tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
e231875b 628 unsigned long nr = 0;
ef8f2327
MG
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
e231875b
JZ
639 }
640 return nr;
889976db 641}
bb2a0de9 642
c0ff4b85 643static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 644 unsigned int lru_mask)
6d12e2d8 645{
e231875b 646 unsigned long nr = 0;
889976db 647 int nid;
6d12e2d8 648
31aaea4a 649 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
d52aa412
KH
652}
653
f53d7ce3
JW
654static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
7a159cc9
JW
656{
657 unsigned long val, next;
658
13114716 659 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 660 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 661 /* from time_after() in jiffies.h */
f53d7ce3
JW
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
bb4cc1a8
AM
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
f53d7ce3
JW
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
7a159cc9 678 }
f53d7ce3 679 return false;
d2265e6f
KH
680}
681
682/*
683 * Check events in order.
684 *
685 */
c0ff4b85 686static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
687{
688 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 691 bool do_softlimit;
82b3f2a7 692 bool do_numainfo __maybe_unused;
f53d7ce3 693
bb4cc1a8
AM
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
696#if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699#endif
c0ff4b85 700 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
453a9bf3 703#if MAX_NUMNODES > 1
f53d7ce3 704 if (unlikely(do_numainfo))
c0ff4b85 705 atomic_inc(&memcg->numainfo_events);
453a9bf3 706#endif
0a31bc97 707 }
d2265e6f
KH
708}
709
cf475ad2 710struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 711{
31a78f23
BS
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
073219e9 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 721}
33398cf2 722EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 723
df381975 724static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 725{
c0ff4b85 726 struct mem_cgroup *memcg = NULL;
0b7f569e 727
54595fe2
KH
728 rcu_read_lock();
729 do {
6f6acb00
MH
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
df381975 736 memcg = root_mem_cgroup;
6f6acb00
MH
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
ec903c0c 742 } while (!css_tryget_online(&memcg->css));
54595fe2 743 rcu_read_unlock();
c0ff4b85 744 return memcg;
54595fe2
KH
745}
746
5660048c
JW
747/**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
694fbc0f 764struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 765 struct mem_cgroup *prev,
694fbc0f 766 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 767{
33398cf2 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 769 struct cgroup_subsys_state *css = NULL;
9f3a0d09 770 struct mem_cgroup *memcg = NULL;
5ac8fb31 771 struct mem_cgroup *pos = NULL;
711d3d2c 772
694fbc0f
AM
773 if (mem_cgroup_disabled())
774 return NULL;
5660048c 775
9f3a0d09
JW
776 if (!root)
777 root = root_mem_cgroup;
7d74b06f 778
9f3a0d09 779 if (prev && !reclaim)
5ac8fb31 780 pos = prev;
14067bb3 781
9f3a0d09
JW
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
5ac8fb31 784 goto out;
694fbc0f 785 return root;
9f3a0d09 786 }
14067bb3 787
542f85f9 788 rcu_read_lock();
5f578161 789
5ac8fb31 790 if (reclaim) {
ef8f2327 791 struct mem_cgroup_per_node *mz;
5ac8fb31 792
ef8f2327 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
6df38689 799 while (1) {
4db0c3c2 800 pos = READ_ONCE(iter->position);
6df38689
VD
801 if (!pos || css_tryget(&pos->css))
802 break;
5ac8fb31 803 /*
6df38689
VD
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
5ac8fb31
JW
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
527a5ec9 830 }
7d74b06f 831
5ac8fb31
JW
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
14067bb3 838
5ac8fb31
JW
839 if (css == &root->css)
840 break;
14067bb3 841
0b8f73e1
JW
842 if (css_tryget(css))
843 break;
9f3a0d09 844
5ac8fb31 845 memcg = NULL;
9f3a0d09 846 }
5ac8fb31
JW
847
848 if (reclaim) {
5ac8fb31 849 /*
6df38689
VD
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 853 */
6df38689
VD
854 (void)cmpxchg(&iter->position, pos, memcg);
855
5ac8fb31
JW
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
9f3a0d09 863 }
5ac8fb31 864
542f85f9
MH
865out_unlock:
866 rcu_read_unlock();
5ac8fb31 867out:
c40046f3
MH
868 if (prev && prev != root)
869 css_put(&prev->css);
870
9f3a0d09 871 return memcg;
14067bb3 872}
7d74b06f 873
5660048c
JW
874/**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
9f3a0d09
JW
881{
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886}
7d74b06f 887
6df38689
VD
888static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889{
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
892 struct mem_cgroup_per_node *mz;
893 int nid;
6df38689
VD
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
ef8f2327
MG
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
6df38689
VD
903 }
904 }
905 }
906}
907
9f3a0d09
JW
908/*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 915 iter != NULL; \
527a5ec9 916 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 917
9f3a0d09 918#define for_each_mem_cgroup(iter) \
527a5ec9 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 920 iter != NULL; \
527a5ec9 921 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 922
b134cbb2
VD
923/**
924 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925 * @memcg: hierarchy root
926 * @fn: function to call for each task
927 * @arg: argument passed to @fn
928 *
929 * This function iterates over tasks attached to @memcg or to any of its
930 * descendants and calls @fn for each task. If @fn returns a non-zero
931 * value, the function breaks the iteration loop and returns the value.
932 * Otherwise, it will iterate over all tasks and return 0.
933 *
934 * This function must not be called for the root memory cgroup.
935 */
936int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937 int (*fn)(struct task_struct *, void *), void *arg)
938{
939 struct mem_cgroup *iter;
940 int ret = 0;
941
942 BUG_ON(memcg == root_mem_cgroup);
943
944 for_each_mem_cgroup_tree(iter, memcg) {
945 struct css_task_iter it;
946 struct task_struct *task;
947
948 css_task_iter_start(&iter->css, &it);
949 while (!ret && (task = css_task_iter_next(&it)))
950 ret = fn(task, arg);
951 css_task_iter_end(&it);
952 if (ret) {
953 mem_cgroup_iter_break(memcg, iter);
954 break;
955 }
956 }
957 return ret;
958}
959
925b7673 960/**
dfe0e773 961 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 962 * @page: the page
fa9add64 963 * @zone: zone of the page
dfe0e773
JW
964 *
965 * This function is only safe when following the LRU page isolation
966 * and putback protocol: the LRU lock must be held, and the page must
967 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 968 */
599d0c95 969struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 970{
ef8f2327 971 struct mem_cgroup_per_node *mz;
925b7673 972 struct mem_cgroup *memcg;
bea8c150 973 struct lruvec *lruvec;
6d12e2d8 974
bea8c150 975 if (mem_cgroup_disabled()) {
599d0c95 976 lruvec = &pgdat->lruvec;
bea8c150
HD
977 goto out;
978 }
925b7673 979
1306a85a 980 memcg = page->mem_cgroup;
7512102c 981 /*
dfe0e773 982 * Swapcache readahead pages are added to the LRU - and
29833315 983 * possibly migrated - before they are charged.
7512102c 984 */
29833315
JW
985 if (!memcg)
986 memcg = root_mem_cgroup;
7512102c 987
ef8f2327 988 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
989 lruvec = &mz->lruvec;
990out:
991 /*
992 * Since a node can be onlined after the mem_cgroup was created,
993 * we have to be prepared to initialize lruvec->zone here;
994 * and if offlined then reonlined, we need to reinitialize it.
995 */
599d0c95
MG
996 if (unlikely(lruvec->pgdat != pgdat))
997 lruvec->pgdat = pgdat;
bea8c150 998 return lruvec;
08e552c6 999}
b69408e8 1000
925b7673 1001/**
fa9add64
HD
1002 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003 * @lruvec: mem_cgroup per zone lru vector
1004 * @lru: index of lru list the page is sitting on
1005 * @nr_pages: positive when adding or negative when removing
925b7673 1006 *
ca707239
HD
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1010 */
fa9add64 1011void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
7ee36a14 1012 int nr_pages)
3f58a829 1013{
ef8f2327 1014 struct mem_cgroup_per_node *mz;
fa9add64 1015 unsigned long *lru_size;
ca707239
HD
1016 long size;
1017 bool empty;
3f58a829
MK
1018
1019 if (mem_cgroup_disabled())
1020 return;
1021
ef8f2327 1022 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
fa9add64 1023 lru_size = mz->lru_size + lru;
ca707239
HD
1024 empty = list_empty(lruvec->lists + lru);
1025
1026 if (nr_pages < 0)
1027 *lru_size += nr_pages;
1028
1029 size = *lru_size;
1030 if (WARN_ONCE(size < 0 || empty != !size,
1031 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033 VM_BUG_ON(1);
1034 *lru_size = 0;
1035 }
1036
1037 if (nr_pages > 0)
1038 *lru_size += nr_pages;
08e552c6 1039}
544122e5 1040
2314b42d 1041bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1042{
2314b42d 1043 struct mem_cgroup *task_memcg;
158e0a2d 1044 struct task_struct *p;
ffbdccf5 1045 bool ret;
4c4a2214 1046
158e0a2d 1047 p = find_lock_task_mm(task);
de077d22 1048 if (p) {
2314b42d 1049 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1050 task_unlock(p);
1051 } else {
1052 /*
1053 * All threads may have already detached their mm's, but the oom
1054 * killer still needs to detect if they have already been oom
1055 * killed to prevent needlessly killing additional tasks.
1056 */
ffbdccf5 1057 rcu_read_lock();
2314b42d
JW
1058 task_memcg = mem_cgroup_from_task(task);
1059 css_get(&task_memcg->css);
ffbdccf5 1060 rcu_read_unlock();
de077d22 1061 }
2314b42d
JW
1062 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063 css_put(&task_memcg->css);
4c4a2214
DR
1064 return ret;
1065}
1066
19942822 1067/**
9d11ea9f 1068 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1069 * @memcg: the memory cgroup
19942822 1070 *
9d11ea9f 1071 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1072 * pages.
19942822 1073 */
c0ff4b85 1074static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1075{
3e32cb2e
JW
1076 unsigned long margin = 0;
1077 unsigned long count;
1078 unsigned long limit;
9d11ea9f 1079
3e32cb2e 1080 count = page_counter_read(&memcg->memory);
4db0c3c2 1081 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1082 if (count < limit)
1083 margin = limit - count;
1084
7941d214 1085 if (do_memsw_account()) {
3e32cb2e 1086 count = page_counter_read(&memcg->memsw);
4db0c3c2 1087 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1088 if (count <= limit)
1089 margin = min(margin, limit - count);
cbedbac3
LR
1090 else
1091 margin = 0;
3e32cb2e
JW
1092 }
1093
1094 return margin;
19942822
JW
1095}
1096
32047e2a 1097/*
bdcbb659 1098 * A routine for checking "mem" is under move_account() or not.
32047e2a 1099 *
bdcbb659
QH
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
32047e2a 1103 */
c0ff4b85 1104static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1105{
2bd9bb20
KH
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
4b534334 1108 bool ret = false;
2bd9bb20
KH
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
3e92041d 1118
2314b42d
JW
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1121unlock:
1122 spin_unlock(&mc.lock);
4b534334
KH
1123 return ret;
1124}
1125
c0ff4b85 1126static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1127{
1128 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1129 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140}
1141
58cf188e 1142#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1143/**
58cf188e 1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152{
58cf188e
SZ
1153 struct mem_cgroup *iter;
1154 unsigned int i;
e222432b 1155
e222432b
BS
1156 rcu_read_lock();
1157
2415b9f5
BV
1158 if (p) {
1159 pr_info("Task in ");
1160 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 pr_cont(" killed as a result of limit of ");
1162 } else {
1163 pr_info("Memory limit reached of cgroup ");
1164 }
1165
e61734c5 1166 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1167 pr_cont("\n");
e222432b 1168
e222432b
BS
1169 rcu_read_unlock();
1170
3e32cb2e
JW
1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 K((u64)page_counter_read(&memcg->memory)),
1173 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memsw)),
1176 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->kmem)),
1179 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1180
1181 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1182 pr_info("Memory cgroup stats for ");
1183 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1184 pr_cont(":");
1185
1186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1188 continue;
484ebb3b 1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1190 K(mem_cgroup_read_stat(iter, i)));
1191 }
1192
1193 for (i = 0; i < NR_LRU_LISTS; i++)
1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197 pr_cont("\n");
1198 }
e222432b
BS
1199}
1200
81d39c20
KH
1201/*
1202 * This function returns the number of memcg under hierarchy tree. Returns
1203 * 1(self count) if no children.
1204 */
c0ff4b85 1205static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1206{
1207 int num = 0;
7d74b06f
KH
1208 struct mem_cgroup *iter;
1209
c0ff4b85 1210 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1211 num++;
81d39c20
KH
1212 return num;
1213}
1214
a63d83f4
DR
1215/*
1216 * Return the memory (and swap, if configured) limit for a memcg.
1217 */
b134cbb2 1218unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1219{
3e32cb2e 1220 unsigned long limit;
f3e8eb70 1221
3e32cb2e 1222 limit = memcg->memory.limit;
9a5a8f19 1223 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1224 unsigned long memsw_limit;
37e84351 1225 unsigned long swap_limit;
9a5a8f19 1226
3e32cb2e 1227 memsw_limit = memcg->memsw.limit;
37e84351
VD
1228 swap_limit = memcg->swap.limit;
1229 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1231 }
9a5a8f19 1232 return limit;
a63d83f4
DR
1233}
1234
b6e6edcf 1235static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1236 int order)
9cbb78bb 1237{
6e0fc46d
DR
1238 struct oom_control oc = {
1239 .zonelist = NULL,
1240 .nodemask = NULL,
2a966b77 1241 .memcg = memcg,
6e0fc46d
DR
1242 .gfp_mask = gfp_mask,
1243 .order = order,
6e0fc46d 1244 };
b134cbb2 1245 bool ret;
9cbb78bb 1246
dc56401f 1247 mutex_lock(&oom_lock);
b134cbb2 1248 ret = out_of_memory(&oc);
dc56401f 1249 mutex_unlock(&oom_lock);
b134cbb2 1250 return ret;
9cbb78bb
DR
1251}
1252
ae6e71d3
MC
1253#if MAX_NUMNODES > 1
1254
4d0c066d
KH
1255/**
1256 * test_mem_cgroup_node_reclaimable
dad7557e 1257 * @memcg: the target memcg
4d0c066d
KH
1258 * @nid: the node ID to be checked.
1259 * @noswap : specify true here if the user wants flle only information.
1260 *
1261 * This function returns whether the specified memcg contains any
1262 * reclaimable pages on a node. Returns true if there are any reclaimable
1263 * pages in the node.
1264 */
c0ff4b85 1265static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1266 int nid, bool noswap)
1267{
c0ff4b85 1268 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1269 return true;
1270 if (noswap || !total_swap_pages)
1271 return false;
c0ff4b85 1272 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1273 return true;
1274 return false;
1275
1276}
889976db
YH
1277
1278/*
1279 * Always updating the nodemask is not very good - even if we have an empty
1280 * list or the wrong list here, we can start from some node and traverse all
1281 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282 *
1283 */
c0ff4b85 1284static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1285{
1286 int nid;
453a9bf3
KH
1287 /*
1288 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289 * pagein/pageout changes since the last update.
1290 */
c0ff4b85 1291 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1292 return;
c0ff4b85 1293 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1294 return;
1295
889976db 1296 /* make a nodemask where this memcg uses memory from */
31aaea4a 1297 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1298
31aaea4a 1299 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1300
c0ff4b85
R
1301 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302 node_clear(nid, memcg->scan_nodes);
889976db 1303 }
453a9bf3 1304
c0ff4b85
R
1305 atomic_set(&memcg->numainfo_events, 0);
1306 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1307}
1308
1309/*
1310 * Selecting a node where we start reclaim from. Because what we need is just
1311 * reducing usage counter, start from anywhere is O,K. Considering
1312 * memory reclaim from current node, there are pros. and cons.
1313 *
1314 * Freeing memory from current node means freeing memory from a node which
1315 * we'll use or we've used. So, it may make LRU bad. And if several threads
1316 * hit limits, it will see a contention on a node. But freeing from remote
1317 * node means more costs for memory reclaim because of memory latency.
1318 *
1319 * Now, we use round-robin. Better algorithm is welcomed.
1320 */
c0ff4b85 1321int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1322{
1323 int node;
1324
c0ff4b85
R
1325 mem_cgroup_may_update_nodemask(memcg);
1326 node = memcg->last_scanned_node;
889976db 1327
0edaf86c 1328 node = next_node_in(node, memcg->scan_nodes);
889976db 1329 /*
fda3d69b
MH
1330 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331 * last time it really checked all the LRUs due to rate limiting.
1332 * Fallback to the current node in that case for simplicity.
889976db
YH
1333 */
1334 if (unlikely(node == MAX_NUMNODES))
1335 node = numa_node_id();
1336
c0ff4b85 1337 memcg->last_scanned_node = node;
889976db
YH
1338 return node;
1339}
889976db 1340#else
c0ff4b85 1341int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1342{
1343 return 0;
1344}
1345#endif
1346
0608f43d 1347static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1348 pg_data_t *pgdat,
0608f43d
AM
1349 gfp_t gfp_mask,
1350 unsigned long *total_scanned)
1351{
1352 struct mem_cgroup *victim = NULL;
1353 int total = 0;
1354 int loop = 0;
1355 unsigned long excess;
1356 unsigned long nr_scanned;
1357 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1358 .pgdat = pgdat,
0608f43d
AM
1359 .priority = 0,
1360 };
1361
3e32cb2e 1362 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1363
1364 while (1) {
1365 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366 if (!victim) {
1367 loop++;
1368 if (loop >= 2) {
1369 /*
1370 * If we have not been able to reclaim
1371 * anything, it might because there are
1372 * no reclaimable pages under this hierarchy
1373 */
1374 if (!total)
1375 break;
1376 /*
1377 * We want to do more targeted reclaim.
1378 * excess >> 2 is not to excessive so as to
1379 * reclaim too much, nor too less that we keep
1380 * coming back to reclaim from this cgroup
1381 */
1382 if (total >= (excess >> 2) ||
1383 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384 break;
1385 }
1386 continue;
1387 }
a9dd0a83 1388 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1389 pgdat, &nr_scanned);
0608f43d 1390 *total_scanned += nr_scanned;
3e32cb2e 1391 if (!soft_limit_excess(root_memcg))
0608f43d 1392 break;
6d61ef40 1393 }
0608f43d
AM
1394 mem_cgroup_iter_break(root_memcg, victim);
1395 return total;
6d61ef40
BS
1396}
1397
0056f4e6
JW
1398#ifdef CONFIG_LOCKDEP
1399static struct lockdep_map memcg_oom_lock_dep_map = {
1400 .name = "memcg_oom_lock",
1401};
1402#endif
1403
fb2a6fc5
JW
1404static DEFINE_SPINLOCK(memcg_oom_lock);
1405
867578cb
KH
1406/*
1407 * Check OOM-Killer is already running under our hierarchy.
1408 * If someone is running, return false.
1409 */
fb2a6fc5 1410static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1411{
79dfdacc 1412 struct mem_cgroup *iter, *failed = NULL;
a636b327 1413
fb2a6fc5
JW
1414 spin_lock(&memcg_oom_lock);
1415
9f3a0d09 1416 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1417 if (iter->oom_lock) {
79dfdacc
MH
1418 /*
1419 * this subtree of our hierarchy is already locked
1420 * so we cannot give a lock.
