tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
3fcd59ab 67#include <linux/random.h>
1da177e4 68
7ee3d4e8 69#include <asm/sections.h>
1da177e4 70#include <asm/tlbflush.h>
ac924c60 71#include <asm/div64.h>
1da177e4
LT
72#include "internal.h"
73
c8e251fa
CS
74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 76#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 77
72812019
LS
78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79DEFINE_PER_CPU(int, numa_node);
80EXPORT_PER_CPU_SYMBOL(numa_node);
81#endif
82
7aac7898
LS
83#ifdef CONFIG_HAVE_MEMORYLESS_NODES
84/*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 92int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
93#endif
94
2a544866 95#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
09dd109d 96volatile u64 latent_entropy __latent_entropy;
2a544866
ER
97EXPORT_SYMBOL(latent_entropy);
98#endif
99
1da177e4 100/*
13808910 101 * Array of node states.
1da177e4 102 */
13808910
CL
103nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
104 [N_POSSIBLE] = NODE_MASK_ALL,
105 [N_ONLINE] = { { [0] = 1UL } },
106#ifndef CONFIG_NUMA
107 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
108#ifdef CONFIG_HIGHMEM
109 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
110#endif
111#ifdef CONFIG_MOVABLE_NODE
112 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
113#endif
114 [N_CPU] = { { [0] = 1UL } },
115#endif /* NUMA */
116};
117EXPORT_SYMBOL(node_states);
118
c3d5f5f0
JL
119/* Protect totalram_pages and zone->managed_pages */
120static DEFINE_SPINLOCK(managed_page_count_lock);
121
6c231b7b 122unsigned long totalram_pages __read_mostly;
cb45b0e9 123unsigned long totalreserve_pages __read_mostly;
e48322ab 124unsigned long totalcma_pages __read_mostly;
ab8fabd4 125
1b76b02f 126int percpu_pagelist_fraction;
dcce284a 127gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 128
bb14c2c7
VB
129/*
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
136 */
137static inline int get_pcppage_migratetype(struct page *page)
138{
139 return page->index;
140}
141
142static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143{
144 page->index = migratetype;
145}
146
452aa699
RW
147#ifdef CONFIG_PM_SLEEP
148/*
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
155 */
c9e664f1
RW
156
157static gfp_t saved_gfp_mask;
158
159void pm_restore_gfp_mask(void)
452aa699
RW
160{
161 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
164 saved_gfp_mask = 0;
165 }
452aa699
RW
166}
167
c9e664f1 168void pm_restrict_gfp_mask(void)
452aa699 169{
452aa699 170 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
d0164adc 173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 174}
f90ac398
MG
175
176bool pm_suspended_storage(void)
177{
d0164adc 178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
179 return false;
180 return true;
181}
452aa699
RW
182#endif /* CONFIG_PM_SLEEP */
183
d9c23400 184#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 185unsigned int pageblock_order __read_mostly;
d9c23400
MG
186#endif
187
d98c7a09 188static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 189
1da177e4
LT
190/*
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
197 *
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
1da177e4 200 */
2f1b6248 201int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 202#ifdef CONFIG_ZONE_DMA
2f1b6248 203 256,
4b51d669 204#endif
fb0e7942 205#ifdef CONFIG_ZONE_DMA32
2f1b6248 206 256,
fb0e7942 207#endif
e53ef38d 208#ifdef CONFIG_HIGHMEM
2a1e274a 209 32,
e53ef38d 210#endif
2a1e274a 211 32,
2f1b6248 212};
1da177e4
LT
213
214EXPORT_SYMBOL(totalram_pages);
1da177e4 215
15ad7cdc 216static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 217#ifdef CONFIG_ZONE_DMA
2f1b6248 218 "DMA",
4b51d669 219#endif
fb0e7942 220#ifdef CONFIG_ZONE_DMA32
2f1b6248 221 "DMA32",
fb0e7942 222#endif
2f1b6248 223 "Normal",
e53ef38d 224#ifdef CONFIG_HIGHMEM
2a1e274a 225 "HighMem",
e53ef38d 226#endif
2a1e274a 227 "Movable",
033fbae9
DW
228#ifdef CONFIG_ZONE_DEVICE
229 "Device",
230#endif
2f1b6248
CL
231};
232
60f30350
VB
233char * const migratetype_names[MIGRATE_TYPES] = {
234 "Unmovable",
235 "Movable",
236 "Reclaimable",
237 "HighAtomic",
238#ifdef CONFIG_CMA
239 "CMA",
240#endif
241#ifdef CONFIG_MEMORY_ISOLATION
242 "Isolate",
243#endif
244};
245
f1e61557
KS
246compound_page_dtor * const compound_page_dtors[] = {
247 NULL,
248 free_compound_page,
249#ifdef CONFIG_HUGETLB_PAGE
250 free_huge_page,
251#endif
9a982250
KS
252#ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 free_transhuge_page,
254#endif
f1e61557
KS
255};
256
1da177e4 257int min_free_kbytes = 1024;
42aa83cb 258int user_min_free_kbytes = -1;
795ae7a0 259int watermark_scale_factor = 10;
1da177e4 260
2c85f51d
JB
261static unsigned long __meminitdata nr_kernel_pages;
262static unsigned long __meminitdata nr_all_pages;
659e91ed 263static unsigned long __meminitdata nr_memory_reserve;
1da177e4 264
0ee332c1
TH
265#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
266static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
268static unsigned long __initdata required_kernelcore;
269static unsigned long __initdata required_movablecore;
270static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 271static bool mirrored_kernelcore;
0ee332c1
TH
272
273/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274int movable_zone;
275EXPORT_SYMBOL(movable_zone);
276#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 277
418508c1
MS
278#if MAX_NUMNODES > 1
279int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 280int nr_online_nodes __read_mostly = 1;
418508c1 281EXPORT_SYMBOL(nr_node_ids);
62bc62a8 282EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
283#endif
284
9ef9acb0
MG
285int page_group_by_mobility_disabled __read_mostly;
286
3a80a7fa
MG
287#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288static inline void reset_deferred_meminit(pg_data_t *pgdat)
289{
290 pgdat->first_deferred_pfn = ULONG_MAX;
291}
292
293/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 294static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 295{
ef70b6f4
MG
296 int nid = early_pfn_to_nid(pfn);
297
298 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
299 return true;
300
301 return false;
302}
303
304/*
305 * Returns false when the remaining initialisation should be deferred until
306 * later in the boot cycle when it can be parallelised.
307 */
308static inline bool update_defer_init(pg_data_t *pgdat,
309 unsigned long pfn, unsigned long zone_end,
310 unsigned long *nr_initialised)
311{
987b3095
LZ
312 unsigned long max_initialise;
313
3a80a7fa
MG
314 /* Always populate low zones for address-contrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
316 return true;
987b3095
LZ
317 /*
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
320 */
321 max_initialise = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
3a80a7fa 323
3a80a7fa 324 (*nr_initialised)++;
987b3095 325 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
326 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
327 pgdat->first_deferred_pfn = pfn;
328 return false;
329 }
330
331 return true;
332}
333#else
334static inline void reset_deferred_meminit(pg_data_t *pgdat)
335{
336}
337
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
343static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346{
347 return true;
348}
349#endif
350
0b423ca2
MG
351/* Return a pointer to the bitmap storing bits affecting a block of pages */
352static inline unsigned long *get_pageblock_bitmap(struct page *page,
353 unsigned long pfn)
354{
355#ifdef CONFIG_SPARSEMEM
356 return __pfn_to_section(pfn)->pageblock_flags;
357#else
358 return page_zone(page)->pageblock_flags;
359#endif /* CONFIG_SPARSEMEM */
360}
361
362static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
363{
364#ifdef CONFIG_SPARSEMEM
365 pfn &= (PAGES_PER_SECTION-1);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367#else
368 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370#endif /* CONFIG_SPARSEMEM */
371}
372
373/**
374 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
375 * @page: The page within the block of interest
376 * @pfn: The target page frame number
377 * @end_bitidx: The last bit of interest to retrieve
378 * @mask: mask of bits that the caller is interested in
379 *
380 * Return: pageblock_bits flags
381 */
382static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long pfn,
384 unsigned long end_bitidx,
385 unsigned long mask)
386{
387 unsigned long *bitmap;
388 unsigned long bitidx, word_bitidx;
389 unsigned long word;
390
391 bitmap = get_pageblock_bitmap(page, pfn);
392 bitidx = pfn_to_bitidx(page, pfn);
393 word_bitidx = bitidx / BITS_PER_LONG;
394 bitidx &= (BITS_PER_LONG-1);
395
396 word = bitmap[word_bitidx];
397 bitidx += end_bitidx;
398 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
399}
400
401unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
404{
405 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
406}
407
408static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
409{
410 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
411}
412
413/**
414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
415 * @page: The page within the block of interest
416 * @flags: The flags to set
417 * @pfn: The target page frame number
418 * @end_bitidx: The last bit of interest
419 * @mask: mask of bits that the caller is interested in
420 */
421void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long pfn,
423 unsigned long end_bitidx,
424 unsigned long mask)
425{
426 unsigned long *bitmap;
427 unsigned long bitidx, word_bitidx;
428 unsigned long old_word, word;
429
430 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
431
432 bitmap = get_pageblock_bitmap(page, pfn);
433 bitidx = pfn_to_bitidx(page, pfn);
434 word_bitidx = bitidx / BITS_PER_LONG;
435 bitidx &= (BITS_PER_LONG-1);
436
437 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438
439 bitidx += end_bitidx;
440 mask <<= (BITS_PER_LONG - bitidx - 1);
441 flags <<= (BITS_PER_LONG - bitidx - 1);
442
443 word = READ_ONCE(bitmap[word_bitidx]);
444 for (;;) {
445 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
446 if (word == old_word)
447 break;
448 word = old_word;
449 }
450}
3a80a7fa 451
ee6f509c 452void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 453{
5d0f3f72
KM
454 if (unlikely(page_group_by_mobility_disabled &&
455 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
456 migratetype = MIGRATE_UNMOVABLE;
457
b2a0ac88
MG
458 set_pageblock_flags_group(page, (unsigned long)migratetype,
459 PB_migrate, PB_migrate_end);
460}
461
13e7444b 462#ifdef CONFIG_DEBUG_VM
c6a57e19 463static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 464{
bdc8cb98
DH
465 int ret = 0;
466 unsigned seq;
467 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 468 unsigned long sp, start_pfn;
c6a57e19 469
bdc8cb98
DH
470 do {
471 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
472 start_pfn = zone->zone_start_pfn;
473 sp = zone->spanned_pages;
108bcc96 474 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
475 ret = 1;
476 } while (zone_span_seqretry(zone, seq));
477
b5e6a5a2 478 if (ret)
613813e8
DH
479 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
480 pfn, zone_to_nid(zone), zone->name,
481 start_pfn, start_pfn + sp);
b5e6a5a2 482
bdc8cb98 483 return ret;
c6a57e19
DH
484}
485
486static int page_is_consistent(struct zone *zone, struct page *page)
487{
14e07298 488 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 489 return 0;
1da177e4 490 if (zone != page_zone(page))
c6a57e19
DH
491 return 0;
492
493 return 1;
494}
495/*
496 * Temporary debugging check for pages not lying within a given zone.
497 */
498static int bad_range(struct zone *zone, struct page *page)
499{
500 if (page_outside_zone_boundaries(zone, page))
1da177e4 501 return 1;
c6a57e19
DH
502 if (!page_is_consistent(zone, page))
503 return 1;
504
1da177e4
LT
505 return 0;
506}
13e7444b
NP
507#else
508static inline int bad_range(struct zone *zone, struct page *page)
509{
510 return 0;
511}
512#endif
513
d230dec1
KS
514static void bad_page(struct page *page, const char *reason,
515 unsigned long bad_flags)
1da177e4 516{
d936cf9b
HD
517 static unsigned long resume;
518 static unsigned long nr_shown;
519 static unsigned long nr_unshown;
520
521 /*
522 * Allow a burst of 60 reports, then keep quiet for that minute;
523 * or allow a steady drip of one report per second.
524 */
525 if (nr_shown == 60) {
526 if (time_before(jiffies, resume)) {
527 nr_unshown++;
528 goto out;
529 }
530 if (nr_unshown) {
ff8e8116 531 pr_alert(
1e9e6365 532 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
533 nr_unshown);
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
540
ff8e8116 541 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 542 current->comm, page_to_pfn(page));
ff8e8116
VB
543 __dump_page(page, reason);
544 bad_flags &= page->flags;
545 if (bad_flags)
546 pr_alert("bad because of flags: %#lx(%pGp)\n",
547 bad_flags, &bad_flags);
4e462112 548 dump_page_owner(page);
3dc14741 549
4f31888c 550 print_modules();
1da177e4 551 dump_stack();
d936cf9b 552out:
8cc3b392 553 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 554 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 555 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
556}
557
1da177e4
LT
558/*
559 * Higher-order pages are called "compound pages". They are structured thusly:
560 *
1d798ca3 561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 562 *
1d798ca3
KS
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 565 *
1d798ca3
KS
566 * The first tail page's ->compound_dtor holds the offset in array of compound
567 * page destructors. See compound_page_dtors.
1da177e4 568 *
1d798ca3 569 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 570 * This usage means that zero-order pages may not be compound.
1da177e4 571 */
d98c7a09 572
9a982250 573void free_compound_page(struct page *page)
d98c7a09 574{
d85f3385 575 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
576}
577
d00181b9 578void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
579{
580 int i;
581 int nr_pages = 1 << order;
582
f1e61557 583 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
584 set_compound_order(page, order);
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++) {
587 struct page *p = page + i;
58a84aa9 588 set_page_count(p, 0);
1c290f64 589 p->mapping = TAIL_MAPPING;
1d798ca3 590 set_compound_head(p, page);
18229df5 591 }
53f9263b 592 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
593}
594
c0a32fc5
SG
595#ifdef CONFIG_DEBUG_PAGEALLOC
596unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
597bool _debug_pagealloc_enabled __read_mostly
598 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 599EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
600bool _debug_guardpage_enabled __read_mostly;
601
031bc574
JK
602static int __init early_debug_pagealloc(char *buf)
603{
604 if (!buf)
605 return -EINVAL;
2a138dc7 606 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
607}
608early_param("debug_pagealloc", early_debug_pagealloc);
609
e30825f1
JK
610static bool need_debug_guardpage(void)
611{
031bc574
JK
612 /* If we don't use debug_pagealloc, we don't need guard page */
613 if (!debug_pagealloc_enabled())
614 return false;
615
756ed487
JK
616 if (!debug_guardpage_minorder())
617 return false;
618
e30825f1
JK
619 return true;
620}
621
622static void init_debug_guardpage(void)
623{
031bc574
JK
624 if (!debug_pagealloc_enabled())
625 return;
626
756ed487
JK
627 if (!debug_guardpage_minorder())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
756ed487 650early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 651
f760955e 652static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
f760955e
JK
658 return false;
659
660 if (order >= debug_guardpage_minorder())
661 return false;
e30825f1
JK
662
663 page_ext = lookup_page_ext(page);
f86e4271 664 if (unlikely(!page_ext))
f760955e 665 return false;
f86e4271 666
e30825f1
JK
667 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
668
2847cf95
JK
669 INIT_LIST_HEAD(&page->lru);
670 set_page_private(page, order);
671 /* Guard pages are not available for any usage */
672 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
f760955e
JK
673
674 return true;
c0a32fc5
SG
675}
676
2847cf95
JK
677static inline void clear_page_guard(struct zone *zone, struct page *page,
678 unsigned int order, int migratetype)
c0a32fc5 679{
e30825f1
JK
680 struct page_ext *page_ext;
681
682 if (!debug_guardpage_enabled())
683 return;
684
685 page_ext = lookup_page_ext(page);
f86e4271
YS
686 if (unlikely(!page_ext))
687 return;
688
e30825f1
JK
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
76d6f34c 696struct page_ext_operations debug_guardpage_ops;
f760955e
JK
697static inline bool set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) { return false; }
2847cf95
JK
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13e7444b 718 * (a) the buddy is not in a hole &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
14e07298 733 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 734 return 0;
13e7444b 735
c0a32fc5 736 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
c0a32fc5
SG
742 return 1;
743 }
744
cb2b95e1 745 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
6aa3001b 756 return 1;
676165a8 757 }
6aa3001b 758 return 0;
1da177e4
LT
759}
760
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
1da177e4 777 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
1da177e4 780 * If a block is freed, and its buddy is also free, then this
5f63b720 781 * triggers coalescing into a block of larger size.
1da177e4 782 *
6d49e352 783 * -- nyc
1da177e4
LT
784 */
785
48db57f8 786static inline void __free_one_page(struct page *page,
dc4b0caf 787 unsigned long pfn,
ed0ae21d
MG
788 struct zone *zone, unsigned int order,
789 int migratetype)
1da177e4
LT
790{
791 unsigned long page_idx;
6dda9d55 792 unsigned long combined_idx;
43506fad 793 unsigned long uninitialized_var(buddy_idx);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
d9dddbf5 806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 807
309381fe
SL
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 810
d9dddbf5 811continue_merging:
3c605096 812 while (order < max_order - 1) {
43506fad
KC
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
cb2b95e1 815 if (!page_is_buddy(page, buddy, order))
d9dddbf5 816 goto done_merging;
c0a32fc5
SG
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
2847cf95 822 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
43506fad 828 combined_idx = buddy_idx & page_idx;
1da177e4
LT
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
d9dddbf5
VB
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858done_merging:
1da177e4 859 set_page_order(page, order);
6dda9d55
CZ
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
b7f50cfa 869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 870 struct page *higher_page, *higher_buddy;
43506fad
KC
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 874 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883out:
1da177e4
LT
884 zone->free_area[order].nr_free++;
885}
886
7bfec6f4
MG
887/*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894{
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900#ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902#endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907}
908
bb552ac6 909static void free_pages_check_bad(struct page *page)
1da177e4 910{
7bfec6f4
MG
911 const char *bad_reason;
912 unsigned long bad_flags;
913
7bfec6f4
MG
914 bad_reason = NULL;
915 bad_flags = 0;
f0b791a3 916
53f9263b 917 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
fe896d18 921 if (unlikely(page_ref_count(page) != 0))
0139aa7b 922 bad_reason = "nonzero _refcount";
f0b791a3
DH
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
9edad6ea
JW
927#ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930#endif
7bfec6f4 931 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
932}
933
934static inline int free_pages_check(struct page *page)
935{
da838d4f 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 937 return 0;
bb552ac6
MG
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
7bfec6f4 941 return 1;
1da177e4
LT
942}
943
4db7548c
MG
944static int free_tail_pages_check(struct page *head_page, struct page *page)
945{
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992}
993
e2769dbd
MG
994static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
4db7548c 996{
e2769dbd 997 int bad = 0;
4db7548c 998
4db7548c
MG
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
e2769dbd
MG
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1003
1004 /*
1005 * Check tail pages before head page information is cleared to
1006 * avoid checking PageCompound for order-0 pages.
1007 */
1008 if (unlikely(order)) {
1009 bool compound = PageCompound(page);
1010 int i;
1011
1012 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1013
9a73f61b
KS
1014 if (compound)
1015 ClearPageDoubleMap(page);
e2769dbd
MG
1016 for (i = 1; i < (1 << order); i++) {
1017 if (compound)
1018 bad += free_tail_pages_check(page, page + i);
1019 if (unlikely(free_pages_check(page + i))) {
1020 bad++;
1021 continue;
1022 }
1023 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1024 }
1025 }
bda807d4 1026 if (PageMappingFlags(page))
4db7548c 1027 page->mapping = NULL;
c4159a75 1028 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1029 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1030 if (check_free)
1031 bad += free_pages_check(page);
1032 if (bad)
1033 return false;
4db7548c 1034
e2769dbd
MG
1035 page_cpupid_reset_last(page);
1036 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1037 reset_page_owner(page, order);
4db7548c
MG
1038
1039 if (!PageHighMem(page)) {
1040 debug_check_no_locks_freed(page_address(page),
e2769dbd 1041 PAGE_SIZE << order);
4db7548c 1042 debug_check_no_obj_freed(page_address(page),
e2769dbd 1043 PAGE_SIZE << order);
4db7548c 1044 }
e2769dbd
MG
1045 arch_free_page(page, order);
1046 kernel_poison_pages(page, 1 << order, 0);
1047 kernel_map_pages(page, 1 << order, 0);
29b52de1 1048 kasan_free_pages(page, order);
4db7548c 1049
4db7548c
MG
1050 return true;
1051}
1052
e2769dbd
MG
1053#ifdef CONFIG_DEBUG_VM
1054static inline bool free_pcp_prepare(struct page *page)
1055{
1056 return free_pages_prepare(page, 0, true);
1057}
1058
1059static inline bool bulkfree_pcp_prepare(struct page *page)
1060{
1061 return false;
1062}
1063#else
1064static bool free_pcp_prepare(struct page *page)
1065{
1066 return free_pages_prepare(page, 0, false);
1067}
1068
4db7548c
MG
1069static bool bulkfree_pcp_prepare(struct page *page)
1070{
1071 return free_pages_check(page);
1072}
1073#endif /* CONFIG_DEBUG_VM */
1074
1da177e4 1075/*
5f8dcc21 1076 * Frees a number of pages from the PCP lists
1da177e4 1077 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1078 * count is the number of pages to free.
1da177e4
LT
1079 *
1080 * If the zone was previously in an "all pages pinned" state then look to
1081 * see if this freeing clears that state.
1082 *
1083 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1084 * pinned" detection logic.
1085 */
5f8dcc21
MG
1086static void free_pcppages_bulk(struct zone *zone, int count,
1087 struct per_cpu_pages *pcp)
1da177e4 1088{
5f8dcc21 1089 int migratetype = 0;
a6f9edd6 1090 int batch_free = 0;
0d5d823a 1091 unsigned long nr_scanned;
3777999d 1092 bool isolated_pageblocks;
5f8dcc21 1093
c54ad30c 1094 spin_lock(&zone->lock);
3777999d 1095 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1096 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1097 if (nr_scanned)
599d0c95 1098 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1099
e5b31ac2 1100 while (count) {
48db57f8 1101 struct page *page;
5f8dcc21
MG
1102 struct list_head *list;
1103
1104 /*
a6f9edd6
MG
1105 * Remove pages from lists in a round-robin fashion. A
1106 * batch_free count is maintained that is incremented when an
1107 * empty list is encountered. This is so more pages are freed
1108 * off fuller lists instead of spinning excessively around empty
1109 * lists
5f8dcc21
MG
1110 */
1111 do {
a6f9edd6 1112 batch_free++;
5f8dcc21
MG
1113 if (++migratetype == MIGRATE_PCPTYPES)
1114 migratetype = 0;
1115 list = &pcp->lists[migratetype];
1116 } while (list_empty(list));
48db57f8 1117
1d16871d
NK
1118 /* This is the only non-empty list. Free them all. */
1119 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1120 batch_free = count;
1d16871d 1121
a6f9edd6 1122 do {
770c8aaa
BZ
1123 int mt; /* migratetype of the to-be-freed page */
1124
a16601c5 1125 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1126 /* must delete as __free_one_page list manipulates */
1127 list_del(&page->lru);
aa016d14 1128
bb14c2c7 1129 mt = get_pcppage_migratetype(page);
aa016d14
VB
1130 /* MIGRATE_ISOLATE page should not go to pcplists */
1131 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1132 /* Pageblock could have been isolated meanwhile */
3777999d 1133 if (unlikely(isolated_pageblocks))
51bb1a40 1134 mt = get_pageblock_migratetype(page);
51bb1a40 1135
4db7548c
MG
1136 if (bulkfree_pcp_prepare(page))
1137 continue;
1138
dc4b0caf 1139 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1140 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1141 } while (--count && --batch_free && !list_empty(list));
1da177e4 1142 }
c54ad30c 1143 spin_unlock(&zone->lock);
1da177e4
LT
1144}
1145
dc4b0caf
MG
1146static void free_one_page(struct zone *zone,
1147 struct page *page, unsigned long pfn,
7aeb09f9 1148 unsigned int order,
ed0ae21d 1149 int migratetype)
1da177e4 1150{
0d5d823a 1151 unsigned long nr_scanned;
006d22d9 1152 spin_lock(&zone->lock);
599d0c95 1153 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1154 if (nr_scanned)
599d0c95 1155 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1156
ad53f92e
JK
1157 if (unlikely(has_isolate_pageblock(zone) ||
1158 is_migrate_isolate(migratetype))) {
1159 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1160 }
dc4b0caf 1161 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1162 spin_unlock(&zone->lock);
48db57f8
NP
1163}
1164
1e8ce83c
RH
1165static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1166 unsigned long zone, int nid)
1167{
1e8ce83c 1168 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1169 init_page_count(page);
1170 page_mapcount_reset(page);
1171 page_cpupid_reset_last(page);
1e8ce83c 1172
1e8ce83c
RH
1173 INIT_LIST_HEAD(&page->lru);
1174#ifdef WANT_PAGE_VIRTUAL
1175 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1176 if (!is_highmem_idx(zone))
1177 set_page_address(page, __va(pfn << PAGE_SHIFT));
1178#endif
1179}
1180
1181static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1182 int nid)
1183{
1184 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1185}
1186
7e18adb4
MG
1187#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1188static void init_reserved_page(unsigned long pfn)
1189{
1190 pg_data_t *pgdat;
1191 int nid, zid;
1192
1193 if (!early_page_uninitialised(pfn))
1194 return;
1195
1196 nid = early_pfn_to_nid(pfn);
1197 pgdat = NODE_DATA(nid);
1198
1199 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1200 struct zone *zone = &pgdat->node_zones[zid];
1201
1202 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1203 break;
1204 }
1205 __init_single_pfn(pfn, zid, nid);
1206}
1207#else
1208static inline void init_reserved_page(unsigned long pfn)
1209{
1210}
1211#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1212
92923ca3
NZ
1213/*
1214 * Initialised pages do not have PageReserved set. This function is
1215 * called for each range allocated by the bootmem allocator and
1216 * marks the pages PageReserved. The remaining valid pages are later
1217 * sent to the buddy page allocator.
1218 */
4b50bcc7 1219void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1220{
1221 unsigned long start_pfn = PFN_DOWN(start);
1222 unsigned long end_pfn = PFN_UP(end);
1223
7e18adb4
MG
1224 for (; start_pfn < end_pfn; start_pfn++) {
1225 if (pfn_valid(start_pfn)) {
1226 struct page *page = pfn_to_page(start_pfn);
1227
1228 init_reserved_page(start_pfn);
1d798ca3
KS
1229
1230 /* Avoid false-positive PageTail() */
1231 INIT_LIST_HEAD(&page->lru);
1232
7e18adb4
MG
1233 SetPageReserved(page);
1234 }
1235 }
92923ca3
NZ
1236}
1237
ec95f53a
KM
1238static void __free_pages_ok(struct page *page, unsigned int order)
1239{
1240 unsigned long flags;
95e34412 1241 int migratetype;
dc4b0caf 1242 unsigned long pfn = page_to_pfn(page);
ec95f53a 1243
e2769dbd 1244 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1245 return;
1246
cfc47a28 1247 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1248 local_irq_save(flags);
f8891e5e 1249 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1250 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1251 local_irq_restore(flags);
1da177e4
LT
1252}
1253
3fcd59ab
ER
1254bool __meminitdata ram_latent_entropy;
1255
1256static int __init setup_ram_latent_entropy(char *str)
1257{
1258 ram_latent_entropy = true;
1259 return 0;
1260}
1261early_param("ram_latent_entropy", setup_ram_latent_entropy);
1262
949698a3 1263static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1264{
c3993076 1265 unsigned int nr_pages = 1 << order;
e2d0bd2b 1266 struct page *p = page;
c3993076 1267 unsigned int loop;
a226f6c8 1268
e2d0bd2b
YL
1269 prefetchw(p);
1270 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1271 prefetchw(p + 1);
c3993076
JW
1272 __ClearPageReserved(p);
1273 set_page_count(p, 0);
a226f6c8 1274 }
e2d0bd2b
YL
1275 __ClearPageReserved(p);
1276 set_page_count(p, 0);
c3993076 1277
3fcd59ab
ER
1278 if (ram_latent_entropy && !PageHighMem(page) &&
1279 page_to_pfn(page) < 0x100000) {
1280 u64 hash = 0;
1281 size_t index, end = PAGE_SIZE * nr_pages / sizeof(hash);
1282 const u64 *data = lowmem_page_address(page);
1283
1284 for (index = 0; index < end; index++)
1285 hash ^= hash + data[index];
1286 add_device_randomness((const void *)&hash, sizeof(hash));
1287 }
1288
e2d0bd2b 1289 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
a226f6c8
DH
1292}
1293
75a592a4
MG
1294#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1296
75a592a4
MG
1297static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299int __meminit early_pfn_to_nid(unsigned long pfn)
1300{
7ace9917 1301 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1302 int nid;
1303
7ace9917 1304 spin_lock(&early_pfn_lock);
75a592a4 1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1306 if (nid < 0)
e4568d38 1307 nid = first_online_node;
7ace9917
MG
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
75a592a4
MG
1311}
1312#endif
1313
1314#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1316 struct mminit_pfnnid_cache *state)
1317{
1318 int nid;
1319
1320 nid = __early_pfn_to_nid(pfn, state);
1321 if (nid >= 0 && nid != node)
1322 return false;
1323 return true;
1324}
1325
1326/* Only safe to use early in boot when initialisation is single-threaded */
1327static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1328{
1329 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1330}
1331
1332#else
1333
1334static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1335{
1336 return true;
1337}
1338static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1339 struct mminit_pfnnid_cache *state)
1340{
1341 return true;
1342}
1343#endif
1344
1345
0e1cc95b 1346void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1347 unsigned int order)
1348{
1349 if (early_page_uninitialised(pfn))
1350 return;
949698a3 1351 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1352}
1353
7cf91a98
JK
1354/*
1355 * Check that the whole (or subset of) a pageblock given by the interval of
1356 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1357 * with the migration of free compaction scanner. The scanners then need to
1358 * use only pfn_valid_within() check for arches that allow holes within
1359 * pageblocks.
