exec: do not leave bprm->interp on stack
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
92#endif
93#ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
95#endif
96 [N_CPU] = { { [0] = 1UL } },
97#endif /* NUMA */
98};
99EXPORT_SYMBOL(node_states);
100
6c231b7b 101unsigned long totalram_pages __read_mostly;
cb45b0e9 102unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
103/*
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
108 */
109unsigned long dirty_balance_reserve __read_mostly;
110
1b76b02f 111int percpu_pagelist_fraction;
dcce284a 112gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 113
452aa699
RW
114#ifdef CONFIG_PM_SLEEP
115/*
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
122 */
c9e664f1
RW
123
124static gfp_t saved_gfp_mask;
125
126void pm_restore_gfp_mask(void)
452aa699
RW
127{
128 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
131 saved_gfp_mask = 0;
132 }
452aa699
RW
133}
134
c9e664f1 135void pm_restrict_gfp_mask(void)
452aa699 136{
452aa699 137 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 141}
f90ac398
MG
142
143bool pm_suspended_storage(void)
144{
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 return false;
147 return true;
148}
452aa699
RW
149#endif /* CONFIG_PM_SLEEP */
150
d9c23400
MG
151#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152int pageblock_order __read_mostly;
153#endif
154
d98c7a09 155static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 156
1da177e4
LT
157/*
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
164 *
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
1da177e4 167 */
2f1b6248 168int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 169#ifdef CONFIG_ZONE_DMA
2f1b6248 170 256,
4b51d669 171#endif
fb0e7942 172#ifdef CONFIG_ZONE_DMA32
2f1b6248 173 256,
fb0e7942 174#endif
e53ef38d 175#ifdef CONFIG_HIGHMEM
2a1e274a 176 32,
e53ef38d 177#endif
2a1e274a 178 32,
2f1b6248 179};
1da177e4
LT
180
181EXPORT_SYMBOL(totalram_pages);
1da177e4 182
15ad7cdc 183static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 184#ifdef CONFIG_ZONE_DMA
2f1b6248 185 "DMA",
4b51d669 186#endif
fb0e7942 187#ifdef CONFIG_ZONE_DMA32
2f1b6248 188 "DMA32",
fb0e7942 189#endif
2f1b6248 190 "Normal",
e53ef38d 191#ifdef CONFIG_HIGHMEM
2a1e274a 192 "HighMem",
e53ef38d 193#endif
2a1e274a 194 "Movable",
2f1b6248
CL
195};
196
1da177e4
LT
197int min_free_kbytes = 1024;
198
2c85f51d
JB
199static unsigned long __meminitdata nr_kernel_pages;
200static unsigned long __meminitdata nr_all_pages;
a3142c8e 201static unsigned long __meminitdata dma_reserve;
1da177e4 202
0ee332c1
TH
203#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206static unsigned long __initdata required_kernelcore;
207static unsigned long __initdata required_movablecore;
208static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209
210/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211int movable_zone;
212EXPORT_SYMBOL(movable_zone);
213#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 214
418508c1
MS
215#if MAX_NUMNODES > 1
216int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 217int nr_online_nodes __read_mostly = 1;
418508c1 218EXPORT_SYMBOL(nr_node_ids);
62bc62a8 219EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
220#endif
221
9ef9acb0
MG
222int page_group_by_mobility_disabled __read_mostly;
223
702d1a6e
MK
224/*
225 * NOTE:
226 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
227 * Instead, use {un}set_pageblock_isolate.
228 */
ee6f509c 229void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 230{
49255c61
MG
231
232 if (unlikely(page_group_by_mobility_disabled))
233 migratetype = MIGRATE_UNMOVABLE;
234
b2a0ac88
MG
235 set_pageblock_flags_group(page, (unsigned long)migratetype,
236 PB_migrate, PB_migrate_end);
237}
238
7f33d49a
RW
239bool oom_killer_disabled __read_mostly;
240
13e7444b 241#ifdef CONFIG_DEBUG_VM
c6a57e19 242static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 243{
bdc8cb98
DH
244 int ret = 0;
245 unsigned seq;
246 unsigned long pfn = page_to_pfn(page);
c6a57e19 247
bdc8cb98
DH
248 do {
249 seq = zone_span_seqbegin(zone);
250 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
251 ret = 1;
252 else if (pfn < zone->zone_start_pfn)
253 ret = 1;
254 } while (zone_span_seqretry(zone, seq));
255
256 return ret;
c6a57e19
DH
257}
258
259static int page_is_consistent(struct zone *zone, struct page *page)
260{
14e07298 261 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 262 return 0;
1da177e4 263 if (zone != page_zone(page))
c6a57e19
DH
264 return 0;
265
266 return 1;
267}
268/*
269 * Temporary debugging check for pages not lying within a given zone.
270 */
271static int bad_range(struct zone *zone, struct page *page)
272{
273 if (page_outside_zone_boundaries(zone, page))
1da177e4 274 return 1;
c6a57e19
DH
275 if (!page_is_consistent(zone, page))
276 return 1;
277
1da177e4
LT
278 return 0;
279}
13e7444b
NP
280#else
281static inline int bad_range(struct zone *zone, struct page *page)
282{
283 return 0;
284}
285#endif
286
224abf92 287static void bad_page(struct page *page)
1da177e4 288{
d936cf9b
HD
289 static unsigned long resume;
290 static unsigned long nr_shown;
291 static unsigned long nr_unshown;
292
2a7684a2
WF
293 /* Don't complain about poisoned pages */
294 if (PageHWPoison(page)) {
ef2b4b95 295 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
296 return;
297 }
298
d936cf9b
HD
299 /*
300 * Allow a burst of 60 reports, then keep quiet for that minute;
301 * or allow a steady drip of one report per second.
302 */
303 if (nr_shown == 60) {
304 if (time_before(jiffies, resume)) {
305 nr_unshown++;
306 goto out;
307 }
308 if (nr_unshown) {
1e9e6365
HD
309 printk(KERN_ALERT
310 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
311 nr_unshown);
312 nr_unshown = 0;
313 }
314 nr_shown = 0;
315 }
316 if (nr_shown++ == 0)
317 resume = jiffies + 60 * HZ;
318
1e9e6365 319 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 320 current->comm, page_to_pfn(page));
718a3821 321 dump_page(page);
3dc14741 322
4f31888c 323 print_modules();
1da177e4 324 dump_stack();
d936cf9b 325out:
8cc3b392 326 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 327 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 328 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
329}
330
1da177e4
LT
331/*
332 * Higher-order pages are called "compound pages". They are structured thusly:
333 *
334 * The first PAGE_SIZE page is called the "head page".
335 *
336 * The remaining PAGE_SIZE pages are called "tail pages".
337 *
6416b9fa
WSH
338 * All pages have PG_compound set. All tail pages have their ->first_page
339 * pointing at the head page.
1da177e4 340 *
41d78ba5
HD
341 * The first tail page's ->lru.next holds the address of the compound page's
342 * put_page() function. Its ->lru.prev holds the order of allocation.
343 * This usage means that zero-order pages may not be compound.
1da177e4 344 */
d98c7a09
HD
345
346static void free_compound_page(struct page *page)
347{
d85f3385 348 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
349}
350
01ad1c08 351void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
352{
353 int i;
354 int nr_pages = 1 << order;
355
356 set_compound_page_dtor(page, free_compound_page);
357 set_compound_order(page, order);
358 __SetPageHead(page);
359 for (i = 1; i < nr_pages; i++) {
360 struct page *p = page + i;
18229df5 361 __SetPageTail(p);
58a84aa9 362 set_page_count(p, 0);
18229df5
AW
363 p->first_page = page;
364 }
365}
366
59ff4216 367/* update __split_huge_page_refcount if you change this function */
8cc3b392 368static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
369{
370 int i;
371 int nr_pages = 1 << order;
8cc3b392 372 int bad = 0;
1da177e4 373
0bb2c763 374 if (unlikely(compound_order(page) != order)) {
224abf92 375 bad_page(page);
8cc3b392
HD
376 bad++;
377 }
1da177e4 378
6d777953 379 __ClearPageHead(page);
8cc3b392 380
18229df5
AW
381 for (i = 1; i < nr_pages; i++) {
382 struct page *p = page + i;
1da177e4 383
e713a21d 384 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 385 bad_page(page);
8cc3b392
HD
386 bad++;
387 }
d85f3385 388 __ClearPageTail(p);
1da177e4 389 }
8cc3b392
HD
390
391 return bad;
1da177e4 392}
1da177e4 393
17cf4406
NP
394static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
395{
396 int i;
397
6626c5d5
AM
398 /*
399 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
400 * and __GFP_HIGHMEM from hard or soft interrupt context.
401 */
725d704e 402 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
403 for (i = 0; i < (1 << order); i++)
404 clear_highpage(page + i);
405}
406
c0a32fc5
SG
407#ifdef CONFIG_DEBUG_PAGEALLOC
408unsigned int _debug_guardpage_minorder;
409
410static int __init debug_guardpage_minorder_setup(char *buf)
411{
412 unsigned long res;
413
414 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
415 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
416 return 0;
417 }
418 _debug_guardpage_minorder = res;
419 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
420 return 0;
421}
422__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
423
424static inline void set_page_guard_flag(struct page *page)
425{
426 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427}
428
429static inline void clear_page_guard_flag(struct page *page)
430{
431 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432}
433#else
434static inline void set_page_guard_flag(struct page *page) { }
435static inline void clear_page_guard_flag(struct page *page) { }
436#endif
437
6aa3001b
AM
438static inline void set_page_order(struct page *page, int order)
439{
4c21e2f2 440 set_page_private(page, order);
676165a8 441 __SetPageBuddy(page);
1da177e4
LT
442}
443
444static inline void rmv_page_order(struct page *page)
445{
676165a8 446 __ClearPageBuddy(page);
4c21e2f2 447 set_page_private(page, 0);
1da177e4
LT
448}
449
450/*
451 * Locate the struct page for both the matching buddy in our
452 * pair (buddy1) and the combined O(n+1) page they form (page).
453 *
454 * 1) Any buddy B1 will have an order O twin B2 which satisfies
455 * the following equation:
456 * B2 = B1 ^ (1 << O)
457 * For example, if the starting buddy (buddy2) is #8 its order
458 * 1 buddy is #10:
459 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
460 *
461 * 2) Any buddy B will have an order O+1 parent P which
462 * satisfies the following equation:
463 * P = B & ~(1 << O)
464 *
d6e05edc 465 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 466 */
1da177e4 467static inline unsigned long
43506fad 468__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 469{
43506fad 470 return page_idx ^ (1 << order);
1da177e4
LT
471}
472
473/*
474 * This function checks whether a page is free && is the buddy
475 * we can do coalesce a page and its buddy if
13e7444b 476 * (a) the buddy is not in a hole &&
676165a8 477 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
478 * (c) a page and its buddy have the same order &&
479 * (d) a page and its buddy are in the same zone.
676165a8 480 *
5f24ce5f
AA
481 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
482 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 483 *
676165a8 484 * For recording page's order, we use page_private(page).
1da177e4 485 */
cb2b95e1
AW
486static inline int page_is_buddy(struct page *page, struct page *buddy,
487 int order)
1da177e4 488{
14e07298 489 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 490 return 0;
13e7444b 491
cb2b95e1
AW
492 if (page_zone_id(page) != page_zone_id(buddy))
493 return 0;
494
c0a32fc5
SG
495 if (page_is_guard(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
497 return 1;
498 }
499
cb2b95e1 500 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 501 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 502 return 1;
676165a8 503 }
6aa3001b 504 return 0;
1da177e4
LT
505}
506
507/*
508 * Freeing function for a buddy system allocator.
509 *
510 * The concept of a buddy system is to maintain direct-mapped table
511 * (containing bit values) for memory blocks of various "orders".
512 * The bottom level table contains the map for the smallest allocatable
513 * units of memory (here, pages), and each level above it describes
514 * pairs of units from the levels below, hence, "buddies".
515 * At a high level, all that happens here is marking the table entry
516 * at the bottom level available, and propagating the changes upward
517 * as necessary, plus some accounting needed to play nicely with other
518 * parts of the VM system.
519 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 520 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 521 * order is recorded in page_private(page) field.
1da177e4 522 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
523 * other. That is, if we allocate a small block, and both were
524 * free, the remainder of the region must be split into blocks.
1da177e4 525 * If a block is freed, and its buddy is also free, then this
5f63b720 526 * triggers coalescing into a block of larger size.
1da177e4 527 *
6d49e352 528 * -- nyc
1da177e4
LT
529 */
530
48db57f8 531static inline void __free_one_page(struct page *page,
ed0ae21d
MG
532 struct zone *zone, unsigned int order,
533 int migratetype)
1da177e4
LT
534{
535 unsigned long page_idx;
6dda9d55 536 unsigned long combined_idx;
43506fad 537 unsigned long uninitialized_var(buddy_idx);
6dda9d55 538 struct page *buddy;
1da177e4 539
224abf92 540 if (unlikely(PageCompound(page)))
8cc3b392
HD
541 if (unlikely(destroy_compound_page(page, order)))
542 return;
1da177e4 543
ed0ae21d
MG
544 VM_BUG_ON(migratetype == -1);
545
1da177e4
LT
546 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
547
f2260e6b 548 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 549 VM_BUG_ON(bad_range(zone, page));
1da177e4 550
1da177e4 551 while (order < MAX_ORDER-1) {
43506fad
KC
552 buddy_idx = __find_buddy_index(page_idx, order);
553 buddy = page + (buddy_idx - page_idx);
cb2b95e1 554 if (!page_is_buddy(page, buddy, order))
3c82d0ce 555 break;
c0a32fc5
SG
556 /*
557 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
558 * merge with it and move up one order.
559 */
560 if (page_is_guard(buddy)) {
561 clear_page_guard_flag(buddy);
562 set_page_private(page, 0);
d1ce749a
BZ
563 __mod_zone_freepage_state(zone, 1 << order,
564 migratetype);
c0a32fc5
SG
565 } else {
566 list_del(&buddy->lru);
567 zone->free_area[order].nr_free--;
568 rmv_page_order(buddy);
569 }
43506fad 570 combined_idx = buddy_idx & page_idx;
1da177e4
LT
571 page = page + (combined_idx - page_idx);
572 page_idx = combined_idx;
573 order++;
574 }
575 set_page_order(page, order);
6dda9d55
CZ
576
577 /*
578 * If this is not the largest possible page, check if the buddy
579 * of the next-highest order is free. If it is, it's possible
580 * that pages are being freed that will coalesce soon. In case,
581 * that is happening, add the free page to the tail of the list
582 * so it's less likely to be used soon and more likely to be merged
583 * as a higher order page
584 */
b7f50cfa 585 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 586 struct page *higher_page, *higher_buddy;
43506fad
KC
587 combined_idx = buddy_idx & page_idx;
588 higher_page = page + (combined_idx - page_idx);
589 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 590 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
591 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
592 list_add_tail(&page->lru,
593 &zone->free_area[order].free_list[migratetype]);
594 goto out;
595 }
596 }
597
598 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
599out:
1da177e4
LT
600 zone->free_area[order].nr_free++;
601}
602
224abf92 603static inline int free_pages_check(struct page *page)
1da177e4 604{
92be2e33
NP
605 if (unlikely(page_mapcount(page) |
606 (page->mapping != NULL) |
a3af9c38 607 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
608 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
609 (mem_cgroup_bad_page_check(page)))) {
224abf92 610 bad_page(page);
79f4b7bf 611 return 1;
8cc3b392 612 }
57e0a030 613 reset_page_last_nid(page);
79f4b7bf
HD
614 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
615 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
616 return 0;
1da177e4
LT
617}
618
619/*
5f8dcc21 620 * Frees a number of pages from the PCP lists
1da177e4 621 * Assumes all pages on list are in same zone, and of same order.
207f36ee 622 * count is the number of pages to free.
1da177e4
LT
623 *
624 * If the zone was previously in an "all pages pinned" state then look to
625 * see if this freeing clears that state.
626 *
627 * And clear the zone's pages_scanned counter, to hold off the "all pages are
628 * pinned" detection logic.
629 */
5f8dcc21
MG
630static void free_pcppages_bulk(struct zone *zone, int count,
631 struct per_cpu_pages *pcp)
1da177e4 632{
5f8dcc21 633 int migratetype = 0;
a6f9edd6 634 int batch_free = 0;
72853e29 635 int to_free = count;
5f8dcc21 636
c54ad30c 637 spin_lock(&zone->lock);
93e4a89a 638 zone->all_unreclaimable = 0;
1da177e4 639 zone->pages_scanned = 0;
f2260e6b 640
72853e29 641 while (to_free) {
48db57f8 642 struct page *page;
5f8dcc21
MG
643 struct list_head *list;
644
645 /*
a6f9edd6
MG
646 * Remove pages from lists in a round-robin fashion. A
647 * batch_free count is maintained that is incremented when an
648 * empty list is encountered. This is so more pages are freed
649 * off fuller lists instead of spinning excessively around empty
650 * lists
5f8dcc21
MG
651 */
652 do {
a6f9edd6 653 batch_free++;
5f8dcc21
MG
654 if (++migratetype == MIGRATE_PCPTYPES)
655 migratetype = 0;
656 list = &pcp->lists[migratetype];
657 } while (list_empty(list));
48db57f8 658
1d16871d
NK
659 /* This is the only non-empty list. Free them all. */
660 if (batch_free == MIGRATE_PCPTYPES)
661 batch_free = to_free;
662
a6f9edd6 663 do {
770c8aaa
BZ
664 int mt; /* migratetype of the to-be-freed page */
665
a6f9edd6
MG
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
b12c4ad1 669 mt = get_freepage_migratetype(page);
a7016235 670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
671 __free_one_page(page, zone, 0, mt);
672 trace_mm_page_pcpu_drain(page, 0, mt);
97d0da22
WC
673 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
674 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
675 if (is_migrate_cma(mt))
676 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
677 }
72853e29 678 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 679 }
c54ad30c 680 spin_unlock(&zone->lock);
1da177e4
LT
681}
682
ed0ae21d
MG
683static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
1da177e4 685{
006d22d9 686 spin_lock(&zone->lock);
93e4a89a 687 zone->all_unreclaimable = 0;
006d22d9 688 zone->pages_scanned = 0;
f2260e6b 689
ed0ae21d 690 __free_one_page(page, zone, order, migratetype);
2139cbe6 691 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 692 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 693 spin_unlock(&zone->lock);
48db57f8
NP
694}
695
ec95f53a 696static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 697{
1da177e4 698 int i;
8cc3b392 699 int bad = 0;
1da177e4 700
b413d48a 701 trace_mm_page_free(page, order);
b1eeab67
VN
702 kmemcheck_free_shadow(page, order);
703
8dd60a3a
AA
704 if (PageAnon(page))
705 page->mapping = NULL;
706 for (i = 0; i < (1 << order); i++)
707 bad += free_pages_check(page + i);
8cc3b392 708 if (bad)
ec95f53a 709 return false;
689bcebf 710
3ac7fe5a 711 if (!PageHighMem(page)) {
9858db50 712 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
713 debug_check_no_obj_freed(page_address(page),
714 PAGE_SIZE << order);
715 }
dafb1367 716 arch_free_page(page, order);
48db57f8 717 kernel_map_pages(page, 1 << order, 0);
dafb1367 718
ec95f53a
KM
719 return true;
720}
721
722static void __free_pages_ok(struct page *page, unsigned int order)
723{
724 unsigned long flags;
95e34412 725 int migratetype;
ec95f53a
KM
726
727 if (!free_pages_prepare(page, order))
728 return;
729
c54ad30c 730 local_irq_save(flags);
f8891e5e 731 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
732 migratetype = get_pageblock_migratetype(page);
733 set_freepage_migratetype(page, migratetype);
734 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 735 local_irq_restore(flags);
1da177e4
LT
736}
737
9feedc9d
JL
738/*
739 * Read access to zone->managed_pages is safe because it's unsigned long,
740 * but we still need to serialize writers. Currently all callers of
741 * __free_pages_bootmem() except put_page_bootmem() should only be used
742 * at boot time. So for shorter boot time, we shift the burden to
743 * put_page_bootmem() to serialize writers.
744 */
af370fb8 745void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 746{
c3993076
JW
747 unsigned int nr_pages = 1 << order;
748 unsigned int loop;
a226f6c8 749
c3993076
JW
750 prefetchw(page);
751 for (loop = 0; loop < nr_pages; loop++) {
752 struct page *p = &page[loop];
753
754 if (loop + 1 < nr_pages)
755 prefetchw(p + 1);
756 __ClearPageReserved(p);
757 set_page_count(p, 0);
a226f6c8 758 }
c3993076 759
9feedc9d 760 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
761 set_page_refcounted(page);
762 __free_pages(page, order);
a226f6c8
DH
763}
764
47118af0
MN
765#ifdef CONFIG_CMA
766/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
767void __init init_cma_reserved_pageblock(struct page *page)
768{
769 unsigned i = pageblock_nr_pages;
770 struct page *p = page;
771
772 do {
773 __ClearPageReserved(p);
774 set_page_count(p, 0);
775 } while (++p, --i);
776
777 set_page_refcounted(page);
778 set_pageblock_migratetype(page, MIGRATE_CMA);
779 __free_pages(page, pageblock_order);
780 totalram_pages += pageblock_nr_pages;
781}
782#endif
1da177e4
LT
783
784/*
785 * The order of subdivision here is critical for the IO subsystem.
786 * Please do not alter this order without good reasons and regression
787 * testing. Specifically, as large blocks of memory are subdivided,
788 * the order in which smaller blocks are delivered depends on the order
789 * they're subdivided in this function. This is the primary factor
790 * influencing the order in which pages are delivered to the IO
791 * subsystem according to empirical testing, and this is also justified
792 * by considering the behavior of a buddy system containing a single
793 * large block of memory acted on by a series of small allocations.
794 * This behavior is a critical factor in sglist merging's success.
795 *
6d49e352 796 * -- nyc
1da177e4 797 */
085cc7d5 798static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
799 int low, int high, struct free_area *area,
800 int migratetype)
1da177e4
LT
801{
802 unsigned long size = 1 << high;
803
804 while (high > low) {
805 area--;
806 high--;
807 size >>= 1;
725d704e 808 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
809
810#ifdef CONFIG_DEBUG_PAGEALLOC
811 if (high < debug_guardpage_minorder()) {
812 /*
813 * Mark as guard pages (or page), that will allow to
814 * merge back to allocator when buddy will be freed.
815 * Corresponding page table entries will not be touched,
816 * pages will stay not present in virtual address space
817 */
818 INIT_LIST_HEAD(&page[size].lru);
819 set_page_guard_flag(&page[size]);
820 set_page_private(&page[size], high);
821 /* Guard pages are not available for any usage */
d1ce749a
BZ
822 __mod_zone_freepage_state(zone, -(1 << high),
823 migratetype);
c0a32fc5
SG
824 continue;
825 }
826#endif
b2a0ac88 827 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
828 area->nr_free++;
829 set_page_order(&page[size], high);
830 }
1da177e4
LT
831}
832
1da177e4
LT
833/*
834 * This page is about to be returned from the page allocator
835 */
2a7684a2 836static inline int check_new_page(struct page *page)
1da177e4 837{
92be2e33
NP
838 if (unlikely(page_mapcount(page) |
839 (page->mapping != NULL) |
a3af9c38 840 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
841 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
842 (mem_cgroup_bad_page_check(page)))) {
224abf92 843 bad_page(page);
689bcebf 844 return 1;
8cc3b392 845 }
2a7684a2
WF
846 return 0;
847}
848
849static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
850{
851 int i;
852
853 for (i = 0; i < (1 << order); i++) {
854 struct page *p = page + i;
855 if (unlikely(check_new_page(p)))
856 return 1;
857 }
689bcebf 858
4c21e2f2 859 set_page_private(page, 0);
7835e98b 860 set_page_refcounted(page);
cc102509
NP
861
862 arch_alloc_page(page, order);
1da177e4 863 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
864
865 if (gfp_flags & __GFP_ZERO)
866 prep_zero_page(page, order, gfp_flags);
867
868 if (order && (gfp_flags & __GFP_COMP))
869 prep_compound_page(page, order);
870
689bcebf 871 return 0;
1da177e4
LT
872}
873
56fd56b8
MG
874/*
875 * Go through the free lists for the given migratetype and remove
876 * the smallest available page from the freelists
877 */
728ec980
MG
878static inline
879struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
880 int migratetype)
881{
882 unsigned int current_order;
883 struct free_area * area;
884 struct page *page;
885
886 /* Find a page of the appropriate size in the preferred list */
887 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
888 area = &(zone->free_area[current_order]);
889 if (list_empty(&area->free_list[migratetype]))
890 continue;
891
892 page = list_entry(area->free_list[migratetype].next,
893 struct page, lru);
894 list_del(&page->lru);
895 rmv_page_order(page);
896 area->nr_free--;
56fd56b8
MG
897 expand(zone, page, order, current_order, area, migratetype);
898 return page;
899 }
900
901 return NULL;
902}
903
904
b2a0ac88
MG
905/*
906 * This array describes the order lists are fallen back to when
907 * the free lists for the desirable migrate type are depleted
908 */
47118af0
MN
909static int fallbacks[MIGRATE_TYPES][4] = {
910 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
912#ifdef CONFIG_CMA
913 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
914 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
915#else
916 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
917#endif
6d4a4916
MN
918 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
919 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
920};
921
c361be55
MG
922/*
923 * Move the free pages in a range to the free lists of the requested type.
d9c23400 924 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
925 * boundary. If alignment is required, use move_freepages_block()
926 */
435b405c 927int move_freepages(struct zone *zone,
b69a7288
AB
928 struct page *start_page, struct page *end_page,
929 int migratetype)
c361be55
MG
930{
931 struct page *page;
932 unsigned long order;
d100313f 933 int pages_moved = 0;
c361be55
MG
934
935#ifndef CONFIG_HOLES_IN_ZONE
936 /*
937 * page_zone is not safe to call in this context when
938 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
939 * anyway as we check zone boundaries in move_freepages_block().