1421 */
79dfdacc 1422 failed = iter;
9f3a0d09
JW
1423 mem_cgroup_iter_break(memcg, iter);
1424 break;
23751be0
JW
1425 } else
1426 iter->oom_lock = true;
7d74b06f 1427 }
867578cb 1428
fb2a6fc5
JW
1429 if (failed) {
1430 /*
1431 * OK, we failed to lock the whole subtree so we have
1432 * to clean up what we set up to the failing subtree
1433 */
1434 for_each_mem_cgroup_tree(iter, memcg) {
1435 if (iter == failed) {
1436 mem_cgroup_iter_break(memcg, iter);
1437 break;
1438 }
1439 iter->oom_lock = false;
79dfdacc 1440 }
0056f4e6
JW
1441 } else
1442 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1443
1444 spin_unlock(&memcg_oom_lock);
1445
1446 return !failed;
a636b327 1447}
0b7f569e 1448
fb2a6fc5 1449static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1450{
7d74b06f
KH
1451 struct mem_cgroup *iter;
1452
fb2a6fc5 1453 spin_lock(&memcg_oom_lock);
0056f4e6 1454 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1455 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1456 iter->oom_lock = false;
fb2a6fc5 1457 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1458}
1459
c0ff4b85 1460static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1461{
1462 struct mem_cgroup *iter;
1463
c2b42d3c 1464 spin_lock(&memcg_oom_lock);
c0ff4b85 1465 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1466 iter->under_oom++;
1467 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1468}
1469
c0ff4b85 1470static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1471{
1472 struct mem_cgroup *iter;
1473
867578cb
KH
1474 /*
1475 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1476 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1477 */
c2b42d3c 1478 spin_lock(&memcg_oom_lock);
c0ff4b85 1479 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1480 if (iter->under_oom > 0)
1481 iter->under_oom--;
1482 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1483}
1484
867578cb
KH
1485static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
dc98df5a 1487struct oom_wait_info {
d79154bb 1488 struct mem_cgroup *memcg;
dc98df5a
KH
1489 wait_queue_t wait;
1490};
1491
1492static int memcg_oom_wake_function(wait_queue_t *wait,
1493 unsigned mode, int sync, void *arg)
1494{
d79154bb
HD
1495 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1497 struct oom_wait_info *oom_wait_info;
1498
1499 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1500 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1501
2314b42d
JW
1502 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1504 return 0;
dc98df5a
KH
1505 return autoremove_wake_function(wait, mode, sync, arg);
1506}
1507
c0ff4b85 1508static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1509{
c2b42d3c
TH
1510 /*
1511 * For the following lockless ->under_oom test, the only required
1512 * guarantee is that it must see the state asserted by an OOM when
1513 * this function is called as a result of userland actions
1514 * triggered by the notification of the OOM. This is trivially
1515 * achieved by invoking mem_cgroup_mark_under_oom() before
1516 * triggering notification.
1517 */
1518 if (memcg && memcg->under_oom)
f4b90b70 1519 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1520}
1521
3812c8c8 1522static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1523{
d0db7afa 1524 if (!current->memcg_may_oom)
3812c8c8 1525 return;
867578cb 1526 /*
49426420
JW
1527 * We are in the middle of the charge context here, so we
1528 * don't want to block when potentially sitting on a callstack
1529 * that holds all kinds of filesystem and mm locks.
1530 *
1531 * Also, the caller may handle a failed allocation gracefully
1532 * (like optional page cache readahead) and so an OOM killer
1533 * invocation might not even be necessary.
1534 *
1535 * That's why we don't do anything here except remember the
1536 * OOM context and then deal with it at the end of the page
1537 * fault when the stack is unwound, the locks are released,
1538 * and when we know whether the fault was overall successful.
867578cb 1539 */
49426420 1540 css_get(&memcg->css);
626ebc41
TH
1541 current->memcg_in_oom = memcg;
1542 current->memcg_oom_gfp_mask = mask;
1543 current->memcg_oom_order = order;
3812c8c8
JW
1544}
1545
1546/**
1547 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1548 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1549 *
49426420
JW
1550 * This has to be called at the end of a page fault if the memcg OOM
1551 * handler was enabled.
3812c8c8 1552 *
49426420 1553 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1554 * sleep on a waitqueue until the userspace task resolves the
1555 * situation. Sleeping directly in the charge context with all kinds
1556 * of locks held is not a good idea, instead we remember an OOM state
1557 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1558 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1559 *
1560 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1561 * completed, %false otherwise.
3812c8c8 1562 */
49426420 1563bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1564{
626ebc41 1565 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1566 struct oom_wait_info owait;
49426420 1567 bool locked;
3812c8c8
JW
1568
1569 /* OOM is global, do not handle */
3812c8c8 1570 if (!memcg)
49426420 1571 return false;
3812c8c8 1572
b134cbb2 1573 if (!handle)
49426420 1574 goto cleanup;
3812c8c8
JW
1575
1576 owait.memcg = memcg;
1577 owait.wait.flags = 0;
1578 owait.wait.func = memcg_oom_wake_function;
1579 owait.wait.private = current;
1580 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1581
3812c8c8 1582 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1583 mem_cgroup_mark_under_oom(memcg);
1584
1585 locked = mem_cgroup_oom_trylock(memcg);
1586
1587 if (locked)
1588 mem_cgroup_oom_notify(memcg);
1589
1590 if (locked && !memcg->oom_kill_disable) {
1591 mem_cgroup_unmark_under_oom(memcg);
1592 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1593 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594 current->memcg_oom_order);
49426420 1595 } else {
3812c8c8 1596 schedule();
49426420
JW
1597 mem_cgroup_unmark_under_oom(memcg);
1598 finish_wait(&memcg_oom_waitq, &owait.wait);
1599 }
1600
1601 if (locked) {
fb2a6fc5
JW
1602 mem_cgroup_oom_unlock(memcg);
1603 /*
1604 * There is no guarantee that an OOM-lock contender
1605 * sees the wakeups triggered by the OOM kill
1606 * uncharges. Wake any sleepers explicitely.
1607 */
1608 memcg_oom_recover(memcg);
1609 }
49426420 1610cleanup:
626ebc41 1611 current->memcg_in_oom = NULL;
3812c8c8 1612 css_put(&memcg->css);
867578cb 1613 return true;
0b7f569e
KH
1614}
1615
d7365e78 1616/**
81f8c3a4
JW
1617 * lock_page_memcg - lock a page->mem_cgroup binding
1618 * @page: the page
32047e2a 1619 *
81f8c3a4
JW
1620 * This function protects unlocked LRU pages from being moved to
1621 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1622 */
62cccb8c 1623void lock_page_memcg(struct page *page)
89c06bd5
KH
1624{
1625 struct mem_cgroup *memcg;
6de22619 1626 unsigned long flags;
89c06bd5 1627
6de22619
JW
1628 /*
1629 * The RCU lock is held throughout the transaction. The fast
1630 * path can get away without acquiring the memcg->move_lock
1631 * because page moving starts with an RCU grace period.
6de22619 1632 */
d7365e78
JW
1633 rcu_read_lock();
1634
1635 if (mem_cgroup_disabled())
62cccb8c 1636 return;
89c06bd5 1637again:
1306a85a 1638 memcg = page->mem_cgroup;
29833315 1639 if (unlikely(!memcg))
62cccb8c 1640 return;
d7365e78 1641
bdcbb659 1642 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1643 return;
89c06bd5 1644
6de22619 1645 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1646 if (memcg != page->mem_cgroup) {
6de22619 1647 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1648 goto again;
1649 }
6de22619
JW
1650
1651 /*
1652 * When charge migration first begins, we can have locked and
1653 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1654 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1655 */
1656 memcg->move_lock_task = current;
1657 memcg->move_lock_flags = flags;
d7365e78 1658
62cccb8c 1659 return;
89c06bd5 1660}
81f8c3a4 1661EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1662
d7365e78 1663/**
81f8c3a4 1664 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1665 * @page: the page
d7365e78 1666 */
62cccb8c 1667void unlock_page_memcg(struct page *page)
89c06bd5 1668{
62cccb8c
JW
1669 struct mem_cgroup *memcg = page->mem_cgroup;
1670
6de22619
JW
1671 if (memcg && memcg->move_lock_task == current) {
1672 unsigned long flags = memcg->move_lock_flags;
1673
1674 memcg->move_lock_task = NULL;
1675 memcg->move_lock_flags = 0;
1676
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 }
89c06bd5 1679
d7365e78 1680 rcu_read_unlock();
89c06bd5 1681}
81f8c3a4 1682EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1683
cdec2e42
KH
1684/*
1685 * size of first charge trial. "32" comes from vmscan.c's magic value.
1686 * TODO: maybe necessary to use big numbers in big irons.
1687 */
7ec99d62 1688#define CHARGE_BATCH 32U
cdec2e42
KH
1689struct memcg_stock_pcp {
1690 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1691 unsigned int nr_pages;
cdec2e42 1692 struct work_struct work;
26fe6168 1693 unsigned long flags;
a0db00fc 1694#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1695};
1696static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1697static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1698
a0956d54
SS
1699/**
1700 * consume_stock: Try to consume stocked charge on this cpu.
1701 * @memcg: memcg to consume from.
1702 * @nr_pages: how many pages to charge.
1703 *
1704 * The charges will only happen if @memcg matches the current cpu's memcg
1705 * stock, and at least @nr_pages are available in that stock. Failure to
1706 * service an allocation will refill the stock.
1707 *
1708 * returns true if successful, false otherwise.
cdec2e42 1709 */
a0956d54 1710static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1711{
1712 struct memcg_stock_pcp *stock;
3e32cb2e 1713 bool ret = false;
cdec2e42 1714
a0956d54 1715 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1716 return ret;
a0956d54 1717
cdec2e42 1718 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1719 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1720 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1721 ret = true;
1722 }
cdec2e42
KH
1723 put_cpu_var(memcg_stock);
1724 return ret;
1725}
1726
1727/*
3e32cb2e 1728 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1729 */
1730static void drain_stock(struct memcg_stock_pcp *stock)
1731{
1732 struct mem_cgroup *old = stock->cached;
1733
11c9ea4e 1734 if (stock->nr_pages) {
3e32cb2e 1735 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1736 if (do_memsw_account())
3e32cb2e 1737 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1738 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1739 stock->nr_pages = 0;
cdec2e42
KH
1740 }
1741 stock->cached = NULL;
cdec2e42
KH
1742}
1743
1744/*
1745 * This must be called under preempt disabled or must be called by
1746 * a thread which is pinned to local cpu.
1747 */
1748static void drain_local_stock(struct work_struct *dummy)
1749{
7c8e0181 1750 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1751 drain_stock(stock);
26fe6168 1752 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1753}
1754
1755/*
3e32cb2e 1756 * Cache charges(val) to local per_cpu area.
320cc51d 1757 * This will be consumed by consume_stock() function, later.
cdec2e42 1758 */
c0ff4b85 1759static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1760{
1761 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1762
c0ff4b85 1763 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1764 drain_stock(stock);
c0ff4b85 1765 stock->cached = memcg;
cdec2e42 1766 }
11c9ea4e 1767 stock->nr_pages += nr_pages;
cdec2e42
KH
1768 put_cpu_var(memcg_stock);
1769}
1770
1771/*
c0ff4b85 1772 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1773 * of the hierarchy under it.
cdec2e42 1774 */
6d3d6aa2 1775static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1776{
26fe6168 1777 int cpu, curcpu;
d38144b7 1778
6d3d6aa2
JW
1779 /* If someone's already draining, avoid adding running more workers. */
1780 if (!mutex_trylock(&percpu_charge_mutex))
1781 return;
cdec2e42 1782 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1783 get_online_cpus();
5af12d0e 1784 curcpu = get_cpu();
cdec2e42
KH
1785 for_each_online_cpu(cpu) {
1786 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1787 struct mem_cgroup *memcg;
26fe6168 1788
c0ff4b85
R
1789 memcg = stock->cached;
1790 if (!memcg || !stock->nr_pages)
26fe6168 1791 continue;
2314b42d 1792 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1793 continue;
d1a05b69
MH
1794 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1795 if (cpu == curcpu)
1796 drain_local_stock(&stock->work);
1797 else
1798 schedule_work_on(cpu, &stock->work);
1799 }
cdec2e42 1800 }
5af12d0e 1801 put_cpu();
f894ffa8 1802 put_online_cpus();
9f50fad6 1803 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1804}
1805
0db0628d 1806static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1807 unsigned long action,
1808 void *hcpu)
1809{
1810 int cpu = (unsigned long)hcpu;
1811 struct memcg_stock_pcp *stock;
1812
619d094b 1813 if (action == CPU_ONLINE)
1489ebad 1814 return NOTIFY_OK;
1489ebad 1815
d833049b 1816 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1817 return NOTIFY_OK;
711d3d2c 1818
cdec2e42
KH
1819 stock = &per_cpu(memcg_stock, cpu);
1820 drain_stock(stock);
1821 return NOTIFY_OK;
1822}
1823
f7e1cb6e
JW
1824static void reclaim_high(struct mem_cgroup *memcg,
1825 unsigned int nr_pages,
1826 gfp_t gfp_mask)
1827{
1828 do {
1829 if (page_counter_read(&memcg->memory) <= memcg->high)
1830 continue;
1831 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1832 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1833 } while ((memcg = parent_mem_cgroup(memcg)));
1834}
1835
1836static void high_work_func(struct work_struct *work)
1837{
1838 struct mem_cgroup *memcg;
1839
1840 memcg = container_of(work, struct mem_cgroup, high_work);
1841 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1842}
1843
b23afb93
TH
1844/*
1845 * Scheduled by try_charge() to be executed from the userland return path
1846 * and reclaims memory over the high limit.
1847 */
1848void mem_cgroup_handle_over_high(void)
1849{
1850 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1851 struct mem_cgroup *memcg;
b23afb93
TH
1852
1853 if (likely(!nr_pages))
1854 return;
1855
f7e1cb6e
JW
1856 memcg = get_mem_cgroup_from_mm(current->mm);
1857 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1858 css_put(&memcg->css);
1859 current->memcg_nr_pages_over_high = 0;
1860}
1861
00501b53
JW
1862static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1863 unsigned int nr_pages)
8a9f3ccd 1864{
7ec99d62 1865 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1866 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1867 struct mem_cgroup *mem_over_limit;
3e32cb2e 1868 struct page_counter *counter;
6539cc05 1869 unsigned long nr_reclaimed;
b70a2a21
JW
1870 bool may_swap = true;
1871 bool drained = false;
a636b327 1872
ce00a967 1873 if (mem_cgroup_is_root(memcg))
10d53c74 1874 return 0;
6539cc05 1875retry:
b6b6cc72 1876 if (consume_stock(memcg, nr_pages))
10d53c74 1877 return 0;
8a9f3ccd 1878
7941d214 1879 if (!do_memsw_account() ||
6071ca52
JW
1880 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1881 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1882 goto done_restock;
7941d214 1883 if (do_memsw_account())
3e32cb2e
JW
1884 page_counter_uncharge(&memcg->memsw, batch);
1885 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1886 } else {
3e32cb2e 1887 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1888 may_swap = false;
3fbe7244 1889 }
7a81b88c 1890
6539cc05
JW
1891 if (batch > nr_pages) {
1892 batch = nr_pages;
1893 goto retry;
1894 }
6d61ef40 1895
06b078fc
JW
1896 /*
1897 * Unlike in global OOM situations, memcg is not in a physical
1898 * memory shortage. Allow dying and OOM-killed tasks to
1899 * bypass the last charges so that they can exit quickly and
1900 * free their memory.
1901 */
1902 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1903 fatal_signal_pending(current) ||
1904 current->flags & PF_EXITING))
10d53c74 1905 goto force;
06b078fc
JW
1906
1907 if (unlikely(task_in_memcg_oom(current)))
1908 goto nomem;
1909
d0164adc 1910 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1911 goto nomem;
4b534334 1912
241994ed
JW
1913 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1914
b70a2a21
JW
1915 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1916 gfp_mask, may_swap);
6539cc05 1917
61e02c74 1918 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1919 goto retry;
28c34c29 1920
b70a2a21 1921 if (!drained) {
6d3d6aa2 1922 drain_all_stock(mem_over_limit);
b70a2a21
JW
1923 drained = true;
1924 goto retry;
1925 }
1926
28c34c29
JW
1927 if (gfp_mask & __GFP_NORETRY)
1928 goto nomem;
6539cc05
JW
1929 /*
1930 * Even though the limit is exceeded at this point, reclaim
1931 * may have been able to free some pages. Retry the charge
1932 * before killing the task.
1933 *
1934 * Only for regular pages, though: huge pages are rather
1935 * unlikely to succeed so close to the limit, and we fall back
1936 * to regular pages anyway in case of failure.
1937 */
61e02c74 1938 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1939 goto retry;
1940 /*
1941 * At task move, charge accounts can be doubly counted. So, it's
1942 * better to wait until the end of task_move if something is going on.
1943 */
1944 if (mem_cgroup_wait_acct_move(mem_over_limit))
1945 goto retry;
1946
9b130619
JW
1947 if (nr_retries--)
1948 goto retry;
1949
06b078fc 1950 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1951 goto force;
06b078fc 1952
6539cc05 1953 if (fatal_signal_pending(current))
10d53c74 1954 goto force;
6539cc05 1955
241994ed
JW
1956 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1957
3608de07
JM
1958 mem_cgroup_oom(mem_over_limit, gfp_mask,
1959 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1960nomem:
6d1fdc48 1961 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1962 return -ENOMEM;
10d53c74
TH
1963force:
1964 /*
1965 * The allocation either can't fail or will lead to more memory
1966 * being freed very soon. Allow memory usage go over the limit
1967 * temporarily by force charging it.
1968 */
1969 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1970 if (do_memsw_account())
10d53c74
TH
1971 page_counter_charge(&memcg->memsw, nr_pages);
1972 css_get_many(&memcg->css, nr_pages);
1973
1974 return 0;
6539cc05
JW
1975
1976done_restock:
e8ea14cc 1977 css_get_many(&memcg->css, batch);
6539cc05
JW
1978 if (batch > nr_pages)
1979 refill_stock(memcg, batch - nr_pages);
b23afb93 1980
241994ed 1981 /*
b23afb93
TH
1982 * If the hierarchy is above the normal consumption range, schedule
1983 * reclaim on returning to userland. We can perform reclaim here
71baba4b 1984 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
1985 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1986 * not recorded as it most likely matches current's and won't
1987 * change in the meantime. As high limit is checked again before
1988 * reclaim, the cost of mismatch is negligible.
241994ed
JW
1989 */
1990 do {
b23afb93 1991 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
1992 /* Don't bother a random interrupted task */
1993 if (in_interrupt()) {
1994 schedule_work(&memcg->high_work);
1995 break;
1996 }
9516a18a 1997 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
1998 set_notify_resume(current);
1999 break;
2000 }
241994ed 2001 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2002
2003 return 0;
7a81b88c 2004}
8a9f3ccd 2005
00501b53 2006static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2007{
ce00a967
JW
2008 if (mem_cgroup_is_root(memcg))
2009 return;
2010
3e32cb2e 2011 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2012 if (do_memsw_account())
3e32cb2e 2013 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2014
e8ea14cc 2015 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2016}
2017
0a31bc97
JW
2018static void lock_page_lru(struct page *page, int *isolated)
2019{
2020 struct zone *zone = page_zone(page);
2021
a52633d8 2022 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2023 if (PageLRU(page)) {
2024 struct lruvec *lruvec;
2025
599d0c95 2026 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2027 ClearPageLRU(page);
2028 del_page_from_lru_list(page, lruvec, page_lru(page));
2029 *isolated = 1;
2030 } else
2031 *isolated = 0;
2032}
2033
2034static void unlock_page_lru(struct page *page, int isolated)
2035{
2036 struct zone *zone = page_zone(page);
2037
2038 if (isolated) {
2039 struct lruvec *lruvec;
2040
599d0c95 2041 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2042 VM_BUG_ON_PAGE(PageLRU(page), page);
2043 SetPageLRU(page);
2044 add_page_to_lru_list(page, lruvec, page_lru(page));
2045 }
a52633d8 2046 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2047}
2048
00501b53 2049static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2050 bool lrucare)
7a81b88c 2051{
0a31bc97 2052 int isolated;
9ce70c02 2053
1306a85a 2054 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2055
2056 /*
2057 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2058 * may already be on some other mem_cgroup's LRU. Take care of it.
2059 */
0a31bc97
JW
2060 if (lrucare)
2061 lock_page_lru(page, &isolated);
9ce70c02 2062
0a31bc97
JW
2063 /*
2064 * Nobody should be changing or seriously looking at
1306a85a 2065 * page->mem_cgroup at this point:
0a31bc97
JW
2066 *
2067 * - the page is uncharged
2068 *
2069 * - the page is off-LRU
2070 *
2071 * - an anonymous fault has exclusive page access, except for
2072 * a locked page table
2073 *
2074 * - a page cache insertion, a swapin fault, or a migration
2075 * have the page locked
2076 */
1306a85a 2077 page->mem_cgroup = memcg;
9ce70c02 2078
0a31bc97
JW
2079 if (lrucare)
2080 unlock_page_lru(page, isolated);
7a81b88c 2081}
66e1707b 2082
127424c8 2083#ifndef CONFIG_SLOB
f3bb3043 2084static int memcg_alloc_cache_id(void)
55007d84 2085{
f3bb3043
VD
2086 int id, size;
2087 int err;
2088
dbcf73e2 2089 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2090 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2091 if (id < 0)
2092 return id;
55007d84 2093
dbcf73e2 2094 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2095 return id;
2096
2097 /*
2098 * There's no space for the new id in memcg_caches arrays,
2099 * so we have to grow them.
