tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mz, mctz);
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
489 }
490 }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
498
499 for_each_node(nid) {
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
503 }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
511
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
527 goto retry;
528 done:
529 return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
540 return mz;
541 }
542
543 /*
544 * Return page count for single (non recursive) @memcg.
545 *
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
562 * implemented.
563 */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 long val = 0;
568 int cpu;
569
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
579 return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
584 {
585 unsigned long val = 0;
586 int cpu;
587
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
590 return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 struct page *page,
595 bool compound, int nr_pages)
596 {
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
601 if (PageAnon(page))
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 nr_pages);
604 else
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 nr_pages);
607
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
612 }
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
627 {
628 unsigned long nr = 0;
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
631
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
639 }
640 return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 unsigned int lru_mask)
645 {
646 unsigned long nr = 0;
647 int nid;
648
649 for_each_node_state(nid, N_MEMORY)
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
656 {
657 unsigned long val, next;
658
659 val = __this_cpu_read(memcg->stat->nr_page_events);
660 next = __this_cpu_read(memcg->stat->targets[target]);
661 /* from time_after() in jiffies.h */
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
678 }
679 return false;
680 }
681
682 /*
683 * Check events in order.
684 *
685 */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 /* threshold event is triggered in finer grain than soft limit */
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
691 bool do_softlimit;
692 bool do_numainfo __maybe_unused;
693
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 mem_cgroup_threshold(memcg);
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 if (unlikely(do_numainfo))
705 atomic_inc(&memcg->numainfo_events);
706 #endif
707 }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 struct mem_cgroup *memcg = NULL;
727
728 rcu_read_lock();
729 do {
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
736 memcg = root_mem_cgroup;
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
742 } while (!css_tryget_online(&memcg->css));
743 rcu_read_unlock();
744 return memcg;
745 }
746
747 /**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 struct mem_cgroup *prev,
766 struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 struct cgroup_subsys_state *css = NULL;
770 struct mem_cgroup *memcg = NULL;
771 struct mem_cgroup *pos = NULL;
772
773 if (mem_cgroup_disabled())
774 return NULL;
775
776 if (!root)
777 root = root_mem_cgroup;
778
779 if (prev && !reclaim)
780 pos = prev;
781
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
784 goto out;
785 return root;
786 }
787
788 rcu_read_lock();
789
790 if (reclaim) {
791 struct mem_cgroup_per_node *mz;
792
793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
799 while (1) {
800 pos = READ_ONCE(iter->position);
801 if (!pos || css_tryget(&pos->css))
802 break;
803 /*
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
810 */
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
830 }
831
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
838
839 if (css == &root->css)
840 break;
841
842 if (css_tryget(css))
843 break;
844
845 memcg = NULL;
846 }
847
848 if (reclaim) {
849 /*
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
853 */
854 (void)cmpxchg(&iter->position, pos, memcg);
855
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
863 }
864
865 out_unlock:
866 rcu_read_unlock();
867 out:
868 if (prev && prev != root)
869 css_put(&prev->css);
870
871 return memcg;
872 }
873
874 /**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
881 {
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
892 struct mem_cgroup_per_node *mz;
893 int nid;
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
903 }
904 }
905 }
906 }
907
908 /*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913 #define for_each_mem_cgroup_tree(iter, root) \
914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
915 iter != NULL; \
916 iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter) \
919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925 * @memcg: hierarchy root
926 * @fn: function to call for each task
927 * @arg: argument passed to @fn
928 *
929 * This function iterates over tasks attached to @memcg or to any of its
930 * descendants and calls @fn for each task. If @fn returns a non-zero
931 * value, the function breaks the iteration loop and returns the value.
932 * Otherwise, it will iterate over all tasks and return 0.
933 *
934 * This function must not be called for the root memory cgroup.
935 */
936 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937 int (*fn)(struct task_struct *, void *), void *arg)
938 {
939 struct mem_cgroup *iter;
940 int ret = 0;
941
942 BUG_ON(memcg == root_mem_cgroup);
943
944 for_each_mem_cgroup_tree(iter, memcg) {
945 struct css_task_iter it;
946 struct task_struct *task;
947
948 css_task_iter_start(&iter->css, &it);
949 while (!ret && (task = css_task_iter_next(&it)))
950 ret = fn(task, arg);
951 css_task_iter_end(&it);
952 if (ret) {
953 mem_cgroup_iter_break(memcg, iter);
954 break;
955 }
956 }
957 return ret;
958 }
959
960 /**
961 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962 * @page: the page
963 * @zone: zone of the page
964 *
965 * This function is only safe when following the LRU page isolation
966 * and putback protocol: the LRU lock must be held, and the page must
967 * either be PageLRU() or the caller must have isolated/allocated it.
968 */
969 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
970 {
971 struct mem_cgroup_per_node *mz;
972 struct mem_cgroup *memcg;
973 struct lruvec *lruvec;
974
975 if (mem_cgroup_disabled()) {
976 lruvec = &pgdat->lruvec;
977 goto out;
978 }
979
980 memcg = page->mem_cgroup;
981 /*
982 * Swapcache readahead pages are added to the LRU - and
983 * possibly migrated - before they are charged.
984 */
985 if (!memcg)
986 memcg = root_mem_cgroup;
987
988 mz = mem_cgroup_page_nodeinfo(memcg, page);
989 lruvec = &mz->lruvec;
990 out:
991 /*
992 * Since a node can be onlined after the mem_cgroup was created,
993 * we have to be prepared to initialize lruvec->zone here;
994 * and if offlined then reonlined, we need to reinitialize it.
995 */
996 if (unlikely(lruvec->pgdat != pgdat))
997 lruvec->pgdat = pgdat;
998 return lruvec;
999 }
1000
1001 /**
1002 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003 * @lruvec: mem_cgroup per zone lru vector
1004 * @lru: index of lru list the page is sitting on
1005 * @nr_pages: positive when adding or negative when removing
1006 *
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010 */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012 int nr_pages)
1013 {
1014 struct mem_cgroup_per_node *mz;
1015 unsigned long *lru_size;
1016 long size;
1017 bool empty;
1018
1019 if (mem_cgroup_disabled())
1020 return;
1021
1022 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023 lru_size = mz->lru_size + lru;
1024 empty = list_empty(lruvec->lists + lru);
1025
1026 if (nr_pages < 0)
1027 *lru_size += nr_pages;
1028
1029 size = *lru_size;
1030 if (WARN_ONCE(size < 0 || empty != !size,
1031 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033 VM_BUG_ON(1);
1034 *lru_size = 0;
1035 }
1036
1037 if (nr_pages > 0)
1038 *lru_size += nr_pages;
1039 }
1040
1041 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042 {
1043 struct mem_cgroup *task_memcg;
1044 struct task_struct *p;
1045 bool ret;
1046
1047 p = find_lock_task_mm(task);
1048 if (p) {
1049 task_memcg = get_mem_cgroup_from_mm(p->mm);
1050 task_unlock(p);
1051 } else {
1052 /*
1053 * All threads may have already detached their mm's, but the oom
1054 * killer still needs to detect if they have already been oom
1055 * killed to prevent needlessly killing additional tasks.
1056 */
1057 rcu_read_lock();
1058 task_memcg = mem_cgroup_from_task(task);
1059 css_get(&task_memcg->css);
1060 rcu_read_unlock();
1061 }
1062 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063 css_put(&task_memcg->css);
1064 return ret;
1065 }
1066
1067 /**
1068 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1069 * @memcg: the memory cgroup
1070 *
1071 * Returns the maximum amount of memory @mem can be charged with, in
1072 * pages.
1073 */
1074 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075 {
1076 unsigned long margin = 0;
1077 unsigned long count;
1078 unsigned long limit;
1079
1080 count = page_counter_read(&memcg->memory);
1081 limit = READ_ONCE(memcg->memory.limit);
1082 if (count < limit)
1083 margin = limit - count;
1084
1085 if (do_memsw_account()) {
1086 count = page_counter_read(&memcg->memsw);
1087 limit = READ_ONCE(memcg->memsw.limit);
1088 if (count <= limit)
1089 margin = min(margin, limit - count);
1090 else
1091 margin = 0;
1092 }
1093
1094 return margin;
1095 }
1096
1097 /*
1098 * A routine for checking "mem" is under move_account() or not.
1099 *
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
1103 */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
1108 bool ret = false;
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
1118
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122 spin_unlock(&mc.lock);
1123 return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128 if (mc.moving_task && current != mc.moving_task) {
1129 if (mem_cgroup_under_move(memcg)) {
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153 struct mem_cgroup *iter;
1154 unsigned int i;
1155
1156 rcu_read_lock();
1157
1158 if (p) {
1159 pr_info("Task in ");
1160 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 pr_cont(" killed as a result of limit of ");
1162 } else {
1163 pr_info("Memory limit reached of cgroup ");
1164 }
1165
1166 pr_cont_cgroup_path(memcg->css.cgroup);
1167 pr_cont("\n");
1168
1169 rcu_read_unlock();
1170
1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 K((u64)page_counter_read(&memcg->memory)),
1173 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memsw)),
1176 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->kmem)),
1179 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180
1181 for_each_mem_cgroup_tree(iter, memcg) {
1182 pr_info("Memory cgroup stats for ");
1183 pr_cont_cgroup_path(iter->css.cgroup);
1184 pr_cont(":");
1185
1186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188 continue;
1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 K(mem_cgroup_read_stat(iter, i)));
1191 }
1192
1193 for (i = 0; i < NR_LRU_LISTS; i++)
1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197 pr_cont("\n");
1198 }
1199 }
1200
1201 /*
1202 * This function returns the number of memcg under hierarchy tree. Returns
1203 * 1(self count) if no children.
1204 */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207 int num = 0;
1208 struct mem_cgroup *iter;
1209
1210 for_each_mem_cgroup_tree(iter, memcg)
1211 num++;
1212 return num;
1213 }
1214
1215 /*
1216 * Return the memory (and swap, if configured) limit for a memcg.
1217 */
1218 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220 unsigned long limit;
1221
1222 limit = memcg->memory.limit;
1223 if (mem_cgroup_swappiness(memcg)) {
1224 unsigned long memsw_limit;
1225 unsigned long swap_limit;
1226
1227 memsw_limit = memcg->memsw.limit;
1228 swap_limit = memcg->swap.limit;
1229 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 limit = min(limit + swap_limit, memsw_limit);
1231 }
1232 return limit;
1233 }
1234
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236 int order)
1237 {
1238 struct oom_control oc = {
1239 .zonelist = NULL,
1240 .nodemask = NULL,
1241 .memcg = memcg,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 bool ret;
1246
1247 mutex_lock(&oom_lock);
1248 ret = out_of_memory(&oc);
1249 mutex_unlock(&oom_lock);
1250 return ret;
1251 }
1252
1253 #if MAX_NUMNODES > 1
1254
1255 /**
1256 * test_mem_cgroup_node_reclaimable
1257 * @memcg: the target memcg
1258 * @nid: the node ID to be checked.
1259 * @noswap : specify true here if the user wants flle only information.
1260 *
1261 * This function returns whether the specified memcg contains any
1262 * reclaimable pages on a node. Returns true if there are any reclaimable
1263 * pages in the node.
1264 */
1265 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266 int nid, bool noswap)
1267 {
1268 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269 return true;
1270 if (noswap || !total_swap_pages)
1271 return false;
1272 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273 return true;
1274 return false;
1275
1276 }
1277
1278 /*
1279 * Always updating the nodemask is not very good - even if we have an empty
1280 * list or the wrong list here, we can start from some node and traverse all
1281 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282 *
1283 */
1284 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 {
1286 int nid;
1287 /*
1288 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289 * pagein/pageout changes since the last update.
1290 */
1291 if (!atomic_read(&memcg->numainfo_events))
1292 return;
1293 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294 return;
1295
1296 /* make a nodemask where this memcg uses memory from */
1297 memcg->scan_nodes = node_states[N_MEMORY];
1298
1299 for_each_node_mask(nid, node_states[N_MEMORY]) {
1300
1301 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302 node_clear(nid, memcg->scan_nodes);
1303 }
1304
1305 atomic_set(&memcg->numainfo_events, 0);
1306 atomic_set(&memcg->numainfo_updating, 0);
1307 }
1308
1309 /*
1310 * Selecting a node where we start reclaim from. Because what we need is just
1311 * reducing usage counter, start from anywhere is O,K. Considering
1312 * memory reclaim from current node, there are pros. and cons.
1313 *
1314 * Freeing memory from current node means freeing memory from a node which
1315 * we'll use or we've used. So, it may make LRU bad. And if several threads
1316 * hit limits, it will see a contention on a node. But freeing from remote
1317 * node means more costs for memory reclaim because of memory latency.
1318 *
1319 * Now, we use round-robin. Better algorithm is welcomed.
1320 */
1321 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 {
1323 int node;
1324
1325 mem_cgroup_may_update_nodemask(memcg);
1326 node = memcg->last_scanned_node;
1327
1328 node = next_node_in(node, memcg->scan_nodes);
1329 /*
1330 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331 * last time it really checked all the LRUs due to rate limiting.
1332 * Fallback to the current node in that case for simplicity.
1333 */
1334 if (unlikely(node == MAX_NUMNODES))
1335 node = numa_node_id();
1336
1337 memcg->last_scanned_node = node;
1338 return node;
1339 }
1340 #else
1341 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 {
1343 return 0;
1344 }
1345 #endif
1346
1347 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348 pg_data_t *pgdat,
1349 gfp_t gfp_mask,
1350 unsigned long *total_scanned)
1351 {
1352 struct mem_cgroup *victim = NULL;
1353 int total = 0;
1354 int loop = 0;
1355 unsigned long excess;
1356 unsigned long nr_scanned;
1357 struct mem_cgroup_reclaim_cookie reclaim = {
1358 .pgdat = pgdat,
1359 .priority = 0,
1360 };
1361
1362 excess = soft_limit_excess(root_memcg);
1363
1364 while (1) {
1365 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366 if (!victim) {
1367 loop++;
1368 if (loop >= 2) {
1369 /*
1370 * If we have not been able to reclaim
1371 * anything, it might because there are
1372 * no reclaimable pages under this hierarchy
1373 */
1374 if (!total)
1375 break;
1376 /*
1377 * We want to do more targeted reclaim.
1378 * excess >> 2 is not to excessive so as to
1379 * reclaim too much, nor too less that we keep
1380 * coming back to reclaim from this cgroup
1381 */
1382 if (total >= (excess >> 2) ||
1383 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384 break;
1385 }
1386 continue;
1387 }
1388 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389 pgdat, &nr_scanned);
1390 *total_scanned += nr_scanned;
1391 if (!soft_limit_excess(root_memcg))
1392 break;
1393 }
1394 mem_cgroup_iter_break(root_memcg, victim);
1395 return total;
1396 }
1397
1398 #ifdef CONFIG_LOCKDEP
1399 static struct lockdep_map memcg_oom_lock_dep_map = {
1400 .name = "memcg_oom_lock",
1401 };
1402 #endif
1403
1404 static DEFINE_SPINLOCK(memcg_oom_lock);
1405
1406 /*
1407 * Check OOM-Killer is already running under our hierarchy.
1408 * If someone is running, return false.
1409 */
1410 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1411 {
1412 struct mem_cgroup *iter, *failed = NULL;
1413
1414 spin_lock(&memcg_oom_lock);
1415
1416 for_each_mem_cgroup_tree(iter, memcg) {
1417 if (iter->oom_lock) {
1418 /*
1419 * this subtree of our hierarchy is already locked
1420 * so we cannot give a lock.
1421 */
1422 failed = iter;
1423 mem_cgroup_iter_break(memcg, iter);
1424 break;
1425 } else
1426 iter->oom_lock = true;
1427 }
1428
1429 if (failed) {
1430 /*
1431 * OK, we failed to lock the whole subtree so we have
1432 * to clean up what we set up to the failing subtree
1433 */
1434 for_each_mem_cgroup_tree(iter, memcg) {
1435 if (iter == failed) {
1436 mem_cgroup_iter_break(memcg, iter);
1437 break;
1438 }
1439 iter->oom_lock = false;
1440 }
1441 } else
1442 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443
1444 spin_unlock(&memcg_oom_lock);
1445
1446 return !failed;
1447 }
1448
1449 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450 {
1451 struct mem_cgroup *iter;
1452
1453 spin_lock(&memcg_oom_lock);
1454 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455 for_each_mem_cgroup_tree(iter, memcg)
1456 iter->oom_lock = false;
1457 spin_unlock(&memcg_oom_lock);
1458 }
1459
1460 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 {
1462 struct mem_cgroup *iter;
1463
1464 spin_lock(&memcg_oom_lock);
1465 for_each_mem_cgroup_tree(iter, memcg)
1466 iter->under_oom++;
1467 spin_unlock(&memcg_oom_lock);
1468 }
1469
1470 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 {
1472 struct mem_cgroup *iter;
1473
1474 /*
1475 * When a new child is created while the hierarchy is under oom,
1476 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1477 */
1478 spin_lock(&memcg_oom_lock);
1479 for_each_mem_cgroup_tree(iter, memcg)
1480 if (iter->under_oom > 0)
1481 iter->under_oom--;
1482 spin_unlock(&memcg_oom_lock);
1483 }
1484
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
1487 struct oom_wait_info {
1488 struct mem_cgroup *memcg;
1489 wait_queue_t wait;
1490 };
1491
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493 unsigned mode, int sync, void *arg)
1494 {
1495 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496 struct mem_cgroup *oom_wait_memcg;
1497 struct oom_wait_info *oom_wait_info;
1498
1499 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500 oom_wait_memcg = oom_wait_info->memcg;
1501
1502 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1504 return 0;
1505 return autoremove_wake_function(wait, mode, sync, arg);
1506 }
1507
1508 static void memcg_oom_recover(struct mem_cgroup *memcg)
1509 {
1510 /*
1511 * For the following lockless ->under_oom test, the only required
1512 * guarantee is that it must see the state asserted by an OOM when
1513 * this function is called as a result of userland actions
1514 * triggered by the notification of the OOM. This is trivially
1515 * achieved by invoking mem_cgroup_mark_under_oom() before
1516 * triggering notification.
1517 */
1518 if (memcg && memcg->under_oom)
1519 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 }
1521
1522 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523 {
1524 if (!current->memcg_may_oom)
1525 return;
1526 /*
1527 * We are in the middle of the charge context here, so we
1528 * don't want to block when potentially sitting on a callstack
1529 * that holds all kinds of filesystem and mm locks.
1530 *
1531 * Also, the caller may handle a failed allocation gracefully
1532 * (like optional page cache readahead) and so an OOM killer
1533 * invocation might not even be necessary.
1534 *
1535 * That's why we don't do anything here except remember the
1536 * OOM context and then deal with it at the end of the page
1537 * fault when the stack is unwound, the locks are released,
1538 * and when we know whether the fault was overall successful.
