mm: memcontrol: fix swap counter leak on swapout from offline cgroup
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
e231875b 628 unsigned long nr = 0;
ef8f2327
MG
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
e231875b
JZ
639 }
640 return nr;
889976db 641}
bb2a0de9 642
c0ff4b85 643static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 644 unsigned int lru_mask)
6d12e2d8 645{
e231875b 646 unsigned long nr = 0;
889976db 647 int nid;
6d12e2d8 648
31aaea4a 649 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
d52aa412
KH
652}
653
f53d7ce3
JW
654static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
7a159cc9
JW
656{
657 unsigned long val, next;
658
13114716 659 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 660 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 661 /* from time_after() in jiffies.h */
f53d7ce3
JW
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
bb4cc1a8
AM
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
f53d7ce3
JW
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
7a159cc9 678 }
f53d7ce3 679 return false;
d2265e6f
KH
680}
681
682/*
683 * Check events in order.
684 *
685 */
c0ff4b85 686static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
687{
688 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 691 bool do_softlimit;
82b3f2a7 692 bool do_numainfo __maybe_unused;
f53d7ce3 693
bb4cc1a8
AM
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
696#if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699#endif
c0ff4b85 700 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
453a9bf3 703#if MAX_NUMNODES > 1
f53d7ce3 704 if (unlikely(do_numainfo))
c0ff4b85 705 atomic_inc(&memcg->numainfo_events);
453a9bf3 706#endif
0a31bc97 707 }
d2265e6f
KH
708}
709
cf475ad2 710struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 711{
31a78f23
BS
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
073219e9 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 721}
33398cf2 722EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 723
df381975 724static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 725{
c0ff4b85 726 struct mem_cgroup *memcg = NULL;
0b7f569e 727
54595fe2
KH
728 rcu_read_lock();
729 do {
6f6acb00
MH
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
df381975 736 memcg = root_mem_cgroup;
6f6acb00
MH
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
ec903c0c 742 } while (!css_tryget_online(&memcg->css));
54595fe2 743 rcu_read_unlock();
c0ff4b85 744 return memcg;
54595fe2
KH
745}
746
5660048c
JW
747/**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
694fbc0f 764struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 765 struct mem_cgroup *prev,
694fbc0f 766 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 767{
33398cf2 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 769 struct cgroup_subsys_state *css = NULL;
9f3a0d09 770 struct mem_cgroup *memcg = NULL;
5ac8fb31 771 struct mem_cgroup *pos = NULL;
711d3d2c 772
694fbc0f
AM
773 if (mem_cgroup_disabled())
774 return NULL;
5660048c 775
9f3a0d09
JW
776 if (!root)
777 root = root_mem_cgroup;
7d74b06f 778
9f3a0d09 779 if (prev && !reclaim)
5ac8fb31 780 pos = prev;
14067bb3 781
9f3a0d09
JW
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
5ac8fb31 784 goto out;
694fbc0f 785 return root;
9f3a0d09 786 }
14067bb3 787
542f85f9 788 rcu_read_lock();
5f578161 789
5ac8fb31 790 if (reclaim) {
ef8f2327 791 struct mem_cgroup_per_node *mz;
5ac8fb31 792
ef8f2327 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
6df38689 799 while (1) {
4db0c3c2 800 pos = READ_ONCE(iter->position);
6df38689
VD
801 if (!pos || css_tryget(&pos->css))
802 break;
5ac8fb31 803 /*
6df38689
VD
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
5ac8fb31
JW
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
527a5ec9 830 }
7d74b06f 831
5ac8fb31
JW
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
14067bb3 838
5ac8fb31
JW
839 if (css == &root->css)
840 break;
14067bb3 841
0b8f73e1
JW
842 if (css_tryget(css))
843 break;
9f3a0d09 844
5ac8fb31 845 memcg = NULL;
9f3a0d09 846 }
5ac8fb31
JW
847
848 if (reclaim) {
5ac8fb31 849 /*
6df38689
VD
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 853 */
6df38689
VD
854 (void)cmpxchg(&iter->position, pos, memcg);
855
5ac8fb31
JW
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
9f3a0d09 863 }
5ac8fb31 864
542f85f9
MH
865out_unlock:
866 rcu_read_unlock();
5ac8fb31 867out:
c40046f3
MH
868 if (prev && prev != root)
869 css_put(&prev->css);
870
9f3a0d09 871 return memcg;
14067bb3 872}
7d74b06f 873
5660048c
JW
874/**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
9f3a0d09
JW
881{
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886}
7d74b06f 887
6df38689
VD
888static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889{
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
892 struct mem_cgroup_per_node *mz;
893 int nid;
6df38689
VD
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
ef8f2327
MG
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
6df38689
VD
903 }
904 }
905 }
906}
907
9f3a0d09
JW
908/*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 915 iter != NULL; \
527a5ec9 916 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 917
9f3a0d09 918#define for_each_mem_cgroup(iter) \
527a5ec9 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 920 iter != NULL; \
527a5ec9 921 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 922
925b7673 923/**
dfe0e773 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 925 * @page: the page
fa9add64 926 * @zone: zone of the page
dfe0e773
JW
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 931 */
599d0c95 932struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 933{
ef8f2327 934 struct mem_cgroup_per_node *mz;
925b7673 935 struct mem_cgroup *memcg;
bea8c150 936 struct lruvec *lruvec;
6d12e2d8 937
bea8c150 938 if (mem_cgroup_disabled()) {
599d0c95 939 lruvec = &pgdat->lruvec;
bea8c150
HD
940 goto out;
941 }
925b7673 942
1306a85a 943 memcg = page->mem_cgroup;
7512102c 944 /*
dfe0e773 945 * Swapcache readahead pages are added to the LRU - and
29833315 946 * possibly migrated - before they are charged.
7512102c 947 */
29833315
JW
948 if (!memcg)
949 memcg = root_mem_cgroup;
7512102c 950
ef8f2327 951 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
952 lruvec = &mz->lruvec;
953out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
599d0c95
MG
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
bea8c150 961 return lruvec;
08e552c6 962}
b69408e8 963
925b7673 964/**
fa9add64
HD
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
925b7673 969 *
ca707239
HD
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 973 */
fa9add64 974void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
7ee36a14 975 int nr_pages)
3f58a829 976{
ef8f2327 977 struct mem_cgroup_per_node *mz;
fa9add64 978 unsigned long *lru_size;
ca707239
HD
979 long size;
980 bool empty;
3f58a829
MK
981
982 if (mem_cgroup_disabled())
983 return;
984
ef8f2327 985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
fa9add64 986 lru_size = mz->lru_size + lru;
ca707239
HD
987 empty = list_empty(lruvec->lists + lru);
988
989 if (nr_pages < 0)
990 *lru_size += nr_pages;
991
992 size = *lru_size;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 VM_BUG_ON(1);
997 *lru_size = 0;
998 }
999
1000 if (nr_pages > 0)
1001 *lru_size += nr_pages;
08e552c6 1002}
544122e5 1003
2314b42d 1004bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1005{
2314b42d 1006 struct mem_cgroup *task_memcg;
158e0a2d 1007 struct task_struct *p;
ffbdccf5 1008 bool ret;
4c4a2214 1009
158e0a2d 1010 p = find_lock_task_mm(task);
de077d22 1011 if (p) {
2314b42d 1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1013 task_unlock(p);
1014 } else {
1015 /*
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1019 */
ffbdccf5 1020 rcu_read_lock();
2314b42d
JW
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
ffbdccf5 1023 rcu_read_unlock();
de077d22 1024 }
2314b42d
JW
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
4c4a2214
DR
1027 return ret;
1028}
1029
19942822 1030/**
9d11ea9f 1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1032 * @memcg: the memory cgroup
19942822 1033 *
9d11ea9f 1034 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1035 * pages.
19942822 1036 */
c0ff4b85 1037static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1038{
3e32cb2e
JW
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
9d11ea9f 1042
3e32cb2e 1043 count = page_counter_read(&memcg->memory);
4db0c3c2 1044 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1045 if (count < limit)
1046 margin = limit - count;
1047
7941d214 1048 if (do_memsw_account()) {
3e32cb2e 1049 count = page_counter_read(&memcg->memsw);
4db0c3c2 1050 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1051 if (count <= limit)
1052 margin = min(margin, limit - count);
cbedbac3
LR
1053 else
1054 margin = 0;
3e32cb2e
JW
1055 }
1056
1057 return margin;
19942822
JW
1058}
1059
32047e2a 1060/*
bdcbb659 1061 * A routine for checking "mem" is under move_account() or not.
32047e2a 1062 *
bdcbb659
QH
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1065 * caused by "move".
32047e2a 1066 */
c0ff4b85 1067static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1068{
2bd9bb20
KH
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
4b534334 1071 bool ret = false;
2bd9bb20
KH
1072 /*
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 */
1076 spin_lock(&mc.lock);
1077 from = mc.from;
1078 to = mc.to;
1079 if (!from)
1080 goto unlock;
3e92041d 1081
2314b42d
JW
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1084unlock:
1085 spin_unlock(&mc.lock);
4b534334
KH
1086 return ret;
1087}
1088
c0ff4b85 1089static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1090{
1091 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1092 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1093 DEFINE_WAIT(wait);
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1096 if (mc.moving_task)
1097 schedule();
1098 finish_wait(&mc.waitq, &wait);
1099 return true;
1100 }
1101 }
1102 return false;
1103}
1104
58cf188e 1105#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1106/**
58cf188e 1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1110 *
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112 * enabled
1113 */
1114void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115{
58cf188e
SZ
1116 struct mem_cgroup *iter;
1117 unsigned int i;
e222432b 1118
e222432b
BS
1119 rcu_read_lock();
1120
2415b9f5
BV
1121 if (p) {
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1125 } else {
1126 pr_info("Memory limit reached of cgroup ");
1127 }
1128
e61734c5 1129 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1130 pr_cont("\n");
e222432b 1131
e222432b
BS
1132 rcu_read_unlock();
1133
3e32cb2e
JW
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1143
1144 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1147 pr_cont(":");
1148
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1151 continue;
484ebb3b 1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1153 K(mem_cgroup_read_stat(iter, i)));
1154 }
1155
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159
1160 pr_cont("\n");
1161 }
e222432b
BS
1162}
1163
81d39c20
KH
1164/*
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1167 */
c0ff4b85 1168static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1169{
1170 int num = 0;
7d74b06f
KH
1171 struct mem_cgroup *iter;
1172
c0ff4b85 1173 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1174 num++;
81d39c20
KH
1175 return num;
1176}
1177
a63d83f4
DR
1178/*
1179 * Return the memory (and swap, if configured) limit for a memcg.
1180 */
3e32cb2e 1181static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1182{
3e32cb2e 1183 unsigned long limit;
f3e8eb70 1184
3e32cb2e 1185 limit = memcg->memory.limit;
9a5a8f19 1186 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1187 unsigned long memsw_limit;
37e84351 1188 unsigned long swap_limit;
9a5a8f19 1189
3e32cb2e 1190 memsw_limit = memcg->memsw.limit;
37e84351
VD
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1194 }
9a5a8f19 1195 return limit;
a63d83f4
DR
1196}
1197
b6e6edcf 1198static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1199 int order)
9cbb78bb 1200{
6e0fc46d
DR
1201 struct oom_control oc = {
1202 .zonelist = NULL,
1203 .nodemask = NULL,
2a966b77 1204 .memcg = memcg,
6e0fc46d
DR
1205 .gfp_mask = gfp_mask,
1206 .order = order,
6e0fc46d 1207 };
9cbb78bb
DR
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1213
dc56401f
JW
1214 mutex_lock(&oom_lock);
1215
876aafbf 1216 /*
465adcf1
DR
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
876aafbf 1220 */
1af8bb43 1221 if (task_will_free_mem(current)) {
16e95196 1222 mark_oom_victim(current);
1af8bb43 1223 wake_oom_reaper(current);
dc56401f 1224 goto unlock;
876aafbf
DR
1225 }
1226
2a966b77 1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
3e32cb2e 1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1229 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1230 struct css_task_iter it;
9cbb78bb
DR
1231 struct task_struct *task;
1232
72ec7029
TH
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
fbe84a09 1235 switch (oom_scan_process_thread(&oc, task)) {
9cbb78bb
DR
1236 case OOM_SCAN_SELECT:
1237 if (chosen)
1238 put_task_struct(chosen);
1239 chosen = task;
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1242 /* fall through */
1243 case OOM_SCAN_CONTINUE:
1244 continue;
1245 case OOM_SCAN_ABORT:
72ec7029 1246 css_task_iter_end(&it);
9cbb78bb
DR
1247 mem_cgroup_iter_break(memcg, iter);
1248 if (chosen)
1249 put_task_struct(chosen);
1ebab2db
TH
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
dc56401f 1252 goto unlock;
9cbb78bb
DR
1253 case OOM_SCAN_OK:
1254 break;
1255 };
1256 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1257 if (!points || points < chosen_points)
1258 continue;
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1262 continue;
1263
1264 if (chosen)
1265 put_task_struct(chosen);
1266 chosen = task;
1267 chosen_points = points;
1268 get_task_struct(chosen);
9cbb78bb 1269 }
72ec7029 1270 css_task_iter_end(&it);
9cbb78bb
DR
1271 }
1272
dc56401f
JW
1273 if (chosen) {
1274 points = chosen_points * 1000 / totalpages;
2a966b77 1275 oom_kill_process(&oc, chosen, points, totalpages,
6e0fc46d 1276 "Memory cgroup out of memory");
dc56401f
JW
1277 }
1278unlock:
1279 mutex_unlock(&oom_lock);
b6e6edcf 1280 return chosen;
9cbb78bb
DR
1281}
1282
ae6e71d3
MC
1283#if MAX_NUMNODES > 1
1284
4d0c066d
KH
1285/**
1286 * test_mem_cgroup_node_reclaimable
dad7557e 1287 * @memcg: the target memcg
4d0c066d
KH
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1290 *
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1294 */
c0ff4b85 1295static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1296 int nid, bool noswap)
1297{
c0ff4b85 1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1299 return true;
1300 if (noswap || !total_swap_pages)
1301 return false;
c0ff4b85 1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1303 return true;
1304 return false;
1305
1306}
889976db
YH
1307
1308/*
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312 *
1313 */
c0ff4b85 1314static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1315{
1316 int nid;
453a9bf3
KH
1317 /*
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1320 */
c0ff4b85 1321 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1322 return;
c0ff4b85 1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1324 return;
1325
889976db 1326 /* make a nodemask where this memcg uses memory from */
31aaea4a 1327 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1328
31aaea4a 1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1330
c0ff4b85
R
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
889976db 1333 }
453a9bf3 1334
c0ff4b85
R
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1337}
1338
1339/*
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1343 *
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1348 *
1349 * Now, we use round-robin. Better algorithm is welcomed.
1350 */
c0ff4b85 1351int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 int node;
1354
c0ff4b85
R
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
889976db 1357
0edaf86c 1358 node = next_node_in(node, memcg->scan_nodes);
889976db 1359 /*
fda3d69b
MH
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
889976db
YH
1363 */
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1366
c0ff4b85 1367 memcg->last_scanned_node = node;
889976db
YH
1368 return node;
1369}
889976db 1370#else
c0ff4b85 1371int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1372{
1373 return 0;
1374}
1375#endif
1376
0608f43d 1377static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1378 pg_data_t *pgdat,
0608f43d
AM
1379 gfp_t gfp_mask,
1380 unsigned long *total_scanned)
1381{
1382 struct mem_cgroup *victim = NULL;
1383 int total = 0;
1384 int loop = 0;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1388 .pgdat = pgdat,
0608f43d
AM
1389 .priority = 0,
1390 };
1391
3e32cb2e 1392 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1393
1394 while (1) {
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 if (!victim) {
1397 loop++;
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!total)
1405 break;
1406 /*
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1411 */
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 break;
1415 }
1416 continue;
1417 }
a9dd0a83 1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1419 pgdat, &nr_scanned);
0608f43d 1420 *total_scanned += nr_scanned;
3e32cb2e 1421 if (!soft_limit_excess(root_memcg))
0608f43d 1422 break;
6d61ef40 1423 }
0608f43d
AM
1424 mem_cgroup_iter_break(root_memcg, victim);
1425 return total;
6d61ef40
BS
1426}
1427
0056f4e6
JW
1428#ifdef CONFIG_LOCKDEP
1429static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1431};
1432#endif
1433
fb2a6fc5
JW
1434static DEFINE_SPINLOCK(memcg_oom_lock);
1435
867578cb
KH
1436/*
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1439 */
fb2a6fc5 1440static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1441{
79dfdacc 1442 struct mem_cgroup *iter, *failed = NULL;
a636b327 1443
fb2a6fc5
JW
1444 spin_lock(&memcg_oom_lock);
1445
9f3a0d09 1446 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1447 if (iter->oom_lock) {
79dfdacc
MH
1448 /*
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1451 */
79dfdacc 1452 failed = iter;
9f3a0d09
JW
1453 mem_cgroup_iter_break(memcg, iter);
1454 break;
23751be0
JW
1455 } else
1456 iter->oom_lock = true;
7d74b06f 1457 }
867578cb 1458
fb2a6fc5
JW
1459 if (failed) {
1460 /*
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1463 */
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1467 break;
1468 }
1469 iter->oom_lock = false;
79dfdacc 1470 }
0056f4e6
JW
1471 } else
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1473
1474 spin_unlock(&memcg_oom_lock);
1475
1476 return !failed;
a636b327 1477}
0b7f569e 1478
fb2a6fc5 1479static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1480{
7d74b06f
KH
1481 struct mem_cgroup *iter;
1482
fb2a6fc5 1483 spin_lock(&memcg_oom_lock);
0056f4e6 1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1485 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1486 iter->oom_lock = false;
fb2a6fc5 1487 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1488}
1489
c0ff4b85 1490static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1491{
1492 struct mem_cgroup *iter;
1493
c2b42d3c 1494 spin_lock(&memcg_oom_lock);
c0ff4b85 1495 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1496 iter->under_oom++;
1497 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1498}
1499
c0ff4b85 1500static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1501{
1502 struct mem_cgroup *iter;
1503
867578cb
KH
1504 /*
1505 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1507 */
c2b42d3c 1508 spin_lock(&memcg_oom_lock);
c0ff4b85 1509 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1510 if (iter->under_oom > 0)
1511 iter->under_oom--;
1512 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1513}
1514
867578cb
KH
1515static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516
dc98df5a 1517struct oom_wait_info {
d79154bb 1518 struct mem_cgroup *memcg;
dc98df5a
KH
1519 wait_queue_t wait;
1520};
1521
1522static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1524{
d79154bb
HD
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1527 struct oom_wait_info *oom_wait_info;
1528
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1530 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1531
2314b42d
JW
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1534 return 0;
dc98df5a
KH
1535 return autoremove_wake_function(wait, mode, sync, arg);
1536}
1537
c0ff4b85 1538static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1539{
c2b42d3c
TH
1540 /*
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1547 */
1548 if (memcg && memcg->under_oom)
f4b90b70 1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1550}
1551
3812c8c8 1552static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1553{
d0db7afa 1554 if (!current->memcg_may_oom)
3812c8c8 1555 return;
867578cb 1556 /*
49426420
JW
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1560 *
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1564 *
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
867578cb 1569 */
49426420 1570 css_get(&memcg->css);
626ebc41
TH
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
3812c8c8
JW
1574}
1575
1576/**
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1578 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1579 *
49426420
JW
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
3812c8c8 1582 *
49426420 1583 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1588 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1589 *
1590 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1591 * completed, %false otherwise.
