sched: print the sd->level in sched_domain_debug code
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
45c01e82
GH
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
6aa645ea
IM
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229}
230
231#ifdef CONFIG_RT_GROUP_SCHED
232static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233{
234 hrtimer_cancel(&rt_b->rt_period_timer);
235}
236#endif
237
712555ee
HC
238/*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242static DEFINE_MUTEX(sched_domains_mutex);
243
052f1dc7 244#ifdef CONFIG_GROUP_SCHED
29f59db3 245
68318b8e
SV
246#include <linux/cgroup.h>
247
29f59db3
SV
248struct cfs_rq;
249
6f505b16
PZ
250static LIST_HEAD(task_groups);
251
29f59db3 252/* task group related information */
4cf86d77 253struct task_group {
052f1dc7 254#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
255 struct cgroup_subsys_state css;
256#endif
052f1dc7
PZ
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
052f1dc7
PZ
264#endif
265
266#ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
d0b27fa7 270 struct rt_bandwidth rt_bandwidth;
052f1dc7 271#endif
6b2d7700 272
ae8393e5 273 struct rcu_head rcu;
6f505b16 274 struct list_head list;
f473aa5e
PZ
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
29f59db3
SV
279};
280
354d60c2 281#ifdef CONFIG_USER_SCHED
eff766a6
PZ
282
283/*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288struct task_group root_task_group;
289
052f1dc7 290#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
291/* Default task group's sched entity on each cpu */
292static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293/* Default task group's cfs_rq on each cpu */
294static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 295#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
296
297#ifdef CONFIG_RT_GROUP_SCHED
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
300#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 302#define root_task_group init_task_group
6d6bc0ad 303#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 304
8ed36996 305/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
306 * a task group's cpu shares.
307 */
8ed36996 308static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 309
052f1dc7 310#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
311#ifdef CONFIG_USER_SCHED
312# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 313#else /* !CONFIG_USER_SCHED */
052f1dc7 314# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 315#endif /* CONFIG_USER_SCHED */
052f1dc7 316
cb4ad1ff
MX
317/*
318 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
18d95a28 322#define MIN_SHARES 2
cb4ad1ff 323#define MAX_SHARES (ULONG_MAX - 1)
18d95a28 324
052f1dc7
PZ
325static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326#endif
327
29f59db3 328/* Default task group.
3a252015 329 * Every task in system belong to this group at bootup.
29f59db3 330 */
434d53b0 331struct task_group init_task_group;
29f59db3
SV
332
333/* return group to which a task belongs */
4cf86d77 334static inline struct task_group *task_group(struct task_struct *p)
29f59db3 335{
4cf86d77 336 struct task_group *tg;
9b5b7751 337
052f1dc7 338#ifdef CONFIG_USER_SCHED
24e377a8 339 tg = p->user->tg;
052f1dc7 340#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
24e377a8 343#else
41a2d6cf 344 tg = &init_task_group;
24e377a8 345#endif
9b5b7751 346 return tg;
29f59db3
SV
347}
348
349/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 350static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 351{
052f1dc7 352#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
052f1dc7 355#endif
6f505b16 356
052f1dc7 357#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 360#endif
29f59db3
SV
361}
362
363#else
364
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 366
052f1dc7 367#endif /* CONFIG_GROUP_SCHED */
29f59db3 368
6aa645ea
IM
369/* CFS-related fields in a runqueue */
370struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
373
6aa645ea 374 u64 exec_clock;
e9acbff6 375 u64 min_vruntime;
6aa645ea
IM
376
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
4a55bd5e
PZ
379
380 struct list_head tasks;
381 struct list_head *balance_iterator;
382
383 /*
384 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
385 * It is set to NULL otherwise (i.e when none are currently running).
386 */
aa2ac252 387 struct sched_entity *curr, *next;
ddc97297
PZ
388
389 unsigned long nr_spread_over;
390
62160e3f 391#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
393
41a2d6cf
IM
394 /*
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
398 *
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
401 */
41a2d6cf
IM
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
404#endif
405};
1da177e4 406
6aa645ea
IM
407/* Real-Time classes' related field in a runqueue: */
408struct rt_rq {
409 struct rt_prio_array active;
63489e45 410 unsigned long rt_nr_running;
052f1dc7 411#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
412 int highest_prio; /* highest queued rt task prio */
413#endif
fa85ae24 414#ifdef CONFIG_SMP
73fe6aae 415 unsigned long rt_nr_migratory;
a22d7fc1 416 int overloaded;
fa85ae24 417#endif
6f505b16 418 int rt_throttled;
fa85ae24 419 u64 rt_time;
ac086bc2 420 u64 rt_runtime;
ea736ed5 421 /* Nests inside the rq lock: */
ac086bc2 422 spinlock_t rt_runtime_lock;
6f505b16 423
052f1dc7 424#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
425 unsigned long rt_nr_boosted;
426
6f505b16
PZ
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431#endif
6aa645ea
IM
432};
433
57d885fe
GH
434#ifdef CONFIG_SMP
435
436/*
437 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
442 *
57d885fe
GH
443 */
444struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
637f5085 448
0eab9146 449 /*
637f5085
GH
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
452 */
453 cpumask_t rto_mask;
0eab9146 454 atomic_t rto_count;
6e0534f2
GH
455#ifdef CONFIG_SMP
456 struct cpupri cpupri;
457#endif
57d885fe
GH
458};
459
dc938520
GH
460/*
461 * By default the system creates a single root-domain with all cpus as
462 * members (mimicking the global state we have today).
463 */
57d885fe
GH
464static struct root_domain def_root_domain;
465
466#endif
467
1da177e4
LT
468/*
469 * This is the main, per-CPU runqueue data structure.
470 *
471 * Locking rule: those places that want to lock multiple runqueues
472 * (such as the load balancing or the thread migration code), lock
473 * acquire operations must be ordered by ascending &runqueue.
474 */
70b97a7f 475struct rq {
d8016491
IM
476 /* runqueue lock: */
477 spinlock_t lock;
1da177e4
LT
478
479 /*
480 * nr_running and cpu_load should be in the same cacheline because
481 * remote CPUs use both these fields when doing load calculation.
482 */
483 unsigned long nr_running;
6aa645ea
IM
484 #define CPU_LOAD_IDX_MAX 5
485 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 486 unsigned char idle_at_tick;
46cb4b7c 487#ifdef CONFIG_NO_HZ
15934a37 488 unsigned long last_tick_seen;
46cb4b7c
SS
489 unsigned char in_nohz_recently;
490#endif
d8016491
IM
491 /* capture load from *all* tasks on this cpu: */
492 struct load_weight load;
6aa645ea
IM
493 unsigned long nr_load_updates;
494 u64 nr_switches;
495
496 struct cfs_rq cfs;
6f505b16 497 struct rt_rq rt;
6f505b16 498
6aa645ea 499#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
500 /* list of leaf cfs_rq on this cpu: */
501 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
502#endif
503#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 504 struct list_head leaf_rt_rq_list;
1da177e4 505#endif
1da177e4
LT
506
507 /*
508 * This is part of a global counter where only the total sum
509 * over all CPUs matters. A task can increase this counter on
510 * one CPU and if it got migrated afterwards it may decrease
511 * it on another CPU. Always updated under the runqueue lock:
512 */
513 unsigned long nr_uninterruptible;
514
36c8b586 515 struct task_struct *curr, *idle;
c9819f45 516 unsigned long next_balance;
1da177e4 517 struct mm_struct *prev_mm;
6aa645ea 518
3e51f33f 519 u64 clock;
6aa645ea 520
1da177e4
LT
521 atomic_t nr_iowait;
522
523#ifdef CONFIG_SMP
0eab9146 524 struct root_domain *rd;
1da177e4
LT
525 struct sched_domain *sd;
526
527 /* For active balancing */
528 int active_balance;
529 int push_cpu;
d8016491
IM
530 /* cpu of this runqueue: */
531 int cpu;
1da177e4 532
36c8b586 533 struct task_struct *migration_thread;
1da177e4
LT
534 struct list_head migration_queue;
535#endif
536
8f4d37ec
PZ
537#ifdef CONFIG_SCHED_HRTICK
538 unsigned long hrtick_flags;
539 ktime_t hrtick_expire;
540 struct hrtimer hrtick_timer;
541#endif
542
1da177e4
LT
543#ifdef CONFIG_SCHEDSTATS
544 /* latency stats */
545 struct sched_info rq_sched_info;
546
547 /* sys_sched_yield() stats */
480b9434
KC
548 unsigned int yld_exp_empty;
549 unsigned int yld_act_empty;
550 unsigned int yld_both_empty;
551 unsigned int yld_count;
1da177e4
LT
552
553 /* schedule() stats */
480b9434
KC
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
1da177e4
LT
557
558 /* try_to_wake_up() stats */
480b9434
KC
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
b8efb561
IM
561
562 /* BKL stats */
480b9434 563 unsigned int bkl_count;
1da177e4 564#endif
fcb99371 565 struct lock_class_key rq_lock_key;
1da177e4
LT
566};
567
f34e3b61 568static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 569
dd41f596
IM
570static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
571{
572 rq->curr->sched_class->check_preempt_curr(rq, p);
573}
574
0a2966b4
CL
575static inline int cpu_of(struct rq *rq)
576{
577#ifdef CONFIG_SMP
578 return rq->cpu;
579#else
580 return 0;
581#endif
582}
583
674311d5
NP
584/*
585 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 586 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
587 *
588 * The domain tree of any CPU may only be accessed from within
589 * preempt-disabled sections.
590 */
48f24c4d
IM
591#define for_each_domain(cpu, __sd) \
592 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
593
594#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
595#define this_rq() (&__get_cpu_var(runqueues))
596#define task_rq(p) cpu_rq(task_cpu(p))
597#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
598
3e51f33f
PZ
599static inline void update_rq_clock(struct rq *rq)
600{
601 rq->clock = sched_clock_cpu(cpu_of(rq));
602}
603
bf5c91ba
IM
604/*
605 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
606 */
607#ifdef CONFIG_SCHED_DEBUG
608# define const_debug __read_mostly
609#else
610# define const_debug static const
611#endif
612
613/*
614 * Debugging: various feature bits
615 */
f00b45c1
PZ
616
617#define SCHED_FEAT(name, enabled) \
618 __SCHED_FEAT_##name ,
619
bf5c91ba 620enum {
f00b45c1 621#include "sched_features.h"
bf5c91ba
IM
622};
623
f00b45c1
PZ
624#undef SCHED_FEAT
625
626#define SCHED_FEAT(name, enabled) \
627 (1UL << __SCHED_FEAT_##name) * enabled |
628
bf5c91ba 629const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
630#include "sched_features.h"
631 0;
632
633#undef SCHED_FEAT
634
635#ifdef CONFIG_SCHED_DEBUG
636#define SCHED_FEAT(name, enabled) \
637 #name ,
638
983ed7a6 639static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
640#include "sched_features.h"
641 NULL
642};
643
644#undef SCHED_FEAT
645
983ed7a6 646static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
647{
648 filp->private_data = inode->i_private;
649 return 0;
650}
651
652static ssize_t
653sched_feat_read(struct file *filp, char __user *ubuf,
654 size_t cnt, loff_t *ppos)
655{
656 char *buf;
657 int r = 0;
658 int len = 0;
659 int i;
660
661 for (i = 0; sched_feat_names[i]; i++) {
662 len += strlen(sched_feat_names[i]);
663 len += 4;
664 }
665
666 buf = kmalloc(len + 2, GFP_KERNEL);
667 if (!buf)
668 return -ENOMEM;
669
670 for (i = 0; sched_feat_names[i]; i++) {
671 if (sysctl_sched_features & (1UL << i))
672 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
673 else
c24b7c52 674 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
675 }
676
677 r += sprintf(buf + r, "\n");
678 WARN_ON(r >= len + 2);
679
680 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
681
682 kfree(buf);
683
684 return r;
685}
686
687static ssize_t
688sched_feat_write(struct file *filp, const char __user *ubuf,
689 size_t cnt, loff_t *ppos)
690{
691 char buf[64];
692 char *cmp = buf;
693 int neg = 0;
694 int i;
695
696 if (cnt > 63)
697 cnt = 63;
698
699 if (copy_from_user(&buf, ubuf, cnt))
700 return -EFAULT;
701
702 buf[cnt] = 0;
703
c24b7c52 704 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
705 neg = 1;
706 cmp += 3;
707 }
708
709 for (i = 0; sched_feat_names[i]; i++) {
710 int len = strlen(sched_feat_names[i]);
711
712 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
713 if (neg)
714 sysctl_sched_features &= ~(1UL << i);
715 else
716 sysctl_sched_features |= (1UL << i);
717 break;
718 }
719 }
720
721 if (!sched_feat_names[i])
722 return -EINVAL;
723
724 filp->f_pos += cnt;
725
726 return cnt;
727}
728
729static struct file_operations sched_feat_fops = {
730 .open = sched_feat_open,
731 .read = sched_feat_read,
732 .write = sched_feat_write,
733};
734
735static __init int sched_init_debug(void)
736{
f00b45c1
PZ
737 debugfs_create_file("sched_features", 0644, NULL, NULL,
738 &sched_feat_fops);
739
740 return 0;
741}
742late_initcall(sched_init_debug);
743
744#endif
745
746#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 747
b82d9fdd
PZ
748/*
749 * Number of tasks to iterate in a single balance run.
750 * Limited because this is done with IRQs disabled.
751 */
752const_debug unsigned int sysctl_sched_nr_migrate = 32;
753
fa85ae24 754/*
9f0c1e56 755 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
756 * default: 1s
757 */
9f0c1e56 758unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 759
6892b75e
IM
760static __read_mostly int scheduler_running;
761
9f0c1e56
PZ
762/*
763 * part of the period that we allow rt tasks to run in us.
764 * default: 0.95s
765 */
766int sysctl_sched_rt_runtime = 950000;
fa85ae24 767
d0b27fa7
PZ
768static inline u64 global_rt_period(void)
769{
770 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
771}
772
773static inline u64 global_rt_runtime(void)
774{
775 if (sysctl_sched_rt_period < 0)
776 return RUNTIME_INF;
777
778 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
779}
fa85ae24 780
690229a0 781unsigned long long time_sync_thresh = 100000;
27ec4407
IM
782
783static DEFINE_PER_CPU(unsigned long long, time_offset);
784static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
785
e436d800 786/*
27ec4407
IM
787 * Global lock which we take every now and then to synchronize
788 * the CPUs time. This method is not warp-safe, but it's good
789 * enough to synchronize slowly diverging time sources and thus
790 * it's good enough for tracing:
e436d800 791 */
27ec4407
IM
792static DEFINE_SPINLOCK(time_sync_lock);
793static unsigned long long prev_global_time;
794
dfbf4a1b 795static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 796{
dfbf4a1b
IM
797 /*
798 * We want this inlined, to not get tracer function calls
799 * in this critical section:
800 */
801 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
802 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
803
804 if (time < prev_global_time) {
805 per_cpu(time_offset, cpu) += prev_global_time - time;
806 time = prev_global_time;
807 } else {
808 prev_global_time = time;
809 }
810
dfbf4a1b
IM
811 __raw_spin_unlock(&time_sync_lock.raw_lock);
812 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
813
814 return time;
815}
816
817static unsigned long long __cpu_clock(int cpu)
e436d800 818{
e436d800 819 unsigned long long now;
e436d800 820
8ced5f69
IM
821 /*
822 * Only call sched_clock() if the scheduler has already been
823 * initialized (some code might call cpu_clock() very early):
824 */
6892b75e
IM
825 if (unlikely(!scheduler_running))
826 return 0;
827
3e51f33f 828 now = sched_clock_cpu(cpu);
e436d800
IM
829
830 return now;
831}
27ec4407
IM
832
833/*
834 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
835 * clock constructed from sched_clock():
836 */
837unsigned long long cpu_clock(int cpu)
838{
839 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 840 unsigned long flags;
27ec4407 841
dfbf4a1b 842 local_irq_save(flags);
27ec4407
IM
843 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
844 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
845 delta_time = time-prev_cpu_time;
846
dfbf4a1b 847 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 848 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
849 per_cpu(prev_cpu_time, cpu) = time;
850 }
851 local_irq_restore(flags);
27ec4407
IM
852
853 return time;
854}
a58f6f25 855EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 856
1da177e4 857#ifndef prepare_arch_switch
4866cde0
NP
858# define prepare_arch_switch(next) do { } while (0)
859#endif
860#ifndef finish_arch_switch
861# define finish_arch_switch(prev) do { } while (0)
862#endif
863
051a1d1a
DA
864static inline int task_current(struct rq *rq, struct task_struct *p)
865{
866 return rq->curr == p;
867}
868
4866cde0 869#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 870static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 871{
051a1d1a 872 return task_current(rq, p);
4866cde0
NP
873}
874
70b97a7f 875static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
876{
877}
878
70b97a7f 879static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 880{
da04c035
IM
881#ifdef CONFIG_DEBUG_SPINLOCK
882 /* this is a valid case when another task releases the spinlock */
883 rq->lock.owner = current;
884#endif
8a25d5de
IM
885 /*
886 * If we are tracking spinlock dependencies then we have to
887 * fix up the runqueue lock - which gets 'carried over' from
888 * prev into current:
889 */
890 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
891
4866cde0
NP
892 spin_unlock_irq(&rq->lock);
893}
894
895#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 896static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
897{
898#ifdef CONFIG_SMP
899 return p->oncpu;
900#else
051a1d1a 901 return task_current(rq, p);
4866cde0
NP
902#endif
903}
904
70b97a7f 905static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
906{
907#ifdef CONFIG_SMP
908 /*
909 * We can optimise this out completely for !SMP, because the
910 * SMP rebalancing from interrupt is the only thing that cares
911 * here.
912 */
913 next->oncpu = 1;
914#endif
915#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
916 spin_unlock_irq(&rq->lock);
917#else
918 spin_unlock(&rq->lock);
919#endif
920}
921
70b97a7f 922static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
923{
924#ifdef CONFIG_SMP
925 /*
926 * After ->oncpu is cleared, the task can be moved to a different CPU.
927 * We must ensure this doesn't happen until the switch is completely
928 * finished.
929 */
930 smp_wmb();
931 prev->oncpu = 0;
932#endif
933#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 local_irq_enable();
1da177e4 935#endif
4866cde0
NP
936}
937#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 938
b29739f9
IM
939/*
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
942 */
70b97a7f 943static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
944 __acquires(rq->lock)
945{
3a5c359a
AK
946 for (;;) {
947 struct rq *rq = task_rq(p);
948 spin_lock(&rq->lock);
949 if (likely(rq == task_rq(p)))
950 return rq;
b29739f9 951 spin_unlock(&rq->lock);
b29739f9 952 }
b29739f9
IM
953}
954
1da177e4
LT
955/*
956 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 957 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
958 * explicitly disabling preemption.
959 */
70b97a7f 960static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
961 __acquires(rq->lock)
962{
70b97a7f 963 struct rq *rq;
1da177e4 964
3a5c359a
AK
965 for (;;) {
966 local_irq_save(*flags);
967 rq = task_rq(p);
968 spin_lock(&rq->lock);
969 if (likely(rq == task_rq(p)))
970 return rq;
1da177e4 971 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 972 }
1da177e4
LT
973}
974
a9957449 975static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
976 __releases(rq->lock)
977{
978 spin_unlock(&rq->lock);
979}
980
70b97a7f 981static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
982 __releases(rq->lock)
983{
984 spin_unlock_irqrestore(&rq->lock, *flags);
985}
986
1da177e4 987/*
cc2a73b5 988 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 989 */
a9957449 990static struct rq *this_rq_lock(void)
1da177e4
LT
991 __acquires(rq->lock)
992{
70b97a7f 993 struct rq *rq;
1da177e4
LT
994
995 local_irq_disable();
996 rq = this_rq();
997 spin_lock(&rq->lock);
998
999 return rq;
1000}
1001
8f4d37ec
PZ
1002static void __resched_task(struct task_struct *p, int tif_bit);
1003
1004static inline void resched_task(struct task_struct *p)
1005{
1006 __resched_task(p, TIF_NEED_RESCHED);
1007}
1008
1009#ifdef CONFIG_SCHED_HRTICK
1010/*
1011 * Use HR-timers to deliver accurate preemption points.
1012 *
1013 * Its all a bit involved since we cannot program an hrt while holding the
1014 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * reschedule event.
1016 *
1017 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * rq->lock.
1019 */
1020static inline void resched_hrt(struct task_struct *p)
1021{
1022 __resched_task(p, TIF_HRTICK_RESCHED);
1023}
1024
1025static inline void resched_rq(struct rq *rq)
1026{
1027 unsigned long flags;
1028
1029 spin_lock_irqsave(&rq->lock, flags);
1030 resched_task(rq->curr);
1031 spin_unlock_irqrestore(&rq->lock, flags);
1032}
1033
1034enum {
1035 HRTICK_SET, /* re-programm hrtick_timer */
1036 HRTICK_RESET, /* not a new slice */
b328ca18 1037 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1038};
1039
1040/*
1041 * Use hrtick when:
1042 * - enabled by features
1043 * - hrtimer is actually high res
1044 */
1045static inline int hrtick_enabled(struct rq *rq)
1046{
1047 if (!sched_feat(HRTICK))
1048 return 0;
b328ca18
PZ
1049 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1050 return 0;
8f4d37ec
PZ
1051 return hrtimer_is_hres_active(&rq->hrtick_timer);
1052}
1053
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay, int reset)
1060{
1061 assert_spin_locked(&rq->lock);
1062
1063 /*
1064 * preempt at: now + delay
1065 */
1066 rq->hrtick_expire =
1067 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1068 /*
1069 * indicate we need to program the timer
1070 */
1071 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1072 if (reset)
1073 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1074
1075 /*
1076 * New slices are called from the schedule path and don't need a
1077 * forced reschedule.
1078 */
1079 if (reset)
1080 resched_hrt(rq->curr);
1081}
1082
1083static void hrtick_clear(struct rq *rq)
1084{
1085 if (hrtimer_active(&rq->hrtick_timer))
1086 hrtimer_cancel(&rq->hrtick_timer);
1087}
1088
1089/*
1090 * Update the timer from the possible pending state.
1091 */
1092static void hrtick_set(struct rq *rq)
1093{
1094 ktime_t time;
1095 int set, reset;
1096 unsigned long flags;
1097
1098 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1099
1100 spin_lock_irqsave(&rq->lock, flags);
1101 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1102 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1103 time = rq->hrtick_expire;
1104 clear_thread_flag(TIF_HRTICK_RESCHED);
1105 spin_unlock_irqrestore(&rq->lock, flags);
1106
1107 if (set) {
1108 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1109 if (reset && !hrtimer_active(&rq->hrtick_timer))
1110 resched_rq(rq);
1111 } else
1112 hrtick_clear(rq);
1113}
1114
1115/*
1116 * High-resolution timer tick.
1117 * Runs from hardirq context with interrupts disabled.
1118 */
1119static enum hrtimer_restart hrtick(struct hrtimer *timer)
1120{
1121 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1122
1123 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1124
1125 spin_lock(&rq->lock);
3e51f33f 1126 update_rq_clock(rq);
8f4d37ec
PZ
1127 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1128 spin_unlock(&rq->lock);
1129
1130 return HRTIMER_NORESTART;
1131}
1132
81d41d7e 1133#ifdef CONFIG_SMP
b328ca18
PZ
1134static void hotplug_hrtick_disable(int cpu)
1135{
1136 struct rq *rq = cpu_rq(cpu);
1137 unsigned long flags;
1138
1139 spin_lock_irqsave(&rq->lock, flags);
1140 rq->hrtick_flags = 0;
1141 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1142 spin_unlock_irqrestore(&rq->lock, flags);
1143
1144 hrtick_clear(rq);
1145}
1146
1147static void hotplug_hrtick_enable(int cpu)
1148{
1149 struct rq *rq = cpu_rq(cpu);
1150 unsigned long flags;
1151
1152 spin_lock_irqsave(&rq->lock, flags);
1153 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1154 spin_unlock_irqrestore(&rq->lock, flags);
1155}
1156
1157static int
1158hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1159{
1160 int cpu = (int)(long)hcpu;
1161
1162 switch (action) {
1163 case CPU_UP_CANCELED:
1164 case CPU_UP_CANCELED_FROZEN:
1165 case CPU_DOWN_PREPARE:
1166 case CPU_DOWN_PREPARE_FROZEN:
1167 case CPU_DEAD:
1168 case CPU_DEAD_FROZEN:
1169 hotplug_hrtick_disable(cpu);
1170 return NOTIFY_OK;
1171
1172 case CPU_UP_PREPARE:
1173 case CPU_UP_PREPARE_FROZEN:
1174 case CPU_DOWN_FAILED:
1175 case CPU_DOWN_FAILED_FROZEN:
1176 case CPU_ONLINE:
1177 case CPU_ONLINE_FROZEN:
1178 hotplug_hrtick_enable(cpu);
1179 return NOTIFY_OK;
1180 }
1181
1182 return NOTIFY_DONE;
1183}
1184
1185static void init_hrtick(void)
1186{
1187 hotcpu_notifier(hotplug_hrtick, 0);
1188}
81d41d7e 1189#endif /* CONFIG_SMP */
b328ca18
PZ
1190
1191static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1192{
1193 rq->hrtick_flags = 0;
1194 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1195 rq->hrtick_timer.function = hrtick;
1196 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1197}
1198
1199void hrtick_resched(void)
1200{
1201 struct rq *rq;
1202 unsigned long flags;
1203
1204 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1205 return;
1206
1207 local_irq_save(flags);
1208 rq = cpu_rq(smp_processor_id());
1209 hrtick_set(rq);
1210 local_irq_restore(flags);
1211}
1212#else
1213static inline void hrtick_clear(struct rq *rq)
1214{
1215}
1216
1217static inline void hrtick_set(struct rq *rq)
1218{
1219}
1220
1221static inline void init_rq_hrtick(struct rq *rq)
1222{
1223}
1224
1225void hrtick_resched(void)
1226{
1227}
b328ca18
PZ
1228
1229static inline void init_hrtick(void)
1230{
1231}
8f4d37ec
PZ
1232#endif
1233
c24d20db
IM
1234/*
1235 * resched_task - mark a task 'to be rescheduled now'.
1236 *
1237 * On UP this means the setting of the need_resched flag, on SMP it
1238 * might also involve a cross-CPU call to trigger the scheduler on
1239 * the target CPU.
1240 */
1241#ifdef CONFIG_SMP
1242
1243#ifndef tsk_is_polling
1244#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1245#endif
1246
8f4d37ec 1247static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1248{
1249 int cpu;
1250
1251 assert_spin_locked(&task_rq(p)->lock);
1252
8f4d37ec 1253 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1254 return;
1255
8f4d37ec 1256 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1257
1258 cpu = task_cpu(p);
1259 if (cpu == smp_processor_id())
1260 return;
1261
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(p))
1265 smp_send_reschedule(cpu);
1266}
1267
1268static void resched_cpu(int cpu)
1269{
1270 struct rq *rq = cpu_rq(cpu);
1271 unsigned long flags;
1272
1273 if (!spin_trylock_irqsave(&rq->lock, flags))
1274 return;
1275 resched_task(cpu_curr(cpu));
1276 spin_unlock_irqrestore(&rq->lock, flags);
1277}
06d8308c
TG
1278
1279#ifdef CONFIG_NO_HZ
1280/*
1281 * When add_timer_on() enqueues a timer into the timer wheel of an
1282 * idle CPU then this timer might expire before the next timer event
1283 * which is scheduled to wake up that CPU. In case of a completely
1284 * idle system the next event might even be infinite time into the
1285 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1286 * leaves the inner idle loop so the newly added timer is taken into
1287 * account when the CPU goes back to idle and evaluates the timer
1288 * wheel for the next timer event.
1289 */
1290void wake_up_idle_cpu(int cpu)
1291{
1292 struct rq *rq = cpu_rq(cpu);
1293
1294 if (cpu == smp_processor_id())
1295 return;
1296
1297 /*
1298 * This is safe, as this function is called with the timer
1299 * wheel base lock of (cpu) held. When the CPU is on the way
1300 * to idle and has not yet set rq->curr to idle then it will
1301 * be serialized on the timer wheel base lock and take the new
1302 * timer into account automatically.
1303 */
1304 if (rq->curr != rq->idle)
1305 return;
1306
1307 /*
1308 * We can set TIF_RESCHED on the idle task of the other CPU
1309 * lockless. The worst case is that the other CPU runs the
1310 * idle task through an additional NOOP schedule()
1311 */
1312 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1313
1314 /* NEED_RESCHED must be visible before we test polling */
1315 smp_mb();
1316 if (!tsk_is_polling(rq->idle))
1317 smp_send_reschedule(cpu);
1318}
6d6bc0ad 1319#endif /* CONFIG_NO_HZ */
06d8308c 1320
6d6bc0ad 1321#else /* !CONFIG_SMP */
8f4d37ec 1322static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1323{
1324 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1325 set_tsk_thread_flag(p, tif_bit);
c24d20db 1326}
6d6bc0ad 1327#endif /* CONFIG_SMP */
c24d20db 1328
45bf76df
IM
1329#if BITS_PER_LONG == 32
1330# define WMULT_CONST (~0UL)
1331#else
1332# define WMULT_CONST (1UL << 32)
1333#endif
1334
1335#define WMULT_SHIFT 32
1336
194081eb
IM
1337/*
1338 * Shift right and round:
1339 */
cf2ab469 1340#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1341
cb1c4fc9 1342static unsigned long
45bf76df
IM
1343calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1344 struct load_weight *lw)
1345{
1346 u64 tmp;
1347
e05510d0
PZ
1348 if (!lw->inv_weight)
1349 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1350
1351 tmp = (u64)delta_exec * weight;
1352 /*
1353 * Check whether we'd overflow the 64-bit multiplication:
1354 */
194081eb 1355 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1356 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1357 WMULT_SHIFT/2);
1358 else
cf2ab469 1359 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1360
ecf691da 1361 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1362}
1363
f9305d4a
IM
1364static inline unsigned long
1365calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1366{
1367 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1368}
1369
1091985b 1370static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1371{
1372 lw->weight += inc;
e89996ae 1373 lw->inv_weight = 0;
45bf76df
IM
1374}
1375
1091985b 1376static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1377{
1378 lw->weight -= dec;
e89996ae 1379 lw->inv_weight = 0;
45bf76df
IM
1380}
1381
2dd73a4f
PW
1382/*
1383 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1384 * of tasks with abnormal "nice" values across CPUs the contribution that
1385 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1386 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1387 * scaled version of the new time slice allocation that they receive on time
1388 * slice expiry etc.
1389 */
1390
dd41f596
IM
1391#define WEIGHT_IDLEPRIO 2
1392#define WMULT_IDLEPRIO (1 << 31)
1393
1394/*
1395 * Nice levels are multiplicative, with a gentle 10% change for every
1396 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1397 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1398 * that remained on nice 0.
