xen/evtchn: fix ring resize when binding new events
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
4ffef5fe
DN
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
1dfab5ab 212 unsigned long flags;
4ffef5fe 213 unsigned long precharge;
854ffa8d 214 unsigned long moved_charge;
483c30b5 215 unsigned long moved_swap;
8033b97c
DN
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
2bd9bb20 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
4ffef5fe 222
4e416953
BS
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
a0db00fc 227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 229
217bc319
KH
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 232 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
235 NR_CHARGE_TYPE,
236};
237
8c7c6e34 238/* for encoding cft->private value on file */
86ae53e1
GC
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
510fc4e1 243 _KMEM,
d55f90bf 244 _TCP,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
70ddf637
AV
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
7ffc0edc
MH
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
127424c8 271#ifndef CONFIG_SLOB
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
127424c8 323#endif /* !CONFIG_SLOB */
a8964b9b 324
f64c3f54 325static struct mem_cgroup_per_zone *
e231875b 326mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 327{
e231875b
JZ
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
54f72fe0 331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
332}
333
ad7fa852
TH
334/**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
ad7fa852
TH
344 */
345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346{
347 struct mem_cgroup *memcg;
348
ad7fa852
TH
349 memcg = page->mem_cgroup;
350
9e10a130 351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
352 memcg = root_mem_cgroup;
353
ad7fa852
TH
354 return &memcg->css;
355}
356
2fc04524
VD
357/**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370ino_t page_cgroup_ino(struct page *page)
371{
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383}
384
f64c3f54 385static struct mem_cgroup_per_zone *
e231875b 386mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 387{
97a6c37b
JW
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
f64c3f54 390
e231875b 391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
392}
393
bb4cc1a8
AM
394static struct mem_cgroup_tree_per_zone *
395soft_limit_tree_node_zone(int nid, int zid)
396{
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398}
399
400static struct mem_cgroup_tree_per_zone *
401soft_limit_tree_from_page(struct page *page)
402{
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407}
408
cf2c8127
JW
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 411 unsigned long new_usage_in_excess)
bb4cc1a8
AM
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439}
440
cf2c8127
JW
441static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
cf2c8127
JW
450static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 452{
0a31bc97
JW
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 456 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 457 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
458}
459
3e32cb2e
JW
460static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461{
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470}
bb4cc1a8
AM
471
472static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473{
3e32cb2e 474 unsigned long excess;
bb4cc1a8
AM
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 477
e231875b 478 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 484 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 485 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
0a31bc97
JW
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
494 /* if on-tree, remove it */
495 if (mz->on_tree)
cf2c8127 496 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
cf2c8127 501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 502 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
503 }
504 }
505}
506
507static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508{
bb4cc1a8 509 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
bb4cc1a8 512
e231875b
JZ
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 517 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
518 }
519 }
520}
521
522static struct mem_cgroup_per_zone *
523__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
cf2c8127 540 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 541 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 542 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
543 goto retry;
544done:
545 return mz;
546}
547
548static struct mem_cgroup_per_zone *
549mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550{
551 struct mem_cgroup_per_zone *mz;
552
0a31bc97 553 spin_lock_irq(&mctz->lock);
bb4cc1a8 554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 555 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
556 return mz;
557}
558
711d3d2c 559/*
484ebb3b
GT
560 * Return page count for single (non recursive) @memcg.
561 *
711d3d2c
KH
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 567 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 577 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
578 * implemented.
579 */
484ebb3b
GT
580static unsigned long
581mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 582{
7a159cc9 583 long val = 0;
c62b1a3b 584 int cpu;
c62b1a3b 585
484ebb3b 586 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 587 for_each_possible_cpu(cpu)
c0ff4b85 588 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
c62b1a3b
KH
595 return val;
596}
597
c0ff4b85 598static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
599 enum mem_cgroup_events_index idx)
600{
601 unsigned long val = 0;
602 int cpu;
603
733a572e 604 for_each_possible_cpu(cpu)
c0ff4b85 605 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
606 return val;
607}
608
c0ff4b85 609static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 610 struct page *page,
f627c2f5 611 bool compound, int nr_pages)
d52aa412 612{
b2402857
KH
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
0a31bc97 617 if (PageAnon(page))
b2402857 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 619 nr_pages);
d52aa412 620 else
b2402857 621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 622 nr_pages);
55e462b0 623
f627c2f5
KS
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
f627c2f5 628 }
b070e65c 629
e401f176
KH
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
c0ff4b85 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 633 else {
c0ff4b85 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
635 nr_pages = -nr_pages; /* for event */
636 }
e401f176 637
13114716 638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
639}
640
0a6b76dd
VD
641unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid, unsigned int lru_mask)
bb2a0de9 643{
e231875b 644 unsigned long nr = 0;
889976db
YH
645 int zid;
646
e231875b 647 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 648
e231875b
JZ
649 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
650 struct mem_cgroup_per_zone *mz;
651 enum lru_list lru;
652
653 for_each_lru(lru) {
654 if (!(BIT(lru) & lru_mask))
655 continue;
656 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
657 nr += mz->lru_size[lru];
658 }
659 }
660 return nr;
889976db 661}
bb2a0de9 662
c0ff4b85 663static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 664 unsigned int lru_mask)
6d12e2d8 665{
e231875b 666 unsigned long nr = 0;
889976db 667 int nid;
6d12e2d8 668
31aaea4a 669 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
670 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
671 return nr;
d52aa412
KH
672}
673
f53d7ce3
JW
674static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
675 enum mem_cgroup_events_target target)
7a159cc9
JW
676{
677 unsigned long val, next;
678
13114716 679 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 680 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 681 /* from time_after() in jiffies.h */
f53d7ce3
JW
682 if ((long)next - (long)val < 0) {
683 switch (target) {
684 case MEM_CGROUP_TARGET_THRESH:
685 next = val + THRESHOLDS_EVENTS_TARGET;
686 break;
bb4cc1a8
AM
687 case MEM_CGROUP_TARGET_SOFTLIMIT:
688 next = val + SOFTLIMIT_EVENTS_TARGET;
689 break;
f53d7ce3
JW
690 case MEM_CGROUP_TARGET_NUMAINFO:
691 next = val + NUMAINFO_EVENTS_TARGET;
692 break;
693 default:
694 break;
695 }
696 __this_cpu_write(memcg->stat->targets[target], next);
697 return true;
7a159cc9 698 }
f53d7ce3 699 return false;
d2265e6f
KH
700}
701
702/*
703 * Check events in order.
704 *
705 */
c0ff4b85 706static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
707{
708 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
709 if (unlikely(mem_cgroup_event_ratelimit(memcg,
710 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 711 bool do_softlimit;
82b3f2a7 712 bool do_numainfo __maybe_unused;
f53d7ce3 713
bb4cc1a8
AM
714 do_softlimit = mem_cgroup_event_ratelimit(memcg,
715 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
716#if MAX_NUMNODES > 1
717 do_numainfo = mem_cgroup_event_ratelimit(memcg,
718 MEM_CGROUP_TARGET_NUMAINFO);
719#endif
c0ff4b85 720 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
721 if (unlikely(do_softlimit))
722 mem_cgroup_update_tree(memcg, page);
453a9bf3 723#if MAX_NUMNODES > 1
f53d7ce3 724 if (unlikely(do_numainfo))
c0ff4b85 725 atomic_inc(&memcg->numainfo_events);
453a9bf3 726#endif
0a31bc97 727 }
d2265e6f
KH
728}
729
cf475ad2 730struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 731{
31a78f23
BS
732 /*
733 * mm_update_next_owner() may clear mm->owner to NULL
734 * if it races with swapoff, page migration, etc.
735 * So this can be called with p == NULL.
736 */
737 if (unlikely(!p))
738 return NULL;
739
073219e9 740 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 741}
33398cf2 742EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 743
df381975 744static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 745{
c0ff4b85 746 struct mem_cgroup *memcg = NULL;
0b7f569e 747
54595fe2
KH
748 rcu_read_lock();
749 do {
6f6acb00
MH
750 /*
751 * Page cache insertions can happen withou an
752 * actual mm context, e.g. during disk probing
753 * on boot, loopback IO, acct() writes etc.
754 */
755 if (unlikely(!mm))
df381975 756 memcg = root_mem_cgroup;
6f6acb00
MH
757 else {
758 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
759 if (unlikely(!memcg))
760 memcg = root_mem_cgroup;
761 }
ec903c0c 762 } while (!css_tryget_online(&memcg->css));
54595fe2 763 rcu_read_unlock();
c0ff4b85 764 return memcg;
54595fe2
KH
765}
766
5660048c
JW
767/**
768 * mem_cgroup_iter - iterate over memory cgroup hierarchy
769 * @root: hierarchy root
770 * @prev: previously returned memcg, NULL on first invocation
771 * @reclaim: cookie for shared reclaim walks, NULL for full walks
772 *
773 * Returns references to children of the hierarchy below @root, or
774 * @root itself, or %NULL after a full round-trip.
775 *
776 * Caller must pass the return value in @prev on subsequent
777 * invocations for reference counting, or use mem_cgroup_iter_break()
778 * to cancel a hierarchy walk before the round-trip is complete.
779 *
780 * Reclaimers can specify a zone and a priority level in @reclaim to
781 * divide up the memcgs in the hierarchy among all concurrent
782 * reclaimers operating on the same zone and priority.
783 */
694fbc0f 784struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 785 struct mem_cgroup *prev,
694fbc0f 786 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 787{
33398cf2 788 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 789 struct cgroup_subsys_state *css = NULL;
9f3a0d09 790 struct mem_cgroup *memcg = NULL;
5ac8fb31 791 struct mem_cgroup *pos = NULL;
711d3d2c 792
694fbc0f
AM
793 if (mem_cgroup_disabled())
794 return NULL;
5660048c 795
9f3a0d09
JW
796 if (!root)
797 root = root_mem_cgroup;
7d74b06f 798
9f3a0d09 799 if (prev && !reclaim)
5ac8fb31 800 pos = prev;
14067bb3 801
9f3a0d09
JW
802 if (!root->use_hierarchy && root != root_mem_cgroup) {
803 if (prev)
5ac8fb31 804 goto out;
694fbc0f 805 return root;
9f3a0d09 806 }
14067bb3 807
542f85f9 808 rcu_read_lock();
5f578161 809
5ac8fb31
JW
810 if (reclaim) {
811 struct mem_cgroup_per_zone *mz;
812
813 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
814 iter = &mz->iter[reclaim->priority];
815
816 if (prev && reclaim->generation != iter->generation)
817 goto out_unlock;
818
6df38689 819 while (1) {
4db0c3c2 820 pos = READ_ONCE(iter->position);
6df38689
VD
821 if (!pos || css_tryget(&pos->css))
822 break;
5ac8fb31 823 /*
6df38689
VD
824 * css reference reached zero, so iter->position will
825 * be cleared by ->css_released. However, we should not
826 * rely on this happening soon, because ->css_released
827 * is called from a work queue, and by busy-waiting we
828 * might block it. So we clear iter->position right
829 * away.
5ac8fb31 830 */
6df38689
VD
831 (void)cmpxchg(&iter->position, pos, NULL);
832 }
5ac8fb31
JW
833 }
834
835 if (pos)
836 css = &pos->css;
837
838 for (;;) {
839 css = css_next_descendant_pre(css, &root->css);
840 if (!css) {
841 /*
842 * Reclaimers share the hierarchy walk, and a
843 * new one might jump in right at the end of
844 * the hierarchy - make sure they see at least
845 * one group and restart from the beginning.
846 */
847 if (!prev)
848 continue;
849 break;
527a5ec9 850 }
7d74b06f 851
5ac8fb31
JW
852 /*
853 * Verify the css and acquire a reference. The root
854 * is provided by the caller, so we know it's alive
855 * and kicking, and don't take an extra reference.
856 */
857 memcg = mem_cgroup_from_css(css);
14067bb3 858
5ac8fb31
JW
859 if (css == &root->css)
860 break;
14067bb3 861
0b8f73e1
JW
862 if (css_tryget(css))
863 break;
9f3a0d09 864
5ac8fb31 865 memcg = NULL;
9f3a0d09 866 }
5ac8fb31
JW
867
868 if (reclaim) {
5ac8fb31 869 /*
6df38689
VD
870 * The position could have already been updated by a competing
871 * thread, so check that the value hasn't changed since we read
872 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 873 */
6df38689
VD
874 (void)cmpxchg(&iter->position, pos, memcg);
875
5ac8fb31
JW
876 if (pos)
877 css_put(&pos->css);
878
879 if (!memcg)
880 iter->generation++;
881 else if (!prev)
882 reclaim->generation = iter->generation;
9f3a0d09 883 }
5ac8fb31 884
542f85f9
MH
885out_unlock:
886 rcu_read_unlock();
5ac8fb31 887out:
c40046f3
MH
888 if (prev && prev != root)
889 css_put(&prev->css);
890
9f3a0d09 891 return memcg;
14067bb3 892}
7d74b06f 893
5660048c
JW
894/**
895 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896 * @root: hierarchy root
897 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
898 */
899void mem_cgroup_iter_break(struct mem_cgroup *root,
900 struct mem_cgroup *prev)
9f3a0d09
JW
901{
902 if (!root)
903 root = root_mem_cgroup;
904 if (prev && prev != root)
905 css_put(&prev->css);
906}
7d74b06f 907
6df38689
VD
908static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
909{
910 struct mem_cgroup *memcg = dead_memcg;
911 struct mem_cgroup_reclaim_iter *iter;
912 struct mem_cgroup_per_zone *mz;
913 int nid, zid;
914 int i;
915
916 while ((memcg = parent_mem_cgroup(memcg))) {
917 for_each_node(nid) {
918 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
919 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920 for (i = 0; i <= DEF_PRIORITY; i++) {
921 iter = &mz->iter[i];
922 cmpxchg(&iter->position,
923 dead_memcg, NULL);
924 }
925 }
926 }
927 }
928}
929
9f3a0d09
JW
930/*
931 * Iteration constructs for visiting all cgroups (under a tree). If
932 * loops are exited prematurely (break), mem_cgroup_iter_break() must
933 * be used for reference counting.
934 */
935#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 936 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 937 iter != NULL; \
527a5ec9 938 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 939
9f3a0d09 940#define for_each_mem_cgroup(iter) \
527a5ec9 941 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 942 iter != NULL; \
527a5ec9 943 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 944
925b7673
JW
945/**
946 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947 * @zone: zone of the wanted lruvec
fa9add64 948 * @memcg: memcg of the wanted lruvec
925b7673
JW
949 *
950 * Returns the lru list vector holding pages for the given @zone and
951 * @mem. This can be the global zone lruvec, if the memory controller
952 * is disabled.
953 */
954struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
955 struct mem_cgroup *memcg)
956{
957 struct mem_cgroup_per_zone *mz;
bea8c150 958 struct lruvec *lruvec;
925b7673 959
bea8c150
HD
960 if (mem_cgroup_disabled()) {
961 lruvec = &zone->lruvec;
962 goto out;
963 }
925b7673 964
e231875b 965 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
966 lruvec = &mz->lruvec;
967out:
968 /*
969 * Since a node can be onlined after the mem_cgroup was created,
970 * we have to be prepared to initialize lruvec->zone here;
971 * and if offlined then reonlined, we need to reinitialize it.
972 */
973 if (unlikely(lruvec->zone != zone))
974 lruvec->zone = zone;
975 return lruvec;
925b7673
JW
976}
977
925b7673 978/**
dfe0e773 979 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 980 * @page: the page
fa9add64 981 * @zone: zone of the page
dfe0e773
JW
982 *
983 * This function is only safe when following the LRU page isolation
984 * and putback protocol: the LRU lock must be held, and the page must
985 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 986 */
fa9add64 987struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 988{
08e552c6 989 struct mem_cgroup_per_zone *mz;
925b7673 990 struct mem_cgroup *memcg;
bea8c150 991 struct lruvec *lruvec;
6d12e2d8 992
bea8c150
HD
993 if (mem_cgroup_disabled()) {
994 lruvec = &zone->lruvec;
995 goto out;
996 }
925b7673 997
1306a85a 998 memcg = page->mem_cgroup;
7512102c 999 /*
dfe0e773 1000 * Swapcache readahead pages are added to the LRU - and
29833315 1001 * possibly migrated - before they are charged.
7512102c 1002 */
29833315
JW
1003 if (!memcg)
1004 memcg = root_mem_cgroup;
7512102c 1005
e231875b 1006 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1007 lruvec = &mz->lruvec;
1008out:
1009 /*
1010 * Since a node can be onlined after the mem_cgroup was created,
1011 * we have to be prepared to initialize lruvec->zone here;
1012 * and if offlined then reonlined, we need to reinitialize it.
1013 */
1014 if (unlikely(lruvec->zone != zone))
1015 lruvec->zone = zone;
1016 return lruvec;
08e552c6 1017}
b69408e8 1018
925b7673 1019/**
fa9add64
HD
1020 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021 * @lruvec: mem_cgroup per zone lru vector
1022 * @lru: index of lru list the page is sitting on
1023 * @nr_pages: positive when adding or negative when removing
925b7673 1024 *
fa9add64
HD
1025 * This function must be called when a page is added to or removed from an
1026 * lru list.
3f58a829 1027 */
fa9add64
HD
1028void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1029 int nr_pages)
3f58a829
MK
1030{
1031 struct mem_cgroup_per_zone *mz;
fa9add64 1032 unsigned long *lru_size;
3f58a829
MK
1033
1034 if (mem_cgroup_disabled())
1035 return;
1036
fa9add64
HD
1037 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1038 lru_size = mz->lru_size + lru;
1039 *lru_size += nr_pages;
1040 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1041}
544122e5 1042
2314b42d 1043bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1044{
2314b42d 1045 struct mem_cgroup *task_memcg;
158e0a2d 1046 struct task_struct *p;
ffbdccf5 1047 bool ret;
4c4a2214 1048
158e0a2d 1049 p = find_lock_task_mm(task);
de077d22 1050 if (p) {
2314b42d 1051 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1052 task_unlock(p);
1053 } else {
1054 /*
1055 * All threads may have already detached their mm's, but the oom
1056 * killer still needs to detect if they have already been oom
1057 * killed to prevent needlessly killing additional tasks.
1058 */
ffbdccf5 1059 rcu_read_lock();
2314b42d
JW
1060 task_memcg = mem_cgroup_from_task(task);
1061 css_get(&task_memcg->css);
ffbdccf5 1062 rcu_read_unlock();
de077d22 1063 }
2314b42d
JW
1064 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065 css_put(&task_memcg->css);
4c4a2214
DR
1066 return ret;
1067}
1068
19942822 1069/**
9d11ea9f 1070 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1071 * @memcg: the memory cgroup
19942822 1072 *
9d11ea9f 1073 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1074 * pages.
19942822 1075 */
c0ff4b85 1076static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1077{
3e32cb2e
JW
1078 unsigned long margin = 0;
1079 unsigned long count;
1080 unsigned long limit;
9d11ea9f 1081
3e32cb2e 1082 count = page_counter_read(&memcg->memory);
4db0c3c2 1083 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1084 if (count < limit)
1085 margin = limit - count;
1086
7941d214 1087 if (do_memsw_account()) {
3e32cb2e 1088 count = page_counter_read(&memcg->memsw);
4db0c3c2 1089 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1090 if (count <= limit)
1091 margin = min(margin, limit - count);
1092 }
1093
1094 return margin;
19942822
JW
1095}
1096
32047e2a 1097/*
bdcbb659 1098 * A routine for checking "mem" is under move_account() or not.
32047e2a 1099 *
bdcbb659
QH
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
32047e2a 1103 */
c0ff4b85 1104static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1105{
2bd9bb20
KH
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
4b534334 1108 bool ret = false;
2bd9bb20
KH
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
3e92041d 1118
2314b42d
JW
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1121unlock:
1122 spin_unlock(&mc.lock);
4b534334
KH
1123 return ret;
1124}
1125
c0ff4b85 1126static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1127{
1128 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1129 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140}
1141
58cf188e 1142#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1143/**
58cf188e 1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152{
58cf188e
SZ
1153 struct mem_cgroup *iter;
1154 unsigned int i;
e222432b 1155
e222432b
BS
1156 rcu_read_lock();
1157
2415b9f5
BV
1158 if (p) {
1159 pr_info("Task in ");
1160 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 pr_cont(" killed as a result of limit of ");
1162 } else {
1163 pr_info("Memory limit reached of cgroup ");
1164 }
1165
e61734c5 1166 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1167 pr_cont("\n");
e222432b 1168
e222432b
BS
1169 rcu_read_unlock();
1170
3e32cb2e
JW
1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 K((u64)page_counter_read(&memcg->memory)),
1173 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memsw)),
1176 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->kmem)),
1179 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1180
1181 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1182 pr_info("Memory cgroup stats for ");
1183 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1184 pr_cont(":");
1185
1186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1188 continue;
484ebb3b 1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1190 K(mem_cgroup_read_stat(iter, i)));
1191 }
1192
1193 for (i = 0; i < NR_LRU_LISTS; i++)
1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197 pr_cont("\n");
1198 }
e222432b
BS
1199}
1200
81d39c20
KH
1201/*
1202 * This function returns the number of memcg under hierarchy tree. Returns
1203 * 1(self count) if no children.