940 * Remove at a later date when no bug reports exist related to
ac0e5b7a 941 * grouping pages by mobility
c361be55
MG
942 */
943 BUG_ON(page_zone(start_page) != page_zone(end_page));
944#endif
945
946 for (page = start_page; page <= end_page;) {
344c790e
AL
947 /* Make sure we are not inadvertently changing nodes */
948 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
949
c361be55
MG
950 if (!pfn_valid_within(page_to_pfn(page))) {
951 page++;
952 continue;
953 }
954
955 if (!PageBuddy(page)) {
956 page++;
957 continue;
958 }
959
960 order = page_order(page);
84be48d8
KS
961 list_move(&page->lru,
962 &zone->free_area[order].free_list[migratetype]);
95e34412 963 set_freepage_migratetype(page, migratetype);
c361be55 964 page += 1 << order;
d100313f 965 pages_moved += 1 << order;
c361be55
MG
966 }
967
d100313f 968 return pages_moved;
c361be55
MG
969}
970
ee6f509c 971int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 972 int migratetype)
c361be55
MG
973{
974 unsigned long start_pfn, end_pfn;
975 struct page *start_page, *end_page;
976
977 start_pfn = page_to_pfn(page);
d9c23400 978 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 979 start_page = pfn_to_page(start_pfn);
d9c23400
MG
980 end_page = start_page + pageblock_nr_pages - 1;
981 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
982
983 /* Do not cross zone boundaries */
984 if (start_pfn < zone->zone_start_pfn)
985 start_page = page;
986 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
987 return 0;
988
989 return move_freepages(zone, start_page, end_page, migratetype);
990}
991
2f66a68f
MG
992static void change_pageblock_range(struct page *pageblock_page,
993 int start_order, int migratetype)
994{
995 int nr_pageblocks = 1 << (start_order - pageblock_order);
996
997 while (nr_pageblocks--) {
998 set_pageblock_migratetype(pageblock_page, migratetype);
999 pageblock_page += pageblock_nr_pages;
1000 }
1001}
1002
b2a0ac88 1003/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1004static inline struct page *
1005__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1006{
1007 struct free_area * area;
1008 int current_order;
1009 struct page *page;
1010 int migratetype, i;
1011
1012 /* Find the largest possible block of pages in the other list */
1013 for (current_order = MAX_ORDER-1; current_order >= order;
1014 --current_order) {
6d4a4916 1015 for (i = 0;; i++) {
b2a0ac88
MG
1016 migratetype = fallbacks[start_migratetype][i];
1017
56fd56b8
MG
1018 /* MIGRATE_RESERVE handled later if necessary */
1019 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1020 break;
e010487d 1021
b2a0ac88
MG
1022 area = &(zone->free_area[current_order]);
1023 if (list_empty(&area->free_list[migratetype]))
1024 continue;
1025
1026 page = list_entry(area->free_list[migratetype].next,
1027 struct page, lru);
1028 area->nr_free--;
1029
1030 /*
c361be55 1031 * If breaking a large block of pages, move all free
46dafbca
MG
1032 * pages to the preferred allocation list. If falling
1033 * back for a reclaimable kernel allocation, be more
25985edc 1034 * aggressive about taking ownership of free pages
47118af0
MN
1035 *
1036 * On the other hand, never change migration
1037 * type of MIGRATE_CMA pageblocks nor move CMA
1038 * pages on different free lists. We don't
1039 * want unmovable pages to be allocated from
1040 * MIGRATE_CMA areas.
b2a0ac88 1041 */
47118af0
MN
1042 if (!is_migrate_cma(migratetype) &&
1043 (unlikely(current_order >= pageblock_order / 2) ||
1044 start_migratetype == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled)) {
1046 int pages;
46dafbca
MG
1047 pages = move_freepages_block(zone, page,
1048 start_migratetype);
1049
1050 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled)
46dafbca
MG
1053 set_pageblock_migratetype(page,
1054 start_migratetype);
1055
b2a0ac88 1056 migratetype = start_migratetype;
c361be55 1057 }
b2a0ac88
MG
1058
1059 /* Remove the page from the freelists */
1060 list_del(&page->lru);
1061 rmv_page_order(page);
b2a0ac88 1062
2f66a68f 1063 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1064 if (current_order >= pageblock_order &&
1065 !is_migrate_cma(migratetype))
2f66a68f 1066 change_pageblock_range(page, current_order,
b2a0ac88
MG
1067 start_migratetype);
1068
47118af0
MN
1069 expand(zone, page, order, current_order, area,
1070 is_migrate_cma(migratetype)
1071 ? migratetype : start_migratetype);
e0fff1bd
MG
1072
1073 trace_mm_page_alloc_extfrag(page, order, current_order,
1074 start_migratetype, migratetype);
1075
b2a0ac88
MG
1076 return page;
1077 }
1078 }
1079
728ec980 1080 return NULL;
b2a0ac88
MG
1081}
1082
56fd56b8 1083/*
1da177e4
LT
1084 * Do the hard work of removing an element from the buddy allocator.
1085 * Call me with the zone->lock already held.
1086 */
b2a0ac88
MG
1087static struct page *__rmqueue(struct zone *zone, unsigned int order,
1088 int migratetype)
1da177e4 1089{
1da177e4
LT
1090 struct page *page;
1091
728ec980 1092retry_reserve:
56fd56b8 1093 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1094
728ec980 1095 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1096 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1097
728ec980
MG
1098 /*
1099 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1100 * is used because __rmqueue_smallest is an inline function
1101 * and we want just one call site
1102 */
1103 if (!page) {
1104 migratetype = MIGRATE_RESERVE;
1105 goto retry_reserve;
1106 }
1107 }
1108
0d3d062a 1109 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1110 return page;
1da177e4
LT
1111}
1112
5f63b720 1113/*
1da177e4
LT
1114 * Obtain a specified number of elements from the buddy allocator, all under
1115 * a single hold of the lock, for efficiency. Add them to the supplied list.
1116 * Returns the number of new pages which were placed at *list.
1117 */
5f63b720 1118static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1119 unsigned long count, struct list_head *list,
e084b2d9 1120 int migratetype, int cold)
1da177e4 1121{
47118af0 1122 int mt = migratetype, i;
5f63b720 1123
c54ad30c 1124 spin_lock(&zone->lock);
1da177e4 1125 for (i = 0; i < count; ++i) {
b2a0ac88 1126 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1127 if (unlikely(page == NULL))
1da177e4 1128 break;
81eabcbe
MG
1129
1130 /*
1131 * Split buddy pages returned by expand() are received here
1132 * in physical page order. The page is added to the callers and
1133 * list and the list head then moves forward. From the callers
1134 * perspective, the linked list is ordered by page number in
1135 * some conditions. This is useful for IO devices that can
1136 * merge IO requests if the physical pages are ordered
1137 * properly.
1138 */
e084b2d9
MG
1139 if (likely(cold == 0))
1140 list_add(&page->lru, list);
1141 else
1142 list_add_tail(&page->lru, list);
47118af0
MN
1143 if (IS_ENABLED(CONFIG_CMA)) {
1144 mt = get_pageblock_migratetype(page);
1145 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1146 mt = migratetype;
1147 }
b12c4ad1 1148 set_freepage_migratetype(page, mt);
81eabcbe 1149 list = &page->lru;
d1ce749a
BZ
1150 if (is_migrate_cma(mt))
1151 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1152 -(1 << order));
1da177e4 1153 }
f2260e6b 1154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1155 spin_unlock(&zone->lock);
085cc7d5 1156 return i;
1da177e4
LT
1157}
1158
4ae7c039 1159#ifdef CONFIG_NUMA
8fce4d8e 1160/*
4037d452
CL
1161 * Called from the vmstat counter updater to drain pagesets of this
1162 * currently executing processor on remote nodes after they have
1163 * expired.
1164 *
879336c3
CL
1165 * Note that this function must be called with the thread pinned to
1166 * a single processor.
8fce4d8e 1167 */
4037d452 1168void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1169{
4ae7c039 1170 unsigned long flags;
4037d452 1171 int to_drain;
4ae7c039 1172
4037d452
CL
1173 local_irq_save(flags);
1174 if (pcp->count >= pcp->batch)
1175 to_drain = pcp->batch;
1176 else
1177 to_drain = pcp->count;
2a13515c
KM
1178 if (to_drain > 0) {
1179 free_pcppages_bulk(zone, to_drain, pcp);
1180 pcp->count -= to_drain;
1181 }
4037d452 1182 local_irq_restore(flags);
4ae7c039
CL
1183}
1184#endif
1185
9f8f2172
CL
1186/*
1187 * Drain pages of the indicated processor.
1188 *
1189 * The processor must either be the current processor and the
1190 * thread pinned to the current processor or a processor that
1191 * is not online.
1192 */
1193static void drain_pages(unsigned int cpu)
1da177e4 1194{
c54ad30c 1195 unsigned long flags;
1da177e4 1196 struct zone *zone;
1da177e4 1197
ee99c71c 1198 for_each_populated_zone(zone) {
1da177e4 1199 struct per_cpu_pageset *pset;
3dfa5721 1200 struct per_cpu_pages *pcp;
1da177e4 1201
99dcc3e5
CL
1202 local_irq_save(flags);
1203 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1204
1205 pcp = &pset->pcp;
2ff754fa
DR
1206 if (pcp->count) {
1207 free_pcppages_bulk(zone, pcp->count, pcp);
1208 pcp->count = 0;
1209 }
3dfa5721 1210 local_irq_restore(flags);
1da177e4
LT
1211 }
1212}
1da177e4 1213
9f8f2172
CL
1214/*
1215 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1216 */
1217void drain_local_pages(void *arg)
1218{
1219 drain_pages(smp_processor_id());
1220}
1221
1222/*
74046494
GBY
1223 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1224 *
1225 * Note that this code is protected against sending an IPI to an offline
1226 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1227 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1228 * nothing keeps CPUs from showing up after we populated the cpumask and
1229 * before the call to on_each_cpu_mask().
9f8f2172
CL
1230 */
1231void drain_all_pages(void)
1232{
74046494
GBY
1233 int cpu;
1234 struct per_cpu_pageset *pcp;
1235 struct zone *zone;
1236
1237 /*
1238 * Allocate in the BSS so we wont require allocation in
1239 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1240 */
1241 static cpumask_t cpus_with_pcps;
1242
1243 /*
1244 * We don't care about racing with CPU hotplug event
1245 * as offline notification will cause the notified
1246 * cpu to drain that CPU pcps and on_each_cpu_mask
1247 * disables preemption as part of its processing
1248 */
1249 for_each_online_cpu(cpu) {
1250 bool has_pcps = false;
1251 for_each_populated_zone(zone) {
1252 pcp = per_cpu_ptr(zone->pageset, cpu);
1253 if (pcp->pcp.count) {
1254 has_pcps = true;
1255 break;
1256 }
1257 }
1258 if (has_pcps)
1259 cpumask_set_cpu(cpu, &cpus_with_pcps);
1260 else
1261 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1262 }
1263 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1264}
1265
296699de 1266#ifdef CONFIG_HIBERNATION
1da177e4
LT
1267
1268void mark_free_pages(struct zone *zone)
1269{
f623f0db
RW
1270 unsigned long pfn, max_zone_pfn;
1271 unsigned long flags;
b2a0ac88 1272 int order, t;
1da177e4
LT
1273 struct list_head *curr;
1274
1275 if (!zone->spanned_pages)
1276 return;
1277
1278 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1279
1280 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1281 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1282 if (pfn_valid(pfn)) {
1283 struct page *page = pfn_to_page(pfn);
1284
7be98234
RW
1285 if (!swsusp_page_is_forbidden(page))
1286 swsusp_unset_page_free(page);
f623f0db 1287 }
1da177e4 1288
b2a0ac88
MG
1289 for_each_migratetype_order(order, t) {
1290 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1291 unsigned long i;
1da177e4 1292
f623f0db
RW
1293 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1294 for (i = 0; i < (1UL << order); i++)
7be98234 1295 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1296 }
b2a0ac88 1297 }
1da177e4
LT
1298 spin_unlock_irqrestore(&zone->lock, flags);
1299}
e2c55dc8 1300#endif /* CONFIG_PM */
1da177e4 1301
1da177e4
LT
1302/*
1303 * Free a 0-order page
fc91668e 1304 * cold == 1 ? free a cold page : free a hot page
1da177e4 1305 */
fc91668e 1306void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1307{
1308 struct zone *zone = page_zone(page);
1309 struct per_cpu_pages *pcp;
1310 unsigned long flags;
5f8dcc21 1311 int migratetype;
1da177e4 1312
ec95f53a 1313 if (!free_pages_prepare(page, 0))
689bcebf
HD
1314 return;
1315
5f8dcc21 1316 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1317 set_freepage_migratetype(page, migratetype);
1da177e4 1318 local_irq_save(flags);
f8891e5e 1319 __count_vm_event(PGFREE);
da456f14 1320
5f8dcc21
MG
1321 /*
1322 * We only track unmovable, reclaimable and movable on pcp lists.
1323 * Free ISOLATE pages back to the allocator because they are being
1324 * offlined but treat RESERVE as movable pages so we can get those
1325 * areas back if necessary. Otherwise, we may have to free
1326 * excessively into the page allocator
1327 */
1328 if (migratetype >= MIGRATE_PCPTYPES) {
1329 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1330 free_one_page(zone, page, 0, migratetype);
1331 goto out;
1332 }
1333 migratetype = MIGRATE_MOVABLE;
1334 }
1335
99dcc3e5 1336 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1337 if (cold)
5f8dcc21 1338 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1339 else
5f8dcc21 1340 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1341 pcp->count++;
48db57f8 1342 if (pcp->count >= pcp->high) {
5f8dcc21 1343 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1344 pcp->count -= pcp->batch;
1345 }
5f8dcc21
MG
1346
1347out:
1da177e4 1348 local_irq_restore(flags);
1da177e4
LT
1349}
1350
cc59850e
KK
1351/*
1352 * Free a list of 0-order pages
1353 */
1354void free_hot_cold_page_list(struct list_head *list, int cold)
1355{
1356 struct page *page, *next;
1357
1358 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1359 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1360 free_hot_cold_page(page, cold);
1361 }
1362}
1363
8dfcc9ba
NP
1364/*
1365 * split_page takes a non-compound higher-order page, and splits it into
1366 * n (1<<order) sub-pages: page[0..n]
1367 * Each sub-page must be freed individually.
1368 *
1369 * Note: this is probably too low level an operation for use in drivers.
1370 * Please consult with lkml before using this in your driver.
1371 */
1372void split_page(struct page *page, unsigned int order)
1373{
1374 int i;
1375
725d704e
NP
1376 VM_BUG_ON(PageCompound(page));
1377 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1378
1379#ifdef CONFIG_KMEMCHECK
1380 /*
1381 * Split shadow pages too, because free(page[0]) would
1382 * otherwise free the whole shadow.
1383 */
1384 if (kmemcheck_page_is_tracked(page))
1385 split_page(virt_to_page(page[0].shadow), order);
1386#endif
1387
7835e98b
NP
1388 for (i = 1; i < (1 << order); i++)
1389 set_page_refcounted(page + i);
8dfcc9ba 1390}
8dfcc9ba 1391
748446bb 1392/*
1fb3f8ca
MG
1393 * Similar to the split_page family of functions except that the page
1394 * required at the given order and being isolated now to prevent races
1395 * with parallel allocators
748446bb 1396 */
1fb3f8ca 1397int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1398{
1399 unsigned int order;
1400 unsigned long watermark;
1401 struct zone *zone;
2139cbe6 1402 int mt;
748446bb
MG
1403
1404 BUG_ON(!PageBuddy(page));
1405
1406 zone = page_zone(page);
1407 order = page_order(page);
2e30abd1 1408 mt = get_pageblock_migratetype(page);
748446bb 1409
2e30abd1
MS
1410 if (mt != MIGRATE_ISOLATE) {
1411 /* Obey watermarks as if the page was being allocated */
1412 watermark = low_wmark_pages(zone) + (1 << order);
1413 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1414 return 0;
1415
1416 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1417 }
748446bb
MG
1418
1419 /* Remove page from free list */
1420 list_del(&page->lru);
1421 zone->free_area[order].nr_free--;
1422 rmv_page_order(page);
2139cbe6 1423
1fb3f8ca
MG
1424 if (alloc_order != order)
1425 expand(zone, page, alloc_order, order,
1426 &zone->free_area[order], migratetype);
748446bb 1427
1fb3f8ca 1428 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
748446bb
MG
1437 }
1438
58d00209 1439 return 1UL << alloc_order;
1fb3f8ca
MG
1440}
1441
1442/*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452int split_free_page(struct page *page)
1453{
1454 unsigned int order;
1455 int nr_pages;
1456
1457 BUG_ON(!PageBuddy(page));
1458 order = page_order(page);
1459
1460 nr_pages = capture_free_page(page, order, 0);
1461 if (!nr_pages)
1462 return 0;
1463
1464 /* Split into individual pages */
1465 set_page_refcounted(page);
1466 split_page(page, order);
1467 return nr_pages;
748446bb
MG
1468}
1469
1da177e4
LT
1470/*
1471 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1472 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1473 * or two.
1474 */
0a15c3e9
MG
1475static inline
1476struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1477 struct zone *zone, int order, gfp_t gfp_flags,
1478 int migratetype)
1da177e4
LT
1479{
1480 unsigned long flags;
689bcebf 1481 struct page *page;
1da177e4
LT
1482 int cold = !!(gfp_flags & __GFP_COLD);
1483
689bcebf 1484again:
48db57f8 1485 if (likely(order == 0)) {
1da177e4 1486 struct per_cpu_pages *pcp;
5f8dcc21 1487 struct list_head *list;
1da177e4 1488
1da177e4 1489 local_irq_save(flags);
99dcc3e5
CL
1490 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 list = &pcp->lists[migratetype];
5f8dcc21 1492 if (list_empty(list)) {
535131e6 1493 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1494 pcp->batch, list,
e084b2d9 1495 migratetype, cold);
5f8dcc21 1496 if (unlikely(list_empty(list)))
6fb332fa 1497 goto failed;
535131e6 1498 }
b92a6edd 1499
5f8dcc21
MG
1500 if (cold)
1501 page = list_entry(list->prev, struct page, lru);
1502 else
1503 page = list_entry(list->next, struct page, lru);
1504
b92a6edd
MG
1505 list_del(&page->lru);
1506 pcp->count--;
7fb1d9fc 1507 } else {
dab48dab
AM
1508 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 /*
1510 * __GFP_NOFAIL is not to be used in new code.
1511 *
1512 * All __GFP_NOFAIL callers should be fixed so that they
1513 * properly detect and handle allocation failures.
1514 *
1515 * We most definitely don't want callers attempting to
4923abf9 1516 * allocate greater than order-1 page units with
dab48dab
AM
1517 * __GFP_NOFAIL.
1518 */
4923abf9 1519 WARN_ON_ONCE(order > 1);
dab48dab 1520 }
1da177e4 1521 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1522 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1523 spin_unlock(&zone->lock);
1524 if (!page)
1525 goto failed;
d1ce749a
BZ
1526 __mod_zone_freepage_state(zone, -(1 << order),
1527 get_pageblock_migratetype(page));
1da177e4
LT
1528 }
1529
f8891e5e 1530 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1531 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1532 local_irq_restore(flags);
1da177e4 1533
725d704e 1534 VM_BUG_ON(bad_range(zone, page));
17cf4406 1535 if (prep_new_page(page, order, gfp_flags))
a74609fa 1536 goto again;
1da177e4 1537 return page;
a74609fa
NP
1538
1539failed:
1540 local_irq_restore(flags);
a74609fa 1541 return NULL;
1da177e4
LT
1542}
1543
933e312e
AM
1544#ifdef CONFIG_FAIL_PAGE_ALLOC
1545
b2588c4b 1546static struct {
933e312e
AM
1547 struct fault_attr attr;
1548
1549 u32 ignore_gfp_highmem;
1550 u32 ignore_gfp_wait;
54114994 1551 u32 min_order;
933e312e
AM
1552} fail_page_alloc = {
1553 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1554 .ignore_gfp_wait = 1,
1555 .ignore_gfp_highmem = 1,
54114994 1556 .min_order = 1,
933e312e
AM
1557};
1558
1559static int __init setup_fail_page_alloc(char *str)
1560{
1561 return setup_fault_attr(&fail_page_alloc.attr, str);
1562}
1563__setup("fail_page_alloc=", setup_fail_page_alloc);
1564
deaf386e 1565static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1566{
54114994 1567 if (order < fail_page_alloc.min_order)
deaf386e 1568 return false;
933e312e 1569 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1570 return false;
933e312e 1571 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1572 return false;
933e312e 1573 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1574 return false;
933e312e
AM
1575
1576 return should_fail(&fail_page_alloc.attr, 1 << order);
1577}
1578
1579#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580
1581static int __init fail_page_alloc_debugfs(void)
1582{
f4ae40a6 1583 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1584 struct dentry *dir;
933e312e 1585
dd48c085
AM
1586 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1587 &fail_page_alloc.attr);
1588 if (IS_ERR(dir))
1589 return PTR_ERR(dir);
933e312e 1590
b2588c4b
AM
1591 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1592 &fail_page_alloc.ignore_gfp_wait))
1593 goto fail;
1594 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1595 &fail_page_alloc.ignore_gfp_highmem))
1596 goto fail;
1597 if (!debugfs_create_u32("min-order", mode, dir,
1598 &fail_page_alloc.min_order))
1599 goto fail;
1600
1601 return 0;
1602fail:
dd48c085 1603 debugfs_remove_recursive(dir);
933e312e 1604
b2588c4b 1605 return -ENOMEM;
933e312e
AM
1606}
1607
1608late_initcall(fail_page_alloc_debugfs);
1609
1610#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611
1612#else /* CONFIG_FAIL_PAGE_ALLOC */
1613
deaf386e 1614static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1615{
deaf386e 1616 return false;
933e312e
AM
1617}
1618
1619#endif /* CONFIG_FAIL_PAGE_ALLOC */
1620
1da177e4 1621/*
88f5acf8 1622 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1623 * of the allocation.
