Restartable sequences: tests: introduce simple rseq start/finish
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 /*
95 * Array of node states.
96 */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 [N_CPU] = { { [0] = 1UL } },
109 #endif /* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 /*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 return page->index;
134 }
135
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 page->index = migratetype;
139 }
140
141 #ifdef CONFIG_PM_SLEEP
142 /*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
150
151 static gfp_t saved_gfp_mask;
152
153 void pm_restore_gfp_mask(void)
154 {
155 WARN_ON(!mutex_is_locked(&pm_mutex));
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
160 }
161
162 void pm_restrict_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169
170 bool pm_suspended_storage(void)
171 {
172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 return false;
174 return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181
182 static void __free_pages_ok(struct page *page, unsigned int order);
183
184 /*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
194 */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 32,
204 #endif
205 32,
206 };
207
208 EXPORT_SYMBOL(totalram_pages);
209
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 "DMA32",
216 #endif
217 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 "HighMem",
220 #endif
221 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 "Device",
224 #endif
225 };
226
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232 #ifdef CONFIG_CMA
233 "CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237 #endif
238 };
239
240 compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248 #endif
249 };
250
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 return true;
294
295 return false;
296 }
297
298 /*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 unsigned long max_initialise;
307
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
317
318 (*nr_initialised)++;
319 if ((*nr_initialised > max_initialise) &&
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 return false;
335 }
336
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340 {
341 return true;
342 }
343 #endif
344
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 /**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380 {
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398 {
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406
407 /**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444 }
445
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
450 migratetype = MIGRATE_UNMOVABLE;
451
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454 }
455
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
462 unsigned long sp, start_pfn;
463
464 do {
465 seq = zone_span_seqbegin(zone);
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
468 if (!zone_spans_pfn(zone, pfn))
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
472 if (ret)
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
476
477 return ret;
478 }
479
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 if (!pfn_valid_within(page_to_pfn(page)))
483 return 0;
484 if (zone != page_zone(page))
485 return 0;
486
487 return 1;
488 }
489 /*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 if (page_outside_zone_boundaries(zone, page))
495 return 1;
496 if (!page_is_consistent(zone, page))
497 return 1;
498
499 return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 return 0;
505 }
506 #endif
507
508 static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
510 {
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
525 pr_alert(
526 "BUG: Bad page state: %lu messages suppressed\n",
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
536 current->comm, page_to_pfn(page));
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
542 dump_page_owner(page);
543
544 print_modules();
545 dump_stack();
546 out:
547 /* Leave bad fields for debug, except PageBuddy could make trouble */
548 page_mapcount_reset(page); /* remove PageBuddy */
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556 *
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559 *
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
562 *
563 * The first tail page's ->compound_order holds the order of allocation.
564 * This usage means that zero-order pages may not be compound.
565 */
566
567 void free_compound_page(struct page *page)
568 {
569 __free_pages_ok(page, compound_order(page));
570 }
571
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 int i;
575 int nr_pages = 1 << order;
576
577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
582 set_page_count(p, 0);
583 p->mapping = TAIL_MAPPING;
584 set_compound_head(p, page);
585 }
586 atomic_set(compound_mapcount_ptr(page), -1);
587 }
588
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 if (!buf)
599 return -EINVAL;
600 return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603
604 static bool need_debug_guardpage(void)
605 {
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
610 return true;
611 }
612
613 static void init_debug_guardpage(void)
614 {
615 if (!debug_pagealloc_enabled())
616 return;
617
618 _debug_guardpage_enabled = true;
619 }
620
621 struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624 };
625
626 static int __init debug_guardpage_minorder_setup(char *buf)
627 {
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
631 pr_err("Bad debug_guardpage_minorder value\n");
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
636 return 0;
637 }
638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
640 static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
642 {
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
649 if (unlikely(!page_ext))
650 return;
651
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
658 }
659
660 static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
662 {
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
670 return;
671
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
677 }
678 #else
679 struct page_ext_operations debug_guardpage_ops = { NULL, };
680 static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
684 #endif
685
686 static inline void set_page_order(struct page *page, unsigned int order)
687 {
688 set_page_private(page, order);
689 __SetPageBuddy(page);
690 }
691
692 static inline void rmv_page_order(struct page *page)
693 {
694 __ClearPageBuddy(page);
695 set_page_private(page, 0);
696 }
697
698 /*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
701 * (a) the buddy is not in a hole &&
702 * (b) the buddy is in the buddy system &&
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
705 *
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
710 *
711 * For recording page's order, we use page_private(page).
712 */
713 static inline int page_is_buddy(struct page *page, struct page *buddy,
714 unsigned int order)
715 {
716 if (!pfn_valid_within(page_to_pfn(buddy)))
717 return 0;
718
719 if (page_is_guard(buddy) && page_order(buddy) == order) {
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
725 return 1;
726 }
727
728 if (PageBuddy(buddy) && page_order(buddy) == order) {
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
739 return 1;
740 }
741 return 0;
742 }
743
744 /*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
760 * So when we are allocating or freeing one, we can derive the state of the
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
763 * If a block is freed, and its buddy is also free, then this
764 * triggers coalescing into a block of larger size.
765 *
766 * -- nyc
767 */
768
769 static inline void __free_one_page(struct page *page,
770 unsigned long pfn,
771 struct zone *zone, unsigned int order,
772 int migratetype)
773 {
774 unsigned long page_idx;
775 unsigned long combined_idx;
776 unsigned long uninitialized_var(buddy_idx);
777 struct page *buddy;
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
781
782 VM_BUG_ON(!zone_is_initialized(zone));
783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784
785 VM_BUG_ON(migratetype == -1);
786 if (likely(!is_migrate_isolate(migratetype)))
787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
788
789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
790
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
793
794 continue_merging:
795 while (order < max_order - 1) {
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
798 if (!page_is_buddy(page, buddy, order))
799 goto done_merging;
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
805 clear_page_guard(zone, buddy, order, migratetype);
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
811 combined_idx = buddy_idx & page_idx;
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841 done_merging:
842 set_page_order(page, order);
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
853 struct page *higher_page, *higher_buddy;
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
857 higher_buddy = higher_page + (buddy_idx - combined_idx);
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866 out:
867 zone->free_area[order].nr_free++;
868 }
869
870 /*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875 static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877 {
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883 #ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885 #endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890 }
891
892 static void free_pages_check_bad(struct page *page)
893 {
894 const char *bad_reason;
895 unsigned long bad_flags;
896
897 bad_reason = NULL;
898 bad_flags = 0;
899
900 if (unlikely(atomic_read(&page->_mapcount) != -1))
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
904 if (unlikely(page_ref_count(page) != 0))
905 bad_reason = "nonzero _refcount";
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
910 #ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913 #endif
914 bad_page(page, bad_reason, bad_flags);
915 }
916
917 static inline int free_pages_check(struct page *page)
918 {
919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 return 0;
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
924 return 1;
925 }
926
927 static int free_tail_pages_check(struct page *head_page, struct page *page)
928 {
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971 out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975 }
976
977 static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
979 {
980 int bad = 0;
981
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
996
997 if (compound)
998 ClearPageDoubleMap(page);
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
1009 if (PageMappingFlags(page))
1010 page->mapping = NULL;
1011 if (memcg_kmem_enabled() && PageKmemcg(page))
1012 memcg_kmem_uncharge(page, order);
1013 if (check_free)
1014 bad += free_pages_check(page);
1015 if (bad)
1016 return false;
1017
1018 page_cpupid_reset_last(page);
1019 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 reset_page_owner(page, order);
1021
1022 if (!PageHighMem(page)) {
1023 debug_check_no_locks_freed(page_address(page),
1024 PAGE_SIZE << order);
1025 debug_check_no_obj_freed(page_address(page),
1026 PAGE_SIZE << order);
1027 }
1028 arch_free_page(page, order);
1029 kernel_poison_pages(page, 1 << order, 0);
1030 kernel_map_pages(page, 1 << order, 0);
1031 kasan_free_pages(page, order);
1032
1033 return true;
1034 }
1035
1036 #ifdef CONFIG_DEBUG_VM
1037 static inline bool free_pcp_prepare(struct page *page)
1038 {
1039 return free_pages_prepare(page, 0, true);
1040 }
1041
1042 static inline bool bulkfree_pcp_prepare(struct page *page)
1043 {
1044 return false;
1045 }
1046 #else
1047 static bool free_pcp_prepare(struct page *page)
1048 {
1049 return free_pages_prepare(page, 0, false);
1050 }
1051
1052 static bool bulkfree_pcp_prepare(struct page *page)
1053 {
1054 return free_pages_check(page);
1055 }
1056 #endif /* CONFIG_DEBUG_VM */
1057
1058 /*
1059 * Frees a number of pages from the PCP lists
1060 * Assumes all pages on list are in same zone, and of same order.
1061 * count is the number of pages to free.
1062 *
1063 * If the zone was previously in an "all pages pinned" state then look to
1064 * see if this freeing clears that state.
1065 *
1066 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1067 * pinned" detection logic.
1068 */
1069 static void free_pcppages_bulk(struct zone *zone, int count,
1070 struct per_cpu_pages *pcp)
1071 {
1072 int migratetype = 0;
1073 int batch_free = 0;
1074 unsigned long nr_scanned;
1075 bool isolated_pageblocks;
1076
1077 spin_lock(&zone->lock);
1078 isolated_pageblocks = has_isolate_pageblock(zone);
1079 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1080 if (nr_scanned)
1081 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1082
1083 while (count) {
1084 struct page *page;
1085 struct list_head *list;
1086
1087 /*
1088 * Remove pages from lists in a round-robin fashion. A
1089 * batch_free count is maintained that is incremented when an
1090 * empty list is encountered. This is so more pages are freed
1091 * off fuller lists instead of spinning excessively around empty
1092 * lists
1093 */
1094 do {
1095 batch_free++;
1096 if (++migratetype == MIGRATE_PCPTYPES)
1097 migratetype = 0;
1098 list = &pcp->lists[migratetype];
1099 } while (list_empty(list));
1100
1101 /* This is the only non-empty list. Free them all. */
1102 if (batch_free == MIGRATE_PCPTYPES)
1103 batch_free = count;
1104
1105 do {
1106 int mt; /* migratetype of the to-be-freed page */
1107
1108 page = list_last_entry(list, struct page, lru);
1109 /* must delete as __free_one_page list manipulates */
1110 list_del(&page->lru);
1111
1112 mt = get_pcppage_migratetype(page);
1113 /* MIGRATE_ISOLATE page should not go to pcplists */
1114 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1115 /* Pageblock could have been isolated meanwhile */
1116 if (unlikely(isolated_pageblocks))
1117 mt = get_pageblock_migratetype(page);
1118
1119 if (bulkfree_pcp_prepare(page))
1120 continue;
1121
1122 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1123 trace_mm_page_pcpu_drain(page, 0, mt);
1124 } while (--count && --batch_free && !list_empty(list));
1125 }
1126 spin_unlock(&zone->lock);
1127 }
1128
1129 static void free_one_page(struct zone *zone,
1130 struct page *page, unsigned long pfn,
1131 unsigned int order,
1132 int migratetype)
1133 {
1134 unsigned long nr_scanned;
1135 spin_lock(&zone->lock);
1136 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1137 if (nr_scanned)
1138 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1139
1140 if (unlikely(has_isolate_pageblock(zone) ||
1141 is_migrate_isolate(migratetype))) {
1142 migratetype = get_pfnblock_migratetype(page, pfn);
1143 }
1144 __free_one_page(page, pfn, zone, order, migratetype);
1145 spin_unlock(&zone->lock);
1146 }
1147
1148 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1149 unsigned long zone, int nid)
1150 {
1151 set_page_links(page, zone, nid, pfn);
1152 init_page_count(page);
1153 page_mapcount_reset(page);
1154 page_cpupid_reset_last(page);
1155
1156 INIT_LIST_HEAD(&page->lru);
1157 #ifdef WANT_PAGE_VIRTUAL
1158 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1159 if (!is_highmem_idx(zone))
1160 set_page_address(page, __va(pfn << PAGE_SHIFT));
1161 #endif
1162 }
1163
1164 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1165 int nid)
1166 {
1167 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1168 }
1169
1170 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1171 static void init_reserved_page(unsigned long pfn)
1172 {
1173 pg_data_t *pgdat;
1174 int nid, zid;
1175
1176 if (!early_page_uninitialised(pfn))
1177 return;
1178
1179 nid = early_pfn_to_nid(pfn);
1180 pgdat = NODE_DATA(nid);
1181
1182 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1183 struct zone *zone = &pgdat->node_zones[zid];
1184
1185 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1186 break;
1187 }
1188 __init_single_pfn(pfn, zid, nid);
1189 }
1190 #else
1191 static inline void init_reserved_page(unsigned long pfn)
1192 {
1193 }
1194 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1195
1196 /*
1197 * Initialised pages do not have PageReserved set. This function is
1198 * called for each range allocated by the bootmem allocator and
1199 * marks the pages PageReserved. The remaining valid pages are later
1200 * sent to the buddy page allocator.
1201 */
1202 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1203 {
1204 unsigned long start_pfn = PFN_DOWN(start);
1205 unsigned long end_pfn = PFN_UP(end);
1206
1207 for (; start_pfn < end_pfn; start_pfn++) {
1208 if (pfn_valid(start_pfn)) {
1209 struct page *page = pfn_to_page(start_pfn);
1210
1211 init_reserved_page(start_pfn);
1212
1213 /* Avoid false-positive PageTail() */
1214 INIT_LIST_HEAD(&page->lru);
1215
1216 SetPageReserved(page);
1217 }
1218 }
1219 }
1220
1221 static void __free_pages_ok(struct page *page, unsigned int order)
1222 {
1223 unsigned long flags;
1224 int migratetype;
1225 unsigned long pfn = page_to_pfn(page);
1226
1227 if (!free_pages_prepare(page, order, true))
1228 return;
1229
1230 migratetype = get_pfnblock_migratetype(page, pfn);
1231 local_irq_save(flags);
1232 __count_vm_events(PGFREE, 1 << order);
1233 free_one_page(page_zone(page), page, pfn, order, migratetype);
1234 local_irq_restore(flags);
1235 }
1236
1237 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1238 {
1239 unsigned int nr_pages = 1 << order;
1240 struct page *p = page;
1241 unsigned int loop;
1242
1243 prefetchw(p);
1244 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 prefetchw(p + 1);
1246 __ClearPageReserved(p);
1247 set_page_count(p, 0);
1248 }
1249 __ClearPageReserved(p);
1250 set_page_count(p, 0);
1251
1252 page_zone(page)->managed_pages += nr_pages;
1253 set_page_refcounted(page);
1254 __free_pages(page, order);
1255 }
1256
1257 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1258 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1259
1260 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261
1262 int __meminit early_pfn_to_nid(unsigned long pfn)
1263 {
1264 static DEFINE_SPINLOCK(early_pfn_lock);
1265 int nid;
1266
1267 spin_lock(&early_pfn_lock);
1268 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1269 if (nid < 0)
1270 nid = first_online_node;
1271 spin_unlock(&early_pfn_lock);
1272
1273 return nid;
1274 }
1275 #endif
1276
1277 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1278 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1279 struct mminit_pfnnid_cache *state)
1280 {
1281 int nid;
1282
1283 nid = __early_pfn_to_nid(pfn, state);
1284 if (nid >= 0 && nid != node)
1285 return false;
1286 return true;
1287 }
1288
1289 /* Only safe to use early in boot when initialisation is single-threaded */
1290 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1291 {
1292 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1293 }
1294
1295 #else
1296
1297 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298 {
1299 return true;
1300 }
1301 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1302 struct mminit_pfnnid_cache *state)
1303 {
1304 return true;
1305 }
1306 #endif
1307
1308
1309 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1310 unsigned int order)
1311 {
1312 if (early_page_uninitialised(pfn))
1313 return;
1314 return __free_pages_boot_core(page, order);
1315 }
1316
1317 /*
1318 * Check that the whole (or subset of) a pageblock given by the interval of
1319 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1320 * with the migration of free compaction scanner. The scanners then need to
1321 * use only pfn_valid_within() check for arches that allow holes within
1322 * pageblocks.
1323 *
1324 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1325 *
1326 * It's possible on some configurations to have a setup like node0 node1 node0
1327 * i.e. it's possible that all pages within a zones range of pages do not
1328 * belong to a single zone. We assume that a border between node0 and node1
1329 * can occur within a single pageblock, but not a node0 node1 node0
1330 * interleaving within a single pageblock. It is therefore sufficient to check
1331 * the first and last page of a pageblock and avoid checking each individual
1332 * page in a pageblock.
1333 */
1334 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1335 unsigned long end_pfn, struct zone *zone)
1336 {
1337 struct page *start_page;
1338 struct page *end_page;
1339
1340 /* end_pfn is one past the range we are checking */
1341 end_pfn--;
1342
1343 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1344 return NULL;
1345
1346 start_page = pfn_to_page(start_pfn);
1347
1348 if (page_zone(start_page) != zone)
1349 return NULL;
1350
1351 end_page = pfn_to_page(end_pfn);
1352
1353 /* This gives a shorter code than deriving page_zone(end_page) */
1354 if (page_zone_id(start_page) != page_zone_id(end_page))
1355 return NULL;
1356
1357 return start_page;
1358 }
1359
1360 void set_zone_contiguous(struct zone *zone)
1361 {
1362 unsigned long block_start_pfn = zone->zone_start_pfn;
1363 unsigned long block_end_pfn;
1364
1365 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1366 for (; block_start_pfn < zone_end_pfn(zone);
1367 block_start_pfn = block_end_pfn,
1368 block_end_pfn += pageblock_nr_pages) {
1369
1370 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1371
1372 if (!__pageblock_pfn_to_page(block_start_pfn,
1373 block_end_pfn, zone))
1374 return;
1375 }
1376
1377 /* We confirm that there is no hole */
1378 zone->contiguous = true;
1379 }
1380
1381 void clear_zone_contiguous(struct zone *zone)
1382 {
1383 zone->contiguous = false;
1384 }
1385
1386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1387 static void __init deferred_free_range(struct page *page,
1388 unsigned long pfn, int nr_pages)
1389 {
1390 int i;
1391
1392 if (!page)
1393 return;
1394
1395 /* Free a large naturally-aligned chunk if possible */
1396 if (nr_pages == MAX_ORDER_NR_PAGES &&
1397 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1398 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1399 __free_pages_boot_core(page, MAX_ORDER-1);
1400 return;
1401 }
1402
1403 for (i = 0; i < nr_pages; i++, page++)
1404 __free_pages_boot_core(page, 0);
1405 }
1406
1407 /* Completion tracking for deferred_init_memmap() threads */
1408 static atomic_t pgdat_init_n_undone __initdata;
1409 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1410
1411 static inline void __init pgdat_init_report_one_done(void)
1412 {
1413 if (atomic_dec_and_test(&pgdat_init_n_undone))
1414 complete(&pgdat_init_all_done_comp);
1415 }
1416
1417 /* Initialise remaining memory on a node */
1418 static int __init deferred_init_memmap(void *data)
1419 {
1420 pg_data_t *pgdat = data;
1421 int nid = pgdat->node_id;
1422 struct mminit_pfnnid_cache nid_init_state = { };
1423 unsigned long start = jiffies;
1424 unsigned long nr_pages = 0;
1425 unsigned long walk_start, walk_end;
1426 int i, zid;
1427 struct zone *zone;
1428 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1429 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1430
1431 if (first_init_pfn == ULONG_MAX) {
1432 pgdat_init_report_one_done();
1433 return 0;
1434 }
1435
1436 /* Bind memory initialisation thread to a local node if possible */
1437 if (!cpumask_empty(cpumask))
1438 set_cpus_allowed_ptr(current, cpumask);
1439
1440 /* Sanity check boundaries */
1441 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1442 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1443 pgdat->first_deferred_pfn = ULONG_MAX;
1444
1445 /* Only the highest zone is deferred so find it */
1446 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1447 zone = pgdat->node_zones + zid;
1448 if (first_init_pfn < zone_end_pfn(zone))
1449 break;
1450 }
1451
1452 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1453 unsigned long pfn, end_pfn;
1454 struct page *page = NULL;
1455 struct page *free_base_page = NULL;
1456 unsigned long free_base_pfn = 0;
1457 int nr_to_free = 0;
1458
1459 end_pfn = min(walk_end, zone_end_pfn(zone));
1460 pfn = first_init_pfn;
1461 if (pfn < walk_start)
1462 pfn = walk_start;
1463 if (pfn < zone->zone_start_pfn)
1464 pfn = zone->zone_start_pfn;
1465
1466 for (; pfn < end_pfn; pfn++) {
1467 if (!pfn_valid_within(pfn))
1468 goto free_range;
1469
1470 /*
1471 * Ensure pfn_valid is checked every
1472 * MAX_ORDER_NR_PAGES for memory holes
1473 */
1474 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1475 if (!pfn_valid(pfn)) {
1476 page = NULL;
1477 goto free_range;
1478 }
1479 }
1480
1481 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1482 page = NULL;
1483 goto free_range;
1484 }
1485
1486 /* Minimise pfn page lookups and scheduler checks */
1487 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1488 page++;
1489 } else {
1490 nr_pages += nr_to_free;
1491 deferred_free_range(free_base_page,
1492 free_base_pfn, nr_to_free);
1493 free_base_page = NULL;
1494 free_base_pfn = nr_to_free = 0;
1495
1496 page = pfn_to_page(pfn);
1497 cond_resched();
1498 }
1499
1500 if (page->flags) {
1501 VM_BUG_ON(page_zone(page) != zone);
1502 goto free_range;
1503 }
1504
1505 __init_single_page(page, pfn, zid, nid);
1506 if (!free_base_page) {
1507 free_base_page = page;
1508 free_base_pfn = pfn;
1509 nr_to_free = 0;
1510 }
1511 nr_to_free++;
1512
1513 /* Where possible, batch up pages for a single free */
1514 continue;
1515 free_range:
1516 /* Free the current block of pages to allocator */
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page, free_base_pfn,
1519 nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
1522 }
1523
1524 first_init_pfn = max(end_pfn, first_init_pfn);
1525 }
1526
1527 /* Sanity check that the next zone really is unpopulated */
1528 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1529
1530 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1531 jiffies_to_msecs(jiffies - start));
1532
1533 pgdat_init_report_one_done();
1534 return 0;
1535 }
1536 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1537
1538 void __init page_alloc_init_late(void)
1539 {
1540 struct zone *zone;
1541
1542 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1543 int nid;
1544
1545 /* There will be num_node_state(N_MEMORY) threads */
1546 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1547 for_each_node_state(nid, N_MEMORY) {
1548 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1549 }
1550
1551 /* Block until all are initialised */
1552 wait_for_completion(&pgdat_init_all_done_comp);
1553
1554 /* Reinit limits that are based on free pages after the kernel is up */
1555 files_maxfiles_init();
1556 #endif
1557
1558 for_each_populated_zone(zone)
1559 set_zone_contiguous(zone);
1560 }
1561
1562 #ifdef CONFIG_CMA
1563 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1564 void __init init_cma_reserved_pageblock(struct page *page)
1565 {
1566 unsigned i = pageblock_nr_pages;
1567 struct page *p = page;
1568
1569 do {
1570 __ClearPageReserved(p);
1571 set_page_count(p, 0);
1572 } while (++p, --i);
1573
1574 set_pageblock_migratetype(page, MIGRATE_CMA);
1575
1576 if (pageblock_order >= MAX_ORDER) {
1577 i = pageblock_nr_pages;
1578 p = page;
1579 do {
1580 set_page_refcounted(p);
1581 __free_pages(p, MAX_ORDER - 1);
1582 p += MAX_ORDER_NR_PAGES;
1583 } while (i -= MAX_ORDER_NR_PAGES);
1584 } else {
1585 set_page_refcounted(page);
1586 __free_pages(page, pageblock_order);
1587 }
1588
1589 adjust_managed_page_count(page, pageblock_nr_pages);
1590 }
1591 #endif
1592
1593 /*
1594 * The order of subdivision here is critical for the IO subsystem.
1595 * Please do not alter this order without good reasons and regression
1596 * testing. Specifically, as large blocks of memory are subdivided,
1597 * the order in which smaller blocks are delivered depends on the order
1598 * they're subdivided in this function. This is the primary factor
1599 * influencing the order in which pages are delivered to the IO
1600 * subsystem according to empirical testing, and this is also justified
1601 * by considering the behavior of a buddy system containing a single
1602 * large block of memory acted on by a series of small allocations.
1603 * This behavior is a critical factor in sglist merging's success.
1604 *
1605 * -- nyc
1606 */
1607 static inline void expand(struct zone *zone, struct page *page,
1608 int low, int high, struct free_area *area,
1609 int migratetype)
1610 {
1611 unsigned long size = 1 << high;
1612
1613 while (high > low) {
1614 area--;
1615 high--;
1616 size >>= 1;
1617 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1618
1619 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1620 debug_guardpage_enabled() &&
1621 high < debug_guardpage_minorder()) {
1622 /*
1623 * Mark as guard pages (or page), that will allow to
1624 * merge back to allocator when buddy will be freed.
