tracing: add sched_update_prio
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594 }
595
596 /*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605 }
606
607 static inline bool got_nohz_idle_kick(void)
608 {
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623 }
624
625 #else /* CONFIG_NO_HZ_COMMON */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ_COMMON */
633
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673
674 void sched_avg_update(struct rq *rq)
675 {
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688 }
689
690 #endif /* CONFIG_SMP */
691
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702 {
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716 up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
729 }
730
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 return 0;
734 }
735 #endif
736
737 static void set_load_weight(struct task_struct *p)
738 {
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
753 }
754
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
761 }
762
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
769 }
770
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
776 enqueue_task(rq, p, flags);
777 }
778
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
784 dequeue_task(rq, p, flags);
785 }
786
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
788 {
789 /*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((&paravirt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
830 }
831 #endif
832
833 rq->clock_task += delta;
834
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
839 }
840
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
842 {
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869 }
870
871 /*
872 * __normal_prio - return the priority that is based on the static prio
873 */
874 static inline int __normal_prio(struct task_struct *p)
875 {
876 return p->static_prio;
877 }
878
879 /*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
886 static inline int normal_prio(struct task_struct *p)
887 {
888 int prio;
889
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897 }
898
899 /*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906 static int effective_prio(struct task_struct *p)
907 {
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917 }
918
919 /**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
924 */
925 inline int task_curr(const struct task_struct *p)
926 {
927 return cpu_curr(task_cpu(p)) == p;
928 }
929
930 /*
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
936 */
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
940 {
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
944
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
973 }
974
975 #ifdef CONFIG_SMP
976 /*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990 /*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
996 {
997 lockdep_assert_held(&rq->lock);
998
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013 }
1014
1015 struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018 };
1019
1020 /*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1028 */
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030 {
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1037
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
1041 }
1042
1043 /*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048 static int migration_cpu_stop(void *data)
1049 {
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
1073 if (task_rq(p) == rq && task_on_rq_queued(p))
1074 rq = __migrate_task(rq, p, arg->dest_cpu);
1075 raw_spin_unlock(&rq->lock);
1076 raw_spin_unlock(&p->pi_lock);
1077
1078 local_irq_enable();
1079 return 0;
1080 }
1081
1082 /*
1083 * sched_class::set_cpus_allowed must do the below, but is not required to
1084 * actually call this function.
1085 */
1086 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1087 {
1088 cpumask_copy(&p->cpus_allowed, new_mask);
1089 p->nr_cpus_allowed = cpumask_weight(new_mask);
1090 }
1091
1092 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1093 {
1094 struct rq *rq = task_rq(p);
1095 bool queued, running;
1096
1097 lockdep_assert_held(&p->pi_lock);
1098
1099 queued = task_on_rq_queued(p);
1100 running = task_current(rq, p);
1101
1102 if (queued) {
1103 /*
1104 * Because __kthread_bind() calls this on blocked tasks without
1105 * holding rq->lock.
1106 */
1107 lockdep_assert_held(&rq->lock);
1108 dequeue_task(rq, p, DEQUEUE_SAVE);
1109 }
1110 if (running)
1111 put_prev_task(rq, p);
1112
1113 p->sched_class->set_cpus_allowed(p, new_mask);
1114
1115 if (running)
1116 p->sched_class->set_curr_task(rq);
1117 if (queued)
1118 enqueue_task(rq, p, ENQUEUE_RESTORE);
1119 }
1120
1121 /*
1122 * Change a given task's CPU affinity. Migrate the thread to a
1123 * proper CPU and schedule it away if the CPU it's executing on
1124 * is removed from the allowed bitmask.
1125 *
1126 * NOTE: the caller must have a valid reference to the task, the
1127 * task must not exit() & deallocate itself prematurely. The
1128 * call is not atomic; no spinlocks may be held.
1129 */
1130 static int __set_cpus_allowed_ptr(struct task_struct *p,
1131 const struct cpumask *new_mask, bool check)
1132 {
1133 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1134 unsigned int dest_cpu;
1135 struct rq_flags rf;
1136 struct rq *rq;
1137 int ret = 0;
1138
1139 rq = task_rq_lock(p, &rf);
1140
1141 if (p->flags & PF_KTHREAD) {
1142 /*
1143 * Kernel threads are allowed on online && !active CPUs
1144 */
1145 cpu_valid_mask = cpu_online_mask;
1146 }
1147
1148 /*
1149 * Must re-check here, to close a race against __kthread_bind(),
1150 * sched_setaffinity() is not guaranteed to observe the flag.
1151 */
1152 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 if (cpumask_equal(&p->cpus_allowed, new_mask))
1158 goto out;
1159
1160 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1161 ret = -EINVAL;
1162 goto out;
1163 }
1164
1165 do_set_cpus_allowed(p, new_mask);
1166
1167 if (p->flags & PF_KTHREAD) {
1168 /*
1169 * For kernel threads that do indeed end up on online &&
1170 * !active we want to ensure they are strict per-cpu threads.
1171 */
1172 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1173 !cpumask_intersects(new_mask, cpu_active_mask) &&
1174 p->nr_cpus_allowed != 1);
1175 }
1176
1177 /* Can the task run on the task's current CPU? If so, we're done */
1178 if (cpumask_test_cpu(task_cpu(p), new_mask))
1179 goto out;
1180
1181 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1182 if (task_running(rq, p) || p->state == TASK_WAKING) {
1183 struct migration_arg arg = { p, dest_cpu };
1184 /* Need help from migration thread: drop lock and wait. */
1185 task_rq_unlock(rq, p, &rf);
1186 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1187 tlb_migrate_finish(p->mm);
1188 return 0;
1189 } else if (task_on_rq_queued(p)) {
1190 /*
1191 * OK, since we're going to drop the lock immediately
1192 * afterwards anyway.
1193 */
1194 lockdep_unpin_lock(&rq->lock, rf.cookie);
1195 rq = move_queued_task(rq, p, dest_cpu);
1196 lockdep_repin_lock(&rq->lock, rf.cookie);
1197 }
1198 out:
1199 task_rq_unlock(rq, p, &rf);
1200
1201 return ret;
1202 }
1203
1204 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1205 {
1206 return __set_cpus_allowed_ptr(p, new_mask, false);
1207 }
1208 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1209
1210 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1211 {
1212 #ifdef CONFIG_SCHED_DEBUG
1213 /*
1214 * We should never call set_task_cpu() on a blocked task,
1215 * ttwu() will sort out the placement.
1216 */
1217 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1218 !p->on_rq);
1219
1220 /*
1221 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1222 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1223 * time relying on p->on_rq.
1224 */
1225 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1226 p->sched_class == &fair_sched_class &&
1227 (p->on_rq && !task_on_rq_migrating(p)));
1228
1229 #ifdef CONFIG_LOCKDEP
1230 /*
1231 * The caller should hold either p->pi_lock or rq->lock, when changing
1232 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1233 *
1234 * sched_move_task() holds both and thus holding either pins the cgroup,
1235 * see task_group().
1236 *
1237 * Furthermore, all task_rq users should acquire both locks, see
1238 * task_rq_lock().
1239 */
1240 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1241 lockdep_is_held(&task_rq(p)->lock)));
1242 #endif
1243 #endif
1244
1245 trace_sched_migrate_task(p, new_cpu);
1246
1247 if (task_cpu(p) != new_cpu) {
1248 if (p->sched_class->migrate_task_rq)
1249 p->sched_class->migrate_task_rq(p);
1250 p->se.nr_migrations++;
1251 perf_event_task_migrate(p);
1252 }
1253
1254 __set_task_cpu(p, new_cpu);
1255 }
1256
1257 static void __migrate_swap_task(struct task_struct *p, int cpu)
1258 {
1259 if (task_on_rq_queued(p)) {
1260 struct rq *src_rq, *dst_rq;
1261
1262 src_rq = task_rq(p);
1263 dst_rq = cpu_rq(cpu);
1264
1265 p->on_rq = TASK_ON_RQ_MIGRATING;
1266 deactivate_task(src_rq, p, 0);
1267 set_task_cpu(p, cpu);
1268 activate_task(dst_rq, p, 0);
1269 p->on_rq = TASK_ON_RQ_QUEUED;
1270 check_preempt_curr(dst_rq, p, 0);
1271 } else {
1272 /*
1273 * Task isn't running anymore; make it appear like we migrated
1274 * it before it went to sleep. This means on wakeup we make the
1275 * previous cpu our target instead of where it really is.
1276 */
1277 p->wake_cpu = cpu;
1278 }
1279 }
1280
1281 struct migration_swap_arg {
1282 struct task_struct *src_task, *dst_task;
1283 int src_cpu, dst_cpu;
1284 };
1285
1286 static int migrate_swap_stop(void *data)
1287 {
1288 struct migration_swap_arg *arg = data;
1289 struct rq *src_rq, *dst_rq;
1290 int ret = -EAGAIN;
1291
1292 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1293 return -EAGAIN;
1294
1295 src_rq = cpu_rq(arg->src_cpu);
1296 dst_rq = cpu_rq(arg->dst_cpu);
1297
1298 double_raw_lock(&arg->src_task->pi_lock,
1299 &arg->dst_task->pi_lock);
1300 double_rq_lock(src_rq, dst_rq);
1301
1302 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1303 goto unlock;
1304
1305 if (task_cpu(arg->src_task) != arg->src_cpu)
1306 goto unlock;
1307
1308 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1309 goto unlock;
1310
1311 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1312 goto unlock;
1313
1314 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1315 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1316
1317 ret = 0;
1318
1319 unlock:
1320 double_rq_unlock(src_rq, dst_rq);
1321 raw_spin_unlock(&arg->dst_task->pi_lock);
1322 raw_spin_unlock(&arg->src_task->pi_lock);
1323
1324 return ret;
1325 }
1326
1327 /*
1328 * Cross migrate two tasks
1329 */
1330 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1331 {
1332 struct migration_swap_arg arg;
1333 int ret = -EINVAL;
1334
1335 arg = (struct migration_swap_arg){
1336 .src_task = cur,
1337 .src_cpu = task_cpu(cur),
1338 .dst_task = p,
1339 .dst_cpu = task_cpu(p),
1340 };
1341
1342 if (arg.src_cpu == arg.dst_cpu)
1343 goto out;
1344
1345 /*
1346 * These three tests are all lockless; this is OK since all of them
1347 * will be re-checked with proper locks held further down the line.
1348 */
1349 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1350 goto out;
1351
1352 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1353 goto out;
1354
1355 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1356 goto out;
1357
1358 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1359 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1360
1361 out:
1362 return ret;
1363 }
1364
1365 /*
1366 * wait_task_inactive - wait for a thread to unschedule.
1367 *
1368 * If @match_state is nonzero, it's the @p->state value just checked and
1369 * not expected to change. If it changes, i.e. @p might have woken up,
1370 * then return zero. When we succeed in waiting for @p to be off its CPU,
1371 * we return a positive number (its total switch count). If a second call
1372 * a short while later returns the same number, the caller can be sure that
1373 * @p has remained unscheduled the whole time.
1374 *
1375 * The caller must ensure that the task *will* unschedule sometime soon,
1376 * else this function might spin for a *long* time. This function can't
1377 * be called with interrupts off, or it may introduce deadlock with
1378 * smp_call_function() if an IPI is sent by the same process we are
1379 * waiting to become inactive.
1380 */
1381 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1382 {
1383 int running, queued;
1384 struct rq_flags rf;
1385 unsigned long ncsw;
1386 struct rq *rq;
1387
1388 for (;;) {
1389 /*
1390 * We do the initial early heuristics without holding
1391 * any task-queue locks at all. We'll only try to get
1392 * the runqueue lock when things look like they will
1393 * work out!
1394 */
1395 rq = task_rq(p);
1396
1397 /*
1398 * If the task is actively running on another CPU
1399 * still, just relax and busy-wait without holding
1400 * any locks.
1401 *
1402 * NOTE! Since we don't hold any locks, it's not
1403 * even sure that "rq" stays as the right runqueue!
1404 * But we don't care, since "task_running()" will
1405 * return false if the runqueue has changed and p
1406 * is actually now running somewhere else!
1407 */
1408 while (task_running(rq, p)) {
1409 if (match_state && unlikely(p->state != match_state))
1410 return 0;
1411 cpu_relax();
1412 }
1413
1414 /*
1415 * Ok, time to look more closely! We need the rq
1416 * lock now, to be *sure*. If we're wrong, we'll
1417 * just go back and repeat.
1418 */
1419 rq = task_rq_lock(p, &rf);
1420 trace_sched_wait_task(p);
1421 running = task_running(rq, p);
1422 queued = task_on_rq_queued(p);
1423 ncsw = 0;
1424 if (!match_state || p->state == match_state)
1425 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1426 task_rq_unlock(rq, p, &rf);
1427
1428 /*
1429 * If it changed from the expected state, bail out now.
1430 */
1431 if (unlikely(!ncsw))
1432 break;
1433
1434 /*
1435 * Was it really running after all now that we
1436 * checked with the proper locks actually held?
1437 *
1438 * Oops. Go back and try again..
1439 */
1440 if (unlikely(running)) {
1441 cpu_relax();
1442 continue;
1443 }
1444
1445 /*
1446 * It's not enough that it's not actively running,
1447 * it must be off the runqueue _entirely_, and not
1448 * preempted!
1449 *
1450 * So if it was still runnable (but just not actively
1451 * running right now), it's preempted, and we should
1452 * yield - it could be a while.
1453 */
1454 if (unlikely(queued)) {
1455 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1456
1457 set_current_state(TASK_UNINTERRUPTIBLE);
1458 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1459 continue;
1460 }
1461
1462 /*
1463 * Ahh, all good. It wasn't running, and it wasn't
1464 * runnable, which means that it will never become
1465 * running in the future either. We're all done!
1466 */
1467 break;
1468 }
1469
1470 return ncsw;
1471 }
1472
1473 /***
1474 * kick_process - kick a running thread to enter/exit the kernel
1475 * @p: the to-be-kicked thread
1476 *
1477 * Cause a process which is running on another CPU to enter
1478 * kernel-mode, without any delay. (to get signals handled.)
1479 *
1480 * NOTE: this function doesn't have to take the runqueue lock,
1481 * because all it wants to ensure is that the remote task enters
1482 * the kernel. If the IPI races and the task has been migrated
1483 * to another CPU then no harm is done and the purpose has been
1484 * achieved as well.
1485 */
1486 void kick_process(struct task_struct *p)
1487 {
1488 int cpu;
1489
1490 preempt_disable();
1491 cpu = task_cpu(p);
1492 if ((cpu != smp_processor_id()) && task_curr(p))
1493 smp_send_reschedule(cpu);
1494 preempt_enable();
1495 }
1496 EXPORT_SYMBOL_GPL(kick_process);
1497
1498 /*
1499 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1500 *
1501 * A few notes on cpu_active vs cpu_online:
1502 *
1503 * - cpu_active must be a subset of cpu_online
1504 *
1505 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1506 * see __set_cpus_allowed_ptr(). At this point the newly online
1507 * cpu isn't yet part of the sched domains, and balancing will not
1508 * see it.
1509 *
1510 * - on cpu-down we clear cpu_active() to mask the sched domains and
1511 * avoid the load balancer to place new tasks on the to be removed
1512 * cpu. Existing tasks will remain running there and will be taken
1513 * off.
1514 *
1515 * This means that fallback selection must not select !active CPUs.
1516 * And can assume that any active CPU must be online. Conversely
1517 * select_task_rq() below may allow selection of !active CPUs in order
1518 * to satisfy the above rules.
1519 */
1520 static int select_fallback_rq(int cpu, struct task_struct *p)
1521 {
1522 int nid = cpu_to_node(cpu);
1523 const struct cpumask *nodemask = NULL;
1524 enum { cpuset, possible, fail } state = cpuset;
1525 int dest_cpu;
1526
1527 /*
1528 * If the node that the cpu is on has been offlined, cpu_to_node()
1529 * will return -1. There is no cpu on the node, and we should
1530 * select the cpu on the other node.
1531 */
1532 if (nid != -1) {
1533 nodemask = cpumask_of_node(nid);
1534
1535 /* Look for allowed, online CPU in same node. */
1536 for_each_cpu(dest_cpu, nodemask) {
1537 if (!cpu_active(dest_cpu))
1538 continue;
1539 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1540 return dest_cpu;
1541 }
1542 }
1543
1544 for (;;) {
1545 /* Any allowed, online CPU? */
1546 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1547 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1548 continue;
1549 if (!cpu_online(dest_cpu))
1550 continue;
1551 goto out;
1552 }
1553
1554 /* No more Mr. Nice Guy. */
1555 switch (state) {
1556 case cpuset:
1557 if (IS_ENABLED(CONFIG_CPUSETS)) {
1558 cpuset_cpus_allowed_fallback(p);
1559 state = possible;
1560 break;
1561 }
1562 /* fall-through */
1563 case possible:
1564 do_set_cpus_allowed(p, cpu_possible_mask);
1565 state = fail;
1566 break;
1567
1568 case fail:
1569 BUG();
1570 break;
1571 }
1572 }
1573
1574 out:
1575 if (state != cpuset) {
1576 /*
1577 * Don't tell them about moving exiting tasks or
1578 * kernel threads (both mm NULL), since they never
1579 * leave kernel.
1580 */
1581 if (p->mm && printk_ratelimit()) {
1582 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1583 task_pid_nr(p), p->comm, cpu);
1584 }
1585 }
1586
1587 return dest_cpu;
1588 }
1589
1590 /*
1591 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1592 */
1593 static inline
1594 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1595 {
1596 lockdep_assert_held(&p->pi_lock);
1597
1598 if (tsk_nr_cpus_allowed(p) > 1)
1599 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1600 else
1601 cpu = cpumask_any(tsk_cpus_allowed(p));
1602
1603 /*
1604 * In order not to call set_task_cpu() on a blocking task we need
1605 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1606 * cpu.
1607 *
1608 * Since this is common to all placement strategies, this lives here.
1609 *
1610 * [ this allows ->select_task() to simply return task_cpu(p) and
1611 * not worry about this generic constraint ]
1612 */
1613 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1614 !cpu_online(cpu)))
1615 cpu = select_fallback_rq(task_cpu(p), p);
1616
1617 return cpu;
1618 }
1619
1620 static void update_avg(u64 *avg, u64 sample)
1621 {
1622 s64 diff = sample - *avg;
1623 *avg += diff >> 3;
1624 }
1625
1626 #else
1627
1628 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1629 const struct cpumask *new_mask, bool check)
1630 {
1631 return set_cpus_allowed_ptr(p, new_mask);
1632 }
1633
1634 #endif /* CONFIG_SMP */
1635
1636 static void
1637 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1638 {
1639 struct rq *rq;
1640
1641 if (!schedstat_enabled())
1642 return;
1643
1644 rq = this_rq();
1645
1646 #ifdef CONFIG_SMP
1647 if (cpu == rq->cpu) {
1648 schedstat_inc(rq->ttwu_local);
1649 schedstat_inc(p->se.statistics.nr_wakeups_local);
1650 } else {
1651 struct sched_domain *sd;
1652
1653 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1654 rcu_read_lock();
1655 for_each_domain(rq->cpu, sd) {
1656 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1657 schedstat_inc(sd->ttwu_wake_remote);
1658 break;
1659 }
1660 }
1661 rcu_read_unlock();
1662 }
1663
1664 if (wake_flags & WF_MIGRATED)
1665 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1666 #endif /* CONFIG_SMP */
1667
1668 schedstat_inc(rq->ttwu_count);
1669 schedstat_inc(p->se.statistics.nr_wakeups);
1670
1671 if (wake_flags & WF_SYNC)
1672 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1673 }
1674
1675 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1676 {
1677 activate_task(rq, p, en_flags);
1678 p->on_rq = TASK_ON_RQ_QUEUED;
1679
1680 /* if a worker is waking up, notify workqueue */
1681 if (p->flags & PF_WQ_WORKER)
1682 wq_worker_waking_up(p, cpu_of(rq));
1683 }
1684
1685 /*
1686 * Mark the task runnable and perform wakeup-preemption.
1687 */
1688 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1689 struct pin_cookie cookie)
1690 {
1691 check_preempt_curr(rq, p, wake_flags);
1692 p->state = TASK_RUNNING;
1693 trace_sched_wakeup(p);
1694
1695 #ifdef CONFIG_SMP
1696 if (p->sched_class->task_woken) {
1697 /*
1698 * Our task @p is fully woken up and running; so its safe to
1699 * drop the rq->lock, hereafter rq is only used for statistics.
1700 */
1701 lockdep_unpin_lock(&rq->lock, cookie);
1702 p->sched_class->task_woken(rq, p);
1703 lockdep_repin_lock(&rq->lock, cookie);
1704 }
1705
1706 if (rq->idle_stamp) {
1707 u64 delta = rq_clock(rq) - rq->idle_stamp;
1708 u64 max = 2*rq->max_idle_balance_cost;
1709
1710 update_avg(&rq->avg_idle, delta);
1711
1712 if (rq->avg_idle > max)
1713 rq->avg_idle = max;
1714
1715 rq->idle_stamp = 0;
1716 }
1717 #endif
1718 }
1719
1720 static void
1721 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1722 struct pin_cookie cookie)
1723 {
1724 int en_flags = ENQUEUE_WAKEUP;
1725
1726 lockdep_assert_held(&rq->lock);
1727
1728 #ifdef CONFIG_SMP
1729 if (p->sched_contributes_to_load)
1730 rq->nr_uninterruptible--;
1731
1732 if (wake_flags & WF_MIGRATED)
1733 en_flags |= ENQUEUE_MIGRATED;
1734 #endif
1735
1736 ttwu_activate(rq, p, en_flags);
1737 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1738 }
1739
1740 /*
1741 * Called in case the task @p isn't fully descheduled from its runqueue,
1742 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1743 * since all we need to do is flip p->state to TASK_RUNNING, since
1744 * the task is still ->on_rq.
1745 */
1746 static int ttwu_remote(struct task_struct *p, int wake_flags)
1747 {
1748 struct rq_flags rf;
1749 struct rq *rq;
1750 int ret = 0;
1751
1752 rq = __task_rq_lock(p, &rf);
1753 if (task_on_rq_queued(p)) {
1754 /* check_preempt_curr() may use rq clock */
1755 update_rq_clock(rq);
1756 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1757 ret = 1;
1758 }
1759 __task_rq_unlock(rq, &rf);
1760
1761 return ret;
1762 }
1763
1764 #ifdef CONFIG_SMP
1765 void sched_ttwu_pending(void)
1766 {
1767 struct rq *rq = this_rq();
1768 struct llist_node *llist = llist_del_all(&rq->wake_list);
1769 struct pin_cookie cookie;
1770 struct task_struct *p;
1771 unsigned long flags;
1772
1773 if (!llist)
1774 return;
1775
1776 raw_spin_lock_irqsave(&rq->lock, flags);
1777 cookie = lockdep_pin_lock(&rq->lock);
1778
1779 while (llist) {
1780 int wake_flags = 0;
1781
1782 p = llist_entry(llist, struct task_struct, wake_entry);
1783 llist = llist_next(llist);
1784
1785 if (p->sched_remote_wakeup)
1786 wake_flags = WF_MIGRATED;
1787
1788 ttwu_do_activate(rq, p, wake_flags, cookie);
1789 }
1790
1791 lockdep_unpin_lock(&rq->lock, cookie);
1792 raw_spin_unlock_irqrestore(&rq->lock, flags);
1793 }
1794
1795 void scheduler_ipi(void)
1796 {
1797 /*
1798 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1799 * TIF_NEED_RESCHED remotely (for the first time) will also send
1800 * this IPI.
1801 */
1802 preempt_fold_need_resched();
1803
1804 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1805 return;
1806
1807 /*
1808 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1809 * traditionally all their work was done from the interrupt return
1810 * path. Now that we actually do some work, we need to make sure
1811 * we do call them.
1812 *
1813 * Some archs already do call them, luckily irq_enter/exit nest
1814 * properly.
1815 *
1816 * Arguably we should visit all archs and update all handlers,
1817 * however a fair share of IPIs are still resched only so this would
1818 * somewhat pessimize the simple resched case.
1819 */
1820 irq_enter();
1821 sched_ttwu_pending();
1822
1823 /*
1824 * Check if someone kicked us for doing the nohz idle load balance.
1825 */
1826 if (unlikely(got_nohz_idle_kick())) {
1827 this_rq()->idle_balance = 1;
1828 raise_softirq_irqoff(SCHED_SOFTIRQ);
1829 }
1830 irq_exit();
1831 }
1832
1833 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1834 {
1835 struct rq *rq = cpu_rq(cpu);
1836
1837 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1838
1839 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1840 if (!set_nr_if_polling(rq->idle))
1841 smp_send_reschedule(cpu);
1842 else
1843 trace_sched_wake_idle_without_ipi(cpu);
1844 }
1845 }
1846
1847 void wake_up_if_idle(int cpu)
1848 {
1849 struct rq *rq = cpu_rq(cpu);
1850 unsigned long flags;
1851
1852 rcu_read_lock();
1853
1854 if (!is_idle_task(rcu_dereference(rq->curr)))
1855 goto out;
1856
1857 if (set_nr_if_polling(rq->idle)) {
1858 trace_sched_wake_idle_without_ipi(cpu);
1859 } else {
1860 raw_spin_lock_irqsave(&rq->lock, flags);
1861 if (is_idle_task(rq->curr))
1862 smp_send_reschedule(cpu);
1863 /* Else cpu is not in idle, do nothing here */
1864 raw_spin_unlock_irqrestore(&rq->lock, flags);
1865 }
1866
1867 out:
1868 rcu_read_unlock();
1869 }
1870
1871 bool cpus_share_cache(int this_cpu, int that_cpu)
1872 {
1873 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1874 }
1875 #endif /* CONFIG_SMP */
1876
1877 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1878 {
1879 struct rq *rq = cpu_rq(cpu);
1880 struct pin_cookie cookie;
1881
1882 #if defined(CONFIG_SMP)
1883 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1884 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1885 ttwu_queue_remote(p, cpu, wake_flags);
1886 return;
1887 }
1888 #endif
1889
1890 raw_spin_lock(&rq->lock);
1891 cookie = lockdep_pin_lock(&rq->lock);
1892 ttwu_do_activate(rq, p, wake_flags, cookie);
1893 lockdep_unpin_lock(&rq->lock, cookie);
1894 raw_spin_unlock(&rq->lock);
1895 }
1896
1897 /*
1898 * Notes on Program-Order guarantees on SMP systems.
1899 *
1900 * MIGRATION
1901 *
1902 * The basic program-order guarantee on SMP systems is that when a task [t]
1903 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1904 * execution on its new cpu [c1].
1905 *
1906 * For migration (of runnable tasks) this is provided by the following means:
1907 *
1908 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1909 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1910 * rq(c1)->lock (if not at the same time, then in that order).
1911 * C) LOCK of the rq(c1)->lock scheduling in task
1912 *
1913 * Transitivity guarantees that B happens after A and C after B.
1914 * Note: we only require RCpc transitivity.
1915 * Note: the cpu doing B need not be c0 or c1
1916 *
1917 * Example:
1918 *
1919 * CPU0 CPU1 CPU2
1920 *
1921 * LOCK rq(0)->lock
1922 * sched-out X
1923 * sched-in Y
1924 * UNLOCK rq(0)->lock
1925 *
1926 * LOCK rq(0)->lock // orders against CPU0
1927 * dequeue X
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(1)->lock
1931 * enqueue X
1932 * UNLOCK rq(1)->lock
1933 *
1934 * LOCK rq(1)->lock // orders against CPU2
1935 * sched-out Z
1936 * sched-in X
1937 * UNLOCK rq(1)->lock
1938 *
1939 *
1940 * BLOCKING -- aka. SLEEP + WAKEUP
1941 *
1942 * For blocking we (obviously) need to provide the same guarantee as for
1943 * migration. However the means are completely different as there is no lock
1944 * chain to provide order. Instead we do:
1945 *
1946 * 1) smp_store_release(X->on_cpu, 0)
1947 * 2) smp_cond_load_acquire(!X->on_cpu)
1948 *
1949 * Example:
1950 *
1951 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1952 *
1953 * LOCK rq(0)->lock LOCK X->pi_lock
1954 * dequeue X
1955 * sched-out X
1956 * smp_store_release(X->on_cpu, 0);
1957 *
1958 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1959 * X->state = WAKING
1960 * set_task_cpu(X,2)
1961 *
1962 * LOCK rq(2)->lock
1963 * enqueue X
1964 * X->state = RUNNING
1965 * UNLOCK rq(2)->lock
1966 *
1967 * LOCK rq(2)->lock // orders against CPU1
1968 * sched-out Z
1969 * sched-in X
1970 * UNLOCK rq(2)->lock
1971 *
1972 * UNLOCK X->pi_lock
1973 * UNLOCK rq(0)->lock
1974 *
1975 *
1976 * However; for wakeups there is a second guarantee we must provide, namely we
1977 * must observe the state that lead to our wakeup. That is, not only must our
1978 * task observe its own prior state, it must also observe the stores prior to
1979 * its wakeup.