2100 */
05257a1a 2101 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2102
2103 size = 2 * (id + 1);
55007d84
GC
2104 if (size < MEMCG_CACHES_MIN_SIZE)
2105 size = MEMCG_CACHES_MIN_SIZE;
2106 else if (size > MEMCG_CACHES_MAX_SIZE)
2107 size = MEMCG_CACHES_MAX_SIZE;
2108
f3bb3043 2109 err = memcg_update_all_caches(size);
60d3fd32
VD
2110 if (!err)
2111 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2112 if (!err)
2113 memcg_nr_cache_ids = size;
2114
2115 up_write(&memcg_cache_ids_sem);
2116
f3bb3043 2117 if (err) {
dbcf73e2 2118 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2119 return err;
2120 }
2121 return id;
2122}
2123
2124static void memcg_free_cache_id(int id)
2125{
dbcf73e2 2126 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2127}
2128
d5b3cf71 2129struct memcg_kmem_cache_create_work {
5722d094
VD
2130 struct mem_cgroup *memcg;
2131 struct kmem_cache *cachep;
2132 struct work_struct work;
2133};
2134
d5b3cf71 2135static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2136{
d5b3cf71
VD
2137 struct memcg_kmem_cache_create_work *cw =
2138 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2139 struct mem_cgroup *memcg = cw->memcg;
2140 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2141
d5b3cf71 2142 memcg_create_kmem_cache(memcg, cachep);
bd673145 2143
5722d094 2144 css_put(&memcg->css);
d7f25f8a
GC
2145 kfree(cw);
2146}
2147
2148/*
2149 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2150 */
d5b3cf71
VD
2151static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2152 struct kmem_cache *cachep)
d7f25f8a 2153{
d5b3cf71 2154 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2155
776ed0f0 2156 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2157 if (!cw)
d7f25f8a 2158 return;
8135be5a
VD
2159
2160 css_get(&memcg->css);
d7f25f8a
GC
2161
2162 cw->memcg = memcg;
2163 cw->cachep = cachep;
d5b3cf71 2164 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2165
d7f25f8a
GC
2166 schedule_work(&cw->work);
2167}
2168
d5b3cf71
VD
2169static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2170 struct kmem_cache *cachep)
0e9d92f2
GC
2171{
2172 /*
2173 * We need to stop accounting when we kmalloc, because if the
2174 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2175 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2176 *
2177 * However, it is better to enclose the whole function. Depending on
2178 * the debugging options enabled, INIT_WORK(), for instance, can
2179 * trigger an allocation. This too, will make us recurse. Because at
2180 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2181 * the safest choice is to do it like this, wrapping the whole function.
2182 */
6f185c29 2183 current->memcg_kmem_skip_account = 1;
d5b3cf71 2184 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2185 current->memcg_kmem_skip_account = 0;
0e9d92f2 2186}
c67a8a68 2187
45264778
VD
2188static inline bool memcg_kmem_bypass(void)
2189{
2190 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2191 return true;
2192 return false;
2193}
2194
2195/**
2196 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2197 * @cachep: the original global kmem cache
2198 *
d7f25f8a
GC
2199 * Return the kmem_cache we're supposed to use for a slab allocation.
2200 * We try to use the current memcg's version of the cache.
2201 *
45264778
VD
2202 * If the cache does not exist yet, if we are the first user of it, we
2203 * create it asynchronously in a workqueue and let the current allocation
2204 * go through with the original cache.
d7f25f8a 2205 *
45264778
VD
2206 * This function takes a reference to the cache it returns to assure it
2207 * won't get destroyed while we are working with it. Once the caller is
2208 * done with it, memcg_kmem_put_cache() must be called to release the
2209 * reference.
d7f25f8a 2210 */
45264778 2211struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2212{
2213 struct mem_cgroup *memcg;
959c8963 2214 struct kmem_cache *memcg_cachep;
2a4db7eb 2215 int kmemcg_id;
d7f25f8a 2216
f7ce3190 2217 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2218
45264778 2219 if (memcg_kmem_bypass())
230e9fc2
VD
2220 return cachep;
2221
9d100c5e 2222 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2223 return cachep;
2224
8135be5a 2225 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2226 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2227 if (kmemcg_id < 0)
ca0dde97 2228 goto out;
d7f25f8a 2229
2a4db7eb 2230 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2231 if (likely(memcg_cachep))
2232 return memcg_cachep;
ca0dde97
LZ
2233
2234 /*
2235 * If we are in a safe context (can wait, and not in interrupt
2236 * context), we could be be predictable and return right away.
2237 * This would guarantee that the allocation being performed
2238 * already belongs in the new cache.
2239 *
2240 * However, there are some clashes that can arrive from locking.
2241 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2242 * memcg_create_kmem_cache, this means no further allocation
2243 * could happen with the slab_mutex held. So it's better to
2244 * defer everything.
ca0dde97 2245 */
d5b3cf71 2246 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2247out:
8135be5a 2248 css_put(&memcg->css);
ca0dde97 2249 return cachep;
d7f25f8a 2250}
d7f25f8a 2251
45264778
VD
2252/**
2253 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2254 * @cachep: the cache returned by memcg_kmem_get_cache
2255 */
2256void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2257{
2258 if (!is_root_cache(cachep))
f7ce3190 2259 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2260}
2261
45264778
VD
2262/**
2263 * memcg_kmem_charge: charge a kmem page
2264 * @page: page to charge
2265 * @gfp: reclaim mode
2266 * @order: allocation order
2267 * @memcg: memory cgroup to charge
2268 *
2269 * Returns 0 on success, an error code on failure.
2270 */
2271int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2272 struct mem_cgroup *memcg)
7ae1e1d0 2273{
f3ccb2c4
VD
2274 unsigned int nr_pages = 1 << order;
2275 struct page_counter *counter;
7ae1e1d0
GC
2276 int ret;
2277
f3ccb2c4 2278 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2279 if (ret)
f3ccb2c4 2280 return ret;
52c29b04
JW
2281
2282 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2283 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2284 cancel_charge(memcg, nr_pages);
2285 return -ENOMEM;
7ae1e1d0
GC
2286 }
2287
f3ccb2c4 2288 page->mem_cgroup = memcg;
7ae1e1d0 2289
f3ccb2c4 2290 return 0;
7ae1e1d0
GC
2291}
2292
45264778
VD
2293/**
2294 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2295 * @page: page to charge
2296 * @gfp: reclaim mode
2297 * @order: allocation order
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2302{
f3ccb2c4 2303 struct mem_cgroup *memcg;
fcff7d7e 2304 int ret = 0;
7ae1e1d0 2305
45264778
VD
2306 if (memcg_kmem_bypass())
2307 return 0;
2308
f3ccb2c4 2309 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2310 if (!mem_cgroup_is_root(memcg)) {
45264778 2311 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2312 if (!ret)
2313 __SetPageKmemcg(page);
2314 }
7ae1e1d0 2315 css_put(&memcg->css);
d05e83a6 2316 return ret;
7ae1e1d0 2317}
45264778
VD
2318/**
2319 * memcg_kmem_uncharge: uncharge a kmem page
2320 * @page: page to uncharge
2321 * @order: allocation order
2322 */
2323void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2324{
1306a85a 2325 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2326 unsigned int nr_pages = 1 << order;
7ae1e1d0 2327
7ae1e1d0
GC
2328 if (!memcg)
2329 return;
2330
309381fe 2331 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2332
52c29b04
JW
2333 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2334 page_counter_uncharge(&memcg->kmem, nr_pages);
2335
f3ccb2c4 2336 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2337 if (do_memsw_account())
f3ccb2c4 2338 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2339
1306a85a 2340 page->mem_cgroup = NULL;
c4159a75
VD
2341
2342 /* slab pages do not have PageKmemcg flag set */
2343 if (PageKmemcg(page))
2344 __ClearPageKmemcg(page);
2345
f3ccb2c4 2346 css_put_many(&memcg->css, nr_pages);
60d3fd32 2347}
127424c8 2348#endif /* !CONFIG_SLOB */
7ae1e1d0 2349
ca3e0214
KH
2350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2351
ca3e0214
KH
2352/*
2353 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2354 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2355 */
e94c8a9c 2356void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2357{
e94c8a9c 2358 int i;
ca3e0214 2359
3d37c4a9
KH
2360 if (mem_cgroup_disabled())
2361 return;
b070e65c 2362
29833315 2363 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2364 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2365
1306a85a 2366 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2367 HPAGE_PMD_NR);
ca3e0214 2368}
12d27107 2369#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2370
c255a458 2371#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2372static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2373 bool charge)
d13d1443 2374{
0a31bc97
JW
2375 int val = (charge) ? 1 : -1;
2376 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2377}
02491447
DN
2378
2379/**
2380 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2381 * @entry: swap entry to be moved
2382 * @from: mem_cgroup which the entry is moved from
2383 * @to: mem_cgroup which the entry is moved to
2384 *
2385 * It succeeds only when the swap_cgroup's record for this entry is the same
2386 * as the mem_cgroup's id of @from.
2387 *
2388 * Returns 0 on success, -EINVAL on failure.
2389 *
3e32cb2e 2390 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2391 * both res and memsw, and called css_get().
2392 */
2393static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2394 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2395{
2396 unsigned short old_id, new_id;
2397
34c00c31
LZ
2398 old_id = mem_cgroup_id(from);
2399 new_id = mem_cgroup_id(to);
02491447
DN
2400
2401 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2402 mem_cgroup_swap_statistics(from, false);
483c30b5 2403 mem_cgroup_swap_statistics(to, true);
02491447
DN
2404 return 0;
2405 }
2406 return -EINVAL;
2407}
2408#else
2409static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2410 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2411{
2412 return -EINVAL;
2413}
8c7c6e34 2414#endif
d13d1443 2415
3e32cb2e 2416static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2417
d38d2a75 2418static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2419 unsigned long limit)
628f4235 2420{
3e32cb2e
JW
2421 unsigned long curusage;
2422 unsigned long oldusage;
2423 bool enlarge = false;
81d39c20 2424 int retry_count;
3e32cb2e 2425 int ret;
81d39c20
KH
2426
2427 /*
2428 * For keeping hierarchical_reclaim simple, how long we should retry
2429 * is depends on callers. We set our retry-count to be function
2430 * of # of children which we should visit in this loop.
2431 */
3e32cb2e
JW
2432 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2433 mem_cgroup_count_children(memcg);
81d39c20 2434
3e32cb2e 2435 oldusage = page_counter_read(&memcg->memory);
628f4235 2436
3e32cb2e 2437 do {
628f4235
KH
2438 if (signal_pending(current)) {
2439 ret = -EINTR;
2440 break;
2441 }
3e32cb2e
JW
2442
2443 mutex_lock(&memcg_limit_mutex);
2444 if (limit > memcg->memsw.limit) {
2445 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2446 ret = -EINVAL;
628f4235
KH
2447 break;
2448 }
3e32cb2e
JW
2449 if (limit > memcg->memory.limit)
2450 enlarge = true;
2451 ret = page_counter_limit(&memcg->memory, limit);
2452 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2453
2454 if (!ret)
2455 break;
2456
b70a2a21
JW
2457 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2458
3e32cb2e 2459 curusage = page_counter_read(&memcg->memory);
81d39c20 2460 /* Usage is reduced ? */
f894ffa8 2461 if (curusage >= oldusage)
81d39c20
KH
2462 retry_count--;
2463 else
2464 oldusage = curusage;
3e32cb2e
JW
2465 } while (retry_count);
2466
3c11ecf4
KH
2467 if (!ret && enlarge)
2468 memcg_oom_recover(memcg);
14797e23 2469
8c7c6e34
KH
2470 return ret;
2471}
2472
338c8431 2473static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2474 unsigned long limit)
8c7c6e34 2475{
3e32cb2e
JW
2476 unsigned long curusage;
2477 unsigned long oldusage;
2478 bool enlarge = false;
81d39c20 2479 int retry_count;
3e32cb2e 2480 int ret;
8c7c6e34 2481
81d39c20 2482 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2483 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2484 mem_cgroup_count_children(memcg);
2485
2486 oldusage = page_counter_read(&memcg->memsw);
2487
2488 do {
8c7c6e34
KH
2489 if (signal_pending(current)) {
2490 ret = -EINTR;
2491 break;
2492 }
3e32cb2e
JW
2493
2494 mutex_lock(&memcg_limit_mutex);
2495 if (limit < memcg->memory.limit) {
2496 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2497 ret = -EINVAL;
8c7c6e34
KH
2498 break;
2499 }
3e32cb2e
JW
2500 if (limit > memcg->memsw.limit)
2501 enlarge = true;
2502 ret = page_counter_limit(&memcg->memsw, limit);
2503 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2504
2505 if (!ret)
2506 break;
2507
b70a2a21
JW
2508 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2509
3e32cb2e 2510 curusage = page_counter_read(&memcg->memsw);
81d39c20 2511 /* Usage is reduced ? */
8c7c6e34 2512 if (curusage >= oldusage)
628f4235 2513 retry_count--;
81d39c20
KH
2514 else
2515 oldusage = curusage;
3e32cb2e
JW
2516 } while (retry_count);
2517
3c11ecf4
KH
2518 if (!ret && enlarge)
2519 memcg_oom_recover(memcg);
3e32cb2e 2520
628f4235
KH
2521 return ret;
2522}
2523
ef8f2327 2524unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2525 gfp_t gfp_mask,
2526 unsigned long *total_scanned)
2527{
2528 unsigned long nr_reclaimed = 0;
ef8f2327 2529 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2530 unsigned long reclaimed;
2531 int loop = 0;
ef8f2327 2532 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2533 unsigned long excess;
0608f43d
AM
2534 unsigned long nr_scanned;
2535
2536 if (order > 0)
2537 return 0;
2538
ef8f2327 2539 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2540
2541 /*
2542 * Do not even bother to check the largest node if the root
2543 * is empty. Do it lockless to prevent lock bouncing. Races
2544 * are acceptable as soft limit is best effort anyway.
2545 */
2546 if (RB_EMPTY_ROOT(&mctz->rb_root))
2547 return 0;
2548
0608f43d
AM
2549 /*
2550 * This loop can run a while, specially if mem_cgroup's continuously
2551 * keep exceeding their soft limit and putting the system under
2552 * pressure
2553 */
2554 do {
2555 if (next_mz)
2556 mz = next_mz;
2557 else
2558 mz = mem_cgroup_largest_soft_limit_node(mctz);
2559 if (!mz)
2560 break;
2561
2562 nr_scanned = 0;
ef8f2327 2563 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2564 gfp_mask, &nr_scanned);
2565 nr_reclaimed += reclaimed;
2566 *total_scanned += nr_scanned;
0a31bc97 2567 spin_lock_irq(&mctz->lock);
bc2f2e7f 2568 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2569
2570 /*
2571 * If we failed to reclaim anything from this memory cgroup
2572 * it is time to move on to the next cgroup
2573 */
2574 next_mz = NULL;
bc2f2e7f
VD
2575 if (!reclaimed)
2576 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2577
3e32cb2e 2578 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2579 /*
2580 * One school of thought says that we should not add
2581 * back the node to the tree if reclaim returns 0.
2582 * But our reclaim could return 0, simply because due
2583 * to priority we are exposing a smaller subset of
2584 * memory to reclaim from. Consider this as a longer
2585 * term TODO.
2586 */
2587 /* If excess == 0, no tree ops */
cf2c8127 2588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2589 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2590 css_put(&mz->memcg->css);
2591 loop++;
2592 /*
2593 * Could not reclaim anything and there are no more
2594 * mem cgroups to try or we seem to be looping without
2595 * reclaiming anything.
2596 */
2597 if (!nr_reclaimed &&
2598 (next_mz == NULL ||
2599 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2600 break;
2601 } while (!nr_reclaimed);
2602 if (next_mz)
2603 css_put(&next_mz->memcg->css);
2604 return nr_reclaimed;
2605}
2606
ea280e7b
TH
2607/*
2608 * Test whether @memcg has children, dead or alive. Note that this
2609 * function doesn't care whether @memcg has use_hierarchy enabled and
2610 * returns %true if there are child csses according to the cgroup
2611 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2612 */
b5f99b53
GC
2613static inline bool memcg_has_children(struct mem_cgroup *memcg)
2614{
ea280e7b
TH
2615 bool ret;
2616
ea280e7b
TH
2617 rcu_read_lock();
2618 ret = css_next_child(NULL, &memcg->css);
2619 rcu_read_unlock();
2620 return ret;
b5f99b53
GC
2621}
2622
c26251f9 2623/*
51038171 2624 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2625 *
2626 * Caller is responsible for holding css reference for memcg.
2627 */
2628static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2629{
2630 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2631
c1e862c1
KH
2632 /* we call try-to-free pages for make this cgroup empty */
2633 lru_add_drain_all();
f817ed48 2634 /* try to free all pages in this cgroup */
3e32cb2e 2635 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2636 int progress;
c1e862c1 2637
c26251f9
MH
2638 if (signal_pending(current))
2639 return -EINTR;
2640
b70a2a21
JW
2641 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2642 GFP_KERNEL, true);
c1e862c1 2643 if (!progress) {
f817ed48 2644 nr_retries--;
c1e862c1 2645 /* maybe some writeback is necessary */
8aa7e847 2646 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2647 }
f817ed48
KH
2648
2649 }
ab5196c2
MH
2650
2651 return 0;
cc847582
KH
2652}
2653
6770c64e
TH
2654static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2655 char *buf, size_t nbytes,
2656 loff_t off)
c1e862c1 2657{
6770c64e 2658 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2659
d8423011
MH
2660 if (mem_cgroup_is_root(memcg))
2661 return -EINVAL;
6770c64e 2662 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2663}
2664
182446d0
TH
2665static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2666 struct cftype *cft)
18f59ea7 2667{
182446d0 2668 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2669}
2670
182446d0
TH
2671static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2672 struct cftype *cft, u64 val)
18f59ea7
BS
2673{
2674 int retval = 0;
182446d0 2675 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2676 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2677
567fb435 2678 if (memcg->use_hierarchy == val)
0b8f73e1 2679 return 0;
567fb435 2680
18f59ea7 2681 /*
af901ca1 2682 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2683 * in the child subtrees. If it is unset, then the change can
2684 * occur, provided the current cgroup has no children.
2685 *
2686 * For the root cgroup, parent_mem is NULL, we allow value to be
2687 * set if there are no children.
2688 */
c0ff4b85 2689 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2690 (val == 1 || val == 0)) {
ea280e7b 2691 if (!memcg_has_children(memcg))
c0ff4b85 2692 memcg->use_hierarchy = val;
18f59ea7
BS
2693 else
2694 retval = -EBUSY;
2695 } else
2696 retval = -EINVAL;
567fb435 2697
18f59ea7
BS
2698 return retval;
2699}
2700
72b54e73 2701static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2702{
2703 struct mem_cgroup *iter;
72b54e73 2704 int i;
ce00a967 2705
72b54e73 2706 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2707
72b54e73
VD
2708 for_each_mem_cgroup_tree(iter, memcg) {
2709 for (i = 0; i < MEMCG_NR_STAT; i++)
2710 stat[i] += mem_cgroup_read_stat(iter, i);
2711 }
ce00a967
JW
2712}
2713
72b54e73 2714static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2715{
2716 struct mem_cgroup *iter;
72b54e73 2717 int i;
587d9f72 2718
72b54e73 2719 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2720
72b54e73
VD
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2723 events[i] += mem_cgroup_read_events(iter, i);
2724 }
587d9f72
JW
2725}
2726
6f646156 2727static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2728{
72b54e73 2729 unsigned long val = 0;
ce00a967 2730
3e32cb2e 2731 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2732 struct mem_cgroup *iter;
2733
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 val += mem_cgroup_read_stat(iter,
2736 MEM_CGROUP_STAT_CACHE);
2737 val += mem_cgroup_read_stat(iter,
2738 MEM_CGROUP_STAT_RSS);
2739 if (swap)
2740 val += mem_cgroup_read_stat(iter,
2741 MEM_CGROUP_STAT_SWAP);
2742 }
3e32cb2e 2743 } else {
ce00a967 2744 if (!swap)
3e32cb2e 2745 val = page_counter_read(&memcg->memory);
ce00a967 2746 else
3e32cb2e 2747 val = page_counter_read(&memcg->memsw);
ce00a967 2748 }
c12176d3 2749 return val;
ce00a967
JW
2750}
2751
3e32cb2e
JW
2752enum {
2753 RES_USAGE,
2754 RES_LIMIT,
2755 RES_MAX_USAGE,
2756 RES_FAILCNT,
2757 RES_SOFT_LIMIT,
2758};
ce00a967 2759
791badbd 2760static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2761 struct cftype *cft)
8cdea7c0 2762{
182446d0 2763 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2764 struct page_counter *counter;
af36f906 2765
3e32cb2e 2766 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2767 case _MEM:
3e32cb2e
JW
2768 counter = &memcg->memory;
2769 break;
8c7c6e34 2770 case _MEMSWAP:
3e32cb2e
JW
2771 counter = &memcg->memsw;
2772 break;
510fc4e1 2773 case _KMEM:
3e32cb2e 2774 counter = &memcg->kmem;
510fc4e1 2775 break;
d55f90bf 2776 case _TCP:
0db15298 2777 counter = &memcg->tcpmem;
d55f90bf 2778 break;
8c7c6e34
KH
2779 default:
2780 BUG();
8c7c6e34 2781 }
3e32cb2e
JW
2782
2783 switch (MEMFILE_ATTR(cft->private)) {
2784 case RES_USAGE:
2785 if (counter == &memcg->memory)
c12176d3 2786 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2787 if (counter == &memcg->memsw)
c12176d3 2788 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2789 return (u64)page_counter_read(counter) * PAGE_SIZE;
2790 case RES_LIMIT:
2791 return (u64)counter->limit * PAGE_SIZE;
2792 case RES_MAX_USAGE:
2793 return (u64)counter->watermark * PAGE_SIZE;
2794 case RES_FAILCNT:
2795 return counter->failcnt;
2796 case RES_SOFT_LIMIT:
2797 return (u64)memcg->soft_limit * PAGE_SIZE;
2798 default:
2799 BUG();
2800 }
8cdea7c0 2801}
510fc4e1 2802
127424c8 2803#ifndef CONFIG_SLOB
567e9ab2 2804static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2805{
d6441637
VD
2806 int memcg_id;
2807
b313aeee
VD
2808 if (cgroup_memory_nokmem)
2809 return 0;
2810
2a4db7eb 2811 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2812 BUG_ON(memcg->kmem_state);
d6441637 2813
f3bb3043 2814 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2815 if (memcg_id < 0)
2816 return memcg_id;
d6441637 2817
ef12947c 2818 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2819 /*
567e9ab2 2820 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2821 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2822 * guarantee no one starts accounting before all call sites are
2823 * patched.