1539 */
1540 css_get(&memcg->css);
1541 current->memcg_in_oom = memcg;
1542 current->memcg_oom_gfp_mask = mask;
1543 current->memcg_oom_order = order;
1544 }
1545
1546 /**
1547 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548 * @handle: actually kill/wait or just clean up the OOM state
1549 *
1550 * This has to be called at the end of a page fault if the memcg OOM
1551 * handler was enabled.
1552 *
1553 * Memcg supports userspace OOM handling where failed allocations must
1554 * sleep on a waitqueue until the userspace task resolves the
1555 * situation. Sleeping directly in the charge context with all kinds
1556 * of locks held is not a good idea, instead we remember an OOM state
1557 * in the task and mem_cgroup_oom_synchronize() has to be called at
1558 * the end of the page fault to complete the OOM handling.
1559 *
1560 * Returns %true if an ongoing memcg OOM situation was detected and
1561 * completed, %false otherwise.
1562 */
1563 bool mem_cgroup_oom_synchronize(bool handle)
1564 {
1565 struct mem_cgroup *memcg = current->memcg_in_oom;
1566 struct oom_wait_info owait;
1567 bool locked;
1568
1569 /* OOM is global, do not handle */
1570 if (!memcg)
1571 return false;
1572
1573 if (!handle)
1574 goto cleanup;
1575
1576 owait.memcg = memcg;
1577 owait.wait.flags = 0;
1578 owait.wait.func = memcg_oom_wake_function;
1579 owait.wait.private = current;
1580 INIT_LIST_HEAD(&owait.wait.task_list);
1581
1582 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583 mem_cgroup_mark_under_oom(memcg);
1584
1585 locked = mem_cgroup_oom_trylock(memcg);
1586
1587 if (locked)
1588 mem_cgroup_oom_notify(memcg);
1589
1590 if (locked && !memcg->oom_kill_disable) {
1591 mem_cgroup_unmark_under_oom(memcg);
1592 finish_wait(&memcg_oom_waitq, &owait.wait);
1593 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594 current->memcg_oom_order);
1595 } else {
1596 schedule();
1597 mem_cgroup_unmark_under_oom(memcg);
1598 finish_wait(&memcg_oom_waitq, &owait.wait);
1599 }
1600
1601 if (locked) {
1602 mem_cgroup_oom_unlock(memcg);
1603 /*
1604 * There is no guarantee that an OOM-lock contender
1605 * sees the wakeups triggered by the OOM kill
1606 * uncharges. Wake any sleepers explicitely.
1607 */
1608 memcg_oom_recover(memcg);
1609 }
1610 cleanup:
1611 current->memcg_in_oom = NULL;
1612 css_put(&memcg->css);
1613 return true;
1614 }
1615
1616 /**
1617 * lock_page_memcg - lock a page->mem_cgroup binding
1618 * @page: the page
1619 *
1620 * This function protects unlocked LRU pages from being moved to
1621 * another cgroup and stabilizes their page->mem_cgroup binding.
1622 */
1623 void lock_page_memcg(struct page *page)
1624 {
1625 struct mem_cgroup *memcg;
1626 unsigned long flags;
1627
1628 /*
1629 * The RCU lock is held throughout the transaction. The fast
1630 * path can get away without acquiring the memcg->move_lock
1631 * because page moving starts with an RCU grace period.
1632 */
1633 rcu_read_lock();
1634
1635 if (mem_cgroup_disabled())
1636 return;
1637 again:
1638 memcg = page->mem_cgroup;
1639 if (unlikely(!memcg))
1640 return;
1641
1642 if (atomic_read(&memcg->moving_account) <= 0)
1643 return;
1644
1645 spin_lock_irqsave(&memcg->move_lock, flags);
1646 if (memcg != page->mem_cgroup) {
1647 spin_unlock_irqrestore(&memcg->move_lock, flags);
1648 goto again;
1649 }
1650
1651 /*
1652 * When charge migration first begins, we can have locked and
1653 * unlocked page stat updates happening concurrently. Track
1654 * the task who has the lock for unlock_page_memcg().
1655 */
1656 memcg->move_lock_task = current;
1657 memcg->move_lock_flags = flags;
1658
1659 return;
1660 }
1661 EXPORT_SYMBOL(lock_page_memcg);
1662
1663 /**
1664 * unlock_page_memcg - unlock a page->mem_cgroup binding
1665 * @page: the page
1666 */
1667 void unlock_page_memcg(struct page *page)
1668 {
1669 struct mem_cgroup *memcg = page->mem_cgroup;
1670
1671 if (memcg && memcg->move_lock_task == current) {
1672 unsigned long flags = memcg->move_lock_flags;
1673
1674 memcg->move_lock_task = NULL;
1675 memcg->move_lock_flags = 0;
1676
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 }
1679
1680 rcu_read_unlock();
1681 }
1682 EXPORT_SYMBOL(unlock_page_memcg);
1683
1684 /*
1685 * size of first charge trial. "32" comes from vmscan.c's magic value.
1686 * TODO: maybe necessary to use big numbers in big irons.
1687 */
1688 #define CHARGE_BATCH 32U
1689 struct memcg_stock_pcp {
1690 struct mem_cgroup *cached; /* this never be root cgroup */
1691 unsigned int nr_pages;
1692 struct work_struct work;
1693 unsigned long flags;
1694 #define FLUSHING_CACHED_CHARGE 0
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static DEFINE_MUTEX(percpu_charge_mutex);
1698
1699 /**
1700 * consume_stock: Try to consume stocked charge on this cpu.
1701 * @memcg: memcg to consume from.
1702 * @nr_pages: how many pages to charge.
1703 *
1704 * The charges will only happen if @memcg matches the current cpu's memcg
1705 * stock, and at least @nr_pages are available in that stock. Failure to
1706 * service an allocation will refill the stock.
1707 *
1708 * returns true if successful, false otherwise.
1709 */
1710 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 {
1712 struct memcg_stock_pcp *stock;
1713 bool ret = false;
1714
1715 if (nr_pages > CHARGE_BATCH)
1716 return ret;
1717
1718 stock = &get_cpu_var(memcg_stock);
1719 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1720 stock->nr_pages -= nr_pages;
1721 ret = true;
1722 }
1723 put_cpu_var(memcg_stock);
1724 return ret;
1725 }
1726
1727 /*
1728 * Returns stocks cached in percpu and reset cached information.
1729 */
1730 static void drain_stock(struct memcg_stock_pcp *stock)
1731 {
1732 struct mem_cgroup *old = stock->cached;
1733
1734 if (stock->nr_pages) {
1735 page_counter_uncharge(&old->memory, stock->nr_pages);
1736 if (do_memsw_account())
1737 page_counter_uncharge(&old->memsw, stock->nr_pages);
1738 css_put_many(&old->css, stock->nr_pages);
1739 stock->nr_pages = 0;
1740 }
1741 stock->cached = NULL;
1742 }
1743
1744 /*
1745 * This must be called under preempt disabled or must be called by
1746 * a thread which is pinned to local cpu.
1747 */
1748 static void drain_local_stock(struct work_struct *dummy)
1749 {
1750 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1751 drain_stock(stock);
1752 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1753 }
1754
1755 /*
1756 * Cache charges(val) to local per_cpu area.
1757 * This will be consumed by consume_stock() function, later.
1758 */
1759 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1760 {
1761 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1762
1763 if (stock->cached != memcg) { /* reset if necessary */
1764 drain_stock(stock);
1765 stock->cached = memcg;
1766 }
1767 stock->nr_pages += nr_pages;
1768 put_cpu_var(memcg_stock);
1769 }
1770
1771 /*
1772 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1773 * of the hierarchy under it.
1774 */
1775 static void drain_all_stock(struct mem_cgroup *root_memcg)
1776 {
1777 int cpu, curcpu;
1778
1779 /* If someone's already draining, avoid adding running more workers. */
1780 if (!mutex_trylock(&percpu_charge_mutex))
1781 return;
1782 /* Notify other cpus that system-wide "drain" is running */
1783 get_online_cpus();
1784 curcpu = get_cpu();
1785 for_each_online_cpu(cpu) {
1786 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1787 struct mem_cgroup *memcg;
1788
1789 memcg = stock->cached;
1790 if (!memcg || !stock->nr_pages)
1791 continue;
1792 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1793 continue;
1794 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1795 if (cpu == curcpu)
1796 drain_local_stock(&stock->work);
1797 else
1798 schedule_work_on(cpu, &stock->work);
1799 }
1800 }
1801 put_cpu();
1802 put_online_cpus();
1803 mutex_unlock(&percpu_charge_mutex);
1804 }
1805
1806 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1807 unsigned long action,
1808 void *hcpu)
1809 {
1810 int cpu = (unsigned long)hcpu;
1811 struct memcg_stock_pcp *stock;
1812
1813 if (action == CPU_ONLINE)
1814 return NOTIFY_OK;
1815
1816 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1817 return NOTIFY_OK;
1818
1819 stock = &per_cpu(memcg_stock, cpu);
1820 drain_stock(stock);
1821 return NOTIFY_OK;
1822 }
1823
1824 static void reclaim_high(struct mem_cgroup *memcg,
1825 unsigned int nr_pages,
1826 gfp_t gfp_mask)
1827 {
1828 do {
1829 if (page_counter_read(&memcg->memory) <= memcg->high)
1830 continue;
1831 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1832 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1833 } while ((memcg = parent_mem_cgroup(memcg)));
1834 }
1835
1836 static void high_work_func(struct work_struct *work)
1837 {
1838 struct mem_cgroup *memcg;
1839
1840 memcg = container_of(work, struct mem_cgroup, high_work);
1841 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1842 }
1843
1844 /*
1845 * Scheduled by try_charge() to be executed from the userland return path
1846 * and reclaims memory over the high limit.
1847 */
1848 void mem_cgroup_handle_over_high(void)
1849 {
1850 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1851 struct mem_cgroup *memcg;
1852
1853 if (likely(!nr_pages))
1854 return;
1855
1856 memcg = get_mem_cgroup_from_mm(current->mm);
1857 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1858 css_put(&memcg->css);
1859 current->memcg_nr_pages_over_high = 0;
1860 }
1861
1862 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1863 unsigned int nr_pages)
1864 {
1865 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1866 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1867 struct mem_cgroup *mem_over_limit;
1868 struct page_counter *counter;
1869 unsigned long nr_reclaimed;
1870 bool may_swap = true;
1871 bool drained = false;
1872
1873 if (mem_cgroup_is_root(memcg))
1874 return 0;
1875 retry:
1876 if (consume_stock(memcg, nr_pages))
1877 return 0;
1878
1879 if (!do_memsw_account() ||
1880 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1881 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1882 goto done_restock;
1883 if (do_memsw_account())
1884 page_counter_uncharge(&memcg->memsw, batch);
1885 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1886 } else {
1887 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1888 may_swap = false;
1889 }
1890
1891 if (batch > nr_pages) {
1892 batch = nr_pages;
1893 goto retry;
1894 }
1895
1896 /*
1897 * Unlike in global OOM situations, memcg is not in a physical
1898 * memory shortage. Allow dying and OOM-killed tasks to
1899 * bypass the last charges so that they can exit quickly and
1900 * free their memory.
1901 */
1902 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1903 fatal_signal_pending(current) ||
1904 current->flags & PF_EXITING))
1905 goto force;
1906
1907 if (unlikely(task_in_memcg_oom(current)))
1908 goto nomem;
1909
1910 if (!gfpflags_allow_blocking(gfp_mask))
1911 goto nomem;
1912
1913 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1914
1915 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1916 gfp_mask, may_swap);
1917
1918 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1919 goto retry;
1920
1921 if (!drained) {
1922 drain_all_stock(mem_over_limit);
1923 drained = true;
1924 goto retry;
1925 }
1926
1927 if (gfp_mask & __GFP_NORETRY)
1928 goto nomem;
1929 /*
1930 * Even though the limit is exceeded at this point, reclaim
1931 * may have been able to free some pages. Retry the charge
1932 * before killing the task.
1933 *
1934 * Only for regular pages, though: huge pages are rather
1935 * unlikely to succeed so close to the limit, and we fall back
1936 * to regular pages anyway in case of failure.
1937 */
1938 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1939 goto retry;
1940 /*
1941 * At task move, charge accounts can be doubly counted. So, it's
1942 * better to wait until the end of task_move if something is going on.
1943 */
1944 if (mem_cgroup_wait_acct_move(mem_over_limit))
1945 goto retry;
1946
1947 if (nr_retries--)
1948 goto retry;
1949
1950 if (gfp_mask & __GFP_NOFAIL)
1951 goto force;
1952
1953 if (fatal_signal_pending(current))
1954 goto force;
1955
1956 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1957
1958 mem_cgroup_oom(mem_over_limit, gfp_mask,
1959 get_order(nr_pages * PAGE_SIZE));
1960 nomem:
1961 if (!(gfp_mask & __GFP_NOFAIL))
1962 return -ENOMEM;
1963 force:
1964 /*
1965 * The allocation either can't fail or will lead to more memory
1966 * being freed very soon. Allow memory usage go over the limit
1967 * temporarily by force charging it.
1968 */
1969 page_counter_charge(&memcg->memory, nr_pages);
1970 if (do_memsw_account())
1971 page_counter_charge(&memcg->memsw, nr_pages);
1972 css_get_many(&memcg->css, nr_pages);
1973
1974 return 0;
1975
1976 done_restock:
1977 css_get_many(&memcg->css, batch);
1978 if (batch > nr_pages)
1979 refill_stock(memcg, batch - nr_pages);
1980
1981 /*
1982 * If the hierarchy is above the normal consumption range, schedule
1983 * reclaim on returning to userland. We can perform reclaim here
1984 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1985 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1986 * not recorded as it most likely matches current's and won't
1987 * change in the meantime. As high limit is checked again before
1988 * reclaim, the cost of mismatch is negligible.
1989 */
1990 do {
1991 if (page_counter_read(&memcg->memory) > memcg->high) {
1992 /* Don't bother a random interrupted task */
1993 if (in_interrupt()) {
1994 schedule_work(&memcg->high_work);
1995 break;
1996 }
1997 current->memcg_nr_pages_over_high += batch;
1998 set_notify_resume(current);
1999 break;
2000 }
2001 } while ((memcg = parent_mem_cgroup(memcg)));
2002
2003 return 0;
2004 }
2005
2006 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2007 {
2008 if (mem_cgroup_is_root(memcg))
2009 return;
2010
2011 page_counter_uncharge(&memcg->memory, nr_pages);
2012 if (do_memsw_account())
2013 page_counter_uncharge(&memcg->memsw, nr_pages);
2014
2015 css_put_many(&memcg->css, nr_pages);
2016 }
2017
2018 static void lock_page_lru(struct page *page, int *isolated)
2019 {
2020 struct zone *zone = page_zone(page);
2021
2022 spin_lock_irq(zone_lru_lock(zone));
2023 if (PageLRU(page)) {
2024 struct lruvec *lruvec;
2025
2026 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2027 ClearPageLRU(page);
2028 del_page_from_lru_list(page, lruvec, page_lru(page));
2029 *isolated = 1;
2030 } else
2031 *isolated = 0;
2032 }
2033
2034 static void unlock_page_lru(struct page *page, int isolated)
2035 {
2036 struct zone *zone = page_zone(page);
2037
2038 if (isolated) {
2039 struct lruvec *lruvec;
2040
2041 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2042 VM_BUG_ON_PAGE(PageLRU(page), page);
2043 SetPageLRU(page);
2044 add_page_to_lru_list(page, lruvec, page_lru(page));
2045 }
2046 spin_unlock_irq(zone_lru_lock(zone));
2047 }
2048
2049 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2050 bool lrucare)
2051 {
2052 int isolated;
2053
2054 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2055
2056 /*
2057 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2058 * may already be on some other mem_cgroup's LRU. Take care of it.
2059 */
2060 if (lrucare)
2061 lock_page_lru(page, &isolated);
2062
2063 /*
2064 * Nobody should be changing or seriously looking at
2065 * page->mem_cgroup at this point:
2066 *
2067 * - the page is uncharged
2068 *
2069 * - the page is off-LRU
2070 *
2071 * - an anonymous fault has exclusive page access, except for
2072 * a locked page table
2073 *
2074 * - a page cache insertion, a swapin fault, or a migration
2075 * have the page locked
2076 */
2077 page->mem_cgroup = memcg;
2078
2079 if (lrucare)
2080 unlock_page_lru(page, isolated);
2081 }
2082
2083 #ifndef CONFIG_SLOB
2084 static int memcg_alloc_cache_id(void)
2085 {
2086 int id, size;
2087 int err;
2088
2089 id = ida_simple_get(&memcg_cache_ida,
2090 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2091 if (id < 0)
2092 return id;
2093
2094 if (id < memcg_nr_cache_ids)
2095 return id;
2096
2097 /*
2098 * There's no space for the new id in memcg_caches arrays,
2099 * so we have to grow them.
2100 */
2101 down_write(&memcg_cache_ids_sem);
2102
2103 size = 2 * (id + 1);
2104 if (size < MEMCG_CACHES_MIN_SIZE)
2105 size = MEMCG_CACHES_MIN_SIZE;
2106 else if (size > MEMCG_CACHES_MAX_SIZE)
2107 size = MEMCG_CACHES_MAX_SIZE;
2108
2109 err = memcg_update_all_caches(size);
2110 if (!err)
2111 err = memcg_update_all_list_lrus(size);
2112 if (!err)
2113 memcg_nr_cache_ids = size;
2114
2115 up_write(&memcg_cache_ids_sem);
2116
2117 if (err) {
2118 ida_simple_remove(&memcg_cache_ida, id);
2119 return err;
2120 }
2121 return id;
2122 }
2123
2124 static void memcg_free_cache_id(int id)
2125 {
2126 ida_simple_remove(&memcg_cache_ida, id);
2127 }
2128
2129 struct memcg_kmem_cache_create_work {
2130 struct mem_cgroup *memcg;
2131 struct kmem_cache *cachep;
2132 struct work_struct work;
2133 };
2134
2135 static void memcg_kmem_cache_create_func(struct work_struct *w)
2136 {
2137 struct memcg_kmem_cache_create_work *cw =
2138 container_of(w, struct memcg_kmem_cache_create_work, work);
2139 struct mem_cgroup *memcg = cw->memcg;
2140 struct kmem_cache *cachep = cw->cachep;
2141
2142 memcg_create_kmem_cache(memcg, cachep);
2143
2144 css_put(&memcg->css);
2145 kfree(cw);
2146 }
2147
2148 /*
2149 * Enqueue the creation of a per-memcg kmem_cache.