1980 *
1981 * This means that any means of doing remote wakeups must order the CPU doing
1982 * the wakeup against the CPU the task is going to end up running on. This,
1983 * however, is already required for the regular Program-Order guarantee above,
1984 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1985 *
1986 */
1987
1988 /**
1989 * try_to_wake_up - wake up a thread
1990 * @p: the thread to be awakened
1991 * @state: the mask of task states that can be woken
1992 * @wake_flags: wake modifier flags (WF_*)
1993 *
1994 * Put it on the run-queue if it's not already there. The "current"
1995 * thread is always on the run-queue (except when the actual
1996 * re-schedule is in progress), and as such you're allowed to do
1997 * the simpler "current->state = TASK_RUNNING" to mark yourself
1998 * runnable without the overhead of this.
1999 *
2000 * Return: %true if @p was woken up, %false if it was already running.
2001 * or @state didn't match @p's state.
2002 */
2003 static int
2004 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2005 {
2006 unsigned long flags;
2007 int cpu, success = 0;
2008
2009 /*
2010 * If we are going to wake up a thread waiting for CONDITION we
2011 * need to ensure that CONDITION=1 done by the caller can not be
2012 * reordered with p->state check below. This pairs with mb() in
2013 * set_current_state() the waiting thread does.
2014 */
2015 smp_mb__before_spinlock();
2016 raw_spin_lock_irqsave(&p->pi_lock, flags);
2017 if (!(p->state & state))
2018 goto out;
2019
2020 trace_sched_waking(p);
2021
2022 success = 1; /* we're going to change ->state */
2023 cpu = task_cpu(p);
2024
2025 /*
2026 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2027 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2028 * in smp_cond_load_acquire() below.
2029 *
2030 * sched_ttwu_pending() try_to_wake_up()
2031 * [S] p->on_rq = 1; [L] P->state
2032 * UNLOCK rq->lock -----.
2033 * \
2034 * +--- RMB
2035 * schedule() /
2036 * LOCK rq->lock -----'
2037 * UNLOCK rq->lock
2038 *
2039 * [task p]
2040 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2041 *
2042 * Pairs with the UNLOCK+LOCK on rq->lock from the
2043 * last wakeup of our task and the schedule that got our task
2044 * current.
2045 */
2046 smp_rmb();
2047 if (p->on_rq && ttwu_remote(p, wake_flags))
2048 goto stat;
2049
2050 #ifdef CONFIG_SMP
2051 /*
2052 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2053 * possible to, falsely, observe p->on_cpu == 0.
2054 *
2055 * One must be running (->on_cpu == 1) in order to remove oneself
2056 * from the runqueue.
2057 *
2058 * [S] ->on_cpu = 1; [L] ->on_rq
2059 * UNLOCK rq->lock
2060 * RMB
2061 * LOCK rq->lock
2062 * [S] ->on_rq = 0; [L] ->on_cpu
2063 *
2064 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2065 * from the consecutive calls to schedule(); the first switching to our
2066 * task, the second putting it to sleep.
2067 */
2068 smp_rmb();
2069
2070 /*
2071 * If the owning (remote) cpu is still in the middle of schedule() with
2072 * this task as prev, wait until its done referencing the task.
2073 *
2074 * Pairs with the smp_store_release() in finish_lock_switch().
2075 *
2076 * This ensures that tasks getting woken will be fully ordered against
2077 * their previous state and preserve Program Order.
2078 */
2079 smp_cond_load_acquire(&p->on_cpu, !VAL);
2080
2081 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2082 p->state = TASK_WAKING;
2083
2084 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2085 if (task_cpu(p) != cpu) {
2086 wake_flags |= WF_MIGRATED;
2087 set_task_cpu(p, cpu);
2088 }
2089 #endif /* CONFIG_SMP */
2090
2091 ttwu_queue(p, cpu, wake_flags);
2092 stat:
2093 ttwu_stat(p, cpu, wake_flags);
2094 out:
2095 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2096
2097 return success;
2098 }
2099
2100 /**
2101 * try_to_wake_up_local - try to wake up a local task with rq lock held
2102 * @p: the thread to be awakened
2103 * @cookie: context's cookie for pinning
2104 *
2105 * Put @p on the run-queue if it's not already there. The caller must
2106 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2107 * the current task.
2108 */
2109 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2110 {
2111 struct rq *rq = task_rq(p);
2112
2113 if (WARN_ON_ONCE(rq != this_rq()) ||
2114 WARN_ON_ONCE(p == current))
2115 return;
2116
2117 lockdep_assert_held(&rq->lock);
2118
2119 if (!raw_spin_trylock(&p->pi_lock)) {
2120 /*
2121 * This is OK, because current is on_cpu, which avoids it being
2122 * picked for load-balance and preemption/IRQs are still
2123 * disabled avoiding further scheduler activity on it and we've
2124 * not yet picked a replacement task.
2125 */
2126 lockdep_unpin_lock(&rq->lock, cookie);
2127 raw_spin_unlock(&rq->lock);
2128 raw_spin_lock(&p->pi_lock);
2129 raw_spin_lock(&rq->lock);
2130 lockdep_repin_lock(&rq->lock, cookie);
2131 }
2132
2133 if (!(p->state & TASK_NORMAL))
2134 goto out;
2135
2136 trace_sched_waking(p);
2137
2138 if (!task_on_rq_queued(p))
2139 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2140
2141 ttwu_do_wakeup(rq, p, 0, cookie);
2142 ttwu_stat(p, smp_processor_id(), 0);
2143 out:
2144 raw_spin_unlock(&p->pi_lock);
2145 }
2146
2147 /**
2148 * wake_up_process - Wake up a specific process
2149 * @p: The process to be woken up.
2150 *
2151 * Attempt to wake up the nominated process and move it to the set of runnable
2152 * processes.
2153 *
2154 * Return: 1 if the process was woken up, 0 if it was already running.
2155 *
2156 * It may be assumed that this function implies a write memory barrier before
2157 * changing the task state if and only if any tasks are woken up.
2158 */
2159 int wake_up_process(struct task_struct *p)
2160 {
2161 return try_to_wake_up(p, TASK_NORMAL, 0);
2162 }
2163 EXPORT_SYMBOL(wake_up_process);
2164
2165 int wake_up_state(struct task_struct *p, unsigned int state)
2166 {
2167 return try_to_wake_up(p, state, 0);
2168 }
2169
2170 /*
2171 * This function clears the sched_dl_entity static params.
2172 */
2173 void __dl_clear_params(struct task_struct *p)
2174 {
2175 struct sched_dl_entity *dl_se = &p->dl;
2176
2177 dl_se->dl_runtime = 0;
2178 dl_se->dl_deadline = 0;
2179 dl_se->dl_period = 0;
2180 dl_se->flags = 0;
2181 dl_se->dl_bw = 0;
2182
2183 dl_se->dl_throttled = 0;
2184 dl_se->dl_yielded = 0;
2185 }
2186
2187 /*
2188 * Perform scheduler related setup for a newly forked process p.
2189 * p is forked by current.
2190 *
2191 * __sched_fork() is basic setup used by init_idle() too:
2192 */
2193 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2194 {
2195 p->on_rq = 0;
2196
2197 p->se.on_rq = 0;
2198 p->se.exec_start = 0;
2199 p->se.sum_exec_runtime = 0;
2200 p->se.prev_sum_exec_runtime = 0;
2201 p->se.nr_migrations = 0;
2202 p->se.vruntime = 0;
2203 INIT_LIST_HEAD(&p->se.group_node);
2204
2205 #ifdef CONFIG_FAIR_GROUP_SCHED
2206 p->se.cfs_rq = NULL;
2207 #endif
2208
2209 #ifdef CONFIG_SCHEDSTATS
2210 /* Even if schedstat is disabled, there should not be garbage */
2211 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2212 #endif
2213
2214 RB_CLEAR_NODE(&p->dl.rb_node);
2215 init_dl_task_timer(&p->dl);
2216 __dl_clear_params(p);
2217
2218 INIT_LIST_HEAD(&p->rt.run_list);
2219 p->rt.timeout = 0;
2220 p->rt.time_slice = sched_rr_timeslice;
2221 p->rt.on_rq = 0;
2222 p->rt.on_list = 0;
2223
2224 #ifdef CONFIG_PREEMPT_NOTIFIERS
2225 INIT_HLIST_HEAD(&p->preempt_notifiers);
2226 #endif
2227
2228 #ifdef CONFIG_NUMA_BALANCING
2229 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2230 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2231 p->mm->numa_scan_seq = 0;
2232 }
2233
2234 if (clone_flags & CLONE_VM)
2235 p->numa_preferred_nid = current->numa_preferred_nid;
2236 else
2237 p->numa_preferred_nid = -1;
2238
2239 p->node_stamp = 0ULL;
2240 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2241 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2242 p->numa_work.next = &p->numa_work;
2243 p->numa_faults = NULL;
2244 p->last_task_numa_placement = 0;
2245 p->last_sum_exec_runtime = 0;
2246
2247 p->numa_group = NULL;
2248 #endif /* CONFIG_NUMA_BALANCING */
2249 }
2250
2251 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2252
2253 #ifdef CONFIG_NUMA_BALANCING
2254
2255 void set_numabalancing_state(bool enabled)
2256 {
2257 if (enabled)
2258 static_branch_enable(&sched_numa_balancing);
2259 else
2260 static_branch_disable(&sched_numa_balancing);
2261 }
2262
2263 #ifdef CONFIG_PROC_SYSCTL
2264 int sysctl_numa_balancing(struct ctl_table *table, int write,
2265 void __user *buffer, size_t *lenp, loff_t *ppos)
2266 {
2267 struct ctl_table t;
2268 int err;
2269 int state = static_branch_likely(&sched_numa_balancing);
2270
2271 if (write && !capable(CAP_SYS_ADMIN))
2272 return -EPERM;
2273
2274 t = *table;
2275 t.data = &state;
2276 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2277 if (err < 0)
2278 return err;
2279 if (write)
2280 set_numabalancing_state(state);
2281 return err;
2282 }
2283 #endif
2284 #endif
2285
2286 #ifdef CONFIG_SCHEDSTATS
2287
2288 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2289 static bool __initdata __sched_schedstats = false;
2290
2291 static void set_schedstats(bool enabled)
2292 {
2293 if (enabled)
2294 static_branch_enable(&sched_schedstats);
2295 else
2296 static_branch_disable(&sched_schedstats);
2297 }
2298
2299 void force_schedstat_enabled(void)
2300 {
2301 if (!schedstat_enabled()) {
2302 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2303 static_branch_enable(&sched_schedstats);
2304 }
2305 }
2306
2307 static int __init setup_schedstats(char *str)
2308 {
2309 int ret = 0;
2310 if (!str)
2311 goto out;
2312
2313 /*
2314 * This code is called before jump labels have been set up, so we can't
2315 * change the static branch directly just yet. Instead set a temporary
2316 * variable so init_schedstats() can do it later.
2317 */
2318 if (!strcmp(str, "enable")) {
2319 __sched_schedstats = true;
2320 ret = 1;
2321 } else if (!strcmp(str, "disable")) {
2322 __sched_schedstats = false;
2323 ret = 1;
2324 }
2325 out:
2326 if (!ret)
2327 pr_warn("Unable to parse schedstats=\n");
2328
2329 return ret;
2330 }
2331 __setup("schedstats=", setup_schedstats);
2332
2333 static void __init init_schedstats(void)
2334 {
2335 set_schedstats(__sched_schedstats);
2336 }
2337
2338 #ifdef CONFIG_PROC_SYSCTL
2339 int sysctl_schedstats(struct ctl_table *table, int write,
2340 void __user *buffer, size_t *lenp, loff_t *ppos)
2341 {
2342 struct ctl_table t;
2343 int err;
2344 int state = static_branch_likely(&sched_schedstats);
2345
2346 if (write && !capable(CAP_SYS_ADMIN))
2347 return -EPERM;
2348
2349 t = *table;
2350 t.data = &state;
2351 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2352 if (err < 0)
2353 return err;
2354 if (write)
2355 set_schedstats(state);
2356 return err;
2357 }
2358 #endif /* CONFIG_PROC_SYSCTL */
2359 #else /* !CONFIG_SCHEDSTATS */
2360 static inline void init_schedstats(void) {}
2361 #endif /* CONFIG_SCHEDSTATS */
2362
2363 /*
2364 * fork()/clone()-time setup:
2365 */
2366 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2367 {
2368 unsigned long flags;
2369 int cpu = get_cpu();
2370
2371 __sched_fork(clone_flags, p);
2372 /*
2373 * We mark the process as NEW here. This guarantees that
2374 * nobody will actually run it, and a signal or other external
2375 * event cannot wake it up and insert it on the runqueue either.
2376 */
2377 p->state = TASK_NEW;
2378
2379 /*
2380 * Make sure we do not leak PI boosting priority to the child.
2381 */
2382 p->prio = current->normal_prio;
2383
2384 /*
2385 * Revert to default priority/policy on fork if requested.
2386 */
2387 if (unlikely(p->sched_reset_on_fork)) {
2388 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2389 p->policy = SCHED_NORMAL;
2390 p->static_prio = NICE_TO_PRIO(0);
2391 p->rt_priority = 0;
2392 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2393 p->static_prio = NICE_TO_PRIO(0);
2394
2395 p->prio = p->normal_prio = __normal_prio(p);
2396 set_load_weight(p);
2397
2398 /*
2399 * We don't need the reset flag anymore after the fork. It has
2400 * fulfilled its duty:
2401 */
2402 p->sched_reset_on_fork = 0;
2403 }
2404
2405 if (dl_prio(p->prio)) {
2406 put_cpu();
2407 return -EAGAIN;
2408 } else if (rt_prio(p->prio)) {
2409 p->sched_class = &rt_sched_class;
2410 } else {
2411 p->sched_class = &fair_sched_class;
2412 }
2413
2414 init_entity_runnable_average(&p->se);
2415
2416 /*
2417 * The child is not yet in the pid-hash so no cgroup attach races,
2418 * and the cgroup is pinned to this child due to cgroup_fork()
2419 * is ran before sched_fork().
2420 *
2421 * Silence PROVE_RCU.
2422 */
2423 raw_spin_lock_irqsave(&p->pi_lock, flags);
2424 /*
2425 * We're setting the cpu for the first time, we don't migrate,
2426 * so use __set_task_cpu().
2427 */
2428 __set_task_cpu(p, cpu);
2429 if (p->sched_class->task_fork)
2430 p->sched_class->task_fork(p);
2431 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2432
2433 #ifdef CONFIG_SCHED_INFO
2434 if (likely(sched_info_on()))
2435 memset(&p->sched_info, 0, sizeof(p->sched_info));
2436 #endif
2437 #if defined(CONFIG_SMP)
2438 p->on_cpu = 0;
2439 #endif
2440 init_task_preempt_count(p);
2441 #ifdef CONFIG_SMP
2442 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2443 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2444 #endif
2445
2446 put_cpu();
2447 return 0;
2448 }
2449
2450 unsigned long to_ratio(u64 period, u64 runtime)
2451 {
2452 if (runtime == RUNTIME_INF)
2453 return 1ULL << 20;
2454
2455 /*
2456 * Doing this here saves a lot of checks in all
2457 * the calling paths, and returning zero seems
2458 * safe for them anyway.
2459 */
2460 if (period == 0)
2461 return 0;
2462
2463 return div64_u64(runtime << 20, period);
2464 }
2465
2466 #ifdef CONFIG_SMP
2467 inline struct dl_bw *dl_bw_of(int i)
2468 {
2469 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2470 "sched RCU must be held");
2471 return &cpu_rq(i)->rd->dl_bw;
2472 }
2473
2474 static inline int dl_bw_cpus(int i)
2475 {
2476 struct root_domain *rd = cpu_rq(i)->rd;
2477 int cpus = 0;
2478
2479 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2480 "sched RCU must be held");
2481 for_each_cpu_and(i, rd->span, cpu_active_mask)
2482 cpus++;
2483
2484 return cpus;
2485 }
2486 #else
2487 inline struct dl_bw *dl_bw_of(int i)
2488 {
2489 return &cpu_rq(i)->dl.dl_bw;
2490 }
2491
2492 static inline int dl_bw_cpus(int i)
2493 {
2494 return 1;
2495 }
2496 #endif
2497
2498 /*
2499 * We must be sure that accepting a new task (or allowing changing the
2500 * parameters of an existing one) is consistent with the bandwidth
2501 * constraints. If yes, this function also accordingly updates the currently
2502 * allocated bandwidth to reflect the new situation.
2503 *
2504 * This function is called while holding p's rq->lock.
2505 *
2506 * XXX we should delay bw change until the task's 0-lag point, see
2507 * __setparam_dl().
2508 */
2509 static int dl_overflow(struct task_struct *p, int policy,
2510 const struct sched_attr *attr)
2511 {
2512
2513 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2514 u64 period = attr->sched_period ?: attr->sched_deadline;
2515 u64 runtime = attr->sched_runtime;
2516 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2517 int cpus, err = -1;
2518
2519 /* !deadline task may carry old deadline bandwidth */
2520 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2521 return 0;
2522
2523 /*
2524 * Either if a task, enters, leave, or stays -deadline but changes
2525 * its parameters, we may need to update accordingly the total
2526 * allocated bandwidth of the container.
2527 */
2528 raw_spin_lock(&dl_b->lock);
2529 cpus = dl_bw_cpus(task_cpu(p));
2530 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2531 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2532 __dl_add(dl_b, new_bw);
2533 err = 0;
2534 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2535 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2536 __dl_clear(dl_b, p->dl.dl_bw);
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2540 __dl_clear(dl_b, p->dl.dl_bw);
2541 err = 0;
2542 }
2543 raw_spin_unlock(&dl_b->lock);
2544
2545 return err;
2546 }
2547
2548 extern void init_dl_bw(struct dl_bw *dl_b);
2549
2550 /*
2551 * wake_up_new_task - wake up a newly created task for the first time.
2552 *
2553 * This function will do some initial scheduler statistics housekeeping
2554 * that must be done for every newly created context, then puts the task
2555 * on the runqueue and wakes it.
2556 */
2557 void wake_up_new_task(struct task_struct *p)
2558 {
2559 struct rq_flags rf;
2560 struct rq *rq;
2561
2562 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2563 p->state = TASK_RUNNING;
2564 #ifdef CONFIG_SMP
2565 /*
2566 * Fork balancing, do it here and not earlier because:
2567 * - cpus_allowed can change in the fork path
2568 * - any previously selected cpu might disappear through hotplug
2569 *
2570 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2571 * as we're not fully set-up yet.
2572 */
2573 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2574 #endif
2575 rq = __task_rq_lock(p, &rf);
2576 post_init_entity_util_avg(&p->se);
2577
2578 activate_task(rq, p, 0);
2579 p->on_rq = TASK_ON_RQ_QUEUED;
2580 trace_sched_wakeup_new(p);
2581 check_preempt_curr(rq, p, WF_FORK);
2582 #ifdef CONFIG_SMP
2583 if (p->sched_class->task_woken) {
2584 /*
2585 * Nothing relies on rq->lock after this, so its fine to
2586 * drop it.
2587 */
2588 lockdep_unpin_lock(&rq->lock, rf.cookie);
2589 p->sched_class->task_woken(rq, p);
2590 lockdep_repin_lock(&rq->lock, rf.cookie);
2591 }
2592 #endif
2593 task_rq_unlock(rq, p, &rf);
2594 }
2595
2596 #ifdef CONFIG_PREEMPT_NOTIFIERS
2597
2598 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2599
2600 void preempt_notifier_inc(void)
2601 {
2602 static_key_slow_inc(&preempt_notifier_key);
2603 }
2604 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2605
2606 void preempt_notifier_dec(void)
2607 {
2608 static_key_slow_dec(&preempt_notifier_key);
2609 }
2610 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2611
2612 /**
2613 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2614 * @notifier: notifier struct to register
2615 */
2616 void preempt_notifier_register(struct preempt_notifier *notifier)
2617 {
2618 if (!static_key_false(&preempt_notifier_key))
2619 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2620
2621 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2622 }
2623 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2624
2625 /**
2626 * preempt_notifier_unregister - no longer interested in preemption notifications
2627 * @notifier: notifier struct to unregister
2628 *
2629 * This is *not* safe to call from within a preemption notifier.
2630 */
2631 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2632 {
2633 hlist_del(&notifier->link);
2634 }
2635 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2636
2637 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638 {
2639 struct preempt_notifier *notifier;
2640
2641 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2642 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2643 }
2644
2645 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2646 {
2647 if (static_key_false(&preempt_notifier_key))
2648 __fire_sched_in_preempt_notifiers(curr);
2649 }
2650
2651 static void
2652 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2653 struct task_struct *next)
2654 {
2655 struct preempt_notifier *notifier;
2656
2657 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2658 notifier->ops->sched_out(notifier, next);
2659 }
2660
2661 static __always_inline void
2662 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664 {
2665 if (static_key_false(&preempt_notifier_key))
2666 __fire_sched_out_preempt_notifiers(curr, next);
2667 }
2668
2669 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2670
2671 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2672 {
2673 }
2674
2675 static inline void
2676 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2677 struct task_struct *next)
2678 {
2679 }
2680
2681 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2682
2683 /**
2684 * prepare_task_switch - prepare to switch tasks
2685 * @rq: the runqueue preparing to switch
2686 * @prev: the current task that is being switched out
2687 * @next: the task we are going to switch to.
2688 *
2689 * This is called with the rq lock held and interrupts off. It must
2690 * be paired with a subsequent finish_task_switch after the context
2691 * switch.
2692 *
2693 * prepare_task_switch sets up locking and calls architecture specific
2694 * hooks.
2695 */
2696 static inline void
2697 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2698 struct task_struct *next)
2699 {
2700 sched_info_switch(rq, prev, next);
2701 perf_event_task_sched_out(prev, next);
2702 fire_sched_out_preempt_notifiers(prev, next);
2703 prepare_lock_switch(rq, next);
2704 prepare_arch_switch(next);
2705 }
2706
2707 /**
2708 * finish_task_switch - clean up after a task-switch
2709 * @prev: the thread we just switched away from.
2710 *
2711 * finish_task_switch must be called after the context switch, paired
2712 * with a prepare_task_switch call before the context switch.
2713 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2714 * and do any other architecture-specific cleanup actions.
2715 *
2716 * Note that we may have delayed dropping an mm in context_switch(). If
2717 * so, we finish that here outside of the runqueue lock. (Doing it
2718 * with the lock held can cause deadlocks; see schedule() for
2719 * details.)
2720 *
2721 * The context switch have flipped the stack from under us and restored the
2722 * local variables which were saved when this task called schedule() in the
2723 * past. prev == current is still correct but we need to recalculate this_rq
2724 * because prev may have moved to another CPU.
2725 */
2726 static struct rq *finish_task_switch(struct task_struct *prev)
2727 __releases(rq->lock)
2728 {
2729 struct rq *rq = this_rq();
2730 struct mm_struct *mm = rq->prev_mm;
2731 long prev_state;
2732
2733 /*
2734 * The previous task will have left us with a preempt_count of 2
2735 * because it left us after:
2736 *
2737 * schedule()
2738 * preempt_disable(); // 1
2739 * __schedule()
2740 * raw_spin_lock_irq(&rq->lock) // 2
2741 *
2742 * Also, see FORK_PREEMPT_COUNT.
2743 */
2744 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2745 "corrupted preempt_count: %s/%d/0x%x\n",
2746 current->comm, current->pid, preempt_count()))
2747 preempt_count_set(FORK_PREEMPT_COUNT);
2748
2749 rq->prev_mm = NULL;
2750
2751 /*
2752 * A task struct has one reference for the use as "current".
2753 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2754 * schedule one last time. The schedule call will never return, and
2755 * the scheduled task must drop that reference.
2756 *
2757 * We must observe prev->state before clearing prev->on_cpu (in
2758 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2759 * running on another CPU and we could rave with its RUNNING -> DEAD
2760 * transition, resulting in a double drop.
2761 */
2762 prev_state = prev->state;
2763 vtime_task_switch(prev);
2764 perf_event_task_sched_in(prev, current);
2765 finish_lock_switch(rq, prev);
2766 finish_arch_post_lock_switch();
2767
2768 fire_sched_in_preempt_notifiers(current);
2769 if (mm)
2770 mmdrop(mm);
2771 if (unlikely(prev_state == TASK_DEAD)) {
2772 if (prev->sched_class->task_dead)
2773 prev->sched_class->task_dead(prev);
2774
2775 /*
2776 * Remove function-return probe instances associated with this
2777 * task and put them back on the free list.
2778 */
2779 kprobe_flush_task(prev);
2780 put_task_struct(prev);
2781 }
2782
2783 tick_nohz_task_switch();
2784 return rq;
2785 }
2786
2787 #ifdef CONFIG_SMP
2788
2789 /* rq->lock is NOT held, but preemption is disabled */
2790 static void __balance_callback(struct rq *rq)
2791 {
2792 struct callback_head *head, *next;
2793 void (*func)(struct rq *rq);
2794 unsigned long flags;
2795
2796 raw_spin_lock_irqsave(&rq->lock, flags);
2797 head = rq->balance_callback;
2798 rq->balance_callback = NULL;
2799 while (head) {
2800 func = (void (*)(struct rq *))head->func;
2801 next = head->next;
2802 head->next = NULL;
2803 head = next;
2804
2805 func(rq);
2806 }
2807 raw_spin_unlock_irqrestore(&rq->lock, flags);
2808 }
2809
2810 static inline void balance_callback(struct rq *rq)
2811 {
2812 if (unlikely(rq->balance_callback))
2813 __balance_callback(rq);
2814 }
2815
2816 #else
2817
2818 static inline void balance_callback(struct rq *rq)
2819 {
2820 }
2821
2822 #endif
2823
2824 /**
2825 * schedule_tail - first thing a freshly forked thread must call.
2826 * @prev: the thread we just switched away from.
2827 */
2828 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2829 __releases(rq->lock)
2830 {
2831 struct rq *rq;
2832
2833 /*
2834 * New tasks start with FORK_PREEMPT_COUNT, see there and
2835 * finish_task_switch() for details.
2836 *
2837 * finish_task_switch() will drop rq->lock() and lower preempt_count
2838 * and the preempt_enable() will end up enabling preemption (on
2839 * PREEMPT_COUNT kernels).
2840 */
2841
2842 rq = finish_task_switch(prev);
2843 balance_callback(rq);
2844 preempt_enable();
2845
2846 if (current->set_child_tid)
2847 put_user(task_pid_vnr(current), current->set_child_tid);
2848 }
2849
2850 /*
2851 * context_switch - switch to the new MM and the new thread's register state.
2852 */
2853 static __always_inline struct rq *
2854 context_switch(struct rq *rq, struct task_struct *prev,
2855 struct task_struct *next, struct pin_cookie cookie)
2856 {
2857 struct mm_struct *mm, *oldmm;
2858
2859 prepare_task_switch(rq, prev, next);
2860
2861 mm = next->mm;
2862 oldmm = prev->active_mm;
2863 /*
2864 * For paravirt, this is coupled with an exit in switch_to to
2865 * combine the page table reload and the switch backend into
2866 * one hypercall.
2867 */
2868 arch_start_context_switch(prev);
2869
2870 if (!mm) {
2871 next->active_mm = oldmm;
2872 atomic_inc(&oldmm->mm_count);
2873 enter_lazy_tlb(oldmm, next);
2874 } else
2875 switch_mm_irqs_off(oldmm, mm, next);
2876
2877 if (!prev->mm) {
2878 prev->active_mm = NULL;
2879 rq->prev_mm = oldmm;
2880 }
2881 /*
2882 * Since the runqueue lock will be released by the next
2883 * task (which is an invalid locking op but in the case
2884 * of the scheduler it's an obvious special-case), so we
2885 * do an early lockdep release here:
2886 */
2887 lockdep_unpin_lock(&rq->lock, cookie);
2888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2889
2890 /* Here we just switch the register state and the stack. */
2891 switch_to(prev, next, prev);
2892 barrier();
2893
2894 return finish_task_switch(prev);
2895 }
2896
2897 /*
2898 * nr_running and nr_context_switches:
2899 *
2900 * externally visible scheduler statistics: current number of runnable
2901 * threads, total number of context switches performed since bootup.
2902 */
2903 unsigned long nr_running(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_online_cpu(i)
2908 sum += cpu_rq(i)->nr_running;
2909
2910 return sum;
2911 }
2912
2913 /*
2914 * Check if only the current task is running on the cpu.
