1945
1946static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1947{
1948 return pid_vnr(task_tgid(tsk));
1949}
1950
1951
80e0b6e8 1952static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1953static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1954{
1955 pid_t pid = 0;
1956
1957 rcu_read_lock();
1958 if (pid_alive(tsk))
1959 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1960 rcu_read_unlock();
1961
1962 return pid;
1963}
1964
1965static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1966{
1967 return task_ppid_nr_ns(tsk, &init_pid_ns);
1968}
1969
52ee2dfd
ON
1970static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1971 struct pid_namespace *ns)
7af57294 1972{
52ee2dfd 1973 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1974}
1975
7af57294
PE
1976static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1977{
52ee2dfd 1978 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1979}
1980
1981
52ee2dfd
ON
1982static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1983 struct pid_namespace *ns)
7af57294 1984{
52ee2dfd 1985 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1986}
1987
7af57294
PE
1988static inline pid_t task_session_vnr(struct task_struct *tsk)
1989{
52ee2dfd 1990 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1991}
1992
1b0f7ffd
ON
1993/* obsolete, do not use */
1994static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1995{
1996 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1997}
7af57294 1998
1da177e4
LT
1999/**
2000 * pid_alive - check that a task structure is not stale
2001 * @p: Task structure to be checked.
2002 *
2003 * Test if a process is not yet dead (at most zombie state)
2004 * If pid_alive fails, then pointers within the task structure
2005 * can be stale and must not be dereferenced.
e69f6186
YB
2006 *
2007 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2008 */
ad36d282 2009static inline int pid_alive(const struct task_struct *p)
1da177e4 2010{
92476d7f 2011 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2012}
2013
f400e198 2014/**
b460cbc5 2015 * is_global_init - check if a task structure is init
3260259f
H
2016 * @tsk: Task structure to be checked.
2017 *
2018 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2019 *
2020 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2021 */
e868171a 2022static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
2023{
2024 return tsk->pid == 1;
2025}
b460cbc5 2026
9ec52099
CLG
2027extern struct pid *cad_pid;
2028
1da177e4 2029extern void free_task(struct task_struct *tsk);
1da177e4 2030#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2031
158d9ebd 2032extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2033
2034static inline void put_task_struct(struct task_struct *t)
2035{
2036 if (atomic_dec_and_test(&t->usage))
8c7904a0 2037 __put_task_struct(t);
e56d0903 2038}
1da177e4 2039
6a61671b
FW
2040#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2041extern void task_cputime(struct task_struct *t,
2042 cputime_t *utime, cputime_t *stime);
2043extern void task_cputime_scaled(struct task_struct *t,
2044 cputime_t *utimescaled, cputime_t *stimescaled);
2045extern cputime_t task_gtime(struct task_struct *t);
2046#else
6fac4829
FW
2047static inline void task_cputime(struct task_struct *t,
2048 cputime_t *utime, cputime_t *stime)
2049{
2050 if (utime)
2051 *utime = t->utime;
2052 if (stime)
2053 *stime = t->stime;
2054}
2055
2056static inline void task_cputime_scaled(struct task_struct *t,
2057 cputime_t *utimescaled,
2058 cputime_t *stimescaled)
2059{
2060 if (utimescaled)
2061 *utimescaled = t->utimescaled;
2062 if (stimescaled)
2063 *stimescaled = t->stimescaled;
2064}
6a61671b
FW
2065
2066static inline cputime_t task_gtime(struct task_struct *t)
2067{
2068 return t->gtime;
2069}
2070#endif
e80d0a1a
FW
2071extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2072extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2073
1da177e4
LT
2074/*
2075 * Per process flags
2076 */
1da177e4 2077#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2078#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2079#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2080#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2081#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2082#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2083#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2084#define PF_DUMPCORE 0x00000200 /* dumped core */
2085#define PF_SIGNALED 0x00000400 /* killed by a signal */
2086#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2087#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2088#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2089#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2090#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2091#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2092#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2093#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2094#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2095#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2096#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2097#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2098#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2099#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2100#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2101#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2102#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2103#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2104
2105/*
2106 * Only the _current_ task can read/write to tsk->flags, but other
2107 * tasks can access tsk->flags in readonly mode for example
2108 * with tsk_used_math (like during threaded core dumping).
2109 * There is however an exception to this rule during ptrace
2110 * or during fork: the ptracer task is allowed to write to the
2111 * child->flags of its traced child (same goes for fork, the parent
2112 * can write to the child->flags), because we're guaranteed the
2113 * child is not running and in turn not changing child->flags
2114 * at the same time the parent does it.