1624 */
88f5acf8
MG
1625static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1626 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1627{
1628 /* free_pages my go negative - that's OK */
d23ad423 1629 long min = mark;
2cfed075 1630 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1631 int o;
1632
df0a6daa 1633 free_pages -= (1 << order) - 1;
7fb1d9fc 1634 if (alloc_flags & ALLOC_HIGH)
1da177e4 1635 min -= min / 2;
7fb1d9fc 1636 if (alloc_flags & ALLOC_HARDER)
1da177e4 1637 min -= min / 4;
d95ea5d1
BZ
1638#ifdef CONFIG_CMA
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags & ALLOC_CMA))
1641 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1642#endif
2cfed075 1643 if (free_pages <= min + lowmem_reserve)
88f5acf8 1644 return false;
1da177e4
LT
1645 for (o = 0; o < order; o++) {
1646 /* At the next order, this order's pages become unavailable */
1647 free_pages -= z->free_area[o].nr_free << o;
1648
1649 /* Require fewer higher order pages to be free */
1650 min >>= 1;
1651
1652 if (free_pages <= min)
88f5acf8 1653 return false;
1da177e4 1654 }
88f5acf8
MG
1655 return true;
1656}
1657
702d1a6e
MK
1658#ifdef CONFIG_MEMORY_ISOLATION
1659static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1660{
1661 if (unlikely(zone->nr_pageblock_isolate))
1662 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1663 return 0;
1664}
1665#else
1666static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1667{
1668 return 0;
1669}
1670#endif
1671
88f5acf8
MG
1672bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674{
1675 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1676 zone_page_state(z, NR_FREE_PAGES));
1677}
1678
1679bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1680 int classzone_idx, int alloc_flags)
1681{
1682 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1683
1684 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1685 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1686
702d1a6e
MK
1687 /*
1688 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1689 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1690 * sleep although it could do so. But this is more desirable for memory
1691 * hotplug than sleeping which can cause a livelock in the direct
1692 * reclaim path.
1693 */
1694 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1695 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1696 free_pages);
1da177e4
LT
1697}
1698
9276b1bc
PJ
1699#ifdef CONFIG_NUMA
1700/*
1701 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1702 * skip over zones that are not allowed by the cpuset, or that have
1703 * been recently (in last second) found to be nearly full. See further
1704 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1705 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1706 *
1707 * If the zonelist cache is present in the passed in zonelist, then
1708 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1709 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1710 *
1711 * If the zonelist cache is not available for this zonelist, does
1712 * nothing and returns NULL.
1713 *
1714 * If the fullzones BITMAP in the zonelist cache is stale (more than
1715 * a second since last zap'd) then we zap it out (clear its bits.)
1716 *
1717 * We hold off even calling zlc_setup, until after we've checked the
1718 * first zone in the zonelist, on the theory that most allocations will
1719 * be satisfied from that first zone, so best to examine that zone as
1720 * quickly as we can.
1721 */
1722static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1723{
1724 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1725 nodemask_t *allowednodes; /* zonelist_cache approximation */
1726
1727 zlc = zonelist->zlcache_ptr;
1728 if (!zlc)
1729 return NULL;
1730
f05111f5 1731 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1732 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1733 zlc->last_full_zap = jiffies;
1734 }
1735
1736 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1737 &cpuset_current_mems_allowed :
4b0ef1fe 1738 &node_states[N_MEMORY];
9276b1bc
PJ
1739 return allowednodes;
1740}
1741
1742/*
1743 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1744 * if it is worth looking at further for free memory:
1745 * 1) Check that the zone isn't thought to be full (doesn't have its
1746 * bit set in the zonelist_cache fullzones BITMAP).
1747 * 2) Check that the zones node (obtained from the zonelist_cache
1748 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1749 * Return true (non-zero) if zone is worth looking at further, or
1750 * else return false (zero) if it is not.
1751 *
1752 * This check -ignores- the distinction between various watermarks,
1753 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1754 * found to be full for any variation of these watermarks, it will
1755 * be considered full for up to one second by all requests, unless
1756 * we are so low on memory on all allowed nodes that we are forced
1757 * into the second scan of the zonelist.
1758 *
1759 * In the second scan we ignore this zonelist cache and exactly
1760 * apply the watermarks to all zones, even it is slower to do so.
1761 * We are low on memory in the second scan, and should leave no stone
1762 * unturned looking for a free page.
1763 */
dd1a239f 1764static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1765 nodemask_t *allowednodes)
1766{
1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1768 int i; /* index of *z in zonelist zones */
1769 int n; /* node that zone *z is on */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return 1;
1774
dd1a239f 1775 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1776 n = zlc->z_to_n[i];
1777
1778 /* This zone is worth trying if it is allowed but not full */
1779 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1780}
1781
1782/*
1783 * Given 'z' scanning a zonelist, set the corresponding bit in
1784 * zlc->fullzones, so that subsequent attempts to allocate a page
1785 * from that zone don't waste time re-examining it.
1786 */
dd1a239f 1787static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1788{
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790 int i; /* index of *z in zonelist zones */
1791
1792 zlc = zonelist->zlcache_ptr;
1793 if (!zlc)
1794 return;
1795
dd1a239f 1796 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1797
1798 set_bit(i, zlc->fullzones);
1799}
1800
76d3fbf8
MG
1801/*
1802 * clear all zones full, called after direct reclaim makes progress so that
1803 * a zone that was recently full is not skipped over for up to a second
1804 */
1805static void zlc_clear_zones_full(struct zonelist *zonelist)
1806{
1807 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1808
1809 zlc = zonelist->zlcache_ptr;
1810 if (!zlc)
1811 return;
1812
1813 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1814}
1815
957f822a
DR
1816static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1817{
1818 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1819}
1820
1821static void __paginginit init_zone_allows_reclaim(int nid)
1822{
1823 int i;
1824
1825 for_each_online_node(i)
6b187d02 1826 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1827 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1828 else
957f822a 1829 zone_reclaim_mode = 1;
957f822a
DR
1830}
1831
9276b1bc
PJ
1832#else /* CONFIG_NUMA */
1833
1834static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1835{
1836 return NULL;
1837}
1838
dd1a239f 1839static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1840 nodemask_t *allowednodes)
1841{
1842 return 1;
1843}
1844
dd1a239f 1845static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1846{
1847}
76d3fbf8
MG
1848
1849static void zlc_clear_zones_full(struct zonelist *zonelist)
1850{
1851}
957f822a
DR
1852
1853static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1854{
1855 return true;
1856}
1857
1858static inline void init_zone_allows_reclaim(int nid)
1859{
1860}
9276b1bc
PJ
1861#endif /* CONFIG_NUMA */
1862
7fb1d9fc 1863/*
0798e519 1864 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1865 * a page.
1866 */
1867static struct page *
19770b32 1868get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1869 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1870 struct zone *preferred_zone, int migratetype)
753ee728 1871{
dd1a239f 1872 struct zoneref *z;
7fb1d9fc 1873 struct page *page = NULL;
54a6eb5c 1874 int classzone_idx;
5117f45d 1875 struct zone *zone;
9276b1bc
PJ
1876 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1877 int zlc_active = 0; /* set if using zonelist_cache */
1878 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1879
19770b32 1880 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1881zonelist_scan:
7fb1d9fc 1882 /*
9276b1bc 1883 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1885 */
19770b32
MG
1886 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1887 high_zoneidx, nodemask) {
e5adfffc 1888 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1889 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1890 continue;
7fb1d9fc 1891 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1892 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1893 continue;
a756cf59
JW
1894 /*
1895 * When allocating a page cache page for writing, we
1896 * want to get it from a zone that is within its dirty
1897 * limit, such that no single zone holds more than its
1898 * proportional share of globally allowed dirty pages.
1899 * The dirty limits take into account the zone's
1900 * lowmem reserves and high watermark so that kswapd
1901 * should be able to balance it without having to
1902 * write pages from its LRU list.
1903 *
1904 * This may look like it could increase pressure on
1905 * lower zones by failing allocations in higher zones
1906 * before they are full. But the pages that do spill
1907 * over are limited as the lower zones are protected
1908 * by this very same mechanism. It should not become
1909 * a practical burden to them.
1910 *
1911 * XXX: For now, allow allocations to potentially
1912 * exceed the per-zone dirty limit in the slowpath
1913 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1914 * which is important when on a NUMA setup the allowed
1915 * zones are together not big enough to reach the
1916 * global limit. The proper fix for these situations
1917 * will require awareness of zones in the
1918 * dirty-throttling and the flusher threads.
1919 */
1920 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1921 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1922 goto this_zone_full;
7fb1d9fc 1923
41858966 1924 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1925 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1926 unsigned long mark;
fa5e084e
MG
1927 int ret;
1928
41858966 1929 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1930 if (zone_watermark_ok(zone, order, mark,
1931 classzone_idx, alloc_flags))
1932 goto try_this_zone;
1933
e5adfffc
KS
1934 if (IS_ENABLED(CONFIG_NUMA) &&
1935 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1936 /*
1937 * we do zlc_setup if there are multiple nodes
1938 * and before considering the first zone allowed
1939 * by the cpuset.
1940 */
1941 allowednodes = zlc_setup(zonelist, alloc_flags);
1942 zlc_active = 1;
1943 did_zlc_setup = 1;
1944 }
1945
957f822a
DR
1946 if (zone_reclaim_mode == 0 ||
1947 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1948 goto this_zone_full;
1949
cd38b115
MG
1950 /*
1951 * As we may have just activated ZLC, check if the first
1952 * eligible zone has failed zone_reclaim recently.
1953 */
e5adfffc 1954 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1955 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1956 continue;
1957
fa5e084e
MG
1958 ret = zone_reclaim(zone, gfp_mask, order);
1959 switch (ret) {
1960 case ZONE_RECLAIM_NOSCAN:
1961 /* did not scan */
cd38b115 1962 continue;
fa5e084e
MG
1963 case ZONE_RECLAIM_FULL:
1964 /* scanned but unreclaimable */
cd38b115 1965 continue;
fa5e084e
MG
1966 default:
1967 /* did we reclaim enough */
1968 if (!zone_watermark_ok(zone, order, mark,
1969 classzone_idx, alloc_flags))
9276b1bc 1970 goto this_zone_full;
0798e519 1971 }
7fb1d9fc
RS
1972 }
1973
fa5e084e 1974try_this_zone:
3dd28266
MG
1975 page = buffered_rmqueue(preferred_zone, zone, order,
1976 gfp_mask, migratetype);
0798e519 1977 if (page)
7fb1d9fc 1978 break;
9276b1bc 1979this_zone_full:
e5adfffc 1980 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1981 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1982 }
9276b1bc 1983
e5adfffc 1984 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1985 /* Disable zlc cache for second zonelist scan */
1986 zlc_active = 0;
1987 goto zonelist_scan;
1988 }
b121186a
AS
1989
1990 if (page)
1991 /*
1992 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1993 * necessary to allocate the page. The expectation is
1994 * that the caller is taking steps that will free more
1995 * memory. The caller should avoid the page being used
1996 * for !PFMEMALLOC purposes.
1997 */
1998 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1999
7fb1d9fc 2000 return page;
753ee728
MH
2001}
2002
29423e77
DR
2003/*
2004 * Large machines with many possible nodes should not always dump per-node
2005 * meminfo in irq context.
2006 */
2007static inline bool should_suppress_show_mem(void)
2008{
2009 bool ret = false;
2010
2011#if NODES_SHIFT > 8
2012 ret = in_interrupt();
2013#endif
2014 return ret;
2015}
2016
a238ab5b
DH
2017static DEFINE_RATELIMIT_STATE(nopage_rs,
2018 DEFAULT_RATELIMIT_INTERVAL,
2019 DEFAULT_RATELIMIT_BURST);
2020
2021void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2022{
a238ab5b
DH
2023 unsigned int filter = SHOW_MEM_FILTER_NODES;
2024
c0a32fc5
SG
2025 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2026 debug_guardpage_minorder() > 0)
a238ab5b
DH
2027 return;
2028
2029 /*
2030 * This documents exceptions given to allocations in certain
2031 * contexts that are allowed to allocate outside current's set
2032 * of allowed nodes.
2033 */
2034 if (!(gfp_mask & __GFP_NOMEMALLOC))
2035 if (test_thread_flag(TIF_MEMDIE) ||
2036 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2037 filter &= ~SHOW_MEM_FILTER_NODES;
2038 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2039 filter &= ~SHOW_MEM_FILTER_NODES;
2040
2041 if (fmt) {
3ee9a4f0
JP
2042 struct va_format vaf;
2043 va_list args;
2044
a238ab5b 2045 va_start(args, fmt);
3ee9a4f0
JP
2046
2047 vaf.fmt = fmt;
2048 vaf.va = &args;
2049
2050 pr_warn("%pV", &vaf);
2051
a238ab5b
DH
2052 va_end(args);
2053 }
2054
3ee9a4f0
JP
2055 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2056 current->comm, order, gfp_mask);
a238ab5b
DH
2057
2058 dump_stack();
2059 if (!should_suppress_show_mem())
2060 show_mem(filter);
2061}
2062
11e33f6a
MG
2063static inline int
2064should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2065 unsigned long did_some_progress,
11e33f6a 2066 unsigned long pages_reclaimed)
1da177e4 2067{
11e33f6a
MG
2068 /* Do not loop if specifically requested */
2069 if (gfp_mask & __GFP_NORETRY)
2070 return 0;
1da177e4 2071
f90ac398
MG
2072 /* Always retry if specifically requested */
2073 if (gfp_mask & __GFP_NOFAIL)
2074 return 1;
2075
2076 /*
2077 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2078 * making forward progress without invoking OOM. Suspend also disables
2079 * storage devices so kswapd will not help. Bail if we are suspending.
2080 */
2081 if (!did_some_progress && pm_suspended_storage())
2082 return 0;
2083
11e33f6a
MG
2084 /*
2085 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2086 * means __GFP_NOFAIL, but that may not be true in other
2087 * implementations.
2088 */
2089 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2090 return 1;
2091
2092 /*
2093 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2094 * specified, then we retry until we no longer reclaim any pages
2095 * (above), or we've reclaimed an order of pages at least as
2096 * large as the allocation's order. In both cases, if the
2097 * allocation still fails, we stop retrying.
2098 */
2099 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2100 return 1;
cf40bd16 2101
11e33f6a
MG
2102 return 0;
2103}
933e312e 2104
11e33f6a
MG
2105static inline struct page *
2106__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2107 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2108 nodemask_t *nodemask, struct zone *preferred_zone,
2109 int migratetype)
11e33f6a
MG
2110{
2111 struct page *page;
2112
2113 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2114 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2115 schedule_timeout_uninterruptible(1);
1da177e4
LT
2116 return NULL;
2117 }
6b1de916 2118
11e33f6a
MG
2119 /*
2120 * Go through the zonelist yet one more time, keep very high watermark
2121 * here, this is only to catch a parallel oom killing, we must fail if
2122 * we're still under heavy pressure.
2123 */
2124 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2125 order, zonelist, high_zoneidx,
5117f45d 2126 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2127 preferred_zone, migratetype);
7fb1d9fc 2128 if (page)
11e33f6a
MG
2129 goto out;
2130
4365a567
KH
2131 if (!(gfp_mask & __GFP_NOFAIL)) {
2132 /* The OOM killer will not help higher order allocs */
2133 if (order > PAGE_ALLOC_COSTLY_ORDER)
2134 goto out;
03668b3c
DR
2135 /* The OOM killer does not needlessly kill tasks for lowmem */
2136 if (high_zoneidx < ZONE_NORMAL)
2137 goto out;
4365a567
KH
2138 /*
2139 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2140 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2141 * The caller should handle page allocation failure by itself if
2142 * it specifies __GFP_THISNODE.
2143 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2144 */
2145 if (gfp_mask & __GFP_THISNODE)
2146 goto out;
2147 }
11e33f6a 2148 /* Exhausted what can be done so it's blamo time */
08ab9b10 2149 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2150
2151out:
2152 clear_zonelist_oom(zonelist, gfp_mask);
2153 return page;
2154}
2155
56de7263
MG
2156#ifdef CONFIG_COMPACTION
2157/* Try memory compaction for high-order allocations before reclaim */
2158static struct page *
2159__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2160 struct zonelist *zonelist, enum zone_type high_zoneidx,
2161 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2162 int migratetype, bool sync_migration,
c67fe375 2163 bool *contended_compaction, bool *deferred_compaction,
66199712 2164 unsigned long *did_some_progress)
56de7263 2165{
1fb3f8ca 2166 struct page *page = NULL;
56de7263 2167
66199712 2168 if (!order)
56de7263
MG
2169 return NULL;
2170
aff62249 2171 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2172 *deferred_compaction = true;
2173 return NULL;
2174 }
2175
c06b1fca 2176 current->flags |= PF_MEMALLOC;
56de7263 2177 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2178 nodemask, sync_migration,
1fb3f8ca 2179 contended_compaction, &page);
c06b1fca 2180 current->flags &= ~PF_MEMALLOC;
56de7263 2181
1fb3f8ca
MG
2182 /* If compaction captured a page, prep and use it */
2183 if (page) {
2184 prep_new_page(page, order, gfp_mask);
2185 goto got_page;
2186 }
2187
2188 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2189 /* Page migration frees to the PCP lists but we want merging */
2190 drain_pages(get_cpu());
2191 put_cpu();
2192
2193 page = get_page_from_freelist(gfp_mask, nodemask,
2194 order, zonelist, high_zoneidx,
cfd19c5a
MG
2195 alloc_flags & ~ALLOC_NO_WATERMARKS,
2196 preferred_zone, migratetype);
56de7263 2197 if (page) {
1fb3f8ca 2198got_page:
62997027 2199 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2200 preferred_zone->compact_considered = 0;
2201 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2202 if (order >= preferred_zone->compact_order_failed)
2203 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2204 count_vm_event(COMPACTSUCCESS);
2205 return page;
2206 }
2207
2208 /*
2209 * It's bad if compaction run occurs and fails.
2210 * The most likely reason is that pages exist,
2211 * but not enough to satisfy watermarks.
2212 */
2213 count_vm_event(COMPACTFAIL);
66199712
MG
2214
2215 /*
2216 * As async compaction considers a subset of pageblocks, only
2217 * defer if the failure was a sync compaction failure.
2218 */
2219 if (sync_migration)
aff62249 2220 defer_compaction(preferred_zone, order);
56de7263
MG
2221
2222 cond_resched();
2223 }
2224
2225 return NULL;
2226}
2227#else
2228static inline struct page *
2229__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2232 int migratetype, bool sync_migration,
c67fe375 2233 bool *contended_compaction, bool *deferred_compaction,
66199712 2234 unsigned long *did_some_progress)
56de7263
MG
2235{
2236 return NULL;
2237}
2238#endif /* CONFIG_COMPACTION */
2239
bba90710
MS
2240/* Perform direct synchronous page reclaim */
2241static int
2242__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2243 nodemask_t *nodemask)
11e33f6a 2244{
11e33f6a 2245 struct reclaim_state reclaim_state;
bba90710 2246 int progress;
11e33f6a
MG
2247
2248 cond_resched();
2249
2250 /* We now go into synchronous reclaim */
2251 cpuset_memory_pressure_bump();
c06b1fca 2252 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2253 lockdep_set_current_reclaim_state(gfp_mask);
2254 reclaim_state.reclaimed_slab = 0;
c06b1fca 2255 current->reclaim_state = &reclaim_state;
11e33f6a 2256
bba90710 2257 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2258
c06b1fca 2259 current->reclaim_state = NULL;
11e33f6a 2260 lockdep_clear_current_reclaim_state();
c06b1fca 2261 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2262
2263 cond_resched();
2264
bba90710
MS
2265 return progress;
2266}
2267
2268/* The really slow allocator path where we enter direct reclaim */
2269static inline struct page *
2270__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2271 struct zonelist *zonelist, enum zone_type high_zoneidx,
2272 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2273 int migratetype, unsigned long *did_some_progress)
2274{
2275 struct page *page = NULL;
2276 bool drained = false;
2277
2278 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2279 nodemask);
9ee493ce
MG
2280 if (unlikely(!(*did_some_progress)))
2281 return NULL;
11e33f6a 2282
76d3fbf8 2283 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2284 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2285 zlc_clear_zones_full(zonelist);
2286
9ee493ce
MG
2287retry:
2288 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2289 zonelist, high_zoneidx,
cfd19c5a
MG
2290 alloc_flags & ~ALLOC_NO_WATERMARKS,
2291 preferred_zone, migratetype);
9ee493ce
MG
2292
2293 /*
2294 * If an allocation failed after direct reclaim, it could be because
2295 * pages are pinned on the per-cpu lists. Drain them and try again
2296 */
2297 if (!page && !drained) {
2298 drain_all_pages();
2299 drained = true;
2300 goto retry;
2301 }
2302
11e33f6a
MG
2303 return page;
2304}
2305
1da177e4 2306/*
11e33f6a
MG
2307 * This is called in the allocator slow-path if the allocation request is of
2308 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2309 */
11e33f6a
MG
2310static inline struct page *
2311__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2312 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2313 nodemask_t *nodemask, struct zone *preferred_zone,
2314 int migratetype)
11e33f6a
MG
2315{
2316 struct page *page;
2317
2318 do {
2319 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2320 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2321 preferred_zone, migratetype);
11e33f6a
MG
2322
2323 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2324 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2325 } while (!page && (gfp_mask & __GFP_NOFAIL));
2326
2327 return page;
2328}
2329
2330static inline
2331void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2332 enum zone_type high_zoneidx,
2333 enum zone_type classzone_idx)
1da177e4 2334{
dd1a239f
MG
2335 struct zoneref *z;
2336 struct zone *zone;
1da177e4 2337
11e33f6a 2338 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2339 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2340}
cf40bd16 2341
341ce06f
PZ
2342static inline int
2343gfp_to_alloc_flags(gfp_t gfp_mask)
2344{
341ce06f
PZ
2345 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2346 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2347
a56f57ff 2348 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2349 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2350
341ce06f
PZ
2351 /*
2352 * The caller may dip into page reserves a bit more if the caller
2353 * cannot run direct reclaim, or if the caller has realtime scheduling
2354 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2355 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2356 */
e6223a3b 2357 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2358
341ce06f 2359 if (!wait) {
5c3240d9
AA
2360 /*
2361 * Not worth trying to allocate harder for
2362 * __GFP_NOMEMALLOC even if it can't schedule.
2363 */
2364 if (!(gfp_mask & __GFP_NOMEMALLOC))
2365 alloc_flags |= ALLOC_HARDER;
523b9458 2366 /*
341ce06f
PZ
2367 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2368 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2369 */
341ce06f 2370 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2371 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2372 alloc_flags |= ALLOC_HARDER;
2373
b37f1dd0
MG
2374 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2375 if (gfp_mask & __GFP_MEMALLOC)
2376 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2377 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2378 alloc_flags |= ALLOC_NO_WATERMARKS;
2379 else if (!in_interrupt() &&
2380 ((current->flags & PF_MEMALLOC) ||
2381 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2382 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2383 }
d95ea5d1
BZ
2384#ifdef CONFIG_CMA
2385 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2386 alloc_flags |= ALLOC_CMA;
2387#endif
341ce06f
PZ
2388 return alloc_flags;
2389}
2390
072bb0aa
MG
2391bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2392{
b37f1dd0 2393 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2394}
2395
11e33f6a
MG
2396static inline struct page *
2397__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2398 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2399 nodemask_t *nodemask, struct zone *preferred_zone,
2400 int migratetype)
11e33f6a
MG
2401{
2402 const gfp_t wait = gfp_mask & __GFP_WAIT;
2403 struct page *page = NULL;
2404 int alloc_flags;
2405 unsigned long pages_reclaimed = 0;
2406 unsigned long did_some_progress;
77f1fe6b 2407 bool sync_migration = false;
66199712 2408 bool deferred_compaction = false;
c67fe375 2409 bool contended_compaction = false;
1da177e4 2410
72807a74
MG
2411 /*
2412 * In the slowpath, we sanity check order to avoid ever trying to
2413 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2414 * be using allocators in order of preference for an area that is
2415 * too large.
2416 */
1fc28b70
MG
2417 if (order >= MAX_ORDER) {
2418 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2419 return NULL;
1fc28b70 2420 }
1da177e4 2421
952f3b51
CL
2422 /*
2423 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2424 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2425 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2426 * using a larger set of nodes after it has established that the
2427 * allowed per node queues are empty and that nodes are
2428 * over allocated.
2429 */
e5adfffc
KS
2430 if (IS_ENABLED(CONFIG_NUMA) &&
2431 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2432 goto nopage;
2433
cc4a6851 2434restart:
caf49191
LT
2435 if (!(gfp_mask & __GFP_NO_KSWAPD))
2436 wake_all_kswapd(order, zonelist, high_zoneidx,
2437 zone_idx(preferred_zone));
1da177e4 2438
9bf2229f 2439 /*
7fb1d9fc
RS
2440 * OK, we're below the kswapd watermark and have kicked background
2441 * reclaim. Now things get more complex, so set up alloc_flags according
2442 * to how we want to proceed.