1625 * Corresponding page table entries will not be touched,
1626 * pages will stay not present in virtual address space
1627 */
1628 set_page_guard(zone, &page[size], high, migratetype);
1629 continue;
1630 }
1631 list_add(&page[size].lru, &area->free_list[migratetype]);
1632 area->nr_free++;
1633 set_page_order(&page[size], high);
1634 }
1635 }
1636
1637 static void check_new_page_bad(struct page *page)
1638 {
1639 const char *bad_reason = NULL;
1640 unsigned long bad_flags = 0;
1641
1642 if (unlikely(atomic_read(&page->_mapcount) != -1))
1643 bad_reason = "nonzero mapcount";
1644 if (unlikely(page->mapping != NULL))
1645 bad_reason = "non-NULL mapping";
1646 if (unlikely(page_ref_count(page) != 0))
1647 bad_reason = "nonzero _count";
1648 if (unlikely(page->flags & __PG_HWPOISON)) {
1649 bad_reason = "HWPoisoned (hardware-corrupted)";
1650 bad_flags = __PG_HWPOISON;
1651 /* Don't complain about hwpoisoned pages */
1652 page_mapcount_reset(page); /* remove PageBuddy */
1653 return;
1654 }
1655 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1656 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1657 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1658 }
1659 #ifdef CONFIG_MEMCG
1660 if (unlikely(page->mem_cgroup))
1661 bad_reason = "page still charged to cgroup";
1662 #endif
1663 bad_page(page, bad_reason, bad_flags);
1664 }
1665
1666 /*
1667 * This page is about to be returned from the page allocator
1668 */
1669 static inline int check_new_page(struct page *page)
1670 {
1671 if (likely(page_expected_state(page,
1672 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1673 return 0;
1674
1675 check_new_page_bad(page);
1676 return 1;
1677 }
1678
1679 static inline bool free_pages_prezeroed(bool poisoned)
1680 {
1681 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1682 page_poisoning_enabled() && poisoned;
1683 }
1684
1685 #ifdef CONFIG_DEBUG_VM
1686 static bool check_pcp_refill(struct page *page)
1687 {
1688 return false;
1689 }
1690
1691 static bool check_new_pcp(struct page *page)
1692 {
1693 return check_new_page(page);
1694 }
1695 #else
1696 static bool check_pcp_refill(struct page *page)
1697 {
1698 return check_new_page(page);
1699 }
1700 static bool check_new_pcp(struct page *page)
1701 {
1702 return false;
1703 }
1704 #endif /* CONFIG_DEBUG_VM */
1705
1706 static bool check_new_pages(struct page *page, unsigned int order)
1707 {
1708 int i;
1709 for (i = 0; i < (1 << order); i++) {
1710 struct page *p = page + i;
1711
1712 if (unlikely(check_new_page(p)))
1713 return true;
1714 }
1715
1716 return false;
1717 }
1718
1719 inline void post_alloc_hook(struct page *page, unsigned int order,
1720 gfp_t gfp_flags)
1721 {
1722 set_page_private(page, 0);
1723 set_page_refcounted(page);
1724
1725 arch_alloc_page(page, order);
1726 kernel_map_pages(page, 1 << order, 1);
1727 kernel_poison_pages(page, 1 << order, 1);
1728 kasan_alloc_pages(page, order);
1729 set_page_owner(page, order, gfp_flags);
1730 }
1731
1732 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1733 unsigned int alloc_flags)
1734 {
1735 int i;
1736 bool poisoned = true;
1737
1738 for (i = 0; i < (1 << order); i++) {
1739 struct page *p = page + i;
1740 if (poisoned)
1741 poisoned &= page_is_poisoned(p);
1742 }
1743
1744 post_alloc_hook(page, order, gfp_flags);
1745
1746 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1747 for (i = 0; i < (1 << order); i++)
1748 clear_highpage(page + i);
1749
1750 if (order && (gfp_flags & __GFP_COMP))
1751 prep_compound_page(page, order);
1752
1753 /*
1754 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1755 * allocate the page. The expectation is that the caller is taking
1756 * steps that will free more memory. The caller should avoid the page
1757 * being used for !PFMEMALLOC purposes.
1758 */
1759 if (alloc_flags & ALLOC_NO_WATERMARKS)
1760 set_page_pfmemalloc(page);
1761 else
1762 clear_page_pfmemalloc(page);
1763 }
1764
1765 /*
1766 * Go through the free lists for the given migratetype and remove
1767 * the smallest available page from the freelists
1768 */
1769 static inline
1770 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1771 int migratetype)
1772 {
1773 unsigned int current_order;
1774 struct free_area *area;
1775 struct page *page;
1776
1777 /* Find a page of the appropriate size in the preferred list */
1778 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1779 area = &(zone->free_area[current_order]);
1780 page = list_first_entry_or_null(&area->free_list[migratetype],
1781 struct page, lru);
1782 if (!page)
1783 continue;
1784 list_del(&page->lru);
1785 rmv_page_order(page);
1786 area->nr_free--;
1787 expand(zone, page, order, current_order, area, migratetype);
1788 set_pcppage_migratetype(page, migratetype);
1789 return page;
1790 }
1791
1792 return NULL;
1793 }
1794
1795
1796 /*
1797 * This array describes the order lists are fallen back to when
1798 * the free lists for the desirable migrate type are depleted
1799 */
1800 static int fallbacks[MIGRATE_TYPES][4] = {
1801 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1802 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1803 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1804 #ifdef CONFIG_CMA
1805 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1806 #endif
1807 #ifdef CONFIG_MEMORY_ISOLATION
1808 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1809 #endif
1810 };
1811
1812 #ifdef CONFIG_CMA
1813 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1814 unsigned int order)
1815 {
1816 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1817 }
1818 #else
1819 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1820 unsigned int order) { return NULL; }
1821 #endif
1822
1823 /*
1824 * Move the free pages in a range to the free lists of the requested type.
1825 * Note that start_page and end_pages are not aligned on a pageblock
1826 * boundary. If alignment is required, use move_freepages_block()
1827 */
1828 int move_freepages(struct zone *zone,
1829 struct page *start_page, struct page *end_page,
1830 int migratetype)
1831 {
1832 struct page *page;
1833 unsigned int order;
1834 int pages_moved = 0;
1835
1836 #ifndef CONFIG_HOLES_IN_ZONE
1837 /*
1838 * page_zone is not safe to call in this context when
1839 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1840 * anyway as we check zone boundaries in move_freepages_block().
1841 * Remove at a later date when no bug reports exist related to
1842 * grouping pages by mobility
1843 */
1844 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1845 #endif
1846
1847 for (page = start_page; page <= end_page;) {
1848 /* Make sure we are not inadvertently changing nodes */
1849 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1850
1851 if (!pfn_valid_within(page_to_pfn(page))) {
1852 page++;
1853 continue;
1854 }
1855
1856 if (!PageBuddy(page)) {
1857 page++;
1858 continue;
1859 }
1860
1861 order = page_order(page);
1862 list_move(&page->lru,
1863 &zone->free_area[order].free_list[migratetype]);
1864 page += 1 << order;
1865 pages_moved += 1 << order;
1866 }
1867
1868 return pages_moved;
1869 }
1870
1871 int move_freepages_block(struct zone *zone, struct page *page,
1872 int migratetype)
1873 {
1874 unsigned long start_pfn, end_pfn;
1875 struct page *start_page, *end_page;
1876
1877 start_pfn = page_to_pfn(page);
1878 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1879 start_page = pfn_to_page(start_pfn);
1880 end_page = start_page + pageblock_nr_pages - 1;
1881 end_pfn = start_pfn + pageblock_nr_pages - 1;
1882
1883 /* Do not cross zone boundaries */
1884 if (!zone_spans_pfn(zone, start_pfn))
1885 start_page = page;
1886 if (!zone_spans_pfn(zone, end_pfn))
1887 return 0;
1888
1889 return move_freepages(zone, start_page, end_page, migratetype);
1890 }
1891
1892 static void change_pageblock_range(struct page *pageblock_page,
1893 int start_order, int migratetype)
1894 {
1895 int nr_pageblocks = 1 << (start_order - pageblock_order);
1896
1897 while (nr_pageblocks--) {
1898 set_pageblock_migratetype(pageblock_page, migratetype);
1899 pageblock_page += pageblock_nr_pages;
1900 }
1901 }
1902
1903 /*
1904 * When we are falling back to another migratetype during allocation, try to
1905 * steal extra free pages from the same pageblocks to satisfy further
1906 * allocations, instead of polluting multiple pageblocks.
1907 *
1908 * If we are stealing a relatively large buddy page, it is likely there will
1909 * be more free pages in the pageblock, so try to steal them all. For
1910 * reclaimable and unmovable allocations, we steal regardless of page size,
1911 * as fragmentation caused by those allocations polluting movable pageblocks
1912 * is worse than movable allocations stealing from unmovable and reclaimable
1913 * pageblocks.
1914 */
1915 static bool can_steal_fallback(unsigned int order, int start_mt)
1916 {
1917 /*
1918 * Leaving this order check is intended, although there is
1919 * relaxed order check in next check. The reason is that
1920 * we can actually steal whole pageblock if this condition met,
1921 * but, below check doesn't guarantee it and that is just heuristic
1922 * so could be changed anytime.
1923 */
1924 if (order >= pageblock_order)
1925 return true;
1926
1927 if (order >= pageblock_order / 2 ||
1928 start_mt == MIGRATE_RECLAIMABLE ||
1929 start_mt == MIGRATE_UNMOVABLE ||
1930 page_group_by_mobility_disabled)
1931 return true;
1932
1933 return false;
1934 }
1935
1936 /*
1937 * This function implements actual steal behaviour. If order is large enough,
1938 * we can steal whole pageblock. If not, we first move freepages in this
1939 * pageblock and check whether half of pages are moved or not. If half of
1940 * pages are moved, we can change migratetype of pageblock and permanently
1941 * use it's pages as requested migratetype in the future.
1942 */
1943 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1944 int start_type)
1945 {
1946 unsigned int current_order = page_order(page);
1947 int pages;
1948
1949 /* Take ownership for orders >= pageblock_order */
1950 if (current_order >= pageblock_order) {
1951 change_pageblock_range(page, current_order, start_type);
1952 return;
1953 }
1954
1955 pages = move_freepages_block(zone, page, start_type);
1956
1957 /* Claim the whole block if over half of it is free */
1958 if (pages >= (1 << (pageblock_order-1)) ||
1959 page_group_by_mobility_disabled)
1960 set_pageblock_migratetype(page, start_type);
1961 }
1962
1963 /*
1964 * Check whether there is a suitable fallback freepage with requested order.
1965 * If only_stealable is true, this function returns fallback_mt only if
1966 * we can steal other freepages all together. This would help to reduce
1967 * fragmentation due to mixed migratetype pages in one pageblock.
1968 */
1969 int find_suitable_fallback(struct free_area *area, unsigned int order,
1970 int migratetype, bool only_stealable, bool *can_steal)
1971 {
1972 int i;
1973 int fallback_mt;
1974
1975 if (area->nr_free == 0)
1976 return -1;
1977
1978 *can_steal = false;
1979 for (i = 0;; i++) {
1980 fallback_mt = fallbacks[migratetype][i];
1981 if (fallback_mt == MIGRATE_TYPES)
1982 break;
1983
1984 if (list_empty(&area->free_list[fallback_mt]))
1985 continue;
1986
1987 if (can_steal_fallback(order, migratetype))
1988 *can_steal = true;
1989
1990 if (!only_stealable)
1991 return fallback_mt;
1992
1993 if (*can_steal)
1994 return fallback_mt;
1995 }
1996
1997 return -1;
1998 }
1999
2000 /*
2001 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2002 * there are no empty page blocks that contain a page with a suitable order
2003 */
2004 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2005 unsigned int alloc_order)
2006 {
2007 int mt;
2008 unsigned long max_managed, flags;
2009
2010 /*
2011 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2012 * Check is race-prone but harmless.
2013 */
2014 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2015 if (zone->nr_reserved_highatomic >= max_managed)
2016 return;
2017
2018 spin_lock_irqsave(&zone->lock, flags);
2019
2020 /* Recheck the nr_reserved_highatomic limit under the lock */
2021 if (zone->nr_reserved_highatomic >= max_managed)
2022 goto out_unlock;
2023
2024 /* Yoink! */
2025 mt = get_pageblock_migratetype(page);
2026 if (mt != MIGRATE_HIGHATOMIC &&
2027 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2028 zone->nr_reserved_highatomic += pageblock_nr_pages;
2029 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2030 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2031 }
2032
2033 out_unlock:
2034 spin_unlock_irqrestore(&zone->lock, flags);
2035 }
2036
2037 /*
2038 * Used when an allocation is about to fail under memory pressure. This
2039 * potentially hurts the reliability of high-order allocations when under
2040 * intense memory pressure but failed atomic allocations should be easier
2041 * to recover from than an OOM.
2042 */
2043 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2044 {
2045 struct zonelist *zonelist = ac->zonelist;
2046 unsigned long flags;
2047 struct zoneref *z;
2048 struct zone *zone;
2049 struct page *page;
2050 int order;
2051
2052 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2053 ac->nodemask) {
2054 /* Preserve at least one pageblock */
2055 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2056 continue;
2057
2058 spin_lock_irqsave(&zone->lock, flags);
2059 for (order = 0; order < MAX_ORDER; order++) {
2060 struct free_area *area = &(zone->free_area[order]);
2061
2062 page = list_first_entry_or_null(
2063 &area->free_list[MIGRATE_HIGHATOMIC],
2064 struct page, lru);
2065 if (!page)
2066 continue;
2067
2068 /*
2069 * It should never happen but changes to locking could
2070 * inadvertently allow a per-cpu drain to add pages
2071 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2072 * and watch for underflows.
2073 */
2074 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2075 zone->nr_reserved_highatomic);
2076
2077 /*
2078 * Convert to ac->migratetype and avoid the normal
2079 * pageblock stealing heuristics. Minimally, the caller
2080 * is doing the work and needs the pages. More
2081 * importantly, if the block was always converted to
2082 * MIGRATE_UNMOVABLE or another type then the number
2083 * of pageblocks that cannot be completely freed
2084 * may increase.
2085 */
2086 set_pageblock_migratetype(page, ac->migratetype);
2087 move_freepages_block(zone, page, ac->migratetype);
2088 spin_unlock_irqrestore(&zone->lock, flags);
2089 return;
2090 }
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 }
2093 }
2094
2095 /* Remove an element from the buddy allocator from the fallback list */
2096 static inline struct page *
2097 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2098 {
2099 struct free_area *area;
2100 unsigned int current_order;
2101 struct page *page;
2102 int fallback_mt;
2103 bool can_steal;
2104
2105 /* Find the largest possible block of pages in the other list */
2106 for (current_order = MAX_ORDER-1;
2107 current_order >= order && current_order <= MAX_ORDER-1;
2108 --current_order) {
2109 area = &(zone->free_area[current_order]);
2110 fallback_mt = find_suitable_fallback(area, current_order,
2111 start_migratetype, false, &can_steal);
2112 if (fallback_mt == -1)
2113 continue;
2114
2115 page = list_first_entry(&area->free_list[fallback_mt],
2116 struct page, lru);
2117 if (can_steal)
2118 steal_suitable_fallback(zone, page, start_migratetype);
2119
2120 /* Remove the page from the freelists */
2121 area->nr_free--;
2122 list_del(&page->lru);
2123 rmv_page_order(page);
2124
2125 expand(zone, page, order, current_order, area,
2126 start_migratetype);
2127 /*
2128 * The pcppage_migratetype may differ from pageblock's
2129 * migratetype depending on the decisions in
2130 * find_suitable_fallback(). This is OK as long as it does not
2131 * differ for MIGRATE_CMA pageblocks. Those can be used as
2132 * fallback only via special __rmqueue_cma_fallback() function
2133 */
2134 set_pcppage_migratetype(page, start_migratetype);
2135
2136 trace_mm_page_alloc_extfrag(page, order, current_order,
2137 start_migratetype, fallback_mt);
2138
2139 return page;
2140 }
2141
2142 return NULL;
2143 }
2144
2145 /*
2146 * Do the hard work of removing an element from the buddy allocator.
2147 * Call me with the zone->lock already held.
2148 */
2149 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2150 int migratetype)
2151 {
2152 struct page *page;
2153
2154 page = __rmqueue_smallest(zone, order, migratetype);
2155 if (unlikely(!page)) {
2156 if (migratetype == MIGRATE_MOVABLE)
2157 page = __rmqueue_cma_fallback(zone, order);
2158
2159 if (!page)
2160 page = __rmqueue_fallback(zone, order, migratetype);
2161 }
2162
2163 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2164 return page;
2165 }
2166
2167 /*
2168 * Obtain a specified number of elements from the buddy allocator, all under
2169 * a single hold of the lock, for efficiency. Add them to the supplied list.
2170 * Returns the number of new pages which were placed at *list.
2171 */
2172 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2173 unsigned long count, struct list_head *list,
2174 int migratetype, bool cold)
2175 {
2176 int i;
2177
2178 spin_lock(&zone->lock);
2179 for (i = 0; i < count; ++i) {
2180 struct page *page = __rmqueue(zone, order, migratetype);
2181 if (unlikely(page == NULL))
2182 break;
2183
2184 if (unlikely(check_pcp_refill(page)))
2185 continue;
2186
2187 /*
2188 * Split buddy pages returned by expand() are received here
2189 * in physical page order. The page is added to the callers and
2190 * list and the list head then moves forward. From the callers
2191 * perspective, the linked list is ordered by page number in
2192 * some conditions. This is useful for IO devices that can
2193 * merge IO requests if the physical pages are ordered
2194 * properly.
2195 */
2196 if (likely(!cold))
2197 list_add(&page->lru, list);
2198 else
2199 list_add_tail(&page->lru, list);
2200 list = &page->lru;
2201 if (is_migrate_cma(get_pcppage_migratetype(page)))
2202 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2203 -(1 << order));
2204 }
2205 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2206 spin_unlock(&zone->lock);
2207 return i;
2208 }
2209
2210 #ifdef CONFIG_NUMA
2211 /*
2212 * Called from the vmstat counter updater to drain pagesets of this
2213 * currently executing processor on remote nodes after they have
2214 * expired.
2215 *
2216 * Note that this function must be called with the thread pinned to
2217 * a single processor.
2218 */
2219 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2220 {
2221 unsigned long flags;
2222 int to_drain, batch;
2223
2224 local_irq_save(flags);
2225 batch = READ_ONCE(pcp->batch);
2226 to_drain = min(pcp->count, batch);
2227 if (to_drain > 0) {
2228 free_pcppages_bulk(zone, to_drain, pcp);
2229 pcp->count -= to_drain;
2230 }
2231 local_irq_restore(flags);
2232 }
2233 #endif
2234
2235 /*
2236 * Drain pcplists of the indicated processor and zone.
2237 *
2238 * The processor must either be the current processor and the
2239 * thread pinned to the current processor or a processor that
2240 * is not online.
2241 */
2242 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2243 {
2244 unsigned long flags;
2245 struct per_cpu_pageset *pset;
2246 struct per_cpu_pages *pcp;
2247
2248 local_irq_save(flags);
2249 pset = per_cpu_ptr(zone->pageset, cpu);
2250
2251 pcp = &pset->pcp;
2252 if (pcp->count) {
2253 free_pcppages_bulk(zone, pcp->count, pcp);
2254 pcp->count = 0;
2255 }
2256 local_irq_restore(flags);
2257 }
2258
2259 /*
2260 * Drain pcplists of all zones on the indicated processor.
2261 *
2262 * The processor must either be the current processor and the
2263 * thread pinned to the current processor or a processor that
2264 * is not online.
2265 */
2266 static void drain_pages(unsigned int cpu)
2267 {
2268 struct zone *zone;
2269
2270 for_each_populated_zone(zone) {
2271 drain_pages_zone(cpu, zone);
2272 }
2273 }
2274
2275 /*
2276 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2277 *
2278 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2279 * the single zone's pages.
2280 */
2281 void drain_local_pages(struct zone *zone)
2282 {
2283 int cpu = smp_processor_id();
2284
2285 if (zone)
2286 drain_pages_zone(cpu, zone);
2287 else
2288 drain_pages(cpu);
2289 }
2290
2291 /*
2292 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2293 *
2294 * When zone parameter is non-NULL, spill just the single zone's pages.
2295 *
2296 * Note that this code is protected against sending an IPI to an offline
2297 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2298 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2299 * nothing keeps CPUs from showing up after we populated the cpumask and
2300 * before the call to on_each_cpu_mask().
2301 */
2302 void drain_all_pages(struct zone *zone)
2303 {
2304 int cpu;
2305
2306 /*
2307 * Allocate in the BSS so we wont require allocation in
2308 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2309 */
2310 static cpumask_t cpus_with_pcps;
2311
2312 /*
2313 * We don't care about racing with CPU hotplug event
2314 * as offline notification will cause the notified
2315 * cpu to drain that CPU pcps and on_each_cpu_mask
2316 * disables preemption as part of its processing
2317 */
2318 for_each_online_cpu(cpu) {
2319 struct per_cpu_pageset *pcp;
2320 struct zone *z;
2321 bool has_pcps = false;
2322
2323 if (zone) {
2324 pcp = per_cpu_ptr(zone->pageset, cpu);
2325 if (pcp->pcp.count)
2326 has_pcps = true;
2327 } else {
2328 for_each_populated_zone(z) {
2329 pcp = per_cpu_ptr(z->pageset, cpu);
2330 if (pcp->pcp.count) {
2331 has_pcps = true;
2332 break;
2333 }
2334 }
2335 }
2336
2337 if (has_pcps)
2338 cpumask_set_cpu(cpu, &cpus_with_pcps);
2339 else
2340 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2341 }
2342 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2343 zone, 1);
2344 }
2345
2346 #ifdef CONFIG_HIBERNATION
2347
2348 void mark_free_pages(struct zone *zone)
2349 {
2350 unsigned long pfn, max_zone_pfn;
2351 unsigned long flags;
2352 unsigned int order, t;
2353 struct page *page;
2354
2355 if (zone_is_empty(zone))
2356 return;
2357
2358 spin_lock_irqsave(&zone->lock, flags);
2359
2360 max_zone_pfn = zone_end_pfn(zone);
2361 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2362 if (pfn_valid(pfn)) {
2363 page = pfn_to_page(pfn);
2364
2365 if (page_zone(page) != zone)
2366 continue;
2367
2368 if (!swsusp_page_is_forbidden(page))
2369 swsusp_unset_page_free(page);
2370 }
2371
2372 for_each_migratetype_order(order, t) {
2373 list_for_each_entry(page,
2374 &zone->free_area[order].free_list[t], lru) {
2375 unsigned long i;
2376
2377 pfn = page_to_pfn(page);
2378 for (i = 0; i < (1UL << order); i++)
2379 swsusp_set_page_free(pfn_to_page(pfn + i));
2380 }
2381 }
2382 spin_unlock_irqrestore(&zone->lock, flags);
2383 }
2384 #endif /* CONFIG_PM */
2385
2386 /*
2387 * Free a 0-order page
2388 * cold == true ? free a cold page : free a hot page
2389 */
2390 void free_hot_cold_page(struct page *page, bool cold)
2391 {
2392 struct zone *zone = page_zone(page);
2393 struct per_cpu_pages *pcp;
2394 unsigned long flags;
2395 unsigned long pfn = page_to_pfn(page);
2396 int migratetype;
2397
2398 if (!free_pcp_prepare(page))
2399 return;
2400
2401 migratetype = get_pfnblock_migratetype(page, pfn);
2402 set_pcppage_migratetype(page, migratetype);
2403 local_irq_save(flags);
2404 __count_vm_event(PGFREE);
2405
2406 /*
2407 * We only track unmovable, reclaimable and movable on pcp lists.
2408 * Free ISOLATE pages back to the allocator because they are being
2409 * offlined but treat RESERVE as movable pages so we can get those
2410 * areas back if necessary. Otherwise, we may have to free
2411 * excessively into the page allocator
2412 */
2413 if (migratetype >= MIGRATE_PCPTYPES) {
2414 if (unlikely(is_migrate_isolate(migratetype))) {
2415 free_one_page(zone, page, pfn, 0, migratetype);
2416 goto out;
2417 }
2418 migratetype = MIGRATE_MOVABLE;
2419 }
2420
2421 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2422 if (!cold)
2423 list_add(&page->lru, &pcp->lists[migratetype]);
2424 else
2425 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2426 pcp->count++;
2427 if (pcp->count >= pcp->high) {
2428 unsigned long batch = READ_ONCE(pcp->batch);
2429 free_pcppages_bulk(zone, batch, pcp);
2430 pcp->count -= batch;
2431 }
2432
2433 out:
2434 local_irq_restore(flags);
2435 }
2436
2437 /*
2438 * Free a list of 0-order pages
2439 */
2440 void free_hot_cold_page_list(struct list_head *list, bool cold)
2441 {
2442 struct page *page, *next;
2443
2444 list_for_each_entry_safe(page, next, list, lru) {
2445 trace_mm_page_free_batched(page, cold);
2446 free_hot_cold_page(page, cold);
2447 }
2448 }
2449
2450 /*
2451 * split_page takes a non-compound higher-order page, and splits it into
2452 * n (1<<order) sub-pages: page[0..n]
2453 * Each sub-page must be freed individually.
2454 *
2455 * Note: this is probably too low level an operation for use in drivers.
2456 * Please consult with lkml before using this in your driver.