2115 */
2116#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2117#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2118#define clear_used_math() clear_stopped_child_used_math(current)
2119#define set_used_math() set_stopped_child_used_math(current)
2120#define conditional_stopped_child_used_math(condition, child) \
2121 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2122#define conditional_used_math(condition) \
2123 conditional_stopped_child_used_math(condition, current)
2124#define copy_to_stopped_child_used_math(child) \
2125 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2126/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2127#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2128#define used_math() tsk_used_math(current)
2129
934f3072
JB
2130/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2131 * __GFP_FS is also cleared as it implies __GFP_IO.
2132 */
21caf2fc
ML
2133static inline gfp_t memalloc_noio_flags(gfp_t flags)
2134{
2135 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2136 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2137 return flags;
2138}
2139
2140static inline unsigned int memalloc_noio_save(void)
2141{
2142 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2143 current->flags |= PF_MEMALLOC_NOIO;
2144 return flags;
2145}
2146
2147static inline void memalloc_noio_restore(unsigned int flags)
2148{
2149 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2150}
2151
1d4457f9 2152/* Per-process atomic flags. */
a2b86f77 2153#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2154#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2155#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2156
1d4457f9 2157
e0e5070b
ZL
2158#define TASK_PFA_TEST(name, func) \
2159 static inline bool task_##func(struct task_struct *p) \
2160 { return test_bit(PFA_##name, &p->atomic_flags); }
2161#define TASK_PFA_SET(name, func) \
2162 static inline void task_set_##func(struct task_struct *p) \
2163 { set_bit(PFA_##name, &p->atomic_flags); }
2164#define TASK_PFA_CLEAR(name, func) \
2165 static inline void task_clear_##func(struct task_struct *p) \
2166 { clear_bit(PFA_##name, &p->atomic_flags); }
2167
2168TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2169TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2170
2ad654bc
ZL
2171TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2172TASK_PFA_SET(SPREAD_PAGE, spread_page)
2173TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2174
2175TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2176TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2177TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2178
e5c1902e 2179/*
a8f072c1 2180 * task->jobctl flags
e5c1902e 2181 */
a8f072c1 2182#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2183
a8f072c1
TH
2184#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2185#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2186#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2187#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2188#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2189#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2190#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2191
b76808e6
PD
2192#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2193#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2194#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2195#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2196#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2197#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2198#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2199
fb1d910c 2200#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2201#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2202
7dd3db54 2203extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2204 unsigned long mask);
73ddff2b 2205extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2206extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2207 unsigned long mask);
39efa3ef 2208
f41d911f
PM
2209static inline void rcu_copy_process(struct task_struct *p)
2210{
8315f422 2211#ifdef CONFIG_PREEMPT_RCU
f41d911f 2212 p->rcu_read_lock_nesting = 0;
1d082fd0 2213 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2214 p->rcu_blocked_node = NULL;
f41d911f 2215 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2216#endif /* #ifdef CONFIG_PREEMPT_RCU */
2217#ifdef CONFIG_TASKS_RCU
2218 p->rcu_tasks_holdout = false;
2219 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2220 p->rcu_tasks_idle_cpu = -1;
8315f422 2221#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2222}
2223
907aed48
MG
2224static inline void tsk_restore_flags(struct task_struct *task,
2225 unsigned long orig_flags, unsigned long flags)
2226{
2227 task->flags &= ~flags;
2228 task->flags |= orig_flags & flags;
2229}
2230
f82f8042
JL
2231extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2232 const struct cpumask *trial);
7f51412a
JL
2233extern int task_can_attach(struct task_struct *p,
2234 const struct cpumask *cs_cpus_allowed);
1da177e4 2235#ifdef CONFIG_SMP
1e1b6c51
KM
2236extern void do_set_cpus_allowed(struct task_struct *p,
2237 const struct cpumask *new_mask);
2238
cd8ba7cd 2239extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2240 const struct cpumask *new_mask);
1da177e4 2241#else
1e1b6c51
KM
2242static inline void do_set_cpus_allowed(struct task_struct *p,
2243 const struct cpumask *new_mask)
2244{
2245}
cd8ba7cd 2246static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2247 const struct cpumask *new_mask)
1da177e4 2248{
96f874e2 2249 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2250 return -EINVAL;
2251 return 0;
2252}
2253#endif
e0ad9556 2254
3451d024 2255#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2256void calc_load_enter_idle(void);
2257void calc_load_exit_idle(void);
2258#else
2259static inline void calc_load_enter_idle(void) { }
2260static inline void calc_load_exit_idle(void) { }
3451d024 2261#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2262
b342501c 2263/*
c676329a
PZ
2264 * Do not use outside of architecture code which knows its limitations.
2265 *
2266 * sched_clock() has no promise of monotonicity or bounded drift between
2267 * CPUs, use (which you should not) requires disabling IRQs.