2915 *
2916 * Caution: this function does not check that the caller has disabled
2917 * preemption, thus the result might have a time-of-check-to-time-of-use
2918 * race. The caller is responsible to use it correctly, for example:
2919 *
2920 * - from a non-preemptable section (of course)
2921 *
2922 * - from a thread that is bound to a single CPU
2923 *
2924 * - in a loop with very short iterations (e.g. a polling loop)
2925 */
2926 bool single_task_running(void)
2927 {
2928 return raw_rq()->nr_running == 1;
2929 }
2930 EXPORT_SYMBOL(single_task_running);
2931
2932 unsigned long long nr_context_switches(void)
2933 {
2934 int i;
2935 unsigned long long sum = 0;
2936
2937 for_each_possible_cpu(i)
2938 sum += cpu_rq(i)->nr_switches;
2939
2940 return sum;
2941 }
2942
2943 unsigned long nr_iowait(void)
2944 {
2945 unsigned long i, sum = 0;
2946
2947 for_each_possible_cpu(i)
2948 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2949
2950 return sum;
2951 }
2952
2953 unsigned long nr_iowait_cpu(int cpu)
2954 {
2955 struct rq *this = cpu_rq(cpu);
2956 return atomic_read(&this->nr_iowait);
2957 }
2958
2959 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2960 {
2961 struct rq *rq = this_rq();
2962 *nr_waiters = atomic_read(&rq->nr_iowait);
2963 *load = rq->load.weight;
2964 }
2965
2966 #ifdef CONFIG_SMP
2967
2968 /*
2969 * sched_exec - execve() is a valuable balancing opportunity, because at
2970 * this point the task has the smallest effective memory and cache footprint.
2971 */
2972 void sched_exec(void)
2973 {
2974 struct task_struct *p = current;
2975 unsigned long flags;
2976 int dest_cpu;
2977
2978 raw_spin_lock_irqsave(&p->pi_lock, flags);
2979 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2980 if (dest_cpu == smp_processor_id())
2981 goto unlock;
2982
2983 if (likely(cpu_active(dest_cpu))) {
2984 struct migration_arg arg = { p, dest_cpu };
2985
2986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2987 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2988 return;
2989 }
2990 unlock:
2991 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2992 }
2993
2994 #endif
2995
2996 DEFINE_PER_CPU(struct kernel_stat, kstat);
2997 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2998
2999 EXPORT_PER_CPU_SYMBOL(kstat);
3000 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3001
3002 /*
3003 * The function fair_sched_class.update_curr accesses the struct curr
3004 * and its field curr->exec_start; when called from task_sched_runtime(),
3005 * we observe a high rate of cache misses in practice.
3006 * Prefetching this data results in improved performance.
3007 */
3008 static inline void prefetch_curr_exec_start(struct task_struct *p)
3009 {
3010 #ifdef CONFIG_FAIR_GROUP_SCHED
3011 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3012 #else
3013 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3014 #endif
3015 prefetch(curr);
3016 prefetch(&curr->exec_start);
3017 }
3018
3019 /*
3020 * Return accounted runtime for the task.
3021 * In case the task is currently running, return the runtime plus current's
3022 * pending runtime that have not been accounted yet.
3023 */
3024 unsigned long long task_sched_runtime(struct task_struct *p)
3025 {
3026 struct rq_flags rf;
3027 struct rq *rq;
3028 u64 ns;
3029
3030 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3031 /*
3032 * 64-bit doesn't need locks to atomically read a 64bit value.
3033 * So we have a optimization chance when the task's delta_exec is 0.
3034 * Reading ->on_cpu is racy, but this is ok.
3035 *
3036 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3037 * If we race with it entering cpu, unaccounted time is 0. This is
3038 * indistinguishable from the read occurring a few cycles earlier.
3039 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3040 * been accounted, so we're correct here as well.
3041 */
3042 if (!p->on_cpu || !task_on_rq_queued(p))
3043 return p->se.sum_exec_runtime;
3044 #endif
3045
3046 rq = task_rq_lock(p, &rf);
3047 /*
3048 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3049 * project cycles that may never be accounted to this
3050 * thread, breaking clock_gettime().
3051 */
3052 if (task_current(rq, p) && task_on_rq_queued(p)) {
3053 prefetch_curr_exec_start(p);
3054 update_rq_clock(rq);
3055 p->sched_class->update_curr(rq);
3056 }
3057 ns = p->se.sum_exec_runtime;
3058 task_rq_unlock(rq, p, &rf);
3059
3060 return ns;
3061 }
3062
3063 /*
3064 * This function gets called by the timer code, with HZ frequency.
3065 * We call it with interrupts disabled.
3066 */
3067 void scheduler_tick(void)
3068 {
3069 int cpu = smp_processor_id();
3070 struct rq *rq = cpu_rq(cpu);
3071 struct task_struct *curr = rq->curr;
3072
3073 sched_clock_tick();
3074
3075 raw_spin_lock(&rq->lock);
3076 update_rq_clock(rq);
3077 curr->sched_class->task_tick(rq, curr, 0);
3078 cpu_load_update_active(rq);
3079 calc_global_load_tick(rq);
3080 raw_spin_unlock(&rq->lock);
3081
3082 perf_event_task_tick();
3083
3084 #ifdef CONFIG_SMP
3085 rq->idle_balance = idle_cpu(cpu);
3086 trigger_load_balance(rq);
3087 #endif
3088 rq_last_tick_reset(rq);
3089 }
3090
3091 #ifdef CONFIG_NO_HZ_FULL
3092 /**
3093 * scheduler_tick_max_deferment
3094 *
3095 * Keep at least one tick per second when a single
3096 * active task is running because the scheduler doesn't
3097 * yet completely support full dynticks environment.
3098 *
3099 * This makes sure that uptime, CFS vruntime, load
3100 * balancing, etc... continue to move forward, even
3101 * with a very low granularity.
3102 *
3103 * Return: Maximum deferment in nanoseconds.
3104 */
3105 u64 scheduler_tick_max_deferment(void)
3106 {
3107 struct rq *rq = this_rq();
3108 unsigned long next, now = READ_ONCE(jiffies);
3109
3110 next = rq->last_sched_tick + HZ;
3111
3112 if (time_before_eq(next, now))
3113 return 0;
3114
3115 return jiffies_to_nsecs(next - now);
3116 }
3117 #endif
3118
3119 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3120 defined(CONFIG_PREEMPT_TRACER))
3121 /*
3122 * If the value passed in is equal to the current preempt count
3123 * then we just disabled preemption. Start timing the latency.
3124 */
3125 static inline void preempt_latency_start(int val)
3126 {
3127 if (preempt_count() == val) {
3128 unsigned long ip = get_lock_parent_ip();
3129 #ifdef CONFIG_DEBUG_PREEMPT
3130 current->preempt_disable_ip = ip;
3131 #endif
3132 trace_preempt_off(CALLER_ADDR0, ip);
3133 }
3134 }
3135
3136 void preempt_count_add(int val)
3137 {
3138 #ifdef CONFIG_DEBUG_PREEMPT
3139 /*
3140 * Underflow?
3141 */
3142 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3143 return;
3144 #endif
3145 __preempt_count_add(val);
3146 #ifdef CONFIG_DEBUG_PREEMPT
3147 /*
3148 * Spinlock count overflowing soon?
3149 */
3150 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3151 PREEMPT_MASK - 10);
3152 #endif
3153 preempt_latency_start(val);
3154 }
3155 EXPORT_SYMBOL(preempt_count_add);
3156 NOKPROBE_SYMBOL(preempt_count_add);
3157
3158 /*
3159 * If the value passed in equals to the current preempt count
3160 * then we just enabled preemption. Stop timing the latency.
3161 */
3162 static inline void preempt_latency_stop(int val)
3163 {
3164 if (preempt_count() == val)
3165 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3166 }
3167
3168 void preempt_count_sub(int val)
3169 {
3170 #ifdef CONFIG_DEBUG_PREEMPT
3171 /*
3172 * Underflow?
3173 */
3174 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3175 return;
3176 /*
3177 * Is the spinlock portion underflowing?
3178 */
3179 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3180 !(preempt_count() & PREEMPT_MASK)))
3181 return;
3182 #endif
3183
3184 preempt_latency_stop(val);
3185 __preempt_count_sub(val);
3186 }
3187 EXPORT_SYMBOL(preempt_count_sub);
3188 NOKPROBE_SYMBOL(preempt_count_sub);
3189
3190 #else
3191 static inline void preempt_latency_start(int val) { }
3192 static inline void preempt_latency_stop(int val) { }
3193 #endif
3194
3195 /*
3196 * Print scheduling while atomic bug:
3197 */
3198 static noinline void __schedule_bug(struct task_struct *prev)
3199 {
3200 /* Save this before calling printk(), since that will clobber it */
3201 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3202
3203 if (oops_in_progress)
3204 return;
3205
3206 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3207 prev->comm, prev->pid, preempt_count());
3208
3209 debug_show_held_locks(prev);
3210 print_modules();
3211 if (irqs_disabled())
3212 print_irqtrace_events(prev);
3213 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3214 && in_atomic_preempt_off()) {
3215 pr_err("Preemption disabled at:");
3216 print_ip_sym(preempt_disable_ip);
3217 pr_cont("\n");
3218 }
3219 if (panic_on_warn)
3220 panic("scheduling while atomic\n");
3221
3222 dump_stack();
3223 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3224 }
3225
3226 /*
3227 * Various schedule()-time debugging checks and statistics:
3228 */
3229 static inline void schedule_debug(struct task_struct *prev)
3230 {
3231 #ifdef CONFIG_SCHED_STACK_END_CHECK
3232 if (task_stack_end_corrupted(prev))
3233 panic("corrupted stack end detected inside scheduler\n");
3234 #endif
3235
3236 if (unlikely(in_atomic_preempt_off())) {
3237 __schedule_bug(prev);
3238 preempt_count_set(PREEMPT_DISABLED);
3239 }
3240 rcu_sleep_check();
3241
3242 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3243
3244 schedstat_inc(this_rq()->sched_count);
3245 }
3246
3247 /*
3248 * Pick up the highest-prio task:
3249 */
3250 static inline struct task_struct *
3251 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3252 {
3253 const struct sched_class *class = &fair_sched_class;
3254 struct task_struct *p;
3255
3256 /*
3257 * Optimization: we know that if all tasks are in
3258 * the fair class we can call that function directly:
3259 */
3260 if (likely(prev->sched_class == class &&
3261 rq->nr_running == rq->cfs.h_nr_running)) {
3262 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3263 if (unlikely(p == RETRY_TASK))
3264 goto again;
3265
3266 /* assumes fair_sched_class->next == idle_sched_class */
3267 if (unlikely(!p))
3268 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3269
3270 return p;
3271 }
3272
3273 again:
3274 for_each_class(class) {
3275 p = class->pick_next_task(rq, prev, cookie);
3276 if (p) {
3277 if (unlikely(p == RETRY_TASK))
3278 goto again;
3279 return p;
3280 }
3281 }
3282
3283 BUG(); /* the idle class will always have a runnable task */
3284 }
3285
3286 /*
3287 * __schedule() is the main scheduler function.
3288 *
3289 * The main means of driving the scheduler and thus entering this function are:
3290 *
3291 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3292 *
3293 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3294 * paths. For example, see arch/x86/entry_64.S.
3295 *
3296 * To drive preemption between tasks, the scheduler sets the flag in timer
3297 * interrupt handler scheduler_tick().
3298 *
3299 * 3. Wakeups don't really cause entry into schedule(). They add a
3300 * task to the run-queue and that's it.
3301 *
3302 * Now, if the new task added to the run-queue preempts the current
3303 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3304 * called on the nearest possible occasion:
3305 *
3306 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3307 *
3308 * - in syscall or exception context, at the next outmost
3309 * preempt_enable(). (this might be as soon as the wake_up()'s
3310 * spin_unlock()!)
3311 *
3312 * - in IRQ context, return from interrupt-handler to
3313 * preemptible context
3314 *
3315 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3316 * then at the next:
3317 *
3318 * - cond_resched() call
3319 * - explicit schedule() call
3320 * - return from syscall or exception to user-space
3321 * - return from interrupt-handler to user-space
3322 *
3323 * WARNING: must be called with preemption disabled!
3324 */
3325 static void __sched notrace __schedule(bool preempt)
3326 {
3327 struct task_struct *prev, *next;
3328 unsigned long *switch_count;
3329 struct pin_cookie cookie;
3330 struct rq *rq;
3331 int cpu;
3332
3333 cpu = smp_processor_id();
3334 rq = cpu_rq(cpu);
3335 prev = rq->curr;
3336
3337 /*
3338 * do_exit() calls schedule() with preemption disabled as an exception;
3339 * however we must fix that up, otherwise the next task will see an
3340 * inconsistent (higher) preempt count.
3341 *
3342 * It also avoids the below schedule_debug() test from complaining
3343 * about this.
3344 */
3345 if (unlikely(prev->state == TASK_DEAD))
3346 preempt_enable_no_resched_notrace();
3347
3348 schedule_debug(prev);
3349
3350 if (sched_feat(HRTICK))
3351 hrtick_clear(rq);
3352
3353 local_irq_disable();
3354 rcu_note_context_switch();
3355
3356 /*
3357 * Make sure that signal_pending_state()->signal_pending() below
3358 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3359 * done by the caller to avoid the race with signal_wake_up().
3360 */
3361 smp_mb__before_spinlock();
3362 raw_spin_lock(&rq->lock);
3363 cookie = lockdep_pin_lock(&rq->lock);
3364
3365 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3366
3367 switch_count = &prev->nivcsw;
3368 if (!preempt && prev->state) {
3369 if (unlikely(signal_pending_state(prev->state, prev))) {
3370 prev->state = TASK_RUNNING;
3371 } else {
3372 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3373 prev->on_rq = 0;
3374
3375 /*
3376 * If a worker went to sleep, notify and ask workqueue
3377 * whether it wants to wake up a task to maintain
3378 * concurrency.
3379 */
3380 if (prev->flags & PF_WQ_WORKER) {
3381 struct task_struct *to_wakeup;
3382
3383 to_wakeup = wq_worker_sleeping(prev);
3384 if (to_wakeup)
3385 try_to_wake_up_local(to_wakeup, cookie);
3386 }
3387 }
3388 switch_count = &prev->nvcsw;
3389 }
3390
3391 if (task_on_rq_queued(prev))
3392 update_rq_clock(rq);
3393
3394 next = pick_next_task(rq, prev, cookie);
3395 clear_tsk_need_resched(prev);
3396 clear_preempt_need_resched();
3397 rq->clock_skip_update = 0;
3398
3399 if (likely(prev != next)) {
3400 rq->nr_switches++;
3401 rq->curr = next;
3402 ++*switch_count;
3403
3404 trace_sched_switch(preempt, prev, next);
3405 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3406 } else {
3407 lockdep_unpin_lock(&rq->lock, cookie);
3408 raw_spin_unlock_irq(&rq->lock);
3409 }
3410
3411 balance_callback(rq);
3412 }
3413
3414 static inline void sched_submit_work(struct task_struct *tsk)
3415 {
3416 if (!tsk->state || tsk_is_pi_blocked(tsk))
3417 return;
3418 /*
3419 * If we are going to sleep and we have plugged IO queued,
3420 * make sure to submit it to avoid deadlocks.
3421 */
3422 if (blk_needs_flush_plug(tsk))
3423 blk_schedule_flush_plug(tsk);
3424 }
3425
3426 asmlinkage __visible void __sched schedule(void)
3427 {
3428 struct task_struct *tsk = current;
3429
3430 sched_submit_work(tsk);
3431 do {
3432 preempt_disable();
3433 __schedule(false);
3434 sched_preempt_enable_no_resched();
3435 } while (need_resched());
3436 }
3437 EXPORT_SYMBOL(schedule);
3438
3439 #ifdef CONFIG_CONTEXT_TRACKING
3440 asmlinkage __visible void __sched schedule_user(void)
3441 {
3442 /*
3443 * If we come here after a random call to set_need_resched(),
3444 * or we have been woken up remotely but the IPI has not yet arrived,
3445 * we haven't yet exited the RCU idle mode. Do it here manually until
3446 * we find a better solution.
3447 *
3448 * NB: There are buggy callers of this function. Ideally we
3449 * should warn if prev_state != CONTEXT_USER, but that will trigger
3450 * too frequently to make sense yet.
3451 */
3452 enum ctx_state prev_state = exception_enter();
3453 schedule();
3454 exception_exit(prev_state);
3455 }
3456 #endif
3457
3458 /**
3459 * schedule_preempt_disabled - called with preemption disabled
3460 *
3461 * Returns with preemption disabled. Note: preempt_count must be 1
3462 */
3463 void __sched schedule_preempt_disabled(void)
3464 {
3465 sched_preempt_enable_no_resched();
3466 schedule();
3467 preempt_disable();
3468 }
3469
3470 static void __sched notrace preempt_schedule_common(void)
3471 {
3472 do {
3473 /*
3474 * Because the function tracer can trace preempt_count_sub()
3475 * and it also uses preempt_enable/disable_notrace(), if
3476 * NEED_RESCHED is set, the preempt_enable_notrace() called
3477 * by the function tracer will call this function again and
3478 * cause infinite recursion.
3479 *
3480 * Preemption must be disabled here before the function
3481 * tracer can trace. Break up preempt_disable() into two
3482 * calls. One to disable preemption without fear of being
3483 * traced. The other to still record the preemption latency,
3484 * which can also be traced by the function tracer.
3485 */
3486 preempt_disable_notrace();
3487 preempt_latency_start(1);
3488 __schedule(true);
3489 preempt_latency_stop(1);
3490 preempt_enable_no_resched_notrace();
3491
3492 /*
3493 * Check again in case we missed a preemption opportunity
3494 * between schedule and now.
3495 */
3496 } while (need_resched());
3497 }
3498
3499 #ifdef CONFIG_PREEMPT
3500 /*
3501 * this is the entry point to schedule() from in-kernel preemption
3502 * off of preempt_enable. Kernel preemptions off return from interrupt
3503 * occur there and call schedule directly.
3504 */
3505 asmlinkage __visible void __sched notrace preempt_schedule(void)
3506 {
3507 /*
3508 * If there is a non-zero preempt_count or interrupts are disabled,
3509 * we do not want to preempt the current task. Just return..
3510 */
3511 if (likely(!preemptible()))
3512 return;
3513
3514 preempt_schedule_common();
3515 }
3516 NOKPROBE_SYMBOL(preempt_schedule);
3517 EXPORT_SYMBOL(preempt_schedule);
3518
3519 /**
3520 * preempt_schedule_notrace - preempt_schedule called by tracing
3521 *
3522 * The tracing infrastructure uses preempt_enable_notrace to prevent
3523 * recursion and tracing preempt enabling caused by the tracing
3524 * infrastructure itself. But as tracing can happen in areas coming
3525 * from userspace or just about to enter userspace, a preempt enable
3526 * can occur before user_exit() is called. This will cause the scheduler
3527 * to be called when the system is still in usermode.
3528 *
3529 * To prevent this, the preempt_enable_notrace will use this function
3530 * instead of preempt_schedule() to exit user context if needed before
3531 * calling the scheduler.
3532 */
3533 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3534 {
3535 enum ctx_state prev_ctx;
3536
3537 if (likely(!preemptible()))
3538 return;
3539
3540 do {
3541 /*
3542 * Because the function tracer can trace preempt_count_sub()
3543 * and it also uses preempt_enable/disable_notrace(), if
3544 * NEED_RESCHED is set, the preempt_enable_notrace() called
3545 * by the function tracer will call this function again and
3546 * cause infinite recursion.
3547 *
3548 * Preemption must be disabled here before the function
3549 * tracer can trace. Break up preempt_disable() into two
3550 * calls. One to disable preemption without fear of being
3551 * traced. The other to still record the preemption latency,
3552 * which can also be traced by the function tracer.
3553 */
3554 preempt_disable_notrace();
3555 preempt_latency_start(1);
3556 /*
3557 * Needs preempt disabled in case user_exit() is traced
3558 * and the tracer calls preempt_enable_notrace() causing
3559 * an infinite recursion.
3560 */
3561 prev_ctx = exception_enter();
3562 __schedule(true);
3563 exception_exit(prev_ctx);
3564
3565 preempt_latency_stop(1);
3566 preempt_enable_no_resched_notrace();
3567 } while (need_resched());
3568 }
3569 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3570
3571 #endif /* CONFIG_PREEMPT */
3572
3573 /*
3574 * this is the entry point to schedule() from kernel preemption
3575 * off of irq context.
3576 * Note, that this is called and return with irqs disabled. This will
3577 * protect us against recursive calling from irq.
3578 */
3579 asmlinkage __visible void __sched preempt_schedule_irq(void)
3580 {
3581 enum ctx_state prev_state;
3582
3583 /* Catch callers which need to be fixed */
3584 BUG_ON(preempt_count() || !irqs_disabled());
3585
3586 prev_state = exception_enter();
3587
3588 do {
3589 preempt_disable();
3590 local_irq_enable();
3591 __schedule(true);
3592 local_irq_disable();
3593 sched_preempt_enable_no_resched();
3594 } while (need_resched());
3595
3596 exception_exit(prev_state);
3597 }
3598
3599 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3600 void *key)
3601 {
3602 return try_to_wake_up(curr->private, mode, wake_flags);
3603 }
3604 EXPORT_SYMBOL(default_wake_function);
3605
3606 #ifdef CONFIG_RT_MUTEXES
3607
3608 /*
3609 * rt_mutex_setprio - set the current priority of a task
3610 * @p: task
3611 * @prio: prio value (kernel-internal form)
3612 *
3613 * This function changes the 'effective' priority of a task. It does
3614 * not touch ->normal_prio like __setscheduler().
3615 *
3616 * Used by the rt_mutex code to implement priority inheritance
3617 * logic. Call site only calls if the priority of the task changed.
3618 */
3619 void rt_mutex_setprio(struct task_struct *p, int prio)
3620 {
3621 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3622 const struct sched_class *prev_class;
3623 struct rq_flags rf;
3624 struct rq *rq;
3625
3626 BUG_ON(prio > MAX_PRIO);
3627
3628 rq = __task_rq_lock(p, &rf);
3629
3630 /*
3631 * Idle task boosting is a nono in general. There is one
3632 * exception, when PREEMPT_RT and NOHZ is active:
3633 *
3634 * The idle task calls get_next_timer_interrupt() and holds
3635 * the timer wheel base->lock on the CPU and another CPU wants
3636 * to access the timer (probably to cancel it). We can safely
3637 * ignore the boosting request, as the idle CPU runs this code
3638 * with interrupts disabled and will complete the lock
3639 * protected section without being interrupted. So there is no
3640 * real need to boost.
3641 */
3642 if (unlikely(p == rq->idle)) {
3643 WARN_ON(p != rq->curr);
3644 WARN_ON(p->pi_blocked_on);
3645 goto out_unlock;
3646 }
3647
3648 trace_sched_pi_setprio(p, prio);
3649 oldprio = p->prio;
3650
3651 if (oldprio == prio)
3652 queue_flag &= ~DEQUEUE_MOVE;
3653
3654 prev_class = p->sched_class;
3655 queued = task_on_rq_queued(p);
3656 running = task_current(rq, p);
3657 if (queued)
3658 dequeue_task(rq, p, queue_flag);
3659 if (running)
3660 put_prev_task(rq, p);
3661
3662 /*
3663 * Boosting condition are:
3664 * 1. -rt task is running and holds mutex A
3665 * --> -dl task blocks on mutex A
3666 *
3667 * 2. -dl task is running and holds mutex A
3668 * --> -dl task blocks on mutex A and could preempt the
3669 * running task
3670 */
3671 if (dl_prio(prio)) {
3672 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3673 if (!dl_prio(p->normal_prio) ||
3674 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3675 p->dl.dl_boosted = 1;
3676 queue_flag |= ENQUEUE_REPLENISH;
3677 } else
3678 p->dl.dl_boosted = 0;
3679 p->sched_class = &dl_sched_class;
3680 } else if (rt_prio(prio)) {
3681 if (dl_prio(oldprio))
3682 p->dl.dl_boosted = 0;
3683 if (oldprio < prio)
3684 queue_flag |= ENQUEUE_HEAD;
3685 p->sched_class = &rt_sched_class;
3686 } else {
3687 if (dl_prio(oldprio))
3688 p->dl.dl_boosted = 0;
3689 if (rt_prio(oldprio))
3690 p->rt.timeout = 0;
3691 p->sched_class = &fair_sched_class;
3692 }
3693
3694 p->prio = prio;
3695
3696 if (running)
3697 p->sched_class->set_curr_task(rq);
3698 if (queued)
3699 enqueue_task(rq, p, queue_flag);
3700
3701 check_class_changed(rq, p, prev_class, oldprio);
3702 out_unlock:
3703 preempt_disable(); /* avoid rq from going away on us */
3704 __task_rq_unlock(rq, &rf);
3705
3706 balance_callback(rq);
3707 preempt_enable();
3708 }
3709 #endif
3710
3711 void set_user_nice(struct task_struct *p, long nice)
3712 {
3713 int old_prio, delta, queued;
3714 struct rq_flags rf;
3715 struct rq *rq;
3716
3717 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3718 return;
3719 /*
3720 * We have to be careful, if called from sys_setpriority(),
3721 * the task might be in the middle of scheduling on another CPU.
3722 */
3723 rq = task_rq_lock(p, &rf);
3724 /*
3725 * The RT priorities are set via sched_setscheduler(), but we still
3726 * allow the 'normal' nice value to be set - but as expected
3727 * it wont have any effect on scheduling until the task is
3728 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3729 */
3730 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3731 p->static_prio = NICE_TO_PRIO(nice);
3732 goto out_unlock;
3733 }
3734 queued = task_on_rq_queued(p);
3735 if (queued)
3736 dequeue_task(rq, p, DEQUEUE_SAVE);
3737
3738 p->static_prio = NICE_TO_PRIO(nice);
3739 set_load_weight(p);
3740 old_prio = p->prio;
3741 p->prio = effective_prio(p);
3742 delta = p->prio - old_prio;
3743
3744 if (queued) {
3745 enqueue_task(rq, p, ENQUEUE_RESTORE);
3746 /*
3747 * If the task increased its priority or is running and
3748 * lowered its priority, then reschedule its CPU:
3749 */
3750 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3751 resched_curr(rq);
3752 }
3753 out_unlock:
3754 trace_sched_update_prio(p);
3755 task_rq_unlock(rq, p, &rf);
3756 }
3757 EXPORT_SYMBOL(set_user_nice);
3758
3759 /*
3760 * can_nice - check if a task can reduce its nice value
3761 * @p: task
3762 * @nice: nice value
3763 */
3764 int can_nice(const struct task_struct *p, const int nice)
3765 {
3766 /* convert nice value [19,-20] to rlimit style value [1,40] */
3767 int nice_rlim = nice_to_rlimit(nice);
3768
3769 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3770 capable(CAP_SYS_NICE));
3771 }
3772
3773 #ifdef __ARCH_WANT_SYS_NICE
3774
3775 /*
3776 * sys_nice - change the priority of the current process.
3777 * @increment: priority increment
3778 *
3779 * sys_setpriority is a more generic, but much slower function that
3780 * does similar things.
3781 */
3782 SYSCALL_DEFINE1(nice, int, increment)
3783 {
3784 long nice, retval;
3785
3786 /*
3787 * Setpriority might change our priority at the same moment.
3788 * We don't have to worry. Conceptually one call occurs first
3789 * and we have a single winner.
3790 */
3791 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3792 nice = task_nice(current) + increment;
3793
3794 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3795 if (increment < 0 && !can_nice(current, nice))
3796 return -EPERM;
3797
3798 retval = security_task_setnice(current, nice);
3799 if (retval)
3800 return retval;
3801
3802 set_user_nice(current, nice);
3803 return 0;
3804 }
3805
3806 #endif
3807
3808 /**
3809 * task_prio - return the priority value of a given task.
3810 * @p: the task in question.
3811 *
3812 * Return: The priority value as seen by users in /proc.
3813 * RT tasks are offset by -200. Normal tasks are centered
3814 * around 0, value goes from -16 to +15.
3815 */
3816 int task_prio(const struct task_struct *p)
3817 {
3818 return p->prio - MAX_RT_PRIO;
3819 }
3820
3821 /**
3822 * idle_cpu - is a given cpu idle currently?
3823 * @cpu: the processor in question.
3824 *
3825 * Return: 1 if the CPU is currently idle. 0 otherwise.
3826 */
3827 int idle_cpu(int cpu)
3828 {
3829 struct rq *rq = cpu_rq(cpu);
3830
3831 if (rq->curr != rq->idle)
3832 return 0;
3833
3834 if (rq->nr_running)
3835 return 0;
3836
3837 #ifdef CONFIG_SMP
3838 if (!llist_empty(&rq->wake_list))
3839 return 0;
3840 #endif
3841
3842 return 1;
3843 }
3844
3845 /**
3846 * idle_task - return the idle task for a given cpu.