2824 */
900a38f0 2825 memcg->kmemcg_id = memcg_id;
567e9ab2 2826 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2827
2828 return 0;
d6441637
VD
2829}
2830
8e0a8912
JW
2831static void memcg_offline_kmem(struct mem_cgroup *memcg)
2832{
2833 struct cgroup_subsys_state *css;
2834 struct mem_cgroup *parent, *child;
2835 int kmemcg_id;
2836
2837 if (memcg->kmem_state != KMEM_ONLINE)
2838 return;
2839 /*
2840 * Clear the online state before clearing memcg_caches array
2841 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2842 * guarantees that no cache will be created for this cgroup
2843 * after we are done (see memcg_create_kmem_cache()).
2844 */
2845 memcg->kmem_state = KMEM_ALLOCATED;
2846
2847 memcg_deactivate_kmem_caches(memcg);
2848
2849 kmemcg_id = memcg->kmemcg_id;
2850 BUG_ON(kmemcg_id < 0);
2851
2852 parent = parent_mem_cgroup(memcg);
2853 if (!parent)
2854 parent = root_mem_cgroup;
2855
2856 /*
2857 * Change kmemcg_id of this cgroup and all its descendants to the
2858 * parent's id, and then move all entries from this cgroup's list_lrus
2859 * to ones of the parent. After we have finished, all list_lrus
2860 * corresponding to this cgroup are guaranteed to remain empty. The
2861 * ordering is imposed by list_lru_node->lock taken by
2862 * memcg_drain_all_list_lrus().
2863 */
3a06bb78 2864 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2865 css_for_each_descendant_pre(css, &memcg->css) {
2866 child = mem_cgroup_from_css(css);
2867 BUG_ON(child->kmemcg_id != kmemcg_id);
2868 child->kmemcg_id = parent->kmemcg_id;
2869 if (!memcg->use_hierarchy)
2870 break;
2871 }
3a06bb78
TH
2872 rcu_read_unlock();
2873
8e0a8912
JW
2874 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2875
2876 memcg_free_cache_id(kmemcg_id);
2877}
2878
2879static void memcg_free_kmem(struct mem_cgroup *memcg)
2880{
0b8f73e1
JW
2881 /* css_alloc() failed, offlining didn't happen */
2882 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2883 memcg_offline_kmem(memcg);
2884
8e0a8912
JW
2885 if (memcg->kmem_state == KMEM_ALLOCATED) {
2886 memcg_destroy_kmem_caches(memcg);
2887 static_branch_dec(&memcg_kmem_enabled_key);
2888 WARN_ON(page_counter_read(&memcg->kmem));
2889 }
8e0a8912 2890}
d6441637 2891#else
0b8f73e1 2892static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2893{
2894 return 0;
2895}
2896static void memcg_offline_kmem(struct mem_cgroup *memcg)
2897{
2898}
2899static void memcg_free_kmem(struct mem_cgroup *memcg)
2900{
2901}
2902#endif /* !CONFIG_SLOB */
2903
d6441637 2904static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2905 unsigned long limit)
d6441637 2906{
b313aeee 2907 int ret;
127424c8
JW
2908
2909 mutex_lock(&memcg_limit_mutex);
127424c8 2910 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2911 mutex_unlock(&memcg_limit_mutex);
2912 return ret;
d6441637 2913}
510fc4e1 2914
d55f90bf
VD
2915static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2916{
2917 int ret;
2918
2919 mutex_lock(&memcg_limit_mutex);
2920
0db15298 2921 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2922 if (ret)
2923 goto out;
2924
0db15298 2925 if (!memcg->tcpmem_active) {
d55f90bf
VD
2926 /*
2927 * The active flag needs to be written after the static_key
2928 * update. This is what guarantees that the socket activation
2929 * function is the last one to run. See sock_update_memcg() for
2930 * details, and note that we don't mark any socket as belonging
2931 * to this memcg until that flag is up.
2932 *
2933 * We need to do this, because static_keys will span multiple
2934 * sites, but we can't control their order. If we mark a socket
2935 * as accounted, but the accounting functions are not patched in
2936 * yet, we'll lose accounting.
2937 *
2938 * We never race with the readers in sock_update_memcg(),
2939 * because when this value change, the code to process it is not
2940 * patched in yet.
2941 */
2942 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2943 memcg->tcpmem_active = true;
d55f90bf
VD
2944 }
2945out:
2946 mutex_unlock(&memcg_limit_mutex);
2947 return ret;
2948}
d55f90bf 2949
628f4235
KH
2950/*
2951 * The user of this function is...
2952 * RES_LIMIT.
2953 */
451af504
TH
2954static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2955 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2956{
451af504 2957 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2958 unsigned long nr_pages;
628f4235
KH
2959 int ret;
2960
451af504 2961 buf = strstrip(buf);
650c5e56 2962 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2963 if (ret)
2964 return ret;
af36f906 2965
3e32cb2e 2966 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2967 case RES_LIMIT:
4b3bde4c
BS
2968 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2969 ret = -EINVAL;
2970 break;
2971 }
3e32cb2e
JW
2972 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2973 case _MEM:
2974 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2975 break;
3e32cb2e
JW
2976 case _MEMSWAP:
2977 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2978 break;
3e32cb2e
JW
2979 case _KMEM:
2980 ret = memcg_update_kmem_limit(memcg, nr_pages);
2981 break;
d55f90bf
VD
2982 case _TCP:
2983 ret = memcg_update_tcp_limit(memcg, nr_pages);
2984 break;
3e32cb2e 2985 }
296c81d8 2986 break;
3e32cb2e
JW
2987 case RES_SOFT_LIMIT:
2988 memcg->soft_limit = nr_pages;
2989 ret = 0;
628f4235
KH
2990 break;
2991 }
451af504 2992 return ret ?: nbytes;
8cdea7c0
BS
2993}
2994
6770c64e
TH
2995static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2996 size_t nbytes, loff_t off)
c84872e1 2997{
6770c64e 2998 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2999 struct page_counter *counter;
c84872e1 3000
3e32cb2e
JW
3001 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3002 case _MEM:
3003 counter = &memcg->memory;
3004 break;
3005 case _MEMSWAP:
3006 counter = &memcg->memsw;
3007 break;
3008 case _KMEM:
3009 counter = &memcg->kmem;
3010 break;
d55f90bf 3011 case _TCP:
0db15298 3012 counter = &memcg->tcpmem;
d55f90bf 3013 break;
3e32cb2e
JW
3014 default:
3015 BUG();
3016 }
af36f906 3017
3e32cb2e 3018 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3019 case RES_MAX_USAGE:
3e32cb2e 3020 page_counter_reset_watermark(counter);
29f2a4da
PE
3021 break;
3022 case RES_FAILCNT:
3e32cb2e 3023 counter->failcnt = 0;
29f2a4da 3024 break;
3e32cb2e
JW
3025 default:
3026 BUG();
29f2a4da 3027 }
f64c3f54 3028
6770c64e 3029 return nbytes;
c84872e1
PE
3030}
3031
182446d0 3032static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3033 struct cftype *cft)
3034{
182446d0 3035 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3036}
3037
02491447 3038#ifdef CONFIG_MMU
182446d0 3039static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3040 struct cftype *cft, u64 val)
3041{
182446d0 3042 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3043
1dfab5ab 3044 if (val & ~MOVE_MASK)
7dc74be0 3045 return -EINVAL;
ee5e8472 3046
7dc74be0 3047 /*
ee5e8472
GC
3048 * No kind of locking is needed in here, because ->can_attach() will
3049 * check this value once in the beginning of the process, and then carry
3050 * on with stale data. This means that changes to this value will only
3051 * affect task migrations starting after the change.
7dc74be0 3052 */
c0ff4b85 3053 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3054 return 0;
3055}
02491447 3056#else
182446d0 3057static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3058 struct cftype *cft, u64 val)
3059{
3060 return -ENOSYS;
3061}
3062#endif
7dc74be0 3063
406eb0c9 3064#ifdef CONFIG_NUMA
2da8ca82 3065static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3066{
25485de6
GT
3067 struct numa_stat {
3068 const char *name;
3069 unsigned int lru_mask;
3070 };
3071
3072 static const struct numa_stat stats[] = {
3073 { "total", LRU_ALL },
3074 { "file", LRU_ALL_FILE },
3075 { "anon", LRU_ALL_ANON },
3076 { "unevictable", BIT(LRU_UNEVICTABLE) },
3077 };
3078 const struct numa_stat *stat;
406eb0c9 3079 int nid;
25485de6 3080 unsigned long nr;
2da8ca82 3081 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3082
25485de6
GT
3083 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3084 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3085 seq_printf(m, "%s=%lu", stat->name, nr);
3086 for_each_node_state(nid, N_MEMORY) {
3087 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3088 stat->lru_mask);
3089 seq_printf(m, " N%d=%lu", nid, nr);
3090 }
3091 seq_putc(m, '\n');
406eb0c9 3092 }
406eb0c9 3093
071aee13
YH
3094 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3095 struct mem_cgroup *iter;
3096
3097 nr = 0;
3098 for_each_mem_cgroup_tree(iter, memcg)
3099 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3100 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = 0;
3103 for_each_mem_cgroup_tree(iter, memcg)
3104 nr += mem_cgroup_node_nr_lru_pages(
3105 iter, nid, stat->lru_mask);
3106 seq_printf(m, " N%d=%lu", nid, nr);
3107 }
3108 seq_putc(m, '\n');
406eb0c9 3109 }
406eb0c9 3110
406eb0c9
YH
3111 return 0;
3112}
3113#endif /* CONFIG_NUMA */
3114
2da8ca82 3115static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3116{
2da8ca82 3117 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3118 unsigned long memory, memsw;
af7c4b0e
JW
3119 struct mem_cgroup *mi;
3120 unsigned int i;
406eb0c9 3121
0ca44b14
GT
3122 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3123 MEM_CGROUP_STAT_NSTATS);
3124 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3125 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3126 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3127
af7c4b0e 3128 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3129 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3130 continue;
484ebb3b 3131 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3132 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3133 }
7b854121 3134
af7c4b0e
JW
3135 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3136 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3137 mem_cgroup_read_events(memcg, i));
3138
3139 for (i = 0; i < NR_LRU_LISTS; i++)
3140 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3141 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3142
14067bb3 3143 /* Hierarchical information */
3e32cb2e
JW
3144 memory = memsw = PAGE_COUNTER_MAX;
3145 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3146 memory = min(memory, mi->memory.limit);
3147 memsw = min(memsw, mi->memsw.limit);
fee7b548 3148 }
3e32cb2e
JW
3149 seq_printf(m, "hierarchical_memory_limit %llu\n",
3150 (u64)memory * PAGE_SIZE);
7941d214 3151 if (do_memsw_account())
3e32cb2e
JW
3152 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3153 (u64)memsw * PAGE_SIZE);
7f016ee8 3154
af7c4b0e 3155 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3156 unsigned long long val = 0;
af7c4b0e 3157
7941d214 3158 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3159 continue;
af7c4b0e
JW
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3163 }
3164
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3166 unsigned long long val = 0;
3167
3168 for_each_mem_cgroup_tree(mi, memcg)
3169 val += mem_cgroup_read_events(mi, i);
3170 seq_printf(m, "total_%s %llu\n",
3171 mem_cgroup_events_names[i], val);
3172 }
3173
3174 for (i = 0; i < NR_LRU_LISTS; i++) {
3175 unsigned long long val = 0;
3176
3177 for_each_mem_cgroup_tree(mi, memcg)
3178 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3179 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3180 }
14067bb3 3181
7f016ee8 3182#ifdef CONFIG_DEBUG_VM
7f016ee8 3183 {
ef8f2327
MG
3184 pg_data_t *pgdat;
3185 struct mem_cgroup_per_node *mz;
89abfab1 3186 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3187 unsigned long recent_rotated[2] = {0, 0};
3188 unsigned long recent_scanned[2] = {0, 0};
3189
ef8f2327
MG
3190 for_each_online_pgdat(pgdat) {
3191 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3192 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3193
ef8f2327
MG
3194 recent_rotated[0] += rstat->recent_rotated[0];
3195 recent_rotated[1] += rstat->recent_rotated[1];
3196 recent_scanned[0] += rstat->recent_scanned[0];
3197 recent_scanned[1] += rstat->recent_scanned[1];
3198 }
78ccf5b5
JW
3199 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3200 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3201 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3202 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3203 }
3204#endif
3205
d2ceb9b7
KH
3206 return 0;
3207}
3208
182446d0
TH
3209static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3210 struct cftype *cft)
a7885eb8 3211{
182446d0 3212 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3213
1f4c025b 3214 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3215}
3216
182446d0
TH
3217static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3218 struct cftype *cft, u64 val)
a7885eb8 3219{
182446d0 3220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3221
3dae7fec 3222 if (val > 100)
a7885eb8
KM
3223 return -EINVAL;
3224
14208b0e 3225 if (css->parent)
3dae7fec
JW
3226 memcg->swappiness = val;
3227 else
3228 vm_swappiness = val;
068b38c1 3229
a7885eb8
KM
3230 return 0;
3231}
3232
2e72b634
KS
3233static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3234{
3235 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3236 unsigned long usage;
2e72b634
KS
3237 int i;
3238
3239 rcu_read_lock();
3240 if (!swap)
2c488db2 3241 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3242 else
2c488db2 3243 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3244
3245 if (!t)
3246 goto unlock;
3247
ce00a967 3248 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3249
3250 /*
748dad36 3251 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3252 * If it's not true, a threshold was crossed after last
3253 * call of __mem_cgroup_threshold().
3254 */
5407a562 3255 i = t->current_threshold;
2e72b634
KS
3256
3257 /*
3258 * Iterate backward over array of thresholds starting from
3259 * current_threshold and check if a threshold is crossed.
3260 * If none of thresholds below usage is crossed, we read
3261 * only one element of the array here.
3262 */
3263 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3264 eventfd_signal(t->entries[i].eventfd, 1);
3265
3266 /* i = current_threshold + 1 */
3267 i++;
3268
3269 /*
3270 * Iterate forward over array of thresholds starting from
3271 * current_threshold+1 and check if a threshold is crossed.
3272 * If none of thresholds above usage is crossed, we read
3273 * only one element of the array here.
3274 */
3275 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3276 eventfd_signal(t->entries[i].eventfd, 1);
3277
3278 /* Update current_threshold */
5407a562 3279 t->current_threshold = i - 1;
2e72b634
KS
3280unlock:
3281 rcu_read_unlock();
3282}
3283
3284static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3285{
ad4ca5f4
KS
3286 while (memcg) {
3287 __mem_cgroup_threshold(memcg, false);
7941d214 3288 if (do_memsw_account())
ad4ca5f4
KS
3289 __mem_cgroup_threshold(memcg, true);
3290
3291 memcg = parent_mem_cgroup(memcg);
3292 }
2e72b634
KS
3293}
3294
3295static int compare_thresholds(const void *a, const void *b)
3296{
3297 const struct mem_cgroup_threshold *_a = a;
3298 const struct mem_cgroup_threshold *_b = b;
3299
2bff24a3
GT
3300 if (_a->threshold > _b->threshold)
3301 return 1;
3302
3303 if (_a->threshold < _b->threshold)
3304 return -1;
3305
3306 return 0;
2e72b634
KS
3307}
3308
c0ff4b85 3309static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3310{
3311 struct mem_cgroup_eventfd_list *ev;
3312
2bcf2e92
MH
3313 spin_lock(&memcg_oom_lock);
3314
c0ff4b85 3315 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3316 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3317
3318 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3319 return 0;
3320}
3321
c0ff4b85 3322static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3323{
7d74b06f
KH
3324 struct mem_cgroup *iter;
3325
c0ff4b85 3326 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3327 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3328}
3329
59b6f873 3330static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3331 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3332{
2c488db2
KS
3333 struct mem_cgroup_thresholds *thresholds;
3334 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3335 unsigned long threshold;
3336 unsigned long usage;
2c488db2 3337 int i, size, ret;
2e72b634 3338
650c5e56 3339 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3340 if (ret)
3341 return ret;
3342
3343 mutex_lock(&memcg->thresholds_lock);
2c488db2 3344
05b84301 3345 if (type == _MEM) {
2c488db2 3346 thresholds = &memcg->thresholds;
ce00a967 3347 usage = mem_cgroup_usage(memcg, false);
05b84301 3348 } else if (type == _MEMSWAP) {
2c488db2 3349 thresholds = &memcg->memsw_thresholds;
ce00a967 3350 usage = mem_cgroup_usage(memcg, true);
05b84301 3351 } else
2e72b634
KS
3352 BUG();
3353
2e72b634 3354 /* Check if a threshold crossed before adding a new one */
2c488db2 3355 if (thresholds->primary)
2e72b634
KS
3356 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3357
2c488db2 3358 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3359
3360 /* Allocate memory for new array of thresholds */
2c488db2 3361 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3362 GFP_KERNEL);
2c488db2 3363 if (!new) {
2e72b634
KS
3364 ret = -ENOMEM;
3365 goto unlock;
3366 }
2c488db2 3367 new->size = size;
2e72b634
KS
3368
3369 /* Copy thresholds (if any) to new array */
2c488db2
KS
3370 if (thresholds->primary) {
3371 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3372 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3373 }
3374
2e72b634 3375 /* Add new threshold */
2c488db2
KS
3376 new->entries[size - 1].eventfd = eventfd;
3377 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3378
3379 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3380 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3381 compare_thresholds, NULL);
3382
3383 /* Find current threshold */
2c488db2 3384 new->current_threshold = -1;
2e72b634 3385 for (i = 0; i < size; i++) {
748dad36 3386 if (new->entries[i].threshold <= usage) {
2e72b634 3387 /*
2c488db2
KS
3388 * new->current_threshold will not be used until
3389 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3390 * it here.