2150 */
2151 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2152 struct kmem_cache *cachep)
2153 {
2154 struct memcg_kmem_cache_create_work *cw;
2155
2156 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2157 if (!cw)
2158 return;
2159
2160 css_get(&memcg->css);
2161
2162 cw->memcg = memcg;
2163 cw->cachep = cachep;
2164 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2165
2166 schedule_work(&cw->work);
2167 }
2168
2169 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2170 struct kmem_cache *cachep)
2171 {
2172 /*
2173 * We need to stop accounting when we kmalloc, because if the
2174 * corresponding kmalloc cache is not yet created, the first allocation
2175 * in __memcg_schedule_kmem_cache_create will recurse.
2176 *
2177 * However, it is better to enclose the whole function. Depending on
2178 * the debugging options enabled, INIT_WORK(), for instance, can
2179 * trigger an allocation. This too, will make us recurse. Because at
2180 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2181 * the safest choice is to do it like this, wrapping the whole function.
2182 */
2183 current->memcg_kmem_skip_account = 1;
2184 __memcg_schedule_kmem_cache_create(memcg, cachep);
2185 current->memcg_kmem_skip_account = 0;
2186 }
2187
2188 static inline bool memcg_kmem_bypass(void)
2189 {
2190 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2191 return true;
2192 return false;
2193 }
2194
2195 /**
2196 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2197 * @cachep: the original global kmem cache
2198 *
2199 * Return the kmem_cache we're supposed to use for a slab allocation.
2200 * We try to use the current memcg's version of the cache.
2201 *
2202 * If the cache does not exist yet, if we are the first user of it, we
2203 * create it asynchronously in a workqueue and let the current allocation
2204 * go through with the original cache.
2205 *
2206 * This function takes a reference to the cache it returns to assure it
2207 * won't get destroyed while we are working with it. Once the caller is
2208 * done with it, memcg_kmem_put_cache() must be called to release the
2209 * reference.
2210 */
2211 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2212 {
2213 struct mem_cgroup *memcg;
2214 struct kmem_cache *memcg_cachep;
2215 int kmemcg_id;
2216
2217 VM_BUG_ON(!is_root_cache(cachep));
2218
2219 if (memcg_kmem_bypass())
2220 return cachep;
2221
2222 if (current->memcg_kmem_skip_account)
2223 return cachep;
2224
2225 memcg = get_mem_cgroup_from_mm(current->mm);
2226 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2227 if (kmemcg_id < 0)
2228 goto out;
2229
2230 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2231 if (likely(memcg_cachep))
2232 return memcg_cachep;
2233
2234 /*
2235 * If we are in a safe context (can wait, and not in interrupt
2236 * context), we could be be predictable and return right away.
2237 * This would guarantee that the allocation being performed
2238 * already belongs in the new cache.
2239 *
2240 * However, there are some clashes that can arrive from locking.
2241 * For instance, because we acquire the slab_mutex while doing
2242 * memcg_create_kmem_cache, this means no further allocation
2243 * could happen with the slab_mutex held. So it's better to
2244 * defer everything.
2245 */
2246 memcg_schedule_kmem_cache_create(memcg, cachep);
2247 out:
2248 css_put(&memcg->css);
2249 return cachep;
2250 }
2251
2252 /**
2253 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2254 * @cachep: the cache returned by memcg_kmem_get_cache
2255 */
2256 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2257 {
2258 if (!is_root_cache(cachep))
2259 css_put(&cachep->memcg_params.memcg->css);
2260 }
2261
2262 /**
2263 * memcg_kmem_charge: charge a kmem page
2264 * @page: page to charge
2265 * @gfp: reclaim mode
2266 * @order: allocation order
2267 * @memcg: memory cgroup to charge
2268 *
2269 * Returns 0 on success, an error code on failure.
2270 */
2271 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2272 struct mem_cgroup *memcg)
2273 {
2274 unsigned int nr_pages = 1 << order;
2275 struct page_counter *counter;
2276 int ret;
2277
2278 ret = try_charge(memcg, gfp, nr_pages);
2279 if (ret)
2280 return ret;
2281
2282 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2283 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2284 cancel_charge(memcg, nr_pages);
2285 return -ENOMEM;
2286 }
2287
2288 page->mem_cgroup = memcg;
2289
2290 return 0;
2291 }
2292
2293 /**
2294 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2295 * @page: page to charge
2296 * @gfp: reclaim mode
2297 * @order: allocation order
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2302 {
2303 struct mem_cgroup *memcg;
2304 int ret = 0;
2305
2306 if (memcg_kmem_bypass())
2307 return 0;
2308
2309 memcg = get_mem_cgroup_from_mm(current->mm);
2310 if (!mem_cgroup_is_root(memcg)) {
2311 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2312 if (!ret)
2313 __SetPageKmemcg(page);
2314 }
2315 css_put(&memcg->css);
2316 return ret;
2317 }
2318 /**
2319 * memcg_kmem_uncharge: uncharge a kmem page
2320 * @page: page to uncharge
2321 * @order: allocation order
2322 */
2323 void memcg_kmem_uncharge(struct page *page, int order)
2324 {
2325 struct mem_cgroup *memcg = page->mem_cgroup;
2326 unsigned int nr_pages = 1 << order;
2327
2328 if (!memcg)
2329 return;
2330
2331 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2332
2333 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2334 page_counter_uncharge(&memcg->kmem, nr_pages);
2335
2336 page_counter_uncharge(&memcg->memory, nr_pages);
2337 if (do_memsw_account())
2338 page_counter_uncharge(&memcg->memsw, nr_pages);
2339
2340 page->mem_cgroup = NULL;
2341
2342 /* slab pages do not have PageKmemcg flag set */
2343 if (PageKmemcg(page))
2344 __ClearPageKmemcg(page);
2345
2346 css_put_many(&memcg->css, nr_pages);
2347 }
2348 #endif /* !CONFIG_SLOB */
2349
2350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2351
2352 /*
2353 * Because tail pages are not marked as "used", set it. We're under
2354 * zone_lru_lock and migration entries setup in all page mappings.
2355 */
2356 void mem_cgroup_split_huge_fixup(struct page *head)
2357 {
2358 int i;
2359
2360 if (mem_cgroup_disabled())
2361 return;
2362
2363 for (i = 1; i < HPAGE_PMD_NR; i++)
2364 head[i].mem_cgroup = head->mem_cgroup;
2365
2366 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2367 HPAGE_PMD_NR);
2368 }
2369 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2370
2371 #ifdef CONFIG_MEMCG_SWAP
2372 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2373 bool charge)
2374 {
2375 int val = (charge) ? 1 : -1;
2376 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2377 }
2378
2379 /**
2380 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2381 * @entry: swap entry to be moved
2382 * @from: mem_cgroup which the entry is moved from
2383 * @to: mem_cgroup which the entry is moved to
2384 *
2385 * It succeeds only when the swap_cgroup's record for this entry is the same
2386 * as the mem_cgroup's id of @from.
2387 *
2388 * Returns 0 on success, -EINVAL on failure.
2389 *
2390 * The caller must have charged to @to, IOW, called page_counter_charge() about
2391 * both res and memsw, and called css_get().
2392 */
2393 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2394 struct mem_cgroup *from, struct mem_cgroup *to)
2395 {
2396 unsigned short old_id, new_id;
2397
2398 old_id = mem_cgroup_id(from);
2399 new_id = mem_cgroup_id(to);
2400
2401 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2402 mem_cgroup_swap_statistics(from, false);
2403 mem_cgroup_swap_statistics(to, true);
2404 return 0;
2405 }
2406 return -EINVAL;
2407 }
2408 #else
2409 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2410 struct mem_cgroup *from, struct mem_cgroup *to)
2411 {
2412 return -EINVAL;
2413 }
2414 #endif
2415
2416 static DEFINE_MUTEX(memcg_limit_mutex);
2417
2418 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2419 unsigned long limit)
2420 {
2421 unsigned long curusage;
2422 unsigned long oldusage;
2423 bool enlarge = false;
2424 int retry_count;
2425 int ret;
2426
2427 /*
2428 * For keeping hierarchical_reclaim simple, how long we should retry
2429 * is depends on callers. We set our retry-count to be function
2430 * of # of children which we should visit in this loop.
2431 */
2432 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2433 mem_cgroup_count_children(memcg);
2434
2435 oldusage = page_counter_read(&memcg->memory);
2436
2437 do {
2438 if (signal_pending(current)) {
2439 ret = -EINTR;
2440 break;
2441 }
2442
2443 mutex_lock(&memcg_limit_mutex);
2444 if (limit > memcg->memsw.limit) {
2445 mutex_unlock(&memcg_limit_mutex);
2446 ret = -EINVAL;
2447 break;
2448 }
2449 if (limit > memcg->memory.limit)
2450 enlarge = true;
2451 ret = page_counter_limit(&memcg->memory, limit);
2452 mutex_unlock(&memcg_limit_mutex);
2453
2454 if (!ret)
2455 break;
2456
2457 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2458
2459 curusage = page_counter_read(&memcg->memory);
2460 /* Usage is reduced ? */
2461 if (curusage >= oldusage)
2462 retry_count--;
2463 else
2464 oldusage = curusage;
2465 } while (retry_count);
2466
2467 if (!ret && enlarge)
2468 memcg_oom_recover(memcg);
2469
2470 return ret;
2471 }
2472
2473 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2474 unsigned long limit)
2475 {
2476 unsigned long curusage;
2477 unsigned long oldusage;
2478 bool enlarge = false;
2479 int retry_count;
2480 int ret;
2481
2482 /* see mem_cgroup_resize_res_limit */
2483 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2484 mem_cgroup_count_children(memcg);
2485
2486 oldusage = page_counter_read(&memcg->memsw);
2487
2488 do {
2489 if (signal_pending(current)) {
2490 ret = -EINTR;
2491 break;
2492 }
2493
2494 mutex_lock(&memcg_limit_mutex);
2495 if (limit < memcg->memory.limit) {
2496 mutex_unlock(&memcg_limit_mutex);
2497 ret = -EINVAL;
2498 break;
2499 }
2500 if (limit > memcg->memsw.limit)
2501 enlarge = true;
2502 ret = page_counter_limit(&memcg->memsw, limit);
2503 mutex_unlock(&memcg_limit_mutex);
2504
2505 if (!ret)
2506 break;
2507
2508 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2509
2510 curusage = page_counter_read(&memcg->memsw);
2511 /* Usage is reduced ? */
2512 if (curusage >= oldusage)
2513 retry_count--;
2514 else
2515 oldusage = curusage;
2516 } while (retry_count);
2517
2518 if (!ret && enlarge)
2519 memcg_oom_recover(memcg);
2520
2521 return ret;
2522 }
2523
2524 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2525 gfp_t gfp_mask,
2526 unsigned long *total_scanned)
2527 {
2528 unsigned long nr_reclaimed = 0;
2529 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2530 unsigned long reclaimed;
2531 int loop = 0;
2532 struct mem_cgroup_tree_per_node *mctz;
2533 unsigned long excess;
2534 unsigned long nr_scanned;
2535
2536 if (order > 0)
2537 return 0;
2538
2539 mctz = soft_limit_tree_node(pgdat->node_id);
2540
2541 /*
2542 * Do not even bother to check the largest node if the root
2543 * is empty. Do it lockless to prevent lock bouncing. Races
2544 * are acceptable as soft limit is best effort anyway.
2545 */
2546 if (RB_EMPTY_ROOT(&mctz->rb_root))
2547 return 0;
2548
2549 /*
2550 * This loop can run a while, specially if mem_cgroup's continuously
2551 * keep exceeding their soft limit and putting the system under
2552 * pressure
2553 */
2554 do {
2555 if (next_mz)
2556 mz = next_mz;
2557 else
2558 mz = mem_cgroup_largest_soft_limit_node(mctz);
2559 if (!mz)
2560 break;
2561
2562 nr_scanned = 0;
2563 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2564 gfp_mask, &nr_scanned);
2565 nr_reclaimed += reclaimed;
2566 *total_scanned += nr_scanned;
2567 spin_lock_irq(&mctz->lock);
2568 __mem_cgroup_remove_exceeded(mz, mctz);
2569
2570 /*
2571 * If we failed to reclaim anything from this memory cgroup
2572 * it is time to move on to the next cgroup
2573 */
2574 next_mz = NULL;
2575 if (!reclaimed)
2576 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2577
2578 excess = soft_limit_excess(mz->memcg);
2579 /*
2580 * One school of thought says that we should not add
2581 * back the node to the tree if reclaim returns 0.
2582 * But our reclaim could return 0, simply because due
2583 * to priority we are exposing a smaller subset of
2584 * memory to reclaim from. Consider this as a longer
2585 * term TODO.
2586 */
2587 /* If excess == 0, no tree ops */
2588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2589 spin_unlock_irq(&mctz->lock);
2590 css_put(&mz->memcg->css);
2591 loop++;
2592 /*
2593 * Could not reclaim anything and there are no more
2594 * mem cgroups to try or we seem to be looping without
2595 * reclaiming anything.
2596 */
2597 if (!nr_reclaimed &&
2598 (next_mz == NULL ||
2599 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2600 break;
2601 } while (!nr_reclaimed);
2602 if (next_mz)
2603 css_put(&next_mz->memcg->css);
2604 return nr_reclaimed;
2605 }
2606
2607 /*
2608 * Test whether @memcg has children, dead or alive. Note that this
2609 * function doesn't care whether @memcg has use_hierarchy enabled and
2610 * returns %true if there are child csses according to the cgroup
2611 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2612 */
2613 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2614 {
2615 bool ret;
2616
2617 rcu_read_lock();
2618 ret = css_next_child(NULL, &memcg->css);
2619 rcu_read_unlock();
2620 return ret;
2621 }
2622
2623 /*
2624 * Reclaims as many pages from the given memcg as possible.
2625 *
2626 * Caller is responsible for holding css reference for memcg.
2627 */
2628 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2629 {
2630 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2631
2632 /* we call try-to-free pages for make this cgroup empty */
2633 lru_add_drain_all();
2634 /* try to free all pages in this cgroup */
2635 while (nr_retries && page_counter_read(&memcg->memory)) {
2636 int progress;
2637
2638 if (signal_pending(current))
2639 return -EINTR;
2640
2641 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2642 GFP_KERNEL, true);
2643 if (!progress) {
2644 nr_retries--;
2645 /* maybe some writeback is necessary */
2646 congestion_wait(BLK_RW_ASYNC, HZ/10);
2647 }
2648
2649 }
2650
2651 return 0;
2652 }
2653
2654 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2655 char *buf, size_t nbytes,
2656 loff_t off)
2657 {
2658 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2659
2660 if (mem_cgroup_is_root(memcg))
2661 return -EINVAL;
2662 return mem_cgroup_force_empty(memcg) ?: nbytes;
2663 }
2664
2665 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2666 struct cftype *cft)
2667 {
2668 return mem_cgroup_from_css(css)->use_hierarchy;
2669 }
2670
2671 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2672 struct cftype *cft, u64 val)
2673 {
2674 int retval = 0;
2675 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2676 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2677
2678 if (memcg->use_hierarchy == val)
2679 return 0;
2680
2681 /*
2682 * If parent's use_hierarchy is set, we can't make any modifications
2683 * in the child subtrees. If it is unset, then the change can
2684 * occur, provided the current cgroup has no children.
2685 *
2686 * For the root cgroup, parent_mem is NULL, we allow value to be
2687 * set if there are no children.
2688 */
2689 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2690 (val == 1 || val == 0)) {
2691 if (!memcg_has_children(memcg))
2692 memcg->use_hierarchy = val;
2693 else
2694 retval = -EBUSY;
2695 } else
2696 retval = -EINVAL;
2697
2698 return retval;
2699 }
2700
2701 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2702 {
2703 struct mem_cgroup *iter;
2704 int i;
2705
2706 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2707
2708 for_each_mem_cgroup_tree(iter, memcg) {
2709 for (i = 0; i < MEMCG_NR_STAT; i++)
2710 stat[i] += mem_cgroup_read_stat(iter, i);
2711 }
2712 }
2713
2714 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2715 {
2716 struct mem_cgroup *iter;
2717 int i;
2718
2719 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2720
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2723 events[i] += mem_cgroup_read_events(iter, i);
2724 }
2725 }
2726
2727 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2728 {
2729 unsigned long val = 0;
2730
2731 if (mem_cgroup_is_root(memcg)) {
2732 struct mem_cgroup *iter;
2733
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 val += mem_cgroup_read_stat(iter,
2736 MEM_CGROUP_STAT_CACHE);
2737 val += mem_cgroup_read_stat(iter,
2738 MEM_CGROUP_STAT_RSS);
2739 if (swap)
2740 val += mem_cgroup_read_stat(iter,
2741 MEM_CGROUP_STAT_SWAP);
2742 }
2743 } else {
2744 if (!swap)
2745 val = page_counter_read(&memcg->memory);
2746 else
2747 val = page_counter_read(&memcg->memsw);
2748 }
2749 return val;
2750 }
2751
2752 enum {
2753 RES_USAGE,
2754 RES_LIMIT,
2755 RES_MAX_USAGE,
2756 RES_FAILCNT,
2757 RES_SOFT_LIMIT,
2758 };
2759
2760 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2761 struct cftype *cft)
2762 {
2763 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2764 struct page_counter *counter;
2765
2766 switch (MEMFILE_TYPE(cft->private)) {
2767 case _MEM:
2768 counter = &memcg->memory;
2769 break;
2770 case _MEMSWAP:
2771 counter = &memcg->memsw;
2772 break;
2773 case _KMEM:
2774 counter = &memcg->kmem;
2775 break;
2776 case _TCP:
2777 counter = &memcg->tcpmem;
2778 break;
2779 default:
2780 BUG();
2781 }
2782
2783 switch (MEMFILE_ATTR(cft->private)) {
2784 case RES_USAGE:
2785 if (counter == &memcg->memory)
2786 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2787 if (counter == &memcg->memsw)
2788 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2789 return (u64)page_counter_read(counter) * PAGE_SIZE;
2790 case RES_LIMIT:
2791 return (u64)counter->limit * PAGE_SIZE;
2792 case RES_MAX_USAGE:
2793 return (u64)counter->watermark * PAGE_SIZE;
2794 case RES_FAILCNT:
2795 return counter->failcnt;
2796 case RES_SOFT_LIMIT:
2797 return (u64)memcg->soft_limit * PAGE_SIZE;
2798 default:
2799 BUG();
2800 }
2801 }
2802
2803 #ifndef CONFIG_SLOB
2804 static int memcg_online_kmem(struct mem_cgroup *memcg)
2805 {
2806 int memcg_id;
2807
2808 if (cgroup_memory_nokmem)
2809 return 0;
2810
2811 BUG_ON(memcg->kmemcg_id >= 0);
2812 BUG_ON(memcg->kmem_state);
2813
2814 memcg_id = memcg_alloc_cache_id();
2815 if (memcg_id < 0)
2816 return memcg_id;
2817
2818 static_branch_inc(&memcg_kmem_enabled_key);
2819 /*
2820 * A memory cgroup is considered kmem-online as soon as it gets
2821 * kmemcg_id. Setting the id after enabling static branching will
2822 * guarantee no one starts accounting before all call sites are
2823 * patched.
