tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/random.h>
68
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94
95 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
96 volatile u64 latent_entropy __latent_entropy;
97 EXPORT_SYMBOL(latent_entropy);
98 #endif
99
100 /*
101 * Array of node states.
102 */
103 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
104 [N_POSSIBLE] = NODE_MASK_ALL,
105 [N_ONLINE] = { { [0] = 1UL } },
106 #ifndef CONFIG_NUMA
107 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
108 #ifdef CONFIG_HIGHMEM
109 [N_HIGH_MEMORY] = { { [0] = 1UL } },
110 #endif
111 #ifdef CONFIG_MOVABLE_NODE
112 [N_MEMORY] = { { [0] = 1UL } },
113 #endif
114 [N_CPU] = { { [0] = 1UL } },
115 #endif /* NUMA */
116 };
117 EXPORT_SYMBOL(node_states);
118
119 /* Protect totalram_pages and zone->managed_pages */
120 static DEFINE_SPINLOCK(managed_page_count_lock);
121
122 unsigned long totalram_pages __read_mostly;
123 unsigned long totalreserve_pages __read_mostly;
124 unsigned long totalcma_pages __read_mostly;
125
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
128
129 /*
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
136 */
137 static inline int get_pcppage_migratetype(struct page *page)
138 {
139 return page->index;
140 }
141
142 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143 {
144 page->index = migratetype;
145 }
146
147 #ifdef CONFIG_PM_SLEEP
148 /*
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
155 */
156
157 static gfp_t saved_gfp_mask;
158
159 void pm_restore_gfp_mask(void)
160 {
161 WARN_ON(!mutex_is_locked(&pm_mutex));
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
164 saved_gfp_mask = 0;
165 }
166 }
167
168 void pm_restrict_gfp_mask(void)
169 {
170 WARN_ON(!mutex_is_locked(&pm_mutex));
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
174 }
175
176 bool pm_suspended_storage(void)
177 {
178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
179 return false;
180 return true;
181 }
182 #endif /* CONFIG_PM_SLEEP */
183
184 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
185 unsigned int pageblock_order __read_mostly;
186 #endif
187
188 static void __free_pages_ok(struct page *page, unsigned int order);
189
190 /*
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 *
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
200 */
201 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
202 #ifdef CONFIG_ZONE_DMA
203 256,
204 #endif
205 #ifdef CONFIG_ZONE_DMA32
206 256,
207 #endif
208 #ifdef CONFIG_HIGHMEM
209 32,
210 #endif
211 32,
212 };
213
214 EXPORT_SYMBOL(totalram_pages);
215
216 static char * const zone_names[MAX_NR_ZONES] = {
217 #ifdef CONFIG_ZONE_DMA
218 "DMA",
219 #endif
220 #ifdef CONFIG_ZONE_DMA32
221 "DMA32",
222 #endif
223 "Normal",
224 #ifdef CONFIG_HIGHMEM
225 "HighMem",
226 #endif
227 "Movable",
228 #ifdef CONFIG_ZONE_DEVICE
229 "Device",
230 #endif
231 };
232
233 char * const migratetype_names[MIGRATE_TYPES] = {
234 "Unmovable",
235 "Movable",
236 "Reclaimable",
237 "HighAtomic",
238 #ifdef CONFIG_CMA
239 "CMA",
240 #endif
241 #ifdef CONFIG_MEMORY_ISOLATION
242 "Isolate",
243 #endif
244 };
245
246 compound_page_dtor * const compound_page_dtors[] = {
247 NULL,
248 free_compound_page,
249 #ifdef CONFIG_HUGETLB_PAGE
250 free_huge_page,
251 #endif
252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 free_transhuge_page,
254 #endif
255 };
256
257 int min_free_kbytes = 1024;
258 int user_min_free_kbytes = -1;
259 int watermark_scale_factor = 10;
260
261 static unsigned long __meminitdata nr_kernel_pages;
262 static unsigned long __meminitdata nr_all_pages;
263 static unsigned long __meminitdata nr_memory_reserve;
264
265 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
266 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
268 static unsigned long __initdata required_kernelcore;
269 static unsigned long __initdata required_movablecore;
270 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
271 static bool mirrored_kernelcore;
272
273 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274 int movable_zone;
275 EXPORT_SYMBOL(movable_zone);
276 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
277
278 #if MAX_NUMNODES > 1
279 int nr_node_ids __read_mostly = MAX_NUMNODES;
280 int nr_online_nodes __read_mostly = 1;
281 EXPORT_SYMBOL(nr_node_ids);
282 EXPORT_SYMBOL(nr_online_nodes);
283 #endif
284
285 int page_group_by_mobility_disabled __read_mostly;
286
287 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288 static inline void reset_deferred_meminit(pg_data_t *pgdat)
289 {
290 pgdat->first_deferred_pfn = ULONG_MAX;
291 }
292
293 /* Returns true if the struct page for the pfn is uninitialised */
294 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
295 {
296 int nid = early_pfn_to_nid(pfn);
297
298 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
299 return true;
300
301 return false;
302 }
303
304 /*
305 * Returns false when the remaining initialisation should be deferred until
306 * later in the boot cycle when it can be parallelised.
307 */
308 static inline bool update_defer_init(pg_data_t *pgdat,
309 unsigned long pfn, unsigned long zone_end,
310 unsigned long *nr_initialised)
311 {
312 unsigned long max_initialise;
313
314 /* Always populate low zones for address-contrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
316 return true;
317 /*
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
320 */
321 max_initialise = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
323
324 (*nr_initialised)++;
325 if ((*nr_initialised > max_initialise) &&
326 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
327 pgdat->first_deferred_pfn = pfn;
328 return false;
329 }
330
331 return true;
332 }
333 #else
334 static inline void reset_deferred_meminit(pg_data_t *pgdat)
335 {
336 }
337
338 static inline bool early_page_uninitialised(unsigned long pfn)
339 {
340 return false;
341 }
342
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346 {
347 return true;
348 }
349 #endif
350
351 /* Return a pointer to the bitmap storing bits affecting a block of pages */
352 static inline unsigned long *get_pageblock_bitmap(struct page *page,
353 unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 return __pfn_to_section(pfn)->pageblock_flags;
357 #else
358 return page_zone(page)->pageblock_flags;
359 #endif /* CONFIG_SPARSEMEM */
360 }
361
362 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
363 {
364 #ifdef CONFIG_SPARSEMEM
365 pfn &= (PAGES_PER_SECTION-1);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367 #else
368 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370 #endif /* CONFIG_SPARSEMEM */
371 }
372
373 /**
374 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
375 * @page: The page within the block of interest
376 * @pfn: The target page frame number
377 * @end_bitidx: The last bit of interest to retrieve
378 * @mask: mask of bits that the caller is interested in
379 *
380 * Return: pageblock_bits flags
381 */
382 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long pfn,
384 unsigned long end_bitidx,
385 unsigned long mask)
386 {
387 unsigned long *bitmap;
388 unsigned long bitidx, word_bitidx;
389 unsigned long word;
390
391 bitmap = get_pageblock_bitmap(page, pfn);
392 bitidx = pfn_to_bitidx(page, pfn);
393 word_bitidx = bitidx / BITS_PER_LONG;
394 bitidx &= (BITS_PER_LONG-1);
395
396 word = bitmap[word_bitidx];
397 bitidx += end_bitidx;
398 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
399 }
400
401 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
404 {
405 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
406 }
407
408 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
409 {
410 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
411 }
412
413 /**
414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
415 * @page: The page within the block of interest
416 * @flags: The flags to set
417 * @pfn: The target page frame number
418 * @end_bitidx: The last bit of interest
419 * @mask: mask of bits that the caller is interested in
420 */
421 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long pfn,
423 unsigned long end_bitidx,
424 unsigned long mask)
425 {
426 unsigned long *bitmap;
427 unsigned long bitidx, word_bitidx;
428 unsigned long old_word, word;
429
430 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
431
432 bitmap = get_pageblock_bitmap(page, pfn);
433 bitidx = pfn_to_bitidx(page, pfn);
434 word_bitidx = bitidx / BITS_PER_LONG;
435 bitidx &= (BITS_PER_LONG-1);
436
437 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438
439 bitidx += end_bitidx;
440 mask <<= (BITS_PER_LONG - bitidx - 1);
441 flags <<= (BITS_PER_LONG - bitidx - 1);
442
443 word = READ_ONCE(bitmap[word_bitidx]);
444 for (;;) {
445 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
446 if (word == old_word)
447 break;
448 word = old_word;
449 }
450 }
451
452 void set_pageblock_migratetype(struct page *page, int migratetype)
453 {
454 if (unlikely(page_group_by_mobility_disabled &&
455 migratetype < MIGRATE_PCPTYPES))
456 migratetype = MIGRATE_UNMOVABLE;
457
458 set_pageblock_flags_group(page, (unsigned long)migratetype,
459 PB_migrate, PB_migrate_end);
460 }
461
462 #ifdef CONFIG_DEBUG_VM
463 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
464 {
465 int ret = 0;
466 unsigned seq;
467 unsigned long pfn = page_to_pfn(page);
468 unsigned long sp, start_pfn;
469
470 do {
471 seq = zone_span_seqbegin(zone);
472 start_pfn = zone->zone_start_pfn;
473 sp = zone->spanned_pages;
474 if (!zone_spans_pfn(zone, pfn))
475 ret = 1;
476 } while (zone_span_seqretry(zone, seq));
477
478 if (ret)
479 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
480 pfn, zone_to_nid(zone), zone->name,
481 start_pfn, start_pfn + sp);
482
483 return ret;
484 }
485
486 static int page_is_consistent(struct zone *zone, struct page *page)
487 {
488 if (!pfn_valid_within(page_to_pfn(page)))
489 return 0;
490 if (zone != page_zone(page))
491 return 0;
492
493 return 1;
494 }
495 /*
496 * Temporary debugging check for pages not lying within a given zone.
497 */
498 static int bad_range(struct zone *zone, struct page *page)
499 {
500 if (page_outside_zone_boundaries(zone, page))
501 return 1;
502 if (!page_is_consistent(zone, page))
503 return 1;
504
505 return 0;
506 }
507 #else
508 static inline int bad_range(struct zone *zone, struct page *page)
509 {
510 return 0;
511 }
512 #endif
513
514 static void bad_page(struct page *page, const char *reason,
515 unsigned long bad_flags)
516 {
517 static unsigned long resume;
518 static unsigned long nr_shown;
519 static unsigned long nr_unshown;
520
521 /*
522 * Allow a burst of 60 reports, then keep quiet for that minute;
523 * or allow a steady drip of one report per second.
524 */
525 if (nr_shown == 60) {
526 if (time_before(jiffies, resume)) {
527 nr_unshown++;
528 goto out;
529 }
530 if (nr_unshown) {
531 pr_alert(
532 "BUG: Bad page state: %lu messages suppressed\n",
533 nr_unshown);
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
540
541 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
542 current->comm, page_to_pfn(page));
543 __dump_page(page, reason);
544 bad_flags &= page->flags;
545 if (bad_flags)
546 pr_alert("bad because of flags: %#lx(%pGp)\n",
547 bad_flags, &bad_flags);
548 dump_page_owner(page);
549
550 print_modules();
551 dump_stack();
552 out:
553 /* Leave bad fields for debug, except PageBuddy could make trouble */
554 page_mapcount_reset(page); /* remove PageBuddy */
555 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
556 }
557
558 /*
559 * Higher-order pages are called "compound pages". They are structured thusly:
560 *
561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562 *
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565 *
566 * The first tail page's ->compound_dtor holds the offset in array of compound
567 * page destructors. See compound_page_dtors.
568 *
569 * The first tail page's ->compound_order holds the order of allocation.
570 * This usage means that zero-order pages may not be compound.
571 */
572
573 void free_compound_page(struct page *page)
574 {
575 __free_pages_ok(page, compound_order(page));
576 }
577
578 void prep_compound_page(struct page *page, unsigned int order)
579 {
580 int i;
581 int nr_pages = 1 << order;
582
583 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
584 set_compound_order(page, order);
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++) {
587 struct page *p = page + i;
588 set_page_count(p, 0);
589 p->mapping = TAIL_MAPPING;
590 set_compound_head(p, page);
591 }
592 atomic_set(compound_mapcount_ptr(page), -1);
593 }
594
595 #ifdef CONFIG_DEBUG_PAGEALLOC
596 unsigned int _debug_guardpage_minorder;
597 bool _debug_pagealloc_enabled __read_mostly
598 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
599 EXPORT_SYMBOL(_debug_pagealloc_enabled);
600 bool _debug_guardpage_enabled __read_mostly;
601
602 static int __init early_debug_pagealloc(char *buf)
603 {
604 if (!buf)
605 return -EINVAL;
606 return kstrtobool(buf, &_debug_pagealloc_enabled);
607 }
608 early_param("debug_pagealloc", early_debug_pagealloc);
609
610 static bool need_debug_guardpage(void)
611 {
612 /* If we don't use debug_pagealloc, we don't need guard page */
613 if (!debug_pagealloc_enabled())
614 return false;
615
616 if (!debug_guardpage_minorder())
617 return false;
618
619 return true;
620 }
621
622 static void init_debug_guardpage(void)
623 {
624 if (!debug_pagealloc_enabled())
625 return;
626
627 if (!debug_guardpage_minorder())
628 return;
629
630 _debug_guardpage_enabled = true;
631 }
632
633 struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636 };
637
638 static int __init debug_guardpage_minorder_setup(char *buf)
639 {
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
643 pr_err("Bad debug_guardpage_minorder value\n");
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
648 return 0;
649 }
650 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
651
652 static inline bool set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
654 {
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return false;
659
660 if (order >= debug_guardpage_minorder())
661 return false;
662
663 page_ext = lookup_page_ext(page);
664 if (unlikely(!page_ext))
665 return false;
666
667 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
668
669 INIT_LIST_HEAD(&page->lru);
670 set_page_private(page, order);
671 /* Guard pages are not available for any usage */
672 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
673
674 return true;
675 }
676
677 static inline void clear_page_guard(struct zone *zone, struct page *page,
678 unsigned int order, int migratetype)
679 {
680 struct page_ext *page_ext;
681
682 if (!debug_guardpage_enabled())
683 return;
684
685 page_ext = lookup_page_ext(page);
686 if (unlikely(!page_ext))
687 return;
688
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
694 }
695 #else
696 struct page_ext_operations debug_guardpage_ops;
697 static inline bool set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) { return false; }
699 static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
701 #endif
702
703 static inline void set_page_order(struct page *page, unsigned int order)
704 {
705 set_page_private(page, order);
706 __SetPageBuddy(page);
707 }
708
709 static inline void rmv_page_order(struct page *page)
710 {
711 __ClearPageBuddy(page);
712 set_page_private(page, 0);
713 }
714
715 /*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
718 * (a) the buddy is not in a hole &&
719 * (b) the buddy is in the buddy system &&
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
722 *
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
727 *
728 * For recording page's order, we use page_private(page).
729 */
730 static inline int page_is_buddy(struct page *page, struct page *buddy,
731 unsigned int order)
732 {
733 if (!pfn_valid_within(page_to_pfn(buddy)))
734 return 0;
735
736 if (page_is_guard(buddy) && page_order(buddy) == order) {
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
742 return 1;
743 }
744
745 if (PageBuddy(buddy) && page_order(buddy) == order) {
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
756 return 1;
757 }
758 return 0;
759 }
760
761 /*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
777 * So when we are allocating or freeing one, we can derive the state of the
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
780 * If a block is freed, and its buddy is also free, then this
781 * triggers coalescing into a block of larger size.
782 *
783 * -- nyc
784 */
785
786 static inline void __free_one_page(struct page *page,
787 unsigned long pfn,
788 struct zone *zone, unsigned int order,
789 int migratetype)
790 {
791 unsigned long page_idx;
792 unsigned long combined_idx;
793 unsigned long uninitialized_var(buddy_idx);
794 struct page *buddy;
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
805
806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
807
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
810
811 continue_merging:
812 while (order < max_order - 1) {
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
815 if (!page_is_buddy(page, buddy, order))
816 goto done_merging;
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
822 clear_page_guard(zone, buddy, order, migratetype);
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
828 combined_idx = buddy_idx & page_idx;
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858 done_merging:
859 set_page_order(page, order);
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
870 struct page *higher_page, *higher_buddy;
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
874 higher_buddy = higher_page + (buddy_idx - combined_idx);
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883 out:
884 zone->free_area[order].nr_free++;
885 }
886
887 /*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892 static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894 {
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900 #ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902 #endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907 }
908
909 static void free_pages_check_bad(struct page *page)
910 {
911 const char *bad_reason;
912 unsigned long bad_flags;
913
914 bad_reason = NULL;
915 bad_flags = 0;
916
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
921 if (unlikely(page_ref_count(page) != 0))
922 bad_reason = "nonzero _refcount";
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
927 #ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930 #endif
931 bad_page(page, bad_reason, bad_flags);
932 }
933
934 static inline int free_pages_check(struct page *page)
935 {
936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
937 return 0;
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
941 return 1;
942 }
943
944 static int free_tail_pages_check(struct page *head_page, struct page *page)
945 {
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988 out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992 }
993
994 static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
996 {
997 int bad = 0;
998
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
1003
1004 /*
1005 * Check tail pages before head page information is cleared to
1006 * avoid checking PageCompound for order-0 pages.
1007 */
1008 if (unlikely(order)) {
1009 bool compound = PageCompound(page);
1010 int i;
1011
1012 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1013
1014 if (compound)
1015 ClearPageDoubleMap(page);
1016 for (i = 1; i < (1 << order); i++) {
1017 if (compound)
1018 bad += free_tail_pages_check(page, page + i);
1019 if (unlikely(free_pages_check(page + i))) {
1020 bad++;
1021 continue;
1022 }
1023 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1024 }
1025 }
1026 if (PageMappingFlags(page))
1027 page->mapping = NULL;
1028 if (memcg_kmem_enabled() && PageKmemcg(page))
1029 memcg_kmem_uncharge(page, order);
1030 if (check_free)
1031 bad += free_pages_check(page);
1032 if (bad)
1033 return false;
1034
1035 page_cpupid_reset_last(page);
1036 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1037 reset_page_owner(page, order);
1038
1039 if (!PageHighMem(page)) {
1040 debug_check_no_locks_freed(page_address(page),
1041 PAGE_SIZE << order);
1042 debug_check_no_obj_freed(page_address(page),
1043 PAGE_SIZE << order);
1044 }
1045 arch_free_page(page, order);
1046 kernel_poison_pages(page, 1 << order, 0);
1047 kernel_map_pages(page, 1 << order, 0);
1048 kasan_free_pages(page, order);
1049
1050 return true;
1051 }
1052
1053 #ifdef CONFIG_DEBUG_VM
1054 static inline bool free_pcp_prepare(struct page *page)
1055 {
1056 return free_pages_prepare(page, 0, true);
1057 }
1058
1059 static inline bool bulkfree_pcp_prepare(struct page *page)
1060 {
1061 return false;
1062 }
1063 #else
1064 static bool free_pcp_prepare(struct page *page)
1065 {
1066 return free_pages_prepare(page, 0, false);
1067 }
1068
1069 static bool bulkfree_pcp_prepare(struct page *page)
1070 {
1071 return free_pages_check(page);
1072 }
1073 #endif /* CONFIG_DEBUG_VM */
1074
1075 /*
1076 * Frees a number of pages from the PCP lists
1077 * Assumes all pages on list are in same zone, and of same order.
1078 * count is the number of pages to free.
1079 *
1080 * If the zone was previously in an "all pages pinned" state then look to
1081 * see if this freeing clears that state.
1082 *
1083 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1084 * pinned" detection logic.
1085 */
1086 static void free_pcppages_bulk(struct zone *zone, int count,
1087 struct per_cpu_pages *pcp)
1088 {
1089 int migratetype = 0;
1090 int batch_free = 0;
1091 unsigned long nr_scanned;
1092 bool isolated_pageblocks;
1093
1094 spin_lock(&zone->lock);
1095 isolated_pageblocks = has_isolate_pageblock(zone);
1096 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1097 if (nr_scanned)
1098 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1099
1100 while (count) {
1101 struct page *page;
1102 struct list_head *list;
1103
1104 /*
1105 * Remove pages from lists in a round-robin fashion. A
1106 * batch_free count is maintained that is incremented when an
1107 * empty list is encountered. This is so more pages are freed
1108 * off fuller lists instead of spinning excessively around empty
1109 * lists
1110 */
1111 do {
1112 batch_free++;
1113 if (++migratetype == MIGRATE_PCPTYPES)
1114 migratetype = 0;
1115 list = &pcp->lists[migratetype];
1116 } while (list_empty(list));
1117
1118 /* This is the only non-empty list. Free them all. */
1119 if (batch_free == MIGRATE_PCPTYPES)
1120 batch_free = count;
1121
1122 do {
1123 int mt; /* migratetype of the to-be-freed page */
1124
1125 page = list_last_entry(list, struct page, lru);
1126 /* must delete as __free_one_page list manipulates */
1127 list_del(&page->lru);
1128
1129 mt = get_pcppage_migratetype(page);
1130 /* MIGRATE_ISOLATE page should not go to pcplists */
1131 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1132 /* Pageblock could have been isolated meanwhile */
1133 if (unlikely(isolated_pageblocks))
1134 mt = get_pageblock_migratetype(page);
1135
1136 if (bulkfree_pcp_prepare(page))
1137 continue;
1138
1139 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1140 trace_mm_page_pcpu_drain(page, 0, mt);
1141 } while (--count && --batch_free && !list_empty(list));
1142 }
1143 spin_unlock(&zone->lock);
1144 }
1145
1146 static void free_one_page(struct zone *zone,
1147 struct page *page, unsigned long pfn,
1148 unsigned int order,
1149 int migratetype)
1150 {
1151 unsigned long nr_scanned;
1152 spin_lock(&zone->lock);
1153 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1154 if (nr_scanned)
1155 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1156
1157 if (unlikely(has_isolate_pageblock(zone) ||
1158 is_migrate_isolate(migratetype))) {
1159 migratetype = get_pfnblock_migratetype(page, pfn);
1160 }
1161 __free_one_page(page, pfn, zone, order, migratetype);
1162 spin_unlock(&zone->lock);
1163 }
1164
1165 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1166 unsigned long zone, int nid)
1167 {
1168 set_page_links(page, zone, nid, pfn);
1169 init_page_count(page);
1170 page_mapcount_reset(page);
1171 page_cpupid_reset_last(page);
1172
1173 INIT_LIST_HEAD(&page->lru);
1174 #ifdef WANT_PAGE_VIRTUAL
1175 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1176 if (!is_highmem_idx(zone))
1177 set_page_address(page, __va(pfn << PAGE_SHIFT));
1178 #endif
1179 }
1180
1181 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1182 int nid)
1183 {
1184 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1185 }
1186
1187 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1188 static void init_reserved_page(unsigned long pfn)
1189 {
1190 pg_data_t *pgdat;
1191 int nid, zid;
1192
1193 if (!early_page_uninitialised(pfn))
1194 return;
1195
1196 nid = early_pfn_to_nid(pfn);
1197 pgdat = NODE_DATA(nid);
1198
1199 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1200 struct zone *zone = &pgdat->node_zones[zid];
1201
1202 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1203 break;
1204 }
1205 __init_single_pfn(pfn, zid, nid);
1206 }
1207 #else
1208 static inline void init_reserved_page(unsigned long pfn)
1209 {
1210 }
1211 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1212
1213 /*
1214 * Initialised pages do not have PageReserved set. This function is
1215 * called for each range allocated by the bootmem allocator and
1216 * marks the pages PageReserved. The remaining valid pages are later
1217 * sent to the buddy page allocator.
1218 */
1219 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1220 {
1221 unsigned long start_pfn = PFN_DOWN(start);
1222 unsigned long end_pfn = PFN_UP(end);
1223
1224 for (; start_pfn < end_pfn; start_pfn++) {
1225 if (pfn_valid(start_pfn)) {
1226 struct page *page = pfn_to_page(start_pfn);
1227
1228 init_reserved_page(start_pfn);
1229
1230 /* Avoid false-positive PageTail() */
1231 INIT_LIST_HEAD(&page->lru);
1232
1233 SetPageReserved(page);
1234 }
1235 }
1236 }
1237
1238 static void __free_pages_ok(struct page *page, unsigned int order)
1239 {
1240 unsigned long flags;
1241 int migratetype;
1242 unsigned long pfn = page_to_pfn(page);
1243
1244 if (!free_pages_prepare(page, order, true))
1245 return;
1246
1247 migratetype = get_pfnblock_migratetype(page, pfn);
1248 local_irq_save(flags);
1249 __count_vm_events(PGFREE, 1 << order);
1250 free_one_page(page_zone(page), page, pfn, order, migratetype);
1251 local_irq_restore(flags);
1252 }
1253
1254 bool __meminitdata ram_latent_entropy;
1255
1256 static int __init setup_ram_latent_entropy(char *str)
1257 {
1258 ram_latent_entropy = true;
1259 return 0;
1260 }
1261 early_param("ram_latent_entropy", setup_ram_latent_entropy);
1262
1263 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1264 {
1265 unsigned int nr_pages = 1 << order;
1266 struct page *p = page;
1267 unsigned int loop;
1268
1269 prefetchw(p);
1270 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1271 prefetchw(p + 1);
1272 __ClearPageReserved(p);
1273 set_page_count(p, 0);
1274 }
1275 __ClearPageReserved(p);
1276 set_page_count(p, 0);
1277
1278 if (ram_latent_entropy && !PageHighMem(page) &&
1279 page_to_pfn(page) < 0x100000) {
1280 u64 hash = 0;
1281 size_t index, end = PAGE_SIZE * nr_pages / sizeof(hash);
1282 const u64 *data = lowmem_page_address(page);
1283
1284 for (index = 0; index < end; index++)
1285 hash ^= hash + data[index];
1286 add_device_randomness((const void *)&hash, sizeof(hash));
1287 }
1288
1289 page_zone(page)->managed_pages += nr_pages;
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
1292 }
1293
1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296
1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299 int __meminit early_pfn_to_nid(unsigned long pfn)
1300 {
1301 static DEFINE_SPINLOCK(early_pfn_lock);
1302 int nid;
1303
1304 spin_lock(&early_pfn_lock);
1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306 if (nid < 0)
1307 nid = first_online_node;
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
1311 }
1312 #endif
1313
1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1316 struct mminit_pfnnid_cache *state)
1317 {
1318 int nid;
1319
1320 nid = __early_pfn_to_nid(pfn, state);
1321 if (nid >= 0 && nid != node)
1322 return false;
1323 return true;
1324 }
1325
1326 /* Only safe to use early in boot when initialisation is single-threaded */
1327 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1328 {
1329 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1330 }
1331
1332 #else
1333
1334 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1335 {
1336 return true;
1337 }
1338 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1339 struct mminit_pfnnid_cache *state)
1340 {
1341 return true;
1342 }
1343 #endif
1344
1345
1346 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1347 unsigned int order)
1348 {
1349 if (early_page_uninitialised(pfn))
1350 return;
1351 return __free_pages_boot_core(page, order);
1352 }
1353
1354 /*
1355 * Check that the whole (or subset of) a pageblock given by the interval of
1356 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1357 * with the migration of free compaction scanner. The scanners then need to
1358 * use only pfn_valid_within() check for arches that allow holes within
1359 * pageblocks.