2457 */
2458 void split_page(struct page *page, unsigned int order)
2459 {
2460 int i;
2461
2462 VM_BUG_ON_PAGE(PageCompound(page), page);
2463 VM_BUG_ON_PAGE(!page_count(page), page);
2464
2465 #ifdef CONFIG_KMEMCHECK
2466 /*
2467 * Split shadow pages too, because free(page[0]) would
2468 * otherwise free the whole shadow.
2469 */
2470 if (kmemcheck_page_is_tracked(page))
2471 split_page(virt_to_page(page[0].shadow), order);
2472 #endif
2473
2474 for (i = 1; i < (1 << order); i++)
2475 set_page_refcounted(page + i);
2476 split_page_owner(page, order);
2477 }
2478 EXPORT_SYMBOL_GPL(split_page);
2479
2480 int __isolate_free_page(struct page *page, unsigned int order)
2481 {
2482 unsigned long watermark;
2483 struct zone *zone;
2484 int mt;
2485
2486 BUG_ON(!PageBuddy(page));
2487
2488 zone = page_zone(page);
2489 mt = get_pageblock_migratetype(page);
2490
2491 if (!is_migrate_isolate(mt)) {
2492 /* Obey watermarks as if the page was being allocated */
2493 watermark = low_wmark_pages(zone) + (1 << order);
2494 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2495 return 0;
2496
2497 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2498 }
2499
2500 /* Remove page from free list */
2501 list_del(&page->lru);
2502 zone->free_area[order].nr_free--;
2503 rmv_page_order(page);
2504
2505 /*
2506 * Set the pageblock if the isolated page is at least half of a
2507 * pageblock
2508 */
2509 if (order >= pageblock_order - 1) {
2510 struct page *endpage = page + (1 << order) - 1;
2511 for (; page < endpage; page += pageblock_nr_pages) {
2512 int mt = get_pageblock_migratetype(page);
2513 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2514 set_pageblock_migratetype(page,
2515 MIGRATE_MOVABLE);
2516 }
2517 }
2518
2519
2520 return 1UL << order;
2521 }
2522
2523 /*
2524 * Update NUMA hit/miss statistics
2525 *
2526 * Must be called with interrupts disabled.
2527 *
2528 * When __GFP_OTHER_NODE is set assume the node of the preferred
2529 * zone is the local node. This is useful for daemons who allocate
2530 * memory on behalf of other processes.
2531 */
2532 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2533 gfp_t flags)
2534 {
2535 #ifdef CONFIG_NUMA
2536 int local_nid = numa_node_id();
2537 enum zone_stat_item local_stat = NUMA_LOCAL;
2538
2539 if (unlikely(flags & __GFP_OTHER_NODE)) {
2540 local_stat = NUMA_OTHER;
2541 local_nid = preferred_zone->node;
2542 }
2543
2544 if (z->node == local_nid) {
2545 __inc_zone_state(z, NUMA_HIT);
2546 __inc_zone_state(z, local_stat);
2547 } else {
2548 __inc_zone_state(z, NUMA_MISS);
2549 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2550 }
2551 #endif
2552 }
2553
2554 /*
2555 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2556 */
2557 static inline
2558 struct page *buffered_rmqueue(struct zone *preferred_zone,
2559 struct zone *zone, unsigned int order,
2560 gfp_t gfp_flags, unsigned int alloc_flags,
2561 int migratetype)
2562 {
2563 unsigned long flags;
2564 struct page *page;
2565 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2566
2567 if (likely(order == 0)) {
2568 struct per_cpu_pages *pcp;
2569 struct list_head *list;
2570
2571 local_irq_save(flags);
2572 do {
2573 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2574 list = &pcp->lists[migratetype];
2575 if (list_empty(list)) {
2576 pcp->count += rmqueue_bulk(zone, 0,
2577 pcp->batch, list,
2578 migratetype, cold);
2579 if (unlikely(list_empty(list)))
2580 goto failed;
2581 }
2582
2583 if (cold)
2584 page = list_last_entry(list, struct page, lru);
2585 else
2586 page = list_first_entry(list, struct page, lru);
2587
2588 list_del(&page->lru);
2589 pcp->count--;
2590
2591 } while (check_new_pcp(page));
2592 } else {
2593 /*
2594 * We most definitely don't want callers attempting to
2595 * allocate greater than order-1 page units with __GFP_NOFAIL.
2596 */
2597 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2598 spin_lock_irqsave(&zone->lock, flags);
2599
2600 do {
2601 page = NULL;
2602 if (alloc_flags & ALLOC_HARDER) {
2603 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2604 if (page)
2605 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2606 }
2607 if (!page)
2608 page = __rmqueue(zone, order, migratetype);
2609 } while (page && check_new_pages(page, order));
2610 spin_unlock(&zone->lock);
2611 if (!page)
2612 goto failed;
2613 __mod_zone_freepage_state(zone, -(1 << order),
2614 get_pcppage_migratetype(page));
2615 }
2616
2617 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2618 zone_statistics(preferred_zone, zone, gfp_flags);
2619 local_irq_restore(flags);
2620
2621 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2622 return page;
2623
2624 failed:
2625 local_irq_restore(flags);
2626 return NULL;
2627 }
2628
2629 #ifdef CONFIG_FAIL_PAGE_ALLOC
2630
2631 static struct {
2632 struct fault_attr attr;
2633
2634 bool ignore_gfp_highmem;
2635 bool ignore_gfp_reclaim;
2636 u32 min_order;
2637 } fail_page_alloc = {
2638 .attr = FAULT_ATTR_INITIALIZER,
2639 .ignore_gfp_reclaim = true,
2640 .ignore_gfp_highmem = true,
2641 .min_order = 1,
2642 };
2643
2644 static int __init setup_fail_page_alloc(char *str)
2645 {
2646 return setup_fault_attr(&fail_page_alloc.attr, str);
2647 }
2648 __setup("fail_page_alloc=", setup_fail_page_alloc);
2649
2650 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2651 {
2652 if (order < fail_page_alloc.min_order)
2653 return false;
2654 if (gfp_mask & __GFP_NOFAIL)
2655 return false;
2656 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2657 return false;
2658 if (fail_page_alloc.ignore_gfp_reclaim &&
2659 (gfp_mask & __GFP_DIRECT_RECLAIM))
2660 return false;
2661
2662 return should_fail(&fail_page_alloc.attr, 1 << order);
2663 }
2664
2665 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2666
2667 static int __init fail_page_alloc_debugfs(void)
2668 {
2669 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2670 struct dentry *dir;
2671
2672 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2673 &fail_page_alloc.attr);
2674 if (IS_ERR(dir))
2675 return PTR_ERR(dir);
2676
2677 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2678 &fail_page_alloc.ignore_gfp_reclaim))
2679 goto fail;
2680 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2681 &fail_page_alloc.ignore_gfp_highmem))
2682 goto fail;
2683 if (!debugfs_create_u32("min-order", mode, dir,
2684 &fail_page_alloc.min_order))
2685 goto fail;
2686
2687 return 0;
2688 fail:
2689 debugfs_remove_recursive(dir);
2690
2691 return -ENOMEM;
2692 }
2693
2694 late_initcall(fail_page_alloc_debugfs);
2695
2696 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2697
2698 #else /* CONFIG_FAIL_PAGE_ALLOC */
2699
2700 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2701 {
2702 return false;
2703 }
2704
2705 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2706
2707 /*
2708 * Return true if free base pages are above 'mark'. For high-order checks it
2709 * will return true of the order-0 watermark is reached and there is at least
2710 * one free page of a suitable size. Checking now avoids taking the zone lock
2711 * to check in the allocation paths if no pages are free.
2712 */
2713 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2714 int classzone_idx, unsigned int alloc_flags,
2715 long free_pages)
2716 {
2717 long min = mark;
2718 int o;
2719 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2720
2721 /* free_pages may go negative - that's OK */
2722 free_pages -= (1 << order) - 1;
2723
2724 if (alloc_flags & ALLOC_HIGH)
2725 min -= min / 2;
2726
2727 /*
2728 * If the caller does not have rights to ALLOC_HARDER then subtract
2729 * the high-atomic reserves. This will over-estimate the size of the
2730 * atomic reserve but it avoids a search.
2731 */
2732 if (likely(!alloc_harder))
2733 free_pages -= z->nr_reserved_highatomic;
2734 else
2735 min -= min / 4;
2736
2737 #ifdef CONFIG_CMA
2738 /* If allocation can't use CMA areas don't use free CMA pages */
2739 if (!(alloc_flags & ALLOC_CMA))
2740 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2741 #endif
2742
2743 /*
2744 * Check watermarks for an order-0 allocation request. If these
2745 * are not met, then a high-order request also cannot go ahead
2746 * even if a suitable page happened to be free.
2747 */
2748 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2749 return false;
2750
2751 /* If this is an order-0 request then the watermark is fine */
2752 if (!order)
2753 return true;
2754
2755 /* For a high-order request, check at least one suitable page is free */
2756 for (o = order; o < MAX_ORDER; o++) {
2757 struct free_area *area = &z->free_area[o];
2758 int mt;
2759
2760 if (!area->nr_free)
2761 continue;
2762
2763 if (alloc_harder)
2764 return true;
2765
2766 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2767 if (!list_empty(&area->free_list[mt]))
2768 return true;
2769 }
2770
2771 #ifdef CONFIG_CMA
2772 if ((alloc_flags & ALLOC_CMA) &&
2773 !list_empty(&area->free_list[MIGRATE_CMA])) {
2774 return true;
2775 }
2776 #endif
2777 }
2778 return false;
2779 }
2780
2781 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2782 int classzone_idx, unsigned int alloc_flags)
2783 {
2784 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2785 zone_page_state(z, NR_FREE_PAGES));
2786 }
2787
2788 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2789 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2790 {
2791 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2792 long cma_pages = 0;
2793
2794 #ifdef CONFIG_CMA
2795 /* If allocation can't use CMA areas don't use free CMA pages */
2796 if (!(alloc_flags & ALLOC_CMA))
2797 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2798 #endif
2799
2800 /*
2801 * Fast check for order-0 only. If this fails then the reserves
2802 * need to be calculated. There is a corner case where the check
2803 * passes but only the high-order atomic reserve are free. If
2804 * the caller is !atomic then it'll uselessly search the free
2805 * list. That corner case is then slower but it is harmless.
2806 */
2807 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2808 return true;
2809
2810 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2811 free_pages);
2812 }
2813
2814 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2815 unsigned long mark, int classzone_idx)
2816 {
2817 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2818
2819 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2820 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2821
2822 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2823 free_pages);
2824 }
2825
2826 #ifdef CONFIG_NUMA
2827 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2828 {
2829 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2830 RECLAIM_DISTANCE;
2831 }
2832 #else /* CONFIG_NUMA */
2833 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2834 {
2835 return true;
2836 }
2837 #endif /* CONFIG_NUMA */
2838
2839 /*
2840 * get_page_from_freelist goes through the zonelist trying to allocate
2841 * a page.
2842 */
2843 static struct page *
2844 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2845 const struct alloc_context *ac)
2846 {
2847 struct zoneref *z = ac->preferred_zoneref;
2848 struct zone *zone;
2849 struct pglist_data *last_pgdat_dirty_limit = NULL;
2850
2851 /*
2852 * Scan zonelist, looking for a zone with enough free.
2853 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2854 */
2855 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2856 ac->nodemask) {
2857 struct page *page;
2858 unsigned long mark;
2859
2860 if (cpusets_enabled() &&
2861 (alloc_flags & ALLOC_CPUSET) &&
2862 !__cpuset_zone_allowed(zone, gfp_mask))
2863 continue;
2864 /*
2865 * When allocating a page cache page for writing, we
2866 * want to get it from a node that is within its dirty
2867 * limit, such that no single node holds more than its
2868 * proportional share of globally allowed dirty pages.
2869 * The dirty limits take into account the node's
2870 * lowmem reserves and high watermark so that kswapd
2871 * should be able to balance it without having to
2872 * write pages from its LRU list.
2873 *
2874 * XXX: For now, allow allocations to potentially
2875 * exceed the per-node dirty limit in the slowpath
2876 * (spread_dirty_pages unset) before going into reclaim,
2877 * which is important when on a NUMA setup the allowed
2878 * nodes are together not big enough to reach the
2879 * global limit. The proper fix for these situations
2880 * will require awareness of nodes in the
2881 * dirty-throttling and the flusher threads.
2882 */
2883 if (ac->spread_dirty_pages) {
2884 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2885 continue;
2886
2887 if (!node_dirty_ok(zone->zone_pgdat)) {
2888 last_pgdat_dirty_limit = zone->zone_pgdat;
2889 continue;
2890 }
2891 }
2892
2893 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2894 if (!zone_watermark_fast(zone, order, mark,
2895 ac_classzone_idx(ac), alloc_flags)) {
2896 int ret;
2897
2898 /* Checked here to keep the fast path fast */
2899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2900 if (alloc_flags & ALLOC_NO_WATERMARKS)
2901 goto try_this_zone;
2902
2903 if (node_reclaim_mode == 0 ||
2904 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2905 continue;
2906
2907 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2908 switch (ret) {
2909 case NODE_RECLAIM_NOSCAN:
2910 /* did not scan */
2911 continue;
2912 case NODE_RECLAIM_FULL:
2913 /* scanned but unreclaimable */
2914 continue;
2915 default:
2916 /* did we reclaim enough */
2917 if (zone_watermark_ok(zone, order, mark,
2918 ac_classzone_idx(ac), alloc_flags))
2919 goto try_this_zone;
2920
2921 continue;
2922 }
2923 }
2924
2925 try_this_zone:
2926 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2927 gfp_mask, alloc_flags, ac->migratetype);
2928 if (page) {
2929 prep_new_page(page, order, gfp_mask, alloc_flags);
2930
2931 /*
2932 * If this is a high-order atomic allocation then check
2933 * if the pageblock should be reserved for the future
2934 */
2935 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2936 reserve_highatomic_pageblock(page, zone, order);
2937
2938 return page;
2939 }
2940 }
2941
2942 return NULL;
2943 }
2944
2945 /*
2946 * Large machines with many possible nodes should not always dump per-node
2947 * meminfo in irq context.
2948 */
2949 static inline bool should_suppress_show_mem(void)
2950 {
2951 bool ret = false;
2952
2953 #if NODES_SHIFT > 8
2954 ret = in_interrupt();
2955 #endif
2956 return ret;
2957 }
2958
2959 static DEFINE_RATELIMIT_STATE(nopage_rs,
2960 DEFAULT_RATELIMIT_INTERVAL,
2961 DEFAULT_RATELIMIT_BURST);
2962
2963 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2964 {
2965 unsigned int filter = SHOW_MEM_FILTER_NODES;
2966
2967 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2968 debug_guardpage_minorder() > 0)
2969 return;
2970
2971 /*
2972 * This documents exceptions given to allocations in certain
2973 * contexts that are allowed to allocate outside current's set
2974 * of allowed nodes.
2975 */
2976 if (!(gfp_mask & __GFP_NOMEMALLOC))
2977 if (test_thread_flag(TIF_MEMDIE) ||
2978 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2979 filter &= ~SHOW_MEM_FILTER_NODES;
2980 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2981 filter &= ~SHOW_MEM_FILTER_NODES;
2982
2983 if (fmt) {
2984 struct va_format vaf;
2985 va_list args;
2986
2987 va_start(args, fmt);
2988
2989 vaf.fmt = fmt;
2990 vaf.va = &args;
2991
2992 pr_warn("%pV", &vaf);
2993
2994 va_end(args);
2995 }
2996
2997 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2998 current->comm, order, gfp_mask, &gfp_mask);
2999 dump_stack();
3000 if (!should_suppress_show_mem())
3001 show_mem(filter);
3002 }
3003
3004 static inline struct page *
3005 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3006 const struct alloc_context *ac, unsigned long *did_some_progress)
3007 {
3008 struct oom_control oc = {
3009 .zonelist = ac->zonelist,
3010 .nodemask = ac->nodemask,
3011 .memcg = NULL,
3012 .gfp_mask = gfp_mask,
3013 .order = order,
3014 };
3015 struct page *page;
3016
3017 *did_some_progress = 0;
3018
3019 /*
3020 * Acquire the oom lock. If that fails, somebody else is
3021 * making progress for us.
3022 */
3023 if (!mutex_trylock(&oom_lock)) {
3024 *did_some_progress = 1;
3025 schedule_timeout_uninterruptible(1);
3026 return NULL;
3027 }
3028
3029 /*
3030 * Go through the zonelist yet one more time, keep very high watermark
3031 * here, this is only to catch a parallel oom killing, we must fail if
3032 * we're still under heavy pressure.
3033 */
3034 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3035 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3036 if (page)
3037 goto out;
3038
3039 if (!(gfp_mask & __GFP_NOFAIL)) {
3040 /* Coredumps can quickly deplete all memory reserves */
3041 if (current->flags & PF_DUMPCORE)
3042 goto out;
3043 /* The OOM killer will not help higher order allocs */
3044 if (order > PAGE_ALLOC_COSTLY_ORDER)
3045 goto out;
3046 /* The OOM killer does not needlessly kill tasks for lowmem */
3047 if (ac->high_zoneidx < ZONE_NORMAL)
3048 goto out;
3049 if (pm_suspended_storage())
3050 goto out;
3051 /*
3052 * XXX: GFP_NOFS allocations should rather fail than rely on
3053 * other request to make a forward progress.
3054 * We are in an unfortunate situation where out_of_memory cannot
3055 * do much for this context but let's try it to at least get
3056 * access to memory reserved if the current task is killed (see
3057 * out_of_memory). Once filesystems are ready to handle allocation
3058 * failures more gracefully we should just bail out here.
3059 */
3060
3061 /* The OOM killer may not free memory on a specific node */
3062 if (gfp_mask & __GFP_THISNODE)
3063 goto out;
3064 }
3065 /* Exhausted what can be done so it's blamo time */
3066 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3067 *did_some_progress = 1;
3068
3069 if (gfp_mask & __GFP_NOFAIL) {
3070 page = get_page_from_freelist(gfp_mask, order,
3071 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3072 /*
3073 * fallback to ignore cpuset restriction if our nodes
3074 * are depleted
3075 */
3076 if (!page)
3077 page = get_page_from_freelist(gfp_mask, order,
3078 ALLOC_NO_WATERMARKS, ac);
3079 }
3080 }
3081 out:
3082 mutex_unlock(&oom_lock);
3083 return page;
3084 }
3085
3086 /*
3087 * Maximum number of compaction retries wit a progress before OOM
3088 * killer is consider as the only way to move forward.
3089 */
3090 #define MAX_COMPACT_RETRIES 16
3091
3092 #ifdef CONFIG_COMPACTION
3093 /* Try memory compaction for high-order allocations before reclaim */
3094 static struct page *
3095 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3096 unsigned int alloc_flags, const struct alloc_context *ac,
3097 enum compact_priority prio, enum compact_result *compact_result)
3098 {
3099 struct page *page;
3100
3101 if (!order)
3102 return NULL;
3103
3104 current->flags |= PF_MEMALLOC;
3105 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3106 prio);
3107 current->flags &= ~PF_MEMALLOC;
3108
3109 if (*compact_result <= COMPACT_INACTIVE)
3110 return NULL;
3111
3112 /*
3113 * At least in one zone compaction wasn't deferred or skipped, so let's
3114 * count a compaction stall
3115 */
3116 count_vm_event(COMPACTSTALL);
3117
3118 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3119
3120 if (page) {
3121 struct zone *zone = page_zone(page);
3122
3123 zone->compact_blockskip_flush = false;
3124 compaction_defer_reset(zone, order, true);
3125 count_vm_event(COMPACTSUCCESS);
3126 return page;
3127 }
3128
3129 /*
3130 * It's bad if compaction run occurs and fails. The most likely reason
3131 * is that pages exist, but not enough to satisfy watermarks.
3132 */
3133 count_vm_event(COMPACTFAIL);
3134
3135 cond_resched();
3136
3137 return NULL;
3138 }
3139
3140 #else
3141 static inline struct page *
3142 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3143 unsigned int alloc_flags, const struct alloc_context *ac,
3144 enum compact_priority prio, enum compact_result *compact_result)
3145 {
3146 *compact_result = COMPACT_SKIPPED;
3147 return NULL;
3148 }
3149
3150 #endif /* CONFIG_COMPACTION */
3151
3152 static inline bool
3153 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3154 enum compact_result compact_result,
3155 enum compact_priority *compact_priority,
3156 int compaction_retries)
3157 {
3158 struct zone *zone;
3159 struct zoneref *z;
3160
3161 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3162 return false;
3163
3164 /*
3165 * There are setups with compaction disabled which would prefer to loop
3166 * inside the allocator rather than hit the oom killer prematurely.
3167 * Let's give them a good hope and keep retrying while the order-0
3168 * watermarks are OK.
3169 */
3170 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3171 ac->nodemask) {
3172 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3173 ac_classzone_idx(ac), alloc_flags))
3174 return true;
3175 }
3176 return false;
3177 }
3178
3179 /* Perform direct synchronous page reclaim */
3180 static int
3181 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3182 const struct alloc_context *ac)
3183 {
3184 struct reclaim_state reclaim_state;
3185 int progress;
3186
3187 cond_resched();
3188
3189 /* We now go into synchronous reclaim */
3190 cpuset_memory_pressure_bump();
3191 current->flags |= PF_MEMALLOC;
3192 lockdep_set_current_reclaim_state(gfp_mask);
3193 reclaim_state.reclaimed_slab = 0;
3194 current->reclaim_state = &reclaim_state;
3195
3196 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3197 ac->nodemask);
3198
3199 current->reclaim_state = NULL;
3200 lockdep_clear_current_reclaim_state();
3201 current->flags &= ~PF_MEMALLOC;
3202
3203 cond_resched();
3204
3205 return progress;
3206 }
3207
3208 /* The really slow allocator path where we enter direct reclaim */
3209 static inline struct page *
3210 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3211 unsigned int alloc_flags, const struct alloc_context *ac,
3212 unsigned long *did_some_progress)
3213 {
3214 struct page *page = NULL;
3215 bool drained = false;
3216
3217 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3218 if (unlikely(!(*did_some_progress)))
3219 return NULL;
3220
3221 retry:
3222 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3223
3224 /*
3225 * If an allocation failed after direct reclaim, it could be because
3226 * pages are pinned on the per-cpu lists or in high alloc reserves.
3227 * Shrink them them and try again
3228 */
3229 if (!page && !drained) {
3230 unreserve_highatomic_pageblock(ac);
3231 drain_all_pages(NULL);
3232 drained = true;
3233 goto retry;
3234 }
3235
3236 return page;
3237 }
3238
3239 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3240 {
3241 struct zoneref *z;
3242 struct zone *zone;
3243 pg_data_t *last_pgdat = NULL;
3244
3245 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3246 ac->high_zoneidx, ac->nodemask) {
3247 if (last_pgdat != zone->zone_pgdat)
3248 wakeup_kswapd(zone, order, ac->high_zoneidx);
3249 last_pgdat = zone->zone_pgdat;
3250 }
3251 }
3252
3253 static inline unsigned int
3254 gfp_to_alloc_flags(gfp_t gfp_mask)
3255 {
3256 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3257
3258 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3259 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3260
3261 /*
3262 * The caller may dip into page reserves a bit more if the caller
3263 * cannot run direct reclaim, or if the caller has realtime scheduling
3264 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3265 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3266 */
3267 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3268
3269 if (gfp_mask & __GFP_ATOMIC) {
3270 /*
3271 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3272 * if it can't schedule.
3273 */
3274 if (!(gfp_mask & __GFP_NOMEMALLOC))
3275 alloc_flags |= ALLOC_HARDER;
3276 /*
3277 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3278 * comment for __cpuset_node_allowed().
3279 */
3280 alloc_flags &= ~ALLOC_CPUSET;
3281 } else if (unlikely(rt_task(current)) && !in_interrupt())
3282 alloc_flags |= ALLOC_HARDER;
3283
3284 #ifdef CONFIG_CMA
3285 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3286 alloc_flags |= ALLOC_CMA;
3287 #endif
3288 return alloc_flags;
3289 }
3290
3291 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3292 {
3293 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3294 return false;
3295
3296 if (gfp_mask & __GFP_MEMALLOC)
3297 return true;
3298 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3299 return true;
3300 if (!in_interrupt() &&
3301 ((current->flags & PF_MEMALLOC) ||
3302 unlikely(test_thread_flag(TIF_MEMDIE))))
3303 return true;
3304
3305 return false;
3306 }
3307
3308 /*
3309 * Maximum number of reclaim retries without any progress before OOM killer
3310 * is consider as the only way to move forward.
3311 */
3312 #define MAX_RECLAIM_RETRIES 16
3313
3314 /*
3315 * Checks whether it makes sense to retry the reclaim to make a forward progress
3316 * for the given allocation request.
3317 * The reclaim feedback represented by did_some_progress (any progress during
3318 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3319 * any progress in a row) is considered as well as the reclaimable pages on the
3320 * applicable zone list (with a backoff mechanism which is a function of
3321 * no_progress_loops).
3322 *
3323 * Returns true if a retry is viable or false to enter the oom path.
3324 */
3325 static inline bool
3326 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3327 struct alloc_context *ac, int alloc_flags,
3328 bool did_some_progress, int no_progress_loops)
3329 {
3330 struct zone *zone;
3331 struct zoneref *z;
3332
3333 /*
3334 * Make sure we converge to OOM if we cannot make any progress
3335 * several times in the row.