3812c8c8 1592 */
49426420 1593bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1594{
626ebc41 1595 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1596 struct oom_wait_info owait;
49426420 1597 bool locked;
3812c8c8
JW
1598
1599 /* OOM is global, do not handle */
3812c8c8 1600 if (!memcg)
49426420 1601 return false;
3812c8c8 1602
c32b3cbe 1603 if (!handle || oom_killer_disabled)
49426420 1604 goto cleanup;
3812c8c8
JW
1605
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1611
3812c8c8 1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1613 mem_cgroup_mark_under_oom(memcg);
1614
1615 locked = mem_cgroup_oom_trylock(memcg);
1616
1617 if (locked)
1618 mem_cgroup_oom_notify(memcg);
1619
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
49426420 1625 } else {
3812c8c8 1626 schedule();
49426420
JW
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630
1631 if (locked) {
fb2a6fc5
JW
1632 mem_cgroup_oom_unlock(memcg);
1633 /*
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1637 */
1638 memcg_oom_recover(memcg);
1639 }
49426420 1640cleanup:
626ebc41 1641 current->memcg_in_oom = NULL;
3812c8c8 1642 css_put(&memcg->css);
867578cb 1643 return true;
0b7f569e
KH
1644}
1645
d7365e78 1646/**
81f8c3a4
JW
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1648 * @page: the page
32047e2a 1649 *
81f8c3a4
JW
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1652 */
62cccb8c 1653void lock_page_memcg(struct page *page)
89c06bd5
KH
1654{
1655 struct mem_cgroup *memcg;
6de22619 1656 unsigned long flags;
89c06bd5 1657
6de22619
JW
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
6de22619 1662 */
d7365e78
JW
1663 rcu_read_lock();
1664
1665 if (mem_cgroup_disabled())
62cccb8c 1666 return;
89c06bd5 1667again:
1306a85a 1668 memcg = page->mem_cgroup;
29833315 1669 if (unlikely(!memcg))
62cccb8c 1670 return;
d7365e78 1671
bdcbb659 1672 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1673 return;
89c06bd5 1674
6de22619 1675 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1676 if (memcg != page->mem_cgroup) {
6de22619 1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1678 goto again;
1679 }
6de22619
JW
1680
1681 /*
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1684 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1685 */
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
d7365e78 1688
62cccb8c 1689 return;
89c06bd5 1690}
81f8c3a4 1691EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1692
d7365e78 1693/**
81f8c3a4 1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1695 * @page: the page
d7365e78 1696 */
62cccb8c 1697void unlock_page_memcg(struct page *page)
89c06bd5 1698{
62cccb8c
JW
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1700
6de22619
JW
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1703
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1706
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 }
89c06bd5 1709
d7365e78 1710 rcu_read_unlock();
89c06bd5 1711}
81f8c3a4 1712EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1713
cdec2e42
KH
1714/*
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1717 */
7ec99d62 1718#define CHARGE_BATCH 32U
cdec2e42
KH
1719struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1721 unsigned int nr_pages;
cdec2e42 1722 struct work_struct work;
26fe6168 1723 unsigned long flags;
a0db00fc 1724#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1725};
1726static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1727static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1728
a0956d54
SS
1729/**
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1733 *
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1737 *
1738 * returns true if successful, false otherwise.
cdec2e42 1739 */
a0956d54 1740static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1741{
1742 struct memcg_stock_pcp *stock;
3e32cb2e 1743 bool ret = false;
cdec2e42 1744
a0956d54 1745 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1746 return ret;
a0956d54 1747
cdec2e42 1748 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1749 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1750 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1751 ret = true;
1752 }
cdec2e42
KH
1753 put_cpu_var(memcg_stock);
1754 return ret;
1755}
1756
1757/*
3e32cb2e 1758 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1759 */
1760static void drain_stock(struct memcg_stock_pcp *stock)
1761{
1762 struct mem_cgroup *old = stock->cached;
1763
11c9ea4e 1764 if (stock->nr_pages) {
3e32cb2e 1765 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1766 if (do_memsw_account())
3e32cb2e 1767 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1768 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1769 stock->nr_pages = 0;
cdec2e42
KH
1770 }
1771 stock->cached = NULL;
cdec2e42
KH
1772}
1773
1774/*
1775 * This must be called under preempt disabled or must be called by
1776 * a thread which is pinned to local cpu.
1777 */
1778static void drain_local_stock(struct work_struct *dummy)
1779{
7c8e0181 1780 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1781 drain_stock(stock);
26fe6168 1782 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1783}
1784
1785/*
3e32cb2e 1786 * Cache charges(val) to local per_cpu area.
320cc51d 1787 * This will be consumed by consume_stock() function, later.
cdec2e42 1788 */
c0ff4b85 1789static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1790{
1791 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1792
c0ff4b85 1793 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1794 drain_stock(stock);
c0ff4b85 1795 stock->cached = memcg;
cdec2e42 1796 }
11c9ea4e 1797 stock->nr_pages += nr_pages;
cdec2e42
KH
1798 put_cpu_var(memcg_stock);
1799}
1800
1801/*
c0ff4b85 1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1803 * of the hierarchy under it.
cdec2e42 1804 */
6d3d6aa2 1805static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1806{
26fe6168 1807 int cpu, curcpu;
d38144b7 1808
6d3d6aa2
JW
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex))
1811 return;
cdec2e42 1812 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1813 get_online_cpus();
5af12d0e 1814 curcpu = get_cpu();
cdec2e42
KH
1815 for_each_online_cpu(cpu) {
1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1817 struct mem_cgroup *memcg;
26fe6168 1818
c0ff4b85
R
1819 memcg = stock->cached;
1820 if (!memcg || !stock->nr_pages)
26fe6168 1821 continue;
2314b42d 1822 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1823 continue;
d1a05b69
MH
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 if (cpu == curcpu)
1826 drain_local_stock(&stock->work);
1827 else
1828 schedule_work_on(cpu, &stock->work);
1829 }
cdec2e42 1830 }
5af12d0e 1831 put_cpu();
f894ffa8 1832 put_online_cpus();
9f50fad6 1833 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1834}
1835
0db0628d 1836static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1837 unsigned long action,
1838 void *hcpu)
1839{
1840 int cpu = (unsigned long)hcpu;
1841 struct memcg_stock_pcp *stock;
1842
619d094b 1843 if (action == CPU_ONLINE)
1489ebad 1844 return NOTIFY_OK;
1489ebad 1845
d833049b 1846 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1847 return NOTIFY_OK;
711d3d2c 1848
cdec2e42
KH
1849 stock = &per_cpu(memcg_stock, cpu);
1850 drain_stock(stock);
1851 return NOTIFY_OK;
1852}
1853
f7e1cb6e
JW
1854static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857{
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1872}
1873
b23afb93
TH
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1881 struct mem_cgroup *memcg;
b23afb93
TH
1882
1883 if (likely(!nr_pages))
1884 return;
1885
f7e1cb6e
JW
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890}
1891
00501b53
JW
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
8a9f3ccd 1894{
7ec99d62 1895 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1897 struct mem_cgroup *mem_over_limit;
3e32cb2e 1898 struct page_counter *counter;
6539cc05 1899 unsigned long nr_reclaimed;
b70a2a21
JW
1900 bool may_swap = true;
1901 bool drained = false;
a636b327 1902
ce00a967 1903 if (mem_cgroup_is_root(memcg))
10d53c74 1904 return 0;
6539cc05 1905retry:
b6b6cc72 1906 if (consume_stock(memcg, nr_pages))
10d53c74 1907 return 0;
8a9f3ccd 1908
7941d214 1909 if (!do_memsw_account() ||
6071ca52
JW
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1912 goto done_restock;
7941d214 1913 if (do_memsw_account())
3e32cb2e
JW
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1916 } else {
3e32cb2e 1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1918 may_swap = false;
3fbe7244 1919 }
7a81b88c 1920
6539cc05
JW
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
6d61ef40 1925
06b078fc
JW
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
10d53c74 1935 goto force;
06b078fc
JW
1936
1937 if (unlikely(task_in_memcg_oom(current)))
1938 goto nomem;
1939
d0164adc 1940 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1941 goto nomem;
4b534334 1942
241994ed
JW
1943 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1944
b70a2a21
JW
1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 gfp_mask, may_swap);
6539cc05 1947
61e02c74 1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1949 goto retry;
28c34c29 1950
b70a2a21 1951 if (!drained) {
6d3d6aa2 1952 drain_all_stock(mem_over_limit);
b70a2a21
JW
1953 drained = true;
1954 goto retry;
1955 }
1956
28c34c29
JW
1957 if (gfp_mask & __GFP_NORETRY)
1958 goto nomem;
6539cc05
JW
1959 /*
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1963 *
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1967 */
61e02c74 1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1969 goto retry;
1970 /*
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1973 */
1974 if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 goto retry;
1976
9b130619
JW
1977 if (nr_retries--)
1978 goto retry;
1979
06b078fc 1980 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1981 goto force;
06b078fc 1982
6539cc05 1983 if (fatal_signal_pending(current))
10d53c74 1984 goto force;
6539cc05 1985
241994ed
JW
1986 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1987
3608de07
JM
1988 mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1990nomem:
6d1fdc48 1991 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1992 return -ENOMEM;
10d53c74
TH
1993force:
1994 /*
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1998 */
1999 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2000 if (do_memsw_account())
10d53c74
TH
2001 page_counter_charge(&memcg->memsw, nr_pages);
2002 css_get_many(&memcg->css, nr_pages);
2003
2004 return 0;
6539cc05
JW
2005
2006done_restock:
e8ea14cc 2007 css_get_many(&memcg->css, batch);
6539cc05
JW
2008 if (batch > nr_pages)
2009 refill_stock(memcg, batch - nr_pages);
b23afb93 2010
241994ed 2011 /*
b23afb93
TH
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2019 */
2020 do {
b23afb93 2021 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg->high_work);
2025 break;
2026 }
9516a18a 2027 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2028 set_notify_resume(current);
2029 break;
2030 }
241994ed 2031 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2032
2033 return 0;
7a81b88c 2034}
8a9f3ccd 2035
00501b53 2036static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2037{
ce00a967
JW
2038 if (mem_cgroup_is_root(memcg))
2039 return;
2040
3e32cb2e 2041 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2042 if (do_memsw_account())
3e32cb2e 2043 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2044
e8ea14cc 2045 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2046}
2047
0a31bc97
JW
2048static void lock_page_lru(struct page *page, int *isolated)
2049{
2050 struct zone *zone = page_zone(page);
2051
a52633d8 2052 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2053 if (PageLRU(page)) {
2054 struct lruvec *lruvec;
2055
599d0c95 2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2057 ClearPageLRU(page);
2058 del_page_from_lru_list(page, lruvec, page_lru(page));
2059 *isolated = 1;
2060 } else
2061 *isolated = 0;
2062}
2063
2064static void unlock_page_lru(struct page *page, int isolated)
2065{
2066 struct zone *zone = page_zone(page);
2067
2068 if (isolated) {
2069 struct lruvec *lruvec;
2070
599d0c95 2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2072 VM_BUG_ON_PAGE(PageLRU(page), page);
2073 SetPageLRU(page);
2074 add_page_to_lru_list(page, lruvec, page_lru(page));
2075 }
a52633d8 2076 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2077}
2078
00501b53 2079static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2080 bool lrucare)
7a81b88c 2081{
0a31bc97 2082 int isolated;
9ce70c02 2083
1306a85a 2084 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2085
2086 /*
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2089 */
0a31bc97
JW
2090 if (lrucare)
2091 lock_page_lru(page, &isolated);
9ce70c02 2092
0a31bc97
JW
2093 /*
2094 * Nobody should be changing or seriously looking at
1306a85a 2095 * page->mem_cgroup at this point:
0a31bc97
JW
2096 *
2097 * - the page is uncharged
2098 *
2099 * - the page is off-LRU
2100 *
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2103 *
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2106 */
1306a85a 2107 page->mem_cgroup = memcg;
9ce70c02 2108
0a31bc97
JW
2109 if (lrucare)
2110 unlock_page_lru(page, isolated);
7a81b88c 2111}
66e1707b 2112
127424c8 2113#ifndef CONFIG_SLOB
f3bb3043 2114static int memcg_alloc_cache_id(void)
55007d84 2115{
f3bb3043
VD
2116 int id, size;
2117 int err;
2118
dbcf73e2 2119 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 if (id < 0)
2122 return id;
55007d84 2123
dbcf73e2 2124 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2125 return id;
2126
2127 /*
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2130 */
05257a1a 2131 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2132
2133 size = 2 * (id + 1);
55007d84
GC
2134 if (size < MEMCG_CACHES_MIN_SIZE)
2135 size = MEMCG_CACHES_MIN_SIZE;
2136 else if (size > MEMCG_CACHES_MAX_SIZE)
2137 size = MEMCG_CACHES_MAX_SIZE;
2138
f3bb3043 2139 err = memcg_update_all_caches(size);
60d3fd32
VD
2140 if (!err)
2141 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2142 if (!err)
2143 memcg_nr_cache_ids = size;
2144
2145 up_write(&memcg_cache_ids_sem);
2146
f3bb3043 2147 if (err) {
dbcf73e2 2148 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2149 return err;
2150 }
2151 return id;
2152}
2153
2154static void memcg_free_cache_id(int id)
2155{
dbcf73e2 2156 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2157}
2158
d5b3cf71 2159struct memcg_kmem_cache_create_work {
5722d094
VD
2160 struct mem_cgroup *memcg;
2161 struct kmem_cache *cachep;
2162 struct work_struct work;
2163};
2164
d5b3cf71 2165static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2166{
d5b3cf71
VD
2167 struct memcg_kmem_cache_create_work *cw =
2168 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2169 struct mem_cgroup *memcg = cw->memcg;
2170 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2171
d5b3cf71 2172 memcg_create_kmem_cache(memcg, cachep);
bd673145 2173
5722d094 2174 css_put(&memcg->css);
d7f25f8a
GC
2175 kfree(cw);
2176}
2177
2178/*
2179 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2180 */
d5b3cf71
VD
2181static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 struct kmem_cache *cachep)
d7f25f8a 2183{
d5b3cf71 2184 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2185
776ed0f0 2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2187 if (!cw)
d7f25f8a 2188 return;
8135be5a
VD
2189
2190 css_get(&memcg->css);
d7f25f8a
GC
2191
2192 cw->memcg = memcg;
2193 cw->cachep = cachep;
d5b3cf71 2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2195
d7f25f8a
GC
2196 schedule_work(&cw->work);
2197}
2198
d5b3cf71
VD
2199static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 struct kmem_cache *cachep)
0e9d92f2
GC
2201{
2202 /*
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2205 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2206 *
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2212 */
6f185c29 2213 current->memcg_kmem_skip_account = 1;
d5b3cf71 2214 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2215 current->memcg_kmem_skip_account = 0;
0e9d92f2 2216}
c67a8a68 2217
45264778
VD
2218static inline bool memcg_kmem_bypass(void)
2219{
2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 return true;
2222 return false;
2223}
2224
2225/**
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2228 *
d7f25f8a
GC
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2231 *
45264778
VD
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
d7f25f8a 2235 *
45264778
VD
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2239 * reference.
d7f25f8a 2240 */
45264778 2241struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2242{
2243 struct mem_cgroup *memcg;
959c8963 2244 struct kmem_cache *memcg_cachep;
2a4db7eb 2245 int kmemcg_id;
d7f25f8a 2246
f7ce3190 2247 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2248
45264778 2249 if (memcg_kmem_bypass())
230e9fc2
VD
2250 return cachep;
2251
9d100c5e 2252 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2253 return cachep;
2254
8135be5a 2255 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2257 if (kmemcg_id < 0)
ca0dde97 2258 goto out;
d7f25f8a 2259
2a4db7eb 2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2261 if (likely(memcg_cachep))
2262 return memcg_cachep;
ca0dde97
LZ
2263
2264 /*
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2269 *
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2274 * defer everything.
ca0dde97 2275 */
d5b3cf71 2276 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2277out:
8135be5a 2278 css_put(&memcg->css);
ca0dde97 2279 return cachep;
d7f25f8a 2280}
d7f25f8a 2281
45264778
VD
2282/**
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2285 */
2286void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2287{
2288 if (!is_root_cache(cachep))
f7ce3190 2289 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2290}
2291
45264778
VD
2292/**
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 struct mem_cgroup *memcg)
7ae1e1d0 2303{
f3ccb2c4
VD
2304 unsigned int nr_pages = 1 << order;
2305 struct page_counter *counter;
7ae1e1d0
GC
2306 int ret;
2307
f3ccb2c4 2308 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2309 if (ret)
f3ccb2c4 2310 return ret;
52c29b04
JW
2311
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 cancel_charge(memcg, nr_pages);
2315 return -ENOMEM;
7ae1e1d0
GC
2316 }
2317
f3ccb2c4 2318 page->mem_cgroup = memcg;
7ae1e1d0 2319
f3ccb2c4 2320 return 0;
7ae1e1d0
GC
2321}
2322
45264778
VD
2323/**
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 *
2329 * Returns 0 on success, an error code on failure.
2330 */
2331int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2332{
f3ccb2c4 2333 struct mem_cgroup *memcg;
fcff7d7e 2334 int ret = 0;
7ae1e1d0 2335
45264778
VD
2336 if (memcg_kmem_bypass())
2337 return 0;
2338
f3ccb2c4 2339 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2340 if (!mem_cgroup_is_root(memcg)) {
45264778 2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2342 if (!ret)
2343 __SetPageKmemcg(page);
2344 }
7ae1e1d0 2345 css_put(&memcg->css);
d05e83a6 2346 return ret;
7ae1e1d0 2347}
45264778
VD
2348/**
2349 * memcg_kmem_uncharge: uncharge a kmem page
2350 * @page: page to uncharge
2351 * @order: allocation order
2352 */
2353void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2354{
1306a85a 2355 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2356 unsigned int nr_pages = 1 << order;
7ae1e1d0 2357
7ae1e1d0
GC
2358 if (!memcg)
2359 return;
2360
309381fe 2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2362
52c29b04
JW
2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 page_counter_uncharge(&memcg->kmem, nr_pages);
2365
f3ccb2c4 2366 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2367 if (do_memsw_account())
f3ccb2c4 2368 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2369
1306a85a 2370 page->mem_cgroup = NULL;
c4159a75
VD
2371
2372 /* slab pages do not have PageKmemcg flag set */
2373 if (PageKmemcg(page))
2374 __ClearPageKmemcg(page);
2375
f3ccb2c4 2376 css_put_many(&memcg->css, nr_pages);
60d3fd32 2377}
127424c8 2378#endif /* !CONFIG_SLOB */
7ae1e1d0 2379
ca3e0214
KH
2380#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2381
ca3e0214
KH
2382/*
2383 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2384 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2385 */
e94c8a9c 2386void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2387{
e94c8a9c 2388 int i;
ca3e0214 2389
3d37c4a9
KH
2390 if (mem_cgroup_disabled())
2391 return;
b070e65c 2392
29833315 2393 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2394 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2395
1306a85a 2396 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2397 HPAGE_PMD_NR);
ca3e0214 2398}
12d27107 2399#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2400
c255a458 2401#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2402static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2403 bool charge)
d13d1443 2404{
0a31bc97
JW
2405 int val = (charge) ? 1 : -1;
2406 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2407}
02491447
DN
2408
2409/**
2410 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2411 * @entry: swap entry to be moved
2412 * @from: mem_cgroup which the entry is moved from
2413 * @to: mem_cgroup which the entry is moved to
2414 *
2415 * It succeeds only when the swap_cgroup's record for this entry is the same
2416 * as the mem_cgroup's id of @from.