9bf2229f 2443 */
341ce06f 2444 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2445
f33261d7
DR
2446 /*
2447 * Find the true preferred zone if the allocation is unconstrained by
2448 * cpusets.
2449 */
2450 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2451 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2452 &preferred_zone);
2453
cfa54a0f 2454rebalance:
341ce06f 2455 /* This is the last chance, in general, before the goto nopage. */
19770b32 2456 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2457 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2458 preferred_zone, migratetype);
7fb1d9fc
RS
2459 if (page)
2460 goto got_pg;
1da177e4 2461
11e33f6a 2462 /* Allocate without watermarks if the context allows */
341ce06f 2463 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2464 /*
2465 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2466 * the allocation is high priority and these type of
2467 * allocations are system rather than user orientated
2468 */
2469 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2470
341ce06f
PZ
2471 page = __alloc_pages_high_priority(gfp_mask, order,
2472 zonelist, high_zoneidx, nodemask,
2473 preferred_zone, migratetype);
cfd19c5a 2474 if (page) {
341ce06f 2475 goto got_pg;
cfd19c5a 2476 }
1da177e4
LT
2477 }
2478
2479 /* Atomic allocations - we can't balance anything */
2480 if (!wait)
2481 goto nopage;
2482
341ce06f 2483 /* Avoid recursion of direct reclaim */
c06b1fca 2484 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2485 goto nopage;
2486
6583bb64
DR
2487 /* Avoid allocations with no watermarks from looping endlessly */
2488 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2489 goto nopage;
2490
77f1fe6b
MG
2491 /*
2492 * Try direct compaction. The first pass is asynchronous. Subsequent
2493 * attempts after direct reclaim are synchronous
2494 */
56de7263
MG
2495 page = __alloc_pages_direct_compact(gfp_mask, order,
2496 zonelist, high_zoneidx,
2497 nodemask,
2498 alloc_flags, preferred_zone,
66199712 2499 migratetype, sync_migration,
c67fe375 2500 &contended_compaction,
66199712
MG
2501 &deferred_compaction,
2502 &did_some_progress);
56de7263
MG
2503 if (page)
2504 goto got_pg;
c6a140bf 2505 sync_migration = true;
56de7263 2506
31f8d42d
LT
2507 /*
2508 * If compaction is deferred for high-order allocations, it is because
2509 * sync compaction recently failed. In this is the case and the caller
2510 * requested a movable allocation that does not heavily disrupt the
2511 * system then fail the allocation instead of entering direct reclaim.
2512 */
2513 if ((deferred_compaction || contended_compaction) &&
caf49191 2514 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2515 goto nopage;
66199712 2516
11e33f6a
MG
2517 /* Try direct reclaim and then allocating */
2518 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2519 zonelist, high_zoneidx,
2520 nodemask,
5117f45d 2521 alloc_flags, preferred_zone,
3dd28266 2522 migratetype, &did_some_progress);
11e33f6a
MG
2523 if (page)
2524 goto got_pg;
1da177e4 2525
e33c3b5e 2526 /*
11e33f6a
MG
2527 * If we failed to make any progress reclaiming, then we are
2528 * running out of options and have to consider going OOM
e33c3b5e 2529 */
11e33f6a
MG
2530 if (!did_some_progress) {
2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2532 if (oom_killer_disabled)
2533 goto nopage;
29fd66d2
DR
2534 /* Coredumps can quickly deplete all memory reserves */
2535 if ((current->flags & PF_DUMPCORE) &&
2536 !(gfp_mask & __GFP_NOFAIL))
2537 goto nopage;
11e33f6a
MG
2538 page = __alloc_pages_may_oom(gfp_mask, order,
2539 zonelist, high_zoneidx,
3dd28266
MG
2540 nodemask, preferred_zone,
2541 migratetype);
11e33f6a
MG
2542 if (page)
2543 goto got_pg;
1da177e4 2544
03668b3c
DR
2545 if (!(gfp_mask & __GFP_NOFAIL)) {
2546 /*
2547 * The oom killer is not called for high-order
2548 * allocations that may fail, so if no progress
2549 * is being made, there are no other options and
2550 * retrying is unlikely to help.
2551 */
2552 if (order > PAGE_ALLOC_COSTLY_ORDER)
2553 goto nopage;
2554 /*
2555 * The oom killer is not called for lowmem
2556 * allocations to prevent needlessly killing
2557 * innocent tasks.
2558 */
2559 if (high_zoneidx < ZONE_NORMAL)
2560 goto nopage;
2561 }
e2c55dc8 2562
ff0ceb9d
DR
2563 goto restart;
2564 }
1da177e4
LT
2565 }
2566
11e33f6a 2567 /* Check if we should retry the allocation */
a41f24ea 2568 pages_reclaimed += did_some_progress;
f90ac398
MG
2569 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2570 pages_reclaimed)) {
11e33f6a 2571 /* Wait for some write requests to complete then retry */
0e093d99 2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2573 goto rebalance;
3e7d3449
MG
2574 } else {
2575 /*
2576 * High-order allocations do not necessarily loop after
2577 * direct reclaim and reclaim/compaction depends on compaction
2578 * being called after reclaim so call directly if necessary
2579 */
2580 page = __alloc_pages_direct_compact(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
66199712 2584 migratetype, sync_migration,
c67fe375 2585 &contended_compaction,
66199712
MG
2586 &deferred_compaction,
2587 &did_some_progress);
3e7d3449
MG
2588 if (page)
2589 goto got_pg;
1da177e4
LT
2590 }
2591
2592nopage:
a238ab5b 2593 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2594 return page;
1da177e4 2595got_pg:
b1eeab67
VN
2596 if (kmemcheck_enabled)
2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2598
072bb0aa 2599 return page;
1da177e4 2600}
11e33f6a
MG
2601
2602/*
2603 * This is the 'heart' of the zoned buddy allocator.
2604 */
2605struct page *
2606__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2607 struct zonelist *zonelist, nodemask_t *nodemask)
2608{
2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2610 struct zone *preferred_zone;
cc9a6c87 2611 struct page *page = NULL;
3dd28266 2612 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2613 unsigned int cpuset_mems_cookie;
d95ea5d1 2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2615 struct mem_cgroup *memcg = NULL;
11e33f6a 2616
dcce284a
BH
2617 gfp_mask &= gfp_allowed_mask;
2618
11e33f6a
MG
2619 lockdep_trace_alloc(gfp_mask);
2620
2621 might_sleep_if(gfp_mask & __GFP_WAIT);
2622
2623 if (should_fail_alloc_page(gfp_mask, order))
2624 return NULL;
2625
2626 /*
2627 * Check the zones suitable for the gfp_mask contain at least one
2628 * valid zone. It's possible to have an empty zonelist as a result
2629 * of GFP_THISNODE and a memoryless node
2630 */
2631 if (unlikely(!zonelist->_zonerefs->zone))
2632 return NULL;
2633
6a1a0d3b
GC
2634 /*
2635 * Will only have any effect when __GFP_KMEMCG is set. This is
2636 * verified in the (always inline) callee
2637 */
2638 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2639 return NULL;
2640
cc9a6c87
MG
2641retry_cpuset:
2642 cpuset_mems_cookie = get_mems_allowed();
2643
5117f45d 2644 /* The preferred zone is used for statistics later */
f33261d7
DR
2645 first_zones_zonelist(zonelist, high_zoneidx,
2646 nodemask ? : &cpuset_current_mems_allowed,
2647 &preferred_zone);
cc9a6c87
MG
2648 if (!preferred_zone)
2649 goto out;
5117f45d 2650
d95ea5d1
BZ
2651#ifdef CONFIG_CMA
2652 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2653 alloc_flags |= ALLOC_CMA;
2654#endif
5117f45d 2655 /* First allocation attempt */
11e33f6a 2656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2657 zonelist, high_zoneidx, alloc_flags,
3dd28266 2658 preferred_zone, migratetype);
11e33f6a
MG
2659 if (unlikely(!page))
2660 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2661 zonelist, high_zoneidx, nodemask,
3dd28266 2662 preferred_zone, migratetype);
11e33f6a 2663
4b4f278c 2664 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2665
2666out:
2667 /*
2668 * When updating a task's mems_allowed, it is possible to race with
2669 * parallel threads in such a way that an allocation can fail while
2670 * the mask is being updated. If a page allocation is about to fail,
2671 * check if the cpuset changed during allocation and if so, retry.
2672 */
2673 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2674 goto retry_cpuset;
2675
6a1a0d3b
GC
2676 memcg_kmem_commit_charge(page, memcg, order);
2677
11e33f6a 2678 return page;
1da177e4 2679}
d239171e 2680EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2681
2682/*
2683 * Common helper functions.
2684 */
920c7a5d 2685unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2686{
945a1113
AM
2687 struct page *page;
2688
2689 /*
2690 * __get_free_pages() returns a 32-bit address, which cannot represent
2691 * a highmem page
2692 */
2693 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2694
1da177e4
LT
2695 page = alloc_pages(gfp_mask, order);
2696 if (!page)
2697 return 0;
2698 return (unsigned long) page_address(page);
2699}
1da177e4
LT
2700EXPORT_SYMBOL(__get_free_pages);
2701
920c7a5d 2702unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2703{
945a1113 2704 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2705}
1da177e4
LT
2706EXPORT_SYMBOL(get_zeroed_page);
2707
920c7a5d 2708void __free_pages(struct page *page, unsigned int order)
1da177e4 2709{
b5810039 2710 if (put_page_testzero(page)) {
1da177e4 2711 if (order == 0)
fc91668e 2712 free_hot_cold_page(page, 0);
1da177e4
LT
2713 else
2714 __free_pages_ok(page, order);
2715 }
2716}
2717
2718EXPORT_SYMBOL(__free_pages);
2719
920c7a5d 2720void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2721{
2722 if (addr != 0) {
725d704e 2723 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2724 __free_pages(virt_to_page((void *)addr), order);
2725 }
2726}
2727
2728EXPORT_SYMBOL(free_pages);
2729
6a1a0d3b
GC
2730/*
2731 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2732 * pages allocated with __GFP_KMEMCG.
2733 *
2734 * Those pages are accounted to a particular memcg, embedded in the
2735 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2736 * for that information only to find out that it is NULL for users who have no
2737 * interest in that whatsoever, we provide these functions.
2738 *
2739 * The caller knows better which flags it relies on.
2740 */
2741void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2742{
2743 memcg_kmem_uncharge_pages(page, order);
2744 __free_pages(page, order);
2745}
2746
2747void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2748{
2749 if (addr != 0) {
2750 VM_BUG_ON(!virt_addr_valid((void *)addr));
2751 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2752 }
2753}
2754
ee85c2e1
AK
2755static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2756{
2757 if (addr) {
2758 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2759 unsigned long used = addr + PAGE_ALIGN(size);
2760
2761 split_page(virt_to_page((void *)addr), order);
2762 while (used < alloc_end) {
2763 free_page(used);
2764 used += PAGE_SIZE;
2765 }
2766 }
2767 return (void *)addr;
2768}
2769
2be0ffe2
TT
2770/**
2771 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2772 * @size: the number of bytes to allocate
2773 * @gfp_mask: GFP flags for the allocation
2774 *
2775 * This function is similar to alloc_pages(), except that it allocates the
2776 * minimum number of pages to satisfy the request. alloc_pages() can only
2777 * allocate memory in power-of-two pages.
2778 *
2779 * This function is also limited by MAX_ORDER.
2780 *
2781 * Memory allocated by this function must be released by free_pages_exact().
2782 */
2783void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2784{
2785 unsigned int order = get_order(size);
2786 unsigned long addr;
2787
2788 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2789 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2790}
2791EXPORT_SYMBOL(alloc_pages_exact);
2792
ee85c2e1
AK
2793/**
2794 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2795 * pages on a node.
b5e6ab58 2796 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2797 * @size: the number of bytes to allocate
2798 * @gfp_mask: GFP flags for the allocation
2799 *
2800 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2801 * back.
2802 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2803 * but is not exact.
2804 */
2805void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2806{
2807 unsigned order = get_order(size);
2808 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2809 if (!p)
2810 return NULL;
2811 return make_alloc_exact((unsigned long)page_address(p), order, size);
2812}
2813EXPORT_SYMBOL(alloc_pages_exact_nid);
2814
2be0ffe2
TT
2815/**
2816 * free_pages_exact - release memory allocated via alloc_pages_exact()
2817 * @virt: the value returned by alloc_pages_exact.
2818 * @size: size of allocation, same value as passed to alloc_pages_exact().
2819 *
2820 * Release the memory allocated by a previous call to alloc_pages_exact.
2821 */
2822void free_pages_exact(void *virt, size_t size)
2823{
2824 unsigned long addr = (unsigned long)virt;
2825 unsigned long end = addr + PAGE_ALIGN(size);
2826
2827 while (addr < end) {
2828 free_page(addr);
2829 addr += PAGE_SIZE;
2830 }
2831}
2832EXPORT_SYMBOL(free_pages_exact);
2833
1da177e4
LT
2834static unsigned int nr_free_zone_pages(int offset)
2835{
dd1a239f 2836 struct zoneref *z;
54a6eb5c
MG
2837 struct zone *zone;
2838
e310fd43 2839 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2840 unsigned int sum = 0;
2841
0e88460d 2842 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2843
54a6eb5c 2844 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2845 unsigned long size = zone->present_pages;
41858966 2846 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2847 if (size > high)
2848 sum += size - high;
1da177e4
LT
2849 }
2850
2851 return sum;
2852}
2853
2854/*
2855 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2856 */
2857unsigned int nr_free_buffer_pages(void)
2858{
af4ca457 2859 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2860}
c2f1a551 2861EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2862
2863/*
2864 * Amount of free RAM allocatable within all zones
2865 */
2866unsigned int nr_free_pagecache_pages(void)
2867{
2a1e274a 2868 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2869}
08e0f6a9
CL
2870
2871static inline void show_node(struct zone *zone)
1da177e4 2872{
e5adfffc 2873 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2874 printk("Node %d ", zone_to_nid(zone));
1da177e4 2875}
1da177e4 2876
1da177e4
LT
2877void si_meminfo(struct sysinfo *val)
2878{
2879 val->totalram = totalram_pages;
2880 val->sharedram = 0;
d23ad423 2881 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2882 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2883 val->totalhigh = totalhigh_pages;
2884 val->freehigh = nr_free_highpages();
1da177e4
LT
2885 val->mem_unit = PAGE_SIZE;
2886}
2887
2888EXPORT_SYMBOL(si_meminfo);
2889
2890#ifdef CONFIG_NUMA
2891void si_meminfo_node(struct sysinfo *val, int nid)
2892{
2893 pg_data_t *pgdat = NODE_DATA(nid);
2894
2895 val->totalram = pgdat->node_present_pages;
d23ad423 2896 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2897#ifdef CONFIG_HIGHMEM
1da177e4 2898 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2899 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2900 NR_FREE_PAGES);
98d2b0eb
CL
2901#else
2902 val->totalhigh = 0;
2903 val->freehigh = 0;
2904#endif
1da177e4
LT
2905 val->mem_unit = PAGE_SIZE;
2906}
2907#endif
2908
ddd588b5 2909/*
7bf02ea2
DR
2910 * Determine whether the node should be displayed or not, depending on whether
2911 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2912 */
7bf02ea2 2913bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2914{
2915 bool ret = false;
cc9a6c87 2916 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2917
2918 if (!(flags & SHOW_MEM_FILTER_NODES))
2919 goto out;
2920
cc9a6c87
MG
2921 do {
2922 cpuset_mems_cookie = get_mems_allowed();
2923 ret = !node_isset(nid, cpuset_current_mems_allowed);
2924 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2925out:
2926 return ret;
2927}
2928
1da177e4
LT
2929#define K(x) ((x) << (PAGE_SHIFT-10))
2930
377e4f16
RV
2931static void show_migration_types(unsigned char type)
2932{
2933 static const char types[MIGRATE_TYPES] = {
2934 [MIGRATE_UNMOVABLE] = 'U',
2935 [MIGRATE_RECLAIMABLE] = 'E',
2936 [MIGRATE_MOVABLE] = 'M',
2937 [MIGRATE_RESERVE] = 'R',
2938#ifdef CONFIG_CMA
2939 [MIGRATE_CMA] = 'C',
2940#endif
2941 [MIGRATE_ISOLATE] = 'I',
2942 };
2943 char tmp[MIGRATE_TYPES + 1];
2944 char *p = tmp;
2945 int i;
2946
2947 for (i = 0; i < MIGRATE_TYPES; i++) {
2948 if (type & (1 << i))
2949 *p++ = types[i];
2950 }
2951
2952 *p = '\0';
2953 printk("(%s) ", tmp);
2954}
2955
1da177e4
LT
2956/*
2957 * Show free area list (used inside shift_scroll-lock stuff)
2958 * We also calculate the percentage fragmentation. We do this by counting the
2959 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2960 * Suppresses nodes that are not allowed by current's cpuset if
2961 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2962 */
7bf02ea2 2963void show_free_areas(unsigned int filter)
1da177e4 2964{
c7241913 2965 int cpu;
1da177e4
LT
2966 struct zone *zone;
2967
ee99c71c 2968 for_each_populated_zone(zone) {
7bf02ea2 2969 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2970 continue;
c7241913
JS
2971 show_node(zone);
2972 printk("%s per-cpu:\n", zone->name);
1da177e4 2973
6b482c67 2974 for_each_online_cpu(cpu) {
1da177e4
LT
2975 struct per_cpu_pageset *pageset;
2976
99dcc3e5 2977 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2978
3dfa5721
CL
2979 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2980 cpu, pageset->pcp.high,
2981 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2982 }
2983 }
2984
a731286d
KM
2985 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2986 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2987 " unevictable:%lu"
b76146ed 2988 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2989 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2990 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2991 " free_cma:%lu\n",
4f98a2fe 2992 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2993 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2994 global_page_state(NR_ISOLATED_ANON),
2995 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2996 global_page_state(NR_INACTIVE_FILE),
a731286d 2997 global_page_state(NR_ISOLATED_FILE),
7b854121 2998 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2999 global_page_state(NR_FILE_DIRTY),
ce866b34 3000 global_page_state(NR_WRITEBACK),
fd39fc85 3001 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3002 global_page_state(NR_FREE_PAGES),
3701b033
KM
3003 global_page_state(NR_SLAB_RECLAIMABLE),
3004 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3005 global_page_state(NR_FILE_MAPPED),
4b02108a 3006 global_page_state(NR_SHMEM),
a25700a5 3007 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3008 global_page_state(NR_BOUNCE),
3009 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3010
ee99c71c 3011 for_each_populated_zone(zone) {
1da177e4
LT
3012 int i;
3013
7bf02ea2 3014 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3015 continue;
1da177e4
LT
3016 show_node(zone);
3017 printk("%s"
3018 " free:%lukB"
3019 " min:%lukB"
3020 " low:%lukB"
3021 " high:%lukB"
4f98a2fe
RR
3022 " active_anon:%lukB"
3023 " inactive_anon:%lukB"
3024 " active_file:%lukB"
3025 " inactive_file:%lukB"
7b854121 3026 " unevictable:%lukB"
a731286d
KM
3027 " isolated(anon):%lukB"
3028 " isolated(file):%lukB"
1da177e4 3029 " present:%lukB"
9feedc9d 3030 " managed:%lukB"
4a0aa73f
KM
3031 " mlocked:%lukB"
3032 " dirty:%lukB"
3033 " writeback:%lukB"
3034 " mapped:%lukB"
4b02108a 3035 " shmem:%lukB"
4a0aa73f
KM
3036 " slab_reclaimable:%lukB"
3037 " slab_unreclaimable:%lukB"
c6a7f572 3038 " kernel_stack:%lukB"
4a0aa73f
KM
3039 " pagetables:%lukB"
3040 " unstable:%lukB"
3041 " bounce:%lukB"
d1ce749a 3042 " free_cma:%lukB"
4a0aa73f 3043 " writeback_tmp:%lukB"
1da177e4
LT
3044 " pages_scanned:%lu"
3045 " all_unreclaimable? %s"
3046 "\n",
3047 zone->name,
88f5acf8 3048 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3049 K(min_wmark_pages(zone)),
3050 K(low_wmark_pages(zone)),
3051 K(high_wmark_pages(zone)),
4f98a2fe
RR
3052 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3053 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3054 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3055 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3056 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3057 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3058 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3059 K(zone->present_pages),
9feedc9d 3060 K(zone->managed_pages),
4a0aa73f
KM
3061 K(zone_page_state(zone, NR_MLOCK)),
3062 K(zone_page_state(zone, NR_FILE_DIRTY)),
3063 K(zone_page_state(zone, NR_WRITEBACK)),
3064 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3065 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3066 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3067 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3068 zone_page_state(zone, NR_KERNEL_STACK) *
3069 THREAD_SIZE / 1024,
4a0aa73f
KM
3070 K(zone_page_state(zone, NR_PAGETABLE)),
3071 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3072 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3073 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3074 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3075 zone->pages_scanned,
93e4a89a 3076 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3077 );
3078 printk("lowmem_reserve[]:");
3079 for (i = 0; i < MAX_NR_ZONES; i++)
3080 printk(" %lu", zone->lowmem_reserve[i]);
3081 printk("\n");
3082 }
3083
ee99c71c 3084 for_each_populated_zone(zone) {
8f9de51a 3085 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3086 unsigned char types[MAX_ORDER];
1da177e4 3087
7bf02ea2 3088 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3089 continue;
1da177e4
LT
3090 show_node(zone);
3091 printk("%s: ", zone->name);
1da177e4
LT
3092
3093 spin_lock_irqsave(&zone->lock, flags);
3094 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3095 struct free_area *area = &zone->free_area[order];
3096 int type;
3097
3098 nr[order] = area->nr_free;
8f9de51a 3099 total += nr[order] << order;
377e4f16
RV
3100
3101 types[order] = 0;
3102 for (type = 0; type < MIGRATE_TYPES; type++) {
3103 if (!list_empty(&area->free_list[type]))
3104 types[order] |= 1 << type;
3105 }
1da177e4
LT
3106 }
3107 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3108 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3109 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3110 if (nr[order])
3111 show_migration_types(types[order]);
3112 }
1da177e4
LT
3113 printk("= %lukB\n", K(total));
3114 }
3115
e6f3602d
LW
3116 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3117
1da177e4
LT
3118 show_swap_cache_info();
3119}
3120
19770b32
MG
3121static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3122{
3123 zoneref->zone = zone;
3124 zoneref->zone_idx = zone_idx(zone);
3125}
3126
1da177e4
LT
3127/*
3128 * Builds allocation fallback zone lists.
1a93205b
CL
3129 *
3130 * Add all populated zones of a node to the zonelist.
1da177e4 3131 */
f0c0b2b8
KH
3132static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3133 int nr_zones, enum zone_type zone_type)
1da177e4 3134{
1a93205b
CL
3135 struct zone *zone;
3136
98d2b0eb 3137 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3138 zone_type++;
02a68a5e
CL
3139
3140 do {
2f6726e5 3141 zone_type--;
070f8032 3142 zone = pgdat->node_zones + zone_type;
1a93205b 3143 if (populated_zone(zone)) {
dd1a239f
MG
3144 zoneref_set_zone(zone,
3145 &zonelist->_zonerefs[nr_zones++]);
070f8032 3146 check_highest_zone(zone_type);
1da177e4 3147 }
02a68a5e 3148
2f6726e5 3149 } while (zone_type);
070f8032 3150 return nr_zones;
1da177e4
LT
3151}
3152
f0c0b2b8
KH
3153
3154/*
3155 * zonelist_order:
3156 * 0 = automatic detection of better ordering.
3157 * 1 = order by ([node] distance, -zonetype)
3158 * 2 = order by (-zonetype, [node] distance)
3159 *
3160 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3161 * the same zonelist. So only NUMA can configure this param.
3162 */
3163#define ZONELIST_ORDER_DEFAULT 0
3164#define ZONELIST_ORDER_NODE 1
3165#define ZONELIST_ORDER_ZONE 2
3166
3167/* zonelist order in the kernel.
3168 * set_zonelist_order() will set this to NODE or ZONE.