1360 *
1361 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1362 *
1363 * It's possible on some configurations to have a setup like node0 node1 node0
1364 * i.e. it's possible that all pages within a zones range of pages do not
1365 * belong to a single zone. We assume that a border between node0 and node1
1366 * can occur within a single pageblock, but not a node0 node1 node0
1367 * interleaving within a single pageblock. It is therefore sufficient to check
1368 * the first and last page of a pageblock and avoid checking each individual
1369 * page in a pageblock.
1370 */
1371 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1372 unsigned long end_pfn, struct zone *zone)
1373 {
1374 struct page *start_page;
1375 struct page *end_page;
1376
1377 /* end_pfn is one past the range we are checking */
1378 end_pfn--;
1379
1380 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1381 return NULL;
1382
1383 start_page = pfn_to_page(start_pfn);
1384
1385 if (page_zone(start_page) != zone)
1386 return NULL;
1387
1388 end_page = pfn_to_page(end_pfn);
1389
1390 /* This gives a shorter code than deriving page_zone(end_page) */
1391 if (page_zone_id(start_page) != page_zone_id(end_page))
1392 return NULL;
1393
1394 return start_page;
1395 }
1396
1397 void set_zone_contiguous(struct zone *zone)
1398 {
1399 unsigned long block_start_pfn = zone->zone_start_pfn;
1400 unsigned long block_end_pfn;
1401
1402 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1403 for (; block_start_pfn < zone_end_pfn(zone);
1404 block_start_pfn = block_end_pfn,
1405 block_end_pfn += pageblock_nr_pages) {
1406
1407 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1408
1409 if (!__pageblock_pfn_to_page(block_start_pfn,
1410 block_end_pfn, zone))
1411 return;
1412 }
1413
1414 /* We confirm that there is no hole */
1415 zone->contiguous = true;
1416 }
1417
1418 void clear_zone_contiguous(struct zone *zone)
1419 {
1420 zone->contiguous = false;
1421 }
1422
1423 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1424 static void __init deferred_free_range(struct page *page,
1425 unsigned long pfn, int nr_pages)
1426 {
1427 int i;
1428
1429 if (!page)
1430 return;
1431
1432 /* Free a large naturally-aligned chunk if possible */
1433 if (nr_pages == pageblock_nr_pages &&
1434 (pfn & (pageblock_nr_pages - 1)) == 0) {
1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436 __free_pages_boot_core(page, pageblock_order);
1437 return;
1438 }
1439
1440 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 __free_pages_boot_core(page, 0);
1444 }
1445 }
1446
1447 /* Completion tracking for deferred_init_memmap() threads */
1448 static atomic_t pgdat_init_n_undone __initdata;
1449 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450
1451 static inline void __init pgdat_init_report_one_done(void)
1452 {
1453 if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 complete(&pgdat_init_all_done_comp);
1455 }
1456
1457 /* Initialise remaining memory on a node */
1458 static int __init deferred_init_memmap(void *data)
1459 {
1460 pg_data_t *pgdat = data;
1461 int nid = pgdat->node_id;
1462 struct mminit_pfnnid_cache nid_init_state = { };
1463 unsigned long start = jiffies;
1464 unsigned long nr_pages = 0;
1465 unsigned long walk_start, walk_end;
1466 int i, zid;
1467 struct zone *zone;
1468 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1469 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1470
1471 if (first_init_pfn == ULONG_MAX) {
1472 pgdat_init_report_one_done();
1473 return 0;
1474 }
1475
1476 /* Bind memory initialisation thread to a local node if possible */
1477 if (!cpumask_empty(cpumask))
1478 set_cpus_allowed_ptr(current, cpumask);
1479
1480 /* Sanity check boundaries */
1481 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1482 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1483 pgdat->first_deferred_pfn = ULONG_MAX;
1484
1485 /* Only the highest zone is deferred so find it */
1486 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1487 zone = pgdat->node_zones + zid;
1488 if (first_init_pfn < zone_end_pfn(zone))
1489 break;
1490 }
1491
1492 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1493 unsigned long pfn, end_pfn;
1494 struct page *page = NULL;
1495 struct page *free_base_page = NULL;
1496 unsigned long free_base_pfn = 0;
1497 int nr_to_free = 0;
1498
1499 end_pfn = min(walk_end, zone_end_pfn(zone));
1500 pfn = first_init_pfn;
1501 if (pfn < walk_start)
1502 pfn = walk_start;
1503 if (pfn < zone->zone_start_pfn)
1504 pfn = zone->zone_start_pfn;
1505
1506 for (; pfn < end_pfn; pfn++) {
1507 if (!pfn_valid_within(pfn))
1508 goto free_range;
1509
1510 /*
1511 * Ensure pfn_valid is checked every
1512 * pageblock_nr_pages for memory holes
1513 */
1514 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1515 if (!pfn_valid(pfn)) {
1516 page = NULL;
1517 goto free_range;
1518 }
1519 }
1520
1521 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1522 page = NULL;
1523 goto free_range;
1524 }
1525
1526 /* Minimise pfn page lookups and scheduler checks */
1527 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1528 page++;
1529 } else {
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page,
1532 free_base_pfn, nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1535
1536 page = pfn_to_page(pfn);
1537 cond_resched();
1538 }
1539
1540 if (page->flags) {
1541 VM_BUG_ON(page_zone(page) != zone);
1542 goto free_range;
1543 }
1544
1545 __init_single_page(page, pfn, zid, nid);
1546 if (!free_base_page) {
1547 free_base_page = page;
1548 free_base_pfn = pfn;
1549 nr_to_free = 0;
1550 }
1551 nr_to_free++;
1552
1553 /* Where possible, batch up pages for a single free */
1554 continue;
1555 free_range:
1556 /* Free the current block of pages to allocator */
1557 nr_pages += nr_to_free;
1558 deferred_free_range(free_base_page, free_base_pfn,
1559 nr_to_free);
1560 free_base_page = NULL;
1561 free_base_pfn = nr_to_free = 0;
1562 }
1563 /* Free the last block of pages to allocator */
1564 nr_pages += nr_to_free;
1565 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1566
1567 first_init_pfn = max(end_pfn, first_init_pfn);
1568 }
1569
1570 /* Sanity check that the next zone really is unpopulated */
1571 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1572
1573 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1574 jiffies_to_msecs(jiffies - start));
1575
1576 pgdat_init_report_one_done();
1577 return 0;
1578 }
1579 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1580
1581 void __init page_alloc_init_late(void)
1582 {
1583 struct zone *zone;
1584
1585 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586 int nid;
1587
1588 /* There will be num_node_state(N_MEMORY) threads */
1589 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1590 for_each_node_state(nid, N_MEMORY) {
1591 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1592 }
1593
1594 /* Block until all are initialised */
1595 wait_for_completion(&pgdat_init_all_done_comp);
1596
1597 /* Reinit limits that are based on free pages after the kernel is up */
1598 files_maxfiles_init();
1599 #endif
1600
1601 for_each_populated_zone(zone)
1602 set_zone_contiguous(zone);
1603 }
1604
1605 #ifdef CONFIG_CMA
1606 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1607 void __init init_cma_reserved_pageblock(struct page *page)
1608 {
1609 unsigned i = pageblock_nr_pages;
1610 struct page *p = page;
1611
1612 do {
1613 __ClearPageReserved(p);
1614 set_page_count(p, 0);
1615 } while (++p, --i);
1616
1617 set_pageblock_migratetype(page, MIGRATE_CMA);
1618
1619 if (pageblock_order >= MAX_ORDER) {
1620 i = pageblock_nr_pages;
1621 p = page;
1622 do {
1623 set_page_refcounted(p);
1624 __free_pages(p, MAX_ORDER - 1);
1625 p += MAX_ORDER_NR_PAGES;
1626 } while (i -= MAX_ORDER_NR_PAGES);
1627 } else {
1628 set_page_refcounted(page);
1629 __free_pages(page, pageblock_order);
1630 }
1631
1632 adjust_managed_page_count(page, pageblock_nr_pages);
1633 }
1634 #endif
1635
1636 /*
1637 * The order of subdivision here is critical for the IO subsystem.
1638 * Please do not alter this order without good reasons and regression
1639 * testing. Specifically, as large blocks of memory are subdivided,
1640 * the order in which smaller blocks are delivered depends on the order
1641 * they're subdivided in this function. This is the primary factor
1642 * influencing the order in which pages are delivered to the IO
1643 * subsystem according to empirical testing, and this is also justified
1644 * by considering the behavior of a buddy system containing a single
1645 * large block of memory acted on by a series of small allocations.
1646 * This behavior is a critical factor in sglist merging's success.
1647 *
1648 * -- nyc
1649 */
1650 static inline void expand(struct zone *zone, struct page *page,
1651 int low, int high, struct free_area *area,
1652 int migratetype)
1653 {
1654 unsigned long size = 1 << high;
1655
1656 while (high > low) {
1657 area--;
1658 high--;
1659 size >>= 1;
1660 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1661
1662 /*
1663 * Mark as guard pages (or page), that will allow to
1664 * merge back to allocator when buddy will be freed.
1665 * Corresponding page table entries will not be touched,
1666 * pages will stay not present in virtual address space
1667 */
1668 if (set_page_guard(zone, &page[size], high, migratetype))
1669 continue;
1670
1671 list_add(&page[size].lru, &area->free_list[migratetype]);
1672 area->nr_free++;
1673 set_page_order(&page[size], high);
1674 }
1675 }
1676
1677 static void check_new_page_bad(struct page *page)
1678 {
1679 const char *bad_reason = NULL;
1680 unsigned long bad_flags = 0;
1681
1682 if (unlikely(atomic_read(&page->_mapcount) != -1))
1683 bad_reason = "nonzero mapcount";
1684 if (unlikely(page->mapping != NULL))
1685 bad_reason = "non-NULL mapping";
1686 if (unlikely(page_ref_count(page) != 0))
1687 bad_reason = "nonzero _count";
1688 if (unlikely(page->flags & __PG_HWPOISON)) {
1689 bad_reason = "HWPoisoned (hardware-corrupted)";
1690 bad_flags = __PG_HWPOISON;
1691 /* Don't complain about hwpoisoned pages */
1692 page_mapcount_reset(page); /* remove PageBuddy */
1693 return;
1694 }
1695 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1696 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1697 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1698 }
1699 #ifdef CONFIG_MEMCG
1700 if (unlikely(page->mem_cgroup))
1701 bad_reason = "page still charged to cgroup";
1702 #endif
1703 bad_page(page, bad_reason, bad_flags);
1704 }
1705
1706 /*
1707 * This page is about to be returned from the page allocator
1708 */
1709 static inline int check_new_page(struct page *page)
1710 {
1711 if (likely(page_expected_state(page,
1712 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1713 return 0;
1714
1715 check_new_page_bad(page);
1716 return 1;
1717 }
1718
1719 static inline bool free_pages_prezeroed(bool poisoned)
1720 {
1721 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1722 page_poisoning_enabled() && poisoned;
1723 }
1724
1725 #ifdef CONFIG_DEBUG_VM
1726 static bool check_pcp_refill(struct page *page)
1727 {
1728 return false;
1729 }
1730
1731 static bool check_new_pcp(struct page *page)
1732 {
1733 return check_new_page(page);
1734 }
1735 #else
1736 static bool check_pcp_refill(struct page *page)
1737 {
1738 return check_new_page(page);
1739 }
1740 static bool check_new_pcp(struct page *page)
1741 {
1742 return false;
1743 }
1744 #endif /* CONFIG_DEBUG_VM */
1745
1746 static bool check_new_pages(struct page *page, unsigned int order)
1747 {
1748 int i;
1749 for (i = 0; i < (1 << order); i++) {
1750 struct page *p = page + i;
1751
1752 if (unlikely(check_new_page(p)))
1753 return true;
1754 }
1755
1756 return false;
1757 }
1758
1759 inline void post_alloc_hook(struct page *page, unsigned int order,
1760 gfp_t gfp_flags)
1761 {
1762 set_page_private(page, 0);
1763 set_page_refcounted(page);
1764
1765 arch_alloc_page(page, order);
1766 kernel_map_pages(page, 1 << order, 1);
1767 kernel_poison_pages(page, 1 << order, 1);
1768 kasan_alloc_pages(page, order);
1769 set_page_owner(page, order, gfp_flags);
1770 }
1771
1772 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1773 unsigned int alloc_flags)
1774 {
1775 int i;
1776 bool poisoned = true;
1777
1778 for (i = 0; i < (1 << order); i++) {
1779 struct page *p = page + i;
1780 if (poisoned)
1781 poisoned &= page_is_poisoned(p);
1782 }
1783
1784 post_alloc_hook(page, order, gfp_flags);
1785
1786 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1787 for (i = 0; i < (1 << order); i++)
1788 clear_highpage(page + i);
1789
1790 if (order && (gfp_flags & __GFP_COMP))
1791 prep_compound_page(page, order);
1792
1793 /*
1794 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1795 * allocate the page. The expectation is that the caller is taking
1796 * steps that will free more memory. The caller should avoid the page
1797 * being used for !PFMEMALLOC purposes.
1798 */
1799 if (alloc_flags & ALLOC_NO_WATERMARKS)
1800 set_page_pfmemalloc(page);
1801 else
1802 clear_page_pfmemalloc(page);
1803 }
1804
1805 /*
1806 * Go through the free lists for the given migratetype and remove
1807 * the smallest available page from the freelists
1808 */
1809 static inline
1810 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1811 int migratetype)
1812 {
1813 unsigned int current_order;
1814 struct free_area *area;
1815 struct page *page;
1816
1817 /* Find a page of the appropriate size in the preferred list */
1818 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1819 area = &(zone->free_area[current_order]);
1820 page = list_first_entry_or_null(&area->free_list[migratetype],
1821 struct page, lru);
1822 if (!page)
1823 continue;
1824 list_del(&page->lru);
1825 rmv_page_order(page);
1826 area->nr_free--;
1827 expand(zone, page, order, current_order, area, migratetype);
1828 set_pcppage_migratetype(page, migratetype);
1829 return page;
1830 }
1831
1832 return NULL;
1833 }
1834
1835
1836 /*
1837 * This array describes the order lists are fallen back to when
1838 * the free lists for the desirable migrate type are depleted
1839 */
1840 static int fallbacks[MIGRATE_TYPES][4] = {
1841 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1842 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1843 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1844 #ifdef CONFIG_CMA
1845 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1846 #endif
1847 #ifdef CONFIG_MEMORY_ISOLATION
1848 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1849 #endif
1850 };
1851
1852 #ifdef CONFIG_CMA
1853 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1854 unsigned int order)
1855 {
1856 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1857 }
1858 #else
1859 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1860 unsigned int order) { return NULL; }
1861 #endif
1862
1863 /*
1864 * Move the free pages in a range to the free lists of the requested type.
1865 * Note that start_page and end_pages are not aligned on a pageblock
1866 * boundary. If alignment is required, use move_freepages_block()
1867 */
1868 int move_freepages(struct zone *zone,
1869 struct page *start_page, struct page *end_page,
1870 int migratetype)
1871 {
1872 struct page *page;
1873 unsigned int order;
1874 int pages_moved = 0;
1875
1876 #ifndef CONFIG_HOLES_IN_ZONE
1877 /*
1878 * page_zone is not safe to call in this context when
1879 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1880 * anyway as we check zone boundaries in move_freepages_block().
1881 * Remove at a later date when no bug reports exist related to
1882 * grouping pages by mobility
1883 */
1884 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1885 #endif
1886
1887 for (page = start_page; page <= end_page;) {
1888 /* Make sure we are not inadvertently changing nodes */
1889 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1890
1891 if (!pfn_valid_within(page_to_pfn(page))) {
1892 page++;
1893 continue;
1894 }
1895
1896 if (!PageBuddy(page)) {
1897 page++;
1898 continue;
1899 }
1900
1901 order = page_order(page);
1902 list_move(&page->lru,
1903 &zone->free_area[order].free_list[migratetype]);
1904 page += 1 << order;
1905 pages_moved += 1 << order;
1906 }
1907
1908 return pages_moved;
1909 }
1910
1911 int move_freepages_block(struct zone *zone, struct page *page,
1912 int migratetype)
1913 {
1914 unsigned long start_pfn, end_pfn;
1915 struct page *start_page, *end_page;
1916
1917 start_pfn = page_to_pfn(page);
1918 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1919 start_page = pfn_to_page(start_pfn);
1920 end_page = start_page + pageblock_nr_pages - 1;
1921 end_pfn = start_pfn + pageblock_nr_pages - 1;
1922
1923 /* Do not cross zone boundaries */
1924 if (!zone_spans_pfn(zone, start_pfn))
1925 start_page = page;
1926 if (!zone_spans_pfn(zone, end_pfn))
1927 return 0;
1928
1929 return move_freepages(zone, start_page, end_page, migratetype);
1930 }
1931
1932 static void change_pageblock_range(struct page *pageblock_page,
1933 int start_order, int migratetype)
1934 {
1935 int nr_pageblocks = 1 << (start_order - pageblock_order);
1936
1937 while (nr_pageblocks--) {
1938 set_pageblock_migratetype(pageblock_page, migratetype);
1939 pageblock_page += pageblock_nr_pages;
1940 }
1941 }
1942
1943 /*
1944 * When we are falling back to another migratetype during allocation, try to
1945 * steal extra free pages from the same pageblocks to satisfy further
1946 * allocations, instead of polluting multiple pageblocks.
1947 *
1948 * If we are stealing a relatively large buddy page, it is likely there will
1949 * be more free pages in the pageblock, so try to steal them all. For
1950 * reclaimable and unmovable allocations, we steal regardless of page size,
1951 * as fragmentation caused by those allocations polluting movable pageblocks
1952 * is worse than movable allocations stealing from unmovable and reclaimable
1953 * pageblocks.
1954 */
1955 static bool can_steal_fallback(unsigned int order, int start_mt)
1956 {
1957 /*
1958 * Leaving this order check is intended, although there is
1959 * relaxed order check in next check. The reason is that
1960 * we can actually steal whole pageblock if this condition met,
1961 * but, below check doesn't guarantee it and that is just heuristic
1962 * so could be changed anytime.
1963 */
1964 if (order >= pageblock_order)
1965 return true;
1966
1967 if (order >= pageblock_order / 2 ||
1968 start_mt == MIGRATE_RECLAIMABLE ||
1969 start_mt == MIGRATE_UNMOVABLE ||
1970 page_group_by_mobility_disabled)
1971 return true;
1972
1973 return false;
1974 }
1975
1976 /*
1977 * This function implements actual steal behaviour. If order is large enough,
1978 * we can steal whole pageblock. If not, we first move freepages in this
1979 * pageblock and check whether half of pages are moved or not. If half of
1980 * pages are moved, we can change migratetype of pageblock and permanently
1981 * use it's pages as requested migratetype in the future.
1982 */
1983 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1984 int start_type)
1985 {
1986 unsigned int current_order = page_order(page);
1987 int pages;
1988
1989 /* Take ownership for orders >= pageblock_order */
1990 if (current_order >= pageblock_order) {
1991 change_pageblock_range(page, current_order, start_type);
1992 return;
1993 }
1994
1995 pages = move_freepages_block(zone, page, start_type);
1996
1997 /* Claim the whole block if over half of it is free */
1998 if (pages >= (1 << (pageblock_order-1)) ||
1999 page_group_by_mobility_disabled)
2000 set_pageblock_migratetype(page, start_type);
2001 }
2002
2003 /*
2004 * Check whether there is a suitable fallback freepage with requested order.
2005 * If only_stealable is true, this function returns fallback_mt only if
2006 * we can steal other freepages all together. This would help to reduce
2007 * fragmentation due to mixed migratetype pages in one pageblock.
2008 */
2009 int find_suitable_fallback(struct free_area *area, unsigned int order,
2010 int migratetype, bool only_stealable, bool *can_steal)
2011 {
2012 int i;
2013 int fallback_mt;
2014
2015 if (area->nr_free == 0)
2016 return -1;
2017
2018 *can_steal = false;
2019 for (i = 0;; i++) {
2020 fallback_mt = fallbacks[migratetype][i];
2021 if (fallback_mt == MIGRATE_TYPES)
2022 break;
2023
2024 if (list_empty(&area->free_list[fallback_mt]))
2025 continue;
2026
2027 if (can_steal_fallback(order, migratetype))
2028 *can_steal = true;
2029
2030 if (!only_stealable)
2031 return fallback_mt;
2032
2033 if (*can_steal)
2034 return fallback_mt;
2035 }
2036
2037 return -1;
2038 }
2039
2040 /*
2041 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2042 * there are no empty page blocks that contain a page with a suitable order
2043 */
2044 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2045 unsigned int alloc_order)
2046 {
2047 int mt;
2048 unsigned long max_managed, flags;
2049
2050 /*
2051 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2052 * Check is race-prone but harmless.
2053 */
2054 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2055 if (zone->nr_reserved_highatomic >= max_managed)
2056 return;
2057
2058 spin_lock_irqsave(&zone->lock, flags);
2059
2060 /* Recheck the nr_reserved_highatomic limit under the lock */
2061 if (zone->nr_reserved_highatomic >= max_managed)
2062 goto out_unlock;
2063
2064 /* Yoink! */
2065 mt = get_pageblock_migratetype(page);
2066 if (mt != MIGRATE_HIGHATOMIC &&
2067 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2068 zone->nr_reserved_highatomic += pageblock_nr_pages;
2069 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2070 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2071 }
2072
2073 out_unlock:
2074 spin_unlock_irqrestore(&zone->lock, flags);
2075 }
2076
2077 /*
2078 * Used when an allocation is about to fail under memory pressure. This
2079 * potentially hurts the reliability of high-order allocations when under
2080 * intense memory pressure but failed atomic allocations should be easier
2081 * to recover from than an OOM.
2082 */
2083 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2084 {
2085 struct zonelist *zonelist = ac->zonelist;
2086 unsigned long flags;
2087 struct zoneref *z;
2088 struct zone *zone;
2089 struct page *page;
2090 int order;
2091
2092 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2093 ac->nodemask) {
2094 /* Preserve at least one pageblock */
2095 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2096 continue;
2097
2098 spin_lock_irqsave(&zone->lock, flags);
2099 for (order = 0; order < MAX_ORDER; order++) {
2100 struct free_area *area = &(zone->free_area[order]);
2101
2102 page = list_first_entry_or_null(
2103 &area->free_list[MIGRATE_HIGHATOMIC],
2104 struct page, lru);
2105 if (!page)
2106 continue;
2107
2108 /*
2109 * It should never happen but changes to locking could
2110 * inadvertently allow a per-cpu drain to add pages
2111 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2112 * and watch for underflows.
2113 */
2114 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2115 zone->nr_reserved_highatomic);
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 move_freepages_block(zone, page, ac->migratetype);
2128 spin_unlock_irqrestore(&zone->lock, flags);
2129 return;
2130 }
2131 spin_unlock_irqrestore(&zone->lock, flags);
2132 }
2133 }
2134
2135 /* Remove an element from the buddy allocator from the fallback list */
2136 static inline struct page *
2137 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2138 {
2139 struct free_area *area;
2140 unsigned int current_order;
2141 struct page *page;
2142 int fallback_mt;
2143 bool can_steal;
2144
2145 /* Find the largest possible block of pages in the other list */
2146 for (current_order = MAX_ORDER-1;
2147 current_order >= order && current_order <= MAX_ORDER-1;
2148 --current_order) {
2149 area = &(zone->free_area[current_order]);
2150 fallback_mt = find_suitable_fallback(area, current_order,
2151 start_migratetype, false, &can_steal);
2152 if (fallback_mt == -1)
2153 continue;
2154
2155 page = list_first_entry(&area->free_list[fallback_mt],
2156 struct page, lru);
2157 if (can_steal)
2158 steal_suitable_fallback(zone, page, start_migratetype);
2159
2160 /* Remove the page from the freelists */
2161 area->nr_free--;
2162 list_del(&page->lru);
2163 rmv_page_order(page);
2164
2165 expand(zone, page, order, current_order, area,
2166 start_migratetype);
2167 /*
2168 * The pcppage_migratetype may differ from pageblock's
2169 * migratetype depending on the decisions in
2170 * find_suitable_fallback(). This is OK as long as it does not
2171 * differ for MIGRATE_CMA pageblocks. Those can be used as
2172 * fallback only via special __rmqueue_cma_fallback() function
2173 */
2174 set_pcppage_migratetype(page, start_migratetype);
2175
2176 trace_mm_page_alloc_extfrag(page, order, current_order,
2177 start_migratetype, fallback_mt);
2178
2179 return page;
2180 }
2181
2182 return NULL;
2183 }
2184
2185 /*
2186 * Do the hard work of removing an element from the buddy allocator.
2187 * Call me with the zone->lock already held.
2188 */
2189 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2190 int migratetype)
2191 {
2192 struct page *page;
2193
2194 page = __rmqueue_smallest(zone, order, migratetype);
2195 if (unlikely(!page)) {
2196 if (migratetype == MIGRATE_MOVABLE)
2197 page = __rmqueue_cma_fallback(zone, order);
2198
2199 if (!page)
2200 page = __rmqueue_fallback(zone, order, migratetype);
2201 }
2202
2203 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2204 return page;
2205 }
2206
2207 /*
2208 * Obtain a specified number of elements from the buddy allocator, all under
2209 * a single hold of the lock, for efficiency. Add them to the supplied list.
2210 * Returns the number of new pages which were placed at *list.
2211 */
2212 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2213 unsigned long count, struct list_head *list,
2214 int migratetype, bool cold)
2215 {
2216 int i;
2217
2218 spin_lock(&zone->lock);
2219 for (i = 0; i < count; ++i) {
2220 struct page *page = __rmqueue(zone, order, migratetype);
2221 if (unlikely(page == NULL))
2222 break;
2223
2224 if (unlikely(check_pcp_refill(page)))
2225 continue;
2226
2227 /*
2228 * Split buddy pages returned by expand() are received here
2229 * in physical page order. The page is added to the callers and
2230 * list and the list head then moves forward. From the callers
2231 * perspective, the linked list is ordered by page number in
2232 * some conditions. This is useful for IO devices that can
2233 * merge IO requests if the physical pages are ordered
2234 * properly.
2235 */
2236 if (likely(!cold))
2237 list_add(&page->lru, list);
2238 else
2239 list_add_tail(&page->lru, list);
2240 list = &page->lru;
2241 if (is_migrate_cma(get_pcppage_migratetype(page)))
2242 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2243 -(1 << order));
2244 }
2245 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2246 spin_unlock(&zone->lock);
2247 return i;
2248 }
2249
2250 #ifdef CONFIG_NUMA
2251 /*
2252 * Called from the vmstat counter updater to drain pagesets of this
2253 * currently executing processor on remote nodes after they have
2254 * expired.