2417 *
2418 * Returns 0 on success, -EINVAL on failure.
2419 *
3e32cb2e 2420 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2421 * both res and memsw, and called css_get().
2422 */
2423static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2424 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2425{
2426 unsigned short old_id, new_id;
2427
34c00c31
LZ
2428 old_id = mem_cgroup_id(from);
2429 new_id = mem_cgroup_id(to);
02491447
DN
2430
2431 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2432 mem_cgroup_swap_statistics(from, false);
483c30b5 2433 mem_cgroup_swap_statistics(to, true);
02491447
DN
2434 return 0;
2435 }
2436 return -EINVAL;
2437}
2438#else
2439static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2440 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2441{
2442 return -EINVAL;
2443}
8c7c6e34 2444#endif
d13d1443 2445
3e32cb2e 2446static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2447
d38d2a75 2448static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2449 unsigned long limit)
628f4235 2450{
3e32cb2e
JW
2451 unsigned long curusage;
2452 unsigned long oldusage;
2453 bool enlarge = false;
81d39c20 2454 int retry_count;
3e32cb2e 2455 int ret;
81d39c20
KH
2456
2457 /*
2458 * For keeping hierarchical_reclaim simple, how long we should retry
2459 * is depends on callers. We set our retry-count to be function
2460 * of # of children which we should visit in this loop.
2461 */
3e32cb2e
JW
2462 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2463 mem_cgroup_count_children(memcg);
81d39c20 2464
3e32cb2e 2465 oldusage = page_counter_read(&memcg->memory);
628f4235 2466
3e32cb2e 2467 do {
628f4235
KH
2468 if (signal_pending(current)) {
2469 ret = -EINTR;
2470 break;
2471 }
3e32cb2e
JW
2472
2473 mutex_lock(&memcg_limit_mutex);
2474 if (limit > memcg->memsw.limit) {
2475 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2476 ret = -EINVAL;
628f4235
KH
2477 break;
2478 }
3e32cb2e
JW
2479 if (limit > memcg->memory.limit)
2480 enlarge = true;
2481 ret = page_counter_limit(&memcg->memory, limit);
2482 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2483
2484 if (!ret)
2485 break;
2486
b70a2a21
JW
2487 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2488
3e32cb2e 2489 curusage = page_counter_read(&memcg->memory);
81d39c20 2490 /* Usage is reduced ? */
f894ffa8 2491 if (curusage >= oldusage)
81d39c20
KH
2492 retry_count--;
2493 else
2494 oldusage = curusage;
3e32cb2e
JW
2495 } while (retry_count);
2496
3c11ecf4
KH
2497 if (!ret && enlarge)
2498 memcg_oom_recover(memcg);
14797e23 2499
8c7c6e34
KH
2500 return ret;
2501}
2502
338c8431 2503static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2504 unsigned long limit)
8c7c6e34 2505{
3e32cb2e
JW
2506 unsigned long curusage;
2507 unsigned long oldusage;
2508 bool enlarge = false;
81d39c20 2509 int retry_count;
3e32cb2e 2510 int ret;
8c7c6e34 2511
81d39c20 2512 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2513 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2514 mem_cgroup_count_children(memcg);
2515
2516 oldusage = page_counter_read(&memcg->memsw);
2517
2518 do {
8c7c6e34
KH
2519 if (signal_pending(current)) {
2520 ret = -EINTR;
2521 break;
2522 }
3e32cb2e
JW
2523
2524 mutex_lock(&memcg_limit_mutex);
2525 if (limit < memcg->memory.limit) {
2526 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2527 ret = -EINVAL;
8c7c6e34
KH
2528 break;
2529 }
3e32cb2e
JW
2530 if (limit > memcg->memsw.limit)
2531 enlarge = true;
2532 ret = page_counter_limit(&memcg->memsw, limit);
2533 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2534
2535 if (!ret)
2536 break;
2537
b70a2a21
JW
2538 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2539
3e32cb2e 2540 curusage = page_counter_read(&memcg->memsw);
81d39c20 2541 /* Usage is reduced ? */
8c7c6e34 2542 if (curusage >= oldusage)
628f4235 2543 retry_count--;
81d39c20
KH
2544 else
2545 oldusage = curusage;
3e32cb2e
JW
2546 } while (retry_count);
2547
3c11ecf4
KH
2548 if (!ret && enlarge)
2549 memcg_oom_recover(memcg);
3e32cb2e 2550
628f4235
KH
2551 return ret;
2552}
2553
ef8f2327 2554unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2555 gfp_t gfp_mask,
2556 unsigned long *total_scanned)
2557{
2558 unsigned long nr_reclaimed = 0;
ef8f2327 2559 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2560 unsigned long reclaimed;
2561 int loop = 0;
ef8f2327 2562 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2563 unsigned long excess;
0608f43d
AM
2564 unsigned long nr_scanned;
2565
2566 if (order > 0)
2567 return 0;
2568
ef8f2327 2569 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2570
2571 /*
2572 * Do not even bother to check the largest node if the root
2573 * is empty. Do it lockless to prevent lock bouncing. Races
2574 * are acceptable as soft limit is best effort anyway.
2575 */
2576 if (RB_EMPTY_ROOT(&mctz->rb_root))
2577 return 0;
2578
0608f43d
AM
2579 /*
2580 * This loop can run a while, specially if mem_cgroup's continuously
2581 * keep exceeding their soft limit and putting the system under
2582 * pressure
2583 */
2584 do {
2585 if (next_mz)
2586 mz = next_mz;
2587 else
2588 mz = mem_cgroup_largest_soft_limit_node(mctz);
2589 if (!mz)
2590 break;
2591
2592 nr_scanned = 0;
ef8f2327 2593 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2594 gfp_mask, &nr_scanned);
2595 nr_reclaimed += reclaimed;
2596 *total_scanned += nr_scanned;
0a31bc97 2597 spin_lock_irq(&mctz->lock);
bc2f2e7f 2598 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2599
2600 /*
2601 * If we failed to reclaim anything from this memory cgroup
2602 * it is time to move on to the next cgroup
2603 */
2604 next_mz = NULL;
bc2f2e7f
VD
2605 if (!reclaimed)
2606 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607
3e32cb2e 2608 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2609 /*
2610 * One school of thought says that we should not add
2611 * back the node to the tree if reclaim returns 0.
2612 * But our reclaim could return 0, simply because due
2613 * to priority we are exposing a smaller subset of
2614 * memory to reclaim from. Consider this as a longer
2615 * term TODO.
2616 */
2617 /* If excess == 0, no tree ops */
cf2c8127 2618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2619 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2620 css_put(&mz->memcg->css);
2621 loop++;
2622 /*
2623 * Could not reclaim anything and there are no more
2624 * mem cgroups to try or we seem to be looping without
2625 * reclaiming anything.
2626 */
2627 if (!nr_reclaimed &&
2628 (next_mz == NULL ||
2629 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2630 break;
2631 } while (!nr_reclaimed);
2632 if (next_mz)
2633 css_put(&next_mz->memcg->css);
2634 return nr_reclaimed;
2635}
2636
ea280e7b
TH
2637/*
2638 * Test whether @memcg has children, dead or alive. Note that this
2639 * function doesn't care whether @memcg has use_hierarchy enabled and
2640 * returns %true if there are child csses according to the cgroup
2641 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2642 */
b5f99b53
GC
2643static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644{
ea280e7b
TH
2645 bool ret;
2646
ea280e7b
TH
2647 rcu_read_lock();
2648 ret = css_next_child(NULL, &memcg->css);
2649 rcu_read_unlock();
2650 return ret;
b5f99b53
GC
2651}
2652
c26251f9 2653/*
51038171 2654 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2655 *
2656 * Caller is responsible for holding css reference for memcg.
2657 */
2658static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659{
2660 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2661
c1e862c1
KH
2662 /* we call try-to-free pages for make this cgroup empty */
2663 lru_add_drain_all();
f817ed48 2664 /* try to free all pages in this cgroup */
3e32cb2e 2665 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2666 int progress;
c1e862c1 2667
c26251f9
MH
2668 if (signal_pending(current))
2669 return -EINTR;
2670
b70a2a21
JW
2671 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2672 GFP_KERNEL, true);
c1e862c1 2673 if (!progress) {
f817ed48 2674 nr_retries--;
c1e862c1 2675 /* maybe some writeback is necessary */
8aa7e847 2676 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2677 }
f817ed48
KH
2678
2679 }
ab5196c2
MH
2680
2681 return 0;
cc847582
KH
2682}
2683
6770c64e
TH
2684static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2685 char *buf, size_t nbytes,
2686 loff_t off)
c1e862c1 2687{
6770c64e 2688 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2689
d8423011
MH
2690 if (mem_cgroup_is_root(memcg))
2691 return -EINVAL;
6770c64e 2692 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2693}
2694
182446d0
TH
2695static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2696 struct cftype *cft)
18f59ea7 2697{
182446d0 2698 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2699}
2700
182446d0
TH
2701static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2702 struct cftype *cft, u64 val)
18f59ea7
BS
2703{
2704 int retval = 0;
182446d0 2705 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2706 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2707
567fb435 2708 if (memcg->use_hierarchy == val)
0b8f73e1 2709 return 0;
567fb435 2710
18f59ea7 2711 /*
af901ca1 2712 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2713 * in the child subtrees. If it is unset, then the change can
2714 * occur, provided the current cgroup has no children.
2715 *
2716 * For the root cgroup, parent_mem is NULL, we allow value to be
2717 * set if there are no children.
2718 */
c0ff4b85 2719 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2720 (val == 1 || val == 0)) {
ea280e7b 2721 if (!memcg_has_children(memcg))
c0ff4b85 2722 memcg->use_hierarchy = val;
18f59ea7
BS
2723 else
2724 retval = -EBUSY;
2725 } else
2726 retval = -EINVAL;
567fb435 2727
18f59ea7
BS
2728 return retval;
2729}
2730
72b54e73 2731static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2732{
2733 struct mem_cgroup *iter;
72b54e73 2734 int i;
ce00a967 2735
72b54e73 2736 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2737
72b54e73
VD
2738 for_each_mem_cgroup_tree(iter, memcg) {
2739 for (i = 0; i < MEMCG_NR_STAT; i++)
2740 stat[i] += mem_cgroup_read_stat(iter, i);
2741 }
ce00a967
JW
2742}
2743
72b54e73 2744static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2745{
2746 struct mem_cgroup *iter;
72b54e73 2747 int i;
587d9f72 2748
72b54e73 2749 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2750
72b54e73
VD
2751 for_each_mem_cgroup_tree(iter, memcg) {
2752 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2753 events[i] += mem_cgroup_read_events(iter, i);
2754 }
587d9f72
JW
2755}
2756
6f646156 2757static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2758{
72b54e73 2759 unsigned long val = 0;
ce00a967 2760
3e32cb2e 2761 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2762 struct mem_cgroup *iter;
2763
2764 for_each_mem_cgroup_tree(iter, memcg) {
2765 val += mem_cgroup_read_stat(iter,
2766 MEM_CGROUP_STAT_CACHE);
2767 val += mem_cgroup_read_stat(iter,
2768 MEM_CGROUP_STAT_RSS);
2769 if (swap)
2770 val += mem_cgroup_read_stat(iter,
2771 MEM_CGROUP_STAT_SWAP);
2772 }
3e32cb2e 2773 } else {
ce00a967 2774 if (!swap)
3e32cb2e 2775 val = page_counter_read(&memcg->memory);
ce00a967 2776 else
3e32cb2e 2777 val = page_counter_read(&memcg->memsw);
ce00a967 2778 }
c12176d3 2779 return val;
ce00a967
JW
2780}
2781
3e32cb2e
JW
2782enum {
2783 RES_USAGE,
2784 RES_LIMIT,
2785 RES_MAX_USAGE,
2786 RES_FAILCNT,
2787 RES_SOFT_LIMIT,
2788};
ce00a967 2789
791badbd 2790static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2791 struct cftype *cft)
8cdea7c0 2792{
182446d0 2793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2794 struct page_counter *counter;
af36f906 2795
3e32cb2e 2796 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2797 case _MEM:
3e32cb2e
JW
2798 counter = &memcg->memory;
2799 break;
8c7c6e34 2800 case _MEMSWAP:
3e32cb2e
JW
2801 counter = &memcg->memsw;
2802 break;
510fc4e1 2803 case _KMEM:
3e32cb2e 2804 counter = &memcg->kmem;
510fc4e1 2805 break;
d55f90bf 2806 case _TCP:
0db15298 2807 counter = &memcg->tcpmem;
d55f90bf 2808 break;
8c7c6e34
KH
2809 default:
2810 BUG();
8c7c6e34 2811 }
3e32cb2e
JW
2812
2813 switch (MEMFILE_ATTR(cft->private)) {
2814 case RES_USAGE:
2815 if (counter == &memcg->memory)
c12176d3 2816 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2817 if (counter == &memcg->memsw)
c12176d3 2818 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2819 return (u64)page_counter_read(counter) * PAGE_SIZE;
2820 case RES_LIMIT:
2821 return (u64)counter->limit * PAGE_SIZE;
2822 case RES_MAX_USAGE:
2823 return (u64)counter->watermark * PAGE_SIZE;
2824 case RES_FAILCNT:
2825 return counter->failcnt;
2826 case RES_SOFT_LIMIT:
2827 return (u64)memcg->soft_limit * PAGE_SIZE;
2828 default:
2829 BUG();
2830 }
8cdea7c0 2831}
510fc4e1 2832
127424c8 2833#ifndef CONFIG_SLOB
567e9ab2 2834static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2835{
d6441637
VD
2836 int memcg_id;
2837
b313aeee
VD
2838 if (cgroup_memory_nokmem)
2839 return 0;
2840
2a4db7eb 2841 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2842 BUG_ON(memcg->kmem_state);
d6441637 2843
f3bb3043 2844 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2845 if (memcg_id < 0)
2846 return memcg_id;
d6441637 2847
ef12947c 2848 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2849 /*
567e9ab2 2850 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2851 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2852 * guarantee no one starts accounting before all call sites are
2853 * patched.
2854 */
900a38f0 2855 memcg->kmemcg_id = memcg_id;
567e9ab2 2856 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2857
2858 return 0;
d6441637
VD
2859}
2860
8e0a8912
JW
2861static void memcg_offline_kmem(struct mem_cgroup *memcg)
2862{
2863 struct cgroup_subsys_state *css;
2864 struct mem_cgroup *parent, *child;
2865 int kmemcg_id;
2866
2867 if (memcg->kmem_state != KMEM_ONLINE)
2868 return;
2869 /*
2870 * Clear the online state before clearing memcg_caches array
2871 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2872 * guarantees that no cache will be created for this cgroup
2873 * after we are done (see memcg_create_kmem_cache()).
2874 */
2875 memcg->kmem_state = KMEM_ALLOCATED;
2876
2877 memcg_deactivate_kmem_caches(memcg);
2878
2879 kmemcg_id = memcg->kmemcg_id;
2880 BUG_ON(kmemcg_id < 0);
2881
2882 parent = parent_mem_cgroup(memcg);
2883 if (!parent)
2884 parent = root_mem_cgroup;
2885
2886 /*
2887 * Change kmemcg_id of this cgroup and all its descendants to the
2888 * parent's id, and then move all entries from this cgroup's list_lrus
2889 * to ones of the parent. After we have finished, all list_lrus
2890 * corresponding to this cgroup are guaranteed to remain empty. The
2891 * ordering is imposed by list_lru_node->lock taken by
2892 * memcg_drain_all_list_lrus().
2893 */
3a06bb78 2894 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2895 css_for_each_descendant_pre(css, &memcg->css) {
2896 child = mem_cgroup_from_css(css);
2897 BUG_ON(child->kmemcg_id != kmemcg_id);
2898 child->kmemcg_id = parent->kmemcg_id;
2899 if (!memcg->use_hierarchy)
2900 break;
2901 }
3a06bb78
TH
2902 rcu_read_unlock();
2903
8e0a8912
JW
2904 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905
2906 memcg_free_cache_id(kmemcg_id);
2907}
2908
2909static void memcg_free_kmem(struct mem_cgroup *memcg)
2910{
0b8f73e1
JW
2911 /* css_alloc() failed, offlining didn't happen */
2912 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913 memcg_offline_kmem(memcg);
2914
8e0a8912
JW
2915 if (memcg->kmem_state == KMEM_ALLOCATED) {
2916 memcg_destroy_kmem_caches(memcg);
2917 static_branch_dec(&memcg_kmem_enabled_key);
2918 WARN_ON(page_counter_read(&memcg->kmem));
2919 }
8e0a8912 2920}
d6441637 2921#else
0b8f73e1 2922static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2923{
2924 return 0;
2925}
2926static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927{
2928}
2929static void memcg_free_kmem(struct mem_cgroup *memcg)
2930{
2931}
2932#endif /* !CONFIG_SLOB */
2933
d6441637 2934static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2935 unsigned long limit)
d6441637 2936{
b313aeee 2937 int ret;
127424c8
JW
2938
2939 mutex_lock(&memcg_limit_mutex);
127424c8 2940 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2941 mutex_unlock(&memcg_limit_mutex);
2942 return ret;
d6441637 2943}
510fc4e1 2944
d55f90bf
VD
2945static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946{
2947 int ret;
2948
2949 mutex_lock(&memcg_limit_mutex);
2950
0db15298 2951 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2952 if (ret)
2953 goto out;
2954
0db15298 2955 if (!memcg->tcpmem_active) {
d55f90bf
VD
2956 /*
2957 * The active flag needs to be written after the static_key
2958 * update. This is what guarantees that the socket activation
2959 * function is the last one to run. See sock_update_memcg() for
2960 * details, and note that we don't mark any socket as belonging
2961 * to this memcg until that flag is up.
2962 *
2963 * We need to do this, because static_keys will span multiple
2964 * sites, but we can't control their order. If we mark a socket
2965 * as accounted, but the accounting functions are not patched in
2966 * yet, we'll lose accounting.
2967 *
2968 * We never race with the readers in sock_update_memcg(),
2969 * because when this value change, the code to process it is not
2970 * patched in yet.