2268 *
2269 * Please use one of the three interfaces below.
b342501c 2270 */
1bbfa6f2 2271extern unsigned long long notrace sched_clock(void);
c676329a 2272/*
489a71b0 2273 * See the comment in kernel/sched/clock.c
c676329a
PZ
2274 */
2275extern u64 cpu_clock(int cpu);
2276extern u64 local_clock(void);
545a2bf7 2277extern u64 running_clock(void);
c676329a
PZ
2278extern u64 sched_clock_cpu(int cpu);
2279
e436d800 2280
c1955a3d 2281extern void sched_clock_init(void);
3e51f33f 2282
c1955a3d 2283#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2284static inline void sched_clock_tick(void)
2285{
2286}
2287
2288static inline void sched_clock_idle_sleep_event(void)
2289{
2290}
2291
2292static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2293{
2294}
2295#else
c676329a
PZ
2296/*
2297 * Architectures can set this to 1 if they have specified
2298 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2299 * but then during bootup it turns out that sched_clock()
2300 * is reliable after all:
2301 */
35af99e6
PZ
2302extern int sched_clock_stable(void);
2303extern void set_sched_clock_stable(void);
2304extern void clear_sched_clock_stable(void);
c676329a 2305
3e51f33f
PZ
2306extern void sched_clock_tick(void);
2307extern void sched_clock_idle_sleep_event(void);
2308extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2309#endif
2310
b52bfee4
VP
2311#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2312/*
2313 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2314 * The reason for this explicit opt-in is not to have perf penalty with
2315 * slow sched_clocks.
2316 */
2317extern void enable_sched_clock_irqtime(void);
2318extern void disable_sched_clock_irqtime(void);
2319#else
2320static inline void enable_sched_clock_irqtime(void) {}
2321static inline void disable_sched_clock_irqtime(void) {}
2322#endif
2323
36c8b586 2324extern unsigned long long
41b86e9c 2325task_sched_runtime(struct task_struct *task);
1da177e4
LT
2326
2327/* sched_exec is called by processes performing an exec */
2328#ifdef CONFIG_SMP
2329extern void sched_exec(void);
2330#else
2331#define sched_exec() {}
2332#endif
2333
2aa44d05
IM
2334extern void sched_clock_idle_sleep_event(void);
2335extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2336
1da177e4
LT
2337#ifdef CONFIG_HOTPLUG_CPU
2338extern void idle_task_exit(void);
2339#else
2340static inline void idle_task_exit(void) {}
2341#endif
2342
3451d024 2343#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2344extern void wake_up_nohz_cpu(int cpu);
06d8308c 2345#else
1c20091e 2346static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2347#endif
2348
ce831b38
FW
2349#ifdef CONFIG_NO_HZ_FULL
2350extern bool sched_can_stop_tick(void);
265f22a9 2351extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2352#else
2353static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2354#endif
2355
5091faa4 2356#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2357extern void sched_autogroup_create_attach(struct task_struct *p);
2358extern void sched_autogroup_detach(struct task_struct *p);
2359extern void sched_autogroup_fork(struct signal_struct *sig);
2360extern void sched_autogroup_exit(struct signal_struct *sig);
2361#ifdef CONFIG_PROC_FS
2362extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2363extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2364#endif
2365#else
2366static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2367static inline void sched_autogroup_detach(struct task_struct *p) { }
2368static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2369static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2370#endif
2371
fa93384f 2372extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2373extern void set_user_nice(struct task_struct *p, long nice);
2374extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2375/**
2376 * task_nice - return the nice value of a given task.
2377 * @p: the task in question.
2378 *
2379 * Return: The nice value [ -20 ... 0 ... 19 ].
2380 */
2381static inline int task_nice(const struct task_struct *p)
2382{
2383 return PRIO_TO_NICE((p)->static_prio);
2384}
36c8b586
IM
2385extern int can_nice(const struct task_struct *p, const int nice);
2386extern int task_curr(const struct task_struct *p);
1da177e4 2387extern int idle_cpu(int cpu);
fe7de49f
KM
2388extern int sched_setscheduler(struct task_struct *, int,
2389 const struct sched_param *);
961ccddd 2390extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2391 const struct sched_param *);
d50dde5a
DF
2392extern int sched_setattr(struct task_struct *,
2393 const struct sched_attr *);
36c8b586 2394extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2395/**
2396 * is_idle_task - is the specified task an idle task?
fa757281 2397 * @p: the task in question.