3847 * @cpu: the processor in question.
3848 *
3849 * Return: The idle task for the cpu @cpu.
3850 */
3851 struct task_struct *idle_task(int cpu)
3852 {
3853 return cpu_rq(cpu)->idle;
3854 }
3855
3856 /**
3857 * find_process_by_pid - find a process with a matching PID value.
3858 * @pid: the pid in question.
3859 *
3860 * The task of @pid, if found. %NULL otherwise.
3861 */
3862 static struct task_struct *find_process_by_pid(pid_t pid)
3863 {
3864 return pid ? find_task_by_vpid(pid) : current;
3865 }
3866
3867 /*
3868 * This function initializes the sched_dl_entity of a newly becoming
3869 * SCHED_DEADLINE task.
3870 *
3871 * Only the static values are considered here, the actual runtime and the
3872 * absolute deadline will be properly calculated when the task is enqueued
3873 * for the first time with its new policy.
3874 */
3875 static void
3876 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3877 {
3878 struct sched_dl_entity *dl_se = &p->dl;
3879
3880 dl_se->dl_runtime = attr->sched_runtime;
3881 dl_se->dl_deadline = attr->sched_deadline;
3882 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3883 dl_se->flags = attr->sched_flags;
3884 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3885
3886 /*
3887 * Changing the parameters of a task is 'tricky' and we're not doing
3888 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3889 *
3890 * What we SHOULD do is delay the bandwidth release until the 0-lag
3891 * point. This would include retaining the task_struct until that time
3892 * and change dl_overflow() to not immediately decrement the current
3893 * amount.
3894 *
3895 * Instead we retain the current runtime/deadline and let the new
3896 * parameters take effect after the current reservation period lapses.
3897 * This is safe (albeit pessimistic) because the 0-lag point is always
3898 * before the current scheduling deadline.
3899 *
3900 * We can still have temporary overloads because we do not delay the
3901 * change in bandwidth until that time; so admission control is
3902 * not on the safe side. It does however guarantee tasks will never
3903 * consume more than promised.
3904 */
3905 }
3906
3907 /*
3908 * sched_setparam() passes in -1 for its policy, to let the functions
3909 * it calls know not to change it.
3910 */
3911 #define SETPARAM_POLICY -1
3912
3913 static void __setscheduler_params(struct task_struct *p,
3914 const struct sched_attr *attr)
3915 {
3916 int policy = attr->sched_policy;
3917
3918 if (policy == SETPARAM_POLICY)
3919 policy = p->policy;
3920
3921 p->policy = policy;
3922
3923 if (dl_policy(policy))
3924 __setparam_dl(p, attr);
3925 else if (fair_policy(policy))
3926 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3927
3928 /*
3929 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3930 * !rt_policy. Always setting this ensures that things like
3931 * getparam()/getattr() don't report silly values for !rt tasks.
3932 */
3933 p->rt_priority = attr->sched_priority;
3934 p->normal_prio = normal_prio(p);
3935 set_load_weight(p);
3936 }
3937
3938 /* Actually do priority change: must hold pi & rq lock. */
3939 static void __setscheduler(struct rq *rq, struct task_struct *p,
3940 const struct sched_attr *attr, bool keep_boost)
3941 {
3942 __setscheduler_params(p, attr);
3943
3944 /*
3945 * Keep a potential priority boosting if called from
3946 * sched_setscheduler().
3947 */
3948 if (keep_boost)
3949 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3950 else
3951 p->prio = normal_prio(p);
3952
3953 if (dl_prio(p->prio))
3954 p->sched_class = &dl_sched_class;
3955 else if (rt_prio(p->prio))
3956 p->sched_class = &rt_sched_class;
3957 else
3958 p->sched_class = &fair_sched_class;
3959
3960 trace_sched_update_prio(p);
3961 }
3962
3963 static void
3964 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3965 {
3966 struct sched_dl_entity *dl_se = &p->dl;
3967
3968 attr->sched_priority = p->rt_priority;
3969 attr->sched_runtime = dl_se->dl_runtime;
3970 attr->sched_deadline = dl_se->dl_deadline;
3971 attr->sched_period = dl_se->dl_period;
3972 attr->sched_flags = dl_se->flags;
3973 }
3974
3975 /*
3976 * This function validates the new parameters of a -deadline task.
3977 * We ask for the deadline not being zero, and greater or equal
3978 * than the runtime, as well as the period of being zero or
3979 * greater than deadline. Furthermore, we have to be sure that
3980 * user parameters are above the internal resolution of 1us (we
3981 * check sched_runtime only since it is always the smaller one) and
3982 * below 2^63 ns (we have to check both sched_deadline and
3983 * sched_period, as the latter can be zero).
3984 */
3985 static bool
3986 __checkparam_dl(const struct sched_attr *attr)
3987 {
3988 /* deadline != 0 */
3989 if (attr->sched_deadline == 0)
3990 return false;
3991
3992 /*
3993 * Since we truncate DL_SCALE bits, make sure we're at least
3994 * that big.
3995 */
3996 if (attr->sched_runtime < (1ULL << DL_SCALE))
3997 return false;
3998
3999 /*
4000 * Since we use the MSB for wrap-around and sign issues, make
4001 * sure it's not set (mind that period can be equal to zero).
4002 */
4003 if (attr->sched_deadline & (1ULL << 63) ||
4004 attr->sched_period & (1ULL << 63))
4005 return false;
4006
4007 /* runtime <= deadline <= period (if period != 0) */
4008 if ((attr->sched_period != 0 &&
4009 attr->sched_period < attr->sched_deadline) ||
4010 attr->sched_deadline < attr->sched_runtime)
4011 return false;
4012
4013 return true;
4014 }
4015
4016 /*
4017 * check the target process has a UID that matches the current process's
4018 */
4019 static bool check_same_owner(struct task_struct *p)
4020 {
4021 const struct cred *cred = current_cred(), *pcred;
4022 bool match;
4023
4024 rcu_read_lock();
4025 pcred = __task_cred(p);
4026 match = (uid_eq(cred->euid, pcred->euid) ||
4027 uid_eq(cred->euid, pcred->uid));
4028 rcu_read_unlock();
4029 return match;
4030 }
4031
4032 static bool dl_param_changed(struct task_struct *p,
4033 const struct sched_attr *attr)
4034 {
4035 struct sched_dl_entity *dl_se = &p->dl;
4036
4037 if (dl_se->dl_runtime != attr->sched_runtime ||
4038 dl_se->dl_deadline != attr->sched_deadline ||
4039 dl_se->dl_period != attr->sched_period ||
4040 dl_se->flags != attr->sched_flags)
4041 return true;
4042
4043 return false;
4044 }
4045
4046 static int __sched_setscheduler(struct task_struct *p,
4047 const struct sched_attr *attr,
4048 bool user, bool pi)
4049 {
4050 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4051 MAX_RT_PRIO - 1 - attr->sched_priority;
4052 int retval, oldprio, oldpolicy = -1, queued, running;
4053 int new_effective_prio, policy = attr->sched_policy;
4054 const struct sched_class *prev_class;
4055 struct rq_flags rf;
4056 int reset_on_fork;
4057 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4058 struct rq *rq;
4059
4060 /* may grab non-irq protected spin_locks */
4061 BUG_ON(in_interrupt());
4062 recheck:
4063 /* double check policy once rq lock held */
4064 if (policy < 0) {
4065 reset_on_fork = p->sched_reset_on_fork;
4066 policy = oldpolicy = p->policy;
4067 } else {
4068 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4069
4070 if (!valid_policy(policy))
4071 return -EINVAL;
4072 }
4073
4074 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4075 return -EINVAL;
4076
4077 /*
4078 * Valid priorities for SCHED_FIFO and SCHED_RR are
4079 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4080 * SCHED_BATCH and SCHED_IDLE is 0.
4081 */
4082 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4083 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4084 return -EINVAL;
4085 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4086 (rt_policy(policy) != (attr->sched_priority != 0)))
4087 return -EINVAL;
4088
4089 /*
4090 * Allow unprivileged RT tasks to decrease priority:
4091 */
4092 if (user && !capable(CAP_SYS_NICE)) {
4093 if (fair_policy(policy)) {
4094 if (attr->sched_nice < task_nice(p) &&
4095 !can_nice(p, attr->sched_nice))
4096 return -EPERM;
4097 }
4098
4099 if (rt_policy(policy)) {
4100 unsigned long rlim_rtprio =
4101 task_rlimit(p, RLIMIT_RTPRIO);
4102
4103 /* can't set/change the rt policy */
4104 if (policy != p->policy && !rlim_rtprio)
4105 return -EPERM;
4106
4107 /* can't increase priority */
4108 if (attr->sched_priority > p->rt_priority &&
4109 attr->sched_priority > rlim_rtprio)
4110 return -EPERM;
4111 }
4112
4113 /*
4114 * Can't set/change SCHED_DEADLINE policy at all for now
4115 * (safest behavior); in the future we would like to allow
4116 * unprivileged DL tasks to increase their relative deadline
4117 * or reduce their runtime (both ways reducing utilization)
4118 */
4119 if (dl_policy(policy))
4120 return -EPERM;
4121
4122 /*
4123 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4124 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4125 */
4126 if (idle_policy(p->policy) && !idle_policy(policy)) {
4127 if (!can_nice(p, task_nice(p)))
4128 return -EPERM;
4129 }
4130
4131 /* can't change other user's priorities */
4132 if (!check_same_owner(p))
4133 return -EPERM;
4134
4135 /* Normal users shall not reset the sched_reset_on_fork flag */
4136 if (p->sched_reset_on_fork && !reset_on_fork)
4137 return -EPERM;
4138 }
4139
4140 if (user) {
4141 retval = security_task_setscheduler(p);
4142 if (retval)
4143 return retval;
4144 }
4145
4146 /*
4147 * make sure no PI-waiters arrive (or leave) while we are
4148 * changing the priority of the task:
4149 *
4150 * To be able to change p->policy safely, the appropriate
4151 * runqueue lock must be held.
4152 */
4153 rq = task_rq_lock(p, &rf);
4154
4155 /*
4156 * Changing the policy of the stop threads its a very bad idea
4157 */
4158 if (p == rq->stop) {
4159 task_rq_unlock(rq, p, &rf);
4160 return -EINVAL;
4161 }
4162
4163 /*
4164 * If not changing anything there's no need to proceed further,
4165 * but store a possible modification of reset_on_fork.
4166 */
4167 if (unlikely(policy == p->policy)) {
4168 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4169 goto change;
4170 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4171 goto change;
4172 if (dl_policy(policy) && dl_param_changed(p, attr))
4173 goto change;
4174
4175 p->sched_reset_on_fork = reset_on_fork;
4176 task_rq_unlock(rq, p, &rf);
4177 return 0;
4178 }
4179 change:
4180
4181 if (user) {
4182 #ifdef CONFIG_RT_GROUP_SCHED
4183 /*
4184 * Do not allow realtime tasks into groups that have no runtime
4185 * assigned.
4186 */
4187 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4188 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4189 !task_group_is_autogroup(task_group(p))) {
4190 task_rq_unlock(rq, p, &rf);
4191 return -EPERM;
4192 }
4193 #endif
4194 #ifdef CONFIG_SMP
4195 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4196 cpumask_t *span = rq->rd->span;
4197
4198 /*
4199 * Don't allow tasks with an affinity mask smaller than
4200 * the entire root_domain to become SCHED_DEADLINE. We
4201 * will also fail if there's no bandwidth available.
4202 */
4203 if (!cpumask_subset(span, &p->cpus_allowed) ||
4204 rq->rd->dl_bw.bw == 0) {
4205 task_rq_unlock(rq, p, &rf);
4206 return -EPERM;
4207 }
4208 }
4209 #endif
4210 }
4211
4212 /* recheck policy now with rq lock held */
4213 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4214 policy = oldpolicy = -1;
4215 task_rq_unlock(rq, p, &rf);
4216 goto recheck;
4217 }
4218
4219 /*
4220 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4221 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4222 * is available.
4223 */
4224 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4225 task_rq_unlock(rq, p, &rf);
4226 return -EBUSY;
4227 }
4228
4229 p->sched_reset_on_fork = reset_on_fork;
4230 oldprio = p->prio;
4231
4232 if (pi) {
4233 /*
4234 * Take priority boosted tasks into account. If the new
4235 * effective priority is unchanged, we just store the new
4236 * normal parameters and do not touch the scheduler class and
4237 * the runqueue. This will be done when the task deboost
4238 * itself.
4239 */
4240 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4241 if (new_effective_prio == oldprio)
4242 queue_flags &= ~DEQUEUE_MOVE;
4243 }
4244
4245 queued = task_on_rq_queued(p);
4246 running = task_current(rq, p);
4247 if (queued)
4248 dequeue_task(rq, p, queue_flags);
4249 if (running)
4250 put_prev_task(rq, p);
4251
4252 prev_class = p->sched_class;
4253 __setscheduler(rq, p, attr, pi);
4254
4255 if (running)
4256 p->sched_class->set_curr_task(rq);
4257 if (queued) {
4258 /*
4259 * We enqueue to tail when the priority of a task is
4260 * increased (user space view).
4261 */
4262 if (oldprio < p->prio)
4263 queue_flags |= ENQUEUE_HEAD;
4264
4265 enqueue_task(rq, p, queue_flags);
4266 }
4267
4268 check_class_changed(rq, p, prev_class, oldprio);
4269 preempt_disable(); /* avoid rq from going away on us */
4270 task_rq_unlock(rq, p, &rf);
4271
4272 if (pi)
4273 rt_mutex_adjust_pi(p);
4274
4275 /*
4276 * Run balance callbacks after we've adjusted the PI chain.
4277 */
4278 balance_callback(rq);
4279 preempt_enable();
4280
4281 return 0;
4282 }
4283
4284 static int _sched_setscheduler(struct task_struct *p, int policy,
4285 const struct sched_param *param, bool check)
4286 {
4287 struct sched_attr attr = {
4288 .sched_policy = policy,
4289 .sched_priority = param->sched_priority,
4290 .sched_nice = PRIO_TO_NICE(p->static_prio),
4291 };
4292
4293 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4294 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4295 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4296 policy &= ~SCHED_RESET_ON_FORK;
4297 attr.sched_policy = policy;
4298 }
4299
4300 return __sched_setscheduler(p, &attr, check, true);
4301 }
4302 /**
4303 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4304 * @p: the task in question.
4305 * @policy: new policy.
4306 * @param: structure containing the new RT priority.
4307 *
4308 * Return: 0 on success. An error code otherwise.
4309 *
4310 * NOTE that the task may be already dead.
4311 */
4312 int sched_setscheduler(struct task_struct *p, int policy,
4313 const struct sched_param *param)
4314 {
4315 return _sched_setscheduler(p, policy, param, true);
4316 }
4317 EXPORT_SYMBOL_GPL(sched_setscheduler);
4318
4319 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4320 {
4321 return __sched_setscheduler(p, attr, true, true);
4322 }
4323 EXPORT_SYMBOL_GPL(sched_setattr);
4324
4325 /**
4326 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4327 * @p: the task in question.
4328 * @policy: new policy.
4329 * @param: structure containing the new RT priority.
4330 *
4331 * Just like sched_setscheduler, only don't bother checking if the
4332 * current context has permission. For example, this is needed in
4333 * stop_machine(): we create temporary high priority worker threads,
4334 * but our caller might not have that capability.
4335 *
4336 * Return: 0 on success. An error code otherwise.
4337 */
4338 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4339 const struct sched_param *param)
4340 {
4341 return _sched_setscheduler(p, policy, param, false);
4342 }
4343 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4344
4345 static int
4346 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4347 {
4348 struct sched_param lparam;
4349 struct task_struct *p;
4350 int retval;
4351
4352 if (!param || pid < 0)
4353 return -EINVAL;
4354 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4355 return -EFAULT;
4356
4357 rcu_read_lock();
4358 retval = -ESRCH;
4359 p = find_process_by_pid(pid);
4360 if (p != NULL)
4361 retval = sched_setscheduler(p, policy, &lparam);
4362 rcu_read_unlock();
4363
4364 return retval;
4365 }
4366
4367 /*
4368 * Mimics kernel/events/core.c perf_copy_attr().
4369 */
4370 static int sched_copy_attr(struct sched_attr __user *uattr,
4371 struct sched_attr *attr)
4372 {
4373 u32 size;
4374 int ret;
4375
4376 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4377 return -EFAULT;
4378
4379 /*
4380 * zero the full structure, so that a short copy will be nice.
4381 */
4382 memset(attr, 0, sizeof(*attr));
4383
4384 ret = get_user(size, &uattr->size);
4385 if (ret)
4386 return ret;
4387
4388 if (size > PAGE_SIZE) /* silly large */
4389 goto err_size;
4390
4391 if (!size) /* abi compat */
4392 size = SCHED_ATTR_SIZE_VER0;
4393
4394 if (size < SCHED_ATTR_SIZE_VER0)
4395 goto err_size;
4396
4397 /*
4398 * If we're handed a bigger struct than we know of,
4399 * ensure all the unknown bits are 0 - i.e. new
4400 * user-space does not rely on any kernel feature
4401 * extensions we dont know about yet.
4402 */
4403 if (size > sizeof(*attr)) {
4404 unsigned char __user *addr;
4405 unsigned char __user *end;
4406 unsigned char val;
4407
4408 addr = (void __user *)uattr + sizeof(*attr);
4409 end = (void __user *)uattr + size;
4410
4411 for (; addr < end; addr++) {
4412 ret = get_user(val, addr);
4413 if (ret)
4414 return ret;
4415 if (val)
4416 goto err_size;
4417 }
4418 size = sizeof(*attr);
4419 }
4420
4421 ret = copy_from_user(attr, uattr, size);
4422 if (ret)
4423 return -EFAULT;
4424
4425 /*
4426 * XXX: do we want to be lenient like existing syscalls; or do we want
4427 * to be strict and return an error on out-of-bounds values?
4428 */
4429 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4430
4431 return 0;
4432
4433 err_size:
4434 put_user(sizeof(*attr), &uattr->size);
4435 return -E2BIG;
4436 }
4437
4438 /**
4439 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4440 * @pid: the pid in question.
4441 * @policy: new policy.
4442 * @param: structure containing the new RT priority.
4443 *
4444 * Return: 0 on success. An error code otherwise.
4445 */
4446 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4447 struct sched_param __user *, param)
4448 {
4449 /* negative values for policy are not valid */
4450 if (policy < 0)
4451 return -EINVAL;
4452
4453 return do_sched_setscheduler(pid, policy, param);
4454 }
4455
4456 /**
4457 * sys_sched_setparam - set/change the RT priority of a thread
4458 * @pid: the pid in question.
4459 * @param: structure containing the new RT priority.
4460 *
4461 * Return: 0 on success. An error code otherwise.
4462 */
4463 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4464 {
4465 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4466 }
4467
4468 /**
4469 * sys_sched_setattr - same as above, but with extended sched_attr
4470 * @pid: the pid in question.
4471 * @uattr: structure containing the extended parameters.
4472 * @flags: for future extension.
4473 */
4474 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4475 unsigned int, flags)
4476 {
4477 struct sched_attr attr;
4478 struct task_struct *p;
4479 int retval;
4480
4481 if (!uattr || pid < 0 || flags)
4482 return -EINVAL;
4483
4484 retval = sched_copy_attr(uattr, &attr);
4485 if (retval)
4486 return retval;
4487
4488 if ((int)attr.sched_policy < 0)
4489 return -EINVAL;
4490
4491 rcu_read_lock();
4492 retval = -ESRCH;
4493 p = find_process_by_pid(pid);
4494 if (p != NULL)
4495 retval = sched_setattr(p, &attr);
4496 rcu_read_unlock();
4497
4498 return retval;
4499 }
4500
4501 /**
4502 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4503 * @pid: the pid in question.
4504 *
4505 * Return: On success, the policy of the thread. Otherwise, a negative error
4506 * code.
4507 */
4508 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4509 {
4510 struct task_struct *p;
4511 int retval;
4512
4513 if (pid < 0)
4514 return -EINVAL;
4515
4516 retval = -ESRCH;
4517 rcu_read_lock();
4518 p = find_process_by_pid(pid);
4519 if (p) {
4520 retval = security_task_getscheduler(p);
4521 if (!retval)
4522 retval = p->policy
4523 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4524 }
4525 rcu_read_unlock();
4526 return retval;
4527 }
4528
4529 /**
4530 * sys_sched_getparam - get the RT priority of a thread
4531 * @pid: the pid in question.
4532 * @param: structure containing the RT priority.
4533 *
4534 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4535 * code.
4536 */
4537 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4538 {
4539 struct sched_param lp = { .sched_priority = 0 };
4540 struct task_struct *p;
4541 int retval;
4542
4543 if (!param || pid < 0)
4544 return -EINVAL;
4545
4546 rcu_read_lock();
4547 p = find_process_by_pid(pid);
4548 retval = -ESRCH;
4549 if (!p)
4550 goto out_unlock;
4551
4552 retval = security_task_getscheduler(p);
4553 if (retval)
4554 goto out_unlock;
4555
4556 if (task_has_rt_policy(p))
4557 lp.sched_priority = p->rt_priority;
4558 rcu_read_unlock();
4559
4560 /*
4561 * This one might sleep, we cannot do it with a spinlock held ...
4562 */
4563 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4564
4565 return retval;
4566
4567 out_unlock:
4568 rcu_read_unlock();
4569 return retval;
4570 }
4571
4572 static int sched_read_attr(struct sched_attr __user *uattr,
4573 struct sched_attr *attr,
4574 unsigned int usize)
4575 {
4576 int ret;
4577
4578 if (!access_ok(VERIFY_WRITE, uattr, usize))
4579 return -EFAULT;
4580
4581 /*
4582 * If we're handed a smaller struct than we know of,
4583 * ensure all the unknown bits are 0 - i.e. old
4584 * user-space does not get uncomplete information.
4585 */
4586 if (usize < sizeof(*attr)) {
4587 unsigned char *addr;
4588 unsigned char *end;
4589
4590 addr = (void *)attr + usize;
4591 end = (void *)attr + sizeof(*attr);
4592
4593 for (; addr < end; addr++) {
4594 if (*addr)
4595 return -EFBIG;
4596 }
4597
4598 attr->size = usize;
4599 }
4600
4601 ret = copy_to_user(uattr, attr, attr->size);
4602 if (ret)
4603 return -EFAULT;
4604
4605 return 0;
4606 }
4607
4608 /**
4609 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4610 * @pid: the pid in question.
4611 * @uattr: structure containing the extended parameters.
4612 * @size: sizeof(attr) for fwd/bwd comp.
4613 * @flags: for future extension.
4614 */
4615 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4616 unsigned int, size, unsigned int, flags)
4617 {
4618 struct sched_attr attr = {
4619 .size = sizeof(struct sched_attr),
4620 };
4621 struct task_struct *p;
4622 int retval;
4623
4624 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4625 size < SCHED_ATTR_SIZE_VER0 || flags)
4626 return -EINVAL;
4627
4628 rcu_read_lock();
4629 p = find_process_by_pid(pid);
4630 retval = -ESRCH;
4631 if (!p)
4632 goto out_unlock;
4633
4634 retval = security_task_getscheduler(p);
4635 if (retval)
4636 goto out_unlock;
4637
4638 attr.sched_policy = p->policy;
4639 if (p->sched_reset_on_fork)
4640 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4641 if (task_has_dl_policy(p))
4642 __getparam_dl(p, &attr);
4643 else if (task_has_rt_policy(p))
4644 attr.sched_priority = p->rt_priority;
4645 else
4646 attr.sched_nice = task_nice(p);
4647
4648 rcu_read_unlock();
4649
4650 retval = sched_read_attr(uattr, &attr, size);
4651 return retval;
4652
4653 out_unlock:
4654 rcu_read_unlock();
4655 return retval;
4656 }
4657
4658 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4659 {
4660 cpumask_var_t cpus_allowed, new_mask;
4661 struct task_struct *p;
4662 int retval;
4663
4664 rcu_read_lock();
4665
4666 p = find_process_by_pid(pid);
4667 if (!p) {
4668 rcu_read_unlock();
4669 return -ESRCH;
4670 }
4671
4672 /* Prevent p going away */
4673 get_task_struct(p);
4674 rcu_read_unlock();
4675
4676 if (p->flags & PF_NO_SETAFFINITY) {
4677 retval = -EINVAL;
4678 goto out_put_task;
4679 }
4680 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4681 retval = -ENOMEM;
4682 goto out_put_task;
4683 }
4684 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4685 retval = -ENOMEM;
4686 goto out_free_cpus_allowed;
4687 }
4688 retval = -EPERM;
4689 if (!check_same_owner(p)) {
4690 rcu_read_lock();
4691 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4692 rcu_read_unlock();
4693 goto out_free_new_mask;
4694 }
4695 rcu_read_unlock();
4696 }
4697
4698 retval = security_task_setscheduler(p);
4699 if (retval)
4700 goto out_free_new_mask;
4701
4702
4703 cpuset_cpus_allowed(p, cpus_allowed);
4704 cpumask_and(new_mask, in_mask, cpus_allowed);
4705
4706 /*
4707 * Since bandwidth control happens on root_domain basis,
4708 * if admission test is enabled, we only admit -deadline
4709 * tasks allowed to run on all the CPUs in the task's
4710 * root_domain.
4711 */
4712 #ifdef CONFIG_SMP
4713 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4714 rcu_read_lock();
4715 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4716 retval = -EBUSY;
4717 rcu_read_unlock();
4718 goto out_free_new_mask;
4719 }
4720 rcu_read_unlock();
4721 }
4722 #endif
4723 again:
4724 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4725
4726 if (!retval) {
4727 cpuset_cpus_allowed(p, cpus_allowed);
4728 if (!cpumask_subset(new_mask, cpus_allowed)) {
4729 /*
4730 * We must have raced with a concurrent cpuset
4731 * update. Just reset the cpus_allowed to the
4732 * cpuset's cpus_allowed
4733 */
4734 cpumask_copy(new_mask, cpus_allowed);
4735 goto again;
4736 }
4737 }
4738 out_free_new_mask:
4739 free_cpumask_var(new_mask);
4740 out_free_cpus_allowed:
4741 free_cpumask_var(cpus_allowed);
4742 out_put_task:
4743 put_task_struct(p);
4744 return retval;
4745 }
4746
4747 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4748 struct cpumask *new_mask)
4749 {
4750 if (len < cpumask_size())
4751 cpumask_clear(new_mask);
4752 else if (len > cpumask_size())
4753 len = cpumask_size();
4754
4755 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4756 }
4757
4758 /**
4759 * sys_sched_setaffinity - set the cpu affinity of a process
4760 * @pid: pid of the process
4761 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4762 * @user_mask_ptr: user-space pointer to the new cpu mask
4763 *
4764 * Return: 0 on success. An error code otherwise.
4765 */
4766 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4767 unsigned long __user *, user_mask_ptr)
4768 {
4769 cpumask_var_t new_mask;
4770 int retval;
4771
4772 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4773 return -ENOMEM;
4774
4775 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4776 if (retval == 0)
4777 retval = sched_setaffinity(pid, new_mask);
4778 free_cpumask_var(new_mask);
4779 return retval;
4780 }
4781
4782 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4783 {
4784 struct task_struct *p;
4785 unsigned long flags;
4786 int retval;
4787
4788 rcu_read_lock();
4789
4790 retval = -ESRCH;
4791 p = find_process_by_pid(pid);
4792 if (!p)
4793 goto out_unlock;
4794
4795 retval = security_task_getscheduler(p);
4796 if (retval)
4797 goto out_unlock;
4798
4799 raw_spin_lock_irqsave(&p->pi_lock, flags);
4800 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4801 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4802
4803 out_unlock:
4804 rcu_read_unlock();
4805
4806 return retval;
4807 }
4808
4809 /**
4810 * sys_sched_getaffinity - get the cpu affinity of a process
4811 * @pid: pid of the process
4812 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4813 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4814 *
4815 * Return: size of CPU mask copied to user_mask_ptr on success. An
4816 * error code otherwise.
4817 */
4818 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4819 unsigned long __user *, user_mask_ptr)
4820 {
4821 int ret;
4822 cpumask_var_t mask;
4823
4824 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4825 return -EINVAL;
4826 if (len & (sizeof(unsigned long)-1))
4827 return -EINVAL;
4828
4829 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4830 return -ENOMEM;
4831
4832 ret = sched_getaffinity(pid, mask);
4833 if (ret == 0) {
4834 size_t retlen = min_t(size_t, len, cpumask_size());
4835
4836 if (copy_to_user(user_mask_ptr, mask, retlen))
4837 ret = -EFAULT;
4838 else
4839 ret = retlen;
4840 }
4841 free_cpumask_var(mask);
4842
4843 return ret;
4844 }
4845
4846 /**
4847 * sys_sched_yield - yield the current processor to other threads.