2971 */
2972 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2973 memcg->tcpmem_active = true;
d55f90bf
VD
2974 }
2975out:
2976 mutex_unlock(&memcg_limit_mutex);
2977 return ret;
2978}
d55f90bf 2979
628f4235
KH
2980/*
2981 * The user of this function is...
2982 * RES_LIMIT.
2983 */
451af504
TH
2984static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2986{
451af504 2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2988 unsigned long nr_pages;
628f4235
KH
2989 int ret;
2990
451af504 2991 buf = strstrip(buf);
650c5e56 2992 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2993 if (ret)
2994 return ret;
af36f906 2995
3e32cb2e 2996 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2997 case RES_LIMIT:
4b3bde4c
BS
2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 ret = -EINVAL;
3000 break;
3001 }
3e32cb2e
JW
3002 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 case _MEM:
3004 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3005 break;
3e32cb2e
JW
3006 case _MEMSWAP:
3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3008 break;
3e32cb2e
JW
3009 case _KMEM:
3010 ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 break;
d55f90bf
VD
3012 case _TCP:
3013 ret = memcg_update_tcp_limit(memcg, nr_pages);
3014 break;
3e32cb2e 3015 }
296c81d8 3016 break;
3e32cb2e
JW
3017 case RES_SOFT_LIMIT:
3018 memcg->soft_limit = nr_pages;
3019 ret = 0;
628f4235
KH
3020 break;
3021 }
451af504 3022 return ret ?: nbytes;
8cdea7c0
BS
3023}
3024
6770c64e
TH
3025static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026 size_t nbytes, loff_t off)
c84872e1 3027{
6770c64e 3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3029 struct page_counter *counter;
c84872e1 3030
3e32cb2e
JW
3031 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032 case _MEM:
3033 counter = &memcg->memory;
3034 break;
3035 case _MEMSWAP:
3036 counter = &memcg->memsw;
3037 break;
3038 case _KMEM:
3039 counter = &memcg->kmem;
3040 break;
d55f90bf 3041 case _TCP:
0db15298 3042 counter = &memcg->tcpmem;
d55f90bf 3043 break;
3e32cb2e
JW
3044 default:
3045 BUG();
3046 }
af36f906 3047
3e32cb2e 3048 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3049 case RES_MAX_USAGE:
3e32cb2e 3050 page_counter_reset_watermark(counter);
29f2a4da
PE
3051 break;
3052 case RES_FAILCNT:
3e32cb2e 3053 counter->failcnt = 0;
29f2a4da 3054 break;
3e32cb2e
JW
3055 default:
3056 BUG();
29f2a4da 3057 }
f64c3f54 3058
6770c64e 3059 return nbytes;
c84872e1
PE
3060}
3061
182446d0 3062static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3063 struct cftype *cft)
3064{
182446d0 3065 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3066}
3067
02491447 3068#ifdef CONFIG_MMU
182446d0 3069static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3070 struct cftype *cft, u64 val)
3071{
182446d0 3072 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3073
1dfab5ab 3074 if (val & ~MOVE_MASK)
7dc74be0 3075 return -EINVAL;
ee5e8472 3076
7dc74be0 3077 /*
ee5e8472
GC
3078 * No kind of locking is needed in here, because ->can_attach() will
3079 * check this value once in the beginning of the process, and then carry
3080 * on with stale data. This means that changes to this value will only
3081 * affect task migrations starting after the change.
7dc74be0 3082 */
c0ff4b85 3083 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3084 return 0;
3085}
02491447 3086#else
182446d0 3087static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3088 struct cftype *cft, u64 val)
3089{
3090 return -ENOSYS;
3091}
3092#endif
7dc74be0 3093
406eb0c9 3094#ifdef CONFIG_NUMA
2da8ca82 3095static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3096{
25485de6
GT
3097 struct numa_stat {
3098 const char *name;
3099 unsigned int lru_mask;
3100 };
3101
3102 static const struct numa_stat stats[] = {
3103 { "total", LRU_ALL },
3104 { "file", LRU_ALL_FILE },
3105 { "anon", LRU_ALL_ANON },
3106 { "unevictable", BIT(LRU_UNEVICTABLE) },
3107 };
3108 const struct numa_stat *stat;
406eb0c9 3109 int nid;
25485de6 3110 unsigned long nr;
2da8ca82 3111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3112
25485de6
GT
3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115 seq_printf(m, "%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118 stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
406eb0c9 3122 }
406eb0c9 3123
071aee13
YH
3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 struct mem_cgroup *iter;
3126
3127 nr = 0;
3128 for_each_mem_cgroup_tree(iter, memcg)
3129 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131 for_each_node_state(nid, N_MEMORY) {
3132 nr = 0;
3133 for_each_mem_cgroup_tree(iter, memcg)
3134 nr += mem_cgroup_node_nr_lru_pages(
3135 iter, nid, stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
406eb0c9 3139 }
406eb0c9 3140
406eb0c9
YH
3141 return 0;
3142}
3143#endif /* CONFIG_NUMA */
3144
2da8ca82 3145static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3146{
2da8ca82 3147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3148 unsigned long memory, memsw;
af7c4b0e
JW
3149 struct mem_cgroup *mi;
3150 unsigned int i;
406eb0c9 3151
0ca44b14
GT
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153 MEM_CGROUP_STAT_NSTATS);
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3156 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157
af7c4b0e 3158 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3159 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3160 continue;
484ebb3b 3161 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3162 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3163 }
7b854121 3164
af7c4b0e
JW
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167 mem_cgroup_read_events(memcg, i));
3168
3169 for (i = 0; i < NR_LRU_LISTS; i++)
3170 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172
14067bb3 3173 /* Hierarchical information */
3e32cb2e
JW
3174 memory = memsw = PAGE_COUNTER_MAX;
3175 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176 memory = min(memory, mi->memory.limit);
3177 memsw = min(memsw, mi->memsw.limit);
fee7b548 3178 }
3e32cb2e
JW
3179 seq_printf(m, "hierarchical_memory_limit %llu\n",
3180 (u64)memory * PAGE_SIZE);
7941d214 3181 if (do_memsw_account())
3e32cb2e
JW
3182 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183 (u64)memsw * PAGE_SIZE);
7f016ee8 3184
af7c4b0e 3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3186 unsigned long long val = 0;
af7c4b0e 3187
7941d214 3188 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3189 continue;
af7c4b0e
JW
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3193 }
3194
3195 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196 unsigned long long val = 0;
3197
3198 for_each_mem_cgroup_tree(mi, memcg)
3199 val += mem_cgroup_read_events(mi, i);
3200 seq_printf(m, "total_%s %llu\n",
3201 mem_cgroup_events_names[i], val);
3202 }
3203
3204 for (i = 0; i < NR_LRU_LISTS; i++) {
3205 unsigned long long val = 0;
3206
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3210 }
14067bb3 3211
7f016ee8 3212#ifdef CONFIG_DEBUG_VM
7f016ee8 3213 {
ef8f2327
MG
3214 pg_data_t *pgdat;
3215 struct mem_cgroup_per_node *mz;
89abfab1 3216 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3217 unsigned long recent_rotated[2] = {0, 0};
3218 unsigned long recent_scanned[2] = {0, 0};
3219
ef8f2327
MG
3220 for_each_online_pgdat(pgdat) {
3221 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3222 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3223
ef8f2327
MG
3224 recent_rotated[0] += rstat->recent_rotated[0];
3225 recent_rotated[1] += rstat->recent_rotated[1];
3226 recent_scanned[0] += rstat->recent_scanned[0];
3227 recent_scanned[1] += rstat->recent_scanned[1];
3228 }
78ccf5b5
JW
3229 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3230 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3231 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3232 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3233 }
3234#endif
3235
d2ceb9b7
KH
3236 return 0;
3237}
3238
182446d0
TH
3239static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3240 struct cftype *cft)
a7885eb8 3241{
182446d0 3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3243
1f4c025b 3244 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3245}
3246
182446d0
TH
3247static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3248 struct cftype *cft, u64 val)
a7885eb8 3249{
182446d0 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3251
3dae7fec 3252 if (val > 100)
a7885eb8
KM
3253 return -EINVAL;
3254
14208b0e 3255 if (css->parent)
3dae7fec
JW
3256 memcg->swappiness = val;
3257 else
3258 vm_swappiness = val;
068b38c1 3259
a7885eb8
KM
3260 return 0;
3261}
3262
2e72b634
KS
3263static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3264{
3265 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3266 unsigned long usage;
2e72b634
KS
3267 int i;
3268
3269 rcu_read_lock();
3270 if (!swap)
2c488db2 3271 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3272 else
2c488db2 3273 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3274
3275 if (!t)
3276 goto unlock;
3277
ce00a967 3278 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3279
3280 /*
748dad36 3281 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3282 * If it's not true, a threshold was crossed after last
3283 * call of __mem_cgroup_threshold().
3284 */
5407a562 3285 i = t->current_threshold;
2e72b634
KS
3286
3287 /*
3288 * Iterate backward over array of thresholds starting from
3289 * current_threshold and check if a threshold is crossed.
3290 * If none of thresholds below usage is crossed, we read
3291 * only one element of the array here.
3292 */
3293 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3294 eventfd_signal(t->entries[i].eventfd, 1);
3295
3296 /* i = current_threshold + 1 */
3297 i++;
3298
3299 /*
3300 * Iterate forward over array of thresholds starting from
3301 * current_threshold+1 and check if a threshold is crossed.
3302 * If none of thresholds above usage is crossed, we read
3303 * only one element of the array here.
3304 */
3305 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3306 eventfd_signal(t->entries[i].eventfd, 1);
3307
3308 /* Update current_threshold */
5407a562 3309 t->current_threshold = i - 1;
2e72b634
KS
3310unlock:
3311 rcu_read_unlock();
3312}
3313
3314static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3315{
ad4ca5f4
KS
3316 while (memcg) {
3317 __mem_cgroup_threshold(memcg, false);
7941d214 3318 if (do_memsw_account())
ad4ca5f4
KS
3319 __mem_cgroup_threshold(memcg, true);
3320
3321 memcg = parent_mem_cgroup(memcg);
3322 }
2e72b634
KS
3323}
3324
3325static int compare_thresholds(const void *a, const void *b)
3326{
3327 const struct mem_cgroup_threshold *_a = a;
3328 const struct mem_cgroup_threshold *_b = b;
3329
2bff24a3
GT
3330 if (_a->threshold > _b->threshold)
3331 return 1;
3332
3333 if (_a->threshold < _b->threshold)
3334 return -1;
3335
3336 return 0;
2e72b634
KS
3337}
3338
c0ff4b85 3339static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3340{
3341 struct mem_cgroup_eventfd_list *ev;
3342
2bcf2e92
MH
3343 spin_lock(&memcg_oom_lock);
3344
c0ff4b85 3345 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3346 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3347
3348 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3349 return 0;
3350}
3351
c0ff4b85 3352static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3353{
7d74b06f
KH
3354 struct mem_cgroup *iter;
3355
c0ff4b85 3356 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3357 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3358}
3359
59b6f873 3360static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3361 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3362{
2c488db2
KS
3363 struct mem_cgroup_thresholds *thresholds;
3364 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3365 unsigned long threshold;
3366 unsigned long usage;
2c488db2 3367 int i, size, ret;
2e72b634 3368
650c5e56 3369 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3370 if (ret)
3371 return ret;
3372
3373 mutex_lock(&memcg->thresholds_lock);
2c488db2 3374
05b84301 3375 if (type == _MEM) {
2c488db2 3376 thresholds = &memcg->thresholds;
ce00a967 3377 usage = mem_cgroup_usage(memcg, false);
05b84301 3378 } else if (type == _MEMSWAP) {
2c488db2 3379 thresholds = &memcg->memsw_thresholds;
ce00a967 3380 usage = mem_cgroup_usage(memcg, true);
05b84301 3381 } else
2e72b634
KS
3382 BUG();
3383
2e72b634 3384 /* Check if a threshold crossed before adding a new one */
2c488db2 3385 if (thresholds->primary)
2e72b634
KS
3386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3387
2c488db2 3388 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3389
3390 /* Allocate memory for new array of thresholds */
2c488db2 3391 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3392 GFP_KERNEL);
2c488db2 3393 if (!new) {
2e72b634
KS
3394 ret = -ENOMEM;
3395 goto unlock;
3396 }
2c488db2 3397 new->size = size;
2e72b634
KS
3398
3399 /* Copy thresholds (if any) to new array */
2c488db2
KS
3400 if (thresholds->primary) {
3401 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3402 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3403 }
3404
2e72b634 3405 /* Add new threshold */
2c488db2
KS
3406 new->entries[size - 1].eventfd = eventfd;
3407 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3408
3409 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3410 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3411 compare_thresholds, NULL);
3412
3413 /* Find current threshold */
2c488db2 3414 new->current_threshold = -1;
2e72b634 3415 for (i = 0; i < size; i++) {
748dad36 3416 if (new->entries[i].threshold <= usage) {
2e72b634 3417 /*
2c488db2
KS
3418 * new->current_threshold will not be used until
3419 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3420 * it here.
3421 */
2c488db2 3422 ++new->current_threshold;
748dad36
SZ
3423 } else
3424 break;
2e72b634
KS
3425 }
3426
2c488db2
KS
3427 /* Free old spare buffer and save old primary buffer as spare */
3428 kfree(thresholds->spare);
3429 thresholds->spare = thresholds->primary;
3430
3431 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3432
907860ed 3433 /* To be sure that nobody uses thresholds */
2e72b634
KS
3434 synchronize_rcu();
3435
2e72b634
KS
3436unlock:
3437 mutex_unlock(&memcg->thresholds_lock);
3438
3439 return ret;
3440}
3441
59b6f873 3442static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3443 struct eventfd_ctx *eventfd, const char *args)
3444{
59b6f873 3445 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3446}
3447
59b6f873 3448static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3449 struct eventfd_ctx *eventfd, const char *args)
3450{
59b6f873 3451 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3452}
3453
59b6f873 3454static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3455 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3456{
2c488db2
KS
3457 struct mem_cgroup_thresholds *thresholds;
3458 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3459 unsigned long usage;
2c488db2 3460 int i, j, size;
2e72b634
KS
3461
3462 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3463
3464 if (type == _MEM) {
2c488db2 3465 thresholds = &memcg->thresholds;
ce00a967 3466 usage = mem_cgroup_usage(memcg, false);
05b84301 3467 } else if (type == _MEMSWAP) {
2c488db2 3468 thresholds = &memcg->memsw_thresholds;
ce00a967 3469 usage = mem_cgroup_usage(memcg, true);
05b84301 3470 } else
2e72b634
KS
3471 BUG();
3472
371528ca
AV
3473 if (!thresholds->primary)
3474 goto unlock;
3475
2e72b634
KS
3476 /* Check if a threshold crossed before removing */
3477 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3478
3479 /* Calculate new number of threshold */
2c488db2
KS
3480 size = 0;
3481 for (i = 0; i < thresholds->primary->size; i++) {
3482 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3483 size++;
3484 }
3485
2c488db2 3486 new = thresholds->spare;
907860ed 3487
2e72b634
KS
3488 /* Set thresholds array to NULL if we don't have thresholds */
3489 if (!size) {
2c488db2
KS
3490 kfree(new);
3491 new = NULL;
907860ed 3492 goto swap_buffers;
2e72b634
KS
3493 }
3494
2c488db2 3495 new->size = size;
2e72b634
KS
3496
3497 /* Copy thresholds and find current threshold */
2c488db2
KS
3498 new->current_threshold = -1;
3499 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3501 continue;
3502
2c488db2 3503 new->entries[j] = thresholds->primary->entries[i];
748dad36 3504 if (new->entries[j].threshold <= usage) {
2e72b634 3505 /*
2c488db2 3506 * new->current_threshold will not be used
2e72b634
KS
3507 * until rcu_assign_pointer(), so it's safe to increment
3508 * it here.
3509 */
2c488db2 3510 ++new->current_threshold;
2e72b634
KS
3511 }
3512 j++;
3513 }
3514
907860ed 3515swap_buffers:
2c488db2
KS
3516 /* Swap primary and spare array */
3517 thresholds->spare = thresholds->primary;
8c757763 3518
2c488db2 3519 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3520
907860ed 3521 /* To be sure that nobody uses thresholds */
2e72b634 3522 synchronize_rcu();
6611d8d7
MC
3523
3524 /* If all events are unregistered, free the spare array */
3525 if (!new) {
3526 kfree(thresholds->spare);
3527 thresholds->spare = NULL;
3528 }
371528ca 3529unlock:
2e72b634 3530 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3531}
c1e862c1 3532
59b6f873 3533static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3534 struct eventfd_ctx *eventfd)
3535{
59b6f873 3536 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3537}
3538
59b6f873 3539static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3540 struct eventfd_ctx *eventfd)
3541{
59b6f873 3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3543}
3544
59b6f873 3545static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3546 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3547{
9490ff27 3548 struct mem_cgroup_eventfd_list *event;
9490ff27 3549
9490ff27
KH
3550 event = kmalloc(sizeof(*event), GFP_KERNEL);
3551 if (!event)
3552 return -ENOMEM;
3553
1af8efe9 3554 spin_lock(&memcg_oom_lock);
9490ff27
KH
3555
3556 event->eventfd = eventfd;
3557 list_add(&event->list, &memcg->oom_notify);
3558
3559 /* already in OOM ? */
c2b42d3c 3560 if (memcg->under_oom)
9490ff27 3561 eventfd_signal(eventfd, 1);
1af8efe9 3562 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3563
3564 return 0;
3565}
3566
59b6f873 3567static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3568 struct eventfd_ctx *eventfd)
9490ff27 3569{
9490ff27 3570 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3571
1af8efe9 3572 spin_lock(&memcg_oom_lock);
9490ff27 3573
c0ff4b85 3574 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3575 if (ev->eventfd == eventfd) {
3576 list_del(&ev->list);
3577 kfree(ev);
3578 }
3579 }
3580
1af8efe9 3581 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3582}
3583
2da8ca82 3584static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3585{
2da8ca82 3586 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3587
791badbd 3588 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3589 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3590 return 0;
3591}
3592
182446d0 3593static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3594 struct cftype *cft, u64 val)
3595{
182446d0 3596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3597
3598 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3599 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3600 return -EINVAL;
3601
c0ff4b85 3602 memcg->oom_kill_disable = val;
4d845ebf 3603 if (!val)
c0ff4b85 3604 memcg_oom_recover(memcg);
3dae7fec 3605
3c11ecf4
KH
3606 return 0;
3607}
3608
52ebea74
TH
3609#ifdef CONFIG_CGROUP_WRITEBACK
3610
3611struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3612{
3613 return &memcg->cgwb_list;
3614}
3615
841710aa
TH
3616static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3617{
3618 return wb_domain_init(&memcg->cgwb_domain, gfp);
3619}
3620
3621static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3622{
3623 wb_domain_exit(&memcg->cgwb_domain);
3624}
3625
2529bb3a
TH
3626static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3627{
3628 wb_domain_size_changed(&memcg->cgwb_domain);
3629}
3630
841710aa
TH
3631struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3632{
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634
3635 if (!memcg->css.parent)
3636 return NULL;
3637
3638 return &memcg->cgwb_domain;
3639}
3640
c2aa723a
TH
3641/**
3642 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3643 * @wb: bdi_writeback in question
c5edf9cd
TH
3644 * @pfilepages: out parameter for number of file pages
3645 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3646 * @pdirty: out parameter for number of dirty pages
3647 * @pwriteback: out parameter for number of pages under writeback
3648 *
c5edf9cd
TH
3649 * Determine the numbers of file, headroom, dirty, and writeback pages in
3650 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3651 * is a bit more involved.
c2aa723a 3652 *
c5edf9cd
TH
3653 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3654 * headroom is calculated as the lowest headroom of itself and the
3655 * ancestors. Note that this doesn't consider the actual amount of
3656 * available memory in the system. The caller should further cap
3657 * *@pheadroom accordingly.
c2aa723a 3658 */
c5edf9cd
TH
3659void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3660 unsigned long *pheadroom, unsigned long *pdirty,
3661 unsigned long *pwriteback)
c2aa723a
TH
3662{
3663 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3664 struct mem_cgroup *parent;
c2aa723a
TH
3665
3666 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3667
3668 /* this should eventually include NR_UNSTABLE_NFS */
3669 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3670 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3671 (1 << LRU_ACTIVE_FILE));
3672 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3673
c2aa723a
TH
3674 while ((parent = parent_mem_cgroup(memcg))) {
3675 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3676 unsigned long used = page_counter_read(&memcg->memory);
3677
c5edf9cd 3678 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3679 memcg = parent;
3680 }
c2aa723a
TH
3681}
3682
841710aa
TH
3683#else /* CONFIG_CGROUP_WRITEBACK */
3684
3685static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3686{
3687 return 0;
3688}
3689
3690static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3691{
3692}
3693
2529bb3a
TH
3694static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695{
3696}
3697
52ebea74
TH
3698#endif /* CONFIG_CGROUP_WRITEBACK */
3699
3bc942f3
TH
3700/*
3701 * DO NOT USE IN NEW FILES.