2255 *
2256 * Note that this function must be called with the thread pinned to
2257 * a single processor.
2258 */
2259 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2260 {
2261 unsigned long flags;
2262 int to_drain, batch;
2263
2264 local_irq_save(flags);
2265 batch = READ_ONCE(pcp->batch);
2266 to_drain = min(pcp->count, batch);
2267 if (to_drain > 0) {
2268 free_pcppages_bulk(zone, to_drain, pcp);
2269 pcp->count -= to_drain;
2270 }
2271 local_irq_restore(flags);
2272 }
2273 #endif
2274
2275 /*
2276 * Drain pcplists of the indicated processor and zone.
2277 *
2278 * The processor must either be the current processor and the
2279 * thread pinned to the current processor or a processor that
2280 * is not online.
2281 */
2282 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2283 {
2284 unsigned long flags;
2285 struct per_cpu_pageset *pset;
2286 struct per_cpu_pages *pcp;
2287
2288 local_irq_save(flags);
2289 pset = per_cpu_ptr(zone->pageset, cpu);
2290
2291 pcp = &pset->pcp;
2292 if (pcp->count) {
2293 free_pcppages_bulk(zone, pcp->count, pcp);
2294 pcp->count = 0;
2295 }
2296 local_irq_restore(flags);
2297 }
2298
2299 /*
2300 * Drain pcplists of all zones on the indicated processor.
2301 *
2302 * The processor must either be the current processor and the
2303 * thread pinned to the current processor or a processor that
2304 * is not online.
2305 */
2306 static void drain_pages(unsigned int cpu)
2307 {
2308 struct zone *zone;
2309
2310 for_each_populated_zone(zone) {
2311 drain_pages_zone(cpu, zone);
2312 }
2313 }
2314
2315 /*
2316 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2317 *
2318 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2319 * the single zone's pages.
2320 */
2321 void drain_local_pages(struct zone *zone)
2322 {
2323 int cpu = smp_processor_id();
2324
2325 if (zone)
2326 drain_pages_zone(cpu, zone);
2327 else
2328 drain_pages(cpu);
2329 }
2330
2331 /*
2332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333 *
2334 * When zone parameter is non-NULL, spill just the single zone's pages.
2335 *
2336 * Note that this code is protected against sending an IPI to an offline
2337 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2338 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2339 * nothing keeps CPUs from showing up after we populated the cpumask and
2340 * before the call to on_each_cpu_mask().
2341 */
2342 void drain_all_pages(struct zone *zone)
2343 {
2344 int cpu;
2345
2346 /*
2347 * Allocate in the BSS so we wont require allocation in
2348 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2349 */
2350 static cpumask_t cpus_with_pcps;
2351
2352 /*
2353 * We don't care about racing with CPU hotplug event
2354 * as offline notification will cause the notified
2355 * cpu to drain that CPU pcps and on_each_cpu_mask
2356 * disables preemption as part of its processing
2357 */
2358 for_each_online_cpu(cpu) {
2359 struct per_cpu_pageset *pcp;
2360 struct zone *z;
2361 bool has_pcps = false;
2362
2363 if (zone) {
2364 pcp = per_cpu_ptr(zone->pageset, cpu);
2365 if (pcp->pcp.count)
2366 has_pcps = true;
2367 } else {
2368 for_each_populated_zone(z) {
2369 pcp = per_cpu_ptr(z->pageset, cpu);
2370 if (pcp->pcp.count) {
2371 has_pcps = true;
2372 break;
2373 }
2374 }
2375 }
2376
2377 if (has_pcps)
2378 cpumask_set_cpu(cpu, &cpus_with_pcps);
2379 else
2380 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2381 }
2382 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2383 zone, 1);
2384 }
2385
2386 #ifdef CONFIG_HIBERNATION
2387
2388 void mark_free_pages(struct zone *zone)
2389 {
2390 unsigned long pfn, max_zone_pfn;
2391 unsigned long flags;
2392 unsigned int order, t;
2393 struct page *page;
2394
2395 if (zone_is_empty(zone))
2396 return;
2397
2398 spin_lock_irqsave(&zone->lock, flags);
2399
2400 max_zone_pfn = zone_end_pfn(zone);
2401 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2402 if (pfn_valid(pfn)) {
2403 page = pfn_to_page(pfn);
2404
2405 if (page_zone(page) != zone)
2406 continue;
2407
2408 if (!swsusp_page_is_forbidden(page))
2409 swsusp_unset_page_free(page);
2410 }
2411
2412 for_each_migratetype_order(order, t) {
2413 list_for_each_entry(page,
2414 &zone->free_area[order].free_list[t], lru) {
2415 unsigned long i;
2416
2417 pfn = page_to_pfn(page);
2418 for (i = 0; i < (1UL << order); i++)
2419 swsusp_set_page_free(pfn_to_page(pfn + i));
2420 }
2421 }
2422 spin_unlock_irqrestore(&zone->lock, flags);
2423 }
2424 #endif /* CONFIG_PM */
2425
2426 /*
2427 * Free a 0-order page
2428 * cold == true ? free a cold page : free a hot page
2429 */
2430 void free_hot_cold_page(struct page *page, bool cold)
2431 {
2432 struct zone *zone = page_zone(page);
2433 struct per_cpu_pages *pcp;
2434 unsigned long flags;
2435 unsigned long pfn = page_to_pfn(page);
2436 int migratetype;
2437
2438 if (!free_pcp_prepare(page))
2439 return;
2440
2441 migratetype = get_pfnblock_migratetype(page, pfn);
2442 set_pcppage_migratetype(page, migratetype);
2443 local_irq_save(flags);
2444 __count_vm_event(PGFREE);
2445
2446 /*
2447 * We only track unmovable, reclaimable and movable on pcp lists.
2448 * Free ISOLATE pages back to the allocator because they are being
2449 * offlined but treat RESERVE as movable pages so we can get those
2450 * areas back if necessary. Otherwise, we may have to free
2451 * excessively into the page allocator
2452 */
2453 if (migratetype >= MIGRATE_PCPTYPES) {
2454 if (unlikely(is_migrate_isolate(migratetype))) {
2455 free_one_page(zone, page, pfn, 0, migratetype);
2456 goto out;
2457 }
2458 migratetype = MIGRATE_MOVABLE;
2459 }
2460
2461 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2462 if (!cold)
2463 list_add(&page->lru, &pcp->lists[migratetype]);
2464 else
2465 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2466 pcp->count++;
2467 if (pcp->count >= pcp->high) {
2468 unsigned long batch = READ_ONCE(pcp->batch);
2469 free_pcppages_bulk(zone, batch, pcp);
2470 pcp->count -= batch;
2471 }
2472
2473 out:
2474 local_irq_restore(flags);
2475 }
2476
2477 /*
2478 * Free a list of 0-order pages
2479 */
2480 void free_hot_cold_page_list(struct list_head *list, bool cold)
2481 {
2482 struct page *page, *next;
2483
2484 list_for_each_entry_safe(page, next, list, lru) {
2485 trace_mm_page_free_batched(page, cold);
2486 free_hot_cold_page(page, cold);
2487 }
2488 }
2489
2490 /*
2491 * split_page takes a non-compound higher-order page, and splits it into
2492 * n (1<<order) sub-pages: page[0..n]
2493 * Each sub-page must be freed individually.
2494 *
2495 * Note: this is probably too low level an operation for use in drivers.
2496 * Please consult with lkml before using this in your driver.
2497 */
2498 void split_page(struct page *page, unsigned int order)
2499 {
2500 int i;
2501
2502 VM_BUG_ON_PAGE(PageCompound(page), page);
2503 VM_BUG_ON_PAGE(!page_count(page), page);
2504
2505 #ifdef CONFIG_KMEMCHECK
2506 /*
2507 * Split shadow pages too, because free(page[0]) would
2508 * otherwise free the whole shadow.
2509 */
2510 if (kmemcheck_page_is_tracked(page))
2511 split_page(virt_to_page(page[0].shadow), order);
2512 #endif
2513
2514 for (i = 1; i < (1 << order); i++)
2515 set_page_refcounted(page + i);
2516 split_page_owner(page, order);
2517 }
2518 EXPORT_SYMBOL_GPL(split_page);
2519
2520 int __isolate_free_page(struct page *page, unsigned int order)
2521 {
2522 unsigned long watermark;
2523 struct zone *zone;
2524 int mt;
2525
2526 BUG_ON(!PageBuddy(page));
2527
2528 zone = page_zone(page);
2529 mt = get_pageblock_migratetype(page);
2530
2531 if (!is_migrate_isolate(mt)) {
2532 /*
2533 * Obey watermarks as if the page was being allocated. We can
2534 * emulate a high-order watermark check with a raised order-0
2535 * watermark, because we already know our high-order page
2536 * exists.
2537 */
2538 watermark = min_wmark_pages(zone) + (1UL << order);
2539 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2540 return 0;
2541
2542 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2543 }
2544
2545 /* Remove page from free list */
2546 list_del(&page->lru);
2547 zone->free_area[order].nr_free--;
2548 rmv_page_order(page);
2549
2550 /*
2551 * Set the pageblock if the isolated page is at least half of a
2552 * pageblock
2553 */
2554 if (order >= pageblock_order - 1) {
2555 struct page *endpage = page + (1 << order) - 1;
2556 for (; page < endpage; page += pageblock_nr_pages) {
2557 int mt = get_pageblock_migratetype(page);
2558 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2559 set_pageblock_migratetype(page,
2560 MIGRATE_MOVABLE);
2561 }
2562 }
2563
2564
2565 return 1UL << order;
2566 }
2567
2568 /*
2569 * Update NUMA hit/miss statistics
2570 *
2571 * Must be called with interrupts disabled.
2572 *
2573 * When __GFP_OTHER_NODE is set assume the node of the preferred
2574 * zone is the local node. This is useful for daemons who allocate
2575 * memory on behalf of other processes.
2576 */
2577 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2578 gfp_t flags)
2579 {
2580 #ifdef CONFIG_NUMA
2581 int local_nid = numa_node_id();
2582 enum zone_stat_item local_stat = NUMA_LOCAL;
2583
2584 if (unlikely(flags & __GFP_OTHER_NODE)) {
2585 local_stat = NUMA_OTHER;
2586 local_nid = preferred_zone->node;
2587 }
2588
2589 if (z->node == local_nid) {
2590 __inc_zone_state(z, NUMA_HIT);
2591 __inc_zone_state(z, local_stat);
2592 } else {
2593 __inc_zone_state(z, NUMA_MISS);
2594 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2595 }
2596 #endif
2597 }
2598
2599 /*
2600 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2601 */
2602 static inline
2603 struct page *buffered_rmqueue(struct zone *preferred_zone,
2604 struct zone *zone, unsigned int order,
2605 gfp_t gfp_flags, unsigned int alloc_flags,
2606 int migratetype)
2607 {
2608 unsigned long flags;
2609 struct page *page;
2610 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2611
2612 if (likely(order == 0)) {
2613 struct per_cpu_pages *pcp;
2614 struct list_head *list;
2615
2616 local_irq_save(flags);
2617 do {
2618 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2619 list = &pcp->lists[migratetype];
2620 if (list_empty(list)) {
2621 pcp->count += rmqueue_bulk(zone, 0,
2622 pcp->batch, list,
2623 migratetype, cold);
2624 if (unlikely(list_empty(list)))
2625 goto failed;
2626 }
2627
2628 if (cold)
2629 page = list_last_entry(list, struct page, lru);
2630 else
2631 page = list_first_entry(list, struct page, lru);
2632
2633 list_del(&page->lru);
2634 pcp->count--;
2635
2636 } while (check_new_pcp(page));
2637 } else {
2638 /*
2639 * We most definitely don't want callers attempting to
2640 * allocate greater than order-1 page units with __GFP_NOFAIL.
2641 */
2642 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2643 spin_lock_irqsave(&zone->lock, flags);
2644
2645 do {
2646 page = NULL;
2647 if (alloc_flags & ALLOC_HARDER) {
2648 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2649 if (page)
2650 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2651 }
2652 if (!page)
2653 page = __rmqueue(zone, order, migratetype);
2654 } while (page && check_new_pages(page, order));
2655 spin_unlock(&zone->lock);
2656 if (!page)
2657 goto failed;
2658 __mod_zone_freepage_state(zone, -(1 << order),
2659 get_pcppage_migratetype(page));
2660 }
2661
2662 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2663 zone_statistics(preferred_zone, zone, gfp_flags);
2664 local_irq_restore(flags);
2665
2666 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2667 return page;
2668
2669 failed:
2670 local_irq_restore(flags);
2671 return NULL;
2672 }
2673
2674 #ifdef CONFIG_FAIL_PAGE_ALLOC
2675
2676 static struct {
2677 struct fault_attr attr;
2678
2679 bool ignore_gfp_highmem;
2680 bool ignore_gfp_reclaim;
2681 u32 min_order;
2682 } fail_page_alloc = {
2683 .attr = FAULT_ATTR_INITIALIZER,
2684 .ignore_gfp_reclaim = true,
2685 .ignore_gfp_highmem = true,
2686 .min_order = 1,
2687 };
2688
2689 static int __init setup_fail_page_alloc(char *str)
2690 {
2691 return setup_fault_attr(&fail_page_alloc.attr, str);
2692 }
2693 __setup("fail_page_alloc=", setup_fail_page_alloc);
2694
2695 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2696 {
2697 if (order < fail_page_alloc.min_order)
2698 return false;
2699 if (gfp_mask & __GFP_NOFAIL)
2700 return false;
2701 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2702 return false;
2703 if (fail_page_alloc.ignore_gfp_reclaim &&
2704 (gfp_mask & __GFP_DIRECT_RECLAIM))
2705 return false;
2706
2707 return should_fail(&fail_page_alloc.attr, 1 << order);
2708 }
2709
2710 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2711
2712 static int __init fail_page_alloc_debugfs(void)
2713 {
2714 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2715 struct dentry *dir;
2716
2717 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2718 &fail_page_alloc.attr);
2719 if (IS_ERR(dir))
2720 return PTR_ERR(dir);
2721
2722 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2723 &fail_page_alloc.ignore_gfp_reclaim))
2724 goto fail;
2725 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2726 &fail_page_alloc.ignore_gfp_highmem))
2727 goto fail;
2728 if (!debugfs_create_u32("min-order", mode, dir,
2729 &fail_page_alloc.min_order))
2730 goto fail;
2731
2732 return 0;
2733 fail:
2734 debugfs_remove_recursive(dir);
2735
2736 return -ENOMEM;
2737 }
2738
2739 late_initcall(fail_page_alloc_debugfs);
2740
2741 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2742
2743 #else /* CONFIG_FAIL_PAGE_ALLOC */
2744
2745 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2746 {
2747 return false;
2748 }
2749
2750 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2751
2752 /*
2753 * Return true if free base pages are above 'mark'. For high-order checks it
2754 * will return true of the order-0 watermark is reached and there is at least
2755 * one free page of a suitable size. Checking now avoids taking the zone lock
2756 * to check in the allocation paths if no pages are free.
2757 */
2758 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2759 int classzone_idx, unsigned int alloc_flags,
2760 long free_pages)
2761 {
2762 long min = mark;
2763 int o;
2764 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2765
2766 /* free_pages may go negative - that's OK */
2767 free_pages -= (1 << order) - 1;
2768
2769 if (alloc_flags & ALLOC_HIGH)
2770 min -= min / 2;
2771
2772 /*
2773 * If the caller does not have rights to ALLOC_HARDER then subtract
2774 * the high-atomic reserves. This will over-estimate the size of the
2775 * atomic reserve but it avoids a search.
2776 */
2777 if (likely(!alloc_harder))
2778 free_pages -= z->nr_reserved_highatomic;
2779 else
2780 min -= min / 4;
2781
2782 #ifdef CONFIG_CMA
2783 /* If allocation can't use CMA areas don't use free CMA pages */
2784 if (!(alloc_flags & ALLOC_CMA))
2785 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2786 #endif
2787
2788 /*
2789 * Check watermarks for an order-0 allocation request. If these
2790 * are not met, then a high-order request also cannot go ahead
2791 * even if a suitable page happened to be free.
2792 */
2793 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2794 return false;
2795
2796 /* If this is an order-0 request then the watermark is fine */
2797 if (!order)
2798 return true;
2799
2800 /* For a high-order request, check at least one suitable page is free */
2801 for (o = order; o < MAX_ORDER; o++) {
2802 struct free_area *area = &z->free_area[o];
2803 int mt;
2804
2805 if (!area->nr_free)
2806 continue;
2807
2808 if (alloc_harder)
2809 return true;
2810
2811 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2812 if (!list_empty(&area->free_list[mt]))
2813 return true;
2814 }
2815
2816 #ifdef CONFIG_CMA
2817 if ((alloc_flags & ALLOC_CMA) &&
2818 !list_empty(&area->free_list[MIGRATE_CMA])) {
2819 return true;
2820 }
2821 #endif
2822 }
2823 return false;
2824 }
2825
2826 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2827 int classzone_idx, unsigned int alloc_flags)
2828 {
2829 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2830 zone_page_state(z, NR_FREE_PAGES));
2831 }
2832
2833 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2834 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2835 {
2836 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2837 long cma_pages = 0;
2838
2839 #ifdef CONFIG_CMA
2840 /* If allocation can't use CMA areas don't use free CMA pages */
2841 if (!(alloc_flags & ALLOC_CMA))
2842 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2843 #endif
2844
2845 /*
2846 * Fast check for order-0 only. If this fails then the reserves
2847 * need to be calculated. There is a corner case where the check
2848 * passes but only the high-order atomic reserve are free. If
2849 * the caller is !atomic then it'll uselessly search the free
2850 * list. That corner case is then slower but it is harmless.
2851 */
2852 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2853 return true;
2854
2855 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2856 free_pages);
2857 }
2858
2859 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2860 unsigned long mark, int classzone_idx)
2861 {
2862 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2863
2864 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2865 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2866
2867 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2868 free_pages);
2869 }
2870
2871 #ifdef CONFIG_NUMA
2872 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2873 {
2874 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2875 RECLAIM_DISTANCE;
2876 }
2877 #else /* CONFIG_NUMA */
2878 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2879 {
2880 return true;
2881 }
2882 #endif /* CONFIG_NUMA */
2883
2884 /*
2885 * get_page_from_freelist goes through the zonelist trying to allocate
2886 * a page.
2887 */
2888 static struct page *
2889 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2890 const struct alloc_context *ac)
2891 {
2892 struct zoneref *z = ac->preferred_zoneref;
2893 struct zone *zone;
2894 struct pglist_data *last_pgdat_dirty_limit = NULL;
2895
2896 /*
2897 * Scan zonelist, looking for a zone with enough free.
2898 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2899 */
2900 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2901 ac->nodemask) {
2902 struct page *page;
2903 unsigned long mark;
2904
2905 if (cpusets_enabled() &&
2906 (alloc_flags & ALLOC_CPUSET) &&
2907 !__cpuset_zone_allowed(zone, gfp_mask))
2908 continue;
2909 /*
2910 * When allocating a page cache page for writing, we
2911 * want to get it from a node that is within its dirty
2912 * limit, such that no single node holds more than its
2913 * proportional share of globally allowed dirty pages.
2914 * The dirty limits take into account the node's
2915 * lowmem reserves and high watermark so that kswapd
2916 * should be able to balance it without having to
2917 * write pages from its LRU list.
2918 *
2919 * XXX: For now, allow allocations to potentially
2920 * exceed the per-node dirty limit in the slowpath
2921 * (spread_dirty_pages unset) before going into reclaim,
2922 * which is important when on a NUMA setup the allowed
2923 * nodes are together not big enough to reach the
2924 * global limit. The proper fix for these situations
2925 * will require awareness of nodes in the
2926 * dirty-throttling and the flusher threads.
2927 */
2928 if (ac->spread_dirty_pages) {
2929 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2930 continue;
2931
2932 if (!node_dirty_ok(zone->zone_pgdat)) {
2933 last_pgdat_dirty_limit = zone->zone_pgdat;
2934 continue;
2935 }
2936 }
2937
2938 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2939 if (!zone_watermark_fast(zone, order, mark,
2940 ac_classzone_idx(ac), alloc_flags)) {
2941 int ret;
2942
2943 /* Checked here to keep the fast path fast */
2944 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2945 if (alloc_flags & ALLOC_NO_WATERMARKS)
2946 goto try_this_zone;
2947
2948 if (node_reclaim_mode == 0 ||
2949 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2950 continue;
2951
2952 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2953 switch (ret) {
2954 case NODE_RECLAIM_NOSCAN:
2955 /* did not scan */
2956 continue;
2957 case NODE_RECLAIM_FULL:
2958 /* scanned but unreclaimable */
2959 continue;
2960 default:
2961 /* did we reclaim enough */
2962 if (zone_watermark_ok(zone, order, mark,
2963 ac_classzone_idx(ac), alloc_flags))
2964 goto try_this_zone;
2965
2966 continue;
2967 }
2968 }
2969
2970 try_this_zone:
2971 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2972 gfp_mask, alloc_flags, ac->migratetype);
2973 if (page) {
2974 prep_new_page(page, order, gfp_mask, alloc_flags);
2975
2976 /*
2977 * If this is a high-order atomic allocation then check
2978 * if the pageblock should be reserved for the future
2979 */
2980 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2981 reserve_highatomic_pageblock(page, zone, order);
2982
2983 return page;
2984 }
2985 }
2986
2987 return NULL;
2988 }
2989
2990 /*
2991 * Large machines with many possible nodes should not always dump per-node
2992 * meminfo in irq context.
2993 */
2994 static inline bool should_suppress_show_mem(void)
2995 {
2996 bool ret = false;
2997
2998 #if NODES_SHIFT > 8
2999 ret = in_interrupt();
3000 #endif
3001 return ret;
3002 }
3003
3004 static DEFINE_RATELIMIT_STATE(nopage_rs,
3005 DEFAULT_RATELIMIT_INTERVAL,
3006 DEFAULT_RATELIMIT_BURST);
3007
3008 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3009 {
3010 unsigned int filter = SHOW_MEM_FILTER_NODES;
3011
3012 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3013 debug_guardpage_minorder() > 0)
3014 return;
3015
3016 /*
3017 * This documents exceptions given to allocations in certain
3018 * contexts that are allowed to allocate outside current's set
3019 * of allowed nodes.
3020 */
3021 if (!(gfp_mask & __GFP_NOMEMALLOC))
3022 if (test_thread_flag(TIF_MEMDIE) ||
3023 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3024 filter &= ~SHOW_MEM_FILTER_NODES;
3025 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3026 filter &= ~SHOW_MEM_FILTER_NODES;
3027
3028 if (fmt) {
3029 struct va_format vaf;
3030 va_list args;
3031
3032 va_start(args, fmt);
3033
3034 vaf.fmt = fmt;
3035 vaf.va = &args;
3036
3037 pr_warn("%pV", &vaf);
3038
3039 va_end(args);
3040 }
3041
3042 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3043 current->comm, order, gfp_mask, &gfp_mask);
3044 dump_stack();
3045 if (!should_suppress_show_mem())
3046 show_mem(filter);
3047 }
3048
3049 static inline struct page *
3050 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3051 const struct alloc_context *ac, unsigned long *did_some_progress)
3052 {
3053 struct oom_control oc = {
3054 .zonelist = ac->zonelist,
3055 .nodemask = ac->nodemask,
3056 .memcg = NULL,
3057 .gfp_mask = gfp_mask,
3058 .order = order,
3059 };
3060 struct page *page;
3061
3062 *did_some_progress = 0;
3063
3064 /*
3065 * Acquire the oom lock. If that fails, somebody else is
3066 * making progress for us.
3067 */
3068 if (!mutex_trylock(&oom_lock)) {
3069 *did_some_progress = 1;
3070 schedule_timeout_uninterruptible(1);
3071 return NULL;
3072 }
3073
3074 /*
3075 * Go through the zonelist yet one more time, keep very high watermark
3076 * here, this is only to catch a parallel oom killing, we must fail if
3077 * we're still under heavy pressure.
3078 */
3079 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3080 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3081 if (page)
3082 goto out;
3083
3084 if (!(gfp_mask & __GFP_NOFAIL)) {
3085 /* Coredumps can quickly deplete all memory reserves */
3086 if (current->flags & PF_DUMPCORE)
3087 goto out;
3088 /* The OOM killer will not help higher order allocs */
3089 if (order > PAGE_ALLOC_COSTLY_ORDER)
3090 goto out;
3091 /* The OOM killer does not needlessly kill tasks for lowmem */
3092 if (ac->high_zoneidx < ZONE_NORMAL)
3093 goto out;
3094 if (pm_suspended_storage())
3095 goto out;
3096 /*
3097 * XXX: GFP_NOFS allocations should rather fail than rely on
3098 * other request to make a forward progress.
3099 * We are in an unfortunate situation where out_of_memory cannot
3100 * do much for this context but let's try it to at least get
3101 * access to memory reserved if the current task is killed (see
3102 * out_of_memory). Once filesystems are ready to handle allocation
3103 * failures more gracefully we should just bail out here.
3104 */
3105
3106 /* The OOM killer may not free memory on a specific node */
3107 if (gfp_mask & __GFP_THISNODE)
3108 goto out;
3109 }
3110 /* Exhausted what can be done so it's blamo time */
3111 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3112 *did_some_progress = 1;
3113
3114 if (gfp_mask & __GFP_NOFAIL) {
3115 page = get_page_from_freelist(gfp_mask, order,
3116 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3117 /*
3118 * fallback to ignore cpuset restriction if our nodes
3119 * are depleted
3120 */
3121 if (!page)
3122 page = get_page_from_freelist(gfp_mask, order,
3123 ALLOC_NO_WATERMARKS, ac);
3124 }
3125 }
3126 out:
3127 mutex_unlock(&oom_lock);
3128 return page;
3129 }
3130
3131 /*
3132 * Maximum number of compaction retries wit a progress before OOM
3133 * killer is consider as the only way to move forward.
3134 */
3135 #define MAX_COMPACT_RETRIES 16
3136
3137 #ifdef CONFIG_COMPACTION
3138 /* Try memory compaction for high-order allocations before reclaim */
3139 static struct page *
3140 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3141 unsigned int alloc_flags, const struct alloc_context *ac,
3142 enum compact_priority prio, enum compact_result *compact_result)
3143 {
3144 struct page *page;
3145
3146 if (!order)
3147 return NULL;
3148
3149 current->flags |= PF_MEMALLOC;
3150 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3151 prio);
3152 current->flags &= ~PF_MEMALLOC;
3153
3154 if (*compact_result <= COMPACT_INACTIVE)
3155 return NULL;
3156
3157 /*
3158 * At least in one zone compaction wasn't deferred or skipped, so let's
3159 * count a compaction stall
3160 */
3161 count_vm_event(COMPACTSTALL);
3162
3163 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3164
3165 if (page) {
3166 struct zone *zone = page_zone(page);
3167
3168 zone->compact_blockskip_flush = false;
3169 compaction_defer_reset(zone, order, true);
3170 count_vm_event(COMPACTSUCCESS);
3171 return page;
3172 }
3173
3174 /*
3175 * It's bad if compaction run occurs and fails. The most likely reason
3176 * is that pages exist, but not enough to satisfy watermarks.