4848 *
4849 * This function yields the current CPU to other tasks. If there are no
4850 * other threads running on this CPU then this function will return.
4851 *
4852 * Return: 0.
4853 */
4854 SYSCALL_DEFINE0(sched_yield)
4855 {
4856 struct rq *rq = this_rq_lock();
4857
4858 schedstat_inc(rq->yld_count);
4859 current->sched_class->yield_task(rq);
4860
4861 /*
4862 * Since we are going to call schedule() anyway, there's
4863 * no need to preempt or enable interrupts:
4864 */
4865 __release(rq->lock);
4866 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4867 do_raw_spin_unlock(&rq->lock);
4868 sched_preempt_enable_no_resched();
4869
4870 schedule();
4871
4872 return 0;
4873 }
4874
4875 int __sched _cond_resched(void)
4876 {
4877 if (should_resched(0)) {
4878 preempt_schedule_common();
4879 return 1;
4880 }
4881 return 0;
4882 }
4883 EXPORT_SYMBOL(_cond_resched);
4884
4885 /*
4886 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4887 * call schedule, and on return reacquire the lock.
4888 *
4889 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4890 * operations here to prevent schedule() from being called twice (once via
4891 * spin_unlock(), once by hand).
4892 */
4893 int __cond_resched_lock(spinlock_t *lock)
4894 {
4895 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4896 int ret = 0;
4897
4898 lockdep_assert_held(lock);
4899
4900 if (spin_needbreak(lock) || resched) {
4901 spin_unlock(lock);
4902 if (resched)
4903 preempt_schedule_common();
4904 else
4905 cpu_relax();
4906 ret = 1;
4907 spin_lock(lock);
4908 }
4909 return ret;
4910 }
4911 EXPORT_SYMBOL(__cond_resched_lock);
4912
4913 int __sched __cond_resched_softirq(void)
4914 {
4915 BUG_ON(!in_softirq());
4916
4917 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4918 local_bh_enable();
4919 preempt_schedule_common();
4920 local_bh_disable();
4921 return 1;
4922 }
4923 return 0;
4924 }
4925 EXPORT_SYMBOL(__cond_resched_softirq);
4926
4927 /**
4928 * yield - yield the current processor to other threads.
4929 *
4930 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4931 *
4932 * The scheduler is at all times free to pick the calling task as the most
4933 * eligible task to run, if removing the yield() call from your code breaks
4934 * it, its already broken.
4935 *
4936 * Typical broken usage is:
4937 *
4938 * while (!event)
4939 * yield();
4940 *
4941 * where one assumes that yield() will let 'the other' process run that will
4942 * make event true. If the current task is a SCHED_FIFO task that will never
4943 * happen. Never use yield() as a progress guarantee!!
4944 *
4945 * If you want to use yield() to wait for something, use wait_event().
4946 * If you want to use yield() to be 'nice' for others, use cond_resched().
4947 * If you still want to use yield(), do not!
4948 */
4949 void __sched yield(void)
4950 {
4951 set_current_state(TASK_RUNNING);
4952 sys_sched_yield();
4953 }
4954 EXPORT_SYMBOL(yield);
4955
4956 /**
4957 * yield_to - yield the current processor to another thread in
4958 * your thread group, or accelerate that thread toward the
4959 * processor it's on.
4960 * @p: target task
4961 * @preempt: whether task preemption is allowed or not
4962 *
4963 * It's the caller's job to ensure that the target task struct
4964 * can't go away on us before we can do any checks.
4965 *
4966 * Return:
4967 * true (>0) if we indeed boosted the target task.
4968 * false (0) if we failed to boost the target.
4969 * -ESRCH if there's no task to yield to.
4970 */
4971 int __sched yield_to(struct task_struct *p, bool preempt)
4972 {
4973 struct task_struct *curr = current;
4974 struct rq *rq, *p_rq;
4975 unsigned long flags;
4976 int yielded = 0;
4977
4978 local_irq_save(flags);
4979 rq = this_rq();
4980
4981 again:
4982 p_rq = task_rq(p);
4983 /*
4984 * If we're the only runnable task on the rq and target rq also
4985 * has only one task, there's absolutely no point in yielding.
4986 */
4987 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4988 yielded = -ESRCH;
4989 goto out_irq;
4990 }
4991
4992 double_rq_lock(rq, p_rq);
4993 if (task_rq(p) != p_rq) {
4994 double_rq_unlock(rq, p_rq);
4995 goto again;
4996 }
4997
4998 if (!curr->sched_class->yield_to_task)
4999 goto out_unlock;
5000
5001 if (curr->sched_class != p->sched_class)
5002 goto out_unlock;
5003
5004 if (task_running(p_rq, p) || p->state)
5005 goto out_unlock;
5006
5007 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5008 if (yielded) {
5009 schedstat_inc(rq->yld_count);
5010 /*
5011 * Make p's CPU reschedule; pick_next_entity takes care of
5012 * fairness.
5013 */
5014 if (preempt && rq != p_rq)
5015 resched_curr(p_rq);
5016 }
5017
5018 out_unlock:
5019 double_rq_unlock(rq, p_rq);
5020 out_irq:
5021 local_irq_restore(flags);
5022
5023 if (yielded > 0)
5024 schedule();
5025
5026 return yielded;
5027 }
5028 EXPORT_SYMBOL_GPL(yield_to);
5029
5030 /*
5031 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5032 * that process accounting knows that this is a task in IO wait state.
5033 */
5034 long __sched io_schedule_timeout(long timeout)
5035 {
5036 int old_iowait = current->in_iowait;
5037 struct rq *rq;
5038 long ret;
5039
5040 current->in_iowait = 1;
5041 blk_schedule_flush_plug(current);
5042
5043 delayacct_blkio_start();
5044 rq = raw_rq();
5045 atomic_inc(&rq->nr_iowait);
5046 ret = schedule_timeout(timeout);
5047 current->in_iowait = old_iowait;
5048 atomic_dec(&rq->nr_iowait);
5049 delayacct_blkio_end();
5050
5051 return ret;
5052 }
5053 EXPORT_SYMBOL(io_schedule_timeout);
5054
5055 /**
5056 * sys_sched_get_priority_max - return maximum RT priority.
5057 * @policy: scheduling class.
5058 *
5059 * Return: On success, this syscall returns the maximum
5060 * rt_priority that can be used by a given scheduling class.
5061 * On failure, a negative error code is returned.
5062 */
5063 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5064 {
5065 int ret = -EINVAL;
5066
5067 switch (policy) {
5068 case SCHED_FIFO:
5069 case SCHED_RR:
5070 ret = MAX_USER_RT_PRIO-1;
5071 break;
5072 case SCHED_DEADLINE:
5073 case SCHED_NORMAL:
5074 case SCHED_BATCH:
5075 case SCHED_IDLE:
5076 ret = 0;
5077 break;
5078 }
5079 return ret;
5080 }
5081
5082 /**
5083 * sys_sched_get_priority_min - return minimum RT priority.
5084 * @policy: scheduling class.
5085 *
5086 * Return: On success, this syscall returns the minimum
5087 * rt_priority that can be used by a given scheduling class.
5088 * On failure, a negative error code is returned.
5089 */
5090 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5091 {
5092 int ret = -EINVAL;
5093
5094 switch (policy) {
5095 case SCHED_FIFO:
5096 case SCHED_RR:
5097 ret = 1;
5098 break;
5099 case SCHED_DEADLINE:
5100 case SCHED_NORMAL:
5101 case SCHED_BATCH:
5102 case SCHED_IDLE:
5103 ret = 0;
5104 }
5105 return ret;
5106 }
5107
5108 /**
5109 * sys_sched_rr_get_interval - return the default timeslice of a process.
5110 * @pid: pid of the process.
5111 * @interval: userspace pointer to the timeslice value.
5112 *
5113 * this syscall writes the default timeslice value of a given process
5114 * into the user-space timespec buffer. A value of '0' means infinity.
5115 *
5116 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5117 * an error code.
5118 */
5119 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5120 struct timespec __user *, interval)
5121 {
5122 struct task_struct *p;
5123 unsigned int time_slice;
5124 struct rq_flags rf;
5125 struct timespec t;
5126 struct rq *rq;
5127 int retval;
5128
5129 if (pid < 0)
5130 return -EINVAL;
5131
5132 retval = -ESRCH;
5133 rcu_read_lock();
5134 p = find_process_by_pid(pid);
5135 if (!p)
5136 goto out_unlock;
5137
5138 retval = security_task_getscheduler(p);
5139 if (retval)
5140 goto out_unlock;
5141
5142 rq = task_rq_lock(p, &rf);
5143 time_slice = 0;
5144 if (p->sched_class->get_rr_interval)
5145 time_slice = p->sched_class->get_rr_interval(rq, p);
5146 task_rq_unlock(rq, p, &rf);
5147
5148 rcu_read_unlock();
5149 jiffies_to_timespec(time_slice, &t);
5150 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5151 return retval;
5152
5153 out_unlock:
5154 rcu_read_unlock();
5155 return retval;
5156 }
5157
5158 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5159
5160 void sched_show_task(struct task_struct *p)
5161 {
5162 unsigned long free = 0;
5163 int ppid;
5164 unsigned long state = p->state;
5165
5166 if (state)
5167 state = __ffs(state) + 1;
5168 printk(KERN_INFO "%-15.15s %c", p->comm,
5169 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5170 #if BITS_PER_LONG == 32
5171 if (state == TASK_RUNNING)
5172 printk(KERN_CONT " running ");
5173 else
5174 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5175 #else
5176 if (state == TASK_RUNNING)
5177 printk(KERN_CONT " running task ");
5178 else
5179 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5180 #endif
5181 #ifdef CONFIG_DEBUG_STACK_USAGE
5182 free = stack_not_used(p);
5183 #endif
5184 ppid = 0;
5185 rcu_read_lock();
5186 if (pid_alive(p))
5187 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5188 rcu_read_unlock();
5189 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5190 task_pid_nr(p), ppid,
5191 (unsigned long)task_thread_info(p)->flags);
5192
5193 print_worker_info(KERN_INFO, p);
5194 show_stack(p, NULL);
5195 }
5196
5197 void show_state_filter(unsigned long state_filter)
5198 {
5199 struct task_struct *g, *p;
5200
5201 #if BITS_PER_LONG == 32
5202 printk(KERN_INFO
5203 " task PC stack pid father\n");
5204 #else
5205 printk(KERN_INFO
5206 " task PC stack pid father\n");
5207 #endif
5208 rcu_read_lock();
5209 for_each_process_thread(g, p) {
5210 /*
5211 * reset the NMI-timeout, listing all files on a slow
5212 * console might take a lot of time:
5213 * Also, reset softlockup watchdogs on all CPUs, because
5214 * another CPU might be blocked waiting for us to process
5215 * an IPI.
5216 */
5217 touch_nmi_watchdog();
5218 touch_all_softlockup_watchdogs();
5219 if (!state_filter || (p->state & state_filter))
5220 sched_show_task(p);
5221 }
5222
5223 #ifdef CONFIG_SCHED_DEBUG
5224 if (!state_filter)
5225 sysrq_sched_debug_show();
5226 #endif
5227 rcu_read_unlock();
5228 /*
5229 * Only show locks if all tasks are dumped:
5230 */
5231 if (!state_filter)
5232 debug_show_all_locks();
5233 }
5234
5235 void init_idle_bootup_task(struct task_struct *idle)
5236 {
5237 idle->sched_class = &idle_sched_class;
5238 }
5239
5240 /**
5241 * init_idle - set up an idle thread for a given CPU
5242 * @idle: task in question
5243 * @cpu: cpu the idle task belongs to
5244 *
5245 * NOTE: this function does not set the idle thread's NEED_RESCHED
5246 * flag, to make booting more robust.
5247 */
5248 void init_idle(struct task_struct *idle, int cpu)
5249 {
5250 struct rq *rq = cpu_rq(cpu);
5251 unsigned long flags;
5252
5253 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5254 raw_spin_lock(&rq->lock);
5255
5256 __sched_fork(0, idle);
5257 idle->state = TASK_RUNNING;
5258 idle->se.exec_start = sched_clock();
5259
5260 kasan_unpoison_task_stack(idle);
5261
5262 #ifdef CONFIG_SMP
5263 /*
5264 * Its possible that init_idle() gets called multiple times on a task,
5265 * in that case do_set_cpus_allowed() will not do the right thing.
5266 *
5267 * And since this is boot we can forgo the serialization.
5268 */
5269 set_cpus_allowed_common(idle, cpumask_of(cpu));
5270 #endif
5271 /*
5272 * We're having a chicken and egg problem, even though we are
5273 * holding rq->lock, the cpu isn't yet set to this cpu so the
5274 * lockdep check in task_group() will fail.
5275 *
5276 * Similar case to sched_fork(). / Alternatively we could
5277 * use task_rq_lock() here and obtain the other rq->lock.
5278 *
5279 * Silence PROVE_RCU
5280 */
5281 rcu_read_lock();
5282 __set_task_cpu(idle, cpu);
5283 rcu_read_unlock();
5284
5285 rq->curr = rq->idle = idle;
5286 idle->on_rq = TASK_ON_RQ_QUEUED;
5287 #ifdef CONFIG_SMP
5288 idle->on_cpu = 1;
5289 #endif
5290 raw_spin_unlock(&rq->lock);
5291 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5292
5293 /* Set the preempt count _outside_ the spinlocks! */
5294 init_idle_preempt_count(idle, cpu);
5295
5296 /*
5297 * The idle tasks have their own, simple scheduling class:
5298 */
5299 idle->sched_class = &idle_sched_class;
5300 ftrace_graph_init_idle_task(idle, cpu);
5301 vtime_init_idle(idle, cpu);
5302 #ifdef CONFIG_SMP
5303 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5304 #endif
5305 }
5306
5307 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5308 const struct cpumask *trial)
5309 {
5310 int ret = 1, trial_cpus;
5311 struct dl_bw *cur_dl_b;
5312 unsigned long flags;
5313
5314 if (!cpumask_weight(cur))
5315 return ret;
5316
5317 rcu_read_lock_sched();
5318 cur_dl_b = dl_bw_of(cpumask_any(cur));
5319 trial_cpus = cpumask_weight(trial);
5320
5321 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5322 if (cur_dl_b->bw != -1 &&
5323 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5324 ret = 0;
5325 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5326 rcu_read_unlock_sched();
5327
5328 return ret;
5329 }
5330
5331 int task_can_attach(struct task_struct *p,
5332 const struct cpumask *cs_cpus_allowed)
5333 {
5334 int ret = 0;
5335
5336 /*
5337 * Kthreads which disallow setaffinity shouldn't be moved
5338 * to a new cpuset; we don't want to change their cpu
5339 * affinity and isolating such threads by their set of
5340 * allowed nodes is unnecessary. Thus, cpusets are not
5341 * applicable for such threads. This prevents checking for
5342 * success of set_cpus_allowed_ptr() on all attached tasks
5343 * before cpus_allowed may be changed.
5344 */
5345 if (p->flags & PF_NO_SETAFFINITY) {
5346 ret = -EINVAL;
5347 goto out;
5348 }
5349
5350 #ifdef CONFIG_SMP
5351 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5352 cs_cpus_allowed)) {
5353 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5354 cs_cpus_allowed);
5355 struct dl_bw *dl_b;
5356 bool overflow;
5357 int cpus;
5358 unsigned long flags;
5359
5360 rcu_read_lock_sched();
5361 dl_b = dl_bw_of(dest_cpu);
5362 raw_spin_lock_irqsave(&dl_b->lock, flags);
5363 cpus = dl_bw_cpus(dest_cpu);
5364 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5365 if (overflow)
5366 ret = -EBUSY;
5367 else {
5368 /*
5369 * We reserve space for this task in the destination
5370 * root_domain, as we can't fail after this point.
5371 * We will free resources in the source root_domain
5372 * later on (see set_cpus_allowed_dl()).
5373 */
5374 __dl_add(dl_b, p->dl.dl_bw);
5375 }
5376 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5377 rcu_read_unlock_sched();
5378
5379 }
5380 #endif
5381 out:
5382 return ret;
5383 }
5384
5385 #ifdef CONFIG_SMP
5386
5387 static bool sched_smp_initialized __read_mostly;
5388
5389 #ifdef CONFIG_NUMA_BALANCING
5390 /* Migrate current task p to target_cpu */
5391 int migrate_task_to(struct task_struct *p, int target_cpu)
5392 {
5393 struct migration_arg arg = { p, target_cpu };
5394 int curr_cpu = task_cpu(p);
5395
5396 if (curr_cpu == target_cpu)
5397 return 0;
5398
5399 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5400 return -EINVAL;
5401
5402 /* TODO: This is not properly updating schedstats */
5403
5404 trace_sched_move_numa(p, curr_cpu, target_cpu);
5405 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5406 }
5407
5408 /*
5409 * Requeue a task on a given node and accurately track the number of NUMA
5410 * tasks on the runqueues
5411 */
5412 void sched_setnuma(struct task_struct *p, int nid)
5413 {
5414 bool queued, running;
5415 struct rq_flags rf;
5416 struct rq *rq;
5417
5418 rq = task_rq_lock(p, &rf);
5419 queued = task_on_rq_queued(p);
5420 running = task_current(rq, p);
5421
5422 if (queued)
5423 dequeue_task(rq, p, DEQUEUE_SAVE);
5424 if (running)
5425 put_prev_task(rq, p);
5426
5427 p->numa_preferred_nid = nid;
5428
5429 if (running)
5430 p->sched_class->set_curr_task(rq);
5431 if (queued)
5432 enqueue_task(rq, p, ENQUEUE_RESTORE);
5433 task_rq_unlock(rq, p, &rf);
5434 }
5435 #endif /* CONFIG_NUMA_BALANCING */
5436
5437 #ifdef CONFIG_HOTPLUG_CPU
5438 /*
5439 * Ensures that the idle task is using init_mm right before its cpu goes
5440 * offline.
5441 */
5442 void idle_task_exit(void)
5443 {
5444 struct mm_struct *mm = current->active_mm;
5445
5446 BUG_ON(cpu_online(smp_processor_id()));
5447
5448 if (mm != &init_mm) {
5449 switch_mm_irqs_off(mm, &init_mm, current);
5450 finish_arch_post_lock_switch();
5451 }
5452 mmdrop(mm);
5453 }
5454
5455 /*
5456 * Since this CPU is going 'away' for a while, fold any nr_active delta
5457 * we might have. Assumes we're called after migrate_tasks() so that the
5458 * nr_active count is stable. We need to take the teardown thread which
5459 * is calling this into account, so we hand in adjust = 1 to the load
5460 * calculation.
5461 *
5462 * Also see the comment "Global load-average calculations".
5463 */
5464 static void calc_load_migrate(struct rq *rq)
5465 {
5466 long delta = calc_load_fold_active(rq, 1);
5467 if (delta)
5468 atomic_long_add(delta, &calc_load_tasks);
5469 }
5470
5471 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5472 {
5473 }
5474
5475 static const struct sched_class fake_sched_class = {
5476 .put_prev_task = put_prev_task_fake,
5477 };
5478
5479 static struct task_struct fake_task = {
5480 /*
5481 * Avoid pull_{rt,dl}_task()
5482 */
5483 .prio = MAX_PRIO + 1,
5484 .sched_class = &fake_sched_class,
5485 };
5486
5487 /*
5488 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5489 * try_to_wake_up()->select_task_rq().
5490 *
5491 * Called with rq->lock held even though we'er in stop_machine() and
5492 * there's no concurrency possible, we hold the required locks anyway
5493 * because of lock validation efforts.
5494 */
5495 static void migrate_tasks(struct rq *dead_rq)
5496 {
5497 struct rq *rq = dead_rq;
5498 struct task_struct *next, *stop = rq->stop;
5499 struct pin_cookie cookie;
5500 int dest_cpu;
5501
5502 /*
5503 * Fudge the rq selection such that the below task selection loop
5504 * doesn't get stuck on the currently eligible stop task.
5505 *
5506 * We're currently inside stop_machine() and the rq is either stuck
5507 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5508 * either way we should never end up calling schedule() until we're
5509 * done here.
5510 */
5511 rq->stop = NULL;
5512
5513 /*
5514 * put_prev_task() and pick_next_task() sched
5515 * class method both need to have an up-to-date
5516 * value of rq->clock[_task]
5517 */
5518 update_rq_clock(rq);
5519
5520 for (;;) {
5521 /*
5522 * There's this thread running, bail when that's the only
5523 * remaining thread.
5524 */
5525 if (rq->nr_running == 1)
5526 break;
5527
5528 /*
5529 * pick_next_task assumes pinned rq->lock.
5530 */
5531 cookie = lockdep_pin_lock(&rq->lock);
5532 next = pick_next_task(rq, &fake_task, cookie);
5533 BUG_ON(!next);
5534 next->sched_class->put_prev_task(rq, next);
5535
5536 /*
5537 * Rules for changing task_struct::cpus_allowed are holding
5538 * both pi_lock and rq->lock, such that holding either
5539 * stabilizes the mask.
5540 *
5541 * Drop rq->lock is not quite as disastrous as it usually is
5542 * because !cpu_active at this point, which means load-balance
5543 * will not interfere. Also, stop-machine.
5544 */
5545 lockdep_unpin_lock(&rq->lock, cookie);
5546 raw_spin_unlock(&rq->lock);
5547 raw_spin_lock(&next->pi_lock);
5548 raw_spin_lock(&rq->lock);
5549
5550 /*
5551 * Since we're inside stop-machine, _nothing_ should have
5552 * changed the task, WARN if weird stuff happened, because in
5553 * that case the above rq->lock drop is a fail too.
5554 */
5555 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5556 raw_spin_unlock(&next->pi_lock);
5557 continue;
5558 }
5559
5560 /* Find suitable destination for @next, with force if needed. */
5561 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5562
5563 rq = __migrate_task(rq, next, dest_cpu);
5564 if (rq != dead_rq) {
5565 raw_spin_unlock(&rq->lock);
5566 rq = dead_rq;
5567 raw_spin_lock(&rq->lock);
5568 }
5569 raw_spin_unlock(&next->pi_lock);
5570 }
5571
5572 rq->stop = stop;
5573 }
5574 #endif /* CONFIG_HOTPLUG_CPU */
5575
5576 static void set_rq_online(struct rq *rq)
5577 {
5578 if (!rq->online) {
5579 const struct sched_class *class;
5580
5581 cpumask_set_cpu(rq->cpu, rq->rd->online);
5582 rq->online = 1;
5583
5584 for_each_class(class) {
5585 if (class->rq_online)
5586 class->rq_online(rq);
5587 }
5588 }
5589 }
5590
5591 static void set_rq_offline(struct rq *rq)
5592 {
5593 if (rq->online) {
5594 const struct sched_class *class;
5595
5596 for_each_class(class) {
5597 if (class->rq_offline)
5598 class->rq_offline(rq);
5599 }
5600
5601 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5602 rq->online = 0;
5603 }
5604 }
5605
5606 static void set_cpu_rq_start_time(unsigned int cpu)
5607 {
5608 struct rq *rq = cpu_rq(cpu);
5609
5610 rq->age_stamp = sched_clock_cpu(cpu);
5611 }
5612
5613 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5614
5615 #ifdef CONFIG_SCHED_DEBUG
5616
5617 static __read_mostly int sched_debug_enabled;
5618
5619 static int __init sched_debug_setup(char *str)
5620 {
5621 sched_debug_enabled = 1;
5622
5623 return 0;
5624 }
5625 early_param("sched_debug", sched_debug_setup);
5626
5627 static inline bool sched_debug(void)
5628 {
5629 return sched_debug_enabled;
5630 }
5631
5632 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5633 struct cpumask *groupmask)
5634 {
5635 struct sched_group *group = sd->groups;
5636
5637 cpumask_clear(groupmask);
5638
5639 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5640
5641 if (!(sd->flags & SD_LOAD_BALANCE)) {
5642 printk("does not load-balance\n");
5643 if (sd->parent)
5644 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5645 " has parent");
5646 return -1;
5647 }
5648
5649 printk(KERN_CONT "span %*pbl level %s\n",
5650 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5651
5652 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5653 printk(KERN_ERR "ERROR: domain->span does not contain "
5654 "CPU%d\n", cpu);
5655 }
5656 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5657 printk(KERN_ERR "ERROR: domain->groups does not contain"
5658 " CPU%d\n", cpu);
5659 }
5660
5661 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5662 do {
5663 if (!group) {
5664 printk("\n");
5665 printk(KERN_ERR "ERROR: group is NULL\n");
5666 break;
5667 }
5668
5669 if (!cpumask_weight(sched_group_cpus(group))) {
5670 printk(KERN_CONT "\n");
5671 printk(KERN_ERR "ERROR: empty group\n");
5672 break;
5673 }
5674
5675 if (!(sd->flags & SD_OVERLAP) &&
5676 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5677 printk(KERN_CONT "\n");
5678 printk(KERN_ERR "ERROR: repeated CPUs\n");
5679 break;
5680 }
5681
5682 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5683
5684 printk(KERN_CONT " %*pbl",
5685 cpumask_pr_args(sched_group_cpus(group)));
5686 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5687 printk(KERN_CONT " (cpu_capacity = %d)",
5688 group->sgc->capacity);
5689 }
5690
5691 group = group->next;
5692 } while (group != sd->groups);
5693 printk(KERN_CONT "\n");
5694
5695 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5696 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5697
5698 if (sd->parent &&
5699 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5700 printk(KERN_ERR "ERROR: parent span is not a superset "
5701 "of domain->span\n");
5702 return 0;
5703 }
5704
5705 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5706 {
5707 int level = 0;
5708
5709 if (!sched_debug_enabled)
5710 return;
5711
5712 if (!sd) {
5713 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5714 return;
5715 }
5716
5717 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5718
5719 for (;;) {
5720 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5721 break;
5722 level++;
5723 sd = sd->parent;
5724 if (!sd)
5725 break;
5726 }
5727 }
5728 #else /* !CONFIG_SCHED_DEBUG */
5729 # define sched_domain_debug(sd, cpu) do { } while (0)
5730 static inline bool sched_debug(void)
5731 {
5732 return false;
5733 }
5734 #endif /* CONFIG_SCHED_DEBUG */
5735
5736 static int sd_degenerate(struct sched_domain *sd)
5737 {
5738 if (cpumask_weight(sched_domain_span(sd)) == 1)
5739 return 1;
5740
5741 /* Following flags need at least 2 groups */
5742 if (sd->flags & (SD_LOAD_BALANCE |
5743 SD_BALANCE_NEWIDLE |
5744 SD_BALANCE_FORK |
5745 SD_BALANCE_EXEC |
5746 SD_SHARE_CPUCAPACITY |
5747 SD_ASYM_CPUCAPACITY |
5748 SD_SHARE_PKG_RESOURCES |
5749 SD_SHARE_POWERDOMAIN)) {
5750 if (sd->groups != sd->groups->next)
5751 return 0;
5752 }
5753
5754 /* Following flags don't use groups */
5755 if (sd->flags & (SD_WAKE_AFFINE))
5756 return 0;
5757
5758 return 1;
5759 }
5760
5761 static int
5762 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5763 {
5764 unsigned long cflags = sd->flags, pflags = parent->flags;
5765
5766 if (sd_degenerate(parent))
5767 return 1;
5768
5769 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5770 return 0;
5771
5772 /* Flags needing groups don't count if only 1 group in parent */
5773 if (parent->groups == parent->groups->next) {
5774 pflags &= ~(SD_LOAD_BALANCE |
5775 SD_BALANCE_NEWIDLE |
5776 SD_BALANCE_FORK |
5777 SD_BALANCE_EXEC |
5778 SD_ASYM_CPUCAPACITY |
5779 SD_SHARE_CPUCAPACITY |
5780 SD_SHARE_PKG_RESOURCES |
5781 SD_PREFER_SIBLING |
5782 SD_SHARE_POWERDOMAIN);
5783 if (nr_node_ids == 1)
5784 pflags &= ~SD_SERIALIZE;
5785 }
5786 if (~cflags & pflags)
5787 return 0;
5788
5789 return 1;
5790 }
5791
5792 static void free_rootdomain(struct rcu_head *rcu)
5793 {
5794 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5795
5796 cpupri_cleanup(&rd->cpupri);
5797 cpudl_cleanup(&rd->cpudl);
5798 free_cpumask_var(rd->dlo_mask);
5799 free_cpumask_var(rd->rto_mask);
5800 free_cpumask_var(rd->online);
5801 free_cpumask_var(rd->span);
5802 kfree(rd);
5803 }
5804
5805 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5806 {
5807 struct root_domain *old_rd = NULL;
5808 unsigned long flags;
5809
5810 raw_spin_lock_irqsave(&rq->lock, flags);
5811
5812 if (rq->rd) {
5813 old_rd = rq->rd;
5814
5815 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5816 set_rq_offline(rq);
5817
5818 cpumask_clear_cpu(rq->cpu, old_rd->span);
5819
5820 /*
5821 * If we dont want to free the old_rd yet then
5822 * set old_rd to NULL to skip the freeing later
5823 * in this function:
5824 */
5825 if (!atomic_dec_and_test(&old_rd->refcount))
5826 old_rd = NULL;
5827 }
5828
5829 atomic_inc(&rd->refcount);
5830 rq->rd = rd;
5831
5832 cpumask_set_cpu(rq->cpu, rd->span);
5833 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5834 set_rq_online(rq);
5835
5836 raw_spin_unlock_irqrestore(&rq->lock, flags);
5837
5838 if (old_rd)
5839 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5840 }
5841
5842 static int init_rootdomain(struct root_domain *rd)
5843 {
5844 memset(rd, 0, sizeof(*rd));
5845
5846 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5847 goto out;
5848 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5849 goto free_span;
5850 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5851 goto free_online;
5852 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5853 goto free_dlo_mask;
5854
5855 init_dl_bw(&rd->dl_bw);
5856 if (cpudl_init(&rd->cpudl) != 0)
5857 goto free_dlo_mask;
5858
5859 if (cpupri_init(&rd->cpupri) != 0)
5860 goto free_rto_mask;
5861 return 0;
5862
5863 free_rto_mask:
5864 free_cpumask_var(rd->rto_mask);
5865 free_dlo_mask:
5866 free_cpumask_var(rd->dlo_mask);
5867 free_online:
5868 free_cpumask_var(rd->online);
5869 free_span:
5870 free_cpumask_var(rd->span);
5871 out:
5872 return -ENOMEM;
5873 }
5874
5875 /*
5876 * By default the system creates a single root-domain with all cpus as
5877 * members (mimicking the global state we have today).