1399 *
1400 * The "10% effect" is relative and cumulative: from _any_ nice level,
1401 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1402 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1403 * If a task goes up by ~10% and another task goes down by ~10% then
1404 * the relative distance between them is ~25%.)
dd41f596
IM
1405 */
1406static const int prio_to_weight[40] = {
254753dc
IM
1407 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1408 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1409 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1410 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1411 /* 0 */ 1024, 820, 655, 526, 423,
1412 /* 5 */ 335, 272, 215, 172, 137,
1413 /* 10 */ 110, 87, 70, 56, 45,
1414 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1415};
1416
5714d2de
IM
1417/*
1418 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1419 *
1420 * In cases where the weight does not change often, we can use the
1421 * precalculated inverse to speed up arithmetics by turning divisions
1422 * into multiplications:
1423 */
dd41f596 1424static const u32 prio_to_wmult[40] = {
254753dc
IM
1425 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1426 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1427 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1428 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1429 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1430 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1431 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1432 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1433};
2dd73a4f 1434
dd41f596
IM
1435static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1436
1437/*
1438 * runqueue iterator, to support SMP load-balancing between different
1439 * scheduling classes, without having to expose their internal data
1440 * structures to the load-balancing proper:
1441 */
1442struct rq_iterator {
1443 void *arg;
1444 struct task_struct *(*start)(void *);
1445 struct task_struct *(*next)(void *);
1446};
1447
e1d1484f
PW
1448#ifdef CONFIG_SMP
1449static unsigned long
1450balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1451 unsigned long max_load_move, struct sched_domain *sd,
1452 enum cpu_idle_type idle, int *all_pinned,
1453 int *this_best_prio, struct rq_iterator *iterator);
1454
1455static int
1456iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1457 struct sched_domain *sd, enum cpu_idle_type idle,
1458 struct rq_iterator *iterator);
e1d1484f 1459#endif
dd41f596 1460
d842de87
SV
1461#ifdef CONFIG_CGROUP_CPUACCT
1462static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1463#else
1464static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1465#endif
1466
18d95a28
PZ
1467static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1468{
1469 update_load_add(&rq->load, load);
1470}
1471
1472static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1473{
1474 update_load_sub(&rq->load, load);
1475}
1476
e7693a36
GH
1477#ifdef CONFIG_SMP
1478static unsigned long source_load(int cpu, int type);
1479static unsigned long target_load(int cpu, int type);
1480static unsigned long cpu_avg_load_per_task(int cpu);
1481static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1482#else /* CONFIG_SMP */
1483
1484#ifdef CONFIG_FAIR_GROUP_SCHED
1485static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1486{
1487}
1488#endif
1489
e7693a36
GH
1490#endif /* CONFIG_SMP */
1491
dd41f596 1492#include "sched_stats.h"
dd41f596 1493#include "sched_idletask.c"
5522d5d5
IM
1494#include "sched_fair.c"
1495#include "sched_rt.c"
dd41f596
IM
1496#ifdef CONFIG_SCHED_DEBUG
1497# include "sched_debug.c"
1498#endif
1499
1500#define sched_class_highest (&rt_sched_class)
1501
6363ca57
IM
1502static inline void inc_load(struct rq *rq, const struct task_struct *p)
1503{
1504 update_load_add(&rq->load, p->se.load.weight);
1505}
1506
1507static inline void dec_load(struct rq *rq, const struct task_struct *p)
1508{
1509 update_load_sub(&rq->load, p->se.load.weight);
1510}
1511
1512static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1513{
1514 rq->nr_running++;
6363ca57 1515 inc_load(rq, p);
9c217245
IM
1516}
1517
6363ca57 1518static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1519{
1520 rq->nr_running--;
6363ca57 1521 dec_load(rq, p);
9c217245
IM
1522}
1523
45bf76df
IM
1524static void set_load_weight(struct task_struct *p)
1525{
1526 if (task_has_rt_policy(p)) {
dd41f596
IM
1527 p->se.load.weight = prio_to_weight[0] * 2;
1528 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1529 return;
1530 }
45bf76df 1531
dd41f596
IM
1532 /*
1533 * SCHED_IDLE tasks get minimal weight:
1534 */
1535 if (p->policy == SCHED_IDLE) {
1536 p->se.load.weight = WEIGHT_IDLEPRIO;
1537 p->se.load.inv_weight = WMULT_IDLEPRIO;
1538 return;
1539 }
71f8bd46 1540
dd41f596
IM
1541 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1542 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1543}
1544
8159f87e 1545static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1546{
dd41f596 1547 sched_info_queued(p);
fd390f6a 1548 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1549 p->se.on_rq = 1;
71f8bd46
IM
1550}
1551
69be72c1 1552static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1553{
f02231e5 1554 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1555 p->se.on_rq = 0;
71f8bd46
IM
1556}
1557
14531189 1558/*
dd41f596 1559 * __normal_prio - return the priority that is based on the static prio
14531189 1560 */
14531189
IM
1561static inline int __normal_prio(struct task_struct *p)
1562{
dd41f596 1563 return p->static_prio;
14531189
IM
1564}
1565
b29739f9
IM
1566/*
1567 * Calculate the expected normal priority: i.e. priority
1568 * without taking RT-inheritance into account. Might be
1569 * boosted by interactivity modifiers. Changes upon fork,
1570 * setprio syscalls, and whenever the interactivity
1571 * estimator recalculates.
1572 */
36c8b586 1573static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1574{
1575 int prio;
1576
e05606d3 1577 if (task_has_rt_policy(p))
b29739f9
IM
1578 prio = MAX_RT_PRIO-1 - p->rt_priority;
1579 else
1580 prio = __normal_prio(p);
1581 return prio;
1582}
1583
1584/*
1585 * Calculate the current priority, i.e. the priority
1586 * taken into account by the scheduler. This value might
1587 * be boosted by RT tasks, or might be boosted by
1588 * interactivity modifiers. Will be RT if the task got
1589 * RT-boosted. If not then it returns p->normal_prio.
1590 */
36c8b586 1591static int effective_prio(struct task_struct *p)
b29739f9
IM
1592{
1593 p->normal_prio = normal_prio(p);
1594 /*
1595 * If we are RT tasks or we were boosted to RT priority,
1596 * keep the priority unchanged. Otherwise, update priority
1597 * to the normal priority:
1598 */
1599 if (!rt_prio(p->prio))
1600 return p->normal_prio;
1601 return p->prio;
1602}
1603
1da177e4 1604/*
dd41f596 1605 * activate_task - move a task to the runqueue.
1da177e4 1606 */
dd41f596 1607static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1608{
d9514f6c 1609 if (task_contributes_to_load(p))
dd41f596 1610 rq->nr_uninterruptible--;
1da177e4 1611
8159f87e 1612 enqueue_task(rq, p, wakeup);
6363ca57 1613 inc_nr_running(p, rq);
1da177e4
LT
1614}
1615
1da177e4
LT
1616/*
1617 * deactivate_task - remove a task from the runqueue.
1618 */
2e1cb74a 1619static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1620{
d9514f6c 1621 if (task_contributes_to_load(p))
dd41f596
IM
1622 rq->nr_uninterruptible++;
1623
69be72c1 1624 dequeue_task(rq, p, sleep);
6363ca57 1625 dec_nr_running(p, rq);
1da177e4
LT
1626}
1627
1da177e4
LT
1628/**
1629 * task_curr - is this task currently executing on a CPU?
1630 * @p: the task in question.
1631 */
36c8b586 1632inline int task_curr(const struct task_struct *p)
1da177e4
LT
1633{
1634 return cpu_curr(task_cpu(p)) == p;
1635}
1636
2dd73a4f 1637/* Used instead of source_load when we know the type == 0 */
f7dcd80b 1638static unsigned long weighted_cpuload(const int cpu)
2dd73a4f 1639{
495eca49 1640 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1641}
1642
1643static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1644{
6f505b16 1645 set_task_rq(p, cpu);
dd41f596 1646#ifdef CONFIG_SMP
ce96b5ac
DA
1647 /*
1648 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1649 * successfuly executed on another CPU. We must ensure that updates of
1650 * per-task data have been completed by this moment.
1651 */
1652 smp_wmb();
dd41f596 1653 task_thread_info(p)->cpu = cpu;
dd41f596 1654#endif
2dd73a4f
PW
1655}
1656
cb469845
SR
1657static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1658 const struct sched_class *prev_class,
1659 int oldprio, int running)
1660{
1661 if (prev_class != p->sched_class) {
1662 if (prev_class->switched_from)
1663 prev_class->switched_from(rq, p, running);
1664 p->sched_class->switched_to(rq, p, running);
1665 } else
1666 p->sched_class->prio_changed(rq, p, oldprio, running);
1667}
1668
1da177e4 1669#ifdef CONFIG_SMP
c65cc870 1670
cc367732
IM
1671/*
1672 * Is this task likely cache-hot:
1673 */
e7693a36 1674static int
cc367732
IM
1675task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1676{
1677 s64 delta;
1678
f540a608
IM
1679 /*
1680 * Buddy candidates are cache hot:
1681 */
d25ce4cd 1682 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1683 return 1;
1684
cc367732
IM
1685 if (p->sched_class != &fair_sched_class)
1686 return 0;
1687
6bc1665b
IM
1688 if (sysctl_sched_migration_cost == -1)
1689 return 1;
1690 if (sysctl_sched_migration_cost == 0)
1691 return 0;
1692
cc367732
IM
1693 delta = now - p->se.exec_start;
1694
1695 return delta < (s64)sysctl_sched_migration_cost;
1696}
1697
1698
dd41f596 1699void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1700{
dd41f596
IM
1701 int old_cpu = task_cpu(p);
1702 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1703 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1704 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1705 u64 clock_offset;
dd41f596
IM
1706
1707 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1708
1709#ifdef CONFIG_SCHEDSTATS
1710 if (p->se.wait_start)
1711 p->se.wait_start -= clock_offset;
dd41f596
IM
1712 if (p->se.sleep_start)
1713 p->se.sleep_start -= clock_offset;
1714 if (p->se.block_start)
1715 p->se.block_start -= clock_offset;
cc367732
IM
1716 if (old_cpu != new_cpu) {
1717 schedstat_inc(p, se.nr_migrations);
1718 if (task_hot(p, old_rq->clock, NULL))
1719 schedstat_inc(p, se.nr_forced2_migrations);
1720 }
6cfb0d5d 1721#endif
2830cf8c
SV
1722 p->se.vruntime -= old_cfsrq->min_vruntime -
1723 new_cfsrq->min_vruntime;
dd41f596
IM
1724
1725 __set_task_cpu(p, new_cpu);
c65cc870
IM
1726}
1727
70b97a7f 1728struct migration_req {
1da177e4 1729 struct list_head list;
1da177e4 1730
36c8b586 1731 struct task_struct *task;
1da177e4
LT
1732 int dest_cpu;
1733
1da177e4 1734 struct completion done;
70b97a7f 1735};
1da177e4
LT
1736
1737/*
1738 * The task's runqueue lock must be held.
1739 * Returns true if you have to wait for migration thread.
1740 */
36c8b586 1741static int
70b97a7f 1742migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1743{
70b97a7f 1744 struct rq *rq = task_rq(p);
1da177e4
LT
1745
1746 /*
1747 * If the task is not on a runqueue (and not running), then
1748 * it is sufficient to simply update the task's cpu field.
1749 */
dd41f596 1750 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1751 set_task_cpu(p, dest_cpu);
1752 return 0;
1753 }
1754
1755 init_completion(&req->done);
1da177e4
LT
1756 req->task = p;
1757 req->dest_cpu = dest_cpu;
1758 list_add(&req->list, &rq->migration_queue);
48f24c4d 1759
1da177e4
LT
1760 return 1;
1761}
1762
1763/*
1764 * wait_task_inactive - wait for a thread to unschedule.
1765 *
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1771 */
36c8b586 1772void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1773{
1774 unsigned long flags;
dd41f596 1775 int running, on_rq;
70b97a7f 1776 struct rq *rq;
1da177e4 1777
3a5c359a
AK
1778 for (;;) {
1779 /*
1780 * We do the initial early heuristics without holding
1781 * any task-queue locks at all. We'll only try to get
1782 * the runqueue lock when things look like they will
1783 * work out!
1784 */
1785 rq = task_rq(p);
fa490cfd 1786
3a5c359a
AK
1787 /*
1788 * If the task is actively running on another CPU
1789 * still, just relax and busy-wait without holding
1790 * any locks.
1791 *
1792 * NOTE! Since we don't hold any locks, it's not
1793 * even sure that "rq" stays as the right runqueue!
1794 * But we don't care, since "task_running()" will
1795 * return false if the runqueue has changed and p
1796 * is actually now running somewhere else!
1797 */
1798 while (task_running(rq, p))
1799 cpu_relax();
fa490cfd 1800
3a5c359a
AK
1801 /*
1802 * Ok, time to look more closely! We need the rq
1803 * lock now, to be *sure*. If we're wrong, we'll
1804 * just go back and repeat.
1805 */
1806 rq = task_rq_lock(p, &flags);
1807 running = task_running(rq, p);
1808 on_rq = p->se.on_rq;
1809 task_rq_unlock(rq, &flags);
fa490cfd 1810
3a5c359a
AK
1811 /*
1812 * Was it really running after all now that we
1813 * checked with the proper locks actually held?
1814 *
1815 * Oops. Go back and try again..
1816 */
1817 if (unlikely(running)) {
1818 cpu_relax();
1819 continue;
1820 }
fa490cfd 1821
3a5c359a
AK
1822 /*
1823 * It's not enough that it's not actively running,
1824 * it must be off the runqueue _entirely_, and not
1825 * preempted!
1826 *
1827 * So if it wa still runnable (but just not actively
1828 * running right now), it's preempted, and we should
1829 * yield - it could be a while.
1830 */
1831 if (unlikely(on_rq)) {
1832 schedule_timeout_uninterruptible(1);
1833 continue;
1834 }
fa490cfd 1835
3a5c359a
AK
1836 /*
1837 * Ahh, all good. It wasn't running, and it wasn't
1838 * runnable, which means that it will never become
1839 * running in the future either. We're all done!
1840 */
1841 break;
1842 }
1da177e4
LT
1843}
1844
1845/***
1846 * kick_process - kick a running thread to enter/exit the kernel
1847 * @p: the to-be-kicked thread
1848 *
1849 * Cause a process which is running on another CPU to enter
1850 * kernel-mode, without any delay. (to get signals handled.)
1851 *
1852 * NOTE: this function doesnt have to take the runqueue lock,
1853 * because all it wants to ensure is that the remote task enters
1854 * the kernel. If the IPI races and the task has been migrated
1855 * to another CPU then no harm is done and the purpose has been
1856 * achieved as well.
1857 */
36c8b586 1858void kick_process(struct task_struct *p)
1da177e4
LT
1859{
1860 int cpu;
1861
1862 preempt_disable();
1863 cpu = task_cpu(p);
1864 if ((cpu != smp_processor_id()) && task_curr(p))
1865 smp_send_reschedule(cpu);
1866 preempt_enable();
1867}
1868
1869/*
2dd73a4f
PW
1870 * Return a low guess at the load of a migration-source cpu weighted
1871 * according to the scheduling class and "nice" value.
1da177e4
LT
1872 *
1873 * We want to under-estimate the load of migration sources, to
1874 * balance conservatively.
1875 */
a9957449 1876static unsigned long source_load(int cpu, int type)
1da177e4 1877{
70b97a7f 1878 struct rq *rq = cpu_rq(cpu);
dd41f596 1879 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1880
3b0bd9bc 1881 if (type == 0)
dd41f596 1882 return total;
b910472d 1883
dd41f596 1884 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1885}
1886
1887/*
2dd73a4f
PW
1888 * Return a high guess at the load of a migration-target cpu weighted
1889 * according to the scheduling class and "nice" value.
1da177e4 1890 */
a9957449 1891static unsigned long target_load(int cpu, int type)
1da177e4 1892{
70b97a7f 1893 struct rq *rq = cpu_rq(cpu);
dd41f596 1894 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1895
7897986b 1896 if (type == 0)
dd41f596 1897 return total;
3b0bd9bc 1898
dd41f596 1899 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1900}
1901
1902/*
1903 * Return the average load per task on the cpu's run queue
1904 */
e7693a36 1905static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1906{
70b97a7f 1907 struct rq *rq = cpu_rq(cpu);
dd41f596 1908 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1909 unsigned long n = rq->nr_running;
1910
dd41f596 1911 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1912}
1913
147cbb4b
NP
1914/*
1915 * find_idlest_group finds and returns the least busy CPU group within the
1916 * domain.
1917 */
1918static struct sched_group *
1919find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1920{
1921 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1922 unsigned long min_load = ULONG_MAX, this_load = 0;
1923 int load_idx = sd->forkexec_idx;
1924 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1925
1926 do {
1927 unsigned long load, avg_load;
1928 int local_group;
1929 int i;
1930
da5a5522
BD
1931 /* Skip over this group if it has no CPUs allowed */
1932 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1933 continue;
da5a5522 1934
147cbb4b 1935 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1936
1937 /* Tally up the load of all CPUs in the group */
1938 avg_load = 0;
1939
1940 for_each_cpu_mask(i, group->cpumask) {
1941 /* Bias balancing toward cpus of our domain */
1942 if (local_group)
1943 load = source_load(i, load_idx);
1944 else
1945 load = target_load(i, load_idx);
1946
1947 avg_load += load;
1948 }
1949
1950 /* Adjust by relative CPU power of the group */
5517d86b
ED
1951 avg_load = sg_div_cpu_power(group,
1952 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1953
1954 if (local_group) {
1955 this_load = avg_load;
1956 this = group;
1957 } else if (avg_load < min_load) {
1958 min_load = avg_load;
1959 idlest = group;
1960 }
3a5c359a 1961 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1962
1963 if (!idlest || 100*this_load < imbalance*min_load)
1964 return NULL;
1965 return idlest;
1966}
1967
1968/*
0feaece9 1969 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1970 */
95cdf3b7 1971static int
7c16ec58
MT
1972find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1973 cpumask_t *tmp)
147cbb4b
NP
1974{
1975 unsigned long load, min_load = ULONG_MAX;
1976 int idlest = -1;
1977 int i;
1978
da5a5522 1979 /* Traverse only the allowed CPUs */
7c16ec58 1980 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1981
7c16ec58 1982 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1983 load = weighted_cpuload(i);
147cbb4b
NP
1984
1985 if (load < min_load || (load == min_load && i == this_cpu)) {
1986 min_load = load;
1987 idlest = i;
1988 }
1989 }
1990
1991 return idlest;
1992}
1993
476d139c
NP
1994/*
1995 * sched_balance_self: balance the current task (running on cpu) in domains
1996 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1997 * SD_BALANCE_EXEC.
1998 *
1999 * Balance, ie. select the least loaded group.
2000 *
2001 * Returns the target CPU number, or the same CPU if no balancing is needed.
2002 *
2003 * preempt must be disabled.
2004 */
2005static int sched_balance_self(int cpu, int flag)
2006{
2007 struct task_struct *t = current;
2008 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2009
c96d145e 2010 for_each_domain(cpu, tmp) {
9761eea8
IM
2011 /*
2012 * If power savings logic is enabled for a domain, stop there.
2013 */
5c45bf27
SS
2014 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2015 break;
476d139c
NP
2016 if (tmp->flags & flag)
2017 sd = tmp;
c96d145e 2018 }
476d139c
NP
2019
2020 while (sd) {
7c16ec58 2021 cpumask_t span, tmpmask;
476d139c 2022 struct sched_group *group;
1a848870
SS
2023 int new_cpu, weight;
2024
2025 if (!(sd->flags & flag)) {
2026 sd = sd->child;
2027 continue;
2028 }
476d139c
NP
2029
2030 span = sd->span;
2031 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2032 if (!group) {
2033 sd = sd->child;
2034 continue;
2035 }
476d139c 2036
7c16ec58 2037 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2038 if (new_cpu == -1 || new_cpu == cpu) {
2039 /* Now try balancing at a lower domain level of cpu */
2040 sd = sd->child;
2041 continue;
2042 }
476d139c 2043
1a848870 2044 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2045 cpu = new_cpu;
476d139c
NP
2046 sd = NULL;
2047 weight = cpus_weight(span);
2048 for_each_domain(cpu, tmp) {
2049 if (weight <= cpus_weight(tmp->span))
2050 break;
2051 if (tmp->flags & flag)
2052 sd = tmp;
2053 }
2054 /* while loop will break here if sd == NULL */
2055 }
2056
2057 return cpu;
2058}
2059
2060#endif /* CONFIG_SMP */
1da177e4 2061
1da177e4
LT
2062/***
2063 * try_to_wake_up - wake up a thread
2064 * @p: the to-be-woken-up thread
2065 * @state: the mask of task states that can be woken
2066 * @sync: do a synchronous wakeup?
2067 *
2068 * Put it on the run-queue if it's not already there. The "current"
2069 * thread is always on the run-queue (except when the actual
2070 * re-schedule is in progress), and as such you're allowed to do
2071 * the simpler "current->state = TASK_RUNNING" to mark yourself
2072 * runnable without the overhead of this.
2073 *
2074 * returns failure only if the task is already active.
2075 */
36c8b586 2076static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2077{
cc367732 2078 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2079 unsigned long flags;
2080 long old_state;
70b97a7f 2081 struct rq *rq;
1da177e4 2082
b85d0667
IM
2083 if (!sched_feat(SYNC_WAKEUPS))
2084 sync = 0;
2085
04e2f174 2086 smp_wmb();
1da177e4
LT
2087 rq = task_rq_lock(p, &flags);
2088 old_state = p->state;
2089 if (!(old_state & state))
2090 goto out;
2091
dd41f596 2092 if (p->se.on_rq)
1da177e4
LT
2093 goto out_running;
2094
2095 cpu = task_cpu(p);
cc367732 2096 orig_cpu = cpu;
1da177e4
LT
2097 this_cpu = smp_processor_id();
2098
2099#ifdef CONFIG_SMP
2100 if (unlikely(task_running(rq, p)))
2101 goto out_activate;
2102
5d2f5a61
DA
2103 cpu = p->sched_class->select_task_rq(p, sync);
2104 if (cpu != orig_cpu) {
2105 set_task_cpu(p, cpu);
1da177e4
LT
2106 task_rq_unlock(rq, &flags);
2107 /* might preempt at this point */
2108 rq = task_rq_lock(p, &flags);
2109 old_state = p->state;
2110 if (!(old_state & state))
2111 goto out;
dd41f596 2112 if (p->se.on_rq)
1da177e4
LT
2113 goto out_running;
2114
2115 this_cpu = smp_processor_id();
2116 cpu = task_cpu(p);
2117 }
2118
e7693a36
GH
2119#ifdef CONFIG_SCHEDSTATS
2120 schedstat_inc(rq, ttwu_count);
2121 if (cpu == this_cpu)
2122 schedstat_inc(rq, ttwu_local);
2123 else {
2124 struct sched_domain *sd;
2125 for_each_domain(this_cpu, sd) {
2126 if (cpu_isset(cpu, sd->span)) {
2127 schedstat_inc(sd, ttwu_wake_remote);
2128 break;
2129 }
2130 }
2131 }
6d6bc0ad 2132#endif /* CONFIG_SCHEDSTATS */
e7693a36 2133
1da177e4
LT
2134out_activate:
2135#endif /* CONFIG_SMP */
cc367732
IM
2136 schedstat_inc(p, se.nr_wakeups);
2137 if (sync)
2138 schedstat_inc(p, se.nr_wakeups_sync);
2139 if (orig_cpu != cpu)
2140 schedstat_inc(p, se.nr_wakeups_migrate);
2141 if (cpu == this_cpu)
2142 schedstat_inc(p, se.nr_wakeups_local);
2143 else
2144 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2145 update_rq_clock(rq);
dd41f596 2146 activate_task(rq, p, 1);
1da177e4
LT
2147 success = 1;
2148
2149out_running:
4ae7d5ce
IM
2150 check_preempt_curr(rq, p);
2151
1da177e4 2152 p->state = TASK_RUNNING;
9a897c5a
SR
2153#ifdef CONFIG_SMP
2154 if (p->sched_class->task_wake_up)
2155 p->sched_class->task_wake_up(rq, p);
2156#endif
1da177e4
LT
2157out:
2158 task_rq_unlock(rq, &flags);
2159
2160 return success;
2161}
2162
7ad5b3a5 2163int wake_up_process(struct task_struct *p)
1da177e4 2164{
d9514f6c 2165 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2166}
1da177e4
LT
2167EXPORT_SYMBOL(wake_up_process);
2168
7ad5b3a5 2169int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2170{
2171 return try_to_wake_up(p, state, 0);
2172}
2173
1da177e4
LT
2174/*
2175 * Perform scheduler related setup for a newly forked process p.
2176 * p is forked by current.
dd41f596
IM
2177 *
2178 * __sched_fork() is basic setup used by init_idle() too:
2179 */
2180static void __sched_fork(struct task_struct *p)
2181{
dd41f596
IM
2182 p->se.exec_start = 0;
2183 p->se.sum_exec_runtime = 0;
f6cf891c 2184 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2185 p->se.last_wakeup = 0;
2186 p->se.avg_overlap = 0;
6cfb0d5d
IM
2187
2188#ifdef CONFIG_SCHEDSTATS
2189 p->se.wait_start = 0;
dd41f596
IM
2190 p->se.sum_sleep_runtime = 0;
2191 p->se.sleep_start = 0;
dd41f596
IM
2192 p->se.block_start = 0;
2193 p->se.sleep_max = 0;
2194 p->se.block_max = 0;
2195 p->se.exec_max = 0;
eba1ed4b 2196 p->se.slice_max = 0;
dd41f596 2197 p->se.wait_max = 0;
6cfb0d5d 2198#endif
476d139c 2199
fa717060 2200 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2201 p->se.on_rq = 0;
4a55bd5e 2202 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2203
e107be36
AK
2204#ifdef CONFIG_PREEMPT_NOTIFIERS
2205 INIT_HLIST_HEAD(&p->preempt_notifiers);
2206#endif
2207
1da177e4
LT
2208 /*
2209 * We mark the process as running here, but have not actually
2210 * inserted it onto the runqueue yet. This guarantees that
2211 * nobody will actually run it, and a signal or other external
2212 * event cannot wake it up and insert it on the runqueue either.
2213 */
2214 p->state = TASK_RUNNING;
dd41f596
IM
2215}
2216
2217/*
2218 * fork()/clone()-time setup:
2219 */
2220void sched_fork(struct task_struct *p, int clone_flags)
2221{
2222 int cpu = get_cpu();
2223
2224 __sched_fork(p);
2225
2226#ifdef CONFIG_SMP
2227 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2228#endif
02e4bac2 2229 set_task_cpu(p, cpu);
b29739f9
IM
2230
2231 /*
2232 * Make sure we do not leak PI boosting priority to the child:
2233 */
2234 p->prio = current->normal_prio;
2ddbf952
HS
2235 if (!rt_prio(p->prio))
2236 p->sched_class = &fair_sched_class;
b29739f9 2237
52f17b6c 2238#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2239 if (likely(sched_info_on()))
52f17b6c 2240 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2241#endif
d6077cb8 2242#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2243 p->oncpu = 0;
2244#endif
1da177e4 2245#ifdef CONFIG_PREEMPT
4866cde0 2246 /* Want to start with kernel preemption disabled. */
a1261f54 2247 task_thread_info(p)->preempt_count = 1;
1da177e4 2248#endif
476d139c 2249 put_cpu();
1da177e4
LT
2250}
2251
2252/*
2253 * wake_up_new_task - wake up a newly created task for the first time.
2254 *
2255 * This function will do some initial scheduler statistics housekeeping
2256 * that must be done for every newly created context, then puts the task
2257 * on the runqueue and wakes it.
2258 */
7ad5b3a5 2259void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2260{
2261 unsigned long flags;
dd41f596 2262 struct rq *rq;
1da177e4
LT
2263
2264 rq = task_rq_lock(p, &flags);
147cbb4b 2265 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2266 update_rq_clock(rq);
1da177e4
LT
2267
2268 p->prio = effective_prio(p);
2269
b9dca1e0 2270 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2271 activate_task(rq, p, 0);
1da177e4 2272 } else {
1da177e4 2273 /*
dd41f596
IM
2274 * Let the scheduling class do new task startup
2275 * management (if any):
1da177e4 2276 */
ee0827d8 2277 p->sched_class->task_new(rq, p);
6363ca57 2278 inc_nr_running(p, rq);
1da177e4 2279 }
dd41f596 2280 check_preempt_curr(rq, p);
9a897c5a
SR
2281#ifdef CONFIG_SMP
2282 if (p->sched_class->task_wake_up)
2283 p->sched_class->task_wake_up(rq, p);
2284#endif
dd41f596 2285 task_rq_unlock(rq, &flags);
1da177e4
LT
2286}
2287
e107be36
AK
2288#ifdef CONFIG_PREEMPT_NOTIFIERS
2289
2290/**
421cee29
RD
2291 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2292 * @notifier: notifier struct to register
e107be36
AK
2293 */
2294void preempt_notifier_register(struct preempt_notifier *notifier)
2295{
2296 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2297}
2298EXPORT_SYMBOL_GPL(preempt_notifier_register);
2299
2300/**
2301 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2302 * @notifier: notifier struct to unregister
e107be36
AK
2303 *
2304 * This is safe to call from within a preemption notifier.
2305 */
2306void preempt_notifier_unregister(struct preempt_notifier *notifier)
2307{
2308 hlist_del(&notifier->link);
2309}
2310EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2311
2312static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2313{
2314 struct preempt_notifier *notifier;
2315 struct hlist_node *node;
2316
2317 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2318 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2319}
2320
2321static void
2322fire_sched_out_preempt_notifiers(struct task_struct *curr,
2323 struct task_struct *next)
2324{
2325 struct preempt_notifier *notifier;
2326 struct hlist_node *node;
2327
2328 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2329 notifier->ops->sched_out(notifier, next);
2330}
2331
6d6bc0ad 2332#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2333
2334static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2335{
2336}
2337
2338static void
2339fire_sched_out_preempt_notifiers(struct task_struct *curr,
2340 struct task_struct *next)
2341{
2342}
2343
6d6bc0ad 2344#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2345
4866cde0
NP
2346/**
2347 * prepare_task_switch - prepare to switch tasks
2348 * @rq: the runqueue preparing to switch
421cee29 2349 * @prev: the current task that is being switched out
4866cde0
NP
2350 * @next: the task we are going to switch to.
2351 *
2352 * This is called with the rq lock held and interrupts off. It must
2353 * be paired with a subsequent finish_task_switch after the context
2354 * switch.
2355 *
2356 * prepare_task_switch sets up locking and calls architecture specific
2357 * hooks.
2358 */
e107be36
AK
2359static inline void
2360prepare_task_switch(struct rq *rq, struct task_struct *prev,
2361 struct task_struct *next)
4866cde0 2362{
e107be36 2363 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2364 prepare_lock_switch(rq, next);
2365 prepare_arch_switch(next);
2366}
2367
1da177e4
LT
2368/**
2369 * finish_task_switch - clean up after a task-switch
344babaa 2370 * @rq: runqueue associated with task-switch
1da177e4
LT
2371 * @prev: the thread we just switched away from.
2372 *
4866cde0
NP
2373 * finish_task_switch must be called after the context switch, paired
2374 * with a prepare_task_switch call before the context switch.
2375 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2376 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2377 *
2378 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2379 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2380 * with the lock held can cause deadlocks; see schedule() for
2381 * details.)
2382 */
a9957449 2383static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2384 __releases(rq->lock)
2385{
1da177e4 2386 struct mm_struct *mm = rq->prev_mm;
55a101f8 2387 long prev_state;
1da177e4
LT
2388
2389 rq->prev_mm = NULL;
2390
2391 /*
2392 * A task struct has one reference for the use as "current".
c394cc9f 2393 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2394 * schedule one last time. The schedule call will never return, and
2395 * the scheduled task must drop that reference.
c394cc9f 2396 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2397 * still held, otherwise prev could be scheduled on another cpu, die
2398 * there before we look at prev->state, and then the reference would
2399 * be dropped twice.
2400 * Manfred Spraul <manfred@colorfullife.com>
2401 */
55a101f8 2402 prev_state = prev->state;
4866cde0
NP
2403 finish_arch_switch(prev);
2404 finish_lock_switch(rq, prev);
9a897c5a
SR
2405#ifdef CONFIG_SMP
2406 if (current->sched_class->post_schedule)
2407 current->sched_class->post_schedule(rq);
2408#endif
e8fa1362 2409
e107be36 2410 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2411 if (mm)
2412 mmdrop(mm);
c394cc9f 2413 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2414 /*
2415 * Remove function-return probe instances associated with this
2416 * task and put them back on the free list.
9761eea8 2417 */
c6fd91f0 2418 kprobe_flush_task(prev);
1da177e4 2419 put_task_struct(prev);
c6fd91f0 2420 }
1da177e4
LT
2421}
2422
2423/**
2424 * schedule_tail - first thing a freshly forked thread must call.
2425 * @prev: the thread we just switched away from.
2426 */
36c8b586 2427asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2428 __releases(rq->lock)
2429{
70b97a7f
IM
2430 struct rq *rq = this_rq();
2431
4866cde0
NP
2432 finish_task_switch(rq, prev);
2433#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2434 /* In this case, finish_task_switch does not reenable preemption */
2435 preempt_enable();
2436#endif
1da177e4 2437 if (current->set_child_tid)
b488893a 2438 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2439}
2440
2441/*
2442 * context_switch - switch to the new MM and the new
2443 * thread's register state.
2444 */
dd41f596 2445static inline void
70b97a7f 2446context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2447 struct task_struct *next)
1da177e4 2448{
dd41f596 2449 struct mm_struct *mm, *oldmm;
1da177e4 2450
e107be36 2451 prepare_task_switch(rq, prev, next);
dd41f596
IM
2452 mm = next->mm;
2453 oldmm = prev->active_mm;
9226d125
ZA
2454 /*
2455 * For paravirt, this is coupled with an exit in switch_to to
2456 * combine the page table reload and the switch backend into
2457 * one hypercall.
2458 */
2459 arch_enter_lazy_cpu_mode();
2460
dd41f596 2461 if (unlikely(!mm)) {
1da177e4
LT
2462 next->active_mm = oldmm;
2463 atomic_inc(&oldmm->mm_count);
2464 enter_lazy_tlb(oldmm, next);
2465 } else
2466 switch_mm(oldmm, mm, next);
2467
dd41f596 2468 if (unlikely(!prev->mm)) {
1da177e4 2469 prev->active_mm = NULL;
1da177e4
LT
2470 rq->prev_mm = oldmm;
2471 }
3a5f5e48
IM
2472 /*
2473 * Since the runqueue lock will be released by the next
2474 * task (which is an invalid locking op but in the case
2475 * of the scheduler it's an obvious special-case), so we
2476 * do an early lockdep release here:
2477 */
2478#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2479 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2480#endif
1da177e4
LT
2481
2482 /* Here we just switch the register state and the stack. */
2483 switch_to(prev, next, prev);
2484
dd41f596
IM
2485 barrier();
2486 /*
2487 * this_rq must be evaluated again because prev may have moved
2488 * CPUs since it called schedule(), thus the 'rq' on its stack
2489 * frame will be invalid.
2490 */
2491 finish_task_switch(this_rq(), prev);
1da177e4
LT
2492}
2493
2494/*
2495 * nr_running, nr_uninterruptible and nr_context_switches:
2496 *
2497 * externally visible scheduler statistics: current number of runnable
2498 * threads, current number of uninterruptible-sleeping threads, total
2499 * number of context switches performed since bootup.