e69f6186
YB
2398 *
2399 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2400 */
7061ca3b 2401static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2402{
2403 return p->pid == 0;
2404}
36c8b586
IM
2405extern struct task_struct *curr_task(int cpu);
2406extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2407
2408void yield(void);
2409
1da177e4
LT
2410union thread_union {
2411 struct thread_info thread_info;
2412 unsigned long stack[THREAD_SIZE/sizeof(long)];
2413};
2414
2415#ifndef __HAVE_ARCH_KSTACK_END
2416static inline int kstack_end(void *addr)
2417{
2418 /* Reliable end of stack detection:
2419 * Some APM bios versions misalign the stack
2420 */
2421 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2422}
2423#endif
2424
2425extern union thread_union init_thread_union;
2426extern struct task_struct init_task;
2427
2428extern struct mm_struct init_mm;
2429
198fe21b
PE
2430extern struct pid_namespace init_pid_ns;
2431
2432/*
2433 * find a task by one of its numerical ids
2434 *
198fe21b
PE
2435 * find_task_by_pid_ns():
2436 * finds a task by its pid in the specified namespace
228ebcbe
PE
2437 * find_task_by_vpid():
2438 * finds a task by its virtual pid
198fe21b 2439 *
e49859e7 2440 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2441 */
2442
228ebcbe
PE
2443extern struct task_struct *find_task_by_vpid(pid_t nr);
2444extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2445 struct pid_namespace *ns);
198fe21b 2446
1da177e4 2447/* per-UID process charging. */
7b44ab97 2448extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2449static inline struct user_struct *get_uid(struct user_struct *u)
2450{
2451 atomic_inc(&u->__count);
2452 return u;
2453}
2454extern void free_uid(struct user_struct *);
1da177e4
LT
2455
2456#include <asm/current.h>
2457
f0af911a 2458extern void xtime_update(unsigned long ticks);
1da177e4 2459
b3c97528
HH
2460extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2461extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2462extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2463#ifdef CONFIG_SMP
2464 extern void kick_process(struct task_struct *tsk);
2465#else
2466 static inline void kick_process(struct task_struct *tsk) { }
2467#endif
aab03e05 2468extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2469extern void sched_dead(struct task_struct *p);
1da177e4 2470
1da177e4
LT
2471extern void proc_caches_init(void);
2472extern void flush_signals(struct task_struct *);
10ab825b 2473extern void ignore_signals(struct task_struct *);
1da177e4
LT
2474extern void flush_signal_handlers(struct task_struct *, int force_default);
2475extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2476
2477static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2478{
2479 unsigned long flags;
2480 int ret;
2481
2482 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2483 ret = dequeue_signal(tsk, mask, info);
2484 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2485
2486 return ret;
53c8f9f1 2487}
1da177e4
LT
2488
2489extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2490 sigset_t *mask);
2491extern void unblock_all_signals(void);
2492extern void release_task(struct task_struct * p);
2493extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2494extern int force_sigsegv(int, struct task_struct *);
2495extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2496extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2497extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2498extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2499 const struct cred *, u32);
c4b92fc1
EB
2500extern int kill_pgrp(struct pid *pid, int sig, int priv);
2501extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2502extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2503extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2504extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2505extern void force_sig(int, struct task_struct *);
1da177e4 2506extern int send_sig(int, struct task_struct *, int);
09faef11 2507extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2508extern struct sigqueue *sigqueue_alloc(void);
2509extern void sigqueue_free(struct sigqueue *);
ac5c2153 2510extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2511extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2512
51a7b448
AV
2513static inline void restore_saved_sigmask(void)
2514{
2515 if (test_and_clear_restore_sigmask())
77097ae5 2516 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2517}
2518
b7f9a11a
AV
2519static inline sigset_t *sigmask_to_save(void)
2520{
2521 sigset_t *res = &current->blocked;
2522 if (unlikely(test_restore_sigmask()))
2523 res = &current->saved_sigmask;
2524 return res;
2525}
2526
9ec52099
CLG
2527static inline int kill_cad_pid(int sig, int priv)
2528{
2529 return kill_pid(cad_pid, sig, priv);
2530}
2531
1da177e4
LT
2532/* These can be the second arg to send_sig_info/send_group_sig_info. */
2533#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2534#define SEND_SIG_PRIV ((struct siginfo *) 1)
2535#define SEND_SIG_FORCED ((struct siginfo *) 2)
2536
2a855dd0
SAS
2537/*
2538 * True if we are on the alternate signal stack.