2824 */
2825 memcg->kmemcg_id = memcg_id;
2826 memcg->kmem_state = KMEM_ONLINE;
2827
2828 return 0;
2829 }
2830
2831 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2832 {
2833 struct cgroup_subsys_state *css;
2834 struct mem_cgroup *parent, *child;
2835 int kmemcg_id;
2836
2837 if (memcg->kmem_state != KMEM_ONLINE)
2838 return;
2839 /*
2840 * Clear the online state before clearing memcg_caches array
2841 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2842 * guarantees that no cache will be created for this cgroup
2843 * after we are done (see memcg_create_kmem_cache()).
2844 */
2845 memcg->kmem_state = KMEM_ALLOCATED;
2846
2847 memcg_deactivate_kmem_caches(memcg);
2848
2849 kmemcg_id = memcg->kmemcg_id;
2850 BUG_ON(kmemcg_id < 0);
2851
2852 parent = parent_mem_cgroup(memcg);
2853 if (!parent)
2854 parent = root_mem_cgroup;
2855
2856 /*
2857 * Change kmemcg_id of this cgroup and all its descendants to the
2858 * parent's id, and then move all entries from this cgroup's list_lrus
2859 * to ones of the parent. After we have finished, all list_lrus
2860 * corresponding to this cgroup are guaranteed to remain empty. The
2861 * ordering is imposed by list_lru_node->lock taken by
2862 * memcg_drain_all_list_lrus().
2863 */
2864 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2865 css_for_each_descendant_pre(css, &memcg->css) {
2866 child = mem_cgroup_from_css(css);
2867 BUG_ON(child->kmemcg_id != kmemcg_id);
2868 child->kmemcg_id = parent->kmemcg_id;
2869 if (!memcg->use_hierarchy)
2870 break;
2871 }
2872 rcu_read_unlock();
2873
2874 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2875
2876 memcg_free_cache_id(kmemcg_id);
2877 }
2878
2879 static void memcg_free_kmem(struct mem_cgroup *memcg)
2880 {
2881 /* css_alloc() failed, offlining didn't happen */
2882 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2883 memcg_offline_kmem(memcg);
2884
2885 if (memcg->kmem_state == KMEM_ALLOCATED) {
2886 memcg_destroy_kmem_caches(memcg);
2887 static_branch_dec(&memcg_kmem_enabled_key);
2888 WARN_ON(page_counter_read(&memcg->kmem));
2889 }
2890 }
2891 #else
2892 static int memcg_online_kmem(struct mem_cgroup *memcg)
2893 {
2894 return 0;
2895 }
2896 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2897 {
2898 }
2899 static void memcg_free_kmem(struct mem_cgroup *memcg)
2900 {
2901 }
2902 #endif /* !CONFIG_SLOB */
2903
2904 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2905 unsigned long limit)
2906 {
2907 int ret;
2908
2909 mutex_lock(&memcg_limit_mutex);
2910 ret = page_counter_limit(&memcg->kmem, limit);
2911 mutex_unlock(&memcg_limit_mutex);
2912 return ret;
2913 }
2914
2915 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2916 {
2917 int ret;
2918
2919 mutex_lock(&memcg_limit_mutex);
2920
2921 ret = page_counter_limit(&memcg->tcpmem, limit);
2922 if (ret)
2923 goto out;
2924
2925 if (!memcg->tcpmem_active) {
2926 /*
2927 * The active flag needs to be written after the static_key
2928 * update. This is what guarantees that the socket activation
2929 * function is the last one to run. See sock_update_memcg() for
2930 * details, and note that we don't mark any socket as belonging
2931 * to this memcg until that flag is up.
2932 *
2933 * We need to do this, because static_keys will span multiple
2934 * sites, but we can't control their order. If we mark a socket
2935 * as accounted, but the accounting functions are not patched in
2936 * yet, we'll lose accounting.
2937 *
2938 * We never race with the readers in sock_update_memcg(),
2939 * because when this value change, the code to process it is not
2940 * patched in yet.
2941 */
2942 static_branch_inc(&memcg_sockets_enabled_key);
2943 memcg->tcpmem_active = true;
2944 }
2945 out:
2946 mutex_unlock(&memcg_limit_mutex);
2947 return ret;
2948 }
2949
2950 /*
2951 * The user of this function is...
2952 * RES_LIMIT.
2953 */
2954 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2955 char *buf, size_t nbytes, loff_t off)
2956 {
2957 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2958 unsigned long nr_pages;
2959 int ret;
2960
2961 buf = strstrip(buf);
2962 ret = page_counter_memparse(buf, "-1", &nr_pages);
2963 if (ret)
2964 return ret;
2965
2966 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2967 case RES_LIMIT:
2968 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2969 ret = -EINVAL;
2970 break;
2971 }
2972 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2973 case _MEM:
2974 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2975 break;
2976 case _MEMSWAP:
2977 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2978 break;
2979 case _KMEM:
2980 ret = memcg_update_kmem_limit(memcg, nr_pages);
2981 break;
2982 case _TCP:
2983 ret = memcg_update_tcp_limit(memcg, nr_pages);
2984 break;
2985 }
2986 break;
2987 case RES_SOFT_LIMIT:
2988 memcg->soft_limit = nr_pages;
2989 ret = 0;
2990 break;
2991 }
2992 return ret ?: nbytes;
2993 }
2994
2995 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2996 size_t nbytes, loff_t off)
2997 {
2998 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2999 struct page_counter *counter;
3000
3001 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3002 case _MEM:
3003 counter = &memcg->memory;
3004 break;
3005 case _MEMSWAP:
3006 counter = &memcg->memsw;
3007 break;
3008 case _KMEM:
3009 counter = &memcg->kmem;
3010 break;
3011 case _TCP:
3012 counter = &memcg->tcpmem;
3013 break;
3014 default:
3015 BUG();
3016 }
3017
3018 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3019 case RES_MAX_USAGE:
3020 page_counter_reset_watermark(counter);
3021 break;
3022 case RES_FAILCNT:
3023 counter->failcnt = 0;
3024 break;
3025 default:
3026 BUG();
3027 }
3028
3029 return nbytes;
3030 }
3031
3032 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3033 struct cftype *cft)
3034 {
3035 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3036 }
3037
3038 #ifdef CONFIG_MMU
3039 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3040 struct cftype *cft, u64 val)
3041 {
3042 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3043
3044 if (val & ~MOVE_MASK)
3045 return -EINVAL;
3046
3047 /*
3048 * No kind of locking is needed in here, because ->can_attach() will
3049 * check this value once in the beginning of the process, and then carry
3050 * on with stale data. This means that changes to this value will only
3051 * affect task migrations starting after the change.
3052 */
3053 memcg->move_charge_at_immigrate = val;
3054 return 0;
3055 }
3056 #else
3057 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3058 struct cftype *cft, u64 val)
3059 {
3060 return -ENOSYS;
3061 }
3062 #endif
3063
3064 #ifdef CONFIG_NUMA
3065 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3066 {
3067 struct numa_stat {
3068 const char *name;
3069 unsigned int lru_mask;
3070 };
3071
3072 static const struct numa_stat stats[] = {
3073 { "total", LRU_ALL },
3074 { "file", LRU_ALL_FILE },
3075 { "anon", LRU_ALL_ANON },
3076 { "unevictable", BIT(LRU_UNEVICTABLE) },
3077 };
3078 const struct numa_stat *stat;
3079 int nid;
3080 unsigned long nr;
3081 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3082
3083 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3084 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3085 seq_printf(m, "%s=%lu", stat->name, nr);
3086 for_each_node_state(nid, N_MEMORY) {
3087 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3088 stat->lru_mask);
3089 seq_printf(m, " N%d=%lu", nid, nr);
3090 }
3091 seq_putc(m, '\n');
3092 }
3093
3094 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3095 struct mem_cgroup *iter;
3096
3097 nr = 0;
3098 for_each_mem_cgroup_tree(iter, memcg)
3099 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3100 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = 0;
3103 for_each_mem_cgroup_tree(iter, memcg)
3104 nr += mem_cgroup_node_nr_lru_pages(
3105 iter, nid, stat->lru_mask);
3106 seq_printf(m, " N%d=%lu", nid, nr);
3107 }
3108 seq_putc(m, '\n');
3109 }
3110
3111 return 0;
3112 }
3113 #endif /* CONFIG_NUMA */
3114
3115 static int memcg_stat_show(struct seq_file *m, void *v)
3116 {
3117 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3118 unsigned long memory, memsw;
3119 struct mem_cgroup *mi;
3120 unsigned int i;
3121
3122 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3123 MEM_CGROUP_STAT_NSTATS);
3124 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3125 MEM_CGROUP_EVENTS_NSTATS);
3126 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3127
3128 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3129 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3130 continue;
3131 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3132 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3133 }
3134
3135 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3136 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3137 mem_cgroup_read_events(memcg, i));
3138
3139 for (i = 0; i < NR_LRU_LISTS; i++)
3140 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3141 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3142
3143 /* Hierarchical information */
3144 memory = memsw = PAGE_COUNTER_MAX;
3145 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3146 memory = min(memory, mi->memory.limit);
3147 memsw = min(memsw, mi->memsw.limit);
3148 }
3149 seq_printf(m, "hierarchical_memory_limit %llu\n",
3150 (u64)memory * PAGE_SIZE);
3151 if (do_memsw_account())
3152 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3153 (u64)memsw * PAGE_SIZE);
3154
3155 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3156 unsigned long long val = 0;
3157
3158 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3159 continue;
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3163 }
3164
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3166 unsigned long long val = 0;
3167
3168 for_each_mem_cgroup_tree(mi, memcg)
3169 val += mem_cgroup_read_events(mi, i);
3170 seq_printf(m, "total_%s %llu\n",
3171 mem_cgroup_events_names[i], val);
3172 }
3173
3174 for (i = 0; i < NR_LRU_LISTS; i++) {
3175 unsigned long long val = 0;
3176
3177 for_each_mem_cgroup_tree(mi, memcg)
3178 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3179 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3180 }
3181
3182 #ifdef CONFIG_DEBUG_VM
3183 {
3184 pg_data_t *pgdat;
3185 struct mem_cgroup_per_node *mz;
3186 struct zone_reclaim_stat *rstat;
3187 unsigned long recent_rotated[2] = {0, 0};
3188 unsigned long recent_scanned[2] = {0, 0};
3189
3190 for_each_online_pgdat(pgdat) {
3191 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3192 rstat = &mz->lruvec.reclaim_stat;
3193
3194 recent_rotated[0] += rstat->recent_rotated[0];
3195 recent_rotated[1] += rstat->recent_rotated[1];
3196 recent_scanned[0] += rstat->recent_scanned[0];
3197 recent_scanned[1] += rstat->recent_scanned[1];
3198 }
3199 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3200 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3201 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3202 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3203 }
3204 #endif
3205
3206 return 0;
3207 }
3208
3209 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3210 struct cftype *cft)
3211 {
3212 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3213
3214 return mem_cgroup_swappiness(memcg);
3215 }
3216
3217 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3218 struct cftype *cft, u64 val)
3219 {
3220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3221
3222 if (val > 100)
3223 return -EINVAL;
3224
3225 if (css->parent)
3226 memcg->swappiness = val;
3227 else
3228 vm_swappiness = val;
3229
3230 return 0;
3231 }
3232
3233 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3234 {
3235 struct mem_cgroup_threshold_ary *t;
3236 unsigned long usage;
3237 int i;
3238
3239 rcu_read_lock();
3240 if (!swap)
3241 t = rcu_dereference(memcg->thresholds.primary);
3242 else
3243 t = rcu_dereference(memcg->memsw_thresholds.primary);
3244
3245 if (!t)
3246 goto unlock;
3247
3248 usage = mem_cgroup_usage(memcg, swap);
3249
3250 /*
3251 * current_threshold points to threshold just below or equal to usage.
3252 * If it's not true, a threshold was crossed after last
3253 * call of __mem_cgroup_threshold().
3254 */
3255 i = t->current_threshold;
3256
3257 /*
3258 * Iterate backward over array of thresholds starting from
3259 * current_threshold and check if a threshold is crossed.
3260 * If none of thresholds below usage is crossed, we read
3261 * only one element of the array here.
3262 */
3263 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3264 eventfd_signal(t->entries[i].eventfd, 1);
3265
3266 /* i = current_threshold + 1 */
3267 i++;
3268
3269 /*
3270 * Iterate forward over array of thresholds starting from
3271 * current_threshold+1 and check if a threshold is crossed.
3272 * If none of thresholds above usage is crossed, we read
3273 * only one element of the array here.
3274 */
3275 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3276 eventfd_signal(t->entries[i].eventfd, 1);
3277
3278 /* Update current_threshold */
3279 t->current_threshold = i - 1;
3280 unlock:
3281 rcu_read_unlock();
3282 }
3283
3284 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3285 {
3286 while (memcg) {
3287 __mem_cgroup_threshold(memcg, false);
3288 if (do_memsw_account())
3289 __mem_cgroup_threshold(memcg, true);
3290
3291 memcg = parent_mem_cgroup(memcg);
3292 }
3293 }
3294
3295 static int compare_thresholds(const void *a, const void *b)
3296 {
3297 const struct mem_cgroup_threshold *_a = a;
3298 const struct mem_cgroup_threshold *_b = b;
3299
3300 if (_a->threshold > _b->threshold)
3301 return 1;
3302
3303 if (_a->threshold < _b->threshold)
3304 return -1;
3305
3306 return 0;
3307 }
3308
3309 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3310 {
3311 struct mem_cgroup_eventfd_list *ev;
3312
3313 spin_lock(&memcg_oom_lock);
3314
3315 list_for_each_entry(ev, &memcg->oom_notify, list)
3316 eventfd_signal(ev->eventfd, 1);
3317
3318 spin_unlock(&memcg_oom_lock);
3319 return 0;
3320 }
3321
3322 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3323 {
3324 struct mem_cgroup *iter;
3325
3326 for_each_mem_cgroup_tree(iter, memcg)
3327 mem_cgroup_oom_notify_cb(iter);
3328 }
3329
3330 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3331 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3332 {
3333 struct mem_cgroup_thresholds *thresholds;
3334 struct mem_cgroup_threshold_ary *new;
3335 unsigned long threshold;
3336 unsigned long usage;
3337 int i, size, ret;
3338
3339 ret = page_counter_memparse(args, "-1", &threshold);
3340 if (ret)
3341 return ret;
3342
3343 mutex_lock(&memcg->thresholds_lock);
3344
3345 if (type == _MEM) {
3346 thresholds = &memcg->thresholds;
3347 usage = mem_cgroup_usage(memcg, false);
3348 } else if (type == _MEMSWAP) {
3349 thresholds = &memcg->memsw_thresholds;
3350 usage = mem_cgroup_usage(memcg, true);
3351 } else
3352 BUG();
3353
3354 /* Check if a threshold crossed before adding a new one */
3355 if (thresholds->primary)
3356 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3357
3358 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3359
3360 /* Allocate memory for new array of thresholds */
3361 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3362 GFP_KERNEL);
3363 if (!new) {
3364 ret = -ENOMEM;
3365 goto unlock;
3366 }
3367 new->size = size;
3368
3369 /* Copy thresholds (if any) to new array */
3370 if (thresholds->primary) {
3371 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3372 sizeof(struct mem_cgroup_threshold));
3373 }
3374
3375 /* Add new threshold */
3376 new->entries[size - 1].eventfd = eventfd;
3377 new->entries[size - 1].threshold = threshold;
3378
3379 /* Sort thresholds. Registering of new threshold isn't time-critical */
3380 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3381 compare_thresholds, NULL);
3382
3383 /* Find current threshold */
3384 new->current_threshold = -1;
3385 for (i = 0; i < size; i++) {
3386 if (new->entries[i].threshold <= usage) {
3387 /*
3388 * new->current_threshold will not be used until
3389 * rcu_assign_pointer(), so it's safe to increment
3390 * it here.
3391 */
3392 ++new->current_threshold;
3393 } else
3394 break;
3395 }
3396
3397 /* Free old spare buffer and save old primary buffer as spare */
3398 kfree(thresholds->spare);
3399 thresholds->spare = thresholds->primary;
3400
3401 rcu_assign_pointer(thresholds->primary, new);
3402
3403 /* To be sure that nobody uses thresholds */
3404 synchronize_rcu();
3405
3406 unlock:
3407 mutex_unlock(&memcg->thresholds_lock);
3408
3409 return ret;
3410 }
3411
3412 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3413 struct eventfd_ctx *eventfd, const char *args)
3414 {
3415 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3416 }
3417
3418 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3419 struct eventfd_ctx *eventfd, const char *args)
3420 {
3421 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3422 }
3423
3424 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3425 struct eventfd_ctx *eventfd, enum res_type type)
3426 {
3427 struct mem_cgroup_thresholds *thresholds;
3428 struct mem_cgroup_threshold_ary *new;
3429 unsigned long usage;
3430 int i, j, size;
3431
3432 mutex_lock(&memcg->thresholds_lock);
3433
3434 if (type == _MEM) {
3435 thresholds = &memcg->thresholds;
3436 usage = mem_cgroup_usage(memcg, false);
3437 } else if (type == _MEMSWAP) {
3438 thresholds = &memcg->memsw_thresholds;
3439 usage = mem_cgroup_usage(memcg, true);
3440 } else
3441 BUG();
3442
3443 if (!thresholds->primary)
3444 goto unlock;
3445
3446 /* Check if a threshold crossed before removing */
3447 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3448
3449 /* Calculate new number of threshold */
3450 size = 0;
3451 for (i = 0; i < thresholds->primary->size; i++) {
3452 if (thresholds->primary->entries[i].eventfd != eventfd)
3453 size++;
3454 }
3455
3456 new = thresholds->spare;
3457
3458 /* Set thresholds array to NULL if we don't have thresholds */
3459 if (!size) {
3460 kfree(new);
3461 new = NULL;
3462 goto swap_buffers;
3463 }
3464
3465 new->size = size;
3466
3467 /* Copy thresholds and find current threshold */
3468 new->current_threshold = -1;
3469 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3470 if (thresholds->primary->entries[i].eventfd == eventfd)
3471 continue;
3472
3473 new->entries[j] = thresholds->primary->entries[i];
3474 if (new->entries[j].threshold <= usage) {
3475 /*
3476 * new->current_threshold will not be used
3477 * until rcu_assign_pointer(), so it's safe to increment
3478 * it here.