3177 */
3178 count_vm_event(COMPACTFAIL);
3179
3180 cond_resched();
3181
3182 return NULL;
3183 }
3184
3185 static inline bool
3186 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3187 enum compact_result compact_result,
3188 enum compact_priority *compact_priority,
3189 int compaction_retries)
3190 {
3191 int max_retries = MAX_COMPACT_RETRIES;
3192 int min_priority;
3193
3194 if (!order)
3195 return false;
3196
3197 /*
3198 * compaction considers all the zone as desperately out of memory
3199 * so it doesn't really make much sense to retry except when the
3200 * failure could be caused by insufficient priority
3201 */
3202 if (compaction_failed(compact_result))
3203 goto check_priority;
3204
3205 /*
3206 * make sure the compaction wasn't deferred or didn't bail out early
3207 * due to locks contention before we declare that we should give up.
3208 * But do not retry if the given zonelist is not suitable for
3209 * compaction.
3210 */
3211 if (compaction_withdrawn(compact_result))
3212 return compaction_zonelist_suitable(ac, order, alloc_flags);
3213
3214 /*
3215 * !costly requests are much more important than __GFP_REPEAT
3216 * costly ones because they are de facto nofail and invoke OOM
3217 * killer to move on while costly can fail and users are ready
3218 * to cope with that. 1/4 retries is rather arbitrary but we
3219 * would need much more detailed feedback from compaction to
3220 * make a better decision.
3221 */
3222 if (order > PAGE_ALLOC_COSTLY_ORDER)
3223 max_retries /= 4;
3224 if (compaction_retries <= max_retries)
3225 return true;
3226
3227 /*
3228 * Make sure there is at least one attempt at the highest priority
3229 * if we exhausted all retries at the lower priorities
3230 */
3231 check_priority:
3232 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3233 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3234 if (*compact_priority > min_priority) {
3235 (*compact_priority)--;
3236 return true;
3237 }
3238 return false;
3239 }
3240 #else
3241 static inline struct page *
3242 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3243 unsigned int alloc_flags, const struct alloc_context *ac,
3244 enum compact_priority prio, enum compact_result *compact_result)
3245 {
3246 *compact_result = COMPACT_SKIPPED;
3247 return NULL;
3248 }
3249
3250 static inline bool
3251 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3252 enum compact_result compact_result,
3253 enum compact_priority *compact_priority,
3254 int compaction_retries)
3255 {
3256 struct zone *zone;
3257 struct zoneref *z;
3258
3259 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3260 return false;
3261
3262 /*
3263 * There are setups with compaction disabled which would prefer to loop
3264 * inside the allocator rather than hit the oom killer prematurely.
3265 * Let's give them a good hope and keep retrying while the order-0
3266 * watermarks are OK.
3267 */
3268 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3269 ac->nodemask) {
3270 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3271 ac_classzone_idx(ac), alloc_flags))
3272 return true;
3273 }
3274 return false;
3275 }
3276 #endif /* CONFIG_COMPACTION */
3277
3278 /* Perform direct synchronous page reclaim */
3279 static int
3280 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3281 const struct alloc_context *ac)
3282 {
3283 struct reclaim_state reclaim_state;
3284 int progress;
3285
3286 cond_resched();
3287
3288 /* We now go into synchronous reclaim */
3289 cpuset_memory_pressure_bump();
3290 current->flags |= PF_MEMALLOC;
3291 lockdep_set_current_reclaim_state(gfp_mask);
3292 reclaim_state.reclaimed_slab = 0;
3293 current->reclaim_state = &reclaim_state;
3294
3295 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3296 ac->nodemask);
3297
3298 current->reclaim_state = NULL;
3299 lockdep_clear_current_reclaim_state();
3300 current->flags &= ~PF_MEMALLOC;
3301
3302 cond_resched();
3303
3304 return progress;
3305 }
3306
3307 /* The really slow allocator path where we enter direct reclaim */
3308 static inline struct page *
3309 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3310 unsigned int alloc_flags, const struct alloc_context *ac,
3311 unsigned long *did_some_progress)
3312 {
3313 struct page *page = NULL;
3314 bool drained = false;
3315
3316 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3317 if (unlikely(!(*did_some_progress)))
3318 return NULL;
3319
3320 retry:
3321 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3322
3323 /*
3324 * If an allocation failed after direct reclaim, it could be because
3325 * pages are pinned on the per-cpu lists or in high alloc reserves.
3326 * Shrink them them and try again
3327 */
3328 if (!page && !drained) {
3329 unreserve_highatomic_pageblock(ac);
3330 drain_all_pages(NULL);
3331 drained = true;
3332 goto retry;
3333 }
3334
3335 return page;
3336 }
3337
3338 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3339 {
3340 struct zoneref *z;
3341 struct zone *zone;
3342 pg_data_t *last_pgdat = NULL;
3343
3344 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3345 ac->high_zoneidx, ac->nodemask) {
3346 if (last_pgdat != zone->zone_pgdat)
3347 wakeup_kswapd(zone, order, ac->high_zoneidx);
3348 last_pgdat = zone->zone_pgdat;
3349 }
3350 }
3351
3352 static inline unsigned int
3353 gfp_to_alloc_flags(gfp_t gfp_mask)
3354 {
3355 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3356
3357 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3358 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3359
3360 /*
3361 * The caller may dip into page reserves a bit more if the caller
3362 * cannot run direct reclaim, or if the caller has realtime scheduling
3363 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3364 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3365 */
3366 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3367
3368 if (gfp_mask & __GFP_ATOMIC) {
3369 /*
3370 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3371 * if it can't schedule.
3372 */
3373 if (!(gfp_mask & __GFP_NOMEMALLOC))
3374 alloc_flags |= ALLOC_HARDER;
3375 /*
3376 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3377 * comment for __cpuset_node_allowed().
3378 */
3379 alloc_flags &= ~ALLOC_CPUSET;
3380 } else if (unlikely(rt_task(current)) && !in_interrupt())
3381 alloc_flags |= ALLOC_HARDER;
3382
3383 #ifdef CONFIG_CMA
3384 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3385 alloc_flags |= ALLOC_CMA;
3386 #endif
3387 return alloc_flags;
3388 }
3389
3390 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3391 {
3392 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3393 return false;
3394
3395 if (gfp_mask & __GFP_MEMALLOC)
3396 return true;
3397 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3398 return true;
3399 if (!in_interrupt() &&
3400 ((current->flags & PF_MEMALLOC) ||
3401 unlikely(test_thread_flag(TIF_MEMDIE))))
3402 return true;
3403
3404 return false;
3405 }
3406
3407 /*
3408 * Maximum number of reclaim retries without any progress before OOM killer
3409 * is consider as the only way to move forward.
3410 */
3411 #define MAX_RECLAIM_RETRIES 16
3412
3413 /*
3414 * Checks whether it makes sense to retry the reclaim to make a forward progress
3415 * for the given allocation request.
3416 * The reclaim feedback represented by did_some_progress (any progress during
3417 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3418 * any progress in a row) is considered as well as the reclaimable pages on the
3419 * applicable zone list (with a backoff mechanism which is a function of
3420 * no_progress_loops).
3421 *
3422 * Returns true if a retry is viable or false to enter the oom path.
3423 */
3424 static inline bool
3425 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3426 struct alloc_context *ac, int alloc_flags,
3427 bool did_some_progress, int no_progress_loops)
3428 {
3429 struct zone *zone;
3430 struct zoneref *z;
3431
3432 /*
3433 * Make sure we converge to OOM if we cannot make any progress
3434 * several times in the row.
3435 */
3436 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3437 return false;
3438
3439 /*
3440 * Keep reclaiming pages while there is a chance this will lead
3441 * somewhere. If none of the target zones can satisfy our allocation
3442 * request even if all reclaimable pages are considered then we are
3443 * screwed and have to go OOM.
3444 */
3445 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3446 ac->nodemask) {
3447 unsigned long available;
3448 unsigned long reclaimable;
3449
3450 available = reclaimable = zone_reclaimable_pages(zone);
3451 available -= DIV_ROUND_UP(no_progress_loops * available,
3452 MAX_RECLAIM_RETRIES);
3453 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3454
3455 /*
3456 * Would the allocation succeed if we reclaimed the whole
3457 * available?
3458 */
3459 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3460 ac_classzone_idx(ac), alloc_flags, available)) {
3461 /*
3462 * If we didn't make any progress and have a lot of
3463 * dirty + writeback pages then we should wait for
3464 * an IO to complete to slow down the reclaim and
3465 * prevent from pre mature OOM
3466 */
3467 if (!did_some_progress) {
3468 unsigned long write_pending;
3469
3470 write_pending = zone_page_state_snapshot(zone,
3471 NR_ZONE_WRITE_PENDING);
3472
3473 if (2 * write_pending > reclaimable) {
3474 congestion_wait(BLK_RW_ASYNC, HZ/10);
3475 return true;
3476 }
3477 }
3478
3479 /*
3480 * Memory allocation/reclaim might be called from a WQ
3481 * context and the current implementation of the WQ
3482 * concurrency control doesn't recognize that
3483 * a particular WQ is congested if the worker thread is
3484 * looping without ever sleeping. Therefore we have to
3485 * do a short sleep here rather than calling
3486 * cond_resched().
3487 */
3488 if (current->flags & PF_WQ_WORKER)
3489 schedule_timeout_uninterruptible(1);
3490 else
3491 cond_resched();
3492
3493 return true;
3494 }
3495 }
3496
3497 return false;
3498 }
3499
3500 static inline struct page *
3501 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3502 struct alloc_context *ac)
3503 {
3504 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3505 struct page *page = NULL;
3506 unsigned int alloc_flags;
3507 unsigned long did_some_progress;
3508 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3509 enum compact_result compact_result;
3510 int compaction_retries = 0;
3511 int no_progress_loops = 0;
3512
3513 /*
3514 * In the slowpath, we sanity check order to avoid ever trying to
3515 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3516 * be using allocators in order of preference for an area that is
3517 * too large.
3518 */
3519 if (order >= MAX_ORDER) {
3520 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3521 return NULL;
3522 }
3523
3524 /*
3525 * We also sanity check to catch abuse of atomic reserves being used by
3526 * callers that are not in atomic context.
3527 */
3528 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3529 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3530 gfp_mask &= ~__GFP_ATOMIC;
3531
3532 /*
3533 * The fast path uses conservative alloc_flags to succeed only until
3534 * kswapd needs to be woken up, and to avoid the cost of setting up
3535 * alloc_flags precisely. So we do that now.
3536 */
3537 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3538
3539 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3540 wake_all_kswapds(order, ac);
3541
3542 /*
3543 * The adjusted alloc_flags might result in immediate success, so try
3544 * that first
3545 */
3546 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3547 if (page)
3548 goto got_pg;
3549
3550 /*
3551 * For costly allocations, try direct compaction first, as it's likely
3552 * that we have enough base pages and don't need to reclaim. Don't try
3553 * that for allocations that are allowed to ignore watermarks, as the
3554 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3555 */
3556 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3557 !gfp_pfmemalloc_allowed(gfp_mask)) {
3558 page = __alloc_pages_direct_compact(gfp_mask, order,
3559 alloc_flags, ac,
3560 INIT_COMPACT_PRIORITY,
3561 &compact_result);
3562 if (page)
3563 goto got_pg;
3564
3565 /*
3566 * Checks for costly allocations with __GFP_NORETRY, which
3567 * includes THP page fault allocations
3568 */
3569 if (gfp_mask & __GFP_NORETRY) {
3570 /*
3571 * If compaction is deferred for high-order allocations,
3572 * it is because sync compaction recently failed. If
3573 * this is the case and the caller requested a THP
3574 * allocation, we do not want to heavily disrupt the
3575 * system, so we fail the allocation instead of entering
3576 * direct reclaim.
3577 */
3578 if (compact_result == COMPACT_DEFERRED)
3579 goto nopage;
3580
3581 /*
3582 * Looks like reclaim/compaction is worth trying, but
3583 * sync compaction could be very expensive, so keep
3584 * using async compaction.
3585 */
3586 compact_priority = INIT_COMPACT_PRIORITY;
3587 }
3588 }
3589
3590 retry:
3591 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3592 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3593 wake_all_kswapds(order, ac);
3594
3595 if (gfp_pfmemalloc_allowed(gfp_mask))
3596 alloc_flags = ALLOC_NO_WATERMARKS;
3597
3598 /*
3599 * Reset the zonelist iterators if memory policies can be ignored.
3600 * These allocations are high priority and system rather than user
3601 * orientated.
3602 */
3603 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3604 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3605 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3606 ac->high_zoneidx, ac->nodemask);
3607 }
3608
3609 /* Attempt with potentially adjusted zonelist and alloc_flags */
3610 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3611 if (page)
3612 goto got_pg;
3613
3614 /* Caller is not willing to reclaim, we can't balance anything */
3615 if (!can_direct_reclaim) {
3616 /*
3617 * All existing users of the __GFP_NOFAIL are blockable, so warn
3618 * of any new users that actually allow this type of allocation
3619 * to fail.
3620 */
3621 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3622 goto nopage;
3623 }
3624
3625 /* Avoid recursion of direct reclaim */
3626 if (current->flags & PF_MEMALLOC) {
3627 /*
3628 * __GFP_NOFAIL request from this context is rather bizarre
3629 * because we cannot reclaim anything and only can loop waiting
3630 * for somebody to do a work for us.
3631 */
3632 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3633 cond_resched();
3634 goto retry;
3635 }
3636 goto nopage;
3637 }
3638
3639 /* Avoid allocations with no watermarks from looping endlessly */
3640 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3641 goto nopage;
3642
3643
3644 /* Try direct reclaim and then allocating */
3645 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3646 &did_some_progress);
3647 if (page)
3648 goto got_pg;
3649
3650 /* Try direct compaction and then allocating */
3651 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3652 compact_priority, &compact_result);
3653 if (page)
3654 goto got_pg;
3655
3656 if (order && compaction_made_progress(compact_result))
3657 compaction_retries++;
3658
3659 /* Do not loop if specifically requested */
3660 if (gfp_mask & __GFP_NORETRY)
3661 goto nopage;
3662
3663 /*
3664 * Do not retry costly high order allocations unless they are
3665 * __GFP_REPEAT
3666 */
3667 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3668 goto nopage;
3669
3670 /*
3671 * Costly allocations might have made a progress but this doesn't mean
3672 * their order will become available due to high fragmentation so
3673 * always increment the no progress counter for them
3674 */
3675 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3676 no_progress_loops = 0;
3677 else
3678 no_progress_loops++;
3679
3680 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3681 did_some_progress > 0, no_progress_loops))
3682 goto retry;
3683
3684 /*
3685 * It doesn't make any sense to retry for the compaction if the order-0
3686 * reclaim is not able to make any progress because the current
3687 * implementation of the compaction depends on the sufficient amount
3688 * of free memory (see __compaction_suitable)
3689 */
3690 if (did_some_progress > 0 &&
3691 should_compact_retry(ac, order, alloc_flags,
3692 compact_result, &compact_priority,
3693 compaction_retries))
3694 goto retry;
3695
3696 /* Reclaim has failed us, start killing things */
3697 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3698 if (page)
3699 goto got_pg;
3700
3701 /* Retry as long as the OOM killer is making progress */
3702 if (did_some_progress) {
3703 no_progress_loops = 0;
3704 goto retry;
3705 }
3706
3707 nopage:
3708 warn_alloc_failed(gfp_mask, order, NULL);
3709 got_pg:
3710 return page;
3711 }
3712
3713 /*
3714 * This is the 'heart' of the zoned buddy allocator.
3715 */
3716 struct page *
3717 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3718 struct zonelist *zonelist, nodemask_t *nodemask)
3719 {
3720 struct page *page;
3721 unsigned int cpuset_mems_cookie;
3722 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3723 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3724 struct alloc_context ac = {
3725 .high_zoneidx = gfp_zone(gfp_mask),
3726 .zonelist = zonelist,
3727 .nodemask = nodemask,
3728 .migratetype = gfpflags_to_migratetype(gfp_mask),
3729 };
3730
3731 if (cpusets_enabled()) {
3732 alloc_mask |= __GFP_HARDWALL;
3733 alloc_flags |= ALLOC_CPUSET;
3734 if (!ac.nodemask)
3735 ac.nodemask = &cpuset_current_mems_allowed;
3736 }
3737
3738 gfp_mask &= gfp_allowed_mask;
3739
3740 lockdep_trace_alloc(gfp_mask);
3741
3742 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3743
3744 if (should_fail_alloc_page(gfp_mask, order))
3745 return NULL;
3746
3747 /*
3748 * Check the zones suitable for the gfp_mask contain at least one
3749 * valid zone. It's possible to have an empty zonelist as a result
3750 * of __GFP_THISNODE and a memoryless node
3751 */
3752 if (unlikely(!zonelist->_zonerefs->zone))
3753 return NULL;
3754
3755 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3756 alloc_flags |= ALLOC_CMA;
3757
3758 retry_cpuset:
3759 cpuset_mems_cookie = read_mems_allowed_begin();
3760
3761 /* Dirty zone balancing only done in the fast path */
3762 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3763
3764 /*
3765 * The preferred zone is used for statistics but crucially it is
3766 * also used as the starting point for the zonelist iterator. It
3767 * may get reset for allocations that ignore memory policies.
3768 */
3769 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3770 ac.high_zoneidx, ac.nodemask);
3771 if (!ac.preferred_zoneref) {
3772 page = NULL;
3773 goto no_zone;
3774 }
3775
3776 /* First allocation attempt */
3777 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3778 if (likely(page))
3779 goto out;
3780
3781 /*
3782 * Runtime PM, block IO and its error handling path can deadlock
3783 * because I/O on the device might not complete.
3784 */
3785 alloc_mask = memalloc_noio_flags(gfp_mask);
3786 ac.spread_dirty_pages = false;
3787
3788 /*
3789 * Restore the original nodemask if it was potentially replaced with
3790 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3791 */
3792 if (cpusets_enabled())
3793 ac.nodemask = nodemask;
3794 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3795
3796 no_zone:
3797 /*
3798 * When updating a task's mems_allowed, it is possible to race with
3799 * parallel threads in such a way that an allocation can fail while
3800 * the mask is being updated. If a page allocation is about to fail,
3801 * check if the cpuset changed during allocation and if so, retry.
3802 */
3803 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3804 alloc_mask = gfp_mask;
3805 goto retry_cpuset;
3806 }
3807
3808 out:
3809 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3810 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3811 __free_pages(page, order);
3812 page = NULL;
3813 }
3814
3815 if (kmemcheck_enabled && page)
3816 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3817
3818 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3819
3820 return page;
3821 }
3822 EXPORT_SYMBOL(__alloc_pages_nodemask);
3823
3824 /*
3825 * Common helper functions.
3826 */
3827 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3828 {
3829 struct page *page;
3830
3831 /*
3832 * __get_free_pages() returns a 32-bit address, which cannot represent
3833 * a highmem page
3834 */
3835 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3836
3837 page = alloc_pages(gfp_mask, order);
3838 if (!page)
3839 return 0;
3840 return (unsigned long) page_address(page);
3841 }
3842 EXPORT_SYMBOL(__get_free_pages);
3843
3844 unsigned long get_zeroed_page(gfp_t gfp_mask)
3845 {
3846 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3847 }
3848 EXPORT_SYMBOL(get_zeroed_page);
3849
3850 void __free_pages(struct page *page, unsigned int order)
3851 {
3852 if (put_page_testzero(page)) {
3853 if (order == 0)
3854 free_hot_cold_page(page, false);
3855 else
3856 __free_pages_ok(page, order);
3857 }
3858 }
3859
3860 EXPORT_SYMBOL(__free_pages);
3861
3862 void free_pages(unsigned long addr, unsigned int order)
3863 {
3864 if (addr != 0) {
3865 VM_BUG_ON(!virt_addr_valid((void *)addr));
3866 __free_pages(virt_to_page((void *)addr), order);
3867 }
3868 }
3869
3870 EXPORT_SYMBOL(free_pages);
3871
3872 /*
3873 * Page Fragment:
3874 * An arbitrary-length arbitrary-offset area of memory which resides
3875 * within a 0 or higher order page. Multiple fragments within that page
3876 * are individually refcounted, in the page's reference counter.
3877 *
3878 * The page_frag functions below provide a simple allocation framework for
3879 * page fragments. This is used by the network stack and network device
3880 * drivers to provide a backing region of memory for use as either an
3881 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3882 */
3883 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3884 gfp_t gfp_mask)
3885 {
3886 struct page *page = NULL;
3887 gfp_t gfp = gfp_mask;
3888
3889 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3890 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3891 __GFP_NOMEMALLOC;
3892 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3893 PAGE_FRAG_CACHE_MAX_ORDER);
3894 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3895 #endif
3896 if (unlikely(!page))
3897 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3898
3899 nc->va = page ? page_address(page) : NULL;
3900
3901 return page;
3902 }
3903
3904 void *__alloc_page_frag(struct page_frag_cache *nc,
3905 unsigned int fragsz, gfp_t gfp_mask)
3906 {
3907 unsigned int size = PAGE_SIZE;
3908 struct page *page;
3909 int offset;
3910
3911 if (unlikely(!nc->va)) {
3912 refill:
3913 page = __page_frag_refill(nc, gfp_mask);
3914 if (!page)
3915 return NULL;
3916
3917 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3918 /* if size can vary use size else just use PAGE_SIZE */
3919 size = nc->size;
3920 #endif
3921 /* Even if we own the page, we do not use atomic_set().
3922 * This would break get_page_unless_zero() users.
3923 */
3924 page_ref_add(page, size - 1);
3925
3926 /* reset page count bias and offset to start of new frag */
3927 nc->pfmemalloc = page_is_pfmemalloc(page);
3928 nc->pagecnt_bias = size;
3929 nc->offset = size;
3930 }
3931
3932 offset = nc->offset - fragsz;
3933 if (unlikely(offset < 0)) {
3934 page = virt_to_page(nc->va);
3935
3936 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3937 goto refill;
3938
3939 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3940 /* if size can vary use size else just use PAGE_SIZE */
3941 size = nc->size;
3942 #endif
3943 /* OK, page count is 0, we can safely set it */
3944 set_page_count(page, size);
3945
3946 /* reset page count bias and offset to start of new frag */
3947 nc->pagecnt_bias = size;
3948 offset = size - fragsz;
3949 }
3950
3951 nc->pagecnt_bias--;
3952 nc->offset = offset;
3953
3954 return nc->va + offset;
3955 }
3956 EXPORT_SYMBOL(__alloc_page_frag);
3957
3958 /*
3959 * Frees a page fragment allocated out of either a compound or order 0 page.
3960 */
3961 void __free_page_frag(void *addr)
3962 {
3963 struct page *page = virt_to_head_page(addr);
3964
3965 if (unlikely(put_page_testzero(page)))
3966 __free_pages_ok(page, compound_order(page));
3967 }
3968 EXPORT_SYMBOL(__free_page_frag);
3969
3970 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3971 size_t size)
3972 {
3973 if (addr) {
3974 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3975 unsigned long used = addr + PAGE_ALIGN(size);
3976
3977 split_page(virt_to_page((void *)addr), order);
3978 while (used < alloc_end) {
3979 free_page(used);
3980 used += PAGE_SIZE;
3981 }
3982 }
3983 return (void *)addr;
3984 }
3985
3986 /**
3987 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3988 * @size: the number of bytes to allocate
3989 * @gfp_mask: GFP flags for the allocation
3990 *
3991 * This function is similar to alloc_pages(), except that it allocates the
3992 * minimum number of pages to satisfy the request. alloc_pages() can only
3993 * allocate memory in power-of-two pages.
3994 *
3995 * This function is also limited by MAX_ORDER.
3996 *
3997 * Memory allocated by this function must be released by free_pages_exact().
3998 */
3999 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4000 {
4001 unsigned int order = get_order(size);
4002 unsigned long addr;
4003
4004 addr = __get_free_pages(gfp_mask, order);
4005 return make_alloc_exact(addr, order, size);
4006 }
4007 EXPORT_SYMBOL(alloc_pages_exact);
4008
4009 /**
4010 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4011 * pages on a node.
4012 * @nid: the preferred node ID where memory should be allocated
4013 * @size: the number of bytes to allocate
4014 * @gfp_mask: GFP flags for the allocation
4015 *
4016 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4017 * back.
4018 */
4019 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4020 {
4021 unsigned int order = get_order(size);
4022 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4023 if (!p)
4024 return NULL;
4025 return make_alloc_exact((unsigned long)page_address(p), order, size);
4026 }
4027
4028 /**
4029 * free_pages_exact - release memory allocated via alloc_pages_exact()
4030 * @virt: the value returned by alloc_pages_exact.
4031 * @size: size of allocation, same value as passed to alloc_pages_exact().
4032 *
4033 * Release the memory allocated by a previous call to alloc_pages_exact.
4034 */
4035 void free_pages_exact(void *virt, size_t size)
4036 {
4037 unsigned long addr = (unsigned long)virt;
4038 unsigned long end = addr + PAGE_ALIGN(size);
4039
4040 while (addr < end) {
4041 free_page(addr);
4042 addr += PAGE_SIZE;
4043 }
4044 }
4045 EXPORT_SYMBOL(free_pages_exact);
4046
4047 /**
4048 * nr_free_zone_pages - count number of pages beyond high watermark
4049 * @offset: The zone index of the highest zone
4050 *
4051 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4052 * high watermark within all zones at or below a given zone index. For each
4053 * zone, the number of pages is calculated as:
4054 * managed_pages - high_pages
4055 */
4056 static unsigned long nr_free_zone_pages(int offset)
4057 {
4058 struct zoneref *z;
4059 struct zone *zone;
4060
4061 /* Just pick one node, since fallback list is circular */
4062 unsigned long sum = 0;
4063
4064 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4065
4066 for_each_zone_zonelist(zone, z, zonelist, offset) {
4067 unsigned long size = zone->managed_pages;
4068 unsigned long high = high_wmark_pages(zone);
4069 if (size > high)
4070 sum += size - high;
4071 }
4072
4073 return sum;
4074 }
4075
4076 /**
4077 * nr_free_buffer_pages - count number of pages beyond high watermark
4078 *
4079 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4080 * watermark within ZONE_DMA and ZONE_NORMAL.
4081 */
4082 unsigned long nr_free_buffer_pages(void)
4083 {
4084 return nr_free_zone_pages(gfp_zone(GFP_USER));
4085 }
4086 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4087
4088 /**
4089 * nr_free_pagecache_pages - count number of pages beyond high watermark
4090 *
4091 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4092 * high watermark within all zones.