1204 */
c0ff4b85 1205static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1206{
1207 int num = 0;
7d74b06f
KH
1208 struct mem_cgroup *iter;
1209
c0ff4b85 1210 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1211 num++;
81d39c20
KH
1212 return num;
1213}
1214
a63d83f4
DR
1215/*
1216 * Return the memory (and swap, if configured) limit for a memcg.
1217 */
3e32cb2e 1218static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1219{
3e32cb2e 1220 unsigned long limit;
f3e8eb70 1221
3e32cb2e 1222 limit = memcg->memory.limit;
9a5a8f19 1223 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1224 unsigned long memsw_limit;
37e84351 1225 unsigned long swap_limit;
9a5a8f19 1226
3e32cb2e 1227 memsw_limit = memcg->memsw.limit;
37e84351
VD
1228 swap_limit = memcg->swap.limit;
1229 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1231 }
9a5a8f19 1232 return limit;
a63d83f4
DR
1233}
1234
b6e6edcf 1235static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1236 int order)
9cbb78bb 1237{
6e0fc46d
DR
1238 struct oom_control oc = {
1239 .zonelist = NULL,
1240 .nodemask = NULL,
1241 .gfp_mask = gfp_mask,
1242 .order = order,
6e0fc46d 1243 };
9cbb78bb
DR
1244 struct mem_cgroup *iter;
1245 unsigned long chosen_points = 0;
1246 unsigned long totalpages;
1247 unsigned int points = 0;
1248 struct task_struct *chosen = NULL;
1249
dc56401f
JW
1250 mutex_lock(&oom_lock);
1251
876aafbf 1252 /*
465adcf1
DR
1253 * If current has a pending SIGKILL or is exiting, then automatically
1254 * select it. The goal is to allow it to allocate so that it may
1255 * quickly exit and free its memory.
876aafbf 1256 */
d003f371 1257 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1258 mark_oom_victim(current);
dc56401f 1259 goto unlock;
876aafbf
DR
1260 }
1261
6e0fc46d 1262 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1263 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1264 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1265 struct css_task_iter it;
9cbb78bb
DR
1266 struct task_struct *task;
1267
72ec7029
TH
1268 css_task_iter_start(&iter->css, &it);
1269 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1270 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1271 case OOM_SCAN_SELECT:
1272 if (chosen)
1273 put_task_struct(chosen);
1274 chosen = task;
1275 chosen_points = ULONG_MAX;
1276 get_task_struct(chosen);
1277 /* fall through */
1278 case OOM_SCAN_CONTINUE:
1279 continue;
1280 case OOM_SCAN_ABORT:
72ec7029 1281 css_task_iter_end(&it);
9cbb78bb
DR
1282 mem_cgroup_iter_break(memcg, iter);
1283 if (chosen)
1284 put_task_struct(chosen);
dc56401f 1285 goto unlock;
9cbb78bb
DR
1286 case OOM_SCAN_OK:
1287 break;
1288 };
1289 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1290 if (!points || points < chosen_points)
1291 continue;
1292 /* Prefer thread group leaders for display purposes */
1293 if (points == chosen_points &&
1294 thread_group_leader(chosen))
1295 continue;
1296
1297 if (chosen)
1298 put_task_struct(chosen);
1299 chosen = task;
1300 chosen_points = points;
1301 get_task_struct(chosen);
9cbb78bb 1302 }
72ec7029 1303 css_task_iter_end(&it);
9cbb78bb
DR
1304 }
1305
dc56401f
JW
1306 if (chosen) {
1307 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1308 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1309 "Memory cgroup out of memory");
dc56401f
JW
1310 }
1311unlock:
1312 mutex_unlock(&oom_lock);
b6e6edcf 1313 return chosen;
9cbb78bb
DR
1314}
1315
ae6e71d3
MC
1316#if MAX_NUMNODES > 1
1317
4d0c066d
KH
1318/**
1319 * test_mem_cgroup_node_reclaimable
dad7557e 1320 * @memcg: the target memcg
4d0c066d
KH
1321 * @nid: the node ID to be checked.
1322 * @noswap : specify true here if the user wants flle only information.
1323 *
1324 * This function returns whether the specified memcg contains any
1325 * reclaimable pages on a node. Returns true if there are any reclaimable
1326 * pages in the node.
1327 */
c0ff4b85 1328static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1329 int nid, bool noswap)
1330{
c0ff4b85 1331 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1332 return true;
1333 if (noswap || !total_swap_pages)
1334 return false;
c0ff4b85 1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1336 return true;
1337 return false;
1338
1339}
889976db
YH
1340
1341/*
1342 * Always updating the nodemask is not very good - even if we have an empty
1343 * list or the wrong list here, we can start from some node and traverse all
1344 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1345 *
1346 */
c0ff4b85 1347static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1348{
1349 int nid;
453a9bf3
KH
1350 /*
1351 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1352 * pagein/pageout changes since the last update.
1353 */
c0ff4b85 1354 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1355 return;
c0ff4b85 1356 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1357 return;
1358
889976db 1359 /* make a nodemask where this memcg uses memory from */
31aaea4a 1360 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1361
31aaea4a 1362 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1363
c0ff4b85
R
1364 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1365 node_clear(nid, memcg->scan_nodes);
889976db 1366 }
453a9bf3 1367
c0ff4b85
R
1368 atomic_set(&memcg->numainfo_events, 0);
1369 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1370}
1371
1372/*
1373 * Selecting a node where we start reclaim from. Because what we need is just
1374 * reducing usage counter, start from anywhere is O,K. Considering
1375 * memory reclaim from current node, there are pros. and cons.
1376 *
1377 * Freeing memory from current node means freeing memory from a node which
1378 * we'll use or we've used. So, it may make LRU bad. And if several threads
1379 * hit limits, it will see a contention on a node. But freeing from remote
1380 * node means more costs for memory reclaim because of memory latency.
1381 *
1382 * Now, we use round-robin. Better algorithm is welcomed.
1383 */
c0ff4b85 1384int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1385{
1386 int node;
1387
c0ff4b85
R
1388 mem_cgroup_may_update_nodemask(memcg);
1389 node = memcg->last_scanned_node;
889976db 1390
c0ff4b85 1391 node = next_node(node, memcg->scan_nodes);
889976db 1392 if (node == MAX_NUMNODES)
c0ff4b85 1393 node = first_node(memcg->scan_nodes);
889976db
YH
1394 /*
1395 * We call this when we hit limit, not when pages are added to LRU.
1396 * No LRU may hold pages because all pages are UNEVICTABLE or
1397 * memcg is too small and all pages are not on LRU. In that case,
1398 * we use curret node.
1399 */
1400 if (unlikely(node == MAX_NUMNODES))
1401 node = numa_node_id();
1402
c0ff4b85 1403 memcg->last_scanned_node = node;
889976db
YH
1404 return node;
1405}
889976db 1406#else
c0ff4b85 1407int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1408{
1409 return 0;
1410}
1411#endif
1412
0608f43d
AM
1413static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1414 struct zone *zone,
1415 gfp_t gfp_mask,
1416 unsigned long *total_scanned)
1417{
1418 struct mem_cgroup *victim = NULL;
1419 int total = 0;
1420 int loop = 0;
1421 unsigned long excess;
1422 unsigned long nr_scanned;
1423 struct mem_cgroup_reclaim_cookie reclaim = {
1424 .zone = zone,
1425 .priority = 0,
1426 };
1427
3e32cb2e 1428 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1429
1430 while (1) {
1431 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1432 if (!victim) {
1433 loop++;
1434 if (loop >= 2) {
1435 /*
1436 * If we have not been able to reclaim
1437 * anything, it might because there are
1438 * no reclaimable pages under this hierarchy
1439 */
1440 if (!total)
1441 break;
1442 /*
1443 * We want to do more targeted reclaim.
1444 * excess >> 2 is not to excessive so as to
1445 * reclaim too much, nor too less that we keep
1446 * coming back to reclaim from this cgroup
1447 */
1448 if (total >= (excess >> 2) ||
1449 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1450 break;
1451 }
1452 continue;
1453 }
0608f43d
AM
1454 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1455 zone, &nr_scanned);
1456 *total_scanned += nr_scanned;
3e32cb2e 1457 if (!soft_limit_excess(root_memcg))
0608f43d 1458 break;
6d61ef40 1459 }
0608f43d
AM
1460 mem_cgroup_iter_break(root_memcg, victim);
1461 return total;
6d61ef40
BS
1462}
1463
0056f4e6
JW
1464#ifdef CONFIG_LOCKDEP
1465static struct lockdep_map memcg_oom_lock_dep_map = {
1466 .name = "memcg_oom_lock",
1467};
1468#endif
1469
fb2a6fc5
JW
1470static DEFINE_SPINLOCK(memcg_oom_lock);
1471
867578cb
KH
1472/*
1473 * Check OOM-Killer is already running under our hierarchy.
1474 * If someone is running, return false.
1475 */
fb2a6fc5 1476static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1477{
79dfdacc 1478 struct mem_cgroup *iter, *failed = NULL;
a636b327 1479
fb2a6fc5
JW
1480 spin_lock(&memcg_oom_lock);
1481
9f3a0d09 1482 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1483 if (iter->oom_lock) {
79dfdacc
MH
1484 /*
1485 * this subtree of our hierarchy is already locked
1486 * so we cannot give a lock.
1487 */
79dfdacc 1488 failed = iter;
9f3a0d09
JW
1489 mem_cgroup_iter_break(memcg, iter);
1490 break;
23751be0
JW
1491 } else
1492 iter->oom_lock = true;
7d74b06f 1493 }
867578cb 1494
fb2a6fc5
JW
1495 if (failed) {
1496 /*
1497 * OK, we failed to lock the whole subtree so we have
1498 * to clean up what we set up to the failing subtree
1499 */
1500 for_each_mem_cgroup_tree(iter, memcg) {
1501 if (iter == failed) {
1502 mem_cgroup_iter_break(memcg, iter);
1503 break;
1504 }
1505 iter->oom_lock = false;
79dfdacc 1506 }
0056f4e6
JW
1507 } else
1508 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1509
1510 spin_unlock(&memcg_oom_lock);
1511
1512 return !failed;
a636b327 1513}
0b7f569e 1514
fb2a6fc5 1515static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1516{
7d74b06f
KH
1517 struct mem_cgroup *iter;
1518
fb2a6fc5 1519 spin_lock(&memcg_oom_lock);
0056f4e6 1520 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1521 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1522 iter->oom_lock = false;
fb2a6fc5 1523 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1524}
1525
c0ff4b85 1526static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1527{
1528 struct mem_cgroup *iter;
1529
c2b42d3c 1530 spin_lock(&memcg_oom_lock);
c0ff4b85 1531 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1532 iter->under_oom++;
1533 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1534}
1535
c0ff4b85 1536static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1537{
1538 struct mem_cgroup *iter;
1539
867578cb
KH
1540 /*
1541 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1542 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1543 */
c2b42d3c 1544 spin_lock(&memcg_oom_lock);
c0ff4b85 1545 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1546 if (iter->under_oom > 0)
1547 iter->under_oom--;
1548 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1549}
1550
867578cb
KH
1551static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1552
dc98df5a 1553struct oom_wait_info {
d79154bb 1554 struct mem_cgroup *memcg;
dc98df5a
KH
1555 wait_queue_t wait;
1556};
1557
1558static int memcg_oom_wake_function(wait_queue_t *wait,
1559 unsigned mode, int sync, void *arg)
1560{
d79154bb
HD
1561 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1562 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1563 struct oom_wait_info *oom_wait_info;
1564
1565 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1566 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1567
2314b42d
JW
1568 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1569 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1570 return 0;
dc98df5a
KH
1571 return autoremove_wake_function(wait, mode, sync, arg);
1572}
1573
c0ff4b85 1574static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1575{
c2b42d3c
TH
1576 /*
1577 * For the following lockless ->under_oom test, the only required
1578 * guarantee is that it must see the state asserted by an OOM when
1579 * this function is called as a result of userland actions
1580 * triggered by the notification of the OOM. This is trivially
1581 * achieved by invoking mem_cgroup_mark_under_oom() before
1582 * triggering notification.
1583 */
1584 if (memcg && memcg->under_oom)
f4b90b70 1585 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1586}
1587
3812c8c8 1588static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1589{
626ebc41 1590 if (!current->memcg_may_oom)
3812c8c8 1591 return;
867578cb 1592 /*
49426420
JW
1593 * We are in the middle of the charge context here, so we
1594 * don't want to block when potentially sitting on a callstack
1595 * that holds all kinds of filesystem and mm locks.
1596 *
1597 * Also, the caller may handle a failed allocation gracefully
1598 * (like optional page cache readahead) and so an OOM killer
1599 * invocation might not even be necessary.
1600 *
1601 * That's why we don't do anything here except remember the
1602 * OOM context and then deal with it at the end of the page
1603 * fault when the stack is unwound, the locks are released,
1604 * and when we know whether the fault was overall successful.
867578cb 1605 */
49426420 1606 css_get(&memcg->css);
626ebc41
TH
1607 current->memcg_in_oom = memcg;
1608 current->memcg_oom_gfp_mask = mask;
1609 current->memcg_oom_order = order;
3812c8c8
JW
1610}
1611
1612/**
1613 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1614 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1615 *
49426420
JW
1616 * This has to be called at the end of a page fault if the memcg OOM
1617 * handler was enabled.
3812c8c8 1618 *
49426420 1619 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1620 * sleep on a waitqueue until the userspace task resolves the
1621 * situation. Sleeping directly in the charge context with all kinds
1622 * of locks held is not a good idea, instead we remember an OOM state
1623 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1624 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1625 *
1626 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1627 * completed, %false otherwise.
3812c8c8 1628 */
49426420 1629bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1630{
626ebc41 1631 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1632 struct oom_wait_info owait;
49426420 1633 bool locked;
3812c8c8
JW
1634
1635 /* OOM is global, do not handle */
3812c8c8 1636 if (!memcg)
49426420 1637 return false;
3812c8c8 1638
c32b3cbe 1639 if (!handle || oom_killer_disabled)
49426420 1640 goto cleanup;
3812c8c8
JW
1641
1642 owait.memcg = memcg;
1643 owait.wait.flags = 0;
1644 owait.wait.func = memcg_oom_wake_function;
1645 owait.wait.private = current;
1646 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1647
3812c8c8 1648 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1649 mem_cgroup_mark_under_oom(memcg);
1650
1651 locked = mem_cgroup_oom_trylock(memcg);
1652
1653 if (locked)
1654 mem_cgroup_oom_notify(memcg);
1655
1656 if (locked && !memcg->oom_kill_disable) {
1657 mem_cgroup_unmark_under_oom(memcg);
1658 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1659 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1660 current->memcg_oom_order);
49426420 1661 } else {
3812c8c8 1662 schedule();
49426420
JW
1663 mem_cgroup_unmark_under_oom(memcg);
1664 finish_wait(&memcg_oom_waitq, &owait.wait);
1665 }
1666
1667 if (locked) {
fb2a6fc5
JW
1668 mem_cgroup_oom_unlock(memcg);
1669 /*
1670 * There is no guarantee that an OOM-lock contender
1671 * sees the wakeups triggered by the OOM kill
1672 * uncharges. Wake any sleepers explicitely.
1673 */
1674 memcg_oom_recover(memcg);
1675 }
49426420 1676cleanup:
626ebc41 1677 current->memcg_in_oom = NULL;
3812c8c8 1678 css_put(&memcg->css);
867578cb 1679 return true;
0b7f569e
KH
1680}
1681
d7365e78 1682/**
81f8c3a4
JW
1683 * lock_page_memcg - lock a page->mem_cgroup binding
1684 * @page: the page
32047e2a 1685 *
81f8c3a4
JW
1686 * This function protects unlocked LRU pages from being moved to
1687 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1688 */
62cccb8c 1689void lock_page_memcg(struct page *page)
89c06bd5
KH
1690{
1691 struct mem_cgroup *memcg;
6de22619 1692 unsigned long flags;
89c06bd5 1693
6de22619
JW
1694 /*
1695 * The RCU lock is held throughout the transaction. The fast
1696 * path can get away without acquiring the memcg->move_lock
1697 * because page moving starts with an RCU grace period.
6de22619 1698 */
d7365e78
JW
1699 rcu_read_lock();
1700
1701 if (mem_cgroup_disabled())
62cccb8c 1702 return;
89c06bd5 1703again:
1306a85a 1704 memcg = page->mem_cgroup;
29833315 1705 if (unlikely(!memcg))
62cccb8c 1706 return;
d7365e78 1707
bdcbb659 1708 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1709 return;
89c06bd5 1710
6de22619 1711 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1712 if (memcg != page->mem_cgroup) {
6de22619 1713 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1714 goto again;
1715 }
6de22619
JW
1716
1717 /*
1718 * When charge migration first begins, we can have locked and
1719 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1720 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1721 */
1722 memcg->move_lock_task = current;
1723 memcg->move_lock_flags = flags;
d7365e78 1724
62cccb8c 1725 return;
89c06bd5 1726}
81f8c3a4 1727EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1728
d7365e78 1729/**
81f8c3a4 1730 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1731 * @page: the page
d7365e78 1732 */
62cccb8c 1733void unlock_page_memcg(struct page *page)
89c06bd5 1734{
62cccb8c
JW
1735 struct mem_cgroup *memcg = page->mem_cgroup;
1736
6de22619
JW
1737 if (memcg && memcg->move_lock_task == current) {
1738 unsigned long flags = memcg->move_lock_flags;
1739
1740 memcg->move_lock_task = NULL;
1741 memcg->move_lock_flags = 0;
1742
1743 spin_unlock_irqrestore(&memcg->move_lock, flags);
1744 }
89c06bd5 1745
d7365e78 1746 rcu_read_unlock();
89c06bd5 1747}
81f8c3a4 1748EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1749
cdec2e42
KH
1750/*
1751 * size of first charge trial. "32" comes from vmscan.c's magic value.
1752 * TODO: maybe necessary to use big numbers in big irons.
1753 */
7ec99d62 1754#define CHARGE_BATCH 32U
cdec2e42
KH
1755struct memcg_stock_pcp {
1756 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1757 unsigned int nr_pages;
cdec2e42 1758 struct work_struct work;
26fe6168 1759 unsigned long flags;
a0db00fc 1760#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1761};
1762static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1763static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1764
a0956d54
SS
1765/**
1766 * consume_stock: Try to consume stocked charge on this cpu.
1767 * @memcg: memcg to consume from.
1768 * @nr_pages: how many pages to charge.
1769 *
1770 * The charges will only happen if @memcg matches the current cpu's memcg
1771 * stock, and at least @nr_pages are available in that stock. Failure to
1772 * service an allocation will refill the stock.
1773 *
1774 * returns true if successful, false otherwise.
cdec2e42 1775 */
a0956d54 1776static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1777{
1778 struct memcg_stock_pcp *stock;
3e32cb2e 1779 bool ret = false;
cdec2e42 1780
a0956d54 1781 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1782 return ret;
a0956d54 1783
cdec2e42 1784 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1785 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1786 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1787 ret = true;
1788 }
cdec2e42
KH
1789 put_cpu_var(memcg_stock);
1790 return ret;
1791}
1792
1793/*
3e32cb2e 1794 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1795 */
1796static void drain_stock(struct memcg_stock_pcp *stock)
1797{
1798 struct mem_cgroup *old = stock->cached;
1799
11c9ea4e 1800 if (stock->nr_pages) {
3e32cb2e 1801 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1802 if (do_memsw_account())
3e32cb2e 1803 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1804 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1805 stock->nr_pages = 0;
cdec2e42
KH
1806 }
1807 stock->cached = NULL;
cdec2e42
KH
1808}
1809
1810/*
1811 * This must be called under preempt disabled or must be called by
1812 * a thread which is pinned to local cpu.
1813 */
1814static void drain_local_stock(struct work_struct *dummy)
1815{
7c8e0181 1816 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1817 drain_stock(stock);
26fe6168 1818 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1819}
1820
1821/*
3e32cb2e 1822 * Cache charges(val) to local per_cpu area.