2500 */
2501unsigned long nr_running(void)
2502{
2503 unsigned long i, sum = 0;
2504
2505 for_each_online_cpu(i)
2506 sum += cpu_rq(i)->nr_running;
2507
2508 return sum;
2509}
2510
2511unsigned long nr_uninterruptible(void)
2512{
2513 unsigned long i, sum = 0;
2514
0a945022 2515 for_each_possible_cpu(i)
1da177e4
LT
2516 sum += cpu_rq(i)->nr_uninterruptible;
2517
2518 /*
2519 * Since we read the counters lockless, it might be slightly
2520 * inaccurate. Do not allow it to go below zero though:
2521 */
2522 if (unlikely((long)sum < 0))
2523 sum = 0;
2524
2525 return sum;
2526}
2527
2528unsigned long long nr_context_switches(void)
2529{
cc94abfc
SR
2530 int i;
2531 unsigned long long sum = 0;
1da177e4 2532
0a945022 2533 for_each_possible_cpu(i)
1da177e4
LT
2534 sum += cpu_rq(i)->nr_switches;
2535
2536 return sum;
2537}
2538
2539unsigned long nr_iowait(void)
2540{
2541 unsigned long i, sum = 0;
2542
0a945022 2543 for_each_possible_cpu(i)
1da177e4
LT
2544 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2545
2546 return sum;
2547}
2548
db1b1fef
JS
2549unsigned long nr_active(void)
2550{
2551 unsigned long i, running = 0, uninterruptible = 0;
2552
2553 for_each_online_cpu(i) {
2554 running += cpu_rq(i)->nr_running;
2555 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2556 }
2557
2558 if (unlikely((long)uninterruptible < 0))
2559 uninterruptible = 0;
2560
2561 return running + uninterruptible;
2562}
2563
48f24c4d 2564/*
dd41f596
IM
2565 * Update rq->cpu_load[] statistics. This function is usually called every
2566 * scheduler tick (TICK_NSEC).
48f24c4d 2567 */
dd41f596 2568static void update_cpu_load(struct rq *this_rq)
48f24c4d 2569{
495eca49 2570 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2571 int i, scale;
2572
2573 this_rq->nr_load_updates++;
dd41f596
IM
2574
2575 /* Update our load: */
2576 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2577 unsigned long old_load, new_load;
2578
2579 /* scale is effectively 1 << i now, and >> i divides by scale */
2580
2581 old_load = this_rq->cpu_load[i];
2582 new_load = this_load;
a25707f3
IM
2583 /*
2584 * Round up the averaging division if load is increasing. This
2585 * prevents us from getting stuck on 9 if the load is 10, for
2586 * example.
2587 */
2588 if (new_load > old_load)
2589 new_load += scale-1;
dd41f596
IM
2590 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2591 }
48f24c4d
IM
2592}
2593
dd41f596
IM
2594#ifdef CONFIG_SMP
2595
1da177e4
LT
2596/*
2597 * double_rq_lock - safely lock two runqueues
2598 *
2599 * Note this does not disable interrupts like task_rq_lock,
2600 * you need to do so manually before calling.
2601 */
70b97a7f 2602static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2603 __acquires(rq1->lock)
2604 __acquires(rq2->lock)
2605{
054b9108 2606 BUG_ON(!irqs_disabled());
1da177e4
LT
2607 if (rq1 == rq2) {
2608 spin_lock(&rq1->lock);
2609 __acquire(rq2->lock); /* Fake it out ;) */
2610 } else {
c96d145e 2611 if (rq1 < rq2) {
1da177e4
LT
2612 spin_lock(&rq1->lock);
2613 spin_lock(&rq2->lock);
2614 } else {
2615 spin_lock(&rq2->lock);
2616 spin_lock(&rq1->lock);
2617 }
2618 }
6e82a3be
IM
2619 update_rq_clock(rq1);
2620 update_rq_clock(rq2);
1da177e4
LT
2621}
2622
2623/*
2624 * double_rq_unlock - safely unlock two runqueues
2625 *
2626 * Note this does not restore interrupts like task_rq_unlock,
2627 * you need to do so manually after calling.
2628 */
70b97a7f 2629static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2630 __releases(rq1->lock)
2631 __releases(rq2->lock)
2632{
2633 spin_unlock(&rq1->lock);
2634 if (rq1 != rq2)
2635 spin_unlock(&rq2->lock);
2636 else
2637 __release(rq2->lock);
2638}
2639
2640/*
2641 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2642 */
e8fa1362 2643static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2644 __releases(this_rq->lock)
2645 __acquires(busiest->lock)
2646 __acquires(this_rq->lock)
2647{
e8fa1362
SR
2648 int ret = 0;
2649
054b9108
KK
2650 if (unlikely(!irqs_disabled())) {
2651 /* printk() doesn't work good under rq->lock */
2652 spin_unlock(&this_rq->lock);
2653 BUG_ON(1);
2654 }
1da177e4 2655 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2656 if (busiest < this_rq) {
1da177e4
LT
2657 spin_unlock(&this_rq->lock);
2658 spin_lock(&busiest->lock);
2659 spin_lock(&this_rq->lock);
e8fa1362 2660 ret = 1;
1da177e4
LT
2661 } else
2662 spin_lock(&busiest->lock);
2663 }
e8fa1362 2664 return ret;
1da177e4
LT
2665}
2666
1da177e4
LT
2667/*
2668 * If dest_cpu is allowed for this process, migrate the task to it.
2669 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2670 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2671 * the cpu_allowed mask is restored.
2672 */
36c8b586 2673static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2674{
70b97a7f 2675 struct migration_req req;
1da177e4 2676 unsigned long flags;
70b97a7f 2677 struct rq *rq;
1da177e4
LT
2678
2679 rq = task_rq_lock(p, &flags);
2680 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2681 || unlikely(cpu_is_offline(dest_cpu)))
2682 goto out;
2683
2684 /* force the process onto the specified CPU */
2685 if (migrate_task(p, dest_cpu, &req)) {
2686 /* Need to wait for migration thread (might exit: take ref). */
2687 struct task_struct *mt = rq->migration_thread;
36c8b586 2688
1da177e4
LT
2689 get_task_struct(mt);
2690 task_rq_unlock(rq, &flags);
2691 wake_up_process(mt);
2692 put_task_struct(mt);
2693 wait_for_completion(&req.done);
36c8b586 2694
1da177e4
LT
2695 return;
2696 }
2697out:
2698 task_rq_unlock(rq, &flags);
2699}
2700
2701/*
476d139c
NP
2702 * sched_exec - execve() is a valuable balancing opportunity, because at
2703 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2704 */
2705void sched_exec(void)
2706{
1da177e4 2707 int new_cpu, this_cpu = get_cpu();
476d139c 2708 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2709 put_cpu();
476d139c
NP
2710 if (new_cpu != this_cpu)
2711 sched_migrate_task(current, new_cpu);
1da177e4
LT
2712}
2713
2714/*
2715 * pull_task - move a task from a remote runqueue to the local runqueue.
2716 * Both runqueues must be locked.
2717 */
dd41f596
IM
2718static void pull_task(struct rq *src_rq, struct task_struct *p,
2719 struct rq *this_rq, int this_cpu)
1da177e4 2720{
2e1cb74a 2721 deactivate_task(src_rq, p, 0);
1da177e4 2722 set_task_cpu(p, this_cpu);
dd41f596 2723 activate_task(this_rq, p, 0);
1da177e4
LT
2724 /*
2725 * Note that idle threads have a prio of MAX_PRIO, for this test
2726 * to be always true for them.
2727 */
dd41f596 2728 check_preempt_curr(this_rq, p);
1da177e4
LT
2729}
2730
2731/*
2732 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2733 */
858119e1 2734static
70b97a7f 2735int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2736 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2737 int *all_pinned)
1da177e4
LT
2738{
2739 /*
2740 * We do not migrate tasks that are:
2741 * 1) running (obviously), or
2742 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2743 * 3) are cache-hot on their current CPU.
2744 */
cc367732
IM
2745 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2746 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2747 return 0;
cc367732 2748 }
81026794
NP
2749 *all_pinned = 0;
2750
cc367732
IM
2751 if (task_running(rq, p)) {
2752 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2753 return 0;
cc367732 2754 }
1da177e4 2755
da84d961
IM
2756 /*
2757 * Aggressive migration if:
2758 * 1) task is cache cold, or
2759 * 2) too many balance attempts have failed.
2760 */
2761
6bc1665b
IM
2762 if (!task_hot(p, rq->clock, sd) ||
2763 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2764#ifdef CONFIG_SCHEDSTATS
cc367732 2765 if (task_hot(p, rq->clock, sd)) {
da84d961 2766 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2767 schedstat_inc(p, se.nr_forced_migrations);
2768 }
da84d961
IM
2769#endif
2770 return 1;
2771 }
2772
cc367732
IM
2773 if (task_hot(p, rq->clock, sd)) {
2774 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2775 return 0;
cc367732 2776 }
1da177e4
LT
2777 return 1;
2778}
2779
e1d1484f
PW
2780static unsigned long
2781balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2782 unsigned long max_load_move, struct sched_domain *sd,
2783 enum cpu_idle_type idle, int *all_pinned,
2784 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2785{
b82d9fdd 2786 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2787 struct task_struct *p;
2788 long rem_load_move = max_load_move;
1da177e4 2789
e1d1484f 2790 if (max_load_move == 0)
1da177e4
LT
2791 goto out;
2792
81026794
NP
2793 pinned = 1;
2794
1da177e4 2795 /*
dd41f596 2796 * Start the load-balancing iterator:
1da177e4 2797 */
dd41f596
IM
2798 p = iterator->start(iterator->arg);
2799next:
b82d9fdd 2800 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2801 goto out;
50ddd969 2802 /*
b82d9fdd 2803 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2804 * skip a task if it will be the highest priority task (i.e. smallest
2805 * prio value) on its new queue regardless of its load weight
2806 */
dd41f596
IM
2807 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2808 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2809 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2810 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2811 p = iterator->next(iterator->arg);
2812 goto next;
1da177e4
LT
2813 }
2814
dd41f596 2815 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2816 pulled++;
dd41f596 2817 rem_load_move -= p->se.load.weight;
1da177e4 2818
2dd73a4f 2819 /*
b82d9fdd 2820 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2821 */
e1d1484f 2822 if (rem_load_move > 0) {
a4ac01c3
PW
2823 if (p->prio < *this_best_prio)
2824 *this_best_prio = p->prio;
dd41f596
IM
2825 p = iterator->next(iterator->arg);
2826 goto next;
1da177e4
LT
2827 }
2828out:
2829 /*
e1d1484f 2830 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2831 * so we can safely collect pull_task() stats here rather than
2832 * inside pull_task().
2833 */
2834 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2835
2836 if (all_pinned)
2837 *all_pinned = pinned;
e1d1484f
PW
2838
2839 return max_load_move - rem_load_move;
1da177e4
LT
2840}
2841
dd41f596 2842/*
43010659
PW
2843 * move_tasks tries to move up to max_load_move weighted load from busiest to
2844 * this_rq, as part of a balancing operation within domain "sd".
2845 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2846 *
2847 * Called with both runqueues locked.
2848 */
2849static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2850 unsigned long max_load_move,
dd41f596
IM
2851 struct sched_domain *sd, enum cpu_idle_type idle,
2852 int *all_pinned)
2853{
5522d5d5 2854 const struct sched_class *class = sched_class_highest;
43010659 2855 unsigned long total_load_moved = 0;
a4ac01c3 2856 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2857
2858 do {
43010659
PW
2859 total_load_moved +=
2860 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2861 max_load_move - total_load_moved,
a4ac01c3 2862 sd, idle, all_pinned, &this_best_prio);
dd41f596 2863 class = class->next;
43010659 2864 } while (class && max_load_move > total_load_moved);
dd41f596 2865
43010659
PW
2866 return total_load_moved > 0;
2867}
2868
e1d1484f
PW
2869static int
2870iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2871 struct sched_domain *sd, enum cpu_idle_type idle,
2872 struct rq_iterator *iterator)
2873{
2874 struct task_struct *p = iterator->start(iterator->arg);
2875 int pinned = 0;
2876
2877 while (p) {
2878 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2879 pull_task(busiest, p, this_rq, this_cpu);
2880 /*
2881 * Right now, this is only the second place pull_task()
2882 * is called, so we can safely collect pull_task()
2883 * stats here rather than inside pull_task().
2884 */
2885 schedstat_inc(sd, lb_gained[idle]);
2886
2887 return 1;
2888 }
2889 p = iterator->next(iterator->arg);
2890 }
2891
2892 return 0;
2893}
2894
43010659
PW
2895/*
2896 * move_one_task tries to move exactly one task from busiest to this_rq, as
2897 * part of active balancing operations within "domain".
2898 * Returns 1 if successful and 0 otherwise.
2899 *
2900 * Called with both runqueues locked.
2901 */
2902static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2903 struct sched_domain *sd, enum cpu_idle_type idle)
2904{
5522d5d5 2905 const struct sched_class *class;
43010659
PW
2906
2907 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2908 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2909 return 1;
2910
2911 return 0;
dd41f596
IM
2912}
2913
1da177e4
LT
2914/*
2915 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2916 * domain. It calculates and returns the amount of weighted load which
2917 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2918 */
2919static struct sched_group *
2920find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2921 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2922 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2923{
2924 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2925 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2926 unsigned long max_pull;
2dd73a4f
PW
2927 unsigned long busiest_load_per_task, busiest_nr_running;
2928 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2929 int load_idx, group_imb = 0;
5c45bf27
SS
2930#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2931 int power_savings_balance = 1;
2932 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2933 unsigned long min_nr_running = ULONG_MAX;
2934 struct sched_group *group_min = NULL, *group_leader = NULL;
2935#endif
1da177e4
LT
2936
2937 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2938 busiest_load_per_task = busiest_nr_running = 0;
2939 this_load_per_task = this_nr_running = 0;
d15bcfdb 2940 if (idle == CPU_NOT_IDLE)
7897986b 2941 load_idx = sd->busy_idx;
d15bcfdb 2942 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2943 load_idx = sd->newidle_idx;
2944 else
2945 load_idx = sd->idle_idx;
1da177e4
LT
2946
2947 do {
908a7c1b 2948 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2949 int local_group;
2950 int i;
908a7c1b 2951 int __group_imb = 0;
783609c6 2952 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2953 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2954
2955 local_group = cpu_isset(this_cpu, group->cpumask);
2956
783609c6
SS
2957 if (local_group)
2958 balance_cpu = first_cpu(group->cpumask);
2959
1da177e4 2960 /* Tally up the load of all CPUs in the group */
2dd73a4f 2961 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2962 max_cpu_load = 0;
2963 min_cpu_load = ~0UL;
1da177e4
LT
2964
2965 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2966 struct rq *rq;
2967
2968 if (!cpu_isset(i, *cpus))
2969 continue;
2970
2971 rq = cpu_rq(i);
2dd73a4f 2972
9439aab8 2973 if (*sd_idle && rq->nr_running)
5969fe06
NP
2974 *sd_idle = 0;
2975
1da177e4 2976 /* Bias balancing toward cpus of our domain */
783609c6
SS
2977 if (local_group) {
2978 if (idle_cpu(i) && !first_idle_cpu) {
2979 first_idle_cpu = 1;
2980 balance_cpu = i;
2981 }
2982
a2000572 2983 load = target_load(i, load_idx);
908a7c1b 2984 } else {
a2000572 2985 load = source_load(i, load_idx);
908a7c1b
KC
2986 if (load > max_cpu_load)
2987 max_cpu_load = load;
2988 if (min_cpu_load > load)
2989 min_cpu_load = load;
2990 }
1da177e4
LT
2991
2992 avg_load += load;
2dd73a4f 2993 sum_nr_running += rq->nr_running;
dd41f596 2994 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2995 }
2996
783609c6
SS
2997 /*
2998 * First idle cpu or the first cpu(busiest) in this sched group
2999 * is eligible for doing load balancing at this and above
9439aab8
SS
3000 * domains. In the newly idle case, we will allow all the cpu's
3001 * to do the newly idle load balance.
783609c6 3002 */
9439aab8
SS
3003 if (idle != CPU_NEWLY_IDLE && local_group &&
3004 balance_cpu != this_cpu && balance) {
783609c6
SS
3005 *balance = 0;
3006 goto ret;
3007 }
3008
1da177e4 3009 total_load += avg_load;
5517d86b 3010 total_pwr += group->__cpu_power;
1da177e4
LT
3011
3012 /* Adjust by relative CPU power of the group */
5517d86b
ED
3013 avg_load = sg_div_cpu_power(group,
3014 avg_load * SCHED_LOAD_SCALE);
1da177e4 3015
908a7c1b
KC
3016 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3017 __group_imb = 1;
3018
5517d86b 3019 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3020
1da177e4
LT
3021 if (local_group) {
3022 this_load = avg_load;
3023 this = group;
2dd73a4f
PW
3024 this_nr_running = sum_nr_running;
3025 this_load_per_task = sum_weighted_load;
3026 } else if (avg_load > max_load &&
908a7c1b 3027 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3028 max_load = avg_load;
3029 busiest = group;
2dd73a4f
PW
3030 busiest_nr_running = sum_nr_running;
3031 busiest_load_per_task = sum_weighted_load;
908a7c1b 3032 group_imb = __group_imb;
1da177e4 3033 }
5c45bf27
SS
3034
3035#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3036 /*
3037 * Busy processors will not participate in power savings
3038 * balance.
3039 */
dd41f596
IM
3040 if (idle == CPU_NOT_IDLE ||
3041 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3042 goto group_next;
5c45bf27
SS
3043
3044 /*
3045 * If the local group is idle or completely loaded
3046 * no need to do power savings balance at this domain
3047 */
3048 if (local_group && (this_nr_running >= group_capacity ||
3049 !this_nr_running))
3050 power_savings_balance = 0;
3051
dd41f596 3052 /*
5c45bf27
SS
3053 * If a group is already running at full capacity or idle,
3054 * don't include that group in power savings calculations
dd41f596
IM
3055 */
3056 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3057 || !sum_nr_running)
dd41f596 3058 goto group_next;
5c45bf27 3059
dd41f596 3060 /*
5c45bf27 3061 * Calculate the group which has the least non-idle load.
dd41f596
IM
3062 * This is the group from where we need to pick up the load
3063 * for saving power
3064 */
3065 if ((sum_nr_running < min_nr_running) ||
3066 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3067 first_cpu(group->cpumask) <
3068 first_cpu(group_min->cpumask))) {
dd41f596
IM
3069 group_min = group;
3070 min_nr_running = sum_nr_running;
5c45bf27
SS
3071 min_load_per_task = sum_weighted_load /
3072 sum_nr_running;
dd41f596 3073 }
5c45bf27 3074
dd41f596 3075 /*
5c45bf27 3076 * Calculate the group which is almost near its
dd41f596
IM
3077 * capacity but still has some space to pick up some load
3078 * from other group and save more power
3079 */
3080 if (sum_nr_running <= group_capacity - 1) {
3081 if (sum_nr_running > leader_nr_running ||
3082 (sum_nr_running == leader_nr_running &&
3083 first_cpu(group->cpumask) >
3084 first_cpu(group_leader->cpumask))) {
3085 group_leader = group;
3086 leader_nr_running = sum_nr_running;
3087 }
48f24c4d 3088 }
5c45bf27
SS
3089group_next:
3090#endif
1da177e4
LT
3091 group = group->next;
3092 } while (group != sd->groups);
3093
2dd73a4f 3094 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3095 goto out_balanced;
3096
3097 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3098
3099 if (this_load >= avg_load ||
3100 100*max_load <= sd->imbalance_pct*this_load)
3101 goto out_balanced;
3102
2dd73a4f 3103 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3104 if (group_imb)
3105 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3106
1da177e4
LT
3107 /*
3108 * We're trying to get all the cpus to the average_load, so we don't
3109 * want to push ourselves above the average load, nor do we wish to
3110 * reduce the max loaded cpu below the average load, as either of these
3111 * actions would just result in more rebalancing later, and ping-pong
3112 * tasks around. Thus we look for the minimum possible imbalance.
3113 * Negative imbalances (*we* are more loaded than anyone else) will
3114 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3115 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3116 * appear as very large values with unsigned longs.
3117 */
2dd73a4f
PW
3118 if (max_load <= busiest_load_per_task)
3119 goto out_balanced;
3120
3121 /*
3122 * In the presence of smp nice balancing, certain scenarios can have
3123 * max load less than avg load(as we skip the groups at or below
3124 * its cpu_power, while calculating max_load..)
3125 */
3126 if (max_load < avg_load) {
3127 *imbalance = 0;
3128 goto small_imbalance;
3129 }
0c117f1b
SS
3130
3131 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3132 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3133
1da177e4 3134 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3135 *imbalance = min(max_pull * busiest->__cpu_power,
3136 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3137 / SCHED_LOAD_SCALE;
3138
2dd73a4f
PW
3139 /*
3140 * if *imbalance is less than the average load per runnable task
3141 * there is no gaurantee that any tasks will be moved so we'll have
3142 * a think about bumping its value to force at least one task to be
3143 * moved
3144 */
7fd0d2dd 3145 if (*imbalance < busiest_load_per_task) {
48f24c4d 3146 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3147 unsigned int imbn;
3148
3149small_imbalance:
3150 pwr_move = pwr_now = 0;
3151 imbn = 2;
3152 if (this_nr_running) {
3153 this_load_per_task /= this_nr_running;
3154 if (busiest_load_per_task > this_load_per_task)
3155 imbn = 1;
3156 } else
3157 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3158
dd41f596
IM
3159 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3160 busiest_load_per_task * imbn) {
2dd73a4f 3161 *imbalance = busiest_load_per_task;
1da177e4
LT
3162 return busiest;
3163 }
3164
3165 /*
3166 * OK, we don't have enough imbalance to justify moving tasks,
3167 * however we may be able to increase total CPU power used by
3168 * moving them.
3169 */
3170
5517d86b
ED
3171 pwr_now += busiest->__cpu_power *
3172 min(busiest_load_per_task, max_load);
3173 pwr_now += this->__cpu_power *
3174 min(this_load_per_task, this_load);
1da177e4
LT
3175 pwr_now /= SCHED_LOAD_SCALE;
3176
3177 /* Amount of load we'd subtract */
5517d86b
ED
3178 tmp = sg_div_cpu_power(busiest,
3179 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3180 if (max_load > tmp)
5517d86b 3181 pwr_move += busiest->__cpu_power *
2dd73a4f 3182 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3183
3184 /* Amount of load we'd add */
5517d86b 3185 if (max_load * busiest->__cpu_power <
33859f7f 3186 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3187 tmp = sg_div_cpu_power(this,
3188 max_load * busiest->__cpu_power);
1da177e4 3189 else
5517d86b
ED
3190 tmp = sg_div_cpu_power(this,
3191 busiest_load_per_task * SCHED_LOAD_SCALE);
3192 pwr_move += this->__cpu_power *
3193 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3194 pwr_move /= SCHED_LOAD_SCALE;
3195
3196 /* Move if we gain throughput */
7fd0d2dd
SS
3197 if (pwr_move > pwr_now)
3198 *imbalance = busiest_load_per_task;
1da177e4
LT
3199 }
3200
1da177e4
LT
3201 return busiest;
3202
3203out_balanced:
5c45bf27 3204#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3205 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3206 goto ret;
1da177e4 3207
5c45bf27
SS
3208 if (this == group_leader && group_leader != group_min) {
3209 *imbalance = min_load_per_task;
3210 return group_min;
3211 }
5c45bf27 3212#endif
783609c6 3213ret:
1da177e4
LT
3214 *imbalance = 0;
3215 return NULL;
3216}
3217
3218/*
3219 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3220 */
70b97a7f 3221static struct rq *
d15bcfdb 3222find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3223 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3224{
70b97a7f 3225 struct rq *busiest = NULL, *rq;
2dd73a4f 3226 unsigned long max_load = 0;
1da177e4
LT
3227 int i;
3228
3229 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3230 unsigned long wl;
0a2966b4
CL
3231
3232 if (!cpu_isset(i, *cpus))
3233 continue;
3234
48f24c4d 3235 rq = cpu_rq(i);
dd41f596 3236 wl = weighted_cpuload(i);
2dd73a4f 3237
dd41f596 3238 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3239 continue;
1da177e4 3240
dd41f596
IM
3241 if (wl > max_load) {
3242 max_load = wl;
48f24c4d 3243 busiest = rq;
1da177e4
LT
3244 }
3245 }
3246
3247 return busiest;
3248}
3249
77391d71
NP
3250/*
3251 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3252 * so long as it is large enough.
3253 */
3254#define MAX_PINNED_INTERVAL 512
3255
1da177e4
LT
3256/*
3257 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3258 * tasks if there is an imbalance.
1da177e4 3259 */
70b97a7f 3260static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3261 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3262 int *balance, cpumask_t *cpus)
1da177e4 3263{
43010659 3264 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3265 struct sched_group *group;
1da177e4 3266 unsigned long imbalance;
70b97a7f 3267 struct rq *busiest;
fe2eea3f 3268 unsigned long flags;
5969fe06 3269
7c16ec58
MT
3270 cpus_setall(*cpus);
3271
89c4710e
SS
3272 /*
3273 * When power savings policy is enabled for the parent domain, idle
3274 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3275 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3276 * portraying it as CPU_NOT_IDLE.
89c4710e 3277 */
d15bcfdb 3278 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3279 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3280 sd_idle = 1;
1da177e4 3281
2d72376b 3282 schedstat_inc(sd, lb_count[idle]);
1da177e4 3283
0a2966b4
CL
3284redo:
3285 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3286 cpus, balance);
783609c6 3287
06066714 3288 if (*balance == 0)
783609c6 3289 goto out_balanced;
783609c6 3290
1da177e4
LT
3291 if (!group) {
3292 schedstat_inc(sd, lb_nobusyg[idle]);
3293 goto out_balanced;
3294 }
3295
7c16ec58 3296 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3297 if (!busiest) {
3298 schedstat_inc(sd, lb_nobusyq[idle]);
3299 goto out_balanced;
3300 }
3301
db935dbd 3302 BUG_ON(busiest == this_rq);
1da177e4
LT
3303
3304 schedstat_add(sd, lb_imbalance[idle], imbalance);
3305
43010659 3306 ld_moved = 0;
1da177e4
LT
3307 if (busiest->nr_running > 1) {
3308 /*
3309 * Attempt to move tasks. If find_busiest_group has found
3310 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3311 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3312 * correctly treated as an imbalance.
3313 */
fe2eea3f 3314 local_irq_save(flags);
e17224bf 3315 double_rq_lock(this_rq, busiest);
43010659 3316 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3317 imbalance, sd, idle, &all_pinned);
e17224bf 3318 double_rq_unlock(this_rq, busiest);
fe2eea3f 3319 local_irq_restore(flags);
81026794 3320
46cb4b7c
SS
3321 /*
3322 * some other cpu did the load balance for us.
3323 */
43010659 3324 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3325 resched_cpu(this_cpu);
3326
81026794 3327 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3328 if (unlikely(all_pinned)) {
7c16ec58
MT
3329 cpu_clear(cpu_of(busiest), *cpus);
3330 if (!cpus_empty(*cpus))
0a2966b4 3331 goto redo;
81026794 3332 goto out_balanced;
0a2966b4 3333 }
1da177e4 3334 }
81026794 3335
43010659 3336 if (!ld_moved) {
1da177e4
LT
3337 schedstat_inc(sd, lb_failed[idle]);
3338 sd->nr_balance_failed++;
3339
3340 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3341
fe2eea3f 3342 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3343
3344 /* don't kick the migration_thread, if the curr
3345 * task on busiest cpu can't be moved to this_cpu
3346 */
3347 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3348 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3349 all_pinned = 1;
3350 goto out_one_pinned;
3351 }
3352
1da177e4
LT
3353 if (!busiest->active_balance) {
3354 busiest->active_balance = 1;
3355 busiest->push_cpu = this_cpu;
81026794 3356 active_balance = 1;
1da177e4 3357 }
fe2eea3f 3358 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3359 if (active_balance)
1da177e4
LT
3360 wake_up_process(busiest->migration_thread);
3361
3362 /*
3363 * We've kicked active balancing, reset the failure
3364 * counter.
3365 */
39507451 3366 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3367 }
81026794 3368 } else
1da177e4
LT
3369 sd->nr_balance_failed = 0;
3370
81026794 3371 if (likely(!active_balance)) {
1da177e4
LT
3372 /* We were unbalanced, so reset the balancing interval */
3373 sd->balance_interval = sd->min_interval;
81026794
NP
3374 } else {
3375 /*
3376 * If we've begun active balancing, start to back off. This
3377 * case may not be covered by the all_pinned logic if there
3378 * is only 1 task on the busy runqueue (because we don't call
3379 * move_tasks).
3380 */
3381 if (sd->balance_interval < sd->max_interval)
3382 sd->balance_interval *= 2;
1da177e4
LT
3383 }
3384
43010659 3385 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3386 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3387 return -1;
3388 return ld_moved;
1da177e4
LT
3389
3390out_balanced:
1da177e4
LT
3391 schedstat_inc(sd, lb_balanced[idle]);
3392
16cfb1c0 3393 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3394
3395out_one_pinned:
1da177e4 3396 /* tune up the balancing interval */
77391d71
NP
3397 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3398 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3399 sd->balance_interval *= 2;
3400
48f24c4d 3401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3403 return -1;
3404 return 0;
1da177e4
LT
3405}
3406
3407/*
3408 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3409 * tasks if there is an imbalance.
3410 *
d15bcfdb 3411 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3412 * this_rq is locked.
3413 */
48f24c4d 3414static int
7c16ec58
MT
3415load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3416 cpumask_t *cpus)
1da177e4
LT
3417{
3418 struct sched_group *group;
70b97a7f 3419 struct rq *busiest = NULL;
1da177e4 3420 unsigned long imbalance;
43010659 3421 int ld_moved = 0;
5969fe06 3422 int sd_idle = 0;
969bb4e4 3423 int all_pinned = 0;
7c16ec58
MT
3424
3425 cpus_setall(*cpus);
5969fe06 3426
89c4710e
SS
3427 /*
3428 * When power savings policy is enabled for the parent domain, idle
3429 * sibling can pick up load irrespective of busy siblings. In this case,
3430 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3431 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3432 */
3433 if (sd->flags & SD_SHARE_CPUPOWER &&
3434 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3435 sd_idle = 1;
1da177e4 3436
2d72376b 3437 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3438redo:
d15bcfdb 3439 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3440 &sd_idle, cpus, NULL);
1da177e4 3441 if (!group) {
d15bcfdb 3442 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3443 goto out_balanced;
1da177e4
LT
3444 }
3445
7c16ec58 3446 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3447 if (!busiest) {
d15bcfdb 3448 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3449 goto out_balanced;
1da177e4
LT
3450 }
3451
db935dbd
NP
3452 BUG_ON(busiest == this_rq);
3453
d15bcfdb 3454 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3455
43010659 3456 ld_moved = 0;
d6d5cfaf
NP
3457 if (busiest->nr_running > 1) {
3458 /* Attempt to move tasks */
3459 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3460 /* this_rq->clock is already updated */
3461 update_rq_clock(busiest);
43010659 3462 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3463 imbalance, sd, CPU_NEWLY_IDLE,
3464 &all_pinned);
d6d5cfaf 3465 spin_unlock(&busiest->lock);
0a2966b4 3466
969bb4e4 3467 if (unlikely(all_pinned)) {
7c16ec58
MT
3468 cpu_clear(cpu_of(busiest), *cpus);
3469 if (!cpus_empty(*cpus))
0a2966b4
CL
3470 goto redo;
3471 }
d6d5cfaf
NP
3472 }
3473
43010659 3474 if (!ld_moved) {
d15bcfdb 3475 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3476 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3477 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3478 return -1;
3479 } else
16cfb1c0 3480 sd->nr_balance_failed = 0;
1da177e4 3481
43010659 3482 return ld_moved;
16cfb1c0
NP
3483
3484out_balanced:
d15bcfdb 3485 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3486 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3487 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3488 return -1;
16cfb1c0 3489 sd->nr_balance_failed = 0;
48f24c4d 3490
16cfb1c0 3491 return 0;
1da177e4
LT
3492}
3493
3494/*
3495 * idle_balance is called by schedule() if this_cpu is about to become
3496 * idle. Attempts to pull tasks from other CPUs.
3497 */
70b97a7f 3498static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3499{
3500 struct sched_domain *sd;
dd41f596
IM
3501 int pulled_task = -1;
3502 unsigned long next_balance = jiffies + HZ;
7c16ec58 3503 cpumask_t tmpmask;
1da177e4
LT
3504
3505 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3506 unsigned long interval;
3507
3508 if (!(sd->flags & SD_LOAD_BALANCE))
3509 continue;
3510
3511 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3512 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3513 pulled_task = load_balance_newidle(this_cpu, this_rq,
3514 sd, &tmpmask);
92c4ca5c
CL
3515
3516 interval = msecs_to_jiffies(sd->balance_interval);
3517 if (time_after(next_balance, sd->last_balance + interval))
3518 next_balance = sd->last_balance + interval;
3519 if (pulled_task)
3520 break;
1da177e4 3521 }
dd41f596 3522 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3523 /*
3524 * We are going idle. next_balance may be set based on
3525 * a busy processor. So reset next_balance.
3526 */
3527 this_rq->next_balance = next_balance;
dd41f596 3528 }
1da177e4
LT
3529}
3530
3531/*
3532 * active_load_balance is run by migration threads. It pushes running tasks
3533 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3534 * running on each physical CPU where possible, and avoids physical /
3535 * logical imbalances.
3536 *
3537 * Called with busiest_rq locked.