1360 *
1361 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1362 *
1363 * It's possible on some configurations to have a setup like node0 node1 node0
1364 * i.e. it's possible that all pages within a zones range of pages do not
1365 * belong to a single zone. We assume that a border between node0 and node1
1366 * can occur within a single pageblock, but not a node0 node1 node0
1367 * interleaving within a single pageblock. It is therefore sufficient to check
1368 * the first and last page of a pageblock and avoid checking each individual
1369 * page in a pageblock.
1370 */
1371struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1372 unsigned long end_pfn, struct zone *zone)
1373{
1374 struct page *start_page;
1375 struct page *end_page;
1376
1377 /* end_pfn is one past the range we are checking */
1378 end_pfn--;
1379
1380 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1381 return NULL;
1382
1383 start_page = pfn_to_page(start_pfn);
1384
1385 if (page_zone(start_page) != zone)
1386 return NULL;
1387
1388 end_page = pfn_to_page(end_pfn);
1389
1390 /* This gives a shorter code than deriving page_zone(end_page) */
1391 if (page_zone_id(start_page) != page_zone_id(end_page))
1392 return NULL;
1393
1394 return start_page;
1395}
1396
1397void set_zone_contiguous(struct zone *zone)
1398{
1399 unsigned long block_start_pfn = zone->zone_start_pfn;
1400 unsigned long block_end_pfn;
1401
1402 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1403 for (; block_start_pfn < zone_end_pfn(zone);
1404 block_start_pfn = block_end_pfn,
1405 block_end_pfn += pageblock_nr_pages) {
1406
1407 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1408
1409 if (!__pageblock_pfn_to_page(block_start_pfn,
1410 block_end_pfn, zone))
1411 return;
1412 }
1413
1414 /* We confirm that there is no hole */
1415 zone->contiguous = true;
1416}
1417
1418void clear_zone_contiguous(struct zone *zone)
1419{
1420 zone->contiguous = false;
1421}
1422
7e18adb4 1423#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1424static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1425 unsigned long pfn, int nr_pages)
1426{
1427 int i;
1428
1429 if (!page)
1430 return;
1431
1432 /* Free a large naturally-aligned chunk if possible */
98244d1d
XQ
1433 if (nr_pages == pageblock_nr_pages &&
1434 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
98244d1d 1436 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1437 return;
1438 }
1439
98244d1d
XQ
1440 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1443 __free_pages_boot_core(page, 0);
98244d1d 1444 }
a4de83dd
MG
1445}
1446
d3cd131d
NS
1447/* Completion tracking for deferred_init_memmap() threads */
1448static atomic_t pgdat_init_n_undone __initdata;
1449static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450
1451static inline void __init pgdat_init_report_one_done(void)
1452{
1453 if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 complete(&pgdat_init_all_done_comp);
1455}
0e1cc95b 1456
7e18adb4 1457/* Initialise remaining memory on a node */
0e1cc95b 1458static int __init deferred_init_memmap(void *data)
7e18adb4 1459{
0e1cc95b
MG
1460 pg_data_t *pgdat = data;
1461 int nid = pgdat->node_id;
7e18adb4
MG
1462 struct mminit_pfnnid_cache nid_init_state = { };
1463 unsigned long start = jiffies;
1464 unsigned long nr_pages = 0;
1465 unsigned long walk_start, walk_end;
1466 int i, zid;
1467 struct zone *zone;
7e18adb4 1468 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1469 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1470
0e1cc95b 1471 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1472 pgdat_init_report_one_done();
0e1cc95b
MG
1473 return 0;
1474 }
1475
1476 /* Bind memory initialisation thread to a local node if possible */
1477 if (!cpumask_empty(cpumask))
1478 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1479
1480 /* Sanity check boundaries */
1481 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1482 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1483 pgdat->first_deferred_pfn = ULONG_MAX;
1484
1485 /* Only the highest zone is deferred so find it */
1486 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1487 zone = pgdat->node_zones + zid;
1488 if (first_init_pfn < zone_end_pfn(zone))
1489 break;
1490 }
1491
1492 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1493 unsigned long pfn, end_pfn;
54608c3f 1494 struct page *page = NULL;
a4de83dd
MG
1495 struct page *free_base_page = NULL;
1496 unsigned long free_base_pfn = 0;
1497 int nr_to_free = 0;
7e18adb4
MG
1498
1499 end_pfn = min(walk_end, zone_end_pfn(zone));
1500 pfn = first_init_pfn;
1501 if (pfn < walk_start)
1502 pfn = walk_start;
1503 if (pfn < zone->zone_start_pfn)
1504 pfn = zone->zone_start_pfn;
1505
1506 for (; pfn < end_pfn; pfn++) {
54608c3f 1507 if (!pfn_valid_within(pfn))
a4de83dd 1508 goto free_range;
7e18adb4 1509
54608c3f
MG
1510 /*
1511 * Ensure pfn_valid is checked every
98244d1d 1512 * pageblock_nr_pages for memory holes
54608c3f 1513 */
98244d1d 1514 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1515 if (!pfn_valid(pfn)) {
1516 page = NULL;
a4de83dd 1517 goto free_range;
54608c3f
MG
1518 }
1519 }
1520
1521 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1522 page = NULL;
a4de83dd 1523 goto free_range;
54608c3f
MG
1524 }
1525
1526 /* Minimise pfn page lookups and scheduler checks */
98244d1d 1527 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1528 page++;
1529 } else {
a4de83dd
MG
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page,
1532 free_base_pfn, nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1535
54608c3f
MG
1536 page = pfn_to_page(pfn);
1537 cond_resched();
1538 }
7e18adb4
MG
1539
1540 if (page->flags) {
1541 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1542 goto free_range;
7e18adb4
MG
1543 }
1544
1545 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1546 if (!free_base_page) {
1547 free_base_page = page;
1548 free_base_pfn = pfn;
1549 nr_to_free = 0;
1550 }
1551 nr_to_free++;
1552
1553 /* Where possible, batch up pages for a single free */
1554 continue;
1555free_range:
1556 /* Free the current block of pages to allocator */
1557 nr_pages += nr_to_free;
1558 deferred_free_range(free_base_page, free_base_pfn,
1559 nr_to_free);
1560 free_base_page = NULL;
1561 free_base_pfn = nr_to_free = 0;
7e18adb4 1562 }
98244d1d
XQ
1563 /* Free the last block of pages to allocator */
1564 nr_pages += nr_to_free;
1565 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1566
7e18adb4
MG
1567 first_init_pfn = max(end_pfn, first_init_pfn);
1568 }
1569
1570 /* Sanity check that the next zone really is unpopulated */
1571 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1572
0e1cc95b 1573 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1574 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1575
1576 pgdat_init_report_one_done();
0e1cc95b
MG
1577 return 0;
1578}
7cf91a98 1579#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1580
1581void __init page_alloc_init_late(void)
1582{
7cf91a98
JK
1583 struct zone *zone;
1584
1585#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1586 int nid;
1587
d3cd131d
NS
1588 /* There will be num_node_state(N_MEMORY) threads */
1589 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1590 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1591 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1592 }
1593
1594 /* Block until all are initialised */
d3cd131d 1595 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1596
1597 /* Reinit limits that are based on free pages after the kernel is up */
1598 files_maxfiles_init();
7cf91a98
JK
1599#endif
1600
1601 for_each_populated_zone(zone)
1602 set_zone_contiguous(zone);
7e18adb4 1603}
7e18adb4 1604
47118af0 1605#ifdef CONFIG_CMA
9cf510a5 1606/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1607void __init init_cma_reserved_pageblock(struct page *page)
1608{
1609 unsigned i = pageblock_nr_pages;
1610 struct page *p = page;
1611
1612 do {
1613 __ClearPageReserved(p);
1614 set_page_count(p, 0);
1615 } while (++p, --i);
1616
47118af0 1617 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1618
1619 if (pageblock_order >= MAX_ORDER) {
1620 i = pageblock_nr_pages;
1621 p = page;
1622 do {
1623 set_page_refcounted(p);
1624 __free_pages(p, MAX_ORDER - 1);
1625 p += MAX_ORDER_NR_PAGES;
1626 } while (i -= MAX_ORDER_NR_PAGES);
1627 } else {
1628 set_page_refcounted(page);
1629 __free_pages(page, pageblock_order);
1630 }
1631
3dcc0571 1632 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1633}
1634#endif
1da177e4
LT
1635
1636/*
1637 * The order of subdivision here is critical for the IO subsystem.
1638 * Please do not alter this order without good reasons and regression
1639 * testing. Specifically, as large blocks of memory are subdivided,
1640 * the order in which smaller blocks are delivered depends on the order
1641 * they're subdivided in this function. This is the primary factor
1642 * influencing the order in which pages are delivered to the IO
1643 * subsystem according to empirical testing, and this is also justified
1644 * by considering the behavior of a buddy system containing a single
1645 * large block of memory acted on by a series of small allocations.
1646 * This behavior is a critical factor in sglist merging's success.
1647 *
6d49e352 1648 * -- nyc
1da177e4 1649 */
085cc7d5 1650static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1651 int low, int high, struct free_area *area,
1652 int migratetype)
1da177e4
LT
1653{
1654 unsigned long size = 1 << high;
1655
1656 while (high > low) {
1657 area--;
1658 high--;
1659 size >>= 1;
309381fe 1660 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1661
f760955e
JK
1662 /*
1663 * Mark as guard pages (or page), that will allow to
1664 * merge back to allocator when buddy will be freed.
1665 * Corresponding page table entries will not be touched,
1666 * pages will stay not present in virtual address space
1667 */
1668 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1669 continue;
f760955e 1670
b2a0ac88 1671 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1672 area->nr_free++;
1673 set_page_order(&page[size], high);
1674 }
1da177e4
LT
1675}
1676
4e611801 1677static void check_new_page_bad(struct page *page)
1da177e4 1678{
4e611801
VB
1679 const char *bad_reason = NULL;
1680 unsigned long bad_flags = 0;
7bfec6f4 1681
53f9263b 1682 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1683 bad_reason = "nonzero mapcount";
1684 if (unlikely(page->mapping != NULL))
1685 bad_reason = "non-NULL mapping";
fe896d18 1686 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1687 bad_reason = "nonzero _count";
f4c18e6f
NH
1688 if (unlikely(page->flags & __PG_HWPOISON)) {
1689 bad_reason = "HWPoisoned (hardware-corrupted)";
1690 bad_flags = __PG_HWPOISON;
e570f56c
NH
1691 /* Don't complain about hwpoisoned pages */
1692 page_mapcount_reset(page); /* remove PageBuddy */
1693 return;
f4c18e6f 1694 }
f0b791a3
DH
1695 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1696 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1697 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1698 }
9edad6ea
JW
1699#ifdef CONFIG_MEMCG
1700 if (unlikely(page->mem_cgroup))
1701 bad_reason = "page still charged to cgroup";
1702#endif
4e611801
VB
1703 bad_page(page, bad_reason, bad_flags);
1704}
1705
1706/*
1707 * This page is about to be returned from the page allocator
1708 */
1709static inline int check_new_page(struct page *page)
1710{
1711 if (likely(page_expected_state(page,
1712 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1713 return 0;
1714
1715 check_new_page_bad(page);
1716 return 1;
2a7684a2
WF
1717}
1718
1414c7f4
LA
1719static inline bool free_pages_prezeroed(bool poisoned)
1720{
1721 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1722 page_poisoning_enabled() && poisoned;
1723}
1724
479f854a
MG
1725#ifdef CONFIG_DEBUG_VM
1726static bool check_pcp_refill(struct page *page)
1727{
1728 return false;
1729}
1730
1731static bool check_new_pcp(struct page *page)
1732{
1733 return check_new_page(page);
1734}
1735#else
1736static bool check_pcp_refill(struct page *page)
1737{
1738 return check_new_page(page);
1739}
1740static bool check_new_pcp(struct page *page)
1741{
1742 return false;
1743}
1744#endif /* CONFIG_DEBUG_VM */
1745
1746static bool check_new_pages(struct page *page, unsigned int order)
1747{
1748 int i;
1749 for (i = 0; i < (1 << order); i++) {
1750 struct page *p = page + i;
1751
1752 if (unlikely(check_new_page(p)))
1753 return true;
1754 }
1755
1756 return false;
1757}
1758
46f24fd8
JK
1759inline void post_alloc_hook(struct page *page, unsigned int order,
1760 gfp_t gfp_flags)
1761{
1762 set_page_private(page, 0);
1763 set_page_refcounted(page);
1764
1765 arch_alloc_page(page, order);
1766 kernel_map_pages(page, 1 << order, 1);
1767 kernel_poison_pages(page, 1 << order, 1);
1768 kasan_alloc_pages(page, order);
1769 set_page_owner(page, order, gfp_flags);
1770}
1771
479f854a 1772static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1773 unsigned int alloc_flags)
2a7684a2
WF
1774{
1775 int i;
1414c7f4 1776 bool poisoned = true;
2a7684a2
WF
1777
1778 for (i = 0; i < (1 << order); i++) {
1779 struct page *p = page + i;
1414c7f4
LA
1780 if (poisoned)
1781 poisoned &= page_is_poisoned(p);
2a7684a2 1782 }
689bcebf 1783
46f24fd8 1784 post_alloc_hook(page, order, gfp_flags);
17cf4406 1785
1414c7f4 1786 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1787 for (i = 0; i < (1 << order); i++)
1788 clear_highpage(page + i);
17cf4406
NP
1789
1790 if (order && (gfp_flags & __GFP_COMP))
1791 prep_compound_page(page, order);
1792
75379191 1793 /*
2f064f34 1794 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1795 * allocate the page. The expectation is that the caller is taking
1796 * steps that will free more memory. The caller should avoid the page
1797 * being used for !PFMEMALLOC purposes.
1798 */
2f064f34
MH
1799 if (alloc_flags & ALLOC_NO_WATERMARKS)
1800 set_page_pfmemalloc(page);
1801 else
1802 clear_page_pfmemalloc(page);
1da177e4
LT
1803}
1804
56fd56b8
MG
1805/*
1806 * Go through the free lists for the given migratetype and remove
1807 * the smallest available page from the freelists
1808 */
728ec980
MG
1809static inline
1810struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1811 int migratetype)
1812{
1813 unsigned int current_order;
b8af2941 1814 struct free_area *area;
56fd56b8
MG
1815 struct page *page;
1816
1817 /* Find a page of the appropriate size in the preferred list */
1818 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1819 area = &(zone->free_area[current_order]);
a16601c5 1820 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1821 struct page, lru);
a16601c5
GT
1822 if (!page)
1823 continue;
56fd56b8
MG
1824 list_del(&page->lru);
1825 rmv_page_order(page);
1826 area->nr_free--;
56fd56b8 1827 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1828 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1829 return page;
1830 }
1831
1832 return NULL;
1833}
1834
1835
b2a0ac88
MG
1836/*
1837 * This array describes the order lists are fallen back to when
1838 * the free lists for the desirable migrate type are depleted
1839 */
47118af0 1840static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1841 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1842 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1843 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1844#ifdef CONFIG_CMA
974a786e 1845 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1846#endif
194159fb 1847#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1848 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1849#endif
b2a0ac88
MG
1850};
1851
dc67647b
JK
1852#ifdef CONFIG_CMA
1853static struct page *__rmqueue_cma_fallback(struct zone *zone,
1854 unsigned int order)
1855{
1856 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1857}
1858#else
1859static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1860 unsigned int order) { return NULL; }
1861#endif
1862
c361be55
MG
1863/*
1864 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1865 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1866 * boundary. If alignment is required, use move_freepages_block()
1867 */
435b405c 1868int move_freepages(struct zone *zone,
b69a7288
AB
1869 struct page *start_page, struct page *end_page,
1870 int migratetype)
c361be55
MG
1871{
1872 struct page *page;
d00181b9 1873 unsigned int order;
d100313f 1874 int pages_moved = 0;
c361be55
MG
1875
1876#ifndef CONFIG_HOLES_IN_ZONE
1877 /*
1878 * page_zone is not safe to call in this context when
1879 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1880 * anyway as we check zone boundaries in move_freepages_block().
1881 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1882 * grouping pages by mobility
c361be55 1883 */
97ee4ba7 1884 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1885#endif
1886
1887 for (page = start_page; page <= end_page;) {
344c790e 1888 /* Make sure we are not inadvertently changing nodes */
309381fe 1889 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1890
c361be55
MG
1891 if (!pfn_valid_within(page_to_pfn(page))) {
1892 page++;
1893 continue;
1894 }
1895
1896 if (!PageBuddy(page)) {
1897 page++;
1898 continue;
1899 }
1900
1901 order = page_order(page);
84be48d8
KS
1902 list_move(&page->lru,
1903 &zone->free_area[order].free_list[migratetype]);
c361be55 1904 page += 1 << order;
d100313f 1905 pages_moved += 1 << order;
c361be55
MG
1906 }
1907
d100313f 1908 return pages_moved;
c361be55
MG
1909}
1910
ee6f509c 1911int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1912 int migratetype)
c361be55
MG
1913{
1914 unsigned long start_pfn, end_pfn;
1915 struct page *start_page, *end_page;
1916
1917 start_pfn = page_to_pfn(page);
d9c23400 1918 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1919 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1920 end_page = start_page + pageblock_nr_pages - 1;
1921 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1922
1923 /* Do not cross zone boundaries */
108bcc96 1924 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1925 start_page = page;
108bcc96 1926 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1927 return 0;
1928
1929 return move_freepages(zone, start_page, end_page, migratetype);
1930}
1931
2f66a68f
MG
1932static void change_pageblock_range(struct page *pageblock_page,
1933 int start_order, int migratetype)
1934{
1935 int nr_pageblocks = 1 << (start_order - pageblock_order);
1936
1937 while (nr_pageblocks--) {
1938 set_pageblock_migratetype(pageblock_page, migratetype);
1939 pageblock_page += pageblock_nr_pages;
1940 }
1941}
1942
fef903ef 1943/*
9c0415eb
VB
1944 * When we are falling back to another migratetype during allocation, try to
1945 * steal extra free pages from the same pageblocks to satisfy further
1946 * allocations, instead of polluting multiple pageblocks.
1947 *
1948 * If we are stealing a relatively large buddy page, it is likely there will
1949 * be more free pages in the pageblock, so try to steal them all. For
1950 * reclaimable and unmovable allocations, we steal regardless of page size,
1951 * as fragmentation caused by those allocations polluting movable pageblocks
1952 * is worse than movable allocations stealing from unmovable and reclaimable
1953 * pageblocks.
fef903ef 1954 */
4eb7dce6
JK
1955static bool can_steal_fallback(unsigned int order, int start_mt)
1956{
1957 /*
1958 * Leaving this order check is intended, although there is
1959 * relaxed order check in next check. The reason is that
1960 * we can actually steal whole pageblock if this condition met,
1961 * but, below check doesn't guarantee it and that is just heuristic
1962 * so could be changed anytime.
1963 */
1964 if (order >= pageblock_order)
1965 return true;
1966
1967 if (order >= pageblock_order / 2 ||
1968 start_mt == MIGRATE_RECLAIMABLE ||
1969 start_mt == MIGRATE_UNMOVABLE ||
1970 page_group_by_mobility_disabled)
1971 return true;
1972
1973 return false;
1974}
1975
1976/*
1977 * This function implements actual steal behaviour. If order is large enough,
1978 * we can steal whole pageblock. If not, we first move freepages in this
1979 * pageblock and check whether half of pages are moved or not. If half of
1980 * pages are moved, we can change migratetype of pageblock and permanently
1981 * use it's pages as requested migratetype in the future.
1982 */
1983static void steal_suitable_fallback(struct zone *zone, struct page *page,
1984 int start_type)
fef903ef 1985{
d00181b9 1986 unsigned int current_order = page_order(page);
4eb7dce6 1987 int pages;
fef903ef 1988
fef903ef
SB
1989 /* Take ownership for orders >= pageblock_order */
1990 if (current_order >= pageblock_order) {
1991 change_pageblock_range(page, current_order, start_type);
3a1086fb 1992 return;
fef903ef
SB
1993 }
1994
4eb7dce6 1995 pages = move_freepages_block(zone, page, start_type);
fef903ef 1996
4eb7dce6
JK
1997 /* Claim the whole block if over half of it is free */
1998 if (pages >= (1 << (pageblock_order-1)) ||
1999 page_group_by_mobility_disabled)
2000 set_pageblock_migratetype(page, start_type);
2001}
2002
2149cdae
JK
2003/*
2004 * Check whether there is a suitable fallback freepage with requested order.
2005 * If only_stealable is true, this function returns fallback_mt only if
2006 * we can steal other freepages all together. This would help to reduce
2007 * fragmentation due to mixed migratetype pages in one pageblock.
2008 */
2009int find_suitable_fallback(struct free_area *area, unsigned int order,
2010 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2011{
2012 int i;
2013 int fallback_mt;
2014
2015 if (area->nr_free == 0)
2016 return -1;
2017
2018 *can_steal = false;
2019 for (i = 0;; i++) {
2020 fallback_mt = fallbacks[migratetype][i];
974a786e 2021 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2022 break;
2023
2024 if (list_empty(&area->free_list[fallback_mt]))
2025 continue;
fef903ef 2026
4eb7dce6
JK
2027 if (can_steal_fallback(order, migratetype))
2028 *can_steal = true;
2029
2149cdae
JK
2030 if (!only_stealable)
2031 return fallback_mt;
2032
2033 if (*can_steal)
2034 return fallback_mt;
fef903ef 2035 }
4eb7dce6
JK
2036
2037 return -1;
fef903ef
SB
2038}
2039
0aaa29a5
MG
2040/*
2041 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2042 * there are no empty page blocks that contain a page with a suitable order
2043 */
2044static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2045 unsigned int alloc_order)
2046{
2047 int mt;
2048 unsigned long max_managed, flags;
2049
2050 /*
2051 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2052 * Check is race-prone but harmless.
2053 */
2054 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2055 if (zone->nr_reserved_highatomic >= max_managed)
2056 return;
2057
2058 spin_lock_irqsave(&zone->lock, flags);
2059
2060 /* Recheck the nr_reserved_highatomic limit under the lock */
2061 if (zone->nr_reserved_highatomic >= max_managed)
2062 goto out_unlock;
2063
2064 /* Yoink! */
2065 mt = get_pageblock_migratetype(page);
2066 if (mt != MIGRATE_HIGHATOMIC &&
2067 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2068 zone->nr_reserved_highatomic += pageblock_nr_pages;
2069 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2070 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2071 }
2072
2073out_unlock:
2074 spin_unlock_irqrestore(&zone->lock, flags);
2075}
2076
2077/*
2078 * Used when an allocation is about to fail under memory pressure. This
2079 * potentially hurts the reliability of high-order allocations when under
2080 * intense memory pressure but failed atomic allocations should be easier
2081 * to recover from than an OOM.
2082 */
2083static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2084{
2085 struct zonelist *zonelist = ac->zonelist;
2086 unsigned long flags;
2087 struct zoneref *z;
2088 struct zone *zone;
2089 struct page *page;
2090 int order;
2091
2092 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2093 ac->nodemask) {
2094 /* Preserve at least one pageblock */
2095 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2096 continue;
2097
2098 spin_lock_irqsave(&zone->lock, flags);
2099 for (order = 0; order < MAX_ORDER; order++) {
2100 struct free_area *area = &(zone->free_area[order]);
2101
a16601c5
GT
2102 page = list_first_entry_or_null(
2103 &area->free_list[MIGRATE_HIGHATOMIC],
2104 struct page, lru);
2105 if (!page)
0aaa29a5
MG
2106 continue;
2107
0aaa29a5
MG
2108 /*
2109 * It should never happen but changes to locking could
2110 * inadvertently allow a per-cpu drain to add pages
2111 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2112 * and watch for underflows.
2113 */
2114 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2115 zone->nr_reserved_highatomic);
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 move_freepages_block(zone, page, ac->migratetype);
2128 spin_unlock_irqrestore(&zone->lock, flags);
2129 return;
2130 }
2131 spin_unlock_irqrestore(&zone->lock, flags);
2132 }
2133}
2134
b2a0ac88 2135/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2136static inline struct page *
7aeb09f9 2137__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2138{
b8af2941 2139 struct free_area *area;
7aeb09f9 2140 unsigned int current_order;
b2a0ac88 2141 struct page *page;
4eb7dce6
JK
2142 int fallback_mt;
2143 bool can_steal;
b2a0ac88
MG
2144
2145 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2146 for (current_order = MAX_ORDER-1;
2147 current_order >= order && current_order <= MAX_ORDER-1;
2148 --current_order) {
4eb7dce6
JK
2149 area = &(zone->free_area[current_order]);
2150 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2151 start_migratetype, false, &can_steal);
4eb7dce6
JK
2152 if (fallback_mt == -1)
2153 continue;
b2a0ac88 2154
a16601c5 2155 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2156 struct page, lru);
2157 if (can_steal)
2158 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2159
4eb7dce6
JK
2160 /* Remove the page from the freelists */
2161 area->nr_free--;
2162 list_del(&page->lru);
2163 rmv_page_order(page);
3a1086fb 2164
4eb7dce6
JK
2165 expand(zone, page, order, current_order, area,
2166 start_migratetype);
2167 /*
bb14c2c7 2168 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2169 * migratetype depending on the decisions in
bb14c2c7
VB
2170 * find_suitable_fallback(). This is OK as long as it does not
2171 * differ for MIGRATE_CMA pageblocks. Those can be used as
2172 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2173 */
bb14c2c7 2174 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2175
4eb7dce6
JK
2176 trace_mm_page_alloc_extfrag(page, order, current_order,
2177 start_migratetype, fallback_mt);
e0fff1bd 2178
4eb7dce6 2179 return page;
b2a0ac88
MG
2180 }
2181
728ec980 2182 return NULL;
b2a0ac88
MG
2183}
2184
56fd56b8 2185/*
1da177e4
LT
2186 * Do the hard work of removing an element from the buddy allocator.
2187 * Call me with the zone->lock already held.
2188 */
b2a0ac88 2189static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2190 int migratetype)
1da177e4 2191{
1da177e4
LT
2192 struct page *page;
2193
56fd56b8 2194 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2195 if (unlikely(!page)) {
dc67647b
JK
2196 if (migratetype == MIGRATE_MOVABLE)
2197 page = __rmqueue_cma_fallback(zone, order);
2198
2199 if (!page)
2200 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2201 }
2202
0d3d062a 2203 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2204 return page;
1da177e4
LT
2205}
2206
5f63b720 2207/*
1da177e4
LT
2208 * Obtain a specified number of elements from the buddy allocator, all under
2209 * a single hold of the lock, for efficiency. Add them to the supplied list.
2210 * Returns the number of new pages which were placed at *list.
2211 */
5f63b720 2212static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2213 unsigned long count, struct list_head *list,
b745bc85 2214 int migratetype, bool cold)
1da177e4 2215{
5bcc9f86 2216 int i;
5f63b720 2217
c54ad30c 2218 spin_lock(&zone->lock);
1da177e4 2219 for (i = 0; i < count; ++i) {
6ac0206b 2220 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2221 if (unlikely(page == NULL))
1da177e4 2222 break;
81eabcbe 2223
479f854a
MG
2224 if (unlikely(check_pcp_refill(page)))
2225 continue;
2226
81eabcbe
MG
2227 /*
2228 * Split buddy pages returned by expand() are received here
2229 * in physical page order. The page is added to the callers and
2230 * list and the list head then moves forward. From the callers
2231 * perspective, the linked list is ordered by page number in
2232 * some conditions. This is useful for IO devices that can
2233 * merge IO requests if the physical pages are ordered
2234 * properly.