3336 */
3337 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3338 return false;
3339
3340 /*
3341 * Keep reclaiming pages while there is a chance this will lead
3342 * somewhere. If none of the target zones can satisfy our allocation
3343 * request even if all reclaimable pages are considered then we are
3344 * screwed and have to go OOM.
3345 */
3346 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3347 ac->nodemask) {
3348 unsigned long available;
3349 unsigned long reclaimable;
3350
3351 available = reclaimable = zone_reclaimable_pages(zone);
3352 available -= DIV_ROUND_UP(no_progress_loops * available,
3353 MAX_RECLAIM_RETRIES);
3354 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3355
3356 /*
3357 * Would the allocation succeed if we reclaimed the whole
3358 * available?
3359 */
3360 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3361 ac_classzone_idx(ac), alloc_flags, available)) {
3362 /*
3363 * If we didn't make any progress and have a lot of
3364 * dirty + writeback pages then we should wait for
3365 * an IO to complete to slow down the reclaim and
3366 * prevent from pre mature OOM
3367 */
3368 if (!did_some_progress) {
3369 unsigned long write_pending;
3370
3371 write_pending = zone_page_state_snapshot(zone,
3372 NR_ZONE_WRITE_PENDING);
3373
3374 if (2 * write_pending > reclaimable) {
3375 congestion_wait(BLK_RW_ASYNC, HZ/10);
3376 return true;
3377 }
3378 }
3379
3380 /*
3381 * Memory allocation/reclaim might be called from a WQ
3382 * context and the current implementation of the WQ
3383 * concurrency control doesn't recognize that
3384 * a particular WQ is congested if the worker thread is
3385 * looping without ever sleeping. Therefore we have to
3386 * do a short sleep here rather than calling
3387 * cond_resched().
3388 */
3389 if (current->flags & PF_WQ_WORKER)
3390 schedule_timeout_uninterruptible(1);
3391 else
3392 cond_resched();
3393
3394 return true;
3395 }
3396 }
3397
3398 return false;
3399 }
3400
3401 static inline struct page *
3402 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3403 struct alloc_context *ac)
3404 {
3405 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3406 struct page *page = NULL;
3407 unsigned int alloc_flags;
3408 unsigned long did_some_progress;
3409 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3410 enum compact_result compact_result;
3411 int compaction_retries = 0;
3412 int no_progress_loops = 0;
3413
3414 /*
3415 * In the slowpath, we sanity check order to avoid ever trying to
3416 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3417 * be using allocators in order of preference for an area that is
3418 * too large.
3419 */
3420 if (order >= MAX_ORDER) {
3421 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3422 return NULL;
3423 }
3424
3425 /*
3426 * We also sanity check to catch abuse of atomic reserves being used by
3427 * callers that are not in atomic context.
3428 */
3429 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3430 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3431 gfp_mask &= ~__GFP_ATOMIC;
3432
3433 /*
3434 * The fast path uses conservative alloc_flags to succeed only until
3435 * kswapd needs to be woken up, and to avoid the cost of setting up
3436 * alloc_flags precisely. So we do that now.
3437 */
3438 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3439
3440 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3441 wake_all_kswapds(order, ac);
3442
3443 /*
3444 * The adjusted alloc_flags might result in immediate success, so try
3445 * that first
3446 */
3447 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3448 if (page)
3449 goto got_pg;
3450
3451 /*
3452 * For costly allocations, try direct compaction first, as it's likely
3453 * that we have enough base pages and don't need to reclaim. Don't try
3454 * that for allocations that are allowed to ignore watermarks, as the
3455 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3456 */
3457 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3458 !gfp_pfmemalloc_allowed(gfp_mask)) {
3459 page = __alloc_pages_direct_compact(gfp_mask, order,
3460 alloc_flags, ac,
3461 INIT_COMPACT_PRIORITY,
3462 &compact_result);
3463 if (page)
3464 goto got_pg;
3465
3466 /*
3467 * Checks for costly allocations with __GFP_NORETRY, which
3468 * includes THP page fault allocations
3469 */
3470 if (gfp_mask & __GFP_NORETRY) {
3471 /*
3472 * If compaction is deferred for high-order allocations,
3473 * it is because sync compaction recently failed. If
3474 * this is the case and the caller requested a THP
3475 * allocation, we do not want to heavily disrupt the
3476 * system, so we fail the allocation instead of entering
3477 * direct reclaim.
3478 */
3479 if (compact_result == COMPACT_DEFERRED)
3480 goto nopage;
3481
3482 /*
3483 * Looks like reclaim/compaction is worth trying, but
3484 * sync compaction could be very expensive, so keep
3485 * using async compaction.
3486 */
3487 compact_priority = INIT_COMPACT_PRIORITY;
3488 }
3489 }
3490
3491 retry:
3492 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3493 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3494 wake_all_kswapds(order, ac);
3495
3496 if (gfp_pfmemalloc_allowed(gfp_mask))
3497 alloc_flags = ALLOC_NO_WATERMARKS;
3498
3499 /*
3500 * Reset the zonelist iterators if memory policies can be ignored.
3501 * These allocations are high priority and system rather than user
3502 * orientated.
3503 */
3504 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3505 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3506 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3507 ac->high_zoneidx, ac->nodemask);
3508 }
3509
3510 /* Attempt with potentially adjusted zonelist and alloc_flags */
3511 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3512 if (page)
3513 goto got_pg;
3514
3515 /* Caller is not willing to reclaim, we can't balance anything */
3516 if (!can_direct_reclaim) {
3517 /*
3518 * All existing users of the __GFP_NOFAIL are blockable, so warn
3519 * of any new users that actually allow this type of allocation
3520 * to fail.
3521 */
3522 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3523 goto nopage;
3524 }
3525
3526 /* Avoid recursion of direct reclaim */
3527 if (current->flags & PF_MEMALLOC) {
3528 /*
3529 * __GFP_NOFAIL request from this context is rather bizarre
3530 * because we cannot reclaim anything and only can loop waiting
3531 * for somebody to do a work for us.
3532 */
3533 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3534 cond_resched();
3535 goto retry;
3536 }
3537 goto nopage;
3538 }
3539
3540 /* Avoid allocations with no watermarks from looping endlessly */
3541 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3542 goto nopage;
3543
3544
3545 /* Try direct reclaim and then allocating */
3546 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3547 &did_some_progress);
3548 if (page)
3549 goto got_pg;
3550
3551 /* Try direct compaction and then allocating */
3552 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3553 compact_priority, &compact_result);
3554 if (page)
3555 goto got_pg;
3556
3557 if (order && compaction_made_progress(compact_result))
3558 compaction_retries++;
3559
3560 /* Do not loop if specifically requested */
3561 if (gfp_mask & __GFP_NORETRY)
3562 goto nopage;
3563
3564 /*
3565 * Do not retry costly high order allocations unless they are
3566 * __GFP_REPEAT
3567 */
3568 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3569 goto nopage;
3570
3571 /*
3572 * Costly allocations might have made a progress but this doesn't mean
3573 * their order will become available due to high fragmentation so
3574 * always increment the no progress counter for them
3575 */
3576 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3577 no_progress_loops = 0;
3578 else
3579 no_progress_loops++;
3580
3581 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3582 did_some_progress > 0, no_progress_loops))
3583 goto retry;
3584
3585 /*
3586 * It doesn't make any sense to retry for the compaction if the order-0
3587 * reclaim is not able to make any progress because the current
3588 * implementation of the compaction depends on the sufficient amount
3589 * of free memory (see __compaction_suitable)
3590 */
3591 if (did_some_progress > 0 &&
3592 should_compact_retry(ac, order, alloc_flags,
3593 compact_result, &compact_priority,
3594 compaction_retries))
3595 goto retry;
3596
3597 /* Reclaim has failed us, start killing things */
3598 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3599 if (page)
3600 goto got_pg;
3601
3602 /* Retry as long as the OOM killer is making progress */
3603 if (did_some_progress) {
3604 no_progress_loops = 0;
3605 goto retry;
3606 }
3607
3608 nopage:
3609 warn_alloc_failed(gfp_mask, order, NULL);
3610 got_pg:
3611 return page;
3612 }
3613
3614 /*
3615 * This is the 'heart' of the zoned buddy allocator.
3616 */
3617 struct page *
3618 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3619 struct zonelist *zonelist, nodemask_t *nodemask)
3620 {
3621 struct page *page;
3622 unsigned int cpuset_mems_cookie;
3623 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3624 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3625 struct alloc_context ac = {
3626 .high_zoneidx = gfp_zone(gfp_mask),
3627 .zonelist = zonelist,
3628 .nodemask = nodemask,
3629 .migratetype = gfpflags_to_migratetype(gfp_mask),
3630 };
3631
3632 if (cpusets_enabled()) {
3633 alloc_mask |= __GFP_HARDWALL;
3634 alloc_flags |= ALLOC_CPUSET;
3635 if (!ac.nodemask)
3636 ac.nodemask = &cpuset_current_mems_allowed;
3637 }
3638
3639 gfp_mask &= gfp_allowed_mask;
3640
3641 lockdep_trace_alloc(gfp_mask);
3642
3643 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3644
3645 if (should_fail_alloc_page(gfp_mask, order))
3646 return NULL;
3647
3648 /*
3649 * Check the zones suitable for the gfp_mask contain at least one
3650 * valid zone. It's possible to have an empty zonelist as a result
3651 * of __GFP_THISNODE and a memoryless node
3652 */
3653 if (unlikely(!zonelist->_zonerefs->zone))
3654 return NULL;
3655
3656 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3657 alloc_flags |= ALLOC_CMA;
3658
3659 retry_cpuset:
3660 cpuset_mems_cookie = read_mems_allowed_begin();
3661
3662 /* Dirty zone balancing only done in the fast path */
3663 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3664
3665 /*
3666 * The preferred zone is used for statistics but crucially it is
3667 * also used as the starting point for the zonelist iterator. It
3668 * may get reset for allocations that ignore memory policies.
3669 */
3670 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3671 ac.high_zoneidx, ac.nodemask);
3672 if (!ac.preferred_zoneref) {
3673 page = NULL;
3674 goto no_zone;
3675 }
3676
3677 /* First allocation attempt */
3678 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3679 if (likely(page))
3680 goto out;
3681
3682 /*
3683 * Runtime PM, block IO and its error handling path can deadlock
3684 * because I/O on the device might not complete.
3685 */
3686 alloc_mask = memalloc_noio_flags(gfp_mask);
3687 ac.spread_dirty_pages = false;
3688
3689 /*
3690 * Restore the original nodemask if it was potentially replaced with
3691 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3692 */
3693 if (cpusets_enabled())
3694 ac.nodemask = nodemask;
3695 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3696
3697 no_zone:
3698 /*
3699 * When updating a task's mems_allowed, it is possible to race with
3700 * parallel threads in such a way that an allocation can fail while
3701 * the mask is being updated. If a page allocation is about to fail,
3702 * check if the cpuset changed during allocation and if so, retry.
3703 */
3704 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3705 alloc_mask = gfp_mask;
3706 goto retry_cpuset;
3707 }
3708
3709 out:
3710 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3711 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3712 __free_pages(page, order);
3713 page = NULL;
3714 }
3715
3716 if (kmemcheck_enabled && page)
3717 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3718
3719 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3720
3721 return page;
3722 }
3723 EXPORT_SYMBOL(__alloc_pages_nodemask);
3724
3725 /*
3726 * Common helper functions.
3727 */
3728 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3729 {
3730 struct page *page;
3731
3732 /*
3733 * __get_free_pages() returns a 32-bit address, which cannot represent
3734 * a highmem page
3735 */
3736 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3737
3738 page = alloc_pages(gfp_mask, order);
3739 if (!page)
3740 return 0;
3741 return (unsigned long) page_address(page);
3742 }
3743 EXPORT_SYMBOL(__get_free_pages);
3744
3745 unsigned long get_zeroed_page(gfp_t gfp_mask)
3746 {
3747 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3748 }
3749 EXPORT_SYMBOL(get_zeroed_page);
3750
3751 void __free_pages(struct page *page, unsigned int order)
3752 {
3753 if (put_page_testzero(page)) {
3754 if (order == 0)
3755 free_hot_cold_page(page, false);
3756 else
3757 __free_pages_ok(page, order);
3758 }
3759 }
3760
3761 EXPORT_SYMBOL(__free_pages);
3762
3763 void free_pages(unsigned long addr, unsigned int order)
3764 {
3765 if (addr != 0) {
3766 VM_BUG_ON(!virt_addr_valid((void *)addr));
3767 __free_pages(virt_to_page((void *)addr), order);
3768 }
3769 }
3770
3771 EXPORT_SYMBOL(free_pages);
3772
3773 /*
3774 * Page Fragment:
3775 * An arbitrary-length arbitrary-offset area of memory which resides
3776 * within a 0 or higher order page. Multiple fragments within that page
3777 * are individually refcounted, in the page's reference counter.
3778 *
3779 * The page_frag functions below provide a simple allocation framework for
3780 * page fragments. This is used by the network stack and network device
3781 * drivers to provide a backing region of memory for use as either an
3782 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3783 */
3784 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3785 gfp_t gfp_mask)
3786 {
3787 struct page *page = NULL;
3788 gfp_t gfp = gfp_mask;
3789
3790 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3791 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3792 __GFP_NOMEMALLOC;
3793 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3794 PAGE_FRAG_CACHE_MAX_ORDER);
3795 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3796 #endif
3797 if (unlikely(!page))
3798 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3799
3800 nc->va = page ? page_address(page) : NULL;
3801
3802 return page;
3803 }
3804
3805 void *__alloc_page_frag(struct page_frag_cache *nc,
3806 unsigned int fragsz, gfp_t gfp_mask)
3807 {
3808 unsigned int size = PAGE_SIZE;
3809 struct page *page;
3810 int offset;
3811
3812 if (unlikely(!nc->va)) {
3813 refill:
3814 page = __page_frag_refill(nc, gfp_mask);
3815 if (!page)
3816 return NULL;
3817
3818 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3819 /* if size can vary use size else just use PAGE_SIZE */
3820 size = nc->size;
3821 #endif
3822 /* Even if we own the page, we do not use atomic_set().
3823 * This would break get_page_unless_zero() users.
3824 */
3825 page_ref_add(page, size - 1);
3826
3827 /* reset page count bias and offset to start of new frag */
3828 nc->pfmemalloc = page_is_pfmemalloc(page);
3829 nc->pagecnt_bias = size;
3830 nc->offset = size;
3831 }
3832
3833 offset = nc->offset - fragsz;
3834 if (unlikely(offset < 0)) {
3835 page = virt_to_page(nc->va);
3836
3837 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3838 goto refill;
3839
3840 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3841 /* if size can vary use size else just use PAGE_SIZE */
3842 size = nc->size;
3843 #endif
3844 /* OK, page count is 0, we can safely set it */
3845 set_page_count(page, size);
3846
3847 /* reset page count bias and offset to start of new frag */
3848 nc->pagecnt_bias = size;
3849 offset = size - fragsz;
3850 }
3851
3852 nc->pagecnt_bias--;
3853 nc->offset = offset;
3854
3855 return nc->va + offset;
3856 }
3857 EXPORT_SYMBOL(__alloc_page_frag);
3858
3859 /*
3860 * Frees a page fragment allocated out of either a compound or order 0 page.
3861 */
3862 void __free_page_frag(void *addr)
3863 {
3864 struct page *page = virt_to_head_page(addr);
3865
3866 if (unlikely(put_page_testzero(page)))
3867 __free_pages_ok(page, compound_order(page));
3868 }
3869 EXPORT_SYMBOL(__free_page_frag);
3870
3871 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3872 size_t size)
3873 {
3874 if (addr) {
3875 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3876 unsigned long used = addr + PAGE_ALIGN(size);
3877
3878 split_page(virt_to_page((void *)addr), order);
3879 while (used < alloc_end) {
3880 free_page(used);
3881 used += PAGE_SIZE;
3882 }
3883 }
3884 return (void *)addr;
3885 }
3886
3887 /**
3888 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3889 * @size: the number of bytes to allocate
3890 * @gfp_mask: GFP flags for the allocation
3891 *
3892 * This function is similar to alloc_pages(), except that it allocates the
3893 * minimum number of pages to satisfy the request. alloc_pages() can only
3894 * allocate memory in power-of-two pages.
3895 *
3896 * This function is also limited by MAX_ORDER.
3897 *
3898 * Memory allocated by this function must be released by free_pages_exact().
3899 */
3900 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3901 {
3902 unsigned int order = get_order(size);
3903 unsigned long addr;
3904
3905 addr = __get_free_pages(gfp_mask, order);
3906 return make_alloc_exact(addr, order, size);
3907 }
3908 EXPORT_SYMBOL(alloc_pages_exact);
3909
3910 /**
3911 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3912 * pages on a node.
3913 * @nid: the preferred node ID where memory should be allocated
3914 * @size: the number of bytes to allocate
3915 * @gfp_mask: GFP flags for the allocation
3916 *
3917 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3918 * back.
3919 */
3920 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3921 {
3922 unsigned int order = get_order(size);
3923 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3924 if (!p)
3925 return NULL;
3926 return make_alloc_exact((unsigned long)page_address(p), order, size);
3927 }
3928
3929 /**
3930 * free_pages_exact - release memory allocated via alloc_pages_exact()
3931 * @virt: the value returned by alloc_pages_exact.
3932 * @size: size of allocation, same value as passed to alloc_pages_exact().
3933 *
3934 * Release the memory allocated by a previous call to alloc_pages_exact.
3935 */
3936 void free_pages_exact(void *virt, size_t size)
3937 {
3938 unsigned long addr = (unsigned long)virt;
3939 unsigned long end = addr + PAGE_ALIGN(size);
3940
3941 while (addr < end) {
3942 free_page(addr);
3943 addr += PAGE_SIZE;
3944 }
3945 }
3946 EXPORT_SYMBOL(free_pages_exact);
3947
3948 /**
3949 * nr_free_zone_pages - count number of pages beyond high watermark
3950 * @offset: The zone index of the highest zone
3951 *
3952 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3953 * high watermark within all zones at or below a given zone index. For each
3954 * zone, the number of pages is calculated as:
3955 * managed_pages - high_pages
3956 */
3957 static unsigned long nr_free_zone_pages(int offset)
3958 {
3959 struct zoneref *z;
3960 struct zone *zone;
3961
3962 /* Just pick one node, since fallback list is circular */
3963 unsigned long sum = 0;
3964
3965 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3966
3967 for_each_zone_zonelist(zone, z, zonelist, offset) {
3968 unsigned long size = zone->managed_pages;
3969 unsigned long high = high_wmark_pages(zone);
3970 if (size > high)
3971 sum += size - high;
3972 }
3973
3974 return sum;
3975 }
3976
3977 /**
3978 * nr_free_buffer_pages - count number of pages beyond high watermark
3979 *
3980 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3981 * watermark within ZONE_DMA and ZONE_NORMAL.
3982 */
3983 unsigned long nr_free_buffer_pages(void)
3984 {
3985 return nr_free_zone_pages(gfp_zone(GFP_USER));
3986 }
3987 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3988
3989 /**
3990 * nr_free_pagecache_pages - count number of pages beyond high watermark
3991 *
3992 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3993 * high watermark within all zones.
3994 */
3995 unsigned long nr_free_pagecache_pages(void)
3996 {
3997 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3998 }
3999
4000 static inline void show_node(struct zone *zone)
4001 {
4002 if (IS_ENABLED(CONFIG_NUMA))
4003 printk("Node %d ", zone_to_nid(zone));
4004 }
4005
4006 long si_mem_available(void)
4007 {
4008 long available;
4009 unsigned long pagecache;
4010 unsigned long wmark_low = 0;
4011 unsigned long pages[NR_LRU_LISTS];
4012 struct zone *zone;
4013 int lru;
4014
4015 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4016 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4017
4018 for_each_zone(zone)
4019 wmark_low += zone->watermark[WMARK_LOW];
4020
4021 /*
4022 * Estimate the amount of memory available for userspace allocations,
4023 * without causing swapping.
4024 */
4025 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4026
4027 /*
4028 * Not all the page cache can be freed, otherwise the system will
4029 * start swapping. Assume at least half of the page cache, or the
4030 * low watermark worth of cache, needs to stay.
4031 */
4032 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4033 pagecache -= min(pagecache / 2, wmark_low);
4034 available += pagecache;
4035
4036 /*
4037 * Part of the reclaimable slab consists of items that are in use,
4038 * and cannot be freed. Cap this estimate at the low watermark.
4039 */
4040 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4041 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4042
4043 if (available < 0)
4044 available = 0;
4045 return available;
4046 }
4047 EXPORT_SYMBOL_GPL(si_mem_available);
4048
4049 void si_meminfo(struct sysinfo *val)
4050 {
4051 val->totalram = totalram_pages;
4052 val->sharedram = global_node_page_state(NR_SHMEM);
4053 val->freeram = global_page_state(NR_FREE_PAGES);
4054 val->bufferram = nr_blockdev_pages();
4055 val->totalhigh = totalhigh_pages;
4056 val->freehigh = nr_free_highpages();
4057 val->mem_unit = PAGE_SIZE;
4058 }
4059
4060 EXPORT_SYMBOL(si_meminfo);
4061
4062 #ifdef CONFIG_NUMA
4063 void si_meminfo_node(struct sysinfo *val, int nid)
4064 {
4065 int zone_type; /* needs to be signed */
4066 unsigned long managed_pages = 0;
4067 unsigned long managed_highpages = 0;
4068 unsigned long free_highpages = 0;
4069 pg_data_t *pgdat = NODE_DATA(nid);
4070
4071 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4072 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4073 val->totalram = managed_pages;
4074 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4075 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4076 #ifdef CONFIG_HIGHMEM
4077 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4078 struct zone *zone = &pgdat->node_zones[zone_type];
4079
4080 if (is_highmem(zone)) {
4081 managed_highpages += zone->managed_pages;
4082 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4083 }
4084 }
4085 val->totalhigh = managed_highpages;
4086 val->freehigh = free_highpages;
4087 #else
4088 val->totalhigh = managed_highpages;
4089 val->freehigh = free_highpages;
4090 #endif
4091 val->mem_unit = PAGE_SIZE;
4092 }
4093 #endif
4094
4095 /*
4096 * Determine whether the node should be displayed or not, depending on whether
4097 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4098 */
4099 bool skip_free_areas_node(unsigned int flags, int nid)
4100 {
4101 bool ret = false;
4102 unsigned int cpuset_mems_cookie;
4103
4104 if (!(flags & SHOW_MEM_FILTER_NODES))
4105 goto out;
4106
4107 do {
4108 cpuset_mems_cookie = read_mems_allowed_begin();
4109 ret = !node_isset(nid, cpuset_current_mems_allowed);
4110 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4111 out:
4112 return ret;
4113 }
4114
4115 #define K(x) ((x) << (PAGE_SHIFT-10))
4116
4117 static void show_migration_types(unsigned char type)
4118 {
4119 static const char types[MIGRATE_TYPES] = {
4120 [MIGRATE_UNMOVABLE] = 'U',
4121 [MIGRATE_MOVABLE] = 'M',
4122 [MIGRATE_RECLAIMABLE] = 'E',
4123 [MIGRATE_HIGHATOMIC] = 'H',
4124 #ifdef CONFIG_CMA
4125 [MIGRATE_CMA] = 'C',
4126 #endif
4127 #ifdef CONFIG_MEMORY_ISOLATION
4128 [MIGRATE_ISOLATE] = 'I',
4129 #endif
4130 };
4131 char tmp[MIGRATE_TYPES + 1];
4132 char *p = tmp;
4133 int i;
4134
4135 for (i = 0; i < MIGRATE_TYPES; i++) {
4136 if (type & (1 << i))
4137 *p++ = types[i];
4138 }
4139
4140 *p = '\0';
4141 printk("(%s) ", tmp);
4142 }
4143
4144 /*
4145 * Show free area list (used inside shift_scroll-lock stuff)
4146 * We also calculate the percentage fragmentation. We do this by counting the
4147 * memory on each free list with the exception of the first item on the list.
4148 *
4149 * Bits in @filter:
4150 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4151 * cpuset.