3538 */
70b97a7f 3539static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3540{
39507451 3541 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3542 struct sched_domain *sd;
3543 struct rq *target_rq;
39507451 3544
48f24c4d 3545 /* Is there any task to move? */
39507451 3546 if (busiest_rq->nr_running <= 1)
39507451
NP
3547 return;
3548
3549 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3550
3551 /*
39507451 3552 * This condition is "impossible", if it occurs
41a2d6cf 3553 * we need to fix it. Originally reported by
39507451 3554 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3555 */
39507451 3556 BUG_ON(busiest_rq == target_rq);
1da177e4 3557
39507451
NP
3558 /* move a task from busiest_rq to target_rq */
3559 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3560 update_rq_clock(busiest_rq);
3561 update_rq_clock(target_rq);
39507451
NP
3562
3563 /* Search for an sd spanning us and the target CPU. */
c96d145e 3564 for_each_domain(target_cpu, sd) {
39507451 3565 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3566 cpu_isset(busiest_cpu, sd->span))
39507451 3567 break;
c96d145e 3568 }
39507451 3569
48f24c4d 3570 if (likely(sd)) {
2d72376b 3571 schedstat_inc(sd, alb_count);
39507451 3572
43010659
PW
3573 if (move_one_task(target_rq, target_cpu, busiest_rq,
3574 sd, CPU_IDLE))
48f24c4d
IM
3575 schedstat_inc(sd, alb_pushed);
3576 else
3577 schedstat_inc(sd, alb_failed);
3578 }
39507451 3579 spin_unlock(&target_rq->lock);
1da177e4
LT
3580}
3581
46cb4b7c
SS
3582#ifdef CONFIG_NO_HZ
3583static struct {
3584 atomic_t load_balancer;
41a2d6cf 3585 cpumask_t cpu_mask;
46cb4b7c
SS
3586} nohz ____cacheline_aligned = {
3587 .load_balancer = ATOMIC_INIT(-1),
3588 .cpu_mask = CPU_MASK_NONE,
3589};
3590
7835b98b 3591/*
46cb4b7c
SS
3592 * This routine will try to nominate the ilb (idle load balancing)
3593 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3594 * load balancing on behalf of all those cpus. If all the cpus in the system
3595 * go into this tickless mode, then there will be no ilb owner (as there is
3596 * no need for one) and all the cpus will sleep till the next wakeup event
3597 * arrives...
3598 *
3599 * For the ilb owner, tick is not stopped. And this tick will be used
3600 * for idle load balancing. ilb owner will still be part of
3601 * nohz.cpu_mask..
7835b98b 3602 *
46cb4b7c
SS
3603 * While stopping the tick, this cpu will become the ilb owner if there
3604 * is no other owner. And will be the owner till that cpu becomes busy
3605 * or if all cpus in the system stop their ticks at which point
3606 * there is no need for ilb owner.
3607 *
3608 * When the ilb owner becomes busy, it nominates another owner, during the
3609 * next busy scheduler_tick()
3610 */
3611int select_nohz_load_balancer(int stop_tick)
3612{
3613 int cpu = smp_processor_id();
3614
3615 if (stop_tick) {
3616 cpu_set(cpu, nohz.cpu_mask);
3617 cpu_rq(cpu)->in_nohz_recently = 1;
3618
3619 /*
3620 * If we are going offline and still the leader, give up!
3621 */
3622 if (cpu_is_offline(cpu) &&
3623 atomic_read(&nohz.load_balancer) == cpu) {
3624 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3625 BUG();
3626 return 0;
3627 }
3628
3629 /* time for ilb owner also to sleep */
3630 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3631 if (atomic_read(&nohz.load_balancer) == cpu)
3632 atomic_set(&nohz.load_balancer, -1);
3633 return 0;
3634 }
3635
3636 if (atomic_read(&nohz.load_balancer) == -1) {
3637 /* make me the ilb owner */
3638 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3639 return 1;
3640 } else if (atomic_read(&nohz.load_balancer) == cpu)
3641 return 1;
3642 } else {
3643 if (!cpu_isset(cpu, nohz.cpu_mask))
3644 return 0;
3645
3646 cpu_clear(cpu, nohz.cpu_mask);
3647
3648 if (atomic_read(&nohz.load_balancer) == cpu)
3649 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3650 BUG();
3651 }
3652 return 0;
3653}
3654#endif
3655
3656static DEFINE_SPINLOCK(balancing);
3657
3658/*
7835b98b
CL
3659 * It checks each scheduling domain to see if it is due to be balanced,
3660 * and initiates a balancing operation if so.
3661 *
3662 * Balancing parameters are set up in arch_init_sched_domains.
3663 */
a9957449 3664static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3665{
46cb4b7c
SS
3666 int balance = 1;
3667 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3668 unsigned long interval;
3669 struct sched_domain *sd;
46cb4b7c 3670 /* Earliest time when we have to do rebalance again */
c9819f45 3671 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3672 int update_next_balance = 0;
d07355f5 3673 int need_serialize;
7c16ec58 3674 cpumask_t tmp;
1da177e4 3675
46cb4b7c 3676 for_each_domain(cpu, sd) {
1da177e4
LT
3677 if (!(sd->flags & SD_LOAD_BALANCE))
3678 continue;
3679
3680 interval = sd->balance_interval;
d15bcfdb 3681 if (idle != CPU_IDLE)
1da177e4
LT
3682 interval *= sd->busy_factor;
3683
3684 /* scale ms to jiffies */
3685 interval = msecs_to_jiffies(interval);
3686 if (unlikely(!interval))
3687 interval = 1;
dd41f596
IM
3688 if (interval > HZ*NR_CPUS/10)
3689 interval = HZ*NR_CPUS/10;
3690
d07355f5 3691 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3692
d07355f5 3693 if (need_serialize) {
08c183f3
CL
3694 if (!spin_trylock(&balancing))
3695 goto out;
3696 }
3697
c9819f45 3698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3699 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3700 /*
3701 * We've pulled tasks over so either we're no
5969fe06
NP
3702 * longer idle, or one of our SMT siblings is
3703 * not idle.
3704 */
d15bcfdb 3705 idle = CPU_NOT_IDLE;
1da177e4 3706 }
1bd77f2d 3707 sd->last_balance = jiffies;
1da177e4 3708 }
d07355f5 3709 if (need_serialize)
08c183f3
CL
3710 spin_unlock(&balancing);
3711out:
f549da84 3712 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3713 next_balance = sd->last_balance + interval;
f549da84
SS
3714 update_next_balance = 1;
3715 }
783609c6
SS
3716
3717 /*
3718 * Stop the load balance at this level. There is another
3719 * CPU in our sched group which is doing load balancing more
3720 * actively.
3721 */
3722 if (!balance)
3723 break;
1da177e4 3724 }
f549da84
SS
3725
3726 /*
3727 * next_balance will be updated only when there is a need.
3728 * When the cpu is attached to null domain for ex, it will not be
3729 * updated.
3730 */
3731 if (likely(update_next_balance))
3732 rq->next_balance = next_balance;
46cb4b7c
SS
3733}
3734
3735/*
3736 * run_rebalance_domains is triggered when needed from the scheduler tick.
3737 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3738 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3739 */
3740static void run_rebalance_domains(struct softirq_action *h)
3741{
dd41f596
IM
3742 int this_cpu = smp_processor_id();
3743 struct rq *this_rq = cpu_rq(this_cpu);
3744 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3745 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3746
dd41f596 3747 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3748
3749#ifdef CONFIG_NO_HZ
3750 /*
3751 * If this cpu is the owner for idle load balancing, then do the
3752 * balancing on behalf of the other idle cpus whose ticks are
3753 * stopped.
3754 */
dd41f596
IM
3755 if (this_rq->idle_at_tick &&
3756 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3757 cpumask_t cpus = nohz.cpu_mask;
3758 struct rq *rq;
3759 int balance_cpu;
3760
dd41f596 3761 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3762 for_each_cpu_mask(balance_cpu, cpus) {
3763 /*
3764 * If this cpu gets work to do, stop the load balancing
3765 * work being done for other cpus. Next load
3766 * balancing owner will pick it up.
3767 */
3768 if (need_resched())
3769 break;
3770
de0cf899 3771 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3772
3773 rq = cpu_rq(balance_cpu);
dd41f596
IM
3774 if (time_after(this_rq->next_balance, rq->next_balance))
3775 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3776 }
3777 }
3778#endif
3779}
3780
3781/*
3782 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3783 *
3784 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3785 * idle load balancing owner or decide to stop the periodic load balancing,
3786 * if the whole system is idle.
3787 */
dd41f596 3788static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3789{
46cb4b7c
SS
3790#ifdef CONFIG_NO_HZ
3791 /*
3792 * If we were in the nohz mode recently and busy at the current
3793 * scheduler tick, then check if we need to nominate new idle
3794 * load balancer.
3795 */
3796 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3797 rq->in_nohz_recently = 0;
3798
3799 if (atomic_read(&nohz.load_balancer) == cpu) {
3800 cpu_clear(cpu, nohz.cpu_mask);
3801 atomic_set(&nohz.load_balancer, -1);
3802 }
3803
3804 if (atomic_read(&nohz.load_balancer) == -1) {
3805 /*
3806 * simple selection for now: Nominate the
3807 * first cpu in the nohz list to be the next
3808 * ilb owner.
3809 *
3810 * TBD: Traverse the sched domains and nominate
3811 * the nearest cpu in the nohz.cpu_mask.
3812 */
3813 int ilb = first_cpu(nohz.cpu_mask);
3814
434d53b0 3815 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3816 resched_cpu(ilb);
3817 }
3818 }
3819
3820 /*
3821 * If this cpu is idle and doing idle load balancing for all the
3822 * cpus with ticks stopped, is it time for that to stop?
3823 */
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3825 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3826 resched_cpu(cpu);
3827 return;
3828 }
3829
3830 /*
3831 * If this cpu is idle and the idle load balancing is done by
3832 * someone else, then no need raise the SCHED_SOFTIRQ
3833 */
3834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3835 cpu_isset(cpu, nohz.cpu_mask))
3836 return;
3837#endif
3838 if (time_after_eq(jiffies, rq->next_balance))
3839 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3840}
dd41f596
IM
3841
3842#else /* CONFIG_SMP */
3843
1da177e4
LT
3844/*
3845 * on UP we do not need to balance between CPUs:
3846 */
70b97a7f 3847static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3848{
3849}
dd41f596 3850
1da177e4
LT
3851#endif
3852
1da177e4
LT
3853DEFINE_PER_CPU(struct kernel_stat, kstat);
3854
3855EXPORT_PER_CPU_SYMBOL(kstat);
3856
3857/*
41b86e9c
IM
3858 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3859 * that have not yet been banked in case the task is currently running.
1da177e4 3860 */
41b86e9c 3861unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3862{
1da177e4 3863 unsigned long flags;
41b86e9c
IM
3864 u64 ns, delta_exec;
3865 struct rq *rq;
48f24c4d 3866
41b86e9c
IM
3867 rq = task_rq_lock(p, &flags);
3868 ns = p->se.sum_exec_runtime;
051a1d1a 3869 if (task_current(rq, p)) {
a8e504d2
IM
3870 update_rq_clock(rq);
3871 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3872 if ((s64)delta_exec > 0)
3873 ns += delta_exec;
3874 }
3875 task_rq_unlock(rq, &flags);
48f24c4d 3876
1da177e4
LT
3877 return ns;
3878}
3879
1da177e4
LT
3880/*
3881 * Account user cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3883 * @cputime: the cpu time spent in user space since the last update
3884 */
3885void account_user_time(struct task_struct *p, cputime_t cputime)
3886{
3887 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3888 cputime64_t tmp;
3889
3890 p->utime = cputime_add(p->utime, cputime);
3891
3892 /* Add user time to cpustat. */
3893 tmp = cputime_to_cputime64(cputime);
3894 if (TASK_NICE(p) > 0)
3895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3896 else
3897 cpustat->user = cputime64_add(cpustat->user, tmp);
3898}
3899
94886b84
LV
3900/*
3901 * Account guest cpu time to a process.
3902 * @p: the process that the cpu time gets accounted to
3903 * @cputime: the cpu time spent in virtual machine since the last update
3904 */
f7402e03 3905static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3906{
3907 cputime64_t tmp;
3908 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3909
3910 tmp = cputime_to_cputime64(cputime);
3911
3912 p->utime = cputime_add(p->utime, cputime);
3913 p->gtime = cputime_add(p->gtime, cputime);
3914
3915 cpustat->user = cputime64_add(cpustat->user, tmp);
3916 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3917}
3918
c66f08be
MN
3919/*
3920 * Account scaled user cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in user space since the last update
3923 */
3924void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3925{
3926 p->utimescaled = cputime_add(p->utimescaled, cputime);
3927}
3928
1da177e4
LT
3929/*
3930 * Account system cpu time to a process.
3931 * @p: the process that the cpu time gets accounted to
3932 * @hardirq_offset: the offset to subtract from hardirq_count()
3933 * @cputime: the cpu time spent in kernel space since the last update
3934 */
3935void account_system_time(struct task_struct *p, int hardirq_offset,
3936 cputime_t cputime)
3937{
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3939 struct rq *rq = this_rq();
1da177e4
LT
3940 cputime64_t tmp;
3941
983ed7a6
HH
3942 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3943 account_guest_time(p, cputime);
3944 return;
3945 }
94886b84 3946
1da177e4
LT
3947 p->stime = cputime_add(p->stime, cputime);
3948
3949 /* Add system time to cpustat. */
3950 tmp = cputime_to_cputime64(cputime);
3951 if (hardirq_count() - hardirq_offset)
3952 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3953 else if (softirq_count())
3954 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3955 else if (p != rq->idle)
1da177e4 3956 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3957 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3958 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3959 else
3960 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3961 /* Account for system time used */
3962 acct_update_integrals(p);
1da177e4
LT
3963}
3964
c66f08be
MN
3965/*
3966 * Account scaled system cpu time to a process.
3967 * @p: the process that the cpu time gets accounted to
3968 * @hardirq_offset: the offset to subtract from hardirq_count()
3969 * @cputime: the cpu time spent in kernel space since the last update
3970 */
3971void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3972{
3973 p->stimescaled = cputime_add(p->stimescaled, cputime);
3974}
3975
1da177e4
LT
3976/*
3977 * Account for involuntary wait time.
3978 * @p: the process from which the cpu time has been stolen
3979 * @steal: the cpu time spent in involuntary wait
3980 */
3981void account_steal_time(struct task_struct *p, cputime_t steal)
3982{
3983 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3984 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3985 struct rq *rq = this_rq();
1da177e4
LT
3986
3987 if (p == rq->idle) {
3988 p->stime = cputime_add(p->stime, steal);
3989 if (atomic_read(&rq->nr_iowait) > 0)
3990 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3991 else
3992 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3993 } else
1da177e4
LT
3994 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3995}
3996
7835b98b
CL
3997/*
3998 * This function gets called by the timer code, with HZ frequency.
3999 * We call it with interrupts disabled.
4000 *
4001 * It also gets called by the fork code, when changing the parent's
4002 * timeslices.
4003 */
4004void scheduler_tick(void)
4005{
7835b98b
CL
4006 int cpu = smp_processor_id();
4007 struct rq *rq = cpu_rq(cpu);
dd41f596 4008 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4009
4010 sched_clock_tick();
dd41f596
IM
4011
4012 spin_lock(&rq->lock);
3e51f33f 4013 update_rq_clock(rq);
f1a438d8 4014 update_cpu_load(rq);
fa85ae24 4015 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4016 spin_unlock(&rq->lock);
7835b98b 4017
e418e1c2 4018#ifdef CONFIG_SMP
dd41f596
IM
4019 rq->idle_at_tick = idle_cpu(cpu);
4020 trigger_load_balance(rq, cpu);
e418e1c2 4021#endif
1da177e4
LT
4022}
4023
1da177e4
LT
4024#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4025
43627582 4026void __kprobes add_preempt_count(int val)
1da177e4
LT
4027{
4028 /*
4029 * Underflow?
4030 */
9a11b49a
IM
4031 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4032 return;
1da177e4
LT
4033 preempt_count() += val;
4034 /*
4035 * Spinlock count overflowing soon?
4036 */
33859f7f
MOS
4037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4038 PREEMPT_MASK - 10);
1da177e4
LT
4039}
4040EXPORT_SYMBOL(add_preempt_count);
4041
43627582 4042void __kprobes sub_preempt_count(int val)
1da177e4
LT
4043{
4044 /*
4045 * Underflow?
4046 */
9a11b49a
IM
4047 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4048 return;
1da177e4
LT
4049 /*
4050 * Is the spinlock portion underflowing?
4051 */
9a11b49a
IM
4052 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4053 !(preempt_count() & PREEMPT_MASK)))
4054 return;
4055
1da177e4
LT
4056 preempt_count() -= val;
4057}
4058EXPORT_SYMBOL(sub_preempt_count);
4059
4060#endif
4061
4062/*
dd41f596 4063 * Print scheduling while atomic bug:
1da177e4 4064 */
dd41f596 4065static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4066{
838225b4
SS
4067 struct pt_regs *regs = get_irq_regs();
4068
4069 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4070 prev->comm, prev->pid, preempt_count());
4071
dd41f596 4072 debug_show_held_locks(prev);
e21f5b15 4073 print_modules();
dd41f596
IM
4074 if (irqs_disabled())
4075 print_irqtrace_events(prev);
838225b4
SS
4076
4077 if (regs)
4078 show_regs(regs);
4079 else
4080 dump_stack();
dd41f596 4081}
1da177e4 4082
dd41f596
IM
4083/*
4084 * Various schedule()-time debugging checks and statistics:
4085 */
4086static inline void schedule_debug(struct task_struct *prev)
4087{
1da177e4 4088 /*
41a2d6cf 4089 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4090 * schedule() atomically, we ignore that path for now.
4091 * Otherwise, whine if we are scheduling when we should not be.
4092 */
3f33a7ce 4093 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4094 __schedule_bug(prev);
4095
1da177e4
LT
4096 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4097
2d72376b 4098 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4099#ifdef CONFIG_SCHEDSTATS
4100 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4101 schedstat_inc(this_rq(), bkl_count);
4102 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4103 }
4104#endif
dd41f596
IM
4105}
4106
4107/*
4108 * Pick up the highest-prio task:
4109 */
4110static inline struct task_struct *
ff95f3df 4111pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4112{
5522d5d5 4113 const struct sched_class *class;
dd41f596 4114 struct task_struct *p;
1da177e4
LT
4115
4116 /*
dd41f596
IM
4117 * Optimization: we know that if all tasks are in
4118 * the fair class we can call that function directly:
1da177e4 4119 */
dd41f596 4120 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4121 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4122 if (likely(p))
4123 return p;
1da177e4
LT
4124 }
4125
dd41f596
IM
4126 class = sched_class_highest;
4127 for ( ; ; ) {
fb8d4724 4128 p = class->pick_next_task(rq);
dd41f596
IM
4129 if (p)
4130 return p;
4131 /*
4132 * Will never be NULL as the idle class always
4133 * returns a non-NULL p:
4134 */
4135 class = class->next;
4136 }
4137}
1da177e4 4138
dd41f596
IM
4139/*
4140 * schedule() is the main scheduler function.
4141 */
4142asmlinkage void __sched schedule(void)
4143{
4144 struct task_struct *prev, *next;
67ca7bde 4145 unsigned long *switch_count;
dd41f596 4146 struct rq *rq;
f333fdc9 4147 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4148
4149need_resched:
4150 preempt_disable();
4151 cpu = smp_processor_id();
4152 rq = cpu_rq(cpu);
4153 rcu_qsctr_inc(cpu);
4154 prev = rq->curr;
4155 switch_count = &prev->nivcsw;
4156
4157 release_kernel_lock(prev);
4158need_resched_nonpreemptible:
4159
4160 schedule_debug(prev);
1da177e4 4161
f333fdc9
MG
4162 if (hrtick)
4163 hrtick_clear(rq);
8f4d37ec 4164
1e819950
IM
4165 /*
4166 * Do the rq-clock update outside the rq lock:
4167 */
4168 local_irq_disable();
3e51f33f 4169 update_rq_clock(rq);
1e819950
IM
4170 spin_lock(&rq->lock);
4171 clear_tsk_need_resched(prev);
1da177e4 4172
1da177e4 4173 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4174 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4175 signal_pending(prev))) {
1da177e4 4176 prev->state = TASK_RUNNING;
dd41f596 4177 } else {
2e1cb74a 4178 deactivate_task(rq, prev, 1);
1da177e4 4179 }
dd41f596 4180 switch_count = &prev->nvcsw;
1da177e4
LT
4181 }
4182
9a897c5a
SR
4183#ifdef CONFIG_SMP
4184 if (prev->sched_class->pre_schedule)
4185 prev->sched_class->pre_schedule(rq, prev);
4186#endif
f65eda4f 4187
dd41f596 4188 if (unlikely(!rq->nr_running))
1da177e4 4189 idle_balance(cpu, rq);
1da177e4 4190
31ee529c 4191 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4192 next = pick_next_task(rq, prev);
1da177e4 4193
1da177e4 4194 if (likely(prev != next)) {
673a90a1
DS
4195 sched_info_switch(prev, next);
4196
1da177e4
LT
4197 rq->nr_switches++;
4198 rq->curr = next;
4199 ++*switch_count;
4200
dd41f596 4201 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4202 /*
4203 * the context switch might have flipped the stack from under
4204 * us, hence refresh the local variables.
4205 */
4206 cpu = smp_processor_id();
4207 rq = cpu_rq(cpu);
1da177e4
LT
4208 } else
4209 spin_unlock_irq(&rq->lock);
4210
f333fdc9
MG
4211 if (hrtick)
4212 hrtick_set(rq);
8f4d37ec
PZ
4213
4214 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4215 goto need_resched_nonpreemptible;
8f4d37ec 4216
1da177e4
LT
4217 preempt_enable_no_resched();
4218 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4219 goto need_resched;
4220}
1da177e4
LT
4221EXPORT_SYMBOL(schedule);
4222
4223#ifdef CONFIG_PREEMPT
4224/*
2ed6e34f 4225 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4226 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4227 * occur there and call schedule directly.
4228 */
4229asmlinkage void __sched preempt_schedule(void)
4230{
4231 struct thread_info *ti = current_thread_info();
6478d880 4232
1da177e4
LT
4233 /*
4234 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4235 * we do not want to preempt the current task. Just return..
1da177e4 4236 */
beed33a8 4237 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4238 return;
4239
3a5c359a
AK
4240 do {
4241 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4242 schedule();
3a5c359a 4243 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4244
3a5c359a
AK
4245 /*
4246 * Check again in case we missed a preemption opportunity
4247 * between schedule and now.
4248 */
4249 barrier();
4250 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4251}
1da177e4
LT
4252EXPORT_SYMBOL(preempt_schedule);
4253
4254/*
2ed6e34f 4255 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4256 * off of irq context.
4257 * Note, that this is called and return with irqs disabled. This will
4258 * protect us against recursive calling from irq.
4259 */
4260asmlinkage void __sched preempt_schedule_irq(void)
4261{
4262 struct thread_info *ti = current_thread_info();
6478d880 4263
2ed6e34f 4264 /* Catch callers which need to be fixed */
1da177e4
LT
4265 BUG_ON(ti->preempt_count || !irqs_disabled());
4266
3a5c359a
AK
4267 do {
4268 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4269 local_irq_enable();
4270 schedule();
4271 local_irq_disable();
3a5c359a 4272 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4273
3a5c359a
AK
4274 /*
4275 * Check again in case we missed a preemption opportunity
4276 * between schedule and now.
4277 */
4278 barrier();
4279 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4280}
4281
4282#endif /* CONFIG_PREEMPT */
4283
95cdf3b7
IM
4284int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4285 void *key)
1da177e4 4286{
48f24c4d 4287 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4288}
1da177e4
LT
4289EXPORT_SYMBOL(default_wake_function);
4290
4291/*
41a2d6cf
IM
4292 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4293 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4294 * number) then we wake all the non-exclusive tasks and one exclusive task.
4295 *
4296 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4297 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4298 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4299 */
4300static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4301 int nr_exclusive, int sync, void *key)
4302{
2e45874c 4303 wait_queue_t *curr, *next;
1da177e4 4304
2e45874c 4305 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4306 unsigned flags = curr->flags;
4307
1da177e4 4308 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4309 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4310 break;
4311 }
4312}
4313
4314/**
4315 * __wake_up - wake up threads blocked on a waitqueue.
4316 * @q: the waitqueue
4317 * @mode: which threads
4318 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4319 * @key: is directly passed to the wakeup function
1da177e4 4320 */
7ad5b3a5 4321void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4322 int nr_exclusive, void *key)
1da177e4
LT
4323{
4324 unsigned long flags;
4325
4326 spin_lock_irqsave(&q->lock, flags);
4327 __wake_up_common(q, mode, nr_exclusive, 0, key);
4328 spin_unlock_irqrestore(&q->lock, flags);
4329}
1da177e4
LT
4330EXPORT_SYMBOL(__wake_up);
4331
4332/*
4333 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4334 */
7ad5b3a5 4335void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4336{
4337 __wake_up_common(q, mode, 1, 0, NULL);
4338}
4339
4340/**
67be2dd1 4341 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4342 * @q: the waitqueue
4343 * @mode: which threads
4344 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4345 *
4346 * The sync wakeup differs that the waker knows that it will schedule
4347 * away soon, so while the target thread will be woken up, it will not
4348 * be migrated to another CPU - ie. the two threads are 'synchronized'
4349 * with each other. This can prevent needless bouncing between CPUs.
4350 *
4351 * On UP it can prevent extra preemption.
4352 */
7ad5b3a5 4353void
95cdf3b7 4354__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4355{
4356 unsigned long flags;
4357 int sync = 1;
4358
4359 if (unlikely(!q))
4360 return;
4361
4362 if (unlikely(!nr_exclusive))
4363 sync = 0;
4364
4365 spin_lock_irqsave(&q->lock, flags);
4366 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4367 spin_unlock_irqrestore(&q->lock, flags);
4368}
4369EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4370
b15136e9 4371void complete(struct completion *x)
1da177e4
LT
4372{
4373 unsigned long flags;
4374
4375 spin_lock_irqsave(&x->wait.lock, flags);
4376 x->done++;
d9514f6c 4377 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4378 spin_unlock_irqrestore(&x->wait.lock, flags);
4379}
4380EXPORT_SYMBOL(complete);
4381
b15136e9 4382void complete_all(struct completion *x)
1da177e4
LT
4383{
4384 unsigned long flags;
4385
4386 spin_lock_irqsave(&x->wait.lock, flags);
4387 x->done += UINT_MAX/2;
d9514f6c 4388 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4389 spin_unlock_irqrestore(&x->wait.lock, flags);
4390}
4391EXPORT_SYMBOL(complete_all);
4392
8cbbe86d
AK
4393static inline long __sched
4394do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4395{
1da177e4
LT
4396 if (!x->done) {
4397 DECLARE_WAITQUEUE(wait, current);
4398
4399 wait.flags |= WQ_FLAG_EXCLUSIVE;
4400 __add_wait_queue_tail(&x->wait, &wait);
4401 do {
009e577e
MW
4402 if ((state == TASK_INTERRUPTIBLE &&
4403 signal_pending(current)) ||
4404 (state == TASK_KILLABLE &&
4405 fatal_signal_pending(current))) {
8cbbe86d
AK
4406 __remove_wait_queue(&x->wait, &wait);
4407 return -ERESTARTSYS;
4408 }
4409 __set_current_state(state);
1da177e4
LT
4410 spin_unlock_irq(&x->wait.lock);
4411 timeout = schedule_timeout(timeout);
4412 spin_lock_irq(&x->wait.lock);
4413 if (!timeout) {
4414 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4415 return timeout;
1da177e4
LT
4416 }
4417 } while (!x->done);
4418 __remove_wait_queue(&x->wait, &wait);
4419 }
4420 x->done--;
1da177e4
LT
4421 return timeout;
4422}
1da177e4 4423
8cbbe86d
AK
4424static long __sched
4425wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4426{
1da177e4
LT
4427 might_sleep();
4428
4429 spin_lock_irq(&x->wait.lock);
8cbbe86d 4430 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4431 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4432 return timeout;
4433}
1da177e4 4434
b15136e9 4435void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4436{
4437 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4438}
8cbbe86d 4439EXPORT_SYMBOL(wait_for_completion);
1da177e4 4440
b15136e9 4441unsigned long __sched
8cbbe86d 4442wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4443{
8cbbe86d 4444 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4445}
8cbbe86d 4446EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4447
8cbbe86d 4448int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4449{
51e97990
AK
4450 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4451 if (t == -ERESTARTSYS)
4452 return t;
4453 return 0;
0fec171c 4454}
8cbbe86d 4455EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4456
b15136e9 4457unsigned long __sched
8cbbe86d
AK
4458wait_for_completion_interruptible_timeout(struct completion *x,
4459 unsigned long timeout)
0fec171c 4460{
8cbbe86d 4461 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4462}
8cbbe86d 4463EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4464
009e577e
MW
4465int __sched wait_for_completion_killable(struct completion *x)
4466{
4467 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4468 if (t == -ERESTARTSYS)
4469 return t;
4470 return 0;
4471}
4472EXPORT_SYMBOL(wait_for_completion_killable);
4473
8cbbe86d
AK
4474static long __sched
4475sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4476{
0fec171c
IM
4477 unsigned long flags;
4478 wait_queue_t wait;
4479
4480 init_waitqueue_entry(&wait, current);
1da177e4 4481
8cbbe86d 4482 __set_current_state(state);
1da177e4 4483
8cbbe86d
AK
4484 spin_lock_irqsave(&q->lock, flags);
4485 __add_wait_queue(q, &wait);
4486 spin_unlock(&q->lock);
4487 timeout = schedule_timeout(timeout);
4488 spin_lock_irq(&q->lock);
4489 __remove_wait_queue(q, &wait);
4490 spin_unlock_irqrestore(&q->lock, flags);
4491
4492 return timeout;
4493}
4494
4495void __sched interruptible_sleep_on(wait_queue_head_t *q)
4496{
4497 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4498}
1da177e4
LT
4499EXPORT_SYMBOL(interruptible_sleep_on);
4500
0fec171c 4501long __sched
95cdf3b7 4502interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4503{
8cbbe86d 4504 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4505}
1da177e4
LT
4506EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4507
0fec171c 4508void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4509{
8cbbe86d 4510 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4511}
1da177e4
LT
4512EXPORT_SYMBOL(sleep_on);
4513
0fec171c 4514long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4515{
8cbbe86d 4516 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4517}
1da177e4
LT
4518EXPORT_SYMBOL(sleep_on_timeout);
4519
b29739f9
IM
4520#ifdef CONFIG_RT_MUTEXES
4521
4522/*
4523 * rt_mutex_setprio - set the current priority of a task
4524 * @p: task
4525 * @prio: prio value (kernel-internal form)
4526 *
4527 * This function changes the 'effective' priority of a task. It does
4528 * not touch ->normal_prio like __setscheduler().
4529 *
4530 * Used by the rt_mutex code to implement priority inheritance logic.
4531 */
36c8b586 4532void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4533{
4534 unsigned long flags;
83b699ed 4535 int oldprio, on_rq, running;
70b97a7f 4536 struct rq *rq;
cb469845 4537 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4538
4539 BUG_ON(prio < 0 || prio > MAX_PRIO);
4540
4541 rq = task_rq_lock(p, &flags);
a8e504d2 4542 update_rq_clock(rq);
b29739f9 4543
d5f9f942 4544 oldprio = p->prio;
dd41f596 4545 on_rq = p->se.on_rq;
051a1d1a 4546 running = task_current(rq, p);
0e1f3483 4547 if (on_rq)
69be72c1 4548 dequeue_task(rq, p, 0);
0e1f3483
HS
4549 if (running)
4550 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4551
4552 if (rt_prio(prio))
4553 p->sched_class = &rt_sched_class;
4554 else
4555 p->sched_class = &fair_sched_class;
4556
b29739f9
IM
4557 p->prio = prio;
4558
0e1f3483
HS
4559 if (running)
4560 p->sched_class->set_curr_task(rq);
dd41f596 4561 if (on_rq) {
8159f87e 4562 enqueue_task(rq, p, 0);
cb469845
SR
4563
4564 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4565 }
4566 task_rq_unlock(rq, &flags);
4567}
4568
4569#endif
4570
36c8b586 4571void set_user_nice(struct task_struct *p, long nice)
1da177e4 4572{
dd41f596 4573 int old_prio, delta, on_rq;
1da177e4 4574 unsigned long flags;
70b97a7f 4575 struct rq *rq;
1da177e4
LT
4576
4577 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4578 return;
4579 /*
4580 * We have to be careful, if called from sys_setpriority(),
4581 * the task might be in the middle of scheduling on another CPU.