3702 *
3703 * "cgroup.event_control" implementation.
3704 *
3705 * This is way over-engineered. It tries to support fully configurable
3706 * events for each user. Such level of flexibility is completely
3707 * unnecessary especially in the light of the planned unified hierarchy.
3708 *
3709 * Please deprecate this and replace with something simpler if at all
3710 * possible.
3711 */
3712
79bd9814
TH
3713/*
3714 * Unregister event and free resources.
3715 *
3716 * Gets called from workqueue.
3717 */
3bc942f3 3718static void memcg_event_remove(struct work_struct *work)
79bd9814 3719{
3bc942f3
TH
3720 struct mem_cgroup_event *event =
3721 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3722 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3723
3724 remove_wait_queue(event->wqh, &event->wait);
3725
59b6f873 3726 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3727
3728 /* Notify userspace the event is going away. */
3729 eventfd_signal(event->eventfd, 1);
3730
3731 eventfd_ctx_put(event->eventfd);
3732 kfree(event);
59b6f873 3733 css_put(&memcg->css);
79bd9814
TH
3734}
3735
3736/*
3737 * Gets called on POLLHUP on eventfd when user closes it.
3738 *
3739 * Called with wqh->lock held and interrupts disabled.
3740 */
3bc942f3
TH
3741static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3742 int sync, void *key)
79bd9814 3743{
3bc942f3
TH
3744 struct mem_cgroup_event *event =
3745 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3746 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3747 unsigned long flags = (unsigned long)key;
3748
3749 if (flags & POLLHUP) {
3750 /*
3751 * If the event has been detached at cgroup removal, we
3752 * can simply return knowing the other side will cleanup
3753 * for us.
3754 *
3755 * We can't race against event freeing since the other
3756 * side will require wqh->lock via remove_wait_queue(),
3757 * which we hold.
3758 */
fba94807 3759 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3760 if (!list_empty(&event->list)) {
3761 list_del_init(&event->list);
3762 /*
3763 * We are in atomic context, but cgroup_event_remove()
3764 * may sleep, so we have to call it in workqueue.
3765 */
3766 schedule_work(&event->remove);
3767 }
fba94807 3768 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3769 }
3770
3771 return 0;
3772}
3773
3bc942f3 3774static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3775 wait_queue_head_t *wqh, poll_table *pt)
3776{
3bc942f3
TH
3777 struct mem_cgroup_event *event =
3778 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3779
3780 event->wqh = wqh;
3781 add_wait_queue(wqh, &event->wait);
3782}
3783
3784/*
3bc942f3
TH
3785 * DO NOT USE IN NEW FILES.
3786 *
79bd9814
TH
3787 * Parse input and register new cgroup event handler.
3788 *
3789 * Input must be in format '<event_fd> <control_fd> <args>'.
3790 * Interpretation of args is defined by control file implementation.
3791 */
451af504
TH
3792static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3793 char *buf, size_t nbytes, loff_t off)
79bd9814 3794{
451af504 3795 struct cgroup_subsys_state *css = of_css(of);
fba94807 3796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3797 struct mem_cgroup_event *event;
79bd9814
TH
3798 struct cgroup_subsys_state *cfile_css;
3799 unsigned int efd, cfd;
3800 struct fd efile;
3801 struct fd cfile;
fba94807 3802 const char *name;
79bd9814
TH
3803 char *endp;
3804 int ret;
3805
451af504
TH
3806 buf = strstrip(buf);
3807
3808 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3809 if (*endp != ' ')
3810 return -EINVAL;
451af504 3811 buf = endp + 1;
79bd9814 3812
451af504 3813 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3814 if ((*endp != ' ') && (*endp != '\0'))
3815 return -EINVAL;
451af504 3816 buf = endp + 1;
79bd9814
TH
3817
3818 event = kzalloc(sizeof(*event), GFP_KERNEL);
3819 if (!event)
3820 return -ENOMEM;
3821
59b6f873 3822 event->memcg = memcg;
79bd9814 3823 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3824 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3825 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3826 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3827
3828 efile = fdget(efd);
3829 if (!efile.file) {
3830 ret = -EBADF;
3831 goto out_kfree;
3832 }
3833
3834 event->eventfd = eventfd_ctx_fileget(efile.file);
3835 if (IS_ERR(event->eventfd)) {
3836 ret = PTR_ERR(event->eventfd);
3837 goto out_put_efile;
3838 }
3839
3840 cfile = fdget(cfd);
3841 if (!cfile.file) {
3842 ret = -EBADF;
3843 goto out_put_eventfd;
3844 }
3845
3846 /* the process need read permission on control file */
3847 /* AV: shouldn't we check that it's been opened for read instead? */
3848 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3849 if (ret < 0)
3850 goto out_put_cfile;
3851
fba94807
TH
3852 /*
3853 * Determine the event callbacks and set them in @event. This used
3854 * to be done via struct cftype but cgroup core no longer knows
3855 * about these events. The following is crude but the whole thing
3856 * is for compatibility anyway.
3bc942f3
TH
3857 *
3858 * DO NOT ADD NEW FILES.
fba94807 3859 */
b583043e 3860 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3861
3862 if (!strcmp(name, "memory.usage_in_bytes")) {
3863 event->register_event = mem_cgroup_usage_register_event;
3864 event->unregister_event = mem_cgroup_usage_unregister_event;
3865 } else if (!strcmp(name, "memory.oom_control")) {
3866 event->register_event = mem_cgroup_oom_register_event;
3867 event->unregister_event = mem_cgroup_oom_unregister_event;
3868 } else if (!strcmp(name, "memory.pressure_level")) {
3869 event->register_event = vmpressure_register_event;
3870 event->unregister_event = vmpressure_unregister_event;
3871 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3872 event->register_event = memsw_cgroup_usage_register_event;
3873 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3874 } else {
3875 ret = -EINVAL;
3876 goto out_put_cfile;
3877 }
3878
79bd9814 3879 /*
b5557c4c
TH
3880 * Verify @cfile should belong to @css. Also, remaining events are
3881 * automatically removed on cgroup destruction but the removal is
3882 * asynchronous, so take an extra ref on @css.
79bd9814 3883 */
b583043e 3884 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3885 &memory_cgrp_subsys);
79bd9814 3886 ret = -EINVAL;
5a17f543 3887 if (IS_ERR(cfile_css))
79bd9814 3888 goto out_put_cfile;
5a17f543
TH
3889 if (cfile_css != css) {
3890 css_put(cfile_css);
79bd9814 3891 goto out_put_cfile;
5a17f543 3892 }
79bd9814 3893
451af504 3894 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3895 if (ret)
3896 goto out_put_css;
3897
3898 efile.file->f_op->poll(efile.file, &event->pt);
3899
fba94807
TH
3900 spin_lock(&memcg->event_list_lock);
3901 list_add(&event->list, &memcg->event_list);
3902 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3903
3904 fdput(cfile);
3905 fdput(efile);
3906
451af504 3907 return nbytes;
79bd9814
TH
3908
3909out_put_css:
b5557c4c 3910 css_put(css);
79bd9814
TH
3911out_put_cfile:
3912 fdput(cfile);
3913out_put_eventfd:
3914 eventfd_ctx_put(event->eventfd);
3915out_put_efile:
3916 fdput(efile);
3917out_kfree:
3918 kfree(event);
3919
3920 return ret;
3921}
3922
241994ed 3923static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3924 {
0eea1030 3925 .name = "usage_in_bytes",
8c7c6e34 3926 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3927 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3928 },
c84872e1
PE
3929 {
3930 .name = "max_usage_in_bytes",
8c7c6e34 3931 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3932 .write = mem_cgroup_reset,
791badbd 3933 .read_u64 = mem_cgroup_read_u64,
c84872e1 3934 },
8cdea7c0 3935 {
0eea1030 3936 .name = "limit_in_bytes",
8c7c6e34 3937 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3938 .write = mem_cgroup_write,
791badbd 3939 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3940 },
296c81d8
BS
3941 {
3942 .name = "soft_limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3944 .write = mem_cgroup_write,
791badbd 3945 .read_u64 = mem_cgroup_read_u64,
296c81d8 3946 },
8cdea7c0
BS
3947 {
3948 .name = "failcnt",
8c7c6e34 3949 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3950 .write = mem_cgroup_reset,
791badbd 3951 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3952 },
d2ceb9b7
KH
3953 {
3954 .name = "stat",
2da8ca82 3955 .seq_show = memcg_stat_show,
d2ceb9b7 3956 },
c1e862c1
KH
3957 {
3958 .name = "force_empty",
6770c64e 3959 .write = mem_cgroup_force_empty_write,
c1e862c1 3960 },
18f59ea7
BS
3961 {
3962 .name = "use_hierarchy",
3963 .write_u64 = mem_cgroup_hierarchy_write,
3964 .read_u64 = mem_cgroup_hierarchy_read,
3965 },
79bd9814 3966 {
3bc942f3 3967 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3968 .write = memcg_write_event_control,
7dbdb199 3969 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3970 },
a7885eb8
KM
3971 {
3972 .name = "swappiness",
3973 .read_u64 = mem_cgroup_swappiness_read,
3974 .write_u64 = mem_cgroup_swappiness_write,
3975 },
7dc74be0
DN
3976 {
3977 .name = "move_charge_at_immigrate",
3978 .read_u64 = mem_cgroup_move_charge_read,
3979 .write_u64 = mem_cgroup_move_charge_write,
3980 },
9490ff27
KH
3981 {
3982 .name = "oom_control",
2da8ca82 3983 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3984 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3985 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3986 },
70ddf637
AV
3987 {
3988 .name = "pressure_level",
70ddf637 3989 },
406eb0c9
YH
3990#ifdef CONFIG_NUMA
3991 {
3992 .name = "numa_stat",
2da8ca82 3993 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3994 },
3995#endif
510fc4e1
GC
3996 {
3997 .name = "kmem.limit_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3999 .write = mem_cgroup_write,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4001 },
4002 {
4003 .name = "kmem.usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4005 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4006 },
4007 {
4008 .name = "kmem.failcnt",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4010 .write = mem_cgroup_reset,
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4012 },
4013 {
4014 .name = "kmem.max_usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4016 .write = mem_cgroup_reset,
791badbd 4017 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4018 },
749c5415
GC
4019#ifdef CONFIG_SLABINFO
4020 {
4021 .name = "kmem.slabinfo",
b047501c
VD
4022 .seq_start = slab_start,
4023 .seq_next = slab_next,
4024 .seq_stop = slab_stop,
4025 .seq_show = memcg_slab_show,
749c5415
GC
4026 },
4027#endif
d55f90bf
VD
4028 {
4029 .name = "kmem.tcp.limit_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4031 .write = mem_cgroup_write,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4037 .read_u64 = mem_cgroup_read_u64,
4038 },
4039 {
4040 .name = "kmem.tcp.failcnt",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4042 .write = mem_cgroup_reset,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.max_usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4050 },
6bc10349 4051 { }, /* terminate */
af36f906 4052};
8c7c6e34 4053
73f576c0
JW
4054/*
4055 * Private memory cgroup IDR
4056 *
4057 * Swap-out records and page cache shadow entries need to store memcg
4058 * references in constrained space, so we maintain an ID space that is
4059 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4060 * memory-controlled cgroups to 64k.
4061 *
4062 * However, there usually are many references to the oflline CSS after
4063 * the cgroup has been destroyed, such as page cache or reclaimable
4064 * slab objects, that don't need to hang on to the ID. We want to keep
4065 * those dead CSS from occupying IDs, or we might quickly exhaust the
4066 * relatively small ID space and prevent the creation of new cgroups
4067 * even when there are much fewer than 64k cgroups - possibly none.
4068 *
4069 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4070 * be freed and recycled when it's no longer needed, which is usually
4071 * when the CSS is offlined.
4072 *
4073 * The only exception to that are records of swapped out tmpfs/shmem
4074 * pages that need to be attributed to live ancestors on swapin. But
4075 * those references are manageable from userspace.
4076 */
4077
4078static DEFINE_IDR(mem_cgroup_idr);
4079
4080static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4081{
4082 atomic_inc(&memcg->id.ref);
4083}
4084
1f47b61f
VD
4085static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4086{
4087 while (!atomic_inc_not_zero(&memcg->id.ref)) {
4088 /*
4089 * The root cgroup cannot be destroyed, so it's refcount must
4090 * always be >= 1.
4091 */
4092 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
4093 VM_BUG_ON(1);
4094 break;
4095 }
4096 memcg = parent_mem_cgroup(memcg);
4097 if (!memcg)
4098 memcg = root_mem_cgroup;
4099 }
4100 return memcg;
4101}
4102
73f576c0
JW
4103static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4104{
4105 if (atomic_dec_and_test(&memcg->id.ref)) {
4106 idr_remove(&mem_cgroup_idr, memcg->id.id);
4107 memcg->id.id = 0;
4108
4109 /* Memcg ID pins CSS */
4110 css_put(&memcg->css);
4111 }
4112}
4113
4114/**
4115 * mem_cgroup_from_id - look up a memcg from a memcg id
4116 * @id: the memcg id to look up
4117 *
4118 * Caller must hold rcu_read_lock().
4119 */
4120struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4121{
4122 WARN_ON_ONCE(!rcu_read_lock_held());
4123 return idr_find(&mem_cgroup_idr, id);
4124}
4125
ef8f2327 4126static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4127{
4128 struct mem_cgroup_per_node *pn;
ef8f2327 4129 int tmp = node;
1ecaab2b
KH
4130 /*
4131 * This routine is called against possible nodes.
4132 * But it's BUG to call kmalloc() against offline node.
4133 *
4134 * TODO: this routine can waste much memory for nodes which will
4135 * never be onlined. It's better to use memory hotplug callback
4136 * function.
4137 */
41e3355d
KH
4138 if (!node_state(node, N_NORMAL_MEMORY))
4139 tmp = -1;
17295c88 4140 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4141 if (!pn)
4142 return 1;
1ecaab2b 4143
ef8f2327
MG
4144 lruvec_init(&pn->lruvec);
4145 pn->usage_in_excess = 0;
4146 pn->on_tree = false;
4147 pn->memcg = memcg;
4148
54f72fe0 4149 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4150 return 0;
4151}
4152
ef8f2327 4153static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4154{
54f72fe0 4155 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4156}
4157
0b8f73e1 4158static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4159{
c8b2a36f 4160 int node;
59927fb9 4161
0b8f73e1 4162 memcg_wb_domain_exit(memcg);
c8b2a36f 4163 for_each_node(node)
ef8f2327 4164 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4165 free_percpu(memcg->stat);
8ff69e2c 4166 kfree(memcg);
59927fb9 4167}
3afe36b1 4168
0b8f73e1 4169static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4170{
d142e3e6 4171 struct mem_cgroup *memcg;
0b8f73e1 4172 size_t size;
6d12e2d8 4173 int node;
8cdea7c0 4174
0b8f73e1
JW
4175 size = sizeof(struct mem_cgroup);
4176 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4177
4178 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4179 if (!memcg)
0b8f73e1
JW
4180 return NULL;
4181
73f576c0
JW
4182 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4183 1, MEM_CGROUP_ID_MAX,
4184 GFP_KERNEL);
4185 if (memcg->id.id < 0)
4186 goto fail;
4187
0b8f73e1
JW
4188 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4189 if (!memcg->stat)
4190 goto fail;
78fb7466 4191
3ed28fa1 4192 for_each_node(node)
ef8f2327 4193 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4194 goto fail;
f64c3f54 4195
0b8f73e1
JW
4196 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4197 goto fail;
28dbc4b6 4198
f7e1cb6e 4199 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4200 memcg->last_scanned_node = MAX_NUMNODES;
4201 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4202 mutex_init(&memcg->thresholds_lock);
4203 spin_lock_init(&memcg->move_lock);
70ddf637 4204 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4205 INIT_LIST_HEAD(&memcg->event_list);
4206 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4207 memcg->socket_pressure = jiffies;
127424c8 4208#ifndef CONFIG_SLOB
900a38f0 4209 memcg->kmemcg_id = -1;
900a38f0 4210#endif
52ebea74
TH
4211#ifdef CONFIG_CGROUP_WRITEBACK
4212 INIT_LIST_HEAD(&memcg->cgwb_list);
4213#endif
73f576c0 4214 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4215 return memcg;
4216fail:
73f576c0
JW
4217 if (memcg->id.id > 0)
4218 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4219 mem_cgroup_free(memcg);
4220 return NULL;
d142e3e6
GC
4221}
4222
0b8f73e1
JW
4223static struct cgroup_subsys_state * __ref
4224mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4225{
0b8f73e1
JW
4226 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4227 struct mem_cgroup *memcg;
4228 long error = -ENOMEM;
d142e3e6 4229
0b8f73e1
JW
4230 memcg = mem_cgroup_alloc();
4231 if (!memcg)
4232 return ERR_PTR(error);
d142e3e6 4233
0b8f73e1
JW
4234 memcg->high = PAGE_COUNTER_MAX;
4235 memcg->soft_limit = PAGE_COUNTER_MAX;
4236 if (parent) {
4237 memcg->swappiness = mem_cgroup_swappiness(parent);
4238 memcg->oom_kill_disable = parent->oom_kill_disable;
4239 }
4240 if (parent && parent->use_hierarchy) {
4241 memcg->use_hierarchy = true;
3e32cb2e 4242 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4243 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4244 page_counter_init(&memcg->memsw, &parent->memsw);
4245 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4246 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4247 } else {
3e32cb2e 4248 page_counter_init(&memcg->memory, NULL);
37e84351 4249 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4250 page_counter_init(&memcg->memsw, NULL);
4251 page_counter_init(&memcg->kmem, NULL);
0db15298 4252 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4253 /*
4254 * Deeper hierachy with use_hierarchy == false doesn't make
4255 * much sense so let cgroup subsystem know about this
4256 * unfortunate state in our controller.