3169 */
3170static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3171static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3172
3173
1da177e4 3174#ifdef CONFIG_NUMA
f0c0b2b8
KH
3175/* The value user specified ....changed by config */
3176static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3177/* string for sysctl */
3178#define NUMA_ZONELIST_ORDER_LEN 16
3179char numa_zonelist_order[16] = "default";
3180
3181/*
3182 * interface for configure zonelist ordering.
3183 * command line option "numa_zonelist_order"
3184 * = "[dD]efault - default, automatic configuration.
3185 * = "[nN]ode - order by node locality, then by zone within node
3186 * = "[zZ]one - order by zone, then by locality within zone
3187 */
3188
3189static int __parse_numa_zonelist_order(char *s)
3190{
3191 if (*s == 'd' || *s == 'D') {
3192 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3193 } else if (*s == 'n' || *s == 'N') {
3194 user_zonelist_order = ZONELIST_ORDER_NODE;
3195 } else if (*s == 'z' || *s == 'Z') {
3196 user_zonelist_order = ZONELIST_ORDER_ZONE;
3197 } else {
3198 printk(KERN_WARNING
3199 "Ignoring invalid numa_zonelist_order value: "
3200 "%s\n", s);
3201 return -EINVAL;
3202 }
3203 return 0;
3204}
3205
3206static __init int setup_numa_zonelist_order(char *s)
3207{
ecb256f8
VL
3208 int ret;
3209
3210 if (!s)
3211 return 0;
3212
3213 ret = __parse_numa_zonelist_order(s);
3214 if (ret == 0)
3215 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3216
3217 return ret;
f0c0b2b8
KH
3218}
3219early_param("numa_zonelist_order", setup_numa_zonelist_order);
3220
3221/*
3222 * sysctl handler for numa_zonelist_order
3223 */
3224int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3225 void __user *buffer, size_t *length,
f0c0b2b8
KH
3226 loff_t *ppos)
3227{
3228 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3229 int ret;
443c6f14 3230 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3231
443c6f14 3232 mutex_lock(&zl_order_mutex);
f0c0b2b8 3233 if (write)
443c6f14 3234 strcpy(saved_string, (char*)table->data);
8d65af78 3235 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3236 if (ret)
443c6f14 3237 goto out;
f0c0b2b8
KH
3238 if (write) {
3239 int oldval = user_zonelist_order;
3240 if (__parse_numa_zonelist_order((char*)table->data)) {
3241 /*
3242 * bogus value. restore saved string
3243 */
3244 strncpy((char*)table->data, saved_string,
3245 NUMA_ZONELIST_ORDER_LEN);
3246 user_zonelist_order = oldval;
4eaf3f64
HL
3247 } else if (oldval != user_zonelist_order) {
3248 mutex_lock(&zonelists_mutex);
9adb62a5 3249 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3250 mutex_unlock(&zonelists_mutex);
3251 }
f0c0b2b8 3252 }
443c6f14
AK
3253out:
3254 mutex_unlock(&zl_order_mutex);
3255 return ret;
f0c0b2b8
KH
3256}
3257
3258
62bc62a8 3259#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3260static int node_load[MAX_NUMNODES];
3261
1da177e4 3262/**
4dc3b16b 3263 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3264 * @node: node whose fallback list we're appending
3265 * @used_node_mask: nodemask_t of already used nodes
3266 *
3267 * We use a number of factors to determine which is the next node that should
3268 * appear on a given node's fallback list. The node should not have appeared
3269 * already in @node's fallback list, and it should be the next closest node
3270 * according to the distance array (which contains arbitrary distance values
3271 * from each node to each node in the system), and should also prefer nodes
3272 * with no CPUs, since presumably they'll have very little allocation pressure
3273 * on them otherwise.
3274 * It returns -1 if no node is found.
3275 */
f0c0b2b8 3276static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3277{
4cf808eb 3278 int n, val;
1da177e4
LT
3279 int min_val = INT_MAX;
3280 int best_node = -1;
a70f7302 3281 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3282
4cf808eb
LT
3283 /* Use the local node if we haven't already */
3284 if (!node_isset(node, *used_node_mask)) {
3285 node_set(node, *used_node_mask);
3286 return node;
3287 }
1da177e4 3288
4b0ef1fe 3289 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3290
3291 /* Don't want a node to appear more than once */
3292 if (node_isset(n, *used_node_mask))
3293 continue;
3294
1da177e4
LT
3295 /* Use the distance array to find the distance */
3296 val = node_distance(node, n);
3297
4cf808eb
LT
3298 /* Penalize nodes under us ("prefer the next node") */
3299 val += (n < node);
3300
1da177e4 3301 /* Give preference to headless and unused nodes */
a70f7302
RR
3302 tmp = cpumask_of_node(n);
3303 if (!cpumask_empty(tmp))
1da177e4
LT
3304 val += PENALTY_FOR_NODE_WITH_CPUS;
3305
3306 /* Slight preference for less loaded node */
3307 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3308 val += node_load[n];
3309
3310 if (val < min_val) {
3311 min_val = val;
3312 best_node = n;
3313 }
3314 }
3315
3316 if (best_node >= 0)
3317 node_set(best_node, *used_node_mask);
3318
3319 return best_node;
3320}
3321
f0c0b2b8
KH
3322
3323/*
3324 * Build zonelists ordered by node and zones within node.
3325 * This results in maximum locality--normal zone overflows into local
3326 * DMA zone, if any--but risks exhausting DMA zone.
3327 */
3328static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3329{
f0c0b2b8 3330 int j;
1da177e4 3331 struct zonelist *zonelist;
f0c0b2b8 3332
54a6eb5c 3333 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3334 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3335 ;
3336 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3337 MAX_NR_ZONES - 1);
dd1a239f
MG
3338 zonelist->_zonerefs[j].zone = NULL;
3339 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3340}
3341
523b9458
CL
3342/*
3343 * Build gfp_thisnode zonelists
3344 */
3345static void build_thisnode_zonelists(pg_data_t *pgdat)
3346{
523b9458
CL
3347 int j;
3348 struct zonelist *zonelist;
3349
54a6eb5c
MG
3350 zonelist = &pgdat->node_zonelists[1];
3351 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3352 zonelist->_zonerefs[j].zone = NULL;
3353 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3354}
3355
f0c0b2b8
KH
3356/*
3357 * Build zonelists ordered by zone and nodes within zones.
3358 * This results in conserving DMA zone[s] until all Normal memory is
3359 * exhausted, but results in overflowing to remote node while memory
3360 * may still exist in local DMA zone.
3361 */
3362static int node_order[MAX_NUMNODES];
3363
3364static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3365{
f0c0b2b8
KH
3366 int pos, j, node;
3367 int zone_type; /* needs to be signed */
3368 struct zone *z;
3369 struct zonelist *zonelist;
3370
54a6eb5c
MG
3371 zonelist = &pgdat->node_zonelists[0];
3372 pos = 0;
3373 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3374 for (j = 0; j < nr_nodes; j++) {
3375 node = node_order[j];
3376 z = &NODE_DATA(node)->node_zones[zone_type];
3377 if (populated_zone(z)) {
dd1a239f
MG
3378 zoneref_set_zone(z,
3379 &zonelist->_zonerefs[pos++]);
54a6eb5c 3380 check_highest_zone(zone_type);
f0c0b2b8
KH
3381 }
3382 }
f0c0b2b8 3383 }
dd1a239f
MG
3384 zonelist->_zonerefs[pos].zone = NULL;
3385 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3386}
3387
3388static int default_zonelist_order(void)
3389{
3390 int nid, zone_type;
3391 unsigned long low_kmem_size,total_size;
3392 struct zone *z;
3393 int average_size;
3394 /*
88393161 3395 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3396 * If they are really small and used heavily, the system can fall
3397 * into OOM very easily.
e325c90f 3398 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3399 */
3400 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3401 low_kmem_size = 0;
3402 total_size = 0;
3403 for_each_online_node(nid) {
3404 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3405 z = &NODE_DATA(nid)->node_zones[zone_type];
3406 if (populated_zone(z)) {
3407 if (zone_type < ZONE_NORMAL)
3408 low_kmem_size += z->present_pages;
3409 total_size += z->present_pages;
e325c90f
DR
3410 } else if (zone_type == ZONE_NORMAL) {
3411 /*
3412 * If any node has only lowmem, then node order
3413 * is preferred to allow kernel allocations
3414 * locally; otherwise, they can easily infringe
3415 * on other nodes when there is an abundance of
3416 * lowmem available to allocate from.
3417 */
3418 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3419 }
3420 }
3421 }
3422 if (!low_kmem_size || /* there are no DMA area. */
3423 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3424 return ZONELIST_ORDER_NODE;
3425 /*
3426 * look into each node's config.
3427 * If there is a node whose DMA/DMA32 memory is very big area on
3428 * local memory, NODE_ORDER may be suitable.
3429 */
37b07e41 3430 average_size = total_size /
4b0ef1fe 3431 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3432 for_each_online_node(nid) {
3433 low_kmem_size = 0;
3434 total_size = 0;
3435 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3436 z = &NODE_DATA(nid)->node_zones[zone_type];
3437 if (populated_zone(z)) {
3438 if (zone_type < ZONE_NORMAL)
3439 low_kmem_size += z->present_pages;
3440 total_size += z->present_pages;
3441 }
3442 }
3443 if (low_kmem_size &&
3444 total_size > average_size && /* ignore small node */
3445 low_kmem_size > total_size * 70/100)
3446 return ZONELIST_ORDER_NODE;
3447 }
3448 return ZONELIST_ORDER_ZONE;
3449}
3450
3451static void set_zonelist_order(void)
3452{
3453 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3454 current_zonelist_order = default_zonelist_order();
3455 else
3456 current_zonelist_order = user_zonelist_order;
3457}
3458
3459static void build_zonelists(pg_data_t *pgdat)
3460{
3461 int j, node, load;
3462 enum zone_type i;
1da177e4 3463 nodemask_t used_mask;
f0c0b2b8
KH
3464 int local_node, prev_node;
3465 struct zonelist *zonelist;
3466 int order = current_zonelist_order;
1da177e4
LT
3467
3468 /* initialize zonelists */
523b9458 3469 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3470 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3471 zonelist->_zonerefs[0].zone = NULL;
3472 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3473 }
3474
3475 /* NUMA-aware ordering of nodes */
3476 local_node = pgdat->node_id;
62bc62a8 3477 load = nr_online_nodes;
1da177e4
LT
3478 prev_node = local_node;
3479 nodes_clear(used_mask);
f0c0b2b8 3480
f0c0b2b8
KH
3481 memset(node_order, 0, sizeof(node_order));
3482 j = 0;
3483
1da177e4
LT
3484 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3485 /*
3486 * We don't want to pressure a particular node.
3487 * So adding penalty to the first node in same
3488 * distance group to make it round-robin.
3489 */
957f822a
DR
3490 if (node_distance(local_node, node) !=
3491 node_distance(local_node, prev_node))
f0c0b2b8
KH
3492 node_load[node] = load;
3493
1da177e4
LT
3494 prev_node = node;
3495 load--;
f0c0b2b8
KH
3496 if (order == ZONELIST_ORDER_NODE)
3497 build_zonelists_in_node_order(pgdat, node);
3498 else
3499 node_order[j++] = node; /* remember order */
3500 }
1da177e4 3501
f0c0b2b8
KH
3502 if (order == ZONELIST_ORDER_ZONE) {
3503 /* calculate node order -- i.e., DMA last! */
3504 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3505 }
523b9458
CL
3506
3507 build_thisnode_zonelists(pgdat);
1da177e4
LT
3508}
3509
9276b1bc 3510/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3511static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3512{
54a6eb5c
MG
3513 struct zonelist *zonelist;
3514 struct zonelist_cache *zlc;
dd1a239f 3515 struct zoneref *z;
9276b1bc 3516
54a6eb5c
MG
3517 zonelist = &pgdat->node_zonelists[0];
3518 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3519 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3520 for (z = zonelist->_zonerefs; z->zone; z++)
3521 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3522}
3523
7aac7898
LS
3524#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3525/*
3526 * Return node id of node used for "local" allocations.
3527 * I.e., first node id of first zone in arg node's generic zonelist.
3528 * Used for initializing percpu 'numa_mem', which is used primarily
3529 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3530 */
3531int local_memory_node(int node)
3532{
3533 struct zone *zone;
3534
3535 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3536 gfp_zone(GFP_KERNEL),
3537 NULL,
3538 &zone);
3539 return zone->node;
3540}
3541#endif
f0c0b2b8 3542
1da177e4
LT
3543#else /* CONFIG_NUMA */
3544
f0c0b2b8
KH
3545static void set_zonelist_order(void)
3546{
3547 current_zonelist_order = ZONELIST_ORDER_ZONE;
3548}
3549
3550static void build_zonelists(pg_data_t *pgdat)
1da177e4 3551{
19655d34 3552 int node, local_node;
54a6eb5c
MG
3553 enum zone_type j;
3554 struct zonelist *zonelist;
1da177e4
LT
3555
3556 local_node = pgdat->node_id;
1da177e4 3557
54a6eb5c
MG
3558 zonelist = &pgdat->node_zonelists[0];
3559 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3560
54a6eb5c
MG
3561 /*
3562 * Now we build the zonelist so that it contains the zones
3563 * of all the other nodes.
3564 * We don't want to pressure a particular node, so when
3565 * building the zones for node N, we make sure that the
3566 * zones coming right after the local ones are those from
3567 * node N+1 (modulo N)
3568 */
3569 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3570 if (!node_online(node))
3571 continue;
3572 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3573 MAX_NR_ZONES - 1);
1da177e4 3574 }
54a6eb5c
MG
3575 for (node = 0; node < local_node; node++) {
3576 if (!node_online(node))
3577 continue;
3578 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3579 MAX_NR_ZONES - 1);
3580 }
3581
dd1a239f
MG
3582 zonelist->_zonerefs[j].zone = NULL;
3583 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3584}
3585
9276b1bc 3586/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3587static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3588{
54a6eb5c 3589 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3590}
3591
1da177e4
LT
3592#endif /* CONFIG_NUMA */
3593
99dcc3e5
CL
3594/*
3595 * Boot pageset table. One per cpu which is going to be used for all
3596 * zones and all nodes. The parameters will be set in such a way
3597 * that an item put on a list will immediately be handed over to
3598 * the buddy list. This is safe since pageset manipulation is done
3599 * with interrupts disabled.
3600 *
3601 * The boot_pagesets must be kept even after bootup is complete for
3602 * unused processors and/or zones. They do play a role for bootstrapping
3603 * hotplugged processors.
3604 *
3605 * zoneinfo_show() and maybe other functions do
3606 * not check if the processor is online before following the pageset pointer.
3607 * Other parts of the kernel may not check if the zone is available.
3608 */
3609static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3610static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3611static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3612
4eaf3f64
HL
3613/*
3614 * Global mutex to protect against size modification of zonelists
3615 * as well as to serialize pageset setup for the new populated zone.
3616 */
3617DEFINE_MUTEX(zonelists_mutex);
3618
9b1a4d38 3619/* return values int ....just for stop_machine() */
4ed7e022 3620static int __build_all_zonelists(void *data)
1da177e4 3621{
6811378e 3622 int nid;
99dcc3e5 3623 int cpu;
9adb62a5 3624 pg_data_t *self = data;
9276b1bc 3625
7f9cfb31
BL
3626#ifdef CONFIG_NUMA
3627 memset(node_load, 0, sizeof(node_load));
3628#endif
9adb62a5
JL
3629
3630 if (self && !node_online(self->node_id)) {
3631 build_zonelists(self);
3632 build_zonelist_cache(self);
3633 }
3634
9276b1bc 3635 for_each_online_node(nid) {
7ea1530a
CL
3636 pg_data_t *pgdat = NODE_DATA(nid);
3637
3638 build_zonelists(pgdat);
3639 build_zonelist_cache(pgdat);
9276b1bc 3640 }
99dcc3e5
CL
3641
3642 /*
3643 * Initialize the boot_pagesets that are going to be used
3644 * for bootstrapping processors. The real pagesets for
3645 * each zone will be allocated later when the per cpu
3646 * allocator is available.
3647 *
3648 * boot_pagesets are used also for bootstrapping offline
3649 * cpus if the system is already booted because the pagesets
3650 * are needed to initialize allocators on a specific cpu too.
3651 * F.e. the percpu allocator needs the page allocator which
3652 * needs the percpu allocator in order to allocate its pagesets
3653 * (a chicken-egg dilemma).
3654 */
7aac7898 3655 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3656 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3657
7aac7898
LS
3658#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3659 /*
3660 * We now know the "local memory node" for each node--
3661 * i.e., the node of the first zone in the generic zonelist.
3662 * Set up numa_mem percpu variable for on-line cpus. During
3663 * boot, only the boot cpu should be on-line; we'll init the
3664 * secondary cpus' numa_mem as they come on-line. During
3665 * node/memory hotplug, we'll fixup all on-line cpus.
3666 */
3667 if (cpu_online(cpu))
3668 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3669#endif
3670 }
3671
6811378e
YG
3672 return 0;
3673}
3674
4eaf3f64
HL
3675/*
3676 * Called with zonelists_mutex held always
3677 * unless system_state == SYSTEM_BOOTING.
3678 */
9adb62a5 3679void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3680{
f0c0b2b8
KH
3681 set_zonelist_order();
3682
6811378e 3683 if (system_state == SYSTEM_BOOTING) {
423b41d7 3684 __build_all_zonelists(NULL);
68ad8df4 3685 mminit_verify_zonelist();
6811378e
YG
3686 cpuset_init_current_mems_allowed();
3687 } else {
183ff22b 3688 /* we have to stop all cpus to guarantee there is no user
6811378e 3689 of zonelist */
e9959f0f 3690#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3691 if (zone)
3692 setup_zone_pageset(zone);
e9959f0f 3693#endif
9adb62a5 3694 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3695 /* cpuset refresh routine should be here */
3696 }
bd1e22b8 3697 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3698 /*
3699 * Disable grouping by mobility if the number of pages in the
3700 * system is too low to allow the mechanism to work. It would be
3701 * more accurate, but expensive to check per-zone. This check is
3702 * made on memory-hotadd so a system can start with mobility
3703 * disabled and enable it later
3704 */
d9c23400 3705 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3706 page_group_by_mobility_disabled = 1;
3707 else
3708 page_group_by_mobility_disabled = 0;
3709
3710 printk("Built %i zonelists in %s order, mobility grouping %s. "
3711 "Total pages: %ld\n",
62bc62a8 3712 nr_online_nodes,
f0c0b2b8 3713 zonelist_order_name[current_zonelist_order],
9ef9acb0 3714 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3715 vm_total_pages);
3716#ifdef CONFIG_NUMA
3717 printk("Policy zone: %s\n", zone_names[policy_zone]);
3718#endif
1da177e4
LT
3719}
3720
3721/*
3722 * Helper functions to size the waitqueue hash table.
3723 * Essentially these want to choose hash table sizes sufficiently
3724 * large so that collisions trying to wait on pages are rare.
3725 * But in fact, the number of active page waitqueues on typical
3726 * systems is ridiculously low, less than 200. So this is even
3727 * conservative, even though it seems large.
3728 *
3729 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3730 * waitqueues, i.e. the size of the waitq table given the number of pages.
3731 */
3732#define PAGES_PER_WAITQUEUE 256
3733
cca448fe 3734#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3735static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3736{
3737 unsigned long size = 1;
3738
3739 pages /= PAGES_PER_WAITQUEUE;
3740
3741 while (size < pages)
3742 size <<= 1;
3743
3744 /*
3745 * Once we have dozens or even hundreds of threads sleeping
3746 * on IO we've got bigger problems than wait queue collision.
3747 * Limit the size of the wait table to a reasonable size.
3748 */
3749 size = min(size, 4096UL);
3750
3751 return max(size, 4UL);
3752}
cca448fe
YG
3753#else
3754/*
3755 * A zone's size might be changed by hot-add, so it is not possible to determine
3756 * a suitable size for its wait_table. So we use the maximum size now.
3757 *
3758 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3759 *
3760 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3761 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3762 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3763 *
3764 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3765 * or more by the traditional way. (See above). It equals:
3766 *
3767 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3768 * ia64(16K page size) : = ( 8G + 4M)byte.
3769 * powerpc (64K page size) : = (32G +16M)byte.
3770 */
3771static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3772{
3773 return 4096UL;
3774}
3775#endif
1da177e4
LT
3776
3777/*
3778 * This is an integer logarithm so that shifts can be used later
3779 * to extract the more random high bits from the multiplicative
3780 * hash function before the remainder is taken.
3781 */
3782static inline unsigned long wait_table_bits(unsigned long size)
3783{
3784 return ffz(~size);
3785}
3786
3787#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3788
6d3163ce
AH
3789/*
3790 * Check if a pageblock contains reserved pages
3791 */
3792static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3793{
3794 unsigned long pfn;
3795
3796 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3797 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3798 return 1;
3799 }
3800 return 0;
3801}
3802
56fd56b8 3803/*
d9c23400 3804 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3805 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3806 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3807 * higher will lead to a bigger reserve which will get freed as contiguous
3808 * blocks as reclaim kicks in
3809 */
3810static void setup_zone_migrate_reserve(struct zone *zone)
3811{
6d3163ce 3812 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3813 struct page *page;
78986a67
MG
3814 unsigned long block_migratetype;
3815 int reserve;
56fd56b8 3816
d0215638
MH
3817 /*
3818 * Get the start pfn, end pfn and the number of blocks to reserve
3819 * We have to be careful to be aligned to pageblock_nr_pages to
3820 * make sure that we always check pfn_valid for the first page in
3821 * the block.
3822 */
56fd56b8
MG
3823 start_pfn = zone->zone_start_pfn;
3824 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3825 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3826 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3827 pageblock_order;
56fd56b8 3828
78986a67
MG
3829 /*
3830 * Reserve blocks are generally in place to help high-order atomic
3831 * allocations that are short-lived. A min_free_kbytes value that
3832 * would result in more than 2 reserve blocks for atomic allocations
3833 * is assumed to be in place to help anti-fragmentation for the
3834 * future allocation of hugepages at runtime.
3835 */
3836 reserve = min(2, reserve);
3837
d9c23400 3838 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3839 if (!pfn_valid(pfn))
3840 continue;
3841 page = pfn_to_page(pfn);
3842
344c790e
AL
3843 /* Watch out for overlapping nodes */
3844 if (page_to_nid(page) != zone_to_nid(zone))
3845 continue;
3846
56fd56b8
MG
3847 block_migratetype = get_pageblock_migratetype(page);
3848
938929f1
MG
3849 /* Only test what is necessary when the reserves are not met */
3850 if (reserve > 0) {
3851 /*
3852 * Blocks with reserved pages will never free, skip
3853 * them.
3854 */
3855 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3856 if (pageblock_is_reserved(pfn, block_end_pfn))
3857 continue;
56fd56b8 3858
938929f1
MG
3859 /* If this block is reserved, account for it */
3860 if (block_migratetype == MIGRATE_RESERVE) {
3861 reserve--;
3862 continue;
3863 }
3864
3865 /* Suitable for reserving if this block is movable */
3866 if (block_migratetype == MIGRATE_MOVABLE) {
3867 set_pageblock_migratetype(page,
3868 MIGRATE_RESERVE);
3869 move_freepages_block(zone, page,
3870 MIGRATE_RESERVE);
3871 reserve--;
3872 continue;
3873 }
56fd56b8
MG
3874 }
3875
3876 /*
3877 * If the reserve is met and this is a previous reserved block,
3878 * take it back
3879 */
3880 if (block_migratetype == MIGRATE_RESERVE) {
3881 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3882 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3883 }
3884 }
3885}
ac0e5b7a 3886
1da177e4
LT
3887/*
3888 * Initially all pages are reserved - free ones are freed
3889 * up by free_all_bootmem() once the early boot process is
3890 * done. Non-atomic initialization, single-pass.
3891 */
c09b4240 3892void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3893 unsigned long start_pfn, enum memmap_context context)
1da177e4 3894{
1da177e4 3895 struct page *page;
29751f69
AW
3896 unsigned long end_pfn = start_pfn + size;
3897 unsigned long pfn;
86051ca5 3898 struct zone *z;
1da177e4 3899
22b31eec
HD
3900 if (highest_memmap_pfn < end_pfn - 1)
3901 highest_memmap_pfn = end_pfn - 1;
3902
86051ca5 3903 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3904 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3905 /*
3906 * There can be holes in boot-time mem_map[]s
3907 * handed to this function. They do not
3908 * exist on hotplugged memory.