4582 */
4583 rq = task_rq_lock(p, &flags);
a8e504d2 4584 update_rq_clock(rq);
1da177e4
LT
4585 /*
4586 * The RT priorities are set via sched_setscheduler(), but we still
4587 * allow the 'normal' nice value to be set - but as expected
4588 * it wont have any effect on scheduling until the task is
dd41f596 4589 * SCHED_FIFO/SCHED_RR:
1da177e4 4590 */
e05606d3 4591 if (task_has_rt_policy(p)) {
1da177e4
LT
4592 p->static_prio = NICE_TO_PRIO(nice);
4593 goto out_unlock;
4594 }
dd41f596 4595 on_rq = p->se.on_rq;
6363ca57 4596 if (on_rq) {
69be72c1 4597 dequeue_task(rq, p, 0);
6363ca57
IM
4598 dec_load(rq, p);
4599 }
1da177e4 4600
1da177e4 4601 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4602 set_load_weight(p);
b29739f9
IM
4603 old_prio = p->prio;
4604 p->prio = effective_prio(p);
4605 delta = p->prio - old_prio;
1da177e4 4606
dd41f596 4607 if (on_rq) {
8159f87e 4608 enqueue_task(rq, p, 0);
6363ca57 4609 inc_load(rq, p);
1da177e4 4610 /*
d5f9f942
AM
4611 * If the task increased its priority or is running and
4612 * lowered its priority, then reschedule its CPU:
1da177e4 4613 */
d5f9f942 4614 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4615 resched_task(rq->curr);
4616 }
4617out_unlock:
4618 task_rq_unlock(rq, &flags);
4619}
1da177e4
LT
4620EXPORT_SYMBOL(set_user_nice);
4621
e43379f1
MM
4622/*
4623 * can_nice - check if a task can reduce its nice value
4624 * @p: task
4625 * @nice: nice value
4626 */
36c8b586 4627int can_nice(const struct task_struct *p, const int nice)
e43379f1 4628{
024f4747
MM
4629 /* convert nice value [19,-20] to rlimit style value [1,40] */
4630 int nice_rlim = 20 - nice;
48f24c4d 4631
e43379f1
MM
4632 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4633 capable(CAP_SYS_NICE));
4634}
4635
1da177e4
LT
4636#ifdef __ARCH_WANT_SYS_NICE
4637
4638/*
4639 * sys_nice - change the priority of the current process.
4640 * @increment: priority increment
4641 *
4642 * sys_setpriority is a more generic, but much slower function that
4643 * does similar things.
4644 */
4645asmlinkage long sys_nice(int increment)
4646{
48f24c4d 4647 long nice, retval;
1da177e4
LT
4648
4649 /*
4650 * Setpriority might change our priority at the same moment.
4651 * We don't have to worry. Conceptually one call occurs first
4652 * and we have a single winner.
4653 */
e43379f1
MM
4654 if (increment < -40)
4655 increment = -40;
1da177e4
LT
4656 if (increment > 40)
4657 increment = 40;
4658
4659 nice = PRIO_TO_NICE(current->static_prio) + increment;
4660 if (nice < -20)
4661 nice = -20;
4662 if (nice > 19)
4663 nice = 19;
4664
e43379f1
MM
4665 if (increment < 0 && !can_nice(current, nice))
4666 return -EPERM;
4667
1da177e4
LT
4668 retval = security_task_setnice(current, nice);
4669 if (retval)
4670 return retval;
4671
4672 set_user_nice(current, nice);
4673 return 0;
4674}
4675
4676#endif
4677
4678/**
4679 * task_prio - return the priority value of a given task.
4680 * @p: the task in question.
4681 *
4682 * This is the priority value as seen by users in /proc.
4683 * RT tasks are offset by -200. Normal tasks are centered
4684 * around 0, value goes from -16 to +15.
4685 */
36c8b586 4686int task_prio(const struct task_struct *p)
1da177e4
LT
4687{
4688 return p->prio - MAX_RT_PRIO;
4689}
4690
4691/**
4692 * task_nice - return the nice value of a given task.
4693 * @p: the task in question.
4694 */
36c8b586 4695int task_nice(const struct task_struct *p)
1da177e4
LT
4696{
4697 return TASK_NICE(p);
4698}
150d8bed 4699EXPORT_SYMBOL(task_nice);
1da177e4
LT
4700
4701/**
4702 * idle_cpu - is a given cpu idle currently?
4703 * @cpu: the processor in question.
4704 */
4705int idle_cpu(int cpu)
4706{
4707 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4708}
4709
1da177e4
LT
4710/**
4711 * idle_task - return the idle task for a given cpu.
4712 * @cpu: the processor in question.
4713 */
36c8b586 4714struct task_struct *idle_task(int cpu)
1da177e4
LT
4715{
4716 return cpu_rq(cpu)->idle;
4717}
4718
4719/**
4720 * find_process_by_pid - find a process with a matching PID value.
4721 * @pid: the pid in question.
4722 */
a9957449 4723static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4724{
228ebcbe 4725 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4726}
4727
4728/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4729static void
4730__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4731{
dd41f596 4732 BUG_ON(p->se.on_rq);
48f24c4d 4733
1da177e4 4734 p->policy = policy;
dd41f596
IM
4735 switch (p->policy) {
4736 case SCHED_NORMAL:
4737 case SCHED_BATCH:
4738 case SCHED_IDLE:
4739 p->sched_class = &fair_sched_class;
4740 break;
4741 case SCHED_FIFO:
4742 case SCHED_RR:
4743 p->sched_class = &rt_sched_class;
4744 break;
4745 }
4746
1da177e4 4747 p->rt_priority = prio;
b29739f9
IM
4748 p->normal_prio = normal_prio(p);
4749 /* we are holding p->pi_lock already */
4750 p->prio = rt_mutex_getprio(p);
2dd73a4f 4751 set_load_weight(p);
1da177e4
LT
4752}
4753
4754/**
72fd4a35 4755 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4756 * @p: the task in question.
4757 * @policy: new policy.
4758 * @param: structure containing the new RT priority.
5fe1d75f 4759 *
72fd4a35 4760 * NOTE that the task may be already dead.
1da177e4 4761 */
95cdf3b7
IM
4762int sched_setscheduler(struct task_struct *p, int policy,
4763 struct sched_param *param)
1da177e4 4764{
83b699ed 4765 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4766 unsigned long flags;
cb469845 4767 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4768 struct rq *rq;
1da177e4 4769
66e5393a
SR
4770 /* may grab non-irq protected spin_locks */
4771 BUG_ON(in_interrupt());
1da177e4
LT
4772recheck:
4773 /* double check policy once rq lock held */
4774 if (policy < 0)
4775 policy = oldpolicy = p->policy;
4776 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4777 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4778 policy != SCHED_IDLE)
b0a9499c 4779 return -EINVAL;
1da177e4
LT
4780 /*
4781 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4782 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4783 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4784 */
4785 if (param->sched_priority < 0 ||
95cdf3b7 4786 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4787 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4788 return -EINVAL;
e05606d3 4789 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4790 return -EINVAL;
4791
37e4ab3f
OC
4792 /*
4793 * Allow unprivileged RT tasks to decrease priority:
4794 */
4795 if (!capable(CAP_SYS_NICE)) {
e05606d3 4796 if (rt_policy(policy)) {
8dc3e909 4797 unsigned long rlim_rtprio;
8dc3e909
ON
4798
4799 if (!lock_task_sighand(p, &flags))
4800 return -ESRCH;
4801 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4802 unlock_task_sighand(p, &flags);
4803
4804 /* can't set/change the rt policy */
4805 if (policy != p->policy && !rlim_rtprio)
4806 return -EPERM;
4807
4808 /* can't increase priority */
4809 if (param->sched_priority > p->rt_priority &&
4810 param->sched_priority > rlim_rtprio)
4811 return -EPERM;
4812 }
dd41f596
IM
4813 /*
4814 * Like positive nice levels, dont allow tasks to
4815 * move out of SCHED_IDLE either:
4816 */
4817 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4818 return -EPERM;
5fe1d75f 4819
37e4ab3f
OC
4820 /* can't change other user's priorities */
4821 if ((current->euid != p->euid) &&
4822 (current->euid != p->uid))
4823 return -EPERM;
4824 }
1da177e4 4825
b68aa230
PZ
4826#ifdef CONFIG_RT_GROUP_SCHED
4827 /*
4828 * Do not allow realtime tasks into groups that have no runtime
4829 * assigned.
4830 */
d0b27fa7 4831 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4832 return -EPERM;
4833#endif
4834
1da177e4
LT
4835 retval = security_task_setscheduler(p, policy, param);
4836 if (retval)
4837 return retval;
b29739f9
IM
4838 /*
4839 * make sure no PI-waiters arrive (or leave) while we are
4840 * changing the priority of the task:
4841 */
4842 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4843 /*
4844 * To be able to change p->policy safely, the apropriate
4845 * runqueue lock must be held.
4846 */
b29739f9 4847 rq = __task_rq_lock(p);
1da177e4
LT
4848 /* recheck policy now with rq lock held */
4849 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4850 policy = oldpolicy = -1;
b29739f9
IM
4851 __task_rq_unlock(rq);
4852 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4853 goto recheck;
4854 }
2daa3577 4855 update_rq_clock(rq);
dd41f596 4856 on_rq = p->se.on_rq;
051a1d1a 4857 running = task_current(rq, p);
0e1f3483 4858 if (on_rq)
2e1cb74a 4859 deactivate_task(rq, p, 0);
0e1f3483
HS
4860 if (running)
4861 p->sched_class->put_prev_task(rq, p);
f6b53205 4862
1da177e4 4863 oldprio = p->prio;
dd41f596 4864 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4865
0e1f3483
HS
4866 if (running)
4867 p->sched_class->set_curr_task(rq);
dd41f596
IM
4868 if (on_rq) {
4869 activate_task(rq, p, 0);
cb469845
SR
4870
4871 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4872 }
b29739f9
IM
4873 __task_rq_unlock(rq);
4874 spin_unlock_irqrestore(&p->pi_lock, flags);
4875
95e02ca9
TG
4876 rt_mutex_adjust_pi(p);
4877
1da177e4
LT
4878 return 0;
4879}
4880EXPORT_SYMBOL_GPL(sched_setscheduler);
4881
95cdf3b7
IM
4882static int
4883do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4884{
1da177e4
LT
4885 struct sched_param lparam;
4886 struct task_struct *p;
36c8b586 4887 int retval;
1da177e4
LT
4888
4889 if (!param || pid < 0)
4890 return -EINVAL;
4891 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4892 return -EFAULT;
5fe1d75f
ON
4893
4894 rcu_read_lock();
4895 retval = -ESRCH;
1da177e4 4896 p = find_process_by_pid(pid);
5fe1d75f
ON
4897 if (p != NULL)
4898 retval = sched_setscheduler(p, policy, &lparam);
4899 rcu_read_unlock();
36c8b586 4900
1da177e4
LT
4901 return retval;
4902}
4903
4904/**
4905 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4906 * @pid: the pid in question.
4907 * @policy: new policy.
4908 * @param: structure containing the new RT priority.
4909 */
41a2d6cf
IM
4910asmlinkage long
4911sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4912{
c21761f1
JB
4913 /* negative values for policy are not valid */
4914 if (policy < 0)
4915 return -EINVAL;
4916
1da177e4
LT
4917 return do_sched_setscheduler(pid, policy, param);
4918}
4919
4920/**
4921 * sys_sched_setparam - set/change the RT priority of a thread
4922 * @pid: the pid in question.
4923 * @param: structure containing the new RT priority.
4924 */
4925asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4926{
4927 return do_sched_setscheduler(pid, -1, param);
4928}
4929
4930/**
4931 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4932 * @pid: the pid in question.
4933 */
4934asmlinkage long sys_sched_getscheduler(pid_t pid)
4935{
36c8b586 4936 struct task_struct *p;
3a5c359a 4937 int retval;
1da177e4
LT
4938
4939 if (pid < 0)
3a5c359a 4940 return -EINVAL;
1da177e4
LT
4941
4942 retval = -ESRCH;
4943 read_lock(&tasklist_lock);
4944 p = find_process_by_pid(pid);
4945 if (p) {
4946 retval = security_task_getscheduler(p);
4947 if (!retval)
4948 retval = p->policy;
4949 }
4950 read_unlock(&tasklist_lock);
1da177e4
LT
4951 return retval;
4952}
4953
4954/**
4955 * sys_sched_getscheduler - get the RT priority of a thread
4956 * @pid: the pid in question.
4957 * @param: structure containing the RT priority.
4958 */
4959asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4960{
4961 struct sched_param lp;
36c8b586 4962 struct task_struct *p;
3a5c359a 4963 int retval;
1da177e4
LT
4964
4965 if (!param || pid < 0)
3a5c359a 4966 return -EINVAL;
1da177e4
LT
4967
4968 read_lock(&tasklist_lock);
4969 p = find_process_by_pid(pid);
4970 retval = -ESRCH;
4971 if (!p)
4972 goto out_unlock;
4973
4974 retval = security_task_getscheduler(p);
4975 if (retval)
4976 goto out_unlock;
4977
4978 lp.sched_priority = p->rt_priority;
4979 read_unlock(&tasklist_lock);
4980
4981 /*
4982 * This one might sleep, we cannot do it with a spinlock held ...
4983 */
4984 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4985
1da177e4
LT
4986 return retval;
4987
4988out_unlock:
4989 read_unlock(&tasklist_lock);
4990 return retval;
4991}
4992
b53e921b 4993long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4994{
1da177e4 4995 cpumask_t cpus_allowed;
b53e921b 4996 cpumask_t new_mask = *in_mask;
36c8b586
IM
4997 struct task_struct *p;
4998 int retval;
1da177e4 4999
95402b38 5000 get_online_cpus();
1da177e4
LT
5001 read_lock(&tasklist_lock);
5002
5003 p = find_process_by_pid(pid);
5004 if (!p) {
5005 read_unlock(&tasklist_lock);
95402b38 5006 put_online_cpus();
1da177e4
LT
5007 return -ESRCH;
5008 }
5009
5010 /*
5011 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5012 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5013 * usage count and then drop tasklist_lock.
5014 */
5015 get_task_struct(p);
5016 read_unlock(&tasklist_lock);
5017
5018 retval = -EPERM;
5019 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5020 !capable(CAP_SYS_NICE))
5021 goto out_unlock;
5022
e7834f8f
DQ
5023 retval = security_task_setscheduler(p, 0, NULL);
5024 if (retval)
5025 goto out_unlock;
5026
f9a86fcb 5027 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5028 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5029 again:
7c16ec58 5030 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5031
8707d8b8 5032 if (!retval) {
f9a86fcb 5033 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5034 if (!cpus_subset(new_mask, cpus_allowed)) {
5035 /*
5036 * We must have raced with a concurrent cpuset
5037 * update. Just reset the cpus_allowed to the
5038 * cpuset's cpus_allowed
5039 */
5040 new_mask = cpus_allowed;
5041 goto again;
5042 }
5043 }
1da177e4
LT
5044out_unlock:
5045 put_task_struct(p);
95402b38 5046 put_online_cpus();
1da177e4
LT
5047 return retval;
5048}
5049
5050static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5051 cpumask_t *new_mask)
5052{
5053 if (len < sizeof(cpumask_t)) {
5054 memset(new_mask, 0, sizeof(cpumask_t));
5055 } else if (len > sizeof(cpumask_t)) {
5056 len = sizeof(cpumask_t);
5057 }
5058 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5059}
5060
5061/**
5062 * sys_sched_setaffinity - set the cpu affinity of a process
5063 * @pid: pid of the process
5064 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5065 * @user_mask_ptr: user-space pointer to the new cpu mask
5066 */
5067asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5068 unsigned long __user *user_mask_ptr)
5069{
5070 cpumask_t new_mask;
5071 int retval;
5072
5073 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5074 if (retval)
5075 return retval;
5076
b53e921b 5077 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5078}
5079
5080/*
5081 * Represents all cpu's present in the system
5082 * In systems capable of hotplug, this map could dynamically grow
5083 * as new cpu's are detected in the system via any platform specific
5084 * method, such as ACPI for e.g.
5085 */
5086
4cef0c61 5087cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5088EXPORT_SYMBOL(cpu_present_map);
5089
5090#ifndef CONFIG_SMP
4cef0c61 5091cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5092EXPORT_SYMBOL(cpu_online_map);
5093
4cef0c61 5094cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5095EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5096#endif
5097
5098long sched_getaffinity(pid_t pid, cpumask_t *mask)
5099{
36c8b586 5100 struct task_struct *p;
1da177e4 5101 int retval;
1da177e4 5102
95402b38 5103 get_online_cpus();
1da177e4
LT
5104 read_lock(&tasklist_lock);
5105
5106 retval = -ESRCH;
5107 p = find_process_by_pid(pid);
5108 if (!p)
5109 goto out_unlock;
5110
e7834f8f
DQ
5111 retval = security_task_getscheduler(p);
5112 if (retval)
5113 goto out_unlock;
5114
2f7016d9 5115 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5116
5117out_unlock:
5118 read_unlock(&tasklist_lock);
95402b38 5119 put_online_cpus();
1da177e4 5120
9531b62f 5121 return retval;
1da177e4
LT
5122}
5123
5124/**
5125 * sys_sched_getaffinity - get the cpu affinity of a process
5126 * @pid: pid of the process
5127 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5128 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5129 */
5130asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5131 unsigned long __user *user_mask_ptr)
5132{
5133 int ret;
5134 cpumask_t mask;
5135
5136 if (len < sizeof(cpumask_t))
5137 return -EINVAL;
5138
5139 ret = sched_getaffinity(pid, &mask);
5140 if (ret < 0)
5141 return ret;
5142
5143 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5144 return -EFAULT;
5145
5146 return sizeof(cpumask_t);
5147}
5148
5149/**
5150 * sys_sched_yield - yield the current processor to other threads.
5151 *
dd41f596
IM
5152 * This function yields the current CPU to other tasks. If there are no
5153 * other threads running on this CPU then this function will return.
1da177e4
LT
5154 */
5155asmlinkage long sys_sched_yield(void)
5156{
70b97a7f 5157 struct rq *rq = this_rq_lock();
1da177e4 5158
2d72376b 5159 schedstat_inc(rq, yld_count);
4530d7ab 5160 current->sched_class->yield_task(rq);
1da177e4
LT
5161
5162 /*
5163 * Since we are going to call schedule() anyway, there's
5164 * no need to preempt or enable interrupts:
5165 */
5166 __release(rq->lock);
8a25d5de 5167 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5168 _raw_spin_unlock(&rq->lock);
5169 preempt_enable_no_resched();
5170
5171 schedule();
5172
5173 return 0;
5174}
5175
e7b38404 5176static void __cond_resched(void)
1da177e4 5177{
8e0a43d8
IM
5178#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5179 __might_sleep(__FILE__, __LINE__);
5180#endif
5bbcfd90
IM
5181 /*
5182 * The BKS might be reacquired before we have dropped
5183 * PREEMPT_ACTIVE, which could trigger a second
5184 * cond_resched() call.
5185 */
1da177e4
LT
5186 do {
5187 add_preempt_count(PREEMPT_ACTIVE);
5188 schedule();
5189 sub_preempt_count(PREEMPT_ACTIVE);
5190 } while (need_resched());
5191}
5192
02b67cc3 5193int __sched _cond_resched(void)
1da177e4 5194{
9414232f
IM
5195 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5196 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5197 __cond_resched();
5198 return 1;
5199 }
5200 return 0;
5201}
02b67cc3 5202EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5203
5204/*
5205 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5206 * call schedule, and on return reacquire the lock.
5207 *
41a2d6cf 5208 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5209 * operations here to prevent schedule() from being called twice (once via
5210 * spin_unlock(), once by hand).
5211 */
95cdf3b7 5212int cond_resched_lock(spinlock_t *lock)
1da177e4 5213{
95c354fe 5214 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5215 int ret = 0;
5216
95c354fe 5217 if (spin_needbreak(lock) || resched) {
1da177e4 5218 spin_unlock(lock);
95c354fe
NP
5219 if (resched && need_resched())
5220 __cond_resched();
5221 else
5222 cpu_relax();
6df3cecb 5223 ret = 1;
1da177e4 5224 spin_lock(lock);
1da177e4 5225 }
6df3cecb 5226 return ret;
1da177e4 5227}
1da177e4
LT
5228EXPORT_SYMBOL(cond_resched_lock);
5229
5230int __sched cond_resched_softirq(void)
5231{
5232 BUG_ON(!in_softirq());
5233
9414232f 5234 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5235 local_bh_enable();
1da177e4
LT
5236 __cond_resched();
5237 local_bh_disable();
5238 return 1;
5239 }
5240 return 0;
5241}
1da177e4
LT
5242EXPORT_SYMBOL(cond_resched_softirq);
5243
1da177e4
LT
5244/**
5245 * yield - yield the current processor to other threads.
5246 *
72fd4a35 5247 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5248 * thread runnable and calls sys_sched_yield().
5249 */
5250void __sched yield(void)
5251{
5252 set_current_state(TASK_RUNNING);
5253 sys_sched_yield();
5254}
1da177e4
LT
5255EXPORT_SYMBOL(yield);
5256
5257/*
41a2d6cf 5258 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5259 * that process accounting knows that this is a task in IO wait state.
5260 *
5261 * But don't do that if it is a deliberate, throttling IO wait (this task
5262 * has set its backing_dev_info: the queue against which it should throttle)
5263 */
5264void __sched io_schedule(void)
5265{
70b97a7f 5266 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5267
0ff92245 5268 delayacct_blkio_start();
1da177e4
LT
5269 atomic_inc(&rq->nr_iowait);
5270 schedule();
5271 atomic_dec(&rq->nr_iowait);
0ff92245 5272 delayacct_blkio_end();
1da177e4 5273}
1da177e4
LT
5274EXPORT_SYMBOL(io_schedule);
5275
5276long __sched io_schedule_timeout(long timeout)
5277{
70b97a7f 5278 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5279 long ret;
5280
0ff92245 5281 delayacct_blkio_start();
1da177e4
LT
5282 atomic_inc(&rq->nr_iowait);
5283 ret = schedule_timeout(timeout);
5284 atomic_dec(&rq->nr_iowait);
0ff92245 5285 delayacct_blkio_end();
1da177e4
LT
5286 return ret;
5287}
5288
5289/**
5290 * sys_sched_get_priority_max - return maximum RT priority.
5291 * @policy: scheduling class.
5292 *
5293 * this syscall returns the maximum rt_priority that can be used
5294 * by a given scheduling class.
5295 */
5296asmlinkage long sys_sched_get_priority_max(int policy)
5297{
5298 int ret = -EINVAL;
5299
5300 switch (policy) {
5301 case SCHED_FIFO:
5302 case SCHED_RR:
5303 ret = MAX_USER_RT_PRIO-1;
5304 break;
5305 case SCHED_NORMAL:
b0a9499c 5306 case SCHED_BATCH:
dd41f596 5307 case SCHED_IDLE:
1da177e4
LT
5308 ret = 0;
5309 break;
5310 }
5311 return ret;
5312}
5313
5314/**
5315 * sys_sched_get_priority_min - return minimum RT priority.
5316 * @policy: scheduling class.
5317 *
5318 * this syscall returns the minimum rt_priority that can be used
5319 * by a given scheduling class.
5320 */
5321asmlinkage long sys_sched_get_priority_min(int policy)
5322{
5323 int ret = -EINVAL;
5324
5325 switch (policy) {
5326 case SCHED_FIFO:
5327 case SCHED_RR:
5328 ret = 1;
5329 break;
5330 case SCHED_NORMAL:
b0a9499c 5331 case SCHED_BATCH:
dd41f596 5332 case SCHED_IDLE:
1da177e4
LT
5333 ret = 0;
5334 }
5335 return ret;
5336}
5337
5338/**
5339 * sys_sched_rr_get_interval - return the default timeslice of a process.
5340 * @pid: pid of the process.
5341 * @interval: userspace pointer to the timeslice value.
5342 *
5343 * this syscall writes the default timeslice value of a given process
5344 * into the user-space timespec buffer. A value of '0' means infinity.
5345 */
5346asmlinkage
5347long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5348{
36c8b586 5349 struct task_struct *p;
a4ec24b4 5350 unsigned int time_slice;
3a5c359a 5351 int retval;
1da177e4 5352 struct timespec t;
1da177e4
LT
5353
5354 if (pid < 0)
3a5c359a 5355 return -EINVAL;
1da177e4
LT
5356
5357 retval = -ESRCH;
5358 read_lock(&tasklist_lock);
5359 p = find_process_by_pid(pid);
5360 if (!p)
5361 goto out_unlock;
5362
5363 retval = security_task_getscheduler(p);
5364 if (retval)
5365 goto out_unlock;
5366
77034937
IM
5367 /*
5368 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5369 * tasks that are on an otherwise idle runqueue:
5370 */
5371 time_slice = 0;
5372 if (p->policy == SCHED_RR) {
a4ec24b4 5373 time_slice = DEF_TIMESLICE;
1868f958 5374 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5375 struct sched_entity *se = &p->se;
5376 unsigned long flags;
5377 struct rq *rq;
5378
5379 rq = task_rq_lock(p, &flags);
77034937
IM
5380 if (rq->cfs.load.weight)
5381 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5382 task_rq_unlock(rq, &flags);
5383 }
1da177e4 5384 read_unlock(&tasklist_lock);
a4ec24b4 5385 jiffies_to_timespec(time_slice, &t);
1da177e4 5386 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5387 return retval;
3a5c359a 5388
1da177e4
LT
5389out_unlock:
5390 read_unlock(&tasklist_lock);
5391 return retval;
5392}
5393
2ed6e34f 5394static const char stat_nam[] = "RSDTtZX";
36c8b586 5395
82a1fcb9 5396void sched_show_task(struct task_struct *p)
1da177e4 5397{
1da177e4 5398 unsigned long free = 0;
36c8b586 5399 unsigned state;
1da177e4 5400
1da177e4 5401 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5402 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5403 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5404#if BITS_PER_LONG == 32
1da177e4 5405 if (state == TASK_RUNNING)
cc4ea795 5406 printk(KERN_CONT " running ");
1da177e4 5407 else
cc4ea795 5408 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5409#else
5410 if (state == TASK_RUNNING)
cc4ea795 5411 printk(KERN_CONT " running task ");
1da177e4 5412 else
cc4ea795 5413 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5414#endif
5415#ifdef CONFIG_DEBUG_STACK_USAGE
5416 {
10ebffde 5417 unsigned long *n = end_of_stack(p);
1da177e4
LT
5418 while (!*n)
5419 n++;
10ebffde 5420 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5421 }
5422#endif
ba25f9dc 5423 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5424 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5425
5fb5e6de 5426 show_stack(p, NULL);
1da177e4
LT
5427}
5428
e59e2ae2 5429void show_state_filter(unsigned long state_filter)
1da177e4 5430{
36c8b586 5431 struct task_struct *g, *p;
1da177e4 5432
4bd77321
IM
5433#if BITS_PER_LONG == 32
5434 printk(KERN_INFO
5435 " task PC stack pid father\n");
1da177e4 5436#else
4bd77321
IM
5437 printk(KERN_INFO
5438 " task PC stack pid father\n");
1da177e4
LT
5439#endif
5440 read_lock(&tasklist_lock);
5441 do_each_thread(g, p) {
5442 /*
5443 * reset the NMI-timeout, listing all files on a slow
5444 * console might take alot of time:
5445 */
5446 touch_nmi_watchdog();
39bc89fd 5447 if (!state_filter || (p->state & state_filter))
82a1fcb9 5448 sched_show_task(p);
1da177e4
LT
5449 } while_each_thread(g, p);
5450
04c9167f
JF
5451 touch_all_softlockup_watchdogs();
5452
dd41f596
IM
5453#ifdef CONFIG_SCHED_DEBUG
5454 sysrq_sched_debug_show();
5455#endif
1da177e4 5456 read_unlock(&tasklist_lock);
e59e2ae2
IM
5457 /*
5458 * Only show locks if all tasks are dumped:
5459 */
5460 if (state_filter == -1)
5461 debug_show_all_locks();
1da177e4
LT
5462}
5463
1df21055
IM
5464void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5465{
dd41f596 5466 idle->sched_class = &idle_sched_class;
1df21055
IM
5467}
5468
f340c0d1
IM
5469/**
5470 * init_idle - set up an idle thread for a given CPU
5471 * @idle: task in question
5472 * @cpu: cpu the idle task belongs to
5473 *
5474 * NOTE: this function does not set the idle thread's NEED_RESCHED
5475 * flag, to make booting more robust.
5476 */
5c1e1767 5477void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5478{
70b97a7f 5479 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5480 unsigned long flags;
5481
dd41f596
IM
5482 __sched_fork(idle);
5483 idle->se.exec_start = sched_clock();
5484
b29739f9 5485 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5486 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5487 __set_task_cpu(idle, cpu);
1da177e4
LT
5488
5489 spin_lock_irqsave(&rq->lock, flags);
5490 rq->curr = rq->idle = idle;
4866cde0
NP
5491#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5492 idle->oncpu = 1;
5493#endif
1da177e4
LT
5494 spin_unlock_irqrestore(&rq->lock, flags);
5495
5496 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5497#if defined(CONFIG_PREEMPT)
5498 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5499#else
a1261f54 5500 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5501#endif
dd41f596
IM
5502 /*
5503 * The idle tasks have their own, simple scheduling class:
5504 */
5505 idle->sched_class = &idle_sched_class;
1da177e4
LT
5506}
5507
5508/*
5509 * In a system that switches off the HZ timer nohz_cpu_mask
5510 * indicates which cpus entered this state. This is used
5511 * in the rcu update to wait only for active cpus. For system
5512 * which do not switch off the HZ timer nohz_cpu_mask should
5513 * always be CPU_MASK_NONE.
5514 */
5515cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5516
19978ca6
IM
5517/*
5518 * Increase the granularity value when there are more CPUs,
5519 * because with more CPUs the 'effective latency' as visible
5520 * to users decreases. But the relationship is not linear,
5521 * so pick a second-best guess by going with the log2 of the
5522 * number of CPUs.
5523 *
5524 * This idea comes from the SD scheduler of Con Kolivas:
5525 */
5526static inline void sched_init_granularity(void)
5527{
5528 unsigned int factor = 1 + ilog2(num_online_cpus());
5529 const unsigned long limit = 200000000;
5530
5531 sysctl_sched_min_granularity *= factor;
5532 if (sysctl_sched_min_granularity > limit)
5533 sysctl_sched_min_granularity = limit;
5534
5535 sysctl_sched_latency *= factor;
5536 if (sysctl_sched_latency > limit)
5537 sysctl_sched_latency = limit;
5538
5539 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5540}
5541
1da177e4
LT
5542#ifdef CONFIG_SMP
5543/*
5544 * This is how migration works:
5545 *
70b97a7f 5546 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5547 * runqueue and wake up that CPU's migration thread.
5548 * 2) we down() the locked semaphore => thread blocks.
5549 * 3) migration thread wakes up (implicitly it forces the migrated
5550 * thread off the CPU)
5551 * 4) it gets the migration request and checks whether the migrated
5552 * task is still in the wrong runqueue.
5553 * 5) if it's in the wrong runqueue then the migration thread removes
5554 * it and puts it into the right queue.
5555 * 6) migration thread up()s the semaphore.
5556 * 7) we wake up and the migration is done.
5557 */
5558
5559/*
5560 * Change a given task's CPU affinity. Migrate the thread to a
5561 * proper CPU and schedule it away if the CPU it's executing on
5562 * is removed from the allowed bitmask.
5563 *
5564 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5565 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5566 * call is not atomic; no spinlocks may be held.
5567 */
cd8ba7cd 5568int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5569{
70b97a7f 5570 struct migration_req req;
1da177e4 5571 unsigned long flags;
70b97a7f 5572 struct rq *rq;
48f24c4d 5573 int ret = 0;
1da177e4
LT
5574
5575 rq = task_rq_lock(p, &flags);
cd8ba7cd 5576 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5577 ret = -EINVAL;
5578 goto out;
5579 }
5580
73fe6aae 5581 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5582 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5583 else {
cd8ba7cd
MT
5584 p->cpus_allowed = *new_mask;
5585 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5586 }
5587
1da177e4 5588 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5589 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5590 goto out;
5591
cd8ba7cd 5592 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5593 /* Need help from migration thread: drop lock and wait. */
5594 task_rq_unlock(rq, &flags);
5595 wake_up_process(rq->migration_thread);
5596 wait_for_completion(&req.done);
5597 tlb_migrate_finish(p->mm);
5598 return 0;
5599 }
5600out:
5601 task_rq_unlock(rq, &flags);
48f24c4d 5602
1da177e4
LT
5603 return ret;
5604}
cd8ba7cd 5605EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5606
5607/*
41a2d6cf 5608 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5609 * this because either it can't run here any more (set_cpus_allowed()
5610 * away from this CPU, or CPU going down), or because we're
5611 * attempting to rebalance this task on exec (sched_exec).
5612 *
5613 * So we race with normal scheduler movements, but that's OK, as long
5614 * as the task is no longer on this CPU.
efc30814
KK
5615 *
5616 * Returns non-zero if task was successfully migrated.
1da177e4 5617 */
efc30814 5618static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5619{
70b97a7f 5620 struct rq *rq_dest, *rq_src;
dd41f596 5621 int ret = 0, on_rq;
1da177e4
LT
5622
5623 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5624 return ret;
1da177e4
LT
5625
5626 rq_src = cpu_rq(src_cpu);
5627 rq_dest = cpu_rq(dest_cpu);
5628
5629 double_rq_lock(rq_src, rq_dest);
5630 /* Already moved. */
5631 if (task_cpu(p) != src_cpu)
5632 goto out;
5633 /* Affinity changed (again). */
5634 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5635 goto out;
5636
dd41f596 5637 on_rq = p->se.on_rq;
6e82a3be 5638 if (on_rq)
2e1cb74a 5639 deactivate_task(rq_src, p, 0);
6e82a3be 5640
1da177e4 5641 set_task_cpu(p, dest_cpu);
dd41f596
IM
5642 if (on_rq) {
5643 activate_task(rq_dest, p, 0);
5644 check_preempt_curr(rq_dest, p);
1da177e4 5645 }
efc30814 5646 ret = 1;
1da177e4
LT
5647out:
5648 double_rq_unlock(rq_src, rq_dest);
efc30814 5649 return ret;
1da177e4
LT
5650}
5651
5652/*
5653 * migration_thread - this is a highprio system thread that performs
5654 * thread migration by bumping thread off CPU then 'pushing' onto
5655 * another runqueue.