2235 */
b745bc85 2236 if (likely(!cold))
e084b2d9
MG
2237 list_add(&page->lru, list);
2238 else
2239 list_add_tail(&page->lru, list);
81eabcbe 2240 list = &page->lru;
bb14c2c7 2241 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2242 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2243 -(1 << order));
1da177e4 2244 }
f2260e6b 2245 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2246 spin_unlock(&zone->lock);
085cc7d5 2247 return i;
1da177e4
LT
2248}
2249
4ae7c039 2250#ifdef CONFIG_NUMA
8fce4d8e 2251/*
4037d452
CL
2252 * Called from the vmstat counter updater to drain pagesets of this
2253 * currently executing processor on remote nodes after they have
2254 * expired.
2255 *
879336c3
CL
2256 * Note that this function must be called with the thread pinned to
2257 * a single processor.
8fce4d8e 2258 */
4037d452 2259void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2260{
4ae7c039 2261 unsigned long flags;
7be12fc9 2262 int to_drain, batch;
4ae7c039 2263
4037d452 2264 local_irq_save(flags);
4db0c3c2 2265 batch = READ_ONCE(pcp->batch);
7be12fc9 2266 to_drain = min(pcp->count, batch);
2a13515c
KM
2267 if (to_drain > 0) {
2268 free_pcppages_bulk(zone, to_drain, pcp);
2269 pcp->count -= to_drain;
2270 }
4037d452 2271 local_irq_restore(flags);
4ae7c039
CL
2272}
2273#endif
2274
9f8f2172 2275/*
93481ff0 2276 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2277 *
2278 * The processor must either be the current processor and the
2279 * thread pinned to the current processor or a processor that
2280 * is not online.
2281 */
93481ff0 2282static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2283{
c54ad30c 2284 unsigned long flags;
93481ff0
VB
2285 struct per_cpu_pageset *pset;
2286 struct per_cpu_pages *pcp;
1da177e4 2287
93481ff0
VB
2288 local_irq_save(flags);
2289 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2290
93481ff0
VB
2291 pcp = &pset->pcp;
2292 if (pcp->count) {
2293 free_pcppages_bulk(zone, pcp->count, pcp);
2294 pcp->count = 0;
2295 }
2296 local_irq_restore(flags);
2297}
3dfa5721 2298
93481ff0
VB
2299/*
2300 * Drain pcplists of all zones on the indicated processor.
2301 *
2302 * The processor must either be the current processor and the
2303 * thread pinned to the current processor or a processor that
2304 * is not online.
2305 */
2306static void drain_pages(unsigned int cpu)
2307{
2308 struct zone *zone;
2309
2310 for_each_populated_zone(zone) {
2311 drain_pages_zone(cpu, zone);
1da177e4
LT
2312 }
2313}
1da177e4 2314
9f8f2172
CL
2315/*
2316 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2317 *
2318 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2319 * the single zone's pages.
9f8f2172 2320 */
93481ff0 2321void drain_local_pages(struct zone *zone)
9f8f2172 2322{
93481ff0
VB
2323 int cpu = smp_processor_id();
2324
2325 if (zone)
2326 drain_pages_zone(cpu, zone);
2327 else
2328 drain_pages(cpu);
9f8f2172
CL
2329}
2330
2331/*
74046494
GBY
2332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333 *
93481ff0
VB
2334 * When zone parameter is non-NULL, spill just the single zone's pages.
2335 *
74046494
GBY
2336 * Note that this code is protected against sending an IPI to an offline
2337 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2338 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2339 * nothing keeps CPUs from showing up after we populated the cpumask and
2340 * before the call to on_each_cpu_mask().
9f8f2172 2341 */
93481ff0 2342void drain_all_pages(struct zone *zone)
9f8f2172 2343{
74046494 2344 int cpu;
74046494
GBY
2345
2346 /*
2347 * Allocate in the BSS so we wont require allocation in
2348 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2349 */
2350 static cpumask_t cpus_with_pcps;
2351
2352 /*
2353 * We don't care about racing with CPU hotplug event
2354 * as offline notification will cause the notified
2355 * cpu to drain that CPU pcps and on_each_cpu_mask
2356 * disables preemption as part of its processing
2357 */
2358 for_each_online_cpu(cpu) {
93481ff0
VB
2359 struct per_cpu_pageset *pcp;
2360 struct zone *z;
74046494 2361 bool has_pcps = false;
93481ff0
VB
2362
2363 if (zone) {
74046494 2364 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2365 if (pcp->pcp.count)
74046494 2366 has_pcps = true;
93481ff0
VB
2367 } else {
2368 for_each_populated_zone(z) {
2369 pcp = per_cpu_ptr(z->pageset, cpu);
2370 if (pcp->pcp.count) {
2371 has_pcps = true;
2372 break;
2373 }
74046494
GBY
2374 }
2375 }
93481ff0 2376
74046494
GBY
2377 if (has_pcps)
2378 cpumask_set_cpu(cpu, &cpus_with_pcps);
2379 else
2380 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2381 }
93481ff0
VB
2382 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2383 zone, 1);
9f8f2172
CL
2384}
2385
296699de 2386#ifdef CONFIG_HIBERNATION
1da177e4
LT
2387
2388void mark_free_pages(struct zone *zone)
2389{
f623f0db
RW
2390 unsigned long pfn, max_zone_pfn;
2391 unsigned long flags;
7aeb09f9 2392 unsigned int order, t;
86760a2c 2393 struct page *page;
1da177e4 2394
8080fc03 2395 if (zone_is_empty(zone))
1da177e4
LT
2396 return;
2397
2398 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2399
108bcc96 2400 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2401 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2402 if (pfn_valid(pfn)) {
86760a2c 2403 page = pfn_to_page(pfn);
ba6b0979
JK
2404
2405 if (page_zone(page) != zone)
2406 continue;
2407
7be98234
RW
2408 if (!swsusp_page_is_forbidden(page))
2409 swsusp_unset_page_free(page);
f623f0db 2410 }
1da177e4 2411
b2a0ac88 2412 for_each_migratetype_order(order, t) {
86760a2c
GT
2413 list_for_each_entry(page,
2414 &zone->free_area[order].free_list[t], lru) {
f623f0db 2415 unsigned long i;
1da177e4 2416
86760a2c 2417 pfn = page_to_pfn(page);
f623f0db 2418 for (i = 0; i < (1UL << order); i++)
7be98234 2419 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2420 }
b2a0ac88 2421 }
1da177e4
LT
2422 spin_unlock_irqrestore(&zone->lock, flags);
2423}
e2c55dc8 2424#endif /* CONFIG_PM */
1da177e4 2425
1da177e4
LT
2426/*
2427 * Free a 0-order page
b745bc85 2428 * cold == true ? free a cold page : free a hot page
1da177e4 2429 */
b745bc85 2430void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2431{
2432 struct zone *zone = page_zone(page);
2433 struct per_cpu_pages *pcp;
2434 unsigned long flags;
dc4b0caf 2435 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2436 int migratetype;
1da177e4 2437
4db7548c 2438 if (!free_pcp_prepare(page))
689bcebf
HD
2439 return;
2440
dc4b0caf 2441 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2442 set_pcppage_migratetype(page, migratetype);
1da177e4 2443 local_irq_save(flags);
f8891e5e 2444 __count_vm_event(PGFREE);
da456f14 2445
5f8dcc21
MG
2446 /*
2447 * We only track unmovable, reclaimable and movable on pcp lists.
2448 * Free ISOLATE pages back to the allocator because they are being
2449 * offlined but treat RESERVE as movable pages so we can get those
2450 * areas back if necessary. Otherwise, we may have to free
2451 * excessively into the page allocator
2452 */
2453 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2454 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2455 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2456 goto out;
2457 }
2458 migratetype = MIGRATE_MOVABLE;
2459 }
2460
99dcc3e5 2461 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2462 if (!cold)
5f8dcc21 2463 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2464 else
2465 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2466 pcp->count++;
48db57f8 2467 if (pcp->count >= pcp->high) {
4db0c3c2 2468 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2469 free_pcppages_bulk(zone, batch, pcp);
2470 pcp->count -= batch;
48db57f8 2471 }
5f8dcc21
MG
2472
2473out:
1da177e4 2474 local_irq_restore(flags);
1da177e4
LT
2475}
2476
cc59850e
KK
2477/*
2478 * Free a list of 0-order pages
2479 */
b745bc85 2480void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2481{
2482 struct page *page, *next;
2483
2484 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2485 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2486 free_hot_cold_page(page, cold);
2487 }
2488}
2489
8dfcc9ba
NP
2490/*
2491 * split_page takes a non-compound higher-order page, and splits it into
2492 * n (1<<order) sub-pages: page[0..n]
2493 * Each sub-page must be freed individually.
2494 *
2495 * Note: this is probably too low level an operation for use in drivers.
2496 * Please consult with lkml before using this in your driver.
2497 */
2498void split_page(struct page *page, unsigned int order)
2499{
2500 int i;
2501
309381fe
SL
2502 VM_BUG_ON_PAGE(PageCompound(page), page);
2503 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2504
2505#ifdef CONFIG_KMEMCHECK
2506 /*
2507 * Split shadow pages too, because free(page[0]) would
2508 * otherwise free the whole shadow.
2509 */
2510 if (kmemcheck_page_is_tracked(page))
2511 split_page(virt_to_page(page[0].shadow), order);
2512#endif
2513
a9627bc5 2514 for (i = 1; i < (1 << order); i++)
7835e98b 2515 set_page_refcounted(page + i);
a9627bc5 2516 split_page_owner(page, order);
8dfcc9ba 2517}
5853ff23 2518EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2519
3c605096 2520int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2521{
748446bb
MG
2522 unsigned long watermark;
2523 struct zone *zone;
2139cbe6 2524 int mt;
748446bb
MG
2525
2526 BUG_ON(!PageBuddy(page));
2527
2528 zone = page_zone(page);
2e30abd1 2529 mt = get_pageblock_migratetype(page);
748446bb 2530
194159fb 2531 if (!is_migrate_isolate(mt)) {
b5a7064c
VB
2532 /*
2533 * Obey watermarks as if the page was being allocated. We can
2534 * emulate a high-order watermark check with a raised order-0
2535 * watermark, because we already know our high-order page
2536 * exists.
2537 */
35dae330 2538 watermark = min_wmark_pages(zone) + (1UL << order);
90a0c122 2539 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2540 return 0;
2541
8fb74b9f 2542 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2543 }
748446bb
MG
2544
2545 /* Remove page from free list */
2546 list_del(&page->lru);
2547 zone->free_area[order].nr_free--;
2548 rmv_page_order(page);
2139cbe6 2549
400bc7fd 2550 /*
2551 * Set the pageblock if the isolated page is at least half of a
2552 * pageblock
2553 */
748446bb
MG
2554 if (order >= pageblock_order - 1) {
2555 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2556 for (; page < endpage; page += pageblock_nr_pages) {
2557 int mt = get_pageblock_migratetype(page);
194159fb 2558 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2559 set_pageblock_migratetype(page,
2560 MIGRATE_MOVABLE);
2561 }
748446bb
MG
2562 }
2563
f3a14ced 2564
8fb74b9f 2565 return 1UL << order;
1fb3f8ca
MG
2566}
2567
060e7417
MG
2568/*
2569 * Update NUMA hit/miss statistics
2570 *
2571 * Must be called with interrupts disabled.
2572 *
2573 * When __GFP_OTHER_NODE is set assume the node of the preferred
2574 * zone is the local node. This is useful for daemons who allocate
2575 * memory on behalf of other processes.
2576 */
2577static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2578 gfp_t flags)
2579{
2580#ifdef CONFIG_NUMA
2581 int local_nid = numa_node_id();
2582 enum zone_stat_item local_stat = NUMA_LOCAL;
2583
2584 if (unlikely(flags & __GFP_OTHER_NODE)) {
2585 local_stat = NUMA_OTHER;
2586 local_nid = preferred_zone->node;
2587 }
2588
2589 if (z->node == local_nid) {
2590 __inc_zone_state(z, NUMA_HIT);
2591 __inc_zone_state(z, local_stat);
2592 } else {
2593 __inc_zone_state(z, NUMA_MISS);
2594 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2595 }
2596#endif
2597}
2598
1da177e4 2599/*
75379191 2600 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2601 */
0a15c3e9
MG
2602static inline
2603struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2604 struct zone *zone, unsigned int order,
c603844b
MG
2605 gfp_t gfp_flags, unsigned int alloc_flags,
2606 int migratetype)
1da177e4
LT
2607{
2608 unsigned long flags;
689bcebf 2609 struct page *page;
b745bc85 2610 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2611
48db57f8 2612 if (likely(order == 0)) {
1da177e4 2613 struct per_cpu_pages *pcp;
5f8dcc21 2614 struct list_head *list;
1da177e4 2615
1da177e4 2616 local_irq_save(flags);
479f854a
MG
2617 do {
2618 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2619 list = &pcp->lists[migratetype];
2620 if (list_empty(list)) {
2621 pcp->count += rmqueue_bulk(zone, 0,
2622 pcp->batch, list,
2623 migratetype, cold);
2624 if (unlikely(list_empty(list)))
2625 goto failed;
2626 }
b92a6edd 2627
479f854a
MG
2628 if (cold)
2629 page = list_last_entry(list, struct page, lru);
2630 else
2631 page = list_first_entry(list, struct page, lru);
5f8dcc21 2632
83b9355b
VB
2633 list_del(&page->lru);
2634 pcp->count--;
2635
2636 } while (check_new_pcp(page));
7fb1d9fc 2637 } else {
0f352e53
MH
2638 /*
2639 * We most definitely don't want callers attempting to
2640 * allocate greater than order-1 page units with __GFP_NOFAIL.
2641 */
2642 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2643 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2644
479f854a
MG
2645 do {
2646 page = NULL;
2647 if (alloc_flags & ALLOC_HARDER) {
2648 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2649 if (page)
2650 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2651 }
2652 if (!page)
2653 page = __rmqueue(zone, order, migratetype);
2654 } while (page && check_new_pages(page, order));
a74609fa
NP
2655 spin_unlock(&zone->lock);
2656 if (!page)
2657 goto failed;
d1ce749a 2658 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2659 get_pcppage_migratetype(page));
1da177e4
LT
2660 }
2661
16709d1d 2662 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2663 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2664 local_irq_restore(flags);
1da177e4 2665
309381fe 2666 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2667 return page;
a74609fa
NP
2668
2669failed:
2670 local_irq_restore(flags);
a74609fa 2671 return NULL;
1da177e4
LT
2672}
2673
933e312e
AM
2674#ifdef CONFIG_FAIL_PAGE_ALLOC
2675
b2588c4b 2676static struct {
933e312e
AM
2677 struct fault_attr attr;
2678
621a5f7a 2679 bool ignore_gfp_highmem;
71baba4b 2680 bool ignore_gfp_reclaim;
54114994 2681 u32 min_order;
933e312e
AM
2682} fail_page_alloc = {
2683 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2684 .ignore_gfp_reclaim = true,
621a5f7a 2685 .ignore_gfp_highmem = true,
54114994 2686 .min_order = 1,
933e312e
AM
2687};
2688
2689static int __init setup_fail_page_alloc(char *str)
2690{
2691 return setup_fault_attr(&fail_page_alloc.attr, str);
2692}
2693__setup("fail_page_alloc=", setup_fail_page_alloc);
2694
deaf386e 2695static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2696{
54114994 2697 if (order < fail_page_alloc.min_order)
deaf386e 2698 return false;
933e312e 2699 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2700 return false;
933e312e 2701 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2702 return false;
71baba4b
MG
2703 if (fail_page_alloc.ignore_gfp_reclaim &&
2704 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2705 return false;
933e312e
AM
2706
2707 return should_fail(&fail_page_alloc.attr, 1 << order);
2708}
2709
2710#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2711
2712static int __init fail_page_alloc_debugfs(void)
2713{
f4ae40a6 2714 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2715 struct dentry *dir;
933e312e 2716
dd48c085
AM
2717 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2718 &fail_page_alloc.attr);
2719 if (IS_ERR(dir))
2720 return PTR_ERR(dir);
933e312e 2721
b2588c4b 2722 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2723 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2724 goto fail;
2725 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2726 &fail_page_alloc.ignore_gfp_highmem))
2727 goto fail;
2728 if (!debugfs_create_u32("min-order", mode, dir,
2729 &fail_page_alloc.min_order))
2730 goto fail;
2731
2732 return 0;
2733fail:
dd48c085 2734 debugfs_remove_recursive(dir);
933e312e 2735
b2588c4b 2736 return -ENOMEM;
933e312e
AM
2737}
2738
2739late_initcall(fail_page_alloc_debugfs);
2740
2741#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2742
2743#else /* CONFIG_FAIL_PAGE_ALLOC */
2744
deaf386e 2745static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2746{
deaf386e 2747 return false;
933e312e
AM
2748}
2749
2750#endif /* CONFIG_FAIL_PAGE_ALLOC */
2751
1da177e4 2752/*
97a16fc8
MG
2753 * Return true if free base pages are above 'mark'. For high-order checks it
2754 * will return true of the order-0 watermark is reached and there is at least
2755 * one free page of a suitable size. Checking now avoids taking the zone lock
2756 * to check in the allocation paths if no pages are free.
1da177e4 2757 */
86a294a8
MH
2758bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2759 int classzone_idx, unsigned int alloc_flags,
2760 long free_pages)
1da177e4 2761{
d23ad423 2762 long min = mark;
1da177e4 2763 int o;
c603844b 2764 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2765
0aaa29a5 2766 /* free_pages may go negative - that's OK */
df0a6daa 2767 free_pages -= (1 << order) - 1;
0aaa29a5 2768
7fb1d9fc 2769 if (alloc_flags & ALLOC_HIGH)
1da177e4 2770 min -= min / 2;
0aaa29a5
MG
2771
2772 /*
2773 * If the caller does not have rights to ALLOC_HARDER then subtract
2774 * the high-atomic reserves. This will over-estimate the size of the
2775 * atomic reserve but it avoids a search.
2776 */
97a16fc8 2777 if (likely(!alloc_harder))
0aaa29a5
MG
2778 free_pages -= z->nr_reserved_highatomic;
2779 else
1da177e4 2780 min -= min / 4;
e2b19197 2781
d95ea5d1
BZ
2782#ifdef CONFIG_CMA
2783 /* If allocation can't use CMA areas don't use free CMA pages */
2784 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2785 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2786#endif
026b0814 2787
97a16fc8
MG
2788 /*
2789 * Check watermarks for an order-0 allocation request. If these
2790 * are not met, then a high-order request also cannot go ahead
2791 * even if a suitable page happened to be free.
2792 */
2793 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2794 return false;
1da177e4 2795
97a16fc8
MG
2796 /* If this is an order-0 request then the watermark is fine */
2797 if (!order)
2798 return true;
2799
2800 /* For a high-order request, check at least one suitable page is free */
2801 for (o = order; o < MAX_ORDER; o++) {
2802 struct free_area *area = &z->free_area[o];
2803 int mt;
2804
2805 if (!area->nr_free)
2806 continue;
2807
2808 if (alloc_harder)
2809 return true;
1da177e4 2810
97a16fc8
MG
2811 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2812 if (!list_empty(&area->free_list[mt]))
2813 return true;
2814 }
2815
2816#ifdef CONFIG_CMA
2817 if ((alloc_flags & ALLOC_CMA) &&
2818 !list_empty(&area->free_list[MIGRATE_CMA])) {
2819 return true;
2820 }
2821#endif
1da177e4 2822 }
97a16fc8 2823 return false;
88f5acf8
MG
2824}
2825
7aeb09f9 2826bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2827 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2828{
2829 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2830 zone_page_state(z, NR_FREE_PAGES));
2831}
2832
48ee5f36
MG
2833static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2834 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2835{
2836 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2837 long cma_pages = 0;
2838
2839#ifdef CONFIG_CMA
2840 /* If allocation can't use CMA areas don't use free CMA pages */
2841 if (!(alloc_flags & ALLOC_CMA))
2842 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2843#endif
2844
2845 /*
2846 * Fast check for order-0 only. If this fails then the reserves
2847 * need to be calculated. There is a corner case where the check
2848 * passes but only the high-order atomic reserve are free. If
2849 * the caller is !atomic then it'll uselessly search the free
2850 * list. That corner case is then slower but it is harmless.
2851 */
2852 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2853 return true;
2854
2855 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2856 free_pages);
2857}
2858
7aeb09f9 2859bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2860 unsigned long mark, int classzone_idx)
88f5acf8
MG
2861{
2862 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2863
2864 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2865 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2866
e2b19197 2867 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2868 free_pages);
1da177e4
LT
2869}
2870
9276b1bc 2871#ifdef CONFIG_NUMA
957f822a
DR
2872static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2873{
5f7a75ac
MG
2874 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2875 RECLAIM_DISTANCE;
957f822a 2876}
9276b1bc 2877#else /* CONFIG_NUMA */
957f822a
DR
2878static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2879{
2880 return true;
2881}
9276b1bc
PJ
2882#endif /* CONFIG_NUMA */
2883
7fb1d9fc 2884/*
0798e519 2885 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2886 * a page.
2887 */
2888static struct page *
a9263751
VB
2889get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2890 const struct alloc_context *ac)
753ee728 2891{
c33d6c06 2892 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2893 struct zone *zone;
3b8c0be4
MG
2894 struct pglist_data *last_pgdat_dirty_limit = NULL;
2895
7fb1d9fc 2896 /*
9276b1bc 2897 * Scan zonelist, looking for a zone with enough free.
344736f2 2898 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2899 */
c33d6c06 2900 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2901 ac->nodemask) {
be06af00 2902 struct page *page;
e085dbc5
JW
2903 unsigned long mark;
2904
664eedde
MG
2905 if (cpusets_enabled() &&
2906 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2907 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2908 continue;
a756cf59
JW
2909 /*
2910 * When allocating a page cache page for writing, we
281e3726
MG
2911 * want to get it from a node that is within its dirty
2912 * limit, such that no single node holds more than its
a756cf59 2913 * proportional share of globally allowed dirty pages.
281e3726 2914 * The dirty limits take into account the node's
a756cf59
JW
2915 * lowmem reserves and high watermark so that kswapd
2916 * should be able to balance it without having to
2917 * write pages from its LRU list.
2918 *
a756cf59 2919 * XXX: For now, allow allocations to potentially
281e3726 2920 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2921 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2922 * which is important when on a NUMA setup the allowed
281e3726 2923 * nodes are together not big enough to reach the
a756cf59 2924 * global limit. The proper fix for these situations
281e3726 2925 * will require awareness of nodes in the
a756cf59
JW
2926 * dirty-throttling and the flusher threads.
2927 */
3b8c0be4
MG
2928 if (ac->spread_dirty_pages) {
2929 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2930 continue;
2931
2932 if (!node_dirty_ok(zone->zone_pgdat)) {
2933 last_pgdat_dirty_limit = zone->zone_pgdat;
2934 continue;
2935 }
2936 }
7fb1d9fc 2937
e085dbc5 2938 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2939 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2940 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2941 int ret;
2942
5dab2911
MG
2943 /* Checked here to keep the fast path fast */
2944 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2945 if (alloc_flags & ALLOC_NO_WATERMARKS)
2946 goto try_this_zone;
2947
a5f5f91d 2948 if (node_reclaim_mode == 0 ||
c33d6c06 2949 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2950 continue;
2951
a5f5f91d 2952 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2953 switch (ret) {
a5f5f91d 2954 case NODE_RECLAIM_NOSCAN:
fa5e084e 2955 /* did not scan */
cd38b115 2956 continue;
a5f5f91d 2957 case NODE_RECLAIM_FULL:
fa5e084e 2958 /* scanned but unreclaimable */
cd38b115 2959 continue;
fa5e084e
MG
2960 default:
2961 /* did we reclaim enough */
fed2719e 2962 if (zone_watermark_ok(zone, order, mark,
93ea9964 2963 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2964 goto try_this_zone;
2965
fed2719e 2966 continue;
0798e519 2967 }
7fb1d9fc
RS
2968 }
2969
fa5e084e 2970try_this_zone:
c33d6c06 2971 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2972 gfp_mask, alloc_flags, ac->migratetype);
75379191 2973 if (page) {
479f854a 2974 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2975
2976 /*
2977 * If this is a high-order atomic allocation then check
2978 * if the pageblock should be reserved for the future
2979 */
2980 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2981 reserve_highatomic_pageblock(page, zone, order);
2982
75379191
VB
2983 return page;
2984 }
54a6eb5c 2985 }
9276b1bc 2986
4ffeaf35 2987 return NULL;
753ee728
MH
2988}
2989
29423e77
DR
2990/*
2991 * Large machines with many possible nodes should not always dump per-node
2992 * meminfo in irq context.
2993 */
2994static inline bool should_suppress_show_mem(void)
2995{
2996 bool ret = false;
2997
2998#if NODES_SHIFT > 8
2999 ret = in_interrupt();
3000#endif
3001 return ret;
3002}
3003
a238ab5b
DH
3004static DEFINE_RATELIMIT_STATE(nopage_rs,
3005 DEFAULT_RATELIMIT_INTERVAL,
3006 DEFAULT_RATELIMIT_BURST);
3007
d00181b9 3008void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3009{
a238ab5b
DH
3010 unsigned int filter = SHOW_MEM_FILTER_NODES;
3011
c0a32fc5
SG
3012 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3013 debug_guardpage_minorder() > 0)
a238ab5b
DH
3014 return;
3015
3016 /*
3017 * This documents exceptions given to allocations in certain
3018 * contexts that are allowed to allocate outside current's set
3019 * of allowed nodes.
3020 */
3021 if (!(gfp_mask & __GFP_NOMEMALLOC))
3022 if (test_thread_flag(TIF_MEMDIE) ||
3023 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3024 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3025 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3026 filter &= ~SHOW_MEM_FILTER_NODES;
3027
3028 if (fmt) {
3ee9a4f0
JP
3029 struct va_format vaf;
3030 va_list args;
3031
a238ab5b 3032 va_start(args, fmt);
3ee9a4f0
JP
3033
3034 vaf.fmt = fmt;
3035 vaf.va = &args;
3036
3037 pr_warn("%pV", &vaf);
3038
a238ab5b
DH
3039 va_end(args);
3040 }
3041
c5c990e8
VB
3042 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3043 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3044 dump_stack();
3045 if (!should_suppress_show_mem())
3046 show_mem(filter);
3047}
3048
11e33f6a
MG
3049static inline struct page *
3050__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3051 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3052{
6e0fc46d
DR
3053 struct oom_control oc = {
3054 .zonelist = ac->zonelist,
3055 .nodemask = ac->nodemask,
2a966b77 3056 .memcg = NULL,
6e0fc46d
DR
3057 .gfp_mask = gfp_mask,
3058 .order = order,
6e0fc46d 3059 };
11e33f6a
MG
3060 struct page *page;
3061
9879de73
JW
3062 *did_some_progress = 0;
3063
9879de73 3064 /*
dc56401f
JW
3065 * Acquire the oom lock. If that fails, somebody else is
3066 * making progress for us.
9879de73 3067 */
dc56401f 3068 if (!mutex_trylock(&oom_lock)) {
9879de73 3069 *did_some_progress = 1;
11e33f6a 3070 schedule_timeout_uninterruptible(1);
1da177e4
LT
3071 return NULL;
3072 }
6b1de916 3073
11e33f6a
MG
3074 /*
3075 * Go through the zonelist yet one more time, keep very high watermark
3076 * here, this is only to catch a parallel oom killing, we must fail if
3077 * we're still under heavy pressure.
3078 */
a9263751
VB
3079 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3080 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3081 if (page)
11e33f6a
MG
3082 goto out;
3083
4365a567 3084 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3085 /* Coredumps can quickly deplete all memory reserves */
3086 if (current->flags & PF_DUMPCORE)
3087 goto out;
4365a567
KH
3088 /* The OOM killer will not help higher order allocs */
3089 if (order > PAGE_ALLOC_COSTLY_ORDER)
3090 goto out;
03668b3c 3091 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3092 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3093 goto out;
9083905a
JW
3094 if (pm_suspended_storage())
3095 goto out;
3da88fb3
MH
3096 /*
3097 * XXX: GFP_NOFS allocations should rather fail than rely on
3098 * other request to make a forward progress.
3099 * We are in an unfortunate situation where out_of_memory cannot
3100 * do much for this context but let's try it to at least get
3101 * access to memory reserved if the current task is killed (see
3102 * out_of_memory). Once filesystems are ready to handle allocation
3103 * failures more gracefully we should just bail out here.