320cc51d 1823 * This will be consumed by consume_stock() function, later.
cdec2e42 1824 */
c0ff4b85 1825static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1826{
1827 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1828
c0ff4b85 1829 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1830 drain_stock(stock);
c0ff4b85 1831 stock->cached = memcg;
cdec2e42 1832 }
11c9ea4e 1833 stock->nr_pages += nr_pages;
cdec2e42
KH
1834 put_cpu_var(memcg_stock);
1835}
1836
1837/*
c0ff4b85 1838 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1839 * of the hierarchy under it.
cdec2e42 1840 */
6d3d6aa2 1841static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1842{
26fe6168 1843 int cpu, curcpu;
d38144b7 1844
6d3d6aa2
JW
1845 /* If someone's already draining, avoid adding running more workers. */
1846 if (!mutex_trylock(&percpu_charge_mutex))
1847 return;
cdec2e42 1848 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1849 get_online_cpus();
5af12d0e 1850 curcpu = get_cpu();
cdec2e42
KH
1851 for_each_online_cpu(cpu) {
1852 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1853 struct mem_cgroup *memcg;
26fe6168 1854
c0ff4b85
R
1855 memcg = stock->cached;
1856 if (!memcg || !stock->nr_pages)
26fe6168 1857 continue;
2314b42d 1858 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1859 continue;
d1a05b69
MH
1860 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1861 if (cpu == curcpu)
1862 drain_local_stock(&stock->work);
1863 else
1864 schedule_work_on(cpu, &stock->work);
1865 }
cdec2e42 1866 }
5af12d0e 1867 put_cpu();
f894ffa8 1868 put_online_cpus();
9f50fad6 1869 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1870}
1871
0db0628d 1872static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1873 unsigned long action,
1874 void *hcpu)
1875{
1876 int cpu = (unsigned long)hcpu;
1877 struct memcg_stock_pcp *stock;
1878
619d094b 1879 if (action == CPU_ONLINE)
1489ebad 1880 return NOTIFY_OK;
1489ebad 1881
d833049b 1882 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1883 return NOTIFY_OK;
711d3d2c 1884
cdec2e42
KH
1885 stock = &per_cpu(memcg_stock, cpu);
1886 drain_stock(stock);
1887 return NOTIFY_OK;
1888}
1889
f7e1cb6e
JW
1890static void reclaim_high(struct mem_cgroup *memcg,
1891 unsigned int nr_pages,
1892 gfp_t gfp_mask)
1893{
1894 do {
1895 if (page_counter_read(&memcg->memory) <= memcg->high)
1896 continue;
1897 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1898 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1899 } while ((memcg = parent_mem_cgroup(memcg)));
1900}
1901
1902static void high_work_func(struct work_struct *work)
1903{
1904 struct mem_cgroup *memcg;
1905
1906 memcg = container_of(work, struct mem_cgroup, high_work);
1907 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1908}
1909
b23afb93
TH
1910/*
1911 * Scheduled by try_charge() to be executed from the userland return path
1912 * and reclaims memory over the high limit.
1913 */
1914void mem_cgroup_handle_over_high(void)
1915{
1916 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1917 struct mem_cgroup *memcg;
b23afb93
TH
1918
1919 if (likely(!nr_pages))
1920 return;
1921
f7e1cb6e
JW
1922 memcg = get_mem_cgroup_from_mm(current->mm);
1923 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1924 css_put(&memcg->css);
1925 current->memcg_nr_pages_over_high = 0;
1926}
1927
00501b53
JW
1928static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1929 unsigned int nr_pages)
8a9f3ccd 1930{
7ec99d62 1931 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1932 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1933 struct mem_cgroup *mem_over_limit;
3e32cb2e 1934 struct page_counter *counter;
6539cc05 1935 unsigned long nr_reclaimed;
b70a2a21
JW
1936 bool may_swap = true;
1937 bool drained = false;
a636b327 1938
ce00a967 1939 if (mem_cgroup_is_root(memcg))
10d53c74 1940 return 0;
6539cc05 1941retry:
b6b6cc72 1942 if (consume_stock(memcg, nr_pages))
10d53c74 1943 return 0;
8a9f3ccd 1944
7941d214 1945 if (!do_memsw_account() ||
6071ca52
JW
1946 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1947 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1948 goto done_restock;
7941d214 1949 if (do_memsw_account())
3e32cb2e
JW
1950 page_counter_uncharge(&memcg->memsw, batch);
1951 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1952 } else {
3e32cb2e 1953 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1954 may_swap = false;
3fbe7244 1955 }
7a81b88c 1956
6539cc05
JW
1957 if (batch > nr_pages) {
1958 batch = nr_pages;
1959 goto retry;
1960 }
6d61ef40 1961
06b078fc
JW
1962 /*
1963 * Unlike in global OOM situations, memcg is not in a physical
1964 * memory shortage. Allow dying and OOM-killed tasks to
1965 * bypass the last charges so that they can exit quickly and
1966 * free their memory.
1967 */
1968 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1969 fatal_signal_pending(current) ||
1970 current->flags & PF_EXITING))
10d53c74 1971 goto force;
06b078fc
JW
1972
1973 if (unlikely(task_in_memcg_oom(current)))
1974 goto nomem;
1975
d0164adc 1976 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1977 goto nomem;
4b534334 1978
241994ed
JW
1979 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1980
b70a2a21
JW
1981 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1982 gfp_mask, may_swap);
6539cc05 1983
61e02c74 1984 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1985 goto retry;
28c34c29 1986
b70a2a21 1987 if (!drained) {
6d3d6aa2 1988 drain_all_stock(mem_over_limit);
b70a2a21
JW
1989 drained = true;
1990 goto retry;
1991 }
1992
28c34c29
JW
1993 if (gfp_mask & __GFP_NORETRY)
1994 goto nomem;
6539cc05
JW
1995 /*
1996 * Even though the limit is exceeded at this point, reclaim
1997 * may have been able to free some pages. Retry the charge
1998 * before killing the task.
1999 *
2000 * Only for regular pages, though: huge pages are rather
2001 * unlikely to succeed so close to the limit, and we fall back
2002 * to regular pages anyway in case of failure.
2003 */
61e02c74 2004 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2005 goto retry;
2006 /*
2007 * At task move, charge accounts can be doubly counted. So, it's
2008 * better to wait until the end of task_move if something is going on.
2009 */
2010 if (mem_cgroup_wait_acct_move(mem_over_limit))
2011 goto retry;
2012
9b130619
JW
2013 if (nr_retries--)
2014 goto retry;
2015
06b078fc 2016 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2017 goto force;
06b078fc 2018
6539cc05 2019 if (fatal_signal_pending(current))
10d53c74 2020 goto force;
6539cc05 2021
241994ed
JW
2022 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2023
3608de07
JM
2024 mem_cgroup_oom(mem_over_limit, gfp_mask,
2025 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2026nomem:
6d1fdc48 2027 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2028 return -ENOMEM;
10d53c74
TH
2029force:
2030 /*
2031 * The allocation either can't fail or will lead to more memory
2032 * being freed very soon. Allow memory usage go over the limit
2033 * temporarily by force charging it.
2034 */
2035 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2036 if (do_memsw_account())
10d53c74
TH
2037 page_counter_charge(&memcg->memsw, nr_pages);
2038 css_get_many(&memcg->css, nr_pages);
2039
2040 return 0;
6539cc05
JW
2041
2042done_restock:
e8ea14cc 2043 css_get_many(&memcg->css, batch);
6539cc05
JW
2044 if (batch > nr_pages)
2045 refill_stock(memcg, batch - nr_pages);
b23afb93 2046
241994ed 2047 /*
b23afb93
TH
2048 * If the hierarchy is above the normal consumption range, schedule
2049 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2050 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2051 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2052 * not recorded as it most likely matches current's and won't
2053 * change in the meantime. As high limit is checked again before
2054 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2055 */
2056 do {
b23afb93 2057 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2058 /* Don't bother a random interrupted task */
2059 if (in_interrupt()) {
2060 schedule_work(&memcg->high_work);
2061 break;
2062 }
9516a18a 2063 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2064 set_notify_resume(current);
2065 break;
2066 }
241994ed 2067 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2068
2069 return 0;
7a81b88c 2070}
8a9f3ccd 2071
00501b53 2072static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2073{
ce00a967
JW
2074 if (mem_cgroup_is_root(memcg))
2075 return;
2076
3e32cb2e 2077 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2078 if (do_memsw_account())
3e32cb2e 2079 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2080
e8ea14cc 2081 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2082}
2083
0a31bc97
JW
2084static void lock_page_lru(struct page *page, int *isolated)
2085{
2086 struct zone *zone = page_zone(page);
2087
2088 spin_lock_irq(&zone->lru_lock);
2089 if (PageLRU(page)) {
2090 struct lruvec *lruvec;
2091
2092 lruvec = mem_cgroup_page_lruvec(page, zone);
2093 ClearPageLRU(page);
2094 del_page_from_lru_list(page, lruvec, page_lru(page));
2095 *isolated = 1;
2096 } else
2097 *isolated = 0;
2098}
2099
2100static void unlock_page_lru(struct page *page, int isolated)
2101{
2102 struct zone *zone = page_zone(page);
2103
2104 if (isolated) {
2105 struct lruvec *lruvec;
2106
2107 lruvec = mem_cgroup_page_lruvec(page, zone);
2108 VM_BUG_ON_PAGE(PageLRU(page), page);
2109 SetPageLRU(page);
2110 add_page_to_lru_list(page, lruvec, page_lru(page));
2111 }
2112 spin_unlock_irq(&zone->lru_lock);
2113}
2114
00501b53 2115static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2116 bool lrucare)
7a81b88c 2117{
0a31bc97 2118 int isolated;
9ce70c02 2119
1306a85a 2120 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2121
2122 /*
2123 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2124 * may already be on some other mem_cgroup's LRU. Take care of it.
2125 */
0a31bc97
JW
2126 if (lrucare)
2127 lock_page_lru(page, &isolated);
9ce70c02 2128
0a31bc97
JW
2129 /*
2130 * Nobody should be changing or seriously looking at
1306a85a 2131 * page->mem_cgroup at this point:
0a31bc97
JW
2132 *
2133 * - the page is uncharged
2134 *
2135 * - the page is off-LRU
2136 *
2137 * - an anonymous fault has exclusive page access, except for
2138 * a locked page table
2139 *
2140 * - a page cache insertion, a swapin fault, or a migration
2141 * have the page locked
2142 */
1306a85a 2143 page->mem_cgroup = memcg;
9ce70c02 2144
0a31bc97
JW
2145 if (lrucare)
2146 unlock_page_lru(page, isolated);
7a81b88c 2147}
66e1707b 2148
127424c8 2149#ifndef CONFIG_SLOB
f3bb3043 2150static int memcg_alloc_cache_id(void)
55007d84 2151{
f3bb3043
VD
2152 int id, size;
2153 int err;
2154
dbcf73e2 2155 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2156 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2157 if (id < 0)
2158 return id;
55007d84 2159
dbcf73e2 2160 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2161 return id;
2162
2163 /*
2164 * There's no space for the new id in memcg_caches arrays,
2165 * so we have to grow them.
2166 */
05257a1a 2167 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2168
2169 size = 2 * (id + 1);
55007d84
GC
2170 if (size < MEMCG_CACHES_MIN_SIZE)
2171 size = MEMCG_CACHES_MIN_SIZE;
2172 else if (size > MEMCG_CACHES_MAX_SIZE)
2173 size = MEMCG_CACHES_MAX_SIZE;
2174
f3bb3043 2175 err = memcg_update_all_caches(size);
60d3fd32
VD
2176 if (!err)
2177 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2178 if (!err)
2179 memcg_nr_cache_ids = size;
2180
2181 up_write(&memcg_cache_ids_sem);
2182
f3bb3043 2183 if (err) {
dbcf73e2 2184 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2185 return err;
2186 }
2187 return id;
2188}
2189
2190static void memcg_free_cache_id(int id)
2191{
dbcf73e2 2192 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2193}
2194
d5b3cf71 2195struct memcg_kmem_cache_create_work {
5722d094
VD
2196 struct mem_cgroup *memcg;
2197 struct kmem_cache *cachep;
2198 struct work_struct work;
2199};
2200
d5b3cf71 2201static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2202{
d5b3cf71
VD
2203 struct memcg_kmem_cache_create_work *cw =
2204 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2205 struct mem_cgroup *memcg = cw->memcg;
2206 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2207
d5b3cf71 2208 memcg_create_kmem_cache(memcg, cachep);
bd673145 2209
5722d094 2210 css_put(&memcg->css);
d7f25f8a
GC
2211 kfree(cw);
2212}
2213
2214/*
2215 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2216 */
d5b3cf71
VD
2217static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2218 struct kmem_cache *cachep)
d7f25f8a 2219{
d5b3cf71 2220 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2221
776ed0f0 2222 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2223 if (!cw)
d7f25f8a 2224 return;
8135be5a
VD
2225
2226 css_get(&memcg->css);
d7f25f8a
GC
2227
2228 cw->memcg = memcg;
2229 cw->cachep = cachep;
d5b3cf71 2230 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2231
d7f25f8a
GC
2232 schedule_work(&cw->work);
2233}
2234
d5b3cf71
VD
2235static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2236 struct kmem_cache *cachep)
0e9d92f2
GC
2237{
2238 /*
2239 * We need to stop accounting when we kmalloc, because if the
2240 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2241 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2242 *
2243 * However, it is better to enclose the whole function. Depending on
2244 * the debugging options enabled, INIT_WORK(), for instance, can
2245 * trigger an allocation. This too, will make us recurse. Because at
2246 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2247 * the safest choice is to do it like this, wrapping the whole function.
2248 */
6f185c29 2249 current->memcg_kmem_skip_account = 1;
d5b3cf71 2250 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2251 current->memcg_kmem_skip_account = 0;
0e9d92f2 2252}
c67a8a68 2253
d7f25f8a
GC
2254/*
2255 * Return the kmem_cache we're supposed to use for a slab allocation.
2256 * We try to use the current memcg's version of the cache.
2257 *
2258 * If the cache does not exist yet, if we are the first user of it,
2259 * we either create it immediately, if possible, or create it asynchronously
2260 * in a workqueue.
2261 * In the latter case, we will let the current allocation go through with
2262 * the original cache.
2263 *
2264 * Can't be called in interrupt context or from kernel threads.
2265 * This function needs to be called with rcu_read_lock() held.
2266 */
230e9fc2 2267struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2268{
2269 struct mem_cgroup *memcg;
959c8963 2270 struct kmem_cache *memcg_cachep;
2a4db7eb 2271 int kmemcg_id;
d7f25f8a 2272
f7ce3190 2273 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2274
230e9fc2
VD
2275 if (cachep->flags & SLAB_ACCOUNT)
2276 gfp |= __GFP_ACCOUNT;
2277
2278 if (!(gfp & __GFP_ACCOUNT))
2279 return cachep;
2280
9d100c5e 2281 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2282 return cachep;
2283
8135be5a 2284 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2285 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2286 if (kmemcg_id < 0)
ca0dde97 2287 goto out;
d7f25f8a 2288
2a4db7eb 2289 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2290 if (likely(memcg_cachep))
2291 return memcg_cachep;
ca0dde97
LZ
2292
2293 /*
2294 * If we are in a safe context (can wait, and not in interrupt
2295 * context), we could be be predictable and return right away.
2296 * This would guarantee that the allocation being performed
2297 * already belongs in the new cache.
2298 *
2299 * However, there are some clashes that can arrive from locking.
2300 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2301 * memcg_create_kmem_cache, this means no further allocation
2302 * could happen with the slab_mutex held. So it's better to
2303 * defer everything.
ca0dde97 2304 */
d5b3cf71 2305 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2306out:
8135be5a 2307 css_put(&memcg->css);
ca0dde97 2308 return cachep;
d7f25f8a 2309}
d7f25f8a 2310
8135be5a
VD
2311void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2312{
2313 if (!is_root_cache(cachep))
f7ce3190 2314 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2315}
2316
f3ccb2c4
VD
2317int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2318 struct mem_cgroup *memcg)
7ae1e1d0 2319{
f3ccb2c4
VD
2320 unsigned int nr_pages = 1 << order;
2321 struct page_counter *counter;
7ae1e1d0
GC
2322 int ret;
2323
f3ccb2c4 2324 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2325 if (ret)
f3ccb2c4 2326 return ret;
52c29b04
JW
2327
2328 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2329 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2330 cancel_charge(memcg, nr_pages);
2331 return -ENOMEM;
7ae1e1d0
GC
2332 }
2333
f3ccb2c4 2334 page->mem_cgroup = memcg;
7ae1e1d0 2335
f3ccb2c4 2336 return 0;
7ae1e1d0
GC
2337}
2338
f3ccb2c4 2339int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2340{
f3ccb2c4 2341 struct mem_cgroup *memcg;
fcff7d7e 2342 int ret = 0;
7ae1e1d0 2343
f3ccb2c4 2344 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2345 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2346 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2347 css_put(&memcg->css);
d05e83a6 2348 return ret;
7ae1e1d0
GC
2349}
2350
d05e83a6 2351void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2352{
1306a85a 2353 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2354 unsigned int nr_pages = 1 << order;
7ae1e1d0 2355
7ae1e1d0
GC
2356 if (!memcg)
2357 return;
2358
309381fe 2359 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2360
52c29b04
JW
2361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2362 page_counter_uncharge(&memcg->kmem, nr_pages);
2363
f3ccb2c4 2364 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2365 if (do_memsw_account())
f3ccb2c4 2366 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2367
1306a85a 2368 page->mem_cgroup = NULL;
f3ccb2c4 2369 css_put_many(&memcg->css, nr_pages);
60d3fd32 2370}
127424c8 2371#endif /* !CONFIG_SLOB */
7ae1e1d0 2372
ca3e0214
KH
2373#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2374
ca3e0214
KH
2375/*
2376 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2377 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2378 */
e94c8a9c 2379void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2380{
e94c8a9c 2381 int i;
ca3e0214 2382
3d37c4a9
KH
2383 if (mem_cgroup_disabled())
2384 return;
b070e65c 2385
29833315 2386 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2387 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2388
1306a85a 2389 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2390 HPAGE_PMD_NR);
ca3e0214 2391}
12d27107 2392#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2393
c255a458 2394#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2395static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2396 bool charge)
d13d1443 2397{
0a31bc97
JW
2398 int val = (charge) ? 1 : -1;
2399 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2400}
02491447
DN
2401
2402/**
2403 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2404 * @entry: swap entry to be moved
2405 * @from: mem_cgroup which the entry is moved from
2406 * @to: mem_cgroup which the entry is moved to
2407 *
2408 * It succeeds only when the swap_cgroup's record for this entry is the same
2409 * as the mem_cgroup's id of @from.
2410 *
2411 * Returns 0 on success, -EINVAL on failure.
2412 *
3e32cb2e 2413 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2414 * both res and memsw, and called css_get().
2415 */
2416static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2417 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2418{
2419 unsigned short old_id, new_id;
2420
34c00c31
LZ
2421 old_id = mem_cgroup_id(from);
2422 new_id = mem_cgroup_id(to);
02491447
DN
2423
2424 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2425 mem_cgroup_swap_statistics(from, false);
483c30b5 2426 mem_cgroup_swap_statistics(to, true);
02491447
DN
2427 return 0;
2428 }
2429 return -EINVAL;
2430}
2431#else
2432static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2433 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2434{
2435 return -EINVAL;
2436}
8c7c6e34 2437#endif
d13d1443 2438
3e32cb2e 2439static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2440
d38d2a75 2441static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2442 unsigned long limit)
628f4235 2443{
3e32cb2e
JW
2444 unsigned long curusage;
2445 unsigned long oldusage;
2446 bool enlarge = false;
81d39c20 2447 int retry_count;
3e32cb2e 2448 int ret;
81d39c20
KH
2449
2450 /*
2451 * For keeping hierarchical_reclaim simple, how long we should retry
2452 * is depends on callers. We set our retry-count to be function
2453 * of # of children which we should visit in this loop.
2454 */
3e32cb2e
JW
2455 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2456 mem_cgroup_count_children(memcg);
81d39c20 2457
3e32cb2e 2458 oldusage = page_counter_read(&memcg->memory);
628f4235 2459
3e32cb2e 2460 do {
628f4235
KH
2461 if (signal_pending(current)) {
2462 ret = -EINTR;
2463 break;
2464 }
3e32cb2e
JW
2465
2466 mutex_lock(&memcg_limit_mutex);
2467 if (limit > memcg->memsw.limit) {
2468 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2469 ret = -EINVAL;
628f4235
KH
2470 break;
2471 }
3e32cb2e
JW
2472 if (limit > memcg->memory.limit)
2473 enlarge = true;
2474 ret = page_counter_limit(&memcg->memory, limit);
2475 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2476
2477 if (!ret)
2478 break;
2479
b70a2a21
JW
2480 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2481
3e32cb2e 2482 curusage = page_counter_read(&memcg->memory);
81d39c20 2483 /* Usage is reduced ? */
f894ffa8 2484 if (curusage >= oldusage)
81d39c20
KH
2485 retry_count--;
2486 else
2487 oldusage = curusage;
3e32cb2e
JW
2488 } while (retry_count);
2489
3c11ecf4
KH
2490 if (!ret && enlarge)
2491 memcg_oom_recover(memcg);
14797e23 2492
8c7c6e34
KH
2493 return ret;
2494}
2495
338c8431 2496static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2497 unsigned long limit)
8c7c6e34 2498{
3e32cb2e
JW
2499 unsigned long curusage;
2500 unsigned long oldusage;
2501 bool enlarge = false;
81d39c20 2502 int retry_count;
3e32cb2e 2503 int ret;
8c7c6e34 2504
81d39c20 2505 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2506 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2507 mem_cgroup_count_children(memcg);
2508
2509 oldusage = page_counter_read(&memcg->memsw);
2510
2511 do {
8c7c6e34
KH
2512 if (signal_pending(current)) {
2513 ret = -EINTR;
2514 break;
2515 }
3e32cb2e
JW
2516
2517 mutex_lock(&memcg_limit_mutex);
2518 if (limit < memcg->memory.limit) {
2519 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2520 ret = -EINVAL;
8c7c6e34
KH
2521 break;
2522 }
3e32cb2e
JW
2523 if (limit > memcg->memsw.limit)
2524 enlarge = true;
2525 ret = page_counter_limit(&memcg->memsw, limit);
2526 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2527
2528 if (!ret)
2529 break;
2530
b70a2a21
JW
2531 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2532
3e32cb2e 2533 curusage = page_counter_read(&memcg->memsw);
81d39c20 2534 /* Usage is reduced ? */
8c7c6e34 2535 if (curusage >= oldusage)
628f4235 2536 retry_count--;
81d39c20
KH
2537 else
2538 oldusage = curusage;
3e32cb2e
JW
2539 } while (retry_count);
2540
3c11ecf4
KH
2541 if (!ret && enlarge)
2542 memcg_oom_recover(memcg);
3e32cb2e 2543
628f4235
KH
2544 return ret;
2545}
2546
0608f43d
AM
2547unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2548 gfp_t gfp_mask,
2549 unsigned long *total_scanned)
2550{
2551 unsigned long nr_reclaimed = 0;
2552 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2553 unsigned long reclaimed;
2554 int loop = 0;
2555 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2556 unsigned long excess;
0608f43d
AM
2557 unsigned long nr_scanned;
2558
2559 if (order > 0)
2560 return 0;
2561
2562 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2563 /*
2564 * This loop can run a while, specially if mem_cgroup's continuously
2565 * keep exceeding their soft limit and putting the system under
2566 * pressure
2567 */
2568 do {
2569 if (next_mz)
2570 mz = next_mz;
2571 else
2572 mz = mem_cgroup_largest_soft_limit_node(mctz);
2573 if (!mz)
2574 break;
2575
2576 nr_scanned = 0;
2577 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2578 gfp_mask, &nr_scanned);
2579 nr_reclaimed += reclaimed;
2580 *total_scanned += nr_scanned;
0a31bc97 2581 spin_lock_irq(&mctz->lock);
bc2f2e7f 2582 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2583
2584 /*
2585 * If we failed to reclaim anything from this memory cgroup
2586 * it is time to move on to the next cgroup
2587 */
2588 next_mz = NULL;
bc2f2e7f
VD
2589 if (!reclaimed)
2590 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2591
3e32cb2e 2592 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2593 /*
2594 * One school of thought says that we should not add
2595 * back the node to the tree if reclaim returns 0.