5656 */
95cdf3b7 5657static int migration_thread(void *data)
1da177e4 5658{
1da177e4 5659 int cpu = (long)data;
70b97a7f 5660 struct rq *rq;
1da177e4
LT
5661
5662 rq = cpu_rq(cpu);
5663 BUG_ON(rq->migration_thread != current);
5664
5665 set_current_state(TASK_INTERRUPTIBLE);
5666 while (!kthread_should_stop()) {
70b97a7f 5667 struct migration_req *req;
1da177e4 5668 struct list_head *head;
1da177e4 5669
1da177e4
LT
5670 spin_lock_irq(&rq->lock);
5671
5672 if (cpu_is_offline(cpu)) {
5673 spin_unlock_irq(&rq->lock);
5674 goto wait_to_die;
5675 }
5676
5677 if (rq->active_balance) {
5678 active_load_balance(rq, cpu);
5679 rq->active_balance = 0;
5680 }
5681
5682 head = &rq->migration_queue;
5683
5684 if (list_empty(head)) {
5685 spin_unlock_irq(&rq->lock);
5686 schedule();
5687 set_current_state(TASK_INTERRUPTIBLE);
5688 continue;
5689 }
70b97a7f 5690 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5691 list_del_init(head->next);
5692
674311d5
NP
5693 spin_unlock(&rq->lock);
5694 __migrate_task(req->task, cpu, req->dest_cpu);
5695 local_irq_enable();
1da177e4
LT
5696
5697 complete(&req->done);
5698 }
5699 __set_current_state(TASK_RUNNING);
5700 return 0;
5701
5702wait_to_die:
5703 /* Wait for kthread_stop */
5704 set_current_state(TASK_INTERRUPTIBLE);
5705 while (!kthread_should_stop()) {
5706 schedule();
5707 set_current_state(TASK_INTERRUPTIBLE);
5708 }
5709 __set_current_state(TASK_RUNNING);
5710 return 0;
5711}
5712
5713#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5714
5715static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5716{
5717 int ret;
5718
5719 local_irq_disable();
5720 ret = __migrate_task(p, src_cpu, dest_cpu);
5721 local_irq_enable();
5722 return ret;
5723}
5724
054b9108 5725/*
3a4fa0a2 5726 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5727 * NOTE: interrupts should be disabled by the caller
5728 */
48f24c4d 5729static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5730{
efc30814 5731 unsigned long flags;
1da177e4 5732 cpumask_t mask;
70b97a7f
IM
5733 struct rq *rq;
5734 int dest_cpu;
1da177e4 5735
3a5c359a
AK
5736 do {
5737 /* On same node? */
5738 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5739 cpus_and(mask, mask, p->cpus_allowed);
5740 dest_cpu = any_online_cpu(mask);
5741
5742 /* On any allowed CPU? */
434d53b0 5743 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5744 dest_cpu = any_online_cpu(p->cpus_allowed);
5745
5746 /* No more Mr. Nice Guy. */
434d53b0 5747 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5748 cpumask_t cpus_allowed;
5749
5750 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5751 /*
5752 * Try to stay on the same cpuset, where the
5753 * current cpuset may be a subset of all cpus.
5754 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5755 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5756 * called within calls to cpuset_lock/cpuset_unlock.
5757 */
3a5c359a 5758 rq = task_rq_lock(p, &flags);
470fd646 5759 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5760 dest_cpu = any_online_cpu(p->cpus_allowed);
5761 task_rq_unlock(rq, &flags);
1da177e4 5762
3a5c359a
AK
5763 /*
5764 * Don't tell them about moving exiting tasks or
5765 * kernel threads (both mm NULL), since they never
5766 * leave kernel.
5767 */
41a2d6cf 5768 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5769 printk(KERN_INFO "process %d (%s) no "
5770 "longer affine to cpu%d\n",
41a2d6cf
IM
5771 task_pid_nr(p), p->comm, dead_cpu);
5772 }
3a5c359a 5773 }
f7b4cddc 5774 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5775}
5776
5777/*
5778 * While a dead CPU has no uninterruptible tasks queued at this point,
5779 * it might still have a nonzero ->nr_uninterruptible counter, because
5780 * for performance reasons the counter is not stricly tracking tasks to
5781 * their home CPUs. So we just add the counter to another CPU's counter,
5782 * to keep the global sum constant after CPU-down:
5783 */
70b97a7f 5784static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5785{
7c16ec58 5786 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5787 unsigned long flags;
5788
5789 local_irq_save(flags);
5790 double_rq_lock(rq_src, rq_dest);
5791 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5792 rq_src->nr_uninterruptible = 0;
5793 double_rq_unlock(rq_src, rq_dest);
5794 local_irq_restore(flags);
5795}
5796
5797/* Run through task list and migrate tasks from the dead cpu. */
5798static void migrate_live_tasks(int src_cpu)
5799{
48f24c4d 5800 struct task_struct *p, *t;
1da177e4 5801
f7b4cddc 5802 read_lock(&tasklist_lock);
1da177e4 5803
48f24c4d
IM
5804 do_each_thread(t, p) {
5805 if (p == current)
1da177e4
LT
5806 continue;
5807
48f24c4d
IM
5808 if (task_cpu(p) == src_cpu)
5809 move_task_off_dead_cpu(src_cpu, p);
5810 } while_each_thread(t, p);
1da177e4 5811
f7b4cddc 5812 read_unlock(&tasklist_lock);
1da177e4
LT
5813}
5814
dd41f596
IM
5815/*
5816 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5817 * It does so by boosting its priority to highest possible.
5818 * Used by CPU offline code.
1da177e4
LT
5819 */
5820void sched_idle_next(void)
5821{
48f24c4d 5822 int this_cpu = smp_processor_id();
70b97a7f 5823 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5824 struct task_struct *p = rq->idle;
5825 unsigned long flags;
5826
5827 /* cpu has to be offline */
48f24c4d 5828 BUG_ON(cpu_online(this_cpu));
1da177e4 5829
48f24c4d
IM
5830 /*
5831 * Strictly not necessary since rest of the CPUs are stopped by now
5832 * and interrupts disabled on the current cpu.
1da177e4
LT
5833 */
5834 spin_lock_irqsave(&rq->lock, flags);
5835
dd41f596 5836 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5837
94bc9a7b
DA
5838 update_rq_clock(rq);
5839 activate_task(rq, p, 0);
1da177e4
LT
5840
5841 spin_unlock_irqrestore(&rq->lock, flags);
5842}
5843
48f24c4d
IM
5844/*
5845 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5846 * offline.
5847 */
5848void idle_task_exit(void)
5849{
5850 struct mm_struct *mm = current->active_mm;
5851
5852 BUG_ON(cpu_online(smp_processor_id()));
5853
5854 if (mm != &init_mm)
5855 switch_mm(mm, &init_mm, current);
5856 mmdrop(mm);
5857}
5858
054b9108 5859/* called under rq->lock with disabled interrupts */
36c8b586 5860static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5861{
70b97a7f 5862 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5863
5864 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5865 BUG_ON(!p->exit_state);
1da177e4
LT
5866
5867 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5868 BUG_ON(p->state == TASK_DEAD);
1da177e4 5869
48f24c4d 5870 get_task_struct(p);
1da177e4
LT
5871
5872 /*
5873 * Drop lock around migration; if someone else moves it,
41a2d6cf 5874 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5875 * fine.
5876 */
f7b4cddc 5877 spin_unlock_irq(&rq->lock);
48f24c4d 5878 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5879 spin_lock_irq(&rq->lock);
1da177e4 5880
48f24c4d 5881 put_task_struct(p);
1da177e4
LT
5882}
5883
5884/* release_task() removes task from tasklist, so we won't find dead tasks. */
5885static void migrate_dead_tasks(unsigned int dead_cpu)
5886{
70b97a7f 5887 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5888 struct task_struct *next;
48f24c4d 5889
dd41f596
IM
5890 for ( ; ; ) {
5891 if (!rq->nr_running)
5892 break;
a8e504d2 5893 update_rq_clock(rq);
ff95f3df 5894 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5895 if (!next)
5896 break;
5897 migrate_dead(dead_cpu, next);
e692ab53 5898
1da177e4
LT
5899 }
5900}
5901#endif /* CONFIG_HOTPLUG_CPU */
5902
e692ab53
NP
5903#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5904
5905static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5906 {
5907 .procname = "sched_domain",
c57baf1e 5908 .mode = 0555,
e0361851 5909 },
38605cae 5910 {0, },
e692ab53
NP
5911};
5912
5913static struct ctl_table sd_ctl_root[] = {
e0361851 5914 {
c57baf1e 5915 .ctl_name = CTL_KERN,
e0361851 5916 .procname = "kernel",
c57baf1e 5917 .mode = 0555,
e0361851
AD
5918 .child = sd_ctl_dir,
5919 },
38605cae 5920 {0, },
e692ab53
NP
5921};
5922
5923static struct ctl_table *sd_alloc_ctl_entry(int n)
5924{
5925 struct ctl_table *entry =
5cf9f062 5926 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5927
e692ab53
NP
5928 return entry;
5929}
5930
6382bc90
MM
5931static void sd_free_ctl_entry(struct ctl_table **tablep)
5932{
cd790076 5933 struct ctl_table *entry;
6382bc90 5934
cd790076
MM
5935 /*
5936 * In the intermediate directories, both the child directory and
5937 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5938 * will always be set. In the lowest directory the names are
cd790076
MM
5939 * static strings and all have proc handlers.
5940 */
5941 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5942 if (entry->child)
5943 sd_free_ctl_entry(&entry->child);
cd790076
MM
5944 if (entry->proc_handler == NULL)
5945 kfree(entry->procname);
5946 }
6382bc90
MM
5947
5948 kfree(*tablep);
5949 *tablep = NULL;
5950}
5951
e692ab53 5952static void
e0361851 5953set_table_entry(struct ctl_table *entry,
e692ab53
NP
5954 const char *procname, void *data, int maxlen,
5955 mode_t mode, proc_handler *proc_handler)
5956{
e692ab53
NP
5957 entry->procname = procname;
5958 entry->data = data;
5959 entry->maxlen = maxlen;
5960 entry->mode = mode;
5961 entry->proc_handler = proc_handler;
5962}
5963
5964static struct ctl_table *
5965sd_alloc_ctl_domain_table(struct sched_domain *sd)
5966{
ace8b3d6 5967 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5968
ad1cdc1d
MM
5969 if (table == NULL)
5970 return NULL;
5971
e0361851 5972 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5973 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5974 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5975 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5976 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5977 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5978 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5979 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5980 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5981 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5982 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5983 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5984 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5985 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5986 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5987 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5988 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5989 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5990 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5991 &sd->cache_nice_tries,
5992 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5993 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5994 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5995 /* &table[11] is terminator */
e692ab53
NP
5996
5997 return table;
5998}
5999
9a4e7159 6000static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6001{
6002 struct ctl_table *entry, *table;
6003 struct sched_domain *sd;
6004 int domain_num = 0, i;
6005 char buf[32];
6006
6007 for_each_domain(cpu, sd)
6008 domain_num++;
6009 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6010 if (table == NULL)
6011 return NULL;
e692ab53
NP
6012
6013 i = 0;
6014 for_each_domain(cpu, sd) {
6015 snprintf(buf, 32, "domain%d", i);
e692ab53 6016 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6017 entry->mode = 0555;
e692ab53
NP
6018 entry->child = sd_alloc_ctl_domain_table(sd);
6019 entry++;
6020 i++;
6021 }
6022 return table;
6023}
6024
6025static struct ctl_table_header *sd_sysctl_header;
6382bc90 6026static void register_sched_domain_sysctl(void)
e692ab53
NP
6027{
6028 int i, cpu_num = num_online_cpus();
6029 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6030 char buf[32];
6031
7378547f
MM
6032 WARN_ON(sd_ctl_dir[0].child);
6033 sd_ctl_dir[0].child = entry;
6034
ad1cdc1d
MM
6035 if (entry == NULL)
6036 return;
6037
97b6ea7b 6038 for_each_online_cpu(i) {
e692ab53 6039 snprintf(buf, 32, "cpu%d", i);
e692ab53 6040 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6041 entry->mode = 0555;
e692ab53 6042 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6043 entry++;
e692ab53 6044 }
7378547f
MM
6045
6046 WARN_ON(sd_sysctl_header);
e692ab53
NP
6047 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6048}
6382bc90 6049
7378547f 6050/* may be called multiple times per register */
6382bc90
MM
6051static void unregister_sched_domain_sysctl(void)
6052{
7378547f
MM
6053 if (sd_sysctl_header)
6054 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6055 sd_sysctl_header = NULL;
7378547f
MM
6056 if (sd_ctl_dir[0].child)
6057 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6058}
e692ab53 6059#else
6382bc90
MM
6060static void register_sched_domain_sysctl(void)
6061{
6062}
6063static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6064{
6065}
6066#endif
6067
1da177e4
LT
6068/*
6069 * migration_call - callback that gets triggered when a CPU is added.
6070 * Here we can start up the necessary migration thread for the new CPU.
6071 */
48f24c4d
IM
6072static int __cpuinit
6073migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6074{
1da177e4 6075 struct task_struct *p;
48f24c4d 6076 int cpu = (long)hcpu;
1da177e4 6077 unsigned long flags;
70b97a7f 6078 struct rq *rq;
1da177e4
LT
6079
6080 switch (action) {
5be9361c 6081
1da177e4 6082 case CPU_UP_PREPARE:
8bb78442 6083 case CPU_UP_PREPARE_FROZEN:
dd41f596 6084 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6085 if (IS_ERR(p))
6086 return NOTIFY_BAD;
1da177e4
LT
6087 kthread_bind(p, cpu);
6088 /* Must be high prio: stop_machine expects to yield to it. */
6089 rq = task_rq_lock(p, &flags);
dd41f596 6090 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6091 task_rq_unlock(rq, &flags);
6092 cpu_rq(cpu)->migration_thread = p;
6093 break;
48f24c4d 6094
1da177e4 6095 case CPU_ONLINE:
8bb78442 6096 case CPU_ONLINE_FROZEN:
3a4fa0a2 6097 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6098 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6099
6100 /* Update our root-domain */
6101 rq = cpu_rq(cpu);
6102 spin_lock_irqsave(&rq->lock, flags);
6103 if (rq->rd) {
6104 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6105 cpu_set(cpu, rq->rd->online);
6106 }
6107 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6108 break;
48f24c4d 6109
1da177e4
LT
6110#ifdef CONFIG_HOTPLUG_CPU
6111 case CPU_UP_CANCELED:
8bb78442 6112 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6113 if (!cpu_rq(cpu)->migration_thread)
6114 break;
41a2d6cf 6115 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6116 kthread_bind(cpu_rq(cpu)->migration_thread,
6117 any_online_cpu(cpu_online_map));
1da177e4
LT
6118 kthread_stop(cpu_rq(cpu)->migration_thread);
6119 cpu_rq(cpu)->migration_thread = NULL;
6120 break;
48f24c4d 6121
1da177e4 6122 case CPU_DEAD:
8bb78442 6123 case CPU_DEAD_FROZEN:
470fd646 6124 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6125 migrate_live_tasks(cpu);
6126 rq = cpu_rq(cpu);
6127 kthread_stop(rq->migration_thread);
6128 rq->migration_thread = NULL;
6129 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6130 spin_lock_irq(&rq->lock);
a8e504d2 6131 update_rq_clock(rq);
2e1cb74a 6132 deactivate_task(rq, rq->idle, 0);
1da177e4 6133 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6134 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6135 rq->idle->sched_class = &idle_sched_class;
1da177e4 6136 migrate_dead_tasks(cpu);
d2da272a 6137 spin_unlock_irq(&rq->lock);
470fd646 6138 cpuset_unlock();
1da177e4
LT
6139 migrate_nr_uninterruptible(rq);
6140 BUG_ON(rq->nr_running != 0);
6141
41a2d6cf
IM
6142 /*
6143 * No need to migrate the tasks: it was best-effort if
6144 * they didn't take sched_hotcpu_mutex. Just wake up
6145 * the requestors.
6146 */
1da177e4
LT
6147 spin_lock_irq(&rq->lock);
6148 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6149 struct migration_req *req;
6150
1da177e4 6151 req = list_entry(rq->migration_queue.next,
70b97a7f 6152 struct migration_req, list);
1da177e4
LT
6153 list_del_init(&req->list);
6154 complete(&req->done);
6155 }
6156 spin_unlock_irq(&rq->lock);
6157 break;
57d885fe 6158
08f503b0
GH
6159 case CPU_DYING:
6160 case CPU_DYING_FROZEN:
57d885fe
GH
6161 /* Update our root-domain */
6162 rq = cpu_rq(cpu);
6163 spin_lock_irqsave(&rq->lock, flags);
6164 if (rq->rd) {
6165 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6166 cpu_clear(cpu, rq->rd->online);
6167 }
6168 spin_unlock_irqrestore(&rq->lock, flags);
6169 break;
1da177e4
LT
6170#endif
6171 }
6172 return NOTIFY_OK;
6173}
6174
6175/* Register at highest priority so that task migration (migrate_all_tasks)
6176 * happens before everything else.
6177 */
26c2143b 6178static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6179 .notifier_call = migration_call,
6180 .priority = 10
6181};
6182
e6fe6649 6183void __init migration_init(void)
1da177e4
LT
6184{
6185 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6186 int err;
48f24c4d
IM
6187
6188 /* Start one for the boot CPU: */
07dccf33
AM
6189 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6190 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6191 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6192 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6193}
6194#endif
6195
6196#ifdef CONFIG_SMP
476f3534 6197
3e9830dc 6198#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6199
099f98c8
GS
6200static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6201{
6202 switch (lvl) {
6203 case SD_LV_NONE:
6204 return "NONE";
6205 case SD_LV_SIBLING:
6206 return "SIBLING";
6207 case SD_LV_MC:
6208 return "MC";
6209 case SD_LV_CPU:
6210 return "CPU";
6211 case SD_LV_NODE:
6212 return "NODE";
6213 case SD_LV_ALLNODES:
6214 return "ALLNODES";
6215 case SD_LV_MAX:
6216 return "MAX";
6217
6218 }
6219 return "MAX";
6220}
6221
7c16ec58
MT
6222static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6223 cpumask_t *groupmask)
1da177e4 6224{
4dcf6aff 6225 struct sched_group *group = sd->groups;
434d53b0 6226 char str[256];
1da177e4 6227
434d53b0 6228 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6229 cpus_clear(*groupmask);
4dcf6aff
IM
6230
6231 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6232
6233 if (!(sd->flags & SD_LOAD_BALANCE)) {
6234 printk("does not load-balance\n");
6235 if (sd->parent)
6236 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6237 " has parent");
6238 return -1;
41c7ce9a
NP
6239 }
6240
099f98c8
GS
6241 printk(KERN_CONT "span %s level %s\n",
6242 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6243
6244 if (!cpu_isset(cpu, sd->span)) {
6245 printk(KERN_ERR "ERROR: domain->span does not contain "
6246 "CPU%d\n", cpu);
6247 }
6248 if (!cpu_isset(cpu, group->cpumask)) {
6249 printk(KERN_ERR "ERROR: domain->groups does not contain"
6250 " CPU%d\n", cpu);
6251 }
1da177e4 6252
4dcf6aff 6253 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6254 do {
4dcf6aff
IM
6255 if (!group) {
6256 printk("\n");
6257 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6258 break;
6259 }
6260
4dcf6aff
IM
6261 if (!group->__cpu_power) {
6262 printk(KERN_CONT "\n");
6263 printk(KERN_ERR "ERROR: domain->cpu_power not "
6264 "set\n");
6265 break;
6266 }
1da177e4 6267
4dcf6aff
IM
6268 if (!cpus_weight(group->cpumask)) {
6269 printk(KERN_CONT "\n");
6270 printk(KERN_ERR "ERROR: empty group\n");
6271 break;
6272 }
1da177e4 6273
7c16ec58 6274 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6275 printk(KERN_CONT "\n");
6276 printk(KERN_ERR "ERROR: repeated CPUs\n");
6277 break;
6278 }
1da177e4 6279
7c16ec58 6280 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6281
434d53b0 6282 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6283 printk(KERN_CONT " %s", str);
1da177e4 6284
4dcf6aff
IM
6285 group = group->next;
6286 } while (group != sd->groups);
6287 printk(KERN_CONT "\n");
1da177e4 6288
7c16ec58 6289 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6290 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6291
7c16ec58 6292 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6293 printk(KERN_ERR "ERROR: parent span is not a superset "
6294 "of domain->span\n");
6295 return 0;
6296}
1da177e4 6297
4dcf6aff
IM
6298static void sched_domain_debug(struct sched_domain *sd, int cpu)
6299{
7c16ec58 6300 cpumask_t *groupmask;
4dcf6aff 6301 int level = 0;
1da177e4 6302
4dcf6aff
IM
6303 if (!sd) {
6304 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6305 return;
6306 }
1da177e4 6307
4dcf6aff
IM
6308 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6309
7c16ec58
MT
6310 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6311 if (!groupmask) {
6312 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6313 return;
6314 }
6315
4dcf6aff 6316 for (;;) {
7c16ec58 6317 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6318 break;
1da177e4
LT
6319 level++;
6320 sd = sd->parent;
33859f7f 6321 if (!sd)
4dcf6aff
IM
6322 break;
6323 }
7c16ec58 6324 kfree(groupmask);
1da177e4 6325}
6d6bc0ad 6326#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6327# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6328#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6329
1a20ff27 6330static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6331{
6332 if (cpus_weight(sd->span) == 1)
6333 return 1;
6334
6335 /* Following flags need at least 2 groups */
6336 if (sd->flags & (SD_LOAD_BALANCE |
6337 SD_BALANCE_NEWIDLE |
6338 SD_BALANCE_FORK |
89c4710e
SS
6339 SD_BALANCE_EXEC |
6340 SD_SHARE_CPUPOWER |
6341 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6342 if (sd->groups != sd->groups->next)
6343 return 0;
6344 }
6345
6346 /* Following flags don't use groups */
6347 if (sd->flags & (SD_WAKE_IDLE |
6348 SD_WAKE_AFFINE |
6349 SD_WAKE_BALANCE))
6350 return 0;
6351
6352 return 1;
6353}
6354
48f24c4d
IM
6355static int
6356sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6357{
6358 unsigned long cflags = sd->flags, pflags = parent->flags;
6359
6360 if (sd_degenerate(parent))
6361 return 1;
6362
6363 if (!cpus_equal(sd->span, parent->span))
6364 return 0;
6365
6366 /* Does parent contain flags not in child? */
6367 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6368 if (cflags & SD_WAKE_AFFINE)
6369 pflags &= ~SD_WAKE_BALANCE;
6370 /* Flags needing groups don't count if only 1 group in parent */
6371 if (parent->groups == parent->groups->next) {
6372 pflags &= ~(SD_LOAD_BALANCE |
6373 SD_BALANCE_NEWIDLE |
6374 SD_BALANCE_FORK |
89c4710e
SS
6375 SD_BALANCE_EXEC |
6376 SD_SHARE_CPUPOWER |
6377 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6378 }
6379 if (~cflags & pflags)
6380 return 0;
6381
6382 return 1;
6383}
6384
57d885fe
GH
6385static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6386{
6387 unsigned long flags;
6388 const struct sched_class *class;
6389
6390 spin_lock_irqsave(&rq->lock, flags);
6391
6392 if (rq->rd) {
6393 struct root_domain *old_rd = rq->rd;
6394
0eab9146 6395 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6396 if (class->leave_domain)
6397 class->leave_domain(rq);
0eab9146 6398 }
57d885fe 6399
dc938520
GH
6400 cpu_clear(rq->cpu, old_rd->span);
6401 cpu_clear(rq->cpu, old_rd->online);
6402
57d885fe
GH
6403 if (atomic_dec_and_test(&old_rd->refcount))
6404 kfree(old_rd);
6405 }
6406
6407 atomic_inc(&rd->refcount);
6408 rq->rd = rd;
6409
dc938520 6410 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6411 if (cpu_isset(rq->cpu, cpu_online_map))
6412 cpu_set(rq->cpu, rd->online);
dc938520 6413
0eab9146 6414 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6415 if (class->join_domain)
6416 class->join_domain(rq);
0eab9146 6417 }
57d885fe
GH
6418
6419 spin_unlock_irqrestore(&rq->lock, flags);
6420}
6421
dc938520 6422static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6423{
6424 memset(rd, 0, sizeof(*rd));
6425
dc938520
GH
6426 cpus_clear(rd->span);
6427 cpus_clear(rd->online);
6e0534f2
GH
6428
6429 cpupri_init(&rd->cpupri);
57d885fe
GH
6430}
6431
6432static void init_defrootdomain(void)
6433{
dc938520 6434 init_rootdomain(&def_root_domain);
57d885fe
GH
6435 atomic_set(&def_root_domain.refcount, 1);
6436}
6437
dc938520 6438static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6439{
6440 struct root_domain *rd;
6441
6442 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6443 if (!rd)
6444 return NULL;
6445
dc938520 6446 init_rootdomain(rd);
57d885fe
GH
6447
6448 return rd;
6449}
6450
1da177e4 6451/*
0eab9146 6452 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6453 * hold the hotplug lock.
6454 */
0eab9146
IM
6455static void
6456cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6457{
70b97a7f 6458 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6459 struct sched_domain *tmp;
6460
6461 /* Remove the sched domains which do not contribute to scheduling. */
6462 for (tmp = sd; tmp; tmp = tmp->parent) {
6463 struct sched_domain *parent = tmp->parent;
6464 if (!parent)
6465 break;
1a848870 6466 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6467 tmp->parent = parent->parent;
1a848870
SS
6468 if (parent->parent)
6469 parent->parent->child = tmp;
6470 }
245af2c7
SS
6471 }
6472
1a848870 6473 if (sd && sd_degenerate(sd)) {
245af2c7 6474 sd = sd->parent;
1a848870
SS
6475 if (sd)
6476 sd->child = NULL;
6477 }
1da177e4
LT
6478
6479 sched_domain_debug(sd, cpu);
6480
57d885fe 6481 rq_attach_root(rq, rd);
674311d5 6482 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6483}
6484
6485/* cpus with isolated domains */
67af63a6 6486static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6487
6488/* Setup the mask of cpus configured for isolated domains */
6489static int __init isolated_cpu_setup(char *str)
6490{
6491 int ints[NR_CPUS], i;
6492
6493 str = get_options(str, ARRAY_SIZE(ints), ints);
6494 cpus_clear(cpu_isolated_map);
6495 for (i = 1; i <= ints[0]; i++)
6496 if (ints[i] < NR_CPUS)
6497 cpu_set(ints[i], cpu_isolated_map);
6498 return 1;
6499}
6500
8927f494 6501__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6502
6503/*
6711cab4
SS
6504 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6505 * to a function which identifies what group(along with sched group) a CPU
6506 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6507 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6508 *
6509 * init_sched_build_groups will build a circular linked list of the groups
6510 * covered by the given span, and will set each group's ->cpumask correctly,
6511 * and ->cpu_power to 0.
6512 */
a616058b 6513static void
7c16ec58 6514init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6515 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6516 struct sched_group **sg,
6517 cpumask_t *tmpmask),
6518 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6519{
6520 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6521 int i;
6522
7c16ec58
MT
6523 cpus_clear(*covered);
6524
6525 for_each_cpu_mask(i, *span) {
6711cab4 6526 struct sched_group *sg;
7c16ec58 6527 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6528 int j;
6529
7c16ec58 6530 if (cpu_isset(i, *covered))
1da177e4
LT
6531 continue;
6532
7c16ec58 6533 cpus_clear(sg->cpumask);
5517d86b 6534 sg->__cpu_power = 0;
1da177e4 6535
7c16ec58
MT
6536 for_each_cpu_mask(j, *span) {
6537 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6538 continue;
6539
7c16ec58 6540 cpu_set(j, *covered);
1da177e4
LT
6541 cpu_set(j, sg->cpumask);
6542 }
6543 if (!first)
6544 first = sg;
6545 if (last)
6546 last->next = sg;
6547 last = sg;
6548 }
6549 last->next = first;
6550}
6551
9c1cfda2 6552#define SD_NODES_PER_DOMAIN 16
1da177e4 6553
9c1cfda2 6554#ifdef CONFIG_NUMA
198e2f18 6555
9c1cfda2
JH
6556/**
6557 * find_next_best_node - find the next node to include in a sched_domain
6558 * @node: node whose sched_domain we're building
6559 * @used_nodes: nodes already in the sched_domain
6560 *
41a2d6cf 6561 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6562 * finds the closest node not already in the @used_nodes map.
6563 *
6564 * Should use nodemask_t.
6565 */
c5f59f08 6566static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6567{
6568 int i, n, val, min_val, best_node = 0;
6569
6570 min_val = INT_MAX;
6571
6572 for (i = 0; i < MAX_NUMNODES; i++) {
6573 /* Start at @node */
6574 n = (node + i) % MAX_NUMNODES;
6575
6576 if (!nr_cpus_node(n))
6577 continue;
6578
6579 /* Skip already used nodes */
c5f59f08 6580 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6581 continue;
6582
6583 /* Simple min distance search */
6584 val = node_distance(node, n);
6585
6586 if (val < min_val) {
6587 min_val = val;
6588 best_node = n;
6589 }
6590 }
6591
c5f59f08 6592 node_set(best_node, *used_nodes);
9c1cfda2
JH
6593 return best_node;
6594}
6595
6596/**
6597 * sched_domain_node_span - get a cpumask for a node's sched_domain
6598 * @node: node whose cpumask we're constructing
73486722 6599 * @span: resulting cpumask
9c1cfda2 6600 *
41a2d6cf 6601 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6602 * should be one that prevents unnecessary balancing, but also spreads tasks
6603 * out optimally.
6604 */
4bdbaad3 6605static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6606{
c5f59f08 6607 nodemask_t used_nodes;
c5f59f08 6608 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6609 int i;
9c1cfda2 6610
4bdbaad3 6611 cpus_clear(*span);
c5f59f08 6612 nodes_clear(used_nodes);
9c1cfda2 6613
4bdbaad3 6614 cpus_or(*span, *span, *nodemask);
c5f59f08 6615 node_set(node, used_nodes);
9c1cfda2
JH
6616
6617 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6618 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6619
c5f59f08 6620 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6621 cpus_or(*span, *span, *nodemask);
9c1cfda2 6622 }
9c1cfda2 6623}
6d6bc0ad 6624#endif /* CONFIG_NUMA */
9c1cfda2 6625
5c45bf27 6626int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6627
9c1cfda2 6628/*
48f24c4d 6629 * SMT sched-domains:
9c1cfda2 6630 */
1da177e4
LT
6631#ifdef CONFIG_SCHED_SMT
6632static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6633static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6634
41a2d6cf 6635static int
7c16ec58
MT
6636cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6637 cpumask_t *unused)
1da177e4 6638{
6711cab4
SS
6639 if (sg)
6640 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6641 return cpu;
6642}
6d6bc0ad 6643#endif /* CONFIG_SCHED_SMT */
1da177e4 6644
48f24c4d
IM
6645/*
6646 * multi-core sched-domains:
6647 */
1e9f28fa
SS
6648#ifdef CONFIG_SCHED_MC
6649static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6650static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6651#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6652
6653#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6654static int
7c16ec58
MT
6655cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6656 cpumask_t *mask)
1e9f28fa 6657{
6711cab4 6658 int group;
7c16ec58
MT
6659
6660 *mask = per_cpu(cpu_sibling_map, cpu);
6661 cpus_and(*mask, *mask, *cpu_map);
6662 group = first_cpu(*mask);
6711cab4
SS
6663 if (sg)
6664 *sg = &per_cpu(sched_group_core, group);
6665 return group;
1e9f28fa
SS
6666}
6667#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6668static int
7c16ec58
MT
6669cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6670 cpumask_t *unused)
1e9f28fa 6671{
6711cab4
SS
6672 if (sg)
6673 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6674 return cpu;
6675}
6676#endif
6677
1da177e4 6678static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6679static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6680
41a2d6cf 6681static int
7c16ec58
MT
6682cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6683 cpumask_t *mask)
1da177e4 6684{
6711cab4 6685 int group;
48f24c4d 6686#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6687 *mask = cpu_coregroup_map(cpu);
6688 cpus_and(*mask, *mask, *cpu_map);
6689 group = first_cpu(*mask);
1e9f28fa 6690#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6691 *mask = per_cpu(cpu_sibling_map, cpu);
6692 cpus_and(*mask, *mask, *cpu_map);
6693 group = first_cpu(*mask);
1da177e4 6694#else
6711cab4 6695 group = cpu;
1da177e4 6696#endif
6711cab4
SS
6697 if (sg)
6698 *sg = &per_cpu(sched_group_phys, group);
6699 return group;
1da177e4
LT
6700}
6701
6702#ifdef CONFIG_NUMA
1da177e4 6703/*
9c1cfda2
JH
6704 * The init_sched_build_groups can't handle what we want to do with node
6705 * groups, so roll our own. Now each node has its own list of groups which
6706 * gets dynamically allocated.