3479 */
3480 ++new->current_threshold;
3481 }
3482 j++;
3483 }
3484
3485 swap_buffers:
3486 /* Swap primary and spare array */
3487 thresholds->spare = thresholds->primary;
3488
3489 rcu_assign_pointer(thresholds->primary, new);
3490
3491 /* To be sure that nobody uses thresholds */
3492 synchronize_rcu();
3493
3494 /* If all events are unregistered, free the spare array */
3495 if (!new) {
3496 kfree(thresholds->spare);
3497 thresholds->spare = NULL;
3498 }
3499 unlock:
3500 mutex_unlock(&memcg->thresholds_lock);
3501 }
3502
3503 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3504 struct eventfd_ctx *eventfd)
3505 {
3506 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3507 }
3508
3509 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3510 struct eventfd_ctx *eventfd)
3511 {
3512 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3513 }
3514
3515 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3516 struct eventfd_ctx *eventfd, const char *args)
3517 {
3518 struct mem_cgroup_eventfd_list *event;
3519
3520 event = kmalloc(sizeof(*event), GFP_KERNEL);
3521 if (!event)
3522 return -ENOMEM;
3523
3524 spin_lock(&memcg_oom_lock);
3525
3526 event->eventfd = eventfd;
3527 list_add(&event->list, &memcg->oom_notify);
3528
3529 /* already in OOM ? */
3530 if (memcg->under_oom)
3531 eventfd_signal(eventfd, 1);
3532 spin_unlock(&memcg_oom_lock);
3533
3534 return 0;
3535 }
3536
3537 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3538 struct eventfd_ctx *eventfd)
3539 {
3540 struct mem_cgroup_eventfd_list *ev, *tmp;
3541
3542 spin_lock(&memcg_oom_lock);
3543
3544 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3545 if (ev->eventfd == eventfd) {
3546 list_del(&ev->list);
3547 kfree(ev);
3548 }
3549 }
3550
3551 spin_unlock(&memcg_oom_lock);
3552 }
3553
3554 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3555 {
3556 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3557
3558 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3559 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3560 return 0;
3561 }
3562
3563 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3564 struct cftype *cft, u64 val)
3565 {
3566 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3567
3568 /* cannot set to root cgroup and only 0 and 1 are allowed */
3569 if (!css->parent || !((val == 0) || (val == 1)))
3570 return -EINVAL;
3571
3572 memcg->oom_kill_disable = val;
3573 if (!val)
3574 memcg_oom_recover(memcg);
3575
3576 return 0;
3577 }
3578
3579 #ifdef CONFIG_CGROUP_WRITEBACK
3580
3581 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3582 {
3583 return &memcg->cgwb_list;
3584 }
3585
3586 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3587 {
3588 return wb_domain_init(&memcg->cgwb_domain, gfp);
3589 }
3590
3591 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3592 {
3593 wb_domain_exit(&memcg->cgwb_domain);
3594 }
3595
3596 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3597 {
3598 wb_domain_size_changed(&memcg->cgwb_domain);
3599 }
3600
3601 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3602 {
3603 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3604
3605 if (!memcg->css.parent)
3606 return NULL;
3607
3608 return &memcg->cgwb_domain;
3609 }
3610
3611 /**
3612 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3613 * @wb: bdi_writeback in question
3614 * @pfilepages: out parameter for number of file pages
3615 * @pheadroom: out parameter for number of allocatable pages according to memcg
3616 * @pdirty: out parameter for number of dirty pages
3617 * @pwriteback: out parameter for number of pages under writeback
3618 *
3619 * Determine the numbers of file, headroom, dirty, and writeback pages in
3620 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3621 * is a bit more involved.
3622 *
3623 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3624 * headroom is calculated as the lowest headroom of itself and the
3625 * ancestors. Note that this doesn't consider the actual amount of
3626 * available memory in the system. The caller should further cap
3627 * *@pheadroom accordingly.
3628 */
3629 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3630 unsigned long *pheadroom, unsigned long *pdirty,
3631 unsigned long *pwriteback)
3632 {
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634 struct mem_cgroup *parent;
3635
3636 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3637
3638 /* this should eventually include NR_UNSTABLE_NFS */
3639 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3640 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3641 (1 << LRU_ACTIVE_FILE));
3642 *pheadroom = PAGE_COUNTER_MAX;
3643
3644 while ((parent = parent_mem_cgroup(memcg))) {
3645 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3646 unsigned long used = page_counter_read(&memcg->memory);
3647
3648 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3649 memcg = parent;
3650 }
3651 }
3652
3653 #else /* CONFIG_CGROUP_WRITEBACK */
3654
3655 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3656 {
3657 return 0;
3658 }
3659
3660 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3661 {
3662 }
3663
3664 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3665 {
3666 }
3667
3668 #endif /* CONFIG_CGROUP_WRITEBACK */
3669
3670 /*
3671 * DO NOT USE IN NEW FILES.
3672 *
3673 * "cgroup.event_control" implementation.
3674 *
3675 * This is way over-engineered. It tries to support fully configurable
3676 * events for each user. Such level of flexibility is completely
3677 * unnecessary especially in the light of the planned unified hierarchy.
3678 *
3679 * Please deprecate this and replace with something simpler if at all
3680 * possible.
3681 */
3682
3683 /*
3684 * Unregister event and free resources.
3685 *
3686 * Gets called from workqueue.
3687 */
3688 static void memcg_event_remove(struct work_struct *work)
3689 {
3690 struct mem_cgroup_event *event =
3691 container_of(work, struct mem_cgroup_event, remove);
3692 struct mem_cgroup *memcg = event->memcg;
3693
3694 remove_wait_queue(event->wqh, &event->wait);
3695
3696 event->unregister_event(memcg, event->eventfd);
3697
3698 /* Notify userspace the event is going away. */
3699 eventfd_signal(event->eventfd, 1);
3700
3701 eventfd_ctx_put(event->eventfd);
3702 kfree(event);
3703 css_put(&memcg->css);
3704 }
3705
3706 /*
3707 * Gets called on POLLHUP on eventfd when user closes it.
3708 *
3709 * Called with wqh->lock held and interrupts disabled.
3710 */
3711 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3712 int sync, void *key)
3713 {
3714 struct mem_cgroup_event *event =
3715 container_of(wait, struct mem_cgroup_event, wait);
3716 struct mem_cgroup *memcg = event->memcg;
3717 unsigned long flags = (unsigned long)key;
3718
3719 if (flags & POLLHUP) {
3720 /*
3721 * If the event has been detached at cgroup removal, we
3722 * can simply return knowing the other side will cleanup
3723 * for us.
3724 *
3725 * We can't race against event freeing since the other
3726 * side will require wqh->lock via remove_wait_queue(),
3727 * which we hold.
3728 */
3729 spin_lock(&memcg->event_list_lock);
3730 if (!list_empty(&event->list)) {
3731 list_del_init(&event->list);
3732 /*
3733 * We are in atomic context, but cgroup_event_remove()
3734 * may sleep, so we have to call it in workqueue.
3735 */
3736 schedule_work(&event->remove);
3737 }
3738 spin_unlock(&memcg->event_list_lock);
3739 }
3740
3741 return 0;
3742 }
3743
3744 static void memcg_event_ptable_queue_proc(struct file *file,
3745 wait_queue_head_t *wqh, poll_table *pt)
3746 {
3747 struct mem_cgroup_event *event =
3748 container_of(pt, struct mem_cgroup_event, pt);
3749
3750 event->wqh = wqh;
3751 add_wait_queue(wqh, &event->wait);
3752 }
3753
3754 /*
3755 * DO NOT USE IN NEW FILES.
3756 *
3757 * Parse input and register new cgroup event handler.
3758 *
3759 * Input must be in format '<event_fd> <control_fd> <args>'.
3760 * Interpretation of args is defined by control file implementation.
3761 */
3762 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3763 char *buf, size_t nbytes, loff_t off)
3764 {
3765 struct cgroup_subsys_state *css = of_css(of);
3766 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3767 struct mem_cgroup_event *event;
3768 struct cgroup_subsys_state *cfile_css;
3769 unsigned int efd, cfd;
3770 struct fd efile;
3771 struct fd cfile;
3772 const char *name;
3773 char *endp;
3774 int ret;
3775
3776 buf = strstrip(buf);
3777
3778 efd = simple_strtoul(buf, &endp, 10);
3779 if (*endp != ' ')
3780 return -EINVAL;
3781 buf = endp + 1;
3782
3783 cfd = simple_strtoul(buf, &endp, 10);
3784 if ((*endp != ' ') && (*endp != '\0'))
3785 return -EINVAL;
3786 buf = endp + 1;
3787
3788 event = kzalloc(sizeof(*event), GFP_KERNEL);
3789 if (!event)
3790 return -ENOMEM;
3791
3792 event->memcg = memcg;
3793 INIT_LIST_HEAD(&event->list);
3794 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3795 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3796 INIT_WORK(&event->remove, memcg_event_remove);
3797
3798 efile = fdget(efd);
3799 if (!efile.file) {
3800 ret = -EBADF;
3801 goto out_kfree;
3802 }
3803
3804 event->eventfd = eventfd_ctx_fileget(efile.file);
3805 if (IS_ERR(event->eventfd)) {
3806 ret = PTR_ERR(event->eventfd);
3807 goto out_put_efile;
3808 }
3809
3810 cfile = fdget(cfd);
3811 if (!cfile.file) {
3812 ret = -EBADF;
3813 goto out_put_eventfd;
3814 }
3815
3816 /* the process need read permission on control file */
3817 /* AV: shouldn't we check that it's been opened for read instead? */
3818 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3819 if (ret < 0)
3820 goto out_put_cfile;
3821
3822 /*
3823 * Determine the event callbacks and set them in @event. This used
3824 * to be done via struct cftype but cgroup core no longer knows
3825 * about these events. The following is crude but the whole thing
3826 * is for compatibility anyway.
3827 *
3828 * DO NOT ADD NEW FILES.
3829 */
3830 name = cfile.file->f_path.dentry->d_name.name;
3831
3832 if (!strcmp(name, "memory.usage_in_bytes")) {
3833 event->register_event = mem_cgroup_usage_register_event;
3834 event->unregister_event = mem_cgroup_usage_unregister_event;
3835 } else if (!strcmp(name, "memory.oom_control")) {
3836 event->register_event = mem_cgroup_oom_register_event;
3837 event->unregister_event = mem_cgroup_oom_unregister_event;
3838 } else if (!strcmp(name, "memory.pressure_level")) {
3839 event->register_event = vmpressure_register_event;
3840 event->unregister_event = vmpressure_unregister_event;
3841 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3842 event->register_event = memsw_cgroup_usage_register_event;
3843 event->unregister_event = memsw_cgroup_usage_unregister_event;
3844 } else {
3845 ret = -EINVAL;
3846 goto out_put_cfile;
3847 }
3848
3849 /*
3850 * Verify @cfile should belong to @css. Also, remaining events are
3851 * automatically removed on cgroup destruction but the removal is
3852 * asynchronous, so take an extra ref on @css.
3853 */
3854 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3855 &memory_cgrp_subsys);
3856 ret = -EINVAL;
3857 if (IS_ERR(cfile_css))
3858 goto out_put_cfile;
3859 if (cfile_css != css) {
3860 css_put(cfile_css);
3861 goto out_put_cfile;
3862 }
3863
3864 ret = event->register_event(memcg, event->eventfd, buf);
3865 if (ret)
3866 goto out_put_css;
3867
3868 efile.file->f_op->poll(efile.file, &event->pt);
3869
3870 spin_lock(&memcg->event_list_lock);
3871 list_add(&event->list, &memcg->event_list);
3872 spin_unlock(&memcg->event_list_lock);
3873
3874 fdput(cfile);
3875 fdput(efile);
3876
3877 return nbytes;
3878
3879 out_put_css:
3880 css_put(css);
3881 out_put_cfile:
3882 fdput(cfile);
3883 out_put_eventfd:
3884 eventfd_ctx_put(event->eventfd);
3885 out_put_efile:
3886 fdput(efile);
3887 out_kfree:
3888 kfree(event);
3889
3890 return ret;
3891 }
3892
3893 static struct cftype mem_cgroup_legacy_files[] = {
3894 {
3895 .name = "usage_in_bytes",
3896 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3897 .read_u64 = mem_cgroup_read_u64,
3898 },
3899 {
3900 .name = "max_usage_in_bytes",
3901 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3902 .write = mem_cgroup_reset,
3903 .read_u64 = mem_cgroup_read_u64,
3904 },
3905 {
3906 .name = "limit_in_bytes",
3907 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3908 .write = mem_cgroup_write,
3909 .read_u64 = mem_cgroup_read_u64,
3910 },
3911 {
3912 .name = "soft_limit_in_bytes",
3913 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3914 .write = mem_cgroup_write,
3915 .read_u64 = mem_cgroup_read_u64,
3916 },
3917 {
3918 .name = "failcnt",
3919 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3920 .write = mem_cgroup_reset,
3921 .read_u64 = mem_cgroup_read_u64,
3922 },
3923 {
3924 .name = "stat",
3925 .seq_show = memcg_stat_show,
3926 },
3927 {
3928 .name = "force_empty",
3929 .write = mem_cgroup_force_empty_write,
3930 },
3931 {
3932 .name = "use_hierarchy",
3933 .write_u64 = mem_cgroup_hierarchy_write,
3934 .read_u64 = mem_cgroup_hierarchy_read,
3935 },
3936 {
3937 .name = "cgroup.event_control", /* XXX: for compat */
3938 .write = memcg_write_event_control,
3939 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3940 },
3941 {
3942 .name = "swappiness",
3943 .read_u64 = mem_cgroup_swappiness_read,
3944 .write_u64 = mem_cgroup_swappiness_write,
3945 },
3946 {
3947 .name = "move_charge_at_immigrate",
3948 .read_u64 = mem_cgroup_move_charge_read,
3949 .write_u64 = mem_cgroup_move_charge_write,
3950 },
3951 {
3952 .name = "oom_control",
3953 .seq_show = mem_cgroup_oom_control_read,
3954 .write_u64 = mem_cgroup_oom_control_write,
3955 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3956 },
3957 {
3958 .name = "pressure_level",
3959 },
3960 #ifdef CONFIG_NUMA
3961 {
3962 .name = "numa_stat",
3963 .seq_show = memcg_numa_stat_show,
3964 },
3965 #endif
3966 {
3967 .name = "kmem.limit_in_bytes",
3968 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3969 .write = mem_cgroup_write,
3970 .read_u64 = mem_cgroup_read_u64,
3971 },
3972 {
3973 .name = "kmem.usage_in_bytes",
3974 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3975 .read_u64 = mem_cgroup_read_u64,
3976 },
3977 {
3978 .name = "kmem.failcnt",
3979 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3980 .write = mem_cgroup_reset,
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "kmem.max_usage_in_bytes",
3985 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3986 .write = mem_cgroup_reset,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 #ifdef CONFIG_SLABINFO
3990 {
3991 .name = "kmem.slabinfo",
3992 .seq_start = slab_start,
3993 .seq_next = slab_next,
3994 .seq_stop = slab_stop,
3995 .seq_show = memcg_slab_show,
3996 },
3997 #endif
3998 {
3999 .name = "kmem.tcp.limit_in_bytes",
4000 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4001 .write = mem_cgroup_write,
4002 .read_u64 = mem_cgroup_read_u64,
4003 },
4004 {
4005 .name = "kmem.tcp.usage_in_bytes",
4006 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4007 .read_u64 = mem_cgroup_read_u64,
4008 },
4009 {
4010 .name = "kmem.tcp.failcnt",
4011 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4012 .write = mem_cgroup_reset,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "kmem.tcp.max_usage_in_bytes",
4017 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4018 .write = mem_cgroup_reset,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 { }, /* terminate */
4022 };
4023
4024 /*
4025 * Private memory cgroup IDR
4026 *
4027 * Swap-out records and page cache shadow entries need to store memcg
4028 * references in constrained space, so we maintain an ID space that is
4029 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4030 * memory-controlled cgroups to 64k.
4031 *
4032 * However, there usually are many references to the oflline CSS after
4033 * the cgroup has been destroyed, such as page cache or reclaimable
4034 * slab objects, that don't need to hang on to the ID. We want to keep
4035 * those dead CSS from occupying IDs, or we might quickly exhaust the
4036 * relatively small ID space and prevent the creation of new cgroups
4037 * even when there are much fewer than 64k cgroups - possibly none.
4038 *
4039 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4040 * be freed and recycled when it's no longer needed, which is usually
4041 * when the CSS is offlined.
4042 *
4043 * The only exception to that are records of swapped out tmpfs/shmem
4044 * pages that need to be attributed to live ancestors on swapin. But
4045 * those references are manageable from userspace.
4046 */
4047
4048 static DEFINE_IDR(mem_cgroup_idr);
4049
4050 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4051 {
4052 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4053 atomic_add(n, &memcg->id.ref);
4054 }
4055
4056 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4057 {
4058 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4059 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4060 idr_remove(&mem_cgroup_idr, memcg->id.id);
4061 memcg->id.id = 0;
4062
4063 /* Memcg ID pins CSS */
4064 css_put(&memcg->css);
4065 }
4066 }
4067
4068 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4069 {
4070 mem_cgroup_id_get_many(memcg, 1);
4071 }
4072
4073 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4074 {
4075 mem_cgroup_id_put_many(memcg, 1);
4076 }
4077
4078 /**
4079 * mem_cgroup_from_id - look up a memcg from a memcg id
4080 * @id: the memcg id to look up
4081 *
4082 * Caller must hold rcu_read_lock().
4083 */
4084 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4085 {
4086 WARN_ON_ONCE(!rcu_read_lock_held());
4087 return idr_find(&mem_cgroup_idr, id);
4088 }
4089
4090 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4091 {
4092 struct mem_cgroup_per_node *pn;
4093 int tmp = node;
4094 /*
4095 * This routine is called against possible nodes.
4096 * But it's BUG to call kmalloc() against offline node.
4097 *
4098 * TODO: this routine can waste much memory for nodes which will
4099 * never be onlined. It's better to use memory hotplug callback
4100 * function.