4152 */
4153 void show_free_areas(unsigned int filter)
4154 {
4155 unsigned long free_pcp = 0;
4156 int cpu;
4157 struct zone *zone;
4158 pg_data_t *pgdat;
4159
4160 for_each_populated_zone(zone) {
4161 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4162 continue;
4163
4164 for_each_online_cpu(cpu)
4165 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4166 }
4167
4168 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4169 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4170 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4171 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4172 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4173 " free:%lu free_pcp:%lu free_cma:%lu\n",
4174 global_node_page_state(NR_ACTIVE_ANON),
4175 global_node_page_state(NR_INACTIVE_ANON),
4176 global_node_page_state(NR_ISOLATED_ANON),
4177 global_node_page_state(NR_ACTIVE_FILE),
4178 global_node_page_state(NR_INACTIVE_FILE),
4179 global_node_page_state(NR_ISOLATED_FILE),
4180 global_node_page_state(NR_UNEVICTABLE),
4181 global_node_page_state(NR_FILE_DIRTY),
4182 global_node_page_state(NR_WRITEBACK),
4183 global_node_page_state(NR_UNSTABLE_NFS),
4184 global_page_state(NR_SLAB_RECLAIMABLE),
4185 global_page_state(NR_SLAB_UNRECLAIMABLE),
4186 global_node_page_state(NR_FILE_MAPPED),
4187 global_node_page_state(NR_SHMEM),
4188 global_page_state(NR_PAGETABLE),
4189 global_page_state(NR_BOUNCE),
4190 global_page_state(NR_FREE_PAGES),
4191 free_pcp,
4192 global_page_state(NR_FREE_CMA_PAGES));
4193
4194 for_each_online_pgdat(pgdat) {
4195 printk("Node %d"
4196 " active_anon:%lukB"
4197 " inactive_anon:%lukB"
4198 " active_file:%lukB"
4199 " inactive_file:%lukB"
4200 " unevictable:%lukB"
4201 " isolated(anon):%lukB"
4202 " isolated(file):%lukB"
4203 " mapped:%lukB"
4204 " dirty:%lukB"
4205 " writeback:%lukB"
4206 " shmem:%lukB"
4207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4208 " shmem_thp: %lukB"
4209 " shmem_pmdmapped: %lukB"
4210 " anon_thp: %lukB"
4211 #endif
4212 " writeback_tmp:%lukB"
4213 " unstable:%lukB"
4214 " pages_scanned:%lu"
4215 " all_unreclaimable? %s"
4216 "\n",
4217 pgdat->node_id,
4218 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4219 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4220 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4221 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4222 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4223 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4224 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4225 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4226 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4227 K(node_page_state(pgdat, NR_WRITEBACK)),
4228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4230 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4231 * HPAGE_PMD_NR),
4232 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4233 #endif
4234 K(node_page_state(pgdat, NR_SHMEM)),
4235 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4236 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4237 node_page_state(pgdat, NR_PAGES_SCANNED),
4238 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4239 }
4240
4241 for_each_populated_zone(zone) {
4242 int i;
4243
4244 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4245 continue;
4246
4247 free_pcp = 0;
4248 for_each_online_cpu(cpu)
4249 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4250
4251 show_node(zone);
4252 printk("%s"
4253 " free:%lukB"
4254 " min:%lukB"
4255 " low:%lukB"
4256 " high:%lukB"
4257 " active_anon:%lukB"
4258 " inactive_anon:%lukB"
4259 " active_file:%lukB"
4260 " inactive_file:%lukB"
4261 " unevictable:%lukB"
4262 " writepending:%lukB"
4263 " present:%lukB"
4264 " managed:%lukB"
4265 " mlocked:%lukB"
4266 " slab_reclaimable:%lukB"
4267 " slab_unreclaimable:%lukB"
4268 " kernel_stack:%lukB"
4269 " pagetables:%lukB"
4270 " bounce:%lukB"
4271 " free_pcp:%lukB"
4272 " local_pcp:%ukB"
4273 " free_cma:%lukB"
4274 "\n",
4275 zone->name,
4276 K(zone_page_state(zone, NR_FREE_PAGES)),
4277 K(min_wmark_pages(zone)),
4278 K(low_wmark_pages(zone)),
4279 K(high_wmark_pages(zone)),
4280 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4281 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4282 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4283 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4284 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4285 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4286 K(zone->present_pages),
4287 K(zone->managed_pages),
4288 K(zone_page_state(zone, NR_MLOCK)),
4289 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4290 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4291 zone_page_state(zone, NR_KERNEL_STACK_KB),
4292 K(zone_page_state(zone, NR_PAGETABLE)),
4293 K(zone_page_state(zone, NR_BOUNCE)),
4294 K(free_pcp),
4295 K(this_cpu_read(zone->pageset->pcp.count)),
4296 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4297 printk("lowmem_reserve[]:");
4298 for (i = 0; i < MAX_NR_ZONES; i++)
4299 printk(" %ld", zone->lowmem_reserve[i]);
4300 printk("\n");
4301 }
4302
4303 for_each_populated_zone(zone) {
4304 unsigned int order;
4305 unsigned long nr[MAX_ORDER], flags, total = 0;
4306 unsigned char types[MAX_ORDER];
4307
4308 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4309 continue;
4310 show_node(zone);
4311 printk("%s: ", zone->name);
4312
4313 spin_lock_irqsave(&zone->lock, flags);
4314 for (order = 0; order < MAX_ORDER; order++) {
4315 struct free_area *area = &zone->free_area[order];
4316 int type;
4317
4318 nr[order] = area->nr_free;
4319 total += nr[order] << order;
4320
4321 types[order] = 0;
4322 for (type = 0; type < MIGRATE_TYPES; type++) {
4323 if (!list_empty(&area->free_list[type]))
4324 types[order] |= 1 << type;
4325 }
4326 }
4327 spin_unlock_irqrestore(&zone->lock, flags);
4328 for (order = 0; order < MAX_ORDER; order++) {
4329 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4330 if (nr[order])
4331 show_migration_types(types[order]);
4332 }
4333 printk("= %lukB\n", K(total));
4334 }
4335
4336 hugetlb_show_meminfo();
4337
4338 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4339
4340 show_swap_cache_info();
4341 }
4342
4343 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4344 {
4345 zoneref->zone = zone;
4346 zoneref->zone_idx = zone_idx(zone);
4347 }
4348
4349 /*
4350 * Builds allocation fallback zone lists.
4351 *
4352 * Add all populated zones of a node to the zonelist.
4353 */
4354 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4355 int nr_zones)
4356 {
4357 struct zone *zone;
4358 enum zone_type zone_type = MAX_NR_ZONES;
4359
4360 do {
4361 zone_type--;
4362 zone = pgdat->node_zones + zone_type;
4363 if (managed_zone(zone)) {
4364 zoneref_set_zone(zone,
4365 &zonelist->_zonerefs[nr_zones++]);
4366 check_highest_zone(zone_type);
4367 }
4368 } while (zone_type);
4369
4370 return nr_zones;
4371 }
4372
4373
4374 /*
4375 * zonelist_order:
4376 * 0 = automatic detection of better ordering.
4377 * 1 = order by ([node] distance, -zonetype)
4378 * 2 = order by (-zonetype, [node] distance)
4379 *
4380 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4381 * the same zonelist. So only NUMA can configure this param.
4382 */
4383 #define ZONELIST_ORDER_DEFAULT 0
4384 #define ZONELIST_ORDER_NODE 1
4385 #define ZONELIST_ORDER_ZONE 2
4386
4387 /* zonelist order in the kernel.
4388 * set_zonelist_order() will set this to NODE or ZONE.
4389 */
4390 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4391 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4392
4393
4394 #ifdef CONFIG_NUMA
4395 /* The value user specified ....changed by config */
4396 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4397 /* string for sysctl */
4398 #define NUMA_ZONELIST_ORDER_LEN 16
4399 char numa_zonelist_order[16] = "default";
4400
4401 /*
4402 * interface for configure zonelist ordering.
4403 * command line option "numa_zonelist_order"
4404 * = "[dD]efault - default, automatic configuration.
4405 * = "[nN]ode - order by node locality, then by zone within node
4406 * = "[zZ]one - order by zone, then by locality within zone
4407 */
4408
4409 static int __parse_numa_zonelist_order(char *s)
4410 {
4411 if (*s == 'd' || *s == 'D') {
4412 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4413 } else if (*s == 'n' || *s == 'N') {
4414 user_zonelist_order = ZONELIST_ORDER_NODE;
4415 } else if (*s == 'z' || *s == 'Z') {
4416 user_zonelist_order = ZONELIST_ORDER_ZONE;
4417 } else {
4418 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4419 return -EINVAL;
4420 }
4421 return 0;
4422 }
4423
4424 static __init int setup_numa_zonelist_order(char *s)
4425 {
4426 int ret;
4427
4428 if (!s)
4429 return 0;
4430
4431 ret = __parse_numa_zonelist_order(s);
4432 if (ret == 0)
4433 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4434
4435 return ret;
4436 }
4437 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4438
4439 /*
4440 * sysctl handler for numa_zonelist_order
4441 */
4442 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4443 void __user *buffer, size_t *length,
4444 loff_t *ppos)
4445 {
4446 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4447 int ret;
4448 static DEFINE_MUTEX(zl_order_mutex);
4449
4450 mutex_lock(&zl_order_mutex);
4451 if (write) {
4452 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4453 ret = -EINVAL;
4454 goto out;
4455 }
4456 strcpy(saved_string, (char *)table->data);
4457 }
4458 ret = proc_dostring(table, write, buffer, length, ppos);
4459 if (ret)
4460 goto out;
4461 if (write) {
4462 int oldval = user_zonelist_order;
4463
4464 ret = __parse_numa_zonelist_order((char *)table->data);
4465 if (ret) {
4466 /*
4467 * bogus value. restore saved string
4468 */
4469 strncpy((char *)table->data, saved_string,
4470 NUMA_ZONELIST_ORDER_LEN);
4471 user_zonelist_order = oldval;
4472 } else if (oldval != user_zonelist_order) {
4473 mutex_lock(&zonelists_mutex);
4474 build_all_zonelists(NULL, NULL);
4475 mutex_unlock(&zonelists_mutex);
4476 }
4477 }
4478 out:
4479 mutex_unlock(&zl_order_mutex);
4480 return ret;
4481 }
4482
4483
4484 #define MAX_NODE_LOAD (nr_online_nodes)
4485 static int node_load[MAX_NUMNODES];
4486
4487 /**
4488 * find_next_best_node - find the next node that should appear in a given node's fallback list
4489 * @node: node whose fallback list we're appending
4490 * @used_node_mask: nodemask_t of already used nodes
4491 *
4492 * We use a number of factors to determine which is the next node that should
4493 * appear on a given node's fallback list. The node should not have appeared
4494 * already in @node's fallback list, and it should be the next closest node
4495 * according to the distance array (which contains arbitrary distance values
4496 * from each node to each node in the system), and should also prefer nodes
4497 * with no CPUs, since presumably they'll have very little allocation pressure
4498 * on them otherwise.
4499 * It returns -1 if no node is found.
4500 */
4501 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4502 {
4503 int n, val;
4504 int min_val = INT_MAX;
4505 int best_node = NUMA_NO_NODE;
4506 const struct cpumask *tmp = cpumask_of_node(0);
4507
4508 /* Use the local node if we haven't already */
4509 if (!node_isset(node, *used_node_mask)) {
4510 node_set(node, *used_node_mask);
4511 return node;
4512 }
4513
4514 for_each_node_state(n, N_MEMORY) {
4515
4516 /* Don't want a node to appear more than once */
4517 if (node_isset(n, *used_node_mask))
4518 continue;
4519
4520 /* Use the distance array to find the distance */
4521 val = node_distance(node, n);
4522
4523 /* Penalize nodes under us ("prefer the next node") */
4524 val += (n < node);
4525
4526 /* Give preference to headless and unused nodes */
4527 tmp = cpumask_of_node(n);
4528 if (!cpumask_empty(tmp))
4529 val += PENALTY_FOR_NODE_WITH_CPUS;
4530
4531 /* Slight preference for less loaded node */
4532 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4533 val += node_load[n];
4534
4535 if (val < min_val) {
4536 min_val = val;
4537 best_node = n;
4538 }
4539 }
4540
4541 if (best_node >= 0)
4542 node_set(best_node, *used_node_mask);
4543
4544 return best_node;
4545 }
4546
4547
4548 /*
4549 * Build zonelists ordered by node and zones within node.
4550 * This results in maximum locality--normal zone overflows into local
4551 * DMA zone, if any--but risks exhausting DMA zone.
4552 */
4553 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4554 {
4555 int j;
4556 struct zonelist *zonelist;
4557
4558 zonelist = &pgdat->node_zonelists[0];
4559 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4560 ;
4561 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4562 zonelist->_zonerefs[j].zone = NULL;
4563 zonelist->_zonerefs[j].zone_idx = 0;
4564 }
4565
4566 /*
4567 * Build gfp_thisnode zonelists
4568 */
4569 static void build_thisnode_zonelists(pg_data_t *pgdat)
4570 {
4571 int j;
4572 struct zonelist *zonelist;
4573
4574 zonelist = &pgdat->node_zonelists[1];
4575 j = build_zonelists_node(pgdat, zonelist, 0);
4576 zonelist->_zonerefs[j].zone = NULL;
4577 zonelist->_zonerefs[j].zone_idx = 0;
4578 }
4579
4580 /*
4581 * Build zonelists ordered by zone and nodes within zones.
4582 * This results in conserving DMA zone[s] until all Normal memory is
4583 * exhausted, but results in overflowing to remote node while memory
4584 * may still exist in local DMA zone.
4585 */
4586 static int node_order[MAX_NUMNODES];
4587
4588 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4589 {
4590 int pos, j, node;
4591 int zone_type; /* needs to be signed */
4592 struct zone *z;
4593 struct zonelist *zonelist;
4594
4595 zonelist = &pgdat->node_zonelists[0];
4596 pos = 0;
4597 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4598 for (j = 0; j < nr_nodes; j++) {
4599 node = node_order[j];
4600 z = &NODE_DATA(node)->node_zones[zone_type];
4601 if (managed_zone(z)) {
4602 zoneref_set_zone(z,
4603 &zonelist->_zonerefs[pos++]);
4604 check_highest_zone(zone_type);
4605 }
4606 }
4607 }
4608 zonelist->_zonerefs[pos].zone = NULL;
4609 zonelist->_zonerefs[pos].zone_idx = 0;
4610 }
4611
4612 #if defined(CONFIG_64BIT)
4613 /*
4614 * Devices that require DMA32/DMA are relatively rare and do not justify a
4615 * penalty to every machine in case the specialised case applies. Default
4616 * to Node-ordering on 64-bit NUMA machines
4617 */
4618 static int default_zonelist_order(void)
4619 {
4620 return ZONELIST_ORDER_NODE;
4621 }
4622 #else
4623 /*
4624 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4625 * by the kernel. If processes running on node 0 deplete the low memory zone
4626 * then reclaim will occur more frequency increasing stalls and potentially
4627 * be easier to OOM if a large percentage of the zone is under writeback or
4628 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4629 * Hence, default to zone ordering on 32-bit.
4630 */
4631 static int default_zonelist_order(void)
4632 {
4633 return ZONELIST_ORDER_ZONE;
4634 }
4635 #endif /* CONFIG_64BIT */
4636
4637 static void set_zonelist_order(void)
4638 {
4639 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4640 current_zonelist_order = default_zonelist_order();
4641 else
4642 current_zonelist_order = user_zonelist_order;
4643 }
4644
4645 static void build_zonelists(pg_data_t *pgdat)
4646 {
4647 int i, node, load;
4648 nodemask_t used_mask;
4649 int local_node, prev_node;
4650 struct zonelist *zonelist;
4651 unsigned int order = current_zonelist_order;
4652
4653 /* initialize zonelists */
4654 for (i = 0; i < MAX_ZONELISTS; i++) {
4655 zonelist = pgdat->node_zonelists + i;
4656 zonelist->_zonerefs[0].zone = NULL;
4657 zonelist->_zonerefs[0].zone_idx = 0;
4658 }
4659
4660 /* NUMA-aware ordering of nodes */
4661 local_node = pgdat->node_id;
4662 load = nr_online_nodes;
4663 prev_node = local_node;
4664 nodes_clear(used_mask);
4665
4666 memset(node_order, 0, sizeof(node_order));
4667 i = 0;
4668
4669 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4670 /*
4671 * We don't want to pressure a particular node.
4672 * So adding penalty to the first node in same
4673 * distance group to make it round-robin.
4674 */
4675 if (node_distance(local_node, node) !=
4676 node_distance(local_node, prev_node))
4677 node_load[node] = load;
4678
4679 prev_node = node;
4680 load--;
4681 if (order == ZONELIST_ORDER_NODE)
4682 build_zonelists_in_node_order(pgdat, node);
4683 else
4684 node_order[i++] = node; /* remember order */
4685 }
4686
4687 if (order == ZONELIST_ORDER_ZONE) {
4688 /* calculate node order -- i.e., DMA last! */
4689 build_zonelists_in_zone_order(pgdat, i);
4690 }
4691
4692 build_thisnode_zonelists(pgdat);
4693 }
4694
4695 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4696 /*
4697 * Return node id of node used for "local" allocations.
4698 * I.e., first node id of first zone in arg node's generic zonelist.
4699 * Used for initializing percpu 'numa_mem', which is used primarily
4700 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4701 */
4702 int local_memory_node(int node)
4703 {
4704 struct zoneref *z;
4705
4706 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4707 gfp_zone(GFP_KERNEL),
4708 NULL);
4709 return z->zone->node;
4710 }
4711 #endif
4712
4713 static void setup_min_unmapped_ratio(void);
4714 static void setup_min_slab_ratio(void);
4715 #else /* CONFIG_NUMA */
4716
4717 static void set_zonelist_order(void)
4718 {
4719 current_zonelist_order = ZONELIST_ORDER_ZONE;
4720 }
4721
4722 static void build_zonelists(pg_data_t *pgdat)
4723 {
4724 int node, local_node;
4725 enum zone_type j;
4726 struct zonelist *zonelist;
4727
4728 local_node = pgdat->node_id;
4729
4730 zonelist = &pgdat->node_zonelists[0];
4731 j = build_zonelists_node(pgdat, zonelist, 0);
4732
4733 /*
4734 * Now we build the zonelist so that it contains the zones
4735 * of all the other nodes.
4736 * We don't want to pressure a particular node, so when
4737 * building the zones for node N, we make sure that the
4738 * zones coming right after the local ones are those from
4739 * node N+1 (modulo N)
4740 */
4741 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4742 if (!node_online(node))
4743 continue;
4744 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4745 }
4746 for (node = 0; node < local_node; node++) {
4747 if (!node_online(node))
4748 continue;
4749 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4750 }
4751
4752 zonelist->_zonerefs[j].zone = NULL;
4753 zonelist->_zonerefs[j].zone_idx = 0;
4754 }
4755
4756 #endif /* CONFIG_NUMA */
4757
4758 /*
4759 * Boot pageset table. One per cpu which is going to be used for all
4760 * zones and all nodes. The parameters will be set in such a way
4761 * that an item put on a list will immediately be handed over to
4762 * the buddy list. This is safe since pageset manipulation is done
4763 * with interrupts disabled.
4764 *
4765 * The boot_pagesets must be kept even after bootup is complete for
4766 * unused processors and/or zones. They do play a role for bootstrapping
4767 * hotplugged processors.
4768 *
4769 * zoneinfo_show() and maybe other functions do
4770 * not check if the processor is online before following the pageset pointer.
4771 * Other parts of the kernel may not check if the zone is available.
4772 */
4773 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4774 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4775 static void setup_zone_pageset(struct zone *zone);
4776
4777 /*
4778 * Global mutex to protect against size modification of zonelists
4779 * as well as to serialize pageset setup for the new populated zone.
4780 */
4781 DEFINE_MUTEX(zonelists_mutex);
4782
4783 /* return values int ....just for stop_machine() */
4784 static int __build_all_zonelists(void *data)
4785 {
4786 int nid;
4787 int cpu;
4788 pg_data_t *self = data;
4789
4790 #ifdef CONFIG_NUMA
4791 memset(node_load, 0, sizeof(node_load));
4792 #endif
4793
4794 if (self && !node_online(self->node_id)) {
4795 build_zonelists(self);
4796 }
4797
4798 for_each_online_node(nid) {
4799 pg_data_t *pgdat = NODE_DATA(nid);
4800
4801 build_zonelists(pgdat);
4802 }
4803
4804 /*
4805 * Initialize the boot_pagesets that are going to be used
4806 * for bootstrapping processors. The real pagesets for
4807 * each zone will be allocated later when the per cpu
4808 * allocator is available.
4809 *
4810 * boot_pagesets are used also for bootstrapping offline
4811 * cpus if the system is already booted because the pagesets
4812 * are needed to initialize allocators on a specific cpu too.
4813 * F.e. the percpu allocator needs the page allocator which
4814 * needs the percpu allocator in order to allocate its pagesets
4815 * (a chicken-egg dilemma).
4816 */
4817 for_each_possible_cpu(cpu) {
4818 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4819
4820 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4821 /*
4822 * We now know the "local memory node" for each node--
4823 * i.e., the node of the first zone in the generic zonelist.
4824 * Set up numa_mem percpu variable for on-line cpus. During
4825 * boot, only the boot cpu should be on-line; we'll init the
4826 * secondary cpus' numa_mem as they come on-line. During
4827 * node/memory hotplug, we'll fixup all on-line cpus.
4828 */
4829 if (cpu_online(cpu))
4830 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4831 #endif
4832 }
4833
4834 return 0;
4835 }
4836
4837 static noinline void __init
4838 build_all_zonelists_init(void)
4839 {
4840 __build_all_zonelists(NULL);
4841 mminit_verify_zonelist();
4842 cpuset_init_current_mems_allowed();
4843 }
4844
4845 /*
4846 * Called with zonelists_mutex held always
4847 * unless system_state == SYSTEM_BOOTING.
4848 *
4849 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4850 * [we're only called with non-NULL zone through __meminit paths] and
4851 * (2) call of __init annotated helper build_all_zonelists_init
4852 * [protected by SYSTEM_BOOTING].
4853 */
4854 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4855 {
4856 set_zonelist_order();
4857
4858 if (system_state == SYSTEM_BOOTING) {
4859 build_all_zonelists_init();
4860 } else {
4861 #ifdef CONFIG_MEMORY_HOTPLUG
4862 if (zone)
4863 setup_zone_pageset(zone);
4864 #endif
4865 /* we have to stop all cpus to guarantee there is no user
4866 of zonelist */
4867 stop_machine(__build_all_zonelists, pgdat, NULL);
4868 /* cpuset refresh routine should be here */
4869 }
4870 vm_total_pages = nr_free_pagecache_pages();
4871 /*
4872 * Disable grouping by mobility if the number of pages in the
4873 * system is too low to allow the mechanism to work. It would be
4874 * more accurate, but expensive to check per-zone. This check is
4875 * made on memory-hotadd so a system can start with mobility
4876 * disabled and enable it later
4877 */
4878 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4879 page_group_by_mobility_disabled = 1;
4880 else
4881 page_group_by_mobility_disabled = 0;
4882
4883 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4884 nr_online_nodes,
4885 zonelist_order_name[current_zonelist_order],
4886 page_group_by_mobility_disabled ? "off" : "on",
4887 vm_total_pages);
4888 #ifdef CONFIG_NUMA
4889 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4890 #endif
4891 }
4892
4893 /*
4894 * Helper functions to size the waitqueue hash table.
4895 * Essentially these want to choose hash table sizes sufficiently
4896 * large so that collisions trying to wait on pages are rare.
4897 * But in fact, the number of active page waitqueues on typical
4898 * systems is ridiculously low, less than 200. So this is even
4899 * conservative, even though it seems large.
4900 *
4901 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4902 * waitqueues, i.e. the size of the waitq table given the number of pages.
4903 */
4904 #define PAGES_PER_WAITQUEUE 256
4905
4906 #ifndef CONFIG_MEMORY_HOTPLUG
4907 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4908 {
4909 unsigned long size = 1;
4910
4911 pages /= PAGES_PER_WAITQUEUE;
4912
4913 while (size < pages)
4914 size <<= 1;
4915
4916 /*
4917 * Once we have dozens or even hundreds of threads sleeping
4918 * on IO we've got bigger problems than wait queue collision.
4919 * Limit the size of the wait table to a reasonable size.
4920 */
4921 size = min(size, 4096UL);
4922
4923 return max(size, 4UL);
4924 }
4925 #else
4926 /*
4927 * A zone's size might be changed by hot-add, so it is not possible to determine
4928 * a suitable size for its wait_table. So we use the maximum size now.
4929 *
4930 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4931 *
4932 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4933 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4934 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4935 *
4936 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4937 * or more by the traditional way. (See above). It equals:
4938 *
4939 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4940 * ia64(16K page size) : = ( 8G + 4M)byte.
4941 * powerpc (64K page size) : = (32G +16M)byte.
4942 */
4943 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4944 {
4945 return 4096UL;
4946 }
4947 #endif
4948
4949 /*
4950 * This is an integer logarithm so that shifts can be used later
4951 * to extract the more random high bits from the multiplicative
4952 * hash function before the remainder is taken.
4953 */
4954 static inline unsigned long wait_table_bits(unsigned long size)
4955 {
4956 return ffz(~size);
4957 }
4958
4959 /*
4960 * Initially all pages are reserved - free ones are freed
4961 * up by free_all_bootmem() once the early boot process is
4962 * done. Non-atomic initialization, single-pass.
4963 */
4964 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4965 unsigned long start_pfn, enum memmap_context context)
4966 {
4967 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4968 unsigned long end_pfn = start_pfn + size;
4969 pg_data_t *pgdat = NODE_DATA(nid);
4970 unsigned long pfn;
4971 unsigned long nr_initialised = 0;
4972 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4973 struct memblock_region *r = NULL, *tmp;
4974 #endif
4975
4976 if (highest_memmap_pfn < end_pfn - 1)
4977 highest_memmap_pfn = end_pfn - 1;
4978
4979 /*
4980 * Honor reservation requested by the driver for this ZONE_DEVICE
4981 * memory
4982 */
4983 if (altmap && start_pfn == altmap->base_pfn)
4984 start_pfn += altmap->reserve;
4985
4986 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4987 /*
4988 * There can be holes in boot-time mem_map[]s handed to this
4989 * function. They do not exist on hotplugged memory.