2539 */
1da177e4
LT
2540static inline int on_sig_stack(unsigned long sp)
2541{
2a855dd0
SAS
2542#ifdef CONFIG_STACK_GROWSUP
2543 return sp >= current->sas_ss_sp &&
2544 sp - current->sas_ss_sp < current->sas_ss_size;
2545#else
2546 return sp > current->sas_ss_sp &&
2547 sp - current->sas_ss_sp <= current->sas_ss_size;
2548#endif
1da177e4
LT
2549}
2550
2551static inline int sas_ss_flags(unsigned long sp)
2552{
72f15c03
RW
2553 if (!current->sas_ss_size)
2554 return SS_DISABLE;
2555
2556 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2557}
2558
5a1b98d3
AV
2559static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2560{
2561 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2562#ifdef CONFIG_STACK_GROWSUP
2563 return current->sas_ss_sp;
2564#else
2565 return current->sas_ss_sp + current->sas_ss_size;
2566#endif
2567 return sp;
2568}
2569
1da177e4
LT
2570/*
2571 * Routines for handling mm_structs
2572 */
2573extern struct mm_struct * mm_alloc(void);
2574
2575/* mmdrop drops the mm and the page tables */
b3c97528 2576extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2577static inline void mmdrop(struct mm_struct * mm)
2578{
6fb43d7b 2579 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2580 __mmdrop(mm);
2581}
2582
2583/* mmput gets rid of the mappings and all user-space */
2584extern void mmput(struct mm_struct *);
2585/* Grab a reference to a task's mm, if it is not already going away */
2586extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2587/*
2588 * Grab a reference to a task's mm, if it is not already going away
2589 * and ptrace_may_access with the mode parameter passed to it
2590 * succeeds.
2591 */
2592extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2593/* Remove the current tasks stale references to the old mm_struct */
2594extern void mm_release(struct task_struct *, struct mm_struct *);
2595
3033f14a
JT
2596#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2597extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2598 struct task_struct *, unsigned long);
2599#else
6f2c55b8 2600extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2601 struct task_struct *);
3033f14a
JT
2602
2603/* Architectures that haven't opted into copy_thread_tls get the tls argument
2604 * via pt_regs, so ignore the tls argument passed via C. */
2605static inline int copy_thread_tls(
2606 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2607 struct task_struct *p, unsigned long tls)
2608{
2609 return copy_thread(clone_flags, sp, arg, p);
2610}
2611#endif
1da177e4
LT
2612extern void flush_thread(void);
2613extern void exit_thread(void);
2614
1da177e4 2615extern void exit_files(struct task_struct *);
a7e5328a 2616extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2617
1da177e4 2618extern void exit_itimers(struct signal_struct *);
cbaffba1 2619extern void flush_itimer_signals(void);
1da177e4 2620
9402c95f 2621extern void do_group_exit(int);
1da177e4 2622
c4ad8f98 2623extern int do_execve(struct filename *,
d7627467 2624 const char __user * const __user *,
da3d4c5f 2625 const char __user * const __user *);
51f39a1f
DD
2626extern int do_execveat(int, struct filename *,
2627 const char __user * const __user *,
2628 const char __user * const __user *,
2629 int);
3033f14a 2630extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2631extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2632struct task_struct *fork_idle(int);
2aa3a7f8 2633extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2634
82b89778
AH
2635extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2636static inline void set_task_comm(struct task_struct *tsk, const char *from)
2637{
2638 __set_task_comm(tsk, from, false);
2639}
59714d65 2640extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2641
2642#ifdef CONFIG_SMP
317f3941 2643void scheduler_ipi(void);
85ba2d86 2644extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2645#else
184748cc 2646static inline void scheduler_ipi(void) { }
85ba2d86
RM
2647static inline unsigned long wait_task_inactive(struct task_struct *p,
2648 long match_state)
2649{
2650 return 1;
2651}
1da177e4
LT
2652#endif
2653
fafe870f
FW
2654#define tasklist_empty() \
2655 list_empty(&init_task.tasks)
2656
05725f7e
JP
2657#define next_task(p) \
2658 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2659
2660#define for_each_process(p) \
2661 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2662
5bb459bb 2663extern bool current_is_single_threaded(void);
d84f4f99 2664
1da177e4
LT
2665/*
2666 * Careful: do_each_thread/while_each_thread is a double loop so
2667 * 'break' will not work as expected - use goto instead.
2668 */
2669#define do_each_thread(g, t) \
2670 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2671
2672#define while_each_thread(g, t) \
2673 while ((t = next_thread(t)) != g)
2674
0c740d0a
ON
2675#define __for_each_thread(signal, t) \
2676 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2677
2678#define for_each_thread(p, t) \
2679 __for_each_thread((p)->signal, t)
2680
2681/* Careful: this is a double loop, 'break' won't work as expected. */
2682#define for_each_process_thread(p, t) \
2683 for_each_process(p) for_each_thread(p, t)
2684
7e49827c
ON
2685static inline int get_nr_threads(struct task_struct *tsk)
2686{
b3ac022c 2687 return tsk->signal->nr_threads;
7e49827c
ON
2688}
2689
087806b1
ON
2690static inline bool thread_group_leader(struct task_struct *p)
2691{
2692 return p->exit_signal >= 0;
2693}
1da177e4 2694
0804ef4b
EB
2695/* Do to the insanities of de_thread it is possible for a process
2696 * to have the pid of the thread group leader without actually being
2697 * the thread group leader. For iteration through the pids in proc
2698 * all we care about is that we have a task with the appropriate
2699 * pid, we don't actually care if we have the right task.