3909 */
3910 if (context == MEMMAP_EARLY) {
3911 if (!early_pfn_valid(pfn))
3912 continue;
3913 if (!early_pfn_in_nid(pfn, nid))
3914 continue;
3915 }
d41dee36
AW
3916 page = pfn_to_page(pfn);
3917 set_page_links(page, zone, nid, pfn);
708614e6 3918 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3919 init_page_count(page);
1da177e4 3920 reset_page_mapcount(page);
57e0a030 3921 reset_page_last_nid(page);
1da177e4 3922 SetPageReserved(page);
b2a0ac88
MG
3923 /*
3924 * Mark the block movable so that blocks are reserved for
3925 * movable at startup. This will force kernel allocations
3926 * to reserve their blocks rather than leaking throughout
3927 * the address space during boot when many long-lived
56fd56b8
MG
3928 * kernel allocations are made. Later some blocks near
3929 * the start are marked MIGRATE_RESERVE by
3930 * setup_zone_migrate_reserve()
86051ca5
KH
3931 *
3932 * bitmap is created for zone's valid pfn range. but memmap
3933 * can be created for invalid pages (for alignment)
3934 * check here not to call set_pageblock_migratetype() against
3935 * pfn out of zone.
b2a0ac88 3936 */
86051ca5
KH
3937 if ((z->zone_start_pfn <= pfn)
3938 && (pfn < z->zone_start_pfn + z->spanned_pages)
3939 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3940 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3941
1da177e4
LT
3942 INIT_LIST_HEAD(&page->lru);
3943#ifdef WANT_PAGE_VIRTUAL
3944 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3945 if (!is_highmem_idx(zone))
3212c6be 3946 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3947#endif
1da177e4
LT
3948 }
3949}
3950
1e548deb 3951static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3952{
b2a0ac88
MG
3953 int order, t;
3954 for_each_migratetype_order(order, t) {
3955 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3956 zone->free_area[order].nr_free = 0;
3957 }
3958}
3959
3960#ifndef __HAVE_ARCH_MEMMAP_INIT
3961#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3962 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3963#endif
3964
4ed7e022 3965static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3966{
3a6be87f 3967#ifdef CONFIG_MMU
e7c8d5c9
CL
3968 int batch;
3969
3970 /*
3971 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3972 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3973 *
3974 * OK, so we don't know how big the cache is. So guess.
3975 */
3976 batch = zone->present_pages / 1024;
ba56e91c
SR
3977 if (batch * PAGE_SIZE > 512 * 1024)
3978 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3979 batch /= 4; /* We effectively *= 4 below */
3980 if (batch < 1)
3981 batch = 1;
3982
3983 /*
0ceaacc9
NP
3984 * Clamp the batch to a 2^n - 1 value. Having a power
3985 * of 2 value was found to be more likely to have
3986 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3987 *
0ceaacc9
NP
3988 * For example if 2 tasks are alternately allocating
3989 * batches of pages, one task can end up with a lot
3990 * of pages of one half of the possible page colors
3991 * and the other with pages of the other colors.
e7c8d5c9 3992 */
9155203a 3993 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3994
e7c8d5c9 3995 return batch;
3a6be87f
DH
3996
3997#else
3998 /* The deferral and batching of frees should be suppressed under NOMMU
3999 * conditions.
4000 *
4001 * The problem is that NOMMU needs to be able to allocate large chunks
4002 * of contiguous memory as there's no hardware page translation to
4003 * assemble apparent contiguous memory from discontiguous pages.
4004 *
4005 * Queueing large contiguous runs of pages for batching, however,
4006 * causes the pages to actually be freed in smaller chunks. As there
4007 * can be a significant delay between the individual batches being
4008 * recycled, this leads to the once large chunks of space being
4009 * fragmented and becoming unavailable for high-order allocations.
4010 */
4011 return 0;
4012#endif
e7c8d5c9
CL
4013}
4014
b69a7288 4015static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
4016{
4017 struct per_cpu_pages *pcp;
5f8dcc21 4018 int migratetype;
2caaad41 4019
1c6fe946
MD
4020 memset(p, 0, sizeof(*p));
4021
3dfa5721 4022 pcp = &p->pcp;
2caaad41 4023 pcp->count = 0;
2caaad41
CL
4024 pcp->high = 6 * batch;
4025 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
4026 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4027 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4028}
4029
8ad4b1fb
RS
4030/*
4031 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4032 * to the value high for the pageset p.
4033 */
4034
4035static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4036 unsigned long high)
4037{
4038 struct per_cpu_pages *pcp;
4039
3dfa5721 4040 pcp = &p->pcp;
8ad4b1fb
RS
4041 pcp->high = high;
4042 pcp->batch = max(1UL, high/4);
4043 if ((high/4) > (PAGE_SHIFT * 8))
4044 pcp->batch = PAGE_SHIFT * 8;
4045}
4046
4ed7e022 4047static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4048{
4049 int cpu;
4050
4051 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4052
4053 for_each_possible_cpu(cpu) {
4054 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4055
4056 setup_pageset(pcp, zone_batchsize(zone));
4057
4058 if (percpu_pagelist_fraction)
4059 setup_pagelist_highmark(pcp,
4060 (zone->present_pages /
4061 percpu_pagelist_fraction));
4062 }
4063}
4064
2caaad41 4065/*
99dcc3e5
CL
4066 * Allocate per cpu pagesets and initialize them.
4067 * Before this call only boot pagesets were available.
e7c8d5c9 4068 */
99dcc3e5 4069void __init setup_per_cpu_pageset(void)
e7c8d5c9 4070{
99dcc3e5 4071 struct zone *zone;
e7c8d5c9 4072
319774e2
WF
4073 for_each_populated_zone(zone)
4074 setup_zone_pageset(zone);
e7c8d5c9
CL
4075}
4076
577a32f6 4077static noinline __init_refok
cca448fe 4078int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4079{
4080 int i;
4081 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4082 size_t alloc_size;
ed8ece2e
DH
4083
4084 /*
4085 * The per-page waitqueue mechanism uses hashed waitqueues
4086 * per zone.
4087 */
02b694de
YG
4088 zone->wait_table_hash_nr_entries =
4089 wait_table_hash_nr_entries(zone_size_pages);
4090 zone->wait_table_bits =
4091 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4092 alloc_size = zone->wait_table_hash_nr_entries
4093 * sizeof(wait_queue_head_t);
4094
cd94b9db 4095 if (!slab_is_available()) {
cca448fe 4096 zone->wait_table = (wait_queue_head_t *)
8f389a99 4097 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4098 } else {
4099 /*
4100 * This case means that a zone whose size was 0 gets new memory
4101 * via memory hot-add.
4102 * But it may be the case that a new node was hot-added. In
4103 * this case vmalloc() will not be able to use this new node's
4104 * memory - this wait_table must be initialized to use this new
4105 * node itself as well.
4106 * To use this new node's memory, further consideration will be
4107 * necessary.
4108 */
8691f3a7 4109 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4110 }
4111 if (!zone->wait_table)
4112 return -ENOMEM;
ed8ece2e 4113
02b694de 4114 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4115 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4116
4117 return 0;
ed8ece2e
DH
4118}
4119
c09b4240 4120static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4121{
99dcc3e5
CL
4122 /*
4123 * per cpu subsystem is not up at this point. The following code
4124 * relies on the ability of the linker to provide the
4125 * offset of a (static) per cpu variable into the per cpu area.
4126 */
4127 zone->pageset = &boot_pageset;
ed8ece2e 4128
f5335c0f 4129 if (zone->present_pages)
99dcc3e5
CL
4130 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4131 zone->name, zone->present_pages,
4132 zone_batchsize(zone));
ed8ece2e
DH
4133}
4134
4ed7e022 4135int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4136 unsigned long zone_start_pfn,
a2f3aa02
DH
4137 unsigned long size,
4138 enum memmap_context context)
ed8ece2e
DH
4139{
4140 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4141 int ret;
4142 ret = zone_wait_table_init(zone, size);
4143 if (ret)
4144 return ret;
ed8ece2e
DH
4145 pgdat->nr_zones = zone_idx(zone) + 1;
4146
ed8ece2e
DH
4147 zone->zone_start_pfn = zone_start_pfn;
4148
708614e6
MG
4149 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4150 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4151 pgdat->node_id,
4152 (unsigned long)zone_idx(zone),
4153 zone_start_pfn, (zone_start_pfn + size));
4154
1e548deb 4155 zone_init_free_lists(zone);
718127cc
YG
4156
4157 return 0;
ed8ece2e
DH
4158}
4159
0ee332c1 4160#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4161#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4162/*
4163 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4164 * Architectures may implement their own version but if add_active_range()
4165 * was used and there are no special requirements, this is a convenient
4166 * alternative
4167 */
f2dbcfa7 4168int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4169{
c13291a5
TH
4170 unsigned long start_pfn, end_pfn;
4171 int i, nid;
c713216d 4172
c13291a5 4173 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4174 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4175 return nid;
cc2559bc
KH
4176 /* This is a memory hole */
4177 return -1;
c713216d
MG
4178}
4179#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4180
f2dbcfa7
KH
4181int __meminit early_pfn_to_nid(unsigned long pfn)
4182{
cc2559bc
KH
4183 int nid;
4184
4185 nid = __early_pfn_to_nid(pfn);
4186 if (nid >= 0)
4187 return nid;
4188 /* just returns 0 */
4189 return 0;
f2dbcfa7
KH
4190}
4191
cc2559bc
KH
4192#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4193bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4194{
4195 int nid;
4196
4197 nid = __early_pfn_to_nid(pfn);
4198 if (nid >= 0 && nid != node)
4199 return false;
4200 return true;
4201}
4202#endif
f2dbcfa7 4203
c713216d
MG
4204/**
4205 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4206 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4207 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4208 *
4209 * If an architecture guarantees that all ranges registered with
4210 * add_active_ranges() contain no holes and may be freed, this
4211 * this function may be used instead of calling free_bootmem() manually.
4212 */
c13291a5 4213void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4214{
c13291a5
TH
4215 unsigned long start_pfn, end_pfn;
4216 int i, this_nid;
edbe7d23 4217
c13291a5
TH
4218 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4219 start_pfn = min(start_pfn, max_low_pfn);
4220 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4221
c13291a5
TH
4222 if (start_pfn < end_pfn)
4223 free_bootmem_node(NODE_DATA(this_nid),
4224 PFN_PHYS(start_pfn),
4225 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4226 }
edbe7d23 4227}
edbe7d23 4228
c713216d
MG
4229/**
4230 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4231 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4232 *
4233 * If an architecture guarantees that all ranges registered with
4234 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4235 * function may be used instead of calling memory_present() manually.
c713216d
MG
4236 */
4237void __init sparse_memory_present_with_active_regions(int nid)
4238{
c13291a5
TH
4239 unsigned long start_pfn, end_pfn;
4240 int i, this_nid;
c713216d 4241
c13291a5
TH
4242 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4243 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4244}
4245
4246/**
4247 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4248 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4249 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4250 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4251 *
4252 * It returns the start and end page frame of a node based on information
4253 * provided by an arch calling add_active_range(). If called for a node
4254 * with no available memory, a warning is printed and the start and end
88ca3b94 4255 * PFNs will be 0.
c713216d 4256 */
a3142c8e 4257void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4258 unsigned long *start_pfn, unsigned long *end_pfn)
4259{
c13291a5 4260 unsigned long this_start_pfn, this_end_pfn;
c713216d 4261 int i;
c13291a5 4262
c713216d
MG
4263 *start_pfn = -1UL;
4264 *end_pfn = 0;
4265
c13291a5
TH
4266 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4267 *start_pfn = min(*start_pfn, this_start_pfn);
4268 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4269 }
4270
633c0666 4271 if (*start_pfn == -1UL)
c713216d 4272 *start_pfn = 0;
c713216d
MG
4273}
4274
2a1e274a
MG
4275/*
4276 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4277 * assumption is made that zones within a node are ordered in monotonic
4278 * increasing memory addresses so that the "highest" populated zone is used
4279 */
b69a7288 4280static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4281{
4282 int zone_index;
4283 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4284 if (zone_index == ZONE_MOVABLE)
4285 continue;
4286
4287 if (arch_zone_highest_possible_pfn[zone_index] >
4288 arch_zone_lowest_possible_pfn[zone_index])
4289 break;
4290 }
4291
4292 VM_BUG_ON(zone_index == -1);
4293 movable_zone = zone_index;
4294}
4295
4296/*
4297 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4298 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4299 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4300 * in each node depending on the size of each node and how evenly kernelcore
4301 * is distributed. This helper function adjusts the zone ranges
4302 * provided by the architecture for a given node by using the end of the
4303 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4304 * zones within a node are in order of monotonic increases memory addresses
4305 */
b69a7288 4306static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4307 unsigned long zone_type,
4308 unsigned long node_start_pfn,
4309 unsigned long node_end_pfn,
4310 unsigned long *zone_start_pfn,
4311 unsigned long *zone_end_pfn)
4312{
4313 /* Only adjust if ZONE_MOVABLE is on this node */
4314 if (zone_movable_pfn[nid]) {
4315 /* Size ZONE_MOVABLE */
4316 if (zone_type == ZONE_MOVABLE) {
4317 *zone_start_pfn = zone_movable_pfn[nid];
4318 *zone_end_pfn = min(node_end_pfn,
4319 arch_zone_highest_possible_pfn[movable_zone]);
4320
4321 /* Adjust for ZONE_MOVABLE starting within this range */
4322 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4323 *zone_end_pfn > zone_movable_pfn[nid]) {
4324 *zone_end_pfn = zone_movable_pfn[nid];
4325
4326 /* Check if this whole range is within ZONE_MOVABLE */
4327 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4328 *zone_start_pfn = *zone_end_pfn;
4329 }
4330}
4331
c713216d
MG
4332/*
4333 * Return the number of pages a zone spans in a node, including holes
4334 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4335 */
6ea6e688 4336static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4337 unsigned long zone_type,
4338 unsigned long *ignored)
4339{
4340 unsigned long node_start_pfn, node_end_pfn;
4341 unsigned long zone_start_pfn, zone_end_pfn;
4342
4343 /* Get the start and end of the node and zone */
4344 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4345 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4346 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4347 adjust_zone_range_for_zone_movable(nid, zone_type,
4348 node_start_pfn, node_end_pfn,
4349 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4350
4351 /* Check that this node has pages within the zone's required range */
4352 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4353 return 0;
4354
4355 /* Move the zone boundaries inside the node if necessary */
4356 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4357 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4358
4359 /* Return the spanned pages */
4360 return zone_end_pfn - zone_start_pfn;
4361}
4362
4363/*
4364 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4365 * then all holes in the requested range will be accounted for.
c713216d 4366 */
32996250 4367unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4368 unsigned long range_start_pfn,
4369 unsigned long range_end_pfn)
4370{
96e907d1
TH
4371 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4372 unsigned long start_pfn, end_pfn;
4373 int i;
c713216d 4374
96e907d1
TH
4375 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4376 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4377 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4378 nr_absent -= end_pfn - start_pfn;
c713216d 4379 }
96e907d1 4380 return nr_absent;
c713216d
MG
4381}
4382
4383/**
4384 * absent_pages_in_range - Return number of page frames in holes within a range
4385 * @start_pfn: The start PFN to start searching for holes
4386 * @end_pfn: The end PFN to stop searching for holes
4387 *
88ca3b94 4388 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4389 */
4390unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4391 unsigned long end_pfn)
4392{
4393 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4394}
4395
4396/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4397static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4398 unsigned long zone_type,
4399 unsigned long *ignored)
4400{
96e907d1
TH
4401 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4402 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4403 unsigned long node_start_pfn, node_end_pfn;
4404 unsigned long zone_start_pfn, zone_end_pfn;
4405
4406 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4407 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4408 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4409
2a1e274a
MG
4410 adjust_zone_range_for_zone_movable(nid, zone_type,
4411 node_start_pfn, node_end_pfn,
4412 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4413 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4414}
0e0b864e 4415
0ee332c1 4416#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4417static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4418 unsigned long zone_type,
4419 unsigned long *zones_size)
4420{
4421 return zones_size[zone_type];
4422}
4423
6ea6e688 4424static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4425 unsigned long zone_type,
4426 unsigned long *zholes_size)
4427{
4428 if (!zholes_size)
4429 return 0;
4430
4431 return zholes_size[zone_type];
4432}
0e0b864e 4433
0ee332c1 4434#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4435
a3142c8e 4436static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4437 unsigned long *zones_size, unsigned long *zholes_size)
4438{
4439 unsigned long realtotalpages, totalpages = 0;
4440 enum zone_type i;
4441
4442 for (i = 0; i < MAX_NR_ZONES; i++)
4443 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4444 zones_size);
4445 pgdat->node_spanned_pages = totalpages;
4446
4447 realtotalpages = totalpages;
4448 for (i = 0; i < MAX_NR_ZONES; i++)
4449 realtotalpages -=
4450 zone_absent_pages_in_node(pgdat->node_id, i,
4451 zholes_size);
4452 pgdat->node_present_pages = realtotalpages;
4453 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4454 realtotalpages);
4455}
4456
835c134e
MG
4457#ifndef CONFIG_SPARSEMEM
4458/*
4459 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4460 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4461 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4462 * round what is now in bits to nearest long in bits, then return it in
4463 * bytes.
4464 */
4465static unsigned long __init usemap_size(unsigned long zonesize)
4466{
4467 unsigned long usemapsize;
4468
d9c23400
MG
4469 usemapsize = roundup(zonesize, pageblock_nr_pages);
4470 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4471 usemapsize *= NR_PAGEBLOCK_BITS;
4472 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4473
4474 return usemapsize / 8;
4475}
4476
4477static void __init setup_usemap(struct pglist_data *pgdat,
4478 struct zone *zone, unsigned long zonesize)
4479{
4480 unsigned long usemapsize = usemap_size(zonesize);
4481 zone->pageblock_flags = NULL;
58a01a45 4482 if (usemapsize)
8f389a99
YL
4483 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4484 usemapsize);
835c134e
MG
4485}
4486#else
fa9f90be 4487static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4488 struct zone *zone, unsigned long zonesize) {}
4489#endif /* CONFIG_SPARSEMEM */
4490
d9c23400 4491#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4492
d9c23400 4493/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4494void __init set_pageblock_order(void)
d9c23400 4495{
955c1cd7
AM
4496 unsigned int order;
4497
d9c23400
MG
4498 /* Check that pageblock_nr_pages has not already been setup */
4499 if (pageblock_order)
4500 return;
4501
955c1cd7
AM
4502 if (HPAGE_SHIFT > PAGE_SHIFT)
4503 order = HUGETLB_PAGE_ORDER;
4504 else
4505 order = MAX_ORDER - 1;
4506
d9c23400
MG
4507 /*
4508 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4509 * This value may be variable depending on boot parameters on IA64 and
4510 * powerpc.
d9c23400
MG
4511 */
4512 pageblock_order = order;
4513}
4514#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4515
ba72cb8c
MG
4516/*
4517 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4518 * is unused as pageblock_order is set at compile-time. See
4519 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4520 * the kernel config
ba72cb8c 4521 */
ca57df79 4522void __init set_pageblock_order(void)
ba72cb8c 4523{
ba72cb8c 4524}
d9c23400
MG
4525
4526#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4527
01cefaef
JL
4528static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4529 unsigned long present_pages)
4530{
4531 unsigned long pages = spanned_pages;
4532
4533 /*
4534 * Provide a more accurate estimation if there are holes within
4535 * the zone and SPARSEMEM is in use. If there are holes within the
4536 * zone, each populated memory region may cost us one or two extra
4537 * memmap pages due to alignment because memmap pages for each
4538 * populated regions may not naturally algined on page boundary.
4539 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4540 */
4541 if (spanned_pages > present_pages + (present_pages >> 4) &&
4542 IS_ENABLED(CONFIG_SPARSEMEM))
4543 pages = present_pages;
4544
4545 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4546}
4547
1da177e4
LT
4548/*
4549 * Set up the zone data structures:
4550 * - mark all pages reserved
4551 * - mark all memory queues empty
4552 * - clear the memory bitmaps
6527af5d
MK
4553 *
4554 * NOTE: pgdat should get zeroed by caller.
1da177e4 4555 */
b5a0e011 4556static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4557 unsigned long *zones_size, unsigned long *zholes_size)
4558{
2f1b6248 4559 enum zone_type j;
ed8ece2e 4560 int nid = pgdat->node_id;
1da177e4 4561 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4562 int ret;
1da177e4 4563
208d54e5 4564 pgdat_resize_init(pgdat);
8177a420
AA
4565#ifdef CONFIG_NUMA_BALANCING
4566 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4567 pgdat->numabalancing_migrate_nr_pages = 0;
4568 pgdat->numabalancing_migrate_next_window = jiffies;
4569#endif
1da177e4 4570 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4571 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4572 pgdat_page_cgroup_init(pgdat);
5f63b720 4573
1da177e4
LT
4574 for (j = 0; j < MAX_NR_ZONES; j++) {
4575 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4576 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4577
c713216d 4578 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4579 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4580 zholes_size);
1da177e4 4581
0e0b864e 4582 /*
9feedc9d 4583 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4584 * is used by this zone for memmap. This affects the watermark
4585 * and per-cpu initialisations
4586 */
01cefaef 4587 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4588 if (freesize >= memmap_pages) {
4589 freesize -= memmap_pages;
5594c8c8
YL
4590 if (memmap_pages)
4591 printk(KERN_DEBUG
4592 " %s zone: %lu pages used for memmap\n",
4593 zone_names[j], memmap_pages);
0e0b864e
MG
4594 } else
4595 printk(KERN_WARNING
9feedc9d
JL
4596 " %s zone: %lu pages exceeds freesize %lu\n",
4597 zone_names[j], memmap_pages, freesize);
0e0b864e 4598
6267276f 4599 /* Account for reserved pages */
9feedc9d
JL
4600 if (j == 0 && freesize > dma_reserve) {
4601 freesize -= dma_reserve;
d903ef9f 4602 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4603 zone_names[0], dma_reserve);
0e0b864e
MG
4604 }
4605
98d2b0eb 4606 if (!is_highmem_idx(j))
9feedc9d 4607 nr_kernel_pages += freesize;
01cefaef
JL
4608 /* Charge for highmem memmap if there are enough kernel pages */
4609 else if (nr_kernel_pages > memmap_pages * 2)
4610 nr_kernel_pages -= memmap_pages;
9feedc9d 4611 nr_all_pages += freesize;
1da177e4
LT
4612
4613 zone->spanned_pages = size;
9feedc9d
JL
4614 zone->present_pages = freesize;
4615 /*
4616 * Set an approximate value for lowmem here, it will be adjusted
4617 * when the bootmem allocator frees pages into the buddy system.
4618 * And all highmem pages will be managed by the buddy system.
4619 */
4620 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4621#ifdef CONFIG_NUMA
d5f541ed 4622 zone->node = nid;
9feedc9d 4623 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4624 / 100;
9feedc9d 4625 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4626#endif
1da177e4
LT
4627 zone->name = zone_names[j];
4628 spin_lock_init(&zone->lock);
4629 spin_lock_init(&zone->lru_lock);
bdc8cb98 4630 zone_seqlock_init(zone);
1da177e4 4631 zone->zone_pgdat = pgdat;
1da177e4 4632
ed8ece2e 4633 zone_pcp_init(zone);
bea8c150 4634 lruvec_init(&zone->lruvec);
1da177e4
LT
4635 if (!size)
4636 continue;
4637
955c1cd7 4638 set_pageblock_order();
835c134e 4639 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4640 ret = init_currently_empty_zone(zone, zone_start_pfn,
4641 size, MEMMAP_EARLY);
718127cc 4642 BUG_ON(ret);
76cdd58e 4643 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4644 zone_start_pfn += size;
1da177e4
LT
4645 }
4646}
4647
577a32f6 4648static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4649{
1da177e4
LT
4650 /* Skip empty nodes */
4651 if (!pgdat->node_spanned_pages)
4652 return;
4653
d41dee36 4654#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4655 /* ia64 gets its own node_mem_map, before this, without bootmem */
4656 if (!pgdat->node_mem_map) {
e984bb43 4657 unsigned long size, start, end;
d41dee36
AW
4658 struct page *map;
4659
e984bb43
BP
4660 /*
4661 * The zone's endpoints aren't required to be MAX_ORDER
4662 * aligned but the node_mem_map endpoints must be in order
4663 * for the buddy allocator to function correctly.