2596 * But our reclaim could return 0, simply because due
2597 * to priority we are exposing a smaller subset of
2598 * memory to reclaim from. Consider this as a longer
2599 * term TODO.
2600 */
2601 /* If excess == 0, no tree ops */
cf2c8127 2602 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2603 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2604 css_put(&mz->memcg->css);
2605 loop++;
2606 /*
2607 * Could not reclaim anything and there are no more
2608 * mem cgroups to try or we seem to be looping without
2609 * reclaiming anything.
2610 */
2611 if (!nr_reclaimed &&
2612 (next_mz == NULL ||
2613 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2614 break;
2615 } while (!nr_reclaimed);
2616 if (next_mz)
2617 css_put(&next_mz->memcg->css);
2618 return nr_reclaimed;
2619}
2620
ea280e7b
TH
2621/*
2622 * Test whether @memcg has children, dead or alive. Note that this
2623 * function doesn't care whether @memcg has use_hierarchy enabled and
2624 * returns %true if there are child csses according to the cgroup
2625 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2626 */
b5f99b53
GC
2627static inline bool memcg_has_children(struct mem_cgroup *memcg)
2628{
ea280e7b
TH
2629 bool ret;
2630
ea280e7b
TH
2631 rcu_read_lock();
2632 ret = css_next_child(NULL, &memcg->css);
2633 rcu_read_unlock();
2634 return ret;
b5f99b53
GC
2635}
2636
c26251f9
MH
2637/*
2638 * Reclaims as many pages from the given memcg as possible and moves
2639 * the rest to the parent.
2640 *
2641 * Caller is responsible for holding css reference for memcg.
2642 */
2643static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2644{
2645 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2646
c1e862c1
KH
2647 /* we call try-to-free pages for make this cgroup empty */
2648 lru_add_drain_all();
f817ed48 2649 /* try to free all pages in this cgroup */
3e32cb2e 2650 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2651 int progress;
c1e862c1 2652
c26251f9
MH
2653 if (signal_pending(current))
2654 return -EINTR;
2655
b70a2a21
JW
2656 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2657 GFP_KERNEL, true);
c1e862c1 2658 if (!progress) {
f817ed48 2659 nr_retries--;
c1e862c1 2660 /* maybe some writeback is necessary */
8aa7e847 2661 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2662 }
f817ed48
KH
2663
2664 }
ab5196c2
MH
2665
2666 return 0;
cc847582
KH
2667}
2668
6770c64e
TH
2669static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2670 char *buf, size_t nbytes,
2671 loff_t off)
c1e862c1 2672{
6770c64e 2673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2674
d8423011
MH
2675 if (mem_cgroup_is_root(memcg))
2676 return -EINVAL;
6770c64e 2677 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2678}
2679
182446d0
TH
2680static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2681 struct cftype *cft)
18f59ea7 2682{
182446d0 2683 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2684}
2685
182446d0
TH
2686static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2687 struct cftype *cft, u64 val)
18f59ea7
BS
2688{
2689 int retval = 0;
182446d0 2690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2691 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2692
567fb435 2693 if (memcg->use_hierarchy == val)
0b8f73e1 2694 return 0;
567fb435 2695
18f59ea7 2696 /*
af901ca1 2697 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2698 * in the child subtrees. If it is unset, then the change can
2699 * occur, provided the current cgroup has no children.
2700 *
2701 * For the root cgroup, parent_mem is NULL, we allow value to be
2702 * set if there are no children.
2703 */
c0ff4b85 2704 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2705 (val == 1 || val == 0)) {
ea280e7b 2706 if (!memcg_has_children(memcg))
c0ff4b85 2707 memcg->use_hierarchy = val;
18f59ea7
BS
2708 else
2709 retval = -EBUSY;
2710 } else
2711 retval = -EINVAL;
567fb435 2712
18f59ea7
BS
2713 return retval;
2714}
2715
72b54e73 2716static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2717{
2718 struct mem_cgroup *iter;
72b54e73 2719 int i;
ce00a967 2720
72b54e73 2721 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2722
72b54e73
VD
2723 for_each_mem_cgroup_tree(iter, memcg) {
2724 for (i = 0; i < MEMCG_NR_STAT; i++)
2725 stat[i] += mem_cgroup_read_stat(iter, i);
2726 }
ce00a967
JW
2727}
2728
72b54e73 2729static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2730{
2731 struct mem_cgroup *iter;
72b54e73 2732 int i;
587d9f72 2733
72b54e73 2734 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2735
72b54e73
VD
2736 for_each_mem_cgroup_tree(iter, memcg) {
2737 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2738 events[i] += mem_cgroup_read_events(iter, i);
2739 }
587d9f72
JW
2740}
2741
6f646156 2742static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2743{
72b54e73 2744 unsigned long val = 0;
ce00a967 2745
3e32cb2e 2746 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2747 struct mem_cgroup *iter;
2748
2749 for_each_mem_cgroup_tree(iter, memcg) {
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_CACHE);
2752 val += mem_cgroup_read_stat(iter,
2753 MEM_CGROUP_STAT_RSS);
2754 if (swap)
2755 val += mem_cgroup_read_stat(iter,
2756 MEM_CGROUP_STAT_SWAP);
2757 }
3e32cb2e 2758 } else {
ce00a967 2759 if (!swap)
3e32cb2e 2760 val = page_counter_read(&memcg->memory);
ce00a967 2761 else
3e32cb2e 2762 val = page_counter_read(&memcg->memsw);
ce00a967 2763 }
c12176d3 2764 return val;
ce00a967
JW
2765}
2766
3e32cb2e
JW
2767enum {
2768 RES_USAGE,
2769 RES_LIMIT,
2770 RES_MAX_USAGE,
2771 RES_FAILCNT,
2772 RES_SOFT_LIMIT,
2773};
ce00a967 2774
791badbd 2775static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2776 struct cftype *cft)
8cdea7c0 2777{
182446d0 2778 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2779 struct page_counter *counter;
af36f906 2780
3e32cb2e 2781 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2782 case _MEM:
3e32cb2e
JW
2783 counter = &memcg->memory;
2784 break;
8c7c6e34 2785 case _MEMSWAP:
3e32cb2e
JW
2786 counter = &memcg->memsw;
2787 break;
510fc4e1 2788 case _KMEM:
3e32cb2e 2789 counter = &memcg->kmem;
510fc4e1 2790 break;
d55f90bf 2791 case _TCP:
0db15298 2792 counter = &memcg->tcpmem;
d55f90bf 2793 break;
8c7c6e34
KH
2794 default:
2795 BUG();
8c7c6e34 2796 }
3e32cb2e
JW
2797
2798 switch (MEMFILE_ATTR(cft->private)) {
2799 case RES_USAGE:
2800 if (counter == &memcg->memory)
c12176d3 2801 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2802 if (counter == &memcg->memsw)
c12176d3 2803 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2804 return (u64)page_counter_read(counter) * PAGE_SIZE;
2805 case RES_LIMIT:
2806 return (u64)counter->limit * PAGE_SIZE;
2807 case RES_MAX_USAGE:
2808 return (u64)counter->watermark * PAGE_SIZE;
2809 case RES_FAILCNT:
2810 return counter->failcnt;
2811 case RES_SOFT_LIMIT:
2812 return (u64)memcg->soft_limit * PAGE_SIZE;
2813 default:
2814 BUG();
2815 }
8cdea7c0 2816}
510fc4e1 2817
127424c8 2818#ifndef CONFIG_SLOB
567e9ab2 2819static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2820{
d6441637
VD
2821 int memcg_id;
2822
b313aeee
VD
2823 if (cgroup_memory_nokmem)
2824 return 0;
2825
2a4db7eb 2826 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2827 BUG_ON(memcg->kmem_state);
d6441637 2828
f3bb3043 2829 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2830 if (memcg_id < 0)
2831 return memcg_id;
d6441637 2832
ef12947c 2833 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2834 /*
567e9ab2 2835 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2836 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2837 * guarantee no one starts accounting before all call sites are
2838 * patched.
2839 */
900a38f0 2840 memcg->kmemcg_id = memcg_id;
567e9ab2 2841 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2842
2843 return 0;
d6441637
VD
2844}
2845
8e0a8912
JW
2846static void memcg_offline_kmem(struct mem_cgroup *memcg)
2847{
2848 struct cgroup_subsys_state *css;
2849 struct mem_cgroup *parent, *child;
2850 int kmemcg_id;
2851
2852 if (memcg->kmem_state != KMEM_ONLINE)
2853 return;
2854 /*
2855 * Clear the online state before clearing memcg_caches array
2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 * guarantees that no cache will be created for this cgroup
2858 * after we are done (see memcg_create_kmem_cache()).
2859 */
2860 memcg->kmem_state = KMEM_ALLOCATED;
2861
2862 memcg_deactivate_kmem_caches(memcg);
2863
2864 kmemcg_id = memcg->kmemcg_id;
2865 BUG_ON(kmemcg_id < 0);
2866
2867 parent = parent_mem_cgroup(memcg);
2868 if (!parent)
2869 parent = root_mem_cgroup;
2870
2871 /*
2872 * Change kmemcg_id of this cgroup and all its descendants to the
2873 * parent's id, and then move all entries from this cgroup's list_lrus
2874 * to ones of the parent. After we have finished, all list_lrus
2875 * corresponding to this cgroup are guaranteed to remain empty. The
2876 * ordering is imposed by list_lru_node->lock taken by
2877 * memcg_drain_all_list_lrus().
2878 */
2879 css_for_each_descendant_pre(css, &memcg->css) {
2880 child = mem_cgroup_from_css(css);
2881 BUG_ON(child->kmemcg_id != kmemcg_id);
2882 child->kmemcg_id = parent->kmemcg_id;
2883 if (!memcg->use_hierarchy)
2884 break;
2885 }
2886 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2887
2888 memcg_free_cache_id(kmemcg_id);
2889}
2890
2891static void memcg_free_kmem(struct mem_cgroup *memcg)
2892{
0b8f73e1
JW
2893 /* css_alloc() failed, offlining didn't happen */
2894 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2895 memcg_offline_kmem(memcg);
2896
8e0a8912
JW
2897 if (memcg->kmem_state == KMEM_ALLOCATED) {
2898 memcg_destroy_kmem_caches(memcg);
2899 static_branch_dec(&memcg_kmem_enabled_key);
2900 WARN_ON(page_counter_read(&memcg->kmem));
2901 }
8e0a8912 2902}
d6441637 2903#else
0b8f73e1 2904static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2905{
2906 return 0;
2907}
2908static void memcg_offline_kmem(struct mem_cgroup *memcg)
2909{
2910}
2911static void memcg_free_kmem(struct mem_cgroup *memcg)
2912{
2913}
2914#endif /* !CONFIG_SLOB */
2915
d6441637 2916static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2917 unsigned long limit)
d6441637 2918{
b313aeee 2919 int ret;
127424c8
JW
2920
2921 mutex_lock(&memcg_limit_mutex);
127424c8 2922 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2923 mutex_unlock(&memcg_limit_mutex);
2924 return ret;
d6441637 2925}
510fc4e1 2926
d55f90bf
VD
2927static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2928{
2929 int ret;
2930
2931 mutex_lock(&memcg_limit_mutex);
2932
0db15298 2933 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2934 if (ret)
2935 goto out;
2936
0db15298 2937 if (!memcg->tcpmem_active) {
d55f90bf
VD
2938 /*
2939 * The active flag needs to be written after the static_key
2940 * update. This is what guarantees that the socket activation
2941 * function is the last one to run. See sock_update_memcg() for
2942 * details, and note that we don't mark any socket as belonging
2943 * to this memcg until that flag is up.
2944 *
2945 * We need to do this, because static_keys will span multiple
2946 * sites, but we can't control their order. If we mark a socket
2947 * as accounted, but the accounting functions are not patched in
2948 * yet, we'll lose accounting.
2949 *
2950 * We never race with the readers in sock_update_memcg(),
2951 * because when this value change, the code to process it is not
2952 * patched in yet.
2953 */
2954 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2955 memcg->tcpmem_active = true;
d55f90bf
VD
2956 }
2957out:
2958 mutex_unlock(&memcg_limit_mutex);
2959 return ret;
2960}
d55f90bf 2961
628f4235
KH
2962/*
2963 * The user of this function is...
2964 * RES_LIMIT.
2965 */
451af504
TH
2966static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2967 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2968{
451af504 2969 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2970 unsigned long nr_pages;
628f4235
KH
2971 int ret;
2972
451af504 2973 buf = strstrip(buf);
650c5e56 2974 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2975 if (ret)
2976 return ret;
af36f906 2977
3e32cb2e 2978 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2979 case RES_LIMIT:
4b3bde4c
BS
2980 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2981 ret = -EINVAL;
2982 break;
2983 }
3e32cb2e
JW
2984 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2985 case _MEM:
2986 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2987 break;
3e32cb2e
JW
2988 case _MEMSWAP:
2989 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2990 break;
3e32cb2e
JW
2991 case _KMEM:
2992 ret = memcg_update_kmem_limit(memcg, nr_pages);
2993 break;
d55f90bf
VD
2994 case _TCP:
2995 ret = memcg_update_tcp_limit(memcg, nr_pages);
2996 break;
3e32cb2e 2997 }
296c81d8 2998 break;
3e32cb2e
JW
2999 case RES_SOFT_LIMIT:
3000 memcg->soft_limit = nr_pages;
3001 ret = 0;
628f4235
KH
3002 break;
3003 }
451af504 3004 return ret ?: nbytes;
8cdea7c0
BS
3005}
3006
6770c64e
TH
3007static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3008 size_t nbytes, loff_t off)
c84872e1 3009{
6770c64e 3010 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3011 struct page_counter *counter;
c84872e1 3012
3e32cb2e
JW
3013 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3014 case _MEM:
3015 counter = &memcg->memory;
3016 break;
3017 case _MEMSWAP:
3018 counter = &memcg->memsw;
3019 break;
3020 case _KMEM:
3021 counter = &memcg->kmem;
3022 break;
d55f90bf 3023 case _TCP:
0db15298 3024 counter = &memcg->tcpmem;
d55f90bf 3025 break;
3e32cb2e
JW
3026 default:
3027 BUG();
3028 }
af36f906 3029
3e32cb2e 3030 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3031 case RES_MAX_USAGE:
3e32cb2e 3032 page_counter_reset_watermark(counter);
29f2a4da
PE
3033 break;
3034 case RES_FAILCNT:
3e32cb2e 3035 counter->failcnt = 0;
29f2a4da 3036 break;
3e32cb2e
JW
3037 default:
3038 BUG();
29f2a4da 3039 }
f64c3f54 3040
6770c64e 3041 return nbytes;
c84872e1
PE
3042}
3043
182446d0 3044static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3045 struct cftype *cft)
3046{
182446d0 3047 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3048}
3049
02491447 3050#ifdef CONFIG_MMU
182446d0 3051static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3052 struct cftype *cft, u64 val)
3053{
182446d0 3054 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3055
1dfab5ab 3056 if (val & ~MOVE_MASK)
7dc74be0 3057 return -EINVAL;
ee5e8472 3058
7dc74be0 3059 /*
ee5e8472
GC
3060 * No kind of locking is needed in here, because ->can_attach() will
3061 * check this value once in the beginning of the process, and then carry
3062 * on with stale data. This means that changes to this value will only
3063 * affect task migrations starting after the change.
7dc74be0 3064 */
c0ff4b85 3065 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3066 return 0;
3067}
02491447 3068#else
182446d0 3069static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3070 struct cftype *cft, u64 val)
3071{
3072 return -ENOSYS;
3073}
3074#endif
7dc74be0 3075
406eb0c9 3076#ifdef CONFIG_NUMA
2da8ca82 3077static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3078{
25485de6
GT
3079 struct numa_stat {
3080 const char *name;
3081 unsigned int lru_mask;
3082 };
3083
3084 static const struct numa_stat stats[] = {
3085 { "total", LRU_ALL },
3086 { "file", LRU_ALL_FILE },
3087 { "anon", LRU_ALL_ANON },
3088 { "unevictable", BIT(LRU_UNEVICTABLE) },
3089 };
3090 const struct numa_stat *stat;
406eb0c9 3091 int nid;
25485de6 3092 unsigned long nr;
2da8ca82 3093 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3094
25485de6
GT
3095 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3096 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3097 seq_printf(m, "%s=%lu", stat->name, nr);
3098 for_each_node_state(nid, N_MEMORY) {
3099 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3100 stat->lru_mask);
3101 seq_printf(m, " N%d=%lu", nid, nr);
3102 }
3103 seq_putc(m, '\n');
406eb0c9 3104 }
406eb0c9 3105
071aee13
YH
3106 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3107 struct mem_cgroup *iter;
3108
3109 nr = 0;
3110 for_each_mem_cgroup_tree(iter, memcg)
3111 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3112 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3113 for_each_node_state(nid, N_MEMORY) {
3114 nr = 0;
3115 for_each_mem_cgroup_tree(iter, memcg)
3116 nr += mem_cgroup_node_nr_lru_pages(
3117 iter, nid, stat->lru_mask);
3118 seq_printf(m, " N%d=%lu", nid, nr);
3119 }
3120 seq_putc(m, '\n');
406eb0c9 3121 }
406eb0c9 3122
406eb0c9
YH
3123 return 0;
3124}
3125#endif /* CONFIG_NUMA */
3126
2da8ca82 3127static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3128{
2da8ca82 3129 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3130 unsigned long memory, memsw;
af7c4b0e
JW
3131 struct mem_cgroup *mi;
3132 unsigned int i;
406eb0c9 3133
0ca44b14
GT
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3135 MEM_CGROUP_STAT_NSTATS);
3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3137 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3139
af7c4b0e 3140 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3141 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3142 continue;
484ebb3b 3143 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3144 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3145 }
7b854121 3146
af7c4b0e
JW
3147 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3148 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3149 mem_cgroup_read_events(memcg, i));
3150
3151 for (i = 0; i < NR_LRU_LISTS; i++)
3152 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3153 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3154
14067bb3 3155 /* Hierarchical information */
3e32cb2e
JW
3156 memory = memsw = PAGE_COUNTER_MAX;
3157 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3158 memory = min(memory, mi->memory.limit);
3159 memsw = min(memsw, mi->memsw.limit);
fee7b548 3160 }
3e32cb2e
JW
3161 seq_printf(m, "hierarchical_memory_limit %llu\n",
3162 (u64)memory * PAGE_SIZE);
7941d214 3163 if (do_memsw_account())
3e32cb2e
JW
3164 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3165 (u64)memsw * PAGE_SIZE);
7f016ee8 3166
af7c4b0e 3167 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3168 unsigned long long val = 0;
af7c4b0e 3169
7941d214 3170 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3171 continue;
af7c4b0e
JW
3172 for_each_mem_cgroup_tree(mi, memcg)
3173 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3174 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3175 }
3176
3177 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3178 unsigned long long val = 0;
3179
3180 for_each_mem_cgroup_tree(mi, memcg)
3181 val += mem_cgroup_read_events(mi, i);
3182 seq_printf(m, "total_%s %llu\n",
3183 mem_cgroup_events_names[i], val);
3184 }
3185
3186 for (i = 0; i < NR_LRU_LISTS; i++) {
3187 unsigned long long val = 0;
3188
3189 for_each_mem_cgroup_tree(mi, memcg)
3190 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3191 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3192 }
14067bb3 3193
7f016ee8 3194#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3195 {
3196 int nid, zid;
3197 struct mem_cgroup_per_zone *mz;
89abfab1 3198 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3199 unsigned long recent_rotated[2] = {0, 0};
3200 unsigned long recent_scanned[2] = {0, 0};
3201
3202 for_each_online_node(nid)
3203 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3204 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3205 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3206
89abfab1
HD
3207 recent_rotated[0] += rstat->recent_rotated[0];
3208 recent_rotated[1] += rstat->recent_rotated[1];
3209 recent_scanned[0] += rstat->recent_scanned[0];
3210 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3211 }
78ccf5b5
JW
3212 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3216 }
3217#endif
3218
d2ceb9b7
KH
3219 return 0;
3220}
3221
182446d0
TH
3222static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223 struct cftype *cft)
a7885eb8 3224{
182446d0 3225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3226
1f4c025b 3227 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3228}
3229
182446d0
TH
3230static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231 struct cftype *cft, u64 val)
a7885eb8 3232{
182446d0 3233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3234
3dae7fec 3235 if (val > 100)
a7885eb8
KM
3236 return -EINVAL;
3237
14208b0e 3238 if (css->parent)
3dae7fec
JW
3239 memcg->swappiness = val;
3240 else
3241 vm_swappiness = val;
068b38c1 3242
a7885eb8
KM
3243 return 0;
3244}
3245
2e72b634
KS
3246static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247{
3248 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3249 unsigned long usage;
2e72b634
KS
3250 int i;
3251
3252 rcu_read_lock();
3253 if (!swap)
2c488db2 3254 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3255 else
2c488db2 3256 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3257
3258 if (!t)
3259 goto unlock;
3260
ce00a967 3261 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3262
3263 /*
748dad36 3264 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3265 * If it's not true, a threshold was crossed after last
3266 * call of __mem_cgroup_threshold().