3391 */
2c488db2 3392 ++new->current_threshold;
748dad36
SZ
3393 } else
3394 break;
2e72b634
KS
3395 }
3396
2c488db2
KS
3397 /* Free old spare buffer and save old primary buffer as spare */
3398 kfree(thresholds->spare);
3399 thresholds->spare = thresholds->primary;
3400
3401 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3402
907860ed 3403 /* To be sure that nobody uses thresholds */
2e72b634
KS
3404 synchronize_rcu();
3405
2e72b634
KS
3406unlock:
3407 mutex_unlock(&memcg->thresholds_lock);
3408
3409 return ret;
3410}
3411
59b6f873 3412static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3413 struct eventfd_ctx *eventfd, const char *args)
3414{
59b6f873 3415 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3416}
3417
59b6f873 3418static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3419 struct eventfd_ctx *eventfd, const char *args)
3420{
59b6f873 3421 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3422}
3423
59b6f873 3424static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3425 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3426{
2c488db2
KS
3427 struct mem_cgroup_thresholds *thresholds;
3428 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3429 unsigned long usage;
2c488db2 3430 int i, j, size;
2e72b634
KS
3431
3432 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3433
3434 if (type == _MEM) {
2c488db2 3435 thresholds = &memcg->thresholds;
ce00a967 3436 usage = mem_cgroup_usage(memcg, false);
05b84301 3437 } else if (type == _MEMSWAP) {
2c488db2 3438 thresholds = &memcg->memsw_thresholds;
ce00a967 3439 usage = mem_cgroup_usage(memcg, true);
05b84301 3440 } else
2e72b634
KS
3441 BUG();
3442
371528ca
AV
3443 if (!thresholds->primary)
3444 goto unlock;
3445
2e72b634
KS
3446 /* Check if a threshold crossed before removing */
3447 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3448
3449 /* Calculate new number of threshold */
2c488db2
KS
3450 size = 0;
3451 for (i = 0; i < thresholds->primary->size; i++) {
3452 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3453 size++;
3454 }
3455
2c488db2 3456 new = thresholds->spare;
907860ed 3457
2e72b634
KS
3458 /* Set thresholds array to NULL if we don't have thresholds */
3459 if (!size) {
2c488db2
KS
3460 kfree(new);
3461 new = NULL;
907860ed 3462 goto swap_buffers;
2e72b634
KS
3463 }
3464
2c488db2 3465 new->size = size;
2e72b634
KS
3466
3467 /* Copy thresholds and find current threshold */
2c488db2
KS
3468 new->current_threshold = -1;
3469 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3470 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3471 continue;
3472
2c488db2 3473 new->entries[j] = thresholds->primary->entries[i];
748dad36 3474 if (new->entries[j].threshold <= usage) {
2e72b634 3475 /*
2c488db2 3476 * new->current_threshold will not be used
2e72b634
KS
3477 * until rcu_assign_pointer(), so it's safe to increment
3478 * it here.
3479 */
2c488db2 3480 ++new->current_threshold;
2e72b634
KS
3481 }
3482 j++;
3483 }
3484
907860ed 3485swap_buffers:
2c488db2
KS
3486 /* Swap primary and spare array */
3487 thresholds->spare = thresholds->primary;
8c757763 3488
2c488db2 3489 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3490
907860ed 3491 /* To be sure that nobody uses thresholds */
2e72b634 3492 synchronize_rcu();
6611d8d7
MC
3493
3494 /* If all events are unregistered, free the spare array */
3495 if (!new) {
3496 kfree(thresholds->spare);
3497 thresholds->spare = NULL;
3498 }
371528ca 3499unlock:
2e72b634 3500 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3501}
c1e862c1 3502
59b6f873 3503static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3504 struct eventfd_ctx *eventfd)
3505{
59b6f873 3506 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3507}
3508
59b6f873 3509static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3510 struct eventfd_ctx *eventfd)
3511{
59b6f873 3512 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3513}
3514
59b6f873 3515static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3516 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3517{
9490ff27 3518 struct mem_cgroup_eventfd_list *event;
9490ff27 3519
9490ff27
KH
3520 event = kmalloc(sizeof(*event), GFP_KERNEL);
3521 if (!event)
3522 return -ENOMEM;
3523
1af8efe9 3524 spin_lock(&memcg_oom_lock);
9490ff27
KH
3525
3526 event->eventfd = eventfd;
3527 list_add(&event->list, &memcg->oom_notify);
3528
3529 /* already in OOM ? */
c2b42d3c 3530 if (memcg->under_oom)
9490ff27 3531 eventfd_signal(eventfd, 1);
1af8efe9 3532 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3533
3534 return 0;
3535}
3536
59b6f873 3537static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3538 struct eventfd_ctx *eventfd)
9490ff27 3539{
9490ff27 3540 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3541
1af8efe9 3542 spin_lock(&memcg_oom_lock);
9490ff27 3543
c0ff4b85 3544 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3545 if (ev->eventfd == eventfd) {
3546 list_del(&ev->list);
3547 kfree(ev);
3548 }
3549 }
3550
1af8efe9 3551 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3552}
3553
2da8ca82 3554static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3555{
2da8ca82 3556 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3557
791badbd 3558 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3559 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3560 return 0;
3561}
3562
182446d0 3563static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3564 struct cftype *cft, u64 val)
3565{
182446d0 3566 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3567
3568 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3569 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3570 return -EINVAL;
3571
c0ff4b85 3572 memcg->oom_kill_disable = val;
4d845ebf 3573 if (!val)
c0ff4b85 3574 memcg_oom_recover(memcg);
3dae7fec 3575
3c11ecf4
KH
3576 return 0;
3577}
3578
52ebea74
TH
3579#ifdef CONFIG_CGROUP_WRITEBACK
3580
3581struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3582{
3583 return &memcg->cgwb_list;
3584}
3585
841710aa
TH
3586static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3587{
3588 return wb_domain_init(&memcg->cgwb_domain, gfp);
3589}
3590
3591static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3592{
3593 wb_domain_exit(&memcg->cgwb_domain);
3594}
3595
2529bb3a
TH
3596static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3597{
3598 wb_domain_size_changed(&memcg->cgwb_domain);
3599}
3600
841710aa
TH
3601struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3602{
3603 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3604
3605 if (!memcg->css.parent)
3606 return NULL;
3607
3608 return &memcg->cgwb_domain;
3609}
3610
c2aa723a
TH
3611/**
3612 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3613 * @wb: bdi_writeback in question
c5edf9cd
TH
3614 * @pfilepages: out parameter for number of file pages
3615 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3616 * @pdirty: out parameter for number of dirty pages
3617 * @pwriteback: out parameter for number of pages under writeback
3618 *
c5edf9cd
TH
3619 * Determine the numbers of file, headroom, dirty, and writeback pages in
3620 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3621 * is a bit more involved.
c2aa723a 3622 *
c5edf9cd
TH
3623 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3624 * headroom is calculated as the lowest headroom of itself and the
3625 * ancestors. Note that this doesn't consider the actual amount of
3626 * available memory in the system. The caller should further cap
3627 * *@pheadroom accordingly.
c2aa723a 3628 */
c5edf9cd
TH
3629void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3630 unsigned long *pheadroom, unsigned long *pdirty,
3631 unsigned long *pwriteback)
c2aa723a
TH
3632{
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634 struct mem_cgroup *parent;
c2aa723a
TH
3635
3636 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3637
3638 /* this should eventually include NR_UNSTABLE_NFS */
3639 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3640 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3641 (1 << LRU_ACTIVE_FILE));
3642 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3643
c2aa723a
TH
3644 while ((parent = parent_mem_cgroup(memcg))) {
3645 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3646 unsigned long used = page_counter_read(&memcg->memory);
3647
c5edf9cd 3648 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3649 memcg = parent;
3650 }
c2aa723a
TH
3651}
3652
841710aa
TH
3653#else /* CONFIG_CGROUP_WRITEBACK */
3654
3655static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3656{
3657 return 0;
3658}
3659
3660static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3661{
3662}
3663
2529bb3a
TH
3664static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3665{
3666}
3667
52ebea74
TH
3668#endif /* CONFIG_CGROUP_WRITEBACK */
3669
3bc942f3
TH
3670/*
3671 * DO NOT USE IN NEW FILES.
3672 *
3673 * "cgroup.event_control" implementation.
3674 *
3675 * This is way over-engineered. It tries to support fully configurable
3676 * events for each user. Such level of flexibility is completely
3677 * unnecessary especially in the light of the planned unified hierarchy.
3678 *
3679 * Please deprecate this and replace with something simpler if at all
3680 * possible.
3681 */
3682
79bd9814
TH
3683/*
3684 * Unregister event and free resources.
3685 *
3686 * Gets called from workqueue.
3687 */
3bc942f3 3688static void memcg_event_remove(struct work_struct *work)
79bd9814 3689{
3bc942f3
TH
3690 struct mem_cgroup_event *event =
3691 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3692 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3693
3694 remove_wait_queue(event->wqh, &event->wait);
3695
59b6f873 3696 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3697
3698 /* Notify userspace the event is going away. */
3699 eventfd_signal(event->eventfd, 1);
3700
3701 eventfd_ctx_put(event->eventfd);
3702 kfree(event);
59b6f873 3703 css_put(&memcg->css);
79bd9814
TH
3704}
3705
3706/*
3707 * Gets called on POLLHUP on eventfd when user closes it.
3708 *
3709 * Called with wqh->lock held and interrupts disabled.
3710 */
3bc942f3
TH
3711static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3712 int sync, void *key)
79bd9814 3713{
3bc942f3
TH
3714 struct mem_cgroup_event *event =
3715 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3716 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3717 unsigned long flags = (unsigned long)key;
3718
3719 if (flags & POLLHUP) {
3720 /*
3721 * If the event has been detached at cgroup removal, we
3722 * can simply return knowing the other side will cleanup
3723 * for us.
3724 *
3725 * We can't race against event freeing since the other
3726 * side will require wqh->lock via remove_wait_queue(),
3727 * which we hold.
3728 */
fba94807 3729 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3730 if (!list_empty(&event->list)) {
3731 list_del_init(&event->list);
3732 /*
3733 * We are in atomic context, but cgroup_event_remove()
3734 * may sleep, so we have to call it in workqueue.
3735 */
3736 schedule_work(&event->remove);
3737 }
fba94807 3738 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3739 }
3740
3741 return 0;
3742}
3743
3bc942f3 3744static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3745 wait_queue_head_t *wqh, poll_table *pt)
3746{
3bc942f3
TH
3747 struct mem_cgroup_event *event =
3748 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3749
3750 event->wqh = wqh;
3751 add_wait_queue(wqh, &event->wait);
3752}
3753
3754/*
3bc942f3
TH
3755 * DO NOT USE IN NEW FILES.
3756 *
79bd9814
TH
3757 * Parse input and register new cgroup event handler.
3758 *
3759 * Input must be in format '<event_fd> <control_fd> <args>'.
3760 * Interpretation of args is defined by control file implementation.
3761 */
451af504
TH
3762static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3763 char *buf, size_t nbytes, loff_t off)
79bd9814 3764{
451af504 3765 struct cgroup_subsys_state *css = of_css(of);
fba94807 3766 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3767 struct mem_cgroup_event *event;
79bd9814
TH
3768 struct cgroup_subsys_state *cfile_css;
3769 unsigned int efd, cfd;
3770 struct fd efile;
3771 struct fd cfile;
fba94807 3772 const char *name;
79bd9814
TH
3773 char *endp;
3774 int ret;
3775
451af504
TH
3776 buf = strstrip(buf);
3777
3778 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3779 if (*endp != ' ')
3780 return -EINVAL;
451af504 3781 buf = endp + 1;
79bd9814 3782
451af504 3783 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3784 if ((*endp != ' ') && (*endp != '\0'))
3785 return -EINVAL;
451af504 3786 buf = endp + 1;
79bd9814
TH
3787
3788 event = kzalloc(sizeof(*event), GFP_KERNEL);
3789 if (!event)
3790 return -ENOMEM;
3791
59b6f873 3792 event->memcg = memcg;
79bd9814 3793 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3794 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3795 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3796 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3797
3798 efile = fdget(efd);
3799 if (!efile.file) {
3800 ret = -EBADF;
3801 goto out_kfree;
3802 }
3803
3804 event->eventfd = eventfd_ctx_fileget(efile.file);
3805 if (IS_ERR(event->eventfd)) {
3806 ret = PTR_ERR(event->eventfd);
3807 goto out_put_efile;
3808 }
3809
3810 cfile = fdget(cfd);
3811 if (!cfile.file) {
3812 ret = -EBADF;
3813 goto out_put_eventfd;
3814 }
3815
3816 /* the process need read permission on control file */
3817 /* AV: shouldn't we check that it's been opened for read instead? */
3818 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3819 if (ret < 0)
3820 goto out_put_cfile;
3821
fba94807
TH
3822 /*
3823 * Determine the event callbacks and set them in @event. This used
3824 * to be done via struct cftype but cgroup core no longer knows
3825 * about these events. The following is crude but the whole thing
3826 * is for compatibility anyway.
3bc942f3
TH
3827 *
3828 * DO NOT ADD NEW FILES.
fba94807 3829 */
b583043e 3830 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3831
3832 if (!strcmp(name, "memory.usage_in_bytes")) {
3833 event->register_event = mem_cgroup_usage_register_event;
3834 event->unregister_event = mem_cgroup_usage_unregister_event;
3835 } else if (!strcmp(name, "memory.oom_control")) {
3836 event->register_event = mem_cgroup_oom_register_event;
3837 event->unregister_event = mem_cgroup_oom_unregister_event;
3838 } else if (!strcmp(name, "memory.pressure_level")) {
3839 event->register_event = vmpressure_register_event;
3840 event->unregister_event = vmpressure_unregister_event;
3841 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3842 event->register_event = memsw_cgroup_usage_register_event;
3843 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3844 } else {
3845 ret = -EINVAL;
3846 goto out_put_cfile;
3847 }
3848
79bd9814 3849 /*
b5557c4c
TH
3850 * Verify @cfile should belong to @css. Also, remaining events are
3851 * automatically removed on cgroup destruction but the removal is
3852 * asynchronous, so take an extra ref on @css.
79bd9814 3853 */
b583043e 3854 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3855 &memory_cgrp_subsys);
79bd9814 3856 ret = -EINVAL;
5a17f543 3857 if (IS_ERR(cfile_css))
79bd9814 3858 goto out_put_cfile;
5a17f543
TH
3859 if (cfile_css != css) {
3860 css_put(cfile_css);
79bd9814 3861 goto out_put_cfile;
5a17f543 3862 }
79bd9814 3863
451af504 3864 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3865 if (ret)
3866 goto out_put_css;
3867
3868 efile.file->f_op->poll(efile.file, &event->pt);
3869
fba94807
TH
3870 spin_lock(&memcg->event_list_lock);
3871 list_add(&event->list, &memcg->event_list);
3872 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3873
3874 fdput(cfile);
3875 fdput(efile);
3876
451af504 3877 return nbytes;
79bd9814
TH
3878
3879out_put_css:
b5557c4c 3880 css_put(css);
79bd9814
TH
3881out_put_cfile:
3882 fdput(cfile);
3883out_put_eventfd:
3884 eventfd_ctx_put(event->eventfd);
3885out_put_efile:
3886 fdput(efile);
3887out_kfree:
3888 kfree(event);
3889
3890 return ret;
3891}
3892
241994ed 3893static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3894 {
0eea1030 3895 .name = "usage_in_bytes",
8c7c6e34 3896 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3897 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3898 },
c84872e1
PE
3899 {
3900 .name = "max_usage_in_bytes",
8c7c6e34 3901 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3902 .write = mem_cgroup_reset,
791badbd 3903 .read_u64 = mem_cgroup_read_u64,
c84872e1 3904 },
8cdea7c0 3905 {
0eea1030 3906 .name = "limit_in_bytes",
8c7c6e34 3907 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3908 .write = mem_cgroup_write,
791badbd 3909 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3910 },
296c81d8
BS
3911 {
3912 .name = "soft_limit_in_bytes",
3913 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3914 .write = mem_cgroup_write,
791badbd 3915 .read_u64 = mem_cgroup_read_u64,
296c81d8 3916 },
8cdea7c0
BS
3917 {
3918 .name = "failcnt",
8c7c6e34 3919 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3920 .write = mem_cgroup_reset,
791badbd 3921 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3922 },
d2ceb9b7
KH
3923 {
3924 .name = "stat",
2da8ca82 3925 .seq_show = memcg_stat_show,
d2ceb9b7 3926 },
c1e862c1
KH
3927 {
3928 .name = "force_empty",
6770c64e 3929 .write = mem_cgroup_force_empty_write,
c1e862c1 3930 },
18f59ea7
BS
3931 {
3932 .name = "use_hierarchy",
3933 .write_u64 = mem_cgroup_hierarchy_write,
3934 .read_u64 = mem_cgroup_hierarchy_read,
3935 },
79bd9814 3936 {
3bc942f3 3937 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3938 .write = memcg_write_event_control,
7dbdb199 3939 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3940 },
a7885eb8
KM
3941 {
3942 .name = "swappiness",
3943 .read_u64 = mem_cgroup_swappiness_read,
3944 .write_u64 = mem_cgroup_swappiness_write,
3945 },
7dc74be0
DN
3946 {
3947 .name = "move_charge_at_immigrate",
3948 .read_u64 = mem_cgroup_move_charge_read,
3949 .write_u64 = mem_cgroup_move_charge_write,
3950 },
9490ff27
KH
3951 {
3952 .name = "oom_control",
2da8ca82 3953 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3954 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3955 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3956 },
70ddf637
AV
3957 {
3958 .name = "pressure_level",
70ddf637 3959 },
406eb0c9
YH
3960#ifdef CONFIG_NUMA
3961 {
3962 .name = "numa_stat",
2da8ca82 3963 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3964 },
3965#endif
510fc4e1
GC
3966 {
3967 .name = "kmem.limit_in_bytes",
3968 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3969 .write = mem_cgroup_write,
791badbd 3970 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3971 },
3972 {
3973 .name = "kmem.usage_in_bytes",
3974 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3975 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3976 },
3977 {
3978 .name = "kmem.failcnt",
3979 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3980 .write = mem_cgroup_reset,
791badbd 3981 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3982 },
3983 {
3984 .name = "kmem.max_usage_in_bytes",
3985 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 3986 .write = mem_cgroup_reset,
791badbd 3987 .read_u64 = mem_cgroup_read_u64,
510fc4e1 3988 },
749c5415
GC
3989#ifdef CONFIG_SLABINFO
3990 {
3991 .name = "kmem.slabinfo",
b047501c
VD
3992 .seq_start = slab_start,
3993 .seq_next = slab_next,
3994 .seq_stop = slab_stop,
3995 .seq_show = memcg_slab_show,
749c5415
GC
3996 },
3997#endif
d55f90bf
VD
3998 {
3999 .name = "kmem.tcp.limit_in_bytes",
4000 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4001 .write = mem_cgroup_write,
4002 .read_u64 = mem_cgroup_read_u64,
4003 },
4004 {
4005 .name = "kmem.tcp.usage_in_bytes",
4006 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4007 .read_u64 = mem_cgroup_read_u64,
4008 },
4009 {
4010 .name = "kmem.tcp.failcnt",
4011 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4012 .write = mem_cgroup_reset,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "kmem.tcp.max_usage_in_bytes",
4017 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4018 .write = mem_cgroup_reset,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
6bc10349 4021 { }, /* terminate */
af36f906 4022};
8c7c6e34 4023
73f576c0
JW
4024/*
4025 * Private memory cgroup IDR
4026 *
4027 * Swap-out records and page cache shadow entries need to store memcg
4028 * references in constrained space, so we maintain an ID space that is
4029 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4030 * memory-controlled cgroups to 64k.
4031 *
4032 * However, there usually are many references to the oflline CSS after
4033 * the cgroup has been destroyed, such as page cache or reclaimable
4034 * slab objects, that don't need to hang on to the ID. We want to keep
4035 * those dead CSS from occupying IDs, or we might quickly exhaust the
4036 * relatively small ID space and prevent the creation of new cgroups
4037 * even when there are much fewer than 64k cgroups - possibly none.
4038 *
4039 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4040 * be freed and recycled when it's no longer needed, which is usually
4041 * when the CSS is offlined.
4042 *
4043 * The only exception to that are records of swapped out tmpfs/shmem
4044 * pages that need to be attributed to live ancestors on swapin. But
4045 * those references are manageable from userspace.
4046 */
4047
4048static DEFINE_IDR(mem_cgroup_idr);
4049
615d66c3 4050static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4051{
58ffa601 4052 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4053 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4054}
4055
615d66c3 4056static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4057{
58ffa601 4058 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4059 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4060 idr_remove(&mem_cgroup_idr, memcg->id.id);
4061 memcg->id.id = 0;
4062
4063 /* Memcg ID pins CSS */
4064 css_put(&memcg->css);
4065 }
4066}
4067
615d66c3
VD
4068static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4069{
4070 mem_cgroup_id_get_many(memcg, 1);
4071}
4072
4073static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4074{
4075 mem_cgroup_id_put_many(memcg, 1);
4076}
4077
73f576c0
JW
4078/**
4079 * mem_cgroup_from_id - look up a memcg from a memcg id
4080 * @id: the memcg id to look up
4081 *
4082 * Caller must hold rcu_read_lock().
4083 */
4084struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4085{
4086 WARN_ON_ONCE(!rcu_read_lock_held());
4087 return idr_find(&mem_cgroup_idr, id);
4088}
4089
ef8f2327 4090static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4091{
4092 struct mem_cgroup_per_node *pn;
ef8f2327 4093 int tmp = node;
1ecaab2b
KH
4094 /*
4095 * This routine is called against possible nodes.