5878 */
5879 struct root_domain def_root_domain;
5880
5881 static void init_defrootdomain(void)
5882 {
5883 init_rootdomain(&def_root_domain);
5884
5885 atomic_set(&def_root_domain.refcount, 1);
5886 }
5887
5888 static struct root_domain *alloc_rootdomain(void)
5889 {
5890 struct root_domain *rd;
5891
5892 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5893 if (!rd)
5894 return NULL;
5895
5896 if (init_rootdomain(rd) != 0) {
5897 kfree(rd);
5898 return NULL;
5899 }
5900
5901 return rd;
5902 }
5903
5904 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5905 {
5906 struct sched_group *tmp, *first;
5907
5908 if (!sg)
5909 return;
5910
5911 first = sg;
5912 do {
5913 tmp = sg->next;
5914
5915 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5916 kfree(sg->sgc);
5917
5918 kfree(sg);
5919 sg = tmp;
5920 } while (sg != first);
5921 }
5922
5923 static void free_sched_domain(struct rcu_head *rcu)
5924 {
5925 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5926
5927 /*
5928 * If its an overlapping domain it has private groups, iterate and
5929 * nuke them all.
5930 */
5931 if (sd->flags & SD_OVERLAP) {
5932 free_sched_groups(sd->groups, 1);
5933 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5934 kfree(sd->groups->sgc);
5935 kfree(sd->groups);
5936 }
5937 kfree(sd);
5938 }
5939
5940 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5941 {
5942 call_rcu(&sd->rcu, free_sched_domain);
5943 }
5944
5945 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5946 {
5947 for (; sd; sd = sd->parent)
5948 destroy_sched_domain(sd, cpu);
5949 }
5950
5951 /*
5952 * Keep a special pointer to the highest sched_domain that has
5953 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5954 * allows us to avoid some pointer chasing select_idle_sibling().
5955 *
5956 * Also keep a unique ID per domain (we use the first cpu number in
5957 * the cpumask of the domain), this allows us to quickly tell if
5958 * two cpus are in the same cache domain, see cpus_share_cache().
5959 */
5960 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5961 DEFINE_PER_CPU(int, sd_llc_size);
5962 DEFINE_PER_CPU(int, sd_llc_id);
5963 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5964 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5965 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5966
5967 static void update_top_cache_domain(int cpu)
5968 {
5969 struct sched_domain *sd;
5970 struct sched_domain *busy_sd = NULL;
5971 int id = cpu;
5972 int size = 1;
5973
5974 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5975 if (sd) {
5976 id = cpumask_first(sched_domain_span(sd));
5977 size = cpumask_weight(sched_domain_span(sd));
5978 busy_sd = sd->parent; /* sd_busy */
5979 }
5980 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5981
5982 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5983 per_cpu(sd_llc_size, cpu) = size;
5984 per_cpu(sd_llc_id, cpu) = id;
5985
5986 sd = lowest_flag_domain(cpu, SD_NUMA);
5987 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5988
5989 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5990 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5991 }
5992
5993 /*
5994 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5995 * hold the hotplug lock.
5996 */
5997 static void
5998 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5999 {
6000 struct rq *rq = cpu_rq(cpu);
6001 struct sched_domain *tmp;
6002
6003 /* Remove the sched domains which do not contribute to scheduling. */
6004 for (tmp = sd; tmp; ) {
6005 struct sched_domain *parent = tmp->parent;
6006 if (!parent)
6007 break;
6008
6009 if (sd_parent_degenerate(tmp, parent)) {
6010 tmp->parent = parent->parent;
6011 if (parent->parent)
6012 parent->parent->child = tmp;
6013 /*
6014 * Transfer SD_PREFER_SIBLING down in case of a
6015 * degenerate parent; the spans match for this
6016 * so the property transfers.
6017 */
6018 if (parent->flags & SD_PREFER_SIBLING)
6019 tmp->flags |= SD_PREFER_SIBLING;
6020 destroy_sched_domain(parent, cpu);
6021 } else
6022 tmp = tmp->parent;
6023 }
6024
6025 if (sd && sd_degenerate(sd)) {
6026 tmp = sd;
6027 sd = sd->parent;
6028 destroy_sched_domain(tmp, cpu);
6029 if (sd)
6030 sd->child = NULL;
6031 }
6032
6033 sched_domain_debug(sd, cpu);
6034
6035 rq_attach_root(rq, rd);
6036 tmp = rq->sd;
6037 rcu_assign_pointer(rq->sd, sd);
6038 destroy_sched_domains(tmp, cpu);
6039
6040 update_top_cache_domain(cpu);
6041 }
6042
6043 /* Setup the mask of cpus configured for isolated domains */
6044 static int __init isolated_cpu_setup(char *str)
6045 {
6046 int ret;
6047
6048 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6049 ret = cpulist_parse(str, cpu_isolated_map);
6050 if (ret) {
6051 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6052 return 0;
6053 }
6054 return 1;
6055 }
6056 __setup("isolcpus=", isolated_cpu_setup);
6057
6058 struct s_data {
6059 struct sched_domain ** __percpu sd;
6060 struct root_domain *rd;
6061 };
6062
6063 enum s_alloc {
6064 sa_rootdomain,
6065 sa_sd,
6066 sa_sd_storage,
6067 sa_none,
6068 };
6069
6070 /*
6071 * Build an iteration mask that can exclude certain CPUs from the upwards
6072 * domain traversal.
6073 *
6074 * Asymmetric node setups can result in situations where the domain tree is of
6075 * unequal depth, make sure to skip domains that already cover the entire
6076 * range.
6077 *
6078 * In that case build_sched_domains() will have terminated the iteration early
6079 * and our sibling sd spans will be empty. Domains should always include the
6080 * cpu they're built on, so check that.
6081 *
6082 */
6083 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6084 {
6085 const struct cpumask *span = sched_domain_span(sd);
6086 struct sd_data *sdd = sd->private;
6087 struct sched_domain *sibling;
6088 int i;
6089
6090 for_each_cpu(i, span) {
6091 sibling = *per_cpu_ptr(sdd->sd, i);
6092 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6093 continue;
6094
6095 cpumask_set_cpu(i, sched_group_mask(sg));
6096 }
6097 }
6098
6099 /*
6100 * Return the canonical balance cpu for this group, this is the first cpu
6101 * of this group that's also in the iteration mask.
6102 */
6103 int group_balance_cpu(struct sched_group *sg)
6104 {
6105 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6106 }
6107
6108 static int
6109 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6110 {
6111 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6112 const struct cpumask *span = sched_domain_span(sd);
6113 struct cpumask *covered = sched_domains_tmpmask;
6114 struct sd_data *sdd = sd->private;
6115 struct sched_domain *sibling;
6116 int i;
6117
6118 cpumask_clear(covered);
6119
6120 for_each_cpu(i, span) {
6121 struct cpumask *sg_span;
6122
6123 if (cpumask_test_cpu(i, covered))
6124 continue;
6125
6126 sibling = *per_cpu_ptr(sdd->sd, i);
6127
6128 /* See the comment near build_group_mask(). */
6129 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6130 continue;
6131
6132 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6133 GFP_KERNEL, cpu_to_node(cpu));
6134
6135 if (!sg)
6136 goto fail;
6137
6138 sg_span = sched_group_cpus(sg);
6139 if (sibling->child)
6140 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6141 else
6142 cpumask_set_cpu(i, sg_span);
6143
6144 cpumask_or(covered, covered, sg_span);
6145
6146 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6147 if (atomic_inc_return(&sg->sgc->ref) == 1)
6148 build_group_mask(sd, sg);
6149
6150 /*
6151 * Initialize sgc->capacity such that even if we mess up the
6152 * domains and no possible iteration will get us here, we won't
6153 * die on a /0 trap.
6154 */
6155 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6156
6157 /*
6158 * Make sure the first group of this domain contains the
6159 * canonical balance cpu. Otherwise the sched_domain iteration
6160 * breaks. See update_sg_lb_stats().
6161 */
6162 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6163 group_balance_cpu(sg) == cpu)
6164 groups = sg;
6165
6166 if (!first)
6167 first = sg;
6168 if (last)
6169 last->next = sg;
6170 last = sg;
6171 last->next = first;
6172 }
6173 sd->groups = groups;
6174
6175 return 0;
6176
6177 fail:
6178 free_sched_groups(first, 0);
6179
6180 return -ENOMEM;
6181 }
6182
6183 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6184 {
6185 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6186 struct sched_domain *child = sd->child;
6187
6188 if (child)
6189 cpu = cpumask_first(sched_domain_span(child));
6190
6191 if (sg) {
6192 *sg = *per_cpu_ptr(sdd->sg, cpu);
6193 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6194 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6195 }
6196
6197 return cpu;
6198 }
6199
6200 /*
6201 * build_sched_groups will build a circular linked list of the groups
6202 * covered by the given span, and will set each group's ->cpumask correctly,
6203 * and ->cpu_capacity to 0.
6204 *
6205 * Assumes the sched_domain tree is fully constructed
6206 */
6207 static int
6208 build_sched_groups(struct sched_domain *sd, int cpu)
6209 {
6210 struct sched_group *first = NULL, *last = NULL;
6211 struct sd_data *sdd = sd->private;
6212 const struct cpumask *span = sched_domain_span(sd);
6213 struct cpumask *covered;
6214 int i;
6215
6216 get_group(cpu, sdd, &sd->groups);
6217 atomic_inc(&sd->groups->ref);
6218
6219 if (cpu != cpumask_first(span))
6220 return 0;
6221
6222 lockdep_assert_held(&sched_domains_mutex);
6223 covered = sched_domains_tmpmask;
6224
6225 cpumask_clear(covered);
6226
6227 for_each_cpu(i, span) {
6228 struct sched_group *sg;
6229 int group, j;
6230
6231 if (cpumask_test_cpu(i, covered))
6232 continue;
6233
6234 group = get_group(i, sdd, &sg);
6235 cpumask_setall(sched_group_mask(sg));
6236
6237 for_each_cpu(j, span) {
6238 if (get_group(j, sdd, NULL) != group)
6239 continue;
6240
6241 cpumask_set_cpu(j, covered);
6242 cpumask_set_cpu(j, sched_group_cpus(sg));
6243 }
6244
6245 if (!first)
6246 first = sg;
6247 if (last)
6248 last->next = sg;
6249 last = sg;
6250 }
6251 last->next = first;
6252
6253 return 0;
6254 }
6255
6256 /*
6257 * Initialize sched groups cpu_capacity.
6258 *
6259 * cpu_capacity indicates the capacity of sched group, which is used while
6260 * distributing the load between different sched groups in a sched domain.
6261 * Typically cpu_capacity for all the groups in a sched domain will be same
6262 * unless there are asymmetries in the topology. If there are asymmetries,
6263 * group having more cpu_capacity will pickup more load compared to the
6264 * group having less cpu_capacity.
6265 */
6266 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6267 {
6268 struct sched_group *sg = sd->groups;
6269
6270 WARN_ON(!sg);
6271
6272 do {
6273 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6274 sg = sg->next;
6275 } while (sg != sd->groups);
6276
6277 if (cpu != group_balance_cpu(sg))
6278 return;
6279
6280 update_group_capacity(sd, cpu);
6281 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6282 }
6283
6284 /*
6285 * Initializers for schedule domains
6286 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6287 */
6288
6289 static int default_relax_domain_level = -1;
6290 int sched_domain_level_max;
6291
6292 static int __init setup_relax_domain_level(char *str)
6293 {
6294 if (kstrtoint(str, 0, &default_relax_domain_level))
6295 pr_warn("Unable to set relax_domain_level\n");
6296
6297 return 1;
6298 }
6299 __setup("relax_domain_level=", setup_relax_domain_level);
6300
6301 static void set_domain_attribute(struct sched_domain *sd,
6302 struct sched_domain_attr *attr)
6303 {
6304 int request;
6305
6306 if (!attr || attr->relax_domain_level < 0) {
6307 if (default_relax_domain_level < 0)
6308 return;
6309 else
6310 request = default_relax_domain_level;
6311 } else
6312 request = attr->relax_domain_level;
6313 if (request < sd->level) {
6314 /* turn off idle balance on this domain */
6315 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6316 } else {
6317 /* turn on idle balance on this domain */
6318 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6319 }
6320 }
6321
6322 static void __sdt_free(const struct cpumask *cpu_map);
6323 static int __sdt_alloc(const struct cpumask *cpu_map);
6324
6325 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6326 const struct cpumask *cpu_map)
6327 {
6328 switch (what) {
6329 case sa_rootdomain:
6330 if (!atomic_read(&d->rd->refcount))
6331 free_rootdomain(&d->rd->rcu); /* fall through */
6332 case sa_sd:
6333 free_percpu(d->sd); /* fall through */
6334 case sa_sd_storage:
6335 __sdt_free(cpu_map); /* fall through */
6336 case sa_none:
6337 break;
6338 }
6339 }
6340
6341 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6342 const struct cpumask *cpu_map)
6343 {
6344 memset(d, 0, sizeof(*d));
6345
6346 if (__sdt_alloc(cpu_map))
6347 return sa_sd_storage;
6348 d->sd = alloc_percpu(struct sched_domain *);
6349 if (!d->sd)
6350 return sa_sd_storage;
6351 d->rd = alloc_rootdomain();
6352 if (!d->rd)
6353 return sa_sd;
6354 return sa_rootdomain;
6355 }
6356
6357 /*
6358 * NULL the sd_data elements we've used to build the sched_domain and
6359 * sched_group structure so that the subsequent __free_domain_allocs()
6360 * will not free the data we're using.
6361 */
6362 static void claim_allocations(int cpu, struct sched_domain *sd)
6363 {
6364 struct sd_data *sdd = sd->private;
6365
6366 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6367 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6368
6369 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6370 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6371
6372 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6373 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6374 }
6375
6376 #ifdef CONFIG_NUMA
6377 static int sched_domains_numa_levels;
6378 enum numa_topology_type sched_numa_topology_type;
6379 static int *sched_domains_numa_distance;
6380 int sched_max_numa_distance;
6381 static struct cpumask ***sched_domains_numa_masks;
6382 static int sched_domains_curr_level;
6383 #endif
6384
6385 /*
6386 * SD_flags allowed in topology descriptions.
6387 *
6388 * These flags are purely descriptive of the topology and do not prescribe
6389 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6390 * function:
6391 *
6392 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6393 * SD_SHARE_PKG_RESOURCES - describes shared caches
6394 * SD_NUMA - describes NUMA topologies
6395 * SD_SHARE_POWERDOMAIN - describes shared power domain
6396 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6397 *
6398 * Odd one out, which beside describing the topology has a quirk also
6399 * prescribes the desired behaviour that goes along with it:
6400 *
6401 * SD_ASYM_PACKING - describes SMT quirks
6402 */
6403 #define TOPOLOGY_SD_FLAGS \
6404 (SD_SHARE_CPUCAPACITY | \
6405 SD_SHARE_PKG_RESOURCES | \
6406 SD_NUMA | \
6407 SD_ASYM_PACKING | \
6408 SD_ASYM_CPUCAPACITY | \
6409 SD_SHARE_POWERDOMAIN)
6410
6411 static struct sched_domain *
6412 sd_init(struct sched_domain_topology_level *tl,
6413 struct sched_domain *child, int cpu)
6414 {
6415 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6416 int sd_weight, sd_flags = 0;
6417
6418 #ifdef CONFIG_NUMA
6419 /*
6420 * Ugly hack to pass state to sd_numa_mask()...
6421 */
6422 sched_domains_curr_level = tl->numa_level;
6423 #endif
6424
6425 sd_weight = cpumask_weight(tl->mask(cpu));
6426
6427 if (tl->sd_flags)
6428 sd_flags = (*tl->sd_flags)();
6429 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6430 "wrong sd_flags in topology description\n"))
6431 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6432
6433 *sd = (struct sched_domain){
6434 .min_interval = sd_weight,
6435 .max_interval = 2*sd_weight,
6436 .busy_factor = 32,
6437 .imbalance_pct = 125,
6438
6439 .cache_nice_tries = 0,
6440 .busy_idx = 0,
6441 .idle_idx = 0,
6442 .newidle_idx = 0,
6443 .wake_idx = 0,
6444 .forkexec_idx = 0,
6445
6446 .flags = 1*SD_LOAD_BALANCE
6447 | 1*SD_BALANCE_NEWIDLE
6448 | 1*SD_BALANCE_EXEC
6449 | 1*SD_BALANCE_FORK
6450 | 0*SD_BALANCE_WAKE
6451 | 1*SD_WAKE_AFFINE
6452 | 0*SD_SHARE_CPUCAPACITY
6453 | 0*SD_SHARE_PKG_RESOURCES
6454 | 0*SD_SERIALIZE
6455 | 0*SD_PREFER_SIBLING
6456 | 0*SD_NUMA
6457 | sd_flags
6458 ,
6459
6460 .last_balance = jiffies,
6461 .balance_interval = sd_weight,
6462 .smt_gain = 0,
6463 .max_newidle_lb_cost = 0,
6464 .next_decay_max_lb_cost = jiffies,
6465 .child = child,
6466 #ifdef CONFIG_SCHED_DEBUG
6467 .name = tl->name,
6468 #endif
6469 };
6470
6471 /*
6472 * Convert topological properties into behaviour.
6473 */
6474
6475 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6476 struct sched_domain *t = sd;
6477
6478 for_each_lower_domain(t)
6479 t->flags |= SD_BALANCE_WAKE;
6480 }
6481
6482 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6483 sd->flags |= SD_PREFER_SIBLING;
6484 sd->imbalance_pct = 110;
6485 sd->smt_gain = 1178; /* ~15% */
6486
6487 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6488 sd->imbalance_pct = 117;
6489 sd->cache_nice_tries = 1;
6490 sd->busy_idx = 2;
6491
6492 #ifdef CONFIG_NUMA
6493 } else if (sd->flags & SD_NUMA) {
6494 sd->cache_nice_tries = 2;
6495 sd->busy_idx = 3;
6496 sd->idle_idx = 2;
6497
6498 sd->flags |= SD_SERIALIZE;
6499 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6500 sd->flags &= ~(SD_BALANCE_EXEC |
6501 SD_BALANCE_FORK |
6502 SD_WAKE_AFFINE);
6503 }
6504
6505 #endif
6506 } else {
6507 sd->flags |= SD_PREFER_SIBLING;
6508 sd->cache_nice_tries = 1;
6509 sd->busy_idx = 2;
6510 sd->idle_idx = 1;
6511 }
6512
6513 sd->private = &tl->data;
6514
6515 return sd;
6516 }
6517
6518 /*
6519 * Topology list, bottom-up.
6520 */
6521 static struct sched_domain_topology_level default_topology[] = {
6522 #ifdef CONFIG_SCHED_SMT
6523 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6524 #endif
6525 #ifdef CONFIG_SCHED_MC
6526 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6527 #endif
6528 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6529 { NULL, },
6530 };
6531
6532 static struct sched_domain_topology_level *sched_domain_topology =
6533 default_topology;
6534
6535 #define for_each_sd_topology(tl) \
6536 for (tl = sched_domain_topology; tl->mask; tl++)
6537
6538 void set_sched_topology(struct sched_domain_topology_level *tl)
6539 {
6540 sched_domain_topology = tl;
6541 }
6542
6543 #ifdef CONFIG_NUMA
6544
6545 static const struct cpumask *sd_numa_mask(int cpu)
6546 {
6547 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6548 }
6549
6550 static void sched_numa_warn(const char *str)
6551 {
6552 static int done = false;
6553 int i,j;
6554
6555 if (done)
6556 return;
6557
6558 done = true;
6559
6560 printk(KERN_WARNING "ERROR: %s\n\n", str);
6561
6562 for (i = 0; i < nr_node_ids; i++) {
6563 printk(KERN_WARNING " ");
6564 for (j = 0; j < nr_node_ids; j++)
6565 printk(KERN_CONT "%02d ", node_distance(i,j));
6566 printk(KERN_CONT "\n");
6567 }
6568 printk(KERN_WARNING "\n");
6569 }
6570
6571 bool find_numa_distance(int distance)
6572 {
6573 int i;
6574
6575 if (distance == node_distance(0, 0))
6576 return true;
6577
6578 for (i = 0; i < sched_domains_numa_levels; i++) {
6579 if (sched_domains_numa_distance[i] == distance)
6580 return true;
6581 }
6582
6583 return false;
6584 }
6585
6586 /*
6587 * A system can have three types of NUMA topology:
6588 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6589 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6590 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6591 *
6592 * The difference between a glueless mesh topology and a backplane
6593 * topology lies in whether communication between not directly
6594 * connected nodes goes through intermediary nodes (where programs
6595 * could run), or through backplane controllers. This affects
6596 * placement of programs.
6597 *
6598 * The type of topology can be discerned with the following tests:
6599 * - If the maximum distance between any nodes is 1 hop, the system
6600 * is directly connected.
6601 * - If for two nodes A and B, located N > 1 hops away from each other,
6602 * there is an intermediary node C, which is < N hops away from both
6603 * nodes A and B, the system is a glueless mesh.
6604 */
6605 static void init_numa_topology_type(void)
6606 {
6607 int a, b, c, n;
6608
6609 n = sched_max_numa_distance;
6610
6611 if (sched_domains_numa_levels <= 1) {
6612 sched_numa_topology_type = NUMA_DIRECT;
6613 return;
6614 }
6615
6616 for_each_online_node(a) {
6617 for_each_online_node(b) {
6618 /* Find two nodes furthest removed from each other. */
6619 if (node_distance(a, b) < n)
6620 continue;
6621
6622 /* Is there an intermediary node between a and b? */
6623 for_each_online_node(c) {
6624 if (node_distance(a, c) < n &&
6625 node_distance(b, c) < n) {
6626 sched_numa_topology_type =
6627 NUMA_GLUELESS_MESH;
6628 return;
6629 }
6630 }
6631
6632 sched_numa_topology_type = NUMA_BACKPLANE;
6633 return;
6634 }
6635 }
6636 }
6637
6638 static void sched_init_numa(void)
6639 {
6640 int next_distance, curr_distance = node_distance(0, 0);
6641 struct sched_domain_topology_level *tl;
6642 int level = 0;
6643 int i, j, k;
6644
6645 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6646 if (!sched_domains_numa_distance)
6647 return;
6648
6649 /*
6650 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6651 * unique distances in the node_distance() table.
6652 *
6653 * Assumes node_distance(0,j) includes all distances in
6654 * node_distance(i,j) in order to avoid cubic time.
6655 */
6656 next_distance = curr_distance;
6657 for (i = 0; i < nr_node_ids; i++) {
6658 for (j = 0; j < nr_node_ids; j++) {
6659 for (k = 0; k < nr_node_ids; k++) {
6660 int distance = node_distance(i, k);
6661
6662 if (distance > curr_distance &&
6663 (distance < next_distance ||
6664 next_distance == curr_distance))
6665 next_distance = distance;
6666
6667 /*
6668 * While not a strong assumption it would be nice to know
6669 * about cases where if node A is connected to B, B is not
6670 * equally connected to A.
6671 */
6672 if (sched_debug() && node_distance(k, i) != distance)
6673 sched_numa_warn("Node-distance not symmetric");
6674
6675 if (sched_debug() && i && !find_numa_distance(distance))
6676 sched_numa_warn("Node-0 not representative");
6677 }
6678 if (next_distance != curr_distance) {
6679 sched_domains_numa_distance[level++] = next_distance;
6680 sched_domains_numa_levels = level;
6681 curr_distance = next_distance;
6682 } else break;
6683 }
6684
6685 /*
6686 * In case of sched_debug() we verify the above assumption.
6687 */
6688 if (!sched_debug())
6689 break;
6690 }
6691
6692 if (!level)
6693 return;
6694
6695 /*
6696 * 'level' contains the number of unique distances, excluding the
6697 * identity distance node_distance(i,i).
6698 *
6699 * The sched_domains_numa_distance[] array includes the actual distance
6700 * numbers.
6701 */
6702
6703 /*
6704 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6705 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6706 * the array will contain less then 'level' members. This could be
6707 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6708 * in other functions.
6709 *
6710 * We reset it to 'level' at the end of this function.
6711 */
6712 sched_domains_numa_levels = 0;
6713
6714 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6715 if (!sched_domains_numa_masks)
6716 return;
6717
6718 /*
6719 * Now for each level, construct a mask per node which contains all
6720 * cpus of nodes that are that many hops away from us.
6721 */
6722 for (i = 0; i < level; i++) {
6723 sched_domains_numa_masks[i] =
6724 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6725 if (!sched_domains_numa_masks[i])
6726 return;
6727
6728 for (j = 0; j < nr_node_ids; j++) {
6729 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6730 if (!mask)
6731 return;
6732
6733 sched_domains_numa_masks[i][j] = mask;
6734
6735 for_each_node(k) {
6736 if (node_distance(j, k) > sched_domains_numa_distance[i])
6737 continue;
6738
6739 cpumask_or(mask, mask, cpumask_of_node(k));
6740 }
6741 }
6742 }
6743
6744 /* Compute default topology size */
6745 for (i = 0; sched_domain_topology[i].mask; i++);
6746
6747 tl = kzalloc((i + level + 1) *
6748 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6749 if (!tl)
6750 return;
6751
6752 /*
6753 * Copy the default topology bits..
6754 */
6755 for (i = 0; sched_domain_topology[i].mask; i++)
6756 tl[i] = sched_domain_topology[i];
6757
6758 /*
6759 * .. and append 'j' levels of NUMA goodness.