4093 */
4094 unsigned long nr_free_pagecache_pages(void)
4095 {
4096 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4097 }
4098
4099 static inline void show_node(struct zone *zone)
4100 {
4101 if (IS_ENABLED(CONFIG_NUMA))
4102 printk("Node %d ", zone_to_nid(zone));
4103 }
4104
4105 long si_mem_available(void)
4106 {
4107 long available;
4108 unsigned long pagecache;
4109 unsigned long wmark_low = 0;
4110 unsigned long pages[NR_LRU_LISTS];
4111 struct zone *zone;
4112 int lru;
4113
4114 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4115 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4116
4117 for_each_zone(zone)
4118 wmark_low += zone->watermark[WMARK_LOW];
4119
4120 /*
4121 * Estimate the amount of memory available for userspace allocations,
4122 * without causing swapping.
4123 */
4124 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4125
4126 /*
4127 * Not all the page cache can be freed, otherwise the system will
4128 * start swapping. Assume at least half of the page cache, or the
4129 * low watermark worth of cache, needs to stay.
4130 */
4131 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4132 pagecache -= min(pagecache / 2, wmark_low);
4133 available += pagecache;
4134
4135 /*
4136 * Part of the reclaimable slab consists of items that are in use,
4137 * and cannot be freed. Cap this estimate at the low watermark.
4138 */
4139 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4140 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4141
4142 if (available < 0)
4143 available = 0;
4144 return available;
4145 }
4146 EXPORT_SYMBOL_GPL(si_mem_available);
4147
4148 void si_meminfo(struct sysinfo *val)
4149 {
4150 val->totalram = totalram_pages;
4151 val->sharedram = global_node_page_state(NR_SHMEM);
4152 val->freeram = global_page_state(NR_FREE_PAGES);
4153 val->bufferram = nr_blockdev_pages();
4154 val->totalhigh = totalhigh_pages;
4155 val->freehigh = nr_free_highpages();
4156 val->mem_unit = PAGE_SIZE;
4157 }
4158
4159 EXPORT_SYMBOL(si_meminfo);
4160
4161 #ifdef CONFIG_NUMA
4162 void si_meminfo_node(struct sysinfo *val, int nid)
4163 {
4164 int zone_type; /* needs to be signed */
4165 unsigned long managed_pages = 0;
4166 unsigned long managed_highpages = 0;
4167 unsigned long free_highpages = 0;
4168 pg_data_t *pgdat = NODE_DATA(nid);
4169
4170 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4171 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4172 val->totalram = managed_pages;
4173 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4174 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4175 #ifdef CONFIG_HIGHMEM
4176 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4177 struct zone *zone = &pgdat->node_zones[zone_type];
4178
4179 if (is_highmem(zone)) {
4180 managed_highpages += zone->managed_pages;
4181 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4182 }
4183 }
4184 val->totalhigh = managed_highpages;
4185 val->freehigh = free_highpages;
4186 #else
4187 val->totalhigh = managed_highpages;
4188 val->freehigh = free_highpages;
4189 #endif
4190 val->mem_unit = PAGE_SIZE;
4191 }
4192 #endif
4193
4194 /*
4195 * Determine whether the node should be displayed or not, depending on whether
4196 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4197 */
4198 bool skip_free_areas_node(unsigned int flags, int nid)
4199 {
4200 bool ret = false;
4201 unsigned int cpuset_mems_cookie;
4202
4203 if (!(flags & SHOW_MEM_FILTER_NODES))
4204 goto out;
4205
4206 do {
4207 cpuset_mems_cookie = read_mems_allowed_begin();
4208 ret = !node_isset(nid, cpuset_current_mems_allowed);
4209 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4210 out:
4211 return ret;
4212 }
4213
4214 #define K(x) ((x) << (PAGE_SHIFT-10))
4215
4216 static void show_migration_types(unsigned char type)
4217 {
4218 static const char types[MIGRATE_TYPES] = {
4219 [MIGRATE_UNMOVABLE] = 'U',
4220 [MIGRATE_MOVABLE] = 'M',
4221 [MIGRATE_RECLAIMABLE] = 'E',
4222 [MIGRATE_HIGHATOMIC] = 'H',
4223 #ifdef CONFIG_CMA
4224 [MIGRATE_CMA] = 'C',
4225 #endif
4226 #ifdef CONFIG_MEMORY_ISOLATION
4227 [MIGRATE_ISOLATE] = 'I',
4228 #endif
4229 };
4230 char tmp[MIGRATE_TYPES + 1];
4231 char *p = tmp;
4232 int i;
4233
4234 for (i = 0; i < MIGRATE_TYPES; i++) {
4235 if (type & (1 << i))
4236 *p++ = types[i];
4237 }
4238
4239 *p = '\0';
4240 printk("(%s) ", tmp);
4241 }
4242
4243 /*
4244 * Show free area list (used inside shift_scroll-lock stuff)
4245 * We also calculate the percentage fragmentation. We do this by counting the
4246 * memory on each free list with the exception of the first item on the list.
4247 *
4248 * Bits in @filter:
4249 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4250 * cpuset.
4251 */
4252 void show_free_areas(unsigned int filter)
4253 {
4254 unsigned long free_pcp = 0;
4255 int cpu;
4256 struct zone *zone;
4257 pg_data_t *pgdat;
4258
4259 for_each_populated_zone(zone) {
4260 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4261 continue;
4262
4263 for_each_online_cpu(cpu)
4264 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4265 }
4266
4267 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4268 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4269 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4270 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4271 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4272 " free:%lu free_pcp:%lu free_cma:%lu\n",
4273 global_node_page_state(NR_ACTIVE_ANON),
4274 global_node_page_state(NR_INACTIVE_ANON),
4275 global_node_page_state(NR_ISOLATED_ANON),
4276 global_node_page_state(NR_ACTIVE_FILE),
4277 global_node_page_state(NR_INACTIVE_FILE),
4278 global_node_page_state(NR_ISOLATED_FILE),
4279 global_node_page_state(NR_UNEVICTABLE),
4280 global_node_page_state(NR_FILE_DIRTY),
4281 global_node_page_state(NR_WRITEBACK),
4282 global_node_page_state(NR_UNSTABLE_NFS),
4283 global_page_state(NR_SLAB_RECLAIMABLE),
4284 global_page_state(NR_SLAB_UNRECLAIMABLE),
4285 global_node_page_state(NR_FILE_MAPPED),
4286 global_node_page_state(NR_SHMEM),
4287 global_page_state(NR_PAGETABLE),
4288 global_page_state(NR_BOUNCE),
4289 global_page_state(NR_FREE_PAGES),
4290 free_pcp,
4291 global_page_state(NR_FREE_CMA_PAGES));
4292
4293 for_each_online_pgdat(pgdat) {
4294 printk("Node %d"
4295 " active_anon:%lukB"
4296 " inactive_anon:%lukB"
4297 " active_file:%lukB"
4298 " inactive_file:%lukB"
4299 " unevictable:%lukB"
4300 " isolated(anon):%lukB"
4301 " isolated(file):%lukB"
4302 " mapped:%lukB"
4303 " dirty:%lukB"
4304 " writeback:%lukB"
4305 " shmem:%lukB"
4306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4307 " shmem_thp: %lukB"
4308 " shmem_pmdmapped: %lukB"
4309 " anon_thp: %lukB"
4310 #endif
4311 " writeback_tmp:%lukB"
4312 " unstable:%lukB"
4313 " pages_scanned:%lu"
4314 " all_unreclaimable? %s"
4315 "\n",
4316 pgdat->node_id,
4317 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4318 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4319 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4320 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4321 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4322 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4323 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4324 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4325 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4326 K(node_page_state(pgdat, NR_WRITEBACK)),
4327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4328 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4329 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4330 * HPAGE_PMD_NR),
4331 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4332 #endif
4333 K(node_page_state(pgdat, NR_SHMEM)),
4334 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4335 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4336 node_page_state(pgdat, NR_PAGES_SCANNED),
4337 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4338 }
4339
4340 for_each_populated_zone(zone) {
4341 int i;
4342
4343 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4344 continue;
4345
4346 free_pcp = 0;
4347 for_each_online_cpu(cpu)
4348 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4349
4350 show_node(zone);
4351 printk("%s"
4352 " free:%lukB"
4353 " min:%lukB"
4354 " low:%lukB"
4355 " high:%lukB"
4356 " active_anon:%lukB"
4357 " inactive_anon:%lukB"
4358 " active_file:%lukB"
4359 " inactive_file:%lukB"
4360 " unevictable:%lukB"
4361 " writepending:%lukB"
4362 " present:%lukB"
4363 " managed:%lukB"
4364 " mlocked:%lukB"
4365 " slab_reclaimable:%lukB"
4366 " slab_unreclaimable:%lukB"
4367 " kernel_stack:%lukB"
4368 " pagetables:%lukB"
4369 " bounce:%lukB"
4370 " free_pcp:%lukB"
4371 " local_pcp:%ukB"
4372 " free_cma:%lukB"
4373 "\n",
4374 zone->name,
4375 K(zone_page_state(zone, NR_FREE_PAGES)),
4376 K(min_wmark_pages(zone)),
4377 K(low_wmark_pages(zone)),
4378 K(high_wmark_pages(zone)),
4379 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4380 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4381 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4382 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4383 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4384 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4385 K(zone->present_pages),
4386 K(zone->managed_pages),
4387 K(zone_page_state(zone, NR_MLOCK)),
4388 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4389 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4390 zone_page_state(zone, NR_KERNEL_STACK_KB),
4391 K(zone_page_state(zone, NR_PAGETABLE)),
4392 K(zone_page_state(zone, NR_BOUNCE)),
4393 K(free_pcp),
4394 K(this_cpu_read(zone->pageset->pcp.count)),
4395 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4396 printk("lowmem_reserve[]:");
4397 for (i = 0; i < MAX_NR_ZONES; i++)
4398 printk(" %ld", zone->lowmem_reserve[i]);
4399 printk("\n");
4400 }
4401
4402 for_each_populated_zone(zone) {
4403 unsigned int order;
4404 unsigned long nr[MAX_ORDER], flags, total = 0;
4405 unsigned char types[MAX_ORDER];
4406
4407 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4408 continue;
4409 show_node(zone);
4410 printk("%s: ", zone->name);
4411
4412 spin_lock_irqsave(&zone->lock, flags);
4413 for (order = 0; order < MAX_ORDER; order++) {
4414 struct free_area *area = &zone->free_area[order];
4415 int type;
4416
4417 nr[order] = area->nr_free;
4418 total += nr[order] << order;
4419
4420 types[order] = 0;
4421 for (type = 0; type < MIGRATE_TYPES; type++) {
4422 if (!list_empty(&area->free_list[type]))
4423 types[order] |= 1 << type;
4424 }
4425 }
4426 spin_unlock_irqrestore(&zone->lock, flags);
4427 for (order = 0; order < MAX_ORDER; order++) {
4428 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4429 if (nr[order])
4430 show_migration_types(types[order]);
4431 }
4432 printk("= %lukB\n", K(total));
4433 }
4434
4435 hugetlb_show_meminfo();
4436
4437 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4438
4439 show_swap_cache_info();
4440 }
4441
4442 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4443 {
4444 zoneref->zone = zone;
4445 zoneref->zone_idx = zone_idx(zone);
4446 }
4447
4448 /*
4449 * Builds allocation fallback zone lists.
4450 *
4451 * Add all populated zones of a node to the zonelist.
4452 */
4453 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4454 int nr_zones)
4455 {
4456 struct zone *zone;
4457 enum zone_type zone_type = MAX_NR_ZONES;
4458
4459 do {
4460 zone_type--;
4461 zone = pgdat->node_zones + zone_type;
4462 if (managed_zone(zone)) {
4463 zoneref_set_zone(zone,
4464 &zonelist->_zonerefs[nr_zones++]);
4465 check_highest_zone(zone_type);
4466 }
4467 } while (zone_type);
4468
4469 return nr_zones;
4470 }
4471
4472
4473 /*
4474 * zonelist_order:
4475 * 0 = automatic detection of better ordering.
4476 * 1 = order by ([node] distance, -zonetype)
4477 * 2 = order by (-zonetype, [node] distance)
4478 *
4479 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4480 * the same zonelist. So only NUMA can configure this param.
4481 */
4482 #define ZONELIST_ORDER_DEFAULT 0
4483 #define ZONELIST_ORDER_NODE 1
4484 #define ZONELIST_ORDER_ZONE 2
4485
4486 /* zonelist order in the kernel.
4487 * set_zonelist_order() will set this to NODE or ZONE.
4488 */
4489 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4490 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4491
4492
4493 #ifdef CONFIG_NUMA
4494 /* The value user specified ....changed by config */
4495 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4496 /* string for sysctl */
4497 #define NUMA_ZONELIST_ORDER_LEN 16
4498 char numa_zonelist_order[16] = "default";
4499
4500 /*
4501 * interface for configure zonelist ordering.
4502 * command line option "numa_zonelist_order"
4503 * = "[dD]efault - default, automatic configuration.
4504 * = "[nN]ode - order by node locality, then by zone within node
4505 * = "[zZ]one - order by zone, then by locality within zone
4506 */
4507
4508 static int __parse_numa_zonelist_order(char *s)
4509 {
4510 if (*s == 'd' || *s == 'D') {
4511 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4512 } else if (*s == 'n' || *s == 'N') {
4513 user_zonelist_order = ZONELIST_ORDER_NODE;
4514 } else if (*s == 'z' || *s == 'Z') {
4515 user_zonelist_order = ZONELIST_ORDER_ZONE;
4516 } else {
4517 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4518 return -EINVAL;
4519 }
4520 return 0;
4521 }
4522
4523 static __init int setup_numa_zonelist_order(char *s)
4524 {
4525 int ret;
4526
4527 if (!s)
4528 return 0;
4529
4530 ret = __parse_numa_zonelist_order(s);
4531 if (ret == 0)
4532 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4533
4534 return ret;
4535 }
4536 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4537
4538 /*
4539 * sysctl handler for numa_zonelist_order
4540 */
4541 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4542 void __user *buffer, size_t *length,
4543 loff_t *ppos)
4544 {
4545 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4546 int ret;
4547 static DEFINE_MUTEX(zl_order_mutex);
4548
4549 mutex_lock(&zl_order_mutex);
4550 if (write) {
4551 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4552 ret = -EINVAL;
4553 goto out;
4554 }
4555 strcpy(saved_string, (char *)table->data);
4556 }
4557 ret = proc_dostring(table, write, buffer, length, ppos);
4558 if (ret)
4559 goto out;
4560 if (write) {
4561 int oldval = user_zonelist_order;
4562
4563 ret = __parse_numa_zonelist_order((char *)table->data);
4564 if (ret) {
4565 /*
4566 * bogus value. restore saved string
4567 */
4568 strncpy((char *)table->data, saved_string,
4569 NUMA_ZONELIST_ORDER_LEN);
4570 user_zonelist_order = oldval;
4571 } else if (oldval != user_zonelist_order) {
4572 mutex_lock(&zonelists_mutex);
4573 build_all_zonelists(NULL, NULL);
4574 mutex_unlock(&zonelists_mutex);
4575 }
4576 }
4577 out:
4578 mutex_unlock(&zl_order_mutex);
4579 return ret;
4580 }
4581
4582
4583 #define MAX_NODE_LOAD (nr_online_nodes)
4584 static int node_load[MAX_NUMNODES];
4585
4586 /**
4587 * find_next_best_node - find the next node that should appear in a given node's fallback list
4588 * @node: node whose fallback list we're appending
4589 * @used_node_mask: nodemask_t of already used nodes
4590 *
4591 * We use a number of factors to determine which is the next node that should
4592 * appear on a given node's fallback list. The node should not have appeared
4593 * already in @node's fallback list, and it should be the next closest node
4594 * according to the distance array (which contains arbitrary distance values
4595 * from each node to each node in the system), and should also prefer nodes
4596 * with no CPUs, since presumably they'll have very little allocation pressure
4597 * on them otherwise.
4598 * It returns -1 if no node is found.
4599 */
4600 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4601 {
4602 int n, val;
4603 int min_val = INT_MAX;
4604 int best_node = NUMA_NO_NODE;
4605 const struct cpumask *tmp = cpumask_of_node(0);
4606
4607 /* Use the local node if we haven't already */
4608 if (!node_isset(node, *used_node_mask)) {
4609 node_set(node, *used_node_mask);
4610 return node;
4611 }
4612
4613 for_each_node_state(n, N_MEMORY) {
4614
4615 /* Don't want a node to appear more than once */
4616 if (node_isset(n, *used_node_mask))
4617 continue;
4618
4619 /* Use the distance array to find the distance */
4620 val = node_distance(node, n);
4621
4622 /* Penalize nodes under us ("prefer the next node") */
4623 val += (n < node);
4624
4625 /* Give preference to headless and unused nodes */
4626 tmp = cpumask_of_node(n);
4627 if (!cpumask_empty(tmp))
4628 val += PENALTY_FOR_NODE_WITH_CPUS;
4629
4630 /* Slight preference for less loaded node */
4631 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4632 val += node_load[n];
4633
4634 if (val < min_val) {
4635 min_val = val;
4636 best_node = n;
4637 }
4638 }
4639
4640 if (best_node >= 0)
4641 node_set(best_node, *used_node_mask);
4642
4643 return best_node;
4644 }
4645
4646
4647 /*
4648 * Build zonelists ordered by node and zones within node.
4649 * This results in maximum locality--normal zone overflows into local
4650 * DMA zone, if any--but risks exhausting DMA zone.
4651 */
4652 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4653 {
4654 int j;
4655 struct zonelist *zonelist;
4656
4657 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4658 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4659 ;
4660 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4661 zonelist->_zonerefs[j].zone = NULL;
4662 zonelist->_zonerefs[j].zone_idx = 0;
4663 }
4664
4665 /*
4666 * Build gfp_thisnode zonelists
4667 */
4668 static void build_thisnode_zonelists(pg_data_t *pgdat)
4669 {
4670 int j;
4671 struct zonelist *zonelist;
4672
4673 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4674 j = build_zonelists_node(pgdat, zonelist, 0);
4675 zonelist->_zonerefs[j].zone = NULL;
4676 zonelist->_zonerefs[j].zone_idx = 0;
4677 }
4678
4679 /*
4680 * Build zonelists ordered by zone and nodes within zones.
4681 * This results in conserving DMA zone[s] until all Normal memory is
4682 * exhausted, but results in overflowing to remote node while memory
4683 * may still exist in local DMA zone.
4684 */
4685 static int node_order[MAX_NUMNODES];
4686
4687 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4688 {
4689 int pos, j, node;
4690 int zone_type; /* needs to be signed */
4691 struct zone *z;
4692 struct zonelist *zonelist;
4693
4694 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4695 pos = 0;
4696 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4697 for (j = 0; j < nr_nodes; j++) {
4698 node = node_order[j];
4699 z = &NODE_DATA(node)->node_zones[zone_type];
4700 if (managed_zone(z)) {
4701 zoneref_set_zone(z,
4702 &zonelist->_zonerefs[pos++]);
4703 check_highest_zone(zone_type);
4704 }
4705 }
4706 }
4707 zonelist->_zonerefs[pos].zone = NULL;
4708 zonelist->_zonerefs[pos].zone_idx = 0;
4709 }
4710
4711 #if defined(CONFIG_64BIT)
4712 /*
4713 * Devices that require DMA32/DMA are relatively rare and do not justify a
4714 * penalty to every machine in case the specialised case applies. Default
4715 * to Node-ordering on 64-bit NUMA machines
4716 */
4717 static int default_zonelist_order(void)
4718 {
4719 return ZONELIST_ORDER_NODE;
4720 }
4721 #else
4722 /*
4723 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4724 * by the kernel. If processes running on node 0 deplete the low memory zone
4725 * then reclaim will occur more frequency increasing stalls and potentially
4726 * be easier to OOM if a large percentage of the zone is under writeback or
4727 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4728 * Hence, default to zone ordering on 32-bit.
4729 */
4730 static int default_zonelist_order(void)
4731 {
4732 return ZONELIST_ORDER_ZONE;
4733 }
4734 #endif /* CONFIG_64BIT */
4735
4736 static void set_zonelist_order(void)
4737 {
4738 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4739 current_zonelist_order = default_zonelist_order();
4740 else
4741 current_zonelist_order = user_zonelist_order;
4742 }
4743
4744 static void build_zonelists(pg_data_t *pgdat)
4745 {
4746 int i, node, load;
4747 nodemask_t used_mask;
4748 int local_node, prev_node;
4749 struct zonelist *zonelist;
4750 unsigned int order = current_zonelist_order;
4751
4752 /* initialize zonelists */
4753 for (i = 0; i < MAX_ZONELISTS; i++) {
4754 zonelist = pgdat->node_zonelists + i;
4755 zonelist->_zonerefs[0].zone = NULL;
4756 zonelist->_zonerefs[0].zone_idx = 0;
4757 }
4758
4759 /* NUMA-aware ordering of nodes */
4760 local_node = pgdat->node_id;
4761 load = nr_online_nodes;
4762 prev_node = local_node;
4763 nodes_clear(used_mask);
4764
4765 memset(node_order, 0, sizeof(node_order));
4766 i = 0;
4767
4768 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4769 /*
4770 * We don't want to pressure a particular node.
4771 * So adding penalty to the first node in same
4772 * distance group to make it round-robin.
4773 */
4774 if (node_distance(local_node, node) !=
4775 node_distance(local_node, prev_node))
4776 node_load[node] = load;
4777
4778 prev_node = node;
4779 load--;
4780 if (order == ZONELIST_ORDER_NODE)
4781 build_zonelists_in_node_order(pgdat, node);
4782 else
4783 node_order[i++] = node; /* remember order */
4784 }
4785
4786 if (order == ZONELIST_ORDER_ZONE) {
4787 /* calculate node order -- i.e., DMA last! */
4788 build_zonelists_in_zone_order(pgdat, i);
4789 }
4790
4791 build_thisnode_zonelists(pgdat);
4792 }
4793
4794 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4795 /*
4796 * Return node id of node used for "local" allocations.
4797 * I.e., first node id of first zone in arg node's generic zonelist.
4798 * Used for initializing percpu 'numa_mem', which is used primarily
4799 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4800 */
4801 int local_memory_node(int node)
4802 {
4803 struct zoneref *z;
4804
4805 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4806 gfp_zone(GFP_KERNEL),
4807 NULL);
4808 return z->zone->node;
4809 }
4810 #endif
4811
4812 static void setup_min_unmapped_ratio(void);
4813 static void setup_min_slab_ratio(void);
4814 #else /* CONFIG_NUMA */
4815
4816 static void set_zonelist_order(void)
4817 {
4818 current_zonelist_order = ZONELIST_ORDER_ZONE;
4819 }
4820
4821 static void build_zonelists(pg_data_t *pgdat)
4822 {
4823 int node, local_node;
4824 enum zone_type j;
4825 struct zonelist *zonelist;
4826
4827 local_node = pgdat->node_id;
4828
4829 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4830 j = build_zonelists_node(pgdat, zonelist, 0);
4831
4832 /*
4833 * Now we build the zonelist so that it contains the zones
4834 * of all the other nodes.
4835 * We don't want to pressure a particular node, so when
4836 * building the zones for node N, we make sure that the
4837 * zones coming right after the local ones are those from
4838 * node N+1 (modulo N)
4839 */
4840 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4841 if (!node_online(node))
4842 continue;
4843 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4844 }
4845 for (node = 0; node < local_node; node++) {
4846 if (!node_online(node))
4847 continue;
4848 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4849 }
4850
4851 zonelist->_zonerefs[j].zone = NULL;
4852 zonelist->_zonerefs[j].zone_idx = 0;
4853 }
4854
4855 #endif /* CONFIG_NUMA */
4856
4857 /*
4858 * Boot pageset table. One per cpu which is going to be used for all
4859 * zones and all nodes. The parameters will be set in such a way
4860 * that an item put on a list will immediately be handed over to
4861 * the buddy list. This is safe since pageset manipulation is done
4862 * with interrupts disabled.
4863 *
4864 * The boot_pagesets must be kept even after bootup is complete for
4865 * unused processors and/or zones. They do play a role for bootstrapping
4866 * hotplugged processors.
4867 *
4868 * zoneinfo_show() and maybe other functions do
4869 * not check if the processor is online before following the pageset pointer.
4870 * Other parts of the kernel may not check if the zone is available.
4871 */
4872 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4873 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4874 static void setup_zone_pageset(struct zone *zone);
4875
4876 /*
4877 * Global mutex to protect against size modification of zonelists
4878 * as well as to serialize pageset setup for the new populated zone.
4879 */
4880 DEFINE_MUTEX(zonelists_mutex);
4881
4882 /* return values int ....just for stop_machine() */
4883 static int __build_all_zonelists(void *data)
4884 {
4885 int nid;
4886 int cpu;
4887 pg_data_t *self = data;
4888
4889 #ifdef CONFIG_NUMA
4890 memset(node_load, 0, sizeof(node_load));
4891 #endif
4892
4893 if (self && !node_online(self->node_id)) {
4894 build_zonelists(self);
4895 }
4896
4897 for_each_online_node(nid) {
4898 pg_data_t *pgdat = NODE_DATA(nid);
4899
4900 build_zonelists(pgdat);
4901 }
4902
4903 /*
4904 * Initialize the boot_pagesets that are going to be used
4905 * for bootstrapping processors. The real pagesets for
4906 * each zone will be allocated later when the per cpu
4907 * allocator is available.
4908 *
4909 * boot_pagesets are used also for bootstrapping offline
4910 * cpus if the system is already booted because the pagesets
4911 * are needed to initialize allocators on a specific cpu too.
4912 * F.e. the percpu allocator needs the page allocator which
4913 * needs the percpu allocator in order to allocate its pagesets
4914 * (a chicken-egg dilemma).
4915 */
4916 for_each_possible_cpu(cpu) {
4917 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4918
4919 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4920 /*
4921 * We now know the "local memory node" for each node--
4922 * i.e., the node of the first zone in the generic zonelist.
4923 * Set up numa_mem percpu variable for on-line cpus. During
4924 * boot, only the boot cpu should be on-line; we'll init the
4925 * secondary cpus' numa_mem as they come on-line. During
4926 * node/memory hotplug, we'll fixup all on-line cpus.
4927 */
4928 if (cpu_online(cpu))
4929 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4930 #endif
4931 }
4932
4933 return 0;
4934 }
4935
4936 static noinline void __init
4937 build_all_zonelists_init(void)
4938 {
4939 __build_all_zonelists(NULL);
4940 mminit_verify_zonelist();
4941 cpuset_init_current_mems_allowed();
4942 }
4943
4944 /*
4945 * Called with zonelists_mutex held always
4946 * unless system_state == SYSTEM_BOOTING.
4947 *
4948 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4949 * [we're only called with non-NULL zone through __meminit paths] and
4950 * (2) call of __init annotated helper build_all_zonelists_init
4951 * [protected by SYSTEM_BOOTING].