4664 */
4665 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4666 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4667 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4668 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4669 map = alloc_remap(pgdat->node_id, size);
4670 if (!map)
8f389a99 4671 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4672 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4673 }
12d810c1 4674#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4675 /*
4676 * With no DISCONTIG, the global mem_map is just set as node 0's
4677 */
c713216d 4678 if (pgdat == NODE_DATA(0)) {
1da177e4 4679 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4680#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4681 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4682 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4683#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4684 }
1da177e4 4685#endif
d41dee36 4686#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4687}
4688
9109fb7b
JW
4689void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4690 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4691{
9109fb7b
JW
4692 pg_data_t *pgdat = NODE_DATA(nid);
4693
88fdf75d 4694 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4695 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4696
1da177e4
LT
4697 pgdat->node_id = nid;
4698 pgdat->node_start_pfn = node_start_pfn;
957f822a 4699 init_zone_allows_reclaim(nid);
c713216d 4700 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4701
4702 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4703#ifdef CONFIG_FLAT_NODE_MEM_MAP
4704 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4705 nid, (unsigned long)pgdat,
4706 (unsigned long)pgdat->node_mem_map);
4707#endif
1da177e4
LT
4708
4709 free_area_init_core(pgdat, zones_size, zholes_size);
4710}
4711
0ee332c1 4712#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4713
4714#if MAX_NUMNODES > 1
4715/*
4716 * Figure out the number of possible node ids.
4717 */
4718static void __init setup_nr_node_ids(void)
4719{
4720 unsigned int node;
4721 unsigned int highest = 0;
4722
4723 for_each_node_mask(node, node_possible_map)
4724 highest = node;
4725 nr_node_ids = highest + 1;
4726}
4727#else
4728static inline void setup_nr_node_ids(void)
4729{
4730}
4731#endif
4732
1e01979c
TH
4733/**
4734 * node_map_pfn_alignment - determine the maximum internode alignment
4735 *
4736 * This function should be called after node map is populated and sorted.
4737 * It calculates the maximum power of two alignment which can distinguish
4738 * all the nodes.
4739 *
4740 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4741 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4742 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4743 * shifted, 1GiB is enough and this function will indicate so.
4744 *
4745 * This is used to test whether pfn -> nid mapping of the chosen memory
4746 * model has fine enough granularity to avoid incorrect mapping for the
4747 * populated node map.
4748 *
4749 * Returns the determined alignment in pfn's. 0 if there is no alignment
4750 * requirement (single node).
4751 */
4752unsigned long __init node_map_pfn_alignment(void)
4753{
4754 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4755 unsigned long start, end, mask;
1e01979c 4756 int last_nid = -1;
c13291a5 4757 int i, nid;
1e01979c 4758
c13291a5 4759 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4760 if (!start || last_nid < 0 || last_nid == nid) {
4761 last_nid = nid;
4762 last_end = end;
4763 continue;
4764 }
4765
4766 /*
4767 * Start with a mask granular enough to pin-point to the
4768 * start pfn and tick off bits one-by-one until it becomes
4769 * too coarse to separate the current node from the last.
4770 */
4771 mask = ~((1 << __ffs(start)) - 1);
4772 while (mask && last_end <= (start & (mask << 1)))
4773 mask <<= 1;
4774
4775 /* accumulate all internode masks */
4776 accl_mask |= mask;
4777 }
4778
4779 /* convert mask to number of pages */
4780 return ~accl_mask + 1;
4781}
4782
a6af2bc3 4783/* Find the lowest pfn for a node */
b69a7288 4784static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4785{
a6af2bc3 4786 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4787 unsigned long start_pfn;
4788 int i;
1abbfb41 4789
c13291a5
TH
4790 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4791 min_pfn = min(min_pfn, start_pfn);
c713216d 4792
a6af2bc3
MG
4793 if (min_pfn == ULONG_MAX) {
4794 printk(KERN_WARNING
2bc0d261 4795 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4796 return 0;
4797 }
4798
4799 return min_pfn;
c713216d
MG
4800}
4801
4802/**
4803 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4804 *
4805 * It returns the minimum PFN based on information provided via
88ca3b94 4806 * add_active_range().
c713216d
MG
4807 */
4808unsigned long __init find_min_pfn_with_active_regions(void)
4809{
4810 return find_min_pfn_for_node(MAX_NUMNODES);
4811}
4812
37b07e41
LS
4813/*
4814 * early_calculate_totalpages()
4815 * Sum pages in active regions for movable zone.
4b0ef1fe 4816 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4817 */
484f51f8 4818static unsigned long __init early_calculate_totalpages(void)
7e63efef 4819{
7e63efef 4820 unsigned long totalpages = 0;
c13291a5
TH
4821 unsigned long start_pfn, end_pfn;
4822 int i, nid;
4823
4824 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4825 unsigned long pages = end_pfn - start_pfn;
7e63efef 4826
37b07e41
LS
4827 totalpages += pages;
4828 if (pages)
4b0ef1fe 4829 node_set_state(nid, N_MEMORY);
37b07e41
LS
4830 }
4831 return totalpages;
7e63efef
MG
4832}
4833
2a1e274a
MG
4834/*
4835 * Find the PFN the Movable zone begins in each node. Kernel memory
4836 * is spread evenly between nodes as long as the nodes have enough
4837 * memory. When they don't, some nodes will have more kernelcore than
4838 * others
4839 */
b224ef85 4840static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4841{
4842 int i, nid;
4843 unsigned long usable_startpfn;
4844 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4845 /* save the state before borrow the nodemask */
4b0ef1fe 4846 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4847 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4848 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4849
7e63efef
MG
4850 /*
4851 * If movablecore was specified, calculate what size of
4852 * kernelcore that corresponds so that memory usable for
4853 * any allocation type is evenly spread. If both kernelcore
4854 * and movablecore are specified, then the value of kernelcore
4855 * will be used for required_kernelcore if it's greater than
4856 * what movablecore would have allowed.
4857 */
4858 if (required_movablecore) {
7e63efef
MG
4859 unsigned long corepages;
4860
4861 /*
4862 * Round-up so that ZONE_MOVABLE is at least as large as what
4863 * was requested by the user
4864 */
4865 required_movablecore =
4866 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4867 corepages = totalpages - required_movablecore;
4868
4869 required_kernelcore = max(required_kernelcore, corepages);
4870 }
4871
2a1e274a
MG
4872 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4873 if (!required_kernelcore)
66918dcd 4874 goto out;
2a1e274a
MG
4875
4876 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4877 find_usable_zone_for_movable();
4878 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4879
4880restart:
4881 /* Spread kernelcore memory as evenly as possible throughout nodes */
4882 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4883 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4884 unsigned long start_pfn, end_pfn;
4885
2a1e274a
MG
4886 /*
4887 * Recalculate kernelcore_node if the division per node
4888 * now exceeds what is necessary to satisfy the requested
4889 * amount of memory for the kernel
4890 */
4891 if (required_kernelcore < kernelcore_node)
4892 kernelcore_node = required_kernelcore / usable_nodes;
4893
4894 /*
4895 * As the map is walked, we track how much memory is usable
4896 * by the kernel using kernelcore_remaining. When it is
4897 * 0, the rest of the node is usable by ZONE_MOVABLE
4898 */
4899 kernelcore_remaining = kernelcore_node;
4900
4901 /* Go through each range of PFNs within this node */
c13291a5 4902 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4903 unsigned long size_pages;
4904
c13291a5 4905 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4906 if (start_pfn >= end_pfn)
4907 continue;
4908
4909 /* Account for what is only usable for kernelcore */
4910 if (start_pfn < usable_startpfn) {
4911 unsigned long kernel_pages;
4912 kernel_pages = min(end_pfn, usable_startpfn)
4913 - start_pfn;
4914
4915 kernelcore_remaining -= min(kernel_pages,
4916 kernelcore_remaining);
4917 required_kernelcore -= min(kernel_pages,
4918 required_kernelcore);
4919
4920 /* Continue if range is now fully accounted */
4921 if (end_pfn <= usable_startpfn) {
4922
4923 /*
4924 * Push zone_movable_pfn to the end so
4925 * that if we have to rebalance
4926 * kernelcore across nodes, we will
4927 * not double account here
4928 */
4929 zone_movable_pfn[nid] = end_pfn;
4930 continue;
4931 }
4932 start_pfn = usable_startpfn;
4933 }
4934
4935 /*
4936 * The usable PFN range for ZONE_MOVABLE is from
4937 * start_pfn->end_pfn. Calculate size_pages as the
4938 * number of pages used as kernelcore
4939 */
4940 size_pages = end_pfn - start_pfn;
4941 if (size_pages > kernelcore_remaining)
4942 size_pages = kernelcore_remaining;
4943 zone_movable_pfn[nid] = start_pfn + size_pages;
4944
4945 /*
4946 * Some kernelcore has been met, update counts and
4947 * break if the kernelcore for this node has been
4948 * satisified
4949 */
4950 required_kernelcore -= min(required_kernelcore,
4951 size_pages);
4952 kernelcore_remaining -= size_pages;
4953 if (!kernelcore_remaining)
4954 break;
4955 }
4956 }
4957
4958 /*
4959 * If there is still required_kernelcore, we do another pass with one
4960 * less node in the count. This will push zone_movable_pfn[nid] further
4961 * along on the nodes that still have memory until kernelcore is
4962 * satisified
4963 */
4964 usable_nodes--;
4965 if (usable_nodes && required_kernelcore > usable_nodes)
4966 goto restart;
4967
4968 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4969 for (nid = 0; nid < MAX_NUMNODES; nid++)
4970 zone_movable_pfn[nid] =
4971 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4972
4973out:
4974 /* restore the node_state */
4b0ef1fe 4975 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
4976}
4977
4b0ef1fe
LJ
4978/* Any regular or high memory on that node ? */
4979static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 4980{
37b07e41
LS
4981 enum zone_type zone_type;
4982
4b0ef1fe
LJ
4983 if (N_MEMORY == N_NORMAL_MEMORY)
4984 return;
4985
4986 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 4987 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4988 if (zone->present_pages) {
4b0ef1fe
LJ
4989 node_set_state(nid, N_HIGH_MEMORY);
4990 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4991 zone_type <= ZONE_NORMAL)
4992 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
4993 break;
4994 }
37b07e41 4995 }
37b07e41
LS
4996}
4997
c713216d
MG
4998/**
4999 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5000 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5001 *
5002 * This will call free_area_init_node() for each active node in the system.
5003 * Using the page ranges provided by add_active_range(), the size of each
5004 * zone in each node and their holes is calculated. If the maximum PFN
5005 * between two adjacent zones match, it is assumed that the zone is empty.
5006 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5007 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5008 * starts where the previous one ended. For example, ZONE_DMA32 starts
5009 * at arch_max_dma_pfn.
5010 */
5011void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5012{
c13291a5
TH
5013 unsigned long start_pfn, end_pfn;
5014 int i, nid;
a6af2bc3 5015
c713216d
MG
5016 /* Record where the zone boundaries are */
5017 memset(arch_zone_lowest_possible_pfn, 0,
5018 sizeof(arch_zone_lowest_possible_pfn));
5019 memset(arch_zone_highest_possible_pfn, 0,
5020 sizeof(arch_zone_highest_possible_pfn));
5021 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5022 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5023 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5024 if (i == ZONE_MOVABLE)
5025 continue;
c713216d
MG
5026 arch_zone_lowest_possible_pfn[i] =
5027 arch_zone_highest_possible_pfn[i-1];
5028 arch_zone_highest_possible_pfn[i] =
5029 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5030 }
2a1e274a
MG
5031 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5032 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5033
5034 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5035 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5036 find_zone_movable_pfns_for_nodes();
c713216d 5037
c713216d 5038 /* Print out the zone ranges */
a62e2f4f 5039 printk("Zone ranges:\n");
2a1e274a
MG
5040 for (i = 0; i < MAX_NR_ZONES; i++) {
5041 if (i == ZONE_MOVABLE)
5042 continue;
155cbfc8 5043 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5044 if (arch_zone_lowest_possible_pfn[i] ==
5045 arch_zone_highest_possible_pfn[i])
155cbfc8 5046 printk(KERN_CONT "empty\n");
72f0ba02 5047 else
a62e2f4f
BH
5048 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5049 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5050 (arch_zone_highest_possible_pfn[i]
5051 << PAGE_SHIFT) - 1);
2a1e274a
MG
5052 }
5053
5054 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5055 printk("Movable zone start for each node\n");
2a1e274a
MG
5056 for (i = 0; i < MAX_NUMNODES; i++) {
5057 if (zone_movable_pfn[i])
a62e2f4f
BH
5058 printk(" Node %d: %#010lx\n", i,
5059 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5060 }
c713216d 5061
f2d52fe5 5062 /* Print out the early node map */
a62e2f4f 5063 printk("Early memory node ranges\n");
c13291a5 5064 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5065 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5066 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5067
5068 /* Initialise every node */
708614e6 5069 mminit_verify_pageflags_layout();
8ef82866 5070 setup_nr_node_ids();
c713216d
MG
5071 for_each_online_node(nid) {
5072 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5073 free_area_init_node(nid, NULL,
c713216d 5074 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5075
5076 /* Any memory on that node */
5077 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5078 node_set_state(nid, N_MEMORY);
5079 check_for_memory(pgdat, nid);
c713216d
MG
5080 }
5081}
2a1e274a 5082
7e63efef 5083static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5084{
5085 unsigned long long coremem;
5086 if (!p)
5087 return -EINVAL;
5088
5089 coremem = memparse(p, &p);
7e63efef 5090 *core = coremem >> PAGE_SHIFT;
2a1e274a 5091
7e63efef 5092 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5093 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5094
5095 return 0;
5096}
ed7ed365 5097
7e63efef
MG
5098/*
5099 * kernelcore=size sets the amount of memory for use for allocations that
5100 * cannot be reclaimed or migrated.
5101 */
5102static int __init cmdline_parse_kernelcore(char *p)
5103{
5104 return cmdline_parse_core(p, &required_kernelcore);
5105}
5106
5107/*
5108 * movablecore=size sets the amount of memory for use for allocations that
5109 * can be reclaimed or migrated.
5110 */
5111static int __init cmdline_parse_movablecore(char *p)
5112{
5113 return cmdline_parse_core(p, &required_movablecore);
5114}
5115
ed7ed365 5116early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5117early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5118
0ee332c1 5119#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5120
0e0b864e 5121/**
88ca3b94
RD
5122 * set_dma_reserve - set the specified number of pages reserved in the first zone
5123 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5124 *
5125 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5126 * In the DMA zone, a significant percentage may be consumed by kernel image
5127 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5128 * function may optionally be used to account for unfreeable pages in the
5129 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5130 * smaller per-cpu batchsize.
0e0b864e
MG
5131 */
5132void __init set_dma_reserve(unsigned long new_dma_reserve)
5133{
5134 dma_reserve = new_dma_reserve;
5135}
5136
1da177e4
LT
5137void __init free_area_init(unsigned long *zones_size)
5138{
9109fb7b 5139 free_area_init_node(0, zones_size,
1da177e4
LT
5140 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5141}
1da177e4 5142
1da177e4
LT
5143static int page_alloc_cpu_notify(struct notifier_block *self,
5144 unsigned long action, void *hcpu)
5145{
5146 int cpu = (unsigned long)hcpu;
1da177e4 5147
8bb78442 5148 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5149 lru_add_drain_cpu(cpu);
9f8f2172
CL
5150 drain_pages(cpu);
5151
5152 /*
5153 * Spill the event counters of the dead processor
5154 * into the current processors event counters.
5155 * This artificially elevates the count of the current
5156 * processor.
5157 */
f8891e5e 5158 vm_events_fold_cpu(cpu);
9f8f2172
CL
5159
5160 /*
5161 * Zero the differential counters of the dead processor
5162 * so that the vm statistics are consistent.
5163 *
5164 * This is only okay since the processor is dead and cannot
5165 * race with what we are doing.
5166 */
2244b95a 5167 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5168 }
5169 return NOTIFY_OK;
5170}
1da177e4
LT
5171
5172void __init page_alloc_init(void)
5173{
5174 hotcpu_notifier(page_alloc_cpu_notify, 0);
5175}
5176
cb45b0e9
HA
5177/*
5178 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5179 * or min_free_kbytes changes.
5180 */
5181static void calculate_totalreserve_pages(void)
5182{
5183 struct pglist_data *pgdat;
5184 unsigned long reserve_pages = 0;
2f6726e5 5185 enum zone_type i, j;
cb45b0e9
HA
5186
5187 for_each_online_pgdat(pgdat) {
5188 for (i = 0; i < MAX_NR_ZONES; i++) {
5189 struct zone *zone = pgdat->node_zones + i;
5190 unsigned long max = 0;
5191
5192 /* Find valid and maximum lowmem_reserve in the zone */
5193 for (j = i; j < MAX_NR_ZONES; j++) {
5194 if (zone->lowmem_reserve[j] > max)
5195 max = zone->lowmem_reserve[j];
5196 }
5197
41858966
MG
5198 /* we treat the high watermark as reserved pages. */
5199 max += high_wmark_pages(zone);
cb45b0e9
HA
5200
5201 if (max > zone->present_pages)
5202 max = zone->present_pages;
5203 reserve_pages += max;
ab8fabd4
JW
5204 /*
5205 * Lowmem reserves are not available to
5206 * GFP_HIGHUSER page cache allocations and
5207 * kswapd tries to balance zones to their high
5208 * watermark. As a result, neither should be
5209 * regarded as dirtyable memory, to prevent a
5210 * situation where reclaim has to clean pages
5211 * in order to balance the zones.
5212 */
5213 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5214 }
5215 }
ab8fabd4 5216 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5217 totalreserve_pages = reserve_pages;
5218}
5219
1da177e4
LT
5220/*
5221 * setup_per_zone_lowmem_reserve - called whenever
5222 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5223 * has a correct pages reserved value, so an adequate number of
5224 * pages are left in the zone after a successful __alloc_pages().
5225 */
5226static void setup_per_zone_lowmem_reserve(void)
5227{
5228 struct pglist_data *pgdat;
2f6726e5 5229 enum zone_type j, idx;
1da177e4 5230
ec936fc5 5231 for_each_online_pgdat(pgdat) {
1da177e4
LT
5232 for (j = 0; j < MAX_NR_ZONES; j++) {
5233 struct zone *zone = pgdat->node_zones + j;
5234 unsigned long present_pages = zone->present_pages;
5235
5236 zone->lowmem_reserve[j] = 0;
5237
2f6726e5
CL
5238 idx = j;
5239 while (idx) {
1da177e4
LT
5240 struct zone *lower_zone;
5241
2f6726e5
CL
5242 idx--;
5243
1da177e4
LT
5244 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5245 sysctl_lowmem_reserve_ratio[idx] = 1;
5246
5247 lower_zone = pgdat->node_zones + idx;
5248 lower_zone->lowmem_reserve[j] = present_pages /
5249 sysctl_lowmem_reserve_ratio[idx];
5250 present_pages += lower_zone->present_pages;
5251 }
5252 }
5253 }
cb45b0e9
HA
5254
5255 /* update totalreserve_pages */
5256 calculate_totalreserve_pages();
1da177e4
LT
5257}
5258
cfd3da1e 5259static void __setup_per_zone_wmarks(void)
1da177e4
LT
5260{
5261 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5262 unsigned long lowmem_pages = 0;
5263 struct zone *zone;
5264 unsigned long flags;
5265
5266 /* Calculate total number of !ZONE_HIGHMEM pages */
5267 for_each_zone(zone) {
5268 if (!is_highmem(zone))
5269 lowmem_pages += zone->present_pages;
5270 }
5271
5272 for_each_zone(zone) {
ac924c60
AM
5273 u64 tmp;
5274
1125b4e3 5275 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5276 tmp = (u64)pages_min * zone->present_pages;
5277 do_div(tmp, lowmem_pages);
1da177e4
LT
5278 if (is_highmem(zone)) {
5279 /*
669ed175
NP
5280 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5281 * need highmem pages, so cap pages_min to a small
5282 * value here.
5283 *
41858966 5284 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5285 * deltas controls asynch page reclaim, and so should
5286 * not be capped for highmem.
1da177e4
LT
5287 */
5288 int min_pages;
5289
5290 min_pages = zone->present_pages / 1024;
5291 if (min_pages < SWAP_CLUSTER_MAX)
5292 min_pages = SWAP_CLUSTER_MAX;
5293 if (min_pages > 128)
5294 min_pages = 128;
41858966 5295 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5296 } else {
669ed175
NP
5297 /*
5298 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5299 * proportionate to the zone's size.
5300 */
41858966 5301 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5302 }
5303
41858966
MG
5304 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5305 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5306
56fd56b8 5307 setup_zone_migrate_reserve(zone);
1125b4e3 5308 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5309 }
cb45b0e9
HA
5310
5311 /* update totalreserve_pages */
5312 calculate_totalreserve_pages();
1da177e4
LT
5313}
5314
cfd3da1e
MG
5315/**
5316 * setup_per_zone_wmarks - called when min_free_kbytes changes
5317 * or when memory is hot-{added|removed}
5318 *
5319 * Ensures that the watermark[min,low,high] values for each zone are set
5320 * correctly with respect to min_free_kbytes.
5321 */
5322void setup_per_zone_wmarks(void)
5323{
5324 mutex_lock(&zonelists_mutex);
5325 __setup_per_zone_wmarks();
5326 mutex_unlock(&zonelists_mutex);
5327}
5328
55a4462a 5329/*
556adecb
RR
5330 * The inactive anon list should be small enough that the VM never has to
5331 * do too much work, but large enough that each inactive page has a chance
5332 * to be referenced again before it is swapped out.
5333 *
5334 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5335 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5336 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5337 * the anonymous pages are kept on the inactive list.
5338 *
5339 * total target max
5340 * memory ratio inactive anon
5341 * -------------------------------------
5342 * 10MB 1 5MB
5343 * 100MB 1 50MB
5344 * 1GB 3 250MB
5345 * 10GB 10 0.9GB
5346 * 100GB 31 3GB
5347 * 1TB 101 10GB
5348 * 10TB 320 32GB
5349 */
1b79acc9 5350static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5351{
96cb4df5 5352 unsigned int gb, ratio;
556adecb 5353
96cb4df5
MK
5354 /* Zone size in gigabytes */
5355 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5356 if (gb)
556adecb 5357 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5358 else
5359 ratio = 1;
556adecb 5360
96cb4df5
MK
5361 zone->inactive_ratio = ratio;
5362}
556adecb 5363
839a4fcc 5364static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5365{
5366 struct zone *zone;
5367
5368 for_each_zone(zone)
5369 calculate_zone_inactive_ratio(zone);
556adecb
RR
5370}
5371
1da177e4
LT
5372/*
5373 * Initialise min_free_kbytes.
5374 *
5375 * For small machines we want it small (128k min). For large machines
5376 * we want it large (64MB max). But it is not linear, because network
5377 * bandwidth does not increase linearly with machine size. We use
5378 *
5379 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5380 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5381 *
5382 * which yields
5383 *
5384 * 16MB: 512k
5385 * 32MB: 724k
5386 * 64MB: 1024k
5387 * 128MB: 1448k
5388 * 256MB: 2048k
5389 * 512MB: 2896k
5390 * 1024MB: 4096k
5391 * 2048MB: 5792k
5392 * 4096MB: 8192k
5393 * 8192MB: 11584k
5394 * 16384MB: 16384k
5395 */
1b79acc9 5396int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5397{
5398 unsigned long lowmem_kbytes;
5399
5400 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5401
5402 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5403 if (min_free_kbytes < 128)
5404 min_free_kbytes = 128;
5405 if (min_free_kbytes > 65536)
5406 min_free_kbytes = 65536;
bc75d33f 5407 setup_per_zone_wmarks();
a6cccdc3 5408 refresh_zone_stat_thresholds();
1da177e4 5409 setup_per_zone_lowmem_reserve();
556adecb 5410 setup_per_zone_inactive_ratio();
1da177e4
LT
5411 return 0;
5412}
bc75d33f 5413module_init(init_per_zone_wmark_min)
1da177e4
LT
5414
5415/*
5416 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5417 * that we can call two helper functions whenever min_free_kbytes
5418 * changes.