6760 */
6761 for (j = 0; j < level; i++, j++) {
6762 tl[i] = (struct sched_domain_topology_level){
6763 .mask = sd_numa_mask,
6764 .sd_flags = cpu_numa_flags,
6765 .flags = SDTL_OVERLAP,
6766 .numa_level = j,
6767 SD_INIT_NAME(NUMA)
6768 };
6769 }
6770
6771 sched_domain_topology = tl;
6772
6773 sched_domains_numa_levels = level;
6774 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6775
6776 init_numa_topology_type();
6777 }
6778
6779 static void sched_domains_numa_masks_set(unsigned int cpu)
6780 {
6781 int node = cpu_to_node(cpu);
6782 int i, j;
6783
6784 for (i = 0; i < sched_domains_numa_levels; i++) {
6785 for (j = 0; j < nr_node_ids; j++) {
6786 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6787 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6788 }
6789 }
6790 }
6791
6792 static void sched_domains_numa_masks_clear(unsigned int cpu)
6793 {
6794 int i, j;
6795
6796 for (i = 0; i < sched_domains_numa_levels; i++) {
6797 for (j = 0; j < nr_node_ids; j++)
6798 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6799 }
6800 }
6801
6802 #else
6803 static inline void sched_init_numa(void) { }
6804 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6805 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6806 #endif /* CONFIG_NUMA */
6807
6808 static int __sdt_alloc(const struct cpumask *cpu_map)
6809 {
6810 struct sched_domain_topology_level *tl;
6811 int j;
6812
6813 for_each_sd_topology(tl) {
6814 struct sd_data *sdd = &tl->data;
6815
6816 sdd->sd = alloc_percpu(struct sched_domain *);
6817 if (!sdd->sd)
6818 return -ENOMEM;
6819
6820 sdd->sg = alloc_percpu(struct sched_group *);
6821 if (!sdd->sg)
6822 return -ENOMEM;
6823
6824 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6825 if (!sdd->sgc)
6826 return -ENOMEM;
6827
6828 for_each_cpu(j, cpu_map) {
6829 struct sched_domain *sd;
6830 struct sched_group *sg;
6831 struct sched_group_capacity *sgc;
6832
6833 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6834 GFP_KERNEL, cpu_to_node(j));
6835 if (!sd)
6836 return -ENOMEM;
6837
6838 *per_cpu_ptr(sdd->sd, j) = sd;
6839
6840 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6841 GFP_KERNEL, cpu_to_node(j));
6842 if (!sg)
6843 return -ENOMEM;
6844
6845 sg->next = sg;
6846
6847 *per_cpu_ptr(sdd->sg, j) = sg;
6848
6849 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6850 GFP_KERNEL, cpu_to_node(j));
6851 if (!sgc)
6852 return -ENOMEM;
6853
6854 *per_cpu_ptr(sdd->sgc, j) = sgc;
6855 }
6856 }
6857
6858 return 0;
6859 }
6860
6861 static void __sdt_free(const struct cpumask *cpu_map)
6862 {
6863 struct sched_domain_topology_level *tl;
6864 int j;
6865
6866 for_each_sd_topology(tl) {
6867 struct sd_data *sdd = &tl->data;
6868
6869 for_each_cpu(j, cpu_map) {
6870 struct sched_domain *sd;
6871
6872 if (sdd->sd) {
6873 sd = *per_cpu_ptr(sdd->sd, j);
6874 if (sd && (sd->flags & SD_OVERLAP))
6875 free_sched_groups(sd->groups, 0);
6876 kfree(*per_cpu_ptr(sdd->sd, j));
6877 }
6878
6879 if (sdd->sg)
6880 kfree(*per_cpu_ptr(sdd->sg, j));
6881 if (sdd->sgc)
6882 kfree(*per_cpu_ptr(sdd->sgc, j));
6883 }
6884 free_percpu(sdd->sd);
6885 sdd->sd = NULL;
6886 free_percpu(sdd->sg);
6887 sdd->sg = NULL;
6888 free_percpu(sdd->sgc);
6889 sdd->sgc = NULL;
6890 }
6891 }
6892
6893 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6894 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6895 struct sched_domain *child, int cpu)
6896 {
6897 struct sched_domain *sd = sd_init(tl, child, cpu);
6898
6899 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6900 if (child) {
6901 sd->level = child->level + 1;
6902 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6903 child->parent = sd;
6904
6905 if (!cpumask_subset(sched_domain_span(child),
6906 sched_domain_span(sd))) {
6907 pr_err("BUG: arch topology borken\n");
6908 #ifdef CONFIG_SCHED_DEBUG
6909 pr_err(" the %s domain not a subset of the %s domain\n",
6910 child->name, sd->name);
6911 #endif
6912 /* Fixup, ensure @sd has at least @child cpus. */
6913 cpumask_or(sched_domain_span(sd),
6914 sched_domain_span(sd),
6915 sched_domain_span(child));
6916 }
6917
6918 }
6919 set_domain_attribute(sd, attr);
6920
6921 return sd;
6922 }
6923
6924 /*
6925 * Build sched domains for a given set of cpus and attach the sched domains
6926 * to the individual cpus
6927 */
6928 static int build_sched_domains(const struct cpumask *cpu_map,
6929 struct sched_domain_attr *attr)
6930 {
6931 enum s_alloc alloc_state;
6932 struct sched_domain *sd;
6933 struct s_data d;
6934 struct rq *rq = NULL;
6935 int i, ret = -ENOMEM;
6936
6937 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6938 if (alloc_state != sa_rootdomain)
6939 goto error;
6940
6941 /* Set up domains for cpus specified by the cpu_map. */
6942 for_each_cpu(i, cpu_map) {
6943 struct sched_domain_topology_level *tl;
6944
6945 sd = NULL;
6946 for_each_sd_topology(tl) {
6947 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6948 if (tl == sched_domain_topology)
6949 *per_cpu_ptr(d.sd, i) = sd;
6950 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6951 sd->flags |= SD_OVERLAP;
6952 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6953 break;
6954 }
6955 }
6956
6957 /* Build the groups for the domains */
6958 for_each_cpu(i, cpu_map) {
6959 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6960 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6961 if (sd->flags & SD_OVERLAP) {
6962 if (build_overlap_sched_groups(sd, i))
6963 goto error;
6964 } else {
6965 if (build_sched_groups(sd, i))
6966 goto error;
6967 }
6968 }
6969 }
6970
6971 /* Calculate CPU capacity for physical packages and nodes */
6972 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6973 if (!cpumask_test_cpu(i, cpu_map))
6974 continue;
6975
6976 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6977 claim_allocations(i, sd);
6978 init_sched_groups_capacity(i, sd);
6979 }
6980 }
6981
6982 /* Attach the domains */
6983 rcu_read_lock();
6984 for_each_cpu(i, cpu_map) {
6985 rq = cpu_rq(i);
6986 sd = *per_cpu_ptr(d.sd, i);
6987
6988 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
6989 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
6990 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
6991
6992 cpu_attach_domain(sd, d.rd, i);
6993 }
6994 rcu_read_unlock();
6995
6996 if (rq) {
6997 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
6998 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
6999 }
7000
7001 ret = 0;
7002 error:
7003 __free_domain_allocs(&d, alloc_state, cpu_map);
7004 return ret;
7005 }
7006
7007 static cpumask_var_t *doms_cur; /* current sched domains */
7008 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7009 static struct sched_domain_attr *dattr_cur;
7010 /* attribues of custom domains in 'doms_cur' */
7011
7012 /*
7013 * Special case: If a kmalloc of a doms_cur partition (array of
7014 * cpumask) fails, then fallback to a single sched domain,
7015 * as determined by the single cpumask fallback_doms.
7016 */
7017 static cpumask_var_t fallback_doms;
7018
7019 /*
7020 * arch_update_cpu_topology lets virtualized architectures update the
7021 * cpu core maps. It is supposed to return 1 if the topology changed
7022 * or 0 if it stayed the same.
7023 */
7024 int __weak arch_update_cpu_topology(void)
7025 {
7026 return 0;
7027 }
7028
7029 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7030 {
7031 int i;
7032 cpumask_var_t *doms;
7033
7034 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7035 if (!doms)
7036 return NULL;
7037 for (i = 0; i < ndoms; i++) {
7038 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7039 free_sched_domains(doms, i);
7040 return NULL;
7041 }
7042 }
7043 return doms;
7044 }
7045
7046 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7047 {
7048 unsigned int i;
7049 for (i = 0; i < ndoms; i++)
7050 free_cpumask_var(doms[i]);
7051 kfree(doms);
7052 }
7053
7054 /*
7055 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7056 * For now this just excludes isolated cpus, but could be used to
7057 * exclude other special cases in the future.
7058 */
7059 static int init_sched_domains(const struct cpumask *cpu_map)
7060 {
7061 int err;
7062
7063 arch_update_cpu_topology();
7064 ndoms_cur = 1;
7065 doms_cur = alloc_sched_domains(ndoms_cur);
7066 if (!doms_cur)
7067 doms_cur = &fallback_doms;
7068 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7069 err = build_sched_domains(doms_cur[0], NULL);
7070 register_sched_domain_sysctl();
7071
7072 return err;
7073 }
7074
7075 /*
7076 * Detach sched domains from a group of cpus specified in cpu_map
7077 * These cpus will now be attached to the NULL domain
7078 */
7079 static void detach_destroy_domains(const struct cpumask *cpu_map)
7080 {
7081 int i;
7082
7083 rcu_read_lock();
7084 for_each_cpu(i, cpu_map)
7085 cpu_attach_domain(NULL, &def_root_domain, i);
7086 rcu_read_unlock();
7087 }
7088
7089 /* handle null as "default" */
7090 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7091 struct sched_domain_attr *new, int idx_new)
7092 {
7093 struct sched_domain_attr tmp;
7094
7095 /* fast path */
7096 if (!new && !cur)
7097 return 1;
7098
7099 tmp = SD_ATTR_INIT;
7100 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7101 new ? (new + idx_new) : &tmp,
7102 sizeof(struct sched_domain_attr));
7103 }
7104
7105 /*
7106 * Partition sched domains as specified by the 'ndoms_new'
7107 * cpumasks in the array doms_new[] of cpumasks. This compares
7108 * doms_new[] to the current sched domain partitioning, doms_cur[].
7109 * It destroys each deleted domain and builds each new domain.
7110 *
7111 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7112 * The masks don't intersect (don't overlap.) We should setup one
7113 * sched domain for each mask. CPUs not in any of the cpumasks will
7114 * not be load balanced. If the same cpumask appears both in the
7115 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7116 * it as it is.
7117 *
7118 * The passed in 'doms_new' should be allocated using
7119 * alloc_sched_domains. This routine takes ownership of it and will
7120 * free_sched_domains it when done with it. If the caller failed the
7121 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7122 * and partition_sched_domains() will fallback to the single partition
7123 * 'fallback_doms', it also forces the domains to be rebuilt.
7124 *
7125 * If doms_new == NULL it will be replaced with cpu_online_mask.
7126 * ndoms_new == 0 is a special case for destroying existing domains,
7127 * and it will not create the default domain.
7128 *
7129 * Call with hotplug lock held
7130 */
7131 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7132 struct sched_domain_attr *dattr_new)
7133 {
7134 int i, j, n;
7135 int new_topology;
7136
7137 mutex_lock(&sched_domains_mutex);
7138
7139 /* always unregister in case we don't destroy any domains */
7140 unregister_sched_domain_sysctl();
7141
7142 /* Let architecture update cpu core mappings. */
7143 new_topology = arch_update_cpu_topology();
7144
7145 n = doms_new ? ndoms_new : 0;
7146
7147 /* Destroy deleted domains */
7148 for (i = 0; i < ndoms_cur; i++) {
7149 for (j = 0; j < n && !new_topology; j++) {
7150 if (cpumask_equal(doms_cur[i], doms_new[j])
7151 && dattrs_equal(dattr_cur, i, dattr_new, j))
7152 goto match1;
7153 }
7154 /* no match - a current sched domain not in new doms_new[] */
7155 detach_destroy_domains(doms_cur[i]);
7156 match1:
7157 ;
7158 }
7159
7160 n = ndoms_cur;
7161 if (doms_new == NULL) {
7162 n = 0;
7163 doms_new = &fallback_doms;
7164 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7165 WARN_ON_ONCE(dattr_new);
7166 }
7167
7168 /* Build new domains */
7169 for (i = 0; i < ndoms_new; i++) {
7170 for (j = 0; j < n && !new_topology; j++) {
7171 if (cpumask_equal(doms_new[i], doms_cur[j])
7172 && dattrs_equal(dattr_new, i, dattr_cur, j))
7173 goto match2;
7174 }
7175 /* no match - add a new doms_new */
7176 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7177 match2:
7178 ;
7179 }
7180
7181 /* Remember the new sched domains */
7182 if (doms_cur != &fallback_doms)
7183 free_sched_domains(doms_cur, ndoms_cur);
7184 kfree(dattr_cur); /* kfree(NULL) is safe */
7185 doms_cur = doms_new;
7186 dattr_cur = dattr_new;
7187 ndoms_cur = ndoms_new;
7188
7189 register_sched_domain_sysctl();
7190
7191 mutex_unlock(&sched_domains_mutex);
7192 }
7193
7194 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7195
7196 /*
7197 * Update cpusets according to cpu_active mask. If cpusets are
7198 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7199 * around partition_sched_domains().
7200 *
7201 * If we come here as part of a suspend/resume, don't touch cpusets because we
7202 * want to restore it back to its original state upon resume anyway.
7203 */
7204 static void cpuset_cpu_active(void)
7205 {
7206 if (cpuhp_tasks_frozen) {
7207 /*
7208 * num_cpus_frozen tracks how many CPUs are involved in suspend
7209 * resume sequence. As long as this is not the last online
7210 * operation in the resume sequence, just build a single sched
7211 * domain, ignoring cpusets.
7212 */
7213 num_cpus_frozen--;
7214 if (likely(num_cpus_frozen)) {
7215 partition_sched_domains(1, NULL, NULL);
7216 return;
7217 }
7218 /*
7219 * This is the last CPU online operation. So fall through and
7220 * restore the original sched domains by considering the
7221 * cpuset configurations.
7222 */
7223 }
7224 cpuset_update_active_cpus(true);
7225 }
7226
7227 static int cpuset_cpu_inactive(unsigned int cpu)
7228 {
7229 unsigned long flags;
7230 struct dl_bw *dl_b;
7231 bool overflow;
7232 int cpus;
7233
7234 if (!cpuhp_tasks_frozen) {
7235 rcu_read_lock_sched();
7236 dl_b = dl_bw_of(cpu);
7237
7238 raw_spin_lock_irqsave(&dl_b->lock, flags);
7239 cpus = dl_bw_cpus(cpu);
7240 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7241 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7242
7243 rcu_read_unlock_sched();
7244
7245 if (overflow)
7246 return -EBUSY;
7247 cpuset_update_active_cpus(false);
7248 } else {
7249 num_cpus_frozen++;
7250 partition_sched_domains(1, NULL, NULL);
7251 }
7252 return 0;
7253 }
7254
7255 int sched_cpu_activate(unsigned int cpu)
7256 {
7257 struct rq *rq = cpu_rq(cpu);
7258 unsigned long flags;
7259
7260 set_cpu_active(cpu, true);
7261
7262 if (sched_smp_initialized) {
7263 sched_domains_numa_masks_set(cpu);
7264 cpuset_cpu_active();
7265 }
7266
7267 /*
7268 * Put the rq online, if not already. This happens:
7269 *
7270 * 1) In the early boot process, because we build the real domains
7271 * after all cpus have been brought up.
7272 *
7273 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7274 * domains.
7275 */
7276 raw_spin_lock_irqsave(&rq->lock, flags);
7277 if (rq->rd) {
7278 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7279 set_rq_online(rq);
7280 }
7281 raw_spin_unlock_irqrestore(&rq->lock, flags);
7282
7283 update_max_interval();
7284
7285 return 0;
7286 }
7287
7288 int sched_cpu_deactivate(unsigned int cpu)
7289 {
7290 int ret;
7291
7292 set_cpu_active(cpu, false);
7293 /*
7294 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7295 * users of this state to go away such that all new such users will
7296 * observe it.
7297 *
7298 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7299 * not imply sync_sched(), so wait for both.
7300 *
7301 * Do sync before park smpboot threads to take care the rcu boost case.
7302 */
7303 if (IS_ENABLED(CONFIG_PREEMPT))
7304 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7305 else
7306 synchronize_rcu();
7307
7308 if (!sched_smp_initialized)
7309 return 0;
7310
7311 ret = cpuset_cpu_inactive(cpu);
7312 if (ret) {
7313 set_cpu_active(cpu, true);
7314 return ret;
7315 }
7316 sched_domains_numa_masks_clear(cpu);
7317 return 0;
7318 }
7319
7320 static void sched_rq_cpu_starting(unsigned int cpu)
7321 {
7322 struct rq *rq = cpu_rq(cpu);
7323
7324 rq->calc_load_update = calc_load_update;
7325 update_max_interval();
7326 }
7327
7328 int sched_cpu_starting(unsigned int cpu)
7329 {
7330 set_cpu_rq_start_time(cpu);
7331 sched_rq_cpu_starting(cpu);
7332 return 0;
7333 }
7334
7335 #ifdef CONFIG_HOTPLUG_CPU
7336 int sched_cpu_dying(unsigned int cpu)
7337 {
7338 struct rq *rq = cpu_rq(cpu);
7339 unsigned long flags;
7340
7341 /* Handle pending wakeups and then migrate everything off */
7342 sched_ttwu_pending();
7343 raw_spin_lock_irqsave(&rq->lock, flags);
7344 if (rq->rd) {
7345 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7346 set_rq_offline(rq);
7347 }
7348 migrate_tasks(rq);
7349 BUG_ON(rq->nr_running != 1);
7350 raw_spin_unlock_irqrestore(&rq->lock, flags);
7351 calc_load_migrate(rq);
7352 update_max_interval();
7353 nohz_balance_exit_idle(cpu);
7354 hrtick_clear(rq);
7355 return 0;
7356 }
7357 #endif
7358
7359 void __init sched_init_smp(void)
7360 {
7361 cpumask_var_t non_isolated_cpus;
7362
7363 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7364 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7365
7366 sched_init_numa();
7367
7368 /*
7369 * There's no userspace yet to cause hotplug operations; hence all the
7370 * cpu masks are stable and all blatant races in the below code cannot
7371 * happen.
7372 */
7373 mutex_lock(&sched_domains_mutex);
7374 init_sched_domains(cpu_active_mask);
7375 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7376 if (cpumask_empty(non_isolated_cpus))
7377 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7378 mutex_unlock(&sched_domains_mutex);
7379
7380 /* Move init over to a non-isolated CPU */
7381 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7382 BUG();
7383 sched_init_granularity();
7384 free_cpumask_var(non_isolated_cpus);
7385
7386 init_sched_rt_class();
7387 init_sched_dl_class();
7388 sched_smp_initialized = true;
7389 }
7390
7391 static int __init migration_init(void)
7392 {
7393 sched_rq_cpu_starting(smp_processor_id());
7394 return 0;
7395 }
7396 early_initcall(migration_init);
7397
7398 #else
7399 void __init sched_init_smp(void)
7400 {
7401 sched_init_granularity();
7402 }
7403 #endif /* CONFIG_SMP */
7404
7405 int in_sched_functions(unsigned long addr)
7406 {
7407 return in_lock_functions(addr) ||
7408 (addr >= (unsigned long)__sched_text_start
7409 && addr < (unsigned long)__sched_text_end);
7410 }
7411
7412 #ifdef CONFIG_CGROUP_SCHED
7413 /*
7414 * Default task group.
7415 * Every task in system belongs to this group at bootup.
7416 */
7417 struct task_group root_task_group;
7418 LIST_HEAD(task_groups);
7419
7420 /* Cacheline aligned slab cache for task_group */
7421 static struct kmem_cache *task_group_cache __read_mostly;
7422 #endif
7423
7424 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7425
7426 void __init sched_init(void)
7427 {
7428 int i, j;
7429 unsigned long alloc_size = 0, ptr;
7430
7431 #ifdef CONFIG_FAIR_GROUP_SCHED
7432 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7433 #endif
7434 #ifdef CONFIG_RT_GROUP_SCHED
7435 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7436 #endif
7437 if (alloc_size) {
7438 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7439
7440 #ifdef CONFIG_FAIR_GROUP_SCHED
7441 root_task_group.se = (struct sched_entity **)ptr;
7442 ptr += nr_cpu_ids * sizeof(void **);
7443
7444 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7445 ptr += nr_cpu_ids * sizeof(void **);
7446
7447 #endif /* CONFIG_FAIR_GROUP_SCHED */
7448 #ifdef CONFIG_RT_GROUP_SCHED
7449 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7450 ptr += nr_cpu_ids * sizeof(void **);
7451
7452 root_task_group.rt_rq = (struct rt_rq **)ptr;
7453 ptr += nr_cpu_ids * sizeof(void **);
7454
7455 #endif /* CONFIG_RT_GROUP_SCHED */
7456 }
7457 #ifdef CONFIG_CPUMASK_OFFSTACK
7458 for_each_possible_cpu(i) {
7459 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7460 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7461 }
7462 #endif /* CONFIG_CPUMASK_OFFSTACK */
7463
7464 init_rt_bandwidth(&def_rt_bandwidth,
7465 global_rt_period(), global_rt_runtime());
7466 init_dl_bandwidth(&def_dl_bandwidth,
7467 global_rt_period(), global_rt_runtime());
7468
7469 #ifdef CONFIG_SMP
7470 init_defrootdomain();
7471 #endif
7472
7473 #ifdef CONFIG_RT_GROUP_SCHED
7474 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7475 global_rt_period(), global_rt_runtime());
7476 #endif /* CONFIG_RT_GROUP_SCHED */
7477
7478 #ifdef CONFIG_CGROUP_SCHED
7479 task_group_cache = KMEM_CACHE(task_group, 0);
7480
7481 list_add(&root_task_group.list, &task_groups);
7482 INIT_LIST_HEAD(&root_task_group.children);
7483 INIT_LIST_HEAD(&root_task_group.siblings);
7484 autogroup_init(&init_task);
7485 #endif /* CONFIG_CGROUP_SCHED */
7486
7487 for_each_possible_cpu(i) {
7488 struct rq *rq;
7489
7490 rq = cpu_rq(i);
7491 raw_spin_lock_init(&rq->lock);
7492 rq->nr_running = 0;
7493 rq->calc_load_active = 0;
7494 rq->calc_load_update = jiffies + LOAD_FREQ;
7495 init_cfs_rq(&rq->cfs);
7496 init_rt_rq(&rq->rt);
7497 init_dl_rq(&rq->dl);
7498 #ifdef CONFIG_FAIR_GROUP_SCHED
7499 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7500 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7501 /*
7502 * How much cpu bandwidth does root_task_group get?
7503 *
7504 * In case of task-groups formed thr' the cgroup filesystem, it
7505 * gets 100% of the cpu resources in the system. This overall
7506 * system cpu resource is divided among the tasks of
7507 * root_task_group and its child task-groups in a fair manner,
7508 * based on each entity's (task or task-group's) weight
7509 * (se->load.weight).
7510 *
7511 * In other words, if root_task_group has 10 tasks of weight
7512 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7513 * then A0's share of the cpu resource is:
7514 *
7515 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7516 *
7517 * We achieve this by letting root_task_group's tasks sit
7518 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7519 */
7520 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7521 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7522 #endif /* CONFIG_FAIR_GROUP_SCHED */
7523
7524 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7525 #ifdef CONFIG_RT_GROUP_SCHED
7526 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7527 #endif
7528
7529 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7530 rq->cpu_load[j] = 0;
7531
7532 #ifdef CONFIG_SMP
7533 rq->sd = NULL;
7534 rq->rd = NULL;
7535 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7536 rq->balance_callback = NULL;
7537 rq->active_balance = 0;
7538 rq->next_balance = jiffies;
7539 rq->push_cpu = 0;
7540 rq->cpu = i;
7541 rq->online = 0;
7542 rq->idle_stamp = 0;
7543 rq->avg_idle = 2*sysctl_sched_migration_cost;
7544 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7545
7546 INIT_LIST_HEAD(&rq->cfs_tasks);
7547
7548 rq_attach_root(rq, &def_root_domain);
7549 #ifdef CONFIG_NO_HZ_COMMON
7550 rq->last_load_update_tick = jiffies;
7551 rq->nohz_flags = 0;
7552 #endif
7553 #ifdef CONFIG_NO_HZ_FULL
7554 rq->last_sched_tick = 0;
7555 #endif
7556 #endif /* CONFIG_SMP */
7557 init_rq_hrtick(rq);
7558 atomic_set(&rq->nr_iowait, 0);
7559 }
7560
7561 set_load_weight(&init_task);
7562
7563 /*
7564 * The boot idle thread does lazy MMU switching as well:
7565 */
7566 atomic_inc(&init_mm.mm_count);
7567 enter_lazy_tlb(&init_mm, current);
7568
7569 /*
7570 * During early bootup we pretend to be a normal task:
7571 */
7572 current->sched_class = &fair_sched_class;
7573
7574 /*
7575 * Make us the idle thread. Technically, schedule() should not be
7576 * called from this thread, however somewhere below it might be,
7577 * but because we are the idle thread, we just pick up running again
7578 * when this runqueue becomes "idle".
7579 */
7580 init_idle(current, smp_processor_id());
7581
7582 calc_load_update = jiffies + LOAD_FREQ;
7583
7584 #ifdef CONFIG_SMP
7585 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7586 /* May be allocated at isolcpus cmdline parse time */
7587 if (cpu_isolated_map == NULL)
7588 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7589 idle_thread_set_boot_cpu();
7590 set_cpu_rq_start_time(smp_processor_id());
7591 #endif
7592 init_sched_fair_class();
7593
7594 init_schedstats();
7595
7596 scheduler_running = 1;
7597 }
7598
7599 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7600 static inline int preempt_count_equals(int preempt_offset)
7601 {
7602 int nested = preempt_count() + rcu_preempt_depth();
7603
7604 return (nested == preempt_offset);
7605 }
7606
7607 void __might_sleep(const char *file, int line, int preempt_offset)
7608 {
7609 /*
7610 * Blocking primitives will set (and therefore destroy) current->state,
7611 * since we will exit with TASK_RUNNING make sure we enter with it,
7612 * otherwise we will destroy state.
7613 */
7614 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7615 "do not call blocking ops when !TASK_RUNNING; "
7616 "state=%lx set at [<%p>] %pS\n",
7617 current->state,
7618 (void *)current->task_state_change,
7619 (void *)current->task_state_change);
7620
7621 ___might_sleep(file, line, preempt_offset);
7622 }
7623 EXPORT_SYMBOL(__might_sleep);
7624
7625 void ___might_sleep(const char *file, int line, int preempt_offset)
7626 {
7627 static unsigned long prev_jiffy; /* ratelimiting */
7628 unsigned long preempt_disable_ip;
7629
7630 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7631 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7632 !is_idle_task(current)) ||
7633 system_state != SYSTEM_RUNNING || oops_in_progress)
7634 return;
7635 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7636 return;
7637 prev_jiffy = jiffies;
7638
7639 /* Save this before calling printk(), since that will clobber it */
7640 preempt_disable_ip = get_preempt_disable_ip(current);
7641
7642 printk(KERN_ERR
7643 "BUG: sleeping function called from invalid context at %s:%d\n",
7644 file, line);
7645 printk(KERN_ERR
7646 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7647 in_atomic(), irqs_disabled(),
7648 current->pid, current->comm);
7649
7650 if (task_stack_end_corrupted(current))
7651 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7652
7653 debug_show_held_locks(current);
7654 if (irqs_disabled())
7655 print_irqtrace_events(current);
7656 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7657 && !preempt_count_equals(preempt_offset)) {
7658 pr_err("Preemption disabled at:");
7659 print_ip_sym(preempt_disable_ip);
7660 pr_cont("\n");
7661 }
7662 dump_stack();
7663 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7664 }
7665 EXPORT_SYMBOL(___might_sleep);
7666 #endif
7667
7668 #ifdef CONFIG_MAGIC_SYSRQ
7669 void normalize_rt_tasks(void)
7670 {
7671 struct task_struct *g, *p;
7672 struct sched_attr attr = {
7673 .sched_policy = SCHED_NORMAL,
7674 };
7675
7676 read_lock(&tasklist_lock);
7677 for_each_process_thread(g, p) {
7678 /*
7679 * Only normalize user tasks:
7680 */
7681 if (p->flags & PF_KTHREAD)
7682 continue;
7683
7684 p->se.exec_start = 0;
7685 schedstat_set(p->se.statistics.wait_start, 0);
7686 schedstat_set(p->se.statistics.sleep_start, 0);
7687 schedstat_set(p->se.statistics.block_start, 0);
7688
7689 if (!dl_task(p) && !rt_task(p)) {
7690 /*
7691 * Renice negative nice level userspace
7692 * tasks back to 0:
7693 */
7694 if (task_nice(p) < 0)
7695 set_user_nice(p, 0);
7696 continue;
7697 }
7698
7699 __sched_setscheduler(p, &attr, false, false);
7700 }
7701 read_unlock(&tasklist_lock);
7702 }
7703
7704 #endif /* CONFIG_MAGIC_SYSRQ */
7705
7706 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7707 /*
7708 * These functions are only useful for the IA64 MCA handling, or kdb.
7709 *
7710 * They can only be called when the whole system has been
7711 * stopped - every CPU needs to be quiescent, and no scheduling
7712 * activity can take place. Using them for anything else would
7713 * be a serious bug, and as a result, they aren't even visible
7714 * under any other configuration.
7715 */
7716
7717 /**
7718 * curr_task - return the current task for a given cpu.
7719 * @cpu: the processor in question.
7720 *
7721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7722 *
7723 * Return: The current task for @cpu.
7724 */
7725 struct task_struct *curr_task(int cpu)
7726 {
7727 return cpu_curr(cpu);
7728 }
7729
7730 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7731
7732 #ifdef CONFIG_IA64
7733 /**
7734 * set_curr_task - set the current task for a given cpu.
7735 * @cpu: the processor in question.
7736 * @p: the task pointer to set.