4952 */
4953 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4954 {
4955 set_zonelist_order();
4956
4957 if (system_state == SYSTEM_BOOTING) {
4958 build_all_zonelists_init();
4959 } else {
4960 #ifdef CONFIG_MEMORY_HOTPLUG
4961 if (zone)
4962 setup_zone_pageset(zone);
4963 #endif
4964 /* we have to stop all cpus to guarantee there is no user
4965 of zonelist */
4966 stop_machine(__build_all_zonelists, pgdat, NULL);
4967 /* cpuset refresh routine should be here */
4968 }
4969 vm_total_pages = nr_free_pagecache_pages();
4970 /*
4971 * Disable grouping by mobility if the number of pages in the
4972 * system is too low to allow the mechanism to work. It would be
4973 * more accurate, but expensive to check per-zone. This check is
4974 * made on memory-hotadd so a system can start with mobility
4975 * disabled and enable it later
4976 */
4977 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4978 page_group_by_mobility_disabled = 1;
4979 else
4980 page_group_by_mobility_disabled = 0;
4981
4982 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4983 nr_online_nodes,
4984 zonelist_order_name[current_zonelist_order],
4985 page_group_by_mobility_disabled ? "off" : "on",
4986 vm_total_pages);
4987 #ifdef CONFIG_NUMA
4988 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4989 #endif
4990 }
4991
4992 /*
4993 * Helper functions to size the waitqueue hash table.
4994 * Essentially these want to choose hash table sizes sufficiently
4995 * large so that collisions trying to wait on pages are rare.
4996 * But in fact, the number of active page waitqueues on typical
4997 * systems is ridiculously low, less than 200. So this is even
4998 * conservative, even though it seems large.
4999 *
5000 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5001 * waitqueues, i.e. the size of the waitq table given the number of pages.
5002 */
5003 #define PAGES_PER_WAITQUEUE 256
5004
5005 #ifndef CONFIG_MEMORY_HOTPLUG
5006 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5007 {
5008 unsigned long size = 1;
5009
5010 pages /= PAGES_PER_WAITQUEUE;
5011
5012 while (size < pages)
5013 size <<= 1;
5014
5015 /*
5016 * Once we have dozens or even hundreds of threads sleeping
5017 * on IO we've got bigger problems than wait queue collision.
5018 * Limit the size of the wait table to a reasonable size.
5019 */
5020 size = min(size, 4096UL);
5021
5022 return max(size, 4UL);
5023 }
5024 #else
5025 /*
5026 * A zone's size might be changed by hot-add, so it is not possible to determine
5027 * a suitable size for its wait_table. So we use the maximum size now.
5028 *
5029 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5030 *
5031 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5032 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5033 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5034 *
5035 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5036 * or more by the traditional way. (See above). It equals:
5037 *
5038 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5039 * ia64(16K page size) : = ( 8G + 4M)byte.
5040 * powerpc (64K page size) : = (32G +16M)byte.
5041 */
5042 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5043 {
5044 return 4096UL;
5045 }
5046 #endif
5047
5048 /*
5049 * This is an integer logarithm so that shifts can be used later
5050 * to extract the more random high bits from the multiplicative
5051 * hash function before the remainder is taken.
5052 */
5053 static inline unsigned long wait_table_bits(unsigned long size)
5054 {
5055 return ffz(~size);
5056 }
5057
5058 /*
5059 * Initially all pages are reserved - free ones are freed
5060 * up by free_all_bootmem() once the early boot process is
5061 * done. Non-atomic initialization, single-pass.
5062 */
5063 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5064 unsigned long start_pfn, enum memmap_context context)
5065 {
5066 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5067 unsigned long end_pfn = start_pfn + size;
5068 pg_data_t *pgdat = NODE_DATA(nid);
5069 unsigned long pfn;
5070 unsigned long nr_initialised = 0;
5071 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5072 struct memblock_region *r = NULL, *tmp;
5073 #endif
5074
5075 if (highest_memmap_pfn < end_pfn - 1)
5076 highest_memmap_pfn = end_pfn - 1;
5077
5078 /*
5079 * Honor reservation requested by the driver for this ZONE_DEVICE
5080 * memory
5081 */
5082 if (altmap && start_pfn == altmap->base_pfn)
5083 start_pfn += altmap->reserve;
5084
5085 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5086 /*
5087 * There can be holes in boot-time mem_map[]s handed to this
5088 * function. They do not exist on hotplugged memory.
5089 */
5090 if (context != MEMMAP_EARLY)
5091 goto not_early;
5092
5093 if (!early_pfn_valid(pfn))
5094 continue;
5095 if (!early_pfn_in_nid(pfn, nid))
5096 continue;
5097 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5098 break;
5099
5100 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5101 /*
5102 * Check given memblock attribute by firmware which can affect
5103 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5104 * mirrored, it's an overlapped memmap init. skip it.
5105 */
5106 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5107 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5108 for_each_memblock(memory, tmp)
5109 if (pfn < memblock_region_memory_end_pfn(tmp))
5110 break;
5111 r = tmp;
5112 }
5113 if (pfn >= memblock_region_memory_base_pfn(r) &&
5114 memblock_is_mirror(r)) {
5115 /* already initialized as NORMAL */
5116 pfn = memblock_region_memory_end_pfn(r);
5117 continue;
5118 }
5119 }
5120 #endif
5121
5122 not_early:
5123 /*
5124 * Mark the block movable so that blocks are reserved for
5125 * movable at startup. This will force kernel allocations
5126 * to reserve their blocks rather than leaking throughout
5127 * the address space during boot when many long-lived
5128 * kernel allocations are made.
5129 *
5130 * bitmap is created for zone's valid pfn range. but memmap
5131 * can be created for invalid pages (for alignment)
5132 * check here not to call set_pageblock_migratetype() against
5133 * pfn out of zone.
5134 */
5135 if (!(pfn & (pageblock_nr_pages - 1))) {
5136 struct page *page = pfn_to_page(pfn);
5137
5138 __init_single_page(page, pfn, zone, nid);
5139 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5140 } else {
5141 __init_single_pfn(pfn, zone, nid);
5142 }
5143 }
5144 }
5145
5146 static void __meminit zone_init_free_lists(struct zone *zone)
5147 {
5148 unsigned int order, t;
5149 for_each_migratetype_order(order, t) {
5150 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5151 zone->free_area[order].nr_free = 0;
5152 }
5153 }
5154
5155 #ifndef __HAVE_ARCH_MEMMAP_INIT
5156 #define memmap_init(size, nid, zone, start_pfn) \
5157 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5158 #endif
5159
5160 static int zone_batchsize(struct zone *zone)
5161 {
5162 #ifdef CONFIG_MMU
5163 int batch;
5164
5165 /*
5166 * The per-cpu-pages pools are set to around 1000th of the
5167 * size of the zone. But no more than 1/2 of a meg.
5168 *
5169 * OK, so we don't know how big the cache is. So guess.
5170 */
5171 batch = zone->managed_pages / 1024;
5172 if (batch * PAGE_SIZE > 512 * 1024)
5173 batch = (512 * 1024) / PAGE_SIZE;
5174 batch /= 4; /* We effectively *= 4 below */
5175 if (batch < 1)
5176 batch = 1;
5177
5178 /*
5179 * Clamp the batch to a 2^n - 1 value. Having a power
5180 * of 2 value was found to be more likely to have
5181 * suboptimal cache aliasing properties in some cases.
5182 *
5183 * For example if 2 tasks are alternately allocating
5184 * batches of pages, one task can end up with a lot
5185 * of pages of one half of the possible page colors
5186 * and the other with pages of the other colors.
5187 */
5188 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5189
5190 return batch;
5191
5192 #else
5193 /* The deferral and batching of frees should be suppressed under NOMMU
5194 * conditions.
5195 *
5196 * The problem is that NOMMU needs to be able to allocate large chunks
5197 * of contiguous memory as there's no hardware page translation to
5198 * assemble apparent contiguous memory from discontiguous pages.
5199 *
5200 * Queueing large contiguous runs of pages for batching, however,
5201 * causes the pages to actually be freed in smaller chunks. As there
5202 * can be a significant delay between the individual batches being
5203 * recycled, this leads to the once large chunks of space being
5204 * fragmented and becoming unavailable for high-order allocations.
5205 */
5206 return 0;
5207 #endif
5208 }
5209
5210 /*
5211 * pcp->high and pcp->batch values are related and dependent on one another:
5212 * ->batch must never be higher then ->high.
5213 * The following function updates them in a safe manner without read side
5214 * locking.
5215 *
5216 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5217 * those fields changing asynchronously (acording the the above rule).
5218 *
5219 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5220 * outside of boot time (or some other assurance that no concurrent updaters
5221 * exist).
5222 */
5223 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5224 unsigned long batch)
5225 {
5226 /* start with a fail safe value for batch */
5227 pcp->batch = 1;
5228 smp_wmb();
5229
5230 /* Update high, then batch, in order */
5231 pcp->high = high;
5232 smp_wmb();
5233
5234 pcp->batch = batch;
5235 }
5236
5237 /* a companion to pageset_set_high() */
5238 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5239 {
5240 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5241 }
5242
5243 static void pageset_init(struct per_cpu_pageset *p)
5244 {
5245 struct per_cpu_pages *pcp;
5246 int migratetype;
5247
5248 memset(p, 0, sizeof(*p));
5249
5250 pcp = &p->pcp;
5251 pcp->count = 0;
5252 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5253 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5254 }
5255
5256 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5257 {
5258 pageset_init(p);
5259 pageset_set_batch(p, batch);
5260 }
5261
5262 /*
5263 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5264 * to the value high for the pageset p.
5265 */
5266 static void pageset_set_high(struct per_cpu_pageset *p,
5267 unsigned long high)
5268 {
5269 unsigned long batch = max(1UL, high / 4);
5270 if ((high / 4) > (PAGE_SHIFT * 8))
5271 batch = PAGE_SHIFT * 8;
5272
5273 pageset_update(&p->pcp, high, batch);
5274 }
5275
5276 static void pageset_set_high_and_batch(struct zone *zone,
5277 struct per_cpu_pageset *pcp)
5278 {
5279 if (percpu_pagelist_fraction)
5280 pageset_set_high(pcp,
5281 (zone->managed_pages /
5282 percpu_pagelist_fraction));
5283 else
5284 pageset_set_batch(pcp, zone_batchsize(zone));
5285 }
5286
5287 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5288 {
5289 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5290
5291 pageset_init(pcp);
5292 pageset_set_high_and_batch(zone, pcp);
5293 }
5294
5295 static void __meminit setup_zone_pageset(struct zone *zone)
5296 {
5297 int cpu;
5298 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5299 for_each_possible_cpu(cpu)
5300 zone_pageset_init(zone, cpu);
5301 }
5302
5303 /*
5304 * Allocate per cpu pagesets and initialize them.
5305 * Before this call only boot pagesets were available.
5306 */
5307 void __init setup_per_cpu_pageset(void)
5308 {
5309 struct pglist_data *pgdat;
5310 struct zone *zone;
5311
5312 for_each_populated_zone(zone)
5313 setup_zone_pageset(zone);
5314
5315 for_each_online_pgdat(pgdat)
5316 pgdat->per_cpu_nodestats =
5317 alloc_percpu(struct per_cpu_nodestat);
5318 }
5319
5320 static noinline __ref
5321 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5322 {
5323 int i;
5324 size_t alloc_size;
5325
5326 /*
5327 * The per-page waitqueue mechanism uses hashed waitqueues
5328 * per zone.
5329 */
5330 zone->wait_table_hash_nr_entries =
5331 wait_table_hash_nr_entries(zone_size_pages);
5332 zone->wait_table_bits =
5333 wait_table_bits(zone->wait_table_hash_nr_entries);
5334 alloc_size = zone->wait_table_hash_nr_entries
5335 * sizeof(wait_queue_head_t);
5336
5337 if (!slab_is_available()) {
5338 zone->wait_table = (wait_queue_head_t *)
5339 memblock_virt_alloc_node_nopanic(
5340 alloc_size, zone->zone_pgdat->node_id);
5341 } else {
5342 /*
5343 * This case means that a zone whose size was 0 gets new memory
5344 * via memory hot-add.
5345 * But it may be the case that a new node was hot-added. In
5346 * this case vmalloc() will not be able to use this new node's
5347 * memory - this wait_table must be initialized to use this new
5348 * node itself as well.
5349 * To use this new node's memory, further consideration will be
5350 * necessary.
5351 */
5352 zone->wait_table = vmalloc(alloc_size);
5353 }
5354 if (!zone->wait_table)
5355 return -ENOMEM;
5356
5357 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5358 init_waitqueue_head(zone->wait_table + i);
5359
5360 return 0;
5361 }
5362
5363 static __meminit void zone_pcp_init(struct zone *zone)
5364 {
5365 /*
5366 * per cpu subsystem is not up at this point. The following code
5367 * relies on the ability of the linker to provide the
5368 * offset of a (static) per cpu variable into the per cpu area.
5369 */
5370 zone->pageset = &boot_pageset;
5371
5372 if (populated_zone(zone))
5373 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5374 zone->name, zone->present_pages,
5375 zone_batchsize(zone));
5376 }
5377
5378 int __meminit init_currently_empty_zone(struct zone *zone,
5379 unsigned long zone_start_pfn,
5380 unsigned long size)
5381 {
5382 struct pglist_data *pgdat = zone->zone_pgdat;
5383 int ret;
5384 ret = zone_wait_table_init(zone, size);
5385 if (ret)
5386 return ret;
5387 pgdat->nr_zones = zone_idx(zone) + 1;
5388
5389 zone->zone_start_pfn = zone_start_pfn;
5390
5391 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5392 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5393 pgdat->node_id,
5394 (unsigned long)zone_idx(zone),
5395 zone_start_pfn, (zone_start_pfn + size));
5396
5397 zone_init_free_lists(zone);
5398
5399 return 0;
5400 }
5401
5402 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5403 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5404
5405 /*
5406 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5407 */
5408 int __meminit __early_pfn_to_nid(unsigned long pfn,
5409 struct mminit_pfnnid_cache *state)
5410 {
5411 unsigned long start_pfn, end_pfn;
5412 int nid;
5413
5414 if (state->last_start <= pfn && pfn < state->last_end)
5415 return state->last_nid;
5416
5417 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5418 if (nid != -1) {
5419 state->last_start = start_pfn;
5420 state->last_end = end_pfn;
5421 state->last_nid = nid;
5422 }
5423
5424 return nid;
5425 }
5426 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5427
5428 /**
5429 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5430 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5431 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5432 *
5433 * If an architecture guarantees that all ranges registered contain no holes
5434 * and may be freed, this this function may be used instead of calling
5435 * memblock_free_early_nid() manually.
5436 */
5437 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5438 {
5439 unsigned long start_pfn, end_pfn;
5440 int i, this_nid;
5441
5442 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5443 start_pfn = min(start_pfn, max_low_pfn);
5444 end_pfn = min(end_pfn, max_low_pfn);
5445
5446 if (start_pfn < end_pfn)
5447 memblock_free_early_nid(PFN_PHYS(start_pfn),
5448 (end_pfn - start_pfn) << PAGE_SHIFT,
5449 this_nid);
5450 }
5451 }
5452
5453 /**
5454 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5455 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5456 *
5457 * If an architecture guarantees that all ranges registered contain no holes and may
5458 * be freed, this function may be used instead of calling memory_present() manually.
5459 */
5460 void __init sparse_memory_present_with_active_regions(int nid)
5461 {
5462 unsigned long start_pfn, end_pfn;
5463 int i, this_nid;
5464
5465 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5466 memory_present(this_nid, start_pfn, end_pfn);
5467 }
5468
5469 /**
5470 * get_pfn_range_for_nid - Return the start and end page frames for a node
5471 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5472 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5473 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5474 *
5475 * It returns the start and end page frame of a node based on information
5476 * provided by memblock_set_node(). If called for a node
5477 * with no available memory, a warning is printed and the start and end
5478 * PFNs will be 0.
5479 */
5480 void __meminit get_pfn_range_for_nid(unsigned int nid,
5481 unsigned long *start_pfn, unsigned long *end_pfn)
5482 {
5483 unsigned long this_start_pfn, this_end_pfn;
5484 int i;
5485
5486 *start_pfn = -1UL;
5487 *end_pfn = 0;
5488
5489 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5490 *start_pfn = min(*start_pfn, this_start_pfn);
5491 *end_pfn = max(*end_pfn, this_end_pfn);
5492 }
5493
5494 if (*start_pfn == -1UL)
5495 *start_pfn = 0;
5496 }
5497
5498 /*
5499 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5500 * assumption is made that zones within a node are ordered in monotonic
5501 * increasing memory addresses so that the "highest" populated zone is used
5502 */
5503 static void __init find_usable_zone_for_movable(void)
5504 {
5505 int zone_index;
5506 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5507 if (zone_index == ZONE_MOVABLE)
5508 continue;
5509
5510 if (arch_zone_highest_possible_pfn[zone_index] >
5511 arch_zone_lowest_possible_pfn[zone_index])
5512 break;
5513 }
5514
5515 VM_BUG_ON(zone_index == -1);
5516 movable_zone = zone_index;
5517 }
5518
5519 /*
5520 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5521 * because it is sized independent of architecture. Unlike the other zones,
5522 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5523 * in each node depending on the size of each node and how evenly kernelcore
5524 * is distributed. This helper function adjusts the zone ranges
5525 * provided by the architecture for a given node by using the end of the
5526 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5527 * zones within a node are in order of monotonic increases memory addresses
5528 */
5529 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5530 unsigned long zone_type,
5531 unsigned long node_start_pfn,
5532 unsigned long node_end_pfn,
5533 unsigned long *zone_start_pfn,
5534 unsigned long *zone_end_pfn)
5535 {
5536 /* Only adjust if ZONE_MOVABLE is on this node */
5537 if (zone_movable_pfn[nid]) {
5538 /* Size ZONE_MOVABLE */
5539 if (zone_type == ZONE_MOVABLE) {
5540 *zone_start_pfn = zone_movable_pfn[nid];
5541 *zone_end_pfn = min(node_end_pfn,
5542 arch_zone_highest_possible_pfn[movable_zone]);
5543
5544 /* Adjust for ZONE_MOVABLE starting within this range */
5545 } else if (!mirrored_kernelcore &&
5546 *zone_start_pfn < zone_movable_pfn[nid] &&
5547 *zone_end_pfn > zone_movable_pfn[nid]) {
5548 *zone_end_pfn = zone_movable_pfn[nid];
5549
5550 /* Check if this whole range is within ZONE_MOVABLE */
5551 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5552 *zone_start_pfn = *zone_end_pfn;
5553 }
5554 }
5555
5556 /*
5557 * Return the number of pages a zone spans in a node, including holes
5558 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5559 */
5560 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5561 unsigned long zone_type,
5562 unsigned long node_start_pfn,
5563 unsigned long node_end_pfn,
5564 unsigned long *zone_start_pfn,
5565 unsigned long *zone_end_pfn,
5566 unsigned long *ignored)
5567 {
5568 /* When hotadd a new node from cpu_up(), the node should be empty */
5569 if (!node_start_pfn && !node_end_pfn)
5570 return 0;
5571
5572 /* Get the start and end of the zone */
5573 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5574 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5575 adjust_zone_range_for_zone_movable(nid, zone_type,
5576 node_start_pfn, node_end_pfn,
5577 zone_start_pfn, zone_end_pfn);
5578
5579 /* Check that this node has pages within the zone's required range */
5580 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5581 return 0;
5582
5583 /* Move the zone boundaries inside the node if necessary */
5584 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5585 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5586
5587 /* Return the spanned pages */
5588 return *zone_end_pfn - *zone_start_pfn;
5589 }
5590
5591 /*
5592 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5593 * then all holes in the requested range will be accounted for.
5594 */
5595 unsigned long __meminit __absent_pages_in_range(int nid,
5596 unsigned long range_start_pfn,
5597 unsigned long range_end_pfn)
5598 {
5599 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5600 unsigned long start_pfn, end_pfn;
5601 int i;
5602
5603 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5604 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5605 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5606 nr_absent -= end_pfn - start_pfn;
5607 }
5608 return nr_absent;
5609 }
5610
5611 /**
5612 * absent_pages_in_range - Return number of page frames in holes within a range
5613 * @start_pfn: The start PFN to start searching for holes
5614 * @end_pfn: The end PFN to stop searching for holes
5615 *
5616 * It returns the number of pages frames in memory holes within a range.
5617 */
5618 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5619 unsigned long end_pfn)
5620 {
5621 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5622 }
5623
5624 /* Return the number of page frames in holes in a zone on a node */
5625 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5626 unsigned long zone_type,
5627 unsigned long node_start_pfn,
5628 unsigned long node_end_pfn,
5629 unsigned long *ignored)
5630 {
5631 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5632 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5633 unsigned long zone_start_pfn, zone_end_pfn;
5634 unsigned long nr_absent;
5635
5636 /* When hotadd a new node from cpu_up(), the node should be empty */
5637 if (!node_start_pfn && !node_end_pfn)
5638 return 0;
5639
5640 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5641 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5642
5643 adjust_zone_range_for_zone_movable(nid, zone_type,
5644 node_start_pfn, node_end_pfn,
5645 &zone_start_pfn, &zone_end_pfn);
5646 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5647
5648 /*
5649 * ZONE_MOVABLE handling.
5650 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5651 * and vice versa.
5652 */
5653 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5654 unsigned long start_pfn, end_pfn;
5655 struct memblock_region *r;
5656
5657 for_each_memblock(memory, r) {
5658 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5659 zone_start_pfn, zone_end_pfn);
5660 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5661 zone_start_pfn, zone_end_pfn);
5662
5663 if (zone_type == ZONE_MOVABLE &&
5664 memblock_is_mirror(r))
5665 nr_absent += end_pfn - start_pfn;
5666
5667 if (zone_type == ZONE_NORMAL &&
5668 !memblock_is_mirror(r))
5669 nr_absent += end_pfn - start_pfn;
5670 }
5671 }
5672
5673 return nr_absent;
5674 }
5675
5676 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5677 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5678 unsigned long zone_type,
5679 unsigned long node_start_pfn,
5680 unsigned long node_end_pfn,
5681 unsigned long *zone_start_pfn,
5682 unsigned long *zone_end_pfn,
5683 unsigned long *zones_size)
5684 {
5685 unsigned int zone;
5686
5687 *zone_start_pfn = node_start_pfn;
5688 for (zone = 0; zone < zone_type; zone++)
5689 *zone_start_pfn += zones_size[zone];
5690
5691 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5692
5693 return zones_size[zone_type];
5694 }
5695
5696 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5697 unsigned long zone_type,
5698 unsigned long node_start_pfn,
5699 unsigned long node_end_pfn,
5700 unsigned long *zholes_size)
5701 {
5702 if (!zholes_size)
5703 return 0;
5704
5705 return zholes_size[zone_type];
5706 }
5707
5708 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5709
5710 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5711 unsigned long node_start_pfn,
5712 unsigned long node_end_pfn,
5713 unsigned long *zones_size,
5714 unsigned long *zholes_size)
5715 {
5716 unsigned long realtotalpages = 0, totalpages = 0;
5717 enum zone_type i;
5718
5719 for (i = 0; i < MAX_NR_ZONES; i++) {
5720 struct zone *zone = pgdat->node_zones + i;
5721 unsigned long zone_start_pfn, zone_end_pfn;
5722 unsigned long size, real_size;
5723
5724 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5725 node_start_pfn,
5726 node_end_pfn,
5727 &zone_start_pfn,
5728 &zone_end_pfn,
5729 zones_size);
5730 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5731 node_start_pfn, node_end_pfn,
5732 zholes_size);
5733 if (size)
5734 zone->zone_start_pfn = zone_start_pfn;
5735 else
5736 zone->zone_start_pfn = 0;
5737 zone->spanned_pages = size;
5738 zone->present_pages = real_size;
5739
5740 totalpages += size;
5741 realtotalpages += real_size;
5742 }
5743
5744 pgdat->node_spanned_pages = totalpages;
5745 pgdat->node_present_pages = realtotalpages;
5746 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5747 realtotalpages);
5748 }
5749
5750 #ifndef CONFIG_SPARSEMEM
5751 /*
5752 * Calculate the size of the zone->blockflags rounded to an unsigned long
5753 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5754 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5755 * round what is now in bits to nearest long in bits, then return it in
5756 * bytes.
5757 */
5758 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5759 {
5760 unsigned long usemapsize;
5761
5762 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5763 usemapsize = roundup(zonesize, pageblock_nr_pages);
5764 usemapsize = usemapsize >> pageblock_order;
5765 usemapsize *= NR_PAGEBLOCK_BITS;
5766 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5767
5768 return usemapsize / 8;
5769 }
5770
5771 static void __init setup_usemap(struct pglist_data *pgdat,
5772 struct zone *zone,
5773 unsigned long zone_start_pfn,
5774 unsigned long zonesize)
5775 {
5776 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5777 zone->pageblock_flags = NULL;
5778 if (usemapsize)
5779 zone->pageblock_flags =
5780 memblock_virt_alloc_node_nopanic(usemapsize,
5781 pgdat->node_id);
5782 }
5783 #else
5784 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5785 unsigned long zone_start_pfn, unsigned long zonesize) {}
5786 #endif /* CONFIG_SPARSEMEM */
5787
5788 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5789
5790 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5791 void __paginginit set_pageblock_order(void)
5792 {
5793 unsigned int order;
5794
5795 /* Check that pageblock_nr_pages has not already been setup */
5796 if (pageblock_order)
5797 return;
5798
5799 if (HPAGE_SHIFT > PAGE_SHIFT)
5800 order = HUGETLB_PAGE_ORDER;
5801 else
5802 order = MAX_ORDER - 1;
5803
5804 /*
5805 * Assume the largest contiguous order of interest is a huge page.
5806 * This value may be variable depending on boot parameters on IA64 and
5807 * powerpc.
5808 */
5809 pageblock_order = order;
5810 }
5811 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5812
5813 /*
5814 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5815 * is unused as pageblock_order is set at compile-time. See
5816 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5817 * the kernel config
5818 */
5819 void __paginginit set_pageblock_order(void)
5820 {
5821 }
5822
5823 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5824
5825 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5826 unsigned long present_pages)
5827 {
5828 unsigned long pages = spanned_pages;
5829
5830 /*
5831 * Provide a more accurate estimation if there are holes within
5832 * the zone and SPARSEMEM is in use. If there are holes within the
5833 * zone, each populated memory region may cost us one or two extra
5834 * memmap pages due to alignment because memmap pages for each
5835 * populated regions may not naturally algined on page boundary.
5836 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5837 */
5838 if (spanned_pages > present_pages + (present_pages >> 4) &&
5839 IS_ENABLED(CONFIG_SPARSEMEM))
5840 pages = present_pages;
5841
5842 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5843 }
5844
5845 /*
5846 * Set up the zone data structures:
5847 * - mark all pages reserved
5848 * - mark all memory queues empty
5849 * - clear the memory bitmaps
5850 *
5851 * NOTE: pgdat should get zeroed by caller.