4096 * But it's BUG to call kmalloc() against offline node.
4097 *
4098 * TODO: this routine can waste much memory for nodes which will
4099 * never be onlined. It's better to use memory hotplug callback
4100 * function.
4101 */
41e3355d
KH
4102 if (!node_state(node, N_NORMAL_MEMORY))
4103 tmp = -1;
17295c88 4104 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4105 if (!pn)
4106 return 1;
1ecaab2b 4107
ef8f2327
MG
4108 lruvec_init(&pn->lruvec);
4109 pn->usage_in_excess = 0;
4110 pn->on_tree = false;
4111 pn->memcg = memcg;
4112
54f72fe0 4113 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4114 return 0;
4115}
4116
ef8f2327 4117static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4118{
54f72fe0 4119 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4120}
4121
0b8f73e1 4122static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4123{
c8b2a36f 4124 int node;
59927fb9 4125
0b8f73e1 4126 memcg_wb_domain_exit(memcg);
c8b2a36f 4127 for_each_node(node)
ef8f2327 4128 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4129 free_percpu(memcg->stat);
8ff69e2c 4130 kfree(memcg);
59927fb9 4131}
3afe36b1 4132
0b8f73e1 4133static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4134{
d142e3e6 4135 struct mem_cgroup *memcg;
0b8f73e1 4136 size_t size;
6d12e2d8 4137 int node;
8cdea7c0 4138
0b8f73e1
JW
4139 size = sizeof(struct mem_cgroup);
4140 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4141
4142 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4143 if (!memcg)
0b8f73e1
JW
4144 return NULL;
4145
73f576c0
JW
4146 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4147 1, MEM_CGROUP_ID_MAX,
4148 GFP_KERNEL);
4149 if (memcg->id.id < 0)
4150 goto fail;
4151
0b8f73e1
JW
4152 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4153 if (!memcg->stat)
4154 goto fail;
78fb7466 4155
3ed28fa1 4156 for_each_node(node)
ef8f2327 4157 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4158 goto fail;
f64c3f54 4159
0b8f73e1
JW
4160 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4161 goto fail;
28dbc4b6 4162
f7e1cb6e 4163 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4164 memcg->last_scanned_node = MAX_NUMNODES;
4165 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4166 mutex_init(&memcg->thresholds_lock);
4167 spin_lock_init(&memcg->move_lock);
70ddf637 4168 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4169 INIT_LIST_HEAD(&memcg->event_list);
4170 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4171 memcg->socket_pressure = jiffies;
127424c8 4172#ifndef CONFIG_SLOB
900a38f0 4173 memcg->kmemcg_id = -1;
900a38f0 4174#endif
52ebea74
TH
4175#ifdef CONFIG_CGROUP_WRITEBACK
4176 INIT_LIST_HEAD(&memcg->cgwb_list);
4177#endif
73f576c0 4178 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4179 return memcg;
4180fail:
73f576c0
JW
4181 if (memcg->id.id > 0)
4182 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4183 mem_cgroup_free(memcg);
4184 return NULL;
d142e3e6
GC
4185}
4186
0b8f73e1
JW
4187static struct cgroup_subsys_state * __ref
4188mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4189{
0b8f73e1
JW
4190 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4191 struct mem_cgroup *memcg;
4192 long error = -ENOMEM;
d142e3e6 4193
0b8f73e1
JW
4194 memcg = mem_cgroup_alloc();
4195 if (!memcg)
4196 return ERR_PTR(error);
d142e3e6 4197
0b8f73e1
JW
4198 memcg->high = PAGE_COUNTER_MAX;
4199 memcg->soft_limit = PAGE_COUNTER_MAX;
4200 if (parent) {
4201 memcg->swappiness = mem_cgroup_swappiness(parent);
4202 memcg->oom_kill_disable = parent->oom_kill_disable;
4203 }
4204 if (parent && parent->use_hierarchy) {
4205 memcg->use_hierarchy = true;
3e32cb2e 4206 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4207 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4208 page_counter_init(&memcg->memsw, &parent->memsw);
4209 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4210 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4211 } else {
3e32cb2e 4212 page_counter_init(&memcg->memory, NULL);
37e84351 4213 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4214 page_counter_init(&memcg->memsw, NULL);
4215 page_counter_init(&memcg->kmem, NULL);
0db15298 4216 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4217 /*
4218 * Deeper hierachy with use_hierarchy == false doesn't make
4219 * much sense so let cgroup subsystem know about this
4220 * unfortunate state in our controller.
4221 */
d142e3e6 4222 if (parent != root_mem_cgroup)
073219e9 4223 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4224 }
d6441637 4225
0b8f73e1
JW
4226 /* The following stuff does not apply to the root */
4227 if (!parent) {
4228 root_mem_cgroup = memcg;
4229 return &memcg->css;
4230 }
4231
b313aeee 4232 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4233 if (error)
4234 goto fail;
127424c8 4235
f7e1cb6e 4236 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4237 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4238
0b8f73e1
JW
4239 return &memcg->css;
4240fail:
4241 mem_cgroup_free(memcg);
ea3a9645 4242 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4243}
4244
73f576c0 4245static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4246{
58ffa601
VD
4247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4248
73f576c0 4249 /* Online state pins memcg ID, memcg ID pins CSS */
58ffa601 4250 atomic_set(&memcg->id.ref, 1);
73f576c0 4251 css_get(css);
2f7dd7a4 4252 return 0;
8cdea7c0
BS
4253}
4254
eb95419b 4255static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4256{
eb95419b 4257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4258 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4259
4260 /*
4261 * Unregister events and notify userspace.
4262 * Notify userspace about cgroup removing only after rmdir of cgroup
4263 * directory to avoid race between userspace and kernelspace.
4264 */
fba94807
TH
4265 spin_lock(&memcg->event_list_lock);
4266 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4267 list_del_init(&event->list);
4268 schedule_work(&event->remove);
4269 }
fba94807 4270 spin_unlock(&memcg->event_list_lock);
ec64f515 4271
567e9ab2 4272 memcg_offline_kmem(memcg);
52ebea74 4273 wb_memcg_offline(memcg);
73f576c0
JW
4274
4275 mem_cgroup_id_put(memcg);
df878fb0
KH
4276}
4277
6df38689
VD
4278static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4279{
4280 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4281
4282 invalidate_reclaim_iterators(memcg);
4283}
4284
eb95419b 4285static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4286{
eb95419b 4287 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4288
f7e1cb6e 4289 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4290 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4291
0db15298 4292 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4293 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4294
0b8f73e1
JW
4295 vmpressure_cleanup(&memcg->vmpressure);
4296 cancel_work_sync(&memcg->high_work);
4297 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4298 memcg_free_kmem(memcg);
0b8f73e1 4299 mem_cgroup_free(memcg);
8cdea7c0
BS
4300}
4301
1ced953b
TH
4302/**
4303 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4304 * @css: the target css
4305 *
4306 * Reset the states of the mem_cgroup associated with @css. This is
4307 * invoked when the userland requests disabling on the default hierarchy
4308 * but the memcg is pinned through dependency. The memcg should stop
4309 * applying policies and should revert to the vanilla state as it may be
4310 * made visible again.
4311 *
4312 * The current implementation only resets the essential configurations.
4313 * This needs to be expanded to cover all the visible parts.
4314 */
4315static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4316{
4317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4318
d334c9bc
VD
4319 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4320 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4321 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4322 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4323 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4324 memcg->low = 0;
4325 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4326 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4327 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4328}
4329
02491447 4330#ifdef CONFIG_MMU
7dc74be0 4331/* Handlers for move charge at task migration. */
854ffa8d 4332static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4333{
05b84301 4334 int ret;
9476db97 4335
d0164adc
MG
4336 /* Try a single bulk charge without reclaim first, kswapd may wake */
4337 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4338 if (!ret) {
854ffa8d 4339 mc.precharge += count;
854ffa8d
DN
4340 return ret;
4341 }
9476db97
JW
4342
4343 /* Try charges one by one with reclaim */
854ffa8d 4344 while (count--) {
00501b53 4345 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4346 if (ret)
38c5d72f 4347 return ret;
854ffa8d 4348 mc.precharge++;
9476db97 4349 cond_resched();
854ffa8d 4350 }
9476db97 4351 return 0;
4ffef5fe
DN
4352}
4353
4ffef5fe
DN
4354union mc_target {
4355 struct page *page;
02491447 4356 swp_entry_t ent;
4ffef5fe
DN
4357};
4358
4ffef5fe 4359enum mc_target_type {
8d32ff84 4360 MC_TARGET_NONE = 0,
4ffef5fe 4361 MC_TARGET_PAGE,
02491447 4362 MC_TARGET_SWAP,
4ffef5fe
DN
4363};
4364
90254a65
DN
4365static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4366 unsigned long addr, pte_t ptent)
4ffef5fe 4367{
90254a65 4368 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4369
90254a65
DN
4370 if (!page || !page_mapped(page))
4371 return NULL;
4372 if (PageAnon(page)) {
1dfab5ab 4373 if (!(mc.flags & MOVE_ANON))
90254a65 4374 return NULL;
1dfab5ab
JW
4375 } else {
4376 if (!(mc.flags & MOVE_FILE))
4377 return NULL;
4378 }
90254a65
DN
4379 if (!get_page_unless_zero(page))
4380 return NULL;
4381
4382 return page;
4383}
4384
4b91355e 4385#ifdef CONFIG_SWAP
90254a65 4386static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4387 pte_t ptent, swp_entry_t *entry)
90254a65 4388{
90254a65
DN
4389 struct page *page = NULL;
4390 swp_entry_t ent = pte_to_swp_entry(ptent);
4391
1dfab5ab 4392 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4393 return NULL;
4b91355e
KH
4394 /*
4395 * Because lookup_swap_cache() updates some statistics counter,
4396 * we call find_get_page() with swapper_space directly.
4397 */
db7004e9 4398 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4399 if (do_memsw_account())
90254a65
DN
4400 entry->val = ent.val;
4401
4402 return page;
4403}
4b91355e
KH
4404#else
4405static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4406 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4407{
4408 return NULL;
4409}
4410#endif
90254a65 4411
87946a72
DN
4412static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4413 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4414{
4415 struct page *page = NULL;
87946a72
DN
4416 struct address_space *mapping;
4417 pgoff_t pgoff;
4418
4419 if (!vma->vm_file) /* anonymous vma */
4420 return NULL;
1dfab5ab 4421 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4422 return NULL;
4423
87946a72 4424 mapping = vma->vm_file->f_mapping;
0661a336 4425 pgoff = linear_page_index(vma, addr);
87946a72
DN
4426
4427 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4428#ifdef CONFIG_SWAP
4429 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4430 if (shmem_mapping(mapping)) {
4431 page = find_get_entry(mapping, pgoff);
4432 if (radix_tree_exceptional_entry(page)) {
4433 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4434 if (do_memsw_account())
139b6a6f 4435 *entry = swp;
db7004e9
HY
4436 page = find_get_page(swap_address_space(swp),
4437 swp_offset(swp));
139b6a6f
JW
4438 }
4439 } else
4440 page = find_get_page(mapping, pgoff);
4441#else
4442 page = find_get_page(mapping, pgoff);
aa3b1895 4443#endif
87946a72
DN
4444 return page;
4445}
4446
b1b0deab
CG
4447/**
4448 * mem_cgroup_move_account - move account of the page
4449 * @page: the page
25843c2b 4450 * @compound: charge the page as compound or small page
b1b0deab
CG
4451 * @from: mem_cgroup which the page is moved from.
4452 * @to: mem_cgroup which the page is moved to. @from != @to.
4453 *
3ac808fd 4454 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4455 *
4456 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4457 * from old cgroup.
4458 */
4459static int mem_cgroup_move_account(struct page *page,
f627c2f5 4460 bool compound,
b1b0deab
CG
4461 struct mem_cgroup *from,
4462 struct mem_cgroup *to)
4463{
4464 unsigned long flags;
f627c2f5 4465 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4466 int ret;
c4843a75 4467 bool anon;
b1b0deab
CG
4468
4469 VM_BUG_ON(from == to);
4470 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4471 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4472
4473 /*
6a93ca8f 4474 * Prevent mem_cgroup_migrate() from looking at
45637bab 4475 * page->mem_cgroup of its source page while we change it.
b1b0deab 4476 */
f627c2f5 4477 ret = -EBUSY;
b1b0deab
CG
4478 if (!trylock_page(page))
4479 goto out;
4480
4481 ret = -EINVAL;
4482 if (page->mem_cgroup != from)
4483 goto out_unlock;
4484
c4843a75
GT
4485 anon = PageAnon(page);
4486
b1b0deab
CG
4487 spin_lock_irqsave(&from->move_lock, flags);
4488
c4843a75 4489 if (!anon && page_mapped(page)) {
b1b0deab
CG
4490 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4491 nr_pages);
4492 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4493 nr_pages);
4494 }
4495
c4843a75
GT
4496 /*
4497 * move_lock grabbed above and caller set from->moving_account, so
4498 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4499 * So mapping should be stable for dirty pages.
4500 */
4501 if (!anon && PageDirty(page)) {
4502 struct address_space *mapping = page_mapping(page);
4503
4504 if (mapping_cap_account_dirty(mapping)) {
4505 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4506 nr_pages);
4507 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4508 nr_pages);
4509 }
4510 }
4511
b1b0deab
CG
4512 if (PageWriteback(page)) {
4513 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4514 nr_pages);
4515 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4516 nr_pages);
4517 }
4518
4519 /*
4520 * It is safe to change page->mem_cgroup here because the page
4521 * is referenced, charged, and isolated - we can't race with
4522 * uncharging, charging, migration, or LRU putback.
4523 */
4524
4525 /* caller should have done css_get */
4526 page->mem_cgroup = to;
4527 spin_unlock_irqrestore(&from->move_lock, flags);
4528
4529 ret = 0;
4530
4531 local_irq_disable();
f627c2f5 4532 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4533 memcg_check_events(to, page);
f627c2f5 4534 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4535 memcg_check_events(from, page);
4536 local_irq_enable();
4537out_unlock:
4538 unlock_page(page);
4539out:
4540 return ret;
4541}
4542
7cf7806c
LR
4543/**
4544 * get_mctgt_type - get target type of moving charge
4545 * @vma: the vma the pte to be checked belongs
4546 * @addr: the address corresponding to the pte to be checked
4547 * @ptent: the pte to be checked
4548 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4549 *
4550 * Returns
4551 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4552 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4553 * move charge. if @target is not NULL, the page is stored in target->page
4554 * with extra refcnt got(Callers should handle it).
4555 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4556 * target for charge migration. if @target is not NULL, the entry is stored
4557 * in target->ent.
4558 *
4559 * Called with pte lock held.
4560 */
4561
8d32ff84 4562static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4563 unsigned long addr, pte_t ptent, union mc_target *target)
4564{
4565 struct page *page = NULL;
8d32ff84 4566 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4567 swp_entry_t ent = { .val = 0 };
4568
4569 if (pte_present(ptent))
4570 page = mc_handle_present_pte(vma, addr, ptent);
4571 else if (is_swap_pte(ptent))
48406ef8 4572 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4573 else if (pte_none(ptent))
87946a72 4574 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4575
4576 if (!page && !ent.val)
8d32ff84 4577 return ret;
02491447 4578 if (page) {
02491447 4579 /*
0a31bc97 4580 * Do only loose check w/o serialization.
1306a85a 4581 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4582 * not under LRU exclusion.
02491447 4583 */
1306a85a 4584 if (page->mem_cgroup == mc.from) {
02491447
DN
4585 ret = MC_TARGET_PAGE;
4586 if (target)
4587 target->page = page;
4588 }
4589 if (!ret || !target)
4590 put_page(page);
4591 }
90254a65
DN
4592 /* There is a swap entry and a page doesn't exist or isn't charged */
4593 if (ent.val && !ret &&
34c00c31 4594 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4595 ret = MC_TARGET_SWAP;
4596 if (target)
4597 target->ent = ent;
4ffef5fe 4598 }
4ffef5fe
DN
4599 return ret;
4600}
4601
12724850
NH
4602#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4603/*
4604 * We don't consider swapping or file mapped pages because THP does not
4605 * support them for now.
4606 * Caller should make sure that pmd_trans_huge(pmd) is true.
4607 */
4608static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4609 unsigned long addr, pmd_t pmd, union mc_target *target)
4610{
4611 struct page *page = NULL;
12724850
NH
4612 enum mc_target_type ret = MC_TARGET_NONE;
4613
4614 page = pmd_page(pmd);
309381fe 4615 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4616 if (!(mc.flags & MOVE_ANON))
12724850 4617 return ret;
1306a85a 4618 if (page->mem_cgroup == mc.from) {
12724850
NH
4619 ret = MC_TARGET_PAGE;
4620 if (target) {
4621 get_page(page);
4622 target->page = page;
4623 }
4624 }
4625 return ret;
4626}
4627#else
4628static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4629 unsigned long addr, pmd_t pmd, union mc_target *target)
4630{
4631 return MC_TARGET_NONE;
4632}
4633#endif
4634
4ffef5fe
DN
4635static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4636 unsigned long addr, unsigned long end,
4637 struct mm_walk *walk)
4638{
26bcd64a 4639 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4640 pte_t *pte;
4641 spinlock_t *ptl;
4642
b6ec57f4
KS
4643 ptl = pmd_trans_huge_lock(pmd, vma);
4644 if (ptl) {
12724850
NH
4645 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4646 mc.precharge += HPAGE_PMD_NR;
bf929152 4647 spin_unlock(ptl);
1a5a9906 4648 return 0;
12724850 4649 }
03319327 4650
45f83cef
AA
4651 if (pmd_trans_unstable(pmd))
4652 return 0;
4ffef5fe
DN
4653 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4654 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4655 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4656 mc.precharge++; /* increment precharge temporarily */
4657 pte_unmap_unlock(pte - 1, ptl);
4658 cond_resched();
4659
7dc74be0
DN
4660 return 0;
4661}
4662
4ffef5fe
DN
4663static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4664{
4665 unsigned long precharge;
4ffef5fe 4666
26bcd64a
NH
4667 struct mm_walk mem_cgroup_count_precharge_walk = {
4668 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4669 .mm = mm,
4670 };
dfe076b0 4671 down_read(&mm->mmap_sem);
659601d5
JM
4672 walk_page_range(0, mm->highest_vm_end,
4673 &mem_cgroup_count_precharge_walk);
dfe076b0 4674 up_read(&mm->mmap_sem);
4ffef5fe
DN
4675
4676 precharge = mc.precharge;
4677 mc.precharge = 0;
4678
4679 return precharge;
4680}
4681
4ffef5fe
DN
4682static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4683{
dfe076b0
DN
4684 unsigned long precharge = mem_cgroup_count_precharge(mm);
4685
4686 VM_BUG_ON(mc.moving_task);
4687 mc.moving_task = current;
4688 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4689}
4690
dfe076b0
DN
4691/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4692static void __mem_cgroup_clear_mc(void)
4ffef5fe 4693{
2bd9bb20
KH
4694 struct mem_cgroup *from = mc.from;
4695 struct mem_cgroup *to = mc.to;
4696
4ffef5fe 4697 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4698 if (mc.precharge) {
00501b53 4699 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4700 mc.precharge = 0;
4701 }
4702 /*
4703 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4704 * we must uncharge here.
4705 */
4706 if (mc.moved_charge) {
00501b53 4707 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4708 mc.moved_charge = 0;
4ffef5fe 4709 }
483c30b5
DN
4710 /* we must fixup refcnts and charges */
4711 if (mc.moved_swap) {
483c30b5 4712 /* uncharge swap account from the old cgroup */
ce00a967 4713 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4714 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4715
615d66c3
VD
4716 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4717
05b84301 4718 /*
3e32cb2e
JW
4719 * we charged both to->memory and to->memsw, so we
4720 * should uncharge to->memory.
05b84301 4721 */
ce00a967 4722 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4723 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4724
615d66c3
VD
4725 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4726 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4727
483c30b5
DN
4728 mc.moved_swap = 0;
4729 }
dfe076b0
DN
4730 memcg_oom_recover(from);
4731 memcg_oom_recover(to);
4732 wake_up_all(&mc.waitq);
4733}
4734
4735static void mem_cgroup_clear_mc(void)
4736{
264a0ae1
TH
4737 struct mm_struct *mm = mc.mm;
4738
dfe076b0
DN
4739 /*
4740 * we must clear moving_task before waking up waiters at the end of
4741 * task migration.