4257 */
d142e3e6 4258 if (parent != root_mem_cgroup)
073219e9 4259 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4260 }
d6441637 4261
0b8f73e1
JW
4262 /* The following stuff does not apply to the root */
4263 if (!parent) {
4264 root_mem_cgroup = memcg;
4265 return &memcg->css;
4266 }
4267
b313aeee 4268 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4269 if (error)
4270 goto fail;
127424c8 4271
f7e1cb6e 4272 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4273 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4274
0b8f73e1
JW
4275 return &memcg->css;
4276fail:
4277 mem_cgroup_free(memcg);
ea3a9645 4278 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4279}
4280
73f576c0 4281static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4282{
73f576c0
JW
4283 /* Online state pins memcg ID, memcg ID pins CSS */
4284 mem_cgroup_id_get(mem_cgroup_from_css(css));
4285 css_get(css);
2f7dd7a4 4286 return 0;
8cdea7c0
BS
4287}
4288
eb95419b 4289static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4290{
eb95419b 4291 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4292 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4293
4294 /*
4295 * Unregister events and notify userspace.
4296 * Notify userspace about cgroup removing only after rmdir of cgroup
4297 * directory to avoid race between userspace and kernelspace.
4298 */
fba94807
TH
4299 spin_lock(&memcg->event_list_lock);
4300 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4301 list_del_init(&event->list);
4302 schedule_work(&event->remove);
4303 }
fba94807 4304 spin_unlock(&memcg->event_list_lock);
ec64f515 4305
567e9ab2 4306 memcg_offline_kmem(memcg);
52ebea74 4307 wb_memcg_offline(memcg);
73f576c0
JW
4308
4309 mem_cgroup_id_put(memcg);
df878fb0
KH
4310}
4311
6df38689
VD
4312static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4313{
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4315
4316 invalidate_reclaim_iterators(memcg);
4317}
4318
eb95419b 4319static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4320{
eb95419b 4321 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4322
f7e1cb6e 4323 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4324 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4325
0db15298 4326 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4327 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4328
0b8f73e1
JW
4329 vmpressure_cleanup(&memcg->vmpressure);
4330 cancel_work_sync(&memcg->high_work);
4331 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4332 memcg_free_kmem(memcg);
0b8f73e1 4333 mem_cgroup_free(memcg);
8cdea7c0
BS
4334}
4335
1ced953b
TH
4336/**
4337 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4338 * @css: the target css
4339 *
4340 * Reset the states of the mem_cgroup associated with @css. This is
4341 * invoked when the userland requests disabling on the default hierarchy
4342 * but the memcg is pinned through dependency. The memcg should stop
4343 * applying policies and should revert to the vanilla state as it may be
4344 * made visible again.
4345 *
4346 * The current implementation only resets the essential configurations.
4347 * This needs to be expanded to cover all the visible parts.
4348 */
4349static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4350{
4351 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4352
d334c9bc
VD
4353 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4354 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4355 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4356 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4357 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4358 memcg->low = 0;
4359 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4360 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4361 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4362}
4363
02491447 4364#ifdef CONFIG_MMU
7dc74be0 4365/* Handlers for move charge at task migration. */
854ffa8d 4366static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4367{
05b84301 4368 int ret;
9476db97 4369
d0164adc
MG
4370 /* Try a single bulk charge without reclaim first, kswapd may wake */
4371 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4372 if (!ret) {
854ffa8d 4373 mc.precharge += count;
854ffa8d
DN
4374 return ret;
4375 }
9476db97
JW
4376
4377 /* Try charges one by one with reclaim */
854ffa8d 4378 while (count--) {
00501b53 4379 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4380 if (ret)
38c5d72f 4381 return ret;
854ffa8d 4382 mc.precharge++;
9476db97 4383 cond_resched();
854ffa8d 4384 }
9476db97 4385 return 0;
4ffef5fe
DN
4386}
4387
4ffef5fe
DN
4388union mc_target {
4389 struct page *page;
02491447 4390 swp_entry_t ent;
4ffef5fe
DN
4391};
4392
4ffef5fe 4393enum mc_target_type {
8d32ff84 4394 MC_TARGET_NONE = 0,
4ffef5fe 4395 MC_TARGET_PAGE,
02491447 4396 MC_TARGET_SWAP,
4ffef5fe
DN
4397};
4398
90254a65
DN
4399static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4400 unsigned long addr, pte_t ptent)
4ffef5fe 4401{
90254a65 4402 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4403
90254a65
DN
4404 if (!page || !page_mapped(page))
4405 return NULL;
4406 if (PageAnon(page)) {
1dfab5ab 4407 if (!(mc.flags & MOVE_ANON))
90254a65 4408 return NULL;
1dfab5ab
JW
4409 } else {
4410 if (!(mc.flags & MOVE_FILE))
4411 return NULL;
4412 }
90254a65
DN
4413 if (!get_page_unless_zero(page))
4414 return NULL;
4415
4416 return page;
4417}
4418
4b91355e 4419#ifdef CONFIG_SWAP
90254a65 4420static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4421 pte_t ptent, swp_entry_t *entry)
90254a65 4422{
90254a65
DN
4423 struct page *page = NULL;
4424 swp_entry_t ent = pte_to_swp_entry(ptent);
4425
1dfab5ab 4426 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4427 return NULL;
4b91355e
KH
4428 /*
4429 * Because lookup_swap_cache() updates some statistics counter,
4430 * we call find_get_page() with swapper_space directly.
4431 */
33806f06 4432 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4433 if (do_memsw_account())
90254a65
DN
4434 entry->val = ent.val;
4435
4436 return page;
4437}
4b91355e
KH
4438#else
4439static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4440 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4441{
4442 return NULL;
4443}
4444#endif
90254a65 4445
87946a72
DN
4446static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4447 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4448{
4449 struct page *page = NULL;
87946a72
DN
4450 struct address_space *mapping;
4451 pgoff_t pgoff;
4452
4453 if (!vma->vm_file) /* anonymous vma */
4454 return NULL;
1dfab5ab 4455 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4456 return NULL;
4457
87946a72 4458 mapping = vma->vm_file->f_mapping;
0661a336 4459 pgoff = linear_page_index(vma, addr);
87946a72
DN
4460
4461 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4462#ifdef CONFIG_SWAP
4463 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4464 if (shmem_mapping(mapping)) {
4465 page = find_get_entry(mapping, pgoff);
4466 if (radix_tree_exceptional_entry(page)) {
4467 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4468 if (do_memsw_account())
139b6a6f
JW
4469 *entry = swp;
4470 page = find_get_page(swap_address_space(swp), swp.val);
4471 }
4472 } else
4473 page = find_get_page(mapping, pgoff);
4474#else
4475 page = find_get_page(mapping, pgoff);
aa3b1895 4476#endif
87946a72
DN
4477 return page;
4478}
4479
b1b0deab
CG
4480/**
4481 * mem_cgroup_move_account - move account of the page
4482 * @page: the page
25843c2b 4483 * @compound: charge the page as compound or small page
b1b0deab
CG
4484 * @from: mem_cgroup which the page is moved from.
4485 * @to: mem_cgroup which the page is moved to. @from != @to.
4486 *
3ac808fd 4487 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4488 *
4489 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4490 * from old cgroup.
4491 */
4492static int mem_cgroup_move_account(struct page *page,
f627c2f5 4493 bool compound,
b1b0deab
CG
4494 struct mem_cgroup *from,
4495 struct mem_cgroup *to)
4496{
4497 unsigned long flags;
f627c2f5 4498 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4499 int ret;
c4843a75 4500 bool anon;
b1b0deab
CG
4501
4502 VM_BUG_ON(from == to);
4503 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4504 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4505
4506 /*
6a93ca8f 4507 * Prevent mem_cgroup_migrate() from looking at
45637bab 4508 * page->mem_cgroup of its source page while we change it.
b1b0deab 4509 */
f627c2f5 4510 ret = -EBUSY;
b1b0deab
CG
4511 if (!trylock_page(page))
4512 goto out;
4513
4514 ret = -EINVAL;
4515 if (page->mem_cgroup != from)
4516 goto out_unlock;
4517
c4843a75
GT
4518 anon = PageAnon(page);
4519
b1b0deab
CG
4520 spin_lock_irqsave(&from->move_lock, flags);
4521
c4843a75 4522 if (!anon && page_mapped(page)) {
b1b0deab
CG
4523 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4524 nr_pages);
4525 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4526 nr_pages);
4527 }
4528
c4843a75
GT
4529 /*
4530 * move_lock grabbed above and caller set from->moving_account, so
4531 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4532 * So mapping should be stable for dirty pages.
4533 */
4534 if (!anon && PageDirty(page)) {
4535 struct address_space *mapping = page_mapping(page);
4536
4537 if (mapping_cap_account_dirty(mapping)) {
4538 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4539 nr_pages);
4540 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4541 nr_pages);
4542 }
4543 }
4544
b1b0deab
CG
4545 if (PageWriteback(page)) {
4546 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4547 nr_pages);
4548 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4549 nr_pages);
4550 }
4551
4552 /*
4553 * It is safe to change page->mem_cgroup here because the page
4554 * is referenced, charged, and isolated - we can't race with
4555 * uncharging, charging, migration, or LRU putback.
4556 */
4557
4558 /* caller should have done css_get */
4559 page->mem_cgroup = to;
4560 spin_unlock_irqrestore(&from->move_lock, flags);
4561
4562 ret = 0;
4563
4564 local_irq_disable();
f627c2f5 4565 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4566 memcg_check_events(to, page);
f627c2f5 4567 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4568 memcg_check_events(from, page);
4569 local_irq_enable();
4570out_unlock:
4571 unlock_page(page);
4572out:
4573 return ret;
4574}
4575
7cf7806c
LR
4576/**
4577 * get_mctgt_type - get target type of moving charge
4578 * @vma: the vma the pte to be checked belongs
4579 * @addr: the address corresponding to the pte to be checked
4580 * @ptent: the pte to be checked
4581 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4582 *
4583 * Returns
4584 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4585 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4586 * move charge. if @target is not NULL, the page is stored in target->page
4587 * with extra refcnt got(Callers should handle it).
4588 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4589 * target for charge migration. if @target is not NULL, the entry is stored
4590 * in target->ent.
4591 *
4592 * Called with pte lock held.
4593 */
4594
8d32ff84 4595static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4596 unsigned long addr, pte_t ptent, union mc_target *target)
4597{
4598 struct page *page = NULL;
8d32ff84 4599 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4600 swp_entry_t ent = { .val = 0 };
4601
4602 if (pte_present(ptent))
4603 page = mc_handle_present_pte(vma, addr, ptent);
4604 else if (is_swap_pte(ptent))
48406ef8 4605 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4606 else if (pte_none(ptent))
87946a72 4607 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4608
4609 if (!page && !ent.val)
8d32ff84 4610 return ret;
02491447 4611 if (page) {
02491447 4612 /*
0a31bc97 4613 * Do only loose check w/o serialization.
1306a85a 4614 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4615 * not under LRU exclusion.
02491447 4616 */
1306a85a 4617 if (page->mem_cgroup == mc.from) {
02491447
DN
4618 ret = MC_TARGET_PAGE;
4619 if (target)
4620 target->page = page;
4621 }
4622 if (!ret || !target)
4623 put_page(page);
4624 }
90254a65
DN
4625 /* There is a swap entry and a page doesn't exist or isn't charged */
4626 if (ent.val && !ret &&
34c00c31 4627 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4628 ret = MC_TARGET_SWAP;
4629 if (target)
4630 target->ent = ent;
4ffef5fe 4631 }
4ffef5fe
DN
4632 return ret;
4633}
4634
12724850
NH
4635#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4636/*
4637 * We don't consider swapping or file mapped pages because THP does not
4638 * support them for now.
4639 * Caller should make sure that pmd_trans_huge(pmd) is true.
4640 */
4641static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643{
4644 struct page *page = NULL;
12724850
NH
4645 enum mc_target_type ret = MC_TARGET_NONE;
4646
4647 page = pmd_page(pmd);
309381fe 4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4649 if (!(mc.flags & MOVE_ANON))
12724850 4650 return ret;
1306a85a 4651 if (page->mem_cgroup == mc.from) {
12724850
NH
4652 ret = MC_TARGET_PAGE;
4653 if (target) {
4654 get_page(page);
4655 target->page = page;
4656 }
4657 }
4658 return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662 unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664 return MC_TARGET_NONE;
4665}
4666#endif
4667
4ffef5fe
DN
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669 unsigned long addr, unsigned long end,
4670 struct mm_walk *walk)
4671{
26bcd64a 4672 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4673 pte_t *pte;
4674 spinlock_t *ptl;
4675
b6ec57f4
KS
4676 ptl = pmd_trans_huge_lock(pmd, vma);
4677 if (ptl) {
12724850
NH
4678 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4679 mc.precharge += HPAGE_PMD_NR;
bf929152 4680 spin_unlock(ptl);
1a5a9906 4681 return 0;
12724850 4682 }
03319327 4683
45f83cef
AA
4684 if (pmd_trans_unstable(pmd))
4685 return 0;
4ffef5fe
DN
4686 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4687 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4688 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4689 mc.precharge++; /* increment precharge temporarily */
4690 pte_unmap_unlock(pte - 1, ptl);
4691 cond_resched();
4692
7dc74be0
DN
4693 return 0;
4694}
4695
4ffef5fe
DN
4696static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4697{
4698 unsigned long precharge;
4ffef5fe 4699
26bcd64a
NH
4700 struct mm_walk mem_cgroup_count_precharge_walk = {
4701 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4702 .mm = mm,
4703 };
dfe076b0 4704 down_read(&mm->mmap_sem);
26bcd64a 4705 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4706 up_read(&mm->mmap_sem);
4ffef5fe
DN
4707
4708 precharge = mc.precharge;
4709 mc.precharge = 0;
4710
4711 return precharge;
4712}
4713
4ffef5fe
DN
4714static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4715{
dfe076b0
DN
4716 unsigned long precharge = mem_cgroup_count_precharge(mm);
4717
4718 VM_BUG_ON(mc.moving_task);
4719 mc.moving_task = current;
4720 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4721}
4722
dfe076b0
DN
4723/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4724static void __mem_cgroup_clear_mc(void)
4ffef5fe 4725{
2bd9bb20
KH
4726 struct mem_cgroup *from = mc.from;
4727 struct mem_cgroup *to = mc.to;
4728
4ffef5fe 4729 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4730 if (mc.precharge) {
00501b53 4731 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4732 mc.precharge = 0;
4733 }
4734 /*
4735 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4736 * we must uncharge here.
4737 */
4738 if (mc.moved_charge) {
00501b53 4739 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4740 mc.moved_charge = 0;
4ffef5fe 4741 }
483c30b5
DN
4742 /* we must fixup refcnts and charges */
4743 if (mc.moved_swap) {
483c30b5 4744 /* uncharge swap account from the old cgroup */
ce00a967 4745 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4746 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4747
05b84301 4748 /*
3e32cb2e
JW
4749 * we charged both to->memory and to->memsw, so we
4750 * should uncharge to->memory.
05b84301 4751 */
ce00a967 4752 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4753 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4754
e8ea14cc 4755 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4756
4050377b 4757 /* we've already done css_get(mc.to) */
483c30b5
DN
4758 mc.moved_swap = 0;
4759 }
dfe076b0
DN
4760 memcg_oom_recover(from);
4761 memcg_oom_recover(to);
4762 wake_up_all(&mc.waitq);
4763}
4764
4765static void mem_cgroup_clear_mc(void)
4766{
264a0ae1
TH
4767 struct mm_struct *mm = mc.mm;
4768
dfe076b0
DN
4769 /*
4770 * we must clear moving_task before waking up waiters at the end of
4771 * task migration.
4772 */
4773 mc.moving_task = NULL;
4774 __mem_cgroup_clear_mc();
2bd9bb20 4775 spin_lock(&mc.lock);
4ffef5fe
DN
4776 mc.from = NULL;
4777 mc.to = NULL;
264a0ae1 4778 mc.mm = NULL;
2bd9bb20 4779 spin_unlock(&mc.lock);
264a0ae1
TH
4780
4781 mmput(mm);
4ffef5fe
DN
4782}
4783
1f7dd3e5 4784static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4785{
1f7dd3e5 4786 struct cgroup_subsys_state *css;
eed67d75 4787 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4788 struct mem_cgroup *from;
4530eddb 4789 struct task_struct *leader, *p;
9f2115f9 4790 struct mm_struct *mm;
1dfab5ab 4791 unsigned long move_flags;
9f2115f9 4792 int ret = 0;
7dc74be0 4793
1f7dd3e5
TH
4794 /* charge immigration isn't supported on the default hierarchy */
4795 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4796 return 0;
4797
4530eddb
TH
4798 /*
4799 * Multi-process migrations only happen on the default hierarchy
4800 * where charge immigration is not used. Perform charge
4801 * immigration if @tset contains a leader and whine if there are
4802 * multiple.
4803 */
4804 p = NULL;
1f7dd3e5 4805 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4806 WARN_ON_ONCE(p);
4807 p = leader;
1f7dd3e5 4808 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4809 }
4810 if (!p)
4811 return 0;
4812
1f7dd3e5
TH
4813 /*
4814 * We are now commited to this value whatever it is. Changes in this
4815 * tunable will only affect upcoming migrations, not the current one.
4816 * So we need to save it, and keep it going.