5852 */
5853 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5854 {
5855 enum zone_type j;
5856 int nid = pgdat->node_id;
5857 int ret;
5858
5859 pgdat_resize_init(pgdat);
5860 #ifdef CONFIG_NUMA_BALANCING
5861 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5862 pgdat->numabalancing_migrate_nr_pages = 0;
5863 pgdat->numabalancing_migrate_next_window = jiffies;
5864 #endif
5865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5866 spin_lock_init(&pgdat->split_queue_lock);
5867 INIT_LIST_HEAD(&pgdat->split_queue);
5868 pgdat->split_queue_len = 0;
5869 #endif
5870 init_waitqueue_head(&pgdat->kswapd_wait);
5871 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5872 #ifdef CONFIG_COMPACTION
5873 init_waitqueue_head(&pgdat->kcompactd_wait);
5874 #endif
5875 pgdat_page_ext_init(pgdat);
5876 spin_lock_init(&pgdat->lru_lock);
5877 lruvec_init(node_lruvec(pgdat));
5878
5879 for (j = 0; j < MAX_NR_ZONES; j++) {
5880 struct zone *zone = pgdat->node_zones + j;
5881 unsigned long size, realsize, freesize, memmap_pages;
5882 unsigned long zone_start_pfn = zone->zone_start_pfn;
5883
5884 size = zone->spanned_pages;
5885 realsize = freesize = zone->present_pages;
5886
5887 /*
5888 * Adjust freesize so that it accounts for how much memory
5889 * is used by this zone for memmap. This affects the watermark
5890 * and per-cpu initialisations
5891 */
5892 memmap_pages = calc_memmap_size(size, realsize);
5893 if (!is_highmem_idx(j)) {
5894 if (freesize >= memmap_pages) {
5895 freesize -= memmap_pages;
5896 if (memmap_pages)
5897 printk(KERN_DEBUG
5898 " %s zone: %lu pages used for memmap\n",
5899 zone_names[j], memmap_pages);
5900 } else
5901 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5902 zone_names[j], memmap_pages, freesize);
5903 }
5904
5905 /* Account for reserved pages */
5906 if (j == 0 && freesize > nr_memory_reserve) {
5907 freesize -= nr_memory_reserve;
5908 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5909 zone_names[0], nr_memory_reserve);
5910 }
5911
5912 if (!is_highmem_idx(j))
5913 nr_kernel_pages += freesize;
5914 /* Charge for highmem memmap if there are enough kernel pages */
5915 else if (nr_kernel_pages > memmap_pages * 2)
5916 nr_kernel_pages -= memmap_pages;
5917 nr_all_pages += freesize;
5918
5919 /*
5920 * Set an approximate value for lowmem here, it will be adjusted
5921 * when the bootmem allocator frees pages into the buddy system.
5922 * And all highmem pages will be managed by the buddy system.
5923 */
5924 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5925 #ifdef CONFIG_NUMA
5926 zone->node = nid;
5927 #endif
5928 zone->name = zone_names[j];
5929 zone->zone_pgdat = pgdat;
5930 spin_lock_init(&zone->lock);
5931 zone_seqlock_init(zone);
5932 zone_pcp_init(zone);
5933
5934 if (!size)
5935 continue;
5936
5937 set_pageblock_order();
5938 setup_usemap(pgdat, zone, zone_start_pfn, size);
5939 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5940 BUG_ON(ret);
5941 memmap_init(size, nid, j, zone_start_pfn);
5942 }
5943 }
5944
5945 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5946 {
5947 unsigned long __maybe_unused start = 0;
5948 unsigned long __maybe_unused offset = 0;
5949
5950 /* Skip empty nodes */
5951 if (!pgdat->node_spanned_pages)
5952 return;
5953
5954 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5955 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5956 offset = pgdat->node_start_pfn - start;
5957 /* ia64 gets its own node_mem_map, before this, without bootmem */
5958 if (!pgdat->node_mem_map) {
5959 unsigned long size, end;
5960 struct page *map;
5961
5962 /*
5963 * The zone's endpoints aren't required to be MAX_ORDER
5964 * aligned but the node_mem_map endpoints must be in order
5965 * for the buddy allocator to function correctly.
5966 */
5967 end = pgdat_end_pfn(pgdat);
5968 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5969 size = (end - start) * sizeof(struct page);
5970 map = alloc_remap(pgdat->node_id, size);
5971 if (!map)
5972 map = memblock_virt_alloc_node_nopanic(size,
5973 pgdat->node_id);
5974 pgdat->node_mem_map = map + offset;
5975 }
5976 #ifndef CONFIG_NEED_MULTIPLE_NODES
5977 /*
5978 * With no DISCONTIG, the global mem_map is just set as node 0's
5979 */
5980 if (pgdat == NODE_DATA(0)) {
5981 mem_map = NODE_DATA(0)->node_mem_map;
5982 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5983 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5984 mem_map -= offset;
5985 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5986 }
5987 #endif
5988 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5989 }
5990
5991 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5992 unsigned long node_start_pfn, unsigned long *zholes_size)
5993 {
5994 pg_data_t *pgdat = NODE_DATA(nid);
5995 unsigned long start_pfn = 0;
5996 unsigned long end_pfn = 0;
5997
5998 /* pg_data_t should be reset to zero when it's allocated */
5999 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6000
6001 reset_deferred_meminit(pgdat);
6002 pgdat->node_id = nid;
6003 pgdat->node_start_pfn = node_start_pfn;
6004 pgdat->per_cpu_nodestats = NULL;
6005 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6006 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6007 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6008 (u64)start_pfn << PAGE_SHIFT,
6009 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6010 #else
6011 start_pfn = node_start_pfn;
6012 #endif
6013 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6014 zones_size, zholes_size);
6015
6016 alloc_node_mem_map(pgdat);
6017 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6018 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6019 nid, (unsigned long)pgdat,
6020 (unsigned long)pgdat->node_mem_map);
6021 #endif
6022
6023 free_area_init_core(pgdat);
6024 }
6025
6026 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6027
6028 #if MAX_NUMNODES > 1
6029 /*
6030 * Figure out the number of possible node ids.
6031 */
6032 void __init setup_nr_node_ids(void)
6033 {
6034 unsigned int highest;
6035
6036 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6037 nr_node_ids = highest + 1;
6038 }
6039 #endif
6040
6041 /**
6042 * node_map_pfn_alignment - determine the maximum internode alignment
6043 *
6044 * This function should be called after node map is populated and sorted.
6045 * It calculates the maximum power of two alignment which can distinguish
6046 * all the nodes.
6047 *
6048 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6049 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6050 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6051 * shifted, 1GiB is enough and this function will indicate so.
6052 *
6053 * This is used to test whether pfn -> nid mapping of the chosen memory
6054 * model has fine enough granularity to avoid incorrect mapping for the
6055 * populated node map.
6056 *
6057 * Returns the determined alignment in pfn's. 0 if there is no alignment
6058 * requirement (single node).
6059 */
6060 unsigned long __init node_map_pfn_alignment(void)
6061 {
6062 unsigned long accl_mask = 0, last_end = 0;
6063 unsigned long start, end, mask;
6064 int last_nid = -1;
6065 int i, nid;
6066
6067 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6068 if (!start || last_nid < 0 || last_nid == nid) {
6069 last_nid = nid;
6070 last_end = end;
6071 continue;
6072 }
6073
6074 /*
6075 * Start with a mask granular enough to pin-point to the
6076 * start pfn and tick off bits one-by-one until it becomes
6077 * too coarse to separate the current node from the last.
6078 */
6079 mask = ~((1 << __ffs(start)) - 1);
6080 while (mask && last_end <= (start & (mask << 1)))
6081 mask <<= 1;
6082
6083 /* accumulate all internode masks */
6084 accl_mask |= mask;
6085 }
6086
6087 /* convert mask to number of pages */
6088 return ~accl_mask + 1;
6089 }
6090
6091 /* Find the lowest pfn for a node */
6092 static unsigned long __init find_min_pfn_for_node(int nid)
6093 {
6094 unsigned long min_pfn = ULONG_MAX;
6095 unsigned long start_pfn;
6096 int i;
6097
6098 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6099 min_pfn = min(min_pfn, start_pfn);
6100
6101 if (min_pfn == ULONG_MAX) {
6102 pr_warn("Could not find start_pfn for node %d\n", nid);
6103 return 0;
6104 }
6105
6106 return min_pfn;
6107 }
6108
6109 /**
6110 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6111 *
6112 * It returns the minimum PFN based on information provided via
6113 * memblock_set_node().
6114 */
6115 unsigned long __init find_min_pfn_with_active_regions(void)
6116 {
6117 return find_min_pfn_for_node(MAX_NUMNODES);
6118 }
6119
6120 /*
6121 * early_calculate_totalpages()
6122 * Sum pages in active regions for movable zone.
6123 * Populate N_MEMORY for calculating usable_nodes.
6124 */
6125 static unsigned long __init early_calculate_totalpages(void)
6126 {
6127 unsigned long totalpages = 0;
6128 unsigned long start_pfn, end_pfn;
6129 int i, nid;
6130
6131 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6132 unsigned long pages = end_pfn - start_pfn;
6133
6134 totalpages += pages;
6135 if (pages)
6136 node_set_state(nid, N_MEMORY);
6137 }
6138 return totalpages;
6139 }
6140
6141 /*
6142 * Find the PFN the Movable zone begins in each node. Kernel memory
6143 * is spread evenly between nodes as long as the nodes have enough
6144 * memory. When they don't, some nodes will have more kernelcore than
6145 * others
6146 */
6147 static void __init find_zone_movable_pfns_for_nodes(void)
6148 {
6149 int i, nid;
6150 unsigned long usable_startpfn;
6151 unsigned long kernelcore_node, kernelcore_remaining;
6152 /* save the state before borrow the nodemask */
6153 nodemask_t saved_node_state = node_states[N_MEMORY];
6154 unsigned long totalpages = early_calculate_totalpages();
6155 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6156 struct memblock_region *r;
6157
6158 /* Need to find movable_zone earlier when movable_node is specified. */
6159 find_usable_zone_for_movable();
6160
6161 /*
6162 * If movable_node is specified, ignore kernelcore and movablecore
6163 * options.
6164 */
6165 if (movable_node_is_enabled()) {
6166 for_each_memblock(memory, r) {
6167 if (!memblock_is_hotpluggable(r))
6168 continue;
6169
6170 nid = r->nid;
6171
6172 usable_startpfn = PFN_DOWN(r->base);
6173 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6174 min(usable_startpfn, zone_movable_pfn[nid]) :
6175 usable_startpfn;
6176 }
6177
6178 goto out2;
6179 }
6180
6181 /*
6182 * If kernelcore=mirror is specified, ignore movablecore option
6183 */
6184 if (mirrored_kernelcore) {
6185 bool mem_below_4gb_not_mirrored = false;
6186
6187 for_each_memblock(memory, r) {
6188 if (memblock_is_mirror(r))
6189 continue;
6190
6191 nid = r->nid;
6192
6193 usable_startpfn = memblock_region_memory_base_pfn(r);
6194
6195 if (usable_startpfn < 0x100000) {
6196 mem_below_4gb_not_mirrored = true;
6197 continue;
6198 }
6199
6200 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6201 min(usable_startpfn, zone_movable_pfn[nid]) :
6202 usable_startpfn;
6203 }
6204
6205 if (mem_below_4gb_not_mirrored)
6206 pr_warn("This configuration results in unmirrored kernel memory.");
6207
6208 goto out2;
6209 }
6210
6211 /*
6212 * If movablecore=nn[KMG] was specified, calculate what size of
6213 * kernelcore that corresponds so that memory usable for
6214 * any allocation type is evenly spread. If both kernelcore
6215 * and movablecore are specified, then the value of kernelcore
6216 * will be used for required_kernelcore if it's greater than
6217 * what movablecore would have allowed.
6218 */
6219 if (required_movablecore) {
6220 unsigned long corepages;
6221
6222 /*
6223 * Round-up so that ZONE_MOVABLE is at least as large as what
6224 * was requested by the user
6225 */
6226 required_movablecore =
6227 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6228 required_movablecore = min(totalpages, required_movablecore);
6229 corepages = totalpages - required_movablecore;
6230
6231 required_kernelcore = max(required_kernelcore, corepages);
6232 }
6233
6234 /*
6235 * If kernelcore was not specified or kernelcore size is larger
6236 * than totalpages, there is no ZONE_MOVABLE.
6237 */
6238 if (!required_kernelcore || required_kernelcore >= totalpages)
6239 goto out;
6240
6241 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6242 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6243
6244 restart:
6245 /* Spread kernelcore memory as evenly as possible throughout nodes */
6246 kernelcore_node = required_kernelcore / usable_nodes;
6247 for_each_node_state(nid, N_MEMORY) {
6248 unsigned long start_pfn, end_pfn;
6249
6250 /*
6251 * Recalculate kernelcore_node if the division per node
6252 * now exceeds what is necessary to satisfy the requested
6253 * amount of memory for the kernel
6254 */
6255 if (required_kernelcore < kernelcore_node)
6256 kernelcore_node = required_kernelcore / usable_nodes;
6257
6258 /*
6259 * As the map is walked, we track how much memory is usable
6260 * by the kernel using kernelcore_remaining. When it is
6261 * 0, the rest of the node is usable by ZONE_MOVABLE
6262 */
6263 kernelcore_remaining = kernelcore_node;
6264
6265 /* Go through each range of PFNs within this node */
6266 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6267 unsigned long size_pages;
6268
6269 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6270 if (start_pfn >= end_pfn)
6271 continue;
6272
6273 /* Account for what is only usable for kernelcore */
6274 if (start_pfn < usable_startpfn) {
6275 unsigned long kernel_pages;
6276 kernel_pages = min(end_pfn, usable_startpfn)
6277 - start_pfn;
6278
6279 kernelcore_remaining -= min(kernel_pages,
6280 kernelcore_remaining);
6281 required_kernelcore -= min(kernel_pages,
6282 required_kernelcore);
6283
6284 /* Continue if range is now fully accounted */
6285 if (end_pfn <= usable_startpfn) {
6286
6287 /*
6288 * Push zone_movable_pfn to the end so
6289 * that if we have to rebalance
6290 * kernelcore across nodes, we will
6291 * not double account here
6292 */
6293 zone_movable_pfn[nid] = end_pfn;
6294 continue;
6295 }
6296 start_pfn = usable_startpfn;
6297 }
6298
6299 /*
6300 * The usable PFN range for ZONE_MOVABLE is from
6301 * start_pfn->end_pfn. Calculate size_pages as the
6302 * number of pages used as kernelcore
6303 */
6304 size_pages = end_pfn - start_pfn;
6305 if (size_pages > kernelcore_remaining)
6306 size_pages = kernelcore_remaining;
6307 zone_movable_pfn[nid] = start_pfn + size_pages;
6308
6309 /*
6310 * Some kernelcore has been met, update counts and
6311 * break if the kernelcore for this node has been
6312 * satisfied
6313 */
6314 required_kernelcore -= min(required_kernelcore,
6315 size_pages);
6316 kernelcore_remaining -= size_pages;
6317 if (!kernelcore_remaining)
6318 break;
6319 }
6320 }
6321
6322 /*
6323 * If there is still required_kernelcore, we do another pass with one
6324 * less node in the count. This will push zone_movable_pfn[nid] further
6325 * along on the nodes that still have memory until kernelcore is
6326 * satisfied
6327 */
6328 usable_nodes--;
6329 if (usable_nodes && required_kernelcore > usable_nodes)
6330 goto restart;
6331
6332 out2:
6333 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6334 for (nid = 0; nid < MAX_NUMNODES; nid++)
6335 zone_movable_pfn[nid] =
6336 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6337
6338 out:
6339 /* restore the node_state */
6340 node_states[N_MEMORY] = saved_node_state;
6341 }
6342
6343 /* Any regular or high memory on that node ? */
6344 static void check_for_memory(pg_data_t *pgdat, int nid)
6345 {
6346 enum zone_type zone_type;
6347
6348 if (N_MEMORY == N_NORMAL_MEMORY)
6349 return;
6350
6351 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6352 struct zone *zone = &pgdat->node_zones[zone_type];
6353 if (populated_zone(zone)) {
6354 node_set_state(nid, N_HIGH_MEMORY);
6355 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6356 zone_type <= ZONE_NORMAL)
6357 node_set_state(nid, N_NORMAL_MEMORY);
6358 break;
6359 }
6360 }
6361 }
6362
6363 /**
6364 * free_area_init_nodes - Initialise all pg_data_t and zone data
6365 * @max_zone_pfn: an array of max PFNs for each zone
6366 *
6367 * This will call free_area_init_node() for each active node in the system.
6368 * Using the page ranges provided by memblock_set_node(), the size of each
6369 * zone in each node and their holes is calculated. If the maximum PFN
6370 * between two adjacent zones match, it is assumed that the zone is empty.
6371 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6372 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6373 * starts where the previous one ended. For example, ZONE_DMA32 starts
6374 * at arch_max_dma_pfn.
6375 */
6376 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6377 {
6378 unsigned long start_pfn, end_pfn;
6379 int i, nid;
6380
6381 /* Record where the zone boundaries are */
6382 memset(arch_zone_lowest_possible_pfn, 0,
6383 sizeof(arch_zone_lowest_possible_pfn));
6384 memset(arch_zone_highest_possible_pfn, 0,
6385 sizeof(arch_zone_highest_possible_pfn));
6386
6387 start_pfn = find_min_pfn_with_active_regions();
6388
6389 for (i = 0; i < MAX_NR_ZONES; i++) {
6390 if (i == ZONE_MOVABLE)
6391 continue;
6392
6393 end_pfn = max(max_zone_pfn[i], start_pfn);
6394 arch_zone_lowest_possible_pfn[i] = start_pfn;
6395 arch_zone_highest_possible_pfn[i] = end_pfn;
6396
6397 start_pfn = end_pfn;
6398 }
6399 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6400 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6401
6402 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6403 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6404 find_zone_movable_pfns_for_nodes();
6405
6406 /* Print out the zone ranges */
6407 pr_info("Zone ranges:\n");
6408 for (i = 0; i < MAX_NR_ZONES; i++) {
6409 if (i == ZONE_MOVABLE)
6410 continue;
6411 pr_info(" %-8s ", zone_names[i]);
6412 if (arch_zone_lowest_possible_pfn[i] ==
6413 arch_zone_highest_possible_pfn[i])
6414 pr_cont("empty\n");
6415 else
6416 pr_cont("[mem %#018Lx-%#018Lx]\n",
6417 (u64)arch_zone_lowest_possible_pfn[i]
6418 << PAGE_SHIFT,
6419 ((u64)arch_zone_highest_possible_pfn[i]
6420 << PAGE_SHIFT) - 1);
6421 }
6422
6423 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6424 pr_info("Movable zone start for each node\n");
6425 for (i = 0; i < MAX_NUMNODES; i++) {
6426 if (zone_movable_pfn[i])
6427 pr_info(" Node %d: %#018Lx\n", i,
6428 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6429 }
6430
6431 /* Print out the early node map */
6432 pr_info("Early memory node ranges\n");
6433 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6434 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6435 (u64)start_pfn << PAGE_SHIFT,
6436 ((u64)end_pfn << PAGE_SHIFT) - 1);
6437
6438 /* Initialise every node */
6439 mminit_verify_pageflags_layout();
6440 setup_nr_node_ids();
6441 for_each_online_node(nid) {
6442 pg_data_t *pgdat = NODE_DATA(nid);
6443 free_area_init_node(nid, NULL,
6444 find_min_pfn_for_node(nid), NULL);
6445
6446 /* Any memory on that node */
6447 if (pgdat->node_present_pages)
6448 node_set_state(nid, N_MEMORY);
6449 check_for_memory(pgdat, nid);
6450 }
6451 }
6452
6453 static int __init cmdline_parse_core(char *p, unsigned long *core)
6454 {
6455 unsigned long long coremem;
6456 if (!p)
6457 return -EINVAL;
6458
6459 coremem = memparse(p, &p);
6460 *core = coremem >> PAGE_SHIFT;
6461
6462 /* Paranoid check that UL is enough for the coremem value */
6463 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6464
6465 return 0;
6466 }
6467
6468 /*
6469 * kernelcore=size sets the amount of memory for use for allocations that
6470 * cannot be reclaimed or migrated.
6471 */
6472 static int __init cmdline_parse_kernelcore(char *p)
6473 {
6474 /* parse kernelcore=mirror */
6475 if (parse_option_str(p, "mirror")) {
6476 mirrored_kernelcore = true;
6477 return 0;
6478 }
6479
6480 return cmdline_parse_core(p, &required_kernelcore);
6481 }
6482
6483 /*
6484 * movablecore=size sets the amount of memory for use for allocations that
6485 * can be reclaimed or migrated.
6486 */
6487 static int __init cmdline_parse_movablecore(char *p)
6488 {
6489 return cmdline_parse_core(p, &required_movablecore);
6490 }
6491
6492 early_param("kernelcore", cmdline_parse_kernelcore);
6493 early_param("movablecore", cmdline_parse_movablecore);
6494
6495 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6496
6497 void adjust_managed_page_count(struct page *page, long count)
6498 {
6499 spin_lock(&managed_page_count_lock);
6500 page_zone(page)->managed_pages += count;
6501 totalram_pages += count;
6502 #ifdef CONFIG_HIGHMEM
6503 if (PageHighMem(page))
6504 totalhigh_pages += count;
6505 #endif
6506 spin_unlock(&managed_page_count_lock);
6507 }
6508 EXPORT_SYMBOL(adjust_managed_page_count);
6509
6510 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6511 {
6512 void *pos;
6513 unsigned long pages = 0;
6514
6515 start = (void *)PAGE_ALIGN((unsigned long)start);
6516 end = (void *)((unsigned long)end & PAGE_MASK);
6517 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6518 if ((unsigned int)poison <= 0xFF)
6519 memset(pos, poison, PAGE_SIZE);
6520 free_reserved_page(virt_to_page(pos));
6521 }
6522
6523 if (pages && s)
6524 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6525 s, pages << (PAGE_SHIFT - 10), start, end);
6526
6527 return pages;
6528 }
6529 EXPORT_SYMBOL(free_reserved_area);
6530
6531 #ifdef CONFIG_HIGHMEM
6532 void free_highmem_page(struct page *page)
6533 {
6534 __free_reserved_page(page);
6535 totalram_pages++;
6536 page_zone(page)->managed_pages++;
6537 totalhigh_pages++;
6538 }
6539 #endif
6540
6541
6542 void __init mem_init_print_info(const char *str)
6543 {
6544 unsigned long physpages, codesize, datasize, rosize, bss_size;
6545 unsigned long init_code_size, init_data_size;
6546
6547 physpages = get_num_physpages();
6548 codesize = _etext - _stext;
6549 datasize = _edata - _sdata;
6550 rosize = __end_rodata - __start_rodata;
6551 bss_size = __bss_stop - __bss_start;
6552 init_data_size = __init_end - __init_begin;
6553 init_code_size = _einittext - _sinittext;
6554
6555 /*
6556 * Detect special cases and adjust section sizes accordingly:
6557 * 1) .init.* may be embedded into .data sections
6558 * 2) .init.text.* may be out of [__init_begin, __init_end],
6559 * please refer to arch/tile/kernel/vmlinux.lds.S.
6560 * 3) .rodata.* may be embedded into .text or .data sections.
6561 */
6562 #define adj_init_size(start, end, size, pos, adj) \
6563 do { \
6564 if (start <= pos && pos < end && size > adj) \
6565 size -= adj; \
6566 } while (0)
6567
6568 adj_init_size(__init_begin, __init_end, init_data_size,
6569 _sinittext, init_code_size);
6570 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6571 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6572 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6573 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6574
6575 #undef adj_init_size
6576
6577 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6578 #ifdef CONFIG_HIGHMEM
6579 ", %luK highmem"
6580 #endif
6581 "%s%s)\n",
6582 nr_free_pages() << (PAGE_SHIFT - 10),
6583 physpages << (PAGE_SHIFT - 10),
6584 codesize >> 10, datasize >> 10, rosize >> 10,
6585 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6586 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6587 totalcma_pages << (PAGE_SHIFT - 10),
6588 #ifdef CONFIG_HIGHMEM
6589 totalhigh_pages << (PAGE_SHIFT - 10),
6590 #endif
6591 str ? ", " : "", str ? str : "");
6592 }
6593
6594 /**
6595 * set_memory_reserve - set number of pages reserved in the first zone
6596 * @nr_reserve: The number of pages to mark reserved
6597 * @inc: true increment to existing value; false set new value.
6598 *
6599 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6600 * In the DMA zone, a significant percentage may be consumed by kernel image
6601 * and other unfreeable allocations which can skew the watermarks badly. This
6602 * function may optionally be used to account for unfreeable pages in the
6603 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6604 * smaller per-cpu batchsize.
6605 */
6606 void __init set_memory_reserve(unsigned long nr_reserve, bool inc)
6607 {
6608 if (inc)
6609 nr_memory_reserve += nr_reserve;
6610 else
6611 nr_memory_reserve = nr_reserve;
6612 }
6613
6614 void __init free_area_init(unsigned long *zones_size)
6615 {
6616 free_area_init_node(0, zones_size,
6617 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6618 }
6619
6620 static int page_alloc_cpu_notify(struct notifier_block *self,
6621 unsigned long action, void *hcpu)
6622 {
6623 int cpu = (unsigned long)hcpu;
6624
6625 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6626 lru_add_drain_cpu(cpu);
6627 drain_pages(cpu);
6628
6629 /*
6630 * Spill the event counters of the dead processor
6631 * into the current processors event counters.
6632 * This artificially elevates the count of the current
6633 * processor.
6634 */
6635 vm_events_fold_cpu(cpu);
6636
6637 /*
6638 * Zero the differential counters of the dead processor
6639 * so that the vm statistics are consistent.
6640 *
6641 * This is only okay since the processor is dead and cannot
6642 * race with what we are doing.
6643 */
6644 cpu_vm_stats_fold(cpu);
6645 }
6646 return NOTIFY_OK;
6647 }
6648
6649 void __init page_alloc_init(void)
6650 {
6651 hotcpu_notifier(page_alloc_cpu_notify, 0);
6652 }
6653
6654 /*
6655 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6656 * or min_free_kbytes changes.
6657 */
6658 static void calculate_totalreserve_pages(void)
6659 {
6660 struct pglist_data *pgdat;
6661 unsigned long reserve_pages = 0;
6662 enum zone_type i, j;
6663
6664 for_each_online_pgdat(pgdat) {
6665
6666 pgdat->totalreserve_pages = 0;
6667
6668 for (i = 0; i < MAX_NR_ZONES; i++) {
6669 struct zone *zone = pgdat->node_zones + i;
6670 long max = 0;
6671
6672 /* Find valid and maximum lowmem_reserve in the zone */
6673 for (j = i; j < MAX_NR_ZONES; j++) {
6674 if (zone->lowmem_reserve[j] > max)
6675 max = zone->lowmem_reserve[j];
6676 }
6677
6678 /* we treat the high watermark as reserved pages. */
6679 max += high_wmark_pages(zone);
6680
6681 if (max > zone->managed_pages)
6682 max = zone->managed_pages;
6683
6684 pgdat->totalreserve_pages += max;
6685
6686 reserve_pages += max;
6687 }
6688 }
6689 totalreserve_pages = reserve_pages;
6690 }
6691
6692 /*
6693 * setup_per_zone_lowmem_reserve - called whenever
6694 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6695 * has a correct pages reserved value, so an adequate number of
6696 * pages are left in the zone after a successful __alloc_pages().