5419 */
5420int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5421 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5422{
8d65af78 5423 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5424 if (write)
bc75d33f 5425 setup_per_zone_wmarks();
1da177e4
LT
5426 return 0;
5427}
5428
9614634f
CL
5429#ifdef CONFIG_NUMA
5430int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5431 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5432{
5433 struct zone *zone;
5434 int rc;
5435
8d65af78 5436 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5437 if (rc)
5438 return rc;
5439
5440 for_each_zone(zone)
8417bba4 5441 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5442 sysctl_min_unmapped_ratio) / 100;
5443 return 0;
5444}
0ff38490
CL
5445
5446int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5447 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5448{
5449 struct zone *zone;
5450 int rc;
5451
8d65af78 5452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5453 if (rc)
5454 return rc;
5455
5456 for_each_zone(zone)
5457 zone->min_slab_pages = (zone->present_pages *
5458 sysctl_min_slab_ratio) / 100;
5459 return 0;
5460}
9614634f
CL
5461#endif
5462
1da177e4
LT
5463/*
5464 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5465 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5466 * whenever sysctl_lowmem_reserve_ratio changes.
5467 *
5468 * The reserve ratio obviously has absolutely no relation with the
41858966 5469 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5470 * if in function of the boot time zone sizes.
5471 */
5472int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5473 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5474{
8d65af78 5475 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5476 setup_per_zone_lowmem_reserve();
5477 return 0;
5478}
5479
8ad4b1fb
RS
5480/*
5481 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5482 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5483 * can have before it gets flushed back to buddy allocator.
5484 */
5485
5486int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5487 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5488{
5489 struct zone *zone;
5490 unsigned int cpu;
5491 int ret;
5492
8d65af78 5493 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5494 if (!write || (ret < 0))
8ad4b1fb 5495 return ret;
364df0eb 5496 for_each_populated_zone(zone) {
99dcc3e5 5497 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5498 unsigned long high;
5499 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5500 setup_pagelist_highmark(
5501 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5502 }
5503 }
5504 return 0;
5505}
5506
f034b5d4 5507int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5508
5509#ifdef CONFIG_NUMA
5510static int __init set_hashdist(char *str)
5511{
5512 if (!str)
5513 return 0;
5514 hashdist = simple_strtoul(str, &str, 0);
5515 return 1;
5516}
5517__setup("hashdist=", set_hashdist);
5518#endif
5519
5520/*
5521 * allocate a large system hash table from bootmem
5522 * - it is assumed that the hash table must contain an exact power-of-2
5523 * quantity of entries
5524 * - limit is the number of hash buckets, not the total allocation size
5525 */
5526void *__init alloc_large_system_hash(const char *tablename,
5527 unsigned long bucketsize,
5528 unsigned long numentries,
5529 int scale,
5530 int flags,
5531 unsigned int *_hash_shift,
5532 unsigned int *_hash_mask,
31fe62b9
TB
5533 unsigned long low_limit,
5534 unsigned long high_limit)
1da177e4 5535{
31fe62b9 5536 unsigned long long max = high_limit;
1da177e4
LT
5537 unsigned long log2qty, size;
5538 void *table = NULL;
5539
5540 /* allow the kernel cmdline to have a say */
5541 if (!numentries) {
5542 /* round applicable memory size up to nearest megabyte */
04903664 5543 numentries = nr_kernel_pages;
1da177e4
LT
5544 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5545 numentries >>= 20 - PAGE_SHIFT;
5546 numentries <<= 20 - PAGE_SHIFT;
5547
5548 /* limit to 1 bucket per 2^scale bytes of low memory */
5549 if (scale > PAGE_SHIFT)
5550 numentries >>= (scale - PAGE_SHIFT);
5551 else
5552 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5553
5554 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5555 if (unlikely(flags & HASH_SMALL)) {
5556 /* Makes no sense without HASH_EARLY */
5557 WARN_ON(!(flags & HASH_EARLY));
5558 if (!(numentries >> *_hash_shift)) {
5559 numentries = 1UL << *_hash_shift;
5560 BUG_ON(!numentries);
5561 }
5562 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5563 numentries = PAGE_SIZE / bucketsize;
1da177e4 5564 }
6e692ed3 5565 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5566
5567 /* limit allocation size to 1/16 total memory by default */
5568 if (max == 0) {
5569 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5570 do_div(max, bucketsize);
5571 }
074b8517 5572 max = min(max, 0x80000000ULL);
1da177e4 5573
31fe62b9
TB
5574 if (numentries < low_limit)
5575 numentries = low_limit;
1da177e4
LT
5576 if (numentries > max)
5577 numentries = max;
5578
f0d1b0b3 5579 log2qty = ilog2(numentries);
1da177e4
LT
5580
5581 do {
5582 size = bucketsize << log2qty;
5583 if (flags & HASH_EARLY)
74768ed8 5584 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5585 else if (hashdist)
5586 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5587 else {
1037b83b
ED
5588 /*
5589 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5590 * some pages at the end of hash table which
5591 * alloc_pages_exact() automatically does
1037b83b 5592 */
264ef8a9 5593 if (get_order(size) < MAX_ORDER) {
a1dd268c 5594 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5595 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5596 }
1da177e4
LT
5597 }
5598 } while (!table && size > PAGE_SIZE && --log2qty);
5599
5600 if (!table)
5601 panic("Failed to allocate %s hash table\n", tablename);
5602
f241e660 5603 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5604 tablename,
f241e660 5605 (1UL << log2qty),
f0d1b0b3 5606 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5607 size);
5608
5609 if (_hash_shift)
5610 *_hash_shift = log2qty;
5611 if (_hash_mask)
5612 *_hash_mask = (1 << log2qty) - 1;
5613
5614 return table;
5615}
a117e66e 5616
835c134e
MG
5617/* Return a pointer to the bitmap storing bits affecting a block of pages */
5618static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5619 unsigned long pfn)
5620{
5621#ifdef CONFIG_SPARSEMEM
5622 return __pfn_to_section(pfn)->pageblock_flags;
5623#else
5624 return zone->pageblock_flags;
5625#endif /* CONFIG_SPARSEMEM */
5626}
5627
5628static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5629{
5630#ifdef CONFIG_SPARSEMEM
5631 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5632 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5633#else
5634 pfn = pfn - zone->zone_start_pfn;
d9c23400 5635 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5636#endif /* CONFIG_SPARSEMEM */
5637}
5638
5639/**
d9c23400 5640 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5641 * @page: The page within the block of interest
5642 * @start_bitidx: The first bit of interest to retrieve
5643 * @end_bitidx: The last bit of interest
5644 * returns pageblock_bits flags
5645 */
5646unsigned long get_pageblock_flags_group(struct page *page,
5647 int start_bitidx, int end_bitidx)
5648{
5649 struct zone *zone;
5650 unsigned long *bitmap;
5651 unsigned long pfn, bitidx;
5652 unsigned long flags = 0;
5653 unsigned long value = 1;
5654
5655 zone = page_zone(page);
5656 pfn = page_to_pfn(page);
5657 bitmap = get_pageblock_bitmap(zone, pfn);
5658 bitidx = pfn_to_bitidx(zone, pfn);
5659
5660 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5661 if (test_bit(bitidx + start_bitidx, bitmap))
5662 flags |= value;
6220ec78 5663
835c134e
MG
5664 return flags;
5665}
5666
5667/**
d9c23400 5668 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5669 * @page: The page within the block of interest
5670 * @start_bitidx: The first bit of interest
5671 * @end_bitidx: The last bit of interest
5672 * @flags: The flags to set
5673 */
5674void set_pageblock_flags_group(struct page *page, unsigned long flags,
5675 int start_bitidx, int end_bitidx)
5676{
5677 struct zone *zone;
5678 unsigned long *bitmap;
5679 unsigned long pfn, bitidx;
5680 unsigned long value = 1;
5681
5682 zone = page_zone(page);
5683 pfn = page_to_pfn(page);
5684 bitmap = get_pageblock_bitmap(zone, pfn);
5685 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5686 VM_BUG_ON(pfn < zone->zone_start_pfn);
5687 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5688
5689 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5690 if (flags & value)
5691 __set_bit(bitidx + start_bitidx, bitmap);
5692 else
5693 __clear_bit(bitidx + start_bitidx, bitmap);
5694}
a5d76b54
KH
5695
5696/*
80934513
MK
5697 * This function checks whether pageblock includes unmovable pages or not.
5698 * If @count is not zero, it is okay to include less @count unmovable pages
5699 *
5700 * PageLRU check wihtout isolation or lru_lock could race so that
5701 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5702 * expect this function should be exact.
a5d76b54 5703 */
b023f468
WC
5704bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5705 bool skip_hwpoisoned_pages)
49ac8255
KH
5706{
5707 unsigned long pfn, iter, found;
47118af0
MN
5708 int mt;
5709
49ac8255
KH
5710 /*
5711 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5712 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5713 */
5714 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5715 return false;
47118af0
MN
5716 mt = get_pageblock_migratetype(page);
5717 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5718 return false;
49ac8255
KH
5719
5720 pfn = page_to_pfn(page);
5721 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5722 unsigned long check = pfn + iter;
5723
29723fcc 5724 if (!pfn_valid_within(check))
49ac8255 5725 continue;
29723fcc 5726
49ac8255 5727 page = pfn_to_page(check);
97d255c8
MK
5728 /*
5729 * We can't use page_count without pin a page
5730 * because another CPU can free compound page.
5731 * This check already skips compound tails of THP
5732 * because their page->_count is zero at all time.
5733 */
5734 if (!atomic_read(&page->_count)) {
49ac8255
KH
5735 if (PageBuddy(page))
5736 iter += (1 << page_order(page)) - 1;
5737 continue;
5738 }
97d255c8 5739
b023f468
WC
5740 /*
5741 * The HWPoisoned page may be not in buddy system, and
5742 * page_count() is not 0.
5743 */
5744 if (skip_hwpoisoned_pages && PageHWPoison(page))
5745 continue;
5746
49ac8255
KH
5747 if (!PageLRU(page))
5748 found++;
5749 /*
5750 * If there are RECLAIMABLE pages, we need to check it.
5751 * But now, memory offline itself doesn't call shrink_slab()
5752 * and it still to be fixed.
5753 */
5754 /*
5755 * If the page is not RAM, page_count()should be 0.
5756 * we don't need more check. This is an _used_ not-movable page.
5757 *
5758 * The problematic thing here is PG_reserved pages. PG_reserved
5759 * is set to both of a memory hole page and a _used_ kernel
5760 * page at boot.
5761 */
5762 if (found > count)
80934513 5763 return true;
49ac8255 5764 }
80934513 5765 return false;
49ac8255
KH
5766}
5767
5768bool is_pageblock_removable_nolock(struct page *page)
5769{
656a0706
MH
5770 struct zone *zone;
5771 unsigned long pfn;
687875fb
MH
5772
5773 /*
5774 * We have to be careful here because we are iterating over memory
5775 * sections which are not zone aware so we might end up outside of
5776 * the zone but still within the section.
656a0706
MH
5777 * We have to take care about the node as well. If the node is offline
5778 * its NODE_DATA will be NULL - see page_zone.
687875fb 5779 */
656a0706
MH
5780 if (!node_online(page_to_nid(page)))
5781 return false;
5782
5783 zone = page_zone(page);
5784 pfn = page_to_pfn(page);
5785 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5786 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5787 return false;
5788
b023f468 5789 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5790}
0c0e6195 5791
041d3a8c
MN
5792#ifdef CONFIG_CMA
5793
5794static unsigned long pfn_max_align_down(unsigned long pfn)
5795{
5796 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5797 pageblock_nr_pages) - 1);
5798}
5799
5800static unsigned long pfn_max_align_up(unsigned long pfn)
5801{
5802 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5803 pageblock_nr_pages));
5804}
5805
041d3a8c 5806/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5807static int __alloc_contig_migrate_range(struct compact_control *cc,
5808 unsigned long start, unsigned long end)
041d3a8c
MN
5809{
5810 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5811 unsigned long nr_reclaimed;
041d3a8c
MN
5812 unsigned long pfn = start;
5813 unsigned int tries = 0;
5814 int ret = 0;
5815
be49a6e1 5816 migrate_prep();
041d3a8c 5817
bb13ffeb 5818 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5819 if (fatal_signal_pending(current)) {
5820 ret = -EINTR;
5821 break;
5822 }
5823
bb13ffeb
MG
5824 if (list_empty(&cc->migratepages)) {
5825 cc->nr_migratepages = 0;
5826 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5827 pfn, end, true);
041d3a8c
MN
5828 if (!pfn) {
5829 ret = -EINTR;
5830 break;
5831 }
5832 tries = 0;
5833 } else if (++tries == 5) {
5834 ret = ret < 0 ? ret : -EBUSY;
5835 break;
5836 }
5837
beb51eaa
MK
5838 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5839 &cc->migratepages);
5840 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5841
bb13ffeb 5842 ret = migrate_pages(&cc->migratepages,
723a0644 5843 alloc_migrate_target,
7b2a2d4a
MG
5844 0, false, MIGRATE_SYNC,
5845 MR_CMA);
041d3a8c
MN
5846 }
5847
5733c7d1 5848 putback_movable_pages(&cc->migratepages);
041d3a8c
MN
5849 return ret > 0 ? 0 : ret;
5850}
5851
5852/**
5853 * alloc_contig_range() -- tries to allocate given range of pages
5854 * @start: start PFN to allocate
5855 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5856 * @migratetype: migratetype of the underlaying pageblocks (either
5857 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5858 * in range must have the same migratetype and it must
5859 * be either of the two.
041d3a8c
MN
5860 *
5861 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5862 * aligned, however it's the caller's responsibility to guarantee that
5863 * we are the only thread that changes migrate type of pageblocks the
5864 * pages fall in.
5865 *
5866 * The PFN range must belong to a single zone.
5867 *
5868 * Returns zero on success or negative error code. On success all
5869 * pages which PFN is in [start, end) are allocated for the caller and
5870 * need to be freed with free_contig_range().
5871 */
0815f3d8
MN
5872int alloc_contig_range(unsigned long start, unsigned long end,
5873 unsigned migratetype)
041d3a8c 5874{
041d3a8c
MN
5875 unsigned long outer_start, outer_end;
5876 int ret = 0, order;
5877
bb13ffeb
MG
5878 struct compact_control cc = {
5879 .nr_migratepages = 0,
5880 .order = -1,
5881 .zone = page_zone(pfn_to_page(start)),
5882 .sync = true,
5883 .ignore_skip_hint = true,
5884 };
5885 INIT_LIST_HEAD(&cc.migratepages);
5886
041d3a8c
MN
5887 /*
5888 * What we do here is we mark all pageblocks in range as
5889 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5890 * have different sizes, and due to the way page allocator
5891 * work, we align the range to biggest of the two pages so
5892 * that page allocator won't try to merge buddies from
5893 * different pageblocks and change MIGRATE_ISOLATE to some
5894 * other migration type.
5895 *
5896 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5897 * migrate the pages from an unaligned range (ie. pages that
5898 * we are interested in). This will put all the pages in
5899 * range back to page allocator as MIGRATE_ISOLATE.
5900 *
5901 * When this is done, we take the pages in range from page
5902 * allocator removing them from the buddy system. This way
5903 * page allocator will never consider using them.
5904 *
5905 * This lets us mark the pageblocks back as
5906 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5907 * aligned range but not in the unaligned, original range are
5908 * put back to page allocator so that buddy can use them.
5909 */
5910
5911 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
5912 pfn_max_align_up(end), migratetype,
5913 false);
041d3a8c 5914 if (ret)
86a595f9 5915 return ret;
041d3a8c 5916
bb13ffeb 5917 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5918 if (ret)
5919 goto done;
5920
5921 /*
5922 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5923 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5924 * more, all pages in [start, end) are free in page allocator.
5925 * What we are going to do is to allocate all pages from
5926 * [start, end) (that is remove them from page allocator).
5927 *
5928 * The only problem is that pages at the beginning and at the
5929 * end of interesting range may be not aligned with pages that
5930 * page allocator holds, ie. they can be part of higher order
5931 * pages. Because of this, we reserve the bigger range and
5932 * once this is done free the pages we are not interested in.
5933 *
5934 * We don't have to hold zone->lock here because the pages are
5935 * isolated thus they won't get removed from buddy.
5936 */
5937
5938 lru_add_drain_all();
5939 drain_all_pages();
5940
5941 order = 0;
5942 outer_start = start;
5943 while (!PageBuddy(pfn_to_page(outer_start))) {
5944 if (++order >= MAX_ORDER) {
5945 ret = -EBUSY;
5946 goto done;
5947 }
5948 outer_start &= ~0UL << order;
5949 }
5950
5951 /* Make sure the range is really isolated. */
b023f468 5952 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
5953 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5954 outer_start, end);
5955 ret = -EBUSY;
5956 goto done;
5957 }
5958
49f223a9
MS
5959
5960 /* Grab isolated pages from freelists. */
bb13ffeb 5961 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5962 if (!outer_end) {
5963 ret = -EBUSY;
5964 goto done;
5965 }
5966
5967 /* Free head and tail (if any) */
5968 if (start != outer_start)
5969 free_contig_range(outer_start, start - outer_start);
5970 if (end != outer_end)
5971 free_contig_range(end, outer_end - end);
5972
5973done:
5974 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5975 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5976 return ret;
5977}
5978
5979void free_contig_range(unsigned long pfn, unsigned nr_pages)
5980{
5981 for (; nr_pages--; ++pfn)
5982 __free_page(pfn_to_page(pfn));
5983}
5984#endif
5985
4ed7e022
JL
5986#ifdef CONFIG_MEMORY_HOTPLUG
5987static int __meminit __zone_pcp_update(void *data)
5988{
5989 struct zone *zone = data;
5990 int cpu;
5991 unsigned long batch = zone_batchsize(zone), flags;
5992
5993 for_each_possible_cpu(cpu) {
5994 struct per_cpu_pageset *pset;
5995 struct per_cpu_pages *pcp;
5996
5997 pset = per_cpu_ptr(zone->pageset, cpu);
5998 pcp = &pset->pcp;
5999
6000 local_irq_save(flags);
6001 if (pcp->count > 0)
6002 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 6003 drain_zonestat(zone, pset);
4ed7e022
JL
6004 setup_pageset(pset, batch);
6005 local_irq_restore(flags);
6006 }
6007 return 0;
6008}
6009
6010void __meminit zone_pcp_update(struct zone *zone)
6011{
6012 stop_machine(__zone_pcp_update, zone, NULL);
6013}
6014#endif
6015
340175b7
JL
6016void zone_pcp_reset(struct zone *zone)
6017{
6018 unsigned long flags;
5a883813
MK
6019 int cpu;
6020 struct per_cpu_pageset *pset;
340175b7
JL
6021
6022 /* avoid races with drain_pages() */
6023 local_irq_save(flags);
6024 if (zone->pageset != &boot_pageset) {
5a883813
MK
6025 for_each_online_cpu(cpu) {
6026 pset = per_cpu_ptr(zone->pageset, cpu);
6027 drain_zonestat(zone, pset);
6028 }
340175b7
JL
6029 free_percpu(zone->pageset);
6030 zone->pageset = &boot_pageset;
6031 }
6032 local_irq_restore(flags);
6033}
6034
6dcd73d7 6035#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6036/*
6037 * All pages in the range must be isolated before calling this.
6038 */
6039void
6040__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6041{
6042 struct page *page;
6043 struct zone *zone;
6044 int order, i;
6045 unsigned long pfn;
6046 unsigned long flags;
6047 /* find the first valid pfn */
6048 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6049 if (pfn_valid(pfn))
6050 break;
6051 if (pfn == end_pfn)
6052 return;
6053 zone = page_zone(pfn_to_page(pfn));
6054 spin_lock_irqsave(&zone->lock, flags);
6055 pfn = start_pfn;
6056 while (pfn < end_pfn) {
6057 if (!pfn_valid(pfn)) {
6058 pfn++;
6059 continue;
6060 }
6061 page = pfn_to_page(pfn);
b023f468
WC
6062 /*
6063 * The HWPoisoned page may be not in buddy system, and
6064 * page_count() is not 0.
6065 */
6066 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6067 pfn++;
6068 SetPageReserved(page);
6069 continue;
6070 }
6071
0c0e6195
KH
6072 BUG_ON(page_count(page));
6073 BUG_ON(!PageBuddy(page));
6074 order = page_order(page);
6075#ifdef CONFIG_DEBUG_VM
6076 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6077 pfn, 1 << order, end_pfn);
6078#endif
6079 list_del(&page->lru);
6080 rmv_page_order(page);
6081 zone->free_area[order].nr_free--;
0c0e6195
KH
6082 for (i = 0; i < (1 << order); i++)
6083 SetPageReserved((page+i));
6084 pfn += (1 << order);
6085 }
6086 spin_unlock_irqrestore(&zone->lock, flags);
6087}
6088#endif
8d22ba1b
WF
6089
6090#ifdef CONFIG_MEMORY_FAILURE
6091bool is_free_buddy_page(struct page *page)
6092{
6093 struct zone *zone = page_zone(page);
6094 unsigned long pfn = page_to_pfn(page);
6095 unsigned long flags;
6096 int order;
6097
6098 spin_lock_irqsave(&zone->lock, flags);
6099 for (order = 0; order < MAX_ORDER; order++) {
6100 struct page *page_head = page - (pfn & ((1 << order) - 1));
6101
6102 if (PageBuddy(page_head) && page_order(page_head) >= order)
6103 break;
6104 }
6105 spin_unlock_irqrestore(&zone->lock, flags);
6106
6107 return order < MAX_ORDER;
6108}
6109#endif
718a3821 6110
51300cef 6111static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6112 {1UL << PG_locked, "locked" },
6113 {1UL << PG_error, "error" },
6114 {1UL << PG_referenced, "referenced" },
6115 {1UL << PG_uptodate, "uptodate" },
6116 {1UL << PG_dirty, "dirty" },
6117 {1UL << PG_lru, "lru" },
6118 {1UL << PG_active, "active" },
6119 {1UL << PG_slab, "slab" },
6120 {1UL << PG_owner_priv_1, "owner_priv_1" },
6121 {1UL << PG_arch_1, "arch_1" },
6122 {1UL << PG_reserved, "reserved" },
6123 {1UL << PG_private, "private" },
6124 {1UL << PG_private_2, "private_2" },
6125 {1UL << PG_writeback, "writeback" },
6126#ifdef CONFIG_PAGEFLAGS_EXTENDED
6127 {1UL << PG_head, "head" },
6128 {1UL << PG_tail, "tail" },
6129#else
6130 {1UL << PG_compound, "compound" },
6131#endif
6132 {1UL << PG_swapcache, "swapcache" },
6133 {1UL << PG_mappedtodisk, "mappedtodisk" },
6134 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6135 {1UL << PG_swapbacked, "swapbacked" },
6136 {1UL << PG_unevictable, "unevictable" },
6137#ifdef CONFIG_MMU
6138 {1UL << PG_mlocked, "mlocked" },
6139#endif
6140#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6141 {1UL << PG_uncached, "uncached" },
6142#endif
6143#ifdef CONFIG_MEMORY_FAILURE
6144 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6145#endif
6146#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6147 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6148#endif
718a3821
WF
6149};
6150
6151static void dump_page_flags(unsigned long flags)
6152{
6153 const char *delim = "";
6154 unsigned long mask;
6155 int i;
6156
51300cef 6157 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6158
718a3821
WF
6159 printk(KERN_ALERT "page flags: %#lx(", flags);
6160
6161 /* remove zone id */
6162 flags &= (1UL << NR_PAGEFLAGS) - 1;
6163
51300cef 6164 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6165
6166 mask = pageflag_names[i].mask;
6167 if ((flags & mask) != mask)
6168 continue;
6169
6170 flags &= ~mask;
6171 printk("%s%s", delim, pageflag_names[i].name);
6172 delim = "|";
6173 }
6174
6175 /* check for left over flags */
6176 if (flags)
6177 printk("%s%#lx", delim, flags);
6178
6179 printk(")\n");
6180}
6181
6182void dump_page(struct page *page)
6183{
6184 printk(KERN_ALERT
6185 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6186 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6187 page->mapping, page->index);
6188 dump_page_flags(page->flags);
f212ad7c 6189 mem_cgroup_print_bad_page(page);
718a3821 6190}
This page took 1.239779 seconds and 5 git commands to generate.