2700 */
e1403b8e 2701static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2702{
e1403b8e 2703 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2704}
2705
bac0abd6 2706static inline
e1403b8e 2707bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2708{
e1403b8e 2709 return p1->signal == p2->signal;
bac0abd6
PE
2710}
2711
36c8b586 2712static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2713{
05725f7e
JP
2714 return list_entry_rcu(p->thread_group.next,
2715 struct task_struct, thread_group);
47e65328
ON
2716}
2717
e868171a 2718static inline int thread_group_empty(struct task_struct *p)
1da177e4 2719{
47e65328 2720 return list_empty(&p->thread_group);
1da177e4
LT
2721}
2722
2723#define delay_group_leader(p) \
2724 (thread_group_leader(p) && !thread_group_empty(p))
2725
1da177e4 2726/*
260ea101 2727 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2728 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2729 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2730 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2731 *
2732 * Nests both inside and outside of read_lock(&tasklist_lock).
2733 * It must not be nested with write_lock_irq(&tasklist_lock),
2734 * neither inside nor outside.
2735 */
2736static inline void task_lock(struct task_struct *p)
2737{
2738 spin_lock(&p->alloc_lock);
2739}
2740
2741static inline void task_unlock(struct task_struct *p)
2742{
2743 spin_unlock(&p->alloc_lock);
2744}
2745
b8ed374e 2746extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2747 unsigned long *flags);
2748
9388dc30
AV
2749static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2750 unsigned long *flags)
2751{
2752 struct sighand_struct *ret;
2753
2754 ret = __lock_task_sighand(tsk, flags);
2755 (void)__cond_lock(&tsk->sighand->siglock, ret);
2756 return ret;
2757}
b8ed374e 2758
f63ee72e
ON
2759static inline void unlock_task_sighand(struct task_struct *tsk,
2760 unsigned long *flags)
2761{
2762 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2763}
2764
77e4ef99 2765/**
7d7efec3
TH
2766 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2767 * @tsk: task causing the changes
77e4ef99 2768 *
7d7efec3
TH
2769 * All operations which modify a threadgroup - a new thread joining the
2770 * group, death of a member thread (the assertion of PF_EXITING) and
2771 * exec(2) dethreading the process and replacing the leader - are wrapped
2772 * by threadgroup_change_{begin|end}(). This is to provide a place which
2773 * subsystems needing threadgroup stability can hook into for
2774 * synchronization.
77e4ef99 2775 */
7d7efec3 2776static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2777{
7d7efec3
TH
2778 might_sleep();
2779 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2780}
77e4ef99
TH
2781
2782/**
7d7efec3
TH
2783 * threadgroup_change_end - mark the end of changes to a threadgroup
2784 * @tsk: task causing the changes
77e4ef99 2785 *
7d7efec3 2786 * See threadgroup_change_begin().
77e4ef99 2787 */
7d7efec3 2788static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2789{
7d7efec3 2790 cgroup_threadgroup_change_end(tsk);
4714d1d3 2791}
4714d1d3 2792
f037360f
AV
2793#ifndef __HAVE_THREAD_FUNCTIONS
2794
f7e4217b
RZ
2795#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2796#define task_stack_page(task) ((task)->stack)
a1261f54 2797
10ebffde
AV
2798static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2799{
2800 *task_thread_info(p) = *task_thread_info(org);
2801 task_thread_info(p)->task = p;
2802}
2803
6a40281a
CE
2804/*
2805 * Return the address of the last usable long on the stack.
2806 *
2807 * When the stack grows down, this is just above the thread
2808 * info struct. Going any lower will corrupt the threadinfo.
2809 *
2810 * When the stack grows up, this is the highest address.
2811 * Beyond that position, we corrupt data on the next page.