4101 */
4102 if (!node_state(node, N_NORMAL_MEMORY))
4103 tmp = -1;
4104 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4105 if (!pn)
4106 return 1;
4107
4108 lruvec_init(&pn->lruvec);
4109 pn->usage_in_excess = 0;
4110 pn->on_tree = false;
4111 pn->memcg = memcg;
4112
4113 memcg->nodeinfo[node] = pn;
4114 return 0;
4115 }
4116
4117 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4118 {
4119 kfree(memcg->nodeinfo[node]);
4120 }
4121
4122 static void mem_cgroup_free(struct mem_cgroup *memcg)
4123 {
4124 int node;
4125
4126 memcg_wb_domain_exit(memcg);
4127 for_each_node(node)
4128 free_mem_cgroup_per_node_info(memcg, node);
4129 free_percpu(memcg->stat);
4130 kfree(memcg);
4131 }
4132
4133 static struct mem_cgroup *mem_cgroup_alloc(void)
4134 {
4135 struct mem_cgroup *memcg;
4136 size_t size;
4137 int node;
4138
4139 size = sizeof(struct mem_cgroup);
4140 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4141
4142 memcg = kzalloc(size, GFP_KERNEL);
4143 if (!memcg)
4144 return NULL;
4145
4146 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4147 1, MEM_CGROUP_ID_MAX,
4148 GFP_KERNEL);
4149 if (memcg->id.id < 0)
4150 goto fail;
4151
4152 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4153 if (!memcg->stat)
4154 goto fail;
4155
4156 for_each_node(node)
4157 if (alloc_mem_cgroup_per_node_info(memcg, node))
4158 goto fail;
4159
4160 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4161 goto fail;
4162
4163 INIT_WORK(&memcg->high_work, high_work_func);
4164 memcg->last_scanned_node = MAX_NUMNODES;
4165 INIT_LIST_HEAD(&memcg->oom_notify);
4166 mutex_init(&memcg->thresholds_lock);
4167 spin_lock_init(&memcg->move_lock);
4168 vmpressure_init(&memcg->vmpressure);
4169 INIT_LIST_HEAD(&memcg->event_list);
4170 spin_lock_init(&memcg->event_list_lock);
4171 memcg->socket_pressure = jiffies;
4172 #ifndef CONFIG_SLOB
4173 memcg->kmemcg_id = -1;
4174 #endif
4175 #ifdef CONFIG_CGROUP_WRITEBACK
4176 INIT_LIST_HEAD(&memcg->cgwb_list);
4177 #endif
4178 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4179 return memcg;
4180 fail:
4181 if (memcg->id.id > 0)
4182 idr_remove(&mem_cgroup_idr, memcg->id.id);
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185 }
4186
4187 static struct cgroup_subsys_state * __ref
4188 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4189 {
4190 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4191 struct mem_cgroup *memcg;
4192 long error = -ENOMEM;
4193
4194 memcg = mem_cgroup_alloc();
4195 if (!memcg)
4196 return ERR_PTR(error);
4197
4198 memcg->high = PAGE_COUNTER_MAX;
4199 memcg->soft_limit = PAGE_COUNTER_MAX;
4200 if (parent) {
4201 memcg->swappiness = mem_cgroup_swappiness(parent);
4202 memcg->oom_kill_disable = parent->oom_kill_disable;
4203 }
4204 if (parent && parent->use_hierarchy) {
4205 memcg->use_hierarchy = true;
4206 page_counter_init(&memcg->memory, &parent->memory);
4207 page_counter_init(&memcg->swap, &parent->swap);
4208 page_counter_init(&memcg->memsw, &parent->memsw);
4209 page_counter_init(&memcg->kmem, &parent->kmem);
4210 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4211 } else {
4212 page_counter_init(&memcg->memory, NULL);
4213 page_counter_init(&memcg->swap, NULL);
4214 page_counter_init(&memcg->memsw, NULL);
4215 page_counter_init(&memcg->kmem, NULL);
4216 page_counter_init(&memcg->tcpmem, NULL);
4217 /*
4218 * Deeper hierachy with use_hierarchy == false doesn't make
4219 * much sense so let cgroup subsystem know about this
4220 * unfortunate state in our controller.
4221 */
4222 if (parent != root_mem_cgroup)
4223 memory_cgrp_subsys.broken_hierarchy = true;
4224 }
4225
4226 /* The following stuff does not apply to the root */
4227 if (!parent) {
4228 root_mem_cgroup = memcg;
4229 return &memcg->css;
4230 }
4231
4232 error = memcg_online_kmem(memcg);
4233 if (error)
4234 goto fail;
4235
4236 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4237 static_branch_inc(&memcg_sockets_enabled_key);
4238
4239 return &memcg->css;
4240 fail:
4241 mem_cgroup_free(memcg);
4242 return ERR_PTR(-ENOMEM);
4243 }
4244
4245 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4246 {
4247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4248
4249 /* Online state pins memcg ID, memcg ID pins CSS */
4250 atomic_set(&memcg->id.ref, 1);
4251 css_get(css);
4252 return 0;
4253 }
4254
4255 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4256 {
4257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4258 struct mem_cgroup_event *event, *tmp;
4259
4260 /*
4261 * Unregister events and notify userspace.
4262 * Notify userspace about cgroup removing only after rmdir of cgroup
4263 * directory to avoid race between userspace and kernelspace.
4264 */
4265 spin_lock(&memcg->event_list_lock);
4266 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4267 list_del_init(&event->list);
4268 schedule_work(&event->remove);
4269 }
4270 spin_unlock(&memcg->event_list_lock);
4271
4272 memcg_offline_kmem(memcg);
4273 wb_memcg_offline(memcg);
4274
4275 mem_cgroup_id_put(memcg);
4276 }
4277
4278 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4279 {
4280 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4281
4282 invalidate_reclaim_iterators(memcg);
4283 }
4284
4285 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4286 {
4287 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4288
4289 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4290 static_branch_dec(&memcg_sockets_enabled_key);
4291
4292 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4293 static_branch_dec(&memcg_sockets_enabled_key);
4294
4295 vmpressure_cleanup(&memcg->vmpressure);
4296 cancel_work_sync(&memcg->high_work);
4297 mem_cgroup_remove_from_trees(memcg);
4298 memcg_free_kmem(memcg);
4299 mem_cgroup_free(memcg);
4300 }
4301
4302 /**
4303 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4304 * @css: the target css
4305 *
4306 * Reset the states of the mem_cgroup associated with @css. This is
4307 * invoked when the userland requests disabling on the default hierarchy
4308 * but the memcg is pinned through dependency. The memcg should stop
4309 * applying policies and should revert to the vanilla state as it may be
4310 * made visible again.
4311 *
4312 * The current implementation only resets the essential configurations.
4313 * This needs to be expanded to cover all the visible parts.
4314 */
4315 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4316 {
4317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4318
4319 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4320 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4321 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4322 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4323 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4324 memcg->low = 0;
4325 memcg->high = PAGE_COUNTER_MAX;
4326 memcg->soft_limit = PAGE_COUNTER_MAX;
4327 memcg_wb_domain_size_changed(memcg);
4328 }
4329
4330 #ifdef CONFIG_MMU
4331 /* Handlers for move charge at task migration. */
4332 static int mem_cgroup_do_precharge(unsigned long count)
4333 {
4334 int ret;
4335
4336 /* Try a single bulk charge without reclaim first, kswapd may wake */
4337 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4338 if (!ret) {
4339 mc.precharge += count;
4340 return ret;
4341 }
4342
4343 /* Try charges one by one with reclaim */
4344 while (count--) {
4345 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4346 if (ret)
4347 return ret;
4348 mc.precharge++;
4349 cond_resched();
4350 }
4351 return 0;
4352 }
4353
4354 union mc_target {
4355 struct page *page;
4356 swp_entry_t ent;
4357 };
4358
4359 enum mc_target_type {
4360 MC_TARGET_NONE = 0,
4361 MC_TARGET_PAGE,
4362 MC_TARGET_SWAP,
4363 };
4364
4365 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4366 unsigned long addr, pte_t ptent)
4367 {
4368 struct page *page = vm_normal_page(vma, addr, ptent);
4369
4370 if (!page || !page_mapped(page))
4371 return NULL;
4372 if (PageAnon(page)) {
4373 if (!(mc.flags & MOVE_ANON))
4374 return NULL;
4375 } else {
4376 if (!(mc.flags & MOVE_FILE))
4377 return NULL;
4378 }
4379 if (!get_page_unless_zero(page))
4380 return NULL;
4381
4382 return page;
4383 }
4384
4385 #ifdef CONFIG_SWAP
4386 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4387 pte_t ptent, swp_entry_t *entry)
4388 {
4389 struct page *page = NULL;
4390 swp_entry_t ent = pte_to_swp_entry(ptent);
4391
4392 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4393 return NULL;
4394 /*
4395 * Because lookup_swap_cache() updates some statistics counter,
4396 * we call find_get_page() with swapper_space directly.
4397 */
4398 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4399 if (do_memsw_account())
4400 entry->val = ent.val;
4401
4402 return page;
4403 }
4404 #else
4405 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4406 pte_t ptent, swp_entry_t *entry)
4407 {
4408 return NULL;
4409 }
4410 #endif
4411
4412 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4413 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4414 {
4415 struct page *page = NULL;
4416 struct address_space *mapping;
4417 pgoff_t pgoff;
4418
4419 if (!vma->vm_file) /* anonymous vma */
4420 return NULL;
4421 if (!(mc.flags & MOVE_FILE))
4422 return NULL;
4423
4424 mapping = vma->vm_file->f_mapping;
4425 pgoff = linear_page_index(vma, addr);
4426
4427 /* page is moved even if it's not RSS of this task(page-faulted). */
4428 #ifdef CONFIG_SWAP
4429 /* shmem/tmpfs may report page out on swap: account for that too. */
4430 if (shmem_mapping(mapping)) {
4431 page = find_get_entry(mapping, pgoff);
4432 if (radix_tree_exceptional_entry(page)) {
4433 swp_entry_t swp = radix_to_swp_entry(page);
4434 if (do_memsw_account())
4435 *entry = swp;
4436 page = find_get_page(swap_address_space(swp),
4437 swp_offset(swp));
4438 }
4439 } else
4440 page = find_get_page(mapping, pgoff);
4441 #else
4442 page = find_get_page(mapping, pgoff);
4443 #endif
4444 return page;
4445 }
4446
4447 /**
4448 * mem_cgroup_move_account - move account of the page
4449 * @page: the page
4450 * @compound: charge the page as compound or small page
4451 * @from: mem_cgroup which the page is moved from.
4452 * @to: mem_cgroup which the page is moved to. @from != @to.
4453 *
4454 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4455 *
4456 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4457 * from old cgroup.
4458 */
4459 static int mem_cgroup_move_account(struct page *page,
4460 bool compound,
4461 struct mem_cgroup *from,
4462 struct mem_cgroup *to)
4463 {
4464 unsigned long flags;
4465 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4466 int ret;
4467 bool anon;
4468
4469 VM_BUG_ON(from == to);
4470 VM_BUG_ON_PAGE(PageLRU(page), page);
4471 VM_BUG_ON(compound && !PageTransHuge(page));
4472
4473 /*
4474 * Prevent mem_cgroup_migrate() from looking at
4475 * page->mem_cgroup of its source page while we change it.
4476 */
4477 ret = -EBUSY;
4478 if (!trylock_page(page))
4479 goto out;
4480
4481 ret = -EINVAL;
4482 if (page->mem_cgroup != from)
4483 goto out_unlock;
4484
4485 anon = PageAnon(page);
4486
4487 spin_lock_irqsave(&from->move_lock, flags);
4488
4489 if (!anon && page_mapped(page)) {
4490 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4491 nr_pages);
4492 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4493 nr_pages);
4494 }
4495
4496 /*
4497 * move_lock grabbed above and caller set from->moving_account, so
4498 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4499 * So mapping should be stable for dirty pages.
4500 */
4501 if (!anon && PageDirty(page)) {
4502 struct address_space *mapping = page_mapping(page);
4503
4504 if (mapping_cap_account_dirty(mapping)) {
4505 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4506 nr_pages);
4507 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4508 nr_pages);
4509 }
4510 }
4511
4512 if (PageWriteback(page)) {
4513 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4514 nr_pages);
4515 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4516 nr_pages);
4517 }
4518
4519 /*
4520 * It is safe to change page->mem_cgroup here because the page
4521 * is referenced, charged, and isolated - we can't race with
4522 * uncharging, charging, migration, or LRU putback.
4523 */
4524
4525 /* caller should have done css_get */
4526 page->mem_cgroup = to;
4527 spin_unlock_irqrestore(&from->move_lock, flags);
4528
4529 ret = 0;
4530
4531 local_irq_disable();
4532 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4533 memcg_check_events(to, page);
4534 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4535 memcg_check_events(from, page);
4536 local_irq_enable();
4537 out_unlock:
4538 unlock_page(page);
4539 out:
4540 return ret;
4541 }
4542
4543 /**
4544 * get_mctgt_type - get target type of moving charge
4545 * @vma: the vma the pte to be checked belongs
4546 * @addr: the address corresponding to the pte to be checked
4547 * @ptent: the pte to be checked
4548 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4549 *
4550 * Returns
4551 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4552 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4553 * move charge. if @target is not NULL, the page is stored in target->page
4554 * with extra refcnt got(Callers should handle it).
4555 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4556 * target for charge migration. if @target is not NULL, the entry is stored
4557 * in target->ent.
4558 *
4559 * Called with pte lock held.
4560 */
4561
4562 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4563 unsigned long addr, pte_t ptent, union mc_target *target)
4564 {
4565 struct page *page = NULL;
4566 enum mc_target_type ret = MC_TARGET_NONE;
4567 swp_entry_t ent = { .val = 0 };
4568
4569 if (pte_present(ptent))
4570 page = mc_handle_present_pte(vma, addr, ptent);
4571 else if (is_swap_pte(ptent))
4572 page = mc_handle_swap_pte(vma, ptent, &ent);
4573 else if (pte_none(ptent))
4574 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4575
4576 if (!page && !ent.val)
4577 return ret;
4578 if (page) {
4579 /*
4580 * Do only loose check w/o serialization.
4581 * mem_cgroup_move_account() checks the page is valid or
4582 * not under LRU exclusion.
4583 */
4584 if (page->mem_cgroup == mc.from) {
4585 ret = MC_TARGET_PAGE;
4586 if (target)
4587 target->page = page;
4588 }
4589 if (!ret || !target)
4590 put_page(page);
4591 }
4592 /* There is a swap entry and a page doesn't exist or isn't charged */
4593 if (ent.val && !ret &&
4594 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4595 ret = MC_TARGET_SWAP;
4596 if (target)
4597 target->ent = ent;
4598 }
4599 return ret;
4600 }
4601
4602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4603 /*
4604 * We don't consider swapping or file mapped pages because THP does not
4605 * support them for now.
4606 * Caller should make sure that pmd_trans_huge(pmd) is true.
4607 */
4608 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4609 unsigned long addr, pmd_t pmd, union mc_target *target)
4610 {
4611 struct page *page = NULL;
4612 enum mc_target_type ret = MC_TARGET_NONE;
4613
4614 page = pmd_page(pmd);
4615 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4616 if (!(mc.flags & MOVE_ANON))
4617 return ret;
4618 if (page->mem_cgroup == mc.from) {
4619 ret = MC_TARGET_PAGE;
4620 if (target) {
4621 get_page(page);
4622 target->page = page;
4623 }
4624 }
4625 return ret;
4626 }
4627 #else
4628 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4629 unsigned long addr, pmd_t pmd, union mc_target *target)
4630 {
4631 return MC_TARGET_NONE;
4632 }
4633 #endif
4634
4635 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4636 unsigned long addr, unsigned long end,
4637 struct mm_walk *walk)
4638 {
4639 struct vm_area_struct *vma = walk->vma;
4640 pte_t *pte;
4641 spinlock_t *ptl;
4642
4643 ptl = pmd_trans_huge_lock(pmd, vma);
4644 if (ptl) {
4645 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4646 mc.precharge += HPAGE_PMD_NR;
4647 spin_unlock(ptl);
4648 return 0;
4649 }
4650
4651 if (pmd_trans_unstable(pmd))
4652 return 0;
4653 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4654 for (; addr != end; pte++, addr += PAGE_SIZE)
4655 if (get_mctgt_type(vma, addr, *pte, NULL))
4656 mc.precharge++; /* increment precharge temporarily */
4657 pte_unmap_unlock(pte - 1, ptl);
4658 cond_resched();
4659
4660 return 0;
4661 }
4662
4663 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4664 {
4665 unsigned long precharge;
4666
4667 struct mm_walk mem_cgroup_count_precharge_walk = {
4668 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4669 .mm = mm,
4670 };
4671 down_read(&mm->mmap_sem);
4672 walk_page_range(0, mm->highest_vm_end,
4673 &mem_cgroup_count_precharge_walk);
4674 up_read(&mm->mmap_sem);
4675
4676 precharge = mc.precharge;
4677 mc.precharge = 0;
4678
4679 return precharge;
4680 }
4681
4682 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4683 {
4684 unsigned long precharge = mem_cgroup_count_precharge(mm);
4685
4686 VM_BUG_ON(mc.moving_task);
4687 mc.moving_task = current;
4688 return mem_cgroup_do_precharge(precharge);
4689 }
4690
4691 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4692 static void __mem_cgroup_clear_mc(void)
4693 {
4694 struct mem_cgroup *from = mc.from;
4695 struct mem_cgroup *to = mc.to;
4696
4697 /* we must uncharge all the leftover precharges from mc.to */
4698 if (mc.precharge) {
4699 cancel_charge(mc.to, mc.precharge);
4700 mc.precharge = 0;
4701 }
4702 /*
4703 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4704 * we must uncharge here.
4705 */
4706 if (mc.moved_charge) {
4707 cancel_charge(mc.from, mc.moved_charge);
4708 mc.moved_charge = 0;
4709 }
4710 /* we must fixup refcnts and charges */
4711 if (mc.moved_swap) {
4712 /* uncharge swap account from the old cgroup */
4713 if (!mem_cgroup_is_root(mc.from))
4714 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4715
4716 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4717
4718 /*
4719 * we charged both to->memory and to->memsw, so we
4720 * should uncharge to->memory.
4721 */
4722 if (!mem_cgroup_is_root(mc.to))
4723 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4724
4725 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4726 css_put_many(&mc.to->css, mc.moved_swap);
4727
4728 mc.moved_swap = 0;
4729 }
4730 memcg_oom_recover(from);
4731 memcg_oom_recover(to);
4732 wake_up_all(&mc.waitq);
4733 }
4734
4735 static void mem_cgroup_clear_mc(void)
4736 {
4737 struct mm_struct *mm = mc.mm;
4738
4739 /*
4740 * we must clear moving_task before waking up waiters at the end of
4741 * task migration.
4742 */
4743 mc.moving_task = NULL;
4744 __mem_cgroup_clear_mc();
4745 spin_lock(&mc.lock);
4746 mc.from = NULL;
4747 mc.to = NULL;
4748 mc.mm = NULL;
4749 spin_unlock(&mc.lock);
4750
4751 mmput(mm);
4752 }
4753
4754 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4755 {
4756 struct cgroup_subsys_state *css;
4757 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4758 struct mem_cgroup *from;
4759 struct task_struct *leader, *p;
4760 struct mm_struct *mm;
4761 unsigned long move_flags;
4762 int ret = 0;
4763
4764 /* charge immigration isn't supported on the default hierarchy */
4765 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4766 return 0;
4767
4768 /*
4769 * Multi-process migrations only happen on the default hierarchy
4770 * where charge immigration is not used. Perform charge
4771 * immigration if @tset contains a leader and whine if there are
4772 * multiple.