4742 */
4743 mc.moving_task = NULL;
4744 __mem_cgroup_clear_mc();
2bd9bb20 4745 spin_lock(&mc.lock);
4ffef5fe
DN
4746 mc.from = NULL;
4747 mc.to = NULL;
264a0ae1 4748 mc.mm = NULL;
2bd9bb20 4749 spin_unlock(&mc.lock);
264a0ae1
TH
4750
4751 mmput(mm);
4ffef5fe
DN
4752}
4753
1f7dd3e5 4754static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4755{
1f7dd3e5 4756 struct cgroup_subsys_state *css;
eed67d75 4757 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4758 struct mem_cgroup *from;
4530eddb 4759 struct task_struct *leader, *p;
9f2115f9 4760 struct mm_struct *mm;
1dfab5ab 4761 unsigned long move_flags;
9f2115f9 4762 int ret = 0;
7dc74be0 4763
1f7dd3e5
TH
4764 /* charge immigration isn't supported on the default hierarchy */
4765 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4766 return 0;
4767
4530eddb
TH
4768 /*
4769 * Multi-process migrations only happen on the default hierarchy
4770 * where charge immigration is not used. Perform charge
4771 * immigration if @tset contains a leader and whine if there are
4772 * multiple.
4773 */
4774 p = NULL;
1f7dd3e5 4775 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4776 WARN_ON_ONCE(p);
4777 p = leader;
1f7dd3e5 4778 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4779 }
4780 if (!p)
4781 return 0;
4782
1f7dd3e5
TH
4783 /*
4784 * We are now commited to this value whatever it is. Changes in this
4785 * tunable will only affect upcoming migrations, not the current one.
4786 * So we need to save it, and keep it going.
4787 */
4788 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4789 if (!move_flags)
4790 return 0;
4791
9f2115f9
TH
4792 from = mem_cgroup_from_task(p);
4793
4794 VM_BUG_ON(from == memcg);
4795
4796 mm = get_task_mm(p);
4797 if (!mm)
4798 return 0;
4799 /* We move charges only when we move a owner of the mm */
4800 if (mm->owner == p) {
4801 VM_BUG_ON(mc.from);
4802 VM_BUG_ON(mc.to);
4803 VM_BUG_ON(mc.precharge);
4804 VM_BUG_ON(mc.moved_charge);
4805 VM_BUG_ON(mc.moved_swap);
4806
4807 spin_lock(&mc.lock);
264a0ae1 4808 mc.mm = mm;
9f2115f9
TH
4809 mc.from = from;
4810 mc.to = memcg;
4811 mc.flags = move_flags;
4812 spin_unlock(&mc.lock);
4813 /* We set mc.moving_task later */
4814
4815 ret = mem_cgroup_precharge_mc(mm);
4816 if (ret)
4817 mem_cgroup_clear_mc();
264a0ae1
TH
4818 } else {
4819 mmput(mm);
7dc74be0
DN
4820 }
4821 return ret;
4822}
4823
1f7dd3e5 4824static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4825{
4e2f245d
JW
4826 if (mc.to)
4827 mem_cgroup_clear_mc();
7dc74be0
DN
4828}
4829
4ffef5fe
DN
4830static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4831 unsigned long addr, unsigned long end,
4832 struct mm_walk *walk)
7dc74be0 4833{
4ffef5fe 4834 int ret = 0;
26bcd64a 4835 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4836 pte_t *pte;
4837 spinlock_t *ptl;
12724850
NH
4838 enum mc_target_type target_type;
4839 union mc_target target;
4840 struct page *page;
4ffef5fe 4841
b6ec57f4
KS
4842 ptl = pmd_trans_huge_lock(pmd, vma);
4843 if (ptl) {
62ade86a 4844 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4845 spin_unlock(ptl);
12724850
NH
4846 return 0;
4847 }
4848 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4849 if (target_type == MC_TARGET_PAGE) {
4850 page = target.page;
4851 if (!isolate_lru_page(page)) {
f627c2f5 4852 if (!mem_cgroup_move_account(page, true,
1306a85a 4853 mc.from, mc.to)) {
12724850
NH
4854 mc.precharge -= HPAGE_PMD_NR;
4855 mc.moved_charge += HPAGE_PMD_NR;
4856 }
4857 putback_lru_page(page);
4858 }
4859 put_page(page);
4860 }
bf929152 4861 spin_unlock(ptl);
1a5a9906 4862 return 0;
12724850
NH
4863 }
4864
45f83cef
AA
4865 if (pmd_trans_unstable(pmd))
4866 return 0;
4ffef5fe
DN
4867retry:
4868 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4869 for (; addr != end; addr += PAGE_SIZE) {
4870 pte_t ptent = *(pte++);
02491447 4871 swp_entry_t ent;
4ffef5fe
DN
4872
4873 if (!mc.precharge)
4874 break;
4875
8d32ff84 4876 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4877 case MC_TARGET_PAGE:
4878 page = target.page;
53f9263b
KS
4879 /*
4880 * We can have a part of the split pmd here. Moving it
4881 * can be done but it would be too convoluted so simply
4882 * ignore such a partial THP and keep it in original
4883 * memcg. There should be somebody mapping the head.
4884 */
4885 if (PageTransCompound(page))
4886 goto put;
4ffef5fe
DN
4887 if (isolate_lru_page(page))
4888 goto put;
f627c2f5
KS
4889 if (!mem_cgroup_move_account(page, false,
4890 mc.from, mc.to)) {
4ffef5fe 4891 mc.precharge--;
854ffa8d
DN
4892 /* we uncharge from mc.from later. */
4893 mc.moved_charge++;
4ffef5fe
DN
4894 }
4895 putback_lru_page(page);
8d32ff84 4896put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4897 put_page(page);
4898 break;
02491447
DN
4899 case MC_TARGET_SWAP:
4900 ent = target.ent;
e91cbb42 4901 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4902 mc.precharge--;
483c30b5
DN
4903 /* we fixup refcnts and charges later. */
4904 mc.moved_swap++;
4905 }
02491447 4906 break;
4ffef5fe
DN
4907 default:
4908 break;
4909 }
4910 }
4911 pte_unmap_unlock(pte - 1, ptl);
4912 cond_resched();
4913
4914 if (addr != end) {
4915 /*
4916 * We have consumed all precharges we got in can_attach().
4917 * We try charge one by one, but don't do any additional
4918 * charges to mc.to if we have failed in charge once in attach()
4919 * phase.
4920 */
854ffa8d 4921 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4922 if (!ret)
4923 goto retry;
4924 }
4925
4926 return ret;
4927}
4928
264a0ae1 4929static void mem_cgroup_move_charge(void)
4ffef5fe 4930{
26bcd64a
NH
4931 struct mm_walk mem_cgroup_move_charge_walk = {
4932 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4933 .mm = mc.mm,
26bcd64a 4934 };
4ffef5fe
DN
4935
4936 lru_add_drain_all();
312722cb 4937 /*
81f8c3a4
JW
4938 * Signal lock_page_memcg() to take the memcg's move_lock
4939 * while we're moving its pages to another memcg. Then wait
4940 * for already started RCU-only updates to finish.
312722cb
JW
4941 */
4942 atomic_inc(&mc.from->moving_account);
4943 synchronize_rcu();
dfe076b0 4944retry:
264a0ae1 4945 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4946 /*
4947 * Someone who are holding the mmap_sem might be waiting in
4948 * waitq. So we cancel all extra charges, wake up all waiters,
4949 * and retry. Because we cancel precharges, we might not be able
4950 * to move enough charges, but moving charge is a best-effort
4951 * feature anyway, so it wouldn't be a big problem.
4952 */
4953 __mem_cgroup_clear_mc();
4954 cond_resched();
4955 goto retry;
4956 }
26bcd64a
NH
4957 /*
4958 * When we have consumed all precharges and failed in doing
4959 * additional charge, the page walk just aborts.
4960 */
659601d5
JM
4961 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4962
264a0ae1 4963 up_read(&mc.mm->mmap_sem);
312722cb 4964 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4965}
4966
264a0ae1 4967static void mem_cgroup_move_task(void)
67e465a7 4968{
264a0ae1
TH
4969 if (mc.to) {
4970 mem_cgroup_move_charge();
a433658c 4971 mem_cgroup_clear_mc();
264a0ae1 4972 }
67e465a7 4973}
5cfb80a7 4974#else /* !CONFIG_MMU */
1f7dd3e5 4975static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4976{
4977 return 0;
4978}
1f7dd3e5 4979static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4980{
4981}
264a0ae1 4982static void mem_cgroup_move_task(void)
5cfb80a7
DN
4983{
4984}
4985#endif
67e465a7 4986
f00baae7
TH
4987/*
4988 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4989 * to verify whether we're attached to the default hierarchy on each mount
4990 * attempt.
f00baae7 4991 */
eb95419b 4992static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4993{
4994 /*
aa6ec29b 4995 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4996 * guarantees that @root doesn't have any children, so turning it
4997 * on for the root memcg is enough.
4998 */
9e10a130 4999 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5000 root_mem_cgroup->use_hierarchy = true;
5001 else
5002 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5003}
5004
241994ed
JW
5005static u64 memory_current_read(struct cgroup_subsys_state *css,
5006 struct cftype *cft)
5007{
f5fc3c5d
JW
5008 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5009
5010 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5011}
5012
5013static int memory_low_show(struct seq_file *m, void *v)
5014{
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5016 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5017
5018 if (low == PAGE_COUNTER_MAX)
d2973697 5019 seq_puts(m, "max\n");
241994ed
JW
5020 else
5021 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5022
5023 return 0;
5024}
5025
5026static ssize_t memory_low_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned long low;
5031 int err;
5032
5033 buf = strstrip(buf);
d2973697 5034 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5035 if (err)
5036 return err;
5037
5038 memcg->low = low;
5039
5040 return nbytes;
5041}
5042
5043static int memory_high_show(struct seq_file *m, void *v)
5044{
5045 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5046 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5047
5048 if (high == PAGE_COUNTER_MAX)
d2973697 5049 seq_puts(m, "max\n");
241994ed
JW
5050 else
5051 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5052
5053 return 0;
5054}
5055
5056static ssize_t memory_high_write(struct kernfs_open_file *of,
5057 char *buf, size_t nbytes, loff_t off)
5058{
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5060 unsigned long nr_pages;
241994ed
JW
5061 unsigned long high;
5062 int err;
5063
5064 buf = strstrip(buf);
d2973697 5065 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5066 if (err)
5067 return err;
5068
5069 memcg->high = high;
5070
588083bb
JW
5071 nr_pages = page_counter_read(&memcg->memory);
5072 if (nr_pages > high)
5073 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5074 GFP_KERNEL, true);
5075
2529bb3a 5076 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5077 return nbytes;
5078}
5079
5080static int memory_max_show(struct seq_file *m, void *v)
5081{
5082 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5083 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5084
5085 if (max == PAGE_COUNTER_MAX)
d2973697 5086 seq_puts(m, "max\n");
241994ed
JW
5087 else
5088 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5089
5090 return 0;
5091}
5092
5093static ssize_t memory_max_write(struct kernfs_open_file *of,
5094 char *buf, size_t nbytes, loff_t off)
5095{
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5097 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5098 bool drained = false;
241994ed
JW
5099 unsigned long max;
5100 int err;
5101
5102 buf = strstrip(buf);
d2973697 5103 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5104 if (err)
5105 return err;
5106
b6e6edcf
JW
5107 xchg(&memcg->memory.limit, max);
5108
5109 for (;;) {
5110 unsigned long nr_pages = page_counter_read(&memcg->memory);
5111
5112 if (nr_pages <= max)
5113 break;
5114
5115 if (signal_pending(current)) {
5116 err = -EINTR;
5117 break;
5118 }
5119
5120 if (!drained) {
5121 drain_all_stock(memcg);
5122 drained = true;
5123 continue;
5124 }
5125
5126 if (nr_reclaims) {
5127 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5128 GFP_KERNEL, true))
5129 nr_reclaims--;
5130 continue;
5131 }
5132
5133 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5134 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5135 break;
5136 }
241994ed 5137
2529bb3a 5138 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5139 return nbytes;
5140}
5141
5142static int memory_events_show(struct seq_file *m, void *v)
5143{
5144 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5145
5146 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5147 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5148 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5149 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5150
5151 return 0;
5152}
5153
587d9f72
JW
5154static int memory_stat_show(struct seq_file *m, void *v)
5155{
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5157 unsigned long stat[MEMCG_NR_STAT];
5158 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5159 int i;
5160
5161 /*
5162 * Provide statistics on the state of the memory subsystem as
5163 * well as cumulative event counters that show past behavior.
5164 *
5165 * This list is ordered following a combination of these gradients:
5166 * 1) generic big picture -> specifics and details
5167 * 2) reflecting userspace activity -> reflecting kernel heuristics
5168 *
5169 * Current memory state:
5170 */
5171
72b54e73
VD
5172 tree_stat(memcg, stat);
5173 tree_events(memcg, events);
5174
587d9f72 5175 seq_printf(m, "anon %llu\n",
72b54e73 5176 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5177 seq_printf(m, "file %llu\n",
72b54e73 5178 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5179 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5180 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5181 seq_printf(m, "slab %llu\n",
5182 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5183 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5184 seq_printf(m, "sock %llu\n",
72b54e73 5185 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5186
5187 seq_printf(m, "file_mapped %llu\n",
72b54e73 5188 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5189 seq_printf(m, "file_dirty %llu\n",
72b54e73 5190 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5191 seq_printf(m, "file_writeback %llu\n",
72b54e73 5192 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5193
5194 for (i = 0; i < NR_LRU_LISTS; i++) {
5195 struct mem_cgroup *mi;
5196 unsigned long val = 0;
5197
5198 for_each_mem_cgroup_tree(mi, memcg)
5199 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5200 seq_printf(m, "%s %llu\n",
5201 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5202 }
5203
27ee57c9
VD
5204 seq_printf(m, "slab_reclaimable %llu\n",
5205 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5206 seq_printf(m, "slab_unreclaimable %llu\n",
5207 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5208
587d9f72
JW
5209 /* Accumulated memory events */
5210
5211 seq_printf(m, "pgfault %lu\n",
72b54e73 5212 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5213 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5214 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5215
5216 return 0;
5217}
5218
241994ed
JW
5219static struct cftype memory_files[] = {
5220 {
5221 .name = "current",
f5fc3c5d 5222 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5223 .read_u64 = memory_current_read,
5224 },
5225 {
5226 .name = "low",
5227 .flags = CFTYPE_NOT_ON_ROOT,
5228 .seq_show = memory_low_show,
5229 .write = memory_low_write,
5230 },
5231 {
5232 .name = "high",
5233 .flags = CFTYPE_NOT_ON_ROOT,
5234 .seq_show = memory_high_show,
5235 .write = memory_high_write,
5236 },
5237 {
5238 .name = "max",
5239 .flags = CFTYPE_NOT_ON_ROOT,
5240 .seq_show = memory_max_show,
5241 .write = memory_max_write,
5242 },
5243 {
5244 .name = "events",
5245 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5246 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5247 .seq_show = memory_events_show,
5248 },
587d9f72
JW
5249 {
5250 .name = "stat",
5251 .flags = CFTYPE_NOT_ON_ROOT,
5252 .seq_show = memory_stat_show,
5253 },
241994ed
JW
5254 { } /* terminate */
5255};
5256
073219e9 5257struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5258 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5259 .css_online = mem_cgroup_css_online,
92fb9748 5260 .css_offline = mem_cgroup_css_offline,
6df38689 5261 .css_released = mem_cgroup_css_released,
92fb9748 5262 .css_free = mem_cgroup_css_free,
1ced953b 5263 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5264 .can_attach = mem_cgroup_can_attach,
5265 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5266 .post_attach = mem_cgroup_move_task,
f00baae7 5267 .bind = mem_cgroup_bind,
241994ed
JW
5268 .dfl_cftypes = memory_files,
5269 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5270 .early_init = 0,
8cdea7c0 5271};
c077719b 5272
241994ed
JW
5273/**
5274 * mem_cgroup_low - check if memory consumption is below the normal range
5275 * @root: the highest ancestor to consider
5276 * @memcg: the memory cgroup to check
5277 *
5278 * Returns %true if memory consumption of @memcg, and that of all
5279 * configurable ancestors up to @root, is below the normal range.
5280 */
5281bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5282{
5283 if (mem_cgroup_disabled())
5284 return false;
5285
5286 /*
5287 * The toplevel group doesn't have a configurable range, so
5288 * it's never low when looked at directly, and it is not
5289 * considered an ancestor when assessing the hierarchy.
5290 */
5291
5292 if (memcg == root_mem_cgroup)
5293 return false;
5294
4e54dede 5295 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5296 return false;
5297
5298 while (memcg != root) {
5299 memcg = parent_mem_cgroup(memcg);
5300
5301 if (memcg == root_mem_cgroup)
5302 break;
5303
4e54dede 5304 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5305 return false;
5306 }
5307 return true;
5308}
5309
00501b53
JW
5310/**
5311 * mem_cgroup_try_charge - try charging a page
5312 * @page: page to charge
5313 * @mm: mm context of the victim
5314 * @gfp_mask: reclaim mode
5315 * @memcgp: charged memcg return
25843c2b 5316 * @compound: charge the page as compound or small page
00501b53
JW
5317 *
5318 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5319 * pages according to @gfp_mask if necessary.
5320 *
5321 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5322 * Otherwise, an error code is returned.
5323 *
5324 * After page->mapping has been set up, the caller must finalize the
5325 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5326 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5327 */
5328int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5329 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5330 bool compound)
00501b53
JW
5331{
5332 struct mem_cgroup *memcg = NULL;
f627c2f5 5333 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5334 int ret = 0;
5335
5336 if (mem_cgroup_disabled())
5337 goto out;
5338
5339 if (PageSwapCache(page)) {
00501b53
JW
5340 /*
5341 * Every swap fault against a single page tries to charge the
5342 * page, bail as early as possible. shmem_unuse() encounters
5343 * already charged pages, too. The USED bit is protected by
5344 * the page lock, which serializes swap cache removal, which
5345 * in turn serializes uncharging.
5346 */
e993d905 5347 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5348 if (page->mem_cgroup)
00501b53 5349 goto out;
e993d905 5350
37e84351 5351 if (do_swap_account) {
e993d905
VD
5352 swp_entry_t ent = { .val = page_private(page), };
5353 unsigned short id = lookup_swap_cgroup_id(ent);
5354
5355 rcu_read_lock();
5356 memcg = mem_cgroup_from_id(id);
5357 if (memcg && !css_tryget_online(&memcg->css))
5358 memcg = NULL;
5359 rcu_read_unlock();
5360 }
00501b53
JW
5361 }
5362
00501b53
JW
5363 if (!memcg)
5364 memcg = get_mem_cgroup_from_mm(mm);
5365
5366 ret = try_charge(memcg, gfp_mask, nr_pages);
5367
5368 css_put(&memcg->css);
00501b53
JW
5369out:
5370 *memcgp = memcg;
5371 return ret;
5372}
5373
5374/**
5375 * mem_cgroup_commit_charge - commit a page charge
5376 * @page: page to charge
5377 * @memcg: memcg to charge the page to
5378 * @lrucare: page might be on LRU already
25843c2b 5379 * @compound: charge the page as compound or small page
00501b53
JW
5380 *
5381 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5382 * after page->mapping has been set up. This must happen atomically
5383 * as part of the page instantiation, i.e. under the page table lock
5384 * for anonymous pages, under the page lock for page and swap cache.
5385 *
5386 * In addition, the page must not be on the LRU during the commit, to
5387 * prevent racing with task migration. If it might be, use @lrucare.
5388 *
5389 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5390 */
5391void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5392 bool lrucare, bool compound)
00501b53 5393{
f627c2f5 5394 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5395
5396 VM_BUG_ON_PAGE(!page->mapping, page);
5397 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5398
5399 if (mem_cgroup_disabled())
5400 return;
5401 /*
5402 * Swap faults will attempt to charge the same page multiple
5403 * times. But reuse_swap_page() might have removed the page
5404 * from swapcache already, so we can't check PageSwapCache().
5405 */
5406 if (!memcg)
5407 return;
5408
6abb5a86
JW
5409 commit_charge(page, memcg, lrucare);
5410
6abb5a86 5411 local_irq_disable();
f627c2f5 5412 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5413 memcg_check_events(memcg, page);
5414 local_irq_enable();
00501b53 5415
7941d214 5416 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5417 swp_entry_t entry = { .val = page_private(page) };
5418 /*
5419 * The swap entry might not get freed for a long time,
5420 * let's not wait for it. The page already received a
5421 * memory+swap charge, drop the swap entry duplicate.