1da177e4 6707 */
9c1cfda2 6708static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6709static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6710
9c1cfda2 6711static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6712static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6713
6711cab4 6714static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6715 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6716{
6711cab4
SS
6717 int group;
6718
7c16ec58
MT
6719 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6720 cpus_and(*nodemask, *nodemask, *cpu_map);
6721 group = first_cpu(*nodemask);
6711cab4
SS
6722
6723 if (sg)
6724 *sg = &per_cpu(sched_group_allnodes, group);
6725 return group;
1da177e4 6726}
6711cab4 6727
08069033
SS
6728static void init_numa_sched_groups_power(struct sched_group *group_head)
6729{
6730 struct sched_group *sg = group_head;
6731 int j;
6732
6733 if (!sg)
6734 return;
3a5c359a
AK
6735 do {
6736 for_each_cpu_mask(j, sg->cpumask) {
6737 struct sched_domain *sd;
08069033 6738
3a5c359a
AK
6739 sd = &per_cpu(phys_domains, j);
6740 if (j != first_cpu(sd->groups->cpumask)) {
6741 /*
6742 * Only add "power" once for each
6743 * physical package.
6744 */
6745 continue;
6746 }
08069033 6747
3a5c359a
AK
6748 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6749 }
6750 sg = sg->next;
6751 } while (sg != group_head);
08069033 6752}
6d6bc0ad 6753#endif /* CONFIG_NUMA */
1da177e4 6754
a616058b 6755#ifdef CONFIG_NUMA
51888ca2 6756/* Free memory allocated for various sched_group structures */
7c16ec58 6757static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6758{
a616058b 6759 int cpu, i;
51888ca2
SV
6760
6761 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6762 struct sched_group **sched_group_nodes
6763 = sched_group_nodes_bycpu[cpu];
6764
51888ca2
SV
6765 if (!sched_group_nodes)
6766 continue;
6767
6768 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6769 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6770
7c16ec58
MT
6771 *nodemask = node_to_cpumask(i);
6772 cpus_and(*nodemask, *nodemask, *cpu_map);
6773 if (cpus_empty(*nodemask))
51888ca2
SV
6774 continue;
6775
6776 if (sg == NULL)
6777 continue;
6778 sg = sg->next;
6779next_sg:
6780 oldsg = sg;
6781 sg = sg->next;
6782 kfree(oldsg);
6783 if (oldsg != sched_group_nodes[i])
6784 goto next_sg;
6785 }
6786 kfree(sched_group_nodes);
6787 sched_group_nodes_bycpu[cpu] = NULL;
6788 }
51888ca2 6789}
6d6bc0ad 6790#else /* !CONFIG_NUMA */
7c16ec58 6791static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6792{
6793}
6d6bc0ad 6794#endif /* CONFIG_NUMA */
51888ca2 6795
89c4710e
SS
6796/*
6797 * Initialize sched groups cpu_power.
6798 *
6799 * cpu_power indicates the capacity of sched group, which is used while
6800 * distributing the load between different sched groups in a sched domain.
6801 * Typically cpu_power for all the groups in a sched domain will be same unless
6802 * there are asymmetries in the topology. If there are asymmetries, group
6803 * having more cpu_power will pickup more load compared to the group having
6804 * less cpu_power.
6805 *
6806 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6807 * the maximum number of tasks a group can handle in the presence of other idle
6808 * or lightly loaded groups in the same sched domain.
6809 */
6810static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6811{
6812 struct sched_domain *child;
6813 struct sched_group *group;
6814
6815 WARN_ON(!sd || !sd->groups);
6816
6817 if (cpu != first_cpu(sd->groups->cpumask))
6818 return;
6819
6820 child = sd->child;
6821
5517d86b
ED
6822 sd->groups->__cpu_power = 0;
6823
89c4710e
SS
6824 /*
6825 * For perf policy, if the groups in child domain share resources
6826 * (for example cores sharing some portions of the cache hierarchy
6827 * or SMT), then set this domain groups cpu_power such that each group
6828 * can handle only one task, when there are other idle groups in the
6829 * same sched domain.
6830 */
6831 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6832 (child->flags &
6833 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6834 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6835 return;
6836 }
6837
89c4710e
SS
6838 /*
6839 * add cpu_power of each child group to this groups cpu_power
6840 */
6841 group = child->groups;
6842 do {
5517d86b 6843 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6844 group = group->next;
6845 } while (group != child->groups);
6846}
6847
7c16ec58
MT
6848/*
6849 * Initializers for schedule domains
6850 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6851 */
6852
6853#define SD_INIT(sd, type) sd_init_##type(sd)
6854#define SD_INIT_FUNC(type) \
6855static noinline void sd_init_##type(struct sched_domain *sd) \
6856{ \
6857 memset(sd, 0, sizeof(*sd)); \
6858 *sd = SD_##type##_INIT; \
1d3504fc 6859 sd->level = SD_LV_##type; \
7c16ec58
MT
6860}
6861
6862SD_INIT_FUNC(CPU)
6863#ifdef CONFIG_NUMA
6864 SD_INIT_FUNC(ALLNODES)
6865 SD_INIT_FUNC(NODE)
6866#endif
6867#ifdef CONFIG_SCHED_SMT
6868 SD_INIT_FUNC(SIBLING)
6869#endif
6870#ifdef CONFIG_SCHED_MC
6871 SD_INIT_FUNC(MC)
6872#endif
6873
6874/*
6875 * To minimize stack usage kmalloc room for cpumasks and share the
6876 * space as the usage in build_sched_domains() dictates. Used only
6877 * if the amount of space is significant.
6878 */
6879struct allmasks {
6880 cpumask_t tmpmask; /* make this one first */
6881 union {
6882 cpumask_t nodemask;
6883 cpumask_t this_sibling_map;
6884 cpumask_t this_core_map;
6885 };
6886 cpumask_t send_covered;
6887
6888#ifdef CONFIG_NUMA
6889 cpumask_t domainspan;
6890 cpumask_t covered;
6891 cpumask_t notcovered;
6892#endif
6893};
6894
6895#if NR_CPUS > 128
6896#define SCHED_CPUMASK_ALLOC 1
6897#define SCHED_CPUMASK_FREE(v) kfree(v)
6898#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6899#else
6900#define SCHED_CPUMASK_ALLOC 0
6901#define SCHED_CPUMASK_FREE(v)
6902#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6903#endif
6904
6905#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6906 ((unsigned long)(a) + offsetof(struct allmasks, v))
6907
1d3504fc
HS
6908static int default_relax_domain_level = -1;
6909
6910static int __init setup_relax_domain_level(char *str)
6911{
6912 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6913 return 1;
6914}
6915__setup("relax_domain_level=", setup_relax_domain_level);
6916
6917static void set_domain_attribute(struct sched_domain *sd,
6918 struct sched_domain_attr *attr)
6919{
6920 int request;
6921
6922 if (!attr || attr->relax_domain_level < 0) {
6923 if (default_relax_domain_level < 0)
6924 return;
6925 else
6926 request = default_relax_domain_level;
6927 } else
6928 request = attr->relax_domain_level;
6929 if (request < sd->level) {
6930 /* turn off idle balance on this domain */
6931 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6932 } else {
6933 /* turn on idle balance on this domain */
6934 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6935 }
6936}
6937
1da177e4 6938/*
1a20ff27
DG
6939 * Build sched domains for a given set of cpus and attach the sched domains
6940 * to the individual cpus
1da177e4 6941 */
1d3504fc
HS
6942static int __build_sched_domains(const cpumask_t *cpu_map,
6943 struct sched_domain_attr *attr)
1da177e4
LT
6944{
6945 int i;
57d885fe 6946 struct root_domain *rd;
7c16ec58
MT
6947 SCHED_CPUMASK_DECLARE(allmasks);
6948 cpumask_t *tmpmask;
d1b55138
JH
6949#ifdef CONFIG_NUMA
6950 struct sched_group **sched_group_nodes = NULL;
6711cab4 6951 int sd_allnodes = 0;
d1b55138
JH
6952
6953 /*
6954 * Allocate the per-node list of sched groups
6955 */
5cf9f062 6956 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6957 GFP_KERNEL);
d1b55138
JH
6958 if (!sched_group_nodes) {
6959 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6960 return -ENOMEM;
d1b55138 6961 }
d1b55138 6962#endif
1da177e4 6963
dc938520 6964 rd = alloc_rootdomain();
57d885fe
GH
6965 if (!rd) {
6966 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6967#ifdef CONFIG_NUMA
6968 kfree(sched_group_nodes);
6969#endif
57d885fe
GH
6970 return -ENOMEM;
6971 }
6972
7c16ec58
MT
6973#if SCHED_CPUMASK_ALLOC
6974 /* get space for all scratch cpumask variables */
6975 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6976 if (!allmasks) {
6977 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6978 kfree(rd);
6979#ifdef CONFIG_NUMA
6980 kfree(sched_group_nodes);
6981#endif
6982 return -ENOMEM;
6983 }
6984#endif
6985 tmpmask = (cpumask_t *)allmasks;
6986
6987
6988#ifdef CONFIG_NUMA
6989 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6990#endif
6991
1da177e4 6992 /*
1a20ff27 6993 * Set up domains for cpus specified by the cpu_map.
1da177e4 6994 */
1a20ff27 6995 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6996 struct sched_domain *sd = NULL, *p;
7c16ec58 6997 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6998
7c16ec58
MT
6999 *nodemask = node_to_cpumask(cpu_to_node(i));
7000 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7001
7002#ifdef CONFIG_NUMA
dd41f596 7003 if (cpus_weight(*cpu_map) >
7c16ec58 7004 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7005 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7006 SD_INIT(sd, ALLNODES);
1d3504fc 7007 set_domain_attribute(sd, attr);
9c1cfda2 7008 sd->span = *cpu_map;
7c16ec58 7009 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7010 p = sd;
6711cab4 7011 sd_allnodes = 1;
9c1cfda2
JH
7012 } else
7013 p = NULL;
7014
1da177e4 7015 sd = &per_cpu(node_domains, i);
7c16ec58 7016 SD_INIT(sd, NODE);
1d3504fc 7017 set_domain_attribute(sd, attr);
4bdbaad3 7018 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7019 sd->parent = p;
1a848870
SS
7020 if (p)
7021 p->child = sd;
9c1cfda2 7022 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7023#endif
7024
7025 p = sd;
7026 sd = &per_cpu(phys_domains, i);
7c16ec58 7027 SD_INIT(sd, CPU);
1d3504fc 7028 set_domain_attribute(sd, attr);
7c16ec58 7029 sd->span = *nodemask;
1da177e4 7030 sd->parent = p;
1a848870
SS
7031 if (p)
7032 p->child = sd;
7c16ec58 7033 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7034
1e9f28fa
SS
7035#ifdef CONFIG_SCHED_MC
7036 p = sd;
7037 sd = &per_cpu(core_domains, i);
7c16ec58 7038 SD_INIT(sd, MC);
1d3504fc 7039 set_domain_attribute(sd, attr);
1e9f28fa
SS
7040 sd->span = cpu_coregroup_map(i);
7041 cpus_and(sd->span, sd->span, *cpu_map);
7042 sd->parent = p;
1a848870 7043 p->child = sd;
7c16ec58 7044 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7045#endif
7046
1da177e4
LT
7047#ifdef CONFIG_SCHED_SMT
7048 p = sd;
7049 sd = &per_cpu(cpu_domains, i);
7c16ec58 7050 SD_INIT(sd, SIBLING);
1d3504fc 7051 set_domain_attribute(sd, attr);
d5a7430d 7052 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7053 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7054 sd->parent = p;
1a848870 7055 p->child = sd;
7c16ec58 7056 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7057#endif
7058 }
7059
7060#ifdef CONFIG_SCHED_SMT
7061 /* Set up CPU (sibling) groups */
9c1cfda2 7062 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7063 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7064 SCHED_CPUMASK_VAR(send_covered, allmasks);
7065
7066 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7067 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7068 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7069 continue;
7070
dd41f596 7071 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7072 &cpu_to_cpu_group,
7073 send_covered, tmpmask);
1da177e4
LT
7074 }
7075#endif
7076
1e9f28fa
SS
7077#ifdef CONFIG_SCHED_MC
7078 /* Set up multi-core groups */
7079 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7080 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7081 SCHED_CPUMASK_VAR(send_covered, allmasks);
7082
7083 *this_core_map = cpu_coregroup_map(i);
7084 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7085 if (i != first_cpu(*this_core_map))
1e9f28fa 7086 continue;
7c16ec58 7087
dd41f596 7088 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7089 &cpu_to_core_group,
7090 send_covered, tmpmask);
1e9f28fa
SS
7091 }
7092#endif
7093
1da177e4
LT
7094 /* Set up physical groups */
7095 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7096 SCHED_CPUMASK_VAR(nodemask, allmasks);
7097 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7098
7c16ec58
MT
7099 *nodemask = node_to_cpumask(i);
7100 cpus_and(*nodemask, *nodemask, *cpu_map);
7101 if (cpus_empty(*nodemask))
1da177e4
LT
7102 continue;
7103
7c16ec58
MT
7104 init_sched_build_groups(nodemask, cpu_map,
7105 &cpu_to_phys_group,
7106 send_covered, tmpmask);
1da177e4
LT
7107 }
7108
7109#ifdef CONFIG_NUMA
7110 /* Set up node groups */
7c16ec58
MT
7111 if (sd_allnodes) {
7112 SCHED_CPUMASK_VAR(send_covered, allmasks);
7113
7114 init_sched_build_groups(cpu_map, cpu_map,
7115 &cpu_to_allnodes_group,
7116 send_covered, tmpmask);
7117 }
9c1cfda2
JH
7118
7119 for (i = 0; i < MAX_NUMNODES; i++) {
7120 /* Set up node groups */
7121 struct sched_group *sg, *prev;
7c16ec58
MT
7122 SCHED_CPUMASK_VAR(nodemask, allmasks);
7123 SCHED_CPUMASK_VAR(domainspan, allmasks);
7124 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7125 int j;
7126
7c16ec58
MT
7127 *nodemask = node_to_cpumask(i);
7128 cpus_clear(*covered);
7129
7130 cpus_and(*nodemask, *nodemask, *cpu_map);
7131 if (cpus_empty(*nodemask)) {
d1b55138 7132 sched_group_nodes[i] = NULL;
9c1cfda2 7133 continue;
d1b55138 7134 }
9c1cfda2 7135
4bdbaad3 7136 sched_domain_node_span(i, domainspan);
7c16ec58 7137 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7138
15f0b676 7139 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7140 if (!sg) {
7141 printk(KERN_WARNING "Can not alloc domain group for "
7142 "node %d\n", i);
7143 goto error;
7144 }
9c1cfda2 7145 sched_group_nodes[i] = sg;
7c16ec58 7146 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7147 struct sched_domain *sd;
9761eea8 7148
9c1cfda2
JH
7149 sd = &per_cpu(node_domains, j);
7150 sd->groups = sg;
9c1cfda2 7151 }
5517d86b 7152 sg->__cpu_power = 0;
7c16ec58 7153 sg->cpumask = *nodemask;
51888ca2 7154 sg->next = sg;
7c16ec58 7155 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7156 prev = sg;
7157
7158 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7159 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7160 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7161 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7162
7c16ec58
MT
7163 cpus_complement(*notcovered, *covered);
7164 cpus_and(*tmpmask, *notcovered, *cpu_map);
7165 cpus_and(*tmpmask, *tmpmask, *domainspan);
7166 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7167 break;
7168
7c16ec58
MT
7169 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7170 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7171 continue;
7172
15f0b676
SV
7173 sg = kmalloc_node(sizeof(struct sched_group),
7174 GFP_KERNEL, i);
9c1cfda2
JH
7175 if (!sg) {
7176 printk(KERN_WARNING
7177 "Can not alloc domain group for node %d\n", j);
51888ca2 7178 goto error;
9c1cfda2 7179 }
5517d86b 7180 sg->__cpu_power = 0;
7c16ec58 7181 sg->cpumask = *tmpmask;
51888ca2 7182 sg->next = prev->next;
7c16ec58 7183 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7184 prev->next = sg;
7185 prev = sg;
7186 }
9c1cfda2 7187 }
1da177e4
LT
7188#endif
7189
7190 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7191#ifdef CONFIG_SCHED_SMT
1a20ff27 7192 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7193 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7194
89c4710e 7195 init_sched_groups_power(i, sd);
5c45bf27 7196 }
1da177e4 7197#endif
1e9f28fa 7198#ifdef CONFIG_SCHED_MC
5c45bf27 7199 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7200 struct sched_domain *sd = &per_cpu(core_domains, i);
7201
89c4710e 7202 init_sched_groups_power(i, sd);
5c45bf27
SS
7203 }
7204#endif
1e9f28fa 7205
5c45bf27 7206 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7207 struct sched_domain *sd = &per_cpu(phys_domains, i);
7208
89c4710e 7209 init_sched_groups_power(i, sd);
1da177e4
LT
7210 }
7211
9c1cfda2 7212#ifdef CONFIG_NUMA
08069033
SS
7213 for (i = 0; i < MAX_NUMNODES; i++)
7214 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7215
6711cab4
SS
7216 if (sd_allnodes) {
7217 struct sched_group *sg;
f712c0c7 7218
7c16ec58
MT
7219 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7220 tmpmask);
f712c0c7
SS
7221 init_numa_sched_groups_power(sg);
7222 }
9c1cfda2
JH
7223#endif
7224
1da177e4 7225 /* Attach the domains */
1a20ff27 7226 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7227 struct sched_domain *sd;
7228#ifdef CONFIG_SCHED_SMT
7229 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7230#elif defined(CONFIG_SCHED_MC)
7231 sd = &per_cpu(core_domains, i);
1da177e4
LT
7232#else
7233 sd = &per_cpu(phys_domains, i);
7234#endif
57d885fe 7235 cpu_attach_domain(sd, rd, i);
1da177e4 7236 }
51888ca2 7237
7c16ec58 7238 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7239 return 0;
7240
a616058b 7241#ifdef CONFIG_NUMA
51888ca2 7242error:
7c16ec58
MT
7243 free_sched_groups(cpu_map, tmpmask);
7244 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7245 return -ENOMEM;
a616058b 7246#endif
1da177e4 7247}
029190c5 7248
1d3504fc
HS
7249static int build_sched_domains(const cpumask_t *cpu_map)
7250{
7251 return __build_sched_domains(cpu_map, NULL);
7252}
7253
029190c5
PJ
7254static cpumask_t *doms_cur; /* current sched domains */
7255static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7256static struct sched_domain_attr *dattr_cur;
7257 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7258
7259/*
7260 * Special case: If a kmalloc of a doms_cur partition (array of
7261 * cpumask_t) fails, then fallback to a single sched domain,
7262 * as determined by the single cpumask_t fallback_doms.
7263 */
7264static cpumask_t fallback_doms;
7265
22e52b07
HC
7266void __attribute__((weak)) arch_update_cpu_topology(void)
7267{
7268}
7269
1a20ff27 7270/*
41a2d6cf 7271 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7272 * For now this just excludes isolated cpus, but could be used to
7273 * exclude other special cases in the future.
1a20ff27 7274 */
51888ca2 7275static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7276{
7378547f
MM
7277 int err;
7278
22e52b07 7279 arch_update_cpu_topology();
029190c5
PJ
7280 ndoms_cur = 1;
7281 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7282 if (!doms_cur)
7283 doms_cur = &fallback_doms;
7284 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7285 dattr_cur = NULL;
7378547f 7286 err = build_sched_domains(doms_cur);
6382bc90 7287 register_sched_domain_sysctl();
7378547f
MM
7288
7289 return err;
1a20ff27
DG
7290}
7291
7c16ec58
MT
7292static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7293 cpumask_t *tmpmask)
1da177e4 7294{
7c16ec58 7295 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7296}
1da177e4 7297
1a20ff27
DG
7298/*
7299 * Detach sched domains from a group of cpus specified in cpu_map
7300 * These cpus will now be attached to the NULL domain
7301 */
858119e1 7302static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7303{
7c16ec58 7304 cpumask_t tmpmask;
1a20ff27
DG
7305 int i;
7306
6382bc90
MM
7307 unregister_sched_domain_sysctl();
7308
1a20ff27 7309 for_each_cpu_mask(i, *cpu_map)
57d885fe 7310 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7311 synchronize_sched();
7c16ec58 7312 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7313}
7314
1d3504fc
HS
7315/* handle null as "default" */
7316static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7317 struct sched_domain_attr *new, int idx_new)
7318{
7319 struct sched_domain_attr tmp;
7320
7321 /* fast path */
7322 if (!new && !cur)
7323 return 1;
7324
7325 tmp = SD_ATTR_INIT;
7326 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7327 new ? (new + idx_new) : &tmp,
7328 sizeof(struct sched_domain_attr));
7329}
7330
029190c5
PJ
7331/*
7332 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7333 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7334 * doms_new[] to the current sched domain partitioning, doms_cur[].
7335 * It destroys each deleted domain and builds each new domain.
7336 *
7337 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7338 * The masks don't intersect (don't overlap.) We should setup one
7339 * sched domain for each mask. CPUs not in any of the cpumasks will
7340 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7341 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7342 * it as it is.
7343 *
41a2d6cf
IM
7344 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7345 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7346 * failed the kmalloc call, then it can pass in doms_new == NULL,
7347 * and partition_sched_domains() will fallback to the single partition
7348 * 'fallback_doms'.
7349 *
7350 * Call with hotplug lock held
7351 */
1d3504fc
HS
7352void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7353 struct sched_domain_attr *dattr_new)
029190c5
PJ
7354{
7355 int i, j;
7356
712555ee 7357 mutex_lock(&sched_domains_mutex);
a1835615 7358
7378547f
MM
7359 /* always unregister in case we don't destroy any domains */
7360 unregister_sched_domain_sysctl();
7361
029190c5
PJ
7362 if (doms_new == NULL) {
7363 ndoms_new = 1;
7364 doms_new = &fallback_doms;
7365 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7366 dattr_new = NULL;
029190c5
PJ
7367 }
7368
7369 /* Destroy deleted domains */
7370 for (i = 0; i < ndoms_cur; i++) {
7371 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7372 if (cpus_equal(doms_cur[i], doms_new[j])
7373 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7374 goto match1;
7375 }
7376 /* no match - a current sched domain not in new doms_new[] */
7377 detach_destroy_domains(doms_cur + i);
7378match1:
7379 ;
7380 }
7381
7382 /* Build new domains */
7383 for (i = 0; i < ndoms_new; i++) {
7384 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7385 if (cpus_equal(doms_new[i], doms_cur[j])
7386 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7387 goto match2;
7388 }
7389 /* no match - add a new doms_new */
1d3504fc
HS
7390 __build_sched_domains(doms_new + i,
7391 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7392match2:
7393 ;
7394 }
7395
7396 /* Remember the new sched domains */
7397 if (doms_cur != &fallback_doms)
7398 kfree(doms_cur);
1d3504fc 7399 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7400 doms_cur = doms_new;
1d3504fc 7401 dattr_cur = dattr_new;
029190c5 7402 ndoms_cur = ndoms_new;
7378547f
MM
7403
7404 register_sched_domain_sysctl();
a1835615 7405
712555ee 7406 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7407}
7408
5c45bf27 7409#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7410int arch_reinit_sched_domains(void)
5c45bf27
SS
7411{
7412 int err;
7413
95402b38 7414 get_online_cpus();
712555ee 7415 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7416 detach_destroy_domains(&cpu_online_map);
7417 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7418 mutex_unlock(&sched_domains_mutex);
95402b38 7419 put_online_cpus();
5c45bf27
SS
7420
7421 return err;
7422}
7423
7424static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7425{
7426 int ret;
7427
7428 if (buf[0] != '0' && buf[0] != '1')
7429 return -EINVAL;
7430
7431 if (smt)
7432 sched_smt_power_savings = (buf[0] == '1');
7433 else
7434 sched_mc_power_savings = (buf[0] == '1');
7435
7436 ret = arch_reinit_sched_domains();
7437
7438 return ret ? ret : count;
7439}
7440
5c45bf27
SS
7441#ifdef CONFIG_SCHED_MC
7442static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7443{
7444 return sprintf(page, "%u\n", sched_mc_power_savings);
7445}
48f24c4d
IM
7446static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7447 const char *buf, size_t count)
5c45bf27
SS
7448{
7449 return sched_power_savings_store(buf, count, 0);
7450}
6707de00
AB
7451static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7452 sched_mc_power_savings_store);
5c45bf27
SS
7453#endif
7454
7455#ifdef CONFIG_SCHED_SMT
7456static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7457{
7458 return sprintf(page, "%u\n", sched_smt_power_savings);
7459}
48f24c4d
IM
7460static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7461 const char *buf, size_t count)
5c45bf27
SS
7462{
7463 return sched_power_savings_store(buf, count, 1);
7464}
6707de00
AB
7465static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7466 sched_smt_power_savings_store);
7467#endif
7468
7469int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7470{
7471 int err = 0;
7472
7473#ifdef CONFIG_SCHED_SMT
7474 if (smt_capable())
7475 err = sysfs_create_file(&cls->kset.kobj,
7476 &attr_sched_smt_power_savings.attr);
7477#endif
7478#ifdef CONFIG_SCHED_MC
7479 if (!err && mc_capable())
7480 err = sysfs_create_file(&cls->kset.kobj,
7481 &attr_sched_mc_power_savings.attr);
7482#endif
7483 return err;
7484}
6d6bc0ad 7485#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7486
1da177e4 7487/*
41a2d6cf 7488 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7489 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7490 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7491 * which will prevent rebalancing while the sched domains are recalculated.
7492 */
7493static int update_sched_domains(struct notifier_block *nfb,
7494 unsigned long action, void *hcpu)
7495{
1da177e4
LT
7496 switch (action) {
7497 case CPU_UP_PREPARE:
8bb78442 7498 case CPU_UP_PREPARE_FROZEN:
1da177e4 7499 case CPU_DOWN_PREPARE:
8bb78442 7500 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7501 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7502 return NOTIFY_OK;
7503
7504 case CPU_UP_CANCELED:
8bb78442 7505 case CPU_UP_CANCELED_FROZEN:
1da177e4 7506 case CPU_DOWN_FAILED:
8bb78442 7507 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7508 case CPU_ONLINE:
8bb78442 7509 case CPU_ONLINE_FROZEN:
1da177e4 7510 case CPU_DEAD:
8bb78442 7511 case CPU_DEAD_FROZEN:
1da177e4
LT
7512 /*
7513 * Fall through and re-initialise the domains.
7514 */
7515 break;
7516 default:
7517 return NOTIFY_DONE;
7518 }
7519
7520 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7521 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7522
7523 return NOTIFY_OK;
7524}
1da177e4
LT
7525
7526void __init sched_init_smp(void)
7527{
5c1e1767
NP
7528 cpumask_t non_isolated_cpus;
7529
434d53b0
MT
7530#if defined(CONFIG_NUMA)
7531 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7532 GFP_KERNEL);
7533 BUG_ON(sched_group_nodes_bycpu == NULL);
7534#endif
95402b38 7535 get_online_cpus();
712555ee 7536 mutex_lock(&sched_domains_mutex);
1a20ff27 7537 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7538 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7539 if (cpus_empty(non_isolated_cpus))
7540 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7541 mutex_unlock(&sched_domains_mutex);
95402b38 7542 put_online_cpus();
1da177e4
LT
7543 /* XXX: Theoretical race here - CPU may be hotplugged now */
7544 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7545 init_hrtick();
5c1e1767
NP
7546
7547 /* Move init over to a non-isolated CPU */
7c16ec58 7548 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7549 BUG();
19978ca6 7550 sched_init_granularity();
1da177e4
LT
7551}
7552#else
7553void __init sched_init_smp(void)
7554{
19978ca6 7555 sched_init_granularity();
1da177e4
LT
7556}
7557#endif /* CONFIG_SMP */
7558
7559int in_sched_functions(unsigned long addr)
7560{
1da177e4
LT
7561 return in_lock_functions(addr) ||
7562 (addr >= (unsigned long)__sched_text_start
7563 && addr < (unsigned long)__sched_text_end);
7564}
7565
a9957449 7566static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7567{
7568 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7569 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7570#ifdef CONFIG_FAIR_GROUP_SCHED
7571 cfs_rq->rq = rq;
7572#endif
67e9fb2a 7573 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7574}
7575
fa85ae24
PZ
7576static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7577{
7578 struct rt_prio_array *array;
7579 int i;
7580
7581 array = &rt_rq->active;
7582 for (i = 0; i < MAX_RT_PRIO; i++) {
45c01e82
GH
7583 INIT_LIST_HEAD(array->xqueue + i);
7584 INIT_LIST_HEAD(array->squeue + i);
fa85ae24
PZ
7585 __clear_bit(i, array->bitmap);
7586 }
7587 /* delimiter for bitsearch: */
7588 __set_bit(MAX_RT_PRIO, array->bitmap);
7589
052f1dc7 7590#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7591 rt_rq->highest_prio = MAX_RT_PRIO;
7592#endif
fa85ae24
PZ
7593#ifdef CONFIG_SMP
7594 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7595 rt_rq->overloaded = 0;
7596#endif
7597
7598 rt_rq->rt_time = 0;
7599 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7600 rt_rq->rt_runtime = 0;
7601 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7602
052f1dc7 7603#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7604 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7605 rt_rq->rq = rq;
7606#endif
fa85ae24
PZ
7607}
7608
6f505b16 7609#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7610static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7611 struct sched_entity *se, int cpu, int add,
7612 struct sched_entity *parent)
6f505b16 7613{
ec7dc8ac 7614 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7615 tg->cfs_rq[cpu] = cfs_rq;
7616 init_cfs_rq(cfs_rq, rq);
7617 cfs_rq->tg = tg;
7618 if (add)
7619 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7620
7621 tg->se[cpu] = se;
354d60c2
DG
7622 /* se could be NULL for init_task_group */
7623 if (!se)
7624 return;
7625
ec7dc8ac
DG
7626 if (!parent)
7627 se->cfs_rq = &rq->cfs;
7628 else
7629 se->cfs_rq = parent->my_q;
7630
6f505b16
PZ
7631 se->my_q = cfs_rq;
7632 se->load.weight = tg->shares;
e05510d0 7633 se->load.inv_weight = 0;
ec7dc8ac 7634 se->parent = parent;
6f505b16 7635}
052f1dc7 7636#endif
6f505b16 7637
052f1dc7 7638#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7639static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7640 struct sched_rt_entity *rt_se, int cpu, int add,
7641 struct sched_rt_entity *parent)
6f505b16 7642{
ec7dc8ac
DG
7643 struct rq *rq = cpu_rq(cpu);
7644
6f505b16
PZ
7645 tg->rt_rq[cpu] = rt_rq;
7646 init_rt_rq(rt_rq, rq);
7647 rt_rq->tg = tg;
7648 rt_rq->rt_se = rt_se;
ac086bc2 7649 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7650 if (add)
7651 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7652
7653 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7654 if (!rt_se)
7655 return;
7656
ec7dc8ac
DG
7657 if (!parent)
7658 rt_se->rt_rq = &rq->rt;
7659 else
7660 rt_se->rt_rq = parent->my_q;
7661
6f505b16
PZ
7662 rt_se->rt_rq = &rq->rt;
7663 rt_se->my_q = rt_rq;
ec7dc8ac 7664 rt_se->parent = parent;
6f505b16
PZ
7665 INIT_LIST_HEAD(&rt_se->run_list);
7666}
7667#endif
7668
1da177e4
LT
7669void __init sched_init(void)
7670{
dd41f596 7671 int i, j;
434d53b0
MT
7672 unsigned long alloc_size = 0, ptr;
7673
7674#ifdef CONFIG_FAIR_GROUP_SCHED
7675 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7676#endif
7677#ifdef CONFIG_RT_GROUP_SCHED
7678 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7679#endif
7680#ifdef CONFIG_USER_SCHED
7681 alloc_size *= 2;
434d53b0
MT
7682#endif
7683 /*
7684 * As sched_init() is called before page_alloc is setup,
7685 * we use alloc_bootmem().
7686 */
7687 if (alloc_size) {
5a9d3225 7688 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7689
7690#ifdef CONFIG_FAIR_GROUP_SCHED
7691 init_task_group.se = (struct sched_entity **)ptr;
7692 ptr += nr_cpu_ids * sizeof(void **);
7693
7694 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7695 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7696
7697#ifdef CONFIG_USER_SCHED
7698 root_task_group.se = (struct sched_entity **)ptr;
7699 ptr += nr_cpu_ids * sizeof(void **);
7700
7701 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7703#endif /* CONFIG_USER_SCHED */
7704#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7705#ifdef CONFIG_RT_GROUP_SCHED
7706 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7707 ptr += nr_cpu_ids * sizeof(void **);
7708
7709 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7710 ptr += nr_cpu_ids * sizeof(void **);
7711
7712#ifdef CONFIG_USER_SCHED
7713 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7714 ptr += nr_cpu_ids * sizeof(void **);
7715
7716 root_task_group.rt_rq = (struct rt_rq **)ptr;
7717 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7718#endif /* CONFIG_USER_SCHED */
7719#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7720 }
dd41f596 7721
57d885fe
GH
7722#ifdef CONFIG_SMP
7723 init_defrootdomain();
7724#endif
7725
d0b27fa7
PZ
7726 init_rt_bandwidth(&def_rt_bandwidth,
7727 global_rt_period(), global_rt_runtime());
7728
7729#ifdef CONFIG_RT_GROUP_SCHED
7730 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7731 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7732#ifdef CONFIG_USER_SCHED
7733 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7734 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7735#endif /* CONFIG_USER_SCHED */
7736#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7737
052f1dc7 7738#ifdef CONFIG_GROUP_SCHED
6f505b16 7739 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7740 INIT_LIST_HEAD(&init_task_group.children);
7741
7742#ifdef CONFIG_USER_SCHED
7743 INIT_LIST_HEAD(&root_task_group.children);
7744 init_task_group.parent = &root_task_group;
7745 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7746#endif /* CONFIG_USER_SCHED */
7747#endif /* CONFIG_GROUP_SCHED */
6f505b16 7748
0a945022 7749 for_each_possible_cpu(i) {
70b97a7f 7750 struct rq *rq;
1da177e4
LT
7751
7752 rq = cpu_rq(i);
7753 spin_lock_init(&rq->lock);
fcb99371 7754 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7755 rq->nr_running = 0;
dd41f596 7756 init_cfs_rq(&rq->cfs, rq);
6f505b16 7757 init_rt_rq(&rq->rt, rq);
dd41f596 7758#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7759 init_task_group.shares = init_task_group_load;
6f505b16 7760 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7761#ifdef CONFIG_CGROUP_SCHED
7762 /*
7763 * How much cpu bandwidth does init_task_group get?