4990 */
4991 if (context != MEMMAP_EARLY)
4992 goto not_early;
4993
4994 if (!early_pfn_valid(pfn))
4995 continue;
4996 if (!early_pfn_in_nid(pfn, nid))
4997 continue;
4998 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4999 break;
5000
5001 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5002 /*
5003 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5004 * from zone_movable_pfn[nid] to end of each node should be
5005 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5006 */
5007 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5008 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5009 continue;
5010
5011 /*
5012 * Check given memblock attribute by firmware which can affect
5013 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5014 * mirrored, it's an overlapped memmap init. skip it.
5015 */
5016 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5017 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5018 for_each_memblock(memory, tmp)
5019 if (pfn < memblock_region_memory_end_pfn(tmp))
5020 break;
5021 r = tmp;
5022 }
5023 if (pfn >= memblock_region_memory_base_pfn(r) &&
5024 memblock_is_mirror(r)) {
5025 /* already initialized as NORMAL */
5026 pfn = memblock_region_memory_end_pfn(r);
5027 continue;
5028 }
5029 }
5030 #endif
5031
5032 not_early:
5033 /*
5034 * Mark the block movable so that blocks are reserved for
5035 * movable at startup. This will force kernel allocations
5036 * to reserve their blocks rather than leaking throughout
5037 * the address space during boot when many long-lived
5038 * kernel allocations are made.
5039 *
5040 * bitmap is created for zone's valid pfn range. but memmap
5041 * can be created for invalid pages (for alignment)
5042 * check here not to call set_pageblock_migratetype() against
5043 * pfn out of zone.
5044 */
5045 if (!(pfn & (pageblock_nr_pages - 1))) {
5046 struct page *page = pfn_to_page(pfn);
5047
5048 __init_single_page(page, pfn, zone, nid);
5049 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5050 } else {
5051 __init_single_pfn(pfn, zone, nid);
5052 }
5053 }
5054 }
5055
5056 static void __meminit zone_init_free_lists(struct zone *zone)
5057 {
5058 unsigned int order, t;
5059 for_each_migratetype_order(order, t) {
5060 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5061 zone->free_area[order].nr_free = 0;
5062 }
5063 }
5064
5065 #ifndef __HAVE_ARCH_MEMMAP_INIT
5066 #define memmap_init(size, nid, zone, start_pfn) \
5067 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5068 #endif
5069
5070 static int zone_batchsize(struct zone *zone)
5071 {
5072 #ifdef CONFIG_MMU
5073 int batch;
5074
5075 /*
5076 * The per-cpu-pages pools are set to around 1000th of the
5077 * size of the zone. But no more than 1/2 of a meg.
5078 *
5079 * OK, so we don't know how big the cache is. So guess.
5080 */
5081 batch = zone->managed_pages / 1024;
5082 if (batch * PAGE_SIZE > 512 * 1024)
5083 batch = (512 * 1024) / PAGE_SIZE;
5084 batch /= 4; /* We effectively *= 4 below */
5085 if (batch < 1)
5086 batch = 1;
5087
5088 /*
5089 * Clamp the batch to a 2^n - 1 value. Having a power
5090 * of 2 value was found to be more likely to have
5091 * suboptimal cache aliasing properties in some cases.
5092 *
5093 * For example if 2 tasks are alternately allocating
5094 * batches of pages, one task can end up with a lot
5095 * of pages of one half of the possible page colors
5096 * and the other with pages of the other colors.
5097 */
5098 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5099
5100 return batch;
5101
5102 #else
5103 /* The deferral and batching of frees should be suppressed under NOMMU
5104 * conditions.
5105 *
5106 * The problem is that NOMMU needs to be able to allocate large chunks
5107 * of contiguous memory as there's no hardware page translation to
5108 * assemble apparent contiguous memory from discontiguous pages.
5109 *
5110 * Queueing large contiguous runs of pages for batching, however,
5111 * causes the pages to actually be freed in smaller chunks. As there
5112 * can be a significant delay between the individual batches being
5113 * recycled, this leads to the once large chunks of space being
5114 * fragmented and becoming unavailable for high-order allocations.
5115 */
5116 return 0;
5117 #endif
5118 }
5119
5120 /*
5121 * pcp->high and pcp->batch values are related and dependent on one another:
5122 * ->batch must never be higher then ->high.
5123 * The following function updates them in a safe manner without read side
5124 * locking.
5125 *
5126 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5127 * those fields changing asynchronously (acording the the above rule).
5128 *
5129 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5130 * outside of boot time (or some other assurance that no concurrent updaters
5131 * exist).
5132 */
5133 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5134 unsigned long batch)
5135 {
5136 /* start with a fail safe value for batch */
5137 pcp->batch = 1;
5138 smp_wmb();
5139
5140 /* Update high, then batch, in order */
5141 pcp->high = high;
5142 smp_wmb();
5143
5144 pcp->batch = batch;
5145 }
5146
5147 /* a companion to pageset_set_high() */
5148 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5149 {
5150 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5151 }
5152
5153 static void pageset_init(struct per_cpu_pageset *p)
5154 {
5155 struct per_cpu_pages *pcp;
5156 int migratetype;
5157
5158 memset(p, 0, sizeof(*p));
5159
5160 pcp = &p->pcp;
5161 pcp->count = 0;
5162 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5163 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5164 }
5165
5166 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5167 {
5168 pageset_init(p);
5169 pageset_set_batch(p, batch);
5170 }
5171
5172 /*
5173 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5174 * to the value high for the pageset p.
5175 */
5176 static void pageset_set_high(struct per_cpu_pageset *p,
5177 unsigned long high)
5178 {
5179 unsigned long batch = max(1UL, high / 4);
5180 if ((high / 4) > (PAGE_SHIFT * 8))
5181 batch = PAGE_SHIFT * 8;
5182
5183 pageset_update(&p->pcp, high, batch);
5184 }
5185
5186 static void pageset_set_high_and_batch(struct zone *zone,
5187 struct per_cpu_pageset *pcp)
5188 {
5189 if (percpu_pagelist_fraction)
5190 pageset_set_high(pcp,
5191 (zone->managed_pages /
5192 percpu_pagelist_fraction));
5193 else
5194 pageset_set_batch(pcp, zone_batchsize(zone));
5195 }
5196
5197 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5198 {
5199 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5200
5201 pageset_init(pcp);
5202 pageset_set_high_and_batch(zone, pcp);
5203 }
5204
5205 static void __meminit setup_zone_pageset(struct zone *zone)
5206 {
5207 int cpu;
5208 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5209 for_each_possible_cpu(cpu)
5210 zone_pageset_init(zone, cpu);
5211 }
5212
5213 /*
5214 * Allocate per cpu pagesets and initialize them.
5215 * Before this call only boot pagesets were available.
5216 */
5217 void __init setup_per_cpu_pageset(void)
5218 {
5219 struct pglist_data *pgdat;
5220 struct zone *zone;
5221
5222 for_each_populated_zone(zone)
5223 setup_zone_pageset(zone);
5224
5225 for_each_online_pgdat(pgdat)
5226 pgdat->per_cpu_nodestats =
5227 alloc_percpu(struct per_cpu_nodestat);
5228 }
5229
5230 static noinline __ref
5231 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5232 {
5233 int i;
5234 size_t alloc_size;
5235
5236 /*
5237 * The per-page waitqueue mechanism uses hashed waitqueues
5238 * per zone.
5239 */
5240 zone->wait_table_hash_nr_entries =
5241 wait_table_hash_nr_entries(zone_size_pages);
5242 zone->wait_table_bits =
5243 wait_table_bits(zone->wait_table_hash_nr_entries);
5244 alloc_size = zone->wait_table_hash_nr_entries
5245 * sizeof(wait_queue_head_t);
5246
5247 if (!slab_is_available()) {
5248 zone->wait_table = (wait_queue_head_t *)
5249 memblock_virt_alloc_node_nopanic(
5250 alloc_size, zone->zone_pgdat->node_id);
5251 } else {
5252 /*
5253 * This case means that a zone whose size was 0 gets new memory
5254 * via memory hot-add.
5255 * But it may be the case that a new node was hot-added. In
5256 * this case vmalloc() will not be able to use this new node's
5257 * memory - this wait_table must be initialized to use this new
5258 * node itself as well.
5259 * To use this new node's memory, further consideration will be
5260 * necessary.
5261 */
5262 zone->wait_table = vmalloc(alloc_size);
5263 }
5264 if (!zone->wait_table)
5265 return -ENOMEM;
5266
5267 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5268 init_waitqueue_head(zone->wait_table + i);
5269
5270 return 0;
5271 }
5272
5273 static __meminit void zone_pcp_init(struct zone *zone)
5274 {
5275 /*
5276 * per cpu subsystem is not up at this point. The following code
5277 * relies on the ability of the linker to provide the
5278 * offset of a (static) per cpu variable into the per cpu area.
5279 */
5280 zone->pageset = &boot_pageset;
5281
5282 if (populated_zone(zone))
5283 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5284 zone->name, zone->present_pages,
5285 zone_batchsize(zone));
5286 }
5287
5288 int __meminit init_currently_empty_zone(struct zone *zone,
5289 unsigned long zone_start_pfn,
5290 unsigned long size)
5291 {
5292 struct pglist_data *pgdat = zone->zone_pgdat;
5293 int ret;
5294 ret = zone_wait_table_init(zone, size);
5295 if (ret)
5296 return ret;
5297 pgdat->nr_zones = zone_idx(zone) + 1;
5298
5299 zone->zone_start_pfn = zone_start_pfn;
5300
5301 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5302 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5303 pgdat->node_id,
5304 (unsigned long)zone_idx(zone),
5305 zone_start_pfn, (zone_start_pfn + size));
5306
5307 zone_init_free_lists(zone);
5308
5309 return 0;
5310 }
5311
5312 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5313 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5314
5315 /*
5316 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5317 */
5318 int __meminit __early_pfn_to_nid(unsigned long pfn,
5319 struct mminit_pfnnid_cache *state)
5320 {
5321 unsigned long start_pfn, end_pfn;
5322 int nid;
5323
5324 if (state->last_start <= pfn && pfn < state->last_end)
5325 return state->last_nid;
5326
5327 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5328 if (nid != -1) {
5329 state->last_start = start_pfn;
5330 state->last_end = end_pfn;
5331 state->last_nid = nid;
5332 }
5333
5334 return nid;
5335 }
5336 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5337
5338 /**
5339 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5340 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5341 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5342 *
5343 * If an architecture guarantees that all ranges registered contain no holes
5344 * and may be freed, this this function may be used instead of calling
5345 * memblock_free_early_nid() manually.
5346 */
5347 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5348 {
5349 unsigned long start_pfn, end_pfn;
5350 int i, this_nid;
5351
5352 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5353 start_pfn = min(start_pfn, max_low_pfn);
5354 end_pfn = min(end_pfn, max_low_pfn);
5355
5356 if (start_pfn < end_pfn)
5357 memblock_free_early_nid(PFN_PHYS(start_pfn),
5358 (end_pfn - start_pfn) << PAGE_SHIFT,
5359 this_nid);
5360 }
5361 }
5362
5363 /**
5364 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5365 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5366 *
5367 * If an architecture guarantees that all ranges registered contain no holes and may
5368 * be freed, this function may be used instead of calling memory_present() manually.
5369 */
5370 void __init sparse_memory_present_with_active_regions(int nid)
5371 {
5372 unsigned long start_pfn, end_pfn;
5373 int i, this_nid;
5374
5375 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5376 memory_present(this_nid, start_pfn, end_pfn);
5377 }
5378
5379 /**
5380 * get_pfn_range_for_nid - Return the start and end page frames for a node
5381 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5382 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5383 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5384 *
5385 * It returns the start and end page frame of a node based on information
5386 * provided by memblock_set_node(). If called for a node
5387 * with no available memory, a warning is printed and the start and end
5388 * PFNs will be 0.
5389 */
5390 void __meminit get_pfn_range_for_nid(unsigned int nid,
5391 unsigned long *start_pfn, unsigned long *end_pfn)
5392 {
5393 unsigned long this_start_pfn, this_end_pfn;
5394 int i;
5395
5396 *start_pfn = -1UL;
5397 *end_pfn = 0;
5398
5399 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5400 *start_pfn = min(*start_pfn, this_start_pfn);
5401 *end_pfn = max(*end_pfn, this_end_pfn);
5402 }
5403
5404 if (*start_pfn == -1UL)
5405 *start_pfn = 0;
5406 }
5407
5408 /*
5409 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5410 * assumption is made that zones within a node are ordered in monotonic
5411 * increasing memory addresses so that the "highest" populated zone is used
5412 */
5413 static void __init find_usable_zone_for_movable(void)
5414 {
5415 int zone_index;
5416 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5417 if (zone_index == ZONE_MOVABLE)
5418 continue;
5419
5420 if (arch_zone_highest_possible_pfn[zone_index] >
5421 arch_zone_lowest_possible_pfn[zone_index])
5422 break;
5423 }
5424
5425 VM_BUG_ON(zone_index == -1);
5426 movable_zone = zone_index;
5427 }
5428
5429 /*
5430 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5431 * because it is sized independent of architecture. Unlike the other zones,
5432 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5433 * in each node depending on the size of each node and how evenly kernelcore
5434 * is distributed. This helper function adjusts the zone ranges
5435 * provided by the architecture for a given node by using the end of the
5436 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5437 * zones within a node are in order of monotonic increases memory addresses
5438 */
5439 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5440 unsigned long zone_type,
5441 unsigned long node_start_pfn,
5442 unsigned long node_end_pfn,
5443 unsigned long *zone_start_pfn,
5444 unsigned long *zone_end_pfn)
5445 {
5446 /* Only adjust if ZONE_MOVABLE is on this node */
5447 if (zone_movable_pfn[nid]) {
5448 /* Size ZONE_MOVABLE */
5449 if (zone_type == ZONE_MOVABLE) {
5450 *zone_start_pfn = zone_movable_pfn[nid];
5451 *zone_end_pfn = min(node_end_pfn,
5452 arch_zone_highest_possible_pfn[movable_zone]);
5453
5454 /* Check if this whole range is within ZONE_MOVABLE */
5455 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5456 *zone_start_pfn = *zone_end_pfn;
5457 }
5458 }
5459
5460 /*
5461 * Return the number of pages a zone spans in a node, including holes
5462 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5463 */
5464 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5465 unsigned long zone_type,
5466 unsigned long node_start_pfn,
5467 unsigned long node_end_pfn,
5468 unsigned long *zone_start_pfn,
5469 unsigned long *zone_end_pfn,
5470 unsigned long *ignored)
5471 {
5472 /* When hotadd a new node from cpu_up(), the node should be empty */
5473 if (!node_start_pfn && !node_end_pfn)
5474 return 0;
5475
5476 /* Get the start and end of the zone */
5477 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5478 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5479 adjust_zone_range_for_zone_movable(nid, zone_type,
5480 node_start_pfn, node_end_pfn,
5481 zone_start_pfn, zone_end_pfn);
5482
5483 /* Check that this node has pages within the zone's required range */
5484 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5485 return 0;
5486
5487 /* Move the zone boundaries inside the node if necessary */
5488 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5489 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5490
5491 /* Return the spanned pages */
5492 return *zone_end_pfn - *zone_start_pfn;
5493 }
5494
5495 /*
5496 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5497 * then all holes in the requested range will be accounted for.
5498 */
5499 unsigned long __meminit __absent_pages_in_range(int nid,
5500 unsigned long range_start_pfn,
5501 unsigned long range_end_pfn)
5502 {
5503 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5504 unsigned long start_pfn, end_pfn;
5505 int i;
5506
5507 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5508 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5509 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5510 nr_absent -= end_pfn - start_pfn;
5511 }
5512 return nr_absent;
5513 }
5514
5515 /**
5516 * absent_pages_in_range - Return number of page frames in holes within a range
5517 * @start_pfn: The start PFN to start searching for holes
5518 * @end_pfn: The end PFN to stop searching for holes
5519 *
5520 * It returns the number of pages frames in memory holes within a range.
5521 */
5522 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5523 unsigned long end_pfn)
5524 {
5525 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5526 }
5527
5528 /* Return the number of page frames in holes in a zone on a node */
5529 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5530 unsigned long zone_type,
5531 unsigned long node_start_pfn,
5532 unsigned long node_end_pfn,
5533 unsigned long *ignored)
5534 {
5535 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5536 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5537 unsigned long zone_start_pfn, zone_end_pfn;
5538 unsigned long nr_absent;
5539
5540 /* When hotadd a new node from cpu_up(), the node should be empty */
5541 if (!node_start_pfn && !node_end_pfn)
5542 return 0;
5543
5544 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5545 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5546
5547 adjust_zone_range_for_zone_movable(nid, zone_type,
5548 node_start_pfn, node_end_pfn,
5549 &zone_start_pfn, &zone_end_pfn);
5550 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5551
5552 /*
5553 * ZONE_MOVABLE handling.
5554 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5555 * and vice versa.
5556 */
5557 if (zone_movable_pfn[nid]) {
5558 if (mirrored_kernelcore) {
5559 unsigned long start_pfn, end_pfn;
5560 struct memblock_region *r;
5561
5562 for_each_memblock(memory, r) {
5563 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5564 zone_start_pfn, zone_end_pfn);
5565 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5566 zone_start_pfn, zone_end_pfn);
5567
5568 if (zone_type == ZONE_MOVABLE &&
5569 memblock_is_mirror(r))
5570 nr_absent += end_pfn - start_pfn;
5571
5572 if (zone_type == ZONE_NORMAL &&
5573 !memblock_is_mirror(r))
5574 nr_absent += end_pfn - start_pfn;
5575 }
5576 } else {
5577 if (zone_type == ZONE_NORMAL)
5578 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5579 }
5580 }
5581
5582 return nr_absent;
5583 }
5584
5585 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5586 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5587 unsigned long zone_type,
5588 unsigned long node_start_pfn,
5589 unsigned long node_end_pfn,
5590 unsigned long *zone_start_pfn,
5591 unsigned long *zone_end_pfn,
5592 unsigned long *zones_size)
5593 {
5594 unsigned int zone;
5595
5596 *zone_start_pfn = node_start_pfn;
5597 for (zone = 0; zone < zone_type; zone++)
5598 *zone_start_pfn += zones_size[zone];
5599
5600 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5601
5602 return zones_size[zone_type];
5603 }
5604
5605 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5606 unsigned long zone_type,
5607 unsigned long node_start_pfn,
5608 unsigned long node_end_pfn,
5609 unsigned long *zholes_size)
5610 {
5611 if (!zholes_size)
5612 return 0;
5613
5614 return zholes_size[zone_type];
5615 }
5616
5617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5618
5619 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5620 unsigned long node_start_pfn,
5621 unsigned long node_end_pfn,
5622 unsigned long *zones_size,
5623 unsigned long *zholes_size)
5624 {
5625 unsigned long realtotalpages = 0, totalpages = 0;
5626 enum zone_type i;
5627
5628 for (i = 0; i < MAX_NR_ZONES; i++) {
5629 struct zone *zone = pgdat->node_zones + i;
5630 unsigned long zone_start_pfn, zone_end_pfn;
5631 unsigned long size, real_size;
5632
5633 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5634 node_start_pfn,
5635 node_end_pfn,
5636 &zone_start_pfn,
5637 &zone_end_pfn,
5638 zones_size);
5639 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5640 node_start_pfn, node_end_pfn,
5641 zholes_size);
5642 if (size)
5643 zone->zone_start_pfn = zone_start_pfn;
5644 else
5645 zone->zone_start_pfn = 0;
5646 zone->spanned_pages = size;
5647 zone->present_pages = real_size;
5648
5649 totalpages += size;
5650 realtotalpages += real_size;
5651 }
5652
5653 pgdat->node_spanned_pages = totalpages;
5654 pgdat->node_present_pages = realtotalpages;
5655 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5656 realtotalpages);
5657 }
5658
5659 #ifndef CONFIG_SPARSEMEM
5660 /*
5661 * Calculate the size of the zone->blockflags rounded to an unsigned long
5662 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5663 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5664 * round what is now in bits to nearest long in bits, then return it in
5665 * bytes.
5666 */
5667 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5668 {
5669 unsigned long usemapsize;
5670
5671 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5672 usemapsize = roundup(zonesize, pageblock_nr_pages);
5673 usemapsize = usemapsize >> pageblock_order;
5674 usemapsize *= NR_PAGEBLOCK_BITS;
5675 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5676
5677 return usemapsize / 8;
5678 }
5679
5680 static void __init setup_usemap(struct pglist_data *pgdat,
5681 struct zone *zone,
5682 unsigned long zone_start_pfn,
5683 unsigned long zonesize)
5684 {
5685 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5686 zone->pageblock_flags = NULL;
5687 if (usemapsize)
5688 zone->pageblock_flags =
5689 memblock_virt_alloc_node_nopanic(usemapsize,
5690 pgdat->node_id);
5691 }
5692 #else
5693 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5694 unsigned long zone_start_pfn, unsigned long zonesize) {}
5695 #endif /* CONFIG_SPARSEMEM */
5696
5697 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5698
5699 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5700 void __paginginit set_pageblock_order(void)
5701 {
5702 unsigned int order;
5703
5704 /* Check that pageblock_nr_pages has not already been setup */
5705 if (pageblock_order)
5706 return;
5707
5708 if (HPAGE_SHIFT > PAGE_SHIFT)
5709 order = HUGETLB_PAGE_ORDER;
5710 else
5711 order = MAX_ORDER - 1;
5712
5713 /*
5714 * Assume the largest contiguous order of interest is a huge page.
5715 * This value may be variable depending on boot parameters on IA64 and
5716 * powerpc.
5717 */
5718 pageblock_order = order;
5719 }
5720 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5721
5722 /*
5723 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5724 * is unused as pageblock_order is set at compile-time. See
5725 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5726 * the kernel config
5727 */
5728 void __paginginit set_pageblock_order(void)
5729 {
5730 }
5731
5732 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5733
5734 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5735 unsigned long present_pages)
5736 {
5737 unsigned long pages = spanned_pages;
5738
5739 /*
5740 * Provide a more accurate estimation if there are holes within
5741 * the zone and SPARSEMEM is in use. If there are holes within the
5742 * zone, each populated memory region may cost us one or two extra
5743 * memmap pages due to alignment because memmap pages for each
5744 * populated regions may not naturally algined on page boundary.
5745 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5746 */
5747 if (spanned_pages > present_pages + (present_pages >> 4) &&
5748 IS_ENABLED(CONFIG_SPARSEMEM))
5749 pages = present_pages;
5750
5751 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5752 }
5753
5754 /*
5755 * Set up the zone data structures:
5756 * - mark all pages reserved
5757 * - mark all memory queues empty
5758 * - clear the memory bitmaps
5759 *
5760 * NOTE: pgdat should get zeroed by caller.
5761 */
5762 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5763 {
5764 enum zone_type j;
5765 int nid = pgdat->node_id;
5766 int ret;
5767
5768 pgdat_resize_init(pgdat);
5769 #ifdef CONFIG_NUMA_BALANCING
5770 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5771 pgdat->numabalancing_migrate_nr_pages = 0;
5772 pgdat->numabalancing_migrate_next_window = jiffies;
5773 #endif
5774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5775 spin_lock_init(&pgdat->split_queue_lock);
5776 INIT_LIST_HEAD(&pgdat->split_queue);
5777 pgdat->split_queue_len = 0;
5778 #endif
5779 init_waitqueue_head(&pgdat->kswapd_wait);
5780 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5781 #ifdef CONFIG_COMPACTION
5782 init_waitqueue_head(&pgdat->kcompactd_wait);
5783 #endif
5784 pgdat_page_ext_init(pgdat);
5785 spin_lock_init(&pgdat->lru_lock);
5786 lruvec_init(node_lruvec(pgdat));
5787
5788 for (j = 0; j < MAX_NR_ZONES; j++) {
5789 struct zone *zone = pgdat->node_zones + j;
5790 unsigned long size, realsize, freesize, memmap_pages;
5791 unsigned long zone_start_pfn = zone->zone_start_pfn;
5792
5793 size = zone->spanned_pages;
5794 realsize = freesize = zone->present_pages;
5795
5796 /*
5797 * Adjust freesize so that it accounts for how much memory
5798 * is used by this zone for memmap. This affects the watermark
5799 * and per-cpu initialisations
5800 */
5801 memmap_pages = calc_memmap_size(size, realsize);
5802 if (!is_highmem_idx(j)) {
5803 if (freesize >= memmap_pages) {
5804 freesize -= memmap_pages;
5805 if (memmap_pages)
5806 printk(KERN_DEBUG
5807 " %s zone: %lu pages used for memmap\n",
5808 zone_names[j], memmap_pages);
5809 } else
5810 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5811 zone_names[j], memmap_pages, freesize);
5812 }
5813
5814 /* Account for reserved pages */
5815 if (j == 0 && freesize > dma_reserve) {
5816 freesize -= dma_reserve;
5817 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5818 zone_names[0], dma_reserve);
5819 }
5820
5821 if (!is_highmem_idx(j))
5822 nr_kernel_pages += freesize;
5823 /* Charge for highmem memmap if there are enough kernel pages */
5824 else if (nr_kernel_pages > memmap_pages * 2)
5825 nr_kernel_pages -= memmap_pages;
5826 nr_all_pages += freesize;
5827
5828 /*
5829 * Set an approximate value for lowmem here, it will be adjusted
5830 * when the bootmem allocator frees pages into the buddy system.
5831 * And all highmem pages will be managed by the buddy system.