3267 */
5407a562 3268 i = t->current_threshold;
2e72b634
KS
3269
3270 /*
3271 * Iterate backward over array of thresholds starting from
3272 * current_threshold and check if a threshold is crossed.
3273 * If none of thresholds below usage is crossed, we read
3274 * only one element of the array here.
3275 */
3276 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279 /* i = current_threshold + 1 */
3280 i++;
3281
3282 /*
3283 * Iterate forward over array of thresholds starting from
3284 * current_threshold+1 and check if a threshold is crossed.
3285 * If none of thresholds above usage is crossed, we read
3286 * only one element of the array here.
3287 */
3288 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291 /* Update current_threshold */
5407a562 3292 t->current_threshold = i - 1;
2e72b634
KS
3293unlock:
3294 rcu_read_unlock();
3295}
3296
3297static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298{
ad4ca5f4
KS
3299 while (memcg) {
3300 __mem_cgroup_threshold(memcg, false);
7941d214 3301 if (do_memsw_account())
ad4ca5f4
KS
3302 __mem_cgroup_threshold(memcg, true);
3303
3304 memcg = parent_mem_cgroup(memcg);
3305 }
2e72b634
KS
3306}
3307
3308static int compare_thresholds(const void *a, const void *b)
3309{
3310 const struct mem_cgroup_threshold *_a = a;
3311 const struct mem_cgroup_threshold *_b = b;
3312
2bff24a3
GT
3313 if (_a->threshold > _b->threshold)
3314 return 1;
3315
3316 if (_a->threshold < _b->threshold)
3317 return -1;
3318
3319 return 0;
2e72b634
KS
3320}
3321
c0ff4b85 3322static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3323{
3324 struct mem_cgroup_eventfd_list *ev;
3325
2bcf2e92
MH
3326 spin_lock(&memcg_oom_lock);
3327
c0ff4b85 3328 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3329 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3330
3331 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3332 return 0;
3333}
3334
c0ff4b85 3335static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3336{
7d74b06f
KH
3337 struct mem_cgroup *iter;
3338
c0ff4b85 3339 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3340 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3341}
3342
59b6f873 3343static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3344 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3345{
2c488db2
KS
3346 struct mem_cgroup_thresholds *thresholds;
3347 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3348 unsigned long threshold;
3349 unsigned long usage;
2c488db2 3350 int i, size, ret;
2e72b634 3351
650c5e56 3352 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3353 if (ret)
3354 return ret;
3355
3356 mutex_lock(&memcg->thresholds_lock);
2c488db2 3357
05b84301 3358 if (type == _MEM) {
2c488db2 3359 thresholds = &memcg->thresholds;
ce00a967 3360 usage = mem_cgroup_usage(memcg, false);
05b84301 3361 } else if (type == _MEMSWAP) {
2c488db2 3362 thresholds = &memcg->memsw_thresholds;
ce00a967 3363 usage = mem_cgroup_usage(memcg, true);
05b84301 3364 } else
2e72b634
KS
3365 BUG();
3366
2e72b634 3367 /* Check if a threshold crossed before adding a new one */
2c488db2 3368 if (thresholds->primary)
2e72b634
KS
3369 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
2c488db2 3371 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3372
3373 /* Allocate memory for new array of thresholds */
2c488db2 3374 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3375 GFP_KERNEL);
2c488db2 3376 if (!new) {
2e72b634
KS
3377 ret = -ENOMEM;
3378 goto unlock;
3379 }
2c488db2 3380 new->size = size;
2e72b634
KS
3381
3382 /* Copy thresholds (if any) to new array */
2c488db2
KS
3383 if (thresholds->primary) {
3384 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3385 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3386 }
3387
2e72b634 3388 /* Add new threshold */
2c488db2
KS
3389 new->entries[size - 1].eventfd = eventfd;
3390 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3391
3392 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3393 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3394 compare_thresholds, NULL);
3395
3396 /* Find current threshold */
2c488db2 3397 new->current_threshold = -1;
2e72b634 3398 for (i = 0; i < size; i++) {
748dad36 3399 if (new->entries[i].threshold <= usage) {
2e72b634 3400 /*
2c488db2
KS
3401 * new->current_threshold will not be used until
3402 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3403 * it here.
3404 */
2c488db2 3405 ++new->current_threshold;
748dad36
SZ
3406 } else
3407 break;
2e72b634
KS
3408 }
3409
2c488db2
KS
3410 /* Free old spare buffer and save old primary buffer as spare */
3411 kfree(thresholds->spare);
3412 thresholds->spare = thresholds->primary;
3413
3414 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3415
907860ed 3416 /* To be sure that nobody uses thresholds */
2e72b634
KS
3417 synchronize_rcu();
3418
2e72b634
KS
3419unlock:
3420 mutex_unlock(&memcg->thresholds_lock);
3421
3422 return ret;
3423}
3424
59b6f873 3425static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3426 struct eventfd_ctx *eventfd, const char *args)
3427{
59b6f873 3428 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3429}
3430
59b6f873 3431static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3432 struct eventfd_ctx *eventfd, const char *args)
3433{
59b6f873 3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3435}
3436
59b6f873 3437static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3438 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3439{
2c488db2
KS
3440 struct mem_cgroup_thresholds *thresholds;
3441 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3442 unsigned long usage;
2c488db2 3443 int i, j, size;
2e72b634
KS
3444
3445 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3446
3447 if (type == _MEM) {
2c488db2 3448 thresholds = &memcg->thresholds;
ce00a967 3449 usage = mem_cgroup_usage(memcg, false);
05b84301 3450 } else if (type == _MEMSWAP) {
2c488db2 3451 thresholds = &memcg->memsw_thresholds;
ce00a967 3452 usage = mem_cgroup_usage(memcg, true);
05b84301 3453 } else
2e72b634
KS
3454 BUG();
3455
371528ca
AV
3456 if (!thresholds->primary)
3457 goto unlock;
3458
2e72b634
KS
3459 /* Check if a threshold crossed before removing */
3460 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462 /* Calculate new number of threshold */
2c488db2
KS
3463 size = 0;
3464 for (i = 0; i < thresholds->primary->size; i++) {
3465 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3466 size++;
3467 }
3468
2c488db2 3469 new = thresholds->spare;
907860ed 3470
2e72b634
KS
3471 /* Set thresholds array to NULL if we don't have thresholds */
3472 if (!size) {
2c488db2
KS
3473 kfree(new);
3474 new = NULL;
907860ed 3475 goto swap_buffers;
2e72b634
KS
3476 }
3477
2c488db2 3478 new->size = size;
2e72b634
KS
3479
3480 /* Copy thresholds and find current threshold */
2c488db2
KS
3481 new->current_threshold = -1;
3482 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3484 continue;
3485
2c488db2 3486 new->entries[j] = thresholds->primary->entries[i];
748dad36 3487 if (new->entries[j].threshold <= usage) {
2e72b634 3488 /*
2c488db2 3489 * new->current_threshold will not be used
2e72b634
KS
3490 * until rcu_assign_pointer(), so it's safe to increment
3491 * it here.
3492 */
2c488db2 3493 ++new->current_threshold;
2e72b634
KS
3494 }
3495 j++;
3496 }
3497
907860ed 3498swap_buffers:
2c488db2
KS
3499 /* Swap primary and spare array */
3500 thresholds->spare = thresholds->primary;
8c757763 3501
2c488db2 3502 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3503
907860ed 3504 /* To be sure that nobody uses thresholds */
2e72b634 3505 synchronize_rcu();
6611d8d7
MC
3506
3507 /* If all events are unregistered, free the spare array */
3508 if (!new) {
3509 kfree(thresholds->spare);
3510 thresholds->spare = NULL;
3511 }
371528ca 3512unlock:
2e72b634 3513 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3514}
c1e862c1 3515
59b6f873 3516static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3517 struct eventfd_ctx *eventfd)
3518{
59b6f873 3519 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3520}
3521
59b6f873 3522static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3523 struct eventfd_ctx *eventfd)
3524{
59b6f873 3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3526}
3527
59b6f873 3528static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3529 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3530{
9490ff27 3531 struct mem_cgroup_eventfd_list *event;
9490ff27 3532
9490ff27
KH
3533 event = kmalloc(sizeof(*event), GFP_KERNEL);
3534 if (!event)
3535 return -ENOMEM;
3536
1af8efe9 3537 spin_lock(&memcg_oom_lock);
9490ff27
KH
3538
3539 event->eventfd = eventfd;
3540 list_add(&event->list, &memcg->oom_notify);
3541
3542 /* already in OOM ? */
c2b42d3c 3543 if (memcg->under_oom)
9490ff27 3544 eventfd_signal(eventfd, 1);
1af8efe9 3545 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3546
3547 return 0;
3548}
3549
59b6f873 3550static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3551 struct eventfd_ctx *eventfd)
9490ff27 3552{
9490ff27 3553 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3554
1af8efe9 3555 spin_lock(&memcg_oom_lock);
9490ff27 3556
c0ff4b85 3557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3558 if (ev->eventfd == eventfd) {
3559 list_del(&ev->list);
3560 kfree(ev);
3561 }
3562 }
3563
1af8efe9 3564 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3565}
3566
2da8ca82 3567static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3568{
2da8ca82 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3570
791badbd 3571 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3572 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3573 return 0;
3574}
3575
182446d0 3576static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3577 struct cftype *cft, u64 val)
3578{
182446d0 3579 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3580
3581 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3582 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3583 return -EINVAL;
3584
c0ff4b85 3585 memcg->oom_kill_disable = val;
4d845ebf 3586 if (!val)
c0ff4b85 3587 memcg_oom_recover(memcg);
3dae7fec 3588
3c11ecf4
KH
3589 return 0;
3590}
3591
52ebea74
TH
3592#ifdef CONFIG_CGROUP_WRITEBACK
3593
3594struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595{
3596 return &memcg->cgwb_list;
3597}
3598
841710aa
TH
3599static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600{
3601 return wb_domain_init(&memcg->cgwb_domain, gfp);
3602}
3603
3604static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605{
3606 wb_domain_exit(&memcg->cgwb_domain);
3607}
3608
2529bb3a
TH
3609static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610{
3611 wb_domain_size_changed(&memcg->cgwb_domain);
3612}
3613
841710aa
TH
3614struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615{
3616 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618 if (!memcg->css.parent)
3619 return NULL;
3620
3621 return &memcg->cgwb_domain;
3622}
3623
c2aa723a
TH
3624/**
3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626 * @wb: bdi_writeback in question
c5edf9cd
TH
3627 * @pfilepages: out parameter for number of file pages
3628 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3629 * @pdirty: out parameter for number of dirty pages
3630 * @pwriteback: out parameter for number of pages under writeback
3631 *
c5edf9cd
TH
3632 * Determine the numbers of file, headroom, dirty, and writeback pages in
3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3634 * is a bit more involved.
c2aa723a 3635 *
c5edf9cd
TH
3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3637 * headroom is calculated as the lowest headroom of itself and the
3638 * ancestors. Note that this doesn't consider the actual amount of
3639 * available memory in the system. The caller should further cap
3640 * *@pheadroom accordingly.
c2aa723a 3641 */
c5edf9cd
TH
3642void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643 unsigned long *pheadroom, unsigned long *pdirty,
3644 unsigned long *pwriteback)
c2aa723a
TH
3645{
3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647 struct mem_cgroup *parent;
c2aa723a
TH
3648
3649 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651 /* this should eventually include NR_UNSTABLE_NFS */
3652 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3653 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654 (1 << LRU_ACTIVE_FILE));
3655 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3656
c2aa723a
TH
3657 while ((parent = parent_mem_cgroup(memcg))) {
3658 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659 unsigned long used = page_counter_read(&memcg->memory);
3660
c5edf9cd 3661 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3662 memcg = parent;
3663 }
c2aa723a
TH
3664}
3665
841710aa
TH
3666#else /* CONFIG_CGROUP_WRITEBACK */
3667
3668static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669{
3670 return 0;
3671}
3672
3673static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674{
3675}
3676
2529bb3a
TH
3677static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678{
3679}
3680
52ebea74
TH
3681#endif /* CONFIG_CGROUP_WRITEBACK */
3682
3bc942f3
TH
3683/*
3684 * DO NOT USE IN NEW FILES.
3685 *
3686 * "cgroup.event_control" implementation.
3687 *
3688 * This is way over-engineered. It tries to support fully configurable
3689 * events for each user. Such level of flexibility is completely
3690 * unnecessary especially in the light of the planned unified hierarchy.
3691 *
3692 * Please deprecate this and replace with something simpler if at all
3693 * possible.
3694 */
3695
79bd9814
TH
3696/*
3697 * Unregister event and free resources.
3698 *
3699 * Gets called from workqueue.
3700 */
3bc942f3 3701static void memcg_event_remove(struct work_struct *work)
79bd9814 3702{
3bc942f3
TH
3703 struct mem_cgroup_event *event =
3704 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3705 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3706
3707 remove_wait_queue(event->wqh, &event->wait);
3708
59b6f873 3709 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3710
3711 /* Notify userspace the event is going away. */
3712 eventfd_signal(event->eventfd, 1);
3713
3714 eventfd_ctx_put(event->eventfd);
3715 kfree(event);
59b6f873 3716 css_put(&memcg->css);
79bd9814
TH
3717}
3718
3719/*
3720 * Gets called on POLLHUP on eventfd when user closes it.
3721 *
3722 * Called with wqh->lock held and interrupts disabled.
3723 */
3bc942f3
TH
3724static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725 int sync, void *key)
79bd9814 3726{
3bc942f3
TH
3727 struct mem_cgroup_event *event =
3728 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3729 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3730 unsigned long flags = (unsigned long)key;
3731
3732 if (flags & POLLHUP) {
3733 /*
3734 * If the event has been detached at cgroup removal, we
3735 * can simply return knowing the other side will cleanup
3736 * for us.
3737 *
3738 * We can't race against event freeing since the other
3739 * side will require wqh->lock via remove_wait_queue(),
3740 * which we hold.
3741 */
fba94807 3742 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3743 if (!list_empty(&event->list)) {
3744 list_del_init(&event->list);
3745 /*
3746 * We are in atomic context, but cgroup_event_remove()
3747 * may sleep, so we have to call it in workqueue.
3748 */
3749 schedule_work(&event->remove);
3750 }
fba94807 3751 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3752 }
3753
3754 return 0;
3755}
3756
3bc942f3 3757static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3758 wait_queue_head_t *wqh, poll_table *pt)
3759{
3bc942f3
TH
3760 struct mem_cgroup_event *event =
3761 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3762
3763 event->wqh = wqh;
3764 add_wait_queue(wqh, &event->wait);
3765}
3766
3767/*
3bc942f3
TH
3768 * DO NOT USE IN NEW FILES.
3769 *
79bd9814
TH
3770 * Parse input and register new cgroup event handler.
3771 *
3772 * Input must be in format '<event_fd> <control_fd> <args>'.
3773 * Interpretation of args is defined by control file implementation.
3774 */
451af504
TH
3775static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776 char *buf, size_t nbytes, loff_t off)
79bd9814 3777{
451af504 3778 struct cgroup_subsys_state *css = of_css(of);
fba94807 3779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3780 struct mem_cgroup_event *event;
79bd9814
TH
3781 struct cgroup_subsys_state *cfile_css;
3782 unsigned int efd, cfd;
3783 struct fd efile;
3784 struct fd cfile;
fba94807 3785 const char *name;
79bd9814
TH
3786 char *endp;
3787 int ret;
3788
451af504
TH
3789 buf = strstrip(buf);
3790
3791 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3792 if (*endp != ' ')
3793 return -EINVAL;
451af504 3794 buf = endp + 1;
79bd9814 3795
451af504 3796 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3797 if ((*endp != ' ') && (*endp != '\0'))
3798 return -EINVAL;
451af504 3799 buf = endp + 1;
79bd9814
TH
3800
3801 event = kzalloc(sizeof(*event), GFP_KERNEL);
3802 if (!event)
3803 return -ENOMEM;
3804
59b6f873 3805 event->memcg = memcg;
79bd9814 3806 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3807 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3810
3811 efile = fdget(efd);
3812 if (!efile.file) {
3813 ret = -EBADF;
3814 goto out_kfree;
3815 }
3816
3817 event->eventfd = eventfd_ctx_fileget(efile.file);
3818 if (IS_ERR(event->eventfd)) {
3819 ret = PTR_ERR(event->eventfd);
3820 goto out_put_efile;
3821 }
3822
3823 cfile = fdget(cfd);
3824 if (!cfile.file) {
3825 ret = -EBADF;
3826 goto out_put_eventfd;
3827 }
3828
3829 /* the process need read permission on control file */
3830 /* AV: shouldn't we check that it's been opened for read instead? */
3831 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832 if (ret < 0)
3833 goto out_put_cfile;
3834
fba94807
TH
3835 /*
3836 * Determine the event callbacks and set them in @event. This used
3837 * to be done via struct cftype but cgroup core no longer knows
3838 * about these events. The following is crude but the whole thing
3839 * is for compatibility anyway.
3bc942f3
TH
3840 *
3841 * DO NOT ADD NEW FILES.
fba94807 3842 */
b583043e 3843 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3844
3845 if (!strcmp(name, "memory.usage_in_bytes")) {
3846 event->register_event = mem_cgroup_usage_register_event;
3847 event->unregister_event = mem_cgroup_usage_unregister_event;
3848 } else if (!strcmp(name, "memory.oom_control")) {
3849 event->register_event = mem_cgroup_oom_register_event;
3850 event->unregister_event = mem_cgroup_oom_unregister_event;
3851 } else if (!strcmp(name, "memory.pressure_level")) {
3852 event->register_event = vmpressure_register_event;
3853 event->unregister_event = vmpressure_unregister_event;
3854 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3855 event->register_event = memsw_cgroup_usage_register_event;
3856 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3857 } else {
3858 ret = -EINVAL;
3859 goto out_put_cfile;
3860 }
3861
79bd9814 3862 /*
b5557c4c
TH
3863 * Verify @cfile should belong to @css. Also, remaining events are
3864 * automatically removed on cgroup destruction but the removal is
3865 * asynchronous, so take an extra ref on @css.