2812 */
10ebffde
AV
2813static inline unsigned long *end_of_stack(struct task_struct *p)
2814{
6a40281a
CE
2815#ifdef CONFIG_STACK_GROWSUP
2816 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2817#else
f7e4217b 2818 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2819#endif
10ebffde
AV
2820}
2821
f037360f 2822#endif
a70857e4
AT
2823#define task_stack_end_corrupted(task) \
2824 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2825
8b05c7e6
FT
2826static inline int object_is_on_stack(void *obj)
2827{
2828 void *stack = task_stack_page(current);
2829
2830 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2831}
2832
8c9843e5
BH
2833extern void thread_info_cache_init(void);
2834
7c9f8861
ES
2835#ifdef CONFIG_DEBUG_STACK_USAGE
2836static inline unsigned long stack_not_used(struct task_struct *p)
2837{
2838 unsigned long *n = end_of_stack(p);
2839
2840 do { /* Skip over canary */
2841 n++;
2842 } while (!*n);
2843
2844 return (unsigned long)n - (unsigned long)end_of_stack(p);
2845}
2846#endif
d4311ff1 2847extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2848
1da177e4
LT
2849/* set thread flags in other task's structures
2850 * - see asm/thread_info.h for TIF_xxxx flags available
2851 */
2852static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2853{
a1261f54 2854 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2855}
2856
2857static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2858{
a1261f54 2859 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2860}
2861
2862static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2863{
a1261f54 2864 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2865}
2866
2867static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2868{
a1261f54 2869 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2870}
2871
2872static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2873{
a1261f54 2874 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2875}
2876
2877static inline void set_tsk_need_resched(struct task_struct *tsk)
2878{
2879 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2880}
2881
2882static inline void clear_tsk_need_resched(struct task_struct *tsk)
2883{
2884 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2885}
2886
8ae121ac
GH
2887static inline int test_tsk_need_resched(struct task_struct *tsk)
2888{
2889 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2890}
2891
690cc3ff
EB
2892static inline int restart_syscall(void)
2893{
2894 set_tsk_thread_flag(current, TIF_SIGPENDING);
2895 return -ERESTARTNOINTR;
2896}
2897
1da177e4
LT
2898static inline int signal_pending(struct task_struct *p)
2899{
2900 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2901}
f776d12d 2902
d9588725
RM
2903static inline int __fatal_signal_pending(struct task_struct *p)
2904{
2905 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2906}
f776d12d
MW
2907
2908static inline int fatal_signal_pending(struct task_struct *p)
2909{
2910 return signal_pending(p) && __fatal_signal_pending(p);
2911}
2912
16882c1e
ON
2913static inline int signal_pending_state(long state, struct task_struct *p)
2914{
2915 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2916 return 0;
2917 if (!signal_pending(p))
2918 return 0;
2919
16882c1e
ON
2920 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2921}
2922
1da177e4
LT
2923/*
2924 * cond_resched() and cond_resched_lock(): latency reduction via
2925 * explicit rescheduling in places that are safe. The return
2926 * value indicates whether a reschedule was done in fact.
2927 * cond_resched_lock() will drop the spinlock before scheduling,
2928 * cond_resched_softirq() will enable bhs before scheduling.
2929 */
c3921ab7 2930extern int _cond_resched(void);
6f80bd98 2931
613afbf8 2932#define cond_resched() ({ \
3427445a 2933 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2934 _cond_resched(); \
2935})
6f80bd98 2936
613afbf8
FW
2937extern int __cond_resched_lock(spinlock_t *lock);
2938
2939#define cond_resched_lock(lock) ({ \
3427445a 2940 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2941 __cond_resched_lock(lock); \
2942})
2943
2944extern int __cond_resched_softirq(void);
2945
75e1056f 2946#define cond_resched_softirq() ({ \
3427445a 2947 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2948 __cond_resched_softirq(); \
613afbf8 2949})
1da177e4 2950
f6f3c437
SH
2951static inline void cond_resched_rcu(void)
2952{
2953#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2954 rcu_read_unlock();
2955 cond_resched();
2956 rcu_read_lock();
2957#endif
2958}
2959
1da177e4
LT
2960/*
2961 * Does a critical section need to be broken due to another
95c354fe
NP
2962 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2963 * but a general need for low latency)
1da177e4 2964 */
95c354fe 2965static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2966{
95c354fe
NP
2967#ifdef CONFIG_PREEMPT
2968 return spin_is_contended(lock);
2969#else
1da177e4 2970 return 0;
95c354fe 2971#endif
1da177e4
LT
2972}
2973
ee761f62
TG
2974/*
2975 * Idle thread specific functions to determine the need_resched
69dd0f84 2976 * polling state.
ee761f62 2977 */
69dd0f84 2978#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2979static inline int tsk_is_polling(struct task_struct *p)
2980{
2981 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2982}
ea811747
PZ
2983
2984static inline void __current_set_polling(void)
3a98f871
TG
2985{
2986 set_thread_flag(TIF_POLLING_NRFLAG);
2987}
2988
ea811747
PZ
2989static inline bool __must_check current_set_polling_and_test(void)
2990{
2991 __current_set_polling();
2992
2993 /*
2994 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2995 * paired by resched_curr()
ea811747 2996 */
4e857c58 2997 smp_mb__after_atomic();
ea811747
PZ
2998
2999 return unlikely(tif_need_resched());
3000}
3001
3002static inline void __current_clr_polling(void)
3a98f871
TG
3003{
3004 clear_thread_flag(TIF_POLLING_NRFLAG);
3005}
ea811747
PZ
3006
3007static inline bool __must_check current_clr_polling_and_test(void)
3008{
3009 __current_clr_polling();
3010
3011 /*
3012 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3013 * paired by resched_curr()
ea811747 3014 */
4e857c58 3015 smp_mb__after_atomic();
ea811747
PZ
3016
3017 return unlikely(tif_need_resched());
3018}
3019
ee761f62
TG
3020#else
3021static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3022static inline void __current_set_polling(void) { }
3023static inline void __current_clr_polling(void) { }
3024
3025static inline bool __must_check current_set_polling_and_test(void)
3026{
3027 return unlikely(tif_need_resched());
3028}
3029static inline bool __must_check current_clr_polling_and_test(void)
3030{
3031 return unlikely(tif_need_resched());
3032}
ee761f62
TG
3033#endif
3034
8cb75e0c
PZ
3035static inline void current_clr_polling(void)
3036{
3037 __current_clr_polling();
3038
3039 /*
3040 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3041 * Once the bit is cleared, we'll get IPIs with every new
3042 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3043 * fold.