4817 */
4818 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4819 if (!move_flags)
4820 return 0;
4821
9f2115f9
TH
4822 from = mem_cgroup_from_task(p);
4823
4824 VM_BUG_ON(from == memcg);
4825
4826 mm = get_task_mm(p);
4827 if (!mm)
4828 return 0;
4829 /* We move charges only when we move a owner of the mm */
4830 if (mm->owner == p) {
4831 VM_BUG_ON(mc.from);
4832 VM_BUG_ON(mc.to);
4833 VM_BUG_ON(mc.precharge);
4834 VM_BUG_ON(mc.moved_charge);
4835 VM_BUG_ON(mc.moved_swap);
4836
4837 spin_lock(&mc.lock);
264a0ae1 4838 mc.mm = mm;
9f2115f9
TH
4839 mc.from = from;
4840 mc.to = memcg;
4841 mc.flags = move_flags;
4842 spin_unlock(&mc.lock);
4843 /* We set mc.moving_task later */
4844
4845 ret = mem_cgroup_precharge_mc(mm);
4846 if (ret)
4847 mem_cgroup_clear_mc();
264a0ae1
TH
4848 } else {
4849 mmput(mm);
7dc74be0
DN
4850 }
4851 return ret;
4852}
4853
1f7dd3e5 4854static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4855{
4e2f245d
JW
4856 if (mc.to)
4857 mem_cgroup_clear_mc();
7dc74be0
DN
4858}
4859
4ffef5fe
DN
4860static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4861 unsigned long addr, unsigned long end,
4862 struct mm_walk *walk)
7dc74be0 4863{
4ffef5fe 4864 int ret = 0;
26bcd64a 4865 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4866 pte_t *pte;
4867 spinlock_t *ptl;
12724850
NH
4868 enum mc_target_type target_type;
4869 union mc_target target;
4870 struct page *page;
4ffef5fe 4871
b6ec57f4
KS
4872 ptl = pmd_trans_huge_lock(pmd, vma);
4873 if (ptl) {
62ade86a 4874 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4875 spin_unlock(ptl);
12724850
NH
4876 return 0;
4877 }
4878 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4879 if (target_type == MC_TARGET_PAGE) {
4880 page = target.page;
4881 if (!isolate_lru_page(page)) {
f627c2f5 4882 if (!mem_cgroup_move_account(page, true,
1306a85a 4883 mc.from, mc.to)) {
12724850
NH
4884 mc.precharge -= HPAGE_PMD_NR;
4885 mc.moved_charge += HPAGE_PMD_NR;
4886 }
4887 putback_lru_page(page);
4888 }
4889 put_page(page);
4890 }
bf929152 4891 spin_unlock(ptl);
1a5a9906 4892 return 0;
12724850
NH
4893 }
4894
45f83cef
AA
4895 if (pmd_trans_unstable(pmd))
4896 return 0;
4ffef5fe
DN
4897retry:
4898 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4899 for (; addr != end; addr += PAGE_SIZE) {
4900 pte_t ptent = *(pte++);
02491447 4901 swp_entry_t ent;
4ffef5fe
DN
4902
4903 if (!mc.precharge)
4904 break;
4905
8d32ff84 4906 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4907 case MC_TARGET_PAGE:
4908 page = target.page;
53f9263b
KS
4909 /*
4910 * We can have a part of the split pmd here. Moving it
4911 * can be done but it would be too convoluted so simply
4912 * ignore such a partial THP and keep it in original
4913 * memcg. There should be somebody mapping the head.
4914 */
4915 if (PageTransCompound(page))
4916 goto put;
4ffef5fe
DN
4917 if (isolate_lru_page(page))
4918 goto put;
f627c2f5
KS
4919 if (!mem_cgroup_move_account(page, false,
4920 mc.from, mc.to)) {
4ffef5fe 4921 mc.precharge--;
854ffa8d
DN
4922 /* we uncharge from mc.from later. */
4923 mc.moved_charge++;
4ffef5fe
DN
4924 }
4925 putback_lru_page(page);
8d32ff84 4926put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4927 put_page(page);
4928 break;
02491447
DN
4929 case MC_TARGET_SWAP:
4930 ent = target.ent;
e91cbb42 4931 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4932 mc.precharge--;
483c30b5
DN
4933 /* we fixup refcnts and charges later. */
4934 mc.moved_swap++;
4935 }
02491447 4936 break;
4ffef5fe
DN
4937 default:
4938 break;
4939 }
4940 }
4941 pte_unmap_unlock(pte - 1, ptl);
4942 cond_resched();
4943
4944 if (addr != end) {
4945 /*
4946 * We have consumed all precharges we got in can_attach().
4947 * We try charge one by one, but don't do any additional
4948 * charges to mc.to if we have failed in charge once in attach()
4949 * phase.
4950 */
854ffa8d 4951 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4952 if (!ret)
4953 goto retry;
4954 }
4955
4956 return ret;
4957}
4958
264a0ae1 4959static void mem_cgroup_move_charge(void)
4ffef5fe 4960{
26bcd64a
NH
4961 struct mm_walk mem_cgroup_move_charge_walk = {
4962 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4963 .mm = mc.mm,
26bcd64a 4964 };
4ffef5fe
DN
4965
4966 lru_add_drain_all();
312722cb 4967 /*
81f8c3a4
JW
4968 * Signal lock_page_memcg() to take the memcg's move_lock
4969 * while we're moving its pages to another memcg. Then wait
4970 * for already started RCU-only updates to finish.
312722cb
JW
4971 */
4972 atomic_inc(&mc.from->moving_account);
4973 synchronize_rcu();
dfe076b0 4974retry:
264a0ae1 4975 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4976 /*
4977 * Someone who are holding the mmap_sem might be waiting in
4978 * waitq. So we cancel all extra charges, wake up all waiters,
4979 * and retry. Because we cancel precharges, we might not be able
4980 * to move enough charges, but moving charge is a best-effort
4981 * feature anyway, so it wouldn't be a big problem.
4982 */
4983 __mem_cgroup_clear_mc();
4984 cond_resched();
4985 goto retry;
4986 }
26bcd64a
NH
4987 /*
4988 * When we have consumed all precharges and failed in doing
4989 * additional charge, the page walk just aborts.
4990 */
4991 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4992 up_read(&mc.mm->mmap_sem);
312722cb 4993 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4994}
4995
264a0ae1 4996static void mem_cgroup_move_task(void)
67e465a7 4997{
264a0ae1
TH
4998 if (mc.to) {
4999 mem_cgroup_move_charge();
a433658c 5000 mem_cgroup_clear_mc();
264a0ae1 5001 }
67e465a7 5002}
5cfb80a7 5003#else /* !CONFIG_MMU */
1f7dd3e5 5004static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5005{
5006 return 0;
5007}
1f7dd3e5 5008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5009{
5010}
264a0ae1 5011static void mem_cgroup_move_task(void)
5cfb80a7
DN
5012{
5013}
5014#endif
67e465a7 5015
f00baae7
TH
5016/*
5017 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5018 * to verify whether we're attached to the default hierarchy on each mount
5019 * attempt.
f00baae7 5020 */
eb95419b 5021static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5022{
5023 /*
aa6ec29b 5024 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5025 * guarantees that @root doesn't have any children, so turning it
5026 * on for the root memcg is enough.
5027 */
9e10a130 5028 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5029 root_mem_cgroup->use_hierarchy = true;
5030 else
5031 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5032}
5033
241994ed
JW
5034static u64 memory_current_read(struct cgroup_subsys_state *css,
5035 struct cftype *cft)
5036{
f5fc3c5d
JW
5037 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5038
5039 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5040}
5041
5042static int memory_low_show(struct seq_file *m, void *v)
5043{
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5045 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5046
5047 if (low == PAGE_COUNTER_MAX)
d2973697 5048 seq_puts(m, "max\n");
241994ed
JW
5049 else
5050 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5051
5052 return 0;
5053}
5054
5055static ssize_t memory_low_write(struct kernfs_open_file *of,
5056 char *buf, size_t nbytes, loff_t off)
5057{
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5059 unsigned long low;
5060 int err;
5061
5062 buf = strstrip(buf);
d2973697 5063 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5064 if (err)
5065 return err;
5066
5067 memcg->low = low;
5068
5069 return nbytes;
5070}
5071
5072static int memory_high_show(struct seq_file *m, void *v)
5073{
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5075 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5076
5077 if (high == PAGE_COUNTER_MAX)
d2973697 5078 seq_puts(m, "max\n");
241994ed
JW
5079 else
5080 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5081
5082 return 0;
5083}
5084
5085static ssize_t memory_high_write(struct kernfs_open_file *of,
5086 char *buf, size_t nbytes, loff_t off)
5087{
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5089 unsigned long nr_pages;
241994ed
JW
5090 unsigned long high;
5091 int err;
5092
5093 buf = strstrip(buf);
d2973697 5094 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5095 if (err)
5096 return err;
5097
5098 memcg->high = high;
5099
588083bb
JW
5100 nr_pages = page_counter_read(&memcg->memory);
5101 if (nr_pages > high)
5102 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5103 GFP_KERNEL, true);
5104
2529bb3a 5105 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5106 return nbytes;
5107}
5108
5109static int memory_max_show(struct seq_file *m, void *v)
5110{
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5112 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5113
5114 if (max == PAGE_COUNTER_MAX)
d2973697 5115 seq_puts(m, "max\n");
241994ed
JW
5116 else
5117 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5118
5119 return 0;
5120}
5121
5122static ssize_t memory_max_write(struct kernfs_open_file *of,
5123 char *buf, size_t nbytes, loff_t off)
5124{
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5126 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5127 bool drained = false;
241994ed
JW
5128 unsigned long max;
5129 int err;
5130
5131 buf = strstrip(buf);
d2973697 5132 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5133 if (err)
5134 return err;
5135
b6e6edcf
JW
5136 xchg(&memcg->memory.limit, max);
5137
5138 for (;;) {
5139 unsigned long nr_pages = page_counter_read(&memcg->memory);
5140
5141 if (nr_pages <= max)
5142 break;
5143
5144 if (signal_pending(current)) {
5145 err = -EINTR;
5146 break;
5147 }
5148
5149 if (!drained) {
5150 drain_all_stock(memcg);
5151 drained = true;
5152 continue;
5153 }
5154
5155 if (nr_reclaims) {
5156 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5157 GFP_KERNEL, true))
5158 nr_reclaims--;
5159 continue;
5160 }
5161
5162 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5163 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5164 break;
5165 }
241994ed 5166
2529bb3a 5167 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5168 return nbytes;
5169}
5170
5171static int memory_events_show(struct seq_file *m, void *v)
5172{
5173 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5174
5175 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5176 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5177 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5178 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5179
5180 return 0;
5181}
5182
587d9f72
JW
5183static int memory_stat_show(struct seq_file *m, void *v)
5184{
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5186 unsigned long stat[MEMCG_NR_STAT];
5187 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5188 int i;
5189
5190 /*
5191 * Provide statistics on the state of the memory subsystem as
5192 * well as cumulative event counters that show past behavior.
5193 *
5194 * This list is ordered following a combination of these gradients:
5195 * 1) generic big picture -> specifics and details
5196 * 2) reflecting userspace activity -> reflecting kernel heuristics
5197 *
5198 * Current memory state:
5199 */
5200
72b54e73
VD
5201 tree_stat(memcg, stat);
5202 tree_events(memcg, events);
5203
587d9f72 5204 seq_printf(m, "anon %llu\n",
72b54e73 5205 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5206 seq_printf(m, "file %llu\n",
72b54e73 5207 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5208 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5209 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5210 seq_printf(m, "slab %llu\n",
5211 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5212 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5213 seq_printf(m, "sock %llu\n",
72b54e73 5214 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5215
5216 seq_printf(m, "file_mapped %llu\n",
72b54e73 5217 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5218 seq_printf(m, "file_dirty %llu\n",
72b54e73 5219 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5220 seq_printf(m, "file_writeback %llu\n",
72b54e73 5221 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5222
5223 for (i = 0; i < NR_LRU_LISTS; i++) {
5224 struct mem_cgroup *mi;
5225 unsigned long val = 0;
5226
5227 for_each_mem_cgroup_tree(mi, memcg)
5228 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5229 seq_printf(m, "%s %llu\n",
5230 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5231 }
5232
27ee57c9
VD
5233 seq_printf(m, "slab_reclaimable %llu\n",
5234 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5235 seq_printf(m, "slab_unreclaimable %llu\n",
5236 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5237
587d9f72
JW
5238 /* Accumulated memory events */
5239
5240 seq_printf(m, "pgfault %lu\n",
72b54e73 5241 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5242 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5243 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5244
5245 return 0;
5246}
5247
241994ed
JW
5248static struct cftype memory_files[] = {
5249 {
5250 .name = "current",
f5fc3c5d 5251 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5252 .read_u64 = memory_current_read,
5253 },
5254 {
5255 .name = "low",
5256 .flags = CFTYPE_NOT_ON_ROOT,
5257 .seq_show = memory_low_show,
5258 .write = memory_low_write,
5259 },
5260 {
5261 .name = "high",
5262 .flags = CFTYPE_NOT_ON_ROOT,
5263 .seq_show = memory_high_show,
5264 .write = memory_high_write,
5265 },
5266 {
5267 .name = "max",
5268 .flags = CFTYPE_NOT_ON_ROOT,
5269 .seq_show = memory_max_show,
5270 .write = memory_max_write,
5271 },
5272 {
5273 .name = "events",
5274 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5275 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5276 .seq_show = memory_events_show,
5277 },
587d9f72
JW
5278 {
5279 .name = "stat",
5280 .flags = CFTYPE_NOT_ON_ROOT,
5281 .seq_show = memory_stat_show,
5282 },
241994ed
JW
5283 { } /* terminate */
5284};
5285
073219e9 5286struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5287 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5288 .css_online = mem_cgroup_css_online,
92fb9748 5289 .css_offline = mem_cgroup_css_offline,
6df38689 5290 .css_released = mem_cgroup_css_released,
92fb9748 5291 .css_free = mem_cgroup_css_free,
1ced953b 5292 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5293 .can_attach = mem_cgroup_can_attach,
5294 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5295 .post_attach = mem_cgroup_move_task,
f00baae7 5296 .bind = mem_cgroup_bind,
241994ed
JW
5297 .dfl_cftypes = memory_files,
5298 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5299 .early_init = 0,
8cdea7c0 5300};
c077719b 5301
241994ed
JW
5302/**
5303 * mem_cgroup_low - check if memory consumption is below the normal range
5304 * @root: the highest ancestor to consider
5305 * @memcg: the memory cgroup to check
5306 *
5307 * Returns %true if memory consumption of @memcg, and that of all
5308 * configurable ancestors up to @root, is below the normal range.
5309 */
5310bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5311{
5312 if (mem_cgroup_disabled())
5313 return false;
5314
5315 /*
5316 * The toplevel group doesn't have a configurable range, so
5317 * it's never low when looked at directly, and it is not
5318 * considered an ancestor when assessing the hierarchy.
5319 */
5320
5321 if (memcg == root_mem_cgroup)
5322 return false;
5323
4e54dede 5324 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5325 return false;
5326
5327 while (memcg != root) {
5328 memcg = parent_mem_cgroup(memcg);
5329
5330 if (memcg == root_mem_cgroup)
5331 break;
5332
4e54dede 5333 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5334 return false;
5335 }
5336 return true;
5337}
5338
00501b53
JW
5339/**
5340 * mem_cgroup_try_charge - try charging a page
5341 * @page: page to charge
5342 * @mm: mm context of the victim
5343 * @gfp_mask: reclaim mode
5344 * @memcgp: charged memcg return
25843c2b 5345 * @compound: charge the page as compound or small page
00501b53
JW
5346 *
5347 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5348 * pages according to @gfp_mask if necessary.
5349 *
5350 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5351 * Otherwise, an error code is returned.
5352 *
5353 * After page->mapping has been set up, the caller must finalize the
5354 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5355 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5356 */
5357int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5358 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5359 bool compound)
00501b53
JW
5360{
5361 struct mem_cgroup *memcg = NULL;
f627c2f5 5362 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5363 int ret = 0;
5364
5365 if (mem_cgroup_disabled())
5366 goto out;
5367
5368 if (PageSwapCache(page)) {
00501b53
JW
5369 /*
5370 * Every swap fault against a single page tries to charge the
5371 * page, bail as early as possible. shmem_unuse() encounters
5372 * already charged pages, too. The USED bit is protected by
5373 * the page lock, which serializes swap cache removal, which
5374 * in turn serializes uncharging.
5375 */
e993d905 5376 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5377 if (page->mem_cgroup)
00501b53 5378 goto out;
e993d905 5379
37e84351 5380 if (do_swap_account) {
e993d905
VD
5381 swp_entry_t ent = { .val = page_private(page), };
5382 unsigned short id = lookup_swap_cgroup_id(ent);
5383
5384 rcu_read_lock();
5385 memcg = mem_cgroup_from_id(id);
5386 if (memcg && !css_tryget_online(&memcg->css))
5387 memcg = NULL;
5388 rcu_read_unlock();
5389 }
00501b53
JW
5390 }
5391
00501b53
JW
5392 if (!memcg)
5393 memcg = get_mem_cgroup_from_mm(mm);
5394
5395 ret = try_charge(memcg, gfp_mask, nr_pages);
5396
5397 css_put(&memcg->css);
00501b53
JW
5398out:
5399 *memcgp = memcg;
5400 return ret;
5401}
5402
5403/**
5404 * mem_cgroup_commit_charge - commit a page charge
5405 * @page: page to charge
5406 * @memcg: memcg to charge the page to
5407 * @lrucare: page might be on LRU already
25843c2b 5408 * @compound: charge the page as compound or small page
00501b53
JW
5409 *
5410 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5411 * after page->mapping has been set up. This must happen atomically
5412 * as part of the page instantiation, i.e. under the page table lock
5413 * for anonymous pages, under the page lock for page and swap cache.
5414 *
5415 * In addition, the page must not be on the LRU during the commit, to
5416 * prevent racing with task migration. If it might be, use @lrucare.
5417 *
5418 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5419 */
5420void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5421 bool lrucare, bool compound)
00501b53 5422{
f627c2f5 5423 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5424
5425 VM_BUG_ON_PAGE(!page->mapping, page);
5426 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5427
5428 if (mem_cgroup_disabled())
5429 return;
5430 /*
5431 * Swap faults will attempt to charge the same page multiple
5432 * times. But reuse_swap_page() might have removed the page
5433 * from swapcache already, so we can't check PageSwapCache().
5434 */
5435 if (!memcg)
5436 return;
5437
6abb5a86
JW
5438 commit_charge(page, memcg, lrucare);
5439
6abb5a86 5440 local_irq_disable();
f627c2f5 5441 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5442 memcg_check_events(memcg, page);
5443 local_irq_enable();
00501b53 5444
7941d214 5445 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5446 swp_entry_t entry = { .val = page_private(page) };
5447 /*
5448 * The swap entry might not get freed for a long time,
5449 * let's not wait for it. The page already received a
5450 * memory+swap charge, drop the swap entry duplicate.
5451 */
5452 mem_cgroup_uncharge_swap(entry);
5453 }
5454}
5455
5456/**
5457 * mem_cgroup_cancel_charge - cancel a page charge
5458 * @page: page to charge
5459 * @memcg: memcg to charge the page to
25843c2b 5460 * @compound: charge the page as compound or small page
00501b53
JW
5461 *
5462 * Cancel a charge transaction started by mem_cgroup_try_charge().
5463 */
f627c2f5
KS
5464void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5465 bool compound)
00501b53 5466{
f627c2f5 5467 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5468
5469 if (mem_cgroup_disabled())
5470 return;
5471 /*
5472 * Swap faults will attempt to charge the same page multiple
5473 * times. But reuse_swap_page() might have removed the page
5474 * from swapcache already, so we can't check PageSwapCache().