5832 */
5833 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5834 #ifdef CONFIG_NUMA
5835 zone->node = nid;
5836 #endif
5837 zone->name = zone_names[j];
5838 zone->zone_pgdat = pgdat;
5839 spin_lock_init(&zone->lock);
5840 zone_seqlock_init(zone);
5841 zone_pcp_init(zone);
5842
5843 if (!size)
5844 continue;
5845
5846 set_pageblock_order();
5847 setup_usemap(pgdat, zone, zone_start_pfn, size);
5848 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5849 BUG_ON(ret);
5850 memmap_init(size, nid, j, zone_start_pfn);
5851 }
5852 }
5853
5854 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5855 {
5856 unsigned long __maybe_unused start = 0;
5857 unsigned long __maybe_unused offset = 0;
5858
5859 /* Skip empty nodes */
5860 if (!pgdat->node_spanned_pages)
5861 return;
5862
5863 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5864 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5865 offset = pgdat->node_start_pfn - start;
5866 /* ia64 gets its own node_mem_map, before this, without bootmem */
5867 if (!pgdat->node_mem_map) {
5868 unsigned long size, end;
5869 struct page *map;
5870
5871 /*
5872 * The zone's endpoints aren't required to be MAX_ORDER
5873 * aligned but the node_mem_map endpoints must be in order
5874 * for the buddy allocator to function correctly.
5875 */
5876 end = pgdat_end_pfn(pgdat);
5877 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5878 size = (end - start) * sizeof(struct page);
5879 map = alloc_remap(pgdat->node_id, size);
5880 if (!map)
5881 map = memblock_virt_alloc_node_nopanic(size,
5882 pgdat->node_id);
5883 pgdat->node_mem_map = map + offset;
5884 }
5885 #ifndef CONFIG_NEED_MULTIPLE_NODES
5886 /*
5887 * With no DISCONTIG, the global mem_map is just set as node 0's
5888 */
5889 if (pgdat == NODE_DATA(0)) {
5890 mem_map = NODE_DATA(0)->node_mem_map;
5891 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5892 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5893 mem_map -= offset;
5894 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5895 }
5896 #endif
5897 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5898 }
5899
5900 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5901 unsigned long node_start_pfn, unsigned long *zholes_size)
5902 {
5903 pg_data_t *pgdat = NODE_DATA(nid);
5904 unsigned long start_pfn = 0;
5905 unsigned long end_pfn = 0;
5906
5907 /* pg_data_t should be reset to zero when it's allocated */
5908 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5909
5910 reset_deferred_meminit(pgdat);
5911 pgdat->node_id = nid;
5912 pgdat->node_start_pfn = node_start_pfn;
5913 pgdat->per_cpu_nodestats = NULL;
5914 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5915 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5916 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5917 (u64)start_pfn << PAGE_SHIFT,
5918 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5919 #else
5920 start_pfn = node_start_pfn;
5921 #endif
5922 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5923 zones_size, zholes_size);
5924
5925 alloc_node_mem_map(pgdat);
5926 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5927 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5928 nid, (unsigned long)pgdat,
5929 (unsigned long)pgdat->node_mem_map);
5930 #endif
5931
5932 free_area_init_core(pgdat);
5933 }
5934
5935 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5936
5937 #if MAX_NUMNODES > 1
5938 /*
5939 * Figure out the number of possible node ids.
5940 */
5941 void __init setup_nr_node_ids(void)
5942 {
5943 unsigned int highest;
5944
5945 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5946 nr_node_ids = highest + 1;
5947 }
5948 #endif
5949
5950 /**
5951 * node_map_pfn_alignment - determine the maximum internode alignment
5952 *
5953 * This function should be called after node map is populated and sorted.
5954 * It calculates the maximum power of two alignment which can distinguish
5955 * all the nodes.
5956 *
5957 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5958 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5959 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5960 * shifted, 1GiB is enough and this function will indicate so.
5961 *
5962 * This is used to test whether pfn -> nid mapping of the chosen memory
5963 * model has fine enough granularity to avoid incorrect mapping for the
5964 * populated node map.
5965 *
5966 * Returns the determined alignment in pfn's. 0 if there is no alignment
5967 * requirement (single node).
5968 */
5969 unsigned long __init node_map_pfn_alignment(void)
5970 {
5971 unsigned long accl_mask = 0, last_end = 0;
5972 unsigned long start, end, mask;
5973 int last_nid = -1;
5974 int i, nid;
5975
5976 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5977 if (!start || last_nid < 0 || last_nid == nid) {
5978 last_nid = nid;
5979 last_end = end;
5980 continue;
5981 }
5982
5983 /*
5984 * Start with a mask granular enough to pin-point to the
5985 * start pfn and tick off bits one-by-one until it becomes
5986 * too coarse to separate the current node from the last.
5987 */
5988 mask = ~((1 << __ffs(start)) - 1);
5989 while (mask && last_end <= (start & (mask << 1)))
5990 mask <<= 1;
5991
5992 /* accumulate all internode masks */
5993 accl_mask |= mask;
5994 }
5995
5996 /* convert mask to number of pages */
5997 return ~accl_mask + 1;
5998 }
5999
6000 /* Find the lowest pfn for a node */
6001 static unsigned long __init find_min_pfn_for_node(int nid)
6002 {
6003 unsigned long min_pfn = ULONG_MAX;
6004 unsigned long start_pfn;
6005 int i;
6006
6007 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6008 min_pfn = min(min_pfn, start_pfn);
6009
6010 if (min_pfn == ULONG_MAX) {
6011 pr_warn("Could not find start_pfn for node %d\n", nid);
6012 return 0;
6013 }
6014
6015 return min_pfn;
6016 }
6017
6018 /**
6019 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6020 *
6021 * It returns the minimum PFN based on information provided via
6022 * memblock_set_node().
6023 */
6024 unsigned long __init find_min_pfn_with_active_regions(void)
6025 {
6026 return find_min_pfn_for_node(MAX_NUMNODES);
6027 }
6028
6029 /*
6030 * early_calculate_totalpages()
6031 * Sum pages in active regions for movable zone.
6032 * Populate N_MEMORY for calculating usable_nodes.
6033 */
6034 static unsigned long __init early_calculate_totalpages(void)
6035 {
6036 unsigned long totalpages = 0;
6037 unsigned long start_pfn, end_pfn;
6038 int i, nid;
6039
6040 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6041 unsigned long pages = end_pfn - start_pfn;
6042
6043 totalpages += pages;
6044 if (pages)
6045 node_set_state(nid, N_MEMORY);
6046 }
6047 return totalpages;
6048 }
6049
6050 /*
6051 * Find the PFN the Movable zone begins in each node. Kernel memory
6052 * is spread evenly between nodes as long as the nodes have enough
6053 * memory. When they don't, some nodes will have more kernelcore than
6054 * others
6055 */
6056 static void __init find_zone_movable_pfns_for_nodes(void)
6057 {
6058 int i, nid;
6059 unsigned long usable_startpfn;
6060 unsigned long kernelcore_node, kernelcore_remaining;
6061 /* save the state before borrow the nodemask */
6062 nodemask_t saved_node_state = node_states[N_MEMORY];
6063 unsigned long totalpages = early_calculate_totalpages();
6064 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6065 struct memblock_region *r;
6066
6067 /* Need to find movable_zone earlier when movable_node is specified. */
6068 find_usable_zone_for_movable();
6069
6070 /*
6071 * If movable_node is specified, ignore kernelcore and movablecore
6072 * options.
6073 */
6074 if (movable_node_is_enabled()) {
6075 for_each_memblock(memory, r) {
6076 if (!memblock_is_hotpluggable(r))
6077 continue;
6078
6079 nid = r->nid;
6080
6081 usable_startpfn = PFN_DOWN(r->base);
6082 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6083 min(usable_startpfn, zone_movable_pfn[nid]) :
6084 usable_startpfn;
6085 }
6086
6087 goto out2;
6088 }
6089
6090 /*
6091 * If kernelcore=mirror is specified, ignore movablecore option
6092 */
6093 if (mirrored_kernelcore) {
6094 bool mem_below_4gb_not_mirrored = false;
6095
6096 for_each_memblock(memory, r) {
6097 if (memblock_is_mirror(r))
6098 continue;
6099
6100 nid = r->nid;
6101
6102 usable_startpfn = memblock_region_memory_base_pfn(r);
6103
6104 if (usable_startpfn < 0x100000) {
6105 mem_below_4gb_not_mirrored = true;
6106 continue;
6107 }
6108
6109 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6110 min(usable_startpfn, zone_movable_pfn[nid]) :
6111 usable_startpfn;
6112 }
6113
6114 if (mem_below_4gb_not_mirrored)
6115 pr_warn("This configuration results in unmirrored kernel memory.");
6116
6117 goto out2;
6118 }
6119
6120 /*
6121 * If movablecore=nn[KMG] was specified, calculate what size of
6122 * kernelcore that corresponds so that memory usable for
6123 * any allocation type is evenly spread. If both kernelcore
6124 * and movablecore are specified, then the value of kernelcore
6125 * will be used for required_kernelcore if it's greater than
6126 * what movablecore would have allowed.
6127 */
6128 if (required_movablecore) {
6129 unsigned long corepages;
6130
6131 /*
6132 * Round-up so that ZONE_MOVABLE is at least as large as what
6133 * was requested by the user
6134 */
6135 required_movablecore =
6136 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6137 required_movablecore = min(totalpages, required_movablecore);
6138 corepages = totalpages - required_movablecore;
6139
6140 required_kernelcore = max(required_kernelcore, corepages);
6141 }
6142
6143 /*
6144 * If kernelcore was not specified or kernelcore size is larger
6145 * than totalpages, there is no ZONE_MOVABLE.
6146 */
6147 if (!required_kernelcore || required_kernelcore >= totalpages)
6148 goto out;
6149
6150 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6151 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6152
6153 restart:
6154 /* Spread kernelcore memory as evenly as possible throughout nodes */
6155 kernelcore_node = required_kernelcore / usable_nodes;
6156 for_each_node_state(nid, N_MEMORY) {
6157 unsigned long start_pfn, end_pfn;
6158
6159 /*
6160 * Recalculate kernelcore_node if the division per node
6161 * now exceeds what is necessary to satisfy the requested
6162 * amount of memory for the kernel
6163 */
6164 if (required_kernelcore < kernelcore_node)
6165 kernelcore_node = required_kernelcore / usable_nodes;
6166
6167 /*
6168 * As the map is walked, we track how much memory is usable
6169 * by the kernel using kernelcore_remaining. When it is
6170 * 0, the rest of the node is usable by ZONE_MOVABLE
6171 */
6172 kernelcore_remaining = kernelcore_node;
6173
6174 /* Go through each range of PFNs within this node */
6175 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6176 unsigned long size_pages;
6177
6178 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6179 if (start_pfn >= end_pfn)
6180 continue;
6181
6182 /* Account for what is only usable for kernelcore */
6183 if (start_pfn < usable_startpfn) {
6184 unsigned long kernel_pages;
6185 kernel_pages = min(end_pfn, usable_startpfn)
6186 - start_pfn;
6187
6188 kernelcore_remaining -= min(kernel_pages,
6189 kernelcore_remaining);
6190 required_kernelcore -= min(kernel_pages,
6191 required_kernelcore);
6192
6193 /* Continue if range is now fully accounted */
6194 if (end_pfn <= usable_startpfn) {
6195
6196 /*
6197 * Push zone_movable_pfn to the end so
6198 * that if we have to rebalance
6199 * kernelcore across nodes, we will
6200 * not double account here
6201 */
6202 zone_movable_pfn[nid] = end_pfn;
6203 continue;
6204 }
6205 start_pfn = usable_startpfn;
6206 }
6207
6208 /*
6209 * The usable PFN range for ZONE_MOVABLE is from
6210 * start_pfn->end_pfn. Calculate size_pages as the
6211 * number of pages used as kernelcore
6212 */
6213 size_pages = end_pfn - start_pfn;
6214 if (size_pages > kernelcore_remaining)
6215 size_pages = kernelcore_remaining;
6216 zone_movable_pfn[nid] = start_pfn + size_pages;
6217
6218 /*
6219 * Some kernelcore has been met, update counts and
6220 * break if the kernelcore for this node has been
6221 * satisfied
6222 */
6223 required_kernelcore -= min(required_kernelcore,
6224 size_pages);
6225 kernelcore_remaining -= size_pages;
6226 if (!kernelcore_remaining)
6227 break;
6228 }
6229 }
6230
6231 /*
6232 * If there is still required_kernelcore, we do another pass with one
6233 * less node in the count. This will push zone_movable_pfn[nid] further
6234 * along on the nodes that still have memory until kernelcore is
6235 * satisfied
6236 */
6237 usable_nodes--;
6238 if (usable_nodes && required_kernelcore > usable_nodes)
6239 goto restart;
6240
6241 out2:
6242 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6243 for (nid = 0; nid < MAX_NUMNODES; nid++)
6244 zone_movable_pfn[nid] =
6245 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6246
6247 out:
6248 /* restore the node_state */
6249 node_states[N_MEMORY] = saved_node_state;
6250 }
6251
6252 /* Any regular or high memory on that node ? */
6253 static void check_for_memory(pg_data_t *pgdat, int nid)
6254 {
6255 enum zone_type zone_type;
6256
6257 if (N_MEMORY == N_NORMAL_MEMORY)
6258 return;
6259
6260 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6261 struct zone *zone = &pgdat->node_zones[zone_type];
6262 if (populated_zone(zone)) {
6263 node_set_state(nid, N_HIGH_MEMORY);
6264 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6265 zone_type <= ZONE_NORMAL)
6266 node_set_state(nid, N_NORMAL_MEMORY);
6267 break;
6268 }
6269 }
6270 }
6271
6272 /**
6273 * free_area_init_nodes - Initialise all pg_data_t and zone data
6274 * @max_zone_pfn: an array of max PFNs for each zone
6275 *
6276 * This will call free_area_init_node() for each active node in the system.
6277 * Using the page ranges provided by memblock_set_node(), the size of each
6278 * zone in each node and their holes is calculated. If the maximum PFN
6279 * between two adjacent zones match, it is assumed that the zone is empty.
6280 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6281 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6282 * starts where the previous one ended. For example, ZONE_DMA32 starts
6283 * at arch_max_dma_pfn.
6284 */
6285 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6286 {
6287 unsigned long start_pfn, end_pfn;
6288 int i, nid;
6289
6290 /* Record where the zone boundaries are */
6291 memset(arch_zone_lowest_possible_pfn, 0,
6292 sizeof(arch_zone_lowest_possible_pfn));
6293 memset(arch_zone_highest_possible_pfn, 0,
6294 sizeof(arch_zone_highest_possible_pfn));
6295
6296 start_pfn = find_min_pfn_with_active_regions();
6297
6298 for (i = 0; i < MAX_NR_ZONES; i++) {
6299 if (i == ZONE_MOVABLE)
6300 continue;
6301
6302 end_pfn = max(max_zone_pfn[i], start_pfn);
6303 arch_zone_lowest_possible_pfn[i] = start_pfn;
6304 arch_zone_highest_possible_pfn[i] = end_pfn;
6305
6306 start_pfn = end_pfn;
6307 }
6308 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6309 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6310
6311 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6312 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6313 find_zone_movable_pfns_for_nodes();
6314
6315 /* Print out the zone ranges */
6316 pr_info("Zone ranges:\n");
6317 for (i = 0; i < MAX_NR_ZONES; i++) {
6318 if (i == ZONE_MOVABLE)
6319 continue;
6320 pr_info(" %-8s ", zone_names[i]);
6321 if (arch_zone_lowest_possible_pfn[i] ==
6322 arch_zone_highest_possible_pfn[i])
6323 pr_cont("empty\n");
6324 else
6325 pr_cont("[mem %#018Lx-%#018Lx]\n",
6326 (u64)arch_zone_lowest_possible_pfn[i]
6327 << PAGE_SHIFT,
6328 ((u64)arch_zone_highest_possible_pfn[i]
6329 << PAGE_SHIFT) - 1);
6330 }
6331
6332 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6333 pr_info("Movable zone start for each node\n");
6334 for (i = 0; i < MAX_NUMNODES; i++) {
6335 if (zone_movable_pfn[i])
6336 pr_info(" Node %d: %#018Lx\n", i,
6337 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6338 }
6339
6340 /* Print out the early node map */
6341 pr_info("Early memory node ranges\n");
6342 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6343 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6344 (u64)start_pfn << PAGE_SHIFT,
6345 ((u64)end_pfn << PAGE_SHIFT) - 1);
6346
6347 /* Initialise every node */
6348 mminit_verify_pageflags_layout();
6349 setup_nr_node_ids();
6350 for_each_online_node(nid) {
6351 pg_data_t *pgdat = NODE_DATA(nid);
6352 free_area_init_node(nid, NULL,
6353 find_min_pfn_for_node(nid), NULL);
6354
6355 /* Any memory on that node */
6356 if (pgdat->node_present_pages)
6357 node_set_state(nid, N_MEMORY);
6358 check_for_memory(pgdat, nid);
6359 }
6360 }
6361
6362 static int __init cmdline_parse_core(char *p, unsigned long *core)
6363 {
6364 unsigned long long coremem;
6365 if (!p)
6366 return -EINVAL;
6367
6368 coremem = memparse(p, &p);
6369 *core = coremem >> PAGE_SHIFT;
6370
6371 /* Paranoid check that UL is enough for the coremem value */
6372 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6373
6374 return 0;
6375 }
6376
6377 /*
6378 * kernelcore=size sets the amount of memory for use for allocations that
6379 * cannot be reclaimed or migrated.
6380 */
6381 static int __init cmdline_parse_kernelcore(char *p)
6382 {
6383 /* parse kernelcore=mirror */
6384 if (parse_option_str(p, "mirror")) {
6385 mirrored_kernelcore = true;
6386 return 0;
6387 }
6388
6389 return cmdline_parse_core(p, &required_kernelcore);
6390 }
6391
6392 /*
6393 * movablecore=size sets the amount of memory for use for allocations that
6394 * can be reclaimed or migrated.
6395 */
6396 static int __init cmdline_parse_movablecore(char *p)
6397 {
6398 return cmdline_parse_core(p, &required_movablecore);
6399 }
6400
6401 early_param("kernelcore", cmdline_parse_kernelcore);
6402 early_param("movablecore", cmdline_parse_movablecore);
6403
6404 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6405
6406 void adjust_managed_page_count(struct page *page, long count)
6407 {
6408 spin_lock(&managed_page_count_lock);
6409 page_zone(page)->managed_pages += count;
6410 totalram_pages += count;
6411 #ifdef CONFIG_HIGHMEM
6412 if (PageHighMem(page))
6413 totalhigh_pages += count;
6414 #endif
6415 spin_unlock(&managed_page_count_lock);
6416 }
6417 EXPORT_SYMBOL(adjust_managed_page_count);
6418
6419 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6420 {
6421 void *pos;
6422 unsigned long pages = 0;
6423
6424 start = (void *)PAGE_ALIGN((unsigned long)start);
6425 end = (void *)((unsigned long)end & PAGE_MASK);
6426 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6427 if ((unsigned int)poison <= 0xFF)
6428 memset(pos, poison, PAGE_SIZE);
6429 free_reserved_page(virt_to_page(pos));
6430 }
6431
6432 if (pages && s)
6433 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6434 s, pages << (PAGE_SHIFT - 10), start, end);
6435
6436 return pages;
6437 }
6438 EXPORT_SYMBOL(free_reserved_area);
6439
6440 #ifdef CONFIG_HIGHMEM
6441 void free_highmem_page(struct page *page)
6442 {
6443 __free_reserved_page(page);
6444 totalram_pages++;
6445 page_zone(page)->managed_pages++;
6446 totalhigh_pages++;
6447 }
6448 #endif
6449
6450
6451 void __init mem_init_print_info(const char *str)
6452 {
6453 unsigned long physpages, codesize, datasize, rosize, bss_size;
6454 unsigned long init_code_size, init_data_size;
6455
6456 physpages = get_num_physpages();
6457 codesize = _etext - _stext;
6458 datasize = _edata - _sdata;
6459 rosize = __end_rodata - __start_rodata;
6460 bss_size = __bss_stop - __bss_start;
6461 init_data_size = __init_end - __init_begin;
6462 init_code_size = _einittext - _sinittext;
6463
6464 /*
6465 * Detect special cases and adjust section sizes accordingly:
6466 * 1) .init.* may be embedded into .data sections
6467 * 2) .init.text.* may be out of [__init_begin, __init_end],
6468 * please refer to arch/tile/kernel/vmlinux.lds.S.
6469 * 3) .rodata.* may be embedded into .text or .data sections.
6470 */
6471 #define adj_init_size(start, end, size, pos, adj) \
6472 do { \
6473 if (start <= pos && pos < end && size > adj) \
6474 size -= adj; \
6475 } while (0)
6476
6477 adj_init_size(__init_begin, __init_end, init_data_size,
6478 _sinittext, init_code_size);
6479 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6480 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6481 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6482 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6483
6484 #undef adj_init_size
6485
6486 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6487 #ifdef CONFIG_HIGHMEM
6488 ", %luK highmem"
6489 #endif
6490 "%s%s)\n",
6491 nr_free_pages() << (PAGE_SHIFT - 10),
6492 physpages << (PAGE_SHIFT - 10),
6493 codesize >> 10, datasize >> 10, rosize >> 10,
6494 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6495 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6496 totalcma_pages << (PAGE_SHIFT - 10),
6497 #ifdef CONFIG_HIGHMEM
6498 totalhigh_pages << (PAGE_SHIFT - 10),
6499 #endif
6500 str ? ", " : "", str ? str : "");
6501 }
6502
6503 /**
6504 * set_dma_reserve - set the specified number of pages reserved in the first zone
6505 * @new_dma_reserve: The number of pages to mark reserved
6506 *
6507 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6508 * In the DMA zone, a significant percentage may be consumed by kernel image
6509 * and other unfreeable allocations which can skew the watermarks badly. This
6510 * function may optionally be used to account for unfreeable pages in the
6511 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6512 * smaller per-cpu batchsize.
6513 */
6514 void __init set_dma_reserve(unsigned long new_dma_reserve)
6515 {
6516 dma_reserve = new_dma_reserve;
6517 }
6518
6519 void __init free_area_init(unsigned long *zones_size)
6520 {
6521 free_area_init_node(0, zones_size,
6522 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6523 }
6524
6525 static int page_alloc_cpu_notify(struct notifier_block *self,
6526 unsigned long action, void *hcpu)
6527 {
6528 int cpu = (unsigned long)hcpu;
6529
6530 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6531 lru_add_drain_cpu(cpu);
6532 drain_pages(cpu);
6533
6534 /*
6535 * Spill the event counters of the dead processor
6536 * into the current processors event counters.
6537 * This artificially elevates the count of the current
6538 * processor.
6539 */
6540 vm_events_fold_cpu(cpu);
6541
6542 /*
6543 * Zero the differential counters of the dead processor
6544 * so that the vm statistics are consistent.
6545 *
6546 * This is only okay since the processor is dead and cannot
6547 * race with what we are doing.
6548 */
6549 cpu_vm_stats_fold(cpu);
6550 }
6551 return NOTIFY_OK;
6552 }
6553
6554 void __init page_alloc_init(void)
6555 {
6556 hotcpu_notifier(page_alloc_cpu_notify, 0);
6557 }
6558
6559 /*
6560 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6561 * or min_free_kbytes changes.
6562 */
6563 static void calculate_totalreserve_pages(void)
6564 {
6565 struct pglist_data *pgdat;
6566 unsigned long reserve_pages = 0;
6567 enum zone_type i, j;
6568
6569 for_each_online_pgdat(pgdat) {
6570
6571 pgdat->totalreserve_pages = 0;
6572
6573 for (i = 0; i < MAX_NR_ZONES; i++) {
6574 struct zone *zone = pgdat->node_zones + i;
6575 long max = 0;
6576
6577 /* Find valid and maximum lowmem_reserve in the zone */
6578 for (j = i; j < MAX_NR_ZONES; j++) {
6579 if (zone->lowmem_reserve[j] > max)
6580 max = zone->lowmem_reserve[j];
6581 }
6582
6583 /* we treat the high watermark as reserved pages. */
6584 max += high_wmark_pages(zone);
6585
6586 if (max > zone->managed_pages)
6587 max = zone->managed_pages;
6588
6589 pgdat->totalreserve_pages += max;
6590
6591 reserve_pages += max;
6592 }
6593 }
6594 totalreserve_pages = reserve_pages;
6595 }
6596
6597 /*
6598 * setup_per_zone_lowmem_reserve - called whenever
6599 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6600 * has a correct pages reserved value, so an adequate number of
6601 * pages are left in the zone after a successful __alloc_pages().