3104 */
3105
4167e9b2 3106 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3107 if (gfp_mask & __GFP_THISNODE)
3108 goto out;
3109 }
11e33f6a 3110 /* Exhausted what can be done so it's blamo time */
5020e285 3111 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3112 *did_some_progress = 1;
5020e285
MH
3113
3114 if (gfp_mask & __GFP_NOFAIL) {
3115 page = get_page_from_freelist(gfp_mask, order,
3116 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3117 /*
3118 * fallback to ignore cpuset restriction if our nodes
3119 * are depleted
3120 */
3121 if (!page)
3122 page = get_page_from_freelist(gfp_mask, order,
3123 ALLOC_NO_WATERMARKS, ac);
3124 }
3125 }
11e33f6a 3126out:
dc56401f 3127 mutex_unlock(&oom_lock);
11e33f6a
MG
3128 return page;
3129}
3130
33c2d214
MH
3131/*
3132 * Maximum number of compaction retries wit a progress before OOM
3133 * killer is consider as the only way to move forward.
3134 */
3135#define MAX_COMPACT_RETRIES 16
3136
56de7263
MG
3137#ifdef CONFIG_COMPACTION
3138/* Try memory compaction for high-order allocations before reclaim */
3139static struct page *
3140__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3141 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3142 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3143{
98dd3b48 3144 struct page *page;
53853e2d
VB
3145
3146 if (!order)
66199712 3147 return NULL;
66199712 3148
c06b1fca 3149 current->flags |= PF_MEMALLOC;
c5d01d0d 3150 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3151 prio);
c06b1fca 3152 current->flags &= ~PF_MEMALLOC;
56de7263 3153
c5d01d0d 3154 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3155 return NULL;
53853e2d 3156
98dd3b48
VB
3157 /*
3158 * At least in one zone compaction wasn't deferred or skipped, so let's
3159 * count a compaction stall
3160 */
3161 count_vm_event(COMPACTSTALL);
8fb74b9f 3162
31a6c190 3163 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3164
98dd3b48
VB
3165 if (page) {
3166 struct zone *zone = page_zone(page);
53853e2d 3167
98dd3b48
VB
3168 zone->compact_blockskip_flush = false;
3169 compaction_defer_reset(zone, order, true);
3170 count_vm_event(COMPACTSUCCESS);
3171 return page;
3172 }
56de7263 3173
98dd3b48
VB
3174 /*
3175 * It's bad if compaction run occurs and fails. The most likely reason
3176 * is that pages exist, but not enough to satisfy watermarks.
3177 */
3178 count_vm_event(COMPACTFAIL);
66199712 3179
98dd3b48 3180 cond_resched();
56de7263
MG
3181
3182 return NULL;
3183}
33c2d214 3184
de509baa
VB
3185static inline bool
3186should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3187 enum compact_result compact_result,
3188 enum compact_priority *compact_priority,
3189 int compaction_retries)
3190{
3191 int max_retries = MAX_COMPACT_RETRIES;
3be98707 3192 int min_priority;
de509baa
VB
3193
3194 if (!order)
3195 return false;
3196
3197 /*
3198 * compaction considers all the zone as desperately out of memory
3199 * so it doesn't really make much sense to retry except when the
3200 * failure could be caused by insufficient priority
3201 */
f07d3d68
VB
3202 if (compaction_failed(compact_result))
3203 goto check_priority;
de509baa
VB
3204
3205 /*
3206 * make sure the compaction wasn't deferred or didn't bail out early
3207 * due to locks contention before we declare that we should give up.
3208 * But do not retry if the given zonelist is not suitable for
3209 * compaction.
3210 */
3211 if (compaction_withdrawn(compact_result))
3212 return compaction_zonelist_suitable(ac, order, alloc_flags);
3213
3214 /*
3215 * !costly requests are much more important than __GFP_REPEAT
3216 * costly ones because they are de facto nofail and invoke OOM
3217 * killer to move on while costly can fail and users are ready
3218 * to cope with that. 1/4 retries is rather arbitrary but we
3219 * would need much more detailed feedback from compaction to
3220 * make a better decision.
3221 */
3222 if (order > PAGE_ALLOC_COSTLY_ORDER)
3223 max_retries /= 4;
3224 if (compaction_retries <= max_retries)
3225 return true;
3226
f07d3d68
VB
3227 /*
3228 * Make sure there is at least one attempt at the highest priority
3229 * if we exhausted all retries at the lower priorities
3230 */
3231check_priority:
3be98707
VB
3232 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3233 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3234 if (*compact_priority > min_priority) {
f07d3d68
VB
3235 (*compact_priority)--;
3236 return true;
3237 }
de509baa
VB
3238 return false;
3239}
56de7263
MG
3240#else
3241static inline struct page *
3242__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3243 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3244 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3245{
33c2d214 3246 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3247 return NULL;
3248}
33c2d214
MH
3249
3250static inline bool
86a294a8
MH
3251should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3252 enum compact_result compact_result,
a5508cd8 3253 enum compact_priority *compact_priority,
33c2d214
MH
3254 int compaction_retries)
3255{
31e49bfd
MH
3256 struct zone *zone;
3257 struct zoneref *z;
3258
3259 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3260 return false;
3261
3262 /*
3263 * There are setups with compaction disabled which would prefer to loop
3264 * inside the allocator rather than hit the oom killer prematurely.
3265 * Let's give them a good hope and keep retrying while the order-0
3266 * watermarks are OK.
3267 */
3268 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3269 ac->nodemask) {
3270 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3271 ac_classzone_idx(ac), alloc_flags))
3272 return true;
3273 }
33c2d214
MH
3274 return false;
3275}
de509baa 3276#endif /* CONFIG_COMPACTION */
56de7263 3277
bba90710
MS
3278/* Perform direct synchronous page reclaim */
3279static int
a9263751
VB
3280__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3281 const struct alloc_context *ac)
11e33f6a 3282{
11e33f6a 3283 struct reclaim_state reclaim_state;
bba90710 3284 int progress;
11e33f6a
MG
3285
3286 cond_resched();
3287
3288 /* We now go into synchronous reclaim */
3289 cpuset_memory_pressure_bump();
c06b1fca 3290 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3291 lockdep_set_current_reclaim_state(gfp_mask);
3292 reclaim_state.reclaimed_slab = 0;
c06b1fca 3293 current->reclaim_state = &reclaim_state;
11e33f6a 3294
a9263751
VB
3295 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3296 ac->nodemask);
11e33f6a 3297
c06b1fca 3298 current->reclaim_state = NULL;
11e33f6a 3299 lockdep_clear_current_reclaim_state();
c06b1fca 3300 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3301
3302 cond_resched();
3303
bba90710
MS
3304 return progress;
3305}
3306
3307/* The really slow allocator path where we enter direct reclaim */
3308static inline struct page *
3309__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3310 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3311 unsigned long *did_some_progress)
bba90710
MS
3312{
3313 struct page *page = NULL;
3314 bool drained = false;
3315
a9263751 3316 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3317 if (unlikely(!(*did_some_progress)))
3318 return NULL;
11e33f6a 3319
9ee493ce 3320retry:
31a6c190 3321 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3322
3323 /*
3324 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3325 * pages are pinned on the per-cpu lists or in high alloc reserves.
3326 * Shrink them them and try again
9ee493ce
MG
3327 */
3328 if (!page && !drained) {
0aaa29a5 3329 unreserve_highatomic_pageblock(ac);
93481ff0 3330 drain_all_pages(NULL);
9ee493ce
MG
3331 drained = true;
3332 goto retry;
3333 }
3334
11e33f6a
MG
3335 return page;
3336}
3337
a9263751 3338static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3339{
3340 struct zoneref *z;
3341 struct zone *zone;
e1a55637 3342 pg_data_t *last_pgdat = NULL;
3a025760 3343
a9263751 3344 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3345 ac->high_zoneidx, ac->nodemask) {
3346 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3347 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3348 last_pgdat = zone->zone_pgdat;
3349 }
3a025760
JW
3350}
3351
c603844b 3352static inline unsigned int
341ce06f
PZ
3353gfp_to_alloc_flags(gfp_t gfp_mask)
3354{
c603844b 3355 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3356
a56f57ff 3357 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3358 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3359
341ce06f
PZ
3360 /*
3361 * The caller may dip into page reserves a bit more if the caller
3362 * cannot run direct reclaim, or if the caller has realtime scheduling
3363 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3364 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3365 */
e6223a3b 3366 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3367
d0164adc 3368 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3369 /*
b104a35d
DR
3370 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3371 * if it can't schedule.
5c3240d9 3372 */
b104a35d 3373 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3374 alloc_flags |= ALLOC_HARDER;
523b9458 3375 /*
b104a35d 3376 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3377 * comment for __cpuset_node_allowed().
523b9458 3378 */
341ce06f 3379 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3380 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3381 alloc_flags |= ALLOC_HARDER;
3382
d95ea5d1 3383#ifdef CONFIG_CMA
43e7a34d 3384 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3385 alloc_flags |= ALLOC_CMA;
3386#endif
341ce06f
PZ
3387 return alloc_flags;
3388}
3389
072bb0aa
MG
3390bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3391{
31a6c190
VB
3392 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3393 return false;
3394
3395 if (gfp_mask & __GFP_MEMALLOC)
3396 return true;
3397 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3398 return true;
3399 if (!in_interrupt() &&
3400 ((current->flags & PF_MEMALLOC) ||
3401 unlikely(test_thread_flag(TIF_MEMDIE))))
3402 return true;
3403
3404 return false;
072bb0aa
MG
3405}
3406
0a0337e0
MH
3407/*
3408 * Maximum number of reclaim retries without any progress before OOM killer
3409 * is consider as the only way to move forward.
3410 */
3411#define MAX_RECLAIM_RETRIES 16
3412
3413/*
3414 * Checks whether it makes sense to retry the reclaim to make a forward progress
3415 * for the given allocation request.
3416 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3417 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3418 * any progress in a row) is considered as well as the reclaimable pages on the
3419 * applicable zone list (with a backoff mechanism which is a function of
3420 * no_progress_loops).
0a0337e0
MH
3421 *
3422 * Returns true if a retry is viable or false to enter the oom path.
3423 */
3424static inline bool
3425should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3426 struct alloc_context *ac, int alloc_flags,
7854ea6c 3427 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3428{
3429 struct zone *zone;
3430 struct zoneref *z;
3431
3432 /*
3433 * Make sure we converge to OOM if we cannot make any progress
3434 * several times in the row.
3435 */
3436 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3437 return false;
3438
bca67592
MG
3439 /*
3440 * Keep reclaiming pages while there is a chance this will lead
3441 * somewhere. If none of the target zones can satisfy our allocation
3442 * request even if all reclaimable pages are considered then we are
3443 * screwed and have to go OOM.
0a0337e0
MH
3444 */
3445 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3446 ac->nodemask) {
3447 unsigned long available;
ede37713 3448 unsigned long reclaimable;
0a0337e0 3449
5a1c84b4 3450 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3451 available -= DIV_ROUND_UP(no_progress_loops * available,
3452 MAX_RECLAIM_RETRIES);
5a1c84b4 3453 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3454
3455 /*
3456 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3457 * available?
0a0337e0 3458 */
5a1c84b4
MG
3459 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3460 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3461 /*
3462 * If we didn't make any progress and have a lot of
3463 * dirty + writeback pages then we should wait for
3464 * an IO to complete to slow down the reclaim and
3465 * prevent from pre mature OOM
3466 */
3467 if (!did_some_progress) {
11fb9989 3468 unsigned long write_pending;
ede37713 3469
5a1c84b4
MG
3470 write_pending = zone_page_state_snapshot(zone,
3471 NR_ZONE_WRITE_PENDING);
ede37713 3472
11fb9989 3473 if (2 * write_pending > reclaimable) {
ede37713
MH
3474 congestion_wait(BLK_RW_ASYNC, HZ/10);
3475 return true;
3476 }
3477 }
5a1c84b4 3478
ede37713
MH
3479 /*
3480 * Memory allocation/reclaim might be called from a WQ
3481 * context and the current implementation of the WQ
3482 * concurrency control doesn't recognize that
3483 * a particular WQ is congested if the worker thread is
3484 * looping without ever sleeping. Therefore we have to
3485 * do a short sleep here rather than calling
3486 * cond_resched().
3487 */
3488 if (current->flags & PF_WQ_WORKER)
3489 schedule_timeout_uninterruptible(1);
3490 else
3491 cond_resched();
3492
0a0337e0
MH
3493 return true;
3494 }
3495 }
3496
3497 return false;
3498}
3499
11e33f6a
MG
3500static inline struct page *
3501__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3502 struct alloc_context *ac)
11e33f6a 3503{
d0164adc 3504 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3505 struct page *page = NULL;
c603844b 3506 unsigned int alloc_flags;
11e33f6a 3507 unsigned long did_some_progress;
a5508cd8 3508 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3509 enum compact_result compact_result;
33c2d214 3510 int compaction_retries = 0;
0a0337e0 3511 int no_progress_loops = 0;
1da177e4 3512
72807a74
MG
3513 /*
3514 * In the slowpath, we sanity check order to avoid ever trying to
3515 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3516 * be using allocators in order of preference for an area that is
3517 * too large.
3518 */
1fc28b70
MG
3519 if (order >= MAX_ORDER) {
3520 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3521 return NULL;
1fc28b70 3522 }
1da177e4 3523
d0164adc
MG
3524 /*
3525 * We also sanity check to catch abuse of atomic reserves being used by
3526 * callers that are not in atomic context.
3527 */
3528 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3529 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3530 gfp_mask &= ~__GFP_ATOMIC;
3531
9bf2229f 3532 /*
31a6c190
VB
3533 * The fast path uses conservative alloc_flags to succeed only until
3534 * kswapd needs to be woken up, and to avoid the cost of setting up
3535 * alloc_flags precisely. So we do that now.
9bf2229f 3536 */
341ce06f 3537 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3538
23771235
VB
3539 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3540 wake_all_kswapds(order, ac);
3541
3542 /*
3543 * The adjusted alloc_flags might result in immediate success, so try
3544 * that first
3545 */
3546 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3547 if (page)
3548 goto got_pg;
3549
a8161d1e
VB
3550 /*
3551 * For costly allocations, try direct compaction first, as it's likely
3552 * that we have enough base pages and don't need to reclaim. Don't try
3553 * that for allocations that are allowed to ignore watermarks, as the
3554 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3555 */
3556 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3557 !gfp_pfmemalloc_allowed(gfp_mask)) {
3558 page = __alloc_pages_direct_compact(gfp_mask, order,
3559 alloc_flags, ac,
a5508cd8 3560 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3561 &compact_result);
3562 if (page)
3563 goto got_pg;
3564
3eb2771b
VB
3565 /*
3566 * Checks for costly allocations with __GFP_NORETRY, which
3567 * includes THP page fault allocations
3568 */
3569 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3570 /*
3571 * If compaction is deferred for high-order allocations,
3572 * it is because sync compaction recently failed. If
3573 * this is the case and the caller requested a THP
3574 * allocation, we do not want to heavily disrupt the
3575 * system, so we fail the allocation instead of entering
3576 * direct reclaim.
3577 */
3578 if (compact_result == COMPACT_DEFERRED)
3579 goto nopage;
3580
a8161d1e 3581 /*
3eb2771b
VB
3582 * Looks like reclaim/compaction is worth trying, but
3583 * sync compaction could be very expensive, so keep
25160354 3584 * using async compaction.
a8161d1e 3585 */
a5508cd8 3586 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3587 }
3588 }
23771235 3589
31a6c190 3590retry:
23771235 3591 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3592 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3593 wake_all_kswapds(order, ac);
3594
23771235
VB
3595 if (gfp_pfmemalloc_allowed(gfp_mask))
3596 alloc_flags = ALLOC_NO_WATERMARKS;
3597
e46e7b77
MG
3598 /*
3599 * Reset the zonelist iterators if memory policies can be ignored.
3600 * These allocations are high priority and system rather than user
3601 * orientated.
3602 */
23771235 3603 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3604 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3605 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3606 ac->high_zoneidx, ac->nodemask);
3607 }
3608
23771235 3609 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3610 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3611 if (page)
3612 goto got_pg;
1da177e4 3613
d0164adc
MG
3614 /* Caller is not willing to reclaim, we can't balance anything */
3615 if (!can_direct_reclaim) {
aed0a0e3 3616 /*
33d53103
MH
3617 * All existing users of the __GFP_NOFAIL are blockable, so warn
3618 * of any new users that actually allow this type of allocation
3619 * to fail.
aed0a0e3
DR
3620 */
3621 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3622 goto nopage;
aed0a0e3 3623 }
1da177e4 3624
341ce06f 3625 /* Avoid recursion of direct reclaim */
33d53103
MH
3626 if (current->flags & PF_MEMALLOC) {
3627 /*
3628 * __GFP_NOFAIL request from this context is rather bizarre
3629 * because we cannot reclaim anything and only can loop waiting
3630 * for somebody to do a work for us.
3631 */
3632 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3633 cond_resched();
3634 goto retry;
3635 }
341ce06f 3636 goto nopage;
33d53103 3637 }
341ce06f 3638
6583bb64
DR
3639 /* Avoid allocations with no watermarks from looping endlessly */
3640 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3641 goto nopage;
3642
a8161d1e
VB
3643
3644 /* Try direct reclaim and then allocating */
3645 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3646 &did_some_progress);
3647 if (page)
3648 goto got_pg;
3649
3650 /* Try direct compaction and then allocating */
a9263751 3651 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3652 compact_priority, &compact_result);
56de7263
MG
3653 if (page)
3654 goto got_pg;
75f30861 3655
33c2d214
MH
3656 if (order && compaction_made_progress(compact_result))
3657 compaction_retries++;
8fe78048 3658
9083905a
JW
3659 /* Do not loop if specifically requested */
3660 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3661 goto nopage;
9083905a 3662
0a0337e0
MH
3663 /*
3664 * Do not retry costly high order allocations unless they are
3665 * __GFP_REPEAT
3666 */
3667 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3668 goto nopage;
0a0337e0 3669
7854ea6c
MH
3670 /*
3671 * Costly allocations might have made a progress but this doesn't mean
3672 * their order will become available due to high fragmentation so
3673 * always increment the no progress counter for them
3674 */
3675 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3676 no_progress_loops = 0;
7854ea6c 3677 else
0a0337e0 3678 no_progress_loops++;
1da177e4 3679
0a0337e0 3680 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3681 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3682 goto retry;
3683
33c2d214
MH
3684 /*
3685 * It doesn't make any sense to retry for the compaction if the order-0
3686 * reclaim is not able to make any progress because the current
3687 * implementation of the compaction depends on the sufficient amount
3688 * of free memory (see __compaction_suitable)
3689 */
3690 if (did_some_progress > 0 &&
86a294a8 3691 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3692 compact_result, &compact_priority,
86a294a8 3693 compaction_retries))
33c2d214
MH
3694 goto retry;
3695
9083905a
JW
3696 /* Reclaim has failed us, start killing things */
3697 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3698 if (page)
3699 goto got_pg;
3700
3701 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3702 if (did_some_progress) {
3703 no_progress_loops = 0;
9083905a 3704 goto retry;
0a0337e0 3705 }
9083905a 3706
1da177e4 3707nopage:
a238ab5b 3708 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3709got_pg:
072bb0aa 3710 return page;
1da177e4 3711}
11e33f6a
MG
3712
3713/*
3714 * This is the 'heart' of the zoned buddy allocator.
3715 */
3716struct page *
3717__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3718 struct zonelist *zonelist, nodemask_t *nodemask)
3719{
5bb1b169 3720 struct page *page;
cc9a6c87 3721 unsigned int cpuset_mems_cookie;
e6cbd7f2 3722 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3723 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3724 struct alloc_context ac = {
3725 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3726 .zonelist = zonelist,
a9263751
VB
3727 .nodemask = nodemask,
3728 .migratetype = gfpflags_to_migratetype(gfp_mask),
3729 };
11e33f6a 3730
682a3385 3731 if (cpusets_enabled()) {
83d4ca81 3732 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3733 alloc_flags |= ALLOC_CPUSET;
3734 if (!ac.nodemask)
3735 ac.nodemask = &cpuset_current_mems_allowed;
3736 }
3737
dcce284a
BH
3738 gfp_mask &= gfp_allowed_mask;
3739
11e33f6a
MG
3740 lockdep_trace_alloc(gfp_mask);
3741
d0164adc 3742 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3743
3744 if (should_fail_alloc_page(gfp_mask, order))
3745 return NULL;
3746
3747 /*
3748 * Check the zones suitable for the gfp_mask contain at least one
3749 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3750 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3751 */
3752 if (unlikely(!zonelist->_zonerefs->zone))
3753 return NULL;
3754
a9263751 3755 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3756 alloc_flags |= ALLOC_CMA;
3757
cc9a6c87 3758retry_cpuset:
d26914d1 3759 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3760
c9ab0c4f
MG
3761 /* Dirty zone balancing only done in the fast path */
3762 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3763
e46e7b77
MG
3764 /*
3765 * The preferred zone is used for statistics but crucially it is
3766 * also used as the starting point for the zonelist iterator. It
3767 * may get reset for allocations that ignore memory policies.
3768 */
c33d6c06
MG
3769 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3770 ac.high_zoneidx, ac.nodemask);
3771 if (!ac.preferred_zoneref) {
5bb1b169 3772 page = NULL;
4fcb0971 3773 goto no_zone;
5bb1b169
MG
3774 }
3775
5117f45d 3776 /* First allocation attempt */
a9263751 3777 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3778 if (likely(page))
3779 goto out;
11e33f6a 3780
4fcb0971
MG
3781 /*
3782 * Runtime PM, block IO and its error handling path can deadlock
3783 * because I/O on the device might not complete.
3784 */
3785 alloc_mask = memalloc_noio_flags(gfp_mask);
3786 ac.spread_dirty_pages = false;
23f086f9 3787
4741526b
MG
3788 /*
3789 * Restore the original nodemask if it was potentially replaced with
3790 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3791 */
3792 if (cpusets_enabled())
3793 ac.nodemask = nodemask;
4fcb0971 3794 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3795
4fcb0971 3796no_zone:
cc9a6c87
MG
3797 /*
3798 * When updating a task's mems_allowed, it is possible to race with
3799 * parallel threads in such a way that an allocation can fail while
3800 * the mask is being updated. If a page allocation is about to fail,
3801 * check if the cpuset changed during allocation and if so, retry.
3802 */
83d4ca81
MG
3803 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3804 alloc_mask = gfp_mask;
cc9a6c87 3805 goto retry_cpuset;
83d4ca81 3806 }
cc9a6c87 3807
4fcb0971 3808out:
c4159a75
VD
3809 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3810 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3811 __free_pages(page, order);
3812 page = NULL;
4949148a
VD
3813 }
3814
4fcb0971
MG
3815 if (kmemcheck_enabled && page)
3816 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3817
3818 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3819
11e33f6a 3820 return page;
1da177e4 3821}
d239171e 3822EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3823
3824/*
3825 * Common helper functions.
3826 */
920c7a5d 3827unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3828{
945a1113
AM
3829 struct page *page;
3830
3831 /*
3832 * __get_free_pages() returns a 32-bit address, which cannot represent
3833 * a highmem page
3834 */
3835 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3836
1da177e4
LT
3837 page = alloc_pages(gfp_mask, order);
3838 if (!page)
3839 return 0;
3840 return (unsigned long) page_address(page);
3841}
1da177e4
LT
3842EXPORT_SYMBOL(__get_free_pages);
3843
920c7a5d 3844unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3845{
945a1113 3846 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3847}
1da177e4
LT
3848EXPORT_SYMBOL(get_zeroed_page);
3849
920c7a5d 3850void __free_pages(struct page *page, unsigned int order)
1da177e4 3851{
b5810039 3852 if (put_page_testzero(page)) {
1da177e4 3853 if (order == 0)
b745bc85 3854 free_hot_cold_page(page, false);
1da177e4
LT
3855 else
3856 __free_pages_ok(page, order);
3857 }
3858}
3859
3860EXPORT_SYMBOL(__free_pages);
3861
920c7a5d 3862void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3863{
3864 if (addr != 0) {
725d704e 3865 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3866 __free_pages(virt_to_page((void *)addr), order);
3867 }
3868}
3869
3870EXPORT_SYMBOL(free_pages);
3871
b63ae8ca
AD
3872/*
3873 * Page Fragment:
3874 * An arbitrary-length arbitrary-offset area of memory which resides
3875 * within a 0 or higher order page. Multiple fragments within that page
3876 * are individually refcounted, in the page's reference counter.
3877 *
3878 * The page_frag functions below provide a simple allocation framework for
3879 * page fragments. This is used by the network stack and network device
3880 * drivers to provide a backing region of memory for use as either an
3881 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3882 */
3883static struct page *__page_frag_refill(struct page_frag_cache *nc,
3884 gfp_t gfp_mask)
3885{
3886 struct page *page = NULL;
3887 gfp_t gfp = gfp_mask;
3888
3889#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3890 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3891 __GFP_NOMEMALLOC;
3892 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3893 PAGE_FRAG_CACHE_MAX_ORDER);
3894 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3895#endif
3896 if (unlikely(!page))
3897 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3898
3899 nc->va = page ? page_address(page) : NULL;
3900
3901 return page;
3902}
3903
3904void *__alloc_page_frag(struct page_frag_cache *nc,
3905 unsigned int fragsz, gfp_t gfp_mask)
3906{
3907 unsigned int size = PAGE_SIZE;
3908 struct page *page;
3909 int offset;
3910
3911 if (unlikely(!nc->va)) {
3912refill:
3913 page = __page_frag_refill(nc, gfp_mask);
3914 if (!page)
3915 return NULL;
3916
3917#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3918 /* if size can vary use size else just use PAGE_SIZE */
3919 size = nc->size;
3920#endif
3921 /* Even if we own the page, we do not use atomic_set().
3922 * This would break get_page_unless_zero() users.
3923 */
fe896d18 3924 page_ref_add(page, size - 1);
b63ae8ca
AD
3925
3926 /* reset page count bias and offset to start of new frag */
2f064f34 3927 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3928 nc->pagecnt_bias = size;
3929 nc->offset = size;
3930 }
3931
3932 offset = nc->offset - fragsz;
3933 if (unlikely(offset < 0)) {
3934 page = virt_to_page(nc->va);
3935
fe896d18 3936 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3937 goto refill;
3938
3939#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3940 /* if size can vary use size else just use PAGE_SIZE */
3941 size = nc->size;
3942#endif
3943 /* OK, page count is 0, we can safely set it */
fe896d18 3944 set_page_count(page, size);
b63ae8ca
AD
3945
3946 /* reset page count bias and offset to start of new frag */
3947 nc->pagecnt_bias = size;
3948 offset = size - fragsz;
3949 }
3950
3951 nc->pagecnt_bias--;
3952 nc->offset = offset;
3953
3954 return nc->va + offset;
3955}
3956EXPORT_SYMBOL(__alloc_page_frag);
3957
3958/*
3959 * Frees a page fragment allocated out of either a compound or order 0 page.
3960 */
3961void __free_page_frag(void *addr)
3962{
3963 struct page *page = virt_to_head_page(addr);
3964
3965 if (unlikely(put_page_testzero(page)))
3966 __free_pages_ok(page, compound_order(page));
3967}
3968EXPORT_SYMBOL(__free_page_frag);
3969
d00181b9
KS
3970static void *make_alloc_exact(unsigned long addr, unsigned int order,
3971 size_t size)
ee85c2e1
AK
3972{
3973 if (addr) {
3974 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3975 unsigned long used = addr + PAGE_ALIGN(size);
3976
3977 split_page(virt_to_page((void *)addr), order);
3978 while (used < alloc_end) {
3979 free_page(used);
3980 used += PAGE_SIZE;
3981 }
3982 }
3983 return (void *)addr;
3984}
3985
2be0ffe2
TT
3986/**
3987 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3988 * @size: the number of bytes to allocate
3989 * @gfp_mask: GFP flags for the allocation
3990 *
3991 * This function is similar to alloc_pages(), except that it allocates the
3992 * minimum number of pages to satisfy the request. alloc_pages() can only
3993 * allocate memory in power-of-two pages.
3994 *
3995 * This function is also limited by MAX_ORDER.
3996 *
3997 * Memory allocated by this function must be released by free_pages_exact().