3044 */
8875125e 3045 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3046
3047 preempt_fold_need_resched();
3048}
3049
75f93fed
PZ
3050static __always_inline bool need_resched(void)
3051{
3052 return unlikely(tif_need_resched());
3053}
3054
f06febc9
FM
3055/*
3056 * Thread group CPU time accounting.
3057 */
4cd4c1b4 3058void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3059void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3060
7bb44ade
RM
3061/*
3062 * Reevaluate whether the task has signals pending delivery.
3063 * Wake the task if so.
3064 * This is required every time the blocked sigset_t changes.
3065 * callers must hold sighand->siglock.
3066 */
3067extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3068extern void recalc_sigpending(void);
3069
910ffdb1
ON
3070extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3071
3072static inline void signal_wake_up(struct task_struct *t, bool resume)
3073{
3074 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3075}
3076static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3077{
3078 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3079}
1da177e4
LT
3080
3081/*
3082 * Wrappers for p->thread_info->cpu access. No-op on UP.
3083 */
3084#ifdef CONFIG_SMP
3085
3086static inline unsigned int task_cpu(const struct task_struct *p)
3087{
a1261f54 3088 return task_thread_info(p)->cpu;
1da177e4
LT
3089}
3090
b32e86b4
IM
3091static inline int task_node(const struct task_struct *p)
3092{
3093 return cpu_to_node(task_cpu(p));
3094}
3095
c65cc870 3096extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3097
3098#else
3099
3100static inline unsigned int task_cpu(const struct task_struct *p)
3101{
3102 return 0;
3103}
3104
3105static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3106{
3107}
3108
3109#endif /* CONFIG_SMP */
3110
96f874e2
RR
3111extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3112extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3113
7c941438 3114#ifdef CONFIG_CGROUP_SCHED
07e06b01 3115extern struct task_group root_task_group;
8323f26c 3116#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3117
54e99124
DG
3118extern int task_can_switch_user(struct user_struct *up,
3119 struct task_struct *tsk);
3120
4b98d11b
AD
3121#ifdef CONFIG_TASK_XACCT
3122static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3123{
940389b8 3124 tsk->ioac.rchar += amt;
4b98d11b
AD
3125}
3126
3127static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3128{
940389b8 3129 tsk->ioac.wchar += amt;
4b98d11b
AD
3130}
3131
3132static inline void inc_syscr(struct task_struct *tsk)
3133{
940389b8 3134 tsk->ioac.syscr++;
4b98d11b
AD
3135}
3136
3137static inline void inc_syscw(struct task_struct *tsk)
3138{
940389b8 3139 tsk->ioac.syscw++;
4b98d11b
AD
3140}
3141#else
3142static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3143{
3144}
3145
3146static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3147{
3148}
3149
3150static inline void inc_syscr(struct task_struct *tsk)
3151{
3152}
3153
3154static inline void inc_syscw(struct task_struct *tsk)
3155{
3156}
3157#endif
3158
82455257
DH
3159#ifndef TASK_SIZE_OF
3160#define TASK_SIZE_OF(tsk) TASK_SIZE
3161#endif
3162
f98bafa0 3163#ifdef CONFIG_MEMCG
cf475ad2 3164extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3165#else
3166static inline void mm_update_next_owner(struct mm_struct *mm)
3167{
3168}
f98bafa0 3169#endif /* CONFIG_MEMCG */
cf475ad2 3170
3e10e716
JS
3171static inline unsigned long task_rlimit(const struct task_struct *tsk,
3172 unsigned int limit)
3173{
316c1608 3174 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3175}
3176
3177static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3178 unsigned int limit)
3179{
316c1608 3180 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3181}
3182
3183static inline unsigned long rlimit(unsigned int limit)
3184{
3185 return task_rlimit(current, limit);
3186}
3187
3188static inline unsigned long rlimit_max(unsigned int limit)
3189{
3190 return task_rlimit_max(current, limit);
3191}
3192
1da177e4 3193#endif
This page took 1.936056 seconds and 5 git commands to generate.