5475 */
5476 if (!memcg)
5477 return;
5478
00501b53
JW
5479 cancel_charge(memcg, nr_pages);
5480}
5481
747db954 5482static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5483 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5484 unsigned long nr_huge, unsigned long nr_kmem,
5485 struct page *dummy_page)
747db954 5486{
5e8d35f8 5487 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5488 unsigned long flags;
5489
ce00a967 5490 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5491 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5492 if (do_memsw_account())
18eca2e6 5493 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5494 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5495 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5496 memcg_oom_recover(memcg);
5497 }
747db954
JW
5498
5499 local_irq_save(flags);
5500 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5501 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5502 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5503 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5504 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5505 memcg_check_events(memcg, dummy_page);
5506 local_irq_restore(flags);
e8ea14cc
JW
5507
5508 if (!mem_cgroup_is_root(memcg))
18eca2e6 5509 css_put_many(&memcg->css, nr_pages);
747db954
JW
5510}
5511
5512static void uncharge_list(struct list_head *page_list)
5513{
5514 struct mem_cgroup *memcg = NULL;
747db954
JW
5515 unsigned long nr_anon = 0;
5516 unsigned long nr_file = 0;
5517 unsigned long nr_huge = 0;
5e8d35f8 5518 unsigned long nr_kmem = 0;
747db954 5519 unsigned long pgpgout = 0;
747db954
JW
5520 struct list_head *next;
5521 struct page *page;
5522
8b592656
JW
5523 /*
5524 * Note that the list can be a single page->lru; hence the
5525 * do-while loop instead of a simple list_for_each_entry().
5526 */
747db954
JW
5527 next = page_list->next;
5528 do {
747db954
JW
5529 page = list_entry(next, struct page, lru);
5530 next = page->lru.next;
5531
5532 VM_BUG_ON_PAGE(PageLRU(page), page);
5533 VM_BUG_ON_PAGE(page_count(page), page);
5534
1306a85a 5535 if (!page->mem_cgroup)
747db954
JW
5536 continue;
5537
5538 /*
5539 * Nobody should be changing or seriously looking at
1306a85a 5540 * page->mem_cgroup at this point, we have fully
29833315 5541 * exclusive access to the page.
747db954
JW
5542 */
5543
1306a85a 5544 if (memcg != page->mem_cgroup) {
747db954 5545 if (memcg) {
18eca2e6 5546 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5547 nr_huge, nr_kmem, page);
5548 pgpgout = nr_anon = nr_file =
5549 nr_huge = nr_kmem = 0;
747db954 5550 }
1306a85a 5551 memcg = page->mem_cgroup;
747db954
JW
5552 }
5553
5e8d35f8
VD
5554 if (!PageKmemcg(page)) {
5555 unsigned int nr_pages = 1;
747db954 5556
5e8d35f8
VD
5557 if (PageTransHuge(page)) {
5558 nr_pages <<= compound_order(page);
5e8d35f8
VD
5559 nr_huge += nr_pages;
5560 }
5561 if (PageAnon(page))
5562 nr_anon += nr_pages;
5563 else
5564 nr_file += nr_pages;
5565 pgpgout++;
c4159a75 5566 } else {
5e8d35f8 5567 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5568 __ClearPageKmemcg(page);
5569 }
747db954 5570
1306a85a 5571 page->mem_cgroup = NULL;
747db954
JW
5572 } while (next != page_list);
5573
5574 if (memcg)
18eca2e6 5575 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5576 nr_huge, nr_kmem, page);
747db954
JW
5577}
5578
0a31bc97
JW
5579/**
5580 * mem_cgroup_uncharge - uncharge a page
5581 * @page: page to uncharge
5582 *
5583 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5584 * mem_cgroup_commit_charge().
5585 */
5586void mem_cgroup_uncharge(struct page *page)
5587{
0a31bc97
JW
5588 if (mem_cgroup_disabled())
5589 return;
5590
747db954 5591 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5592 if (!page->mem_cgroup)
0a31bc97
JW
5593 return;
5594
747db954
JW
5595 INIT_LIST_HEAD(&page->lru);
5596 uncharge_list(&page->lru);
5597}
0a31bc97 5598
747db954
JW
5599/**
5600 * mem_cgroup_uncharge_list - uncharge a list of page
5601 * @page_list: list of pages to uncharge
5602 *
5603 * Uncharge a list of pages previously charged with
5604 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5605 */
5606void mem_cgroup_uncharge_list(struct list_head *page_list)
5607{
5608 if (mem_cgroup_disabled())
5609 return;
0a31bc97 5610
747db954
JW
5611 if (!list_empty(page_list))
5612 uncharge_list(page_list);
0a31bc97
JW
5613}
5614
5615/**
6a93ca8f
JW
5616 * mem_cgroup_migrate - charge a page's replacement
5617 * @oldpage: currently circulating page
5618 * @newpage: replacement page
0a31bc97 5619 *
6a93ca8f
JW
5620 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5621 * be uncharged upon free.
0a31bc97
JW
5622 *
5623 * Both pages must be locked, @newpage->mapping must be set up.
5624 */
6a93ca8f 5625void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5626{
29833315 5627 struct mem_cgroup *memcg;
44b7a8d3
JW
5628 unsigned int nr_pages;
5629 bool compound;
d93c4130 5630 unsigned long flags;
0a31bc97
JW
5631
5632 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5633 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5634 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5635 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5636 newpage);
0a31bc97
JW
5637
5638 if (mem_cgroup_disabled())
5639 return;
5640
5641 /* Page cache replacement: new page already charged? */
1306a85a 5642 if (newpage->mem_cgroup)
0a31bc97
JW
5643 return;
5644
45637bab 5645 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5646 memcg = oldpage->mem_cgroup;
29833315 5647 if (!memcg)
0a31bc97
JW
5648 return;
5649
44b7a8d3
JW
5650 /* Force-charge the new page. The old one will be freed soon */
5651 compound = PageTransHuge(newpage);
5652 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5653
5654 page_counter_charge(&memcg->memory, nr_pages);
5655 if (do_memsw_account())
5656 page_counter_charge(&memcg->memsw, nr_pages);
5657 css_get_many(&memcg->css, nr_pages);
0a31bc97 5658
9cf7666a 5659 commit_charge(newpage, memcg, false);
44b7a8d3 5660
d93c4130 5661 local_irq_save(flags);
44b7a8d3
JW
5662 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5663 memcg_check_events(memcg, newpage);
d93c4130 5664 local_irq_restore(flags);
0a31bc97
JW
5665}
5666
ef12947c 5667DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5668EXPORT_SYMBOL(memcg_sockets_enabled_key);
5669
5670void sock_update_memcg(struct sock *sk)
5671{
5672 struct mem_cgroup *memcg;
5673
5674 /* Socket cloning can throw us here with sk_cgrp already
5675 * filled. It won't however, necessarily happen from
5676 * process context. So the test for root memcg given
5677 * the current task's memcg won't help us in this case.
5678 *
5679 * Respecting the original socket's memcg is a better
5680 * decision in this case.
5681 */
5682 if (sk->sk_memcg) {
5683 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5684 css_get(&sk->sk_memcg->css);
5685 return;
5686 }
5687
5688 rcu_read_lock();
5689 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5690 if (memcg == root_mem_cgroup)
5691 goto out;
0db15298 5692 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5693 goto out;
f7e1cb6e 5694 if (css_tryget_online(&memcg->css))
11092087 5695 sk->sk_memcg = memcg;
f7e1cb6e 5696out:
11092087
JW
5697 rcu_read_unlock();
5698}
5699EXPORT_SYMBOL(sock_update_memcg);
5700
5701void sock_release_memcg(struct sock *sk)
5702{
5703 WARN_ON(!sk->sk_memcg);
5704 css_put(&sk->sk_memcg->css);
5705}
5706
5707/**
5708 * mem_cgroup_charge_skmem - charge socket memory
5709 * @memcg: memcg to charge
5710 * @nr_pages: number of pages to charge
5711 *
5712 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5713 * @memcg's configured limit, %false if the charge had to be forced.
5714 */
5715bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5716{
f7e1cb6e 5717 gfp_t gfp_mask = GFP_KERNEL;
11092087 5718
f7e1cb6e 5719 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5720 struct page_counter *fail;
f7e1cb6e 5721
0db15298
JW
5722 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5723 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5724 return true;
5725 }
0db15298
JW
5726 page_counter_charge(&memcg->tcpmem, nr_pages);
5727 memcg->tcpmem_pressure = 1;
f7e1cb6e 5728 return false;
11092087 5729 }
d886f4e4 5730
f7e1cb6e
JW
5731 /* Don't block in the packet receive path */
5732 if (in_softirq())
5733 gfp_mask = GFP_NOWAIT;
5734
b2807f07
JW
5735 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5736
f7e1cb6e
JW
5737 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5738 return true;
5739
5740 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5741 return false;
5742}
5743
5744/**
5745 * mem_cgroup_uncharge_skmem - uncharge socket memory
5746 * @memcg - memcg to uncharge
5747 * @nr_pages - number of pages to uncharge
5748 */
5749void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5750{
f7e1cb6e 5751 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5752 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5753 return;
5754 }
d886f4e4 5755
b2807f07
JW
5756 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5757
f7e1cb6e
JW
5758 page_counter_uncharge(&memcg->memory, nr_pages);
5759 css_put_many(&memcg->css, nr_pages);
11092087
JW
5760}
5761
f7e1cb6e
JW
5762static int __init cgroup_memory(char *s)
5763{
5764 char *token;
5765
5766 while ((token = strsep(&s, ",")) != NULL) {
5767 if (!*token)
5768 continue;
5769 if (!strcmp(token, "nosocket"))
5770 cgroup_memory_nosocket = true;
04823c83
VD
5771 if (!strcmp(token, "nokmem"))
5772 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5773 }
5774 return 0;
5775}
5776__setup("cgroup.memory=", cgroup_memory);
11092087 5777
2d11085e 5778/*
1081312f
MH
5779 * subsys_initcall() for memory controller.
5780 *
5781 * Some parts like hotcpu_notifier() have to be initialized from this context
5782 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5783 * everything that doesn't depend on a specific mem_cgroup structure should
5784 * be initialized from here.
2d11085e
MH
5785 */
5786static int __init mem_cgroup_init(void)
5787{
95a045f6
JW
5788 int cpu, node;
5789
2d11085e 5790 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5791
5792 for_each_possible_cpu(cpu)
5793 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5794 drain_local_stock);
5795
5796 for_each_node(node) {
5797 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5798
5799 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5800 node_online(node) ? node : NUMA_NO_NODE);
5801
ef8f2327
MG
5802 rtpn->rb_root = RB_ROOT;
5803 spin_lock_init(&rtpn->lock);
95a045f6
JW
5804 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5805 }
5806
2d11085e
MH
5807 return 0;
5808}
5809subsys_initcall(mem_cgroup_init);
21afa38e
JW
5810
5811#ifdef CONFIG_MEMCG_SWAP
5812/**
5813 * mem_cgroup_swapout - transfer a memsw charge to swap
5814 * @page: page whose memsw charge to transfer
5815 * @entry: swap entry to move the charge to
5816 *
5817 * Transfer the memsw charge of @page to @entry.
5818 */
5819void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5820{
1f47b61f 5821 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5822 unsigned short oldid;
5823
5824 VM_BUG_ON_PAGE(PageLRU(page), page);
5825 VM_BUG_ON_PAGE(page_count(page), page);
5826
7941d214 5827 if (!do_memsw_account())
21afa38e
JW
5828 return;
5829
5830 memcg = page->mem_cgroup;
5831
5832 /* Readahead page, never charged */
5833 if (!memcg)
5834 return;
5835
1f47b61f
VD
5836 /*
5837 * In case the memcg owning these pages has been offlined and doesn't
5838 * have an ID allocated to it anymore, charge the closest online
5839 * ancestor for the swap instead and transfer the memory+swap charge.
5840 */
5841 swap_memcg = mem_cgroup_id_get_online(memcg);
5842 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5843 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5844 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5845
5846 page->mem_cgroup = NULL;
5847
5848 if (!mem_cgroup_is_root(memcg))
5849 page_counter_uncharge(&memcg->memory, 1);
5850
1f47b61f
VD
5851 if (memcg != swap_memcg) {
5852 if (!mem_cgroup_is_root(swap_memcg))
5853 page_counter_charge(&swap_memcg->memsw, 1);
5854 page_counter_uncharge(&memcg->memsw, 1);
5855 }
5856
ce9ce665
SAS
5857 /*
5858 * Interrupts should be disabled here because the caller holds the
5859 * mapping->tree_lock lock which is taken with interrupts-off. It is
5860 * important here to have the interrupts disabled because it is the
5861 * only synchronisation we have for udpating the per-CPU variables.
5862 */
5863 VM_BUG_ON(!irqs_disabled());
f627c2f5 5864 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5865 memcg_check_events(memcg, page);
73f576c0
JW
5866
5867 if (!mem_cgroup_is_root(memcg))
5868 css_put(&memcg->css);
21afa38e
JW
5869}
5870
37e84351
VD
5871/*
5872 * mem_cgroup_try_charge_swap - try charging a swap entry
5873 * @page: page being added to swap
5874 * @entry: swap entry to charge
5875 *
5876 * Try to charge @entry to the memcg that @page belongs to.
5877 *
5878 * Returns 0 on success, -ENOMEM on failure.
5879 */
5880int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5881{
5882 struct mem_cgroup *memcg;
5883 struct page_counter *counter;
5884 unsigned short oldid;
5885
5886 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5887 return 0;
5888
5889 memcg = page->mem_cgroup;
5890
5891 /* Readahead page, never charged */
5892 if (!memcg)
5893 return 0;
5894
1f47b61f
VD
5895 memcg = mem_cgroup_id_get_online(memcg);
5896
37e84351 5897 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5898 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5899 mem_cgroup_id_put(memcg);
37e84351 5900 return -ENOMEM;
1f47b61f 5901 }
37e84351
VD
5902
5903 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5904 VM_BUG_ON_PAGE(oldid, page);
5905 mem_cgroup_swap_statistics(memcg, true);
5906
37e84351
VD
5907 return 0;
5908}
5909
21afa38e
JW
5910/**
5911 * mem_cgroup_uncharge_swap - uncharge a swap entry
5912 * @entry: swap entry to uncharge
5913 *
37e84351 5914 * Drop the swap charge associated with @entry.
21afa38e
JW
5915 */
5916void mem_cgroup_uncharge_swap(swp_entry_t entry)
5917{
5918 struct mem_cgroup *memcg;
5919 unsigned short id;
5920
37e84351 5921 if (!do_swap_account)
21afa38e
JW
5922 return;
5923
5924 id = swap_cgroup_record(entry, 0);
5925 rcu_read_lock();
adbe427b 5926 memcg = mem_cgroup_from_id(id);
21afa38e 5927 if (memcg) {
37e84351
VD
5928 if (!mem_cgroup_is_root(memcg)) {
5929 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5930 page_counter_uncharge(&memcg->swap, 1);
5931 else
5932 page_counter_uncharge(&memcg->memsw, 1);
5933 }
21afa38e 5934 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5935 mem_cgroup_id_put(memcg);
21afa38e
JW
5936 }
5937 rcu_read_unlock();
5938}
5939
d8b38438
VD
5940long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5941{
5942 long nr_swap_pages = get_nr_swap_pages();
5943
5944 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5945 return nr_swap_pages;
5946 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5947 nr_swap_pages = min_t(long, nr_swap_pages,
5948 READ_ONCE(memcg->swap.limit) -
5949 page_counter_read(&memcg->swap));
5950 return nr_swap_pages;
5951}
5952
5ccc5aba
VD
5953bool mem_cgroup_swap_full(struct page *page)
5954{
5955 struct mem_cgroup *memcg;
5956
5957 VM_BUG_ON_PAGE(!PageLocked(page), page);
5958
5959 if (vm_swap_full())
5960 return true;
5961 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5962 return false;
5963
5964 memcg = page->mem_cgroup;
5965 if (!memcg)
5966 return false;
5967
5968 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5969 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5970 return true;
5971
5972 return false;
5973}
5974
21afa38e
JW
5975/* for remember boot option*/
5976#ifdef CONFIG_MEMCG_SWAP_ENABLED
5977static int really_do_swap_account __initdata = 1;
5978#else
5979static int really_do_swap_account __initdata;
5980#endif
5981
5982static int __init enable_swap_account(char *s)
5983{
5984 if (!strcmp(s, "1"))
5985 really_do_swap_account = 1;
5986 else if (!strcmp(s, "0"))
5987 really_do_swap_account = 0;
5988 return 1;
5989}
5990__setup("swapaccount=", enable_swap_account);
5991
37e84351
VD
5992static u64 swap_current_read(struct cgroup_subsys_state *css,
5993 struct cftype *cft)
5994{
5995 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5996
5997 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5998}
5999
6000static int swap_max_show(struct seq_file *m, void *v)
6001{
6002 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6003 unsigned long max = READ_ONCE(memcg->swap.limit);
6004
6005 if (max == PAGE_COUNTER_MAX)
6006 seq_puts(m, "max\n");
6007 else
6008 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6009
6010 return 0;
6011}
6012
6013static ssize_t swap_max_write(struct kernfs_open_file *of,
6014 char *buf, size_t nbytes, loff_t off)
6015{
6016 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6017 unsigned long max;
6018 int err;
6019
6020 buf = strstrip(buf);
6021 err = page_counter_memparse(buf, "max", &max);
6022 if (err)
6023 return err;
6024
6025 mutex_lock(&memcg_limit_mutex);
6026 err = page_counter_limit(&memcg->swap, max);
6027 mutex_unlock(&memcg_limit_mutex);
6028 if (err)
6029 return err;
6030
6031 return nbytes;
6032}
6033
6034static struct cftype swap_files[] = {
6035 {
6036 .name = "swap.current",
6037 .flags = CFTYPE_NOT_ON_ROOT,
6038 .read_u64 = swap_current_read,
6039 },
6040 {
6041 .name = "swap.max",
6042 .flags = CFTYPE_NOT_ON_ROOT,
6043 .seq_show = swap_max_show,
6044 .write = swap_max_write,
6045 },
6046 { } /* terminate */
6047};
6048
21afa38e
JW
6049static struct cftype memsw_cgroup_files[] = {
6050 {
6051 .name = "memsw.usage_in_bytes",
6052 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6053 .read_u64 = mem_cgroup_read_u64,
6054 },
6055 {
6056 .name = "memsw.max_usage_in_bytes",
6057 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6058 .write = mem_cgroup_reset,
6059 .read_u64 = mem_cgroup_read_u64,
6060 },
6061 {
6062 .name = "memsw.limit_in_bytes",
6063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6064 .write = mem_cgroup_write,
6065 .read_u64 = mem_cgroup_read_u64,
6066 },
6067 {
6068 .name = "memsw.failcnt",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6070 .write = mem_cgroup_reset,
6071 .read_u64 = mem_cgroup_read_u64,
6072 },
6073 { }, /* terminate */
6074};
6075
6076static int __init mem_cgroup_swap_init(void)
6077{
6078 if (!mem_cgroup_disabled() && really_do_swap_account) {
6079 do_swap_account = 1;
37e84351
VD
6080 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6081 swap_files));
21afa38e
JW
6082 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6083 memsw_cgroup_files));
6084 }
6085 return 0;
6086}
6087subsys_initcall(mem_cgroup_swap_init);
6088
6089#endif /* CONFIG_MEMCG_SWAP */
This page took 1.43674 seconds and 5 git commands to generate.