3998 */
3999void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4000{
4001 unsigned int order = get_order(size);
4002 unsigned long addr;
4003
4004 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4005 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4006}
4007EXPORT_SYMBOL(alloc_pages_exact);
4008
ee85c2e1
AK
4009/**
4010 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4011 * pages on a node.
b5e6ab58 4012 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4013 * @size: the number of bytes to allocate
4014 * @gfp_mask: GFP flags for the allocation
4015 *
4016 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4017 * back.
ee85c2e1 4018 */
e1931811 4019void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4020{
d00181b9 4021 unsigned int order = get_order(size);
ee85c2e1
AK
4022 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4023 if (!p)
4024 return NULL;
4025 return make_alloc_exact((unsigned long)page_address(p), order, size);
4026}
ee85c2e1 4027
2be0ffe2
TT
4028/**
4029 * free_pages_exact - release memory allocated via alloc_pages_exact()
4030 * @virt: the value returned by alloc_pages_exact.
4031 * @size: size of allocation, same value as passed to alloc_pages_exact().
4032 *
4033 * Release the memory allocated by a previous call to alloc_pages_exact.
4034 */
4035void free_pages_exact(void *virt, size_t size)
4036{
4037 unsigned long addr = (unsigned long)virt;
4038 unsigned long end = addr + PAGE_ALIGN(size);
4039
4040 while (addr < end) {
4041 free_page(addr);
4042 addr += PAGE_SIZE;
4043 }
4044}
4045EXPORT_SYMBOL(free_pages_exact);
4046
e0fb5815
ZY
4047/**
4048 * nr_free_zone_pages - count number of pages beyond high watermark
4049 * @offset: The zone index of the highest zone
4050 *
4051 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4052 * high watermark within all zones at or below a given zone index. For each
4053 * zone, the number of pages is calculated as:
834405c3 4054 * managed_pages - high_pages
e0fb5815 4055 */
ebec3862 4056static unsigned long nr_free_zone_pages(int offset)
1da177e4 4057{
dd1a239f 4058 struct zoneref *z;
54a6eb5c
MG
4059 struct zone *zone;
4060
e310fd43 4061 /* Just pick one node, since fallback list is circular */
ebec3862 4062 unsigned long sum = 0;
1da177e4 4063
0e88460d 4064 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4065
54a6eb5c 4066 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4067 unsigned long size = zone->managed_pages;
41858966 4068 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4069 if (size > high)
4070 sum += size - high;
1da177e4
LT
4071 }
4072
4073 return sum;
4074}
4075
e0fb5815
ZY
4076/**
4077 * nr_free_buffer_pages - count number of pages beyond high watermark
4078 *
4079 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4080 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4081 */
ebec3862 4082unsigned long nr_free_buffer_pages(void)
1da177e4 4083{
af4ca457 4084 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4085}
c2f1a551 4086EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4087
e0fb5815
ZY
4088/**
4089 * nr_free_pagecache_pages - count number of pages beyond high watermark
4090 *
4091 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4092 * high watermark within all zones.
1da177e4 4093 */
ebec3862 4094unsigned long nr_free_pagecache_pages(void)
1da177e4 4095{
2a1e274a 4096 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4097}
08e0f6a9
CL
4098
4099static inline void show_node(struct zone *zone)
1da177e4 4100{
e5adfffc 4101 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4102 printk("Node %d ", zone_to_nid(zone));
1da177e4 4103}
1da177e4 4104
d02bd27b
IR
4105long si_mem_available(void)
4106{
4107 long available;
4108 unsigned long pagecache;
4109 unsigned long wmark_low = 0;
4110 unsigned long pages[NR_LRU_LISTS];
4111 struct zone *zone;
4112 int lru;
4113
4114 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4115 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4116
4117 for_each_zone(zone)
4118 wmark_low += zone->watermark[WMARK_LOW];
4119
4120 /*
4121 * Estimate the amount of memory available for userspace allocations,
4122 * without causing swapping.
4123 */
4124 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4125
4126 /*
4127 * Not all the page cache can be freed, otherwise the system will
4128 * start swapping. Assume at least half of the page cache, or the
4129 * low watermark worth of cache, needs to stay.
4130 */
4131 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4132 pagecache -= min(pagecache / 2, wmark_low);
4133 available += pagecache;
4134
4135 /*
4136 * Part of the reclaimable slab consists of items that are in use,
4137 * and cannot be freed. Cap this estimate at the low watermark.
4138 */
4139 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4140 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4141
4142 if (available < 0)
4143 available = 0;
4144 return available;
4145}
4146EXPORT_SYMBOL_GPL(si_mem_available);
4147
1da177e4
LT
4148void si_meminfo(struct sysinfo *val)
4149{
4150 val->totalram = totalram_pages;
11fb9989 4151 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4152 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4153 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4154 val->totalhigh = totalhigh_pages;
4155 val->freehigh = nr_free_highpages();
1da177e4
LT
4156 val->mem_unit = PAGE_SIZE;
4157}
4158
4159EXPORT_SYMBOL(si_meminfo);
4160
4161#ifdef CONFIG_NUMA
4162void si_meminfo_node(struct sysinfo *val, int nid)
4163{
cdd91a77
JL
4164 int zone_type; /* needs to be signed */
4165 unsigned long managed_pages = 0;
fc2bd799
JK
4166 unsigned long managed_highpages = 0;
4167 unsigned long free_highpages = 0;
1da177e4
LT
4168 pg_data_t *pgdat = NODE_DATA(nid);
4169
cdd91a77
JL
4170 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4171 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4172 val->totalram = managed_pages;
11fb9989 4173 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4174 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4175#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4176 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4177 struct zone *zone = &pgdat->node_zones[zone_type];
4178
4179 if (is_highmem(zone)) {
4180 managed_highpages += zone->managed_pages;
4181 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4182 }
4183 }
4184 val->totalhigh = managed_highpages;
4185 val->freehigh = free_highpages;
98d2b0eb 4186#else
fc2bd799
JK
4187 val->totalhigh = managed_highpages;
4188 val->freehigh = free_highpages;
98d2b0eb 4189#endif
1da177e4
LT
4190 val->mem_unit = PAGE_SIZE;
4191}
4192#endif
4193
ddd588b5 4194/*
7bf02ea2
DR
4195 * Determine whether the node should be displayed or not, depending on whether
4196 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4197 */
7bf02ea2 4198bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4199{
4200 bool ret = false;
cc9a6c87 4201 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4202
4203 if (!(flags & SHOW_MEM_FILTER_NODES))
4204 goto out;
4205
cc9a6c87 4206 do {
d26914d1 4207 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4208 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4209 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4210out:
4211 return ret;
4212}
4213
1da177e4
LT
4214#define K(x) ((x) << (PAGE_SHIFT-10))
4215
377e4f16
RV
4216static void show_migration_types(unsigned char type)
4217{
4218 static const char types[MIGRATE_TYPES] = {
4219 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4220 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4221 [MIGRATE_RECLAIMABLE] = 'E',
4222 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4223#ifdef CONFIG_CMA
4224 [MIGRATE_CMA] = 'C',
4225#endif
194159fb 4226#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4227 [MIGRATE_ISOLATE] = 'I',
194159fb 4228#endif
377e4f16
RV
4229 };
4230 char tmp[MIGRATE_TYPES + 1];
4231 char *p = tmp;
4232 int i;
4233
4234 for (i = 0; i < MIGRATE_TYPES; i++) {
4235 if (type & (1 << i))
4236 *p++ = types[i];
4237 }
4238
4239 *p = '\0';
4240 printk("(%s) ", tmp);
4241}
4242
1da177e4
LT
4243/*
4244 * Show free area list (used inside shift_scroll-lock stuff)
4245 * We also calculate the percentage fragmentation. We do this by counting the
4246 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4247 *
4248 * Bits in @filter:
4249 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4250 * cpuset.
1da177e4 4251 */
7bf02ea2 4252void show_free_areas(unsigned int filter)
1da177e4 4253{
d1bfcdb8 4254 unsigned long free_pcp = 0;
c7241913 4255 int cpu;
1da177e4 4256 struct zone *zone;
599d0c95 4257 pg_data_t *pgdat;
1da177e4 4258
ee99c71c 4259 for_each_populated_zone(zone) {
7bf02ea2 4260 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4261 continue;
d1bfcdb8 4262
761b0677
KK
4263 for_each_online_cpu(cpu)
4264 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4265 }
4266
a731286d
KM
4267 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4268 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4269 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4270 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4271 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4272 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4273 global_node_page_state(NR_ACTIVE_ANON),
4274 global_node_page_state(NR_INACTIVE_ANON),
4275 global_node_page_state(NR_ISOLATED_ANON),
4276 global_node_page_state(NR_ACTIVE_FILE),
4277 global_node_page_state(NR_INACTIVE_FILE),
4278 global_node_page_state(NR_ISOLATED_FILE),
4279 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4280 global_node_page_state(NR_FILE_DIRTY),
4281 global_node_page_state(NR_WRITEBACK),
4282 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4283 global_page_state(NR_SLAB_RECLAIMABLE),
4284 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4285 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4286 global_node_page_state(NR_SHMEM),
a25700a5 4287 global_page_state(NR_PAGETABLE),
d1ce749a 4288 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4289 global_page_state(NR_FREE_PAGES),
4290 free_pcp,
d1ce749a 4291 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4292
599d0c95
MG
4293 for_each_online_pgdat(pgdat) {
4294 printk("Node %d"
4295 " active_anon:%lukB"
4296 " inactive_anon:%lukB"
4297 " active_file:%lukB"
4298 " inactive_file:%lukB"
4299 " unevictable:%lukB"
4300 " isolated(anon):%lukB"
4301 " isolated(file):%lukB"
50658e2e 4302 " mapped:%lukB"
11fb9989
MG
4303 " dirty:%lukB"
4304 " writeback:%lukB"
4305 " shmem:%lukB"
4306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4307 " shmem_thp: %lukB"
4308 " shmem_pmdmapped: %lukB"
4309 " anon_thp: %lukB"
4310#endif
4311 " writeback_tmp:%lukB"
4312 " unstable:%lukB"
33e077bd 4313 " pages_scanned:%lu"
599d0c95
MG
4314 " all_unreclaimable? %s"
4315 "\n",
4316 pgdat->node_id,
4317 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4318 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4319 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4320 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4321 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4322 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4323 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4324 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4325 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4326 K(node_page_state(pgdat, NR_WRITEBACK)),
4327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4328 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4329 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4330 * HPAGE_PMD_NR),
4331 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4332#endif
4333 K(node_page_state(pgdat, NR_SHMEM)),
4334 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4335 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4336 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4337 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4338 }
4339
ee99c71c 4340 for_each_populated_zone(zone) {
1da177e4
LT
4341 int i;
4342
7bf02ea2 4343 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4344 continue;
d1bfcdb8
KK
4345
4346 free_pcp = 0;
4347 for_each_online_cpu(cpu)
4348 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4349
1da177e4
LT
4350 show_node(zone);
4351 printk("%s"
4352 " free:%lukB"
4353 " min:%lukB"
4354 " low:%lukB"
4355 " high:%lukB"
71c799f4
MK
4356 " active_anon:%lukB"
4357 " inactive_anon:%lukB"
4358 " active_file:%lukB"
4359 " inactive_file:%lukB"
4360 " unevictable:%lukB"
5a1c84b4 4361 " writepending:%lukB"
1da177e4 4362 " present:%lukB"
9feedc9d 4363 " managed:%lukB"
4a0aa73f 4364 " mlocked:%lukB"
4a0aa73f
KM
4365 " slab_reclaimable:%lukB"
4366 " slab_unreclaimable:%lukB"
c6a7f572 4367 " kernel_stack:%lukB"
4a0aa73f 4368 " pagetables:%lukB"
4a0aa73f 4369 " bounce:%lukB"
d1bfcdb8
KK
4370 " free_pcp:%lukB"
4371 " local_pcp:%ukB"
d1ce749a 4372 " free_cma:%lukB"
1da177e4
LT
4373 "\n",
4374 zone->name,
88f5acf8 4375 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4376 K(min_wmark_pages(zone)),
4377 K(low_wmark_pages(zone)),
4378 K(high_wmark_pages(zone)),
71c799f4
MK
4379 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4380 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4381 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4382 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4383 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4384 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4385 K(zone->present_pages),
9feedc9d 4386 K(zone->managed_pages),
4a0aa73f 4387 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4388 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4389 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4390 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4391 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4392 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4393 K(free_pcp),
4394 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4395 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4396 printk("lowmem_reserve[]:");
4397 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4398 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4399 printk("\n");
4400 }
4401
ee99c71c 4402 for_each_populated_zone(zone) {
d00181b9
KS
4403 unsigned int order;
4404 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4405 unsigned char types[MAX_ORDER];
1da177e4 4406
7bf02ea2 4407 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4408 continue;
1da177e4
LT
4409 show_node(zone);
4410 printk("%s: ", zone->name);
1da177e4
LT
4411
4412 spin_lock_irqsave(&zone->lock, flags);
4413 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4414 struct free_area *area = &zone->free_area[order];
4415 int type;
4416
4417 nr[order] = area->nr_free;
8f9de51a 4418 total += nr[order] << order;
377e4f16
RV
4419
4420 types[order] = 0;
4421 for (type = 0; type < MIGRATE_TYPES; type++) {
4422 if (!list_empty(&area->free_list[type]))
4423 types[order] |= 1 << type;
4424 }
1da177e4
LT
4425 }
4426 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4427 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4428 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4429 if (nr[order])
4430 show_migration_types(types[order]);
4431 }
1da177e4
LT
4432 printk("= %lukB\n", K(total));
4433 }
4434
949f7ec5
DR
4435 hugetlb_show_meminfo();
4436
11fb9989 4437 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4438
1da177e4
LT
4439 show_swap_cache_info();
4440}
4441
19770b32
MG
4442static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4443{
4444 zoneref->zone = zone;
4445 zoneref->zone_idx = zone_idx(zone);
4446}
4447
1da177e4
LT
4448/*
4449 * Builds allocation fallback zone lists.
1a93205b
CL
4450 *
4451 * Add all populated zones of a node to the zonelist.
1da177e4 4452 */
f0c0b2b8 4453static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4454 int nr_zones)
1da177e4 4455{
1a93205b 4456 struct zone *zone;
bc732f1d 4457 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4458
4459 do {
2f6726e5 4460 zone_type--;
070f8032 4461 zone = pgdat->node_zones + zone_type;
6aa303de 4462 if (managed_zone(zone)) {
dd1a239f
MG
4463 zoneref_set_zone(zone,
4464 &zonelist->_zonerefs[nr_zones++]);
070f8032 4465 check_highest_zone(zone_type);
1da177e4 4466 }
2f6726e5 4467 } while (zone_type);
bc732f1d 4468
070f8032 4469 return nr_zones;
1da177e4
LT
4470}
4471
f0c0b2b8
KH
4472
4473/*
4474 * zonelist_order:
4475 * 0 = automatic detection of better ordering.
4476 * 1 = order by ([node] distance, -zonetype)
4477 * 2 = order by (-zonetype, [node] distance)
4478 *
4479 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4480 * the same zonelist. So only NUMA can configure this param.
4481 */
4482#define ZONELIST_ORDER_DEFAULT 0
4483#define ZONELIST_ORDER_NODE 1
4484#define ZONELIST_ORDER_ZONE 2
4485
4486/* zonelist order in the kernel.
4487 * set_zonelist_order() will set this to NODE or ZONE.
4488 */
4489static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4490static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4491
4492
1da177e4 4493#ifdef CONFIG_NUMA
f0c0b2b8
KH
4494/* The value user specified ....changed by config */
4495static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4496/* string for sysctl */
4497#define NUMA_ZONELIST_ORDER_LEN 16
4498char numa_zonelist_order[16] = "default";
4499
4500/*
4501 * interface for configure zonelist ordering.
4502 * command line option "numa_zonelist_order"
4503 * = "[dD]efault - default, automatic configuration.
4504 * = "[nN]ode - order by node locality, then by zone within node
4505 * = "[zZ]one - order by zone, then by locality within zone
4506 */
4507
4508static int __parse_numa_zonelist_order(char *s)
4509{
4510 if (*s == 'd' || *s == 'D') {
4511 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4512 } else if (*s == 'n' || *s == 'N') {
4513 user_zonelist_order = ZONELIST_ORDER_NODE;
4514 } else if (*s == 'z' || *s == 'Z') {
4515 user_zonelist_order = ZONELIST_ORDER_ZONE;
4516 } else {
1170532b 4517 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4518 return -EINVAL;
4519 }
4520 return 0;
4521}
4522
4523static __init int setup_numa_zonelist_order(char *s)
4524{
ecb256f8
VL
4525 int ret;
4526
4527 if (!s)
4528 return 0;
4529
4530 ret = __parse_numa_zonelist_order(s);
4531 if (ret == 0)
4532 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4533
4534 return ret;
f0c0b2b8
KH
4535}
4536early_param("numa_zonelist_order", setup_numa_zonelist_order);
4537
4538/*
4539 * sysctl handler for numa_zonelist_order
4540 */
cccad5b9 4541int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4542 void __user *buffer, size_t *length,
f0c0b2b8
KH
4543 loff_t *ppos)
4544{
4545 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4546 int ret;
443c6f14 4547 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4548
443c6f14 4549 mutex_lock(&zl_order_mutex);
dacbde09
CG
4550 if (write) {
4551 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4552 ret = -EINVAL;
4553 goto out;
4554 }
4555 strcpy(saved_string, (char *)table->data);
4556 }
8d65af78 4557 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4558 if (ret)
443c6f14 4559 goto out;
f0c0b2b8
KH
4560 if (write) {
4561 int oldval = user_zonelist_order;
dacbde09
CG
4562
4563 ret = __parse_numa_zonelist_order((char *)table->data);
4564 if (ret) {
f0c0b2b8
KH
4565 /*
4566 * bogus value. restore saved string
4567 */
dacbde09 4568 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4569 NUMA_ZONELIST_ORDER_LEN);
4570 user_zonelist_order = oldval;
4eaf3f64
HL
4571 } else if (oldval != user_zonelist_order) {
4572 mutex_lock(&zonelists_mutex);
9adb62a5 4573 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4574 mutex_unlock(&zonelists_mutex);
4575 }
f0c0b2b8 4576 }
443c6f14
AK
4577out:
4578 mutex_unlock(&zl_order_mutex);
4579 return ret;
f0c0b2b8
KH
4580}
4581
4582
62bc62a8 4583#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4584static int node_load[MAX_NUMNODES];
4585
1da177e4 4586/**
4dc3b16b 4587 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4588 * @node: node whose fallback list we're appending
4589 * @used_node_mask: nodemask_t of already used nodes
4590 *
4591 * We use a number of factors to determine which is the next node that should
4592 * appear on a given node's fallback list. The node should not have appeared
4593 * already in @node's fallback list, and it should be the next closest node
4594 * according to the distance array (which contains arbitrary distance values
4595 * from each node to each node in the system), and should also prefer nodes
4596 * with no CPUs, since presumably they'll have very little allocation pressure
4597 * on them otherwise.
4598 * It returns -1 if no node is found.
4599 */
f0c0b2b8 4600static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4601{
4cf808eb 4602 int n, val;
1da177e4 4603 int min_val = INT_MAX;
00ef2d2f 4604 int best_node = NUMA_NO_NODE;
a70f7302 4605 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4606
4cf808eb
LT
4607 /* Use the local node if we haven't already */
4608 if (!node_isset(node, *used_node_mask)) {
4609 node_set(node, *used_node_mask);
4610 return node;
4611 }
1da177e4 4612
4b0ef1fe 4613 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4614
4615 /* Don't want a node to appear more than once */
4616 if (node_isset(n, *used_node_mask))
4617 continue;
4618
1da177e4
LT
4619 /* Use the distance array to find the distance */
4620 val = node_distance(node, n);
4621
4cf808eb
LT
4622 /* Penalize nodes under us ("prefer the next node") */
4623 val += (n < node);
4624
1da177e4 4625 /* Give preference to headless and unused nodes */
a70f7302
RR
4626 tmp = cpumask_of_node(n);
4627 if (!cpumask_empty(tmp))
1da177e4
LT
4628 val += PENALTY_FOR_NODE_WITH_CPUS;
4629
4630 /* Slight preference for less loaded node */
4631 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4632 val += node_load[n];
4633
4634 if (val < min_val) {
4635 min_val = val;
4636 best_node = n;
4637 }
4638 }
4639
4640 if (best_node >= 0)
4641 node_set(best_node, *used_node_mask);
4642
4643 return best_node;
4644}
4645
f0c0b2b8
KH
4646
4647/*
4648 * Build zonelists ordered by node and zones within node.
4649 * This results in maximum locality--normal zone overflows into local
4650 * DMA zone, if any--but risks exhausting DMA zone.
4651 */
4652static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4653{
f0c0b2b8 4654 int j;
1da177e4 4655 struct zonelist *zonelist;
f0c0b2b8 4656
3e4c253a 4657 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4658 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4659 ;
bc732f1d 4660 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4661 zonelist->_zonerefs[j].zone = NULL;
4662 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4663}
4664
523b9458
CL
4665/*
4666 * Build gfp_thisnode zonelists
4667 */
4668static void build_thisnode_zonelists(pg_data_t *pgdat)
4669{
523b9458
CL
4670 int j;
4671 struct zonelist *zonelist;
4672
3e4c253a 4673 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4674 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4675 zonelist->_zonerefs[j].zone = NULL;
4676 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4677}
4678
f0c0b2b8
KH
4679/*
4680 * Build zonelists ordered by zone and nodes within zones.
4681 * This results in conserving DMA zone[s] until all Normal memory is
4682 * exhausted, but results in overflowing to remote node while memory
4683 * may still exist in local DMA zone.
4684 */
4685static int node_order[MAX_NUMNODES];
4686
4687static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4688{
f0c0b2b8
KH
4689 int pos, j, node;
4690 int zone_type; /* needs to be signed */
4691 struct zone *z;
4692 struct zonelist *zonelist;
4693
3e4c253a 4694 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4695 pos = 0;
4696 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4697 for (j = 0; j < nr_nodes; j++) {
4698 node = node_order[j];
4699 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4700 if (managed_zone(z)) {
dd1a239f
MG
4701 zoneref_set_zone(z,
4702 &zonelist->_zonerefs[pos++]);
54a6eb5c 4703 check_highest_zone(zone_type);
f0c0b2b8
KH
4704 }
4705 }
f0c0b2b8 4706 }
dd1a239f
MG
4707 zonelist->_zonerefs[pos].zone = NULL;
4708 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4709}
4710
3193913c
MG
4711#if defined(CONFIG_64BIT)
4712/*
4713 * Devices that require DMA32/DMA are relatively rare and do not justify a
4714 * penalty to every machine in case the specialised case applies. Default
4715 * to Node-ordering on 64-bit NUMA machines
4716 */
4717static int default_zonelist_order(void)
4718{
4719 return ZONELIST_ORDER_NODE;
4720}
4721#else
4722/*
4723 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4724 * by the kernel. If processes running on node 0 deplete the low memory zone
4725 * then reclaim will occur more frequency increasing stalls and potentially
4726 * be easier to OOM if a large percentage of the zone is under writeback or
4727 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4728 * Hence, default to zone ordering on 32-bit.
4729 */
f0c0b2b8
KH
4730static int default_zonelist_order(void)
4731{
f0c0b2b8
KH
4732 return ZONELIST_ORDER_ZONE;
4733}
3193913c 4734#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4735
4736static void set_zonelist_order(void)
4737{
4738 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4739 current_zonelist_order = default_zonelist_order();
4740 else
4741 current_zonelist_order = user_zonelist_order;
4742}
4743
4744static void build_zonelists(pg_data_t *pgdat)
4745{
c00eb15a 4746 int i, node, load;
1da177e4 4747 nodemask_t used_mask;
f0c0b2b8
KH
4748 int local_node, prev_node;
4749 struct zonelist *zonelist;
d00181b9 4750 unsigned int order = current_zonelist_order;
1da177e4
LT
4751
4752 /* initialize zonelists */
523b9458 4753 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4754 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4755 zonelist->_zonerefs[0].zone = NULL;
4756 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4757 }
4758
4759 /* NUMA-aware ordering of nodes */
4760 local_node = pgdat->node_id;
62bc62a8 4761 load = nr_online_nodes;
1da177e4
LT
4762 prev_node = local_node;
4763 nodes_clear(used_mask);
f0c0b2b8 4764
f0c0b2b8 4765 memset(node_order, 0, sizeof(node_order));
c00eb15a 4766 i = 0;
f0c0b2b8 4767
1da177e4
LT
4768 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4769 /*
4770 * We don't want to pressure a particular node.
4771 * So adding penalty to the first node in same
4772 * distance group to make it round-robin.
4773 */
957f822a
DR
4774 if (node_distance(local_node, node) !=
4775 node_distance(local_node, prev_node))
f0c0b2b8
KH
4776 node_load[node] = load;
4777
1da177e4
LT
4778 prev_node = node;
4779 load--;
f0c0b2b8
KH
4780 if (order == ZONELIST_ORDER_NODE)
4781 build_zonelists_in_node_order(pgdat, node);
4782 else
c00eb15a 4783 node_order[i++] = node; /* remember order */
f0c0b2b8 4784 }
1da177e4 4785
f0c0b2b8
KH
4786 if (order == ZONELIST_ORDER_ZONE) {
4787 /* calculate node order -- i.e., DMA last! */
c00eb15a 4788 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4789 }
523b9458
CL
4790
4791 build_thisnode_zonelists(pgdat);
1da177e4
LT
4792}
4793
7aac7898
LS
4794#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4795/*
4796 * Return node id of node used for "local" allocations.
4797 * I.e., first node id of first zone in arg node's generic zonelist.
4798 * Used for initializing percpu 'numa_mem', which is used primarily
4799 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4800 */
4801int local_memory_node(int node)
4802{
c33d6c06 4803 struct zoneref *z;
7aac7898 4804
c33d6c06 4805 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4806 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4807 NULL);
4808 return z->zone->node;
7aac7898
LS
4809}
4810#endif
f0c0b2b8 4811
6423aa81
JK
4812static void setup_min_unmapped_ratio(void);
4813static void setup_min_slab_ratio(void);
1da177e4
LT
4814#else /* CONFIG_NUMA */
4815
f0c0b2b8
KH
4816static void set_zonelist_order(void)
4817{
4818 current_zonelist_order = ZONELIST_ORDER_ZONE;
4819}
4820
4821static void build_zonelists(pg_data_t *pgdat)
1da177e4 4822{
19655d34 4823 int node, local_node;
54a6eb5c
MG
4824 enum zone_type j;
4825 struct zonelist *zonelist;
1da177e4
LT
4826
4827 local_node = pgdat->node_id;
1da177e4 4828
3e4c253a 4829 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4830 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4831
54a6eb5c
MG
4832 /*
4833 * Now we build the zonelist so that it contains the zones
4834 * of all the other nodes.
4835 * We don't want to pressure a particular node, so when
4836 * building the zones for node N, we make sure that the
4837 * zones coming right after the local ones are those from
4838 * node N+1 (modulo N)
4839 */
4840 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4841 if (!node_online(node))
4842 continue;
bc732f1d 4843 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4844 }
54a6eb5c
MG
4845 for (node = 0; node < local_node; node++) {
4846 if (!node_online(node))
4847 continue;
bc732f1d 4848 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4849 }
4850
dd1a239f
MG
4851 zonelist->_zonerefs[j].zone = NULL;
4852 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4853}
4854
4855#endif /* CONFIG_NUMA */
4856
99dcc3e5
CL
4857/*
4858 * Boot pageset table. One per cpu which is going to be used for all
4859 * zones and all nodes. The parameters will be set in such a way
4860 * that an item put on a list will immediately be handed over to
4861 * the buddy list. This is safe since pageset manipulation is done
4862 * with interrupts disabled.
4863 *
4864 * The boot_pagesets must be kept even after bootup is complete for
4865 * unused processors and/or zones. They do play a role for bootstrapping
4866 * hotplugged processors.
4867 *
4868 * zoneinfo_show() and maybe other functions do
4869 * not check if the processor is online before following the pageset pointer.
4870 * Other parts of the kernel may not check if the zone is available.
4871 */
4872static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4873static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4874static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4875
4eaf3f64
HL
4876/*
4877 * Global mutex to protect against size modification of zonelists
4878 * as well as to serialize pageset setup for the new populated zone.
4879 */
4880DEFINE_MUTEX(zonelists_mutex);
4881
9b1a4d38 4882/* return values int ....just for stop_machine() */
4ed7e022 4883static int __build_all_zonelists(void *data)
1da177e4 4884{
6811378e 4885 int nid;
99dcc3e5 4886 int cpu;
9adb62a5 4887 pg_data_t *self = data;
9276b1bc 4888
7f9cfb31
BL
4889#ifdef CONFIG_NUMA
4890 memset(node_load, 0, sizeof(node_load));
4891#endif
9adb62a5
JL
4892
4893 if (self && !node_online(self->node_id)) {
4894 build_zonelists(self);
9adb62a5
JL
4895 }
4896
9276b1bc 4897 for_each_online_node(nid) {
7ea1530a
CL
4898 pg_data_t *pgdat = NODE_DATA(nid);
4899
4900 build_zonelists(pgdat);
9276b1bc 4901 }
99dcc3e5
CL
4902
4903 /*
4904 * Initialize the boot_pagesets that are going to be used
4905 * for bootstrapping processors. The real pagesets for
4906 * each zone will be allocated later when the per cpu
4907 * allocator is available.