4773 */
4774 p = NULL;
4775 cgroup_taskset_for_each_leader(leader, css, tset) {
4776 WARN_ON_ONCE(p);
4777 p = leader;
4778 memcg = mem_cgroup_from_css(css);
4779 }
4780 if (!p)
4781 return 0;
4782
4783 /*
4784 * We are now commited to this value whatever it is. Changes in this
4785 * tunable will only affect upcoming migrations, not the current one.
4786 * So we need to save it, and keep it going.
4787 */
4788 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4789 if (!move_flags)
4790 return 0;
4791
4792 from = mem_cgroup_from_task(p);
4793
4794 VM_BUG_ON(from == memcg);
4795
4796 mm = get_task_mm(p);
4797 if (!mm)
4798 return 0;
4799 /* We move charges only when we move a owner of the mm */
4800 if (mm->owner == p) {
4801 VM_BUG_ON(mc.from);
4802 VM_BUG_ON(mc.to);
4803 VM_BUG_ON(mc.precharge);
4804 VM_BUG_ON(mc.moved_charge);
4805 VM_BUG_ON(mc.moved_swap);
4806
4807 spin_lock(&mc.lock);
4808 mc.mm = mm;
4809 mc.from = from;
4810 mc.to = memcg;
4811 mc.flags = move_flags;
4812 spin_unlock(&mc.lock);
4813 /* We set mc.moving_task later */
4814
4815 ret = mem_cgroup_precharge_mc(mm);
4816 if (ret)
4817 mem_cgroup_clear_mc();
4818 } else {
4819 mmput(mm);
4820 }
4821 return ret;
4822 }
4823
4824 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4825 {
4826 if (mc.to)
4827 mem_cgroup_clear_mc();
4828 }
4829
4830 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4831 unsigned long addr, unsigned long end,
4832 struct mm_walk *walk)
4833 {
4834 int ret = 0;
4835 struct vm_area_struct *vma = walk->vma;
4836 pte_t *pte;
4837 spinlock_t *ptl;
4838 enum mc_target_type target_type;
4839 union mc_target target;
4840 struct page *page;
4841
4842 ptl = pmd_trans_huge_lock(pmd, vma);
4843 if (ptl) {
4844 if (mc.precharge < HPAGE_PMD_NR) {
4845 spin_unlock(ptl);
4846 return 0;
4847 }
4848 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4849 if (target_type == MC_TARGET_PAGE) {
4850 page = target.page;
4851 if (!isolate_lru_page(page)) {
4852 if (!mem_cgroup_move_account(page, true,
4853 mc.from, mc.to)) {
4854 mc.precharge -= HPAGE_PMD_NR;
4855 mc.moved_charge += HPAGE_PMD_NR;
4856 }
4857 putback_lru_page(page);
4858 }
4859 put_page(page);
4860 }
4861 spin_unlock(ptl);
4862 return 0;
4863 }
4864
4865 if (pmd_trans_unstable(pmd))
4866 return 0;
4867 retry:
4868 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4869 for (; addr != end; addr += PAGE_SIZE) {
4870 pte_t ptent = *(pte++);
4871 swp_entry_t ent;
4872
4873 if (!mc.precharge)
4874 break;
4875
4876 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4877 case MC_TARGET_PAGE:
4878 page = target.page;
4879 /*
4880 * We can have a part of the split pmd here. Moving it
4881 * can be done but it would be too convoluted so simply
4882 * ignore such a partial THP and keep it in original
4883 * memcg. There should be somebody mapping the head.
4884 */
4885 if (PageTransCompound(page))
4886 goto put;
4887 if (isolate_lru_page(page))
4888 goto put;
4889 if (!mem_cgroup_move_account(page, false,
4890 mc.from, mc.to)) {
4891 mc.precharge--;
4892 /* we uncharge from mc.from later. */
4893 mc.moved_charge++;
4894 }
4895 putback_lru_page(page);
4896 put: /* get_mctgt_type() gets the page */
4897 put_page(page);
4898 break;
4899 case MC_TARGET_SWAP:
4900 ent = target.ent;
4901 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4902 mc.precharge--;
4903 /* we fixup refcnts and charges later. */
4904 mc.moved_swap++;
4905 }
4906 break;
4907 default:
4908 break;
4909 }
4910 }
4911 pte_unmap_unlock(pte - 1, ptl);
4912 cond_resched();
4913
4914 if (addr != end) {
4915 /*
4916 * We have consumed all precharges we got in can_attach().
4917 * We try charge one by one, but don't do any additional
4918 * charges to mc.to if we have failed in charge once in attach()
4919 * phase.
4920 */
4921 ret = mem_cgroup_do_precharge(1);
4922 if (!ret)
4923 goto retry;
4924 }
4925
4926 return ret;
4927 }
4928
4929 static void mem_cgroup_move_charge(void)
4930 {
4931 struct mm_walk mem_cgroup_move_charge_walk = {
4932 .pmd_entry = mem_cgroup_move_charge_pte_range,
4933 .mm = mc.mm,
4934 };
4935
4936 lru_add_drain_all();
4937 /*
4938 * Signal lock_page_memcg() to take the memcg's move_lock
4939 * while we're moving its pages to another memcg. Then wait
4940 * for already started RCU-only updates to finish.
4941 */
4942 atomic_inc(&mc.from->moving_account);
4943 synchronize_rcu();
4944 retry:
4945 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4946 /*
4947 * Someone who are holding the mmap_sem might be waiting in
4948 * waitq. So we cancel all extra charges, wake up all waiters,
4949 * and retry. Because we cancel precharges, we might not be able
4950 * to move enough charges, but moving charge is a best-effort
4951 * feature anyway, so it wouldn't be a big problem.
4952 */
4953 __mem_cgroup_clear_mc();
4954 cond_resched();
4955 goto retry;
4956 }
4957 /*
4958 * When we have consumed all precharges and failed in doing
4959 * additional charge, the page walk just aborts.
4960 */
4961 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4962
4963 up_read(&mc.mm->mmap_sem);
4964 atomic_dec(&mc.from->moving_account);
4965 }
4966
4967 static void mem_cgroup_move_task(void)
4968 {
4969 if (mc.to) {
4970 mem_cgroup_move_charge();
4971 mem_cgroup_clear_mc();
4972 }
4973 }
4974 #else /* !CONFIG_MMU */
4975 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4976 {
4977 return 0;
4978 }
4979 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4980 {
4981 }
4982 static void mem_cgroup_move_task(void)
4983 {
4984 }
4985 #endif
4986
4987 /*
4988 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4989 * to verify whether we're attached to the default hierarchy on each mount
4990 * attempt.
4991 */
4992 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4993 {
4994 /*
4995 * use_hierarchy is forced on the default hierarchy. cgroup core
4996 * guarantees that @root doesn't have any children, so turning it
4997 * on for the root memcg is enough.
4998 */
4999 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5000 root_mem_cgroup->use_hierarchy = true;
5001 else
5002 root_mem_cgroup->use_hierarchy = false;
5003 }
5004
5005 static u64 memory_current_read(struct cgroup_subsys_state *css,
5006 struct cftype *cft)
5007 {
5008 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5009
5010 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5011 }
5012
5013 static int memory_low_show(struct seq_file *m, void *v)
5014 {
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long low = READ_ONCE(memcg->low);
5017
5018 if (low == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5022
5023 return 0;
5024 }
5025
5026 static ssize_t memory_low_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028 {
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned long low;
5031 int err;
5032
5033 buf = strstrip(buf);
5034 err = page_counter_memparse(buf, "max", &low);
5035 if (err)
5036 return err;
5037
5038 memcg->low = low;
5039
5040 return nbytes;
5041 }
5042
5043 static int memory_high_show(struct seq_file *m, void *v)
5044 {
5045 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5046 unsigned long high = READ_ONCE(memcg->high);
5047
5048 if (high == PAGE_COUNTER_MAX)
5049 seq_puts(m, "max\n");
5050 else
5051 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5052
5053 return 0;
5054 }
5055
5056 static ssize_t memory_high_write(struct kernfs_open_file *of,
5057 char *buf, size_t nbytes, loff_t off)
5058 {
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5060 unsigned long nr_pages;
5061 unsigned long high;
5062 int err;
5063
5064 buf = strstrip(buf);
5065 err = page_counter_memparse(buf, "max", &high);
5066 if (err)
5067 return err;
5068
5069 memcg->high = high;
5070
5071 nr_pages = page_counter_read(&memcg->memory);
5072 if (nr_pages > high)
5073 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5074 GFP_KERNEL, true);
5075
5076 memcg_wb_domain_size_changed(memcg);
5077 return nbytes;
5078 }
5079
5080 static int memory_max_show(struct seq_file *m, void *v)
5081 {
5082 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5083 unsigned long max = READ_ONCE(memcg->memory.limit);
5084
5085 if (max == PAGE_COUNTER_MAX)
5086 seq_puts(m, "max\n");
5087 else
5088 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5089
5090 return 0;
5091 }
5092
5093 static ssize_t memory_max_write(struct kernfs_open_file *of,
5094 char *buf, size_t nbytes, loff_t off)
5095 {
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5097 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5098 bool drained = false;
5099 unsigned long max;
5100 int err;
5101
5102 buf = strstrip(buf);
5103 err = page_counter_memparse(buf, "max", &max);
5104 if (err)
5105 return err;
5106
5107 xchg(&memcg->memory.limit, max);
5108
5109 for (;;) {
5110 unsigned long nr_pages = page_counter_read(&memcg->memory);
5111
5112 if (nr_pages <= max)
5113 break;
5114
5115 if (signal_pending(current)) {
5116 err = -EINTR;
5117 break;
5118 }
5119
5120 if (!drained) {
5121 drain_all_stock(memcg);
5122 drained = true;
5123 continue;
5124 }
5125
5126 if (nr_reclaims) {
5127 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5128 GFP_KERNEL, true))
5129 nr_reclaims--;
5130 continue;
5131 }
5132
5133 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5134 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5135 break;
5136 }
5137
5138 memcg_wb_domain_size_changed(memcg);
5139 return nbytes;
5140 }
5141
5142 static int memory_events_show(struct seq_file *m, void *v)
5143 {
5144 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5145
5146 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5147 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5148 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5149 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5150
5151 return 0;
5152 }
5153
5154 static int memory_stat_show(struct seq_file *m, void *v)
5155 {
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5157 unsigned long stat[MEMCG_NR_STAT];
5158 unsigned long events[MEMCG_NR_EVENTS];
5159 int i;
5160
5161 /*
5162 * Provide statistics on the state of the memory subsystem as
5163 * well as cumulative event counters that show past behavior.
5164 *
5165 * This list is ordered following a combination of these gradients:
5166 * 1) generic big picture -> specifics and details
5167 * 2) reflecting userspace activity -> reflecting kernel heuristics
5168 *
5169 * Current memory state:
5170 */
5171
5172 tree_stat(memcg, stat);
5173 tree_events(memcg, events);
5174
5175 seq_printf(m, "anon %llu\n",
5176 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5177 seq_printf(m, "file %llu\n",
5178 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5179 seq_printf(m, "kernel_stack %llu\n",
5180 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5181 seq_printf(m, "slab %llu\n",
5182 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5183 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5184 seq_printf(m, "sock %llu\n",
5185 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5186
5187 seq_printf(m, "file_mapped %llu\n",
5188 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5189 seq_printf(m, "file_dirty %llu\n",
5190 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5191 seq_printf(m, "file_writeback %llu\n",
5192 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5193
5194 for (i = 0; i < NR_LRU_LISTS; i++) {
5195 struct mem_cgroup *mi;
5196 unsigned long val = 0;
5197
5198 for_each_mem_cgroup_tree(mi, memcg)
5199 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5200 seq_printf(m, "%s %llu\n",
5201 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5202 }
5203
5204 seq_printf(m, "slab_reclaimable %llu\n",
5205 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5206 seq_printf(m, "slab_unreclaimable %llu\n",
5207 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5208
5209 /* Accumulated memory events */
5210
5211 seq_printf(m, "pgfault %lu\n",
5212 events[MEM_CGROUP_EVENTS_PGFAULT]);
5213 seq_printf(m, "pgmajfault %lu\n",
5214 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5215
5216 return 0;
5217 }
5218
5219 static struct cftype memory_files[] = {
5220 {
5221 .name = "current",
5222 .flags = CFTYPE_NOT_ON_ROOT,
5223 .read_u64 = memory_current_read,
5224 },
5225 {
5226 .name = "low",
5227 .flags = CFTYPE_NOT_ON_ROOT,
5228 .seq_show = memory_low_show,
5229 .write = memory_low_write,
5230 },
5231 {
5232 .name = "high",
5233 .flags = CFTYPE_NOT_ON_ROOT,
5234 .seq_show = memory_high_show,
5235 .write = memory_high_write,
5236 },
5237 {
5238 .name = "max",
5239 .flags = CFTYPE_NOT_ON_ROOT,
5240 .seq_show = memory_max_show,
5241 .write = memory_max_write,
5242 },
5243 {
5244 .name = "events",
5245 .flags = CFTYPE_NOT_ON_ROOT,
5246 .file_offset = offsetof(struct mem_cgroup, events_file),
5247 .seq_show = memory_events_show,
5248 },
5249 {
5250 .name = "stat",
5251 .flags = CFTYPE_NOT_ON_ROOT,
5252 .seq_show = memory_stat_show,
5253 },
5254 { } /* terminate */
5255 };
5256
5257 struct cgroup_subsys memory_cgrp_subsys = {
5258 .css_alloc = mem_cgroup_css_alloc,
5259 .css_online = mem_cgroup_css_online,
5260 .css_offline = mem_cgroup_css_offline,
5261 .css_released = mem_cgroup_css_released,
5262 .css_free = mem_cgroup_css_free,
5263 .css_reset = mem_cgroup_css_reset,
5264 .can_attach = mem_cgroup_can_attach,
5265 .cancel_attach = mem_cgroup_cancel_attach,
5266 .post_attach = mem_cgroup_move_task,
5267 .bind = mem_cgroup_bind,
5268 .dfl_cftypes = memory_files,
5269 .legacy_cftypes = mem_cgroup_legacy_files,
5270 .early_init = 0,
5271 };
5272
5273 /**
5274 * mem_cgroup_low - check if memory consumption is below the normal range
5275 * @root: the highest ancestor to consider
5276 * @memcg: the memory cgroup to check
5277 *
5278 * Returns %true if memory consumption of @memcg, and that of all
5279 * configurable ancestors up to @root, is below the normal range.
5280 */
5281 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5282 {
5283 if (mem_cgroup_disabled())
5284 return false;
5285
5286 /*
5287 * The toplevel group doesn't have a configurable range, so
5288 * it's never low when looked at directly, and it is not
5289 * considered an ancestor when assessing the hierarchy.
5290 */
5291
5292 if (memcg == root_mem_cgroup)
5293 return false;
5294
5295 if (page_counter_read(&memcg->memory) >= memcg->low)
5296 return false;
5297
5298 while (memcg != root) {
5299 memcg = parent_mem_cgroup(memcg);
5300
5301 if (memcg == root_mem_cgroup)
5302 break;
5303
5304 if (page_counter_read(&memcg->memory) >= memcg->low)
5305 return false;
5306 }
5307 return true;
5308 }
5309
5310 /**
5311 * mem_cgroup_try_charge - try charging a page
5312 * @page: page to charge
5313 * @mm: mm context of the victim
5314 * @gfp_mask: reclaim mode
5315 * @memcgp: charged memcg return
5316 * @compound: charge the page as compound or small page
5317 *
5318 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5319 * pages according to @gfp_mask if necessary.
5320 *
5321 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5322 * Otherwise, an error code is returned.
5323 *
5324 * After page->mapping has been set up, the caller must finalize the
5325 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5326 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5327 */
5328 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5329 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5330 bool compound)
5331 {
5332 struct mem_cgroup *memcg = NULL;
5333 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5334 int ret = 0;
5335
5336 if (mem_cgroup_disabled())
5337 goto out;
5338
5339 if (PageSwapCache(page)) {
5340 /*
5341 * Every swap fault against a single page tries to charge the
5342 * page, bail as early as possible. shmem_unuse() encounters
5343 * already charged pages, too. The USED bit is protected by
5344 * the page lock, which serializes swap cache removal, which
5345 * in turn serializes uncharging.
5346 */
5347 VM_BUG_ON_PAGE(!PageLocked(page), page);
5348 if (page->mem_cgroup)
5349 goto out;
5350
5351 if (do_swap_account) {
5352 swp_entry_t ent = { .val = page_private(page), };
5353 unsigned short id = lookup_swap_cgroup_id(ent);
5354
5355 rcu_read_lock();
5356 memcg = mem_cgroup_from_id(id);
5357 if (memcg && !css_tryget_online(&memcg->css))
5358 memcg = NULL;
5359 rcu_read_unlock();
5360 }
5361 }
5362
5363 if (!memcg)
5364 memcg = get_mem_cgroup_from_mm(mm);
5365
5366 ret = try_charge(memcg, gfp_mask, nr_pages);
5367
5368 css_put(&memcg->css);
5369 out:
5370 *memcgp = memcg;
5371 return ret;
5372 }
5373
5374 /**
5375 * mem_cgroup_commit_charge - commit a page charge
5376 * @page: page to charge
5377 * @memcg: memcg to charge the page to
5378 * @lrucare: page might be on LRU already
5379 * @compound: charge the page as compound or small page
5380 *
5381 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5382 * after page->mapping has been set up. This must happen atomically
5383 * as part of the page instantiation, i.e. under the page table lock
5384 * for anonymous pages, under the page lock for page and swap cache.
5385 *
5386 * In addition, the page must not be on the LRU during the commit, to
5387 * prevent racing with task migration. If it might be, use @lrucare.
5388 *
5389 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5390 */
5391 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5392 bool lrucare, bool compound)
5393 {
5394 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5395
5396 VM_BUG_ON_PAGE(!page->mapping, page);
5397 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5398
5399 if (mem_cgroup_disabled())
5400 return;
5401 /*
5402 * Swap faults will attempt to charge the same page multiple
5403 * times. But reuse_swap_page() might have removed the page
5404 * from swapcache already, so we can't check PageSwapCache().
5405 */
5406 if (!memcg)
5407 return;
5408
5409 commit_charge(page, memcg, lrucare);
5410
5411 local_irq_disable();
5412 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5413 memcg_check_events(memcg, page);
5414 local_irq_enable();
5415
5416 if (do_memsw_account() && PageSwapCache(page)) {
5417 swp_entry_t entry = { .val = page_private(page) };
5418 /*
5419 * The swap entry might not get freed for a long time,
5420 * let's not wait for it. The page already received a
5421 * memory+swap charge, drop the swap entry duplicate.