7737 *
7738 * Description: This function must only be used when non-maskable interrupts
7739 * are serviced on a separate stack. It allows the architecture to switch the
7740 * notion of the current task on a cpu in a non-blocking manner. This function
7741 * must be called with all CPU's synchronized, and interrupts disabled, the
7742 * and caller must save the original value of the current task (see
7743 * curr_task() above) and restore that value before reenabling interrupts and
7744 * re-starting the system.
7745 *
7746 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7747 */
7748 void set_curr_task(int cpu, struct task_struct *p)
7749 {
7750 cpu_curr(cpu) = p;
7751 }
7752
7753 #endif
7754
7755 #ifdef CONFIG_CGROUP_SCHED
7756 /* task_group_lock serializes the addition/removal of task groups */
7757 static DEFINE_SPINLOCK(task_group_lock);
7758
7759 static void sched_free_group(struct task_group *tg)
7760 {
7761 free_fair_sched_group(tg);
7762 free_rt_sched_group(tg);
7763 autogroup_free(tg);
7764 kmem_cache_free(task_group_cache, tg);
7765 }
7766
7767 /* allocate runqueue etc for a new task group */
7768 struct task_group *sched_create_group(struct task_group *parent)
7769 {
7770 struct task_group *tg;
7771
7772 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7773 if (!tg)
7774 return ERR_PTR(-ENOMEM);
7775
7776 if (!alloc_fair_sched_group(tg, parent))
7777 goto err;
7778
7779 if (!alloc_rt_sched_group(tg, parent))
7780 goto err;
7781
7782 return tg;
7783
7784 err:
7785 sched_free_group(tg);
7786 return ERR_PTR(-ENOMEM);
7787 }
7788
7789 void sched_online_group(struct task_group *tg, struct task_group *parent)
7790 {
7791 unsigned long flags;
7792
7793 spin_lock_irqsave(&task_group_lock, flags);
7794 list_add_rcu(&tg->list, &task_groups);
7795
7796 WARN_ON(!parent); /* root should already exist */
7797
7798 tg->parent = parent;
7799 INIT_LIST_HEAD(&tg->children);
7800 list_add_rcu(&tg->siblings, &parent->children);
7801 spin_unlock_irqrestore(&task_group_lock, flags);
7802
7803 online_fair_sched_group(tg);
7804 }
7805
7806 /* rcu callback to free various structures associated with a task group */
7807 static void sched_free_group_rcu(struct rcu_head *rhp)
7808 {
7809 /* now it should be safe to free those cfs_rqs */
7810 sched_free_group(container_of(rhp, struct task_group, rcu));
7811 }
7812
7813 void sched_destroy_group(struct task_group *tg)
7814 {
7815 /* wait for possible concurrent references to cfs_rqs complete */
7816 call_rcu(&tg->rcu, sched_free_group_rcu);
7817 }
7818
7819 void sched_offline_group(struct task_group *tg)
7820 {
7821 unsigned long flags;
7822
7823 /* end participation in shares distribution */
7824 unregister_fair_sched_group(tg);
7825
7826 spin_lock_irqsave(&task_group_lock, flags);
7827 list_del_rcu(&tg->list);
7828 list_del_rcu(&tg->siblings);
7829 spin_unlock_irqrestore(&task_group_lock, flags);
7830 }
7831
7832 static void sched_change_group(struct task_struct *tsk, int type)
7833 {
7834 struct task_group *tg;
7835
7836 /*
7837 * All callers are synchronized by task_rq_lock(); we do not use RCU
7838 * which is pointless here. Thus, we pass "true" to task_css_check()
7839 * to prevent lockdep warnings.
7840 */
7841 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7842 struct task_group, css);
7843 tg = autogroup_task_group(tsk, tg);
7844 tsk->sched_task_group = tg;
7845
7846 #ifdef CONFIG_FAIR_GROUP_SCHED
7847 if (tsk->sched_class->task_change_group)
7848 tsk->sched_class->task_change_group(tsk, type);
7849 else
7850 #endif
7851 set_task_rq(tsk, task_cpu(tsk));
7852 }
7853
7854 /*
7855 * Change task's runqueue when it moves between groups.
7856 *
7857 * The caller of this function should have put the task in its new group by
7858 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7859 * its new group.
7860 */
7861 void sched_move_task(struct task_struct *tsk)
7862 {
7863 int queued, running;
7864 struct rq_flags rf;
7865 struct rq *rq;
7866
7867 rq = task_rq_lock(tsk, &rf);
7868
7869 running = task_current(rq, tsk);
7870 queued = task_on_rq_queued(tsk);
7871
7872 if (queued)
7873 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7874 if (unlikely(running))
7875 put_prev_task(rq, tsk);
7876
7877 sched_change_group(tsk, TASK_MOVE_GROUP);
7878
7879 if (unlikely(running))
7880 tsk->sched_class->set_curr_task(rq);
7881 if (queued)
7882 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7883
7884 task_rq_unlock(rq, tsk, &rf);
7885 }
7886 #endif /* CONFIG_CGROUP_SCHED */
7887
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 /*
7890 * Ensure that the real time constraints are schedulable.
7891 */
7892 static DEFINE_MUTEX(rt_constraints_mutex);
7893
7894 /* Must be called with tasklist_lock held */
7895 static inline int tg_has_rt_tasks(struct task_group *tg)
7896 {
7897 struct task_struct *g, *p;
7898
7899 /*
7900 * Autogroups do not have RT tasks; see autogroup_create().
7901 */
7902 if (task_group_is_autogroup(tg))
7903 return 0;
7904
7905 for_each_process_thread(g, p) {
7906 if (rt_task(p) && task_group(p) == tg)
7907 return 1;
7908 }
7909
7910 return 0;
7911 }
7912
7913 struct rt_schedulable_data {
7914 struct task_group *tg;
7915 u64 rt_period;
7916 u64 rt_runtime;
7917 };
7918
7919 static int tg_rt_schedulable(struct task_group *tg, void *data)
7920 {
7921 struct rt_schedulable_data *d = data;
7922 struct task_group *child;
7923 unsigned long total, sum = 0;
7924 u64 period, runtime;
7925
7926 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7927 runtime = tg->rt_bandwidth.rt_runtime;
7928
7929 if (tg == d->tg) {
7930 period = d->rt_period;
7931 runtime = d->rt_runtime;
7932 }
7933
7934 /*
7935 * Cannot have more runtime than the period.
7936 */
7937 if (runtime > period && runtime != RUNTIME_INF)
7938 return -EINVAL;
7939
7940 /*
7941 * Ensure we don't starve existing RT tasks.
7942 */
7943 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7944 return -EBUSY;
7945
7946 total = to_ratio(period, runtime);
7947
7948 /*
7949 * Nobody can have more than the global setting allows.
7950 */
7951 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7952 return -EINVAL;
7953
7954 /*
7955 * The sum of our children's runtime should not exceed our own.
7956 */
7957 list_for_each_entry_rcu(child, &tg->children, siblings) {
7958 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7959 runtime = child->rt_bandwidth.rt_runtime;
7960
7961 if (child == d->tg) {
7962 period = d->rt_period;
7963 runtime = d->rt_runtime;
7964 }
7965
7966 sum += to_ratio(period, runtime);
7967 }
7968
7969 if (sum > total)
7970 return -EINVAL;
7971
7972 return 0;
7973 }
7974
7975 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7976 {
7977 int ret;
7978
7979 struct rt_schedulable_data data = {
7980 .tg = tg,
7981 .rt_period = period,
7982 .rt_runtime = runtime,
7983 };
7984
7985 rcu_read_lock();
7986 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7987 rcu_read_unlock();
7988
7989 return ret;
7990 }
7991
7992 static int tg_set_rt_bandwidth(struct task_group *tg,
7993 u64 rt_period, u64 rt_runtime)
7994 {
7995 int i, err = 0;
7996
7997 /*
7998 * Disallowing the root group RT runtime is BAD, it would disallow the
7999 * kernel creating (and or operating) RT threads.
8000 */
8001 if (tg == &root_task_group && rt_runtime == 0)
8002 return -EINVAL;
8003
8004 /* No period doesn't make any sense. */
8005 if (rt_period == 0)
8006 return -EINVAL;
8007
8008 mutex_lock(&rt_constraints_mutex);
8009 read_lock(&tasklist_lock);
8010 err = __rt_schedulable(tg, rt_period, rt_runtime);
8011 if (err)
8012 goto unlock;
8013
8014 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8015 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8016 tg->rt_bandwidth.rt_runtime = rt_runtime;
8017
8018 for_each_possible_cpu(i) {
8019 struct rt_rq *rt_rq = tg->rt_rq[i];
8020
8021 raw_spin_lock(&rt_rq->rt_runtime_lock);
8022 rt_rq->rt_runtime = rt_runtime;
8023 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8024 }
8025 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8026 unlock:
8027 read_unlock(&tasklist_lock);
8028 mutex_unlock(&rt_constraints_mutex);
8029
8030 return err;
8031 }
8032
8033 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8034 {
8035 u64 rt_runtime, rt_period;
8036
8037 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8038 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8039 if (rt_runtime_us < 0)
8040 rt_runtime = RUNTIME_INF;
8041
8042 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8043 }
8044
8045 static long sched_group_rt_runtime(struct task_group *tg)
8046 {
8047 u64 rt_runtime_us;
8048
8049 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8050 return -1;
8051
8052 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8053 do_div(rt_runtime_us, NSEC_PER_USEC);
8054 return rt_runtime_us;
8055 }
8056
8057 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8058 {
8059 u64 rt_runtime, rt_period;
8060
8061 rt_period = rt_period_us * NSEC_PER_USEC;
8062 rt_runtime = tg->rt_bandwidth.rt_runtime;
8063
8064 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8065 }
8066
8067 static long sched_group_rt_period(struct task_group *tg)
8068 {
8069 u64 rt_period_us;
8070
8071 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8072 do_div(rt_period_us, NSEC_PER_USEC);
8073 return rt_period_us;
8074 }
8075 #endif /* CONFIG_RT_GROUP_SCHED */
8076
8077 #ifdef CONFIG_RT_GROUP_SCHED
8078 static int sched_rt_global_constraints(void)
8079 {
8080 int ret = 0;
8081
8082 mutex_lock(&rt_constraints_mutex);
8083 read_lock(&tasklist_lock);
8084 ret = __rt_schedulable(NULL, 0, 0);
8085 read_unlock(&tasklist_lock);
8086 mutex_unlock(&rt_constraints_mutex);
8087
8088 return ret;
8089 }
8090
8091 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8092 {
8093 /* Don't accept realtime tasks when there is no way for them to run */
8094 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8095 return 0;
8096
8097 return 1;
8098 }
8099
8100 #else /* !CONFIG_RT_GROUP_SCHED */
8101 static int sched_rt_global_constraints(void)
8102 {
8103 unsigned long flags;
8104 int i;
8105
8106 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8107 for_each_possible_cpu(i) {
8108 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8109
8110 raw_spin_lock(&rt_rq->rt_runtime_lock);
8111 rt_rq->rt_runtime = global_rt_runtime();
8112 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8113 }
8114 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8115
8116 return 0;
8117 }
8118 #endif /* CONFIG_RT_GROUP_SCHED */
8119
8120 static int sched_dl_global_validate(void)
8121 {
8122 u64 runtime = global_rt_runtime();
8123 u64 period = global_rt_period();
8124 u64 new_bw = to_ratio(period, runtime);
8125 struct dl_bw *dl_b;
8126 int cpu, ret = 0;
8127 unsigned long flags;
8128
8129 /*
8130 * Here we want to check the bandwidth not being set to some
8131 * value smaller than the currently allocated bandwidth in
8132 * any of the root_domains.
8133 *
8134 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8135 * cycling on root_domains... Discussion on different/better
8136 * solutions is welcome!
8137 */
8138 for_each_possible_cpu(cpu) {
8139 rcu_read_lock_sched();
8140 dl_b = dl_bw_of(cpu);
8141
8142 raw_spin_lock_irqsave(&dl_b->lock, flags);
8143 if (new_bw < dl_b->total_bw)
8144 ret = -EBUSY;
8145 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8146
8147 rcu_read_unlock_sched();
8148
8149 if (ret)
8150 break;
8151 }
8152
8153 return ret;
8154 }
8155
8156 static void sched_dl_do_global(void)
8157 {
8158 u64 new_bw = -1;
8159 struct dl_bw *dl_b;
8160 int cpu;
8161 unsigned long flags;
8162
8163 def_dl_bandwidth.dl_period = global_rt_period();
8164 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8165
8166 if (global_rt_runtime() != RUNTIME_INF)
8167 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8168
8169 /*
8170 * FIXME: As above...
8171 */
8172 for_each_possible_cpu(cpu) {
8173 rcu_read_lock_sched();
8174 dl_b = dl_bw_of(cpu);
8175
8176 raw_spin_lock_irqsave(&dl_b->lock, flags);
8177 dl_b->bw = new_bw;
8178 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8179
8180 rcu_read_unlock_sched();
8181 }
8182 }
8183
8184 static int sched_rt_global_validate(void)
8185 {
8186 if (sysctl_sched_rt_period <= 0)
8187 return -EINVAL;
8188
8189 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8190 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8191 return -EINVAL;
8192
8193 return 0;
8194 }
8195
8196 static void sched_rt_do_global(void)
8197 {
8198 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8199 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8200 }
8201
8202 int sched_rt_handler(struct ctl_table *table, int write,
8203 void __user *buffer, size_t *lenp,
8204 loff_t *ppos)
8205 {
8206 int old_period, old_runtime;
8207 static DEFINE_MUTEX(mutex);
8208 int ret;
8209
8210 mutex_lock(&mutex);
8211 old_period = sysctl_sched_rt_period;
8212 old_runtime = sysctl_sched_rt_runtime;
8213
8214 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8215
8216 if (!ret && write) {
8217 ret = sched_rt_global_validate();
8218 if (ret)
8219 goto undo;
8220
8221 ret = sched_dl_global_validate();
8222 if (ret)
8223 goto undo;
8224
8225 ret = sched_rt_global_constraints();
8226 if (ret)
8227 goto undo;
8228
8229 sched_rt_do_global();
8230 sched_dl_do_global();
8231 }
8232 if (0) {
8233 undo:
8234 sysctl_sched_rt_period = old_period;
8235 sysctl_sched_rt_runtime = old_runtime;
8236 }
8237 mutex_unlock(&mutex);
8238
8239 return ret;
8240 }
8241
8242 int sched_rr_handler(struct ctl_table *table, int write,
8243 void __user *buffer, size_t *lenp,
8244 loff_t *ppos)
8245 {
8246 int ret;
8247 static DEFINE_MUTEX(mutex);
8248
8249 mutex_lock(&mutex);
8250 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8251 /* make sure that internally we keep jiffies */
8252 /* also, writing zero resets timeslice to default */
8253 if (!ret && write) {
8254 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8255 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8256 }
8257 mutex_unlock(&mutex);
8258 return ret;
8259 }
8260
8261 #ifdef CONFIG_CGROUP_SCHED
8262
8263 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8264 {
8265 return css ? container_of(css, struct task_group, css) : NULL;
8266 }
8267
8268 static struct cgroup_subsys_state *
8269 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8270 {
8271 struct task_group *parent = css_tg(parent_css);
8272 struct task_group *tg;
8273
8274 if (!parent) {
8275 /* This is early initialization for the top cgroup */
8276 return &root_task_group.css;
8277 }
8278
8279 tg = sched_create_group(parent);
8280 if (IS_ERR(tg))
8281 return ERR_PTR(-ENOMEM);
8282
8283 sched_online_group(tg, parent);
8284
8285 return &tg->css;
8286 }
8287
8288 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8289 {
8290 struct task_group *tg = css_tg(css);
8291
8292 sched_offline_group(tg);
8293 }
8294
8295 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8296 {
8297 struct task_group *tg = css_tg(css);
8298
8299 /*
8300 * Relies on the RCU grace period between css_released() and this.
8301 */
8302 sched_free_group(tg);
8303 }
8304
8305 /*
8306 * This is called before wake_up_new_task(), therefore we really only
8307 * have to set its group bits, all the other stuff does not apply.
8308 */
8309 static void cpu_cgroup_fork(struct task_struct *task)
8310 {
8311 struct rq_flags rf;
8312 struct rq *rq;
8313
8314 rq = task_rq_lock(task, &rf);
8315
8316 sched_change_group(task, TASK_SET_GROUP);
8317
8318 task_rq_unlock(rq, task, &rf);
8319 }
8320
8321 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8322 {
8323 struct task_struct *task;
8324 struct cgroup_subsys_state *css;
8325 int ret = 0;
8326
8327 cgroup_taskset_for_each(task, css, tset) {
8328 #ifdef CONFIG_RT_GROUP_SCHED
8329 if (!sched_rt_can_attach(css_tg(css), task))
8330 return -EINVAL;
8331 #else
8332 /* We don't support RT-tasks being in separate groups */
8333 if (task->sched_class != &fair_sched_class)
8334 return -EINVAL;
8335 #endif
8336 /*
8337 * Serialize against wake_up_new_task() such that if its
8338 * running, we're sure to observe its full state.
8339 */
8340 raw_spin_lock_irq(&task->pi_lock);
8341 /*
8342 * Avoid calling sched_move_task() before wake_up_new_task()
8343 * has happened. This would lead to problems with PELT, due to
8344 * move wanting to detach+attach while we're not attached yet.
8345 */
8346 if (task->state == TASK_NEW)
8347 ret = -EINVAL;
8348 raw_spin_unlock_irq(&task->pi_lock);
8349
8350 if (ret)
8351 break;
8352 }
8353 return ret;
8354 }
8355
8356 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8357 {
8358 struct task_struct *task;
8359 struct cgroup_subsys_state *css;
8360
8361 cgroup_taskset_for_each(task, css, tset)
8362 sched_move_task(task);
8363 }
8364
8365 #ifdef CONFIG_FAIR_GROUP_SCHED
8366 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8367 struct cftype *cftype, u64 shareval)
8368 {
8369 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8370 }
8371
8372 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8373 struct cftype *cft)
8374 {
8375 struct task_group *tg = css_tg(css);
8376
8377 return (u64) scale_load_down(tg->shares);
8378 }
8379
8380 #ifdef CONFIG_CFS_BANDWIDTH
8381 static DEFINE_MUTEX(cfs_constraints_mutex);
8382
8383 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8384 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8385
8386 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8387
8388 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8389 {
8390 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8391 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8392
8393 if (tg == &root_task_group)
8394 return -EINVAL;
8395
8396 /*
8397 * Ensure we have at some amount of bandwidth every period. This is
8398 * to prevent reaching a state of large arrears when throttled via
8399 * entity_tick() resulting in prolonged exit starvation.
8400 */
8401 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8402 return -EINVAL;
8403
8404 /*
8405 * Likewise, bound things on the otherside by preventing insane quota
8406 * periods. This also allows us to normalize in computing quota
8407 * feasibility.
8408 */
8409 if (period > max_cfs_quota_period)
8410 return -EINVAL;
8411
8412 /*
8413 * Prevent race between setting of cfs_rq->runtime_enabled and
8414 * unthrottle_offline_cfs_rqs().
8415 */
8416 get_online_cpus();
8417 mutex_lock(&cfs_constraints_mutex);
8418 ret = __cfs_schedulable(tg, period, quota);
8419 if (ret)
8420 goto out_unlock;
8421
8422 runtime_enabled = quota != RUNTIME_INF;
8423 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8424 /*
8425 * If we need to toggle cfs_bandwidth_used, off->on must occur
8426 * before making related changes, and on->off must occur afterwards
8427 */
8428 if (runtime_enabled && !runtime_was_enabled)
8429 cfs_bandwidth_usage_inc();
8430 raw_spin_lock_irq(&cfs_b->lock);
8431 cfs_b->period = ns_to_ktime(period);
8432 cfs_b->quota = quota;
8433
8434 __refill_cfs_bandwidth_runtime(cfs_b);
8435 /* restart the period timer (if active) to handle new period expiry */
8436 if (runtime_enabled)
8437 start_cfs_bandwidth(cfs_b);
8438 raw_spin_unlock_irq(&cfs_b->lock);
8439
8440 for_each_online_cpu(i) {
8441 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8442 struct rq *rq = cfs_rq->rq;
8443
8444 raw_spin_lock_irq(&rq->lock);
8445 cfs_rq->runtime_enabled = runtime_enabled;
8446 cfs_rq->runtime_remaining = 0;
8447
8448 if (cfs_rq->throttled)
8449 unthrottle_cfs_rq(cfs_rq);
8450 raw_spin_unlock_irq(&rq->lock);
8451 }
8452 if (runtime_was_enabled && !runtime_enabled)
8453 cfs_bandwidth_usage_dec();
8454 out_unlock:
8455 mutex_unlock(&cfs_constraints_mutex);
8456 put_online_cpus();
8457
8458 return ret;
8459 }
8460
8461 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8462 {
8463 u64 quota, period;
8464
8465 period = ktime_to_ns(tg->cfs_bandwidth.period);
8466 if (cfs_quota_us < 0)
8467 quota = RUNTIME_INF;
8468 else
8469 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8470
8471 return tg_set_cfs_bandwidth(tg, period, quota);
8472 }
8473
8474 long tg_get_cfs_quota(struct task_group *tg)
8475 {
8476 u64 quota_us;
8477
8478 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8479 return -1;
8480
8481 quota_us = tg->cfs_bandwidth.quota;
8482 do_div(quota_us, NSEC_PER_USEC);
8483
8484 return quota_us;
8485 }
8486
8487 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8488 {
8489 u64 quota, period;
8490
8491 period = (u64)cfs_period_us * NSEC_PER_USEC;
8492 quota = tg->cfs_bandwidth.quota;
8493
8494 return tg_set_cfs_bandwidth(tg, period, quota);
8495 }
8496
8497 long tg_get_cfs_period(struct task_group *tg)
8498 {
8499 u64 cfs_period_us;
8500
8501 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8502 do_div(cfs_period_us, NSEC_PER_USEC);
8503
8504 return cfs_period_us;
8505 }
8506
8507 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8508 struct cftype *cft)
8509 {
8510 return tg_get_cfs_quota(css_tg(css));
8511 }
8512
8513 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8514 struct cftype *cftype, s64 cfs_quota_us)
8515 {
8516 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8517 }
8518
8519 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8520 struct cftype *cft)
8521 {
8522 return tg_get_cfs_period(css_tg(css));
8523 }
8524
8525 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8526 struct cftype *cftype, u64 cfs_period_us)
8527 {
8528 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8529 }
8530
8531 struct cfs_schedulable_data {
8532 struct task_group *tg;
8533 u64 period, quota;
8534 };
8535
8536 /*
8537 * normalize group quota/period to be quota/max_period
8538 * note: units are usecs
8539 */
8540 static u64 normalize_cfs_quota(struct task_group *tg,
8541 struct cfs_schedulable_data *d)
8542 {
8543 u64 quota, period;
8544
8545 if (tg == d->tg) {
8546 period = d->period;
8547 quota = d->quota;
8548 } else {
8549 period = tg_get_cfs_period(tg);
8550 quota = tg_get_cfs_quota(tg);
8551 }
8552
8553 /* note: these should typically be equivalent */
8554 if (quota == RUNTIME_INF || quota == -1)
8555 return RUNTIME_INF;
8556
8557 return to_ratio(period, quota);
8558 }
8559
8560 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8561 {
8562 struct cfs_schedulable_data *d = data;
8563 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8564 s64 quota = 0, parent_quota = -1;
8565
8566 if (!tg->parent) {
8567 quota = RUNTIME_INF;
8568 } else {
8569 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8570
8571 quota = normalize_cfs_quota(tg, d);
8572 parent_quota = parent_b->hierarchical_quota;
8573
8574 /*
8575 * ensure max(child_quota) <= parent_quota, inherit when no
8576 * limit is set
8577 */
8578 if (quota == RUNTIME_INF)
8579 quota = parent_quota;
8580 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8581 return -EINVAL;
8582 }
8583 cfs_b->hierarchical_quota = quota;
8584
8585 return 0;
8586 }
8587
8588 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8589 {
8590 int ret;
8591 struct cfs_schedulable_data data = {
8592 .tg = tg,
8593 .period = period,
8594 .quota = quota,
8595 };
8596
8597 if (quota != RUNTIME_INF) {
8598 do_div(data.period, NSEC_PER_USEC);
8599 do_div(data.quota, NSEC_PER_USEC);
8600 }
8601
8602 rcu_read_lock();
8603 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8604 rcu_read_unlock();
8605
8606 return ret;
8607 }
8608
8609 static int cpu_stats_show(struct seq_file *sf, void *v)
8610 {
8611 struct task_group *tg = css_tg(seq_css(sf));
8612 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8613
8614 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8615 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8616 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8617
8618 return 0;
8619 }
8620 #endif /* CONFIG_CFS_BANDWIDTH */
8621 #endif /* CONFIG_FAIR_GROUP_SCHED */
8622
8623 #ifdef CONFIG_RT_GROUP_SCHED
8624 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8625 struct cftype *cft, s64 val)
8626 {
8627 return sched_group_set_rt_runtime(css_tg(css), val);
8628 }
8629
8630 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8631 struct cftype *cft)
8632 {
8633 return sched_group_rt_runtime(css_tg(css));
8634 }
8635
8636 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8637 struct cftype *cftype, u64 rt_period_us)
8638 {
8639 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8640 }
8641
8642 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8643 struct cftype *cft)
8644 {
8645 return sched_group_rt_period(css_tg(css));
8646 }
8647 #endif /* CONFIG_RT_GROUP_SCHED */
8648
8649 static struct cftype cpu_files[] = {
8650 #ifdef CONFIG_FAIR_GROUP_SCHED
8651 {
8652 .name = "shares",
8653 .read_u64 = cpu_shares_read_u64,
8654 .write_u64 = cpu_shares_write_u64,
8655 },
8656 #endif
8657 #ifdef CONFIG_CFS_BANDWIDTH
8658 {
8659 .name = "cfs_quota_us",
8660 .read_s64 = cpu_cfs_quota_read_s64,
8661 .write_s64 = cpu_cfs_quota_write_s64,
8662 },
8663 {
8664 .name = "cfs_period_us",
8665 .read_u64 = cpu_cfs_period_read_u64,
8666 .write_u64 = cpu_cfs_period_write_u64,
8667 },
8668 {
8669 .name = "stat",
8670 .seq_show = cpu_stats_show,
8671 },
8672 #endif
8673 #ifdef CONFIG_RT_GROUP_SCHED
8674 {
8675 .name = "rt_runtime_us",
8676 .read_s64 = cpu_rt_runtime_read,
8677 .write_s64 = cpu_rt_runtime_write,
8678 },
8679 {
8680 .name = "rt_period_us",
8681 .read_u64 = cpu_rt_period_read_uint,
8682 .write_u64 = cpu_rt_period_write_uint,
8683 },
8684 #endif
8685 { } /* terminate */
8686 };
8687
8688 struct cgroup_subsys cpu_cgrp_subsys = {
8689 .css_alloc = cpu_cgroup_css_alloc,
8690 .css_released = cpu_cgroup_css_released,
8691 .css_free = cpu_cgroup_css_free,
8692 .fork = cpu_cgroup_fork,
8693 .can_attach = cpu_cgroup_can_attach,
8694 .attach = cpu_cgroup_attach,
8695 .legacy_cftypes = cpu_files,
8696 .early_init = true,
8697 };
8698
8699 #endif /* CONFIG_CGROUP_SCHED */
8700
8701 void dump_cpu_task(int cpu)
8702 {
8703 pr_info("Task dump for CPU %d:\n", cpu);
8704 sched_show_task(cpu_curr(cpu));
8705 }
8706
8707 /*
8708 * Nice levels are multiplicative, with a gentle 10% change for every
8709 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8710 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8711 * that remained on nice 0.
8712 *
8713 * The "10% effect" is relative and cumulative: from _any_ nice level,
8714 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8715 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8716 * If a task goes up by ~10% and another task goes down by ~10% then
8717 * the relative distance between them is ~25%.)
8718 */
8719 const int sched_prio_to_weight[40] = {
8720 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8721 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8722 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8723 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8724 /* 0 */ 1024, 820, 655, 526, 423,
8725 /* 5 */ 335, 272, 215, 172, 137,
8726 /* 10 */ 110, 87, 70, 56, 45,
8727 /* 15 */ 36, 29, 23, 18, 15,
8728 };
8729
8730 /*
8731 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8732 *
8733 * In cases where the weight does not change often, we can use the
8734 * precalculated inverse to speed up arithmetics by turning divisions
8735 * into multiplications:
8736 */
8737 const u32 sched_prio_to_wmult[40] = {
8738 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8739 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8740 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8741 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8742 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8743 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8744 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8745 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8746 };
This page took 0.212114 seconds and 5 git commands to generate.