4908 *
4909 * boot_pagesets are used also for bootstrapping offline
4910 * cpus if the system is already booted because the pagesets
4911 * are needed to initialize allocators on a specific cpu too.
4912 * F.e. the percpu allocator needs the page allocator which
4913 * needs the percpu allocator in order to allocate its pagesets
4914 * (a chicken-egg dilemma).
4915 */
7aac7898 4916 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4917 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4918
7aac7898
LS
4919#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4920 /*
4921 * We now know the "local memory node" for each node--
4922 * i.e., the node of the first zone in the generic zonelist.
4923 * Set up numa_mem percpu variable for on-line cpus. During
4924 * boot, only the boot cpu should be on-line; we'll init the
4925 * secondary cpus' numa_mem as they come on-line. During
4926 * node/memory hotplug, we'll fixup all on-line cpus.
4927 */
4928 if (cpu_online(cpu))
4929 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4930#endif
4931 }
4932
6811378e
YG
4933 return 0;
4934}
4935
061f67bc
RV
4936static noinline void __init
4937build_all_zonelists_init(void)
4938{
4939 __build_all_zonelists(NULL);
4940 mminit_verify_zonelist();
4941 cpuset_init_current_mems_allowed();
4942}
4943
4eaf3f64
HL
4944/*
4945 * Called with zonelists_mutex held always
4946 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4947 *
4948 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4949 * [we're only called with non-NULL zone through __meminit paths] and
4950 * (2) call of __init annotated helper build_all_zonelists_init
4951 * [protected by SYSTEM_BOOTING].
4eaf3f64 4952 */
9adb62a5 4953void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4954{
f0c0b2b8
KH
4955 set_zonelist_order();
4956
6811378e 4957 if (system_state == SYSTEM_BOOTING) {
061f67bc 4958 build_all_zonelists_init();
6811378e 4959 } else {
e9959f0f 4960#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4961 if (zone)
4962 setup_zone_pageset(zone);
e9959f0f 4963#endif
dd1895e2
CS
4964 /* we have to stop all cpus to guarantee there is no user
4965 of zonelist */
9adb62a5 4966 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4967 /* cpuset refresh routine should be here */
4968 }
bd1e22b8 4969 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4970 /*
4971 * Disable grouping by mobility if the number of pages in the
4972 * system is too low to allow the mechanism to work. It would be
4973 * more accurate, but expensive to check per-zone. This check is
4974 * made on memory-hotadd so a system can start with mobility
4975 * disabled and enable it later
4976 */
d9c23400 4977 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4978 page_group_by_mobility_disabled = 1;
4979 else
4980 page_group_by_mobility_disabled = 0;
4981
756a025f
JP
4982 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4983 nr_online_nodes,
4984 zonelist_order_name[current_zonelist_order],
4985 page_group_by_mobility_disabled ? "off" : "on",
4986 vm_total_pages);
f0c0b2b8 4987#ifdef CONFIG_NUMA
f88dfff5 4988 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4989#endif
1da177e4
LT
4990}
4991
4992/*
4993 * Helper functions to size the waitqueue hash table.
4994 * Essentially these want to choose hash table sizes sufficiently
4995 * large so that collisions trying to wait on pages are rare.
4996 * But in fact, the number of active page waitqueues on typical
4997 * systems is ridiculously low, less than 200. So this is even
4998 * conservative, even though it seems large.
4999 *
5000 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5001 * waitqueues, i.e. the size of the waitq table given the number of pages.
5002 */
5003#define PAGES_PER_WAITQUEUE 256
5004
cca448fe 5005#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5006static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5007{
5008 unsigned long size = 1;
5009
5010 pages /= PAGES_PER_WAITQUEUE;
5011
5012 while (size < pages)
5013 size <<= 1;
5014
5015 /*
5016 * Once we have dozens or even hundreds of threads sleeping
5017 * on IO we've got bigger problems than wait queue collision.
5018 * Limit the size of the wait table to a reasonable size.
5019 */
5020 size = min(size, 4096UL);
5021
5022 return max(size, 4UL);
5023}
cca448fe
YG
5024#else
5025/*
5026 * A zone's size might be changed by hot-add, so it is not possible to determine
5027 * a suitable size for its wait_table. So we use the maximum size now.
5028 *
5029 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5030 *
5031 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5032 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5033 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5034 *
5035 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5036 * or more by the traditional way. (See above). It equals:
5037 *
5038 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5039 * ia64(16K page size) : = ( 8G + 4M)byte.
5040 * powerpc (64K page size) : = (32G +16M)byte.
5041 */
5042static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5043{
5044 return 4096UL;
5045}
5046#endif
1da177e4
LT
5047
5048/*
5049 * This is an integer logarithm so that shifts can be used later
5050 * to extract the more random high bits from the multiplicative
5051 * hash function before the remainder is taken.
5052 */
5053static inline unsigned long wait_table_bits(unsigned long size)
5054{
5055 return ffz(~size);
5056}
5057
1da177e4
LT
5058/*
5059 * Initially all pages are reserved - free ones are freed
5060 * up by free_all_bootmem() once the early boot process is
5061 * done. Non-atomic initialization, single-pass.
5062 */
c09b4240 5063void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5064 unsigned long start_pfn, enum memmap_context context)
1da177e4 5065{
4b94ffdc 5066 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5067 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5068 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5069 unsigned long pfn;
3a80a7fa 5070 unsigned long nr_initialised = 0;
342332e6
TI
5071#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5072 struct memblock_region *r = NULL, *tmp;
5073#endif
1da177e4 5074
22b31eec
HD
5075 if (highest_memmap_pfn < end_pfn - 1)
5076 highest_memmap_pfn = end_pfn - 1;
5077
4b94ffdc
DW
5078 /*
5079 * Honor reservation requested by the driver for this ZONE_DEVICE
5080 * memory
5081 */
5082 if (altmap && start_pfn == altmap->base_pfn)
5083 start_pfn += altmap->reserve;
5084
cbe8dd4a 5085 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5086 /*
b72d0ffb
AM
5087 * There can be holes in boot-time mem_map[]s handed to this
5088 * function. They do not exist on hotplugged memory.
a2f3aa02 5089 */
b72d0ffb
AM
5090 if (context != MEMMAP_EARLY)
5091 goto not_early;
5092
5093 if (!early_pfn_valid(pfn))
5094 continue;
5095 if (!early_pfn_in_nid(pfn, nid))
5096 continue;
5097 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5098 break;
342332e6
TI
5099
5100#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5101 /*
5102 * Check given memblock attribute by firmware which can affect
5103 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5104 * mirrored, it's an overlapped memmap init. skip it.
5105 */
5106 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5107 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5108 for_each_memblock(memory, tmp)
5109 if (pfn < memblock_region_memory_end_pfn(tmp))
5110 break;
5111 r = tmp;
5112 }
5113 if (pfn >= memblock_region_memory_base_pfn(r) &&
5114 memblock_is_mirror(r)) {
5115 /* already initialized as NORMAL */
5116 pfn = memblock_region_memory_end_pfn(r);
5117 continue;
342332e6 5118 }
a2f3aa02 5119 }
b72d0ffb 5120#endif
ac5d2539 5121
b72d0ffb 5122not_early:
ac5d2539
MG
5123 /*
5124 * Mark the block movable so that blocks are reserved for
5125 * movable at startup. This will force kernel allocations
5126 * to reserve their blocks rather than leaking throughout
5127 * the address space during boot when many long-lived
974a786e 5128 * kernel allocations are made.
ac5d2539
MG
5129 *
5130 * bitmap is created for zone's valid pfn range. but memmap
5131 * can be created for invalid pages (for alignment)
5132 * check here not to call set_pageblock_migratetype() against
5133 * pfn out of zone.
5134 */
5135 if (!(pfn & (pageblock_nr_pages - 1))) {
5136 struct page *page = pfn_to_page(pfn);
5137
5138 __init_single_page(page, pfn, zone, nid);
5139 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5140 } else {
5141 __init_single_pfn(pfn, zone, nid);
5142 }
1da177e4
LT
5143 }
5144}
5145
1e548deb 5146static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5147{
7aeb09f9 5148 unsigned int order, t;
b2a0ac88
MG
5149 for_each_migratetype_order(order, t) {
5150 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5151 zone->free_area[order].nr_free = 0;
5152 }
5153}
5154
5155#ifndef __HAVE_ARCH_MEMMAP_INIT
5156#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5157 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5158#endif
5159
7cd2b0a3 5160static int zone_batchsize(struct zone *zone)
e7c8d5c9 5161{
3a6be87f 5162#ifdef CONFIG_MMU
e7c8d5c9
CL
5163 int batch;
5164
5165 /*
5166 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5167 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5168 *
5169 * OK, so we don't know how big the cache is. So guess.
5170 */
b40da049 5171 batch = zone->managed_pages / 1024;
ba56e91c
SR
5172 if (batch * PAGE_SIZE > 512 * 1024)
5173 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5174 batch /= 4; /* We effectively *= 4 below */
5175 if (batch < 1)
5176 batch = 1;
5177
5178 /*
0ceaacc9
NP
5179 * Clamp the batch to a 2^n - 1 value. Having a power
5180 * of 2 value was found to be more likely to have
5181 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5182 *
0ceaacc9
NP
5183 * For example if 2 tasks are alternately allocating
5184 * batches of pages, one task can end up with a lot
5185 * of pages of one half of the possible page colors
5186 * and the other with pages of the other colors.
e7c8d5c9 5187 */
9155203a 5188 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5189
e7c8d5c9 5190 return batch;
3a6be87f
DH
5191
5192#else
5193 /* The deferral and batching of frees should be suppressed under NOMMU
5194 * conditions.
5195 *
5196 * The problem is that NOMMU needs to be able to allocate large chunks
5197 * of contiguous memory as there's no hardware page translation to
5198 * assemble apparent contiguous memory from discontiguous pages.
5199 *
5200 * Queueing large contiguous runs of pages for batching, however,
5201 * causes the pages to actually be freed in smaller chunks. As there
5202 * can be a significant delay between the individual batches being
5203 * recycled, this leads to the once large chunks of space being
5204 * fragmented and becoming unavailable for high-order allocations.
5205 */
5206 return 0;
5207#endif
e7c8d5c9
CL
5208}
5209
8d7a8fa9
CS
5210/*
5211 * pcp->high and pcp->batch values are related and dependent on one another:
5212 * ->batch must never be higher then ->high.
5213 * The following function updates them in a safe manner without read side
5214 * locking.
5215 *
5216 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5217 * those fields changing asynchronously (acording the the above rule).
5218 *
5219 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5220 * outside of boot time (or some other assurance that no concurrent updaters
5221 * exist).
5222 */
5223static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5224 unsigned long batch)
5225{
5226 /* start with a fail safe value for batch */
5227 pcp->batch = 1;
5228 smp_wmb();
5229
5230 /* Update high, then batch, in order */
5231 pcp->high = high;
5232 smp_wmb();
5233
5234 pcp->batch = batch;
5235}
5236
3664033c 5237/* a companion to pageset_set_high() */
4008bab7
CS
5238static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5239{
8d7a8fa9 5240 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5241}
5242
88c90dbc 5243static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5244{
5245 struct per_cpu_pages *pcp;
5f8dcc21 5246 int migratetype;
2caaad41 5247
1c6fe946
MD
5248 memset(p, 0, sizeof(*p));
5249
3dfa5721 5250 pcp = &p->pcp;
2caaad41 5251 pcp->count = 0;
5f8dcc21
MG
5252 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5253 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5254}
5255
88c90dbc
CS
5256static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5257{
5258 pageset_init(p);
5259 pageset_set_batch(p, batch);
5260}
5261
8ad4b1fb 5262/*
3664033c 5263 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5264 * to the value high for the pageset p.
5265 */
3664033c 5266static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5267 unsigned long high)
5268{
8d7a8fa9
CS
5269 unsigned long batch = max(1UL, high / 4);
5270 if ((high / 4) > (PAGE_SHIFT * 8))
5271 batch = PAGE_SHIFT * 8;
8ad4b1fb 5272
8d7a8fa9 5273 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5274}
5275
7cd2b0a3
DR
5276static void pageset_set_high_and_batch(struct zone *zone,
5277 struct per_cpu_pageset *pcp)
56cef2b8 5278{
56cef2b8 5279 if (percpu_pagelist_fraction)
3664033c 5280 pageset_set_high(pcp,
56cef2b8
CS
5281 (zone->managed_pages /
5282 percpu_pagelist_fraction));
5283 else
5284 pageset_set_batch(pcp, zone_batchsize(zone));
5285}
5286
169f6c19
CS
5287static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5288{
5289 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5290
5291 pageset_init(pcp);
5292 pageset_set_high_and_batch(zone, pcp);
5293}
5294
4ed7e022 5295static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5296{
5297 int cpu;
319774e2 5298 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5299 for_each_possible_cpu(cpu)
5300 zone_pageset_init(zone, cpu);
319774e2
WF
5301}
5302
2caaad41 5303/*
99dcc3e5
CL
5304 * Allocate per cpu pagesets and initialize them.
5305 * Before this call only boot pagesets were available.
e7c8d5c9 5306 */
99dcc3e5 5307void __init setup_per_cpu_pageset(void)
e7c8d5c9 5308{
b4911ea2 5309 struct pglist_data *pgdat;
99dcc3e5 5310 struct zone *zone;
e7c8d5c9 5311
319774e2
WF
5312 for_each_populated_zone(zone)
5313 setup_zone_pageset(zone);
b4911ea2
MG
5314
5315 for_each_online_pgdat(pgdat)
5316 pgdat->per_cpu_nodestats =
5317 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5318}
5319
bd721ea7 5320static noinline __ref
cca448fe 5321int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5322{
5323 int i;
cca448fe 5324 size_t alloc_size;
ed8ece2e
DH
5325
5326 /*
5327 * The per-page waitqueue mechanism uses hashed waitqueues
5328 * per zone.
5329 */
02b694de
YG
5330 zone->wait_table_hash_nr_entries =
5331 wait_table_hash_nr_entries(zone_size_pages);
5332 zone->wait_table_bits =
5333 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5334 alloc_size = zone->wait_table_hash_nr_entries
5335 * sizeof(wait_queue_head_t);
5336
cd94b9db 5337 if (!slab_is_available()) {
cca448fe 5338 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5339 memblock_virt_alloc_node_nopanic(
5340 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5341 } else {
5342 /*
5343 * This case means that a zone whose size was 0 gets new memory
5344 * via memory hot-add.
5345 * But it may be the case that a new node was hot-added. In
5346 * this case vmalloc() will not be able to use this new node's
5347 * memory - this wait_table must be initialized to use this new
5348 * node itself as well.
5349 * To use this new node's memory, further consideration will be
5350 * necessary.
5351 */
8691f3a7 5352 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5353 }
5354 if (!zone->wait_table)
5355 return -ENOMEM;
ed8ece2e 5356
b8af2941 5357 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5358 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5359
5360 return 0;
ed8ece2e
DH
5361}
5362
c09b4240 5363static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5364{
99dcc3e5
CL
5365 /*
5366 * per cpu subsystem is not up at this point. The following code
5367 * relies on the ability of the linker to provide the
5368 * offset of a (static) per cpu variable into the per cpu area.
5369 */
5370 zone->pageset = &boot_pageset;
ed8ece2e 5371
b38a8725 5372 if (populated_zone(zone))
99dcc3e5
CL
5373 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5374 zone->name, zone->present_pages,
5375 zone_batchsize(zone));
ed8ece2e
DH
5376}
5377
4ed7e022 5378int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5379 unsigned long zone_start_pfn,
b171e409 5380 unsigned long size)
ed8ece2e
DH
5381{
5382 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5383 int ret;
5384 ret = zone_wait_table_init(zone, size);
5385 if (ret)
5386 return ret;
ed8ece2e
DH
5387 pgdat->nr_zones = zone_idx(zone) + 1;
5388
ed8ece2e
DH
5389 zone->zone_start_pfn = zone_start_pfn;
5390
708614e6
MG
5391 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5392 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5393 pgdat->node_id,
5394 (unsigned long)zone_idx(zone),
5395 zone_start_pfn, (zone_start_pfn + size));
5396
1e548deb 5397 zone_init_free_lists(zone);
718127cc
YG
5398
5399 return 0;
ed8ece2e
DH
5400}
5401
0ee332c1 5402#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5403#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5404
c713216d
MG
5405/*
5406 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5407 */
8a942fde
MG
5408int __meminit __early_pfn_to_nid(unsigned long pfn,
5409 struct mminit_pfnnid_cache *state)
c713216d 5410{
c13291a5 5411 unsigned long start_pfn, end_pfn;
e76b63f8 5412 int nid;
7c243c71 5413
8a942fde
MG
5414 if (state->last_start <= pfn && pfn < state->last_end)
5415 return state->last_nid;
c713216d 5416
e76b63f8
YL
5417 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5418 if (nid != -1) {
8a942fde
MG
5419 state->last_start = start_pfn;
5420 state->last_end = end_pfn;
5421 state->last_nid = nid;
e76b63f8
YL
5422 }
5423
5424 return nid;
c713216d
MG
5425}
5426#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5427
c713216d 5428/**
6782832e 5429 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5430 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5431 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5432 *
7d018176
ZZ
5433 * If an architecture guarantees that all ranges registered contain no holes
5434 * and may be freed, this this function may be used instead of calling
5435 * memblock_free_early_nid() manually.
c713216d 5436 */
c13291a5 5437void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5438{
c13291a5
TH
5439 unsigned long start_pfn, end_pfn;
5440 int i, this_nid;
edbe7d23 5441
c13291a5
TH
5442 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5443 start_pfn = min(start_pfn, max_low_pfn);
5444 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5445
c13291a5 5446 if (start_pfn < end_pfn)
6782832e
SS
5447 memblock_free_early_nid(PFN_PHYS(start_pfn),
5448 (end_pfn - start_pfn) << PAGE_SHIFT,
5449 this_nid);
edbe7d23 5450 }
edbe7d23 5451}
edbe7d23 5452
c713216d
MG
5453/**
5454 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5455 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5456 *
7d018176
ZZ
5457 * If an architecture guarantees that all ranges registered contain no holes and may
5458 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5459 */
5460void __init sparse_memory_present_with_active_regions(int nid)
5461{
c13291a5
TH
5462 unsigned long start_pfn, end_pfn;
5463 int i, this_nid;
c713216d 5464
c13291a5
TH
5465 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5466 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5467}
5468
5469/**
5470 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5471 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5472 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5473 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5474 *
5475 * It returns the start and end page frame of a node based on information
7d018176 5476 * provided by memblock_set_node(). If called for a node
c713216d 5477 * with no available memory, a warning is printed and the start and end
88ca3b94 5478 * PFNs will be 0.
c713216d 5479 */
a3142c8e 5480void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5481 unsigned long *start_pfn, unsigned long *end_pfn)
5482{
c13291a5 5483 unsigned long this_start_pfn, this_end_pfn;
c713216d 5484 int i;
c13291a5 5485
c713216d
MG
5486 *start_pfn = -1UL;
5487 *end_pfn = 0;
5488
c13291a5
TH
5489 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5490 *start_pfn = min(*start_pfn, this_start_pfn);
5491 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5492 }
5493
633c0666 5494 if (*start_pfn == -1UL)
c713216d 5495 *start_pfn = 0;
c713216d
MG
5496}
5497
2a1e274a
MG
5498/*
5499 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5500 * assumption is made that zones within a node are ordered in monotonic
5501 * increasing memory addresses so that the "highest" populated zone is used
5502 */
b69a7288 5503static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5504{
5505 int zone_index;
5506 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5507 if (zone_index == ZONE_MOVABLE)
5508 continue;
5509
5510 if (arch_zone_highest_possible_pfn[zone_index] >
5511 arch_zone_lowest_possible_pfn[zone_index])
5512 break;
5513 }
5514
5515 VM_BUG_ON(zone_index == -1);
5516 movable_zone = zone_index;
5517}
5518
5519/*
5520 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5521 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5522 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5523 * in each node depending on the size of each node and how evenly kernelcore
5524 * is distributed. This helper function adjusts the zone ranges
5525 * provided by the architecture for a given node by using the end of the
5526 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5527 * zones within a node are in order of monotonic increases memory addresses
5528 */
b69a7288 5529static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5530 unsigned long zone_type,
5531 unsigned long node_start_pfn,
5532 unsigned long node_end_pfn,
5533 unsigned long *zone_start_pfn,
5534 unsigned long *zone_end_pfn)
5535{
5536 /* Only adjust if ZONE_MOVABLE is on this node */
5537 if (zone_movable_pfn[nid]) {
5538 /* Size ZONE_MOVABLE */
5539 if (zone_type == ZONE_MOVABLE) {
5540 *zone_start_pfn = zone_movable_pfn[nid];
5541 *zone_end_pfn = min(node_end_pfn,
5542 arch_zone_highest_possible_pfn[movable_zone]);
5543
189e37a4
XQ
5544 /* Adjust for ZONE_MOVABLE starting within this range */
5545 } else if (!mirrored_kernelcore &&
5546 *zone_start_pfn < zone_movable_pfn[nid] &&
5547 *zone_end_pfn > zone_movable_pfn[nid]) {
5548 *zone_end_pfn = zone_movable_pfn[nid];
5549
2a1e274a
MG
5550 /* Check if this whole range is within ZONE_MOVABLE */
5551 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5552 *zone_start_pfn = *zone_end_pfn;
5553 }
5554}
5555
c713216d
MG
5556/*
5557 * Return the number of pages a zone spans in a node, including holes
5558 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5559 */
6ea6e688 5560static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5561 unsigned long zone_type,
7960aedd
ZY
5562 unsigned long node_start_pfn,
5563 unsigned long node_end_pfn,
d91749c1
TI
5564 unsigned long *zone_start_pfn,
5565 unsigned long *zone_end_pfn,
c713216d
MG
5566 unsigned long *ignored)
5567{
b5685e92 5568 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5569 if (!node_start_pfn && !node_end_pfn)
5570 return 0;
5571
7960aedd 5572 /* Get the start and end of the zone */
d91749c1
TI
5573 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5574 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5575 adjust_zone_range_for_zone_movable(nid, zone_type,
5576 node_start_pfn, node_end_pfn,
d91749c1 5577 zone_start_pfn, zone_end_pfn);
c713216d
MG
5578
5579 /* Check that this node has pages within the zone's required range */
d91749c1 5580 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5581 return 0;
5582
5583 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5584 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5585 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5586
5587 /* Return the spanned pages */
d91749c1 5588 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5589}
5590
5591/*
5592 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5593 * then all holes in the requested range will be accounted for.
c713216d 5594 */
32996250 5595unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5596 unsigned long range_start_pfn,
5597 unsigned long range_end_pfn)
5598{
96e907d1
TH
5599 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5600 unsigned long start_pfn, end_pfn;
5601 int i;
c713216d 5602
96e907d1
TH
5603 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5604 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5605 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5606 nr_absent -= end_pfn - start_pfn;
c713216d 5607 }
96e907d1 5608 return nr_absent;
c713216d
MG
5609}
5610
5611/**
5612 * absent_pages_in_range - Return number of page frames in holes within a range
5613 * @start_pfn: The start PFN to start searching for holes
5614 * @end_pfn: The end PFN to stop searching for holes
5615 *
88ca3b94 5616 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5617 */
5618unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5619 unsigned long end_pfn)
5620{
5621 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5622}
5623
5624/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5625static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5626 unsigned long zone_type,
7960aedd
ZY
5627 unsigned long node_start_pfn,
5628 unsigned long node_end_pfn,
c713216d
MG
5629 unsigned long *ignored)
5630{
96e907d1
TH
5631 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5632 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5633 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5634 unsigned long nr_absent;
9c7cd687 5635
b5685e92 5636 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5637 if (!node_start_pfn && !node_end_pfn)
5638 return 0;
5639
96e907d1
TH
5640 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5641 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5642
2a1e274a
MG
5643 adjust_zone_range_for_zone_movable(nid, zone_type,
5644 node_start_pfn, node_end_pfn,
5645 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5646 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5647
5648 /*
5649 * ZONE_MOVABLE handling.
5650 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5651 * and vice versa.
5652 */
189e37a4
XQ
5653 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5654 unsigned long start_pfn, end_pfn;
5655 struct memblock_region *r;
5656
5657 for_each_memblock(memory, r) {
5658 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5659 zone_start_pfn, zone_end_pfn);
5660 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5661 zone_start_pfn, zone_end_pfn);
5662
5663 if (zone_type == ZONE_MOVABLE &&
5664 memblock_is_mirror(r))
5665 nr_absent += end_pfn - start_pfn;
5666
5667 if (zone_type == ZONE_NORMAL &&
5668 !memblock_is_mirror(r))
5669 nr_absent += end_pfn - start_pfn;
342332e6
TI
5670 }
5671 }
5672
5673 return nr_absent;
c713216d 5674}
0e0b864e 5675
0ee332c1 5676#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5677static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5678 unsigned long zone_type,
7960aedd
ZY
5679 unsigned long node_start_pfn,
5680 unsigned long node_end_pfn,
d91749c1
TI
5681 unsigned long *zone_start_pfn,
5682 unsigned long *zone_end_pfn,
c713216d
MG
5683 unsigned long *zones_size)
5684{
d91749c1
TI
5685 unsigned int zone;
5686
5687 *zone_start_pfn = node_start_pfn;
5688 for (zone = 0; zone < zone_type; zone++)
5689 *zone_start_pfn += zones_size[zone];
5690
5691 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5692
c713216d
MG
5693 return zones_size[zone_type];
5694}
5695
6ea6e688 5696static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5697 unsigned long zone_type,
7960aedd
ZY
5698 unsigned long node_start_pfn,
5699 unsigned long node_end_pfn,
c713216d
MG
5700 unsigned long *zholes_size)
5701{
5702 if (!zholes_size)
5703 return 0;
5704
5705 return zholes_size[zone_type];
5706}
20e6926d 5707
0ee332c1 5708#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5709
a3142c8e 5710static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5711 unsigned long node_start_pfn,
5712 unsigned long node_end_pfn,
5713 unsigned long *zones_size,
5714 unsigned long *zholes_size)
c713216d 5715{
febd5949 5716 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5717 enum zone_type i;
5718
febd5949
GZ
5719 for (i = 0; i < MAX_NR_ZONES; i++) {
5720 struct zone *zone = pgdat->node_zones + i;
d91749c1 5721 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5722 unsigned long size, real_size;
c713216d 5723
febd5949
GZ
5724 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5725 node_start_pfn,
5726 node_end_pfn,
d91749c1
TI
5727 &zone_start_pfn,
5728 &zone_end_pfn,
febd5949
GZ
5729 zones_size);
5730 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5731 node_start_pfn, node_end_pfn,
5732 zholes_size);
d91749c1
TI
5733 if (size)
5734 zone->zone_start_pfn = zone_start_pfn;
5735 else
5736 zone->zone_start_pfn = 0;
febd5949
GZ
5737 zone->spanned_pages = size;
5738 zone->present_pages = real_size;
5739
5740 totalpages += size;
5741 realtotalpages += real_size;
5742 }
5743
5744 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5745 pgdat->node_present_pages = realtotalpages;
5746 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5747 realtotalpages);
5748}
5749
835c134e
MG
5750#ifndef CONFIG_SPARSEMEM
5751/*
5752 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5753 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5754 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5755 * round what is now in bits to nearest long in bits, then return it in
5756 * bytes.