6697 */
6698 static void setup_per_zone_lowmem_reserve(void)
6699 {
6700 struct pglist_data *pgdat;
6701 enum zone_type j, idx;
6702
6703 for_each_online_pgdat(pgdat) {
6704 for (j = 0; j < MAX_NR_ZONES; j++) {
6705 struct zone *zone = pgdat->node_zones + j;
6706 unsigned long managed_pages = zone->managed_pages;
6707
6708 zone->lowmem_reserve[j] = 0;
6709
6710 idx = j;
6711 while (idx) {
6712 struct zone *lower_zone;
6713
6714 idx--;
6715
6716 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6717 sysctl_lowmem_reserve_ratio[idx] = 1;
6718
6719 lower_zone = pgdat->node_zones + idx;
6720 lower_zone->lowmem_reserve[j] = managed_pages /
6721 sysctl_lowmem_reserve_ratio[idx];
6722 managed_pages += lower_zone->managed_pages;
6723 }
6724 }
6725 }
6726
6727 /* update totalreserve_pages */
6728 calculate_totalreserve_pages();
6729 }
6730
6731 static void __setup_per_zone_wmarks(void)
6732 {
6733 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6734 unsigned long lowmem_pages = 0;
6735 struct zone *zone;
6736 unsigned long flags;
6737
6738 /* Calculate total number of !ZONE_HIGHMEM pages */
6739 for_each_zone(zone) {
6740 if (!is_highmem(zone))
6741 lowmem_pages += zone->managed_pages;
6742 }
6743
6744 for_each_zone(zone) {
6745 u64 tmp;
6746
6747 spin_lock_irqsave(&zone->lock, flags);
6748 tmp = (u64)pages_min * zone->managed_pages;
6749 do_div(tmp, lowmem_pages);
6750 if (is_highmem(zone)) {
6751 /*
6752 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6753 * need highmem pages, so cap pages_min to a small
6754 * value here.
6755 *
6756 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6757 * deltas control asynch page reclaim, and so should
6758 * not be capped for highmem.
6759 */
6760 unsigned long min_pages;
6761
6762 min_pages = zone->managed_pages / 1024;
6763 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6764 zone->watermark[WMARK_MIN] = min_pages;
6765 } else {
6766 /*
6767 * If it's a lowmem zone, reserve a number of pages
6768 * proportionate to the zone's size.
6769 */
6770 zone->watermark[WMARK_MIN] = tmp;
6771 }
6772
6773 /*
6774 * Set the kswapd watermarks distance according to the
6775 * scale factor in proportion to available memory, but
6776 * ensure a minimum size on small systems.
6777 */
6778 tmp = max_t(u64, tmp >> 2,
6779 mult_frac(zone->managed_pages,
6780 watermark_scale_factor, 10000));
6781
6782 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6783 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6784
6785 spin_unlock_irqrestore(&zone->lock, flags);
6786 }
6787
6788 /* update totalreserve_pages */
6789 calculate_totalreserve_pages();
6790 }
6791
6792 /**
6793 * setup_per_zone_wmarks - called when min_free_kbytes changes
6794 * or when memory is hot-{added|removed}
6795 *
6796 * Ensures that the watermark[min,low,high] values for each zone are set
6797 * correctly with respect to min_free_kbytes.
6798 */
6799 void setup_per_zone_wmarks(void)
6800 {
6801 mutex_lock(&zonelists_mutex);
6802 __setup_per_zone_wmarks();
6803 mutex_unlock(&zonelists_mutex);
6804 }
6805
6806 /*
6807 * Initialise min_free_kbytes.
6808 *
6809 * For small machines we want it small (128k min). For large machines
6810 * we want it large (64MB max). But it is not linear, because network
6811 * bandwidth does not increase linearly with machine size. We use
6812 *
6813 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6814 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6815 *
6816 * which yields
6817 *
6818 * 16MB: 512k
6819 * 32MB: 724k
6820 * 64MB: 1024k
6821 * 128MB: 1448k
6822 * 256MB: 2048k
6823 * 512MB: 2896k
6824 * 1024MB: 4096k
6825 * 2048MB: 5792k
6826 * 4096MB: 8192k
6827 * 8192MB: 11584k
6828 * 16384MB: 16384k
6829 */
6830 int __meminit init_per_zone_wmark_min(void)
6831 {
6832 unsigned long lowmem_kbytes;
6833 int new_min_free_kbytes;
6834
6835 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6836 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6837
6838 if (new_min_free_kbytes > user_min_free_kbytes) {
6839 min_free_kbytes = new_min_free_kbytes;
6840 if (min_free_kbytes < 128)
6841 min_free_kbytes = 128;
6842 if (min_free_kbytes > 65536)
6843 min_free_kbytes = 65536;
6844 } else {
6845 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6846 new_min_free_kbytes, user_min_free_kbytes);
6847 }
6848 setup_per_zone_wmarks();
6849 refresh_zone_stat_thresholds();
6850 setup_per_zone_lowmem_reserve();
6851
6852 #ifdef CONFIG_NUMA
6853 setup_min_unmapped_ratio();
6854 setup_min_slab_ratio();
6855 #endif
6856
6857 return 0;
6858 }
6859 core_initcall(init_per_zone_wmark_min)
6860
6861 /*
6862 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6863 * that we can call two helper functions whenever min_free_kbytes
6864 * changes.
6865 */
6866 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6867 void __user *buffer, size_t *length, loff_t *ppos)
6868 {
6869 int rc;
6870
6871 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6872 if (rc)
6873 return rc;
6874
6875 if (write) {
6876 user_min_free_kbytes = min_free_kbytes;
6877 setup_per_zone_wmarks();
6878 }
6879 return 0;
6880 }
6881
6882 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6883 void __user *buffer, size_t *length, loff_t *ppos)
6884 {
6885 int rc;
6886
6887 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6888 if (rc)
6889 return rc;
6890
6891 if (write)
6892 setup_per_zone_wmarks();
6893
6894 return 0;
6895 }
6896
6897 #ifdef CONFIG_NUMA
6898 static void setup_min_unmapped_ratio(void)
6899 {
6900 pg_data_t *pgdat;
6901 struct zone *zone;
6902
6903 for_each_online_pgdat(pgdat)
6904 pgdat->min_unmapped_pages = 0;
6905
6906 for_each_zone(zone)
6907 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6908 sysctl_min_unmapped_ratio) / 100;
6909 }
6910
6911
6912 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6913 void __user *buffer, size_t *length, loff_t *ppos)
6914 {
6915 int rc;
6916
6917 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6918 if (rc)
6919 return rc;
6920
6921 setup_min_unmapped_ratio();
6922
6923 return 0;
6924 }
6925
6926 static void setup_min_slab_ratio(void)
6927 {
6928 pg_data_t *pgdat;
6929 struct zone *zone;
6930
6931 for_each_online_pgdat(pgdat)
6932 pgdat->min_slab_pages = 0;
6933
6934 for_each_zone(zone)
6935 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6936 sysctl_min_slab_ratio) / 100;
6937 }
6938
6939 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6940 void __user *buffer, size_t *length, loff_t *ppos)
6941 {
6942 int rc;
6943
6944 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6945 if (rc)
6946 return rc;
6947
6948 setup_min_slab_ratio();
6949
6950 return 0;
6951 }
6952 #endif
6953
6954 /*
6955 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6956 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6957 * whenever sysctl_lowmem_reserve_ratio changes.
6958 *
6959 * The reserve ratio obviously has absolutely no relation with the
6960 * minimum watermarks. The lowmem reserve ratio can only make sense
6961 * if in function of the boot time zone sizes.
6962 */
6963 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6964 void __user *buffer, size_t *length, loff_t *ppos)
6965 {
6966 proc_dointvec_minmax(table, write, buffer, length, ppos);
6967 setup_per_zone_lowmem_reserve();
6968 return 0;
6969 }
6970
6971 /*
6972 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6973 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6974 * pagelist can have before it gets flushed back to buddy allocator.
6975 */
6976 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6977 void __user *buffer, size_t *length, loff_t *ppos)
6978 {
6979 struct zone *zone;
6980 int old_percpu_pagelist_fraction;
6981 int ret;
6982
6983 mutex_lock(&pcp_batch_high_lock);
6984 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6985
6986 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6987 if (!write || ret < 0)
6988 goto out;
6989
6990 /* Sanity checking to avoid pcp imbalance */
6991 if (percpu_pagelist_fraction &&
6992 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6993 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6994 ret = -EINVAL;
6995 goto out;
6996 }
6997
6998 /* No change? */
6999 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7000 goto out;
7001
7002 for_each_populated_zone(zone) {
7003 unsigned int cpu;
7004
7005 for_each_possible_cpu(cpu)
7006 pageset_set_high_and_batch(zone,
7007 per_cpu_ptr(zone->pageset, cpu));
7008 }
7009 out:
7010 mutex_unlock(&pcp_batch_high_lock);
7011 return ret;
7012 }
7013
7014 #ifdef CONFIG_NUMA
7015 int hashdist = HASHDIST_DEFAULT;
7016
7017 static int __init set_hashdist(char *str)
7018 {
7019 if (!str)
7020 return 0;
7021 hashdist = simple_strtoul(str, &str, 0);
7022 return 1;
7023 }
7024 __setup("hashdist=", set_hashdist);
7025 #endif
7026
7027 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7028 /*
7029 * Returns the number of pages that arch has reserved but
7030 * is not known to alloc_large_system_hash().
7031 */
7032 static unsigned long __init arch_reserved_kernel_pages(void)
7033 {
7034 return 0;
7035 }
7036 #endif
7037
7038 /*
7039 * allocate a large system hash table from bootmem
7040 * - it is assumed that the hash table must contain an exact power-of-2
7041 * quantity of entries
7042 * - limit is the number of hash buckets, not the total allocation size
7043 */
7044 void *__init alloc_large_system_hash(const char *tablename,
7045 unsigned long bucketsize,
7046 unsigned long numentries,
7047 int scale,
7048 int flags,
7049 unsigned int *_hash_shift,
7050 unsigned int *_hash_mask,
7051 unsigned long low_limit,
7052 unsigned long high_limit)
7053 {
7054 unsigned long long max = high_limit;
7055 unsigned long log2qty, size;
7056 void *table = NULL;
7057
7058 /* allow the kernel cmdline to have a say */
7059 if (!numentries) {
7060 /* round applicable memory size up to nearest megabyte */
7061 numentries = nr_kernel_pages;
7062 numentries -= arch_reserved_kernel_pages();
7063
7064 /* It isn't necessary when PAGE_SIZE >= 1MB */
7065 if (PAGE_SHIFT < 20)
7066 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7067
7068 /* limit to 1 bucket per 2^scale bytes of low memory */
7069 if (scale > PAGE_SHIFT)
7070 numentries >>= (scale - PAGE_SHIFT);
7071 else
7072 numentries <<= (PAGE_SHIFT - scale);
7073
7074 /* Make sure we've got at least a 0-order allocation.. */
7075 if (unlikely(flags & HASH_SMALL)) {
7076 /* Makes no sense without HASH_EARLY */
7077 WARN_ON(!(flags & HASH_EARLY));
7078 if (!(numentries >> *_hash_shift)) {
7079 numentries = 1UL << *_hash_shift;
7080 BUG_ON(!numentries);
7081 }
7082 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7083 numentries = PAGE_SIZE / bucketsize;
7084 }
7085 numentries = roundup_pow_of_two(numentries);
7086
7087 /* limit allocation size to 1/16 total memory by default */
7088 if (max == 0) {
7089 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7090 do_div(max, bucketsize);
7091 }
7092 max = min(max, 0x80000000ULL);
7093
7094 if (numentries < low_limit)
7095 numentries = low_limit;
7096 if (numentries > max)
7097 numentries = max;
7098
7099 log2qty = ilog2(numentries);
7100
7101 do {
7102 size = bucketsize << log2qty;
7103 if (flags & HASH_EARLY)
7104 table = memblock_virt_alloc_nopanic(size, 0);
7105 else if (hashdist)
7106 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7107 else {
7108 /*
7109 * If bucketsize is not a power-of-two, we may free
7110 * some pages at the end of hash table which
7111 * alloc_pages_exact() automatically does
7112 */
7113 if (get_order(size) < MAX_ORDER) {
7114 table = alloc_pages_exact(size, GFP_ATOMIC);
7115 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7116 }
7117 }
7118 } while (!table && size > PAGE_SIZE && --log2qty);
7119
7120 if (!table)
7121 panic("Failed to allocate %s hash table\n", tablename);
7122
7123 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7124 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7125
7126 if (_hash_shift)
7127 *_hash_shift = log2qty;
7128 if (_hash_mask)
7129 *_hash_mask = (1 << log2qty) - 1;
7130
7131 return table;
7132 }
7133
7134 /*
7135 * This function checks whether pageblock includes unmovable pages or not.
7136 * If @count is not zero, it is okay to include less @count unmovable pages
7137 *
7138 * PageLRU check without isolation or lru_lock could race so that
7139 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7140 * expect this function should be exact.
7141 */
7142 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7143 bool skip_hwpoisoned_pages)
7144 {
7145 unsigned long pfn, iter, found;
7146 int mt;
7147
7148 /*
7149 * For avoiding noise data, lru_add_drain_all() should be called
7150 * If ZONE_MOVABLE, the zone never contains unmovable pages
7151 */
7152 if (zone_idx(zone) == ZONE_MOVABLE)
7153 return false;
7154 mt = get_pageblock_migratetype(page);
7155 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7156 return false;
7157
7158 pfn = page_to_pfn(page);
7159 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7160 unsigned long check = pfn + iter;
7161
7162 if (!pfn_valid_within(check))
7163 continue;
7164
7165 page = pfn_to_page(check);
7166
7167 /*
7168 * Hugepages are not in LRU lists, but they're movable.
7169 * We need not scan over tail pages bacause we don't
7170 * handle each tail page individually in migration.
7171 */
7172 if (PageHuge(page)) {
7173 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7174 continue;
7175 }
7176
7177 /*
7178 * We can't use page_count without pin a page
7179 * because another CPU can free compound page.
7180 * This check already skips compound tails of THP
7181 * because their page->_refcount is zero at all time.
7182 */
7183 if (!page_ref_count(page)) {
7184 if (PageBuddy(page))
7185 iter += (1 << page_order(page)) - 1;
7186 continue;
7187 }
7188
7189 /*
7190 * The HWPoisoned page may be not in buddy system, and
7191 * page_count() is not 0.
7192 */
7193 if (skip_hwpoisoned_pages && PageHWPoison(page))
7194 continue;
7195
7196 if (!PageLRU(page))
7197 found++;
7198 /*
7199 * If there are RECLAIMABLE pages, we need to check
7200 * it. But now, memory offline itself doesn't call
7201 * shrink_node_slabs() and it still to be fixed.
7202 */
7203 /*
7204 * If the page is not RAM, page_count()should be 0.
7205 * we don't need more check. This is an _used_ not-movable page.
7206 *
7207 * The problematic thing here is PG_reserved pages. PG_reserved
7208 * is set to both of a memory hole page and a _used_ kernel
7209 * page at boot.
7210 */
7211 if (found > count)
7212 return true;
7213 }
7214 return false;
7215 }
7216
7217 bool is_pageblock_removable_nolock(struct page *page)
7218 {
7219 struct zone *zone;
7220 unsigned long pfn;
7221
7222 /*
7223 * We have to be careful here because we are iterating over memory
7224 * sections which are not zone aware so we might end up outside of
7225 * the zone but still within the section.
7226 * We have to take care about the node as well. If the node is offline
7227 * its NODE_DATA will be NULL - see page_zone.
7228 */
7229 if (!node_online(page_to_nid(page)))
7230 return false;
7231
7232 zone = page_zone(page);
7233 pfn = page_to_pfn(page);
7234 if (!zone_spans_pfn(zone, pfn))
7235 return false;
7236
7237 return !has_unmovable_pages(zone, page, 0, true);
7238 }
7239
7240 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7241
7242 static unsigned long pfn_max_align_down(unsigned long pfn)
7243 {
7244 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7245 pageblock_nr_pages) - 1);
7246 }
7247
7248 static unsigned long pfn_max_align_up(unsigned long pfn)
7249 {
7250 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7251 pageblock_nr_pages));
7252 }
7253
7254 /* [start, end) must belong to a single zone. */
7255 static int __alloc_contig_migrate_range(struct compact_control *cc,
7256 unsigned long start, unsigned long end)
7257 {
7258 /* This function is based on compact_zone() from compaction.c. */
7259 unsigned long nr_reclaimed;
7260 unsigned long pfn = start;
7261 unsigned int tries = 0;
7262 int ret = 0;
7263
7264 migrate_prep();
7265
7266 while (pfn < end || !list_empty(&cc->migratepages)) {
7267 if (fatal_signal_pending(current)) {
7268 ret = -EINTR;
7269 break;
7270 }
7271
7272 if (list_empty(&cc->migratepages)) {
7273 cc->nr_migratepages = 0;
7274 pfn = isolate_migratepages_range(cc, pfn, end);
7275 if (!pfn) {
7276 ret = -EINTR;
7277 break;
7278 }
7279 tries = 0;
7280 } else if (++tries == 5) {
7281 ret = ret < 0 ? ret : -EBUSY;
7282 break;
7283 }
7284
7285 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7286 &cc->migratepages);
7287 cc->nr_migratepages -= nr_reclaimed;
7288
7289 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7290 NULL, 0, cc->mode, MR_CMA);
7291 }
7292 if (ret < 0) {
7293 putback_movable_pages(&cc->migratepages);
7294 return ret;
7295 }
7296 return 0;
7297 }
7298
7299 /**
7300 * alloc_contig_range() -- tries to allocate given range of pages
7301 * @start: start PFN to allocate
7302 * @end: one-past-the-last PFN to allocate
7303 * @migratetype: migratetype of the underlaying pageblocks (either
7304 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7305 * in range must have the same migratetype and it must
7306 * be either of the two.
7307 *
7308 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7309 * aligned, however it's the caller's responsibility to guarantee that
7310 * we are the only thread that changes migrate type of pageblocks the
7311 * pages fall in.
7312 *
7313 * The PFN range must belong to a single zone.
7314 *
7315 * Returns zero on success or negative error code. On success all
7316 * pages which PFN is in [start, end) are allocated for the caller and
7317 * need to be freed with free_contig_range().
7318 */
7319 int alloc_contig_range(unsigned long start, unsigned long end,
7320 unsigned migratetype)
7321 {
7322 unsigned long outer_start, outer_end;
7323 unsigned int order;
7324 int ret = 0;
7325
7326 struct compact_control cc = {
7327 .nr_migratepages = 0,
7328 .order = -1,
7329 .zone = page_zone(pfn_to_page(start)),
7330 .mode = MIGRATE_SYNC,
7331 .ignore_skip_hint = true,
7332 };
7333 INIT_LIST_HEAD(&cc.migratepages);
7334
7335 /*
7336 * What we do here is we mark all pageblocks in range as
7337 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7338 * have different sizes, and due to the way page allocator
7339 * work, we align the range to biggest of the two pages so
7340 * that page allocator won't try to merge buddies from
7341 * different pageblocks and change MIGRATE_ISOLATE to some
7342 * other migration type.
7343 *
7344 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7345 * migrate the pages from an unaligned range (ie. pages that
7346 * we are interested in). This will put all the pages in
7347 * range back to page allocator as MIGRATE_ISOLATE.
7348 *
7349 * When this is done, we take the pages in range from page
7350 * allocator removing them from the buddy system. This way
7351 * page allocator will never consider using them.
7352 *
7353 * This lets us mark the pageblocks back as
7354 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7355 * aligned range but not in the unaligned, original range are
7356 * put back to page allocator so that buddy can use them.
7357 */
7358
7359 ret = start_isolate_page_range(pfn_max_align_down(start),
7360 pfn_max_align_up(end), migratetype,
7361 false);
7362 if (ret)
7363 return ret;
7364
7365 /*
7366 * In case of -EBUSY, we'd like to know which page causes problem.
7367 * So, just fall through. We will check it in test_pages_isolated().
7368 */
7369 ret = __alloc_contig_migrate_range(&cc, start, end);
7370 if (ret && ret != -EBUSY)
7371 goto done;
7372
7373 /*
7374 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7375 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7376 * more, all pages in [start, end) are free in page allocator.
7377 * What we are going to do is to allocate all pages from
7378 * [start, end) (that is remove them from page allocator).
7379 *
7380 * The only problem is that pages at the beginning and at the
7381 * end of interesting range may be not aligned with pages that
7382 * page allocator holds, ie. they can be part of higher order
7383 * pages. Because of this, we reserve the bigger range and
7384 * once this is done free the pages we are not interested in.
7385 *
7386 * We don't have to hold zone->lock here because the pages are
7387 * isolated thus they won't get removed from buddy.
7388 */
7389
7390 lru_add_drain_all();
7391 drain_all_pages(cc.zone);
7392
7393 order = 0;
7394 outer_start = start;
7395 while (!PageBuddy(pfn_to_page(outer_start))) {
7396 if (++order >= MAX_ORDER) {
7397 outer_start = start;
7398 break;
7399 }
7400 outer_start &= ~0UL << order;
7401 }
7402
7403 if (outer_start != start) {
7404 order = page_order(pfn_to_page(outer_start));
7405
7406 /*
7407 * outer_start page could be small order buddy page and
7408 * it doesn't include start page. Adjust outer_start
7409 * in this case to report failed page properly
7410 * on tracepoint in test_pages_isolated()
7411 */
7412 if (outer_start + (1UL << order) <= start)
7413 outer_start = start;
7414 }
7415
7416 /* Make sure the range is really isolated. */
7417 if (test_pages_isolated(outer_start, end, false)) {
7418 pr_info("%s: [%lx, %lx) PFNs busy\n",
7419 __func__, outer_start, end);
7420 ret = -EBUSY;
7421 goto done;
7422 }
7423
7424 /* Grab isolated pages from freelists. */
7425 outer_end = isolate_freepages_range(&cc, outer_start, end);
7426 if (!outer_end) {
7427 ret = -EBUSY;
7428 goto done;
7429 }
7430
7431 /* Free head and tail (if any) */
7432 if (start != outer_start)
7433 free_contig_range(outer_start, start - outer_start);
7434 if (end != outer_end)
7435 free_contig_range(end, outer_end - end);
7436
7437 done:
7438 undo_isolate_page_range(pfn_max_align_down(start),
7439 pfn_max_align_up(end), migratetype);
7440 return ret;
7441 }
7442
7443 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7444 {
7445 unsigned int count = 0;
7446
7447 for (; nr_pages--; pfn++) {
7448 struct page *page = pfn_to_page(pfn);
7449
7450 count += page_count(page) != 1;
7451 __free_page(page);
7452 }
7453 WARN(count != 0, "%d pages are still in use!\n", count);
7454 }
7455 #endif
7456
7457 #ifdef CONFIG_MEMORY_HOTPLUG
7458 /*
7459 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7460 * page high values need to be recalulated.
7461 */
7462 void __meminit zone_pcp_update(struct zone *zone)
7463 {
7464 unsigned cpu;
7465 mutex_lock(&pcp_batch_high_lock);
7466 for_each_possible_cpu(cpu)
7467 pageset_set_high_and_batch(zone,
7468 per_cpu_ptr(zone->pageset, cpu));
7469 mutex_unlock(&pcp_batch_high_lock);
7470 }
7471 #endif
7472
7473 void zone_pcp_reset(struct zone *zone)
7474 {
7475 unsigned long flags;
7476 int cpu;
7477 struct per_cpu_pageset *pset;
7478
7479 /* avoid races with drain_pages() */
7480 local_irq_save(flags);
7481 if (zone->pageset != &boot_pageset) {
7482 for_each_online_cpu(cpu) {
7483 pset = per_cpu_ptr(zone->pageset, cpu);
7484 drain_zonestat(zone, pset);
7485 }
7486 free_percpu(zone->pageset);
7487 zone->pageset = &boot_pageset;
7488 }
7489 local_irq_restore(flags);
7490 }
7491
7492 #ifdef CONFIG_MEMORY_HOTREMOVE
7493 /*
7494 * All pages in the range must be in a single zone and isolated
7495 * before calling this.
7496 */
7497 void
7498 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7499 {
7500 struct page *page;
7501 struct zone *zone;
7502 unsigned int order, i;
7503 unsigned long pfn;
7504 unsigned long flags;
7505 /* find the first valid pfn */
7506 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7507 if (pfn_valid(pfn))
7508 break;
7509 if (pfn == end_pfn)
7510 return;
7511 zone = page_zone(pfn_to_page(pfn));
7512 spin_lock_irqsave(&zone->lock, flags);
7513 pfn = start_pfn;
7514 while (pfn < end_pfn) {
7515 if (!pfn_valid(pfn)) {
7516 pfn++;
7517 continue;
7518 }
7519 page = pfn_to_page(pfn);
7520 /*
7521 * The HWPoisoned page may be not in buddy system, and
7522 * page_count() is not 0.
7523 */
7524 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7525 pfn++;
7526 SetPageReserved(page);
7527 continue;
7528 }
7529
7530 BUG_ON(page_count(page));
7531 BUG_ON(!PageBuddy(page));
7532 order = page_order(page);
7533 #ifdef CONFIG_DEBUG_VM
7534 pr_info("remove from free list %lx %d %lx\n",
7535 pfn, 1 << order, end_pfn);
7536 #endif
7537 list_del(&page->lru);
7538 rmv_page_order(page);
7539 zone->free_area[order].nr_free--;
7540 for (i = 0; i < (1 << order); i++)
7541 SetPageReserved((page+i));
7542 pfn += (1 << order);
7543 }
7544 spin_unlock_irqrestore(&zone->lock, flags);
7545 }
7546 #endif
7547
7548 bool is_free_buddy_page(struct page *page)
7549 {
7550 struct zone *zone = page_zone(page);
7551 unsigned long pfn = page_to_pfn(page);
7552 unsigned long flags;
7553 unsigned int order;
7554
7555 spin_lock_irqsave(&zone->lock, flags);
7556 for (order = 0; order < MAX_ORDER; order++) {
7557 struct page *page_head = page - (pfn & ((1 << order) - 1));
7558
7559 if (PageBuddy(page_head) && page_order(page_head) >= order)
7560 break;
7561 }
7562 spin_unlock_irqrestore(&zone->lock, flags);
7563
7564 return order < MAX_ORDER;
7565 }
This page took 0.182507 seconds and 5 git commands to generate.