79bd9814 3866 */
b583043e 3867 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3868 &memory_cgrp_subsys);
79bd9814 3869 ret = -EINVAL;
5a17f543 3870 if (IS_ERR(cfile_css))
79bd9814 3871 goto out_put_cfile;
5a17f543
TH
3872 if (cfile_css != css) {
3873 css_put(cfile_css);
79bd9814 3874 goto out_put_cfile;
5a17f543 3875 }
79bd9814 3876
451af504 3877 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3878 if (ret)
3879 goto out_put_css;
3880
3881 efile.file->f_op->poll(efile.file, &event->pt);
3882
fba94807
TH
3883 spin_lock(&memcg->event_list_lock);
3884 list_add(&event->list, &memcg->event_list);
3885 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3886
3887 fdput(cfile);
3888 fdput(efile);
3889
451af504 3890 return nbytes;
79bd9814
TH
3891
3892out_put_css:
b5557c4c 3893 css_put(css);
79bd9814
TH
3894out_put_cfile:
3895 fdput(cfile);
3896out_put_eventfd:
3897 eventfd_ctx_put(event->eventfd);
3898out_put_efile:
3899 fdput(efile);
3900out_kfree:
3901 kfree(event);
3902
3903 return ret;
3904}
3905
241994ed 3906static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3907 {
0eea1030 3908 .name = "usage_in_bytes",
8c7c6e34 3909 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3910 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3911 },
c84872e1
PE
3912 {
3913 .name = "max_usage_in_bytes",
8c7c6e34 3914 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3915 .write = mem_cgroup_reset,
791badbd 3916 .read_u64 = mem_cgroup_read_u64,
c84872e1 3917 },
8cdea7c0 3918 {
0eea1030 3919 .name = "limit_in_bytes",
8c7c6e34 3920 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3921 .write = mem_cgroup_write,
791badbd 3922 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3923 },
296c81d8
BS
3924 {
3925 .name = "soft_limit_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3927 .write = mem_cgroup_write,
791badbd 3928 .read_u64 = mem_cgroup_read_u64,
296c81d8 3929 },
8cdea7c0
BS
3930 {
3931 .name = "failcnt",
8c7c6e34 3932 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3933 .write = mem_cgroup_reset,
791badbd 3934 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3935 },
d2ceb9b7
KH
3936 {
3937 .name = "stat",
2da8ca82 3938 .seq_show = memcg_stat_show,
d2ceb9b7 3939 },
c1e862c1
KH
3940 {
3941 .name = "force_empty",
6770c64e 3942 .write = mem_cgroup_force_empty_write,
c1e862c1 3943 },
18f59ea7
BS
3944 {
3945 .name = "use_hierarchy",
3946 .write_u64 = mem_cgroup_hierarchy_write,
3947 .read_u64 = mem_cgroup_hierarchy_read,
3948 },
79bd9814 3949 {
3bc942f3 3950 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3951 .write = memcg_write_event_control,
7dbdb199 3952 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3953 },
a7885eb8
KM
3954 {
3955 .name = "swappiness",
3956 .read_u64 = mem_cgroup_swappiness_read,
3957 .write_u64 = mem_cgroup_swappiness_write,
3958 },
7dc74be0
DN
3959 {
3960 .name = "move_charge_at_immigrate",
3961 .read_u64 = mem_cgroup_move_charge_read,
3962 .write_u64 = mem_cgroup_move_charge_write,
3963 },
9490ff27
KH
3964 {
3965 .name = "oom_control",
2da8ca82 3966 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3967 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3968 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969 },
70ddf637
AV
3970 {
3971 .name = "pressure_level",
70ddf637 3972 },
406eb0c9
YH
3973#ifdef CONFIG_NUMA
3974 {
3975 .name = "numa_stat",
2da8ca82 3976 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3977 },
3978#endif
510fc4e1
GC
3979 {
3980 .name = "kmem.limit_in_bytes",
3981 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3982 .write = mem_cgroup_write,
791badbd 3983 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3984 },
3985 {
3986 .name = "kmem.usage_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3988 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3989 },
3990 {
3991 .name = "kmem.failcnt",
3992 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3993 .write = mem_cgroup_reset,
791badbd 3994 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3995 },
3996 {
3997 .name = "kmem.max_usage_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 3999 .write = mem_cgroup_reset,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4001 },
749c5415
GC
4002#ifdef CONFIG_SLABINFO
4003 {
4004 .name = "kmem.slabinfo",
b047501c
VD
4005 .seq_start = slab_start,
4006 .seq_next = slab_next,
4007 .seq_stop = slab_stop,
4008 .seq_show = memcg_slab_show,
749c5415
GC
4009 },
4010#endif
d55f90bf
VD
4011 {
4012 .name = "kmem.tcp.limit_in_bytes",
4013 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014 .write = mem_cgroup_write,
4015 .read_u64 = mem_cgroup_read_u64,
4016 },
4017 {
4018 .name = "kmem.tcp.usage_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020 .read_u64 = mem_cgroup_read_u64,
4021 },
4022 {
4023 .name = "kmem.tcp.failcnt",
4024 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025 .write = mem_cgroup_reset,
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.max_usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
6bc10349 4034 { }, /* terminate */
af36f906 4035};
8c7c6e34 4036
c0ff4b85 4037static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4038{
4039 struct mem_cgroup_per_node *pn;
1ecaab2b 4040 struct mem_cgroup_per_zone *mz;
41e3355d 4041 int zone, tmp = node;
1ecaab2b
KH
4042 /*
4043 * This routine is called against possible nodes.
4044 * But it's BUG to call kmalloc() against offline node.
4045 *
4046 * TODO: this routine can waste much memory for nodes which will
4047 * never be onlined. It's better to use memory hotplug callback
4048 * function.
4049 */
41e3355d
KH
4050 if (!node_state(node, N_NORMAL_MEMORY))
4051 tmp = -1;
17295c88 4052 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4053 if (!pn)
4054 return 1;
1ecaab2b 4055
1ecaab2b
KH
4056 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4057 mz = &pn->zoneinfo[zone];
bea8c150 4058 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4059 mz->usage_in_excess = 0;
4060 mz->on_tree = false;
d79154bb 4061 mz->memcg = memcg;
1ecaab2b 4062 }
54f72fe0 4063 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4064 return 0;
4065}
4066
c0ff4b85 4067static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4068{
54f72fe0 4069 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4070}
4071
0b8f73e1 4072static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4073{
c8b2a36f 4074 int node;
59927fb9 4075
0b8f73e1 4076 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4077 for_each_node(node)
4078 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4079 free_percpu(memcg->stat);
8ff69e2c 4080 kfree(memcg);
59927fb9 4081}
3afe36b1 4082
0b8f73e1 4083static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4084{
d142e3e6 4085 struct mem_cgroup *memcg;
0b8f73e1 4086 size_t size;
6d12e2d8 4087 int node;
8cdea7c0 4088
0b8f73e1
JW
4089 size = sizeof(struct mem_cgroup);
4090 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4091
4092 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4093 if (!memcg)
0b8f73e1
JW
4094 return NULL;
4095
4096 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4097 if (!memcg->stat)
4098 goto fail;
78fb7466 4099
3ed28fa1 4100 for_each_node(node)
c0ff4b85 4101 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4102 goto fail;
f64c3f54 4103
0b8f73e1
JW
4104 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4105 goto fail;
28dbc4b6 4106
f7e1cb6e 4107 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4108 memcg->last_scanned_node = MAX_NUMNODES;
4109 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4110 mutex_init(&memcg->thresholds_lock);
4111 spin_lock_init(&memcg->move_lock);
70ddf637 4112 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4113 INIT_LIST_HEAD(&memcg->event_list);
4114 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4115 memcg->socket_pressure = jiffies;
127424c8 4116#ifndef CONFIG_SLOB
900a38f0 4117 memcg->kmemcg_id = -1;
900a38f0 4118#endif
52ebea74
TH
4119#ifdef CONFIG_CGROUP_WRITEBACK
4120 INIT_LIST_HEAD(&memcg->cgwb_list);
4121#endif
0b8f73e1
JW
4122 return memcg;
4123fail:
4124 mem_cgroup_free(memcg);
4125 return NULL;
d142e3e6
GC
4126}
4127
0b8f73e1
JW
4128static struct cgroup_subsys_state * __ref
4129mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4130{
0b8f73e1
JW
4131 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4132 struct mem_cgroup *memcg;
4133 long error = -ENOMEM;
d142e3e6 4134
0b8f73e1
JW
4135 memcg = mem_cgroup_alloc();
4136 if (!memcg)
4137 return ERR_PTR(error);
d142e3e6 4138
0b8f73e1
JW
4139 memcg->high = PAGE_COUNTER_MAX;
4140 memcg->soft_limit = PAGE_COUNTER_MAX;
4141 if (parent) {
4142 memcg->swappiness = mem_cgroup_swappiness(parent);
4143 memcg->oom_kill_disable = parent->oom_kill_disable;
4144 }
4145 if (parent && parent->use_hierarchy) {
4146 memcg->use_hierarchy = true;
3e32cb2e 4147 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4148 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4149 page_counter_init(&memcg->memsw, &parent->memsw);
4150 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4151 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4152 } else {
3e32cb2e 4153 page_counter_init(&memcg->memory, NULL);
37e84351 4154 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4155 page_counter_init(&memcg->memsw, NULL);
4156 page_counter_init(&memcg->kmem, NULL);
0db15298 4157 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4158 /*
4159 * Deeper hierachy with use_hierarchy == false doesn't make
4160 * much sense so let cgroup subsystem know about this
4161 * unfortunate state in our controller.
4162 */
d142e3e6 4163 if (parent != root_mem_cgroup)
073219e9 4164 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4165 }
d6441637 4166
0b8f73e1
JW
4167 /* The following stuff does not apply to the root */
4168 if (!parent) {
4169 root_mem_cgroup = memcg;
4170 return &memcg->css;
4171 }
4172
b313aeee 4173 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4174 if (error)
4175 goto fail;
127424c8 4176
f7e1cb6e 4177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4178 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4179
0b8f73e1
JW
4180 return &memcg->css;
4181fail:
4182 mem_cgroup_free(memcg);
4183 return NULL;
4184}
4185
4186static int
4187mem_cgroup_css_online(struct cgroup_subsys_state *css)
4188{
4189 if (css->id > MEM_CGROUP_ID_MAX)
4190 return -ENOSPC;
2f7dd7a4
JW
4191
4192 return 0;
8cdea7c0
BS
4193}
4194
eb95419b 4195static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4196{
eb95419b 4197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4198 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4199
4200 /*
4201 * Unregister events and notify userspace.
4202 * Notify userspace about cgroup removing only after rmdir of cgroup
4203 * directory to avoid race between userspace and kernelspace.
4204 */
fba94807
TH
4205 spin_lock(&memcg->event_list_lock);
4206 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4207 list_del_init(&event->list);
4208 schedule_work(&event->remove);
4209 }
fba94807 4210 spin_unlock(&memcg->event_list_lock);
ec64f515 4211
567e9ab2 4212 memcg_offline_kmem(memcg);
52ebea74 4213 wb_memcg_offline(memcg);
df878fb0
KH
4214}
4215
6df38689
VD
4216static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4217{
4218 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4219
4220 invalidate_reclaim_iterators(memcg);
4221}
4222
eb95419b 4223static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4224{
eb95419b 4225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4226
f7e1cb6e 4227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4228 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4229
0db15298 4230 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4231 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4232
0b8f73e1
JW
4233 vmpressure_cleanup(&memcg->vmpressure);
4234 cancel_work_sync(&memcg->high_work);
4235 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4236 memcg_free_kmem(memcg);
0b8f73e1 4237 mem_cgroup_free(memcg);
8cdea7c0
BS
4238}
4239
1ced953b
TH
4240/**
4241 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4242 * @css: the target css
4243 *
4244 * Reset the states of the mem_cgroup associated with @css. This is
4245 * invoked when the userland requests disabling on the default hierarchy
4246 * but the memcg is pinned through dependency. The memcg should stop
4247 * applying policies and should revert to the vanilla state as it may be
4248 * made visible again.
4249 *
4250 * The current implementation only resets the essential configurations.
4251 * This needs to be expanded to cover all the visible parts.
4252 */
4253static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4254{
4255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4256
d334c9bc
VD
4257 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4258 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4262 memcg->low = 0;
4263 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4264 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4265 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4266}
4267
02491447 4268#ifdef CONFIG_MMU
7dc74be0 4269/* Handlers for move charge at task migration. */
854ffa8d 4270static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4271{
05b84301 4272 int ret;
9476db97 4273
d0164adc
MG
4274 /* Try a single bulk charge without reclaim first, kswapd may wake */
4275 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4276 if (!ret) {
854ffa8d 4277 mc.precharge += count;
854ffa8d
DN
4278 return ret;
4279 }
9476db97
JW
4280
4281 /* Try charges one by one with reclaim */
854ffa8d 4282 while (count--) {
00501b53 4283 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4284 if (ret)
38c5d72f 4285 return ret;
854ffa8d 4286 mc.precharge++;
9476db97 4287 cond_resched();
854ffa8d 4288 }
9476db97 4289 return 0;
4ffef5fe
DN
4290}
4291
4292/**
8d32ff84 4293 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4294 * @vma: the vma the pte to be checked belongs
4295 * @addr: the address corresponding to the pte to be checked
4296 * @ptent: the pte to be checked
02491447 4297 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4298 *
4299 * Returns
4300 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4301 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4302 * move charge. if @target is not NULL, the page is stored in target->page
4303 * with extra refcnt got(Callers should handle it).
02491447
DN
4304 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4305 * target for charge migration. if @target is not NULL, the entry is stored
4306 * in target->ent.
4ffef5fe
DN
4307 *
4308 * Called with pte lock held.
4309 */
4ffef5fe
DN
4310union mc_target {
4311 struct page *page;
02491447 4312 swp_entry_t ent;
4ffef5fe
DN
4313};
4314
4ffef5fe 4315enum mc_target_type {
8d32ff84 4316 MC_TARGET_NONE = 0,
4ffef5fe 4317 MC_TARGET_PAGE,
02491447 4318 MC_TARGET_SWAP,
4ffef5fe
DN
4319};
4320
90254a65
DN
4321static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4322 unsigned long addr, pte_t ptent)
4ffef5fe 4323{
90254a65 4324 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4325
90254a65
DN
4326 if (!page || !page_mapped(page))
4327 return NULL;
4328 if (PageAnon(page)) {
1dfab5ab 4329 if (!(mc.flags & MOVE_ANON))
90254a65 4330 return NULL;
1dfab5ab
JW
4331 } else {
4332 if (!(mc.flags & MOVE_FILE))
4333 return NULL;
4334 }
90254a65
DN
4335 if (!get_page_unless_zero(page))
4336 return NULL;
4337
4338 return page;
4339}
4340
4b91355e 4341#ifdef CONFIG_SWAP
90254a65
DN
4342static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4343 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4344{
90254a65
DN
4345 struct page *page = NULL;
4346 swp_entry_t ent = pte_to_swp_entry(ptent);
4347
1dfab5ab 4348 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4349 return NULL;
4b91355e
KH
4350 /*
4351 * Because lookup_swap_cache() updates some statistics counter,
4352 * we call find_get_page() with swapper_space directly.
4353 */
33806f06 4354 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4355 if (do_memsw_account())
90254a65
DN
4356 entry->val = ent.val;
4357
4358 return page;
4359}
4b91355e
KH
4360#else
4361static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4362 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4363{
4364 return NULL;
4365}
4366#endif
90254a65 4367
87946a72
DN
4368static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4369 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4370{
4371 struct page *page = NULL;
87946a72
DN
4372 struct address_space *mapping;
4373 pgoff_t pgoff;
4374
4375 if (!vma->vm_file) /* anonymous vma */
4376 return NULL;
1dfab5ab 4377 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4378 return NULL;
4379
87946a72 4380 mapping = vma->vm_file->f_mapping;
0661a336 4381 pgoff = linear_page_index(vma, addr);
87946a72
DN
4382
4383 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4384#ifdef CONFIG_SWAP
4385 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4386 if (shmem_mapping(mapping)) {
4387 page = find_get_entry(mapping, pgoff);
4388 if (radix_tree_exceptional_entry(page)) {
4389 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4390 if (do_memsw_account())
139b6a6f
JW
4391 *entry = swp;
4392 page = find_get_page(swap_address_space(swp), swp.val);
4393 }
4394 } else
4395 page = find_get_page(mapping, pgoff);
4396#else
4397 page = find_get_page(mapping, pgoff);
aa3b1895 4398#endif
87946a72
DN
4399 return page;
4400}
4401
b1b0deab
CG
4402/**
4403 * mem_cgroup_move_account - move account of the page
4404 * @page: the page
4405 * @nr_pages: number of regular pages (>1 for huge pages)
4406 * @from: mem_cgroup which the page is moved from.
4407 * @to: mem_cgroup which the page is moved to. @from != @to.
4408 *
3ac808fd 4409 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4410 *
4411 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4412 * from old cgroup.
4413 */
4414static int mem_cgroup_move_account(struct page *page,
f627c2f5 4415 bool compound,
b1b0deab
CG
4416 struct mem_cgroup *from,
4417 struct mem_cgroup *to)
4418{
4419 unsigned long flags;
f627c2f5 4420 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4421 int ret;
c4843a75 4422 bool anon;
b1b0deab
CG
4423
4424 VM_BUG_ON(from == to);
4425 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4426 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4427
4428 /*
6a93ca8f 4429 * Prevent mem_cgroup_migrate() from looking at
45637bab 4430 * page->mem_cgroup of its source page while we change it.
b1b0deab 4431 */
f627c2f5 4432 ret = -EBUSY;
b1b0deab
CG
4433 if (!trylock_page(page))
4434 goto out;
4435
4436 ret = -EINVAL;
4437 if (page->mem_cgroup != from)
4438 goto out_unlock;
4439
c4843a75
GT
4440 anon = PageAnon(page);
4441
b1b0deab
CG
4442 spin_lock_irqsave(&from->move_lock, flags);
4443
c4843a75 4444 if (!anon && page_mapped(page)) {
b1b0deab
CG
4445 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4446 nr_pages);
4447 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4448 nr_pages);
4449 }
4450
c4843a75
GT
4451 /*
4452 * move_lock grabbed above and caller set from->moving_account, so
4453 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4454 * So mapping should be stable for dirty pages.
4455 */
4456 if (!anon && PageDirty(page)) {
4457 struct address_space *mapping = page_mapping(page);
4458
4459 if (mapping_cap_account_dirty(mapping)) {
4460 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4461 nr_pages);
4462 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4463 nr_pages);
4464 }
4465 }
4466
b1b0deab
CG
4467 if (PageWriteback(page)) {
4468 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4469 nr_pages);
4470 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4471 nr_pages);
4472 }
4473
4474 /*
4475 * It is safe to change page->mem_cgroup here because the page
4476 * is referenced, charged, and isolated - we can't race with
4477 * uncharging, charging, migration, or LRU putback.
4478 */
4479
4480 /* caller should have done css_get */
4481 page->mem_cgroup = to;
4482 spin_unlock_irqrestore(&from->move_lock, flags);
4483
4484 ret = 0;
4485
4486 local_irq_disable();
f627c2f5 4487 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4488 memcg_check_events(to, page);
f627c2f5 4489 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4490 memcg_check_events(from, page);
4491 local_irq_enable();
4492out_unlock:
4493 unlock_page(page);
4494out:
4495 return ret;
4496}
4497
8d32ff84 4498static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4499 unsigned long addr, pte_t ptent, union mc_target *target)
4500{
4501 struct page *page = NULL;
8d32ff84 4502 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4503 swp_entry_t ent = { .val = 0 };
4504
4505 if (pte_present(ptent))
4506 page = mc_handle_present_pte(vma, addr, ptent);
4507 else if (is_swap_pte(ptent))
4508 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4509 else if (pte_none(ptent))
87946a72 4510 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4511
4512 if (!page && !ent.val)
8d32ff84 4513 return ret;
02491447 4514 if (page) {
02491447 4515 /*
0a31bc97 4516 * Do only loose check w/o serialization.
1306a85a 4517 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4518 * not under LRU exclusion.
02491447 4519 */
1306a85a 4520 if (page->mem_cgroup == mc.from) {
02491447
DN
4521 ret = MC_TARGET_PAGE;
4522 if (target)
4523 target->page = page;
4524 }
4525 if (!ret || !target)
4526 put_page(page);
4527 }
90254a65
DN
4528 /* There is a swap entry and a page doesn't exist or isn't charged */
4529 if (ent.val && !ret &&
34c00c31 4530 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4531 ret = MC_TARGET_SWAP;
4532 if (target)
4533 target->ent = ent;
4ffef5fe 4534 }
4ffef5fe
DN
4535 return ret;
4536}
4537
12724850
NH
4538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4539/*
4540 * We don't consider swapping or file mapped pages because THP does not
4541 * support them for now.
4542 * Caller should make sure that pmd_trans_huge(pmd) is true.