5757 */
7c45512d 5758static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5759{
5760 unsigned long usemapsize;
5761
7c45512d 5762 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5763 usemapsize = roundup(zonesize, pageblock_nr_pages);
5764 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5765 usemapsize *= NR_PAGEBLOCK_BITS;
5766 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5767
5768 return usemapsize / 8;
5769}
5770
5771static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5772 struct zone *zone,
5773 unsigned long zone_start_pfn,
5774 unsigned long zonesize)
835c134e 5775{
7c45512d 5776 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5777 zone->pageblock_flags = NULL;
58a01a45 5778 if (usemapsize)
6782832e
SS
5779 zone->pageblock_flags =
5780 memblock_virt_alloc_node_nopanic(usemapsize,
5781 pgdat->node_id);
835c134e
MG
5782}
5783#else
7c45512d
LT
5784static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5785 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5786#endif /* CONFIG_SPARSEMEM */
5787
d9c23400 5788#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5789
d9c23400 5790/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5791void __paginginit set_pageblock_order(void)
d9c23400 5792{
955c1cd7
AM
5793 unsigned int order;
5794
d9c23400
MG
5795 /* Check that pageblock_nr_pages has not already been setup */
5796 if (pageblock_order)
5797 return;
5798
955c1cd7
AM
5799 if (HPAGE_SHIFT > PAGE_SHIFT)
5800 order = HUGETLB_PAGE_ORDER;
5801 else
5802 order = MAX_ORDER - 1;
5803
d9c23400
MG
5804 /*
5805 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5806 * This value may be variable depending on boot parameters on IA64 and
5807 * powerpc.
d9c23400
MG
5808 */
5809 pageblock_order = order;
5810}
5811#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5812
ba72cb8c
MG
5813/*
5814 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5815 * is unused as pageblock_order is set at compile-time. See
5816 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5817 * the kernel config
ba72cb8c 5818 */
15ca220e 5819void __paginginit set_pageblock_order(void)
ba72cb8c 5820{
ba72cb8c 5821}
d9c23400
MG
5822
5823#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5824
01cefaef
JL
5825static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5826 unsigned long present_pages)
5827{
5828 unsigned long pages = spanned_pages;
5829
5830 /*
5831 * Provide a more accurate estimation if there are holes within
5832 * the zone and SPARSEMEM is in use. If there are holes within the
5833 * zone, each populated memory region may cost us one or two extra
5834 * memmap pages due to alignment because memmap pages for each
5835 * populated regions may not naturally algined on page boundary.
5836 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5837 */
5838 if (spanned_pages > present_pages + (present_pages >> 4) &&
5839 IS_ENABLED(CONFIG_SPARSEMEM))
5840 pages = present_pages;
5841
5842 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5843}
5844
1da177e4
LT
5845/*
5846 * Set up the zone data structures:
5847 * - mark all pages reserved
5848 * - mark all memory queues empty
5849 * - clear the memory bitmaps
6527af5d
MK
5850 *
5851 * NOTE: pgdat should get zeroed by caller.
1da177e4 5852 */
7f3eb55b 5853static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5854{
2f1b6248 5855 enum zone_type j;
ed8ece2e 5856 int nid = pgdat->node_id;
718127cc 5857 int ret;
1da177e4 5858
208d54e5 5859 pgdat_resize_init(pgdat);
8177a420
AA
5860#ifdef CONFIG_NUMA_BALANCING
5861 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5862 pgdat->numabalancing_migrate_nr_pages = 0;
5863 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5864#endif
5865#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5866 spin_lock_init(&pgdat->split_queue_lock);
5867 INIT_LIST_HEAD(&pgdat->split_queue);
5868 pgdat->split_queue_len = 0;
8177a420 5869#endif
1da177e4 5870 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5871 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5872#ifdef CONFIG_COMPACTION
5873 init_waitqueue_head(&pgdat->kcompactd_wait);
5874#endif
eefa864b 5875 pgdat_page_ext_init(pgdat);
a52633d8 5876 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5877 lruvec_init(node_lruvec(pgdat));
5f63b720 5878
1da177e4
LT
5879 for (j = 0; j < MAX_NR_ZONES; j++) {
5880 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5881 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5882 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5883
febd5949
GZ
5884 size = zone->spanned_pages;
5885 realsize = freesize = zone->present_pages;
1da177e4 5886
0e0b864e 5887 /*
9feedc9d 5888 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5889 * is used by this zone for memmap. This affects the watermark
5890 * and per-cpu initialisations
5891 */
01cefaef 5892 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5893 if (!is_highmem_idx(j)) {
5894 if (freesize >= memmap_pages) {
5895 freesize -= memmap_pages;
5896 if (memmap_pages)
5897 printk(KERN_DEBUG
5898 " %s zone: %lu pages used for memmap\n",
5899 zone_names[j], memmap_pages);
5900 } else
1170532b 5901 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5902 zone_names[j], memmap_pages, freesize);
5903 }
0e0b864e 5904
6267276f 5905 /* Account for reserved pages */
659e91ed
SD
5906 if (j == 0 && freesize > nr_memory_reserve) {
5907 freesize -= nr_memory_reserve;
d903ef9f 5908 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
659e91ed 5909 zone_names[0], nr_memory_reserve);
0e0b864e
MG
5910 }
5911
98d2b0eb 5912 if (!is_highmem_idx(j))
9feedc9d 5913 nr_kernel_pages += freesize;
01cefaef
JL
5914 /* Charge for highmem memmap if there are enough kernel pages */
5915 else if (nr_kernel_pages > memmap_pages * 2)
5916 nr_kernel_pages -= memmap_pages;
9feedc9d 5917 nr_all_pages += freesize;
1da177e4 5918
9feedc9d
JL
5919 /*
5920 * Set an approximate value for lowmem here, it will be adjusted
5921 * when the bootmem allocator frees pages into the buddy system.
5922 * And all highmem pages will be managed by the buddy system.
5923 */
5924 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5925#ifdef CONFIG_NUMA
d5f541ed 5926 zone->node = nid;
9614634f 5927#endif
1da177e4 5928 zone->name = zone_names[j];
a52633d8 5929 zone->zone_pgdat = pgdat;
1da177e4 5930 spin_lock_init(&zone->lock);
bdc8cb98 5931 zone_seqlock_init(zone);
ed8ece2e 5932 zone_pcp_init(zone);
81c0a2bb 5933
1da177e4
LT
5934 if (!size)
5935 continue;
5936
955c1cd7 5937 set_pageblock_order();
7c45512d 5938 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5939 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5940 BUG_ON(ret);
76cdd58e 5941 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5942 }
5943}
5944
bd721ea7 5945static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5946{
b0aeba74 5947 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5948 unsigned long __maybe_unused offset = 0;
5949
1da177e4
LT
5950 /* Skip empty nodes */
5951 if (!pgdat->node_spanned_pages)
5952 return;
5953
d41dee36 5954#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5955 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5956 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5957 /* ia64 gets its own node_mem_map, before this, without bootmem */
5958 if (!pgdat->node_mem_map) {
b0aeba74 5959 unsigned long size, end;
d41dee36
AW
5960 struct page *map;
5961
e984bb43
BP
5962 /*
5963 * The zone's endpoints aren't required to be MAX_ORDER
5964 * aligned but the node_mem_map endpoints must be in order
5965 * for the buddy allocator to function correctly.
5966 */
108bcc96 5967 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5968 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5969 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5970 map = alloc_remap(pgdat->node_id, size);
5971 if (!map)
6782832e
SS
5972 map = memblock_virt_alloc_node_nopanic(size,
5973 pgdat->node_id);
a1c34a3b 5974 pgdat->node_mem_map = map + offset;
1da177e4 5975 }
12d810c1 5976#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5977 /*
5978 * With no DISCONTIG, the global mem_map is just set as node 0's
5979 */
c713216d 5980 if (pgdat == NODE_DATA(0)) {
1da177e4 5981 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5982#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5983 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5984 mem_map -= offset;
0ee332c1 5985#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5986 }
1da177e4 5987#endif
d41dee36 5988#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5989}
5990
9109fb7b
JW
5991void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5992 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5993{
9109fb7b 5994 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5995 unsigned long start_pfn = 0;
5996 unsigned long end_pfn = 0;
9109fb7b 5997
88fdf75d 5998 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5999 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6000
3a80a7fa 6001 reset_deferred_meminit(pgdat);
1da177e4
LT
6002 pgdat->node_id = nid;
6003 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6004 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6005#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6006 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6007 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6008 (u64)start_pfn << PAGE_SHIFT,
6009 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6010#else
6011 start_pfn = node_start_pfn;
7960aedd
ZY
6012#endif
6013 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6014 zones_size, zholes_size);
1da177e4
LT
6015
6016 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6017#ifdef CONFIG_FLAT_NODE_MEM_MAP
6018 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6019 nid, (unsigned long)pgdat,
6020 (unsigned long)pgdat->node_mem_map);
6021#endif
1da177e4 6022
7f3eb55b 6023 free_area_init_core(pgdat);
1da177e4
LT
6024}
6025
0ee332c1 6026#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6027
6028#if MAX_NUMNODES > 1
6029/*
6030 * Figure out the number of possible node ids.
6031 */
f9872caf 6032void __init setup_nr_node_ids(void)
418508c1 6033{
904a9553 6034 unsigned int highest;
418508c1 6035
904a9553 6036 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6037 nr_node_ids = highest + 1;
6038}
418508c1
MS
6039#endif
6040
1e01979c
TH
6041/**
6042 * node_map_pfn_alignment - determine the maximum internode alignment
6043 *
6044 * This function should be called after node map is populated and sorted.
6045 * It calculates the maximum power of two alignment which can distinguish
6046 * all the nodes.
6047 *
6048 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6049 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6050 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6051 * shifted, 1GiB is enough and this function will indicate so.
6052 *
6053 * This is used to test whether pfn -> nid mapping of the chosen memory
6054 * model has fine enough granularity to avoid incorrect mapping for the
6055 * populated node map.
6056 *
6057 * Returns the determined alignment in pfn's. 0 if there is no alignment
6058 * requirement (single node).
6059 */
6060unsigned long __init node_map_pfn_alignment(void)
6061{
6062 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6063 unsigned long start, end, mask;
1e01979c 6064 int last_nid = -1;
c13291a5 6065 int i, nid;
1e01979c 6066
c13291a5 6067 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6068 if (!start || last_nid < 0 || last_nid == nid) {
6069 last_nid = nid;
6070 last_end = end;
6071 continue;
6072 }
6073
6074 /*
6075 * Start with a mask granular enough to pin-point to the
6076 * start pfn and tick off bits one-by-one until it becomes
6077 * too coarse to separate the current node from the last.
6078 */
6079 mask = ~((1 << __ffs(start)) - 1);
6080 while (mask && last_end <= (start & (mask << 1)))
6081 mask <<= 1;
6082
6083 /* accumulate all internode masks */
6084 accl_mask |= mask;
6085 }
6086
6087 /* convert mask to number of pages */
6088 return ~accl_mask + 1;
6089}
6090
a6af2bc3 6091/* Find the lowest pfn for a node */
b69a7288 6092static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6093{
a6af2bc3 6094 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6095 unsigned long start_pfn;
6096 int i;
1abbfb41 6097
c13291a5
TH
6098 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6099 min_pfn = min(min_pfn, start_pfn);
c713216d 6100
a6af2bc3 6101 if (min_pfn == ULONG_MAX) {
1170532b 6102 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6103 return 0;
6104 }
6105
6106 return min_pfn;
c713216d
MG
6107}
6108
6109/**
6110 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6111 *
6112 * It returns the minimum PFN based on information provided via
7d018176 6113 * memblock_set_node().
c713216d
MG
6114 */
6115unsigned long __init find_min_pfn_with_active_regions(void)
6116{
6117 return find_min_pfn_for_node(MAX_NUMNODES);
6118}
6119
37b07e41
LS
6120/*
6121 * early_calculate_totalpages()
6122 * Sum pages in active regions for movable zone.
4b0ef1fe 6123 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6124 */
484f51f8 6125static unsigned long __init early_calculate_totalpages(void)
7e63efef 6126{
7e63efef 6127 unsigned long totalpages = 0;
c13291a5
TH
6128 unsigned long start_pfn, end_pfn;
6129 int i, nid;
6130
6131 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6132 unsigned long pages = end_pfn - start_pfn;
7e63efef 6133
37b07e41
LS
6134 totalpages += pages;
6135 if (pages)
4b0ef1fe 6136 node_set_state(nid, N_MEMORY);
37b07e41 6137 }
b8af2941 6138 return totalpages;
7e63efef
MG
6139}
6140
2a1e274a
MG
6141/*
6142 * Find the PFN the Movable zone begins in each node. Kernel memory
6143 * is spread evenly between nodes as long as the nodes have enough
6144 * memory. When they don't, some nodes will have more kernelcore than
6145 * others
6146 */
b224ef85 6147static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6148{
6149 int i, nid;
6150 unsigned long usable_startpfn;
6151 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6152 /* save the state before borrow the nodemask */
4b0ef1fe 6153 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6154 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6155 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6156 struct memblock_region *r;
b2f3eebe
TC
6157
6158 /* Need to find movable_zone earlier when movable_node is specified. */
6159 find_usable_zone_for_movable();
6160
6161 /*
6162 * If movable_node is specified, ignore kernelcore and movablecore
6163 * options.
6164 */
6165 if (movable_node_is_enabled()) {
136199f0
EM
6166 for_each_memblock(memory, r) {
6167 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6168 continue;
6169
136199f0 6170 nid = r->nid;
b2f3eebe 6171
136199f0 6172 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6173 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6174 min(usable_startpfn, zone_movable_pfn[nid]) :
6175 usable_startpfn;
6176 }
6177
6178 goto out2;
6179 }
2a1e274a 6180
342332e6
TI
6181 /*
6182 * If kernelcore=mirror is specified, ignore movablecore option
6183 */
6184 if (mirrored_kernelcore) {
6185 bool mem_below_4gb_not_mirrored = false;
6186
6187 for_each_memblock(memory, r) {
6188 if (memblock_is_mirror(r))
6189 continue;
6190
6191 nid = r->nid;
6192
6193 usable_startpfn = memblock_region_memory_base_pfn(r);
6194
6195 if (usable_startpfn < 0x100000) {
6196 mem_below_4gb_not_mirrored = true;
6197 continue;
6198 }
6199
6200 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6201 min(usable_startpfn, zone_movable_pfn[nid]) :
6202 usable_startpfn;
6203 }
6204
6205 if (mem_below_4gb_not_mirrored)
6206 pr_warn("This configuration results in unmirrored kernel memory.");
6207
6208 goto out2;
6209 }
6210
7e63efef 6211 /*
b2f3eebe 6212 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6213 * kernelcore that corresponds so that memory usable for
6214 * any allocation type is evenly spread. If both kernelcore
6215 * and movablecore are specified, then the value of kernelcore
6216 * will be used for required_kernelcore if it's greater than
6217 * what movablecore would have allowed.
6218 */
6219 if (required_movablecore) {
7e63efef
MG
6220 unsigned long corepages;
6221
6222 /*
6223 * Round-up so that ZONE_MOVABLE is at least as large as what
6224 * was requested by the user
6225 */
6226 required_movablecore =
6227 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6228 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6229 corepages = totalpages - required_movablecore;
6230
6231 required_kernelcore = max(required_kernelcore, corepages);
6232 }
6233
bde304bd
XQ
6234 /*
6235 * If kernelcore was not specified or kernelcore size is larger
6236 * than totalpages, there is no ZONE_MOVABLE.
6237 */
6238 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6239 goto out;
2a1e274a
MG
6240
6241 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6242 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6243
6244restart:
6245 /* Spread kernelcore memory as evenly as possible throughout nodes */
6246 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6247 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6248 unsigned long start_pfn, end_pfn;
6249
2a1e274a
MG
6250 /*
6251 * Recalculate kernelcore_node if the division per node
6252 * now exceeds what is necessary to satisfy the requested
6253 * amount of memory for the kernel
6254 */
6255 if (required_kernelcore < kernelcore_node)
6256 kernelcore_node = required_kernelcore / usable_nodes;
6257
6258 /*
6259 * As the map is walked, we track how much memory is usable
6260 * by the kernel using kernelcore_remaining. When it is
6261 * 0, the rest of the node is usable by ZONE_MOVABLE
6262 */
6263 kernelcore_remaining = kernelcore_node;
6264
6265 /* Go through each range of PFNs within this node */
c13291a5 6266 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6267 unsigned long size_pages;
6268
c13291a5 6269 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6270 if (start_pfn >= end_pfn)
6271 continue;
6272
6273 /* Account for what is only usable for kernelcore */
6274 if (start_pfn < usable_startpfn) {
6275 unsigned long kernel_pages;
6276 kernel_pages = min(end_pfn, usable_startpfn)
6277 - start_pfn;
6278
6279 kernelcore_remaining -= min(kernel_pages,
6280 kernelcore_remaining);
6281 required_kernelcore -= min(kernel_pages,
6282 required_kernelcore);
6283
6284 /* Continue if range is now fully accounted */
6285 if (end_pfn <= usable_startpfn) {
6286
6287 /*
6288 * Push zone_movable_pfn to the end so
6289 * that if we have to rebalance
6290 * kernelcore across nodes, we will
6291 * not double account here
6292 */
6293 zone_movable_pfn[nid] = end_pfn;
6294 continue;
6295 }
6296 start_pfn = usable_startpfn;
6297 }
6298
6299 /*
6300 * The usable PFN range for ZONE_MOVABLE is from
6301 * start_pfn->end_pfn. Calculate size_pages as the
6302 * number of pages used as kernelcore
6303 */
6304 size_pages = end_pfn - start_pfn;
6305 if (size_pages > kernelcore_remaining)
6306 size_pages = kernelcore_remaining;
6307 zone_movable_pfn[nid] = start_pfn + size_pages;
6308
6309 /*
6310 * Some kernelcore has been met, update counts and
6311 * break if the kernelcore for this node has been
b8af2941 6312 * satisfied
2a1e274a
MG
6313 */
6314 required_kernelcore -= min(required_kernelcore,
6315 size_pages);
6316 kernelcore_remaining -= size_pages;
6317 if (!kernelcore_remaining)
6318 break;
6319 }
6320 }
6321
6322 /*
6323 * If there is still required_kernelcore, we do another pass with one
6324 * less node in the count. This will push zone_movable_pfn[nid] further
6325 * along on the nodes that still have memory until kernelcore is
b8af2941 6326 * satisfied
2a1e274a
MG
6327 */
6328 usable_nodes--;
6329 if (usable_nodes && required_kernelcore > usable_nodes)
6330 goto restart;
6331
b2f3eebe 6332out2:
2a1e274a
MG
6333 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6334 for (nid = 0; nid < MAX_NUMNODES; nid++)
6335 zone_movable_pfn[nid] =
6336 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6337
20e6926d 6338out:
66918dcd 6339 /* restore the node_state */
4b0ef1fe 6340 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6341}
6342
4b0ef1fe
LJ
6343/* Any regular or high memory on that node ? */
6344static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6345{
37b07e41
LS
6346 enum zone_type zone_type;
6347
4b0ef1fe
LJ
6348 if (N_MEMORY == N_NORMAL_MEMORY)
6349 return;
6350
6351 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6352 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6353 if (populated_zone(zone)) {
4b0ef1fe
LJ
6354 node_set_state(nid, N_HIGH_MEMORY);
6355 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6356 zone_type <= ZONE_NORMAL)
6357 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6358 break;
6359 }
37b07e41 6360 }
37b07e41
LS
6361}
6362
c713216d
MG
6363/**
6364 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6365 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6366 *
6367 * This will call free_area_init_node() for each active node in the system.
7d018176 6368 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6369 * zone in each node and their holes is calculated. If the maximum PFN
6370 * between two adjacent zones match, it is assumed that the zone is empty.
6371 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6372 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6373 * starts where the previous one ended. For example, ZONE_DMA32 starts
6374 * at arch_max_dma_pfn.
6375 */
6376void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6377{
c13291a5
TH
6378 unsigned long start_pfn, end_pfn;
6379 int i, nid;
a6af2bc3 6380
c713216d
MG
6381 /* Record where the zone boundaries are */
6382 memset(arch_zone_lowest_possible_pfn, 0,
6383 sizeof(arch_zone_lowest_possible_pfn));
6384 memset(arch_zone_highest_possible_pfn, 0,
6385 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6386
6387 start_pfn = find_min_pfn_with_active_regions();
6388
6389 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6390 if (i == ZONE_MOVABLE)
6391 continue;
90cae1fe
OH
6392
6393 end_pfn = max(max_zone_pfn[i], start_pfn);
6394 arch_zone_lowest_possible_pfn[i] = start_pfn;
6395 arch_zone_highest_possible_pfn[i] = end_pfn;
6396
6397 start_pfn = end_pfn;
c713216d 6398 }
2a1e274a
MG
6399 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6400 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6401
6402 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6403 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6404 find_zone_movable_pfns_for_nodes();
c713216d 6405
c713216d 6406 /* Print out the zone ranges */
f88dfff5 6407 pr_info("Zone ranges:\n");
2a1e274a
MG
6408 for (i = 0; i < MAX_NR_ZONES; i++) {
6409 if (i == ZONE_MOVABLE)
6410 continue;
f88dfff5 6411 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6412 if (arch_zone_lowest_possible_pfn[i] ==
6413 arch_zone_highest_possible_pfn[i])
f88dfff5 6414 pr_cont("empty\n");
72f0ba02 6415 else
8d29e18a
JG
6416 pr_cont("[mem %#018Lx-%#018Lx]\n",
6417 (u64)arch_zone_lowest_possible_pfn[i]
6418 << PAGE_SHIFT,
6419 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6420 << PAGE_SHIFT) - 1);
2a1e274a
MG
6421 }
6422
6423 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6424 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6425 for (i = 0; i < MAX_NUMNODES; i++) {
6426 if (zone_movable_pfn[i])
8d29e18a
JG
6427 pr_info(" Node %d: %#018Lx\n", i,
6428 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6429 }
c713216d 6430
f2d52fe5 6431 /* Print out the early node map */
f88dfff5 6432 pr_info("Early memory node ranges\n");
c13291a5 6433 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6434 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6435 (u64)start_pfn << PAGE_SHIFT,
6436 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6437
6438 /* Initialise every node */
708614e6 6439 mminit_verify_pageflags_layout();
8ef82866 6440 setup_nr_node_ids();
c713216d
MG
6441 for_each_online_node(nid) {
6442 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6443 free_area_init_node(nid, NULL,
c713216d 6444 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6445
6446 /* Any memory on that node */
6447 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6448 node_set_state(nid, N_MEMORY);
6449 check_for_memory(pgdat, nid);
c713216d
MG
6450 }
6451}
2a1e274a 6452
7e63efef 6453static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6454{
6455 unsigned long long coremem;
6456 if (!p)
6457 return -EINVAL;
6458
6459 coremem = memparse(p, &p);
7e63efef 6460 *core = coremem >> PAGE_SHIFT;
2a1e274a 6461
7e63efef 6462 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6463 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6464
6465 return 0;
6466}
ed7ed365 6467
7e63efef
MG
6468/*
6469 * kernelcore=size sets the amount of memory for use for allocations that
6470 * cannot be reclaimed or migrated.
6471 */
6472static int __init cmdline_parse_kernelcore(char *p)
6473{
342332e6
TI
6474 /* parse kernelcore=mirror */
6475 if (parse_option_str(p, "mirror")) {
6476 mirrored_kernelcore = true;
6477 return 0;
6478 }
6479
7e63efef
MG
6480 return cmdline_parse_core(p, &required_kernelcore);
6481}
6482
6483/*
6484 * movablecore=size sets the amount of memory for use for allocations that
6485 * can be reclaimed or migrated.
6486 */
6487static int __init cmdline_parse_movablecore(char *p)
6488{
6489 return cmdline_parse_core(p, &required_movablecore);
6490}
6491
ed7ed365 6492early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6493early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6494
0ee332c1 6495#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6496
c3d5f5f0
JL
6497void adjust_managed_page_count(struct page *page, long count)
6498{
6499 spin_lock(&managed_page_count_lock);
6500 page_zone(page)->managed_pages += count;
6501 totalram_pages += count;
3dcc0571
JL
6502#ifdef CONFIG_HIGHMEM
6503 if (PageHighMem(page))
6504 totalhigh_pages += count;
6505#endif
c3d5f5f0
JL
6506 spin_unlock(&managed_page_count_lock);
6507}
3dcc0571 6508EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6509
11199692 6510unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6511{
11199692
JL
6512 void *pos;
6513 unsigned long pages = 0;
69afade7 6514
11199692
JL
6515 start = (void *)PAGE_ALIGN((unsigned long)start);
6516 end = (void *)((unsigned long)end & PAGE_MASK);
6517 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6518 if ((unsigned int)poison <= 0xFF)
11199692
JL
6519 memset(pos, poison, PAGE_SIZE);
6520 free_reserved_page(virt_to_page(pos));
69afade7
JL
6521 }
6522
6523 if (pages && s)
11199692 6524 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6525 s, pages << (PAGE_SHIFT - 10), start, end);
6526
6527 return pages;
6528}
11199692 6529EXPORT_SYMBOL(free_reserved_area);
69afade7 6530
cfa11e08
JL
6531#ifdef CONFIG_HIGHMEM
6532void free_highmem_page(struct page *page)
6533{
6534 __free_reserved_page(page);
6535 totalram_pages++;
7b4b2a0d 6536 page_zone(page)->managed_pages++;
cfa11e08
JL
6537 totalhigh_pages++;
6538}
6539#endif
6540
7ee3d4e8
JL
6541
6542void __init mem_init_print_info(const char *str)
6543{
6544 unsigned long physpages, codesize, datasize, rosize, bss_size;
6545 unsigned long init_code_size, init_data_size;
6546
6547 physpages = get_num_physpages();
6548 codesize = _etext - _stext;
6549 datasize = _edata - _sdata;
6550 rosize = __end_rodata - __start_rodata;
6551 bss_size = __bss_stop - __bss_start;
6552 init_data_size = __init_end - __init_begin;
6553 init_code_size = _einittext - _sinittext;
6554
6555 /*
6556 * Detect special cases and adjust section sizes accordingly:
6557 * 1) .init.* may be embedded into .data sections
6558 * 2) .init.text.* may be out of [__init_begin, __init_end],
6559 * please refer to arch/tile/kernel/vmlinux.lds.S.
6560 * 3) .rodata.* may be embedded into .text or .data sections.
6561 */
6562#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6563 do { \
6564 if (start <= pos && pos < end && size > adj) \
6565 size -= adj; \
6566 } while (0)
7ee3d4e8
JL
6567
6568 adj_init_size(__init_begin, __init_end, init_data_size,
6569 _sinittext, init_code_size);
6570 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6571 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6572 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6573 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6574
6575#undef adj_init_size
6576
756a025f 6577 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6578#ifdef CONFIG_HIGHMEM
756a025f 6579 ", %luK highmem"
7ee3d4e8 6580#endif
756a025f
JP
6581 "%s%s)\n",
6582 nr_free_pages() << (PAGE_SHIFT - 10),
6583 physpages << (PAGE_SHIFT - 10),
6584 codesize >> 10, datasize >> 10, rosize >> 10,
6585 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6586 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6587 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6588#ifdef CONFIG_HIGHMEM
756a025f 6589 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6590#endif
756a025f 6591 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6592}
6593
0e0b864e 6594/**
659e91ed
SD
6595 * set_memory_reserve - set number of pages reserved in the first zone
6596 * @nr_reserve: The number of pages to mark reserved
6597 * @inc: true increment to existing value; false set new value.
0e0b864e 6598 *
013110a7 6599 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6600 * In the DMA zone, a significant percentage may be consumed by kernel image
6601 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6602 * function may optionally be used to account for unfreeable pages in the
6603 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6604 * smaller per-cpu batchsize.
0e0b864e 6605 */
659e91ed 6606void __init set_memory_reserve(unsigned long nr_reserve, bool inc)
0e0b864e 6607{
659e91ed
SD
6608 if (inc)
6609 nr_memory_reserve += nr_reserve;
6610 else
6611 nr_memory_reserve = nr_reserve;
0e0b864e
MG
6612}
6613
1da177e4
LT
6614void __init free_area_init(unsigned long *zones_size)
6615{
9109fb7b 6616 free_area_init_node(0, zones_size,
1da177e4
LT
6617 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6618}
1da177e4 6619
1da177e4
LT
6620static int page_alloc_cpu_notify(struct notifier_block *self,
6621 unsigned long action, void *hcpu)
6622{
6623 int cpu = (unsigned long)hcpu;
1da177e4 6624
8bb78442 6625 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6626 lru_add_drain_cpu(cpu);
9f8f2172
CL
6627 drain_pages(cpu);
6628
6629 /*
6630 * Spill the event counters of the dead processor
6631 * into the current processors event counters.
6632 * This artificially elevates the count of the current
6633 * processor.
6634 */
f8891e5e 6635 vm_events_fold_cpu(cpu);
9f8f2172
CL
6636
6637 /*
6638 * Zero the differential counters of the dead processor
6639 * so that the vm statistics are consistent.
6640 *
6641 * This is only okay since the processor is dead and cannot
6642 * race with what we are doing.
6643 */
2bb921e5 6644 cpu_vm_stats_fold(cpu);
1da177e4
LT
6645 }
6646 return NOTIFY_OK;
6647}
1da177e4
LT
6648
6649void __init page_alloc_init(void)
6650{
6651 hotcpu_notifier(page_alloc_cpu_notify, 0);
6652}
6653
cb45b0e9 6654/*
34b10060 6655 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6656 * or min_free_kbytes changes.