5422 */
5423 mem_cgroup_uncharge_swap(entry);
5424 }
5425}
5426
5427/**
5428 * mem_cgroup_cancel_charge - cancel a page charge
5429 * @page: page to charge
5430 * @memcg: memcg to charge the page to
25843c2b 5431 * @compound: charge the page as compound or small page
00501b53
JW
5432 *
5433 * Cancel a charge transaction started by mem_cgroup_try_charge().
5434 */
f627c2f5
KS
5435void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5436 bool compound)
00501b53 5437{
f627c2f5 5438 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5439
5440 if (mem_cgroup_disabled())
5441 return;
5442 /*
5443 * Swap faults will attempt to charge the same page multiple
5444 * times. But reuse_swap_page() might have removed the page
5445 * from swapcache already, so we can't check PageSwapCache().
5446 */
5447 if (!memcg)
5448 return;
5449
00501b53
JW
5450 cancel_charge(memcg, nr_pages);
5451}
5452
747db954 5453static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5454 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5455 unsigned long nr_huge, unsigned long nr_kmem,
5456 struct page *dummy_page)
747db954 5457{
5e8d35f8 5458 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5459 unsigned long flags;
5460
ce00a967 5461 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5462 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5463 if (do_memsw_account())
18eca2e6 5464 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5465 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5466 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5467 memcg_oom_recover(memcg);
5468 }
747db954
JW
5469
5470 local_irq_save(flags);
5471 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5472 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5473 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5474 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5475 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5476 memcg_check_events(memcg, dummy_page);
5477 local_irq_restore(flags);
e8ea14cc
JW
5478
5479 if (!mem_cgroup_is_root(memcg))
18eca2e6 5480 css_put_many(&memcg->css, nr_pages);
747db954
JW
5481}
5482
5483static void uncharge_list(struct list_head *page_list)
5484{
5485 struct mem_cgroup *memcg = NULL;
747db954
JW
5486 unsigned long nr_anon = 0;
5487 unsigned long nr_file = 0;
5488 unsigned long nr_huge = 0;
5e8d35f8 5489 unsigned long nr_kmem = 0;
747db954 5490 unsigned long pgpgout = 0;
747db954
JW
5491 struct list_head *next;
5492 struct page *page;
5493
8b592656
JW
5494 /*
5495 * Note that the list can be a single page->lru; hence the
5496 * do-while loop instead of a simple list_for_each_entry().
5497 */
747db954
JW
5498 next = page_list->next;
5499 do {
747db954
JW
5500 page = list_entry(next, struct page, lru);
5501 next = page->lru.next;
5502
5503 VM_BUG_ON_PAGE(PageLRU(page), page);
5504 VM_BUG_ON_PAGE(page_count(page), page);
5505
1306a85a 5506 if (!page->mem_cgroup)
747db954
JW
5507 continue;
5508
5509 /*
5510 * Nobody should be changing or seriously looking at
1306a85a 5511 * page->mem_cgroup at this point, we have fully
29833315 5512 * exclusive access to the page.
747db954
JW
5513 */
5514
1306a85a 5515 if (memcg != page->mem_cgroup) {
747db954 5516 if (memcg) {
18eca2e6 5517 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5518 nr_huge, nr_kmem, page);
5519 pgpgout = nr_anon = nr_file =
5520 nr_huge = nr_kmem = 0;
747db954 5521 }
1306a85a 5522 memcg = page->mem_cgroup;
747db954
JW
5523 }
5524
5e8d35f8
VD
5525 if (!PageKmemcg(page)) {
5526 unsigned int nr_pages = 1;
747db954 5527
5e8d35f8
VD
5528 if (PageTransHuge(page)) {
5529 nr_pages <<= compound_order(page);
5e8d35f8
VD
5530 nr_huge += nr_pages;
5531 }
5532 if (PageAnon(page))
5533 nr_anon += nr_pages;
5534 else
5535 nr_file += nr_pages;
5536 pgpgout++;
c4159a75 5537 } else {
5e8d35f8 5538 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5539 __ClearPageKmemcg(page);
5540 }
747db954 5541
1306a85a 5542 page->mem_cgroup = NULL;
747db954
JW
5543 } while (next != page_list);
5544
5545 if (memcg)
18eca2e6 5546 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5547 nr_huge, nr_kmem, page);
747db954
JW
5548}
5549
0a31bc97
JW
5550/**
5551 * mem_cgroup_uncharge - uncharge a page
5552 * @page: page to uncharge
5553 *
5554 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5555 * mem_cgroup_commit_charge().
5556 */
5557void mem_cgroup_uncharge(struct page *page)
5558{
0a31bc97
JW
5559 if (mem_cgroup_disabled())
5560 return;
5561
747db954 5562 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5563 if (!page->mem_cgroup)
0a31bc97
JW
5564 return;
5565
747db954
JW
5566 INIT_LIST_HEAD(&page->lru);
5567 uncharge_list(&page->lru);
5568}
0a31bc97 5569
747db954
JW
5570/**
5571 * mem_cgroup_uncharge_list - uncharge a list of page
5572 * @page_list: list of pages to uncharge
5573 *
5574 * Uncharge a list of pages previously charged with
5575 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5576 */
5577void mem_cgroup_uncharge_list(struct list_head *page_list)
5578{
5579 if (mem_cgroup_disabled())
5580 return;
0a31bc97 5581
747db954
JW
5582 if (!list_empty(page_list))
5583 uncharge_list(page_list);
0a31bc97
JW
5584}
5585
5586/**
6a93ca8f
JW
5587 * mem_cgroup_migrate - charge a page's replacement
5588 * @oldpage: currently circulating page
5589 * @newpage: replacement page
0a31bc97 5590 *
6a93ca8f
JW
5591 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5592 * be uncharged upon free.
0a31bc97
JW
5593 *
5594 * Both pages must be locked, @newpage->mapping must be set up.
5595 */
6a93ca8f 5596void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5597{
29833315 5598 struct mem_cgroup *memcg;
44b7a8d3
JW
5599 unsigned int nr_pages;
5600 bool compound;
d93c4130 5601 unsigned long flags;
0a31bc97
JW
5602
5603 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5604 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5605 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5606 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5607 newpage);
0a31bc97
JW
5608
5609 if (mem_cgroup_disabled())
5610 return;
5611
5612 /* Page cache replacement: new page already charged? */
1306a85a 5613 if (newpage->mem_cgroup)
0a31bc97
JW
5614 return;
5615
45637bab 5616 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5617 memcg = oldpage->mem_cgroup;
29833315 5618 if (!memcg)
0a31bc97
JW
5619 return;
5620
44b7a8d3
JW
5621 /* Force-charge the new page. The old one will be freed soon */
5622 compound = PageTransHuge(newpage);
5623 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5624
5625 page_counter_charge(&memcg->memory, nr_pages);
5626 if (do_memsw_account())
5627 page_counter_charge(&memcg->memsw, nr_pages);
5628 css_get_many(&memcg->css, nr_pages);
0a31bc97 5629
9cf7666a 5630 commit_charge(newpage, memcg, false);
44b7a8d3 5631
d93c4130 5632 local_irq_save(flags);
44b7a8d3
JW
5633 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5634 memcg_check_events(memcg, newpage);
d93c4130 5635 local_irq_restore(flags);
0a31bc97
JW
5636}
5637
ef12947c 5638DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5639EXPORT_SYMBOL(memcg_sockets_enabled_key);
5640
5641void sock_update_memcg(struct sock *sk)
5642{
5643 struct mem_cgroup *memcg;
5644
5645 /* Socket cloning can throw us here with sk_cgrp already
5646 * filled. It won't however, necessarily happen from
5647 * process context. So the test for root memcg given
5648 * the current task's memcg won't help us in this case.
5649 *
5650 * Respecting the original socket's memcg is a better
5651 * decision in this case.
5652 */
5653 if (sk->sk_memcg) {
5654 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5655 css_get(&sk->sk_memcg->css);
5656 return;
5657 }
5658
5659 rcu_read_lock();
5660 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5661 if (memcg == root_mem_cgroup)
5662 goto out;
0db15298 5663 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5664 goto out;
f7e1cb6e 5665 if (css_tryget_online(&memcg->css))
11092087 5666 sk->sk_memcg = memcg;
f7e1cb6e 5667out:
11092087
JW
5668 rcu_read_unlock();
5669}
5670EXPORT_SYMBOL(sock_update_memcg);
5671
5672void sock_release_memcg(struct sock *sk)
5673{
5674 WARN_ON(!sk->sk_memcg);
5675 css_put(&sk->sk_memcg->css);
5676}
5677
5678/**
5679 * mem_cgroup_charge_skmem - charge socket memory
5680 * @memcg: memcg to charge
5681 * @nr_pages: number of pages to charge
5682 *
5683 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5684 * @memcg's configured limit, %false if the charge had to be forced.
5685 */
5686bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5687{
f7e1cb6e 5688 gfp_t gfp_mask = GFP_KERNEL;
11092087 5689
f7e1cb6e 5690 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5691 struct page_counter *fail;
f7e1cb6e 5692
0db15298
JW
5693 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5694 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5695 return true;
5696 }
0db15298
JW
5697 page_counter_charge(&memcg->tcpmem, nr_pages);
5698 memcg->tcpmem_pressure = 1;
f7e1cb6e 5699 return false;
11092087 5700 }
d886f4e4 5701
f7e1cb6e
JW
5702 /* Don't block in the packet receive path */
5703 if (in_softirq())
5704 gfp_mask = GFP_NOWAIT;
5705
b2807f07
JW
5706 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5707
f7e1cb6e
JW
5708 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5709 return true;
5710
5711 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5712 return false;
5713}
5714
5715/**
5716 * mem_cgroup_uncharge_skmem - uncharge socket memory
5717 * @memcg - memcg to uncharge
5718 * @nr_pages - number of pages to uncharge
5719 */
5720void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5721{
f7e1cb6e 5722 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5723 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5724 return;
5725 }
d886f4e4 5726
b2807f07
JW
5727 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5728
f7e1cb6e
JW
5729 page_counter_uncharge(&memcg->memory, nr_pages);
5730 css_put_many(&memcg->css, nr_pages);
11092087
JW
5731}
5732
f7e1cb6e
JW
5733static int __init cgroup_memory(char *s)
5734{
5735 char *token;
5736
5737 while ((token = strsep(&s, ",")) != NULL) {
5738 if (!*token)
5739 continue;
5740 if (!strcmp(token, "nosocket"))
5741 cgroup_memory_nosocket = true;
04823c83
VD
5742 if (!strcmp(token, "nokmem"))
5743 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5744 }
5745 return 0;
5746}
5747__setup("cgroup.memory=", cgroup_memory);
11092087 5748
2d11085e 5749/*
1081312f
MH
5750 * subsys_initcall() for memory controller.
5751 *
5752 * Some parts like hotcpu_notifier() have to be initialized from this context
5753 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5754 * everything that doesn't depend on a specific mem_cgroup structure should
5755 * be initialized from here.
2d11085e
MH
5756 */
5757static int __init mem_cgroup_init(void)
5758{
95a045f6
JW
5759 int cpu, node;
5760
2d11085e 5761 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5762
5763 for_each_possible_cpu(cpu)
5764 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5765 drain_local_stock);
5766
5767 for_each_node(node) {
5768 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5769
5770 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5771 node_online(node) ? node : NUMA_NO_NODE);
5772
ef8f2327
MG
5773 rtpn->rb_root = RB_ROOT;
5774 spin_lock_init(&rtpn->lock);
95a045f6
JW
5775 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5776 }
5777
2d11085e
MH
5778 return 0;
5779}
5780subsys_initcall(mem_cgroup_init);
21afa38e
JW
5781
5782#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5783static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5784{
5785 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5786 /*
5787 * The root cgroup cannot be destroyed, so it's refcount must
5788 * always be >= 1.
5789 */
5790 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5791 VM_BUG_ON(1);
5792 break;
5793 }
5794 memcg = parent_mem_cgroup(memcg);
5795 if (!memcg)
5796 memcg = root_mem_cgroup;
5797 }
5798 return memcg;
5799}
5800
21afa38e
JW
5801/**
5802 * mem_cgroup_swapout - transfer a memsw charge to swap
5803 * @page: page whose memsw charge to transfer
5804 * @entry: swap entry to move the charge to
5805 *
5806 * Transfer the memsw charge of @page to @entry.
5807 */
5808void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5809{
1f47b61f 5810 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5811 unsigned short oldid;
5812
5813 VM_BUG_ON_PAGE(PageLRU(page), page);
5814 VM_BUG_ON_PAGE(page_count(page), page);
5815
7941d214 5816 if (!do_memsw_account())
21afa38e
JW
5817 return;
5818
5819 memcg = page->mem_cgroup;
5820
5821 /* Readahead page, never charged */
5822 if (!memcg)
5823 return;
5824
1f47b61f
VD
5825 /*
5826 * In case the memcg owning these pages has been offlined and doesn't
5827 * have an ID allocated to it anymore, charge the closest online
5828 * ancestor for the swap instead and transfer the memory+swap charge.
5829 */
5830 swap_memcg = mem_cgroup_id_get_online(memcg);
5831 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5832 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5833 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5834
5835 page->mem_cgroup = NULL;
5836
5837 if (!mem_cgroup_is_root(memcg))
5838 page_counter_uncharge(&memcg->memory, 1);
5839
1f47b61f
VD
5840 if (memcg != swap_memcg) {
5841 if (!mem_cgroup_is_root(swap_memcg))
5842 page_counter_charge(&swap_memcg->memsw, 1);
5843 page_counter_uncharge(&memcg->memsw, 1);
5844 }
5845
ce9ce665
SAS
5846 /*
5847 * Interrupts should be disabled here because the caller holds the
5848 * mapping->tree_lock lock which is taken with interrupts-off. It is
5849 * important here to have the interrupts disabled because it is the
5850 * only synchronisation we have for udpating the per-CPU variables.
5851 */
5852 VM_BUG_ON(!irqs_disabled());
f627c2f5 5853 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5854 memcg_check_events(memcg, page);
73f576c0
JW
5855
5856 if (!mem_cgroup_is_root(memcg))
5857 css_put(&memcg->css);
21afa38e
JW
5858}
5859
37e84351
VD
5860/*
5861 * mem_cgroup_try_charge_swap - try charging a swap entry
5862 * @page: page being added to swap
5863 * @entry: swap entry to charge
5864 *
5865 * Try to charge @entry to the memcg that @page belongs to.
5866 *
5867 * Returns 0 on success, -ENOMEM on failure.
5868 */
5869int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5870{
5871 struct mem_cgroup *memcg;
5872 struct page_counter *counter;
5873 unsigned short oldid;
5874
5875 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5876 return 0;
5877
5878 memcg = page->mem_cgroup;
5879
5880 /* Readahead page, never charged */
5881 if (!memcg)
5882 return 0;
5883
1f47b61f
VD
5884 memcg = mem_cgroup_id_get_online(memcg);
5885
37e84351 5886 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5887 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5888 mem_cgroup_id_put(memcg);
37e84351 5889 return -ENOMEM;
1f47b61f 5890 }
37e84351
VD
5891
5892 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5893 VM_BUG_ON_PAGE(oldid, page);
5894 mem_cgroup_swap_statistics(memcg, true);
5895
37e84351
VD
5896 return 0;
5897}
5898
21afa38e
JW
5899/**
5900 * mem_cgroup_uncharge_swap - uncharge a swap entry
5901 * @entry: swap entry to uncharge
5902 *
37e84351 5903 * Drop the swap charge associated with @entry.
21afa38e
JW
5904 */
5905void mem_cgroup_uncharge_swap(swp_entry_t entry)
5906{
5907 struct mem_cgroup *memcg;
5908 unsigned short id;
5909
37e84351 5910 if (!do_swap_account)
21afa38e
JW
5911 return;
5912
5913 id = swap_cgroup_record(entry, 0);
5914 rcu_read_lock();
adbe427b 5915 memcg = mem_cgroup_from_id(id);
21afa38e 5916 if (memcg) {
37e84351
VD
5917 if (!mem_cgroup_is_root(memcg)) {
5918 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5919 page_counter_uncharge(&memcg->swap, 1);
5920 else
5921 page_counter_uncharge(&memcg->memsw, 1);
5922 }
21afa38e 5923 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5924 mem_cgroup_id_put(memcg);
21afa38e
JW
5925 }
5926 rcu_read_unlock();
5927}
5928
d8b38438
VD
5929long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5930{
5931 long nr_swap_pages = get_nr_swap_pages();
5932
5933 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5934 return nr_swap_pages;
5935 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5936 nr_swap_pages = min_t(long, nr_swap_pages,
5937 READ_ONCE(memcg->swap.limit) -
5938 page_counter_read(&memcg->swap));
5939 return nr_swap_pages;
5940}
5941
5ccc5aba
VD
5942bool mem_cgroup_swap_full(struct page *page)
5943{
5944 struct mem_cgroup *memcg;
5945
5946 VM_BUG_ON_PAGE(!PageLocked(page), page);
5947
5948 if (vm_swap_full())
5949 return true;
5950 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5951 return false;
5952
5953 memcg = page->mem_cgroup;
5954 if (!memcg)
5955 return false;
5956
5957 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5958 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5959 return true;
5960
5961 return false;
5962}
5963
21afa38e
JW
5964/* for remember boot option*/
5965#ifdef CONFIG_MEMCG_SWAP_ENABLED
5966static int really_do_swap_account __initdata = 1;
5967#else
5968static int really_do_swap_account __initdata;
5969#endif
5970
5971static int __init enable_swap_account(char *s)
5972{
5973 if (!strcmp(s, "1"))
5974 really_do_swap_account = 1;
5975 else if (!strcmp(s, "0"))
5976 really_do_swap_account = 0;
5977 return 1;
5978}
5979__setup("swapaccount=", enable_swap_account);
5980
37e84351
VD
5981static u64 swap_current_read(struct cgroup_subsys_state *css,
5982 struct cftype *cft)
5983{
5984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5985
5986 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5987}
5988
5989static int swap_max_show(struct seq_file *m, void *v)
5990{
5991 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5992 unsigned long max = READ_ONCE(memcg->swap.limit);
5993
5994 if (max == PAGE_COUNTER_MAX)
5995 seq_puts(m, "max\n");
5996 else
5997 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5998
5999 return 0;
6000}
6001
6002static ssize_t swap_max_write(struct kernfs_open_file *of,
6003 char *buf, size_t nbytes, loff_t off)
6004{
6005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6006 unsigned long max;
6007 int err;
6008
6009 buf = strstrip(buf);
6010 err = page_counter_memparse(buf, "max", &max);
6011 if (err)
6012 return err;
6013
6014 mutex_lock(&memcg_limit_mutex);
6015 err = page_counter_limit(&memcg->swap, max);
6016 mutex_unlock(&memcg_limit_mutex);
6017 if (err)
6018 return err;
6019
6020 return nbytes;
6021}
6022
6023static struct cftype swap_files[] = {
6024 {
6025 .name = "swap.current",
6026 .flags = CFTYPE_NOT_ON_ROOT,
6027 .read_u64 = swap_current_read,
6028 },
6029 {
6030 .name = "swap.max",
6031 .flags = CFTYPE_NOT_ON_ROOT,
6032 .seq_show = swap_max_show,
6033 .write = swap_max_write,
6034 },
6035 { } /* terminate */
6036};
6037
21afa38e
JW
6038static struct cftype memsw_cgroup_files[] = {
6039 {
6040 .name = "memsw.usage_in_bytes",
6041 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6042 .read_u64 = mem_cgroup_read_u64,
6043 },
6044 {
6045 .name = "memsw.max_usage_in_bytes",
6046 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6047 .write = mem_cgroup_reset,
6048 .read_u64 = mem_cgroup_read_u64,
6049 },
6050 {
6051 .name = "memsw.limit_in_bytes",
6052 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6053 .write = mem_cgroup_write,
6054 .read_u64 = mem_cgroup_read_u64,
6055 },
6056 {
6057 .name = "memsw.failcnt",
6058 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6059 .write = mem_cgroup_reset,
6060 .read_u64 = mem_cgroup_read_u64,
6061 },
6062 { }, /* terminate */
6063};
6064
6065static int __init mem_cgroup_swap_init(void)
6066{
6067 if (!mem_cgroup_disabled() && really_do_swap_account) {
6068 do_swap_account = 1;
37e84351
VD
6069 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6070 swap_files));
21afa38e
JW
6071 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6072 memsw_cgroup_files));
6073 }
6074 return 0;
6075}
6076subsys_initcall(mem_cgroup_swap_init);
6077
6078#endif /* CONFIG_MEMCG_SWAP */
This page took 1.534367 seconds and 5 git commands to generate.