7764 *
7765 * In case of task-groups formed thr' the cgroup filesystem, it
7766 * gets 100% of the cpu resources in the system. This overall
7767 * system cpu resource is divided among the tasks of
7768 * init_task_group and its child task-groups in a fair manner,
7769 * based on each entity's (task or task-group's) weight
7770 * (se->load.weight).
7771 *
7772 * In other words, if init_task_group has 10 tasks of weight
7773 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7774 * then A0's share of the cpu resource is:
7775 *
7776 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7777 *
7778 * We achieve this by letting init_task_group's tasks sit
7779 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7780 */
ec7dc8ac 7781 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7782#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7783 root_task_group.shares = NICE_0_LOAD;
7784 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7785 /*
7786 * In case of task-groups formed thr' the user id of tasks,
7787 * init_task_group represents tasks belonging to root user.
7788 * Hence it forms a sibling of all subsequent groups formed.
7789 * In this case, init_task_group gets only a fraction of overall
7790 * system cpu resource, based on the weight assigned to root
7791 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7792 * by letting tasks of init_task_group sit in a separate cfs_rq
7793 * (init_cfs_rq) and having one entity represent this group of
7794 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7795 */
ec7dc8ac 7796 init_tg_cfs_entry(&init_task_group,
6f505b16 7797 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7798 &per_cpu(init_sched_entity, i), i, 1,
7799 root_task_group.se[i]);
6f505b16 7800
052f1dc7 7801#endif
354d60c2
DG
7802#endif /* CONFIG_FAIR_GROUP_SCHED */
7803
7804 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7805#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7806 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7807#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7808 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7809#elif defined CONFIG_USER_SCHED
eff766a6 7810 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7811 init_tg_rt_entry(&init_task_group,
6f505b16 7812 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7813 &per_cpu(init_sched_rt_entity, i), i, 1,
7814 root_task_group.rt_se[i]);
354d60c2 7815#endif
dd41f596 7816#endif
1da177e4 7817
dd41f596
IM
7818 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7819 rq->cpu_load[j] = 0;
1da177e4 7820#ifdef CONFIG_SMP
41c7ce9a 7821 rq->sd = NULL;
57d885fe 7822 rq->rd = NULL;
1da177e4 7823 rq->active_balance = 0;
dd41f596 7824 rq->next_balance = jiffies;
1da177e4 7825 rq->push_cpu = 0;
0a2966b4 7826 rq->cpu = i;
1da177e4
LT
7827 rq->migration_thread = NULL;
7828 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7829 rq_attach_root(rq, &def_root_domain);
1da177e4 7830#endif
8f4d37ec 7831 init_rq_hrtick(rq);
1da177e4 7832 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7833 }
7834
2dd73a4f 7835 set_load_weight(&init_task);
b50f60ce 7836
e107be36
AK
7837#ifdef CONFIG_PREEMPT_NOTIFIERS
7838 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7839#endif
7840
c9819f45
CL
7841#ifdef CONFIG_SMP
7842 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7843#endif
7844
b50f60ce
HC
7845#ifdef CONFIG_RT_MUTEXES
7846 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7847#endif
7848
1da177e4
LT
7849 /*
7850 * The boot idle thread does lazy MMU switching as well:
7851 */
7852 atomic_inc(&init_mm.mm_count);
7853 enter_lazy_tlb(&init_mm, current);
7854
7855 /*
7856 * Make us the idle thread. Technically, schedule() should not be
7857 * called from this thread, however somewhere below it might be,
7858 * but because we are the idle thread, we just pick up running again
7859 * when this runqueue becomes "idle".
7860 */
7861 init_idle(current, smp_processor_id());
dd41f596
IM
7862 /*
7863 * During early bootup we pretend to be a normal task:
7864 */
7865 current->sched_class = &fair_sched_class;
6892b75e
IM
7866
7867 scheduler_running = 1;
1da177e4
LT
7868}
7869
7870#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7871void __might_sleep(char *file, int line)
7872{
48f24c4d 7873#ifdef in_atomic
1da177e4
LT
7874 static unsigned long prev_jiffy; /* ratelimiting */
7875
7876 if ((in_atomic() || irqs_disabled()) &&
7877 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7878 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7879 return;
7880 prev_jiffy = jiffies;
91368d73 7881 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7882 " context at %s:%d\n", file, line);
7883 printk("in_atomic():%d, irqs_disabled():%d\n",
7884 in_atomic(), irqs_disabled());
a4c410f0 7885 debug_show_held_locks(current);
3117df04
IM
7886 if (irqs_disabled())
7887 print_irqtrace_events(current);
1da177e4
LT
7888 dump_stack();
7889 }
7890#endif
7891}
7892EXPORT_SYMBOL(__might_sleep);
7893#endif
7894
7895#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7896static void normalize_task(struct rq *rq, struct task_struct *p)
7897{
7898 int on_rq;
3e51f33f 7899
3a5e4dc1
AK
7900 update_rq_clock(rq);
7901 on_rq = p->se.on_rq;
7902 if (on_rq)
7903 deactivate_task(rq, p, 0);
7904 __setscheduler(rq, p, SCHED_NORMAL, 0);
7905 if (on_rq) {
7906 activate_task(rq, p, 0);
7907 resched_task(rq->curr);
7908 }
7909}
7910
1da177e4
LT
7911void normalize_rt_tasks(void)
7912{
a0f98a1c 7913 struct task_struct *g, *p;
1da177e4 7914 unsigned long flags;
70b97a7f 7915 struct rq *rq;
1da177e4 7916
4cf5d77a 7917 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7918 do_each_thread(g, p) {
178be793
IM
7919 /*
7920 * Only normalize user tasks:
7921 */
7922 if (!p->mm)
7923 continue;
7924
6cfb0d5d 7925 p->se.exec_start = 0;
6cfb0d5d 7926#ifdef CONFIG_SCHEDSTATS
dd41f596 7927 p->se.wait_start = 0;
dd41f596 7928 p->se.sleep_start = 0;
dd41f596 7929 p->se.block_start = 0;
6cfb0d5d 7930#endif
dd41f596
IM
7931
7932 if (!rt_task(p)) {
7933 /*
7934 * Renice negative nice level userspace
7935 * tasks back to 0:
7936 */
7937 if (TASK_NICE(p) < 0 && p->mm)
7938 set_user_nice(p, 0);
1da177e4 7939 continue;
dd41f596 7940 }
1da177e4 7941
4cf5d77a 7942 spin_lock(&p->pi_lock);
b29739f9 7943 rq = __task_rq_lock(p);
1da177e4 7944
178be793 7945 normalize_task(rq, p);
3a5e4dc1 7946
b29739f9 7947 __task_rq_unlock(rq);
4cf5d77a 7948 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7949 } while_each_thread(g, p);
7950
4cf5d77a 7951 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7952}
7953
7954#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7955
7956#ifdef CONFIG_IA64
7957/*
7958 * These functions are only useful for the IA64 MCA handling.
7959 *
7960 * They can only be called when the whole system has been
7961 * stopped - every CPU needs to be quiescent, and no scheduling
7962 * activity can take place. Using them for anything else would
7963 * be a serious bug, and as a result, they aren't even visible
7964 * under any other configuration.
7965 */
7966
7967/**
7968 * curr_task - return the current task for a given cpu.
7969 * @cpu: the processor in question.
7970 *
7971 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7972 */
36c8b586 7973struct task_struct *curr_task(int cpu)
1df5c10a
LT
7974{
7975 return cpu_curr(cpu);
7976}
7977
7978/**
7979 * set_curr_task - set the current task for a given cpu.
7980 * @cpu: the processor in question.
7981 * @p: the task pointer to set.
7982 *
7983 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7984 * are serviced on a separate stack. It allows the architecture to switch the
7985 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7986 * must be called with all CPU's synchronized, and interrupts disabled, the
7987 * and caller must save the original value of the current task (see
7988 * curr_task() above) and restore that value before reenabling interrupts and
7989 * re-starting the system.
7990 *
7991 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7992 */
36c8b586 7993void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7994{
7995 cpu_curr(cpu) = p;
7996}
7997
7998#endif
29f59db3 7999
bccbe08a
PZ
8000#ifdef CONFIG_FAIR_GROUP_SCHED
8001static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8002{
8003 int i;
8004
8005 for_each_possible_cpu(i) {
8006 if (tg->cfs_rq)
8007 kfree(tg->cfs_rq[i]);
8008 if (tg->se)
8009 kfree(tg->se[i]);
6f505b16
PZ
8010 }
8011
8012 kfree(tg->cfs_rq);
8013 kfree(tg->se);
6f505b16
PZ
8014}
8015
ec7dc8ac
DG
8016static
8017int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8018{
29f59db3 8019 struct cfs_rq *cfs_rq;
ec7dc8ac 8020 struct sched_entity *se, *parent_se;
9b5b7751 8021 struct rq *rq;
29f59db3
SV
8022 int i;
8023
434d53b0 8024 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8025 if (!tg->cfs_rq)
8026 goto err;
434d53b0 8027 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8028 if (!tg->se)
8029 goto err;
052f1dc7
PZ
8030
8031 tg->shares = NICE_0_LOAD;
29f59db3
SV
8032
8033 for_each_possible_cpu(i) {
9b5b7751 8034 rq = cpu_rq(i);
29f59db3 8035
6f505b16
PZ
8036 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8037 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8038 if (!cfs_rq)
8039 goto err;
8040
6f505b16
PZ
8041 se = kmalloc_node(sizeof(struct sched_entity),
8042 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8043 if (!se)
8044 goto err;
8045
ec7dc8ac
DG
8046 parent_se = parent ? parent->se[i] : NULL;
8047 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8048 }
8049
8050 return 1;
8051
8052 err:
8053 return 0;
8054}
8055
8056static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8057{
8058 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8059 &cpu_rq(cpu)->leaf_cfs_rq_list);
8060}
8061
8062static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8063{
8064 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8065}
6d6bc0ad 8066#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8067static inline void free_fair_sched_group(struct task_group *tg)
8068{
8069}
8070
ec7dc8ac
DG
8071static inline
8072int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8073{
8074 return 1;
8075}
8076
8077static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8078{
8079}
8080
8081static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8082{
8083}
6d6bc0ad 8084#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8085
8086#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8087static void free_rt_sched_group(struct task_group *tg)
8088{
8089 int i;
8090
d0b27fa7
PZ
8091 destroy_rt_bandwidth(&tg->rt_bandwidth);
8092
bccbe08a
PZ
8093 for_each_possible_cpu(i) {
8094 if (tg->rt_rq)
8095 kfree(tg->rt_rq[i]);
8096 if (tg->rt_se)
8097 kfree(tg->rt_se[i]);
8098 }
8099
8100 kfree(tg->rt_rq);
8101 kfree(tg->rt_se);
8102}
8103
ec7dc8ac
DG
8104static
8105int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8106{
8107 struct rt_rq *rt_rq;
ec7dc8ac 8108 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8109 struct rq *rq;
8110 int i;
8111
434d53b0 8112 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8113 if (!tg->rt_rq)
8114 goto err;
434d53b0 8115 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8116 if (!tg->rt_se)
8117 goto err;
8118
d0b27fa7
PZ
8119 init_rt_bandwidth(&tg->rt_bandwidth,
8120 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8121
8122 for_each_possible_cpu(i) {
8123 rq = cpu_rq(i);
8124
6f505b16
PZ
8125 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8126 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8127 if (!rt_rq)
8128 goto err;
29f59db3 8129
6f505b16
PZ
8130 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8131 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8132 if (!rt_se)
8133 goto err;
29f59db3 8134
ec7dc8ac
DG
8135 parent_se = parent ? parent->rt_se[i] : NULL;
8136 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8137 }
8138
bccbe08a
PZ
8139 return 1;
8140
8141 err:
8142 return 0;
8143}
8144
8145static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8146{
8147 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8148 &cpu_rq(cpu)->leaf_rt_rq_list);
8149}
8150
8151static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8152{
8153 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8154}
6d6bc0ad 8155#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8156static inline void free_rt_sched_group(struct task_group *tg)
8157{
8158}
8159
ec7dc8ac
DG
8160static inline
8161int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8162{
8163 return 1;
8164}
8165
8166static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8167{
8168}
8169
8170static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8171{
8172}
6d6bc0ad 8173#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8174
d0b27fa7 8175#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8176static void free_sched_group(struct task_group *tg)
8177{
8178 free_fair_sched_group(tg);
8179 free_rt_sched_group(tg);
8180 kfree(tg);
8181}
8182
8183/* allocate runqueue etc for a new task group */
ec7dc8ac 8184struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8185{
8186 struct task_group *tg;
8187 unsigned long flags;
8188 int i;
8189
8190 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8191 if (!tg)
8192 return ERR_PTR(-ENOMEM);
8193
ec7dc8ac 8194 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8195 goto err;
8196
ec7dc8ac 8197 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8198 goto err;
8199
8ed36996 8200 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8201 for_each_possible_cpu(i) {
bccbe08a
PZ
8202 register_fair_sched_group(tg, i);
8203 register_rt_sched_group(tg, i);
9b5b7751 8204 }
6f505b16 8205 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8206
8207 WARN_ON(!parent); /* root should already exist */
8208
8209 tg->parent = parent;
8210 list_add_rcu(&tg->siblings, &parent->children);
8211 INIT_LIST_HEAD(&tg->children);
8ed36996 8212 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8213
9b5b7751 8214 return tg;
29f59db3
SV
8215
8216err:
6f505b16 8217 free_sched_group(tg);
29f59db3
SV
8218 return ERR_PTR(-ENOMEM);
8219}
8220
9b5b7751 8221/* rcu callback to free various structures associated with a task group */
6f505b16 8222static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8223{
29f59db3 8224 /* now it should be safe to free those cfs_rqs */
6f505b16 8225 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8226}
8227
9b5b7751 8228/* Destroy runqueue etc associated with a task group */
4cf86d77 8229void sched_destroy_group(struct task_group *tg)
29f59db3 8230{
8ed36996 8231 unsigned long flags;
9b5b7751 8232 int i;
29f59db3 8233
8ed36996 8234 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8235 for_each_possible_cpu(i) {
bccbe08a
PZ
8236 unregister_fair_sched_group(tg, i);
8237 unregister_rt_sched_group(tg, i);
9b5b7751 8238 }
6f505b16 8239 list_del_rcu(&tg->list);
f473aa5e 8240 list_del_rcu(&tg->siblings);
8ed36996 8241 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8242
9b5b7751 8243 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8244 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8245}
8246
9b5b7751 8247/* change task's runqueue when it moves between groups.
3a252015
IM
8248 * The caller of this function should have put the task in its new group
8249 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8250 * reflect its new group.
9b5b7751
SV
8251 */
8252void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8253{
8254 int on_rq, running;
8255 unsigned long flags;
8256 struct rq *rq;
8257
8258 rq = task_rq_lock(tsk, &flags);
8259
29f59db3
SV
8260 update_rq_clock(rq);
8261
051a1d1a 8262 running = task_current(rq, tsk);
29f59db3
SV
8263 on_rq = tsk->se.on_rq;
8264
0e1f3483 8265 if (on_rq)
29f59db3 8266 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8267 if (unlikely(running))
8268 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8269
6f505b16 8270 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8271
810b3817
PZ
8272#ifdef CONFIG_FAIR_GROUP_SCHED
8273 if (tsk->sched_class->moved_group)
8274 tsk->sched_class->moved_group(tsk);
8275#endif
8276
0e1f3483
HS
8277 if (unlikely(running))
8278 tsk->sched_class->set_curr_task(rq);
8279 if (on_rq)
7074badb 8280 enqueue_task(rq, tsk, 0);
29f59db3 8281
29f59db3
SV
8282 task_rq_unlock(rq, &flags);
8283}
6d6bc0ad 8284#endif /* CONFIG_GROUP_SCHED */
29f59db3 8285
052f1dc7 8286#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8287static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8288{
8289 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8290 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8291 int on_rq;
8292
6363ca57
IM
8293 spin_lock_irq(&rq->lock);
8294
29f59db3 8295 on_rq = se->on_rq;
62fb1851 8296 if (on_rq)
29f59db3
SV
8297 dequeue_entity(cfs_rq, se, 0);
8298
8299 se->load.weight = shares;
e05510d0 8300 se->load.inv_weight = 0;
29f59db3 8301
62fb1851 8302 if (on_rq)
29f59db3 8303 enqueue_entity(cfs_rq, se, 0);
62fb1851 8304
6363ca57 8305 spin_unlock_irq(&rq->lock);
29f59db3
SV
8306}
8307
8ed36996
PZ
8308static DEFINE_MUTEX(shares_mutex);
8309
4cf86d77 8310int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8311{
8312 int i;
8ed36996 8313 unsigned long flags;
c61935fd 8314
ec7dc8ac
DG
8315 /*
8316 * We can't change the weight of the root cgroup.
8317 */
8318 if (!tg->se[0])
8319 return -EINVAL;
8320
18d95a28
PZ
8321 if (shares < MIN_SHARES)
8322 shares = MIN_SHARES;
cb4ad1ff
MX
8323 else if (shares > MAX_SHARES)
8324 shares = MAX_SHARES;
62fb1851 8325
8ed36996 8326 mutex_lock(&shares_mutex);
9b5b7751 8327 if (tg->shares == shares)
5cb350ba 8328 goto done;
29f59db3 8329
8ed36996 8330 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8331 for_each_possible_cpu(i)
8332 unregister_fair_sched_group(tg, i);
f473aa5e 8333 list_del_rcu(&tg->siblings);
8ed36996 8334 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8335
8336 /* wait for any ongoing reference to this group to finish */
8337 synchronize_sched();
8338
8339 /*
8340 * Now we are free to modify the group's share on each cpu
8341 * w/o tripping rebalance_share or load_balance_fair.
8342 */
9b5b7751 8343 tg->shares = shares;
6363ca57 8344 for_each_possible_cpu(i)
cb4ad1ff 8345 set_se_shares(tg->se[i], shares);
29f59db3 8346
6b2d7700
SV
8347 /*
8348 * Enable load balance activity on this group, by inserting it back on
8349 * each cpu's rq->leaf_cfs_rq_list.
8350 */
8ed36996 8351 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8352 for_each_possible_cpu(i)
8353 register_fair_sched_group(tg, i);
f473aa5e 8354 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8355 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8356done:
8ed36996 8357 mutex_unlock(&shares_mutex);
9b5b7751 8358 return 0;
29f59db3
SV
8359}
8360
5cb350ba
DG
8361unsigned long sched_group_shares(struct task_group *tg)
8362{
8363 return tg->shares;
8364}
052f1dc7 8365#endif
5cb350ba 8366
052f1dc7 8367#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8368/*
9f0c1e56 8369 * Ensure that the real time constraints are schedulable.
6f505b16 8370 */
9f0c1e56
PZ
8371static DEFINE_MUTEX(rt_constraints_mutex);
8372
8373static unsigned long to_ratio(u64 period, u64 runtime)
8374{
8375 if (runtime == RUNTIME_INF)
8376 return 1ULL << 16;
8377
6f6d6a1a 8378 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8379}
8380
b40b2e8e
PZ
8381#ifdef CONFIG_CGROUP_SCHED
8382static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8383{
8384 struct task_group *tgi, *parent = tg->parent;
8385 unsigned long total = 0;
8386
8387 if (!parent) {
8388 if (global_rt_period() < period)
8389 return 0;
8390
8391 return to_ratio(period, runtime) <
8392 to_ratio(global_rt_period(), global_rt_runtime());
8393 }
8394
8395 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8396 return 0;
8397
8398 rcu_read_lock();
8399 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8400 if (tgi == tg)
8401 continue;
8402
8403 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8404 tgi->rt_bandwidth.rt_runtime);
8405 }
8406 rcu_read_unlock();
8407
8408 return total + to_ratio(period, runtime) <
8409 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8410 parent->rt_bandwidth.rt_runtime);
8411}
8412#elif defined CONFIG_USER_SCHED
9f0c1e56 8413static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8414{
8415 struct task_group *tgi;
8416 unsigned long total = 0;
9f0c1e56 8417 unsigned long global_ratio =
d0b27fa7 8418 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8419
8420 rcu_read_lock();
9f0c1e56
PZ
8421 list_for_each_entry_rcu(tgi, &task_groups, list) {
8422 if (tgi == tg)
8423 continue;
6f505b16 8424
d0b27fa7
PZ
8425 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8426 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8427 }
8428 rcu_read_unlock();
6f505b16 8429
9f0c1e56 8430 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8431}
b40b2e8e 8432#endif
6f505b16 8433
521f1a24
DG
8434/* Must be called with tasklist_lock held */
8435static inline int tg_has_rt_tasks(struct task_group *tg)
8436{
8437 struct task_struct *g, *p;
8438 do_each_thread(g, p) {
8439 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8440 return 1;
8441 } while_each_thread(g, p);
8442 return 0;
8443}
8444
d0b27fa7
PZ
8445static int tg_set_bandwidth(struct task_group *tg,
8446 u64 rt_period, u64 rt_runtime)
6f505b16 8447{
ac086bc2 8448 int i, err = 0;
9f0c1e56 8449
9f0c1e56 8450 mutex_lock(&rt_constraints_mutex);
521f1a24 8451 read_lock(&tasklist_lock);
ac086bc2 8452 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8453 err = -EBUSY;
8454 goto unlock;
8455 }
9f0c1e56
PZ
8456 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8457 err = -EINVAL;
8458 goto unlock;
8459 }
ac086bc2
PZ
8460
8461 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8462 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8463 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8464
8465 for_each_possible_cpu(i) {
8466 struct rt_rq *rt_rq = tg->rt_rq[i];
8467
8468 spin_lock(&rt_rq->rt_runtime_lock);
8469 rt_rq->rt_runtime = rt_runtime;
8470 spin_unlock(&rt_rq->rt_runtime_lock);
8471 }
8472 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8473 unlock:
521f1a24 8474 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8475 mutex_unlock(&rt_constraints_mutex);
8476
8477 return err;
6f505b16
PZ
8478}
8479
d0b27fa7
PZ
8480int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8481{
8482 u64 rt_runtime, rt_period;
8483
8484 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8485 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8486 if (rt_runtime_us < 0)
8487 rt_runtime = RUNTIME_INF;
8488
8489 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8490}
8491
9f0c1e56
PZ
8492long sched_group_rt_runtime(struct task_group *tg)
8493{
8494 u64 rt_runtime_us;
8495
d0b27fa7 8496 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8497 return -1;
8498
d0b27fa7 8499 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8500 do_div(rt_runtime_us, NSEC_PER_USEC);
8501 return rt_runtime_us;
8502}
d0b27fa7
PZ
8503
8504int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8505{
8506 u64 rt_runtime, rt_period;
8507
8508 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8509 rt_runtime = tg->rt_bandwidth.rt_runtime;
8510
8511 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8512}
8513
8514long sched_group_rt_period(struct task_group *tg)
8515{
8516 u64 rt_period_us;
8517
8518 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8519 do_div(rt_period_us, NSEC_PER_USEC);
8520 return rt_period_us;
8521}
8522
8523static int sched_rt_global_constraints(void)
8524{
8525 int ret = 0;
8526
8527 mutex_lock(&rt_constraints_mutex);
8528 if (!__rt_schedulable(NULL, 1, 0))
8529 ret = -EINVAL;
8530 mutex_unlock(&rt_constraints_mutex);
8531
8532 return ret;
8533}
6d6bc0ad 8534#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8535static int sched_rt_global_constraints(void)
8536{
ac086bc2
PZ
8537 unsigned long flags;
8538 int i;
8539
8540 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8541 for_each_possible_cpu(i) {
8542 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8543
8544 spin_lock(&rt_rq->rt_runtime_lock);
8545 rt_rq->rt_runtime = global_rt_runtime();
8546 spin_unlock(&rt_rq->rt_runtime_lock);
8547 }
8548 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8549
d0b27fa7
PZ
8550 return 0;
8551}
6d6bc0ad 8552#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8553
8554int sched_rt_handler(struct ctl_table *table, int write,
8555 struct file *filp, void __user *buffer, size_t *lenp,
8556 loff_t *ppos)
8557{
8558 int ret;
8559 int old_period, old_runtime;
8560 static DEFINE_MUTEX(mutex);
8561
8562 mutex_lock(&mutex);
8563 old_period = sysctl_sched_rt_period;
8564 old_runtime = sysctl_sched_rt_runtime;
8565
8566 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8567
8568 if (!ret && write) {
8569 ret = sched_rt_global_constraints();
8570 if (ret) {
8571 sysctl_sched_rt_period = old_period;
8572 sysctl_sched_rt_runtime = old_runtime;
8573 } else {
8574 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8575 def_rt_bandwidth.rt_period =
8576 ns_to_ktime(global_rt_period());
8577 }
8578 }
8579 mutex_unlock(&mutex);
8580
8581 return ret;
8582}
68318b8e 8583
052f1dc7 8584#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8585
8586/* return corresponding task_group object of a cgroup */
2b01dfe3 8587static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8588{
2b01dfe3
PM
8589 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8590 struct task_group, css);
68318b8e
SV
8591}
8592
8593static struct cgroup_subsys_state *
2b01dfe3 8594cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8595{
ec7dc8ac 8596 struct task_group *tg, *parent;
68318b8e 8597
2b01dfe3 8598 if (!cgrp->parent) {
68318b8e 8599 /* This is early initialization for the top cgroup */
2b01dfe3 8600 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8601 return &init_task_group.css;
8602 }
8603
ec7dc8ac
DG
8604 parent = cgroup_tg(cgrp->parent);
8605 tg = sched_create_group(parent);
68318b8e
SV
8606 if (IS_ERR(tg))
8607 return ERR_PTR(-ENOMEM);
8608
8609 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8610 tg->css.cgroup = cgrp;
68318b8e
SV
8611
8612 return &tg->css;
8613}
8614
41a2d6cf
IM
8615static void
8616cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8617{
2b01dfe3 8618 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8619
8620 sched_destroy_group(tg);
8621}
8622
41a2d6cf
IM
8623static int
8624cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8625 struct task_struct *tsk)
68318b8e 8626{
b68aa230
PZ
8627#ifdef CONFIG_RT_GROUP_SCHED
8628 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8629 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8630 return -EINVAL;
8631#else
68318b8e
SV
8632 /* We don't support RT-tasks being in separate groups */
8633 if (tsk->sched_class != &fair_sched_class)
8634 return -EINVAL;
b68aa230 8635#endif
68318b8e
SV
8636
8637 return 0;
8638}
8639
8640static void
2b01dfe3 8641cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8642 struct cgroup *old_cont, struct task_struct *tsk)
8643{
8644 sched_move_task(tsk);
8645}
8646
052f1dc7 8647#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8648static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8649 u64 shareval)
68318b8e 8650{
2b01dfe3 8651 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8652}
8653
f4c753b7 8654static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8655{
2b01dfe3 8656 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8657
8658 return (u64) tg->shares;
8659}
6d6bc0ad 8660#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8661
052f1dc7 8662#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8663static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8664 s64 val)
6f505b16 8665{
06ecb27c 8666 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8667}
8668
06ecb27c 8669static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8670{
06ecb27c 8671 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8672}
d0b27fa7
PZ
8673
8674static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8675 u64 rt_period_us)
8676{
8677 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8678}
8679
8680static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8681{
8682 return sched_group_rt_period(cgroup_tg(cgrp));
8683}
6d6bc0ad 8684#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8685
fe5c7cc2 8686static struct cftype cpu_files[] = {
052f1dc7 8687#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8688 {
8689 .name = "shares",
f4c753b7
PM
8690 .read_u64 = cpu_shares_read_u64,
8691 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8692 },
052f1dc7
PZ
8693#endif
8694#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8695 {
9f0c1e56 8696 .name = "rt_runtime_us",
06ecb27c
PM
8697 .read_s64 = cpu_rt_runtime_read,
8698 .write_s64 = cpu_rt_runtime_write,
6f505b16 8699 },
d0b27fa7
PZ
8700 {
8701 .name = "rt_period_us",
f4c753b7
PM
8702 .read_u64 = cpu_rt_period_read_uint,
8703 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8704 },
052f1dc7 8705#endif
68318b8e
SV
8706};
8707
8708static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8709{
fe5c7cc2 8710 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8711}
8712
8713struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8714 .name = "cpu",
8715 .create = cpu_cgroup_create,
8716 .destroy = cpu_cgroup_destroy,
8717 .can_attach = cpu_cgroup_can_attach,
8718 .attach = cpu_cgroup_attach,
8719 .populate = cpu_cgroup_populate,
8720 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8721 .early_init = 1,
8722};
8723
052f1dc7 8724#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8725
8726#ifdef CONFIG_CGROUP_CPUACCT
8727
8728/*
8729 * CPU accounting code for task groups.
8730 *
8731 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8732 * (balbir@in.ibm.com).
8733 */
8734
8735/* track cpu usage of a group of tasks */
8736struct cpuacct {
8737 struct cgroup_subsys_state css;
8738 /* cpuusage holds pointer to a u64-type object on every cpu */
8739 u64 *cpuusage;
8740};
8741
8742struct cgroup_subsys cpuacct_subsys;
8743
8744/* return cpu accounting group corresponding to this container */
32cd756a 8745static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8746{
32cd756a 8747 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8748 struct cpuacct, css);
8749}
8750
8751/* return cpu accounting group to which this task belongs */
8752static inline struct cpuacct *task_ca(struct task_struct *tsk)
8753{
8754 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8755 struct cpuacct, css);
8756}
8757
8758/* create a new cpu accounting group */
8759static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8760 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8761{
8762 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8763
8764 if (!ca)
8765 return ERR_PTR(-ENOMEM);
8766
8767 ca->cpuusage = alloc_percpu(u64);
8768 if (!ca->cpuusage) {
8769 kfree(ca);
8770 return ERR_PTR(-ENOMEM);
8771 }
8772
8773 return &ca->css;
8774}
8775
8776/* destroy an existing cpu accounting group */
41a2d6cf 8777static void
32cd756a 8778cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8779{
32cd756a 8780 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8781
8782 free_percpu(ca->cpuusage);
8783 kfree(ca);
8784}
8785
8786/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8787static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8788{
32cd756a 8789 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8790 u64 totalcpuusage = 0;
8791 int i;
8792
8793 for_each_possible_cpu(i) {
8794 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8795
8796 /*
8797 * Take rq->lock to make 64-bit addition safe on 32-bit
8798 * platforms.
8799 */
8800 spin_lock_irq(&cpu_rq(i)->lock);
8801 totalcpuusage += *cpuusage;
8802 spin_unlock_irq(&cpu_rq(i)->lock);
8803 }
8804
8805 return totalcpuusage;
8806}
8807
0297b803
DG
8808static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8809 u64 reset)
8810{
8811 struct cpuacct *ca = cgroup_ca(cgrp);
8812 int err = 0;
8813 int i;
8814
8815 if (reset) {
8816 err = -EINVAL;
8817 goto out;
8818 }
8819
8820 for_each_possible_cpu(i) {
8821 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8822
8823 spin_lock_irq(&cpu_rq(i)->lock);
8824 *cpuusage = 0;
8825 spin_unlock_irq(&cpu_rq(i)->lock);
8826 }
8827out:
8828 return err;
8829}
8830
d842de87
SV
8831static struct cftype files[] = {
8832 {
8833 .name = "usage",
f4c753b7
PM
8834 .read_u64 = cpuusage_read,
8835 .write_u64 = cpuusage_write,
d842de87
SV
8836 },
8837};
8838
32cd756a 8839static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8840{
32cd756a 8841 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8842}
8843
8844/*
8845 * charge this task's execution time to its accounting group.
8846 *
8847 * called with rq->lock held.
8848 */
8849static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8850{
8851 struct cpuacct *ca;
8852
8853 if (!cpuacct_subsys.active)
8854 return;
8855
8856 ca = task_ca(tsk);
8857 if (ca) {
8858 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8859
8860 *cpuusage += cputime;
8861 }
8862}
8863
8864struct cgroup_subsys cpuacct_subsys = {
8865 .name = "cpuacct",
8866 .create = cpuacct_create,
8867 .destroy = cpuacct_destroy,
8868 .populate = cpuacct_populate,
8869 .subsys_id = cpuacct_subsys_id,
8870};
8871#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.208565 seconds and 5 git commands to generate.