6657 */
6658static void calculate_totalreserve_pages(void)
6659{
6660 struct pglist_data *pgdat;
6661 unsigned long reserve_pages = 0;
2f6726e5 6662 enum zone_type i, j;
cb45b0e9
HA
6663
6664 for_each_online_pgdat(pgdat) {
281e3726
MG
6665
6666 pgdat->totalreserve_pages = 0;
6667
cb45b0e9
HA
6668 for (i = 0; i < MAX_NR_ZONES; i++) {
6669 struct zone *zone = pgdat->node_zones + i;
3484b2de 6670 long max = 0;
cb45b0e9
HA
6671
6672 /* Find valid and maximum lowmem_reserve in the zone */
6673 for (j = i; j < MAX_NR_ZONES; j++) {
6674 if (zone->lowmem_reserve[j] > max)
6675 max = zone->lowmem_reserve[j];
6676 }
6677
41858966
MG
6678 /* we treat the high watermark as reserved pages. */
6679 max += high_wmark_pages(zone);
cb45b0e9 6680
b40da049
JL
6681 if (max > zone->managed_pages)
6682 max = zone->managed_pages;
a8d01437 6683
281e3726 6684 pgdat->totalreserve_pages += max;
a8d01437 6685
cb45b0e9
HA
6686 reserve_pages += max;
6687 }
6688 }
6689 totalreserve_pages = reserve_pages;
6690}
6691
1da177e4
LT
6692/*
6693 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6694 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6695 * has a correct pages reserved value, so an adequate number of
6696 * pages are left in the zone after a successful __alloc_pages().
6697 */
6698static void setup_per_zone_lowmem_reserve(void)
6699{
6700 struct pglist_data *pgdat;
2f6726e5 6701 enum zone_type j, idx;
1da177e4 6702
ec936fc5 6703 for_each_online_pgdat(pgdat) {
1da177e4
LT
6704 for (j = 0; j < MAX_NR_ZONES; j++) {
6705 struct zone *zone = pgdat->node_zones + j;
b40da049 6706 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6707
6708 zone->lowmem_reserve[j] = 0;
6709
2f6726e5
CL
6710 idx = j;
6711 while (idx) {
1da177e4
LT
6712 struct zone *lower_zone;
6713
2f6726e5
CL
6714 idx--;
6715
1da177e4
LT
6716 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6717 sysctl_lowmem_reserve_ratio[idx] = 1;
6718
6719 lower_zone = pgdat->node_zones + idx;
b40da049 6720 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6721 sysctl_lowmem_reserve_ratio[idx];
b40da049 6722 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6723 }
6724 }
6725 }
cb45b0e9
HA
6726
6727 /* update totalreserve_pages */
6728 calculate_totalreserve_pages();
1da177e4
LT
6729}
6730
cfd3da1e 6731static void __setup_per_zone_wmarks(void)
1da177e4
LT
6732{
6733 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6734 unsigned long lowmem_pages = 0;
6735 struct zone *zone;
6736 unsigned long flags;
6737
6738 /* Calculate total number of !ZONE_HIGHMEM pages */
6739 for_each_zone(zone) {
6740 if (!is_highmem(zone))
b40da049 6741 lowmem_pages += zone->managed_pages;
1da177e4
LT
6742 }
6743
6744 for_each_zone(zone) {
ac924c60
AM
6745 u64 tmp;
6746
1125b4e3 6747 spin_lock_irqsave(&zone->lock, flags);
b40da049 6748 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6749 do_div(tmp, lowmem_pages);
1da177e4
LT
6750 if (is_highmem(zone)) {
6751 /*
669ed175
NP
6752 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6753 * need highmem pages, so cap pages_min to a small
6754 * value here.
6755 *
41858966 6756 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6757 * deltas control asynch page reclaim, and so should
669ed175 6758 * not be capped for highmem.
1da177e4 6759 */
90ae8d67 6760 unsigned long min_pages;
1da177e4 6761
b40da049 6762 min_pages = zone->managed_pages / 1024;
90ae8d67 6763 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6764 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6765 } else {
669ed175
NP
6766 /*
6767 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6768 * proportionate to the zone's size.
6769 */
41858966 6770 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6771 }
6772
795ae7a0
JW
6773 /*
6774 * Set the kswapd watermarks distance according to the
6775 * scale factor in proportion to available memory, but
6776 * ensure a minimum size on small systems.
6777 */
6778 tmp = max_t(u64, tmp >> 2,
6779 mult_frac(zone->managed_pages,
6780 watermark_scale_factor, 10000));
6781
6782 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6783 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6784
1125b4e3 6785 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6786 }
cb45b0e9
HA
6787
6788 /* update totalreserve_pages */
6789 calculate_totalreserve_pages();
1da177e4
LT
6790}
6791
cfd3da1e
MG
6792/**
6793 * setup_per_zone_wmarks - called when min_free_kbytes changes
6794 * or when memory is hot-{added|removed}
6795 *
6796 * Ensures that the watermark[min,low,high] values for each zone are set
6797 * correctly with respect to min_free_kbytes.
6798 */
6799void setup_per_zone_wmarks(void)
6800{
6801 mutex_lock(&zonelists_mutex);
6802 __setup_per_zone_wmarks();
6803 mutex_unlock(&zonelists_mutex);
6804}
6805
1da177e4
LT
6806/*
6807 * Initialise min_free_kbytes.
6808 *
6809 * For small machines we want it small (128k min). For large machines
6810 * we want it large (64MB max). But it is not linear, because network
6811 * bandwidth does not increase linearly with machine size. We use
6812 *
b8af2941 6813 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6814 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6815 *
6816 * which yields
6817 *
6818 * 16MB: 512k
6819 * 32MB: 724k
6820 * 64MB: 1024k
6821 * 128MB: 1448k
6822 * 256MB: 2048k
6823 * 512MB: 2896k
6824 * 1024MB: 4096k
6825 * 2048MB: 5792k
6826 * 4096MB: 8192k
6827 * 8192MB: 11584k
6828 * 16384MB: 16384k
6829 */
1b79acc9 6830int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6831{
6832 unsigned long lowmem_kbytes;
5f12733e 6833 int new_min_free_kbytes;
1da177e4
LT
6834
6835 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6836 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6837
6838 if (new_min_free_kbytes > user_min_free_kbytes) {
6839 min_free_kbytes = new_min_free_kbytes;
6840 if (min_free_kbytes < 128)
6841 min_free_kbytes = 128;
6842 if (min_free_kbytes > 65536)
6843 min_free_kbytes = 65536;
6844 } else {
6845 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6846 new_min_free_kbytes, user_min_free_kbytes);
6847 }
bc75d33f 6848 setup_per_zone_wmarks();
a6cccdc3 6849 refresh_zone_stat_thresholds();
1da177e4 6850 setup_per_zone_lowmem_reserve();
6423aa81
JK
6851
6852#ifdef CONFIG_NUMA
6853 setup_min_unmapped_ratio();
6854 setup_min_slab_ratio();
6855#endif
6856
1da177e4
LT
6857 return 0;
6858}
bc22af74 6859core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6860
6861/*
b8af2941 6862 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6863 * that we can call two helper functions whenever min_free_kbytes
6864 * changes.
6865 */
cccad5b9 6866int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6867 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6868{
da8c757b
HP
6869 int rc;
6870
6871 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6872 if (rc)
6873 return rc;
6874
5f12733e
MH
6875 if (write) {
6876 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6877 setup_per_zone_wmarks();
5f12733e 6878 }
1da177e4
LT
6879 return 0;
6880}
6881
795ae7a0
JW
6882int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6883 void __user *buffer, size_t *length, loff_t *ppos)
6884{
6885 int rc;
6886
6887 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6888 if (rc)
6889 return rc;
6890
6891 if (write)
6892 setup_per_zone_wmarks();
6893
6894 return 0;
6895}
6896
9614634f 6897#ifdef CONFIG_NUMA
6423aa81 6898static void setup_min_unmapped_ratio(void)
9614634f 6899{
6423aa81 6900 pg_data_t *pgdat;
9614634f 6901 struct zone *zone;
9614634f 6902
a5f5f91d 6903 for_each_online_pgdat(pgdat)
81cbcbc2 6904 pgdat->min_unmapped_pages = 0;
a5f5f91d 6905
9614634f 6906 for_each_zone(zone)
a5f5f91d 6907 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6908 sysctl_min_unmapped_ratio) / 100;
9614634f 6909}
0ff38490 6910
6423aa81
JK
6911
6912int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6913 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6914{
0ff38490
CL
6915 int rc;
6916
8d65af78 6917 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6918 if (rc)
6919 return rc;
6920
6423aa81
JK
6921 setup_min_unmapped_ratio();
6922
6923 return 0;
6924}
6925
6926static void setup_min_slab_ratio(void)
6927{
6928 pg_data_t *pgdat;
6929 struct zone *zone;
6930
a5f5f91d
MG
6931 for_each_online_pgdat(pgdat)
6932 pgdat->min_slab_pages = 0;
6933
0ff38490 6934 for_each_zone(zone)
a5f5f91d 6935 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6936 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6937}
6938
6939int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6940 void __user *buffer, size_t *length, loff_t *ppos)
6941{
6942 int rc;
6943
6944 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6945 if (rc)
6946 return rc;
6947
6948 setup_min_slab_ratio();
6949
0ff38490
CL
6950 return 0;
6951}
9614634f
CL
6952#endif
6953
1da177e4
LT
6954/*
6955 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6956 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6957 * whenever sysctl_lowmem_reserve_ratio changes.
6958 *
6959 * The reserve ratio obviously has absolutely no relation with the
41858966 6960 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6961 * if in function of the boot time zone sizes.
6962 */
cccad5b9 6963int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6964 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6965{
8d65af78 6966 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6967 setup_per_zone_lowmem_reserve();
6968 return 0;
6969}
6970
8ad4b1fb
RS
6971/*
6972 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6973 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6974 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6975 */
cccad5b9 6976int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6977 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6978{
6979 struct zone *zone;
7cd2b0a3 6980 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6981 int ret;
6982
7cd2b0a3
DR
6983 mutex_lock(&pcp_batch_high_lock);
6984 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6985
8d65af78 6986 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6987 if (!write || ret < 0)
6988 goto out;
6989
6990 /* Sanity checking to avoid pcp imbalance */
6991 if (percpu_pagelist_fraction &&
6992 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6993 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6994 ret = -EINVAL;
6995 goto out;
6996 }
6997
6998 /* No change? */
6999 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7000 goto out;
c8e251fa 7001
364df0eb 7002 for_each_populated_zone(zone) {
7cd2b0a3
DR
7003 unsigned int cpu;
7004
22a7f12b 7005 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7006 pageset_set_high_and_batch(zone,
7007 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7008 }
7cd2b0a3 7009out:
c8e251fa 7010 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7011 return ret;
8ad4b1fb
RS
7012}
7013
a9919c79 7014#ifdef CONFIG_NUMA
f034b5d4 7015int hashdist = HASHDIST_DEFAULT;
1da177e4 7016
1da177e4
LT
7017static int __init set_hashdist(char *str)
7018{
7019 if (!str)
7020 return 0;
7021 hashdist = simple_strtoul(str, &str, 0);
7022 return 1;
7023}
7024__setup("hashdist=", set_hashdist);
7025#endif
7026
433c240a
SD
7027#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7028/*
7029 * Returns the number of pages that arch has reserved but
7030 * is not known to alloc_large_system_hash().
7031 */
7032static unsigned long __init arch_reserved_kernel_pages(void)
7033{
7034 return 0;
7035}
7036#endif
7037
1da177e4
LT
7038/*
7039 * allocate a large system hash table from bootmem
7040 * - it is assumed that the hash table must contain an exact power-of-2
7041 * quantity of entries
7042 * - limit is the number of hash buckets, not the total allocation size
7043 */
7044void *__init alloc_large_system_hash(const char *tablename,
7045 unsigned long bucketsize,
7046 unsigned long numentries,
7047 int scale,
7048 int flags,
7049 unsigned int *_hash_shift,
7050 unsigned int *_hash_mask,
31fe62b9
TB
7051 unsigned long low_limit,
7052 unsigned long high_limit)
1da177e4 7053{
31fe62b9 7054 unsigned long long max = high_limit;
1da177e4
LT
7055 unsigned long log2qty, size;
7056 void *table = NULL;
7057
7058 /* allow the kernel cmdline to have a say */
7059 if (!numentries) {
7060 /* round applicable memory size up to nearest megabyte */
04903664 7061 numentries = nr_kernel_pages;
433c240a 7062 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7063
7064 /* It isn't necessary when PAGE_SIZE >= 1MB */
7065 if (PAGE_SHIFT < 20)
7066 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7067
7068 /* limit to 1 bucket per 2^scale bytes of low memory */
7069 if (scale > PAGE_SHIFT)
7070 numentries >>= (scale - PAGE_SHIFT);
7071 else
7072 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7073
7074 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7075 if (unlikely(flags & HASH_SMALL)) {
7076 /* Makes no sense without HASH_EARLY */
7077 WARN_ON(!(flags & HASH_EARLY));
7078 if (!(numentries >> *_hash_shift)) {
7079 numentries = 1UL << *_hash_shift;
7080 BUG_ON(!numentries);
7081 }
7082 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7083 numentries = PAGE_SIZE / bucketsize;
1da177e4 7084 }
6e692ed3 7085 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7086
7087 /* limit allocation size to 1/16 total memory by default */
7088 if (max == 0) {
7089 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7090 do_div(max, bucketsize);
7091 }
074b8517 7092 max = min(max, 0x80000000ULL);
1da177e4 7093
31fe62b9
TB
7094 if (numentries < low_limit)
7095 numentries = low_limit;
1da177e4
LT
7096 if (numentries > max)
7097 numentries = max;
7098
f0d1b0b3 7099 log2qty = ilog2(numentries);
1da177e4
LT
7100
7101 do {
7102 size = bucketsize << log2qty;
7103 if (flags & HASH_EARLY)
6782832e 7104 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7105 else if (hashdist)
7106 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7107 else {
1037b83b
ED
7108 /*
7109 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7110 * some pages at the end of hash table which
7111 * alloc_pages_exact() automatically does
1037b83b 7112 */
264ef8a9 7113 if (get_order(size) < MAX_ORDER) {
a1dd268c 7114 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7115 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7116 }
1da177e4
LT
7117 }
7118 } while (!table && size > PAGE_SIZE && --log2qty);
7119
7120 if (!table)
7121 panic("Failed to allocate %s hash table\n", tablename);
7122
1170532b
JP
7123 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7124 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7125
7126 if (_hash_shift)
7127 *_hash_shift = log2qty;
7128 if (_hash_mask)
7129 *_hash_mask = (1 << log2qty) - 1;
7130
7131 return table;
7132}
a117e66e 7133
a5d76b54 7134/*
80934513
MK
7135 * This function checks whether pageblock includes unmovable pages or not.
7136 * If @count is not zero, it is okay to include less @count unmovable pages
7137 *
b8af2941 7138 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7139 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7140 * expect this function should be exact.
a5d76b54 7141 */
b023f468
WC
7142bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7143 bool skip_hwpoisoned_pages)
49ac8255
KH
7144{
7145 unsigned long pfn, iter, found;
47118af0
MN
7146 int mt;
7147
49ac8255
KH
7148 /*
7149 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7150 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7151 */
7152 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7153 return false;
47118af0
MN
7154 mt = get_pageblock_migratetype(page);
7155 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7156 return false;
49ac8255
KH
7157
7158 pfn = page_to_pfn(page);
7159 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7160 unsigned long check = pfn + iter;
7161
29723fcc 7162 if (!pfn_valid_within(check))
49ac8255 7163 continue;
29723fcc 7164
49ac8255 7165 page = pfn_to_page(check);
c8721bbb
NH
7166
7167 /*
7168 * Hugepages are not in LRU lists, but they're movable.
7169 * We need not scan over tail pages bacause we don't
7170 * handle each tail page individually in migration.
7171 */
7172 if (PageHuge(page)) {
7173 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7174 continue;
7175 }
7176
97d255c8
MK
7177 /*
7178 * We can't use page_count without pin a page
7179 * because another CPU can free compound page.
7180 * This check already skips compound tails of THP
0139aa7b 7181 * because their page->_refcount is zero at all time.
97d255c8 7182 */
fe896d18 7183 if (!page_ref_count(page)) {
49ac8255
KH
7184 if (PageBuddy(page))
7185 iter += (1 << page_order(page)) - 1;
7186 continue;
7187 }
97d255c8 7188
b023f468
WC
7189 /*
7190 * The HWPoisoned page may be not in buddy system, and
7191 * page_count() is not 0.
7192 */
7193 if (skip_hwpoisoned_pages && PageHWPoison(page))
7194 continue;
7195
49ac8255
KH
7196 if (!PageLRU(page))
7197 found++;
7198 /*
6b4f7799
JW
7199 * If there are RECLAIMABLE pages, we need to check
7200 * it. But now, memory offline itself doesn't call
7201 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7202 */
7203 /*
7204 * If the page is not RAM, page_count()should be 0.
7205 * we don't need more check. This is an _used_ not-movable page.
7206 *
7207 * The problematic thing here is PG_reserved pages. PG_reserved
7208 * is set to both of a memory hole page and a _used_ kernel
7209 * page at boot.
7210 */
7211 if (found > count)
80934513 7212 return true;
49ac8255 7213 }
80934513 7214 return false;
49ac8255
KH
7215}
7216
7217bool is_pageblock_removable_nolock(struct page *page)
7218{
656a0706
MH
7219 struct zone *zone;
7220 unsigned long pfn;
687875fb
MH
7221
7222 /*
7223 * We have to be careful here because we are iterating over memory
7224 * sections which are not zone aware so we might end up outside of
7225 * the zone but still within the section.
656a0706
MH
7226 * We have to take care about the node as well. If the node is offline
7227 * its NODE_DATA will be NULL - see page_zone.
687875fb 7228 */
656a0706
MH
7229 if (!node_online(page_to_nid(page)))
7230 return false;
7231
7232 zone = page_zone(page);
7233 pfn = page_to_pfn(page);
108bcc96 7234 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7235 return false;
7236
b023f468 7237 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7238}
0c0e6195 7239
080fe206 7240#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7241
7242static unsigned long pfn_max_align_down(unsigned long pfn)
7243{
7244 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7245 pageblock_nr_pages) - 1);
7246}
7247
7248static unsigned long pfn_max_align_up(unsigned long pfn)
7249{
7250 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7251 pageblock_nr_pages));
7252}
7253
041d3a8c 7254/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7255static int __alloc_contig_migrate_range(struct compact_control *cc,
7256 unsigned long start, unsigned long end)
041d3a8c
MN
7257{
7258 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7259 unsigned long nr_reclaimed;
041d3a8c
MN
7260 unsigned long pfn = start;
7261 unsigned int tries = 0;
7262 int ret = 0;
7263
be49a6e1 7264 migrate_prep();
041d3a8c 7265
bb13ffeb 7266 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7267 if (fatal_signal_pending(current)) {
7268 ret = -EINTR;
7269 break;
7270 }
7271
bb13ffeb
MG
7272 if (list_empty(&cc->migratepages)) {
7273 cc->nr_migratepages = 0;
edc2ca61 7274 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7275 if (!pfn) {
7276 ret = -EINTR;
7277 break;
7278 }
7279 tries = 0;
7280 } else if (++tries == 5) {
7281 ret = ret < 0 ? ret : -EBUSY;
7282 break;
7283 }
7284
beb51eaa
MK
7285 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7286 &cc->migratepages);
7287 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7288
9c620e2b 7289 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7290 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7291 }
2a6f5124
SP
7292 if (ret < 0) {
7293 putback_movable_pages(&cc->migratepages);
7294 return ret;
7295 }
7296 return 0;
041d3a8c
MN
7297}
7298
7299/**
7300 * alloc_contig_range() -- tries to allocate given range of pages
7301 * @start: start PFN to allocate
7302 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7303 * @migratetype: migratetype of the underlaying pageblocks (either
7304 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7305 * in range must have the same migratetype and it must
7306 * be either of the two.
041d3a8c
MN
7307 *
7308 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7309 * aligned, however it's the caller's responsibility to guarantee that
7310 * we are the only thread that changes migrate type of pageblocks the
7311 * pages fall in.
7312 *
7313 * The PFN range must belong to a single zone.
7314 *
7315 * Returns zero on success or negative error code. On success all
7316 * pages which PFN is in [start, end) are allocated for the caller and
7317 * need to be freed with free_contig_range().
7318 */
0815f3d8
MN
7319int alloc_contig_range(unsigned long start, unsigned long end,
7320 unsigned migratetype)
041d3a8c 7321{
041d3a8c 7322 unsigned long outer_start, outer_end;
d00181b9
KS
7323 unsigned int order;
7324 int ret = 0;
041d3a8c 7325
bb13ffeb
MG
7326 struct compact_control cc = {
7327 .nr_migratepages = 0,
7328 .order = -1,
7329 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7330 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7331 .ignore_skip_hint = true,
7332 };
7333 INIT_LIST_HEAD(&cc.migratepages);
7334
041d3a8c
MN
7335 /*
7336 * What we do here is we mark all pageblocks in range as
7337 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7338 * have different sizes, and due to the way page allocator
7339 * work, we align the range to biggest of the two pages so
7340 * that page allocator won't try to merge buddies from
7341 * different pageblocks and change MIGRATE_ISOLATE to some
7342 * other migration type.
7343 *
7344 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7345 * migrate the pages from an unaligned range (ie. pages that
7346 * we are interested in). This will put all the pages in
7347 * range back to page allocator as MIGRATE_ISOLATE.
7348 *
7349 * When this is done, we take the pages in range from page
7350 * allocator removing them from the buddy system. This way
7351 * page allocator will never consider using them.
7352 *
7353 * This lets us mark the pageblocks back as
7354 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7355 * aligned range but not in the unaligned, original range are
7356 * put back to page allocator so that buddy can use them.
7357 */
7358
7359 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7360 pfn_max_align_up(end), migratetype,
7361 false);
041d3a8c 7362 if (ret)
86a595f9 7363 return ret;
041d3a8c 7364
8ef5849f
JK
7365 /*
7366 * In case of -EBUSY, we'd like to know which page causes problem.
7367 * So, just fall through. We will check it in test_pages_isolated().
7368 */
bb13ffeb 7369 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7370 if (ret && ret != -EBUSY)
041d3a8c
MN
7371 goto done;
7372
7373 /*
7374 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7375 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7376 * more, all pages in [start, end) are free in page allocator.
7377 * What we are going to do is to allocate all pages from
7378 * [start, end) (that is remove them from page allocator).
7379 *
7380 * The only problem is that pages at the beginning and at the
7381 * end of interesting range may be not aligned with pages that
7382 * page allocator holds, ie. they can be part of higher order
7383 * pages. Because of this, we reserve the bigger range and
7384 * once this is done free the pages we are not interested in.
7385 *
7386 * We don't have to hold zone->lock here because the pages are
7387 * isolated thus they won't get removed from buddy.
7388 */
7389
7390 lru_add_drain_all();
510f5507 7391 drain_all_pages(cc.zone);
041d3a8c
MN
7392
7393 order = 0;
7394 outer_start = start;
7395 while (!PageBuddy(pfn_to_page(outer_start))) {
7396 if (++order >= MAX_ORDER) {
8ef5849f
JK
7397 outer_start = start;
7398 break;
041d3a8c
MN
7399 }
7400 outer_start &= ~0UL << order;
7401 }
7402
8ef5849f
JK
7403 if (outer_start != start) {
7404 order = page_order(pfn_to_page(outer_start));
7405
7406 /*
7407 * outer_start page could be small order buddy page and
7408 * it doesn't include start page. Adjust outer_start
7409 * in this case to report failed page properly
7410 * on tracepoint in test_pages_isolated()
7411 */
7412 if (outer_start + (1UL << order) <= start)
7413 outer_start = start;
7414 }
7415
041d3a8c 7416 /* Make sure the range is really isolated. */
b023f468 7417 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7418 pr_info("%s: [%lx, %lx) PFNs busy\n",
7419 __func__, outer_start, end);
041d3a8c
MN
7420 ret = -EBUSY;
7421 goto done;
7422 }
7423
49f223a9 7424 /* Grab isolated pages from freelists. */
bb13ffeb 7425 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7426 if (!outer_end) {
7427 ret = -EBUSY;
7428 goto done;
7429 }
7430
7431 /* Free head and tail (if any) */
7432 if (start != outer_start)
7433 free_contig_range(outer_start, start - outer_start);
7434 if (end != outer_end)
7435 free_contig_range(end, outer_end - end);
7436
7437done:
7438 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7439 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7440 return ret;
7441}
7442
7443void free_contig_range(unsigned long pfn, unsigned nr_pages)
7444{
bcc2b02f
MS
7445 unsigned int count = 0;
7446
7447 for (; nr_pages--; pfn++) {
7448 struct page *page = pfn_to_page(pfn);
7449
7450 count += page_count(page) != 1;
7451 __free_page(page);
7452 }
7453 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7454}
7455#endif
7456
4ed7e022 7457#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7458/*
7459 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7460 * page high values need to be recalulated.
7461 */
4ed7e022
JL
7462void __meminit zone_pcp_update(struct zone *zone)
7463{
0a647f38 7464 unsigned cpu;
c8e251fa 7465 mutex_lock(&pcp_batch_high_lock);
0a647f38 7466 for_each_possible_cpu(cpu)
169f6c19
CS
7467 pageset_set_high_and_batch(zone,
7468 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7469 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7470}
7471#endif
7472
340175b7
JL
7473void zone_pcp_reset(struct zone *zone)
7474{
7475 unsigned long flags;
5a883813
MK
7476 int cpu;
7477 struct per_cpu_pageset *pset;
340175b7
JL
7478
7479 /* avoid races with drain_pages() */
7480 local_irq_save(flags);
7481 if (zone->pageset != &boot_pageset) {
5a883813
MK
7482 for_each_online_cpu(cpu) {
7483 pset = per_cpu_ptr(zone->pageset, cpu);
7484 drain_zonestat(zone, pset);
7485 }
340175b7
JL
7486 free_percpu(zone->pageset);
7487 zone->pageset = &boot_pageset;
7488 }
7489 local_irq_restore(flags);
7490}
7491
6dcd73d7 7492#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7493/*
b9eb6319
JK
7494 * All pages in the range must be in a single zone and isolated
7495 * before calling this.
0c0e6195
KH
7496 */
7497void
7498__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7499{
7500 struct page *page;
7501 struct zone *zone;
7aeb09f9 7502 unsigned int order, i;
0c0e6195
KH
7503 unsigned long pfn;
7504 unsigned long flags;
7505 /* find the first valid pfn */
7506 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7507 if (pfn_valid(pfn))
7508 break;
7509 if (pfn == end_pfn)
7510 return;
7511 zone = page_zone(pfn_to_page(pfn));
7512 spin_lock_irqsave(&zone->lock, flags);
7513 pfn = start_pfn;
7514 while (pfn < end_pfn) {
7515 if (!pfn_valid(pfn)) {
7516 pfn++;
7517 continue;
7518 }
7519 page = pfn_to_page(pfn);
b023f468
WC
7520 /*
7521 * The HWPoisoned page may be not in buddy system, and
7522 * page_count() is not 0.
7523 */
7524 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7525 pfn++;
7526 SetPageReserved(page);
7527 continue;
7528 }
7529
0c0e6195
KH
7530 BUG_ON(page_count(page));
7531 BUG_ON(!PageBuddy(page));
7532 order = page_order(page);
7533#ifdef CONFIG_DEBUG_VM
1170532b
JP
7534 pr_info("remove from free list %lx %d %lx\n",
7535 pfn, 1 << order, end_pfn);
0c0e6195
KH
7536#endif
7537 list_del(&page->lru);
7538 rmv_page_order(page);
7539 zone->free_area[order].nr_free--;
0c0e6195
KH
7540 for (i = 0; i < (1 << order); i++)
7541 SetPageReserved((page+i));
7542 pfn += (1 << order);
7543 }
7544 spin_unlock_irqrestore(&zone->lock, flags);
7545}
7546#endif
8d22ba1b 7547
8d22ba1b
WF
7548bool is_free_buddy_page(struct page *page)
7549{
7550 struct zone *zone = page_zone(page);
7551 unsigned long pfn = page_to_pfn(page);
7552 unsigned long flags;
7aeb09f9 7553 unsigned int order;
8d22ba1b
WF
7554
7555 spin_lock_irqsave(&zone->lock, flags);
7556 for (order = 0; order < MAX_ORDER; order++) {
7557 struct page *page_head = page - (pfn & ((1 << order) - 1));
7558
7559 if (PageBuddy(page_head) && page_order(page_head) >= order)
7560 break;
7561 }
7562 spin_unlock_irqrestore(&zone->lock, flags);
7563
7564 return order < MAX_ORDER;
7565}
This page took 1.840065 seconds and 5 git commands to generate.