6602 */
6603 static void setup_per_zone_lowmem_reserve(void)
6604 {
6605 struct pglist_data *pgdat;
6606 enum zone_type j, idx;
6607
6608 for_each_online_pgdat(pgdat) {
6609 for (j = 0; j < MAX_NR_ZONES; j++) {
6610 struct zone *zone = pgdat->node_zones + j;
6611 unsigned long managed_pages = zone->managed_pages;
6612
6613 zone->lowmem_reserve[j] = 0;
6614
6615 idx = j;
6616 while (idx) {
6617 struct zone *lower_zone;
6618
6619 idx--;
6620
6621 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6622 sysctl_lowmem_reserve_ratio[idx] = 1;
6623
6624 lower_zone = pgdat->node_zones + idx;
6625 lower_zone->lowmem_reserve[j] = managed_pages /
6626 sysctl_lowmem_reserve_ratio[idx];
6627 managed_pages += lower_zone->managed_pages;
6628 }
6629 }
6630 }
6631
6632 /* update totalreserve_pages */
6633 calculate_totalreserve_pages();
6634 }
6635
6636 static void __setup_per_zone_wmarks(void)
6637 {
6638 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6639 unsigned long lowmem_pages = 0;
6640 struct zone *zone;
6641 unsigned long flags;
6642
6643 /* Calculate total number of !ZONE_HIGHMEM pages */
6644 for_each_zone(zone) {
6645 if (!is_highmem(zone))
6646 lowmem_pages += zone->managed_pages;
6647 }
6648
6649 for_each_zone(zone) {
6650 u64 tmp;
6651
6652 spin_lock_irqsave(&zone->lock, flags);
6653 tmp = (u64)pages_min * zone->managed_pages;
6654 do_div(tmp, lowmem_pages);
6655 if (is_highmem(zone)) {
6656 /*
6657 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6658 * need highmem pages, so cap pages_min to a small
6659 * value here.
6660 *
6661 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6662 * deltas control asynch page reclaim, and so should
6663 * not be capped for highmem.
6664 */
6665 unsigned long min_pages;
6666
6667 min_pages = zone->managed_pages / 1024;
6668 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6669 zone->watermark[WMARK_MIN] = min_pages;
6670 } else {
6671 /*
6672 * If it's a lowmem zone, reserve a number of pages
6673 * proportionate to the zone's size.
6674 */
6675 zone->watermark[WMARK_MIN] = tmp;
6676 }
6677
6678 /*
6679 * Set the kswapd watermarks distance according to the
6680 * scale factor in proportion to available memory, but
6681 * ensure a minimum size on small systems.
6682 */
6683 tmp = max_t(u64, tmp >> 2,
6684 mult_frac(zone->managed_pages,
6685 watermark_scale_factor, 10000));
6686
6687 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6688 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6689
6690 spin_unlock_irqrestore(&zone->lock, flags);
6691 }
6692
6693 /* update totalreserve_pages */
6694 calculate_totalreserve_pages();
6695 }
6696
6697 /**
6698 * setup_per_zone_wmarks - called when min_free_kbytes changes
6699 * or when memory is hot-{added|removed}
6700 *
6701 * Ensures that the watermark[min,low,high] values for each zone are set
6702 * correctly with respect to min_free_kbytes.
6703 */
6704 void setup_per_zone_wmarks(void)
6705 {
6706 mutex_lock(&zonelists_mutex);
6707 __setup_per_zone_wmarks();
6708 mutex_unlock(&zonelists_mutex);
6709 }
6710
6711 /*
6712 * Initialise min_free_kbytes.
6713 *
6714 * For small machines we want it small (128k min). For large machines
6715 * we want it large (64MB max). But it is not linear, because network
6716 * bandwidth does not increase linearly with machine size. We use
6717 *
6718 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6719 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6720 *
6721 * which yields
6722 *
6723 * 16MB: 512k
6724 * 32MB: 724k
6725 * 64MB: 1024k
6726 * 128MB: 1448k
6727 * 256MB: 2048k
6728 * 512MB: 2896k
6729 * 1024MB: 4096k
6730 * 2048MB: 5792k
6731 * 4096MB: 8192k
6732 * 8192MB: 11584k
6733 * 16384MB: 16384k
6734 */
6735 int __meminit init_per_zone_wmark_min(void)
6736 {
6737 unsigned long lowmem_kbytes;
6738 int new_min_free_kbytes;
6739
6740 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6741 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6742
6743 if (new_min_free_kbytes > user_min_free_kbytes) {
6744 min_free_kbytes = new_min_free_kbytes;
6745 if (min_free_kbytes < 128)
6746 min_free_kbytes = 128;
6747 if (min_free_kbytes > 65536)
6748 min_free_kbytes = 65536;
6749 } else {
6750 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6751 new_min_free_kbytes, user_min_free_kbytes);
6752 }
6753 setup_per_zone_wmarks();
6754 refresh_zone_stat_thresholds();
6755 setup_per_zone_lowmem_reserve();
6756
6757 #ifdef CONFIG_NUMA
6758 setup_min_unmapped_ratio();
6759 setup_min_slab_ratio();
6760 #endif
6761
6762 return 0;
6763 }
6764 core_initcall(init_per_zone_wmark_min)
6765
6766 /*
6767 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6768 * that we can call two helper functions whenever min_free_kbytes
6769 * changes.
6770 */
6771 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6772 void __user *buffer, size_t *length, loff_t *ppos)
6773 {
6774 int rc;
6775
6776 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6777 if (rc)
6778 return rc;
6779
6780 if (write) {
6781 user_min_free_kbytes = min_free_kbytes;
6782 setup_per_zone_wmarks();
6783 }
6784 return 0;
6785 }
6786
6787 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6788 void __user *buffer, size_t *length, loff_t *ppos)
6789 {
6790 int rc;
6791
6792 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6793 if (rc)
6794 return rc;
6795
6796 if (write)
6797 setup_per_zone_wmarks();
6798
6799 return 0;
6800 }
6801
6802 #ifdef CONFIG_NUMA
6803 static void setup_min_unmapped_ratio(void)
6804 {
6805 pg_data_t *pgdat;
6806 struct zone *zone;
6807
6808 for_each_online_pgdat(pgdat)
6809 pgdat->min_unmapped_pages = 0;
6810
6811 for_each_zone(zone)
6812 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6813 sysctl_min_unmapped_ratio) / 100;
6814 }
6815
6816
6817 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6818 void __user *buffer, size_t *length, loff_t *ppos)
6819 {
6820 int rc;
6821
6822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6823 if (rc)
6824 return rc;
6825
6826 setup_min_unmapped_ratio();
6827
6828 return 0;
6829 }
6830
6831 static void setup_min_slab_ratio(void)
6832 {
6833 pg_data_t *pgdat;
6834 struct zone *zone;
6835
6836 for_each_online_pgdat(pgdat)
6837 pgdat->min_slab_pages = 0;
6838
6839 for_each_zone(zone)
6840 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6841 sysctl_min_slab_ratio) / 100;
6842 }
6843
6844 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6845 void __user *buffer, size_t *length, loff_t *ppos)
6846 {
6847 int rc;
6848
6849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6850 if (rc)
6851 return rc;
6852
6853 setup_min_slab_ratio();
6854
6855 return 0;
6856 }
6857 #endif
6858
6859 /*
6860 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6861 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6862 * whenever sysctl_lowmem_reserve_ratio changes.
6863 *
6864 * The reserve ratio obviously has absolutely no relation with the
6865 * minimum watermarks. The lowmem reserve ratio can only make sense
6866 * if in function of the boot time zone sizes.
6867 */
6868 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6869 void __user *buffer, size_t *length, loff_t *ppos)
6870 {
6871 proc_dointvec_minmax(table, write, buffer, length, ppos);
6872 setup_per_zone_lowmem_reserve();
6873 return 0;
6874 }
6875
6876 /*
6877 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6878 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6879 * pagelist can have before it gets flushed back to buddy allocator.
6880 */
6881 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6882 void __user *buffer, size_t *length, loff_t *ppos)
6883 {
6884 struct zone *zone;
6885 int old_percpu_pagelist_fraction;
6886 int ret;
6887
6888 mutex_lock(&pcp_batch_high_lock);
6889 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6890
6891 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6892 if (!write || ret < 0)
6893 goto out;
6894
6895 /* Sanity checking to avoid pcp imbalance */
6896 if (percpu_pagelist_fraction &&
6897 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6898 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6899 ret = -EINVAL;
6900 goto out;
6901 }
6902
6903 /* No change? */
6904 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6905 goto out;
6906
6907 for_each_populated_zone(zone) {
6908 unsigned int cpu;
6909
6910 for_each_possible_cpu(cpu)
6911 pageset_set_high_and_batch(zone,
6912 per_cpu_ptr(zone->pageset, cpu));
6913 }
6914 out:
6915 mutex_unlock(&pcp_batch_high_lock);
6916 return ret;
6917 }
6918
6919 #ifdef CONFIG_NUMA
6920 int hashdist = HASHDIST_DEFAULT;
6921
6922 static int __init set_hashdist(char *str)
6923 {
6924 if (!str)
6925 return 0;
6926 hashdist = simple_strtoul(str, &str, 0);
6927 return 1;
6928 }
6929 __setup("hashdist=", set_hashdist);
6930 #endif
6931
6932 /*
6933 * allocate a large system hash table from bootmem
6934 * - it is assumed that the hash table must contain an exact power-of-2
6935 * quantity of entries
6936 * - limit is the number of hash buckets, not the total allocation size
6937 */
6938 void *__init alloc_large_system_hash(const char *tablename,
6939 unsigned long bucketsize,
6940 unsigned long numentries,
6941 int scale,
6942 int flags,
6943 unsigned int *_hash_shift,
6944 unsigned int *_hash_mask,
6945 unsigned long low_limit,
6946 unsigned long high_limit)
6947 {
6948 unsigned long long max = high_limit;
6949 unsigned long log2qty, size;
6950 void *table = NULL;
6951
6952 /* allow the kernel cmdline to have a say */
6953 if (!numentries) {
6954 /* round applicable memory size up to nearest megabyte */
6955 numentries = nr_kernel_pages;
6956
6957 /* It isn't necessary when PAGE_SIZE >= 1MB */
6958 if (PAGE_SHIFT < 20)
6959 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6960
6961 /* limit to 1 bucket per 2^scale bytes of low memory */
6962 if (scale > PAGE_SHIFT)
6963 numentries >>= (scale - PAGE_SHIFT);
6964 else
6965 numentries <<= (PAGE_SHIFT - scale);
6966
6967 /* Make sure we've got at least a 0-order allocation.. */
6968 if (unlikely(flags & HASH_SMALL)) {
6969 /* Makes no sense without HASH_EARLY */
6970 WARN_ON(!(flags & HASH_EARLY));
6971 if (!(numentries >> *_hash_shift)) {
6972 numentries = 1UL << *_hash_shift;
6973 BUG_ON(!numentries);
6974 }
6975 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6976 numentries = PAGE_SIZE / bucketsize;
6977 }
6978 numentries = roundup_pow_of_two(numentries);
6979
6980 /* limit allocation size to 1/16 total memory by default */
6981 if (max == 0) {
6982 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6983 do_div(max, bucketsize);
6984 }
6985 max = min(max, 0x80000000ULL);
6986
6987 if (numentries < low_limit)
6988 numentries = low_limit;
6989 if (numentries > max)
6990 numentries = max;
6991
6992 log2qty = ilog2(numentries);
6993
6994 do {
6995 size = bucketsize << log2qty;
6996 if (flags & HASH_EARLY)
6997 table = memblock_virt_alloc_nopanic(size, 0);
6998 else if (hashdist)
6999 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7000 else {
7001 /*
7002 * If bucketsize is not a power-of-two, we may free
7003 * some pages at the end of hash table which
7004 * alloc_pages_exact() automatically does
7005 */
7006 if (get_order(size) < MAX_ORDER) {
7007 table = alloc_pages_exact(size, GFP_ATOMIC);
7008 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7009 }
7010 }
7011 } while (!table && size > PAGE_SIZE && --log2qty);
7012
7013 if (!table)
7014 panic("Failed to allocate %s hash table\n", tablename);
7015
7016 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7017 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7018
7019 if (_hash_shift)
7020 *_hash_shift = log2qty;
7021 if (_hash_mask)
7022 *_hash_mask = (1 << log2qty) - 1;
7023
7024 return table;
7025 }
7026
7027 /*
7028 * This function checks whether pageblock includes unmovable pages or not.
7029 * If @count is not zero, it is okay to include less @count unmovable pages
7030 *
7031 * PageLRU check without isolation or lru_lock could race so that
7032 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7033 * expect this function should be exact.
7034 */
7035 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7036 bool skip_hwpoisoned_pages)
7037 {
7038 unsigned long pfn, iter, found;
7039 int mt;
7040
7041 /*
7042 * For avoiding noise data, lru_add_drain_all() should be called
7043 * If ZONE_MOVABLE, the zone never contains unmovable pages
7044 */
7045 if (zone_idx(zone) == ZONE_MOVABLE)
7046 return false;
7047 mt = get_pageblock_migratetype(page);
7048 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7049 return false;
7050
7051 pfn = page_to_pfn(page);
7052 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7053 unsigned long check = pfn + iter;
7054
7055 if (!pfn_valid_within(check))
7056 continue;
7057
7058 page = pfn_to_page(check);
7059
7060 /*
7061 * Hugepages are not in LRU lists, but they're movable.
7062 * We need not scan over tail pages bacause we don't
7063 * handle each tail page individually in migration.
7064 */
7065 if (PageHuge(page)) {
7066 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7067 continue;
7068 }
7069
7070 /*
7071 * We can't use page_count without pin a page
7072 * because another CPU can free compound page.
7073 * This check already skips compound tails of THP
7074 * because their page->_refcount is zero at all time.
7075 */
7076 if (!page_ref_count(page)) {
7077 if (PageBuddy(page))
7078 iter += (1 << page_order(page)) - 1;
7079 continue;
7080 }
7081
7082 /*
7083 * The HWPoisoned page may be not in buddy system, and
7084 * page_count() is not 0.
7085 */
7086 if (skip_hwpoisoned_pages && PageHWPoison(page))
7087 continue;
7088
7089 if (!PageLRU(page))
7090 found++;
7091 /*
7092 * If there are RECLAIMABLE pages, we need to check
7093 * it. But now, memory offline itself doesn't call
7094 * shrink_node_slabs() and it still to be fixed.
7095 */
7096 /*
7097 * If the page is not RAM, page_count()should be 0.
7098 * we don't need more check. This is an _used_ not-movable page.
7099 *
7100 * The problematic thing here is PG_reserved pages. PG_reserved
7101 * is set to both of a memory hole page and a _used_ kernel
7102 * page at boot.
7103 */
7104 if (found > count)
7105 return true;
7106 }
7107 return false;
7108 }
7109
7110 bool is_pageblock_removable_nolock(struct page *page)
7111 {
7112 struct zone *zone;
7113 unsigned long pfn;
7114
7115 /*
7116 * We have to be careful here because we are iterating over memory
7117 * sections which are not zone aware so we might end up outside of
7118 * the zone but still within the section.
7119 * We have to take care about the node as well. If the node is offline
7120 * its NODE_DATA will be NULL - see page_zone.
7121 */
7122 if (!node_online(page_to_nid(page)))
7123 return false;
7124
7125 zone = page_zone(page);
7126 pfn = page_to_pfn(page);
7127 if (!zone_spans_pfn(zone, pfn))
7128 return false;
7129
7130 return !has_unmovable_pages(zone, page, 0, true);
7131 }
7132
7133 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7134
7135 static unsigned long pfn_max_align_down(unsigned long pfn)
7136 {
7137 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7138 pageblock_nr_pages) - 1);
7139 }
7140
7141 static unsigned long pfn_max_align_up(unsigned long pfn)
7142 {
7143 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7144 pageblock_nr_pages));
7145 }
7146
7147 /* [start, end) must belong to a single zone. */
7148 static int __alloc_contig_migrate_range(struct compact_control *cc,
7149 unsigned long start, unsigned long end)
7150 {
7151 /* This function is based on compact_zone() from compaction.c. */
7152 unsigned long nr_reclaimed;
7153 unsigned long pfn = start;
7154 unsigned int tries = 0;
7155 int ret = 0;
7156
7157 migrate_prep();
7158
7159 while (pfn < end || !list_empty(&cc->migratepages)) {
7160 if (fatal_signal_pending(current)) {
7161 ret = -EINTR;
7162 break;
7163 }
7164
7165 if (list_empty(&cc->migratepages)) {
7166 cc->nr_migratepages = 0;
7167 pfn = isolate_migratepages_range(cc, pfn, end);
7168 if (!pfn) {
7169 ret = -EINTR;
7170 break;
7171 }
7172 tries = 0;
7173 } else if (++tries == 5) {
7174 ret = ret < 0 ? ret : -EBUSY;
7175 break;
7176 }
7177
7178 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7179 &cc->migratepages);
7180 cc->nr_migratepages -= nr_reclaimed;
7181
7182 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7183 NULL, 0, cc->mode, MR_CMA);
7184 }
7185 if (ret < 0) {
7186 putback_movable_pages(&cc->migratepages);
7187 return ret;
7188 }
7189 return 0;
7190 }
7191
7192 /**
7193 * alloc_contig_range() -- tries to allocate given range of pages
7194 * @start: start PFN to allocate
7195 * @end: one-past-the-last PFN to allocate
7196 * @migratetype: migratetype of the underlaying pageblocks (either
7197 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7198 * in range must have the same migratetype and it must
7199 * be either of the two.
7200 *
7201 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7202 * aligned, however it's the caller's responsibility to guarantee that
7203 * we are the only thread that changes migrate type of pageblocks the
7204 * pages fall in.
7205 *
7206 * The PFN range must belong to a single zone.
7207 *
7208 * Returns zero on success or negative error code. On success all
7209 * pages which PFN is in [start, end) are allocated for the caller and
7210 * need to be freed with free_contig_range().
7211 */
7212 int alloc_contig_range(unsigned long start, unsigned long end,
7213 unsigned migratetype)
7214 {
7215 unsigned long outer_start, outer_end;
7216 unsigned int order;
7217 int ret = 0;
7218
7219 struct compact_control cc = {
7220 .nr_migratepages = 0,
7221 .order = -1,
7222 .zone = page_zone(pfn_to_page(start)),
7223 .mode = MIGRATE_SYNC,
7224 .ignore_skip_hint = true,
7225 };
7226 INIT_LIST_HEAD(&cc.migratepages);
7227
7228 /*
7229 * What we do here is we mark all pageblocks in range as
7230 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7231 * have different sizes, and due to the way page allocator
7232 * work, we align the range to biggest of the two pages so
7233 * that page allocator won't try to merge buddies from
7234 * different pageblocks and change MIGRATE_ISOLATE to some
7235 * other migration type.
7236 *
7237 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7238 * migrate the pages from an unaligned range (ie. pages that
7239 * we are interested in). This will put all the pages in
7240 * range back to page allocator as MIGRATE_ISOLATE.
7241 *
7242 * When this is done, we take the pages in range from page
7243 * allocator removing them from the buddy system. This way
7244 * page allocator will never consider using them.
7245 *
7246 * This lets us mark the pageblocks back as
7247 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7248 * aligned range but not in the unaligned, original range are
7249 * put back to page allocator so that buddy can use them.
7250 */
7251
7252 ret = start_isolate_page_range(pfn_max_align_down(start),
7253 pfn_max_align_up(end), migratetype,
7254 false);
7255 if (ret)
7256 return ret;
7257
7258 /*
7259 * In case of -EBUSY, we'd like to know which page causes problem.
7260 * So, just fall through. We will check it in test_pages_isolated().
7261 */
7262 ret = __alloc_contig_migrate_range(&cc, start, end);
7263 if (ret && ret != -EBUSY)
7264 goto done;
7265
7266 /*
7267 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7268 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7269 * more, all pages in [start, end) are free in page allocator.
7270 * What we are going to do is to allocate all pages from
7271 * [start, end) (that is remove them from page allocator).
7272 *
7273 * The only problem is that pages at the beginning and at the
7274 * end of interesting range may be not aligned with pages that
7275 * page allocator holds, ie. they can be part of higher order
7276 * pages. Because of this, we reserve the bigger range and
7277 * once this is done free the pages we are not interested in.
7278 *
7279 * We don't have to hold zone->lock here because the pages are
7280 * isolated thus they won't get removed from buddy.
7281 */
7282
7283 lru_add_drain_all();
7284 drain_all_pages(cc.zone);
7285
7286 order = 0;
7287 outer_start = start;
7288 while (!PageBuddy(pfn_to_page(outer_start))) {
7289 if (++order >= MAX_ORDER) {
7290 outer_start = start;
7291 break;
7292 }
7293 outer_start &= ~0UL << order;
7294 }
7295
7296 if (outer_start != start) {
7297 order = page_order(pfn_to_page(outer_start));
7298
7299 /*
7300 * outer_start page could be small order buddy page and
7301 * it doesn't include start page. Adjust outer_start
7302 * in this case to report failed page properly
7303 * on tracepoint in test_pages_isolated()
7304 */
7305 if (outer_start + (1UL << order) <= start)
7306 outer_start = start;
7307 }
7308
7309 /* Make sure the range is really isolated. */
7310 if (test_pages_isolated(outer_start, end, false)) {
7311 pr_info("%s: [%lx, %lx) PFNs busy\n",
7312 __func__, outer_start, end);
7313 ret = -EBUSY;
7314 goto done;
7315 }
7316
7317 /* Grab isolated pages from freelists. */
7318 outer_end = isolate_freepages_range(&cc, outer_start, end);
7319 if (!outer_end) {
7320 ret = -EBUSY;
7321 goto done;
7322 }
7323
7324 /* Free head and tail (if any) */
7325 if (start != outer_start)
7326 free_contig_range(outer_start, start - outer_start);
7327 if (end != outer_end)
7328 free_contig_range(end, outer_end - end);
7329
7330 done:
7331 undo_isolate_page_range(pfn_max_align_down(start),
7332 pfn_max_align_up(end), migratetype);
7333 return ret;
7334 }
7335
7336 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7337 {
7338 unsigned int count = 0;
7339
7340 for (; nr_pages--; pfn++) {
7341 struct page *page = pfn_to_page(pfn);
7342
7343 count += page_count(page) != 1;
7344 __free_page(page);
7345 }
7346 WARN(count != 0, "%d pages are still in use!\n", count);
7347 }
7348 #endif
7349
7350 #ifdef CONFIG_MEMORY_HOTPLUG
7351 /*
7352 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7353 * page high values need to be recalulated.
7354 */
7355 void __meminit zone_pcp_update(struct zone *zone)
7356 {
7357 unsigned cpu;
7358 mutex_lock(&pcp_batch_high_lock);
7359 for_each_possible_cpu(cpu)
7360 pageset_set_high_and_batch(zone,
7361 per_cpu_ptr(zone->pageset, cpu));
7362 mutex_unlock(&pcp_batch_high_lock);
7363 }
7364 #endif
7365
7366 void zone_pcp_reset(struct zone *zone)
7367 {
7368 unsigned long flags;
7369 int cpu;
7370 struct per_cpu_pageset *pset;
7371
7372 /* avoid races with drain_pages() */
7373 local_irq_save(flags);
7374 if (zone->pageset != &boot_pageset) {
7375 for_each_online_cpu(cpu) {
7376 pset = per_cpu_ptr(zone->pageset, cpu);
7377 drain_zonestat(zone, pset);
7378 }
7379 free_percpu(zone->pageset);
7380 zone->pageset = &boot_pageset;
7381 }
7382 local_irq_restore(flags);
7383 }
7384
7385 #ifdef CONFIG_MEMORY_HOTREMOVE
7386 /*
7387 * All pages in the range must be in a single zone and isolated
7388 * before calling this.
7389 */
7390 void
7391 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7392 {
7393 struct page *page;
7394 struct zone *zone;
7395 unsigned int order, i;
7396 unsigned long pfn;
7397 unsigned long flags;
7398 /* find the first valid pfn */
7399 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7400 if (pfn_valid(pfn))
7401 break;
7402 if (pfn == end_pfn)
7403 return;
7404 zone = page_zone(pfn_to_page(pfn));
7405 spin_lock_irqsave(&zone->lock, flags);
7406 pfn = start_pfn;
7407 while (pfn < end_pfn) {
7408 if (!pfn_valid(pfn)) {
7409 pfn++;
7410 continue;
7411 }
7412 page = pfn_to_page(pfn);
7413 /*
7414 * The HWPoisoned page may be not in buddy system, and
7415 * page_count() is not 0.
7416 */
7417 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7418 pfn++;
7419 SetPageReserved(page);
7420 continue;
7421 }
7422
7423 BUG_ON(page_count(page));
7424 BUG_ON(!PageBuddy(page));
7425 order = page_order(page);
7426 #ifdef CONFIG_DEBUG_VM
7427 pr_info("remove from free list %lx %d %lx\n",
7428 pfn, 1 << order, end_pfn);
7429 #endif
7430 list_del(&page->lru);
7431 rmv_page_order(page);
7432 zone->free_area[order].nr_free--;
7433 for (i = 0; i < (1 << order); i++)
7434 SetPageReserved((page+i));
7435 pfn += (1 << order);
7436 }
7437 spin_unlock_irqrestore(&zone->lock, flags);
7438 }
7439 #endif
7440
7441 bool is_free_buddy_page(struct page *page)
7442 {
7443 struct zone *zone = page_zone(page);
7444 unsigned long pfn = page_to_pfn(page);
7445 unsigned long flags;
7446 unsigned int order;
7447
7448 spin_lock_irqsave(&zone->lock, flags);
7449 for (order = 0; order < MAX_ORDER; order++) {
7450 struct page *page_head = page - (pfn & ((1 << order) - 1));
7451
7452 if (PageBuddy(page_head) && page_order(page_head) >= order)
7453 break;
7454 }
7455 spin_unlock_irqrestore(&zone->lock, flags);
7456
7457 return order < MAX_ORDER;
7458 }
This page took 0.176569 seconds and 5 git commands to generate.