4543 */
4544static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4545 unsigned long addr, pmd_t pmd, union mc_target *target)
4546{
4547 struct page *page = NULL;
12724850
NH
4548 enum mc_target_type ret = MC_TARGET_NONE;
4549
4550 page = pmd_page(pmd);
309381fe 4551 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4552 if (!(mc.flags & MOVE_ANON))
12724850 4553 return ret;
1306a85a 4554 if (page->mem_cgroup == mc.from) {
12724850
NH
4555 ret = MC_TARGET_PAGE;
4556 if (target) {
4557 get_page(page);
4558 target->page = page;
4559 }
4560 }
4561 return ret;
4562}
4563#else
4564static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4565 unsigned long addr, pmd_t pmd, union mc_target *target)
4566{
4567 return MC_TARGET_NONE;
4568}
4569#endif
4570
4ffef5fe
DN
4571static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4572 unsigned long addr, unsigned long end,
4573 struct mm_walk *walk)
4574{
26bcd64a 4575 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4576 pte_t *pte;
4577 spinlock_t *ptl;
4578
b6ec57f4
KS
4579 ptl = pmd_trans_huge_lock(pmd, vma);
4580 if (ptl) {
12724850
NH
4581 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4582 mc.precharge += HPAGE_PMD_NR;
bf929152 4583 spin_unlock(ptl);
1a5a9906 4584 return 0;
12724850 4585 }
03319327 4586
45f83cef
AA
4587 if (pmd_trans_unstable(pmd))
4588 return 0;
4ffef5fe
DN
4589 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4590 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4591 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4592 mc.precharge++; /* increment precharge temporarily */
4593 pte_unmap_unlock(pte - 1, ptl);
4594 cond_resched();
4595
7dc74be0
DN
4596 return 0;
4597}
4598
4ffef5fe
DN
4599static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4600{
4601 unsigned long precharge;
4ffef5fe 4602
26bcd64a
NH
4603 struct mm_walk mem_cgroup_count_precharge_walk = {
4604 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4605 .mm = mm,
4606 };
dfe076b0 4607 down_read(&mm->mmap_sem);
26bcd64a 4608 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4609 up_read(&mm->mmap_sem);
4ffef5fe
DN
4610
4611 precharge = mc.precharge;
4612 mc.precharge = 0;
4613
4614 return precharge;
4615}
4616
4ffef5fe
DN
4617static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4618{
dfe076b0
DN
4619 unsigned long precharge = mem_cgroup_count_precharge(mm);
4620
4621 VM_BUG_ON(mc.moving_task);
4622 mc.moving_task = current;
4623 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4624}
4625
dfe076b0
DN
4626/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4627static void __mem_cgroup_clear_mc(void)
4ffef5fe 4628{
2bd9bb20
KH
4629 struct mem_cgroup *from = mc.from;
4630 struct mem_cgroup *to = mc.to;
4631
4ffef5fe 4632 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4633 if (mc.precharge) {
00501b53 4634 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4635 mc.precharge = 0;
4636 }
4637 /*
4638 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4639 * we must uncharge here.
4640 */
4641 if (mc.moved_charge) {
00501b53 4642 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4643 mc.moved_charge = 0;
4ffef5fe 4644 }
483c30b5
DN
4645 /* we must fixup refcnts and charges */
4646 if (mc.moved_swap) {
483c30b5 4647 /* uncharge swap account from the old cgroup */
ce00a967 4648 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4649 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4650
05b84301 4651 /*
3e32cb2e
JW
4652 * we charged both to->memory and to->memsw, so we
4653 * should uncharge to->memory.
05b84301 4654 */
ce00a967 4655 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4656 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4657
e8ea14cc 4658 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4659
4050377b 4660 /* we've already done css_get(mc.to) */
483c30b5
DN
4661 mc.moved_swap = 0;
4662 }
dfe076b0
DN
4663 memcg_oom_recover(from);
4664 memcg_oom_recover(to);
4665 wake_up_all(&mc.waitq);
4666}
4667
4668static void mem_cgroup_clear_mc(void)
4669{
dfe076b0
DN
4670 /*
4671 * we must clear moving_task before waking up waiters at the end of
4672 * task migration.
4673 */
4674 mc.moving_task = NULL;
4675 __mem_cgroup_clear_mc();
2bd9bb20 4676 spin_lock(&mc.lock);
4ffef5fe
DN
4677 mc.from = NULL;
4678 mc.to = NULL;
2bd9bb20 4679 spin_unlock(&mc.lock);
4ffef5fe
DN
4680}
4681
1f7dd3e5 4682static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4683{
1f7dd3e5 4684 struct cgroup_subsys_state *css;
eed67d75 4685 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4686 struct mem_cgroup *from;
4530eddb 4687 struct task_struct *leader, *p;
9f2115f9 4688 struct mm_struct *mm;
1dfab5ab 4689 unsigned long move_flags;
9f2115f9 4690 int ret = 0;
7dc74be0 4691
1f7dd3e5
TH
4692 /* charge immigration isn't supported on the default hierarchy */
4693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4694 return 0;
4695
4530eddb
TH
4696 /*
4697 * Multi-process migrations only happen on the default hierarchy
4698 * where charge immigration is not used. Perform charge
4699 * immigration if @tset contains a leader and whine if there are
4700 * multiple.
4701 */
4702 p = NULL;
1f7dd3e5 4703 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4704 WARN_ON_ONCE(p);
4705 p = leader;
1f7dd3e5 4706 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4707 }
4708 if (!p)
4709 return 0;
4710
1f7dd3e5
TH
4711 /*
4712 * We are now commited to this value whatever it is. Changes in this
4713 * tunable will only affect upcoming migrations, not the current one.
4714 * So we need to save it, and keep it going.
4715 */
4716 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4717 if (!move_flags)
4718 return 0;
4719
9f2115f9
TH
4720 from = mem_cgroup_from_task(p);
4721
4722 VM_BUG_ON(from == memcg);
4723
4724 mm = get_task_mm(p);
4725 if (!mm)
4726 return 0;
4727 /* We move charges only when we move a owner of the mm */
4728 if (mm->owner == p) {
4729 VM_BUG_ON(mc.from);
4730 VM_BUG_ON(mc.to);
4731 VM_BUG_ON(mc.precharge);
4732 VM_BUG_ON(mc.moved_charge);
4733 VM_BUG_ON(mc.moved_swap);
4734
4735 spin_lock(&mc.lock);
4736 mc.from = from;
4737 mc.to = memcg;
4738 mc.flags = move_flags;
4739 spin_unlock(&mc.lock);
4740 /* We set mc.moving_task later */
4741
4742 ret = mem_cgroup_precharge_mc(mm);
4743 if (ret)
4744 mem_cgroup_clear_mc();
7dc74be0 4745 }
9f2115f9 4746 mmput(mm);
7dc74be0
DN
4747 return ret;
4748}
4749
1f7dd3e5 4750static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4751{
4e2f245d
JW
4752 if (mc.to)
4753 mem_cgroup_clear_mc();
7dc74be0
DN
4754}
4755
4ffef5fe
DN
4756static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4757 unsigned long addr, unsigned long end,
4758 struct mm_walk *walk)
7dc74be0 4759{
4ffef5fe 4760 int ret = 0;
26bcd64a 4761 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4762 pte_t *pte;
4763 spinlock_t *ptl;
12724850
NH
4764 enum mc_target_type target_type;
4765 union mc_target target;
4766 struct page *page;
4ffef5fe 4767
b6ec57f4
KS
4768 ptl = pmd_trans_huge_lock(pmd, vma);
4769 if (ptl) {
62ade86a 4770 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4771 spin_unlock(ptl);
12724850
NH
4772 return 0;
4773 }
4774 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4775 if (target_type == MC_TARGET_PAGE) {
4776 page = target.page;
4777 if (!isolate_lru_page(page)) {
f627c2f5 4778 if (!mem_cgroup_move_account(page, true,
1306a85a 4779 mc.from, mc.to)) {
12724850
NH
4780 mc.precharge -= HPAGE_PMD_NR;
4781 mc.moved_charge += HPAGE_PMD_NR;
4782 }
4783 putback_lru_page(page);
4784 }
4785 put_page(page);
4786 }
bf929152 4787 spin_unlock(ptl);
1a5a9906 4788 return 0;
12724850
NH
4789 }
4790
45f83cef
AA
4791 if (pmd_trans_unstable(pmd))
4792 return 0;
4ffef5fe
DN
4793retry:
4794 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4795 for (; addr != end; addr += PAGE_SIZE) {
4796 pte_t ptent = *(pte++);
02491447 4797 swp_entry_t ent;
4ffef5fe
DN
4798
4799 if (!mc.precharge)
4800 break;
4801
8d32ff84 4802 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4803 case MC_TARGET_PAGE:
4804 page = target.page;
53f9263b
KS
4805 /*
4806 * We can have a part of the split pmd here. Moving it
4807 * can be done but it would be too convoluted so simply
4808 * ignore such a partial THP and keep it in original
4809 * memcg. There should be somebody mapping the head.
4810 */
4811 if (PageTransCompound(page))
4812 goto put;
4ffef5fe
DN
4813 if (isolate_lru_page(page))
4814 goto put;
f627c2f5
KS
4815 if (!mem_cgroup_move_account(page, false,
4816 mc.from, mc.to)) {
4ffef5fe 4817 mc.precharge--;
854ffa8d
DN
4818 /* we uncharge from mc.from later. */
4819 mc.moved_charge++;
4ffef5fe
DN
4820 }
4821 putback_lru_page(page);
8d32ff84 4822put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4823 put_page(page);
4824 break;
02491447
DN
4825 case MC_TARGET_SWAP:
4826 ent = target.ent;
e91cbb42 4827 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4828 mc.precharge--;
483c30b5
DN
4829 /* we fixup refcnts and charges later. */
4830 mc.moved_swap++;
4831 }
02491447 4832 break;
4ffef5fe
DN
4833 default:
4834 break;
4835 }
4836 }
4837 pte_unmap_unlock(pte - 1, ptl);
4838 cond_resched();
4839
4840 if (addr != end) {
4841 /*
4842 * We have consumed all precharges we got in can_attach().
4843 * We try charge one by one, but don't do any additional
4844 * charges to mc.to if we have failed in charge once in attach()
4845 * phase.
4846 */
854ffa8d 4847 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4848 if (!ret)
4849 goto retry;
4850 }
4851
4852 return ret;
4853}
4854
4855static void mem_cgroup_move_charge(struct mm_struct *mm)
4856{
26bcd64a
NH
4857 struct mm_walk mem_cgroup_move_charge_walk = {
4858 .pmd_entry = mem_cgroup_move_charge_pte_range,
4859 .mm = mm,
4860 };
4ffef5fe
DN
4861
4862 lru_add_drain_all();
312722cb 4863 /*
81f8c3a4
JW
4864 * Signal lock_page_memcg() to take the memcg's move_lock
4865 * while we're moving its pages to another memcg. Then wait
4866 * for already started RCU-only updates to finish.
312722cb
JW
4867 */
4868 atomic_inc(&mc.from->moving_account);
4869 synchronize_rcu();
dfe076b0
DN
4870retry:
4871 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4872 /*
4873 * Someone who are holding the mmap_sem might be waiting in
4874 * waitq. So we cancel all extra charges, wake up all waiters,
4875 * and retry. Because we cancel precharges, we might not be able
4876 * to move enough charges, but moving charge is a best-effort
4877 * feature anyway, so it wouldn't be a big problem.
4878 */
4879 __mem_cgroup_clear_mc();
4880 cond_resched();
4881 goto retry;
4882 }
26bcd64a
NH
4883 /*
4884 * When we have consumed all precharges and failed in doing
4885 * additional charge, the page walk just aborts.
4886 */
4887 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4888 up_read(&mm->mmap_sem);
312722cb 4889 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4890}
4891
1f7dd3e5 4892static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4893{
1f7dd3e5
TH
4894 struct cgroup_subsys_state *css;
4895 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4896 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4897
dfe076b0 4898 if (mm) {
a433658c
KM
4899 if (mc.to)
4900 mem_cgroup_move_charge(mm);
dfe076b0
DN
4901 mmput(mm);
4902 }
a433658c
KM
4903 if (mc.to)
4904 mem_cgroup_clear_mc();
67e465a7 4905}
5cfb80a7 4906#else /* !CONFIG_MMU */
1f7dd3e5 4907static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4908{
4909 return 0;
4910}
1f7dd3e5 4911static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4912{
4913}
1f7dd3e5 4914static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4915{
4916}
4917#endif
67e465a7 4918
f00baae7
TH
4919/*
4920 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4921 * to verify whether we're attached to the default hierarchy on each mount
4922 * attempt.
f00baae7 4923 */
eb95419b 4924static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4925{
4926 /*
aa6ec29b 4927 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4928 * guarantees that @root doesn't have any children, so turning it
4929 * on for the root memcg is enough.
4930 */
9e10a130 4931 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4932 root_mem_cgroup->use_hierarchy = true;
4933 else
4934 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4935}
4936
241994ed
JW
4937static u64 memory_current_read(struct cgroup_subsys_state *css,
4938 struct cftype *cft)
4939{
f5fc3c5d
JW
4940 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4941
4942 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4943}
4944
4945static int memory_low_show(struct seq_file *m, void *v)
4946{
4947 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4948 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4949
4950 if (low == PAGE_COUNTER_MAX)
d2973697 4951 seq_puts(m, "max\n");
241994ed
JW
4952 else
4953 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4954
4955 return 0;
4956}
4957
4958static ssize_t memory_low_write(struct kernfs_open_file *of,
4959 char *buf, size_t nbytes, loff_t off)
4960{
4961 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4962 unsigned long low;
4963 int err;
4964
4965 buf = strstrip(buf);
d2973697 4966 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4967 if (err)
4968 return err;
4969
4970 memcg->low = low;
4971
4972 return nbytes;
4973}
4974
4975static int memory_high_show(struct seq_file *m, void *v)
4976{
4977 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4978 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4979
4980 if (high == PAGE_COUNTER_MAX)
d2973697 4981 seq_puts(m, "max\n");
241994ed
JW
4982 else
4983 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4984
4985 return 0;
4986}
4987
4988static ssize_t memory_high_write(struct kernfs_open_file *of,
4989 char *buf, size_t nbytes, loff_t off)
4990{
4991 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 4992 unsigned long nr_pages;
241994ed
JW
4993 unsigned long high;
4994 int err;
4995
4996 buf = strstrip(buf);
d2973697 4997 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
4998 if (err)
4999 return err;
5000
5001 memcg->high = high;
5002
588083bb
JW
5003 nr_pages = page_counter_read(&memcg->memory);
5004 if (nr_pages > high)
5005 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5006 GFP_KERNEL, true);
5007
2529bb3a 5008 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5009 return nbytes;
5010}
5011
5012static int memory_max_show(struct seq_file *m, void *v)
5013{
5014 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5015 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5016
5017 if (max == PAGE_COUNTER_MAX)
d2973697 5018 seq_puts(m, "max\n");
241994ed
JW
5019 else
5020 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5021
5022 return 0;
5023}
5024
5025static ssize_t memory_max_write(struct kernfs_open_file *of,
5026 char *buf, size_t nbytes, loff_t off)
5027{
5028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5029 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5030 bool drained = false;
241994ed
JW
5031 unsigned long max;
5032 int err;
5033
5034 buf = strstrip(buf);
d2973697 5035 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5036 if (err)
5037 return err;
5038
b6e6edcf
JW
5039 xchg(&memcg->memory.limit, max);
5040
5041 for (;;) {
5042 unsigned long nr_pages = page_counter_read(&memcg->memory);
5043
5044 if (nr_pages <= max)
5045 break;
5046
5047 if (signal_pending(current)) {
5048 err = -EINTR;
5049 break;
5050 }
5051
5052 if (!drained) {
5053 drain_all_stock(memcg);
5054 drained = true;
5055 continue;
5056 }
5057
5058 if (nr_reclaims) {
5059 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5060 GFP_KERNEL, true))
5061 nr_reclaims--;
5062 continue;
5063 }
5064
5065 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5066 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5067 break;
5068 }
241994ed 5069
2529bb3a 5070 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5071 return nbytes;
5072}
5073
5074static int memory_events_show(struct seq_file *m, void *v)
5075{
5076 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077
5078 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5079 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5080 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5081 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5082
5083 return 0;
5084}
5085
587d9f72
JW
5086static int memory_stat_show(struct seq_file *m, void *v)
5087{
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5089 unsigned long stat[MEMCG_NR_STAT];
5090 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5091 int i;
5092
5093 /*
5094 * Provide statistics on the state of the memory subsystem as
5095 * well as cumulative event counters that show past behavior.
5096 *
5097 * This list is ordered following a combination of these gradients:
5098 * 1) generic big picture -> specifics and details
5099 * 2) reflecting userspace activity -> reflecting kernel heuristics
5100 *
5101 * Current memory state:
5102 */
5103
72b54e73
VD
5104 tree_stat(memcg, stat);
5105 tree_events(memcg, events);
5106
587d9f72 5107 seq_printf(m, "anon %llu\n",
72b54e73 5108 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5109 seq_printf(m, "file %llu\n",
72b54e73 5110 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5111 seq_printf(m, "kernel_stack %llu\n",
5112 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5113 seq_printf(m, "slab %llu\n",
5114 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5115 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5116 seq_printf(m, "sock %llu\n",
72b54e73 5117 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5118
5119 seq_printf(m, "file_mapped %llu\n",
72b54e73 5120 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5121 seq_printf(m, "file_dirty %llu\n",
72b54e73 5122 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5123 seq_printf(m, "file_writeback %llu\n",
72b54e73 5124 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5125
5126 for (i = 0; i < NR_LRU_LISTS; i++) {
5127 struct mem_cgroup *mi;
5128 unsigned long val = 0;
5129
5130 for_each_mem_cgroup_tree(mi, memcg)
5131 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5132 seq_printf(m, "%s %llu\n",
5133 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5134 }
5135
27ee57c9
VD
5136 seq_printf(m, "slab_reclaimable %llu\n",
5137 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5138 seq_printf(m, "slab_unreclaimable %llu\n",
5139 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5140
587d9f72
JW
5141 /* Accumulated memory events */
5142
5143 seq_printf(m, "pgfault %lu\n",
72b54e73 5144 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5145 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5146 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5147
5148 return 0;
5149}
5150
241994ed
JW
5151static struct cftype memory_files[] = {
5152 {
5153 .name = "current",
f5fc3c5d 5154 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5155 .read_u64 = memory_current_read,
5156 },
5157 {
5158 .name = "low",
5159 .flags = CFTYPE_NOT_ON_ROOT,
5160 .seq_show = memory_low_show,
5161 .write = memory_low_write,
5162 },
5163 {
5164 .name = "high",
5165 .flags = CFTYPE_NOT_ON_ROOT,
5166 .seq_show = memory_high_show,
5167 .write = memory_high_write,
5168 },
5169 {
5170 .name = "max",
5171 .flags = CFTYPE_NOT_ON_ROOT,
5172 .seq_show = memory_max_show,
5173 .write = memory_max_write,
5174 },
5175 {
5176 .name = "events",
5177 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5178 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5179 .seq_show = memory_events_show,
5180 },
587d9f72
JW
5181 {
5182 .name = "stat",
5183 .flags = CFTYPE_NOT_ON_ROOT,
5184 .seq_show = memory_stat_show,
5185 },
241994ed
JW
5186 { } /* terminate */
5187};
5188
073219e9 5189struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5190 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5191 .css_online = mem_cgroup_css_online,
92fb9748 5192 .css_offline = mem_cgroup_css_offline,
6df38689 5193 .css_released = mem_cgroup_css_released,
92fb9748 5194 .css_free = mem_cgroup_css_free,
1ced953b 5195 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5196 .can_attach = mem_cgroup_can_attach,
5197 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5198 .attach = mem_cgroup_move_task,
f00baae7 5199 .bind = mem_cgroup_bind,
241994ed
JW
5200 .dfl_cftypes = memory_files,
5201 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5202 .early_init = 0,
8cdea7c0 5203};
c077719b 5204
241994ed
JW
5205/**
5206 * mem_cgroup_low - check if memory consumption is below the normal range
5207 * @root: the highest ancestor to consider
5208 * @memcg: the memory cgroup to check
5209 *
5210 * Returns %true if memory consumption of @memcg, and that of all
5211 * configurable ancestors up to @root, is below the normal range.
5212 */
5213bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5214{
5215 if (mem_cgroup_disabled())
5216 return false;
5217
5218 /*
5219 * The toplevel group doesn't have a configurable range, so
5220 * it's never low when looked at directly, and it is not
5221 * considered an ancestor when assessing the hierarchy.
5222 */
5223
5224 if (memcg == root_mem_cgroup)
5225 return false;
5226
4e54dede 5227 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5228 return false;
5229
5230 while (memcg != root) {
5231 memcg = parent_mem_cgroup(memcg);
5232
5233 if (memcg == root_mem_cgroup)
5234 break;
5235
4e54dede 5236 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5237 return false;
5238 }
5239 return true;
5240}
5241
00501b53
JW
5242/**
5243 * mem_cgroup_try_charge - try charging a page
5244 * @page: page to charge
5245 * @mm: mm context of the victim
5246 * @gfp_mask: reclaim mode
5247 * @memcgp: charged memcg return
5248 *
5249 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5250 * pages according to @gfp_mask if necessary.
5251 *
5252 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5253 * Otherwise, an error code is returned.
5254 *
5255 * After page->mapping has been set up, the caller must finalize the
5256 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5257 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5258 */
5259int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5260 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5261 bool compound)
00501b53
JW
5262{
5263 struct mem_cgroup *memcg = NULL;
f627c2f5 5264 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5265 int ret = 0;
5266
5267 if (mem_cgroup_disabled())
5268 goto out;
5269
5270 if (PageSwapCache(page)) {
00501b53
JW
5271 /*
5272 * Every swap fault against a single page tries to charge the
5273 * page, bail as early as possible. shmem_unuse() encounters
5274 * already charged pages, too. The USED bit is protected by
5275 * the page lock, which serializes swap cache removal, which
5276 * in turn serializes uncharging.