5422 */
5423 mem_cgroup_uncharge_swap(entry);
5424 }
5425 }
5426
5427 /**
5428 * mem_cgroup_cancel_charge - cancel a page charge
5429 * @page: page to charge
5430 * @memcg: memcg to charge the page to
5431 * @compound: charge the page as compound or small page
5432 *
5433 * Cancel a charge transaction started by mem_cgroup_try_charge().
5434 */
5435 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5436 bool compound)
5437 {
5438 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5439
5440 if (mem_cgroup_disabled())
5441 return;
5442 /*
5443 * Swap faults will attempt to charge the same page multiple
5444 * times. But reuse_swap_page() might have removed the page
5445 * from swapcache already, so we can't check PageSwapCache().
5446 */
5447 if (!memcg)
5448 return;
5449
5450 cancel_charge(memcg, nr_pages);
5451 }
5452
5453 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5454 unsigned long nr_anon, unsigned long nr_file,
5455 unsigned long nr_huge, unsigned long nr_kmem,
5456 struct page *dummy_page)
5457 {
5458 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5459 unsigned long flags;
5460
5461 if (!mem_cgroup_is_root(memcg)) {
5462 page_counter_uncharge(&memcg->memory, nr_pages);
5463 if (do_memsw_account())
5464 page_counter_uncharge(&memcg->memsw, nr_pages);
5465 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5466 page_counter_uncharge(&memcg->kmem, nr_kmem);
5467 memcg_oom_recover(memcg);
5468 }
5469
5470 local_irq_save(flags);
5471 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5472 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5473 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5474 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5475 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5476 memcg_check_events(memcg, dummy_page);
5477 local_irq_restore(flags);
5478
5479 if (!mem_cgroup_is_root(memcg))
5480 css_put_many(&memcg->css, nr_pages);
5481 }
5482
5483 static void uncharge_list(struct list_head *page_list)
5484 {
5485 struct mem_cgroup *memcg = NULL;
5486 unsigned long nr_anon = 0;
5487 unsigned long nr_file = 0;
5488 unsigned long nr_huge = 0;
5489 unsigned long nr_kmem = 0;
5490 unsigned long pgpgout = 0;
5491 struct list_head *next;
5492 struct page *page;
5493
5494 /*
5495 * Note that the list can be a single page->lru; hence the
5496 * do-while loop instead of a simple list_for_each_entry().
5497 */
5498 next = page_list->next;
5499 do {
5500 page = list_entry(next, struct page, lru);
5501 next = page->lru.next;
5502
5503 VM_BUG_ON_PAGE(PageLRU(page), page);
5504 VM_BUG_ON_PAGE(page_count(page), page);
5505
5506 if (!page->mem_cgroup)
5507 continue;
5508
5509 /*
5510 * Nobody should be changing or seriously looking at
5511 * page->mem_cgroup at this point, we have fully
5512 * exclusive access to the page.
5513 */
5514
5515 if (memcg != page->mem_cgroup) {
5516 if (memcg) {
5517 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5518 nr_huge, nr_kmem, page);
5519 pgpgout = nr_anon = nr_file =
5520 nr_huge = nr_kmem = 0;
5521 }
5522 memcg = page->mem_cgroup;
5523 }
5524
5525 if (!PageKmemcg(page)) {
5526 unsigned int nr_pages = 1;
5527
5528 if (PageTransHuge(page)) {
5529 nr_pages <<= compound_order(page);
5530 nr_huge += nr_pages;
5531 }
5532 if (PageAnon(page))
5533 nr_anon += nr_pages;
5534 else
5535 nr_file += nr_pages;
5536 pgpgout++;
5537 } else {
5538 nr_kmem += 1 << compound_order(page);
5539 __ClearPageKmemcg(page);
5540 }
5541
5542 page->mem_cgroup = NULL;
5543 } while (next != page_list);
5544
5545 if (memcg)
5546 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5547 nr_huge, nr_kmem, page);
5548 }
5549
5550 /**
5551 * mem_cgroup_uncharge - uncharge a page
5552 * @page: page to uncharge
5553 *
5554 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5555 * mem_cgroup_commit_charge().
5556 */
5557 void mem_cgroup_uncharge(struct page *page)
5558 {
5559 if (mem_cgroup_disabled())
5560 return;
5561
5562 /* Don't touch page->lru of any random page, pre-check: */
5563 if (!page->mem_cgroup)
5564 return;
5565
5566 INIT_LIST_HEAD(&page->lru);
5567 uncharge_list(&page->lru);
5568 }
5569
5570 /**
5571 * mem_cgroup_uncharge_list - uncharge a list of page
5572 * @page_list: list of pages to uncharge
5573 *
5574 * Uncharge a list of pages previously charged with
5575 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5576 */
5577 void mem_cgroup_uncharge_list(struct list_head *page_list)
5578 {
5579 if (mem_cgroup_disabled())
5580 return;
5581
5582 if (!list_empty(page_list))
5583 uncharge_list(page_list);
5584 }
5585
5586 /**
5587 * mem_cgroup_migrate - charge a page's replacement
5588 * @oldpage: currently circulating page
5589 * @newpage: replacement page
5590 *
5591 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5592 * be uncharged upon free.
5593 *
5594 * Both pages must be locked, @newpage->mapping must be set up.
5595 */
5596 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5597 {
5598 struct mem_cgroup *memcg;
5599 unsigned int nr_pages;
5600 bool compound;
5601 unsigned long flags;
5602
5603 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5604 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5605 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5606 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5607 newpage);
5608
5609 if (mem_cgroup_disabled())
5610 return;
5611
5612 /* Page cache replacement: new page already charged? */
5613 if (newpage->mem_cgroup)
5614 return;
5615
5616 /* Swapcache readahead pages can get replaced before being charged */
5617 memcg = oldpage->mem_cgroup;
5618 if (!memcg)
5619 return;
5620
5621 /* Force-charge the new page. The old one will be freed soon */
5622 compound = PageTransHuge(newpage);
5623 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5624
5625 page_counter_charge(&memcg->memory, nr_pages);
5626 if (do_memsw_account())
5627 page_counter_charge(&memcg->memsw, nr_pages);
5628 css_get_many(&memcg->css, nr_pages);
5629
5630 commit_charge(newpage, memcg, false);
5631
5632 local_irq_save(flags);
5633 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5634 memcg_check_events(memcg, newpage);
5635 local_irq_restore(flags);
5636 }
5637
5638 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5639 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5640
5641 void sock_update_memcg(struct sock *sk)
5642 {
5643 struct mem_cgroup *memcg;
5644
5645 /* Socket cloning can throw us here with sk_cgrp already
5646 * filled. It won't however, necessarily happen from
5647 * process context. So the test for root memcg given
5648 * the current task's memcg won't help us in this case.
5649 *
5650 * Respecting the original socket's memcg is a better
5651 * decision in this case.
5652 */
5653 if (sk->sk_memcg) {
5654 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5655 css_get(&sk->sk_memcg->css);
5656 return;
5657 }
5658
5659 rcu_read_lock();
5660 memcg = mem_cgroup_from_task(current);
5661 if (memcg == root_mem_cgroup)
5662 goto out;
5663 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5664 goto out;
5665 if (css_tryget_online(&memcg->css))
5666 sk->sk_memcg = memcg;
5667 out:
5668 rcu_read_unlock();
5669 }
5670 EXPORT_SYMBOL(sock_update_memcg);
5671
5672 void sock_release_memcg(struct sock *sk)
5673 {
5674 WARN_ON(!sk->sk_memcg);
5675 css_put(&sk->sk_memcg->css);
5676 }
5677
5678 /**
5679 * mem_cgroup_charge_skmem - charge socket memory
5680 * @memcg: memcg to charge
5681 * @nr_pages: number of pages to charge
5682 *
5683 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5684 * @memcg's configured limit, %false if the charge had to be forced.
5685 */
5686 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5687 {
5688 gfp_t gfp_mask = GFP_KERNEL;
5689
5690 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5691 struct page_counter *fail;
5692
5693 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5694 memcg->tcpmem_pressure = 0;
5695 return true;
5696 }
5697 page_counter_charge(&memcg->tcpmem, nr_pages);
5698 memcg->tcpmem_pressure = 1;
5699 return false;
5700 }
5701
5702 /* Don't block in the packet receive path */
5703 if (in_softirq())
5704 gfp_mask = GFP_NOWAIT;
5705
5706 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5707
5708 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5709 return true;
5710
5711 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5712 return false;
5713 }
5714
5715 /**
5716 * mem_cgroup_uncharge_skmem - uncharge socket memory
5717 * @memcg - memcg to uncharge
5718 * @nr_pages - number of pages to uncharge
5719 */
5720 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5721 {
5722 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5723 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5724 return;
5725 }
5726
5727 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5728
5729 page_counter_uncharge(&memcg->memory, nr_pages);
5730 css_put_many(&memcg->css, nr_pages);
5731 }
5732
5733 static int __init cgroup_memory(char *s)
5734 {
5735 char *token;
5736
5737 while ((token = strsep(&s, ",")) != NULL) {
5738 if (!*token)
5739 continue;
5740 if (!strcmp(token, "nosocket"))
5741 cgroup_memory_nosocket = true;
5742 if (!strcmp(token, "nokmem"))
5743 cgroup_memory_nokmem = true;
5744 }
5745 return 0;
5746 }
5747 __setup("cgroup.memory=", cgroup_memory);
5748
5749 /*
5750 * subsys_initcall() for memory controller.
5751 *
5752 * Some parts like hotcpu_notifier() have to be initialized from this context
5753 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5754 * everything that doesn't depend on a specific mem_cgroup structure should
5755 * be initialized from here.
5756 */
5757 static int __init mem_cgroup_init(void)
5758 {
5759 int cpu, node;
5760
5761 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5762
5763 for_each_possible_cpu(cpu)
5764 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5765 drain_local_stock);
5766
5767 for_each_node(node) {
5768 struct mem_cgroup_tree_per_node *rtpn;
5769
5770 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5771 node_online(node) ? node : NUMA_NO_NODE);
5772
5773 rtpn->rb_root = RB_ROOT;
5774 spin_lock_init(&rtpn->lock);
5775 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5776 }
5777
5778 return 0;
5779 }
5780 subsys_initcall(mem_cgroup_init);
5781
5782 #ifdef CONFIG_MEMCG_SWAP
5783 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5784 {
5785 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5786 /*
5787 * The root cgroup cannot be destroyed, so it's refcount must
5788 * always be >= 1.
5789 */
5790 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5791 VM_BUG_ON(1);
5792 break;
5793 }
5794 memcg = parent_mem_cgroup(memcg);
5795 if (!memcg)
5796 memcg = root_mem_cgroup;
5797 }
5798 return memcg;
5799 }
5800
5801 /**
5802 * mem_cgroup_swapout - transfer a memsw charge to swap
5803 * @page: page whose memsw charge to transfer
5804 * @entry: swap entry to move the charge to
5805 *
5806 * Transfer the memsw charge of @page to @entry.
5807 */
5808 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5809 {
5810 struct mem_cgroup *memcg, *swap_memcg;
5811 unsigned short oldid;
5812
5813 VM_BUG_ON_PAGE(PageLRU(page), page);
5814 VM_BUG_ON_PAGE(page_count(page), page);
5815
5816 if (!do_memsw_account())
5817 return;
5818
5819 memcg = page->mem_cgroup;
5820
5821 /* Readahead page, never charged */
5822 if (!memcg)
5823 return;
5824
5825 /*
5826 * In case the memcg owning these pages has been offlined and doesn't
5827 * have an ID allocated to it anymore, charge the closest online
5828 * ancestor for the swap instead and transfer the memory+swap charge.
5829 */
5830 swap_memcg = mem_cgroup_id_get_online(memcg);
5831 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5832 VM_BUG_ON_PAGE(oldid, page);
5833 mem_cgroup_swap_statistics(swap_memcg, true);
5834
5835 page->mem_cgroup = NULL;
5836
5837 if (!mem_cgroup_is_root(memcg))
5838 page_counter_uncharge(&memcg->memory, 1);
5839
5840 if (memcg != swap_memcg) {
5841 if (!mem_cgroup_is_root(swap_memcg))
5842 page_counter_charge(&swap_memcg->memsw, 1);
5843 page_counter_uncharge(&memcg->memsw, 1);
5844 }
5845
5846 /*
5847 * Interrupts should be disabled here because the caller holds the
5848 * mapping->tree_lock lock which is taken with interrupts-off. It is
5849 * important here to have the interrupts disabled because it is the
5850 * only synchronisation we have for udpating the per-CPU variables.
5851 */
5852 VM_BUG_ON(!irqs_disabled());
5853 mem_cgroup_charge_statistics(memcg, page, false, -1);
5854 memcg_check_events(memcg, page);
5855
5856 if (!mem_cgroup_is_root(memcg))
5857 css_put(&memcg->css);
5858 }
5859
5860 /*
5861 * mem_cgroup_try_charge_swap - try charging a swap entry
5862 * @page: page being added to swap
5863 * @entry: swap entry to charge
5864 *
5865 * Try to charge @entry to the memcg that @page belongs to.
5866 *
5867 * Returns 0 on success, -ENOMEM on failure.
5868 */
5869 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5870 {
5871 struct mem_cgroup *memcg;
5872 struct page_counter *counter;
5873 unsigned short oldid;
5874
5875 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5876 return 0;
5877
5878 memcg = page->mem_cgroup;
5879
5880 /* Readahead page, never charged */
5881 if (!memcg)
5882 return 0;
5883
5884 memcg = mem_cgroup_id_get_online(memcg);
5885
5886 if (!mem_cgroup_is_root(memcg) &&
5887 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5888 mem_cgroup_id_put(memcg);
5889 return -ENOMEM;
5890 }
5891
5892 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5893 VM_BUG_ON_PAGE(oldid, page);
5894 mem_cgroup_swap_statistics(memcg, true);
5895
5896 return 0;
5897 }
5898
5899 /**
5900 * mem_cgroup_uncharge_swap - uncharge a swap entry
5901 * @entry: swap entry to uncharge
5902 *
5903 * Drop the swap charge associated with @entry.
5904 */
5905 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5906 {
5907 struct mem_cgroup *memcg;
5908 unsigned short id;
5909
5910 if (!do_swap_account)
5911 return;
5912
5913 id = swap_cgroup_record(entry, 0);
5914 rcu_read_lock();
5915 memcg = mem_cgroup_from_id(id);
5916 if (memcg) {
5917 if (!mem_cgroup_is_root(memcg)) {
5918 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5919 page_counter_uncharge(&memcg->swap, 1);
5920 else
5921 page_counter_uncharge(&memcg->memsw, 1);
5922 }
5923 mem_cgroup_swap_statistics(memcg, false);
5924 mem_cgroup_id_put(memcg);
5925 }
5926 rcu_read_unlock();
5927 }
5928
5929 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5930 {
5931 long nr_swap_pages = get_nr_swap_pages();
5932
5933 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5934 return nr_swap_pages;
5935 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5936 nr_swap_pages = min_t(long, nr_swap_pages,
5937 READ_ONCE(memcg->swap.limit) -
5938 page_counter_read(&memcg->swap));
5939 return nr_swap_pages;
5940 }
5941
5942 bool mem_cgroup_swap_full(struct page *page)
5943 {
5944 struct mem_cgroup *memcg;
5945
5946 VM_BUG_ON_PAGE(!PageLocked(page), page);
5947
5948 if (vm_swap_full())
5949 return true;
5950 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5951 return false;
5952
5953 memcg = page->mem_cgroup;
5954 if (!memcg)
5955 return false;
5956
5957 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5958 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5959 return true;
5960
5961 return false;
5962 }
5963
5964 /* for remember boot option*/
5965 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5966 static int really_do_swap_account __initdata = 1;
5967 #else
5968 static int really_do_swap_account __initdata;
5969 #endif
5970
5971 static int __init enable_swap_account(char *s)
5972 {
5973 if (!strcmp(s, "1"))
5974 really_do_swap_account = 1;
5975 else if (!strcmp(s, "0"))
5976 really_do_swap_account = 0;
5977 return 1;
5978 }
5979 __setup("swapaccount=", enable_swap_account);
5980
5981 static u64 swap_current_read(struct cgroup_subsys_state *css,
5982 struct cftype *cft)
5983 {
5984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5985
5986 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5987 }
5988
5989 static int swap_max_show(struct seq_file *m, void *v)
5990 {
5991 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5992 unsigned long max = READ_ONCE(memcg->swap.limit);
5993
5994 if (max == PAGE_COUNTER_MAX)
5995 seq_puts(m, "max\n");
5996 else
5997 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5998
5999 return 0;
6000 }
6001
6002 static ssize_t swap_max_write(struct kernfs_open_file *of,
6003 char *buf, size_t nbytes, loff_t off)
6004 {
6005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6006 unsigned long max;
6007 int err;
6008
6009 buf = strstrip(buf);
6010 err = page_counter_memparse(buf, "max", &max);
6011 if (err)
6012 return err;
6013
6014 mutex_lock(&memcg_limit_mutex);
6015 err = page_counter_limit(&memcg->swap, max);
6016 mutex_unlock(&memcg_limit_mutex);
6017 if (err)
6018 return err;
6019
6020 return nbytes;
6021 }
6022
6023 static struct cftype swap_files[] = {
6024 {
6025 .name = "swap.current",
6026 .flags = CFTYPE_NOT_ON_ROOT,
6027 .read_u64 = swap_current_read,
6028 },
6029 {
6030 .name = "swap.max",
6031 .flags = CFTYPE_NOT_ON_ROOT,
6032 .seq_show = swap_max_show,
6033 .write = swap_max_write,
6034 },
6035 { } /* terminate */
6036 };
6037
6038 static struct cftype memsw_cgroup_files[] = {
6039 {
6040 .name = "memsw.usage_in_bytes",
6041 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6042 .read_u64 = mem_cgroup_read_u64,
6043 },
6044 {
6045 .name = "memsw.max_usage_in_bytes",
6046 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6047 .write = mem_cgroup_reset,
6048 .read_u64 = mem_cgroup_read_u64,
6049 },
6050 {
6051 .name = "memsw.limit_in_bytes",
6052 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6053 .write = mem_cgroup_write,
6054 .read_u64 = mem_cgroup_read_u64,
6055 },
6056 {
6057 .name = "memsw.failcnt",
6058 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6059 .write = mem_cgroup_reset,
6060 .read_u64 = mem_cgroup_read_u64,
6061 },
6062 { }, /* terminate */
6063 };
6064
6065 static int __init mem_cgroup_swap_init(void)
6066 {
6067 if (!mem_cgroup_disabled() && really_do_swap_account) {
6068 do_swap_account = 1;
6069 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6070 swap_files));
6071 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6072 memsw_cgroup_files));
6073 }
6074 return 0;
6075 }
6076 subsys_initcall(mem_cgroup_swap_init);
6077
6078 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.180457 seconds and 5 git commands to generate.