5277 */
e993d905 5278 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5279 if (page->mem_cgroup)
00501b53 5280 goto out;
e993d905 5281
37e84351 5282 if (do_swap_account) {
e993d905
VD
5283 swp_entry_t ent = { .val = page_private(page), };
5284 unsigned short id = lookup_swap_cgroup_id(ent);
5285
5286 rcu_read_lock();
5287 memcg = mem_cgroup_from_id(id);
5288 if (memcg && !css_tryget_online(&memcg->css))
5289 memcg = NULL;
5290 rcu_read_unlock();
5291 }
00501b53
JW
5292 }
5293
00501b53
JW
5294 if (!memcg)
5295 memcg = get_mem_cgroup_from_mm(mm);
5296
5297 ret = try_charge(memcg, gfp_mask, nr_pages);
5298
5299 css_put(&memcg->css);
00501b53
JW
5300out:
5301 *memcgp = memcg;
5302 return ret;
5303}
5304
5305/**
5306 * mem_cgroup_commit_charge - commit a page charge
5307 * @page: page to charge
5308 * @memcg: memcg to charge the page to
5309 * @lrucare: page might be on LRU already
5310 *
5311 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5312 * after page->mapping has been set up. This must happen atomically
5313 * as part of the page instantiation, i.e. under the page table lock
5314 * for anonymous pages, under the page lock for page and swap cache.
5315 *
5316 * In addition, the page must not be on the LRU during the commit, to
5317 * prevent racing with task migration. If it might be, use @lrucare.
5318 *
5319 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5320 */
5321void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5322 bool lrucare, bool compound)
00501b53 5323{
f627c2f5 5324 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5325
5326 VM_BUG_ON_PAGE(!page->mapping, page);
5327 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5328
5329 if (mem_cgroup_disabled())
5330 return;
5331 /*
5332 * Swap faults will attempt to charge the same page multiple
5333 * times. But reuse_swap_page() might have removed the page
5334 * from swapcache already, so we can't check PageSwapCache().
5335 */
5336 if (!memcg)
5337 return;
5338
6abb5a86
JW
5339 commit_charge(page, memcg, lrucare);
5340
6abb5a86 5341 local_irq_disable();
f627c2f5 5342 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5343 memcg_check_events(memcg, page);
5344 local_irq_enable();
00501b53 5345
7941d214 5346 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5347 swp_entry_t entry = { .val = page_private(page) };
5348 /*
5349 * The swap entry might not get freed for a long time,
5350 * let's not wait for it. The page already received a
5351 * memory+swap charge, drop the swap entry duplicate.
5352 */
5353 mem_cgroup_uncharge_swap(entry);
5354 }
5355}
5356
5357/**
5358 * mem_cgroup_cancel_charge - cancel a page charge
5359 * @page: page to charge
5360 * @memcg: memcg to charge the page to
5361 *
5362 * Cancel a charge transaction started by mem_cgroup_try_charge().
5363 */
f627c2f5
KS
5364void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5365 bool compound)
00501b53 5366{
f627c2f5 5367 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5368
5369 if (mem_cgroup_disabled())
5370 return;
5371 /*
5372 * Swap faults will attempt to charge the same page multiple
5373 * times. But reuse_swap_page() might have removed the page
5374 * from swapcache already, so we can't check PageSwapCache().
5375 */
5376 if (!memcg)
5377 return;
5378
00501b53
JW
5379 cancel_charge(memcg, nr_pages);
5380}
5381
747db954 5382static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5383 unsigned long nr_anon, unsigned long nr_file,
5384 unsigned long nr_huge, struct page *dummy_page)
5385{
18eca2e6 5386 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5387 unsigned long flags;
5388
ce00a967 5389 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5390 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5391 if (do_memsw_account())
18eca2e6 5392 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5393 memcg_oom_recover(memcg);
5394 }
747db954
JW
5395
5396 local_irq_save(flags);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5400 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5401 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5402 memcg_check_events(memcg, dummy_page);
5403 local_irq_restore(flags);
e8ea14cc
JW
5404
5405 if (!mem_cgroup_is_root(memcg))
18eca2e6 5406 css_put_many(&memcg->css, nr_pages);
747db954
JW
5407}
5408
5409static void uncharge_list(struct list_head *page_list)
5410{
5411 struct mem_cgroup *memcg = NULL;
747db954
JW
5412 unsigned long nr_anon = 0;
5413 unsigned long nr_file = 0;
5414 unsigned long nr_huge = 0;
5415 unsigned long pgpgout = 0;
747db954
JW
5416 struct list_head *next;
5417 struct page *page;
5418
8b592656
JW
5419 /*
5420 * Note that the list can be a single page->lru; hence the
5421 * do-while loop instead of a simple list_for_each_entry().
5422 */
747db954
JW
5423 next = page_list->next;
5424 do {
5425 unsigned int nr_pages = 1;
747db954
JW
5426
5427 page = list_entry(next, struct page, lru);
5428 next = page->lru.next;
5429
5430 VM_BUG_ON_PAGE(PageLRU(page), page);
5431 VM_BUG_ON_PAGE(page_count(page), page);
5432
1306a85a 5433 if (!page->mem_cgroup)
747db954
JW
5434 continue;
5435
5436 /*
5437 * Nobody should be changing or seriously looking at
1306a85a 5438 * page->mem_cgroup at this point, we have fully
29833315 5439 * exclusive access to the page.
747db954
JW
5440 */
5441
1306a85a 5442 if (memcg != page->mem_cgroup) {
747db954 5443 if (memcg) {
18eca2e6
JW
5444 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5445 nr_huge, page);
5446 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5447 }
1306a85a 5448 memcg = page->mem_cgroup;
747db954
JW
5449 }
5450
5451 if (PageTransHuge(page)) {
5452 nr_pages <<= compound_order(page);
5453 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5454 nr_huge += nr_pages;
5455 }
5456
5457 if (PageAnon(page))
5458 nr_anon += nr_pages;
5459 else
5460 nr_file += nr_pages;
5461
1306a85a 5462 page->mem_cgroup = NULL;
747db954
JW
5463
5464 pgpgout++;
5465 } while (next != page_list);
5466
5467 if (memcg)
18eca2e6
JW
5468 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5469 nr_huge, page);
747db954
JW
5470}
5471
0a31bc97
JW
5472/**
5473 * mem_cgroup_uncharge - uncharge a page
5474 * @page: page to uncharge
5475 *
5476 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5477 * mem_cgroup_commit_charge().
5478 */
5479void mem_cgroup_uncharge(struct page *page)
5480{
0a31bc97
JW
5481 if (mem_cgroup_disabled())
5482 return;
5483
747db954 5484 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5485 if (!page->mem_cgroup)
0a31bc97
JW
5486 return;
5487
747db954
JW
5488 INIT_LIST_HEAD(&page->lru);
5489 uncharge_list(&page->lru);
5490}
0a31bc97 5491
747db954
JW
5492/**
5493 * mem_cgroup_uncharge_list - uncharge a list of page
5494 * @page_list: list of pages to uncharge
5495 *
5496 * Uncharge a list of pages previously charged with
5497 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5498 */
5499void mem_cgroup_uncharge_list(struct list_head *page_list)
5500{
5501 if (mem_cgroup_disabled())
5502 return;
0a31bc97 5503
747db954
JW
5504 if (!list_empty(page_list))
5505 uncharge_list(page_list);
0a31bc97
JW
5506}
5507
5508/**
6a93ca8f
JW
5509 * mem_cgroup_migrate - charge a page's replacement
5510 * @oldpage: currently circulating page
5511 * @newpage: replacement page
0a31bc97 5512 *
6a93ca8f
JW
5513 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5514 * be uncharged upon free.
0a31bc97
JW
5515 *
5516 * Both pages must be locked, @newpage->mapping must be set up.
5517 */
6a93ca8f 5518void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5519{
29833315 5520 struct mem_cgroup *memcg;
44b7a8d3
JW
5521 unsigned int nr_pages;
5522 bool compound;
0a31bc97
JW
5523
5524 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5525 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5526 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5527 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5528 newpage);
0a31bc97
JW
5529
5530 if (mem_cgroup_disabled())
5531 return;
5532
5533 /* Page cache replacement: new page already charged? */
1306a85a 5534 if (newpage->mem_cgroup)
0a31bc97
JW
5535 return;
5536
45637bab 5537 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5538 memcg = oldpage->mem_cgroup;
29833315 5539 if (!memcg)
0a31bc97
JW
5540 return;
5541
44b7a8d3
JW
5542 /* Force-charge the new page. The old one will be freed soon */
5543 compound = PageTransHuge(newpage);
5544 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5545
5546 page_counter_charge(&memcg->memory, nr_pages);
5547 if (do_memsw_account())
5548 page_counter_charge(&memcg->memsw, nr_pages);
5549 css_get_many(&memcg->css, nr_pages);
0a31bc97 5550
9cf7666a 5551 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5552
5553 local_irq_disable();
5554 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5555 memcg_check_events(memcg, newpage);
5556 local_irq_enable();
0a31bc97
JW
5557}
5558
ef12947c 5559DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5560EXPORT_SYMBOL(memcg_sockets_enabled_key);
5561
5562void sock_update_memcg(struct sock *sk)
5563{
5564 struct mem_cgroup *memcg;
5565
5566 /* Socket cloning can throw us here with sk_cgrp already
5567 * filled. It won't however, necessarily happen from
5568 * process context. So the test for root memcg given
5569 * the current task's memcg won't help us in this case.
5570 *
5571 * Respecting the original socket's memcg is a better
5572 * decision in this case.
5573 */
5574 if (sk->sk_memcg) {
5575 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5576 css_get(&sk->sk_memcg->css);
5577 return;
5578 }
5579
5580 rcu_read_lock();
5581 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5582 if (memcg == root_mem_cgroup)
5583 goto out;
0db15298 5584 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5585 goto out;
f7e1cb6e 5586 if (css_tryget_online(&memcg->css))
11092087 5587 sk->sk_memcg = memcg;
f7e1cb6e 5588out:
11092087
JW
5589 rcu_read_unlock();
5590}
5591EXPORT_SYMBOL(sock_update_memcg);
5592
5593void sock_release_memcg(struct sock *sk)
5594{
5595 WARN_ON(!sk->sk_memcg);
5596 css_put(&sk->sk_memcg->css);
5597}
5598
5599/**
5600 * mem_cgroup_charge_skmem - charge socket memory
5601 * @memcg: memcg to charge
5602 * @nr_pages: number of pages to charge
5603 *
5604 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5605 * @memcg's configured limit, %false if the charge had to be forced.
5606 */
5607bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5608{
f7e1cb6e 5609 gfp_t gfp_mask = GFP_KERNEL;
11092087 5610
f7e1cb6e 5611 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5612 struct page_counter *fail;
f7e1cb6e 5613
0db15298
JW
5614 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5615 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5616 return true;
5617 }
0db15298
JW
5618 page_counter_charge(&memcg->tcpmem, nr_pages);
5619 memcg->tcpmem_pressure = 1;
f7e1cb6e 5620 return false;
11092087 5621 }
d886f4e4 5622
f7e1cb6e
JW
5623 /* Don't block in the packet receive path */
5624 if (in_softirq())
5625 gfp_mask = GFP_NOWAIT;
5626
b2807f07
JW
5627 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5628
f7e1cb6e
JW
5629 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5630 return true;
5631
5632 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5633 return false;
5634}
5635
5636/**
5637 * mem_cgroup_uncharge_skmem - uncharge socket memory
5638 * @memcg - memcg to uncharge
5639 * @nr_pages - number of pages to uncharge
5640 */
5641void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5642{
f7e1cb6e 5643 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5644 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5645 return;
5646 }
d886f4e4 5647
b2807f07
JW
5648 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5649
f7e1cb6e
JW
5650 page_counter_uncharge(&memcg->memory, nr_pages);
5651 css_put_many(&memcg->css, nr_pages);
11092087
JW
5652}
5653
f7e1cb6e
JW
5654static int __init cgroup_memory(char *s)
5655{
5656 char *token;
5657
5658 while ((token = strsep(&s, ",")) != NULL) {
5659 if (!*token)
5660 continue;
5661 if (!strcmp(token, "nosocket"))
5662 cgroup_memory_nosocket = true;
04823c83
VD
5663 if (!strcmp(token, "nokmem"))
5664 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5665 }
5666 return 0;
5667}
5668__setup("cgroup.memory=", cgroup_memory);
11092087 5669
2d11085e 5670/*
1081312f
MH
5671 * subsys_initcall() for memory controller.
5672 *
5673 * Some parts like hotcpu_notifier() have to be initialized from this context
5674 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5675 * everything that doesn't depend on a specific mem_cgroup structure should
5676 * be initialized from here.
2d11085e
MH
5677 */
5678static int __init mem_cgroup_init(void)
5679{
95a045f6
JW
5680 int cpu, node;
5681
2d11085e 5682 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5683
5684 for_each_possible_cpu(cpu)
5685 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5686 drain_local_stock);
5687
5688 for_each_node(node) {
5689 struct mem_cgroup_tree_per_node *rtpn;
5690 int zone;
5691
5692 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5693 node_online(node) ? node : NUMA_NO_NODE);
5694
5695 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5696 struct mem_cgroup_tree_per_zone *rtpz;
5697
5698 rtpz = &rtpn->rb_tree_per_zone[zone];
5699 rtpz->rb_root = RB_ROOT;
5700 spin_lock_init(&rtpz->lock);
5701 }
5702 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5703 }
5704
2d11085e
MH
5705 return 0;
5706}
5707subsys_initcall(mem_cgroup_init);
21afa38e
JW
5708
5709#ifdef CONFIG_MEMCG_SWAP
5710/**
5711 * mem_cgroup_swapout - transfer a memsw charge to swap
5712 * @page: page whose memsw charge to transfer
5713 * @entry: swap entry to move the charge to
5714 *
5715 * Transfer the memsw charge of @page to @entry.
5716 */
5717void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5718{
5719 struct mem_cgroup *memcg;
5720 unsigned short oldid;
5721
5722 VM_BUG_ON_PAGE(PageLRU(page), page);
5723 VM_BUG_ON_PAGE(page_count(page), page);
5724
7941d214 5725 if (!do_memsw_account())
21afa38e
JW
5726 return;
5727
5728 memcg = page->mem_cgroup;
5729
5730 /* Readahead page, never charged */
5731 if (!memcg)
5732 return;
5733
5734 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5735 VM_BUG_ON_PAGE(oldid, page);
5736 mem_cgroup_swap_statistics(memcg, true);
5737
5738 page->mem_cgroup = NULL;
5739
5740 if (!mem_cgroup_is_root(memcg))
5741 page_counter_uncharge(&memcg->memory, 1);
5742
ce9ce665
SAS
5743 /*
5744 * Interrupts should be disabled here because the caller holds the
5745 * mapping->tree_lock lock which is taken with interrupts-off. It is
5746 * important here to have the interrupts disabled because it is the
5747 * only synchronisation we have for udpating the per-CPU variables.
5748 */
5749 VM_BUG_ON(!irqs_disabled());
f627c2f5 5750 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5751 memcg_check_events(memcg, page);
5752}
5753
37e84351
VD
5754/*
5755 * mem_cgroup_try_charge_swap - try charging a swap entry
5756 * @page: page being added to swap
5757 * @entry: swap entry to charge
5758 *
5759 * Try to charge @entry to the memcg that @page belongs to.
5760 *
5761 * Returns 0 on success, -ENOMEM on failure.
5762 */
5763int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5764{
5765 struct mem_cgroup *memcg;
5766 struct page_counter *counter;
5767 unsigned short oldid;
5768
5769 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5770 return 0;
5771
5772 memcg = page->mem_cgroup;
5773
5774 /* Readahead page, never charged */
5775 if (!memcg)
5776 return 0;
5777
5778 if (!mem_cgroup_is_root(memcg) &&
5779 !page_counter_try_charge(&memcg->swap, 1, &counter))
5780 return -ENOMEM;
5781
5782 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5783 VM_BUG_ON_PAGE(oldid, page);
5784 mem_cgroup_swap_statistics(memcg, true);
5785
5786 css_get(&memcg->css);
5787 return 0;
5788}
5789
21afa38e
JW
5790/**
5791 * mem_cgroup_uncharge_swap - uncharge a swap entry
5792 * @entry: swap entry to uncharge
5793 *
37e84351 5794 * Drop the swap charge associated with @entry.
21afa38e
JW
5795 */
5796void mem_cgroup_uncharge_swap(swp_entry_t entry)
5797{
5798 struct mem_cgroup *memcg;
5799 unsigned short id;
5800
37e84351 5801 if (!do_swap_account)
21afa38e
JW
5802 return;
5803
5804 id = swap_cgroup_record(entry, 0);
5805 rcu_read_lock();
adbe427b 5806 memcg = mem_cgroup_from_id(id);
21afa38e 5807 if (memcg) {
37e84351
VD
5808 if (!mem_cgroup_is_root(memcg)) {
5809 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5810 page_counter_uncharge(&memcg->swap, 1);
5811 else
5812 page_counter_uncharge(&memcg->memsw, 1);
5813 }
21afa38e
JW
5814 mem_cgroup_swap_statistics(memcg, false);
5815 css_put(&memcg->css);
5816 }
5817 rcu_read_unlock();
5818}
5819
d8b38438
VD
5820long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5821{
5822 long nr_swap_pages = get_nr_swap_pages();
5823
5824 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5825 return nr_swap_pages;
5826 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5827 nr_swap_pages = min_t(long, nr_swap_pages,
5828 READ_ONCE(memcg->swap.limit) -
5829 page_counter_read(&memcg->swap));
5830 return nr_swap_pages;
5831}
5832
5ccc5aba
VD
5833bool mem_cgroup_swap_full(struct page *page)
5834{
5835 struct mem_cgroup *memcg;
5836
5837 VM_BUG_ON_PAGE(!PageLocked(page), page);
5838
5839 if (vm_swap_full())
5840 return true;
5841 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5842 return false;
5843
5844 memcg = page->mem_cgroup;
5845 if (!memcg)
5846 return false;
5847
5848 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5849 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5850 return true;
5851
5852 return false;
5853}
5854
21afa38e
JW
5855/* for remember boot option*/
5856#ifdef CONFIG_MEMCG_SWAP_ENABLED
5857static int really_do_swap_account __initdata = 1;
5858#else
5859static int really_do_swap_account __initdata;
5860#endif
5861
5862static int __init enable_swap_account(char *s)
5863{
5864 if (!strcmp(s, "1"))
5865 really_do_swap_account = 1;
5866 else if (!strcmp(s, "0"))
5867 really_do_swap_account = 0;
5868 return 1;
5869}
5870__setup("swapaccount=", enable_swap_account);
5871
37e84351
VD
5872static u64 swap_current_read(struct cgroup_subsys_state *css,
5873 struct cftype *cft)
5874{
5875 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5876
5877 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5878}
5879
5880static int swap_max_show(struct seq_file *m, void *v)
5881{
5882 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5883 unsigned long max = READ_ONCE(memcg->swap.limit);
5884
5885 if (max == PAGE_COUNTER_MAX)
5886 seq_puts(m, "max\n");
5887 else
5888 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5889
5890 return 0;
5891}
5892
5893static ssize_t swap_max_write(struct kernfs_open_file *of,
5894 char *buf, size_t nbytes, loff_t off)
5895{
5896 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5897 unsigned long max;
5898 int err;
5899
5900 buf = strstrip(buf);
5901 err = page_counter_memparse(buf, "max", &max);
5902 if (err)
5903 return err;
5904
5905 mutex_lock(&memcg_limit_mutex);
5906 err = page_counter_limit(&memcg->swap, max);
5907 mutex_unlock(&memcg_limit_mutex);
5908 if (err)
5909 return err;
5910
5911 return nbytes;
5912}
5913
5914static struct cftype swap_files[] = {
5915 {
5916 .name = "swap.current",
5917 .flags = CFTYPE_NOT_ON_ROOT,
5918 .read_u64 = swap_current_read,
5919 },
5920 {
5921 .name = "swap.max",
5922 .flags = CFTYPE_NOT_ON_ROOT,
5923 .seq_show = swap_max_show,
5924 .write = swap_max_write,
5925 },
5926 { } /* terminate */
5927};
5928
21afa38e
JW
5929static struct cftype memsw_cgroup_files[] = {
5930 {
5931 .name = "memsw.usage_in_bytes",
5932 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5933 .read_u64 = mem_cgroup_read_u64,
5934 },
5935 {
5936 .name = "memsw.max_usage_in_bytes",
5937 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5938 .write = mem_cgroup_reset,
5939 .read_u64 = mem_cgroup_read_u64,
5940 },
5941 {
5942 .name = "memsw.limit_in_bytes",
5943 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5944 .write = mem_cgroup_write,
5945 .read_u64 = mem_cgroup_read_u64,
5946 },
5947 {
5948 .name = "memsw.failcnt",
5949 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5950 .write = mem_cgroup_reset,
5951 .read_u64 = mem_cgroup_read_u64,
5952 },
5953 { }, /* terminate */
5954};
5955
5956static int __init mem_cgroup_swap_init(void)
5957{
5958 if (!mem_cgroup_disabled() && really_do_swap_account) {
5959 do_swap_account = 1;
37e84351
VD
5960 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5961 swap_files));
21afa38e
JW
5962 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5963 memsw_cgroup_files));
5964 }
5965 return 0;
5966}
5967subsys_initcall(mem_cgroup_swap_init);
5968
5969#endif /* CONFIG_MEMCG_SWAP */
This page took 1.271705 seconds and 5 git commands to generate.